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ABSTRACT 

 

Changing environmental factors impact the biological structure and function of 

marine microbial communities. There is a need for modelling samples of microbial 

communities as a mixture of sub-communities. Sub-communities are modelled to be 

consistent with the observed distribution and abundance of taxa because (i) there is 

extensive among-sample variation in microbial abundances, and (ii) there are important 

ecosystem processes that appear to be carried out by the collective activities of microbial 

species. Three statistical frameworks are applied to identify a robust consensus of sub-

community structure from the Gulf of Aqaba, Red Sea. Assemblages of taxa are derived 

from different methods to capture sub-community spatial-temporal dynamics and can be 

used to train predictive models of important environmental categories. Assemblages and 

their test predictions are compared to each other and to results from variable selection of 

individual microbial taxa. Assemblages also demonstrate characteristics associated with 

distinct physiochemical features of the ecosystem. 

 

In the first chapter, a number of motivating questions are addressed for densely 

sampled spatial and temporal microbial communities. A real marine microbiome dataset 

from the Gulf of Aqaba (Station A, Red Sea) is presented, including how it is sampled by 

depth and time in the environment. Two Bayesian approaches and one maximum-

likelihood method are introduced as frameworks to identify a robust consensus of 

heterotrophic community structure.  

In the second chapter, details about how assemblages of co-occurring taxa are 

inferred from different methods are reviewed. Predictive models can be used with 

assemblage proportions learned in a training year to classify covariate categories in a test 

year. Another variable selection method is described for comparison of its predictive 

accuracy to the assemblage methods. 

In the third chapter, statistical approaches are discussed and evaluated for 

determining the number of assemblages in different models. Assemblage distributions are 

shown to capture latent time and depth dynamics. Dominant assemblages are examined in 

distinct environments by comparing their compositions across methods to show that 

spatial-temporal dynamics produce similar subcommunities. The predictive accuracies of 

assemblage mixture weights for classifying environment features are compared. 

Assemblages are also shown to reproduce correlations with other biotic and abiotic 

covariate vectors over separate years. Covariates have ecological interpretations that 

characterize assemblages as predominantly associated with features of the ecosystem like 

water column stratification, seasonality and algal blooms. Further, correlation analysis is 

conducted to gather evidence for a functional profile of assemblages based on significant 

associations with important metabolic pathways. The results discussed reinforce the 

characterization of assemblages with specific traits. 

Conclusions and directions for future work are presented in the fourth chapter 
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CHAPTER 1 INTRODUCTION 
 

1.1 BACKGROUND, MOTIVATION AND DATA 

 

The relationship between marine microorganisms and their environment is 

complex and dynamic. Variation in microbial communities in response to one or more 

environmental factors may drive critical marine ecosystem processes like nitrification 

(Zeglin 2015). Conversely, microbial taxonomic and functional dynamics that are 

conserved over longitudinal studies of the water column may mediate changes or predict 

patterns along physiochemical gradients in space and time (Faust et al. 2015).  

We apply statistical models to investigate such microbial community dynamics 

from the Red Sea over two years. The Red Sea is a seawater inlet of the Indian Ocean 

ideally suited for investigating complex adaptations to changing conditions in the ocean 

due to its unusually high temperature, salinity, solar irradiance and anthropogenic 

pressures (Haroon et al. 2016). Thompson et al. (2017) have analyzed how microbial 

taxonomic diversity and functional variation across environmental gradients is explained 

by physiochemical parameters. We shift focus to community relationships with 

environmental covariates and metagenomic functions.  

Classical statistical methods have limited value and are often inappropriate for 

modelling communities from microbiome samples. Samples are highly complex, being 

comprised of overlapping mixtures of species from different communities. The number of 

variables, frequently referred to as species or taxa, is extremely large (often thousands or 

tens of thousands); and the matrices of abundance information are sparse. Previous work 

has identified indicator species or broad taxonomic groups with an effect on disease 

states in the human gut microbiome (e.g. pathogens). However, in a marine setting we 
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want to make inferences about whole community structures that transition over time and 

space (depths). Models that can learn different subcommunity dynamics are a better fit 

for predicting environmental features of interest than just isolated species. This approach 

allows for subcommunity structures to contribute to a model for the inter-dependencies 

between the microbiome and stable or changing environmental factors. 

The data were collected at Station A (29° 28 ́ N, 34° 55 ́ E), which is an open-

water site in the middle of the Gulf of Aqaba, Red Sea. Sequence data for the taxonomic 

marker gene (16S) was obtained for 106 seawater samples from 2015, and for 136 

seawater samples from 2016. Those samples were collected from multiple depths (0, 20 

40, 60, 80, 100, 140, 200 and 400 m) approximately every two weeks between March and 

June, with more limited sampling in February and September. Environmental DNA was 

extracted from each water sample. Three samples did not have sufficient DNA to obtain 

16S sequence data; all three were obtained in 2015 at 400 m. Approximately 450bp of the 

V4-V5 hypervariable region of 16S was sequenced for each of the remaining samples. 

Following extensive processing of the raw sequence reads (completed by Dr. Katherine 

A. Dunn), the data were used to infer the presence of species-level taxonomic units. 

For each sample, paired-end sequencing reads were assembled and validated 

according to size. Sequences were screened for quality, and chimeric sequences were 

removed. Open reference picking was performed on all remaining sequences using the 

QIIME pipeline (Caporaso et al. 2010), and utilizing sumaclust for de novo OTU picking. 

Three samples had less than 10,000 reads after all of the processing; two collected in 

2015 at 400m and one collected in 2016 at 100 m. The remaining samples (235) had at 

least 10,278 reads and were retained for further analyses (maximum 42,692, mean 18,042 
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and median 17,818). Sequence reads were assigned taxonomic status, where possible, 

from kingdom to species. All of this processing work was done by Dr. Katherine A. 

Dunn. 

 Overall, for samples were taken over the two years 2015 and 2016, there were 

nine different depths and 14 or 16 time points for each year respectively. In 2015 there 

were a total of 103 samples and 2414 heterotrophic taxa with non-zero total abundance in 

all samples (Amplicon Sequence Variants or ASVs). In 2016 there were a total of 136 

samples and 2474 heterotrophic taxa with non-zero total abundance in all samples. In 

addition to time and depth, the other environmental covariates that were measured 

concurrently were: Synechococcus and Prochlorococcus (cyanobacteria), nitrite (NO2), 

nitrate (NO3), phosphate (PO4), total organic nitrogen (TON), water density, temperature, 

pressure, salinity, irradiance, chlorophyll fluorescence and oxygen. Cyanobacteria cell 

concentrations were measured using a flow cytometer (within 1 day of collection).    

Metagenomic data was also sequenced for a subset of samples, and it provides additional 

information about the abundance of functional gene families and metabolic pathways in 

the environment where those samples were collected. 

There are many studies in marine microbial ecology about phototrophs like 

cyanobacteria (Sieradzki et al. 2018). So we are motivated to model heterotrophic 

communities to gain insight into the interactions between connected groups of 

heterotrophs and autotrophic microorganisms. The hypothesis is that heterotrophic 

subcommunity compositional and functional differences are influenced by, and predictive 

of, spatial-temporal habitats and ecosystem-scale processes like cyanobacteria blooms 

(Ren et al. 2017). Addressing these broad biological objectives requires that we address 
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the following range of research questions, each with unique statistical issues: 1) Can we 

reduce the dimensionality of the taxa variables down to latent subcommunity structures? 

2) Do inferred subcommunities really represent biologically meaningful features and do 

they capture inter-dependencies in the environment? 3) How do underlying heterotrophic 

communities change over seasons and in response to the water column 

stability/variability at different depths? 4) How are subcommunities associated with other 

biotic and abiotic factors; and what are their relative contributions before, during and 

after cyanobacteria blooms? 5) Do specific subcommunity dynamics improve 

predictability of states of interest like seasons, depth or blooms? 

 

1.2 STATISTICAL FRAMEWORKS 

 

Microbial taxonomic units are typically inferred as species- or stain-level units via 

the sequencing of DNA amplicons (e.g., 16S gene) from environmental samples of DNA 

(Callahan et al. 2017). This method is employed because it is fast, relatively inexpensive, 

and the majority of microbial diversity is uncultivable in the laboratory (Callahan et al. 

2017). Sets of such co-occurring taxa (amplicon sequence variants, or ASVs) are then 

inferred to belong to community structures, called assemblages, by one of several 

different statistical methods. As opposed to looking at individual taxa, the approach of 

modelling assemblages of ASVs gives us a working hypothesis: Can we treat 

assemblages resolved from statistical models as subcommunities? Assemblages have the 

advantage of providing variable selection in the taxa space, and simplifying the 

relationship between conditionally rare or abundant taxa and ecological features (Logares 

et al. 2015). Functional trait-based associations, as derived from metagenomic data, offer 
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the possibility of interpreting microbial assemblages in terms of functionally-coherent 

sub-communities (Boon et al. 2014, Webb et al. 2010).  

With this in mind, I seek to establish a consensus of ASV assemblage structure 

and environmental distribution across three diverse methodologies. I review each method 

and assess differences in their inference of assemblages. All three methods have 

previously been used on simulated and real-world data sets. They are applied to densely 

sampled spatial-temporal data to compare how similarly they fit the data. First, BioMiCo 

(Shafiei et al. 2015) is a Bayesian inference method in which samples are modelled by a 

hierarchical mixture of multinomial distributions with Dirichlet priors applied to the 

parameters of the distributions at each level. The model is supervised with labels for one 

or more environments (e.g., depth or season) and trained on a set of samples to: (i) learn 

how to explain and differentiate environments through its mixture of various assemblages 

and (ii) assign appropriate environment values to new test samples of unknown label. 

