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Abstract

Within the linear response regime, calculation of a material’s thermoelectric transport
parameters requires detailed knowledge of both the electronic band structure and the
electronic scattering rates. While it is possible to calculate both from first-principles
using density-functional theory, rigorous scattering rate calculations can be orders
of magnitude more intensive than band structure calculations, and so in practice
it is common to make use of a simplified scattering model instead. The two most
common such scattering models are the constant-mean-free-path model, the constant-
relaxation-time model. However, recent studies in which the electronic scattering
rates have been rigorously calculated have motivated the use of a third scattering
approximation known as the DOS-scattering model, wherein the electronic scattering
rates are assumed to have the same energy dependence as the density-of-states. While
the latter approximation is believed to be the most physical of the three, it is also the
least commonly used, despite being no more difficult to implement. The overall goal of
this thesis is to understand the extent to which the predictions of the more commonly
used scattering approximations differ from those of the more physical DOS-scattering
model when applied to different classes of electronic band structure.
This work begins by comparing the predictions of these scattering models when ap-
plied to common analytic models of electronic dispersion. It is found that these models
can differ significantly in their predictions, and can even disagree about whether a
particular electronic dispersion feature should improve or degrade performance. In
particular, we find that in the case of the so-called quartic-band model (a simple
analytic model commonly used to describe warped bands), DOS scattering predicts
the existence of a second local maximum in the thermoelectric power factor, a fea-
ture completely missed by both the constant-mean-free-path and constant-relaxation-
time approximations. Motivated by these findings, we use first-principles calculations
of electronic structure to investigate the thermoelectric properties of 2D quintuple-
layered systems of Bi2Te3, Bi2Se3 and Sb2Te3 using the DOS scattering approxima-
tion. These materials display warped band structures qualitatively similar to those
described by the quartic-band model, but have to date only been studied using the
MFP and TAU approximations. To assist with the interpretation of our results, we
introduce a new analytic model of electronic dispersion that qualitatively captures
the main features of the band structures of these materials. It is found that while the
presence of ring-like critical surfaces in the electronic dispersion can lead to excellent
thermoelectric performance, such benefits are highly sensitive to the anistropy and
energetic alignment of these features. Our findings suggest that these quintuple-layer
systems may be even better thermoelectrics than was previously believed, and sug-
gests the possibility of a new approach for designing band structures that lead to
highly efficient thermoelectric conversion.
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Chapter 1

Introduction

There has been a significant increase in the world-wide demand for energy in recent

decades due to the ever-increasing human population, as well as increasing levels of

industrialization, particularly in developing countries. This is problematic, as the

majority of the world’s energy still comes from the combustion of fossil fuels, which is

well-known to have a massively detrimental impact on the environment. This prob-

lem is compounded by the inherent inefficiencies in our current energy production

methods. For example, more than 60 percent of the energy produced in the United

States is lost as waste heat [2], i.e. a significant portion of the energy produced is

wasted heating things that do not require heating, such as the combustion engine

of a car or electrical transformers. If even a fraction of this wasted heat could be

recouped, we could significantly reduce the amount of fossil fuel combustion needed

to meet the world’s energy demands, and hence reduce the amount of greenhouse gas

being produced.

Thermoelectric materials, which are materials capable of converting heat into

useful electrical power, represent a promising method of recovering a portion of this

wasted heat [3]. However, despite their success in numerous small-scale applications,

the best thermoelectrics currently available are either too expensive, or too inefficient

for widespread adoption to be economically viable. As such, the search for new,

highly-efficient thermoelectric materials is an active field of research.

1.1 Thermoelectric Effects

1.1.1 Seebeck Effect

In 1794, Alessandro Volta discovered that when a temperature difference is applied

across a junction of two dissimilar materials, a voltage difference is generated at the

1
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Cold Junction

Figure 1.1: Schematic view of the Seebeck effect. Figure adapted from reference [1].

junctions. This effect is known as the Seebeck effect, after Thomas Johann Seebeck,

who discovered the same effect independently in 1826 [4]. The strength of this effect

is quantified by a quantity known as the Seebeck coefficient, S, which relates the

magnitude of the applied temperature difference to the magnitude of the resulting

voltage difference:

S = −∆V

∆T
. (1.1)

One can show that the Seebeck effect allows for the conversion of heat into electrical

power. As such, solid-state materials exhibiting the Seebeck effect can be used in

thermoelectric power generators, converting wasted heat from other systems back

into useful electrical power (although there are numerous other factors that must be

taken into account).

1.1.2 Peltier Effect

If one takes the same junction of two dissimilar materials, but instead applies a voltage

difference, a temperature difference will be generated across the junction. This related

effect is known as the Peltier effect, after its discoverer Jean Charles Athanase Peltier.



3

+𝑸𝑯

−𝑸𝑪

Material A Material B𝑰

Released Heat

Absorbed Heat

Figure 1.2: Schematic view of the Peltier effect. Figure adapted from reference [1].

It is most commonly quantified using the so-called Peltier coefficient, Π, which relates

the electrical current, I to the resultant heat current, IQ.

IQ
I

= Π (1.2)

While the same electrical current, I flows through the entire circuit, the two dissimilar

materials will in general have different Peltier coefficients, and hence there will a net

release of heat (+QH) at one junction, and a net absorption of heat (−QC) at the

other. Changing the direction of the electrical current will swap the behavior of the

junctions, i.e will change heating to cooling and vice-versa. The Peltier effect can

be thought of as the counterpart to the Seebeck effect, and the close relationship

between these two effects is exemplified by the especially simple relationship between

their respective coefficients,

Π = TS, (1.3)

where the above identity is a special case of the more general Onsager reciprocal

relations [5, 6].
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1.2 Thermoelectric Figure-of-Merit

When exploiting the thermoelectric effects to generate electrical power from heat, it is

desirable for the thermo-electric conversion taking place to be as efficient as possible.

The maximum efficiency of a thermoelectric generator is given by [7]

ηmax =
∆T

TH

√
1 + ZT − 1√
1 + ZT + TC

TH

, (1.4)

where TC and TH are the temperatures at the cold and hot contacts respectively.

It can be seen that this expression increases monotonically with the quantity ZT ,

approaching the Carnot limit as ZT → ∞. This quantity, ZT , is known as the

thermoelectric figure-of-merit, and is defined thusly:

ZT =
σS2T

κe + κl
, (1.5)

where σ is the electronic conductivity, S is the Seebeck coefficient, κe is the electronic

contribution to the thermal conductivity (under open-circuit conditions), κl is the

contribution to the thermal conductivity from the crystal lattice (i.e. phonons), and

T is the temperature. The expression σS2 that appears in the numerator of the

expression for ZT is known as the thermoelectric power factor, and is commonly

used as a metric for assessing the electronic properties of thermoelectric materials.

All of the quantities definining ZT are material specific (except for T ), and as such

ZT is a material property, and will take on different values in different materials. As

more efficient thermoelectrics can recoup larger amounts of waste heat, discovering

new materials with record high-ZT values is arguably the top priority for reseachers

in the field.

1.3 Theoretical Calculations of Thermoelectric Properties

The thermoelectric parameters defining the figure-of-merit, ZT , are complicated func-

tions of microscopic material properties, namely the electronic structure and the elec-

tronic scattering rates. These quantities are challenging to resolve experimentally,

and even more challenging to tune, e.g. via alloying or nano-structuring of candi-

date thermoelectric materials. Furthermore, even when it is possible to successfully
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engineer particular changes in the microscopic properties (e.g. in the band gap or

effective masses), actually obtaining superior ZT values is highly non-trivial due to

the complex interdependence of the quantities defining ZT . For example, while a

high electrical conductivity, σ, is desirable for thermoelectric performance, enhance-

ments to σ are typically accompanied by similar increases in the electrical thermal

conductivity, κe, which degrades thermoelectric performance. A similar trade-off oc-

curs when attempting to optimize the dopant concentration: changes that improve

conductivity also tend to decrease the magnitude of the Seebeck coefficient, and vice-

versa.

These challenges are further compounded by the difficulty (and cost) of producing

high-quality material samples. Furthermore, since the thermoelectric performance of

a material is also a function of the chemical potential level (which is controlled ex-

perimentally via the concentration of dopants), one must in principle prepare many

samples with a range of different dopant concentrations in order to fully determine

the potential thermoelectric performance of a particular material. For new materials,

it may not even be obvious what the best dopant choices would be. In light of these

challenges, experimental trial-and-error is a relatively inefficient means of searching

for new thermoelectric materials with high figures-of-merit.

To combat the many challenges associated with experimental investigations of

thermoelectric efficiency, it is common to make use of theoretical techniques to guide

investigations. One such technique is the use of analytical models of electronic disper-

sion [8–11]. These analytical models allow one to directly explore the consequences

of varying particular dispersion features (e.g. band gap, effective mass values, devi-

ations from parabolicity, etc.) without the need to prepare samples that exhibit the

desired features. The effect of dopant concentration can also be investigated (at least

within the rigid band approximation), by simply changing the value of the chemical

potential, µ. As such, analytical models allow one to quickly investigate the con-

sequences of changing the values of various material parameters, something that if

performed experimentally, would require a new sample to be prepared for each value

being tested. These analytical models are commonly used to analyze experimental
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results, or to provide design strategies [9, 10]

In addition to the benefits provided by analytic models of electronic dispersion, it

is also possible to use density-functional theory calculations to rigorously resolve the

electronic band structure [12–17] and electronic scattering rates [13,18–28] of a mate-

rial, using only its crystal structure as input. This is particularly useful for materials

with complex electronic dispersions not well-described by simple analytic models.

While computationally intensive (particularly the scattering rate calculations), these

first-principles investigations can nevertheless be performed much more quickly than

most experimental investigations. As such, these first-principles techniques are com-

monly used to assess the viability of a particular thermoelectric material of interest, or

to rapidly explore the thermoelectric properties of large numbers of candidate materi-

als. The latter approach is particularly useful when searching for materials exhibiting

dispersion features that analytical calculations have shown to be desirable for ther-

moelectric performance. The relative ease with which one is able to determine the

thermoelectric properties of a material of interest, or to search for new materials ex-

hibiting desirable features, makes theoretical calculations of thermoelectric properties

an invaluable tool to researchers in the field of thermoelectrics.

1.4 Present Research and Motivation

As outlined above, first-principles calculations of electronic band structure and the

electron-phonon scattering rates allow researchers to accurately determine the values

of the material parameters defining ZT , making it possible to determine the via-

bility of a particular material without the need for expensive and time-consuming

experimentation. However, as rigorous scattering calculations can be extremely com-

putationally intensive, a much more common approach is to pair rigorous calculations

of electronic band structure with simplified models of carrier scattering, most often

the constant-relaxation-time or constant-mean-free path approximations. As such, in

recent years the focus has been primarily on researching the viability of particular

electronic band structures, with less emphasis being placed on accurate descriptions

of carrier scattering.
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However, recent rigorous scattering-rate calculations have shown that the so-called

DOS-scattering approximation, wherein the electron-phonon scattering rates are as-

sumed to be proportional to the electronic density-of-states, describes the true scat-

tering properties of many thermoelectric materials better than either the constant-

mean-free-path or the constant-relaxation-time approximation [22, 27, 28]. As calcu-

lations of the electronic DOS are no more intensive than the calculations of electronic

band structure that are commonly performed, the DOS-scattering model provides a

means of obtaining a more accurate description of carrier scattering than either the

constant-mean-free path or constant-relaxation-time approximations can provide, at

essentially no additional computational cost. As such, this work sets out to under-

stand the extent to which the predictions of the DOS-scattering model can differ

from those of simpler scattering models. We note that the DOS-scattering model has

been implemented in previous studies, and even compared against the predictions of

simpler scattering approximations before [29], but such studies have until now been

limited to relatively simple band structures. This work extends these previous in-

vestigations in two ways: firstly by providing the most detailed comparison of the

predictions of common scattering approximations when applied to various common

classes of band structure, and secondly by performing the first study that considers

the consequences of DOS-scattering when applied to materials with highly-warped

electronic band structures.

This work begins with a comparison of the predictions of these three scattering

models when applied to analytic models of electronic dispersion, to determine to what

extent the predictions of the more commonly used MFP and TAU approximations

differ from those of the more physical DOS-scattering approximation. We find that

even in relatively simple models of electronic dispersion, the predictions of the various

scattering models can differ significantly, and the models may even disagree about

whether a particular electronic dispersion feature will improve or degrade thermoelec-

tric performance. This qualitative disagreement is found to be especially pronounced

in the case of warped valence bands, such as those described by the quartic-band

model. These warped band structures possess a large number of so-called critical

points, i.e. points where the gradient of the electronic dispersion vanishes, and been
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proposed as candidates for highly efficient thermoelectric conversion. Our analysis

revisits the thermoelectric properties of such dispersions, with a focus on the impact

that a more accurate scattering approximation (i.e the DOS-scattering model) has on

the predicted properties.

In light of our finding that the more common constant-mean-free path and constant-

relaxation time approximations fail to accurately describe the impact that warped

bands have on the scattering rate distributions, we proceed to investigate the ther-

moelectric properties of 2D quintuple-layered systems of the semiconductors Bi2Se3,

Bi2Te3 and Sb2Te3. These materials have been shown by previous studies to pos-

sess highly warped valence band structures, which contain large numbers of critical

points. However, all previous theoretical studies of the thermoelectric properties

of these materials have limited themselves to either the constant-mean-free-path or

constant-relaxation-time approximations, and as such have failed to properly account

for the impact that their warped band structure has on the electronic scattering rates.

To this end, we perform the first investigation of these quintuple-layered systems

that makes use of the DOS-scattering approximation. It is found that the warped

valence bands of these materials possess critical surfaces (i.e. constant-energy sur-

faces containing large numbers of critical points) that cannot be described by existing

analytic models of electronic dispersion, so we introduce a new simple model of dis-

persion capable of describing the impact of such features. It is found that when

the impact that such features have on scattering rates is taken into account (via the

DOS-scattering model), the ZT values of these materials can be even higher than

what researchers making use of the more common scattering approximations have

found. However, it is also found that the performance enhancements predicted by the

DOS scattering model are highly sensitive to the level of anisotropy in the electronic

dispersions, as well as to the alignment of the critical surfaces.



Chapter 2

Theory and Methods

In this chapter, we outline the theory needed to understand the analysis performed in

the following chapters. After a brief review of the basics of electronic band structure,

thermoelectric transport, and density-functional theory, we outline the methodology

we use to calculate quantities of interest from electronic dispersion data, both ana-

lytically and numerically.

2.1 Electronic Band Structure

Thermoelectric materials are typically crystalline, meaning that they are solid-state

materials that possess discrete translational symmetry. As such, electrons in these

thermoelectric materials experience a periodic potential that arises from the crys-

talline arrangment of the atomic nuclei. As proved by Felix Bloch [30], the wavefunc-

tion of any such electron must be of the form

ψα
k (r) = eik·ruαk (r) (2.1)

where k is a point in reciprocal space, α is the band index and uαk (r) is a function

with the same perodicity as the unit cell of the material in question [31]. It can be

shown that ψα
k (r) and ψ

α
k+G(r) (where G is a reciprocal lattice vector) are equivalent

states, and so we can limit our calculations to k-points within the first Brillouin zone

without loss of generality. In light of this, determining the allowed electronic energies

of a solid-state system amounts to calculating the Bloch wavefunctions ψα
k (r) and

the corresponding eigen-energies, Eα
k for each point k within the first Brillouin zone.

Once calculated, one can define the dispersion relation of the material:

ϵ(k) = {Eα
k }. (2.2)

9
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This dispersion relation, also known as the band structure, is a multi-valued func-

tion which maps each point k in the Brillouin zone to the allowed eigenenergies of

the corresponding Bloch wavefunctions. As we shall shortly see, the band structure

is arguably the fundamental quantity for understanding the transport properties of

thermoelectric materials.

2.2 Thermoelectric Transport

For a solid-state thermoelectric material in thermodynamic equilibrium, the probabil-

ity of a state with energy E being occupied by an electron is given by the Fermi-Dirac

distribution (FDD), which we denote with the symbol f0,

f0(E, µ, T ) =
1

e
E−µ
kBT + 1

, (2.3)

where kB is the Boltzmann constant, µ is the chemical potential of the system and T is

the temperature. If there exists a small temperature or potential difference across the

material, then the populations of electronic energy levels may vary across the material.

Let f1 be the FDD of injected carriers from the left contact, and let f2 be the FDD of

carriers at the right contact. Any difference between these two distributions describes

a population imbalance, which will cause electrons to diffuse from the more populated

side of the material to the other, as described by the following current equations [7]

(valid in the linear response regime):

I =
q

L

∫︂ ∞

−∞
Σ(E)

(︁
f1(E)− f2(E)

)︁
dE, (2.4)

IQ =
1

L

∫︂ ∞

−∞
(E − µ)Σ(E)

(︁
f1(E)− f2(E)

)︁
dE. (2.5)

In the above equations, L is the length of the system along the transport direction.

The quantity Σ(E) is known as the transport distribution, and it quantifies the extent

to which a particular energy level is able to contribute to electron transport. In the

linear response regime, i.e. when the temperature and chemical potential differences

are small, we can expand our current equations to first order in ∆T = T1 − T2

and ∆µ = µ1 − µ2 (or equivalently, ∆V = ∆µ/q, where q is the magnitude of the

elementary charge), where Ti and µi are the temperature and chemical potential

appearing in fi.
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I = σ∆V + σS∆T (2.6)

IQ = σST∆V + κ0∆T (2.7)

where we have introduced the electrical conductivity, σ, the Seebeck coefficient, S,

and the electronic thermal conductivity, κ0. Their definitions are as follows [32]:

σ =
(︁2q2
h

)︁
I0, (2.8)

S = −
(︁kB
q

)︁I1
I0
, (2.9)

κ0 =
(︁2k2BT

h

)︁
I2, (2.10)

where we have introduction the thermoelectric moment integral Ij:

Ij =
h

2L

∫︂ ∞

−∞
Σ(E)

(︁E − µ

kBT

)︁j[︁− ∂f0
∂E

]︁
dE. (2.11)

Note that the expression for ZT provided in the Introduction depends not on κ0, but

on the related open-circuit electronic thermal conductivity, κe. The definition for the

latter is obtained by expressing ∆V in terms of ∆T using Equation 2.6, inserting that

expression into Equation 2.7, then imposing the open-circuit condition I = 0.

