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Abstract

Two-dimensional materials have become a popular research area over the past two
decades because of their unique physical properties. The low dimensionality of these
materials leads to interesting, and useful, transport properties such as thickness-
dependent band gaps and high electrical and thermal conductivity. These materials
have applications in nanoelectronics, optoelectronics, and thermoelectric energy gen-
eration, the performance of which depends sensitively on understanding and control-
ling how heat transport occurs.

Most low dimensional materials can be derived by isolating them from their bulk
counterparts, which are often comprised of stacks of the two-dimensional layers that
are weakly bound together. These layered bulk materials often maintain some of the
two-dimensional characteristics of their monolayer form because of the weak interlayer
bonds. One common example of such a quasi-2D material is graphite, which is made of
layered carbon sheets, i.e. graphene. When going from graphite to graphene the room-
temperature in-plane thermal conductivity varies from approx. 2000 Wm−1K−1 to
5800 Wm−1K−1, respectively. Both values are exceptionally high, but there is still
a large difference between the two. Nevertheless, the majority of studies focus ei-
ther on the bulk or low-dimensional versions of materials, with little focus on how
the transition from 3D to 2D influences the microscopic properties and transport
characteristics.

The purpose of this study was to explain how the thermal transport properties
of layered materials transition between two and three dimensions. Graphene and
graphite were used as simple materials to model this transition. The thermal trans-
port properties were calculated from first-principles using density functional theory
(DFT) and iterative solutions to the Boltzmann transport equation (BTE). The tran-
sition between two and three dimensions was modelled by systematically moving the
layers of graphite apart from each other until they were essentially isolated graphene
sheets.

The converged κ values of the limiting cases of graphite and graphene agree with
experimental measurements and previous calculations, with the stretched cases show-
ing a monotonically increasing thermal conductivity from κgraphite to κgraphene. Surpris-
ingly, the largest variation in the thermal transport properties resulted from changes
in the phonon dispersion. This is contrary to the previous belief that the difference
in κ resulted from certain three-phonon selection rules in graphene, which reduce the
scattering probability, and do not apply to graphite. The selection rules appear to
mostly still apply to graphite and the stretched graphite cases, indicating that the
primary mechanism resulting in the differences between κgraphene and κgraphite was the
shape of the phonon dispersion, and a corresponding shift in the phonon DOS. This
type of analysis could be applied to other layered materials in the future to identify
materials with the potential to be exceptional thermal conductors.
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Chapter 1

Introduction

The study of two-dimensional materials became the focus of many materials re-

searchers in the past two decades [1–6] after the experimental isolation of graphene

in 2004 [7]. Graphene is a single two-dimensional sheet of carbon atoms with excep-

tional physical properties. The strong bonds between carbon atoms makes it one of

the strongest known materials. Its experimentally determined thermal conductivity at

room temperature is higher than any other material [8], and it also has exceptionally

mobile charge carriers [9].

Graphite is the bulk form of graphene. It is composed of layers of graphene that

are stacked on top of each other and weakly bound. It is a member of a class of

materials called layered materials. These materials are of special interest to mate-

rials researchers because the weak interlayer bonding often allows the bulk form of

the material to retain some of the characteristics of a monolayer. The differences

in strength between the in-plane and cross-plane bonds often also leads to highly

anisotropic properties [10, 11].

While graphene has exceptional mechanical, thermal, and electronic properties,

it has no band gap, which restricts the number of applications for which it may be

useful. Methods have been developed to artifically create a bandgap in graphene, but

they often lead to losses of the desireable thermal and electronic transport properties

[12, 13]. Because of this, the focus of two-dimensional materials research in recent

years has shifted from graphene to other 2D materials with interesting transport and

chemical properties.

One class of layered materials with monolayers that possess particularly interesting

properties are transition metal dichalcogenides [14–17]. These materials are composed

of monolayers with a stoichiometry of MX2, where M is a transition metal and X

is from the chalcogen group. One commonly studied example is MoS2. The bulk

forms of these materials often maintain much of the two-dimensional characteristics

1
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because of the weak bonds between layers. These materials exhibit a diverse range

of useful, and sometimes exotic, properties. Their electronic transport properties

vary between insulators, metals, and semiconductors, often with anisotropic transport

characteristics [10, 11]. Slabs of these materials that are only a few monolayers thick

display thickness-dependent properties, which can be tuned by varying the number of

monolayers in the slab [18, 19]. The thickness dependent and anisotropic properties

allow for a single material to be used for a variety of applications, simply by changing

the thickness of a slab, or by changing the direction of transport.

While these materials exhibit interesting properties in both their bulk and mono-

layer form, it is not clear what mechanism leads to the differences in their ther-

mal transport properties. Experiments on graphene have measured thermal conduc-

tivites of up to 5000 Wm−1K−1 [8]. Meanwhile, the in-plane thermal conductivity of

graphite at room temperature is around 2000 Wm−1K−1, and the cross-plane ther-

mal conductivity is around 7 Wm−1K−1 [20]. The in-plane thermal conductivity

of graphite is still impressively large, but it is a significant reduction from that of

graphene. This reduction in thermal conductivity is a common occurrence between

monolayer and bulk materials [21]. Understanding the mechanism behind these dif-

ferences may provide some insight on what generally leads to high or low thermal

conductivites in these materials.

Discovering what the mechanism is requires an understanding of how the thermal

transport properties evolve through a transition from a monolayer to a bulk material.

In non-metals, such as graphene, heat is primarily transported by phonons, which

are vibrations in the lattice. In order to calculate their contributions to the thermal

conductivity of a material, the energy, velocity, and occupation of phonons in each

state must be known. In recent years, with the increasing availability of software and

computational resources, it has become commonplace to calculate these properties

from first-principles. Density functional theory (DFT) is often used to calculate the

phonon dispersion, which gives the phonon energies and velocities [22, 23]. Iterative

solutions to the Boltzmann transport equation (BTE) [24] then provide the occupa-

tion number of each phonon state, along with the converged thermal conductivity

and various phonon scattering properties.

Phonon scattering is an important factor for determining the occupation of phonon
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modes. Three-phonon scattering is usually the dominant scattering process near room

temperature that contributes to thermal resistance. The phonon energies, velocities,

and scattering rates are all determined by the interatomic force constants (IFCs),

which can be calculated using DFT.

In graphene, there are a set of selection rules that significantly reduces the proba-

bility of the scattering events of certain phonon modes. These selection rules depend

on a mirror symmetry within the graphene plane, which maps every atom onto itself

[25–27]. This mirror symmetry does not exist in few-layer graphene or bulk graphite,

which will be illustrated next. In order to determine if this loss of selection rules is the

main contributor to the reduced thermal conductivity of graphite, the thermal prop-

erties of graphene must be analysed through a transition from its bulk to monolayer

form.

When studying the transition from 2D to 3D, a common approach is to begin with

a monolayer, and systematically increase the number of layers until it is effectively

bulk [27, 28]. This approach could be problematic for the transition from graphene to

graphite since the mirror symmetry that the high thermal conductivity of graphene is

thought to depend on is instantaneously broken by the addition of a second layer. For

any even number of layers, there are no reflection planes. This is illustrated in Figure

1.1. For odd numbers of layers there would only a reflection plane on the central

sheet. However, graphite contains a mirror symmetry plane within each graphene

layer, so the few-layer form of the material may not be an accurate representation of

graphite.

In order to address the breaking of symmetry in the transition, a different approach

is used in the present study. Beginning with graphite, the structure is systematically

‘stretched’ in the cross-plane direction so as to slowly increase the interlayer sepa-

ration. Eventually, the distance between layers is large enough that the system is

effectively isolated graphene sheets. A visualization of this process is seen in Figure

1.2. While this stretching process is likely unstable and unphysical, it should serve

as a useful model to see how the transition from 3D to 2D occurs for any layered

materials, regarding their thermal properties. Also, by using this technique there

should be a slow breaking of the selection rules when looking at the transition from

graphene to graphite since the mirror symmetry will be preserved, as opposed to the
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Mirror-symmetry plane

(a)

No mirror-symmetry plane

(b)

Mirror-symmetry planes

...
...

(c)

Figure 1.1: Diagram of the mirror symmetry planes in (a) graphene, (b) bilayer
graphene, and (c) graphite. Each of the yellow circles are a carbon atom, and the
solid black lines are mirror symmetry planes. Each layer of carbon atoms represents
a whole graphene sheet.
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Graphite Stretched Graphene

Figure 1.2: A visualization of the process of stretching graphite until it is effectively
graphene. The yellow circles are the carbon atoms. The distance between graphene
layers increases from left to right.

instantaneous breaking that occurs when going from monolayer to a bilayer graphene.

If the breaking of selection rules is primarily responsible for the difference in thermal

conductivity, then a significant difference in the IFCs that lead to the selection rules

should be observed through this transition.

In this thesis, DFT was used to calculate the interatomic force constants for each

case between graphite and graphene. The IFCs were then used to calculate the

phonon properties, and to solve the BTE to obtain a thermal conductivity for each

interlayer separation. A variety of factors that affect the thermal conductivity were

analyzed, such as the phonon dispersion, three-phonon scattering rates, cumulative

thermal conductivities, etc. By analyzing how every important thermal property

changes during the transition from 3D to 2D, it should be possible to isolate the

primary mechanism, or mechanisms, that contribute to differences in the thermal

conductivity. Graphene and graphite were used in this case because of their relatively

simple structures, but the general results that were obtained should be applicable to

other layered materials.

The following chapters will begin with an explanation of the theory of phonon

transport, followed by the computational techniques that were used to calculate the

thermal transport properties. The next chapter presents the results obtained for each

of the cases, beginning with the limiting cases of graphene and graphite, followed by

the stretched graphite cases. The analysis of the results leads to the conclusion that

the differences in the thermal conductivity of graphene and graphite are primarily the

result of changes in the shape of the phonon dispersion, which provides graphene with
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more phonons with higher velocities for transport than graphite, and not necessarily

the loss of selection rules. This result is significant since the changes in phonon

dispersion should manifest in a similar way in other layered materials. Therefore,

this type of analysis could potentially be applied to layered materials in general,

and could aid in identifying properties of layered materials that lead to high or low

conductivites.



Chapter 2

Theory

Standard heat transport in solids can be described using Fourier’s Law

jα = −καβ∇βT, (2.1)

where the heat flux jα is proportional to the temperature gradient ∇βT . The propor-

tionality constant καβ is an element of the thermal conductivity tensor, and the greek

superscripts, α, β, represent the cartesian directions x, y, z. Equation 2.1 describes

the amount of heat that travels through a unit area in the α direction, in units of

Wm−2, resulting from a temperature gradient in the β direction, in units of Km−1.