Based on the mixture weights learned from the training samples, BioMiCo computes the 

posterior probability that a test sample originated from a microbiome belonging to any of 

the label values that the model was trained on. 

Second, non-negative matrix factorization (NMF) is used to split a data matrix of 

samples by taxa counts into the product of two matrices so that each column of one 

matrix describes an assemblage of ASVs. The columns of the other matrix contain linear 

coefficients for each assemblage corresponding to each sample. NMF can likewise be 

supervised by class labels (Cai et al. 2017) and the assemblage distributions over ASVs 

used to predict the label of a new sample according to its microbial composition. 



6 
 

Third, another hierarchical Bayesian inference method, based on the structured 

topic model (STM), is applied to microbiome data such that community-level ASV 

content and prevalence is modeled in place of document-level topics (Roberts et al. 

2016).  STM parameterizes its prior distributions with continuous or discrete covariate 

information from sample environments. STM leverages such metadata to improve its 

posterior probability estimates and allows for covariance among assemblages. STM is 

computationally much faster than BioMiCo and about the same speed as NMF because it 

does not use an MCMC process to sample from the posterior distribution. Instead it 

approximates the posterior through an optimization technique called variational 

inference. However, STM is not currently able to model the assemblage weights of a test 

set of ASVs given the assemblage distribution from a model fitted on a training set – 

STM is in principle an unsupervised method.  

The number of and composition of assemblages is both a research objective and a 

critical aspect of each method; thus, statistical insights into how to determine the number 

of assemblages are discussed. Assemblage distributions are characterized by the mixture 

weights (proportions) of ASVs.  In the case of BioMiCo and STM these are resolved as 

the posterior probability distribution of the ASVs for a given assemblage. As these are 

hierarchical models, each sample has an inferred assemblage distribution (also resolved 

as posterior probabilities under BioMiCo and STM). The empirical success of using such 

distributions to accurately classify samples (e.g., Shafiei et al. 2015, Cai et al. 2017) 

supports the interpretation of assemblages as natural subcommunities. This study 

strengthens this interpretation with the novel finding that assemblages inferred by using 
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different methods are more closely clustered together when they are from the same 

environment.  

A primary objective of this study is to investigate how community structure (as 

inferred from assemblage mixture weights) is associated with covariate information about 

the ecosystem. Biologically meaningful associations are tested via the ability of off-the-

shelf linear and non-linear algorithms to accurately predict feature classes of season, 

depth and cyanobacterial blooms. I also test how the assemblage proportions assigned for 

each sample are associated with covariate information about the ecosystem by 

performing regressions and correlation analysis. In addition to taxonomic data processed 

as ASV counts, functional profiling was performed using the HUMAnN2 pipeline by Dr. 

Katherine A. Dunn (Franzosa et al. 2018). Combinations gene fragments present in 

samples can be mapped to known enzyme-encoding genes to infer abundances of 

metabolic pathways. Review of the literature provided insight into which metabolic 

pathways from metagenomes were especially important for analysis of marine 

environments (Thompson et al. 2017). I conducted Spearman rank-based and robust 

regression with relevant pathway abundances to discover any strong correlations with 

important functional traits. The results are summarized and used to build evidence for 

assemblage associations. 
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CHAPTER 2 REVIEW OF INFERENCE FRAMEWORKS 

2.1 BAYESIAN INFERENCE OF MICROBIAL COMMUNITIES (BIOMICO) 

BioMiCo developed by Shafiei et al. (2015) builds a predictive model of latent 

subcommunity mixtures in distinct environments. Samples represent K pre-specified 

environmental communities, which are modeled as mixtures of L microbial assemblages. 

Assemblages are in turn a mixture of the ASVs observed in an environment. Only fixed 

environment labels and ASV counts within samples are observed. The model training 

phase learns the ASV contributions to assemblages, and the assemblage contributions to 

environmental communities as two latent levels of community structure. The relative 

contribution of the kth environment to the nth sample is modeled through the latent 

variable 𝜋𝑛𝑘 ~ 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝛼𝜋). The relative contribution of each of L assemblages to 

environment k is 𝜃𝑘𝑙  ~ 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝛼𝜃) for k = 1 ⋯ K. Each assemblage is composed of a 

mixture of T different ASVs. The relative contribution of ASV i to assemblage l is 

𝜙𝑙𝑖  ~ 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝛼𝜙) for l = 1⋯ L. Symmetric Dirichlet priors are used because there is 

no knowledge to favour a particular ASV, assemblage or environment. Sparse Dirichlet 

priors are employed to minimize variance and maximize interpretability of the posterior 

distributions (Shafiei et al. 2015). The hyper-parameters for the priors (απ, αθ and αϕ) are 

given initial values then learned from a Metropolis-within-Gibbs sampling scheme. The 

community structure of samples is not known, so the prior variables are inferred from the 

data.  
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Training a model starts with a matrix of samples by ASV counts that represents 

the distribution of ASVs in each sample. Let 𝑊𝑛𝑖 be the observed data of ASV i in 

sample n. The environment and assemblage assignments for ASV i in sample n are 

denoted by 𝑋𝑛𝑖 and 𝑍𝑛𝑖, respectively. The distributions of assemblage (Z) and 

environment (X) assignments for each ASV given the data and priors represent the 

mixing of ASVs in assemblages and the mixing of assemblages in environments. 

BioMiCo uses Gibbs sampling to draw samples from the posterior distribution of Z and 

X. For each ASV in each sample, it draws the assemblage and environment assignments 

(𝑍𝑛𝑖  and 𝑋𝑛𝑖, respectively) of this ASV given the current assemblage and environment 

assignments of all the other ASVs in all samples except the ith ASV in the nth sample, 

denoted by 𝑍−𝑛𝑖 and 𝑋−𝑛𝑖. The conditional distribution of interest is given by: 

 

𝑃(𝑋𝑛𝑖 = 𝑘, 𝑍𝑛𝑖 = 𝑙 | 𝑋−𝑛𝑖 , 𝑍−𝑛𝑖, 𝑊, 𝛼𝜋, 𝛼𝜃, 𝛼𝜙)

=  
𝛼𝜋 + 𝐶𝑛

𝑘

∑ (𝛼𝜋 + 𝐶𝑛
𝑘)𝑘

 ×  
𝛼𝜃 + 𝐶𝑘

𝑙

∑ (𝛼𝜃 + 𝐶𝑘
𝑙 )𝑙

 ×  
𝛼𝜙 + 𝐶𝑊𝑛𝑖

𝑙

∑ (𝛼𝜙 + 𝐶𝑊𝑛𝑖

𝑙 )𝑊

          (2.1) 

 

Where the 𝐶𝑊𝑛𝑖

𝑙  term is the number of times ASV Wni is assigned to the lth assemblage. 

𝐶𝑘
𝑙  is the number of times an ASV in the kth environment factor is assigned to the lth 

assemblage. 𝐶𝑛
𝑘 is the number of times an ASV in the nth sample is assigned to the kth 

environment factor. These values are then normalized and used to draw new assignment 

values for 𝑋𝑛𝑖 and 𝑍𝑛𝑖 which are immediately updated for use in the next iteration. The 

Gibbs sampler goes through the data ASV by ASV, and reassigns each ASV to an 

assemblage using the above posterior probability equation. In a true model of the 

community, the posterior distribution can be interpreted as iteratively assigning ASVs 

greater probability in assemblages where they are more common. Likewise assemblages 
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are iteratively assigned greater probability in environments where they are more 

common.  

Statistical validation of the model is conducted to estimate generalization error for 

new data sets. Samples are divided into training and testing sets. The model is applied to 

the training set supplied with distinct labels for a feature of the environment like season 

or depth. In the training phase, the mixture weights for ASVs within assemblages and 

assemblages within environment factor values shared across multiple samples are 

obtained. In the testing phase the objective is to sample the posterior distribution of 

environment assignments Xtest given the observed ASV distribution of the test data, Wtest. 

The trained model also gives us the environment and assemblage assignments for the 

training ASV data. The posterior distribution of Xtest and Ztest is sampled jointly, that is:  

𝑃(𝑋𝑡𝑒𝑠𝑡, 𝑍𝑡𝑒𝑠𝑡  |𝑋𝑡𝑟𝑎𝑖𝑛, 𝑍𝑡𝑟𝑎𝑖𝑛, 𝑊𝑡𝑒𝑠𝑡, 𝛼𝜙, 𝛼𝜋, 𝛼𝜃) and marginalized over the assemblage 

assignments to obtain the posterior probability of each environment factor assignment: 

𝑃(𝑋𝑡𝑒𝑠𝑡|𝑋𝑡𝑟𝑎𝑖𝑛, 𝑍𝑡𝑟𝑎𝑖𝑛 , 𝑊𝑡𝑒𝑠𝑡, 𝛼𝜙, 𝛼𝜋, 𝛼𝜃). 

In the testing phase, Gibbs sampling is used similarly to the training process. However, it 

is not necessary to iterate over the samples in the training set. The count 

variables C
l

w
 and C

l

k
 from the training phase are carried forward so it is not necessary to 

run the MCMC for as many iterations. The model predicts the environment factor 

contributions to each test sample and then each sample can be classified by discrete 

assignment to the environment that has its maximum posterior probability. When 

validating the model the observed environment labels for each test sample are known. 

