
LEARNING STOCHASTIC WEIGHT MASKING TO RESIST
ADVERSARIAL ATTACKS

by

Yoshimasa Kubo

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

at

Dalhousie University
Halifax, Nova Scotia

November 2019

c© Copyright by Yoshimasa Kubo, 2019

To my parents, who supported to pursue my dreams,

SAYOKO and KATSUTOSHI

To my brother, who always encourage me,

TOSHIHISA

To my great grand parents

ii

Table of Contents

List of Tables . vi

List of Figures . vii

Abstract . xv

List of Abbreviations Used . xvi

Acknowledgements . xviii

Chapter 1 Introduction . 1

1.1 Overview . 1

1.2 Focus of thesis . 3

1.3 Overview of adversarial methods . 5
1.3.1 Adversarial attacks . 5
1.3.2 Defending against adversarial examples 6
1.3.3 Adversarial examples in the real world 7
1.3.4 The cause of adversarial examples 8

1.4 Contributions of studying adversarial examples and this thesis 9

1.5 Stochastic-gated partially binarized network - A general overview . . 10

1.6 Thesis outline . 12

Chapter 2 Basic concepts . 13

2.1 Supervised Learning . 13

2.2 Neural networks . 13
2.2.1 Feedfoward neural networks 14
2.2.2 Neural networks in image classification 15
2.2.3 Convolutional neural networks 17

2.3 Binarized neural networks and estimating gradients 21
2.3.1 Binarized neurons and gradient estimators 21
2.3.2 Binary neural networks . 23
2.3.3 Stochastic activation pruning networks 24

2.4 Adversarial examples and training . 25
2.4.1 Overview of crafting adversarial examples 25

iii

2.4.2 Fast gradient sign method . 25
2.4.3 Basic iterative method . 26
2.4.4 Iterative least-likely class method 26
2.4.5 Adversarial training . 26
2.4.6 Adversary distortion measurement 28

Chapter 3 Mitigating Overfitting Using Regularization to Defend
Networks Against Adversarial Examples [60] 29

3.1 Motivation . 29

3.2 Experiments . 31
3.2.1 Parameter setting . 31
3.2.2 Results for changing dropout probability 33
3.2.3 Results for changing L1 and L2 λ parameters 34
3.2.4 Results for binarized neural network 34

3.3 Discussion . 41

Chapter 4 Learning Adaptive Weight Masking Networks for Adver-
sarial Examples [61] . 48

4.1 Motivation . 48

4.2 Proposed model . 49
4.2.1 Stochastic-gated partially binarized network 50
4.2.2 Gate module . 50

4.3 Experimental evaluation . 52
4.3.1 Network parameters . 53

4.4 Results . 55

4.5 Visualization of SGBN . 60
4.5.1 Visualization of activations of the gate module and main network 60
4.5.2 Visualization of adversarial examples and perturbation mea-

surement . 62

4.6 Gaining an understanding of SGBN and the gate module 64
4.6.1 Stochastic binarized versus deterministic non-binarized gate mod-

ules . 64
4.6.2 Learning representation and attacking the gate modules 72
4.6.3 Double-sized filters for the gate module and the main network 77
4.6.4 Robustness on the black-box attack 79
4.6.5 Toy experiment . 82

4.7 Discussion . 87

iv

Chapter 5 Conclusions and Future Work 93

5.1 Conclusion . 93

5.2 Future work . 95

Bibliography . 97

Appendices . 108

Appendix A Confidence level . 109

A.1 Confidence level on changing dropout probability 110

A.2 Confidence level on changing L1 and L2 λ parameters 111
A.2.1 L1 weight decay . 111
A.2.2 L2 weight decay . 112

A.3 Confidence levels on binarized neural networks 113
A.3.1 MLP . 113
A.3.2 1CNN . 114
A.3.3 2CNN . 115

Appendix B The activations (σ(a)) of the gate module for the 2nd
layer before binarized (probabilities of masking) on the
testing dataset. 116

Appendix C The differences in accuracy between the training and
testing MNIST datasets (clean datasets) for SGBN and
SGBN with relu activation 117

Appendix D Adversarial examples crafted by the gate module and
accuracies of each model on the examples 118

Appendix E Notices of permission to use excerpts from author’s pub-
lications . 121

v

List of Tables

3.1 Architecture of multilayer perceptron 32

3.2 Architecture of adding one convolutional layer 32

3.3 Architecture of adding two convolutional layers 33

3.4 Training and testing accuracies for each MLP 41

3.5 Training and testing accuracies for each 1CNN 41

3.6 Training and testing accuracies for each 2CNN 41

4.1 First gate module parameters on MNIST 55

4.2 Second gate module parameters on MNIST 55

4.3 First gate module parameters on CIFAR 55

4.4 Second gate module parameters on CIFAR 56

4.5 Training a dense layer setting for the first gate module 72

4.6 Training a dense layer setting for the second gate module . . . 72

4.7 1-layer-SGBN parameters . 73

4.8 The accuracies of the black-box attacks on FGSM with ε = 0.3. 80

4.9 Network parameters and variables for the main network on the
toy experiment . 84

4.10 Gate module variables for the second layer on the toy experiment 84

4.11 Summary of each accuracy for each model and each dataset on
FGSM . 91

4.12 Network parameters and variables for the additional parameters
experiments on MNIST . 92

4.13 Network parameters and variables for the additional parameters
experiments on CIFAR . 92

vi

List of Figures

1.1 Adversarial examples crafted by evolutionary algorithms. Fig-
ure from [79]. Deep learning model classified these images as
king penguin, starfish, baseball, and electric guitar. 2

1.2 An example of adversarial examples. One layer convolutional
neural network classifies this original image (a) as 3 with 100%
confidence. However, after adding the well-crafted perturba-
tion (the fast gradient sign method) to the image, the network
classifies the perturbed image (c) as 5 with 100% confidence. . 4

1.3 A general view of a stochastic-gated partially binarized network
model. 11

2.2 Examples of underfitting, generalized well, and overfitting. The
figure is from [89]. Bias means the error on the training dataset,
and variance means the error on the testing dataset. 16

2.3 Examples of shifted images on MNIST and predictions of MLP
in bottom of the images. Left: centered image (Original), mid-
dle: shifted to right, right: shifted to the top-left. MLP cannot
classify the shifted images anymore. Figures from [3] 17

2.4 An example of convolutional neural network architecture, Lenet.
Figure from [64]. In this case, there are two convolutional lay-
ers, two max-pooling layers after each convolutional layers, and
one fully connected layer. 18

3.1 An example of the overfitting decision boundary. The overfitted
decision boundary can easily create adversarial examples since
examples are very close to the boundary. 30

3.2 Results of the dropout experiments Left: The accuracies for the
network with dropout on the perturbed testing dataset. Right:
The errors for the networks with dropout and without dropout
(w/o DO) on the training and testing dataset after the training
for checking the overfitting levels on each model. 35

vii

3.3 Proportion (0 to 1) vs confidence level (0-100) for target classes
of adversarial examples on changing dropout probability exper-
iments (10 and 90 % probabilities). ε means the perturbation
level (in this case, 0.01, 0.13, and 0.25). Dropout probability of
90 % gradually changes confidence level from high to low while
increasing the perturbation level. However, obviously, the con-
fidence level for the probability of 10 % changes from high to
low compared with the confidence level for probability 90 %. . 36