The units of κ are therefore Wm−1K−1. Materials that conduct heat well have large

conductivities, while thermal insulators have low conductivities.

The thermal conductivity can be broken up into two components:

κ = κe + κl. (2.2)

Here, κe is the thermal conductivity contribution from electrons, and κl is the lattice

thermal conductivity. The electronic contribution is a result of electrons that have

excess kinetic energy carried with them as they travel through a material with a

temperature gradient. The lattice thermal conductivity is from the vibrations of

atoms in the lattice. Lattice vibrations are usually modelled as phonons, which are

quasiparticles that represent the normal modes of vibration, and travel through the

lattice carrying energy in the form of heat.

In metals, electrons are usually the dominant heat carrier since conduction elec-

trons are abundant. Meanwhile, phonons tend to be the majority carriers in electric

insulators and semiconductors since there are few mobile electrons. In the case of

graphene and graphite, phonons carry nearly all of the heat in the system, so the

electronic contribution will be omitted. The focus of this thesis is to study κl and

7



8

how it changes with dimensionality.

2.1 Crystal Structure

Many solid materials are composed of periodic arrays of atoms arranged in a crystal

structure. The crystal structure can be decomposed into a lattice and a basis: where

the lattice is an infinite series of regularly repeating points generated by lattice vectors;

and the basis describes the position of atoms around the lattice points [29, 30]. The

primitive cell is defined by the primitive lattice vectors a1,a2,a3 which contain the

smallest repeating series of atoms within the crystal. The lattice vectors R are then

any vector that is a linear combination of the primitive lattice vectors

R = n1a1 + n2a2 + n3a3, (2.3)

where n1, n2, n3 are integers. Any point r′ in the crystal is equivalent to any other

point r provided they are separated by some lattice vector R.

The positions of atoms within the primitive cell are usually written in terms of

the primitive lattice vectors, or crystal coordinates. An atom positioned at (a, b, c)

in crystal coordinates is at r = aa1 + ba2 + ca3.

Graphene has a two-dimensional hexagonal lattice structure, which is described

by two primitive lattice vectors

a1 = ax̂ (2.4)

a2 =
1

2
ax̂+

√
3

2
aŷ. (2.5)

The vectors are each the same length, a = 2.46 Å, and the angle between the two is

60◦. There are two carbon atoms in each unit cell. In crystal coordinates, the first is

arbitrarily placed at (0, 0), and the second is at (2/3, 2/3). The bonds between carbon

atoms have a length of a/
√
3 ≈ 1.42 Å. An illustration of the atomic structure is

shown in Figure 2.1

Graphite is composed of layers of graphene where each subsequent layer is shifted

from the previous, resulting in an AB layering formation. The crystal structure for
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Figure 2.1: The atomic structure of graphene, generated by VESTA [31]. The distance
between bonded carbon atoms is 1.42 Å, and |a| = 2.46Å [32].

graphite is a three-dimensional hexagonal lattice with primitive lattice vectors

a1 = ax̂ (2.6)

a2 =
1

2
ax̂+

√
3

2
aŷ (2.7)

a3 = cẑ. (2.8)

Here, c is the cross-plane lattice vector, with an experimental value of c = 2.71a ≈
6.71Å at room temperature [32]. There are four atoms in the primitive cell of graphite,

which are positioned at (0, 0, 0), (2/3, 2/3, 0), (1/3, 1/3, 1/2), and (1, 1, 1/2) in crystal

coordinates. The graphene layers have very strong bonding between atoms within a

layer, but weak interlayer interactions dominated by Van der Waals forces; hence,

there is a difference in bond lengths between carbon atoms in-plane and cross-plane.

The difference in bond strength leads to interesting properties, such as anisotropic

transport. In graphite, the thermal conductivity in-plane is significantly larger than

the cross-plane thermal conductivity because of the weak interaction between lay-

ers. Meanwhile, the in-plane thermal conductivity is comparable to that of a single

graphene layer.
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Figure 2.2: (a) A side-view of the atomic structure of graphite. Each of the layers is
identical to a graphene layer shown in Figure 2.1, and the layers are labelled to show
the AB stacking pattern. The distance between adjacent layers is 3.348 Å [32]. (b)
A top-down view of graphite shows how the adjacent layers are positioned relative to
each other. The central atom in each hexagon is from the B layer in (a).
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2.2 Thermal transport by phonons

For the phonon contribution, the heat flux from Equation 2.1 can also be written as

a sum over all possible phonon states: [24]

jα =
1

Ω

∑
λ

fλEλv
α
λ , (2.9)

where λ is a label for the state of the phonon, which will be defined later. fλ is

the distribution function, which represents the occupation number: the number of

phonons that are in that state. Eλ is the phonon energy, and vαλ is the velocity of the

phonon in the α direction. Ω here is the volume of the sample. The result is the rate

at which energy flows through a surface perpendicular to α.

The equation for the thermal conductivity is obtained by combining Equation 2.1

and Equation 2.9:

καβ = − 1

Ω∇βT

∑
λ

fλEλv
α
λ . (2.10)

In order to calculate the thermal conductivity for a given system, the energy, Eλ, the

velocity, vαλ , and the distribution function, fλ, of the heat carriers must be calculated

first. In the following sections, the procedure for obtaining each of these quantities is

described.

2.2.1 Phonons

As mentioned in the introduction to this chapter, phonons are usually the dominant

contributor to the thermal transport in semiconductors and insulators. A phonon is

a quasiparticle representing the normal modes of atomic vibrations in a lattice. Each

phonon has a well-defined energy and velocity, which are determined by its state, λ.

To calculate these values, the energetics of the system must be properly modelled

first.

The theory of phonons is developed by first taking the Taylor expansion of the lat-

tice potential energy Φ about its equilibrium value Φ0 for small atomic displacements
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ui away from the equilibrium positions r0
i :

Φ(r0
1 + u1, r

0
2 + u2, ...) =Φ0 +

∑
i,α

Φα
i u

α
i +

∑
ij,αβ

Φαβ
ij u

α
i u

β
j (2.11)

+
∑

ijk,αβγ

Φαβγ
ijk u

α
i u

β
j u

γ
k + ...,

where

Φα
i =

∂Φ

∂rαi

⏐⏐⏐⏐
0

(2.12)

Φαβ
ij =

∂2Φ

∂rαi ∂r
β
j

⏐⏐⏐⏐⏐
0

(2.13)

Φαβγ
ijk =

∂3Φ

∂rαi ∂r
β
j ∂r

γ
k

⏐⏐⏐⏐⏐
0

. (2.14)

Here, the Latin subscripts, ijk, are atomic indices, and the Greek superscripts, αβγ,

once again represent the Cartesian directions. Equations 2.12, 2.13, and 2.14 are the

first-, second-, and third-order interatomic force constants (IFCs) respectively. Φ0 is

the equilibrium potential energy of the system, so the first-order IFCs must vanish

since the atoms are at their equilibrium positions (i.e. F i = −∇iΦ0 = 0). The first

non-zero term after the ground state energy is the second-order correction. Including

only the second-order correction is equivalent to making the approximation that all of

the atoms in a material behave as though they were a system of masses and springs.

This is known as the harmonic approximation. As will be shown next, the phonon

energies and velocities are obtained from the harmonic approximation. Higher-order

terms in Equation 2.11 capture the phonon scattering properties, which will be shown

later.

2.2.2 The Harmonic Approximation

The dynamics of each atom is described by solving the appropriate equation of motion

Fα
i = − ∂Φ

∂uαi
=Miü

α
i (2.15)
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Here,Mi is the mass of the ith atom, and üαi is the second time-derivative of the atomic

displacement vector ui in the α direction. Substituting Equation 2.11, keeping only

up to second-order, into Equation 2.15 results in

Miü
α
i = −

∑
j

Φαβ
ij u

β
j . (2.16)

Solutions to this system of equations take the form of plane waves [30]

uαi (q;R) =
1√
Mi

ϵαi (q)e
i(q·R+ω(q)t), (2.17)

where q is the wavevector, and ω(q) is the angular frequency. ϵαi is the polarization

vector, which determines the amplitude of oscillation of atom i in the α direction,

and R is a lattice vector, as defined in Section 2.1. Due to the periodic nature of a

crystal, solutions are only required for the atoms in the first unit cell (R = 0). The

motion of an atom i in a unit cell that is a displacement R away from the first unit

cell is simply out of phase with the same atom i in the first unit cell by eiq·R.

Substituting 2.17 into the equations of motion (Equation 2.15) results in

√
Miω

2(q)ϵαi (q) =
∑
j,R′

Φαβ
ij (R,R

′)
1√
Mj

ϵβj (q)e
iq·(R′−R). (2.18)

The choice for R is arbitrary since each unit cell is identical, so R can be taken to be

0. The sum can also be broken up into two sums, one over the atomic indices, i, of

atoms within the first unit cell, and another over all unit cells, at R′, in the crystals:

ω2(q)ϵαi (q) =
∑
j

ϵβj (q)
1√
MiMj

∑
R′

Φαβ
ij (R

′)eiq·R
′
. (2.19)

The sum over R′ is the Fourier transform of the second-order IFCs Φ̃αβ
ij (q):

Φ̃αβ
ij (q) =

∑
R′

Φαβ
ij (R

′)eiq·R
′
. (2.20)

The interaction is short-ranged, so in the sum over R′ is usually truncated to a few of

the closest unit cells. The mass-normalized Fourier transform is called the Dynamical
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matrix:

Dαβ
ij (q) =

1√
MiMj

Φ̃αβ
ij . (2.21)

Substituting this into Equation 2.19 results in

ω2(q)ϵαi (q) =
∑
j

Dαβ
ij (q)ϵβj (q). (2.22)

In vector form, this equation is equivalent to

D(q)ϵ(p, q) = ω2(p, q)ϵ(p, q), (2.23)

which is simply an eigenvalue problem for the dynamical matrix Dαβ
ij (q), with eigen-

vectors ϵ(p, q), and eigenvalues ω2(p, q). Here, p was introduced as a label for the 3N

solutions to Equation 2.23, where N is the number of atoms in the primitive cell. The

state of a phonon, and therefore its energy and velocity, is completely described by p

and q. In the introduction to this section, λ was used as a label for phonon modes.

In the following discussion λ will still sometimes be used when it is convenient, but

note that λ = (p, q).