κe = κ0 − TσS2 =
(︁2k2BT

h

)︁(︁
I2 −

I21
I0

)︁
(2.12)

As such, if one has an expression for the transport distribution of a given material,

one can calculate all quantities of interest, and hence determine the thermoelectric

efficiency of the material.

When implementing the relaxation time approximation within the Boltzmann

transport formalism, and assuming transport along the x̂ direction, the transport

distribution is defined as [32]

Σ(E) =
1

Ω

∑︂
k,σ,n

v2x(k)τ(k)δ(E − ϵ(k)), (2.13)
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where Ω is the volume of the unit cell, vx = 1
h̄

∂ϵ
∂kx

is the x-component of the electronic

group velocity, τ(k) is the relaxation time, and n is the band index. (In what follows,

all sums over k should be understood to implicitly include a sum over band index as

well) Although this form is not especially easy to interpret, there exists an alternative

(but equivalent) transport formalism known as the Landauer formalism, within which

the transport distribution takes on a more physically transparent form.

2.3 Landauer Formalism

Within the Landauer formalism, the transport distribution is commonly expressed as

the product of two functions [7], as shown in the following expression:

Σ(E) =
2

h
M(E)λ(E) (2.14)

The first quantity, M(E), is known as the distribution-of-modes (or DOM), and is

defined thusly [33]

M(E) =
h

4

∑︂
k,s

|vx(k)| δ(E − ϵ(k)) /Ω, (2.15)

where the sum is performed over all spin states, s, and points in the Brillouin zone, k.

As a consequence of this, the dimensions of M(E) are a function of the dimension of

the Brillouin zone, i.e. the units of M(E) are different for 1D, 2D and 3D materials.

In 1D, the DOM is a unitless quantity, whereas in 2D and 3D it is defined per unit

length and per unit area, respectively.

Although not evident from the above definition, M(E) can be shown to be equal

to the number of states with energy E for which the component of the group velocity

along the transport direction is positive. As such, it can be interpreted physically

as the number of ‘channels’ available for electrons to travel in, and takes on integer

values. This concept is illustrated for a one-dimensional band structure in Figure

2.1, although this interpretation holds for 2D and 3D materials as well, as shown in

Appendix 6.2.

The second quantity, λ(E), is known as the mean-free-path for backscattering, and

is defined as the average distance that an electron with energy E will travel before a
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scattering event changes the sign of its vx component, i.e. before it scatters backwards.

The mean-free-path for backscattering is defined in the following manner [33],

λ(E) = 2

∑︁
k,s v

2
x(k) τ(k) δ(E − ϵ(k))∑︁

k,s |vx(k)| δ(E − ϵ(k))
, (2.16)

where the above definition is chosen so that the Landauer formalism reproduces the

results of the Boltzmann Transport Equation when implementing a constant relax-

ation time approximation [32].

In cases where the relaxation time τ(k) is only a function of energy, i.e. τ(k) =

τ(ϵ(k)), we can write the mean-free-path for backscttering as the product of an energy-

dependent relaxation time and an averaged velocity, λ(E) = Vλ(E)τ(E). The aver-

aged velocity is defined as

Vλ(E) = 2

∑︁
k,s v

2
x(k) δ(E − ϵ(k))∑︁

k,s |vx(k)| δ(E − ϵ(k))
. (2.17)

In such cases, the transport distribution can be expressed thusly:

Σ(E) =
2

h
M(E)Vλ(E)τ(E). (2.18)

This form provides a physically transparent interpretation of the transport distribu-

tion. The ability of an energy level to transport charge is determined by how many

channels are available for transport, M(E), the average velocity of electrons in these

channels Vλ(E), and the average time between backscattering events, τ(E). Since

the group velocity is defined in terms of the electronic dispersion, vx(k) =
1
h̄

∂ϵ
∂kx

, both

M(E) and Vλ(E) are entirely determined by the band structure of the material in

question.

The relaxation time distribution, however, requires additional information (e.g.

phonon dispersions) to be calculated rigorously. Whereas essentially all first-principles

calculations of thermoelectric properties will make use of density-functional theory

to accurately resolve the electronic band structure of the material being investigated,
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it is relatively rare for researchers to perform a rigorous calculation of the electron-

phonon scattering rates, as these calculations can be more computationally intensive

than band structure calculations by orders of magnitude. In place of a rigorous scat-

tering rate calculation, it is typical to instead make use of a simplified scattering rate

approximation. The two most common such approximations are the constant-mean-

free-path approximation, and the constant-relaxation-time approximation.

In the constant-mean-free-path approximation, one makes the simplifying assump-

tion that the mean-free-paths of all electronic energy levels lying within the Fermi

window are constant. Although used much more broadly, this approximation can

be justified physically in the special case of 3D parabolic bands with acoustic de-

formation potential scattering (ADP) [34]. Phonon scattering is often the dominant

scattering process for materials at room temperature. When this approximation is

made, the transport distribution ΣMFP (E) takes on the following simplified form,

ΣMFP(E) =
2

h
M(E) · λ0, (2.19)

where we have introduced the MFP-model scattering constant λ0. Analogously, in the

constant-relaxation-time approximation, one assumes that the electronic scattering

rates of the states lying within the Fermi window are constant. This approximation

is in some sense less crude than the constant MFP approximation, as it incorporates

information about the average electronic velocities into the transport distribution,

but materials in which a constant relaxation-time can be justified physically (e.g.

2D parabolic band materials with ADP) are relatively rare compared to those in

which a constant MFP assumption is reasonable. When the constant relaxation time

approximation is made, the transport distribution ΣTAU(E) takes on the following

form,

ΣTAU(E) =
2

h
M(E) · Vλ(E) · τ0, (2.20)

where we have introduced the TAU-model scattering constant τ0. While these two

scattering rate approximations make up the bulk of first-principles thermoelectric

calculations, there exists another less-common scattering rate approximation, known
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as the DOS scattering approximation, that is arguably more physical than either the

constant-MFP or constant relaxation-time models.

When implementing the DOS scattering approximation, one assumes that the scat-

tering rate of electrons at a given energy level is proportional to the total electronic

DOS at the same energy level. Equivalently, one assumes that the electronic relax-

ation time distribution is inversely proportional to the electronic DOS, D(E), defined

below.

D(E) =
1

Ω

∑︂
k,s

δ(E − ϵ(k)). (2.21)

DOS scattering can be justified in a number of different scenarios. In parabolic

band materials, if one assumes that ADP scattering is the dominant scattering pro-

cess, it can be shown that one obtains a scattering rate distribution proportional to

the electronic DOS [34]. Furthermore, rigorous electron-phonon scattering rate cal-

culations have shown that a DOS scattering approximation should better reproduce

the true scattering rates than either the MFP or TAU approximations [22, 27]. DOS

scattering can be thought of as the least crude of the three scattering approximations

considered here, as in addition to incorporating information about the average elec-

tronic velocities, it also incorporates the effect that changes in the density-of-states

have on the electronic scattering rates, something that the other two approximations

are blind to. When this approximation is made, the transport distribution ΣDOS(E)

takes on the following form (note that we choose to place our scattering constant K0

in the numerator of our expression, whereas previous papers have placed it in the

denominator):

ΣDOS(E) =
2

h
M(E) · Vλ(E) · [K0/D(E)]. (2.22)

In each of these three scattering approximations, there remains a single undetermined

constant. In practice, these could be determined via experimental measurements of

σ, as outlined in Appendix B.
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2.4 Analytical Models of Dispersion

When calculating the thermoelectric properties of a material using one of the three

simple scattering approximations outlined above, all quantities of interest are purely

functions of the electronic dispersion, ϵ(k), of the material in question. As such, by

specifying an analytic expression for the band structure, it is possible to explicitly

calculate all quantities of interest, namely M(E), Vλ(E) and D(E).

To do so, it is useful to rewrite Equations 2.15, 2.17 and 2.21 in an alternative

form more practical for analytical calculations. The basic idea is to rewrite the sums

of delta functions as an integral over the constant energy surface(s) of ϵ(k), using the

following delta function identity,

∑︂
k

f(k)δ(E − ϵ(k)) =
1

(2π)d

∫︂
S(E)

f(k)

|∇ϵ(k)|dS, (2.23)

where d is the dimension of the band structure, and S(E) is the set of all points in

reciprocal space for which ϵ(k) = E. In this form, it is clear that points at which

∇ϵ(k⃗) = 0, the so-called critical points, will have a disproportionately large impact

on the electronic properties of the material. In particular, when there exist constant

energy surfaces consisting entirely of critical points, one can expect to see very sharp

features in quantities like M(E), D(E) and Vλ(E).

For simple models of band structure, it is possible to explicitly parameterize these

constant energy surfaces, allowing for a direct evaluation of the integrals. For ex-

ample, the constant energy surfaces of 3D isotropic bandstructures are spheres in

reciprocal space, and can thus be parameterized by spherical polar coordinates. In

two-dimensional (2D) materials, which will make up the bulk of our analysis, the

constant energy surfaces form 1D curves in reciprocal space. Such curves can be

parameterized by a single parameter, and two smooth functions thereof, as shown

below:
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⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
kx = x(ϕ)

ky = y(ϕ)

ϕ ∈ [a, b]

We choose to use the symbol ϕ as our parameter, as the circular constant energy

surfaces that arise from 2D isotropic dispersions are naturally parameterized by the

polar angle, but for more general constant energy surfaces the parameter need not

have any direct physical significance. Once a suitable parameterization has been

chosen, we can rewrite our surface integrals as integrals over our parameter domain

thusly:

1

(2π)2

∫︂
S(E)

f(kx, ky)

|∇ϵ(kx, ky)|
dS =

1

(2π)2

∫︂ b

a

f(x(ϕ), y(ϕ))

|∇ϵ(x(ϕ), y(ϕ))|

√︄
(
dx

dϕ
)2 + (

dy

dϕ
)2dϕ. (2.24)

For ease of notation later on, we define the following function

Q(ϕ) =
1

4π2

√︂
( dx
dϕ
)2 + ( dy

dϕ
)2

|∇kϵ(x(ϕ), y(ϕ))|
, (2.25)

which allows us to rewrite our sums over delta functions in the following manner:

∑︂
k

f(k)δ(E − ϵ(k)) =

∫︂ b

a

f(x(ϕ), y(ϕ))Q(ϕ)dϕ. (2.26)

Note that Q is implicitly a function of energy level, as different values of E will

result in different constant energy surfaces, and hence different parameterizations. In

terms of this function, the total density-of-states is then given by

D(E) =
2

Ω

∑︂
k

δ(E − ϵ(k)) =
2

Ω

∫︂ b

a

Q(ϕ)dϕ. (2.27)

M(E) and Vλ(E) can be expressed in a similar manner:

M(E) =
2

Ω
· h
2

∑︂
k,vx>0

|vx(k)|δ(E − ϵ(k)) =
2πh̄

Ω

∫︂ b′

a′
vx(ϕ)Q(ϕ)dϕ, (2.28)
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Vλ(E) = 2

∫︁ b′

a′
v2x(ϕ)Q(ϕ)dϕ∫︁ b′

a′
vx(ϕ)Q(ϕ)dϕ

. (2.29)

Note that in general the bounds of the integrals in the latter two expressions

will be different than those in the density-of-states expression, as in these cases the

integration should only include the points on the constant energy surface which cor-

respond to positive velocity states, i.e. the integration should be performed over the

positive velocity surface S+(E) (See Appendix A).

For the most commonly used simple models of electronic dispersion, the positive

velocity surfaces are easily described in Cartesian coordinates. For example, the pos-

itive velocity surface of an isotropic parabolic band is simply the set of all points for

which kx > 0. The same is true for the special case of an anisotropic parabolic band

whose ellipsoidal axes are exactly aligned with the standard Cartesian axes [28]. In

special cases such as these, it is possible to calculate the quantities of interest without

invoking the full mathematical machinery of the surface integral formulation outlined

above.

The power of our approach is in its ability to handle more general cases, wherein

the positive velocity surfaces are not so cleanly expressed, e.g. for an anisotropic

parabolic band whose ellipsoidal axes are arbitrarily oriented. In Appendix D, we

apply a 3D version of the above surface integral formalism to such a band, and derive

an expression for M(E) with explicit transport direction dependence, something that

until now has been lacking from the Landauer literature.

2.5 Density Functional Theory

As shown in the previous sections, calculation of the thermoelectric properties of a ma-

terial requires, at a minimum, detailed knowledge of the material’s electronic disper-

sion. In theory, this can be obtained from first-principles by solving the Schrodinger

equation for the material in question. Suppose that our solid state system consists

of N electrons that reside in the electric potential field due to M atomic nuclei. The

Hamiltonian for such a system is commonly expressed as the sum of two different
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terms. The first is due to the Coulombic interaction between the electrons and the

atomic nuclei. (Note that we are assuming atomic units). The so-called external

potential, i.e. the potential due to the charges of the atomic nuclei, is given by

Vext(r) = −
M∑︂
α

Zα

|r − rα|
, (2.30)

where Zα is the atomic number of the α-th nucleus, and rα the corresponding location.

The second term, F̂ is a combination of the kinetic energy and electron-electron

interaction terms,

F̂ = −1

2

N∑︂
i

∇2
i +

1

2

N∑︂
i

N∑︂
j ̸=i

1

|ri − rj|
, (2.31)

where ri is the position of the i-th electron. The full Hamiltonian for our system is

then given by

Ĥ = F̂ +
N∑︂
i

Vext(ri) = −1

2

N∑︂
i

∇2
i +

1

2

N∑︂
i

N∑︂
j ̸=i

1

|ri − rj|
+

N∑︂
i

Vext(ri). (2.32)

Note that the Hamiltonian is entirely determined by the external potential and the

number of electrons, N . However, as this Hamiltonian describes a 3N -dimensional

partial-differential equation, actually solving for the wavefunctions is fiendishly diffi-

cult for all but the simplest of systems.

An alternative approach was provided by Hohenberg and Kohn in their seminal

1964 paper [35]. In it, the authors prove two extremely powerful theorems. The first

states that the external potential is a unique functional of the ground state electronic

density, n(r). Since the density also determines the number of electrons in the system

(N =
∫︁
n(r)d3r), it therefore uniquely determines the entire Hamiltonian, and with

it all properties of the system, including the ground-state many-body wavefunction,

|Ψ⟩. This means that it is possible to uniquely define the so-called universal functional

F [n] = ⟨Ψ|F̂ |Ψ⟩ (though obtaining an explicit expression for it is another matter

entirely). In terms of this universal functional F [n], we can write down an expression

for the ground state energy density-functional, E[n]:
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E[n] = F [n] +

∫︂
Vext(r)n(r)d

3r (2.33)

The second HK-theorem shows that this functional is variational in n(r), i.e. that

E[n] takes on its minimum value when n is the ground state density corresponding to

the external potential Vext(r).

Combined, these theorems reduce the problem of determining the many-body

wavefunction to the considerably simpler problem of minimizing a three-dimensional

functional, which represents a massive reduction of the complexity of the problem.

The remaining challenge is obtaining an explicit form for E[n], as the HK theorems

only prove that such a functional exists.

As a first step, we can express our ground state energy functional thusly (note that

we have switched from chemical to physical units):

E[n] = T [n]⏞⏟⏟⏞
kinetic energy

+
e2

2 · 4πϵ0

∫︂
d3r d3r′

n(r)n(r′)

|r − r′|⏞ ⏟⏟ ⏞
el-el electrostatic PE

+

∫︂
d3r n(r)Vext(r)⏞ ⏟⏟ ⏞

el-ion electrostatic PE

+ EXC [n]⏞ ⏟⏟ ⏞
exchange-correlation energy

(2.34)

However, in the absence of an explicit universal expression for either the kinetic

energy of a system of interacting electrons, T [n], or the exchange-correlation energy,

EXC [n], we are at an impasse. The most common method of dealing with this un-

certainty is Kohn-Sham theory [36], wherein we instead opt to describe a ficticious

system of non-interacting electrons that generates the same charge density as the

true system. If the (orthogonal) single-particle wavefunctions of the non-interacting

Kohn-Sham electrons are given by ϕi(r), then the non-interacting density is given by

n(r) =
N∑︂
i

|ϕi(r)|2. (2.35)

The kinetic energy of these ficticious non-interacting electrons is then given by
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TKS = − h̄2

2m

N∑︂
i

⟨ϕi|∇2|ϕi⟩ . (2.36)

Although typically a good approximation to the kinetic energy of the true, in-

teracting electron system, the Kohn-Sham kinetic energy is not exact. In practice,

the difference between the two kinetic energy expressions is swept into the definition

of the exchange-correlation potential, i.e. we redefine our exchange-correlation term

such that

EXC [n] = T [n]− TKS[n] + EX [n] + EC [n], (2.37)

where EX [n] and EC [n] are the true exchange and correlation energy functionals

respectively. Thus, we have swept all uncertainty about the functional form of our

ground state energy functional E[n] into our EXC [n] term. This term describes the

impact of all many-body effects, but its exact form is not known. Since our energy

functional is stationary with respect to variations of the Kohn-Sham orbitals, we have

that

δE[n]

δϕi(r)
− Eiϕi(r) = 0, (2.38)

where we have inserted a Lagrange multiplier so that the orthonormality of the Kohn-

Sham wavefunctions is preserved. Evaluating the functional derivatives on the LHS,

we obtain the effective Schrodinger equation for our Kohn-Sham system, known as

the Kohn-Sham equation:

(︃
− h̄

2∇2

2m
+

∫︂
d3r′

n(r)

|r − r′| + Vext(r) +
δEXC [n]

δn(r)

)︃
ϕi(r) = Eiϕi(r). (2.39)

Thus, the interacting electron problem has been reduced to solving a single-particle

Schrodinger equation. If the exact form of EXC [n] were known, we could obtain the

exact ground state density of the interacting system. In practice, approximate forms

such as the local-density approximation (LDA) or generalized-gradient-approximation

functional (GGA) must be used, but these are usually good enough to calculate

quantities of interest to the desired degree of accuracy. In our case, the Kohn-Sham

equations make it possible for us to solve for the band structure, ϵ(k) of our system,
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i.e. to calculate the Bloch eigenenergies for each k-point in our Brillouin zone. As with

any numerical calculation, this results in a band structure that is resolved discretely

(i.e. on a grid of finitely many k-points) rather than continuously, which necessitates

a different approach for calculating quantites like D(E), M(E) and Vλ(E).