3.4 Results of the L1 weight decay experiments: The accuracies
for the network with L1 weight decay on the perturbed testing
dataset. L1 weight decay - strong λ is helpful to defend the
networks against adversarial example, but excessive λ cannot
be helpful. 37

3.5 Results of the L2 weight decay experiments: The accuracies
for the network with L2 weight decay on the perturbed testing
dataset. L2 weight decay - strong λ is helpful to defend the
networks against adversarial example. 38

3.6 Proportion (0 to 1) vs confidence level (0-100) for target classes
of adversarial examples on changing L1 λ experiments (λ =
1e-5 and 1e-1). At ε = 0.13, most of the confidence levels the
network with λ = 1e-5 are zeros. On the other hand, confidence
levels for λ = 1e-1 gradually change from high to low. 39

3.7 Proportion (0 to 1) vs confidence level (0-100) for target classes
of adversarial examples on changing L2 λ experiments (λ =
1e-5 and 1e-1). At ε = 0.13, most of the confidence levels the
network with λ = 1e-5 are zeros. On the other hand, confidence
levels for λ = 1e-1 gradually change from high to low. 40

3.8 Stochastic and deterministic binarized MLP accuracies (top)
and the differences in accuracy (bottom) between the training
and testing datasets (clean datasets) 42

3.9 Stochastic and deterministic binarized 1CNN accuracies (top)
and the differences in accuracy (bottom) between the training
and testing datasets (clean datasets) 43

3.10 Stochastic and deterministic binarized 2CNN accuracies (top)
and the differences in accuracy (bottom) between the training
and testing datasets (clean datasets) 44

viii

3.11 Proportion (0 to 1) vs confidence level (0-100) for target classes
on stochastic binarized and deterministic experiments for 1CNN.
DBN and STE 1CNN have very similar behaviors. Most of the
confidence levels at a lower ε are 100 %. while increasing ε, the
proportions for DBN and STE are divided into two, close to 0 or
100%, even at ε = 0.25. The proportions of the middle of confi-
dence levels are less. On the other hand, REINFORCE-1CNN
are most robust among all of the models. The proportions of
high confidence levels for REINFORCE gradually decrease but
not too much. 45

3.12 Comparison of FGSM for CNN without any regularizations (up-
per) and CNN with L1 weight decay (λ = 1e-2) (lower). The
perturbations for CNN without any regularizations are well
spread on images. In contrast, the perturbations for CNN with
L1 are centered. 46

3.13 Comparison of FGSM (ε = 0.9) for CNN without any regural-
izations (upper) and with L1 weight decay (λ = 1e-2) (lower).
Left: The figure is 1. Center: The figure is 0. Right: The figure
is 4. 47

4.1 Two architecture: CNN-BIN (a) and SGBN (b). 51

4.2 This illustrates the relationship between a gate module and a
convolutional layer. The activations of the gate module h are
converted stochastically into binary masks h (using the stochas-
tic binarized activation (1 or 0)). For this stochasticity, the hard
STE is used for calculating the gradient. These masks, in turn,
are multiplied pointwise with the weights w of a convolutional
layer f in the main network to produce new, masked filters w′.
The convolutional layer f then use w′ to convolve the image (or
incoming feature maps) to output o. 52

4.3 The accuracies of six models on FGSM for MNIST. Also, the
best accuracies of BNN with PGD [34] are plotted on the pertur-
bation level ε = 0.1, 0.2, 0.3. Another model, BNN, is the 2 con-
volutional layer version of BNN (scaled, the first layer is a full
precision, and the second layer is binarized) and binarized dense
layers without PGD. The other model, SAP, is 2 layer convo-
lutional with stochastic activation pruning (SAP) and dense
layers (with stochastic binarized activation) [21] without any
adversarial training. 57

ix

4.4 (a): The accuracies of SGBN, CNN-BIN, BNNs (determinis-
tic (DT) and stochastic (ST)), and SAP on the basic iterative
method (BIM) for MNIST. (b): The accuracies of SGBN, CNN-
BIN, BNN (DT and ST), and SAP on the iterative least-likely
class method (ILL) for the MNIST. Stochasticity (in weights,
activation, or both) seems to be particularly helpful against the
ILL-based examples. 58

4.5 The accuracies of four models on FGSM for the CIFAR-10.
Note that some approaches, such as SAP, for example, were
originally applied on much larger networks than the ones used
for testing in this experiment. The accuracies here are 1.7±0.4,
2.3±0.3, 13.6±1.2, and 17.3 % at the highest perturbation level
for CNN, SAP, BNN, and SGBN, respectively.) 59

4.6 The accuracies of FGSM (ε = 0.3) transferred between models. 60

4.7 Examples of activations of the gate modules on the 1st layer of
SGBN. In the first column, there are images for inputs for the
networks. The 2nd through 7th column are outputs from the
gate modules on the clean MNIST (zeros are in black, and ones
are in white). The rest of the columns are activations of the 1st
layer of the SGBN. Upper: We picked random 5 filters, in this
case, filter number 7 to 12 of 32 filters. Bottom: We also picked
the same filters as the previous one. In this case, we feed the
same target but different examples to the model. Some of the
activations are similar to the previous ones, but the rest of the
activations have completely changed. 61

4.8 Examples of probabilities of activations (σ(a)) from the gate
module (1st layer) before they are binarized (scale is 0 to 1,
and the colors are blue to red). Examples are 1 and 9 from
upper panels of figure 4.7. 63

4.9 Histogram of probabilities of activations (σ(a)) from the gate
module (1st layer) before they are binarized (scale is 0 to 1).
Around 60% of the activations are close to 1, and around 40 %
are close to 0. 63

4.10 Examples of clean examples, perturbation, and perturbed ex-
amples on FGSM (ε = 0.3) for SGBN, BNN with PGD, SAP,
CNN-BIN, and CNN. 65

4.11 `1 distance between the clean and perturbed images on each
perturbation level for each model. 66

x

4.12 Comparing two t-SNE results: clean dataset (a), adversarial
examples crafted by SGBN (b) and BNN with PGD (c). We
can see that adversarial examples crafted by BNN with PGD
changed a lot compared to adversarial examples crafted by SGBN. 67

4.13 The accuracies of SGBN (ST), the deterministic non-binarized
version of SGBN (DT), and CNN-BIN on the white-box attack. 68

4.14 The differences in accuracy between the training and testing
datasets (clean datasets) for SGBN (ST), the deterministic ver-
sion of SGBN (DT), and CNN-BIN. 69

4.15 The accuracies of each model on FGSM attack crafted by SGBN
(ST) and SGBN (DT). When target and source models are the
same, it is the white-box attack. 70

4.16 The gradient variance for SGBN (a) are larger than SGBN (DT)
(b) and CNN-BIN (c). 71

4.17 Left: Training the dense layer which is added on the first gate
module. Right: Training the dense layer which is added on the
second gate module. 73

4.18 The accuracies of the first and second gate modules, 2 layer
binarized synapses of SGBN, and 1 binarized synapse of SGBN. 74

4.19 The accuracies of CNN on FGSM crafted by SGBN (red), first
(blue), and second gate modules (green). 75

4.20 The gradient variances for SGBN (a) and 2nd-GM (c) are sim-
ilar and larger than 1st-GM (b). 76

4.21 Each accuracy for SGBN with the stochastic binarized acti-
vation (red) vs SGBN with the rectified linear unit activation
(blue) on FGSM. 77