The energy of a phonon is

E(p, q) = h̄ω(p, q), (2.24)

where h̄ is the reduced Planck’s constant. Therefore, the full phonon dispersion can

be calculated by constructingD(q) and then solving Equation 2.23 for all wavevectors

q.

There are an infinite number of wavevectors; however, they exist in reciprocal

space, which is periodic. The Brillouin zone (BZ) is the first Wigner-Seitz unit cell

in reciprocal space, and contains all non-equivalent q vectors. The wavevectors in all

other unit cells in reciprocal space are equivalent to a vector within the BZ, so only

q in the first BZ are required for a full solution. The group velocity of each phonon

mode can then be calculated in the usual way

v(p, q) = ∇qω(p, q). (2.25)
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The phonon energies (Equation 2.24) and velocities (Equation 2.25) are two of the

three variables required in order to calculate the thermal conductivity in Equation

2.10. The final component is the distribution function fλ, which is obtained by solving

the Boltzmann Transport Equation (BTE).

2.3 The Boltzmann Transport Equation

The distribution function, f(r,p, t), describes the occupation of each state, which

depends on their position (r) and momentum (p) at a given time (t). The Boltzmann

transport equation (BTE) describes the evolution of f(r,p, t) [33, 34].

∂f

∂t
+ v ·∇rf + F ·∇pf =

∂f

∂t

⏐⏐⏐⏐
scatter

. (2.26)

From left to right in the equation, it describes how any changes in the population of

a state can arise due to diffusion, external forces, or scattering.

There are no external forces acting on phonons (F = 0), or sources/sinks, so the

form of the equation that must be solved in the steady state is

v ·∇rT
∂f

∂T
=
∂f

∂t

⏐⏐⏐⏐
scatter

, (2.27)

This is sometimes called the Peierls-Boltzmann Equation (PBE) [33, 35].

In thermal equilibrium, the phonon distribution function is given by the Bose-

Einstein distribution f 0:

f 0(ω(p, q), T ) =
1

eh̄ω(p,q)/kBT − 1
, (2.28)

where kB is Boltzmann’s constant, and T is the temperature of the system. However,

there is no net heat flow in thermal equilibrium. Applying a temperature gradient

∇rT ̸= 0 causes the distribution function to deviate from f 0, resulting in a net

heat current. This new distribution is found by solving the BTE. In the following

discussion, λ subscripts will be used to imply a dependence on p and q.

A common approach to solving the BTE is to expand f0 to first-order [33]:

fλ = f 0
λ − lλ ·∇rT

∂f 0
λ

∂T
. (2.29)
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Combining Equations 2.27 and 2.29 results in the linearized BTE [24]

lλ = τ 0λ(vλ +∆λ), (2.30)

where τ 0λ is the relaxation time. In the relaxation time approximation (RTA), it is

assumed that the system relaxes back to the equilibrium distribution function f 0
λ in

a characteristic time τ 0. Taking lλ = τ 0λvλ is equivalent to the RTA, so the linear

expansion of fλ goes beyond the RTA with the addition of a correction term ∆λ. The

equation for ∆λ is:

∆λ =
1

Nq

+∑
λ′λ′′

Γ+
λλ′λ′′(ξλ,λ′′lλ′′ − ξλλ′lλ′)

+
1

Nq

−∑
λ′λ′′

Γ−
λλ′λ′′(ξλ,λ′′lλ′′ + ξλλ′lλ′), (2.31)

where Nq is the number of wavevectors in the discretized BZ. ξλλ′ = ωλ′/ωλ, and

Γ±
λλ′λ′′ are the three-phonon scattering rates. The scattering rates are obtained using

Fermi’s golden rule, and are described in the following section. The equation for

thermal conductivity, using the linearized BTE, becomes [24]

καβ =
1

kBT 2ΩNq

∑
λ

f 0
λ(f

0
λ + 1)(h̄ωλ)

2vαλF
β
λ . (2.32)

Equation 2.30 can be solved iteratively [36], beginning with the RTA, and using Equa-

tion 2.31. In practice, the iterative process repeats until the thermal conductivity,

calculated using Equation 2.32, converges. The final requirement to solve the BTE

and calculate the thermal properties is to supply it with the three-phonon scattering

rates.

2.4 Phonon Scattering

Phonons are able to scatter with other phonons, boundaries, electrons, impurities,

etc. All of these scattering events can contribute to thermal resistance by altering the

phonon momentum. For most semiconductors at room temperature, the dominant

mechanism is phonon-phonon scattering, so the others are left out of the following
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(a) (b)

Figure 2.3: (a) Phonon absorption process, where phonons with wavevectors q and q′

combine to a single phonon with wavevector q′′. (b) Phonon emission process, where
a single phonon with wavevector q splits into two phonons with wavectors q′ and q′′.

discussion [33, 37].

Specifically, three-phonon scattering is the primary contributer to the thermal

conductivity in most cases. There are two processes through which three phonons

can interact: absorption, and emission (see figure 2.3). Absorption occurs when two

incident phonons, with wavevectors q and q′, scatter into a third state, q′′. An

emission process is when a single phonon, q, scatters into two phonons, q′ and q′′.

During these processes, energy and crystal momentum must be conserved. The

crystal momentum of phonons is h̄q, and must be conserved to within a reciprocal

lattice vector Q:

q ± q′ = q′′ +Q. (2.33)

The corresponding energy conservation equation is

h̄ω ± h̄ω′ = h̄ω′′ (2.34)

The positive signs are chosen for phonon absorption, and the negative signs are for

phonon emission. The addition of Q appears in Equation 2.33 because any phonon

with a wavevector q that is outside of the first BZ is indistinguishable from a phonon

with a wavevector q +Q within the first BZ.

These scattering processes are further subdivided into either normal or Umklapp

processes depending on whether or not Q is non-zero. When q±q′ is within the first
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BZ, then Q = 0, which is a normal process. When it falls outside of the first BZ,

then Q ̸= 0, and it is an Umklapp process. Both processes contribute to the thermal

conductivity by altering the population of phonons in a given state, and by scattering

to states that modify the direction of the velocity of the phonons.

The three-phonon scattering rates are obtained using Fermi’s Golden Rule, and

are expressed as [24]

Γ+
λλ′λ′′ =

h̄π

4

f ′
0 − f ′′

0

ωλωλ′ωλ′′
|V +

λλ′λ′′ |2δ(ωλ + ωλ′ − ωλ′′), (2.35)

Γ−
λλ′λ′′ =

h̄π

4

f ′
0 + f ′′

0 + 1

ωλωλ′ωλ′′
|V −

λλ′λ′′ |2δ(ωλ − ωλ′ − ωλ′′). (2.36)

Here, f 0 is the Bose-Einstein distribution, V ±
λλ′λ′′ are the scattering matrix elements,

and the Dirac deltas impose conservation of energy. The scattering matrix elements

are given as

V ±
λλ′λ′′ =

∑
i∈u.c.

∑
j,k

∑
αβγ

Φαβγ
ijk

ϵαi (λ)ϵ
β
j (p

′,±q′)ϵγk(p
′′,−q′′)√

MiMjMk

, (2.37)

where the ϵ’s are the eigenvectors described in Subsection 2.2.2, Φαβγ
ijk are the third-

order IFCs described in Section 2.2.1, and Mi,Mj and Mk are the masses of atoms i,

j, and k respectively.

At this point in the discussion, all of the variables required to calculated the lattice

thermal conductivity depend only on the second- and third-order IFCs. The phonon

dispersion can be calculated using the second-order IFCs, which provides the phonon

energies and velocities. Solutions to the BTE depend on these variables, along with

the three-phonon scattering rates, which require the third-order IFCs. It is possible

to calculate accurate values of the IFCs from first-principles, using Density Functional

Theory (DFT).

2.5 Density-Functional Theory

DFT is an ab initio method that can be used to calculate IFCs. At its heart, this

method converts the full quantum many-body problem into an effective single-particle

Schrödinger equation. The basic principle of DFT is that the electronic ground-state
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energy EGS of a many-body system is a unique functional of the electron density n(r)

[38]. This functional is also variational, so the ground-state energy can be found by

minimizing the energy with respect to n(r).

In 1965, Kohn and Sham showed that solutions for n(r) can be obtained by solving

a single-particle Schrödinger equation with an effective potential [39]:

[T̂ + VKS(r)]ψi(r) = Eiψi(r). (2.38)

Here, T̂ is the standard kinetic energy operator, VKS is the effective, or Kohn-Sham,

potential, ψi(r) are the Kohn-Sham orbitals, and Ei is the energy of the ith orbital.

The forms of T̂ and VKS are not shown here, but interested readers can find the details

in [39]. The electron density is then obtained in the usual way:

n(r) = 2

N/2∑
i=1

|ψi(r)|2 , (2.39)

where N is the number of electrons, and the 2 in front of the sum accounts for spin

degeneracy.

The Kohn-Sham potential is itself a functional of the electron density VKS[n(r)].

This allows the Kohn-Sham equations to be solved self-consistently. The density

n(r) is used to construct the effective potential VKS, which is then used to solve for

the Kohn-Sham orbitals in Equation 2.38. The orbitals are then used to calculate

the density (Equation 2.39), which should be same as the input density when self-

consistency is achieved.

One problem is that the effective potential requires an exchange-correlation po-

tential. There is no known functional that captures this interaction perfectly, so

approximations are required. Many approximations to this functional have been pro-

posed, the simplest is the Local Density Approximation (LDA) [39]. The basis of the

LDA is that a small volume of electrons of density n(r) will contribute an exchange-

correlation energy equal to that of a uniform electron gas of the same density and

volume. This is an adequate approximation in systems with slowly-varying, or high,

electron densities, but produces poor results in most real systems where fluctuations

in the density can be large. A significant improvement is the Generalized Gradient
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Approximation (GGA) [40], which uses the gradient of the electron density, ∇rn(r),

as a correction. The GGA was chosen for the calculations in this thesis.

There are two main methods of calculating the second-order IFCs: finite differ-

ence (FD) and density-functional perturbation theory (DFPT). The former is more

physically intuitive. The ground state energy is first calculated for the system in

equilibrium, E0= (r0
1, r

0
2, ...), where r0

i are the equilibrium positions of the atoms.

The energy is then recalculated for small atomic displacements ∆rαi , where α is the

Cartesian direction, Eα
i = E(r0

1, ..., r
0
i + ∆rαi , ...) and Eβ

j = E(r0
1, ..., r

0
j + ∆rβj , ...).