2.6 Numerical Methods

When one can only resolve the electronic band structure discretely, e.g. when one

performs a density-functional theory (DFT) calculation to obtain the electronic struc-

ture of a material, a different calculational approach must be used to obtain D(E),

M(E) and Vλ(E). The simplest of these to obtain is typically the density-of-states:

most DFT packages are capable of calculating D(E) directly, often by using a tetra-

hedron integration technique to integrate over the Brillouin zone [37]. For the latter

two quantities, a slightly more sophisticated technique must be used.

If the electronic dispersion of a material is resolved on a uniform Cartesian grid,

there exists an elegant numerical algorithm for the calculation of M(E) and Vλ(E)

known as band-counting [38]. It can be shown that the distribution-of-modes, M(E),

is simply equal to the number of states at energy E for which vx > 0, as illustrated

in Figure 2.1. Similarily, Vλ(E) is simply (twice) the average velocity of these same

states. As such, both quantities can quickly be calculated from the electronic disper-

sion data output by a DFT calculation [38].

While the majority of materials do not possess the rectangular Brillouin zones nec-

essary for band-counting, it is always possible to ‘fold’ the primitive Brillouin zone

into a smaller, rectangular Brillouin zone, such that the band-counting algorithm

can be applied. This technique is equivalent to performing the electronic structure

calculation using a larger, rectangular super-cell (which would result in a smaller,

rectangular Brillouin zone), but one can avoid the additional computational cost as-

sociated with super-cell calculations by instead performing the calculations on the

primitive cell, then ‘folding’ points that lie outside of the rectangular BZ. Figure 2.2

illustrates how this folding would be performed for a 2D hexagonal material.
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Figure 2.1: Illustration of the Landauer band-counting algorithm for a 1D bandstruc-
ture. Positive velocity branches are plotted as solid black lines, negative velocity
branches as dotted black lines. The expression S+(E) refers to the positive velocity
surface, i.e the set of all k-points with energy E and positive velocity.

Figure 2.2: Diagram illustrating the implementation of the band-folding technique,
as applied to the Brillouin zone of a 2D hexagonal material.
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Using the reciprocal lattice vectors of the rectangular super-cell, it is possible to

map each k-point in the primitive hexagonal BZ into a corresponding point within the

rectangular BZ. This has the effect of turning a single band resolved over the hexag-

onal BZ to two bands resolved over the smaller recangular BZ. The continuity of the

gradient of the electronic dispersion is preserved in the folded bands, as the folded

regions are stitched together along the boundaries of the primitive BZ, with respect to

which the gradient of the electronic dispersion must be normal [31]. The same general

procedure can be applied to Brillouin zones with more complicated geometries, but

the number of ‘extra’ bands may vary. For example, folding a rhombohedral BZ into

a rectangular BZ results in six times as many bands.

We make use of a custom script to perform this folding procedure, and a software

package by the name of LanTraP [38] to perform the calculations ofM(E) and Vλ(E).

As the number of k-points needed to accurately resolve transport properties can be

very large, we do not resolve the entire Brillouin zone in a single calculation, instead

opting to break up our non-self consistent calculations into hundreds of seperate jobs,

each resolving a the electronic dispersion of a small portion of the Brillouin zone. The

band-counting algorithm is well-known and widely used, particularily by researchers

making use of the Landauer formalism of thermoelectric transport. However, it is

difficult to track down a reference where this result is derived in full generality. To

this end, we present in Appendix A what (to our knowledge) is the most rigorous and

general derivation of the band counting algorithm in the literature.



Chapter 3

On the Thermoelectric Performance of Analytic Band

Structure Models

In this chapter, we investigate how the thermoelectric parameters (particularily the

power factor PF = σS2) calculated with the DOS-scattering compare to the pre-

dictions of the more commonly used constant-MFP and constant-relaxation time

approximations, when applied to simple analytical models of electronic dispersion.

The dispersions we consider are those of parabolic bands (1D/2D/3D), Kane bands

(1D/2D/3D) and ring shaped bands (2D).

3.1 Parabolic Bands

We begin with perhaps the most familiar electron dispersion model – a single isotropic

parabolic, effective mass band (see for example Refs. [8–11,27]). The electron disper-

sion has the form:

E =
h̄2k2

2m∗ , (3.1)

where m∗ is the effective mass. The corresponding quantitiesM(E), Vλ(E) and D(E)

are shown in Figure 3.1. Using Eqns. (2.8)-(2.16), we calculate the TE properties.

Figure 3.2 illustrates the power factors (PF = S2σ) of parabolic band with m∗=m0

(the free electron mass), calculated using all three scattering approximations in 1D, 2D

and 3D. The results for the MFP model were previously shown in Ref. [39]. Note that

the units of PF vary across dimensions – a direct comparison requires introducing an

“effective cross-sectional area” for the low-dimensional materials. This effective area

is a function of how densely the low-dimensional materials can be packed without

distorting the electronic dispersion, which is highly material-dependent, so we do

not attempt to define one for the models considered in this work. As discussed in

the previous chapter, each of our three scattering models contains a free parameter.

We set these parameters (namely λ0, τ0, and K0) such that all three models predict

25
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Figure 3.1: Parabolic and Kane bands in 1D, 2D and 3D (m∗=m0, α=1 eV−1).
Sketches of (a) electron dispersion E(k), (b,c,d) distribution-of-modes M(E), (f,g,h)
density-of-states D(E), and (e) average velocity Vλ(E) (see main text for definition).
Parabolic band and Kane band results appear as black solid and dashed red lines,
respectively.

the same electrical conductivity when the Fermi level lies at the conduction band

edge, EC . This is equivalent to fixing the average mean-free-path for backscattering,

〈〈λ〉〉µ=EC
, which is defined thusly:

〈〈λ〉〉µ=EC
=

∫
λ(E)M(E)

(
−∂f0

∂E

)
µ=EC

dE∫
M(E)

(
−∂f0

∂E

)
µ=EC

dE
. (3.2)

For all three scattering models, we set our free parameters such that 〈〈λ〉〉µ=EC
= 10

nm, a typical value.

We focus first on the one-dimensional case. It is noteworthy that despite being

made to agree about the electronic conductivity (when µ =EC), the DOS model pre-

dicts a power factor more than 50% higher than that of the TAU model, which in

turn is larger than that of the MFP model. As shown in Figure 3.3, we can see that

the DOS scattering model predicts a larger electrical conductivity for all Fermi levels

lying within the band, as well as a larger Seebeck coefficient.
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Figure 3.2: Isotropic parabolic band. Power factor PF versus Fermi level µ in (a)
1D, (b) 2D, and (c) 3D, using the MFP, TAU and DOS scattering models. For these
calculations, m∗=m0, T =300 K, and 〈〈λ〉〉µ=EC

=10 nm.
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Dimension/Quantity M(E) Vλ(E) D(E) ΣMFP(E) ΣTAU(E) ΣDOS(E)

1D 1
√
E 1/

√
E 1

√
E E

2D
√
E

√
E 1

√
E E E

3D E
√
E

√
E E E3/2 E

Table 3.1: Isotropic parabolic band in 1D, 2D and 3D. Energy dependence of
distribution-of-modes M(E), average velocity Vλ(E), density-of-states D(E), and
transport distribution Σ(E) (within the MFP, TAU and DOS scattering models).
For full expressions, refer to Appendix E.1.

This increased performance comes from the fact that the DOS for a 1D parabolic

band is a decreasing function with respect to energy (1/
√
E). This results in the DOS

model predicting a lower scattering rate for high-energy electrons, which results in im-

proved performance. In the two-dimensional case, the predictions of the DOS model

and the TAU model are identical. This is because the DOS of a 2D parabolic band

is constant, which results in a constant scattering time in the DOS model. The MFP

model again predicts the worst performance of the three. In the three-dimensional

case, it is now the MFP model that agrees with the DOS model. This occurs because

in 3D, Vλ(E) and D(E) have the same energy dependence, namely
√
E, so their con-

tributions to λDOS(E) = K0Vλ(E)/D(E) cancel out leaving a constant.

When comparing the magnitude of the power factors to the energy dependence of

the corresponding transport distributions (shown in Table 3.1), it is clear that both

are correlated: a Σ(E) with stronger energy dependence results in a larger maximum

PF . To illustrate why this happens, we introduce the Fermi window function. From

Eqns. (2.8)-(2.9), we see that σ ∝ I0 and S ∝ I1, thus it is convenient to define the

following function, Wj:

Wj(E, µ) =

(︃
E − µ

kBT

)︃j [︃
−∂f0(E, µ)

∂E

]︃
, (3.3)

referred to as the Fermi window function of jth order, which appears in the integrand

of Ij (Eq. 2.11). One can show that
∫︁∞
−∞W0 dE = 1 and

∫︁∞
−∞W1 dE = 0. Since the

Fermi window functions are not material specific, the TE quantities are determined

by the transport distribution, Σ(E) = 2
h
M(E)λ(E).

Figure 3.4 presents λ(E) versus energy for the MFP and DOS scattering models,
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Figure 3.3: Isotropic parabolic band. (a) Electrical conductivity and (b) Seebeck
coefficient for a 1D parabolic band, using the MFP, TAU and DOS scattering models.
For these calculations, m∗=m0, T =300 K, and 〈〈λ〉〉µ=EC

= 10 nm. The band edge,
EC , is indicated with a vertical red line.
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Figure 3.4: 1D isotropic parabolic band. Mean-free-path for backscattering versus
energy for the MFP and DOS models. Also shown are the 0th- and 1st-order Fermi
windows (see text for their definition). For these calculations, µ=EC , m∗=m0,
T =300 K, and 〈〈λ〉〉=10 nm.
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in the case of 1D parabolic band. When comparing different scattering models only

λ(E) is altered while M(E) remains constant. Also plotted are the 0th- and 1st-order

Fermi windows, W0,1(E) (not to scale). Both models have the same average mean-

free-path for backscattering (and σ), which is related to the product of λ(E) and

W0(E). Note, however, that the Seebeck coefficient depends on λ(E) times W1(E)

– compared to W0(E), W1(E) extends further in energy. Thus, the λ(E), or Σ(E),

with larger energy dependence will yield a larger Seebeck coefficient and power factor.

In this case, λMFP ∝ E0 and λDOS ∝ E1, leading to SDOS > SMFP which explains

the trend in Fig. 3.2. From this observation follows a noteworthy corollary: when

made to agree about ⟨⟨λ⟩⟩ in a semiconducting material, a TAU scattering model will

always be more optimistic about thermoelectric performance than an MFP scattering

model.

While ΣMFP(E) is simply proportional to M(E), ΣTAU(E) is proportional to

M(E)Vλ(E) (see Eqns. (2.19)-(2.20)). The latter will always go to zero at the band

edge of a semiconductor, since the band edge corresponds to a local minimum in the

electronic dispersion in k-space, and hence has vanishing velocity. As such, Vλ(E)

will always be an increasing quantity, at least for low energies. (This may not be the

case for metals, or materials with linear bands such as graphene or topological insula-

tors, which have been proposed as good thermoelectrics [40].) This means that, with

semiconductors, ΣTAU(E) is generally expected to exhibit a larger energy-dependence

than ΣMFP(E), and hence predict better TE performance.

This observation has important consequences when comparing the predictions

based on the constant relaxation-time approximation (i.e. TAUmodel), often adopted

with a Boltzmann approach, versus those based on the a constant mean-free-path ap-

proximation (i.e. MFP model), commonly adopted with a Landauer approach. Even

when in complete agreement about the electronic dispersion and electrical conduc-

tivity of a particular material, the TAU scattering model will inevitably draw more

optimistic conclusions than the MFP model. No such general trend exists when com-

paring to a DOS scattering model, whose predicted performance can vary from being

the greatest of the three models to being the worst depending on the details of the
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Dimension M(E) Vλ(E) D(E) ΣMFP(E) ΣTAU(E) ΣDOS(E)

1D 1

√
E(1+αE)

1+2αE
1+2αE√
E(1+αE)

1

√
E(1+αE)

1+2αE
E(1+αE)
(1+2αE)2

2D
√︁
E(1 + αE)

√
E(1+αE)

1+2αE
1 + 2αE

√︁
E(1 + αE) E(1+αE)

1+2αE
E(1+αE)
(1+2αE)2

3D E(1 + αE)

√
E(1+αE)

1+2αE

√︁
E(1 + αE)(1 + 2αE) E(1 + αE) [E(1+αE)]3/2

1+2αE
E(1+αE)
(1+2αE)2

Table 3.2: Kane band in 1D, 2D and 3D. Energy dependence of distribution-of-modes
M(E), average velocity Vλ(E), density-of-states D(E), and transport distribution
Σ(E) (within the MFP, TAU and DOS scattering models). For the full expressions,
refer to Appendix E.2.

dispersion, as shown for a parabolic band and to be confirmed with other dispersions

below.

Our expressions for isotropic bands can be generalized to describe anisotropic

parabolic bands as well, as shown in Appendix E.1. It is interesting to note that

in the anisotropic case, the transport distributions of the three scattering models

each have a different dependence on the components of the effective mass tensor:

ΣMFP ∝ √
mymz, ΣTAU ∝

√︁
mymz/mx, ΣDOS ∝ 1/mx (with transport assumed

along x).

3.2 Kane Bands

In the previous section we showed that, with one of the simplest dispersion models,

the predictions of the MFP and TAU models can differ appreciably from those of the

DOS model. Next, we set out to investigate what each scattering model concludes

about the effect of deviations from parabolicity. A widely applicable generalization

of the parabolic band model is the Kane model, in which the electronic dispersion is

modelled as

E(1 + αE) =
h̄2k2

2m∗ , (3.4)

where in addition to the effective mass m∗ there is the non-parabolicity parameter

α. As illustrated in Fig. 3.1, the Kane model gives an electronic dispersion that is

parabolic near the band edge, but approaches linearity at higher energies – α is a

measure of how “linearized” the band is. This simple model can be derived from k · p
theory, and in many cases is found to represent actual electronic band structures (e.g.
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those obtained from DFT) more accurately than a pure parabolic band model [41].

Figure 3.5 compares the power factors of a Kane dispersion (in 1D, 2D and 3D)

for the three scattering models. The parabolic band results (dashed lines) as also

plotted to serve as a reference (m∗=m0, and α=1.0 eV−1 for the Kane band, which

is a typical value of α [41]). The changes in PF can be understood in terms of the

effect that the “linearization” of dispersion has on M(E), D(E), and Vλ(E), which

are shown as dashed lines in Fig. 3.1.

Firstly, the MFP model consistently predicts improved performance when the

parabolic band is ‘linearized’, meaning the PF increases with the Kane parameter

α. This is because, at a given energy, a Kane band will have a larger M(E) than a

parabolic band with the same effective mass. (One exception is the 1D case, where

M(E) is a unit step function for both parabolic and Kane bands.) However, the TAU

model predicts that linearization will result in worse thermoelectric performance in

in 1D and 2D, but predicts improved performance in 3D. This difference comes from

the fact that a Kane band is slower than its parabolic band equivalent (i.e. same

m∗), thus reducing Vλ(E) – a fact that the MFP model is blind to. In 3D, M(E)

increases by enough to offset the detrimental effects of lower velocity electrons, but

in lower dimensions this is no longer the case.

DOS scattering, however, is consistent in its prediction that linearization results

in decreased performance. This occurs since, in addition to the lower velocity, the

increased DOS results in more scattering – something that the other two scattering

models are blind to. This combination of slower states and increased scattering is

enough to outweigh the performance benefits of an increased number of conducting

channels, regardless of spatial dimension.

While none of the scattering models predict especially favorable TE performance

from a Kane band, it is nonetheless noteworthy that the simplified MFP and TAU

model approximations can occasionally draw the exact opposite conclusion of the

more physical DOS scattering model, namely that deviations from parabolicity can
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Figure 3.5: Kane band. Power factor PF versus Fermi level µ in (a) 1D, (b) 2D,
and (c) 3D, using the MFP, TAU and DOS scattering models. The results of a single
isotropic band are presented as dashed lines. For these calculations, m∗=m0, α=1.0
eV−1, T =300 K, and 〈〈λ〉〉µ=EC

=10 nm.
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result in improved performance. DOS scattering is consistent across all dimensions

in its prediction that a Kane band will perform worse than a pure parabolic band.