4.22 The accuracies of the original model (2W-SGBN) and SGBN
with the shared weights (1W-SGBN) on FGSM.) 78

4.23 The accuracies of each model, 2 layer of SGBN (2W-SGBN), 2
layer of SGBN with the shared weights (1W-SGBN), the second
gate module (2W-2nd-GM), the second gate module with the
shared weights (1W-2nd-GM), the first gate module (2W-1st-
GM), and the first gate module with the shared weights (1W-
1st-GM). 78

4.24 The activations of the gate modules are saved and randomly
shuffled for testing the model on the black-box attacks. 81

xi

4.25 Plotting the training and testing targets on the toy experiment. 83

4.26 The original SGBN. A gate module learns which specific weights
on the filter should be turned on or off by the image and weights.
The weights from the convolutional layer will be used as input
for the gate module. The weight inputs will be concatenated
on the original input. 85

4.27 Experimental results on testing data for MLP (WOWGM), SGBN
With the weight input for stochastic binarized and determinis-
tic non-binarized activations (GM ST and GM DT), and SGBN
without the weight input for stochastic binarized and determin-
istic non-binarized activations (GMWOW ST and GMWOW DT)).
These results are the best results among 30 training from scratch.
Blue dots are predictions of each model, and red dots are targets. 86

4.28 The learning curves for each model, MLP without gate mod-
ule (WOGM), stochastic binarized activation gate module with
the weight inputs (GM ST), deterministic non-binarized acti-
vation gate module with the weight inputs (GM DT), stochas-
tic binarized activation gate module without the weight in-
puts (GMWOW ST), and deterministic non-binarized activa-
tion gate module without the weight inputs (GMWOW DT)
on the toy experiment. These results are averaged over 30 runs
for the models trained from scratch. 86

4.29 Comparison of the logistic activation function values for GM ST
and GMWOW ST. The first row is the histograms for 0 itera-
tion, the second row is the histograms for 1000 iterations, the
third is the histograms for 3000 iterations, and the last one is
the histograms for 5000 iterations. 88

4.30 Results with the output of the stochastic binarized gate modules
with and without the weight inputs. These results are corre-
sponding to GM ST and GMWOW ST) on figure 4.27. Blue
and red dots describe one of the weights for hidden to output
layer will be used, and grey dots describe both weights for hid-
den to output layer are used. 89

4.31 Results for the output of the deterministic non-binarized gate
modules with and without the weight inputs. These results are
corresponding to GM DT and GMWOW DT on figure 4.27. p1
is outputs of the logistic function on the gate module for one
of the two weights, p2 is for the other one. Both deterministic
gate modules are very dynamic to the inputs. 89

xii

A.1 Proportion (0 to 1) vs confidence level (0-100) for target classes
of adversarial examples on changing dropout probability exper-
iments (without any regularizations, 10, 50, and 90 % probabil-
ities). ε means perturbation level (0.01 to 0.25). Proportion 0
means none of the examples, and 1 means all of the examples.
Also, Confidence level 0 means 0 % confidence for the target
class, and 100 means 100 % confidence for the target class. . . 110

A.2 Proportion (0 to 1) vs confidence level (0-100) for target classes
of adversarial examples on changing L1 λ experiments (without
any regularizations, λ = 1e− 5, 1e− 2, 1e− 1). The confidence
levels for W/O any regularizations and λ = 1e− 5 change very
similarly. At ε = 0.15, most of both confidence levels are zeros.
On the other hand, confidence levels for λ = 1e − 2, 1e − 1
gradually change from high to low. 111

A.3 Proportion (0 to 1) vs confidence level (0-100) for target classes
of adversarial examples on changing L2 λ experiments (without
any regularizations, λ = 1e − 5, 1e − 2, 1e − 1). These results
are similar to L1. The high λ gradually change the confidence
levels from high to lower, but the lower change the confidence
levels rapidly. 112

A.4 Proportion (0 to 1) vs confidence level (0-100) for target classes
on stochastic and deterministic binarized neuron experiments
for MLP. 113

A.5 Proportion (0 to 1) vs confidence level (0-100) for target classes
on stochastic and deterministic binarized neuron experiments
for 1CNN. DBN and ST 1CNNs have very similar behaviors.
Most of the confidence levels at a lower ε are 100 %. while
increasing ε, the proportions for DBN and ST are divided into
two, close to 0 or 100%, even at ε = 0.25. The proportions
of the middle of confidence levels are less. On the other hand,
REINFORCE-1CNN are most robust among the models. The
proportions of high confidence levels for REINFORCE gradu-
ally decrease but not too much. 114

A.6 Proportion (0 to 1) vs confidence level (0-100) for target classes
on stochastic and deterministic binarized neuron experiments
for 2CNN. Similar to 1CNN result, DBN and ST 2CNNs are
very similar behaviors. The proportions for REINFORCE at
high confidence levels are more robust than the others in this
experiment too. 115

xiii

B.1 Histogram of probabilities of activations (σ(a)) from the gate
module (2nd layer) before they are binarized (scale is 0 to 1).
Around 50% of the activations are close to 1, and around 50 %
are close to 0. 116

C.1 The differences in accuracy between the training and testing
MNIST datasets (clean datasets) for SGBN and SGBN with
relu activation . 117

D.1 An adversarial example crafted by the first gate module. . . . 118

D.2 An adversarial example crafted by the second gate module. . . 118

D.3 The accuracies of CNN-BIN on FGSM crafted by SGBN (red),
the first (blue), and the second gate modules (green). 119

D.4 The accuracies of SAP on FGSM crafted by SGBN (red), the
first (blue), and the second gate modules (green). 119

D.5 The accuracies of BNN with PGD on FGSM crafted by SGBN
(red), the first (blue), and the second gate modules (green). . . 120

xiv

Abstract

Adding small perturbations to test images can drastically change the classification

accuracy of machine learning models. These perturbed examples are called adversarial

examples [108]. Studying these examples may shed light on the learned structure in

the network, as well as on the potential security threat that they pose for practical

machine learning applications [63]. Furthermore, since human observers can be fooled

by adversarial examples [25], this study may aid in preventing the manipulation of

human observers’ reactions.

In this thesis, at first, we focus on gaining an understanding of the cause of ad-

versarial examples. We argue, adding to the view of Galloway et al., that overfitting

is a factor of adversarial examples, while the other researchers found the cause of

adversarial examples is not related to overfitting. To make this argument, we include

two directions in our study, the first is to evaluate several standard regularization

techniques with adversarial attacks, and the second is to evaluate stochastic bina-

rized neural networks on adversarial examples. We report that strong regularizations

including stochastic binarized neural networks do not only improve overfitting but

also help the networks in fighting against adversarial attacks.

Furthermore, we introduce a model called the Stochastic-Gated Partially Binarized

Network (SGBN), which incorporates binarization and input-dependent stochastic-

ity. In particular, a gate module learns the probability that individual weights in

corresponding convolutional filters should be masked (turned on or off). The gate

module itself consists of a shallow convolutional neural network, and its sigmoid out-

puts are stochastically binarized and pointwise multiplied with corresponding filters

in the convolutional layer of the main network. We test and compare our model with

several related approaches on both white- and black-box attacks, and to try to gain

an understanding of our model, we visualize activations of some of the gating network

outputs and their corresponding filters. Moreover, we apply a simple version of SGBN

to a toy experiment to gain an understanding of how changeable the activations of

the gate modules may be.

xv

List of Abbreviations Used

AD Adaptive Dropout.