The force constants are then approximated as

Φαβ
ij =

∂2Φ0

∂rαi ∂r
β
j

≈
Eα

i + Eβ
j − 2E0

∆rαi ∆r
β
j

. (2.40)

Each of these energies are calculated using DFT. The number of DFT calculations

that would be required to perform these calculations would be immense, since at least

nine energy values are required for each pair of atoms. For phonon calculations, IFCs

are usually required between atoms that are several unit cells away. This requires the

construction of a supercell, which can contain hundreds of atoms, even for simple sys-

tems like graphene and graphite. In practice, the symmetries of the crystal structure

are exploited to reduce the total number of calculations that are required.

In this work, the second-order IFCs are calculated using DFPT. For DFPT, the

dynamical matrix from Section 2.2.1 is calculated directly for each q [41]. This is done

by treating the displacements of atoms for each phonon mode as a small perturbation

from the ground state. Perturbation theory is then used to solve for the Fourier

transform of the second-order IFCs, which are used to get the dynamical matrix

directly.

The third-order IFCs are then calculated using the FD method for third-order

derivatives:

Φαβγ
ijk =

∂3Φ0

∂rαi ∂r
β
j ∂r

γ
k

≈
Eα

i + Eβ
j + Eγ

k − 3E0

∆rαi ∆r
β
j ∆r

γ
k

. (2.41)

This is the final component required to calculate the three-phonon scattering rates,

and by extension the thermal conductivity.
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2.6 Phonon Selection Rules

The materials studied in this thesis have particular symmetries that affect what

scattering processes are possible, and thus affect their thermal transport properties.

Specifically, some three-phonon scattering mechanisms are forbidden due to the sym-

metries of the system. In the case of graphene, mirror symmetry about the plane

of carbon atoms produces selection rules, which drastically reduces the number of

scattering processes available to certain phonon modes [25]. This is one of the factors

that is thought to lead to the large thermal conductivity of graphene of up to 5000

Wm−1K−1.

The carbon atoms in graphene are located entirely within a single plane, which

is usually taken to be the xy plane. Each correction to the lattice potential given

in Equation 2.11 must be invariant under any symmetry operation [26]. For the

second-order correction, this invariance is stated as:

∑
ij

∑
αβ

Φαβ
ij u

α
i u

β
j =

∑
i′j′

∑
α′β′

Φα′β′

i′j′ u
α′

i′ u
β′

j′ , (2.42)

where the primed indices represent the new indices after a symmetry operation. Since

all of the carbon atoms are within the xy plane, they are all mapped to themselves

for a reflection about the z axis, so the atomic indices, i and j, remain unchanged.

The same is true for the component labels, α and β. The only difference is if α or

β are z, then the direction of the corresponding displacement vector component is

reversed, so uαi becomes −uαi . Therefore, Equation 2.42 becomes

∑
ij

∑
αβ

Φαβ
ij u

α
i u

β
j =

∑
ij

∑
αβ

(−1)mΦαβ
ij u

α
i u

β
j , (2.43)

which requires that

Φαβ
ij = (−1)mΦαβ

ij . (2.44)

Here, m is the number of occurences of z in αβ. In order for this to hold, Φαβ
ij must

vanish for terms with a single z component in αβ.

It is straightforward to extend this analysis to the higher-order IFCs. For the
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third-order IFCs, the symmetry requirement is

Φαβγ
ijk = (−1)mΦαβγ

ijk , (2.45)

so any terms where αβγ contains an odd number of z’s must be zero. In general, any

order IFC with an odd number of z components must be zero because of the mirror

symmetry about the z axis.

A consequence of Equation 2.44 is that the atoms in graphene are restricted to

only move either in the z direction or within the xy plane. When constructing the

dynamical matrix from its definition in Equations 2.21 and 2.20, the off-diagonal

terms with z components must be zero:

Dαβ
ij =

⎛⎜⎜⎝
Dxx

ij Dxy
ij 0

Dyx
ij Dyy

ij 0

0 0 Dzz
ij

⎞⎟⎟⎠ . (2.46)

Therefore, there is a complete decoupling between the xy and z directions, so the

eigenvectors will be decoupled in the same way:

ϵi(q) =

⎛⎜⎜⎝
ϵxi (q)

ϵyi (q)

0

⎞⎟⎟⎠ or

⎛⎜⎜⎝
0

0

ϵzi (q)

⎞⎟⎟⎠ . (2.47)

The eigenvectors with only a z component correspond to flexural phonon modes, while

eigenvectors without a z component correspond to the longitudinal and transverse

modes.

These symmetries result in a large reduction in the number of scattering processes

that are available to the flexural phonon modes in graphene. The flexural acoustic

(ZA) modes in graphene are modes where both carbon atoms in the unit cell move

in the z direction. The other two acoustic modes correspond to transverse, TA, and

longitudinal, LA, modes where motion is restricted to the xy plane.

This has important implications for the scattering rates since the scattering matrix

elements depend on the eigenvectors (see Equation 2.37). The number of terms in the

sums are drastically reduced for scattering processes that involve flexural phonons.



23

For example, if only one of the incident phonons is flexural, then the scattering matrix

element can be written as

V ±(flex, λ′, λ′′) =
∑
i∈u.c.

∑
j,k

xy∑
βγ

Φzβγ
ijk

ϵzi (flex)ϵ
β
j (p

′,±q′)ϵγk(p
′′,−q′′)√

MiMjMk

. (2.48)

The α became z since the flexural phonon eigenvectors only have non-zero z compo-

nents. Assuming the other two phonons are not flexural, only the x and y components

of ϵβj and ϵγk are non-zero. The remaining terms contain third-order IFCs with a single

z component, which must be zero because of Equation 2.45.

Similarly, the scattering matrix elements for processes involving 3 flexural phonons

are written as

V ±(flex, flex′, flex′′) =
∑
i∈u.c.

∑
j,k

Φzzz
ijk

ϵzi (flex)ϵ
z
j(flex

′)ϵzk(flex
′′)√

MiMjMk

, (2.49)

where this time the third-order IFCs all have three z components, which are once

again zero because of Equation 2.45. This means that all three-phonon processes

where all three phonons are flexural are forbidden as well. This argument does not

work for processes with an even number of flexural phonons since third-order IFCs

with an even number of z components are not necessarily zero. Therefore, the phonon

selection rules are that any three-phonon scattering process containing an odd number

of flexural phonons are forbidden due to reflection symmetry about the z axis.

The selection rules for graphene reduce the scattering probability and are one

reason why the thermal conductivity is so high. The ZA phonons contribute more to

the thermal conductivity than the other modes due to the limited number of scattering

pathways.

As soon as the mirror symmetry is broken, the selection rules no longer hold, and

the thermal conductivity will decrease. This is observed when graphene is supported

by a substrate, and in few-layer graphene [26, 27]. It is important to note that this

mirror symmetry still exists in graphite, but the atoms are not all mapped onto

themselves by the symmetry operation. This results in a reduced set of selection

rules. The focus of this study is on graphene and graphite, so understanding how the

selection rules, and lack thereof, influence the thermal transport properties is vital
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for understanding the transition from 3D to 2D transport.



Chapter 3

Results

The purpose of this study was to understand how thermal transport properties vary

when going from 3D to 2D materials. This is illustrated using graphite, where the two

limiting cases are bulk graphite and monolayer graphene. The transition is studied by

stretching the layers of graphite apart until they are effectively graphene monolayers.

The following sections begin with a short description of the numerical details.

Next, the major results for graphene are presented first, because of their relatively

simple form, and since they have been previously reported by others. The results

for graphite will follow with a more in-depth analysis and will be compared to the

results for graphene. The two limiting cases provide some insight on how the thermal

properties should behave during the transition from 3D to 2D. Finally, a section

comparing the stretched cases will complete the chapter.

3.1 Numerical Details

The electronic structure of each case was calculated using the PWscf package from

the suite of DFT codes provided by Quantum Espresso (QE) [22]. The second-

order IFCs, phonon eigenvectors, and phonon dispersions were obtained using the

PHonon package from QE. The iterative solutions to the BTE were calculated using

the software ShengBTE. The third-order IFCs required as input for ShengBTE were

calculated with the finite-displacement method within QE, using an auxiliary Python

script provided by ShengBTE.

Both QE and ShengBTE require a set of converged input parameters for each

system in order to produce reliable results. The input parameters are determined

by systematically varying each of them individually until the energy of the system

converges. The converged values for graphene and graphite are listed at the beginning

of each their associated sections, and those for the stretched cases are identical to the

parameters used for graphite.

25
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The DFT calculations in QE use a plane-wave basis set. From Bloch’s theorem,

the electronic wavevefunctions ψn,k(r) in a periodic crystal can be written as

ψn,k(r) = un,k(r)e
ik·r, (3.1)

where k is wavevector and n is the branch index. These electron state variables are

analogous to the wavevector q and branch index p used for phonons. un,k(r) is a

function with the periodicity of the lattice.

un,k(r) can be constructed by using a basis of plane waves with the periodicity of

the crystal:

un,k(r) =
1

Ω

∑
K

Cn,k,Ke
iK·r, (3.2)

where Ω is the volume of the unit cell, Cn,k,K are coefficients in the sum and K are

the reciprocal lattice vectors, which ensures that un,k(r) has the periodicity of the

lattice. The wavefunctions in Equation 3.1 become

ψn,k(r) =
1

Ω

∑
K

Cn,k,Ke
i(k+K)·r. (3.3)

The ground state of the system is determined by minimizing the energy of the system

with respect to the coefficients.

Physical quantities, like the electron density, can be calculated as a summation in

reciprocal space over the first Brillouin zone (BZ). A k-grid is usually specified, which

determines how the BZ is discretized. A N1×N2×N3 k-grid has Nk = N1×N2×N3

uniformly-spaced wavevectors, k, within the first BZ. The density of this grid is one

of the parameters that must be converged.

A similar type of grid, called the q-grid, is specified for the phonon dispersion and

scattering calculations. The q-grid is exactly the same as a k-grid, only the points

correspond to phonon wavevectors, q, as opposed to the electron wavevectors k.

The completeness of the basis set is determined by the number of reciprocal lattice

vectors K that are used in the sum in Equation 3.3. Large wavevectors correspond

to large fluctuations in the wavefunction and electron densities, which correspond

to large kinetic energies, and thus large K values. It is customary to specify cutoff

energies for the wavefunctions and electron densities, where K vectors with energies

above the cutoffs are excluded. This reduces the size of the basis set, thus reducing
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the computational cost.

Pseudopotentials are also used to model the potential due to the core states in

each atom as smoother functions, further reducing the size of the basis set required

for the calculation. The pseudopotentials that were used for the carbon atoms in

each of the following cases were Projector Augmented Wave (PAW) [42] with the

Perdew-Burke-Erzenhoff (PBE) [43] GGA exchange-correlation functional.