3.3 Quartic Bands (Mexican Hat Model)

Next, we consider a more exotic class of band structure, sometimes referred to as

“ring-shaped”, “warped” or “Mexican-hat” bands [42], that arise in few-layer 2D ma-

terials. This type of E(k) is qualitatively different from more common parabolic/Kane

dispersions, in that the band edge doesn’t correspond to a point in k-space but rather

a line (a ring) in k-space, which gives rise to distinct properties. Previous studies

have proposed that the TE characteristics of such ring-shaped band materials (e.g.

monolayer Bi, bilayer graphene, few-layer Bi2Te3) would outperform those of standard

dispersions [16,17,42] – with the benefits coming from a rapid, discrete increase in the

DOM at the band edge. However, the previous analyses relied on either the MFP or

TAU scattering models, which we have shown can differ significantly from the more

physical DOS model. Here, we revisit the performance of this type of dispersion by

comparing all three scattering models, using approximate analytical descriptions for

the E(k).

There are a couple of proposed dispersion models that resemble the more rigorous

first-principles computed ring-shaped dispersions, including the Rashba band model

and the quartic band model [42] – expressions for both are provided in Appendix E,

but our analysis we will focus mainly on the latter. The dispersion of the quartic

model contains a k4 contribution and is given by

E(k) = ϵ0 −
h̄2k2

2m∗ +
1

4ϵ0

(︃
h̄2k2

2m∗

)︃2

, (3.5)

where ϵ0 is the energy at the Γ-point, and m∗ the corresponding effective mass (see

Fig. 3.6). Note that Eq. (3.5) is for a 2D band structure, with k residing in the kx-ky

plane. This functional form can be derived explicitly by applying a tight-binding

model to group-VA elements forming 2D hexagonal lattices, which have been con-

firmed by DFT calculations [43]. This electronic dispersion has two key features.

Firstly, as mentioned above, the band edge consists of a ring of critical points of

radius k0 = 2
√
m∗ϵ0/h̄, rather than a single critical point at Γ, as in the cases of
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Energy Range M(E) Vλ(E) D(E) ΣMFP(E) ΣTAU(E) ΣDOS(E)

E < ϵ0

√︃
1 +

√︂
E
ϵ0
+

√︃
1−

√︂
E
ϵ0

2
√
E√︃

1+
√︂

E
ϵ0

+

√︃
1−

√︂
E
ϵ0

2
√︁

ϵ0
E

√︃
1 +

√︂
E
ϵ0
+

√︃
1−

√︂
E
ϵ0

2
√
E E

E > ϵ0

√︃
1 +

√︂
E
ϵ0

√
E

√︃
1 +

√︂
E
ϵ0

√︁
ϵ0
E

√︃
1 +

√︂
E
ϵ0

√
E(1 +

√︂
E
ϵ0
) E(1 +

√︂
E
ϵ0
)

Table 3.3: Quartic band. Energy dependence of distribution-of-modesM(E), average
velocity Vλ(E), density-of-states D(E), and transport distribution Σ(E) (within the
MFP, TAU and DOS scattering models). When present, the factors of 2 serve to
enforce the continuity (or lack thereof) of the distributions. For full expressions, refer
to Appendix E.3.

parabolic or Kane bands. Secondly, the inner ring of states vanishes for energies

above ϵ0. These features are key to understanding the functional forms of the elec-

tronic quantities of interest, as discussed next.

The D(E), M(E), and Vλ(E) are shown in Fig. 3.7, with their respective expres-

sions provided in Appendix E.3. The ring of states at the band edge results in a DOM

that turns on like a step function. This large number of modes near the band edge

is the main reason that materials with ring-shaped dispersions were investigated as

potential high-performance thermoelectrics – this feature is shared with both quartic

and Rashba bands. However, there is a second important electronic feature when

considering ring-shaped E(k) materials, and that is the discontinuity in the DOS.

Near the Γ point, the inner section of the band is roughly that of an inverted 2D

parabolic band. Since the DOS of such a band is constant, the “turning off” of this

portion of the band results in a discontinuous drop in the DOS, as shown in Fig. 3.7.

No such discontinuity exists with the Rashba band model; see Appendix E.4.

This discontinuity has important consequences for the transport distribution of

ring-shaped band materials, as shown in Fig. 3.8. Whereas the MFP and TAU models

are blind to any changes in the DOS, the DOS scattering model predicts a significant

decrease in scattering rate for electrons with energies greater than ϵ0. This abrupt

decrease in scattering rate has been explicitly calculated for the case of charged im-

purity scattering in warped band materials [44]. The reduced scattering leads to a

step-like increase in the transport distribution, not at the band edge, but at E= ϵ0.

We observed enhancements in both the conductivity and the Seebeck coefficient when

the Fermi level is near this feature, and the combined effect of these enhancements is
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𝜖0

𝑘0

𝑘0

Figure 3.6: Electron dispersion of a quartic band (m∗=m0 and ε0=0.15 eV). (a)
shows E(k) versus kx for ky =0, and (b) presents the constant energy surface at
E(k)= 0.1 eV. Note the existence of two distinct surfaces of constant energy (when
E(k) < ε0) – the band edge appears as a dashed line.
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Figure 3.7: (a) Density-of-states D(E), (b) distribution-of-modes M(E), and (c)
average velocity Vλ(E) versus energy for a quartic band. For these calculations,
m∗=m0 and ϵ0=0.25 eV (indicated with vertical red lines).
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Figure 3.8: Thermoelectric transport properties for a single quartic band. (a) Log
plot of electrical conductivity σ2D versus Fermi level µ, (b) Transport distribution
Σ(E) versus energy with µ=EC , (c) magnitude of Seebeck coefficient |S| versus
Fermi level and (d) power factor PF versus Fermi level, using MFP, TAU and DOS
scattering models. For these calculations, m∗=m0, ε0=0.25 eV, T =300 K, and
〈〈λ〉〉µ=EC

=10 nm.
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Figure 3.9: Quartic band. Power factor PF versus Fermi level µ, within the DOS
scattering model, for varying ε=0.1, 0.15, 0.20 and 0.25 eV. For this plot, m∗=m0,
T =300 K, and 〈〈λ〉〉µ=EC

=10 nm.

to produce a second local maximum in the power factor, a feature completely over-

looked by the the MFP and TAU scattering models. This suggests that materials with

ring-shaped dispersions may be even better thermoelectric materials than previously

believed.

The observation of a second peak in PF , with the DOS model, raises the follow-

ing question: What is the optimal value of ε0, if our goal is to maximize the power

factor? Figure 3.9 shows the power factor versus Fermi level, in the case of DOS

scattering, for varying ε0. We can see that for sufficiently small ε0, there is only a

single PF peak, which splits into two maxima (one near the band edge and one near

ε0) as ε0 increases. It is easily seen that the maximum power factor increases with

ε0, so in principle, a larger ε0 should bring about better thermoelectric performance.

However, in reality, this will be limited by how far the Fermi level can be pushed into

the band, via electrostatic gating or doping. Excessive doping may also begin to alter

the electronic structure, which could limit projected performance.
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In this chapter, we have compared the predictions of the commonly used constant-

relaxation-time and constant-mean-free-path approximations to those of the more

physical DOS-scattering approximation, when applied to analytical models of elec-

tronic dispersion. We find that the predictions of the DOS-scattering model can

differ significantly, and even qualitatively from those of the simpler scattering ap-

proximations. The differences between the predictions scattering models are most

pronounced when there are discontinuities in the density-of-states distribution, as

shown using the quartic-band model. Our findings motivate a revisitation of previ-

ous studies of thermoelectric performance that made use of either the constant-MFP

or constant-TAU scattering approximations, as a more careful treatment of carrier

scattering may significantly impact the results obtained, particularly in the case of

highly-warped bands.



Chapter 4

On the Thermoelectric Performance of Quintuple-Layered

Semiconductor Systems

For room temperature applications, the most commonly used bulk thermoelectric

materials are Sb2Te3, Bi2Se3, and Bi2Te3 (as well as alloys of these materials) [45–47].

These three materials each posess a rhombohedral crystal structure, which is shown

in Figure 4.1. Due to the relatively large atomic masses of their constituent atoms,

the allowed phonon modes in these materials take on very low energies, limiting the

amount of thermal energy that can be transported via phonon transport. Futhermore,

the phonon dispersions in these materials are highly anharmonic, resulting in large

amounts of phonon scattering [48]. These properties result in extremely low lattice

thermal conductivity values, a highly desirable feature for a thermoelectric material.

These materials have become the standard choices for room temperature thermo-

electrics due to their combination of low lattice thermal conductivities on the order

of 1 W/m-K [49], and respectable thermoelectric power factors on the order of 30

µW/cm-K2 [50]. These material properties, namely the electronic power factor and

the lattice thermal conductivity, are the two main quantities that researchers seek to

improve in the search for better thermoelectric materials. Although there has been

great progress in reducing the thermal conductivity values of thermoelectric mate-

rials [47, 51, 52], obtaining similar improvements in the electronic power factor has

proved more difficult. Nevertheless, it is believed that major enhancements of the

electronic properties will be needed to ensure future progress, as significant further

reductions in κl are unlikely.

To this end, interest has been taken in the thermoelectric properties of another

class of materials closely related to the bulk materials, known as quintuple-layers

(QL). [53–55]. The bonding between every fifth atomic layer of the bulk structures of

42
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vdW Gap

vdW Gap

vdW Gap

Te

Sb

Quintuple
Layer (QL)

Figure 4.1: Rhombohedral crystal structure of bulk Sb2Te3, with the quintuple-layer
sub-structure indicated with a red box.
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Bi2Te3, Bi2Se3 and Sb2Te3 is predominantly due to van der Waals interactions [56],

and is therefore relatively weak compared to the covalent bonds throughout the rest of

the structure. As such, it is possible to mechanically cleave the bulk structure [57,58],

obtaining a 2D structure only five atomic layers thick. Such structures can also be

grown using molecular beam epitaxy [59, 60]. The resulting electronic structures of

these QL systems are dramatically different from those of their bulk counterparts.

The most significant change is the emergence of ring-like structures in the up-

permost valence states, which are qualitatively similar to the quartic-band model

discussed in Chapter 3. Much like the quartic model, the ring-like valence bands

of these quintuple-layer systems lead to a large number of available states at en-

ergies very near the valence band edge. This results in a step-like feature in the

distribution-of-modes at the valence band edge, as will be shown explicitly in the

following sections. This feature has been the focus of most theoretical investigations

of these quasi-2D materials, and is believed to be highly desirable for thermoelectric

performance [17, 42, 61]. However, all of these investigations have limited themselves

to either the constant-MFP or constant-relaxation-time scattering approximations.

In light of what was found for the quartic-model in Chapter 3, we have reason to

expect that these models may fail to accurately describe potential performance en-

hancements due to sharp transport distribution features arising from atypical features

in the density-of-states distributions. This motivates a new investigation of these ma-

terials using the more physical DOS-scattering model, to explore the TE properties

and how they compare to the predictions of the other scattering models. We will

begin with a brief discussion of the thermoelectric properties of the bulk state, focus-

ing on the representative case of Sb2Te3, but our analysis will focus primarily on the

thermoelectric properties of the related single-QL and double-QL systems.

4.1 Numerical Details

All DFT calculations were performed with the Quantum Espresso package [62], us-

ing a projector-augmented wave [63] implementation of the Perdew-Burke-Erzenhof

(PBE) functional [64]. Spin-orbit interactions were included, as well as Grimme-D2

van der Waals corrections [65]. The plane-wave cutoff energy was set to 110 Rydberg
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for all systems studied. Bulk calculations made use of the rhomohedral primitive

cell, while thin film calculations were performed using the primitive hexagonal cells.

The self-consistent calculations were performed using a k-mesh of (11x11x1: films,

11x11x11: bulk) generated using the Monkhorst-Pack scheme [66]. For the non-self-

consistent calculations used to resolve the band structure for the calculation of M(E)

and Vλ(E), Cartesian grids of 115x85x1 k-points were used for the thin films, and

Cartesian grids of 75x45x19 were used for the bulk structures. These rectangular

Brillouin zones are dual to the rectangular supercells chosen in real-space, which are

larger than their respective primitive unit cells by factors of 2 (hexagonal) and 6

(rhombohedral). The density-of-states distributions were resolved with a tetrahedron

integration technique [37] using a Monkhorst-Pack grid of (51x51x1: films, 51x51x51:

bulk). For the thin films, a vacuum layer of 15 Å was included to prevent any inter-

action between neighboring cells. Experimental lattice constants were used, as has

been done previously [17, 46, 55], and the atomic coordinates were relaxed until the

forces on the atoms were less than 0.01 eV/ Å. Fixed occupations were used for the

electronic states.

When calculating the thermoelectric properties, the scissor operator was used to

adjust the DFT calculated band gaps to more accurate values. For the bulk materials,

we used experimental band gap values, but for the thin films we used the results of

GW calculations [67,68], as conclusive data on the band gaps of single-QL materials

is still lacking. The lattice thermal conductivity values were set to 1.5 W/m-K,

in accordance with rigorous scattering calculations performed on quintuple-layers of

Bi2Te3 [69]. We set the scattering constants (i.e. the parameters λ0, τ0 and K0 that

appear in the definitions of the transport distributions) for the valence and conduction

states separately, such that the average mean free path for backscattering of electrons

was 10 nm when the Fermi level was set to either band edge, i.e. ⟨⟨λ⟩⟩µ=Ev
=

⟨⟨λ⟩⟩µ=Ec
= 10 nm (see Appendix B for details). All calculations were performed

assuming a temperature of 300 K.



46

4.2 Bulk Rhombohedral Materials

The bulk structures of Bi2Te3, Bi2Se3 and Sb2Te3 are most elegantly expressed us-

ing rhombohedral coordinates. The primitive lattice vectors of these rhombohedral

systems are given by

v1 = (−a
2
,− a

2
√
3
,
c

3
),

v2 = (
a

2
,− a

2
√
3
,
c

3
),

v3 = (0,
a√
3
,
c

3
),

where a and c are the traditional hexagonal lattice parameters. The crystal struc-

ture of these bulk materials can also be expressed in hexagonal coordinates, but the

hexagonal unit cell contains 15 atoms instead of a mere 5 with the primitive cell,

making the resulting DFT calculations considerably more intensive. When working

with the rhombohedral primitive cell, the 5 basis atoms all lie along the z-axis. There

are two equivalent Bi (Sb) sites, two equivalent Te (Se) sites, and a third Te (Se)

site that is inequivalent to the previous two. When expressed in relative coordinates

(i.e. in terms of the primitive lattice vectors), the locations of these sites are given by

(±µ,±µ,±µ), (±ν,±ν,±ν), and (0, 0, 0) respectively, as shown in Figure 4.2. The

values of the structural parameters used in our DFT calculations are provided in Ta-

ble 4.1.

Material a (Å) c (Å) ν µ DFT Gap (eV) Exp. Gap (eV)

Bi2Se3 4.138 28.64 0.2106 0.4003 0.187 0.30
Bi2Te3 4.383 30.49 0.2093 0.3999 0.081 0.21
Sb2Te3 4.260 30.35 0.2123 0.3978 0.100 0.21

Table 4.1: Structural parameters used in DFT simulations of bulk rhomohedral ma-
terials.

We will limit our discussion of the bulk results to the representative case of Sb2Te3,

but the general trends outlined hold for all three materials. Figure 4.3 shows the band

structure of bulk Sb2Te3. These bulk rhombohedral materials have very complex band

structures, containing a mixture of ellipsoidal valleys, Kane-like linear branches, and
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Figure 4.2: Structural diagram of the primitive cell of the bulk rhombohedral mate-
rials Sb2Te3, Bi2Te3 and Bi2Se3

regions with especially flat dispersions. This is due in part to the significant role

that spin-orbit coupling plays in these materials. Despite these complex dispersion

features, however, the density-of-states and distribution-of-modes are relatively well

behaved, resembling those of more typical semiconductors, as shown in Figure 4.4.

The resulting transport distributions are shown in Figure 4.5.

The features observed in the transport distribution plots are qualitatively very

similar to the 3D Kane model presented in Chapter 3. For such a dispersion, the

MFP and TAU transport distributions both increase super-linearly with energy, while

the DOS transport distribution ‘rolls over’ and approaches a constant value (see Ap-

pendix E.2, where analytic expressions for the quantities defining ΣDOS are provided).

Because of the very similar shape of the distribution-of-modes and density-of-states

distributions (as shown in Figure 4.4), the benefits provided by the increasing number

of states available for transport are almost exactly cancelled out by the correspond-

ing increasing in scattering that results, and the end result is a transport distribution

that is nearly flat. This roughly-constant transport distribution is not desirable for

thermoelectric performance for two reasons, firstly because its magnitude is relatively

small, and secondly because flat transport distributions result in very small Seebeck

coefficients due to the anti-symmetric nature of the first-order Fermi window func-

tion, W1. The resulting figures-of-merit are shown in Figure 4.6. Predictably, in light
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Figure 4.3: Band structure of bulk Sb2Te3, plotted along the high-symmetry points
of the 3D rhombohedral Brillouin zone. E = 0 corresponds to the valence band edge,
and the band gap shown is the un-adjusted PBE band gap obtained via DFT.

Figure 4.4: Plots of (a) distribution-of-modes and (b) density-of-states vs. energy
level for bulk Sb2Te3. The band gap shown is the un-adjusted PBE band gap.
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Figure 4.5: Transport distributions vs. energy level (relative to the valence band edge)
of bulk Sb2Te3, for the constant-MFP, constant-TAU and DOS-scattering models.
The scattering constants for the conduction and valence states are set separately
such that 〈〈λ〉〉µ=Ev

= 〈〈λ〉〉µ=Ec
= 10 nm. The band gap shown has been adjusted

to the experimental value of 0.21 eV.

of the transport distributions shown above, the DOS-scattering model predicts the

lowest ZT values of the three scattering models considered.