BIM Basic Iterative Method.

BNN Binary Neural Network.

BP Backpropagation.

CNN Convolutional Neural Network.

CNN-BIN Convolutional Neural Network with Binarized Dense Layer.

DBN Deterministic Binarized Network.

DC DropConnect.

FGSM Fast Gradient Sign Method.

FNN Feedforward Neural Network.

GM DT Deterministic Non-binarized Activation Gate Module with the Weight In-

puts.

GM ST Stochastic Binarized Activation Gate Module with the Weight Inputs.

GMWOW DT Deterministic Non-binarized Activation Gate Module without the

Weight Inputs (GMWOW DT).

GMWOW ST Stochastic Bbinarized Activation Gate module without the Weight

Inputs.

ILL Iterative Least-likely Class Method.

JSMA Jacobian-based Saliency Map Attack.

xvi

MLP Multilayer Perceptron.

NN Neural Network.

PGD Projected Gradient Descent.

RM Random Masking.

SAP Stochastic Activation Pruning.

SGBN Stochastic-Gated Partially Binarized Network.

STE Straight-through Estimator.

WOGM MLP without gate module.

xvii

Acknowledgements

I would like to thank my parents and brother, Sayoko Kubo, Katsutoshi Kubo, and

Dr. Toshihisa Kubo for encouraging me to finish my PhD program. I would also

like to acknowledge my supervisor and co-supervisor, Dr.Thomas Trappenberg and

Dr.Sageev Oore who always gave me excellent suggestions to finish my PhD. Further-

more, I thank my colleague Michael Traynor. I always discussed my ideas with him,

and he gave me many suggestions. Without his help, I could not publish any papers

for the conferences. I would thank my friend and colleague, Junliang Luo. When I

felt so stressed about my research, he always listened to me, and I relaxed a lot.

Beside my advisors, I would like to thank the rest of my thesis committee: Dr.

Pawan Lingras, Dr. Malcolm Heywood, and Dr. Fernando Paulovich for their com-

ments and encouragement.

xviii

Chapter 1

Introduction

1.1 Overview

Machine learning was defined by Arthur L. Samuel [97] as a “field of study that gives

computers the ability to learn without being explicitly programmed.” More formally,

Tom M. Mitchell [72] defined machine learning as “a computer program is said to learn

from experience E with respect to some class of tasks T and performance measure P,

if its performance at tasks in T, as measured by P, improves with experience E.”

A machine learning model learns from training examples to improve predictions on

unseen examples without hard-coded solutions.

Machine Learning algorithms tend to be divided into three categories: Supervised

learning, unsupervised learning, and reinforcement learning. In supervised learning,

there are inputs and labels of the inputs. The supervised machine learning model takes

the inputs and makes predictions. The errors calculated between the predictions and

the labels are used to train the model. The goal of supervised learning is to learn a

function that maps inputs to the desired outputs (labels). In unsupervised learning,

there is input data, but no accompanying labels. An unsupervised learning model

learns the patterns of the inputs or structure within the inputs. In reinforcement

learning, an agent learns how to take an action to maximize the cumulative rewards

in the environment.

There have been many successful attempts to apply supervised learning models,

especially neural networks, to problems such as camera relocalization [55, 54, 17],

object detection [91, 92], video classification [53, 112, 122, 71], language translation

[106, 8], and speech recognition [45, 38]. One well-studied and advanced application of

supervised learning is image processing with neural networks [59, 101, 107, 41, 42]. For

instance, VGG [101] and GoogleNet [107], which represent very deep neural networks,

have been applied to solve image classification problems. These models successfully

improved the classification accuracies on large image datasets such as ImageNet [20].

1

2

Figure 1.1: Adversarial examples crafted by evolutionary algorithms. Figure from
[79]. Deep learning model classified these images as king penguin, starfish, baseball,
and electric guitar.

However, these successful models for the image classification problem are limited

when small perturbations are added to the images. In 2014, Szegedy et al. [108]

and Biggio et al. [10] found that adding small, well-crafted perturbations to images,

creating what they call adversarial examples, cause the images to be misclassified

by machine learning classifiers. Adversarial examples are mostly imperceptible to

humans, but they are significantly harmful to machine learning classifiers [121]. In

addition, Nguyen et al. [79] proposed adversarial attacks that craft adversarial exam-

ples by using evolutionary algorithms, which humans cannot recognize (figure 1.1).

These examples fool deep neural networks with a high confidence level. Even though

well-trained deep neural networks achieve high levels of accuracy on testing datasets,

it is still difficult for the models to defend against adversarial examples. Recently,

researchers found that the adversarial attack is not only a problem for image clas-

sification, but also for object detection [118], voice recognition [12, 102, 123], and

question answering [52]. Furthermore, this problem is not limited to machines - it

can also negatively impact human behaviour. Recently, Elsayed et al. [25] showed

that time-limited human observers can be fooled by adversarial examples.

The cause of this problem has been debated, and several hypotheses have been

suggested. A well-known explanation for adversarial examples is the linear hypothesis

[37]. According to this hypothesis, the reason for adversarial examples in neural

networks, even deep neural networks, is that the models are “too linear” (a small

perturbation can grow linearly with the dimension of the parameter size) including

activation units that are piecewise linear such as rectifier units or sigmoidal units.

3

Another hypothesis is that the cause of adversarial examples is related to over-

fitting. Overfitting is defined as a model that learns a function which is too closely

fit to a training dataset causing the model to possibly fail to classify unseen or test

data correctly. Although some studies show that the detrimental effect of adversarial

examples is not related to overfitting [108, 37], Galloway et al. [35] have shown re-

cently that limiting overfitting does increase the accuracy of machine learning models

presented with adversarial examples. Thus, it is not clear that overfitting is unrelated

to the cause of adversarial examples.

Another hint that overfitting might indeed be an important element of successful

adversarial attacks is that binarized neural networks improve their accuracies in the

face of adversarial examples as well. Binarized neurons are well studied as a form

of regularization [44, 9, 18]. Galloway et al. [34] demonstrated the effectiveness of

binary neural networks (BNN), whose weights and activations are constrained to

1 or -1, against adversarial examples. BNN improve the robustness against some

adversarial examples when using the projected gradient descent (PGD) technique of

Madry et al. [70].

Moreover, Dhillon et al. [21] recently showed that activation nodes can be dropped

out using stochastic masking at each layer of the network during forward propagation

to improve accuracy against adversarial examples. Stochastic masking of activations

is another form of regularization that can help achieve some robustness against ad-

versarial examples [114].

1.2 Focus of thesis

Adversarial attacks are categorized into two classes, white-box attacks and black-box

attacks. White-box attacks [108, 37, 86, 78, 13, 77] use a model’s own gradient to

craft adversarial examples. This means that the attacker needs to know information

about the model. On the other hand, black-box attacks [84, 85, 14, 23, 105] are

attacker models that can only access the inputs and outputs of a defender model, but

the attacker models do not know the architecture of the defender model.