For graphite, the layers are held together by the Van der Waals interaction. It

is especially important to model these interactions correctly for this study since the

changes in the thermal properties must be due to changes in interaction between

layers. For this study, the Van der Waals interaction is modelled using the exchange-

hole dipole moment (XDM) model [44, 45].

The converged parameters in each case were selected so that the total energy of the

system was converged to within 0.1meV. For graphene, a 21x21x1 k-grid was used,

with a wavefunction cutoff energy of 70 Ry, and a 2600 Ry density cutoff energy. The

DFPT calculations were performed on a 9x9x1 q-grid. The ShengBTE calculations

for thermal conductivity and phonon scattering propreties used a 60x60x1 q-grid.

For graphite, the calculations were performed using a 15x15x3 k-grid with a wave-

function cutoff energy of 60 Ry and a density cutoff of 400 Ry. The DFPT calculations

were performed on a 6x6x3 q-grid, and the ShengBTE calculations used a 30x30x12

q-grid. The stretched cases of graphite all used the same parameters as graphite. All

of the ShengBTE calculations were performed at 300 K.

3.2 Graphene

The results for graphene are presented first. This section will be a quick overview of

the general properties of graphene, to serve as a reference, and to be compared to the

other cases later.

The atomic structure was first relaxed by minimizing the total energy and forces

with respect to the atomic positions. The energy threshold was 1× 10−6 Ry, and the
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forces were converged to within 1× 10−5 Ry/a0. The primitive lattice vectors are

a1 = ax̂ (3.4)

a2 =
a

2
x̂+

√
3a

2
ŷ (3.5)

a3 = 10aẑ, (3.6)

with a lattice constant a = 2.4643Å. The third lattice constant, a3, was chosen so

that the separation between the graphene layers are large enough that there is no

measurable interaction between them. The two carbon atoms are located within the

unit cell at (0, 0, 0) and (2/3, 2/3, 0) in crystal coordinates (i.e. in terms of the lattice

vectors).

The phonon dispersion and density of states (DOS) of graphene are shown in

Figure 3.1. The dispersion is consistent with previous calculations and experiments

by other groups [46–48]. There are 6 different phonon branches in graphene, because

there are two atoms in the unit cell. The bottom three are the acoustic phonon

branches: longitudinal acoustic (LA), transverse acoustic (TA), and flexural acoustic

(ZA). The ZA branch appears parabolic, due to the 2D nature which results in weak

out-of-plane interactions, while the other acoustic branches are linear, as expected.

In most bulk materials, all three acoustic branches are linear near q = 0.

The phonon density of states for a material depends on the shape of the phonon

dispersion, and the dimensionality of the material. For a two-dimensional material

like graphene, parabolic bands contribute a constant density of states, while the DOS

from linear bands is linear with energy. Since the linear part is negligible at low

energies, the DOS of graphene should be constant near 0 meV. The DOS in Figure

3.1 is nearly constant for most of the low-energy range, but goes to zero at E = 0

meV. This discrepancy is due to a slightly misshapen flexural phonon branch near 0

meV, and is discussed later in this chapter.

The three-phonon scattering rates were calculated at room temperature (T = 300

K), and plotted in Figure 3.2. The phonons in each of the acoustic branches are

coloured and labeled over the first 50 meV so that they are distinguishable. Each

point in Figure 3.2 corresponds to the scattering rate of a phonon with a particular

q and p.
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Figure 3.1: (a) Phonon dispersion and density of states of graphene calculated with
QE. (b) Phonon dispersion from Ref [47] calculated using DFT (solid line), and
experimental data from inelastic x-ray scattering (red triangles and blue circles [46]).



30

10-4

10-3

10-2

10-1

100

101

 0  20  40  60  80  100  120  140  160  180  200

ZA

TA

LA
T

hr
ee

-p
ho

no
n 

sc
at

te
ri

ng
 r

at
e 

[p
s-1

]

Phonon energy [meV]

Figure 3.2: Three-phonon scattering rates of graphene. The ZA, TA, and LA modes
are labeled and coloured over the 0-50 meV range.

The scattering rates of the ZA phonons are consistently much lower than the scat-

tering rates for TA and LA phonons. This is expected because the phonon selection

rules (Section 2.6) limit the number of scattering processes available to the ZA modes.

The difference is much more apparent as the energies approach 0 meV. The lifetime

of the lowest-energy flexural phonons are several orders of magnitude longer than

the lifetime of the other modes. As we show next, these acoustic phonons play an

important role in the thermal properties.

The cumulative thermal conductivity is useful for determining how the phonons

at each energy range contribute to the total thermal conductivity. The cumulative

thermal conductivity κcumulative is calculated as

κcumulative(E) =

∫ E

0

κ(E ′)dE ′, (3.7)

where κ(E ′) is the contribution to the thermal conductivity from all modes in the en-

ergy range dE ′ around energy E ′. The cumulative thermal conductivity of graphene

is shown in Figure 3.3. The converged value of the thermal conductivity was calcu-

lated to be 2740 Wm−1K−1. This value is in the mid-range of the values that have

been determined experimentally [8, 49], and in other calculations [27, 50], with values
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Figure 3.3: The cumulative thermal conductivity of graphene versus phonon energy.
The dashed line at 100 meV shows approximately where the thermal conductivity
saturates. The converged lattice thermal conductivity is 2740 Wm−1K−1.

ranging between 1000-5800 Wm−1K−1.

The cumulative thermal conductivity has a non-zero slope near zero, indicating

the low-energy modes make significant contributions to the thermal conductivity.

This is unsurprising because of the small scattering rates found for low-energy ZA

phonon in Figure 3.2. Historically, it was thought that flexural phonons had negligible

contributions to the thermal conductivity because of their low energies and velocities.

However, the selection rules and finite DOS near 0meV lead to a large population of

phonons with long lifetimes.

The contribution from higher energy phonons decreases steadily and finally sat-

urates around 60 meV. This saturation occurs because 60 meV is far into the Bose-

Einstein distribution where the occupation of modes is small. The contributions from

energies above 100 meV are entirely negligible. Because of this, in the following sec-

tions, many of the graphs will be restricted to energies between 0 meV and 100 meV.

This is to focus on the energy ranges that matter for thermal transport, the central

focus of this project, and to facilitate our analysis by excluding complicated features

coming from the high energy optical modes.
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3.3 Graphite

The focus of this section is on comparing the thermal transport properties of graphite

to graphene. The thermal conductivity of Equation 2.32 depends on a variety of

phonon properties, each of which will be analyzed. This section is structured similarly

to the previous section on graphene, beginning with the phonon dispersion and DOS,

followed by the cumulative thermal conductivities, and scattering rates. The rest

of the section proceeds into a more in-depth analysis of the three-phonon scattering

properties, and how they each contribute to differences in the thermal conductivity

of graphene and graphite.

Once again, an atomic structure relaxation was performed by minimizing the

energy of the system with respect to lattice constants and atomic positions. The

relaxed system was unstable at room temperature, so the quasi-harmonic approxi-

mation (QHA) was used to minimize the Helmholtz free energy at T = 300 K with

respect to the length of the lattice vectors. The results of this calculation are in

Figure 3.4. The optimized lattice parameters are |a1| = 2.4701 Å and |a3| = 6.8718

Å.

The phonon dispersion and DOS of graphite is shown in Figure 3.5a. The phonon

dispersion of graphite has 6 more branches than graphene since it has a total of

four atoms. The high-energy optical modes are degenerate throughout the BZ. The

acoustic and low-lying optical modes in graphite are compared to those of graphene

in Figure 3.5b.

There is a small deviation between the the ZA modes in graphite and graphene,

but the LA and TA modes are nearly identical. The three low-lying optical modes,

labelled with primes, become degenerate with their associated acoustic modes for long

wavelengths. There is a very small deviation in the LO’ and TO’ modes from the LA

and TA branches respectively near the Γ point, but the ZO’ branch is separated from

the ZA branch throughout most of the BZ.

The flexural optical mode (ZO’) corresponds to modes where the two layers of

carbon atoms oscillate towards and away from each other (see Figure 3.6a). The

other two low-energy optical modes, LO’ and TO’, correspond to the layers sliding

against one another (see Figure 3.6b). The energies involved in these motions at

long wavelengths (q ≈ 0) come primarily from inter-layer interactions since they are
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Figure 3.4: The Helmholtz free energy of graphite for different lengths of in-plane, a1,
and cross-plane, a3, lattice vectors. The relaxed parameters were |a1| = 2.47Å and
|a3| = 6.87Å.

essentially translations of the graphene sheets. This explains why the ZO’ phonons

have higher energies than the the LO’ and TO’ near the Γ point: it is energetically

easier to slide the sheets to the side compared to pushing them towards each other.

For the stretched graphite cases in the following section, it is expected that the

energies of these modes should decrease as the inter-layer separation increases. This

softening of modes should occur since they are dominated by inter-layer interactions

at long wavelengths. The rest of the modes are expected to remain the same, since

they are dominated in intra-layer interactions.

The DOS for graphite is nearly identical to graphene, except for at the lowest

energy ranges. It is predicted theoretically that the DOS of a parabolic energy band

in a two-dimensional material like graphene is constant, and the DOS is linear in E

for linear bands. Meanwhile, in a three-dimensional material like graphite, parabolic

band results in a DOS that is proportional to
√
E, and linear bands contribute a DOS

that is proportional to E2 [34].

The DOS of graphite in Figure 3.5a appears mostly quadratic, indicating that
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Figure 3.5: a) The phonon dispersion and DOS of graphite, and b) an enhanced
comparison of the low-energy phonon modes and DOS between graphite (solid green)
and graphene (dashed black).
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(a) (b)

Figure 3.6: Visualization of the (a) ZO’ modes, and (b) TO’ and LO’ modes in
graphite. The four circles represent the four carbon atoms in the primitive cell, and
the arrows represent the direction of their movement at some point in time. The
primed optical modes correspond modes where the motion of the adjacent graphene
sheets are out of phase with one another.
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the ZA mode may be more linear than parabolic close to 0 meV. The occupation of

phonons in near-equilibrium conditions should deviate only slightly from the Bose-

Einstein distribution, which behaves like kBT/E as E → 0.

The difference in the shape of the DOS means that the population of low-energy

phonons in graphene will be much larger than in graphite. From Equation 2.32, having

a non-zero DOS around 0 meV means that there should be a large contribution to the

thermal conductivity at low energies. In graphite, there are fewer states to contribute

to the conductivity until higher energies, so only energy ranges with a significant DOS

will contribute.