Prediction accuracy is measured as the percent of the factor values that are correctly 

predicted for test samples. 
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2.2 NON-NEGATIVE MATRIX FACTORIZATION (NMF) 

 

NMF factors a matrix into the product of two matrices of smaller dimension such 

that all entries are non-negative. It has been used for image recognition, signal processing 

and computational biology because the non-negativity constraint allow for decomposition 

into additive parts (Lee et al. 1999, Brunet et al. 2004, Gaujoux et al. 2010). Microbial 

abundance data are counts or proportions which are naturally non-negative. Although 

methodologically different from BioMiCo, the motivation for using NMF is likewise to 

find a parts based representation (mixing weights) of the sampled communities from 

different environments. More formally, given a non-negative p×n matrix X, X is 

approximated by TW, where T is a non-negative p×k matrix referred to as the type 

(assemblage) matrix and W is a non-negative k×n weight matrix. Each column of X is 

approximated by a non-negative linear combination of the columns of T. k is the number 

of assemblages. 

 

Choosing k such that (p + n) × k << np, reduces the dimensionality of the ASV (taxa) 

space significantly. Each column in T describes an assemblage (composition of ASVs) 

and each column in W contains the linear coefficients for the corresponding sample 

columns in X. 

The community within a sample is thus approximated by a mixture of the 

assemblages. The key idea is that elements of X are modelled as independent Poisson 
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observations given their mean in the matrix TW. ASV count data is treated as a Poisson 

sample from a weighted mean of assemblages. T and W are computed by maximizing the 

Poisson log-likelihood of the data given by: 

𝐿(𝑇, 𝑊) =  ∑(𝑋𝑖,𝑗 log(𝑇𝑊)𝑖,𝑗 − (𝑇𝑊)𝑖,𝑗)          (2.2)

𝑖,𝑗

 

The supervised implementation of NMF assumes a Poisson distribution for 

generating the observations X from T and W to maximize the likelihood (2.2). 

Unsupervised NMF can estimate the factor matrices T and W by minimizing an objective 

loss function F, for example the Kullback-Leibler divergence (KL), which measures the 

quality of the distributional approximation of TW to X. The KL divergence still uses an 

underlying Poisson distribution (Eisen et al. 1998). NMF iteratively calculates matrices T 

and W to minimize 𝐹: min 𝐾𝐿(𝑇𝑊 ‖ 𝑋) through optimization. The context of this 

objective function F for unsupervised NMF are relevant in section 3 when the results of 

assessing the appropriate number of assemblages (K) under NMF for the Red Sea data 

are discussed. 

In our analysis, X is the matrix of ASV counts for each sample. NMF is 

supervised by depth or season classes using both a 60m depth and day 100 (early April) 

cutoff to separate class labels. The goal is to find the latent structures within the different 

classes. First, separately identify the assemblages in each class and then combine them 

into a single matrix of assemblages. For example, at the cutoff threshold suppose X has 

two depth labels surface and deep, X=(X(Surface), X(Deep)). From sample classes X (Surface) 

and X (Deep) calculate the non-negative type matrices T(Surface), T(Deep) and weight 

matrices W(Surface), W(Deep) by NMF. These type matrices are combined together and the 

type matrix for the whole data is: T= (T(Surface),T(Deep)) (Cai et al. 2017). T is non-negative 
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since each of its component matrices are non-negative. T is fixed and the weight vectors 

in W associated with different samples are independent. In order to maximize the Poisson 

log-likelihood for all the data X, the Poisson log-likelihood is maximized for each 

sample. So to calculate the weight matrix W, a non-negative Poisson regression of each 

sample in X on T is performed. The details of this procedure are given in Cai et al. 2017 

Appendix A. 

As a result of supervised NMF a matrix of assemblage mixing weights for each 

sample is obtained as well as a matrix of ASV composition of each assemblages. These 

mixture proportions represent the latent structure of subcommunities in all the data 

samples that best distinguish class labels. 

 

2.3 STRUCTURAL TOPIC MODELS (STMS) 

 

STMs are probabilistic mixed membership models originally developed for text 

mining. STM implements Bayesian inference to discover latent topics (assemblages) 

based on word (ASV) counts. The original terminology for STMs has analogous 

components for microbiome data that will subsequently be used. Samples are referred to 

in the literature as documents, the corpus of documents being the collection of samples 

taken. Words translate to individual ASVs and topics are assemblages. Further, STMs 

allow for metadata information from other sample measurements to improve estimation 

of the assemblage weights. For example, depth and time values are used as covariates to 

influence the proportion of each sample devoted to an assemblage. This component of the 

model is referred to as assemblage prevalence (instead of topic prevalence). Categorical 

covariate can also optionally (although not utilized here) be incorporated to affect the 
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rates of ASV occurrence (i.e. species frequency) in an assemblage. This component is 

referred to as assemblage content. 

Like BioMiCo, STMs are a two-level hierarchy of mixture distributions. An 

assemblage is defined as a mixture over ASVs where each ASV has a probability of 

belonging to an assemblage. A sample is a mixture over assemblages, meaning that a 

single sample can be composed of multiple assemblages.  

Formally, the setup and generative process of the model is given by the following: 

• D are samples indexed by d ϵ {1,…,D} 

• n ϵ {1, … , Nd} are indices for ASVs in each sample d  

• K are assemblages indexed by k ϵ {1,…,K} 

• 𝒘𝑑,𝑛 are the observed ASVs 

• P is the number of covariates incorporated into the model 

1) For each ASV n in a sample d, an assemblage is assigned from a multinomial 

distribution with parameter θd. zd,n indicates the assigned assemblage. 

Assemblage assignments: 𝒛𝑑,𝑛 ~ 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙𝐾(𝜽𝑑) 

 

2) Given the assemblage assignment, a specific ASV (wd,n) is chosen from a 

corresponding multinomial distribution over ASVs. The appropriate multinomial 

distribution parameter is denoted Bzd,n. 

Draw each ASV: 𝒘𝑑,𝑛 ~ 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙𝑉(𝜝𝒛d,n
) 

 

3) Metadata covariates are represented by a D×P matrix X of prevalence covariates 

whose respective rows are denoted xd. 
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4) A logistic Normal prior distribution controls the proportion of ASVs in a sample that 

are attributed to different assemblages. This logistic Normal prior has a mean vector μd 

parameterized as a linear model of the metadata covariates. 

Assemblage proportions: 𝜽𝑑  ~ 𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐𝑁𝑜𝑟𝑚𝑎𝑙𝐾−1(𝜞′𝒙𝑑
′ ,  Σ) 

 

μd = Γʹxdʹ where Γ = [γ1|…|γK] is a matrix of coefficients for the sample covariates. 

𝛾𝑘 ~ 𝑁𝑜𝑟𝑚𝑎𝑙_𝑝(0, 𝜎𝑘
2𝐼𝑝) 

This is how metadata are incorporated into the model by allowing the vectors of ASV 

proportions allocated to assemblages to vary as a function of covariates. 

The logistic normal distribution incorporates a covariance structure among the 

assemblage proportions. This is advantageous since naturally some microbial 

subcommunities may be highly correlated. However, this ability to model correlations 

between assemblages and leverage covariates sacrifices some computational efficacy. 

Inference becomes complicated because the logistic Normal prior is not conjugate with 

the multinomial likelihood of the generative model. So approaches like Gibbs sampling 

are not possible. The posterior is instead approximated using Variational Expectation-

Maximization with a Laplace approximation to the non-conjugate part of the model 

(Dempster et al. 1977; Liu 1994; Meng and Van Dyk 1997; Blei and Lafferty 2007; 

Wang and Blei 2013). The variational inference approach is briefly described. 

 

2.3.1 Variational Inference 
 

Consider a generic model with observations x = x1:n and latent variables z1:m (such 

as the hierarchical sample-assemblage proportions θ, and assemblage-ASV proportions 

). The inference problem is to compute the posterior: 
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𝑝(𝑧 | 𝑥) =  
𝑝(𝑧, 𝑥)

𝑝(𝑥)
 

In variational inference the posterior is approximated by proposing a flexible family of 

distributions for the latent variables. An iterative optimization procedure updates the 

latent variable distributions to find the member of the proposed family that minimizes the 

Kullback-Leibler (KL) divergence to the conditional posterior. Essentially, variational 

inference approximates the posterior through optimization in place of traditional 

numerical methods that approximate the posterior by simulating sample draws from a 

target distribution (Roberts et al. 2016). 

The proposed conditional sample-assemblage distribution is in the exponential 

family. The conditional distribution of the observed data given the sample-assemblage 

distribution is also proposed to be in the exponential family. Substituting these 

exponential family distributions into the iterative optimizing updates for the latent 

variables does not yield a closed form expression. To solve this problem a Laplace 

approximation is used in the optimization calculation by taking a quadratic Taylor 

expansion around the maximum of each update formula (Wang et al. 2013). Applying an 

approximation that is not analytically intractable helps make variational inference more 

efficient which is another reason why STMs are computationally faster than Gibbs 

sampling. STMs have been appropriated here to model large microbiome data. A 

comprehensive review of variational inference is given in Blei et al. (2018). 

 

2.4 SUBSAMPLING RANKING AND FORWARD SELECTION (SURF) 

SuRF (Liu et al. 2019) is a sparse variable selection strategy for identifying key 

biomarker ASVs. SuRF is a two part procedure. First, a large number of stratified 
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subsamples are generated. For example, each subsample may contain 90% of the data 

representing balanced sample classes of season or depth strata. Given a response variable, 

LASSO regressions are performed on the subsamples and the taxa predictors selected by 

each LASSO are recorded. A list of all recorded ASVs is ranked by the number of times 

they are selected in each subsample. The ordering of ASVs determines the strength of 

association with the response variable.  