In this dissertation, the focus of our study is on defending neural networks against

both white-box and black-box attacks, and we introduce a learning model to increase

the robustness of the neural networks. Previous studies [34, 21] show that binarization

4

(a) Original image (b) Perturbation (c) Perturbed image

Figure 1.2: An example of adversarial examples. One layer convolutional neural
network classifies this original image (a) as 3 with 100% confidence. However, after
adding the well-crafted perturbation (the fast gradient sign method) to the image,
the network classifies the perturbed image (c) as 5 with 100% confidence.

and stochasticity help to defend the networks against adversarial examples. We com-

bine the strength of binarization and stochasticity to our model to create an extremely

robust mechanism against white-box attacks. In addition, we check our model’s ro-

bustness against black-box attacks and find that our model is more resilient than the

other binarized models and stochastic models. Our model is called Stochastic-Gated

Partially Binarized Network (SGBN). SGBN model has one or more gate modules

learn which weights of the main network should be turned on or off. This turning

on and off of the weights depends on the input and can be considered a regularizer.

We visualize the gate module activations that turn the weights of the main networks

on and off in order to gain an understanding of our model. Furthermore, we discuss

what the gate module learns. Besides comparing our model to the other binarized

and stochastic models in standard datasets, we apply a simple version of SGBN to a

toy experiment to gain a basic understanding of the mechanism. In this experiment,

we compare a conventional SGBN without the weight inputs and one that has the

weight inputs for the gate modules. The model with the weight inputs is the original

model of SGBN. The result of this experiment shows that the performances of SGBN

with and without the weight inputs are very similar, but SGBN without the weight

learns the targets faster than SGBN with the weight inputs.

5

1.3 Overview of adversarial methods

There are many studies on adversarial attacks with different methods. Here, we

discuss, several areas of methods to outline. First, we discuss different adversarial

attacks and defense methods. Then, we briefly review relations with the physical

world and the cause of adversarial examples.

1.3.1 Adversarial attacks

The first study showing adversarial examples is that of Szegedy et al., published

in 2014 [108]. The authors generate small perturbations to images for an image

classification task, and the classifiers are fooled by the perturbed images with high

probability. One of the attacks in the study, L-BFGS, is found by minimizing its `2

norm distortion. L-BFGS aims to find the perturbation r that minimize:

c|r|+ loss(x + r, t) subject to x + r ∈ [0, 1]m, (1.1)

where c is a minimum constant and t is a target class. Linear search is used to find

the minimum constant c where c > 0 until an adversary is found. This method is

time-consuming and impractical. Instead of this method, subsequent research uses

the fast gradient sign method (FGSM) [37] as a baseline. This method uses the sign

of the gradient of the loss with respect to an input to craft a perturbation, and this

perturbation is added to the input with a small step size. This method is a step

away (with the small step size) from the direction of the gradient which classifies

the input x as a target y. This method is straightforward to compute, and strong

perturbation levels are possible. Papernot et al. [86] also implement an adversarial

attack called Jacobian-based saliency map attack (JSMA). L-BFGS and FGSM that

are methods to add perturbations to a whole input, but the goal of JSMA attack is

to modify a few pixels in an input for a model to misclassify the input. With JSMA,

it is computationally expensive to calculate a saliency map that gives an indication

of which features have more effects on misclassification if perturbed [93].

The above-mentioned attacks are single gradient-step attacks. The single gradient-

step attacks might not be strong enough to fool machine learning models. Instead

of adding small perturbations to an image in a single step, iterative methods add

6

perturbations to an image over a loop. These methods can craft stronger attacks

than the single-step attacks. One iterative method, the basic iterative method (BIM)

[63], iteratively applies FGSM multiple times with a smaller step size to an image.

Another method is to iteratively apply FGSM multiple times with a smaller step size

to an image, but using the least-likely class predicted by the network as a target class.

This is called the iterative least-likely class method (ILL) [63]. This method iteratively

adds small perturbations to an image, and the perturbed images are classified as the

class which is the lowest confidence level in a prediction of a model on the clean

image. All of the above methods are also used for black-box attacks. One model crafts

adversarial examples using any of these methods, and these adversarial examples often

fool other models [108, 111].

1.3.2 Defending against adversarial examples

There have been studies on how to defend neural networks against adversarial ex-

amples. One of the early studies on defending against adversarial examples is on

adversarial training [37, 62]. Adversarial training is a method to train a model on a

training dataset with adversarial examples. One of the popular adversarial training

methods is the projected gradient method (PGD) introduced by Madry et al. [70].

The PGD uses an iterative method to craft adversarial examples to train a model,

and the authors show that PGD is robust against both white- and black-box attacks.

Tramer et al. [111] introduce another type of adversarial training called the ensemble

adversarial training. The idea is to train a pre-trained model on not only adversarial

examples crafted by the pre-trained model, but also adversarial examples crafted by

other models, which are pre-trained separately from the main network in order to

avoid overfitting to the main network’s specific perturbations. This training improves

the network performances on both white- and black-box attacks.

Another approach of defending methods is defensive distillation [87, 82, 83]. Dis-

tillation is originally studied for reducing a size of neural networks by transferring the

knowledge from a large network to a small network [46]. Defensive distillation reduces

a model’s sensitivity against small adversarial perturbations, making it difficult for

attackers to craft effective adversarial perturbations.

7

Binarized neurons improve the resilience of neural networks against adversarial ex-

amples. For example, Galloway et al. [34] show that binary neural networks (weights

and activations are constrained to -1 or 1) with PGD are very robust against adver-

sarial examples. These defensive distillation and binary neural networks are known

as gradient masking models [85]. The gradient masking models do not have useful

gradients to craft gradient-based adversarial attacks. For example, binary neural

networks constrain weights and activations to +1 or -1 stochastically or determinis-

tically. These binarized functions are not differentiable, and the gradients of these

functions are estimated by the gradient estimator [9]. Thus, they do not provide use-

ful gradients for crafting adversarial examples. Another example of gradient masking

is applying dropout [104] during training and testing time [114]. When crafting ad-

versarial examples, the gradient of the dropout model will be returned, but some of

the nodes are stochastically dropped out.

Athalye et al. [6] define obfuscated gradients as a special case of gradient masking.

There are three types of obfuscated gradients. One is shattered gradients that do not

exist or are incorrect because models use defenses which are non-differentiable or

cause gradients to be non-existing or incorrect such as the input transformation [40].

Another type of obfuscated gradients is stochastic gradients depending on testing

time randomness [21] and randomization layers [117]. One of the stochastic gradient

methods, stochastic activation pruning (SAP) [21], prunes a subset of the activations

stochastically. This stochasticity improves an accuracy on adversarial examples. The

third type is vanishing/exploding gradients that are often caused by defenses that

consist of multiple iterations of neural network evaluation. For example, a classifier

f(g(x)) where g(·) is a optimization loop to transform a input x to a new input x̂.

Differentiation through this optimization loop yields exploding or vanishing gradients.

This happens in very deep computation such as Defense-GAN [96].

1.3.3 Adversarial examples in the real world

Adversarial examples can be applied to the physical world [121]. For most of the

studies of adversarial examples, adversarial examples are directly fed into models to

misclassify them. However, in the real world, we often use cameras or sensors to

8

collect the data, as opposed to directly feeding the images to the models. Kurakin

et al. [63] study whether adversarial images, obtained from a cell phone, could fool a

neural network. They find that adversarial examples are misclassified by the neural

network. In addition, a study by Evtimov et al. shows that perturbed traffic sign

images such as a stop sign can fool neural networks [27].