While these bulk materials are still the default choice for most room tempera-

ture thermoelectric applications, the complex, yet effectively ’Kane-like’ nature of

their dispersions makes significant further enhancements of their electronic proper-

ties unlikely. If these materials are to be superseded by some new and superior class

of thermoelectrics, which is the ultimate goal of many researchers, the new class of

materials will likely need to possess a significantly different kind of electronic disper-

sion. Quintuple-layered systems of Bi2Te3, Bi2Se3 and Sb2Te3 have been proposed

as candidates for this new class of thermoelectric materials, as their combination of

low lattice thermal conductivity values and exotic band structures have made them

promising candidates for highly-efficient thermoelectric conversion. However, all the-

oretical studies of their thermoelectric properties have (to date) only made use of

either the constant-relaxation-time or constant-mean-free path approximations. In

light of our findings from the previous chapter, we now perform the first study of the
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Figure 4.6: Figures-of-merit predicted by the constant-MFP, constant-TAU, and
DOS-scattering models when applied to bulk Sb2Te3. The band gap shown has been
adjusted to match the experimental value of 0.21 eV.

thermoelectric properties of these quintuple-layered systems making use of the DOS-

scattering approximation, which should provide new insight into the impact that the

scattering physics has on the properties of these exotic materials.

4.3 Single Quintuple-layers

We now proceed to our analysis of the single-QL systems of Sb2Te3, Bi2Te3 and

Bi2Se3. The natural choice of coordinates for such systems is the hexagonal basis, the

primitive lattice vectors of which are given by

v1 = (a, 0, 0),

v2 = (−a

2
,

√
3

2
a, 0),

v3 = (0, 0, c),

where a and c are the standard hexagonal lattice parameters. As in the case of

the bulk materials, the unit cell contains five atoms: two equivalent Bi (Sb) sites,

two equivalent Te (Se) sites, and a third, inequivalent Te (Se) site. The x and y



51

𝑑1

𝑑2

Te1

Sb

Te2

Sb

Te1

𝑎

Figure 4.7: Structural diagram of the primitive cell of a single-QL material.

coordinates of the QL basis atoms are dictated by the ABC hexagonal-stacking of

the atomic layers, while the z-coordinates are expressed in terms of the inter-layer

spacings d1 and d2, which correspond to the Te1-Sb and Sb-Te2 spacings, as illustrated

in Figure 4.7. We note that the atomic coordinates of every atom in the quintuple-

layer system are completely determined by the bulk structure. The values of the

structural parameters used in our DFT calculations are provided in Table 4.2.

Material a (Å) d1 (Å) d2 (Å) DFT Gap (eV) GW Gap (eV)

Bi2Se3 4.138 1.600 1.903 0.45 0.90
Bi2Te3 4.383 1.755 2.047 0.23 0.64
Sb2Te3 4.260 1.734 1.999 0.46 0.82

Table 4.2: Structural parameters used in DFT simulations of hexagonal single-QL
materials.

4.3.1 Bi2Te3 QL

We begin our analysis of these quintuple-layer systems with the case of a single QL

of Bi2Te3. A band structure plot for this material is shown in Figure 4.8. The most

significant feature is the presence of not one, but two ring-like features at the valence

band edge. The resulting electronic properties (namely M(E), Vλ(E) and D(E)) are
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Figure 4.8: Band structure of a single quintuple-layer of Bi2Te3, along the high-
symmetry points of the 2D hexagonal Brillouin zone. E = 0 corresponds to the
valence band edge, and the band gap shown is the un-adjusted PBE band gap obtained
via DFT.

shown in Figure 4.9. We note firstly that there is large step-like feature in the DOM

at the valence band edge. This occurs for the same reason as the step feature observed

in the analytic quartic-band model, namely the presence of ring-like constant-energy

surfaces at the band-edge (although in this there are two such features). However,

we also observe abrupt changes in the magnitude of all three quantities roughly 0.05

eV below the valence band edge. While the quartic-band model does predict a dis-

continuity in the DOS distribution, it predicts M(E) and Vλ(E) to be continuous

for energies below the band edge. Clearly, the electronic dispersion feature respon-

sible for the observed discontinuities cannot be the simple “parabolic band turn-off”

described by the quartic model. To gain further insight into the nature of this dis-

persion feature, in Figure 4.10 we plot the constant energy contours of the electronic

dispersion of the Bi2Te3 quintuple-layer for energies near the valence band edge.

The two ring-like local maxima at the valence band edge are labeled as the inner

and outer rings. The more interesting feature, however, is the third ring-like constant
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Figure 4.9: Electronic properties of a double quintuple-layer of Bi2Te3. Plotted are the
(a) distribution-of-modes, (b) density-of-states and (c) average velocity distributions,
all vs. energy level (relative to the valence band edge).

Outer Ring

Inner Ring

Moat 
Feature

Figure 4.10: Constant energy contours for the uppermost valence band of a single
quintuple-layer of Bi2Te3. Energies are given in units of eV, and E = 0 corresponds
to the valence band edge.
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energy surface nested in between these two band-edge features. This particular fea-

ture corresponds to a local minimum in the electronic dispersion (unlike the inner

and outer rings), and occurs at the same energy level as the observed discontinuities

in M(E) and Vλ(E). The circular nature of this constant energy surface indicates

that this particular constant energy surface is nearly isotropic.

While the quartic-band model is commonly used to describe the impact of ring-like

local maxima at the band-edge, it cannot readily offer insight into the consequences

of ring-like local minima at energies below the band edge. To this end, we introduce

a new analytic model of electronic dispersion that can, which we will henceforth refer

to as the ‘octic model’, as it is an eighth-order polynomial in k:

ϵ(k) = − ϵ0
a4b4

(k2 − a2)2(k2 − b2)2. (4.1)

This analytic dispersion model possesses three separate critical surfaces (as well as

a single critical point at Γ), which are illustrated in Figure 4.11. The critical surface

corresponding to a local minimum in the electronic dispersion bears a topographic

resemblance to a moat, and so we shall henceforth refer to it as the moat of the elec-

tronic dispersion. We will refer to the critical surfaces at the band-edge with radii a

and b as the inner and outer ring features, respectively. The parameter ϵ0 determines

the energy at the Γ point: ϵ(kx = 0, ky = 0) = −ϵ0.

The presence of a ring-like critical surface at an energy below the band-edge has

a significant impact on the functional form of the quantities of interest. Sketches of

the resulting M(E), Vλ(E) and D(E) distributions for the octic model are shown

in Figure 4.12, with the full analytic expressions provided in Appendix C. As was

previously shown with the quartic model, the presence of ring-like critical surfaces at

the band edge results in a DOM distribution that turns on like a step function. The

DOM distribution for the octic model, however, also contains a second discontinuity

at the location of the moat. This second step-like feature occurs because one abruptly

‘loses’ the large number of transport channels provided by the moat feature. Since

these states have vanishingly small velocities as one approaches the bottom of the

moat, their ‘turning-off’ also causes the average velocity to discontinuously increase,
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Figure 4.11: Diagram illustrating the critical constant energy surfaces of the analytic
octic dispersion model.

as the average no longer includes a large number of zero-velocity states. The second

singularity in the DOS occurs for the same reason as the singularity observed at the

band edge: any constant energy surface containing a continuum of critical points will

cause the density-of states to blow up (for 2D materials).

The features observed at E = −ϵ0, namely a discontinuity in the DOS and slope-

discontinuities in the both DOM and average velocity, are essentially the same as

those observed previously in the quartic band, i.e. they are due to the single critical

point at Γ. We emphasize here that the features produced by the critical moat are

‘stronger’ than those produced by a single critical point, in that they produce discon-

tinuities in quantities that are continuous in the quartic model, namely M(E) and

Vλ(E). They are therefore more robust to small deviations from the analytic model.

For example, we do not expect any DOS distribution obtained via density-functional

theory to possess a true singularity, as real dispersions will inevitably possess at least

some small degree of anistropy. Nevertheless, for sufficiently small deviations from
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Figure 4.12: Sketches of the electronic properties of single octic band with a = 1, b = 2
and ε0 = 0.15 eV. Plotted are the (a) distribution-of-modes, (b) density-of-states and
(c) average velocity distributions, all vs. energy level (relative to the valence band
edge).
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isotropicity, one would still expect to see an abrupt decrease (if not an outright dis-

continuity) in the magnitude of the DOS distribution near the moat. Similarly, the

magnitude of the M(E) and Vλ(E) distributions obtained from density functional

theory calculations may still exhibit large changes in magnitude over very small en-

ergy ranges, even if these features are not truly discontinuous, strictly speaking.This

is essentially what we observe in our Bi2Te3 distributions, which possess a nearly-

isotropic moat feature.

In Figure 4.13, we compare the distributions obtained from first-principles calcu-

lations of a single quintuple-layer of Bi2Te3 to those predicted by the analytic octic

model. This figure does not contain any new information, and serves only to high-

light the similarities between our new analytic model and the numerical data. We

can see that the discontinuities predicted by our octic model are all present in the

corresponding Bi2Te3 QL distributions obtained from first-principles, confirming our

claim that it is the moat feature at E = −0.05 eV that is responsible for the observed

features in the transport distributions. We note here that while the octic model is

a useful tool for understanding the impact of moat-like critical surfaces, it does not

accurately reproduce the curvature of real electronic dispersions. As we are only seek-

ing a qualitative description of the impact of the moat feature, we set the ring radii

to the arbitrary values of a = 1 and b = 2, and set the value of ϵ0 such that the moat

feature of our simple model occurs at the same energy as the corresponding feature

in Bi2Te3 (ϵ0 = 0.16 eV).

With our newfound understanding of the origin of the observed discontinuities

in M(E) and Vλ(E), we are now in a position to examine the resulting transport

distributions, which are shown in Figure 4.14. We can see that the DOS-scattering

transport distribution steps up abruptly at the energy of the moat feature (-0.05

eV), and has the largest magnitude of the three transport distributions over most of

the relevant energy range (as only states within a few kBT of the Fermi level will

contribute appreciably to transport). This is similar to the discontinuity observed in

the DOS-scattering transport distribution of the quartic-band model, for which the

DOS-scattering model was found to predict improved thermoelectric performance.

As such, we would expect the DOS scattering model to predict the largest ZT value
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Figure 4.13: Comparison of the electronic properties of a single quintuple-layer of
Bi2Te3 to the predictions of the analytic octic dispersion model. For the latter, we
have chosen as parameter values a = 1, b = 2 and ε0 = 0.16 eV.

of the three scattering approximations for the Bi2Te3 QL system as well, a hypoth-

esis which is confirmed by plotting the resulting figures-of-merit, shown in Figure 4.15.

We note that the material performs considerably better when p-doped than when

it is n-doped. This is due to the large number of conduction channels provided by

the ring-like valence bands, compared to the more typical Kane-like conduction band.

This trend will hold for all the quintuple-layer systems analyzed, and as such, our

analysis will focus solely on the thermoelectic properties of the valence states. More

importantly, we have found that the presence of a moat-like dispersion feature can

lead to abrupt decreases in D(E) and increases in Vλ, both of which are desirable for

efficient thermoelectric conversion. As such, quintuple-layered Bi2Te3 may be an even

better thermoelectric material than previous studies (which have limited themselves

to less accurate scattering models) have suggested.

4.3.2 Bi2Se3 QL

Next, we analyze the thermoelectric performance of a single quintuple-layer of Bi2Se3.

The band structure of this material is shown in Figure 4.16, while the resulting elec-

tronic properties are shown in Figure 4.17. We note that the uppermost valence band
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Figure 4.14: Transport distributions vs. energy level (relative to the valence band
edge) of a single-QL of Bi2Te3, for the constant-MFP, constant-TAU and DOS-
scattering models. The scattering constants for the conduction and valence states
are set separately such that 〈〈λ〉〉µ=Ev

= 〈〈λ〉〉µ=Ec
= 10 nm.

Figure 4.15: Figures-of-merit predicted by the constant-MFP, constant-TAU, and
DOS-scattering models when applied to a single quintuple-layer of Bi2Te3. The band
gap shown has been adjusted to match the GW value.
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Figure 4.16: Band structure of a single quintuple-layer of Bi2Se3, along the high-
symmetry points of the 2D hexagonal Brillouin zone. E = 0 corresponds to the
valence band edge, and the band gap shown is the un-adjusted PBE band gap obtained
via DFT.

of this material possesses two ring-like features at the band-edge, analogous to the

Bi2Te3 case just discussed. As before, this results in a step-like increase in M(E) at

the band-edge. However, unlike the previous case, we do not observe discontinuities

in M(E) and Vλ(E) at energies below the band-edge. To understand why these fea-

tures are absent, we plot the constant energy contours for energies near the valence

band edge in Figure 4.18.

While we still see two ring-like features near the band edge, with a moat feature

nested between them, this particular moat feature is highly anisotropic, as indicated

by the presence of multiple lower-energy valleys within the main ring feature. This

anisotropy results in a ‘washing out’ of the sharp features that would have resulted

from a more isotropic moat feature. The resulting transport distributions are shown

in Figure 4.19. We can see that there is a distinct lack of sharp features in any of

the transport distributions, as a consequence of the observed anisotropy. Neverthe-

less, the DOS-scattering transport distribution still takes on the largest value over a

significant portion of the relevant energy range. The corresponding figures-of-merit
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Figure 4.17: Electronic properties of a single quintuple-layer of Bi2Se3. Plotted are
the (a) distribution-of-modes, (b) density-of-states and (c) average velocity distribu-
tions, all vs. energy level (relative to the valence band edge).
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Figure 4.18: Constant energy contours for the uppermost valence band of a single
quintuple-layer of of Bi2Se3. Energies are given in units of eV, and E = 0 corresponds
to the valence band edge.
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Figure 4.19: Transport distributions vs. energy level (relative to the valence band
edge) of a single-QL of Bi2Se3, for the constant-MFP, constant-TAU and DOS-
scattering models. The scattering constants for the conduction and valence states
are set separately such that 〈〈λ〉〉µ=Ev

= 〈〈λ〉〉µ=Ec
= 10 nm.

are shown in Figure 4.20.

As was found for the Bi2Te3 QL system, the DOS scattering model predicted the

largest figure-of-merit of the three scattering models considered. However, the relative

improvement is not nearly as significant in this case, indicating that the performance

enhancements that arise from moat-like dispersion features are highly sensitive to the

degree of anisotropy.

4.3.3 Sb2Te3 QL

Next, we analyze the last of our single quintuple-layer systems, that of Sb2Te3. The

band structure plot of a single quintuple-layer of this material is shown in Figure

4.21, while the resulting electronic properties are shown in Figure 4.22. While we

still observe two ring-like features near the valence band edge, as was found for the

two previous quintuple-layer systems, the M(E), D(E) and Vλ(E) distributions dis-

play sharp features not found in the previous two cases. Namely, we observe large

increases in the distribution-of-modes and density-of states roughly 0.03 eV below
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Figure 4.20: Figures-of-merit predicted by the constant-MFP, constant-TAU, and
DOS-scattering models when applied to a single quintuple-layer of Bi2Se3. The band
gap shown has been adjusted to match the GW value.

the band-edge, and a sharp decrease in Vλ(E) at the same point. To understand the

origin of these features, we plot the constant energy contours for energies near the

valence band edge in Figure 4.23.

Unlike the case of Bi2Te3, wherein the inner and outer rings turned on at very

nearly the same energy (i.e. the band edge), we can see that in Sb2Te3 the outer ring

turns on at a slightly lower energy. The sudden ‘turn-on’ of this ring feature results

in a large increase in the number of available states, causing the abrupt increases in

M(E) and D(E) shown in Figure 4.22. Because the states near the top of the outer

ring feature have very small velocities, their sudden ‘turn-on’ also drags down the

average velocity of states at that energy, causing the abrupt decrease in Vλ(E). As

such, this offset outer ring feature has essentially the exact opposite impact of the

moat feature in Bi2Te3. In the latter case, the abrupt turn-off of a ring-like dispersion

feature caused sharp decreases in M(E) and D(E), and a sharp increase in Vλ(E),

whereas in this case the abrupt turn-on of a ring like feature has the exact opposite

effect. The resulting transport distributions are shown in Figure 4.24.
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Figure 4.21: Band structure of a single quintuple-layer of Sb2Te3, along the high-
symmetry points of the 2D hexagonal Brillouin zone. E = 0 corresponds to the
valence band edge, and the band gap shown is the un-adjusted PBE band gap obtained
via DFT.

Figure 4.22: Electronic properties of a single quintuple-layer of Sb2Te3. Plotted are
the (a) distribution-of-modes, (b) density-of-states and (c) average velocity distribu-
tions, all vs. energy level (relative to the valence band edge).
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Figure 4.23: Constant energy contours for the uppermost valence band of a single
quintuple-layer of Sb2Te3. Energies are given in units of eV, and E = 0 corresponds
to the valence band edge.

Figure 4.24: Transport distributions vs. energy level (relative to the valence band
edge) of a single-QL of Sb2Te3, for the constant-MFP, constant-TAU and DOS-
scattering models. The scattering constants for the conduction and valence states
are set separately such that 〈〈λ〉〉µ=Ev

= 〈〈λ〉〉µ=Ec
= 10 nm.
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Figure 4.25: Figures-of-merit predicted by the constant-MFP, constant-TAU, and
DOS-scattering models when applied to a single quintuple-layer of Sb2Te3. The band
gap shown has been adjusted to match the GW value.

While the DOS-scattering transport distribution takes on the largest values for

energies very near the band-edge, the increased scattering and decreased average

velocity that result from the turn-on of the outer ring feature cause the transport

distribution to abruptly step downwards at E = −0.03 eV. As a result, it takes on

the smallest value of the three transport distributions over a significant portion of the

relevant energy range. The corresponding figures-of-merit are shown in Figure 4.25.

We can see that in this case DOS-scattering predicts the worst performance of the

three scattering approximations. This shows that the thermoelectric performance of

these quintuple-layered systems is sensitive not just to the anisotropy of the moat

feature (as was found in the Bi2Se3 case), but also to the relative alignment of the

inner and outer ring features.