Second, forward selection is applied to the list of candidate variables consisting of 

all the ranked ASVs based on a p-value from the null distribution calculated by a 

permutation test at each step. At each step the predictor variables not yet selected by the 

model so far are permuted to randomize their relationship to the response variable, so that 

the correlation structure among predictor variables is preserved. The largest log 

likelihood ratio (LR) statistic is recorded for each permutation of the candidate data to get 

a null distribution for the maximum log LR statistic. The value at the (1 – α) percentile of 

this null distribution is the critical value used to determine forward selection. That is, the 

original unpermuted candidate ASVs are added one at a time to the current regression 

model based on a conditional test that the current model is correct. At each step the first 

log LR statistic greater than the critical value is selected. The whole process is then 

repeated with new permutations and a new null distribution until none of the LR statistics 

for the ranked candidate taxa exceed the critical value. The log LR statistic does not 

follow a χ2 distribution because multiple predictors are tested at each stage. SuRF can 

agglomerate ASVs at higher taxonomic levels but here only ASVs at the lowest taxa level 

possible were selected. 
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CHAPTER 3 RESULTS AND INSIGHTS 

The results in this section are only for the heterotrophic community taxa unless 

explicitly stated that phototrophs were included. As mentioned in the introduction the 

heterotrophs are primarily of interest but in several cases analysis was also run with 

phototrophic cyanobacteria included. The optimal number of assemblages (K) is chosen 

based on a threshold for assemblage posterior probabilities inferred from BioMiCo, 

quality of fit diagnostics for unsupervised NMF and STM and cross validation tests for 

supervised NMF. The agreement on a K value among methods produces a readily 

comparable number of assemblages. The distributions of assemblages from each method 

are compared in terms of their environmental interpretations and taxa composition. 

Finally covariate categories are predicted from assemblage proportions and assemblages 

are characterized by associated physiochemical vectors and functional traits.  

 

3.1.1 Determining the Number of Assemblages for BioMiCo 

In this study BioMiCo was supervised by environment factors of sample season 

(winter, spring, summer) and depths (surface depths 60m or above, middle depths 80 – 

200m and deepest depth 400m). The first 2500 iterations of the Markov chain Monte 

Carlo (MCMC) for the training phase were considered “burn-in” and were discarded. 

Following the burn-in, the MCMC was run for a minimum of 2,000 iterations for each 

sample draw. Multiple chains were run with 20 samples drawn for each and the number 

of assemblages (K) set to 25. The model assigned assemblage posterior probabilities to 

assemblages in each environment. Assemblages that occurred at greater than 10% 

contribution to an environment were considered predominant assemblages. BioMiCo 
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consistently identified 5 predominant assemblages for the heterotrophic communities in 

both years and when supervised by either season or depth factors (Figure 3.1). The 

following plots show the posterior probability contribution of assigned assemblage to 

each environment. BioMiCo was also run on the entire microbial community including 

cyanobacteria. In that case 6 predominant assemblages were found for 2015 and between 

5 and 7 for 2016 communities depending on which environment factors were trained. 
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Figure 3.1 BioMiCo assemblage distributions showing contributions to seasonal 

and depth environments. The first two plots are for 2015 and the last 

two are for 2016. Dotted lines are at the 10% predominance threshold. 

  

3.1.2 Determining the Number of Assemblages for NMF 

For unsupervised NMF several quality measures have been proposed for 

determining the number of assemblages K (factorization rank of T, the type matrix) for 

best model fit. For example, the sparseness of the sample over assemblage weight 

matrices modelled over multiple runs of NMF in both years was highest for K = 5 types.  

Hutchins (2008) proposed K should the smallest value where the marginal 

residual sum of squares (RSS) from a loss function F (KL divergence) presents an 

inflection (elbow) point in its curve over a range of K values. Frigyesi et al. (2008) 

proposed the smallest value of K for which the decrease in the RSS remains larger than 

the decrease of the RSS from randomizing the observed counts of each ASV to destroy 
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the community connection to samples. Figure 3.2 shows these residual quality measures 

for a range of K values along the x-axis and indicate K = 5 assemblages is appropriate for 

the 2015 and 2016 community data. The randomized data is shown by the dotted line 

with triangle points plotted at each K. The smallest k given these quality measures was 

chosen to control the model complexity and avoid overfitting the data by supposing too 

many columns of T (subcommunities).  

The explained variance (evar) from the data X and the NMF estimates TW 

evaluates how well the model reconstructs the data. The inflection point at K = 5 of the 

evar plot suggests that the marginal improvement in explained variance of the model fit is 

not worth the added complexity for more than 5 assemblages (Figure 3.3). Fewer 

assemblages are also desirable for comparing their biological interpretations across 

different methods. 

 

Figure 3.2 Residual sum of squares (RSS) vs number of assemblages (K values) 

and comparison to RSS for randomized data (   ) 
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Figure 3.3 Explained variance vs number of assemblages (K values) 

 

Another criterion for K is the cophenetic correlation coefficient. The NMF weight 

matrix clusters samples together based on their weights in each assemblage. NMF 

calculates an n × n connectivity matrix 𝐶 where 𝐶𝑖𝑗 = 1 if sample i and sample j are 

clustered together by NMF and 0 otherwise. The cumulative average of matrices 𝐶 over a 

sequence of NMF runs yields an n × n matrix of empirical probabilities that each pair of 

samples, i and j, are clustered together. For each K value the multiple runs of NMF are 

carried out on perturbed subsets of the original data produced from subsampling the data 

with and without replacement (. The pairwise average matrix is called the consensus 

matrix 𝐶, and is used to measure sample similarity. Here 50 runs of NMF were used to 

determine the consensus matrix. The cophenetic coefficient measures the correlation of 

the sample distances induced from the consensus matrix and the sample distances from 

hierarchical clustering of samples using these same distances. Brunet (2004) proposed K 

should be the smallest value of K after which the cophenetic begins decreasing. Multiple 

runs of NMF again indicate 5 assemblages based on this criteria (Figure 3.4). However, 

this criteria should not be the only or foremost quality measure. Residuals were 
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considered first because Frigyesi et al. (2008) concluded that the cophenetic correlation 

reports the ability of factorization into K assemblages to classify samples into K classes. 

This would not be ideal if, for example, the true number of assemblages was 5 but k = 5 

produced 2 cluster classes. Then the cophenetic would report a small value for the correct 

number of assemblages. 

 

Figure 3.4 Cophenetic correlation coefficients vs K value (left) and comparison 

with cophenetic coefficients calculated from randomized data over the 

same K range on the right (   ). 

 

For supervised NMF the number of types (assemblages) for each class of samples 

(e.g. higher and lower depths) is chosen to best discriminate the separate classes from 

each other. A sequence of K values in a range from 2 to 10 was used to choose the 

number of assemblages for each class separately through the cross-validation procedure 

described in Cai et al. (2017) Appendix B. Briefly, if supervised by two classes, fit an 

NMF model on training folds from one class and compare the deviances on the test fold 

from that class with the deviances on a fold from the other class using a Wilcoxon Rank-

Sum test. Ranking these deviances gives us a statistic (Z-value) for how different the 
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classes are for a given k. The objective is to choose K such that the deviances from the 

two classes are best separated (Cai et al. 2017). 

The number of types for each seasonal and depth class was chosen separately 

through the cross-validation procedure described. This yielded 5 types (assemblages) 

total, 2 corresponding to a winter mixed water column and 3 for a spring-summer 

stratified water column, before and after day 103 of both years (early April). There were 

also 5 types total when supervised by water column depth classes, specifically 2 for 

depths 0-60m and 3 80-400m. Supervised NMF determined there were 5 assemblages 

present in each of the 2015 and 2016 heterotrophic communities. When ASV counts 

included the phototrophs, NMF supervised by the same class labels for depth and season 

produced 3 assemblages in each class for a total of 6 microbial assemblages. For all 

heterotrophic community models a total of 5 assemblages were therefore chosen for 

modelling with NMF. It was encouraging that multiple NMF evaluation metrics produced 

a number of assemblages that was consistent with the number of assemblages assigned by 

BioMiCo. 

 

3.1.3 Determining the Number of Assemblages for STM 

For STM a data driven search was conducted for the appropriate number of 

assemblages by calculating diagnostic metrics and plotting the results over a range of K 

values. First, held-out likelihood analysis was performed, where half the ASVs in a 

subset of samples are held out and the model is trained (Wallach et al. 2009). The 

sample-level latent variables (assemblage distributions) are used to evaluate the 

probability of the second half of ASVs in the heldout portion of samples (Roberts et al. 
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2016). A K value is determined where the likelihood is maximized locally for the 

smallest manageable number of assemblages in the range. Second, with each K specified 

for a model, the multinomial distribution gives a dispersion (variance σ2) of the residuals. 

K is determined so that the residuals are not overdispersed. This residual analysis is based 

on Taddy (2013) and in practice a larger dispersion suggests that the current number of 

latent assemblages do not account for the variance. This provides rough evidence that 

more assemblages might be needed. K was chosen from an inflection point in the 

residuals plot where adding more assemblage complexity does not improve the 

dispersion. 