1.3.4 The cause of adversarial examples

The cause of adversarial examples has been debated. Szegedy et al. [108] show that

adversarial examples crafted by one model are misclassified by other models trained

from scratch with different hyper-parameters, and the other models trained from

scratch on a disjoint training dataset. From these observations, the authors suggest

that adversarial sensitivity is not a problem of overfitting. Instead, Goodfellow et

al. [37] introduce the linear hypothesis as the cause of adversarial examples. Their

explanations is, even a linear model, does not overfit, misclassify adversarial examples.

Instead of overfitting, the linear hypothesis is explained by the dot product of a weight

vector and adversarial example:

wT x̃ = wTx+ wTγ, (1.2)

x̃ = x+ γ, (1.3)

where γ is an adversarial perturbation, and x̃ is an adversarial example. This

perturbation γ is increased linearly by wTγ. When x and γ are very high dimensional,

the summation of small changes of the γ will lead to a huge change of the input.

The other hypothesis should be seen when the network is poorly generalized or

overfitting [109, 35, 98, 33]. Tanay et al. [109] point out that the linear hypothesis is

not sufficient to explain the cause of adversarial examples. The authors explain that

the ratio of the perturbation respective to the input does not change even though

the dimension of the input increases. The authors introduce a new hypothesis that

is related to tilting a classification boundary. When a model learns a classification

boundary which lies close to a sub-manifold of a class and is tilted with respect to the

manifold, adversarial examples are obtained by adding perturbations to the manifold

until the perturbed data crosses the boundary. Moreover, when the classification

9

boundary is slightly tilted, the distance between the data and the boundary is very

close, and this can lead to strong adversarial examples that are almost not perceptible

by humans because the data point is very close to the original data point. The

authors argue that this occurs along directions of low variance in the data, and this

can be considered an effect of overfitting which is mitigated by varying regularization

methods. Galloway et al. [35] find that mitigating overfitting of neural networks

improves the robustness on adversarial examples. Another study by Galloway et

al. [33] applied two neural networks, one with adversarial training on FGSM, while

the other was with L2 weight decay, to FGSM and non-FGSM attacks on a logistic

regression task. The authors find that the adversarially trained network on FGSM is

robust against FGSM but not the non-FGSM attack. On the other hand, the network

with L2 weight decay is reasonably robust against both of the attacks. Galloway et

al. show that overfitting to one type of perturbation might lead the network to be

weak against other attacks, while the weight decay has a beneficial effect in defending

against both of FGSM and the non-FGSM attacks. Schmidt et al. [98] find that a

classification model must generalize, and the number of samples is needed to achieve

the robustness against adversarial examples. Furthermore, Elsayed et al. [24] propose

a regularization technique, specifically, a new form of the loss function, to enforce a

large margin that is a large distance from the decision boundary. The authors discuss

that benefits of the large margin classifiers are better generalization and robustness

to input perturbations. This means that even if small perturbations are added to

the inputs, these perturbations cannot easily flip the predicted labels of the models.

Applying the proposal of Elsayed et al. of regularization to deep neural networks

improves the robustness of the networks against both white- and black-box attacks

compared with the standard cross-entropy loss.

1.4 Contributions of studying adversarial examples and this thesis

Adversarial examples crafted by one machine learning model often mimic other mod-

els. However, a recent study by Elsayed et al. [25] shows that time-limited human

observers can be deceived by adversarial examples crafted by machine learning mod-

els. Studying adversarial examples may shed light on the learned structure in the

network, as well as on the potential security threats that they pose for practical

10

machine learning applications [63]. Since human observers can be fooled by these

examples, the study of adversarial examples is also important for avoiding the ma-

nipulation of a human observer’s reactions to, for example, a picture of a politician,

which could be manipulated by machine learning models in an untrustworthy way

[25].

In this thesis, our contribution is twofold. First, motivated by the study of Gal-

loway et al. [35] into whether or not the cause of adversarial examples is related to

overfitting, we investigate the use of regularization methods such as dropout, weight

decay, and binarized neurons to mitigate overfitting for each neural network and to

see how the regularization changes network performance against adversarial examples.

We find that regularizations, especially strong ones, drastically improve accuracies on

adversarial examples.

The second contribution we make is to introduce a new gradient masking ap-

proach that is more robust against both white- and black-box attacks compared with

the other gradient masking approaches. This is based on combining two forms of

regularization, binarization and stochasticity. We argue that robustness is due to two

reasons: The first reason for robustness against white-box attacks is that our model’s

gradient masking approach creates weak perturbations that are easily classified by

even an undefended model. The second reason is that the stochasticity introduced

by turning the weights on and off results in the ability to ignore some perturbations

on the weight level, and this helps to defend our model against black-box attacks.

This specific form of turning the weights on and off is not purely random but instead

learned. Note that our model does not use adversarial training to improve robustness.

1.5 Stochastic-gated partially binarized network - A general overview

We investigate a partially binarized neural network whose weights are stochastically

masked depending on each input. This model’s weights are masked using the gate

module. A general view of this model is depicted in figure 1.3. In this figure, the model

without the gate module(s) is a conventional neural network with a hidden layer(s).

What the gate module does is to mask the weights of the main network depending

on the input. This gate module’s activations are stochastically binarized, and the

activations are used to mask the weights of the main network. The gate module is

11

Figure 1.3: A general view of a stochastic-gated partially binarized network model.

jointly trained with the main network on a training dataset. The stochastic part of the

gate module is not differentiable. For this reason, one type of gradient estimators, the

straight-through estimator (STE) [9], is used for calculating the gradient. Since the

stochastic part of the gate module is non-differentiable, SGBN is one type of gradient

masking approaches. One of the benefits for SGBN is that it does not greatly reduce

the performance on a clean testing dataset.

The difference between our model and the other binarized neural networks is the

types of binarization. For instance, the weights and or or activations for binary neural

networks such as [18, 19, 50, 90, 124, 110, 5] are binarized to +1 and -1. On the other

hand, for our model, SGBN, the activations of the gate module are binarized to 1 to

0 to mask the main network’s weights which are constrained to real values and zeros.

In our model, each input for the gate module changes the activations of the gate

module. This means the weight of the main network will be changed by each of the

inputs. This weight level masking or gating is analogous to activity in the human

brain. Synapses on a single neuron often display widely varying neurotransmitter

release probabilities [43, 94, 48, 22, 26].

12

1.6 Thesis outline

In this work, we aim to introduce a model of what we have applied to various types

of adversarial attacks. First, we will discuss some basic concepts very briefly in three

sections: Neural Networks, Binarized Neural Networks and Estimating Gradients,

and Adversarial Examples and Training. In the section on binarized neural networks

and estimating gradients, we explain binarized neurons with the straight-through es-

timations. In the section on adversarial examples and training, three adversarial at-

tacks, two adversary distortion measurements, and adversarial training are explained.

Thereafter, in Chapter 3, we applied basic regularizations to shallow networks to mit-

igate the overfitting. This study connects to the next chapter (Chapter 4) to propose

a new model, stochastic-gated partially binarized network for adversarial examples.