4.4 Double Quintuple-layers

In this section, we investigate the thermoelectric properties of double-quintuple-layer

systems, i.e. the 2D systems obtained from cleaving ten atomic layers from the bulk

rhomohedral structures instead of just five. As such, the primitive cell contains ten

atoms. The crystal structures of these systems are extremely similar to those of the
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Figure 4.26: Structural diagram of the primitive cell of a double-QL material.

corresponding single-QL systems: the main difference is that one must introduce a

third inter-layer spacing variable, d3, that describes the (relatively large) separation

between Te1 layers, i.e. between the two single-QLs making up the double-QL, as

illustrated in Figure 4.26. Again, the atomic coordinates are entirely determined

by the bulk structure. The values of the structural parameters used in our DFT

calculations are provided in Table 4.3.

Material a (Å) d1 (Å) d2 (Å) d3 (Å) DFT Gap (eV) GW Gap (eV)

Bi2Se3 4.138 1.596 1.895 2.523 0.09 0.24
Bi2Te3 4.383 1.751 2.053 2.702 0.046 0.06
Sb2Te3 4.260 1.714 1.983 2.916 0.16 0.25

Table 4.3: Structural parameters used in DFT simulations of hexagonal double-QL
materials.

4.4.1 Bi2Se3 2QL

We begin our analysis of the double quintuple-layer systems with the case of Bi2Se3.

The band structure of this material is shown in Figure 4.27. Since only states within
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Figure 4.27: Band structure of a double quintuple-layer of Bi2Se3, along the high-
symmetry points of the 2D hexagonal Brillouin zone. E = 0 corresponds to the
valence band edge, and the band gap shown is the un-adjusted PBE band gap obtained
via DFT.

roughly 0.25 eV of the band edge will make a significant contribution to transport, we

can see that the uppermost valence band will dominate the transport properties of this

material. We plot the constant energy contours of this band in Figure 4.28. Whereas

the single QL systems have been characterized by the presence of two ring-like fea-

tures near the band edge, this system has only a single such ring, and its diameter is

considerably reduced from the single QL cases. In place of an outer ring feature, this

double-QL system instead has a set of six identical valleys that turn on roughly 0.10

eV below the band-edge. The resulting electronic properties are shown in Figure 4.29.

While we still see a step-like feature in the DOM at the band-edge, the magni-

tude of this step is considerably smaller than in any of the single-QL cases, due to

the reduced diameter of the ring feature. The turn-on of the six identical valleys at

E = −0.10 eV causes large increases in the magnitude of M(E) and D(E) as well as

a large decrease in the magnitude of Vλ(E). As such, the impact of these valleys is

qualitatively similar to that of the offset outer ring in Sb2Te3. Nevertheless, the re-

sulting features in the electronic distributions of this double-QL system are somewhat
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Inner Ring

Figure 4.28: Constant energy contours for the uppermost valence band of a double
quintuple-layer of Bi2Se3. Energies are given in units of eV, and E = 0 corresponds
to the valence band edge.

Figure 4.29: Electronic properties of a double quintuple-layer of Bi2Se3. Plotted are
the (a) distribution-of-modes, (b) density-of-states and (c) average velocity distribu-
tions, all vs. energy level (relative to the valence band edge).
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Figure 4.30: Transport distributions vs. energy level (relative to the valence band
edge) of a double-QL of Bi2Se3, for the constant-MFP, constant-TAU and DOS-
scattering models. The scattering constants for the conduction and valence states are
set separately such that 〈〈λ〉〉µ=Ev

= 〈〈λ〉〉µ=Ec
= 10 nm.

less abrupt than those observed in the Sb2Te3 QL case. This is because the feature

‘turning on’ in this case is highly anisotropic, and thus the electronic features it gives

rise to will be less sharp than those arising from more ring-like dispersion features.

The resulting transport distributions are shown in Figure 4.30.

The resulting DOS scattering transport distribution is qualitatively similar to that

of the Sb2Te3 QL case, in that the turn-on of a large dispersion feature causes the

magnitude of the transport distribution to decrease, albeit less abruptly than in the

previous case. The resulting figures-of-merit are shown in Figure 4.31.

We note that both the TAU and MFP models predict the existence of secondary

ZT peaks of appreciable magnitude at energies below the valence band-edge. These

are the result of large increases in the magnitude of the DOM distribution. However,

as these large increases in DOM are accompanied by similarily large increases in the

density-of-states (and hence large increases in scattering), the DOS scattering model

predicts relatively poor thermoelectric performance when the Fermi level lies below
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Figure 4.31: Figures-of-merit predicted by the constant-MFP, constant-TAU, and
DOS-scattering models when applied to a double quintuple-layer of Bi2Se3. The
band gap shown has been adjusted to match the GW value.

the valence band edge. For the ZT peaks that occurs for Fermi levels lying within

the band gap, DOS-scattering predicts worse performance than the TAU model, but

better performance than the MFP model. Nevertheless, the ZT values obtained are

considerably smaller than those obtained for the corresponding single-QL system.

4.4.2 Sb2Te3 2QL

The features of a double quintuple-layer system of Sb2Te3 are qualitatively quite

similar to those just discussed for double quintuple-layers of Bi2Se3. A band structure

plot for this material is shown in Figure 4.32, while the constant energy contours of

the uppermost valence band are shown in Figure 4.33. As with the Bi2Se3 2QL

system, Sb2Te3 2QL is characterized by a small ring-like feature at the band-edge,

and six identical valleys that turn on below the band-edge, this time at roughly

E = −0.08 eV. The resulting electronic properties are shown in Figure 4.34, and

the corresponding transport distributions and figures-of-merit are shown in Figures

4.35 and 4.36 respectively. In this case, DOS-scattering predicts the lowest peak-ZT

value, which is due to the slightly earlier ‘roll-off’ of the DOS-scattering transport

distribution, as compared to the Bi2Se3 2QL case. Again, we see large ZT values
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Figure 4.32: Band structure of a double quintuple-layer of Sb2Te3, along the high-
symmetry points of the 2D hexagonal Brillouin zone. E = 0 corresponds to the
valence band edge, and the band gap shown is the un-adjusted PBE band gap obtained
via DFT.

at Fermi levels below the VBM for both the MFP and TAU models, but not for the

DOS-scattering model, due to the increased scattering that results from the larger

number of available states.

4.4.3 Bi2Te3 2QL

Lastly, we analyze the thermoelectric properties of our final double-QL system, that

of Bi2Te3. The band structure of this material is shown in Figure 4.37. We again

find that the uppermost valence band will dominate transport properties, but the

electronic structure of this band is qualitatively different from that of the uppermost

valence bands of the two previous systems, as shown in Figure 4.38. In this case,

the constant energy surfaces take on a distinctive ‘starfish’ shape (albeit one with six

arms instead of five). Furthermore, the secondary feature that ‘turns-on’ here is a

single ring-like feature, not multiple isolated valleys, and it does so at a lower energy

(roughly E = −0.18 eV) than in either of the Bi2Se3 2QL or Sb2Te3 2QL cases. The

resulting electronic properties are shown in Figure 4.39.
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Inner Ring

Figure 4.33: Constant energy contours for the uppermost valence band of a double
quintuple-layer of Sb2Te3. Energies are given in units of eV, and E = 0 corresponds
to the valence band edge.

Figure 4.34: Electronic properties of a double quintuple-layer of Sb2Te3. Plotted are
the (a) distribution-of-modes, (b) density-of-states and (c) average velocity distribu-
tions, all vs. energy level (relative to the valence band edge).
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Figure 4.35: Transport distributions vs. energy level (relative to the valence band
edge) of a double-QL of Sb2Te3, for the constant-MFP, constant-TAU and DOS-
scattering models. The scattering constants for the conduction and valence states are
set separately such that 〈〈λ〉〉µ=Ev

= 〈〈λ〉〉µ=Ec
= 10 nm.

Figure 4.36: Figures-of-merit predicted by the constant-MFP, constant-TAU, and
DOS-scattering models when applied to a double quintuple-layer of Sb2Te3. The
band gap shown has been adjusted to match the GW value.
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Figure 4.37: Band structure of a double quintuple-layer of Bi2Te3, along the high-
symmetry points of the 2D hexagonal Brillouin zone. E = 0 corresponds to the
valence band edge, and the band gap shown is the un-adjusted PBE band gap obtained
via DFT.

The resulting transport distributions are shown in Figure 4.40, and the corre-

sponding figures-of-merit are shown in Figure 4.41. In this case, DOS scattering

predicts the greatest TE performance of the three models, which we attribute to the

fact that the ‘roll-off’ of the DOS-scattering transport distribution occurs deeper into

the valence band than in either of the two previous cases. As a result, the DOS-

scattering transport distribution has the largest magnitude over the majority of the

relevant energy range. The secondary ZT peaks below the valence band edge that oc-

cur for the constant-MFP and constant-TAU models considerably weaker in this case,

as the dispersion features that produce them turn on at lower energies for double-QL

Bi2Te3 than for either of the previous two systems. We note that due to the small

band gap of this material, there are no ZT peaks near the conduction band edge,

due to the detrimental effects of bipolar conduction. When the band gap is small,

valence states make a non-negligible contribution to transport even when the Fermi

level lies near the conduction band edge. This lowers the magnitude of the Seebeck

coefficient, as the positive contributions to the I1 integral made by the conduction
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Inner Ring

Figure 4.38: Constant energy contours for the uppermost valence band of a double
quintuple-layer of Bi2Te3. Energies are given in units of eV, and E = 0 corresponds
to the valence band edge.

Figure 4.39: Electronic properties of a double quintuple-layer of Bi2Te3. Plotted are
the (a) distribution-of-modes, (b) density-of-states and (c) average velocity distribu-
tions, all vs. energy level (relative to the valence band edge).
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Figure 4.40: Transport distributions vs. energy level (relative to the valence band
edge) of a double-QL of Bi2Te3, for the constant-MFP, constant-TAU and DOS-
scattering models. The scattering constants for the conduction and valence states are
set separately such that 〈〈λ〉〉µ=Ev

= 〈〈λ〉〉µ=Ec
= 10 nm.

Figure 4.41: Figures-of-merit predicted by the constant-MFP, constant-TAU, and
DOS-scattering models when applied to a double quintuple-layer of Bi2Te3. The
band gap shown has been adjusted to match the GW value.
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states are partially canceled out by the negative contribution from the valence states.

In this chapter, we have calculated the electronic dispersions of single and double

quintuple-layered systems of Bi2Te3, Bi2Se3 and Sb2Te3 from first-principles, and de-

termined their resultant thermoelectric properties using the constant-TAU, constant-

MFP and DOS-scattering approximations. These materials are of interest due to

the ring-like features in their valence bands, which have significant and interesting

effects on their electronic properties. For single-QL Bi2Te3, we find that the pres-

ence of a nearly isotropic moat-like feature in the electronic dispersion results in the

DOS scattering model predicting significantly enhanced thermoelectric performance.

These enhancements are due to the sharp increases in Vλ(E) and decreases in scat-

tering rates that result from this feature, as shown by our new analytic octic model

of electronic dispersion. Single-QL Bi2Se3 possesses a similar, but more anisotropic

moat feature, and as a consequence the DOS-scattering model predicts only minor

improvements. In the case of Sb2Te3, a slight energetic offset between the inner and

outer ring features was found to have the opposite effect of the Bi2Te3 moat feature,

and resulted in the DOS-scattering model predicting the worst thermoelectric perfor-

mance of all three scattering approximations. Double-QL systems of these materials

were also investigated, but were found to be inferior to their single-QL counterparts

in all cases due to energetic offsets between their main dispersion features, as well as

the reduced magnitude of their M(E) dispersions near the valence band edge.

Our results show that materials possessing an isotropic moat feature similar to

that of single-QL Bi2Te3 may be significantly better thermoelectrics than previous

studies (which have made use of cruder scattering approximations) have found. This

motivates a revisitation of previous studies on similar warped band materials, as

a more accurate treatment of carrier scattering may significantly change the pre-

dicted performance. However, the resulting performance benefits we have found are

highly sensitive to the degree of anistropy in the moat feature, as well as to the en-

ergetic alignment of the other ring-like dispersion features. This motivates future

work focused on quantifying the impact that deviations from isotropicity have on

the thermoelectric properties, e.g. via a generalization of our isotropic octic model.
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Another avenue for future work would be a benchmarking of the accuracy of the

DOS-scattering approximation vs. rigorous scattering approximations when applied

to materials with warped valence bands, as such studies have primarily focused on

materials with less exotic band structures [22,27,28].



Chapter 5

Conclusion

In this work, we have investigated the extent to which the predictions of the constant-

mean-free path and constant-relaxation time approximations differ from those of the

more physical DOS scattering model. In Chapter 2, after an overview of the Landauer

theory of thermoelectric transport, we provide the definitions of the transport distri-

butions of these scattering models, which take on different functional forms depending

on the scattering approximation being implemented. No matter which of the three

approximations is chosen, the resulting transport distributions are (up to a constant

scaling factor) functions only of quantities that can be calculated directly from the

electronic dispersion, namely M(E), D(E) and Vλ(E). We outline the methods used

for calculating these quantities from of analytic models of electronic dispersion, as

well as from numerically resolved electronic dispersions, such as those obtained from

first-principles DFT calculations.

In Chapter 3, we have investigated the predictions of these three scattering models

when applied to common analytic models of electronic band structure. It is found that

not only can the predicted magnitudes of thermoelectric quantities such as the elec-

tronic power factor differ significantly between models, the models can even disagree

about whether a particular electronic dispersion feature should lead to improved ther-

moelectric performance. While such disagreements can occur in dispersions as simple

as the Kane model, wherein the models were found to disagree about the impact

of ‘linearizing’ the band structure, the most pronounced differences between mod-

els occur for warped electronic dispersions, such as those described by the so-called

‘quartic-band’ model of electronic dispersion. In the quartic-band model, arguably

the most widely used analytic model for describing warped bands, it was found the

DOS scattering model predicted the existence of a second peak in the electronic

power factor, as a consequence of a discontinuity in the density-of-states distribution.
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Within the DOS-scattering model, this abrupt change in the electronic DOS leads to

an abrupt decrease in the electronic scattering rates, an effect that both the MFP and

TAU models fail to describe. This decrease in scattering results in an abrupt increase

in the magnitude of the transport distribution, a feature that is highly desirable for

thermoelectric performance, and which results in larger thermoelectric power-factor

values than previous studies (making use of simpler scattering models) have found.

In light of this finding, in Chapter 4 we have investigated the predictions of these

three scattering models when applied to the electronic dispersions of single and double

quintuple-layered systems of Bi2Te3, Sb2Te3 and Bi2Se3, which have been obtained

via first-principles DFT calculations. The valence bands in these materials have been

shown to display a considerable degree of warping, but to date have only been in-

vestigated using the simplified constant-mean-free-path or constant-relaxation-time

approximations. Our analysis represents the first investigation of these materials us-

ing the more physical DOS scattering approximation. We find that in addition to two

ring-like critical energy surfaces near the band edges (similar to the single ring feature

described by the quartic-band model), these materials also possess a third ‘moat-like’

critical energy surface that significantly impacts their thermoelectric properties. To

provide insight into the consequences of this moat, we have introduced a new simple

model of electronic dispersion capable of qualitatively describing the impact of such

dispersion features, which are shown to lead to abrupt decreases in scattering rate,

and sharp increases in average velocity, both of which are desirable for efficient ther-

moelectric conversion.

It is found that when the scattering rates of these quintuple-layered materials are

approximated using the more physical DOS-scattering model, they can exhibit ZT

values greater than those predicted by either the constant-mean-free-path or constant-

relaxation-time approximations, suggesting that these materials may be even better

thermoelectrics than was previously suggested. However, we also find that these

performance enhancements are highly sensitive to the anisotropy of the critical sur-

faces, as well as to their relative energetic alignments. While the Bi2Te3 1QL system

demonstrated significantly enhanced performance due to its nearly isotropic moat
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feature, the Bi2Se3 1QL system exhibited only minor improvements due to its highly

anisotropic moat. For the Sb2Te3 1QL system, the fact that the outer ring-like fea-

ture turned on at an energy slightly below the band edge caused a significant increase

in scattering rate for states within the transport window, resulting in decreased per-

formance when compared to the predictions of the simpler scattering models. As

such, an extension of our new analytic model to allow for a quantitative description

of the impact of critical surface anisotropy/alignment would be of immediate use to

researchers, and thus represents a obvious avenue for future work. A rigorous calcu-

lation of the electron-phonon scattering rates for the single-QL materials would also

be a worthwhile venture, as the true scattering rate distribution is unlikely to pos-

sess features as sharp as those predicted by the DOS-scattering model, and therefore

our results should be thought of as an upper bound on potential performance. A

quantitative description of the extent to which the predictions of the DOS scattering

model differ from more rigorous scattering calculations when applied to materials

with warped electronic dispersions is an important piece of information that has yet

to be determined.

This work has shown that despite the omnipresence of the constant-relaxation-

time and constant-mean-free-path approximations in the thermoelectric literature,

their predictions can nevertheless differ significantly from those obtained from mod-

els implementing more accurate descriptions of the energy-dependence of the elec-

tronic scattering rates (e.g. the DOS-scattering approximation). Although a great

deal of effort is often put into accurately resolving the band structure of candidate

thermoelectric materials, we find that an oversimplified treatment of scattering can

have a major effect on the predicted performance, drowning out the effects of any

minor changes in electronic structure. These findings highlight the need for a more

careful treatment of scattering in future studies, particularly when investigating mate-

rials with warped electronic bands, wherein the electronic DOS (and hence scattering

rates) can exhibit large changes in magnitude over very small energy ranges. The

abrupt decreases in DOS observed in these materials are found to be highly desirable

features for thermoelectric performance, a fact which is overlooked by simpler scat-

tering models. This suggests the possibility of a new strategy for engineering band
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structures that exhibit similar features (namely large decreases in DOS while main-

taining large values of M(E) and Vλ(E)). This new design strategy runs contrary to

that of some previous studies that focused on increasing D(E) as much as possible,

an approach that we find does not lead to enhanced performance per se once the

resulting increase in scattering rates is taken into account.
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Appendix A

The Band Counting Algorithm

Distribution-of-modes: One Dimension

We denote the dispersion of a single electronic band in a crystalline material as ϵ(kx⃗).