Another criterion for K borrowed from text analysis called semantic coherence (or 

coherence) was considered for estimating STMs. Coherence was proposed in the context 

of probabilistic topic models by Mimno et al. (2011). The a priori reasoning is that pairs 

of ASVs belonging to the same ecological niche community will more likely co-occur 

within a sample of that community. ASV pairs from different communities will less 

likely occur together. The key assumption of this thought process is that in an assemblage 

of random taxa it is likely that very few ASVs will co-occur. Coherence for different K 

gives us a measure of how well frequently co-occurring taxa are dominant in each of K 

assemblages. Coherence is greatest when the most probable ASVs in an assemblage are 

frequently present together.  

Let 𝒟(𝑣) be the sample frequency of ASV v (i.e. the number of samples with at 

least one occurrence of v). Let 𝒟(𝑣𝑖, 𝑣𝑗) be the co-sample frequency of ASVs vi and vj, 

which is the number of samples with one or more ASVs vi and at least one ASV vj. For 
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each of the M most probable ASVs in an arbitrary individual assemblage k (lowercase 

distinct from total assemblages K), the semantic coherence of assemblage k is defined by: 

𝒞𝑘 =  ∑ ∑ log (
𝒟(𝑣𝑖,𝑣𝑗) + 1

𝒟(𝑣𝑗)
)𝑖−1

𝑗=1  𝑀
𝑖=2           (3.2) 

Coherence compares the frequency of ASV vj in samples that already contain vi to the 

frequency of vj in the whole of the sample communities. If vj is not more probable in 

samples containing vi then the coherence should be close to zero. There may be ASVs 

that are so ubiquitous and correlated with each other that they are the largest contributing 

(predominant) taxa in an assemblage. Such an assemblage would not be very meaningful 

since it captures an overly-general baseline of ASVs in the environment. Coherence will 

be high when there are few assemblages dominated by very frequently occurring ASVs. 

So it is not ideal to simply seek to maximize coherence. The FREX metric developed in 

Bischof et al. (2012) and Airoldi et al. (2016) balances the exclusivity of ASVs to each 

proposed assemblage with their rates of occurrence within assemblages. 

Diagnostic values were plotted by the number of assemblages specified in a range 

from k = 3 to k = 10 for models with prevalence prior parameterized by date and depth 

covariates. The x-axis is the number of assemblages tried. Over multiple runs of STM the 

optimal points in the local range of K values showed that K= 5 assemblages was the 

smallest number after which the marginal improvement in most metrics began to 

decrease. The exclusivity and FREX measures were also monotonically increasing with 

K. It was heuristically determined that K = 5 for exclusivity as well (Figure 3.5 and 3.6). 
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Exclusivity 

 
 

Figure 3.5 Diagnostic plots for 2015 STM runs over a range of K values to 

determine the optimal number of assemblages 
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Exclusivity 

 
 

Figure 3.6 Diagnostic plots for 2016 STM runs over a range of K values to 

determine the optimal number of assemblages 
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For comparison, the same metrics run on the entire microbial community with 

cyanobacteria resulted in 6 assemblages as the optimal number (Figure 3.7). BioMiCo 

and NMF resolved an additional 6th assemblage when the cyanobacteria were included as 

well. 

 

Figure 3.7 Diagnostic plots for STM runs over a range of K values to determine 

the optimal number of assemblages for all taxa including 

cyanobacteria. 

 

3.2 COMPARATIVE ANALYSIS OF ASSEMBLAGES 

At the sample level, Bray-Curtis dissimilarity summarizes the pairwise difference 

in compositional abundances of taxa for samples over both years. Here it is applied to just 

the heterotrophic ASVs. The Bray Curtis distance is defined as: 
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𝐵𝐶𝑖𝑗 = 1 −
2𝐹𝑖𝑗

𝑆𝑖+𝑆𝑗
 ,where i and j are two samples, Fij is the sum of only the lesser 

frequencies for each ASV found in both samples and Si is the total sum of frequencies of 

all taxa in sample i. This assessment of pairwise community dissimilarity suggests 

community structure varies along dimensions of season and depth. Samples within 

seasonal and depth groups had more similar taxonomic compositions. Non-metric 

Multidimensional Scaling (NMDS) projection using the dissimilarity matrix reveals 

compositional divergence in two dimensions (Figure 3.8 and 3.9). The goodness-of-fit of 

these 2-dimensional non-parametric plots for the actual multidimensional space of the 

samples was measured by the stress. Stress measures how well the ranking of observed 

dissimilarities correlates with the ranking of ordination distances. Stress reported here 

was < 0.05 for both 2015 and 2016. 

Figure 3.8 Bray-Curtis dissimilarity among 2015 samples showed compositional 

divergence along dimensions of season and depth. Note that the 

summer samples with larger second NMDS dimension (NMDS2) were 

from higher depths where the water column was warmer. More of the 

summer samples that were closer to the spring and winter samples 

(lower NMDS2 values) were from deeper, colder depths in the water 

column.  
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Figure 3.9 Bray-Curtis dissimilarity among 2016 samples showed compositional 

divergence along dimensions of season and depth. There was more 

overlap among samples from different depth groups (i.e. smaller 

variance among NMDS1 values) during the winter season (lower 

NMDS2 values). This reflects greater taxonomic homogeneity in the 

mixed water column of the winter compared to the progressively 

stratified spring and summer depth layers. 
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Samples from the Bray-Curtis plots were labelled by their membership in the 

assemblage with the greatest contribution, that is, the assemblage for which the sample 

had the largest mixing weight. Samples labeled by assemblage in this way showed how 

ASV composition of assemblages captured the structure of seasonality and depth. When 

the other environmental covariates observed at the sample time and depth points are 

projected onto the NMDS dimensions, we see that separate assemblages were related to 

specific physical vectors (Figures 3.10 and 3.11). For example, in 2015, a distinct 

heterotrophic assemblage from NMF and STM (A1) was dominant among samples at 

lower depths and higher concentrations of NO3 and PO4. NMF and STM assemblage 3 

(A3) was more predominant along an increasing gradient of NO2 whereas the 

neighbouring A5 was more predominant at higher oxygen and Synechococcus 

concentrations. A4 was associated with increased Prochlorococcus during a bloom at 

later time points and higher temperatures. In 2016, NMF A2 was dominant at higher 

temperatures and later time points in the summer and was less associated with 

Prochlorococcus which had an earlier bloom that year more in sync with Synechococcus. 
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Figure 3.10 Bray-Curtis dissimilarity of 2015 samples labelled by NMF (top) and 

STM (bottom) assemblage membership. Different colours in each plot 

represent the separate but corresponding assemblages. Syn, Pro and 

Temp are used as short forms for Synechococcus, Prochlorococcus and 

temperature vector labels. 
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Figure 3.11 Bray-Curtis dissimilarity of 2016 samples labelled by NMF (top) and 

STM (bottom) assemblage membership. Different colours in each plot 

represent the separate but corresponding assemblages. Syn, Pro, Temp 

and Chl Fluor are used as short forms for Synechococcus, 

Prochlorococcus, temperature and chlorophyll fluorescence vector 

labels. 

 

When comparing the plots for NMF and STM in figures 3.9 and 3.10 there is similarity in 

the separation of assemblages over environment factors for both methods. However, there 

is some variability in what samples belong to assemblages from different methods. For 

example, in the last two plots of 2016, STM assemblage A3 overlaps NMF A3 and A5. In 

contrast, NMF A1 in 2016 overlaps STM A1 and A4. 

Cluster analysis also showed structure according to season and depth. K-means 

clustering was conducted with the weights or mixing probabilities of sample distribution 

over assemblages. An appropriate number of clusters was chosen based on the marginal 

improvements in total within cluster sum of squares and the local maximum average 

silhouette width for different numbers of clusters. Samples were plotted by time, depth 

and log transformed phototroph levels (Figures 3.12 and 3.13 log-log plots). Observed 

points were then labelled by cluster membership. The goal was to see if the heterotrophic 

assemblage weights clustered in patterns that were associated with spatial-temporal and 

cyanobacteria dynamics. K-means clustering of all assemblage weights showed that the 

mixing proportions cluster samples around specific seasonal and depth environments as 

well as cyanobacteria concentrations. There were distinct clusters at the highest and 

lowest concentrations of the cyanobacteria. Mixing weight clusters from NMF and STM 

similarly separated samples by season and depth. 
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Figure 3.12 K-means clusters of 2015 assemblage weights for NMF and STM. 

Cluster colours have no correspondence with colours from previous 

plots. 

 

 



38 
 

 

Figure 3.13 K-means clusters of 2016 assemblage weights for NMF and STM. 

Cluster colours have no correspondence with colours from previous 

plots. 

 

At the ASV level, assemblages from all three methods that were associated with 

the same seasons and depths were compared. ASVs that had greater than 10% mixing 

proportion in an assemblage composition were selected as predominant taxa. Bray-Curtis 

dissimilarity among assemblages from different methods was used to examine the 

divergence of assemblage composition. The mixing proportions of predominant ASVs 

were treated in the same way as the abundance of taxa in a sample. The largest 

contributing taxa identified from BioMiCo assemblages were used as a baseline 

composition for comparison across methods and environments. Hierarchical clustering 

with an average linkage was then used to show corresponding assemblage similarity in a 

dendrogram. 
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Figure 3.14 Agglomerative hierarchical clustering with an average linkage of 

seasonal assemblages from BioMiCo, NMF and STM for 2015 (top) 

and 2016 (bottom). 

 



40 
 

Assemblages within distinct environments are more closely clustered together even when 

inferred from different methods. There is a stronger consensus established of composition 

between NMF and STM, although BioMiCo assemblages were still very similar with 

respect to spatial-temporal dynamics. 