In this chapter, we report the performance of SGBN compared with the other gra-

dient masking approaches on the FGSM, two iterative methods on the MNIST, and

the FGSM on CIFAR-10. The black-box attack (FGSM) on MNIST are also exam-

ined. The parameter setting and environment of experiments will be explained in the

chapter. Finally, we conclude with an outlook to future works in Chapter 5.

Chapter 2

Basic concepts

In this chapter, we first talk about the basic concept of supervised learning. Then

neural networks, binarized neural networks with gradient estimators, adversarial ex-

amples and adversarial training, and two adversary distortion measurements will be

discussed.

2.1 Supervised Learning

The goal of supervised learning is to learn a function that maps an input to a desired

output. After training, a supervised learning model is used to predict the output of

unseen data. There are two tasks in supervised learning. One is classification, and the

other one is regression. The classification task is to learn the output of a discrete label.

For the regression task, the model learns the output, which is a numerical continuous

value. One method to train supervised learning models is to use gradient descent

to minimize a loss function. To minimize the loss function, the partial derivative of

the loss function with respect to each parameter or weight will be calculated. This

derivative is used for updating each weight w as follows:

wn = wn − α
∂Loss

∂wn
, (2.1)

where α is a step size or learning rate, and n is an index for the weights.

2.2 Neural networks

A neural network (NN) is a biologically inspired algorithm [120] used to solve many

problems. There are several types of NNs, including feedforward neural networks and

convolutional neural networks. We will discuss here feedforward neural networks and

convolutional neural networks briefly.

13

14

2.2.1 Feedfoward neural networks

A feedforward neural network (FNN) is frequently used to solve various problems. We

discuss two of the simplest models: The perceptron and the multilayer perceptron.

(a) A perceptron: An example of Feedforward Neural networks. Multiplication of inputs
and weights will be the output of the network.

(b) A multilayer perceptron: An example of Feedforward Neural networks. Between the
input and output layers, there is a hidden layer(s) to learn a more complicated (non-linear)
function than a simple (linear) function.

The simplest FNN is a perceptron network, as pictured in figure 2.1a. In this case,

the sum of the products of the weights and inputs is directly calculated to produce

the output, and the information moves from the input layer to the output layer.

The weights and output node model the synapse and neurons in a biological brain,

and these weights establish the strength of the connection between nodes. This is

described with a weight wi and an input xi by

y =
∑
i

xiwi, (2.2)

15

where y is the output of the perceptron. The perceptron can learn only a linear

function (y = ax + b). This means the network cannot learn a non-linear function

(such as y = ax+cx2+b) to solve more complicated functions than the linear function.

A multilayer perceptron (MLP) (figure 2.1b) can solve this problem, that consists

of at least two layers; one or more hidden layers and an output layer. Similar to a

perceptron, the information in the network moves forward to the output layer through

the hidden layer from the input. This hidden layer is helpful to learn the non-linear

function to solve the problem which the perceptron has. The outputs in each layer are

also produced by equation 2.2 and applied to an activation function which transforms

the input to the non-linear output. An activation function can be sigmoid, tanh,

rectified linear unit, or others.

There are several proposals for how to train the FNN. One of them is the gradient

descent algorithm. To compute the gradient of the network outputs with respect to

all weights in the network, there is a method called backpropagation (BP) [95]. A

loss function, for example, mean square error or cross-entropy, is used to calculate

the error between the desired output and the output of the network. Then, this error

back-propagates through the networks to update the weights using BP.

Training NNs on a small dataset may cause overfitting [100]. Overfitting is de-

fined as a model which is too closely fit to training dataset. There are reasons why

overfitting happens to the model. First one is the training dataset that does not have

enough examples. Second one is a model has many parameters. The last one is a

model is too complex. The model is only good on the training dataset but not on an

unseen or a testing dataset. Also, underfitting may happen when a model is too sim-

ple and not well-suited to both the training dataset and the testing dataset. These

are depicted in Figure 2.2. A good model performs well not only on the training

dataset but also on the testing dataset.

2.2.2 Neural networks in image classification

One well-studied and advanced application of neural networks is image classification.

Image classification is the processing of taking an image input and predicting the

target class of the image [1]. Recently, most of applications for image classification is

with the convolutional neural network (CNN), so why is CNN more often applied to

16

Figure 2.2: Examples of underfitting, generalized well, and overfitting. The figure is
from [89]. Bias means the error on the training dataset, and variance means the error
on the testing dataset.

image classification than a multilayer perceptron (MLP)?

MLP is very useful for tabular datasets such as CSV and spreed sheet files with

fixed features in specific cells of a table. However, there are two problems for ap-

plying MLP to image classification. One of the problems of MLP is weight sizes are

depending on dimensionality of images. For example, if an image of MNIST dataset

[65] is 28 × 28 × 1 (greyscale) = 784 pixels, and there are 10 nodes in a hidden layer,

total number of weights from an input to a hidden layer will be 7840. This is still

manageable. However, if an image higher dimensions than MNIST such as 128 × 128

× 3 (RGB) = 49152 pixels, and there are 10 nodes in a hidden layer, total number of

weights from an input to a hidden layer will be 491520. This means a huge number of

weights are required for training neural networks. The other problem of MLP is not

translation-invariant. MLP reacts differently to images when the images are shifted.

For instance, after we train a simple MLP on MNIST and shift an image of number

to the top-left (Figures in 2.3), the MLP misclassifies the image.

CNN solves these problems inherent in MLPs. CNN has an ability to extract in-

ternal representations of two-dimensional images using smaller weight sizes (or kernel

sizes) [4]. The size of the weights for CNN is M × N squares, and these M and N are

smaller than the images. These weights are shared by all nodes in a feature map. This

is called weight sharing. Furthermore, CNN is translation-invariant through a sliding

kernel that builds in shift-invariance of higher-level features such as edges anywhere

in images.

In our study, we implemented our proposed model based on CNN for image clas-

sification, specifically adversarial examples. However, our model might be also useful

to natural language processing and tabular datasets since our model use stochastic

17

Figure 2.3: Examples of shifted images on MNIST and predictions of MLP in bottom
of the images. Left: centered image (Original), middle: shifted to right, right: shifted
to the top-left. MLP cannot classify the shifted images anymore. Figures from [3]

masking for the weights. This stochastic masking might ignore some unrelated fea-

tures of inputs to improve the performance for models. We will discuss this stochastic

masking that ignores some perturbations on adversarial examples, and it helps our

model’s robustness.

In the next subsection, we will discuss convolutional neural networks in detail.

2.2.3 Convolutional neural networks

One variant of a FNN is the convolutional neural network (CNN) [64, 59, 2]. The

traditional FNN receives inputs and transforms them through a series of hidden layers.

These hidden layers are sets of neurons, where each neuron is fully connected to all

of the neurons in the previous layer. However, these connections in each layer are

not shared. A convolutional layer replaces the dense to sparse interactions (or sparse

connectivity of weights) using smaller filters than inputs. The shared filters look at

only a small region in the inputs and move from the left and right spatially in the

inputs. Usually, these filters are M × N squares, and these M and N are smaller than

the inputs’ width and height. These small filters are used to detect specific features

or patterns of inputs such as edges and are used to convolve across the widths and

heights of the inputs and compute dot products between the filters and inputs at any

positions. This could be described as follows:

18

Figure 2.4: An example of convolutional neural network architecture, Lenet. Figure
from [64]. In this case, there are two convolutional layers, two max-pooling layers
after each convolutional layers, and one fully connected layer.

yi,m,n = f(
∑
j

∑
q

∑
r

xj,m+q,n+rwi,j,q,r + bi), (2.3)

where i and j are indices for the channels of the outputs and inputs, respectively.