The distribution of modes for this band (which is assumed to be spin-degenerate) is

defined as:

M(E) =
h

2L

∑︂
kx

|vx(k⃗)|δ(E − ϵ(kx)), (A.1)

where vx(k) =
1
h̄

∂ϵ
∂kx

is the group velocity along the transport direction.

In materials with reflection symmetry (which is most of them), each electronic

state has a corresponding state with the opposite velocity. This allows us to restrict

our sum to positive velocity states if we introduce a factor of 2. To be explicit, we

define the one-dimensional positive velocity surface, S+
1D, as

S+
1D(E) = {kx | vx(kx) > 0}, (A.2)

and we then have that

M(E) =
2πh̄

L

∑︂
kx∈S+

1D

1

h̄

∂ϵ

∂kx
δ(E − ϵ(kx)). (A.3)

In solid-state materials with a macroscopic number of atoms, the k-points are

so dense that the sum over them can be replaced by an integral, via the canonical

substitution
∑︁

k → L
2π

∫︁∞
−∞ dk, where L is the length of the material along the x

direction. Making this substitution converts Equation 3 to the following:

M(E) =

∫︂
S+

∂ϵ

∂kx
δ(E − ϵ(kx))dkx (A.4)

Note that S+ is in general not a single continuous domain, but rather the union

of multiple continous subspaces of the Brillouin zone. In other words, there may
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Figure A.1: Illustration of the Landauer band-counting algorithm for a 1D bandstruc-
ture. Positive velocity branches are plotted as solid lines, negative velocity brances
as dotted lines

be multiple disjoint segments of the 1D band structure that correspond to positive

velocity states.

Next, we apply the following delta function identity

∫︂ ∞

−∞
f(x)δ(g(x))dx =

∑︂
x0∈S

f(x0)

|g′(x0)|
, (A.5)

where S is the set of all points x0 such that g(x0) = 0. In light of this, we define

the “crossing set”: S+
1D(E) = {kx ∈ S+ | ϵ(kx) = E}. This allows us to rewrite

Equation 4 in the following manner,:

M(E) =

∫︂
S+

∂ϵ

∂kx
δ(E−ϵ(kx))dkx =

∑︂
k0∈S+

1D(E)

∂ϵ
∂kx

(k0)

| − ∂ϵ
∂kx

(k0)|
= 1+· · ·+1 = dim(S+

1D(E)).

(A.6)

Thus, we have shown that M(E) for a 1D band is equal to the number of positive

velocity states with energy E. This is represented graphically in Figure 1.
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Distribution-of-modes: Two Dimensions

For a two-dimensional material, the electronic dispersion is now a function of two

variables, i.e. ϵ = ϵ(kx, ky). The two-dimensional distribution-of-modes is then given

by

M2D(E) =
h

2A

∑︂
kx

∑︂
ky

|vx(kx, ky)|δ(E − ϵ(kx, ky)). (A.7)

The basic idea is to apply our 1D result to each 1D slice of the 2D bandstructure.

To do this, we define positive velocity surfaces analogous to those defined in the 1D

case, with the caveat that they are now also functions of ky.

S+
2D(ky) = {kx | vx(kx, ky) > 0}, (A.8)

S+
2D(ky, E) = {kx ∈ S+

2D | ϵ(kx, ky) = E}, (A.9)

In terms of the first set, we have that

M2D(E) =
1

L

∑︂
ky

∫︂
S+

δ(E − ϵ(kx, ky))
∂ϵ

∂kx
dkx (A.10)

With this definition, our expression for the 2D distribution of modes is simply

M2D(E) =
1

L

∑︂
ky

dim(S+
2D(ky, E)), (A.11)

Distribution-of-modes: Three Dimensions

It is straightforward to see how this generalizes to the three-dimensional case.

S+
3D(ky, kz) = {kx | vx(kx, ky, kz) > 0}, (A.12)

S+
3D(ky, kz, E) = {kx ∈ S+

3D(ky, kz) | ϵ(kx, ky, kz) = E}. (A.13)

M3D(E) =
1

A

∑︂
ky

∑︂
kz

dim(S+
3D(ky, kz, E)), (A.14)
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Calculating Vλ

The average velocity quantity Vλ(E) can be calculated using essentially the same

band-counting procedure as for M(E), with the added detail that one must also

calculate the quantity vx at each band crossing, rather than just count the number

of crossings. The average velocity Vλ(E) is defined as

Vλ(E) = 2
⟨v2x(k⃗)⟩
⟨|vx(k⃗)|⟩

= 2

∑︁
k⃗ v

2
x(k⃗)δ(E − ϵ(k⃗))∑︁

k⃗ |vx(k⃗)|δ(E − ϵ(k⃗))
(A.15)

Using the same sum-to-integral trick from the previous section, and assuming a

3D material, we can rewrite this as

Vλ(E) = 2

∑︁
ky

∑︁
kz

∫︁
v2x(kx, ky, kz)δ(E − ϵ(kx, ky, kz))dkx∑︁

ky

∑︁
kz

∫︁
|vx(kx, ky, kz)|δ(E − ϵ(kx, ky, kz))dkx

= 2

∑︁
ky

∑︁
kz
{∑︁k0∈S+

3D(E,ky ,kz)
|vx(k0, ky, kz)|}∑︁

ky

∑︁
kz
dim(S+

3D(E, ky, kz))
,

an expression which allows for an numerical implementation nearly as efficient

that of simple band-counting.



Appendix B

Fixing Multiple Scattering Constants

In materials with large band gaps, or when considering systems at very low temper-

atures, the single band model is often sufficient to describe experiments because the

states further from the Fermi level (e.g. the conduction states in a p-doped semicon-

dutor) recieve essentially no weighting from the Fermi window function. However,

when bipolar effects become significant, i.e. when kBT is on the order of the band

gap, Eg, one must consider both valence and conduction states in order to accurately

model transport. As in principle there is no reason to expect the scattering constants

for the valence and conduction states to have identical values, we must consider the

possibilty of having two different scattering constants: one for the valence states, and

one for the conduction states. This appendix outlines a method for determining the

appropriate value for these constants from experimental measurements.

Suppose that we have have used DFT to obtain the electronic dispersion of a

semiconducting material, and have calculated the corresponding unscaled transport

distribution T (E). For example, if we were implementing a DOS scattering approx-

imation, we would have that T (E) = 2
h
M(E)Vλ(E)

1
D(E)

(note the lack of the usual

scattering constant K0). We denote the values of the valence band maximum and

conduction band minimum obtained by DFT as EV and Ec respectively. In terms

of these energy values and our unscaled transport distribution T (E), we define the

following sub-distributions:

Tv(E) =

⎧⎨⎩T (E + Ev), E ≤ 0

0, E > 0
(B.1)

Tc(E) =

⎧⎨⎩T (E + Ec), E ≥ 0

0, E < 0,
(B.2)
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We do the same for the distribution-of-modes, M(E).

Mv(E) =

⎧⎨⎩M(E + Ev), E ≤ 0

0, E > 0
(B.3)

Mc(E) =

⎧⎨⎩M(E + Ec), E ≥ 0

0, E < 0
(B.4)

In terms of these functions, after applying the scissor operator to set the VBM to

0 and the CBM to Eg, the true (i.e. properly scaled) transport distribution will be

given by

Σ(E) = KvTv(E) +KcTc(E − Eg)

= Kv
2

h
Mv(E)λv(E) +Kc

2

h
Mc(E − Eg)λc(E − Eg)

where Kv and Kc are the scattering constants yet to be determined.

To facilitate our discussion, we introduce two pieces of notation. We define the

expression ⟨f⟩ as

⟨f⟩ =
∫︂
f(E)

(︃
−∂f0
∂E

)︃
dE, (B.5)

wheras the double-angle bracketed expression ⟨⟨f⟩⟩ is taken to mean

⟨⟨f⟩⟩ =
∫︁
f(E)M(E)

(︁
−∂f0

∂E

)︁
dE∫︁

M(E)
(︁
−∂f0

∂E

)︁
dE

=
⟨fM⟩
⟨M⟩ . (B.6)

The latter definition is commonly used to define the ‘average value’ of quantities

like λ(E) in the Landauer formalism, as it effectively weights the contribution of each

energy level by the extent to which it contributes to transport.

As a first step we calculate the thermoelectic electric moment integrals I0,v and

I0,c,

I0,v =
h

2

∫︂ ∞

−∞
Tv(E)

(︃
−∂f0
∂E

)︃
dE = ⟨Mvλv⟩ , (B.7)



96

I0,c =
h

2

∫︂ ∞

−∞
Tc(E)

(︃
−∂f0
∂E

)︃
dE = ⟨Mcλc⟩ , (B.8)

as well as the functions ⟨Mv⟩ and ⟨Mc⟩, resolving them as functions of Fermi

level µ. Now we are in a position to consider our experimental data. Suppose that

experiments had shown our material to have a gap Eg, and that the average MFP for

electrons when the Fermi level was at the valence band edge was ⟨⟨λ⟩⟩µ=Ev
= λ1. We

then have that

λ1 = Kv

⟨Mvλv⟩µ=0

⟨Mv⟩µ=0 + ⟨Mc⟩µ=−Eg

+Kc

⟨Mcλc⟩µ=−Eg

⟨Mv⟩µ=−Eg
+ ⟨Mc⟩µ=0

= AKv +BKc

Similarily, if for the conduction band states we have that ⟨⟨λ⟩⟩µ=Ec
= λ2, then

λ2 = Kv

⟨Mvλv⟩µ=Eg

⟨Mv⟩µ=Eg
+ ⟨Mc⟩µ=0

+Kc

⟨Mcλc⟩µ=0

⟨Mv⟩µ=Eg
+ ⟨Mc⟩µ=0

= CKv +DKc

This can be written as a matrix equation thusly

[︄
λ1

λ2

]︄
=

[︄
A B

C D

]︄[︄
Kv

Kc

]︄
(B.9)

allowing for Kv and Kc to be calculated by solving a simple linear system. Note

that the matrix elements need only be recalculated when the band gap is changed.



Appendix C

Octic Band Dispersion Model

In order to investigate the consequences of a band structure possessing a critical

surface at energies other than the band-edge, we introduce a new isotropic simple

model of electronic dispersion

ϵ(k) =
ϵ0
a4b4

(k2 − a2)2(k2 − b2)2, (C.1)

This definition results in two critical constant energy surfaces at the band-edge,

and a third critical constant energy surface at E = (b2−a2)2

16a2b2
ϵ0.

The first step when calculating energy-resolved quantities from an analytic model

of electronic dispersion is to identify the constant energy surfaces as a function of E,

i.e. to solve for k in the equation ϵ(k) = E. For any 2D isotropic dispersion model,

the constant energy surfaces are circles in reciprocal space. As shown in Figure C.1,

there are as many as four such circles for our octic band model, and their radii are

given by the following formulae:

k1(E) =
1√
2

⌜⃓⃓⎷
a2 + b2 −

√︄
(b2 − a2)2 + 4a2b2

√︃
E

ϵ0
(C.2)

k2(E) =
1√
2

⌜⃓⃓⎷
a2 + b2 −

√︄
(b2 − a2)2 − 4a2b2

√︃
E

ϵ0
(C.3)

k3(E) =
1√
2

⌜⃓⃓⎷
a2 + b2 +

√︄
(b2 − a2)2 − 4a2b2

√︃
E

ϵ0
(C.4)

k4(E) =
1√
2

⌜⃓⃓⎷
a2 + b2 +

√︄
(b2 − a2)2 + 4a2b2

√︃
E

ϵ0
(C.5)

While k4(E) is defined for all E > 0, the k1(E) branch only exists when E < ϵ0,

and k2(E) and k3(E) are only defined when E < (b2−a2)2

16a2b2
ϵ0.
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𝜖0

𝑏2 − 𝑎2 2

16𝑎2𝑏2
𝜖0

𝐸𝑘1 𝑘2 𝑘3
𝑘4

Figure C.1: Plot of a 1D slice of the 2D octic band dispersion model. In this plot, we
have chosen the as parameter values a = 1, b = 2 and ϵ0 = 0.15 eV.

The radial velocity is given by

v(k) =
1

h̄

∂ϵ

∂k
=

4ϵ0
a4b4h̄

k(k2 − a2)(k2 − b2)(2k2 − a2 − b2) (C.6)

Using the standard circular parameterization, with the radius of the n−th constant

energy surface equal to kn(E), our Q-functions become

Q1(E) = Q4(E) =
a2b2

16π2
√
ϵ0E

1√︃
(b2 − a2)2 + 4a2b2

√︂
E
ϵ0

(C.7)

Q2(E) = Q3(E) =
a2b2

16π2
√
ϵ0E

1√︃
(b2 − a2)2 − 4a2b2

√︂
E
ϵ0

(C.8)

The absence of any ϕ-dependence is a consequence of the isotropicity of the elec-

tronic dispersion. Now, using the formulas provided in Chapter 2, one can evaluate

the integrals needed to obtain explicit expressions for the three quantities of interest.
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D(E) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

4
π
√
ϵ0E

(︃
1√︃

(b2−a2)2+4a2b2
√︂

E
ϵ0

+ 1√︃
(b2−a2)2−4a2b2

√︂
E
ϵ0

)︃
, 0 < E ≤ (a2−b2)4

16a4b4
ϵ0

4
π
√
ϵ0E

(︃
1√︃

(b2−a2)2+4a2b2
√︂

E
ϵ0

)︃
, (a2−b2)4

16a4b4
ϵ0 < E ≤ ϵ0

2
π
√
ϵ0E

(︃
1√︃

(b2−a2)2+4a2b
√︂

E
ϵ0

)︃
, ϵ0 < E

M(E) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
π
√
2

(︃√︄
a2 + b2 −

√︃
(b2 − a2)2 + 4a2b

√︂
E
ϵ0

+

√︄
a2 + b2 −

√︃
(b2 − a2)2 − 4a2b

√︂
E
ϵ0
+√︄

a2 + b2 +

√︃
(b2 − a2)2 − 4a2b

√︂
E
ϵ0

+

√︄
a2 + b2 +

√︃
(b2 − a2)2 + 4a2b

√︂
E
ϵ0

)︃
,

1
π
√
2

(︃√︄
a2 + b2 −

√︃
(b2 − a2)2 + 4a2b

√︂
E
ϵ0

+

√︄
a2 + b2 +

√︃
(b2 − a2)2 + 4a2b

√︂
E
ϵ0

)︃
,

1
π
√
2

√︄
a2 + b2 +

√︃
(b2 − a2)2 + 4a2b2

√︂
E
ϵ0

V (E) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

5
√
ϵ0E

2h̄M(E)

√︃
(b2 − a2)2 + 4a2b2

√︂
E
ϵ0
+

√︃
(b2 − a2)2 − 4a2b2

√︂
E
ϵ0
,

5π
√
ϵ0E

h̄
√
2

√︃
(b2−a2)2+4a2b2

√︂
E
ϵ0√︄

a2+b2−
√︃

(b2−a2)2+4a2b2
√︂

E
ϵ0

+

√︄
a2+b2−

√︃
(b2−a2)2+4a2b2

√︂
E
ϵ0

,

π
√
ϵ0E

h̄2
√
2

√︃
(b2 − a2)2 + 4a2b2

√︂
E
ϵ0

√︄
a2 + b2 +

√︃
(b2 − a2)2 + 4a2b2

√︂
E
ϵ0



Appendix D

Explicit Transport Direction Dependence in Ellipsoidal

Bands

In this appendix, we apply our surface integral formulation to the problem of cal-

culating M(E) for an arbitrarily oriented ellipsoidal band. We begin by providing

the 3D analogues of the 2D expressions provided in Chapter 2. In three-dimensional

materials, the constant energy surfaces are two-dimensional, requiring the use of two

parameters, and three smooth functions thereof to describe them parametrically.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

kx = x(ϕ, θ)

ky = y(ϕ, θ)

kz = z(ϕ, θ)

ϕ ∈ [a, b]

θ ∈ [c, d]

Let S(E) be the set of all reciprocal lattice points (kx, ky, kz) for which ϵ(kx, ky, kz) =

E. Then integrals over S(E) can be rewritten thusly:

∫︂
S(E)

f(kx, ky, kz)

|∇ϵ(kx, ky, kz)|
dS =

∫︂ b

ϕ=a

∫︂ d

θ=c

f(x(ϕ, θ), y(ϕ, θ), z(ϕ, θ))

|∇ϵ(x(ϕ, θ), y(ϕ, θ), z(ϕ, θ))| |r⃗θ × r⃗ϕ|dϕdθ

(D.1)

where

r⃗(ϕ, θ) = r⃗(x(ϕ, θ), y(ϕ, θ), z(ϕ, θ)), (D.2)

r⃗θ = (
∂x

∂θ
,
∂y

∂θ
,
∂z

∂θ
), (D.3)

r⃗ϕ = (
∂x

∂ϕ
,
∂y

∂ϕ
,
∂z

∂ϕ
). (D.4)
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Analogously to our two-dimensional case, we define another density function, this

time of two parameters:

Z(ϕ, θ) =
1

8π3

|rθ × rϕ|
|∇kϵ(x(ϕ, θ).y(ϕ, θ), z(ϕ, θ))|

(D.5)

This allows us to rewrite our sums over k-points as follows:∑︂
k

f(k)δ(E − ϵ(k)) =

∫︂ b

a

∫︂ d

c

f(x(ϕ, θ), y(ϕ, θ), z(ϕ, θ))Z(ϕ, θ)dϕdθ. (D.6)