 

3.3 PREDICTION 

Since there are two separate years of data, models could be trained on each year 

and tested on the alternate year. Same year training and testing accuracy was based on 

leave-one-out cross validation. Testing allows us to quantify how well assemblages 

captured generalized microbial patterns predictive of season, depth and phototrophic 

concentrations. Only heterotrophic assemblages were modelled without being supervised 

by any cyanobacteria related covariate classes. Profiles of heterotrophic bacteria and 

cyanobacteria cell concentration over time and depth were examined to decide how to 

split training and testing samples into classes of distinct environments. Figure 3.14 shows 

example bacteria profiles. 
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Figure 3.15 Heterotrophic and cyanobacteria profiles over time and depth. 

 

Sample classes were split the same way for all prediction methods (BioMiCo, 

NMF, SuRF, etc.) and produced classes that were naturally almost balanced by seasonal 

stratification of the warming water column, water depth strata and low vs high 

cyanobacteria cell concentrations (as proxy for bloom vs non-bloom states). Seasonal 

class splits for 103 total samples in 2015 and 136 total samples in 2016 were 55/48 

samples (winter mixed/spring-summer stratified water column) and 80/56 samples 

respectively. Depth class splits were 54/49 samples (surface-higher depth/mid-deep 

depth) in 2015 and 75/61 samples in 2016. For Synechococcus the split of observations in 

low/high concentration classes were 44/51 in 2015 and 50/51 in 2016. For 

Prochlorococcus the splits of observations in classes were 47/48 in 2015 and 58/43 in 

2016. The total numbers of observations in each year for the cyanobacteria were fewer 

than the total number of heterotrophic samples because some date and depth data points 

were missing measurements of Synechococcus and Prochlorococcus cell concentration. 
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As discussed previously for BioMiCo, the posterior distribution of the 

environment and assemblage assignments in the test set year, Xtest and Ztest, are sampled 

jointly given the training year assignments and test year sample ASV counts: 

𝑃(𝑋𝑡𝑒𝑠𝑡, 𝑍𝑡𝑒𝑠𝑡  |𝑋𝑡𝑟𝑎𝑖𝑛, 𝑍𝑡𝑟𝑎𝑖𝑛, 𝑊𝑡𝑒𝑠𝑡, 𝛼𝜙, 𝛼𝜋, 𝛼𝜃). Marginalizing over the assemblage 

assignments yields test year environment probabilities. Samples are classified by their 

maximum posterior environment probability and this prediction is compared to the 

observed environments of the test year. The results for seasonal and water column classes 

for BioMiCo are summarized in Table 3.1. 

Table 3.1 BioMiCo prediction accuracy for training and testing on each year. 

Class error rates are indicated respectively in parentheses after each 

accuracy percentage. 

  

BioMiCo Classification Testing Accuracy 

Train Test Season (mixed/stratified water column) Depth (surface-higher/mid-deep) 

2015 2016 79% (35.7% / 8.7%) 83.8% (16%/16%) 

2016 2015 72.8% (10% / 39%) 66% (28%/39%) 

 

The type matrix Ttrain estimated by supervised NMF gives the ASV composition 

of assemblages for a particular training year. The k × 1 weight vectors for each sample in 

the weight matrix, W, are independent so to estimate the test year weights Wtest, the 

Poisson log-likelihood is maximized for the test data Xtest using the training type matrix. 

This is equivalent to performing non-negative Poisson regression of each sample column 

in Xtest on the ASVs of assemblages in Ttrain. The test year weight matrices Wtest were 

calculated. Generalized linear models (GLMs) and Random Forests (RFs) were trained 

on sample-over-assemblage proportions from each year. Testing was carried out on the 

alternate year’s Wtest to classify season, depth, Synechoccoccus and Prochlorococcus 

categories. The best training and testing classification accuracies achieved were recorded 

in Table 3.2.  
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Training and testing classification accuracies were calculated using all ASVs for 

comparison and these results are displayed in Table 3.3. ASV counts were also permuted 

in training data sets (randomized row entries of observed sample-by-ASV matrix) in 

order to destroy any connection between communities and covariates. Permuting ASV 

counts reduced prediction accuracies to random chance (approximately 50%) confirming 

that there is a community signal in the NMF mixture weights that captures a true 

predictive relationship between subcommunities and environment. 

We performed prediction using Random Forests and logistic regression trained on 

all assemblage proportions as well as specific assemblages associated with particular 

covariates. For example, as will be seen in the next section, Synechococcus was strongly 

associated with NMF A5 and Prochlorococcus was associated with A4. Cyanobacteria 

cell concentration categories were predicted with training accuracies of approximately 

83% for 2015 and 89% for 2016 (leave-one-out validation with RFs). Prochlorococcus 

produced about the same result of 80% leave-one-out training accuracy for 2015 but 95% 

for 2016. The training accuracy was the same or slightly lower when only a subset of 

associated assemblages was trained. Training on 2016 and testing on 2015 

Prochlorococcus classes yielded a better prediction accuracy of 84% for associated 

assemblages compared to 81% from all assemblages. Testing on a 2015 subset of 

Synechococcus related assemblages had classification of 70% up from 65% for all 

assemblages. All these results for training and testing accuracy based on supervised NMF 

test matrices for 2015 and 2016 are recorded alongside predictions in Table 3.2. 
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Table 3.2 Training and testing accuracies for classification using supervised 

NMF assemblages. Parentheses for cyanobacteria classes show 

prediction accuracies from training on subset of characteristic 

assemblages.  

  

Supervised NMF Classification Accuracy 

Train Test Season Depth Synechococcus Prochlorococcus 

2015 2015 96% 88% 83% (82% with A1, A5) 80% (80% with A3, A4) 

2015 2016 75% 85% 65% (70% with A1, A5) 88% (85% with A3, A4) 

2016 2016 98% 83% 89% (83% with A1, A3) 95% (90% with A1, A2) 

2016 2015 75% 67% 72% (62% with A1, A3) 81% (84% with A1, A2) 

 

Table 3.3 Training and testing accuracies for classification using all ASVs 

All Taxa Classification Accuracy 

Train Test Season Depth Synechococcus Prochlorococcus 

2015 2015 94% 74.5% 88% (2%/21%) 86% (10%/17%) 

2015 2016 80% 81% 69% (19.6%/42%) 90% (11%/8%) 

2016 2016 93% 82.7% 88 (9%/14%) 97% (4%/2%) 

2016 2015 68% 66% 72 (27%/27%) 65% (25%/44.7%) 

 

  

BioMiCo and NMF results were comparable or outperformed classification based 

on all ASV taxa in test cases of season and depth classes, except testing accuracy for 

season in 2016. In that instance the prediction accuracy was still well within a margin of 

error, all taxa only performed approximately one percentage point better than BioMiCo. 

The advantage of assemblage representations for prediction of environmental features is 

clear. Not only do assemblages intrinsically capture latent subcommunity relationships 

and perform the same or better for classification but they reduce the dimension and 

variance of noisy ASV data. 

 

 

SuRF was run with 50 subsamples and 100 permutations for sparse selection of 

the best predictor taxa in each year at a p-value of 0.05. The selected taxa produced by 
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SuRF were recorded; GLMs and RFs were trained on those taxa with the same response 

variable classes already used. We then tested the linear and non-linear models with the 

predictor taxa observations in the test year. Results are reported in Table 3.4 with the 

number of taxa predictors in parentheses. Some SuRF prediction did not perform as well 

as BioMiCo or NMF assemblage proportions. Considering that only 1 to 4 taxa out of 

approximately 2500 were used for prediction the accuracies seemed commensurate. 

SuRF did not leverage any season or depth supervising factors either. It could be argued 

that assemblages that fuse community distributions over taxa with spatial-temporal 

information provide a better model than even the most rigorously selected predictor 

species. Table 3.5 contains lists of SuRF taxa sorted by response variable used to select 

predictors. The highest contributing ASVs identified within NMF assemblages are also 

given in table 3.5. Many top contributing (predominant) assemblage taxa correspond with 

SuRF explanatory ASVs, notably Thermoplasmata Marine Group II and 

Alphaproteobacteria SAR11 Clade. This correspondence supports the connection 

between assemblage proportions and environmental covariates. 

Table 3.4 Training and testing classification accuracies using SuRF selected taxa 

for seasonal, depth, and cyanobacteria response variables.  

* An important issue to note is that the best predictor taxa identified in 

2016 were not present in 2015. So it was not possible to train on 2016 

SuRF taxa and then test on those same taxa in 2015 because the test 

counts were all zero. 

  

SuRF Classification Accuracy 

Train Test Season Depth Synechococcus Prochlorococcus 

2015  2015 96% (2 taxa) 75% (2 taxa) 90% (1 taxa) 86% (3 taxa) 

2015 2016 62.5% (2 taxa) 70.5% (2 taxa) 67% (1 taxa) 81% (3 taxa) 

2016 2016 98% (2 taxa) 92% (4 taxa) 87% (1 taxa) 98% (3 taxa) 

2016 2015 *N/A 66% (4 taxa) 72% (1 taxa) 71% (3 taxa) 
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Table 3.5 Comparing lists of taxa selected by SuRF and top predominant ASVs 

identified by NMF. Response category refers to the specific response 

variable that SuRF was run with to select taxa for each year. 