Next, the thermal conductivity of graphite was calculated using ShengBTE. The

cumulative lattice thermal conductivity for graphene and graphite is shown in Fig-

ure 3.7a, along with a plot of the difference of the cumulative thermal conductivity

of graphene and graphite in Figure 3.7b. The converged lattice thermal conduc-

tivity of 2050 Wm−1K−1 is in excellent agreement with previous experiment (1950

Wm−1K−1) [20] and calculations [51].

There is a large difference in thermal conductivity contribution in graphite com-

pared to graphene in the energy range of 0 meV to 20 meV. This is likely due to

the relatively large DOS in graphene, and therefore the large population of flexu-

ral phonons, compared to graphite. However, the conductivity also depends on the

phonon scattering rates through F in Equation 2.32, which are expected to be lower

in graphene because of the phonon selection rules described in Section 2.6. At this

point in the discussion it is not yet clear from these results whether the large contri-

butions are due to the increased DOS in graphene or form a difference in selection

rules.

The cross-plane thermal conductivity in Figure 3.8 saturates at a much lower

energy than the in-plane thermal conductivity, to a value of 6.7 Wm−1K−1, which is

much lower than the in-plane thermal conductivity. The convergence at low energies

is likely because the phonon dispersion in the cross-plane direction (between Γ and

A) is quite flat for energies above 20 meV, leading to low phonon velocities. This is

in contrast to the reason behind the saturation in the in-plane direction, which was

a result of the negligible occupation number for modes above 60 meV.

The scattering rates for graphite and graphene are shown in Figure 3.9. Each point
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Figure 3.7: (a) The cumulative in-plane thermal conductivity for graphene (solid
green) and graphite (dashed black). The converged value for graphite is 2030
Wm−1K−1. (b) The difference in the cumulative thermal conductivity between
graphene and graphite at each energy.
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Figure 3.8: The cumulative cross-plane thermal conductivity for graphite. The con-
verged value is 6.7 Wm−1K−1.

corresponds to a phonon state (q, p). There is a large spread of points below 20 meV

in the three-phonon scattering rates in graphite that does not appear in graphene.

These new points correspond to modes with wavevectors that have z-components,

which will be elaborated on below in the discussion of phonon velocities. These only

appear in graphite since it is a three-dimensional material, with a three dimensional

BZ, while graphene is only two-dimensional.

The overall trend in the scattering rates are quite similar between the two materi-

als. The scattering rates of the ZA mode are similar in both materials, but graphene

appears to drop a bit more sharply below a few meV. This is strange, because it is

expected that the scattering rate of flexural phonons in graphite should be much lower

than those in graphene, due to the lack of selection rules. This also cannot entirely

explain why the low-energy modes of graphene contribute up to 15 times more to the

thermal conductivity than the same energy ranges in graphite. In order to explain

the difference, a more thorough analysis of the phonon properties is required.

One important property that the lattice thermal conductivity depends on is the

velocities of the phonons. The phonon velocities were calculated by ShengBTE by

simply taking the derivative of the phonon energies obtained in the dispersion by the

wavevector vp(q) = ∇qωp(q). The in-plane velocities for graphene and graphite are
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Figure 3.9: The converged three-phonon scattering rates for (a) graphite and (b)
graphene. The scattering rates were calculated using a 30x30x12 q-grid for graphite,
and a 60x60x1 q-grid for graphene. The acoustic modes are labelled and coloured:
LA (yellow), TA (blue), and ZA (green).
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shown in Figure 3.10.

The magnitude of the in-plane velocities of the flexural acoustic modes in graphite

are nearly identical to the ZA velocities in graphene. Just like in the scattering rates,

there is a large spread of points in the low-energy range in graphite that does not

appear in graphene. Once again, this is due to the extra dimension in graphite. Figure

3.11 emphasises this by showing a plot of the phonon dispersion parallel to the axis

going from Γ to M in the BZ for different values of qz. qz is the z component of the

phonon wavevector q, where qz = 0.180 are wavevectors that lie on the top surface of

the BZ. qz is in units of 2π/a where a is the lattice constant. The ZA and ZO’ modes

‘fan out’ to higher and lower energies respectively for values for qz. This ‘fanning out’

of the branches through the BZ leads to the spread of the velocities and scattering

rates at low energies.

It is clear from Figures 3.10a and 3.11 that the spread of velocities in the former is

due to the ‘fanning out’ of branches in the latter. The spread of energies at the Γ point

is between 0 meV and 15 meV. The branches also flatten out at the Γ point, leading

to the 0 km s−1 in-plane speeds spread over the 0-15 meV range seen in Figure 3.10a.

For longer phonon wavevectors, the energy range between the ZO’ and ZA branches

decreases and the slopes of each branch are more similar, leading to the decrease in

the spread of velocities near ZA as energy increases in Figure 3.10a.

The fanning and flattening of the ZA branch acts to reduce the in-plane lat-

tice thermal conductivity in two ways. First, the fannning reduces the occupation

of flexural phonons since the spread of the ZA branches to higher energies reduces

the occupation number from the Bose-Einstein distribution for those branches. Sec-

ond, the flattening of branches lowers the velocity of the phonons, which reduces the

contribution to the thermal conductivity from each phonon mode through Equation

2.32.

The speeds of phonons in the cross-plane direction are shown in Figure 3.12. The

cross-plane speeds are generally much lower than the in-plane speeds, which is ex-

pected due to the weak inter-layer coupling. This is the reason why the thermal

conductivity is so much lower in the cross-plane direction. The maximum cross-plane
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Figure 3.10: Magnitudes of the in-plane phonon velocities for a) graphite and b)
graphene.
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Figure 3.11: Phonon dispersion of graphite plotted parallel to the Γ to M axis with
different values of qz. Some of the ZA and ZO’ branches are coloured and labeled, with
two extra grey dashed and dotted lines corresponding to qz = 0.0719 and qz = 0.144
respectively to fill in the gaps.

velocities are generally smaller than the in-plane velocities and see a significant de-

crease over the first 20 meV. This, coupled with the decreasing Bose-Einstein distri-

bution with energy leads to a quick saturation of the cumulative thermal conductivity

with energy. This is in contrast to the in-plane direction, where the reason for the

negligible contributions to κ at high energies is solely due to the negligible occupation

number.

The change in the distribution of phonon velocities should account for a decrease

in the thermal conductivity between graphene and graphite, but it is only one of the

factors in the thermal conductivity Equation 2.32. It also depends on the scattering

properties through F . In order to obtain a deeper understanding of the differences

in thermal transport between graphene and graphite, each component that factors

into the three-phonon scattering rates should be analyzed. One of the properties

that is output by ShengBTE is the weighted phase space for three-phonon scattering

processes (W±
λ ), which is defined as

W±
λ =

1

2Nq

∑
λ′λ′′

{
2(fλ′ − fλ′′)

fλ′ + fλ′′ + 1

}
δ(ωλ ± ωλ′ − ωλ′′)

ωλωλ′ωλ′′
. (3.8)
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Figure 3.12: Magnitudes of the cross-plane phonon velocities for graphite.

Here, Nq is the number of q points in the discretized BZ, λ once again corresponds to

the state of the phonon (q, p), and the top and bottom functions in the curly braces

are taken for absorption (W+
λ ) and emission (W−

λ ) processes respectively.

The weighted phase space is similar to Equations 2.35 and 2.36 for the scattering

rates, except the three-phonon scattering matrix elements are excluded. W±
λ is a use-

ful property because it only depends on the energies and wavevectors of the phonons,

which in turn depend only on the second-order IFCs. Therefore, any differences that

are found in W±
λ of different materials are due only to differences in the second-order

IFCs. This describes the likelihood of scattering due to states and their occupation,

not the scattering potential.

In Figure 3.13 the weighted phase space of graphene is several orders of magnitude

larger than those in graphite at low energies. The rest of the scatter plot appear to

follow the same trend, with a few variations. In graphite (Figure 3.13a) there are

two peaks at 10.7 meV and 14.7 meV. These occur where the ZO’ bands flatten in

the dispersion around the Γ and A point. These peaks are likely due to the flatness

of the bands, since phonons in flat bands are able to scatter with many of the flat

low-energy modes, like those in the ZA branch. There is also a large population of

phonons at low-energies due to the Bose-Einstein distribution.

The peaks in the weighted phase space of graphene around 60 meV and 80 meV
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Figure 3.13: The weighted phase space for a) graphite and b) graphene.
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are explained using the same reasoning. The bands are flat in those ranges, and there

is an abundance of low-energy modes they can scatter with in graphene due to the

constant DOS and shape of the Bose-Einstein distribution. The peaks are larger in

graphene, which is probably because of the larger DOS at low energies, which leads to

a much larger number of states with which the higher-energy phonons can scatter. In

general, none of the peaks appear to correspond to any significant differences in the

thermal conductivity, since the shape of the cumulative thermal conductivity appears

constant around the energy ranges with those peaks.

The shape of the phonon dispersions of graphene and graphite (see Figure 3.5b)

are similar, but the density of states is quite different due to the difference in dimen-

sionality of the materials. The larger phonon DOS of graphene is likely why there

is a larger peak in W±
λ near 0 meV. The Bose-Einstein distribution is large as well

at low energies, and is independant of the material properties. The only difference

between the two appears to be the DOS.

At this point in the discussion, everything except for the third-order IFCs has

been analyzed. The third-order IFCs contribute to the scattering rates through the

scattering matrix elements defined by Equation 2.37. These values are not explicitly

given by ShengBTE, but an average of these values is obtained by dividing the three-

phonon scattering rates from Equations 2.35 and 2.36 by the weighted phase space

from Equation 3.8 as follows:

Γ±
λ

W±
λ

=
h̄π

2
⟨|V ±

λ |2⟩.

The average squared scattering potential is plotted for graphene and graphite in

Figure 3.14. It was expected that the scattering matrix elements should be lower in

graphene because of the phonon selection rules, but they are actually quite similar,

especially for the ZA modes. In fact, the scattering matrix elements are nearly iden-

tical for ZA modes in the 0-10 meV range, which is where the largest difference in

thermal conductivites occurs (see Figure 3.7b). This indicates that the third-order

IFCs of graphite and graphene are probably quite similar, even though graphite does

not have the same mirror symmetry seen in graphene.
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Figure 3.14: The average scattering potential for three-phonon scattering for a)
graphite and b) graphene.
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As a reminder, the selection rules for graphene depend on two important phonon

properties, as shown in section 2.6. The first important factor is that the eigenvec-

tors of the dynamical matrix must either be aligned with the z-axis, in the case of a

flexural phonon, or be in-plane. This is true for graphene because the mirror sym-

metry required that the second-order IFCs with a single z component must be zero,

effectively decoupling the z direction from x and y. The second important factor is

that the third-order force constants with odd numbers of z components must also be

0. This leads to scattering processes with an odd number of flexural phonons being

forbidden. While graphite does not have this same mirror symmetry, the following

section explores how these properties are affected.