The total density-of-states is then given by

D(E) = 2

∫︂ b

a

∫︂ d

c

Z(ϕ, θ)dϕdθ, (D.7)

whereas the distribution-of-modes is given by

M(E) = 2πh̄

∫︂ b

a

∫︂ d

c

vx(ϕ, θ)Z(ϕ, θ)dϕdθ, (D.8)

and the average velocity by

⟨v+x (E)⟩ =
∫︁ b

a

∫︁ d

c
vx(ϕ, θ)Z(ϕ, θ)dϕdθ∫︁ b

a

∫︁ d

c
Z(ϕ, θ)dϕdθ

. (D.9)

The dispersion relation of a general ellipsoidal band that is aligned with the stan-

dard Cartesian axes in reciprocal space is given by

E(kx, ky, kz) =
h̄2

2

(︃
k2x
mx

+
k2y
my

+
k2z
mz

)︃
, (D.10)

where mi is the effective mass along the i-th Cartesian direction. If the ellipsoidal

band was oriented in some other manner, the formula for the energy would take on

a more complicated form. However, no matter what orientation is chosen, there will

always exist some orthogonal coordinate system within which the dispersion relation

can be expressed in the above simple form. We will call this choice of coordinates the

ellipsoidal coordinate frame [x1, x2, x3], in terms of which we can write:

E =
h̄2

2

(︃
x21
m1

+
x22
m2

+
x23
m3

,

)︃
. (D.11)
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We opt to express the unit vectors of our general ellipsoidal coordinate frame in

terms of the Euler angles α, β and γ describing the Euler rotations that map the

standard Cartesian coordinate axes into our ellipsoidal cooridnate axes. We have

that

x1̂ =

⎡⎢⎢⎣
cosα cos β cos γ − sinα sin γ

sinα cos β cos γ + cosα sin γ

− sin β cos γ

⎤⎥⎥⎦ (D.12)

x2̂ =

⎡⎢⎢⎣
− sinα cos γ − cosα cos β sin γ

cosα cos γ − sinα cos β sin γ

sin β sin γ

⎤⎥⎥⎦ (D.13)

x3̂ =

⎡⎢⎢⎣
cosα sin β

sinα sin β

cos β

⎤⎥⎥⎦ (D.14)

Without loss of generality, we will assume that we are interested in transport

along the Cartesian x̂ direction. In order to calculate the x-component of the group

velocity, we need to express the components of our ellipsoidal coordinate system in

terms of the standard Cartesian components. This is done by projecting the Cartesian

coordinate vector onto the unit vectors of the ellipsoidal coordinate system.

x1(kx, ky, kz) = (kx, ky, kz) · x1̂ (D.15)

x2(kx, ky, kz) = (kx, ky, kz) · x2̂ (D.16)

x3(kx, ky, kz) = (kx, ky, kz) · x3̂ (D.17)

Using the above definitions, and after some simplification, we obtain the following

definition,

vx(ϕ, θ) =

√︃
2E

m1

[︃
(A cosϕ− B sinϕ) sin θ + C cos θ

]︃
, (D.18)

where

A = cosα cos β cos γ − sinα sin γ, (D.19)
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B =

√︃
m1

m2

(sinα cos γ + sin γ cosα cos β) , (D.20)

and

C =

√︃
m1

m3

sin β cosα. (D.21)

We define our surface parametrization as

k⃗(ϕ, θ) = ax1̂ cosϕ sin θ + bx2̂ sinϕ sin θ + cx3̂ cos θ (D.22)

To calculate the distribution-of-modes, we first need to identify which region of

our parameter space corresponds to positive velocity states. We can identify the

boundaries of this region by setting our vx(ϕ, θ) expression equal to zero, and inverting

it to express θ as a function of ϕ. The expression we obtain will be the upper bound of

our θ integration, expressed in terms of ϕ. Doing so, we obtain the following relation,

θ0(ϕ) = tan−1

(︃
C

B sinϕ− A cosϕ

)︃
= tan−1 (Φ) , (D.23)

However, as our chosen domain for θ is [0, π] care must be taken with the arc-

tangent function, which is typically assigned the range [−π/2, π/2]. To account for

this, we must break our ϕ integration up into three regions, shifting our θ bound by

π where appropriate.

θ0(ϕ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
tan−1(Φ) + π, 0 < ϕ < tan−1(A/B)

tan−1(Φ), tan−1(A/B) < ϕ < tan−1(A/B) + π

tan−1(Φ) + π, tan−1(A/B) + π < ϕ < 2π

(D.24)

Using the following integral identities,∫︂ tan−1(Φ)

0

sin2 θdθ =
1

2
tan−1(Φ)− Φ

2(Φ2 + 1)
, (D.25)

∫︂ tan−1(Φ)+π

0

sin2 θdθ =
π

2
+

1

2
tan−1(Φ)− Φ

2(Φ2 + 1)
, (D.26)

∫︂ tan−1(Φ)+π

0

sin θ cos θdθ =

∫︂ tan−1(Φ)

0

sin θ cos θdθ =
1

2

1

Φ2 + 1
, (D.27)
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Figure D.1: Sketch of the parameter domain used in calculating the transport-
direction resolved distribution-of-modes for a 3D anisotropic parabolic band.
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LetM1 M2 andM3 be the contributions to the total distribution-of-modes coming

from the first, second and third ϕ regions respectively. We have that

M1(E) =

√
m2m3

2π2h̄2
E

∫︂ tan−1(A/B)

0

(A cosϕ− B sinϕ)

∫︂ tan−1Φ+π

0

sin2 θdθ

+ C

∫︂ tan−1 Φ+π

0

sin θ cos θdθdϕ

=

√
m2m3

2π2h̄2
E

∫︂ tan−1(A/B)

0

(A cosϕ− B sinϕ)

[︃
π

2
+

1

2
tan−1(Φ)− Φ

2(Φ2 + 1)

]︃
+ C

1

2(Φ2 + 1)
dϕ

M2(E) =

√
m2m3

2π2h̄2
E

∫︂ tan−1(A/B)+π

tan−1(A/B)

(A cosϕ− B sinϕ)

∫︂ tan−1Φ

0

sin2 θdθ

+ C

∫︂ tan−1 Φ

0

sin θ cos θdθdϕ

=

√
m2m3

2π2h̄2
E

∫︂ tan−1(A/B)+π

tan−1(A/B)

(A cosϕ− B sinϕ)

[︃
1

2
tan−1(Φ)− Φ

2(Φ2 + 1)

]︃
+ C

1

2(Φ2 + 1)
dϕ

M3(E) =

√
m2m3

2π2h̄2
E

∫︂ 2π

tan−1(A/B)+π

(A cosϕ− B sinϕ)

∫︂ tan−1Φ+π

0

sin2 θdθ

+ C

∫︂ tan−1 Φ+π

0

sin θ cos θdθdϕ

=

√
m2m3

2π2h̄2
E

∫︂ 2π

tan−1(A/B)+π

(A cosϕ− B sinϕ)

[︃
π

2
+

1

2
tan−1(Φ)− Φ

2(Φ2 + 1)

]︃
+ C

1

2(Φ2 + 1)
dϕ

Adding these three contributions together, we obtain (after some simplification)

the following expression for the total density-of modes.
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M(E)/

(︃√
m2m3

2π2h̄2
E

)︃
=

1

2

∫︂ 2π

0

C + (A cosϕ− B sinϕ)tan−1 (Φ) dϕ

+
π

2

[︄∫︂ tan−1(A/B)

0

+

∫︂ 2π

tan−1(A/B)

]︄
(A cosϕ− B sinϕ)dϕ

= πC +
1

2

∫︂ 2π

0

(A cosϕ− B sinϕ)tan−1 (Φ) dϕ

+
π

2

∫︂ tan−1(A/B)

tan−1(A/B)−π

(A cosϕ− B sinϕ)dϕ

where we have exploited the periodicity of the function (A cosϕ−B sinϕ) to shift

the integration bounds of the last integral.

We will tackle the two remaining integrals one at a time, making use of the

following identity when doing so

A cosϕ− B sinϕ =
√
A2 +B2 cos

(︃
ϕ+ tan−1

(︃
B

A

)︃)︃
(D.28)

For the first integral, we have that

I1 =

∫︂ 2π

0

(A cosϕ− B sinϕ)tan−1 (Φ) dϕ

=
√
A2 +B2

∫︂ 2π

0

cos

(︃
ϕ+ tan−1

(︃
B

A

)︃)︃
tan−1

(︄ −C√
A+B2

cos
(︁
ϕ+ tan−1

(︁
B
A

)︁)︁)︄ dϕ
Since this integrand has period π, and we are integrating over an interval of length

2π, we are free to shift the bounds of our integral by any constant amount without

changing the value of the integral. In this case, we shift by tan−1(B/A), obtaining

I1 = −
√
A2 +B2

∫︂ 2π

0

cosϕ tan−1

(︄
C√

A+B2

cosϕ

)︄
dϕ,

where we have exploited the fact that the arctangent function is odd to bring the

minus sign outside of the integral. Somewhat surprisingly, this definite integral has a

simple solution.

I1 = −2π
√
A2 +B2

[︄
1 +

C√
A2 +B2

−
√︃

C2

A2 +B2
+ 1

]︄
= 2π

[︂√
A2 +B2 + C2 − C −

√
A2 +B2

]︂
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For the second integral

I2 =

∫︂ tan−1(A/B)

tan−1(A/B)−π

(A cosϕ− B sinϕ)dϕ

=
√
A2 +B2

∫︂ tan−1(A/B)

tan−1(A/B)−π

cos

(︃
ϕ+ tan−1

(︃
B

A

)︃)︃
dϕ

=
√
A2 +B2

∫︂ tan−1(A/B)+tan−1(B/A)

tan−1(A/B)+tan−1(B/A)−π

cos(ϕ)dϕ

=
√
A2 +B2

∫︂ π/2

−π/2

cos(ϕ)dϕ

= 2
√
A2 +B2

Putting everything together, we have that

M(E)/

(︃√
m2m3

2π2h̄2
E

)︃
= πC + π

[︂√
A2 +B2 + C2 − C −

√
A2 +B2

]︂
+ π

√
A2 +B2

= π
√
A2 +B2 + C2

M(E) =

√
m2m3

2πh̄2
E
√︁

A2 +B2 + C2

=

√
m2m3

2πh̄2
E

⌜⃓⃓⃓
⎷(cosα cosβ cos γ − sinα sin γ)2

+
m1

m2
(sinα cos γ + sin γ cosα cosβ)2 +

m1

m3
sin2 β cos2 α

Thus, we have derived an expression for the distribution-of-modes along the x-direction

for an arbitrarily oriented ellipsoidal band. The formula can be simplified in the special

case of spheroidal bands (i.e. when two of the effective masses are equal to each other).



Appendix E

Analytic Expressions for Common Electronic Dispersion

Models

This appendix provides the full analytic expressions for the quantities of interest that arise

from the models of electronic dispersion considered in Chapter 3.

E.1 Anisotropic Parabolic, Effective-Mass Band (3D, 2D, 1D)

For a 1D parabolic band with electronic dispersion given by

ϵ(kx) =
h̄2

2mx
k2x, (E.1)

we have the following definitions:

D(E) =
1

h̄π

√︃
mx

2

1√
E

(E.2)

M(E) = Θ(E) (E.3)

⟨v+x (E)⟩ =
√︃

2E

mx
(E.4)

⟨v2x(E)⟩ = 2E

mx
(E.5)

Vλ(E) = 2
⟨v2x(E)⟩
⟨v+x (E)⟩ = 2

√︃
2E

mx
(E.6)

For a 2D elliptical band with electronic dispersion given by
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ϵ(kx, ky) =
h̄2

2
(
k2x
mx

+
k2y
my

), (E.7)

we have the following definitions:

D(E) =

√
mxmy

πh̄2
(E.8)

M(E) =

√︁
2my

πh̄

√
E (E.9)

⟨v+x (E)⟩ = (
2

π
)

√︃
2E

mx
(E.10)

⟨v2x(E)⟩ = (
1

2
)
2E

mx
(E.11)

Vλ(E) = 2
⟨v2x(E)⟩
⟨v+x (E)⟩ = (

π

2
)

√︃
2E

mx
(E.12)

For a 3D ellipsoidal band with electronic dispersion given by

ϵ(kx, ky, kz) =
h̄2

2
(
k2x
mx

+
k2y
my

+
k2z
mz

), (E.13)

we have the following definitions:

D(E) =

√
2E

π2h̄3
√
mxmymz (E.14)

M(E) =

√
mymz

2πh̄2
E (E.15)

⟨v+x (E)⟩ = (
1

2
)

√︃
2E

mx
(E.16)

⟨v2x(E)⟩ = (
1

3
)
2E

mx
(E.17)

Vλ(E) = 2
⟨v2x(E)⟩
⟨v+x (E)⟩ = (

4

3
)

√︃
2E

mx
(E.18)
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E.2 Kane Bands (3D, 2D, 1D)

For a 1D Kane band with electronic dispersion given by

E(1 + αE) =
h̄2

2m
k2x (E.19)

we have the following definitions:

D(E) =
1

h̄π

√︃
mx

2

1 + 2αE√︁
E(1 + αE)

(E.20)

M(E) = Θ(E) (E.21)

⟨v+x (E)⟩ =
√︃

2E

mx

√
1 + αE

1 + 2αE
(E.22)

⟨v2x(E)⟩ = 2E(1 + αE)

mx(1 + 2αE)2
(E.23)

Vλ(E) = 2
⟨v2x(E)⟩
⟨v+x (E)⟩ = 2

√︃
2E

mx

√
1 + αE

1 + 2αE
(E.24)

For a two-dimensional Kane band with electronic dispersion given by

E(1 + αE) =
h̄2

2m
(k2x + k2y), (E.25)

we have the following definitions:

D(E) =
m

πh̄2
(1 + 2αE) (E.26)

M(E) =

√
2m

πh̄

√︁
E(1 + αE) (E.27)
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⟨v+x (E)⟩ = (
2

π
)

√︃
2

m

√︁
E(1 + αE)

1 + 2αE
(E.28)

⟨v2x(E)⟩ = (
1

2
)
2

m

E(1 + αE)

(1 + 2αE)2
(E.29)

Vλ(E) = 2
⟨v2x(E)⟩
⟨v+x (E)⟩ = (

π

2
)

√︃
2

m

√︁
E(1 + αE)

1 + 2αE
(E.30)

For a three-dimensional Kane band with electronic dispersion given by

E(1 + αE) =
h̄2

2m
(k2x + k2y + k2x), (E.31)

we have the following definitions:

D(E) =

√
2m3/2

π2h̄3

√︁
E(1 + αE)(1 + 2αE) (E.32)

M(E) =
m

2πh̄2
E(1 + αE) (E.33)

⟨v+x (E)⟩ = (
1

2
)

√︃
2

m

√︁
E(1 + αE)

1 + 2αE
(E.34)

⟨v2x(E)⟩ = (
1

3
)
2

m

E(1 + αE)

(1 + 2αE)2
(E.35)

Vλ(E) = 2
⟨v2x(E)⟩
⟨v+x (E)⟩ = (

4

3
)

√︃
2

m

√︁
E(1 + αE)

1 + 2αE
(E.36)
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E.3 Quartic Band (2D)

For a two-dimensional material with electronic dispersion given by

ϵ(kx, ky) = ϵ0 −
h̄2

2m
(k2x + k2y) +

1

4ϵ0
(
h̄2

2m
)2(k2x + k2y)

2, (E.37)

we have the following definitions:

D(E) =

⎧⎪⎨⎪⎩
2m
πh̄2

√︁
ϵ0
E , E < ϵ0

m
πh̄2

√︁
ϵ0
E , E > ϵ0

(E.38)

M(E) =

⎧⎪⎪⎨⎪⎪⎩
2
√
mϵ0
πh̄

(︃√︃
1 +

√︂
E
ϵ0

+

√︃
1−

√︂
E
ϵ0

)︃
, E < ϵ0

2
√
mϵ0
πh̄

√︃
1 +

√︂
E
ϵ0
, E > ϵ0

(E.39)

⟨v+x (E)⟩ =

⎧⎪⎪⎨⎪⎪⎩
2
π

√︂
E
m

(︃√︃
1 +

√︂
E
ϵ0

+

√︃
1−

√︂
E
ϵ0

)︃
, E < ϵ0

4
π

√︂
E
m

√︃
1 +

√︂
E
ϵ0
, E > ϵ0

(E.40)

⟨v2x(E)⟩ =

⎧⎪⎨⎪⎩
2E
m , E < ϵ0

2E
m

(︃
1 +

√︂
E
ϵ0

)︃
, E > ϵ0

(E.41)

Vλ(E) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2π
√︂

E
m

1√︃
1+

√︂
E
ϵ0

+

√︃
1−

√︂
E
ϵ0

, E < ϵ0

π
√︂

E
m

√︃
1 +

√︂
E
ϵ0
, E > ϵ0

(E.42)

E.4 Rashba Band (2D)

For a two-dimensional material with electronic dispersion given by

ϵ(kx, ky) = ϵ0 +
h̄2

2m
(k2x + k2y)± αR

√︂
k2x + k2y, (E.43)

where

ϵ0 =
α2
Rm

2h̄2
, (E.44)

we have the following definitions:
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D(E) =

⎧⎪⎨⎪⎩
m
πh̄2

√︁
ϵ0
E , E < ϵ0

m
πh̄2 , E > ϵ0

(E.45)

M(E) =

⎧⎪⎨⎪⎩
√
2mϵ0
πh̄ , E < ϵ0

√
2mE
πh̄ , E > ϵ0

(E.46)

⟨v+x (E)⟩ = (
2

π
)

√︃
2E

m
(E.47)

⟨v2x(E)⟩ = (
1

2
)
2E

m
(E.48)

Vλ(E) = (
π

2
)

√︃
2E

m
(E.49)
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