  

Response 

Category 
SuRF Predictor Taxa 

NMF Assemblage Top 

Predominant Taxa 

2015 

Seasonality 

- Alphaproteobacteria SAR11 

clade 

- Thermoplasmata Marine Group 

II 

- Candidatus 

Nitrosopelagicus 

- Thermoplasmata 

Marine Group II 

- Alphaproteobacteria 

SAR11 clade 

- Nitrosopumilaceae 

- Candidatus 

Actinomarina 

- Flavobacteriaceae 

NS5 marine group 

Depth Strata 

- Alphaproteobacteria 

Rhodospirillales 

Magnetospiraceae 

- Verrucomicrobiae Arctic97B-4 

marine group 

Synechococcus 

- Flavobacteriaceae Formosa 

- Alphaproteobacteria 

Rhodobacterales 

Rhodobacteraceae 

Prochlorococcus 

- Alphaproteobacteria 

Rhodobacterales 

Rhodobacteraceae 

- Flavobacteriaceae NS4 marine 

group 

- Parvibaculales PS1 clade 

2016 

Seasonality 

- Flavobacteriales NS9 marine 

group 

- Verrucomicrobiae Arctic97B-4 

marine group 

- Candidatus 

Nitrosopelagicus 

- Thermoplasmata 

Marine Group II 

- Alphaproteobacteria 

SAR11 clade Clade I 

- Parvibaculales 

OCS116 clade 

- Candidatus 

Actinomarina 

- Gammaproteobacteria 

SAR86 clade 

 

Depth Strata 

- Alphaproteobacteria 

Puniceispirillales SAR116 clade 

- Verrucomicrobiae 

Pedosphaerales Pedosphaeraceae 

- Pirellulaceae Rhodopirellula 

- Flavobacteriales 

Cryomorphaceae NS10 marine 

group 

Synechococcus 

- Gammaproteobacteria SAR86 

clade 

- Flavobacteriaceae NS5 marine 

group 

Prochlorococcus - Alphaproteobacteria SAR11 

clade 
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- Flavobacteriaceae NS5 marine 

group 

- Gammaproteobacteria SAR86 

clade 

 

 

3.4 ASSEMBLAGE CHARACTERISTICS 

 

In section 3.2 NMDS projection plots showed covariates projected on sample 

dissimilarity and assemblage membership. This initially indicated which assemblages 

might be related to environmental vectors of cyanobacteria concentration, nitrogen 

compounds or density of the water column. Time series plots of the assemblage 

proportions at different depths were the next step towards characterizing heterotrophic 

subcommunity succession. In Figures 3.15 to 3.18 below, NMF and STM proportions are 

plotted over time and facetted for each depth. 



48 
 

 

Figure 3.16 Bar plots of 2015 NMF assemblage weights over time and depth. 
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Figure 3.17 Bar plots of 2015 STM assemblage weights over time and depth. 
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Figure 3.18 Bar plots of 2016 NMF assemblage weights over time and depth. 
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Figure 3.19 Bar plots of 2016 STM assemblage weights over time and depth. 

  

 Figures 3.16 to 3.19 show the succession of assemblages over seasons and with 

changes in water column variation and stability at different depths. The assemblage 

weights are not just used for prediction. They give information about how the community 

transitions in response to spatial-temporal changes and these plots of community 

transition show methodological similarities.  

Spearman rank-based correlation analysis was performed with sample over 

assemblage proportions on the other biotic and abiotic covariates measured. Factors that 

had significant correlation coefficients with p-values less than 0.01, or marginally 

significant less than 0.05, suggested the strength of relationships between assemblages 
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and different explanatory covariates. The results are summarized in sections 3.4.1 and 

3.4.2. 

As mentioned in the introduction of the data (section 1.1), both taxonomic and 

metabolic pathway abundances were processed. Assemblage weights were highly 

correlated with particularly important pathway abundances (as referenced for example in 

Caspi et al. 2018). Spearman correlation and robust regression was also performed with 

the assemblage proportions and the most relevant pathways. A Wald test was used to 

assess significance of coefficients for robust regressions. Robust regression was done as 

an extra check on associations because there appeared to be many outliers in the pathway 

abundance data. Examples of correlation results are presented in Figures 3.20 to 3.23. In 

many cases, significant relationships were found with functional potential that reinforced 

the ecological interpretation of assemblages as subcommunities. Detailed heterotrophic 

assemblage associations are discussed in the next sections for separate years because 

some covariates and pathway measurements were different between 2015 and 2016. 

 

3.4.1 ASSEMBLAGE ASSOCIATIONS IN 2015 

In 2015 NMF Assemblage 1 (NMF A1) and STM Assemblage 1 (STM A1) 

accounted for virtually all of the assemblage mixing proportion (posterior probability 

density) at 400m depth for all seasons. The water column of the Red Sea is permanently 

stratified below 300 m (Edwards 1987 and Stambler 2005), so a single predominant 

subcommunity at 400m was expected. Both NMF A1 and STM A3 had smallest p-values 

(< 0.001) for water density (depth), NO2, NO3, TON, PO4, oxygen and salinity. These 

assemblages had significant negative regression coefficients with photosynthetic and 



53 
 

aerobic respiration pathways: PHOTOALL-PWY: oxygenic photosynthesis, PWY-101: 

photosynthesis light reactions, PWY-241: C4 photosynthetic carbon assimilation cycle 

NADP-ME type, PWY-7117: C4 photosynthetic carbon assimilation cycle PEPCK type, 

PWY-3781: aerobic respiration I (cytochrome c) and PWY-7279: aerobic respiration II 

(cytochrome c) (yeast). According to Gilbert et al. (2010) photosynthetic pathways can be 

greatly affected in winter seasons and when daylight is more restricted below the photic 

zone in deeper depths. Respiratory metabolism genes have also been observed to be more 

abundant at night and in less oxygenated water (Gilbert et al. 2010). Other significant (p< 

0.05) pathways were PWY490-3: nitrate reduction VI (assimilatory) and PWY-3661: 

glycine betaine degradation I. Spearman and robust regression found similar correlations 

with these assemblages and their most predominant taxa including Nitrosopumilaceae. 

Nitrosopumilaceae are chemolithoautotrophs that grow by oxidizing inorganic nitrogen 

compounds including ammonia. Some of these species are able to use urea as a source of 

ammonia for storage, assimilation and nitrification (Könneke et al. 2005). Sinking 

organic compounds from surface waters pass through the middle water column and 

become locked into a deeper water stratum. This alters the chemical environment with 

increased abundance of nitrogen and phosphate molecules influencing the community at 

these depth. Other major contributing species in these assemblages were part of the 

known deep sea Thermoplasmata Marine Group II. For another example, regression also 

found correlations with PWY-3661: glycine betaine degradation I. This pathway is a 

potential catabolic mechanism for osmoregulation. Cells would experience increased 

osmotic stress at deeper depths like 400m where salinity and solute concentrations are 

higher (Ren et al. 2017). The association of these assemblages with this pathway 
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response to osmotic stress helps confirm our characterization of NMF A1 and STM A3 as 

a deep water subcommunity.  

NMF A2 and STM A2 contributions were highest at mid to deeper depths 60-

400m throughout the spring, day 80-85, 110-115 and 130-140. Both assemblages showed 

similar mixing proportions over the same seasonal periods. Their significant regression p-

values were for nitrite (NO2), Prochlorococcus (STM only), temperature (STM only) and 

water density. The most predominant ASV in NMF/STM A2 was Candidatus 

Nitrospelagicus. Nitrospelagicus are ammonia oxidizing archaea (AOA) which would be 

expected to be present in an assemblage associated with the products of nitrification. 

Regressions found significant correlations with PWY-3661: glycine betaine degradation I 

(p < 0.05) and PWY-5505: L-glutamate and L-glutamine biosynthesis. In 

microorganisms the latter pathway and its products are used for ammonia assimilation 

and glutamate also serves as a storage form of ammonia (Caspi et al. 2018). The 

confluence of these correlations distinguished these assemblages as being associated with 

deeper water nitrogen metabolism processes during the spring blooms.  

NMF A3 and STM A3 from 2015 were positively associated with NO2 and 

negatively associated with Prochlorococcus and temperature (p-values < 0.001) with 

greatest significant seasonal contributions in the mixed water column (0-200m) of the 

winter and early spring, especially prior to day 75 (February to mid-March). 

Parvibaculales OCS116 was a highly contributing taxon negatively correlated with 

PWY-7198: pyrimidine deoxyribonucleotides de novo biosynthesis IV which produces 

ammonia. Candidatus Nitrospelagicus was also predominant, parallel to the previous 

nitrification associated assemblages discussed in the spring at lower depths (NMF A2, 
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STM A2). Another taxonomic class exclusive to NMF A3 and STM A5 was 

Gammaproteobacteria HOC36, to which ammonia oxidizers are known to belong. There 

is evidence then that NMF and STM A3 captured a subcommunity related to nitrification 

in the winter and the onset of the first spring Synechococcus bloom. 