The phonon eigenvectors were obtained directly from Quantum Espresso’s DFPT

output. The magnitude and direction of each eigenvector was then calculated using

a Python script. The angle of each eigenvector from the x axis (θx) and z axis (θz)

are shown in Figure 3.15. Angles from the y axis are not included because it does

not add any information not already contained in the θx and θz data.

The distribution of angles for graphene (Figure 3.15b) shows quite clearly that

nearly all of the eigenvectors are either directly in the z direction (θz = 0◦) or per-

pendicular to the z axis (θz = 90◦). The eigenvectors that are perpendicular to the

z-axis are directed within the xy plane according to the distribution of θx. As a re-

minder, in graphene, the eigenvectors with θz = 0◦ correspond to the flexural phonon

modes, while eigenvectors with θz = 90◦ are longitudinal or transverse. This con-

straint for eigenvectors to either be in- or out-of-plane is what lead to the first part

of the selection rules for graphene in section 2.6, so the results are consistent with

the selection rules for graphene so far.

The distribution of θz for graphite in Figure 3.15a is nearly identical to the dis-

tribution for graphene. Therefore, the eigenvectors are still mostly either in the

z-direction, or constrained to the xy plane. Because of this, it is still possible to

separate them into flexural and non-flexural phonons. Flexural phonons in graphite

are phonons with eigenvectors that are mostly in the z direction (θz ≈ 0◦), while the

longitudinal and transverse are mostly in-plane (θz ≈ 90◦).

This result is significant because the first requirement for the selection rule in

graphene was that the phonons must be either in- or out-of-plane. In graphite, 97.3%
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Figure 3.15: Histograms of the angle, θ, of the phonon eigenvectors, ϵ, from the x
and z axes. A binwidth of 2 ◦ was used. For graphite (a), 30.3% of the eigenvectors
were within 0.76◦ of the z-axis, with an average value of 0.08◦. 38.1% of those values
were exactly 0◦. 67.0% of the eigenvectors were within 0.75◦ of the xy plane with an
average value of 0.05◦. 50.0% of them were exactly 0◦. The last 2.7% were within 3◦

of either the z axis or xy plane. For graphene (b), 33.2% were exactly aligned with
the z-axis, 66.3% were exactly in the xy plane, and the last 0.5% were at random
angles.
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of the phonon eigenvectors were within 0.76◦ of being in- or out-of-plane, with an av-

erage angle of 0.064◦ from either. Therefore, the orthogonality of phonon eigenvectors

that is required for the selection rules still mostly holds.

The next part of the selection rule depends on the distribution of third-order

IFCs, Φαβγ
ijk , which is shown in Figure 3.16. As a reminder, the selection rules for

graphene require that the third-order IFCs, Φαβγ
ijk where αβγ have an odd number of

z components, vanish. For graphene (Figure 3.16b), the IFCs with an odd number

of z components were all exactly 0 eVÅ
−3

This, combined with the distribution

of eigenvectors above, means that the selection rules were properly reproduced for

graphene. The force constants with an even number of z components had a significant

number of non-zero values. The force constants with no z components appear to be

generally be larger than those with two z components, which is expected since the

forces in the z direction are dominated by inter-layer interactions, which are much

weaker than interactions between adjacent atoms in a single layer.

In graphite (Figure 3.16a), there is a very similar trend. The third-order IFCs

with an even number of z components have a large range of values. For IFCs with

one or three z components, 60.5% were still equal to zero. The values of the remaining

39.5% were clustered very closely around zero when compared to the IFCs with even

numbers of z components.

It appears as though the phonon selection rules still mostly hold for graphite.

Nearly half of the phonon eigenvectors are still either in- or out-of plane for graphite,

and the rest are at angles that are negligible. More than half of the third-order IFCs

with an odd number of z components were still zero for graphite, while the remaining

values were also negligible. The combination of these two factors help explain why the

average squared scattering matrix elements were nearly identical for flexural phonons,

despite graphite not having the same symmetry that leads to the selection rules in

graphene. While many of the scattering processes that were forbidden in graphene

due to the selection rules are allowed in graphite, it appears that they are improbable.

The majority of the difference between thermal transport in the two-dimensional

graphene and the three-dimensional graphite appears to be a result of the change in

the shape of the phonon dispersion. In graphite, the extra dimensionality of the BZ

results in changes in the DOS as a result of the spreading of what were ZA modes in



50

 0

 500

 1000

 1500

 2000

0 z components

 0

 500

 1000

 1500

 2000

0 0.5 1 1.5 2 2.5

2 z components

0 0.5 1 1.5 2 2.5 3
 0

 250

 500

 750

 1000

3 z components

 0

 5000

 10000

 15000

 20000

1 z component
C

ou
nt

Third-order IFC [eV a0
-3]

(a)

 0

 1000

 2000

 3000

0 z components

 0

 2500

 5000

 7500

0 0.5 1 1.5 2 2.5

2 z components

0 0.5 1 1.5 2 2.5 3

3 z components

1 z component

C
ou

nt

Third-order IFC [eV a0
-3]

(b)

Figure 3.16: Histograms of the distribution of third-order IFCs. The bin width was
0.05eVa0

−3. Each of the subplots correspond to third-order IFCs with a different
number of z-components. For graphite (a), 60.8% of the IFCs with one z-component,
and 57.5% of the IFCs with three z-components, were zero. For the non-zero IFCs,
95% of the values are in the range 0-3.38eVa0

−3 and 0-1.7eVa0
−3 for zero and two z

components respectively. 95% of the non-zero IFCs were between 0-0.03eVa0
−3 for

one z component, and 0-0.1eVa0
−3 for three z components. For graphene (b), all of

the IFCs with one and three z-components were exactly zero.
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graphene to higher energies, leading to lower populations of phonons. This combined

with the reduction in phonon velocities appears to be the most significant difference

between the phonon scattering properties in graphene and graphite. How exactly this

fanning out of modes contributes to changes in the thermal conductivity is explored

in the following section by observing how the phonon properties change as layers are

pulled apart from each other in graphite.

3.4 Stretched graphite

In this section, the differences in each of the phonon properties above will be explored

once again, but in the context of graphite that is strained in the z direction. This

straining results in a slow separation of the graphene sheets in graphite. This is to

model the process of pulling the graphite layers apart until they no longer interact

with one another, effectively becoming seperate graphene sheets. In this way, it

is possible to analyze the transition of phonon properties from a three-dimensional

material like graphite, to a two-dimensional material like graphene.

While the strained graphite cases may be non-physical, they should serve as a use-

ful tool to observe the transition in a system that conserves symmetry. As described

in Chapter 1, previous studies on 2D-to-3D transitions focus on the addition of layers,

going from a single layer, to a bi-layer, tri-layer, etc. until it is essentially modelling

the bulk version of the material. However, these systems do not have the same sym-

metries that are found in graphene and graphite. There is a mirror symmetry in the

plane for graphene, and for each carbon layer in graphite. For systems with an even

number of graphene layers (bi-layer, quad-layer, etc.) there are no mirror symmetry

planes within any of the graphene layers. For systems with odd numbers of graphene

layers (tri-layer, quintuple-layer, etc.), there is only a mirror symmetry plane for the

central graphene layer.

Straining graphite in the z direction until it is essentially graphene is advantageous

because it conserves the mirror symmetries in graphite. It is important to maintain

these mirror symmetries for each case since the selection rules for graphene depend

on them. By straining the graphite in the z-direction by small increments between

equilibrium graphite and graphene, there should be a slow, continuous change in the

IFCs, which will appear in as changes in the phonon properties change when going
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from graphene to graphite. This is opposed to the sudden symmetry breaking that

occurs by adding extra layers to graphene.

This section begins once again by looking at the phonon dispersions and DOS for

each of the cases, followed by the scattering rates and cumulative thermal conduc-

tivity. The rest of the phonon properties found in the section for graphite were still

calculated in each case, but some were not particularly useful for the discussion and

are omitted.

The transition of the thermal properties between graphene and graphite was quite

smooth, and only two values of strained graphite were really required to understand

what is happening through the transition. The values chosen were a strain in the

z direction of 1.05 and 1.10, where the strain is defined as a3/a
0
3, where a3 is the

length of the lattice vector in the z direction, and a03 is the value of the same vec-

tor for equilibrium graphite. The in-plane lattice vectors were unaltered during the

stretching. As a reminder, the parameters used in the calculations for the strained

graphite cases were identical to the converged parameters used for graphite above for

all calculations.

The phonon dispersions and DOS for each case are shown in Figure 3.17. This

time, they are split up by modes in order to emphasize the differences between the

individual modes. The acoustic modes for graphite and the strained cases are ignored

because they are identical to the acoustic modes for graphene, which are shown as

well as dashed black lines. The low-lying optical modes are where all of the interesting

differences in the phonon dispersions occur.

For the lowest flexural optical modes, ZO’, there is a clear softening of the branch

as the graphite is strained. This is what was expected since the flexural optical modes

correspond to adjacent sheets oscillating along the z direction (see Figure 3.6a). This

type of motion is dominated by inter-layer interactions. The distance between layers

increases as graphite is strained, leading to a reduction in the strength of the interlayer

interaction, and a corresponding reduction in the energy of the ZO’ branch.

There is a peak in the DOS for the graphite cases where the ZO’ branches flatten

out at the Γ point. The softening of these branches leads to a reduction in the energy

where the peak in the DOS is found. This is important since the number of states

available to transport heat plays an important role in the thermal conductivity. The
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Figure 3.17: Enhanced phonon dispersions for the low-lying optical modes along
Γ → M , (a) ZO’, (b) TO’, and (c) LO’, in graphite and each stretched case. Each
plot also contains the associated acoustic phonon modes in graphene. The black
dotted lines in (a) are to highlight that the peak in the DOS corresponds to the
flattening of the ZO’ mode at the Γ point.
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reduction of the energy of the peak in the DOS means that the large number of states

from the ZO’ mode will have higher occupation numbers through the Bose-Einstein

distribution. A large number of states with a large occupation number tends to

increase the thermal conductivity. This peak moves down in energy as the layers are

pulled apart, eventually becoming a constant DOS in graphene.