NMF and STM A4 had largest mixing proportions at the surface and upper photic 

zone (0-60m) during the late spring and summer (after day 125), in contrast to greater 

NMF/STM A2 proportions below 60m. The assemblages were significantly correlated 

with Prochlorococcus, NO2, temperature, irradiance and density as well as pathways: 

PHOTOALL-PWY: oxygenic photosynthesis, PWY-101: photosynthesis light reactions, 

PWY-3781: aerobic respiration I (cytochrome c) and PWY-5505: L-glutamate and L-

glutamine biosynthesis. A4 had a negative regression coefficient for Synechococcus 

suggesting a negative correlation. Since in 2015 Synechococcus and Prochlorococcus 

bloom cycles were negatively correlated with each other, it was not surprising that a 

Prochlorococcus assemblage correlation would be negatively correlated with 

Synechococcus. Robust regression also found local correlations with chlorophyllide a 

biosynthesis I (aerobic, light-dependent) and Pwy-5505 also related to ammonia 

assimilation and metabolic growth from a nitrogen source. Predominant heterotrophs 

were Candidatus Actinomarina and taxa belonging to the Alphaproteobacteria SAR11 

clade which are known to be dominant in surface water (Cram et al. 2015). It would be 

expected to find these taxa and pathways in the photic zone in the late spring and summer 

during Prochlorococcus blooms. Linear correlations with pathways related to the 

characteristics of the assemblage supported the association of both A4s with 

Prochlorococcus.  
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NMF A5 and STM A5 were characterized by surface depths (0-60m) during the 

spring Synechococcus blooms. Synechococccus and depth had the lowest p-values 

followed by NO2, PO4, TON and oxygen. Correlations were also significant with the 

following photosynthetic and metabolic respiratory pathways: PHOTOALL-PWY: 

oxygenic photosynthesis, PWY-101: photosynthesis light reactions, PWY-241: C4 

photosynthetic carbon assimilation cycle, NADP-ME type, PWY-7117: C4 

photosynthetic carbon assimilation cycle, PEPCK type, PWY-3781: aerobic respiration I 

(cytochrome c), PWY-7279: aerobic respiration II (cytochrome c) (yeast) and PWY490-

3: nitrate reduction VI (assimilatory). The most predominant distinct heterotrophs 

included Candidatus Actinomarina and Rhodobacteraceae Roseovarius. Assemblage 

dynamics and correlations with pathways common for phototrophs characterized this 

assemblage as a subcommunity present at surface depths during the spring blooms of 

Synechococcus. 

When considering the entire community with cyanobacteria, the models assigned 

6 assemblages with different compositions, dynamics and associations than the 

heterotropic community assemblages. The additional 6th assemblage had mixing 

proportions greatest at mid depths of 60-200m and 60-100m in the late spring after day 

125 (early May) and summer. The 6th NMF assemblage had smallest p-values (< 0.001) 

from regression on Prochlorococcus, temperature and oxygen concentration. The 6th 

STM assemblage likewise had smallest p-values for Prochlorococcus and oxygen, but 

also NO3, PO4, and TON – capturing the deeper water predominant association with 

sinking nutrients. Since Prochlorococcus ASVs were included in the community model 
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for this 6th assemblage, regression of Prochlorococcus on the assemblage was not very 

informative. This is the why the heterotrophs were modelled separately. 

 

 

Figure 3.20 Correlation plots for 2015 NMF and STM assemblages with 

environmental covariates. Asterisks indicate significant correlations at 

the 0.01 level. The colour bar and square sizes indicate the strength and 

direction of correlation. 
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Figure 3.21 Correlation plots for 2015 NMF and STM assemblages with important 

metabolic pathways. Asterisks indicate significant correlations at the 

0.01 level. The colour bar and square sizes indicate the strength and 

direction of correlation. Correlations between assemblages are not 

shown because the correlation analysis was conducted with a subset of 

samples for which pathway abundances were available. There were 

more samples, and therefore, more informative assemblage weights 

available for environmental factors. 

 

3.4.2 ASSEMBLAGE ASSOCIATIONS IN 2016 

In 2016 NMF A1 and STM A1 had similar deep water associations as their 2015 

counterparts except that seasonality and irradiance were significant in 2016 and salinity 

was no longer significant. Pathway regressions analogous to 2015 results were present 

except glycine betaine degradation was not significant. The 2016 deepest water 

assemblage was predominant later in the seasonality of the year as seen in Figure 3.17 
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and 3.18 and negatively associated with cyanobacteria. NMF A2 and STM A2 were 

predominant in the spring and later summer at upper and surface depths above 100m. 

These assemblages had strongest positive correlations with Prochlorococcus and 

temperature and strong negative associations with nitrite, nitrate and phosphate. 

Significant positive correlations with pathway abundances for PHOTOALL-PWY: 

oxygenic photosynthesis and PWY-101: photosynthesis light reactions supported the 

association with the more synchronized cyanobacteria blooms in 2016. NMF A3 and 

STM A3 were predominant at depths above 200m and before day 100 (early spring). The 

most significant correlations were a positive association with Synechococcus and a 

negative association with phosphate. Both assemblages were correlated with 

photosynthetic and aerobic respiration pathways as well as a significant strong positive 

correlation with PWY 490-3 nitrate reduction. NMF A4, A5 and STM A4 showed 

greatest contribution in winter at all depths with a sustained predominance at 400m and 

strongest positive correlation with nitrite. These assemblages were also negatively 

associated with cyanobacteria concentrations and temperature. Some marginally 

significant negative correlations with photosynthesis pathways existed as well as stronger 

association with PWY-7279: aerobic respiration II (cytochrome c) (yeast). STM A5 was 

predominant at mid depths (80-100m) and in later spring day 125-150. The assemblage 

was associated with nitrite, salinity, irradiance, chlorophyll and weakly with 

osmoregulation PWY-3661. 
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Figure 3.22 Correlation plots for 2016 NMF and STM assemblages with 

environmental covariates. 
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Figure 3.23 Example correlations plots for 2016 NMF and STM assemblages with 

important metabolic pathways. Correlations between assemblages 

appear different than in Figure 3.22 because the correlation analysis 

was conducted with a subset of samples for which pathway abundances 

were available. There were more samples, and therefore, more 

informative assemblage weights available for environmental factors. 
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CHAPTER 4 CONCLUSION AND FUTURE WORK 
 

The application of methods for estimating subcommunities as distributions over a 

sample collection of species was described in this thesis. Spatial-temporal metadata was 

incorporated to model assemblages which capture environmental dynamics that interact 

with microbiome communities. This approach represents an ongoing shift to analysis of 

interrelated communities and their roles in marine ecosystems (see Fuhrman et al. 2006, 

Sieradzki et al. 2018, Bálint et al. 2016 and Ren et al. 2017, for other examples). Further, 

the ability to reduce the variable space of over 2500 taxa down to 5 assemblages was 

demonstrated for sample communities from winter through to the late summer at depths 

from the surface down to 400m; this is a necessary capability for all studies of this type. 

Assemblages derived from methods based on very different model formalisms showed 

empirically similar distributions over ASVs and 70-90% Bray-Curtis similarity (Figure 

3.13 Dendrograms). The mixture of heterotrophic assemblages showed variability 

structured by changes in seasonality and depth of the water column. Assemblages were 

correlated with distinct biotic and abiotic factors, thus reinforcing the interpretation that 

varying heterotrophic assemblage proportions might help represent environmental 

dynamics. The effects of heterotrophs on cyanobacteria and vice versa were of special 

importance. Predictive models based on heterotrophic assemblages indeed improved 

classification of season, water column strata and both Synechococcus and 

Prochlorococcus bloom states. Some assemblages characterized by their associations 

with cyanobacteria proved to be even better predictors of bloom categories. Prediction 

with the SuRF method of selecting indicator taxa was informative of the advantages and 
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disadvantages of modelling subcommunities of marine microbiomes compared to the 

perspective of individual heterotrophic biomarker taxa. 

The results related to the Red Sea gave rise to a lot of insights and questions. 

Several directions for future work continuing with this data are proposed, as well as with 

new marine microbiomes:  

1. A next step of analysis should ascertain if and how heterotrophic communities are 

driving or responding to blooms, or both. The same methods employed here have 

been applied to analyze completely separate microbial data from a lake 

ecosystem. That has established two predominant heterotrophic assemblages, one 

prior to and one during a cyanobacterial and microcystin toxin bloom in that 

environment. At each depth the Red Sea data was not sampled at enough time 

points (only 11-16 dates) nor at evenly spaced indices, which meant time series 

analysis was not possible. Interpolating between time points would have 

introduced substantial bias and resulted in many false positive correlations. 

Anything beyond linear correlations was not appropriate for the data. With that 

said, more densely sampled time series data could help reveal locally lagged 

cross-correlations between assemblages and covariates or metabolic pathways of 

interest. A time delay lag between two time series can potentially be evidence for 

a causal driving relationship. 

2. The processing of the Gulf of Aqaba (Red Sea) data requires a reference library to 

identify ASVs from 16S sequences, and that library contained human gut taxa as 

well as marine microbes. A reference library of marine microbial genomes 

specifically from the Red Sea would facilitate better classification confidence of 
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species. Haroon, Thompson et al. (2016) reported such a database assembled from 

metagenomes of microorganisms in the Red Sea at a wide variety of depths and 

locations that could serve this purpose. 

3. Further functional analysis of the Gulf of Aqaba (Red Sea) metagenomic data is 

required to link the taxonomic communities to subnetworks of substrate-product 

metabolic reaction pairs. BiomeNet developed by Shafei et al., (2014) is an 

unsupervised mixed membership hierarchical framework that models the latent 

biochemical networks of pathways for exactly this purpose.  It is more generally 

our goal to develop new supervised methods for relating microbial communities 

to specific substrate-product reactions. 

4. Ultimately we want to provide deeper insight into statistical methods for 

modelling subcommunities and how they are applied to real, and highly complex, 

data like that from the of the Gulf of Aqaba (Red Sea). We need to develop and 

refine methods for estimating how subcommunities overlap in functional traits 

and environmental niches. An evaluation of model performance should include an 

objective measure of subcommunity robustness, generalizability to other 

environments and variability of community composition and dynamics.  
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