The same softening of the modes is seen in the TO’ and LO’ branches as well near

the Γ point. In this case, the peaks in the DOS corresponding to these modes are

negligible, so it is not expected that their softening contributes much to the increase in

the thermal conductivity. In general it appears that increasing the seperation between

layers leads to a softening of these bands. Eventually, each of the low-lying optical

branches becomes degenerate with their associated acoustic branch in graphene for

all wavevectors.

The softening of the ZO’ modes is also important because of the scattering rates

of the ZO’ modes. A comparison of the scattering rates for each of the cases in shown

in Figure 3.18. The scattering rates for all of the modes are nearly identical in this

case, except for the low-energy phonon modes. The ZO’ in particular have scattering

rates that are significantly lower than most of the other phonons, which is seen as

the dip in the scattering rates around 15 meV in graphite. This dip in the scattering

rates moves towards lower energies as graphite is stretched. This means that the ZO’

modes have long lifetimes as well as low energies, leading to a large population of

long-lived phonons. The ZO’ branch eventually becomes the ZA branch in graphene,

and still retains much of its properties.

To see how the change in the ZO’ modes affect the thermal conductivity, it is in-

structive to look at the cumulative thermal conductivity for each case. The converged

lattice thermal conductivites follow the expected pattern of increasing as graphite is

strained towards graphene. The shape is quite similar in each of the cases, but the

contribution to the thermal conductivity of the low-energy modes gets significantly

larger as graphite is strained. Looking at the differences in the cumulative thermal

conductivities in each case, most of the difference occurs between 0 and 40 meV.

The steepest slopes (i.e. largest contributions) occur in the 10-20 meV range for

the strained cases, which is around where the ZO’ modes softened to at the Γ point.

There is still a significant difference between the contributions from the strained cases
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that can not only be due to the softened modes.

There is a change in the shape of the ZO’ branches as well for strained graphite

in Figure 3.17. For graphite, the ZO’ branch is very flat at Γ, but as it is strained it

gets steeper, approaching the slope of the ZA band. The phonon velocities depend

on the derivative of the energy with respect to the wavevector, so a steeper slope

results in faster phonons. This is seen in Figure 3.20. For strained graphite, there

is still a fanning out of flexural modes between the ZA and ZO’ branches. The

fanning becomes more condensed as the strain is increased, becoming more like the

ZA modes in graphene. On average, this leads to an increase in the velocites of the

modes between the ZA and ZO’ branches. The contribution from a single mode to

the thermal conductivity depends on the squared speed, so any change in the phonon

speed can be significant.

The cross-plane phonon velocities also behave generally as expected for the strained

cases. There is a significant decrease in the phonon speeds as graphite is strained,

eventually all the of cross-plane speeds would become 0, like in graphene where there

is no cross-plane transport.

Finally, it is important to see how the IFCs changed in order to see if the phonon

selection rules apply. If the second-order IFCs change much between systems, it would

be seen as a change in the phonon dispersion and eigenvectors. The selection rules

depend on the second-order IFCs through the orientations of the phonon eigenvec-

tors. From Figures 3.22 and 3.23, it appears as though there is very little, if any,

difference between the orientations of the eigenvectors in graphite (see Figure 3.15a),

1.05 strained graphite, and 1.10 strained graphite. They still are all either entirely or

mostly oriented in the z direction or within the xy plane.

The final important component of the selection rules is the values of the third-

order IFCs. Comparisons of their distributions for each case are shown in Figures

3.24, and 3.25. This time there is a focus on a smaller energy range than in the

previous section, to try to emphasize any small changes in the IFCs. Also, only the

IFCs with an odd number of z components are included since they are the important

ones for the phonon selection rules.

Beginning with the third-order IFCs with a single z component, it appears as the

values get progressively smaller as graphite is strained. The difference is small, but
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Figure 3.19: (a) Comparison on the cumulative thermal conductivity for the cases of
graphite (green solid), 1.05 strained graphite (blue solid), 1.10 strained graphite (yel-
low solid), and graphene (black dashed). (b) The difference between the cumulative
thermal conductivites of the strained cases and graphene when compared to graphite.
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Figure 3.22: The angles of the phonon eigenvectors from the x and z axes for graphite
that is strained along the z direction by 1.05.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0  20  40  60  80

C
ou

nt

θx (deg)

 0  20  40  60  80
 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

θz (deg)

Figure 3.23: The angles of the phonon eigenvectors from the x and z axes for graphite
that is strained along the z direction by 1.10.
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Figure 3.24: Comparison of the third-order IFCs with a single z component for the
cases of graphite (top left), 1.05 strained graphite (top right), 1.10 strained graphite
(bottom left), and graphene (bottom right).

smaller third-order IFCs will lead to lower scattering rates. For the IFCs with three

z components, the change between the graphite and strained cases is even smaller.

Once again it is expected that these would decrease since they are dominated by

inter-layer interactions, but the difference is so small that its unlikely that it would

change the overall thermal conductivity in a significant way.

Lastly, it is noted that the properties for stretched graphite beyond 1.10 were

not calculated because they appeard to be entirely unstable, likely prefering to form

bilayers, and leading in negative phonon frequencies.
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Chapter 4

Conclusion

Two-dimensional materials have exceptional properties, and are often derived from

their layered bulk counterparts. The bulk form tends to retain some of the char-

acteristics of their monolayer form. Studies often focus on either limit, but little is

known about the mechanism behind how the properties transition from 3D to 2Ds.

The purpose of this study was to observe how the thermal transport properties of

layered materials behave when they transition between two and three dimensions,

by calculating the phonon transport properties as the layers of the bulk material

were systematically pulled apart until they were effectively isolated monolayers. The

transition between graphite and graphene was used, since it has a relatively simple

structure and both materials have been extensively studied.

All of the properties of the materials were calculated from first principles. Density

functional theory (DFT) was used to calculate the interatomic force constants (IFCs)

of the material. The IFCs were then used to calculate the phonon dispersion, and the

phonon scattering properties, from which the transport characteristics were calculated

using iterative solutions to the Boltzmann transport equation (BTE). This method

was used to investigate the thermal transport properties of graphene, graphite, and

finally each of the stretched cases of graphite.

For graphene, the phonon dispersion was consistent with previous calculations

and experimental results, giving rise to flexural acoustic (ZA) phonons near q = 0

that scale as q2. The converged lattice thermal conductivity of 2740 Wm−1K−1 was

in good agreement with both experimental measurements and computational results.

In graphene, the exceptionally high thermal conductivity is attributed to certain

selection rules that reduce the likelihood of three-phonon scattering for the flexural

modes [25, 26]. The reduced likelihood of scattering results from a mirror symmetry

that requires that certain second- and third-order IFCs vanish. The corresponding

IFCs that were calculated for graphene were in fact zero, indicating that the phonon

62
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selection rules were properly reproduced.

In the case of graphite, the phonon dispersion and DOS produced here were

also consistent with previous results. The converged lattice conductivity of 2050

Wm−1K−1 was also in great agreement with previous measurements and calcula-

tions. Surprisingly, the properties of the IFCs that result in the selection rules for

graphene were nearly entirely reproduced in graphite, indicating that the selection

rules still mostly apply to graphite. The significant reduction in the thermal conduc-

tivity of graphite compared to graphene is then likely not attributed to the absence

of selection rules.

The primary difference between the phonon properties of graphene and graphite

appeared to be the shape of their phonon dispersions. In graphite, there is a ’fanning

out’ of branches between the ZA and ZO’ mode which corresponds to phonon modes

that have wavevectors and velocities with small cross-plane components. This is a

result of it being a 3D dispersion, and is the reason why the DOS goes to zero in 3D,

while it was constant in 2D. The other low-lying optical modes were degenerate with

their acoustic counterparts through most of the BZ, but the ZO’ modes had a large

spread between ZA and ZO’. These branches also had small out-of-plane velocities

and contributed to most of the cross-plane thermal transport. They were also flatter

in-plane, leading to smaller in-plane velocities than the ZA modes in graphene. This

fanned-out region is also where a majority of the difference in contributions to thermal

conductivity between graphene and graphite occured.

The results for stretched graphite tied the phonon dispersions of the two limiting

cases together nicely. The trend in the thermal conductivity of stretched graphite

behaved exactly as expected, increasing from the conductivity of graphite to the con-

ductivity of graphene as the distance between layers increased. The energy of the

low-lying optical modes progressively softened as well, eventually becoming degener-

ate with the acoustic modes in the limiting case of graphene. The ’fanning out’ of

branches between ZA and ZO’ became smaller as graphite was stretched since the

ZO’ branch approaches ZA. This results in an overall reducton in the energy of those

modes, and an increase in their average velocity.

It appears that the difference in the thermal transport properties of graphene

and graphite is mostly due to differences in the 3D and 2D DOS, which are a result
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of the ’fanning out’ of phonon branches between the ZA and ZO’ branches. As the

states between the ZA and ZO’ branch decrease in energy when transitioning between

graphite and graphene, the occupation number for each mode increases because the

Bose-Einstein distribution is larger at smaller energies. The in-plane velocities of

these phonons increase as well. The ZO’ phonon states also have particularly long-

lived phonons because of the flexural phonon selection rules, so they contribute a

large amount to the thermal conductivity in graphite. As graphite is stretched, these

modes move to lower energies and contribute even more to the thermal conductivity

because of their increase in occupation number and speed.

The fanning-out of modes is due to the cross-plane interactions, which causes

modes that would normally correspond to acoustic modes in the monolayer form of

the material to spread out to higher energies. Some other materials that have flexural

acoustic modes in the monolayer form and ZA and ZO’ modes in the bulk are MoS2

and WS2 [21]. They also have the characteristic peak in DOS where the ZO’ meets

the Γ point, indicating that the shape of the ZO’ bands are flat like those in graphene.

Due to these similarities in the phonon dispersion, these materials would be a good

next step for applying this analysis to determine if this mechanism is the cause of the

differences in thermal conductivites for other layered materials.

It is also important to note that the exceptionally high thermal conductivity of

graphene and graphite are both partially due to the selection rules reducing the scat-

tering rates of flexural phonon modes. These exact selection rules only strictly apply

to perfectly two-dimensional materials; however, it may be possible to identify ma-

terials with the potential to be good thermal conductors based on their IFCs. For

example, if the second-order IFCs result in a branch of phonon eigenvectors that are

strictly perpendicular to the other branches eigenvectors, then the probability of scat-

tering events involving phonons from that branch and the others may be significantly

reduced, resulting in an enhanced thermal conductivity.
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