Also, m and n are the locations of images in 2-dimensional coordinate, and q and

r are indices for the locations for the filters in 2-dimensional coordinate. These

filters can be much smaller than the inputs, which reduces the number of parameters

compared with an MLP. The convolutional layer produces 2-dimensional activation

maps, which are passed to a next layer in CNN. A CNN is usually comprised of one or

more convolutional layers and followed by one or more fully connected layers. Also,

there are filters in each convolutional layer to extract many kinds of features at spatial

locations. These architectures help CNN to detect local features and global features

of objects. For the local features, the filters detect many local features in positions

with a large variety of poses. For the global features, many layers achieve high-level

representation using each layer that detects the local features.

Pooling

Another key feature of a CNN which is used to help the detection of features is

pooling. Pooling operators subsample the representation. Pooling layers are usually

added after each convolutional layer. These pooling layers replace the outputs of the

convolutional layers at certain locations with a summary of the nearby outputs. For

example, max-pooling layers take maximum values of certain locations of convolved

images. This means the images are subsampled by only considering the maximum

feature represented by the filters in the locations. The locations span outputs of the

19

convolutional layers, and in the simplest case are non-overlapping. The most common

pooling layers are max-pooling with filters of size 2 × 2 applied with a stride of 2

downsamples. This reduces the widths and heights of the inputs to the half. This

reduction is crucial for object recognition, especially large image recognition. The

reduction reduces the parameter sizes and computation time.

Batch normalization

One of the techniques used to accelerate training a CNN is batch normalization [51].

The normalization layer is usually inserted after an activation function to make each

dimension of activation outputs unit Gaussian [66]. To apply batch normalization to

each layer, mini-batch mean µB and variance σB are calculated as follows:

µB ←
1

m

m∑
i=1

xi, (2.4)

σ2
B ←

1

m

m∑
i=1

(xi − µB), (2.5)

where m is a mini-batch size and i is an index for the mini-batch. These µB

and σB are used to normalize the input of this normalization layer and to make each

dimension of the input unit Gaussian:

x̂i ←
xi − µB√
σ2
B + ε

, (2.6)

where ε is a small float number to avoid dividing by zero. There are learnable pa-

rameters γ and β of batch normalization. These parameters are used to scale and

shift the input if the network does not want zero-mean and unit-variance, and allows

the network to recover the raw input or the identity mapping if the raw input scale

is useful. These γ and β are used as follows:

yi ← γx̂i + β, (2.7)

where y is an output in the batch normalization layer. Usually, a higher learning rate

causes exploding or vanishing the gradients. The gradients for outlier activations with

the higher learning rate may explode or vanish. Since batch normalization reduces

these outlier activations, the higher learning rate can be used for faster convergence.

20

Dropout

When there is not enough training data for a model, overfitting might happen. To

avoid this problem, dropout [104] is often used for models, especially dense layers for

deep convolutional neural networks. This technique drops out nodes on each layer

with uniform probability, and this is mostly applied to the networks during training

but not testing.

Dropout probability is most often set to a constant, but this dropout probability

can be learned and changed depending on inputs, which has some relevance with

respect to our work. Ba et al. [7] propose this learnable and changeable dropout

called adaptive dropout. This adaptive dropout jointly trains a neural network with

a binary belief network that learns the probability. This learnable probability is

described as:

P (mj = 1|ai : i < j) = f(
∑
i:i<j

wj,iai), (2.8)

where a is an input for a layer, m is a binary variable to be used for dropping out

or not, and w is weights for the layer. In this case, i and j are layer indices. For

the standard dropout, this m is set to 0.5. This probability is used for Bernoulli dis-

tribution to dropout the activations stochastically, or for multiplying the activations

by this probability similar to a gaussian dropout [103], however, as mentioned, this

probability is learnable with sampling.

L1 and L2 weight decay

L1 and L2 weight decays are regularizers for the networks in the form of weight decay.

They can be derived from adding a penalty term to the loss function that represents a

prior. A common choice is to encourage small weights with a Gaussian or Laplacian

prior around zero. The corresponding L1 and L2 weight decays are described by

adding the penalty to the loss function Loss(w; x, y) as follows:

L̃oss(w;x, y) = Loss(w; x, y) + λ||w||n, (2.9)

where n is the norm size, λ is the regularization parameter that determines the

regularization strength, and w are the weights of the networks.

21

2.3 Binarized neural networks and estimating gradients

A binarized neural network is a neural network with binarized activations, weights,

or both. These binarizations are implemented in various ways. We will introduce

several ways to implement the binarized neural networks here.

2.3.1 Binarized neurons and gradient estimators

Neural networks used in deep learning often have real-valued activation functions.

However, binarized neural networks use binarized neurons where each activation h

has a value of 0 or 1. These values are chosen probabilistically depending on the

neuron’s net activation, as follows:

p(h = 1|a;w) = σ(a;w), (2.10)

where a is the neuron’s input vector, and σ is the logistic activation function com-

puted with weights w. This can be implemented by simply comparing the activation

probability with a uniform random variable d:

h = 1d<σ(a;w), (2.11)

where 1d is the indicator function, which compares the samples p with the uniform

distribution d ∼ U [0, 1], and returns 1 or 0 .

This equation is not differentiable, thus preventing classic backpropagation. To

overcome this problem, there have been proposals for how to estimate and propagate

gradients through stochastic neurons [44, 9]. These methods are called straight-

through estimators (STEs). One suggestion [9] which we call hard STE, is to back-

propagate through the hard threshold function by using a gradient value of 1 even if

the argument is positive or negative. Another approach [9], which we call soft STE, is

to use the gradient of the sigmoid for the backpropagation, and the soft STE can be

further enhanced with a slope-annealing trick [15] that gradually increases the slope

of the logistic function. This slope-annealing reduces the discrepancy between the two

threshold function and the sigmoidal approximation during the forward and backward

pass. This means that for the forward pass, the activations will be constrained to

1 or 0 stochastically (equation 2.12). If the gradient of the logistic function is used

for the backpropagation, there is a gap between the forward and backward passes.

22

To bridge the gap, the slope-annealing trick can be used. The slope-annealing trick

modifies h by multiplying the input a by the slope m as follows:

h = 1d<σ(ma;w). (2.12)

The slope is gradually increased during training, and computation of the gradient of

the output with respect to the input will be:

∂h

∂a
=
∂σ(ma)

∂a
. (2.13)

The other suggestion of estimation of the gradient, introduced by [9]. The algo-

rithm estimates the expectation of the gradient of a loss function with respect to the

inputs with a baseline as

E[
∂Loss(w; x, y)

∂a
] = E[(h− σ(a))(Loss(w; x, y)− Loss(w; x, y))], (2.14)

where Loss(w;x, y) is a baseline as:

Loss(w;x, y) =
E[(h− σ(a))2Loss(w; x, y)]

E[(h− σ(a))2]
. (2.15)

This baseline is used to minimize the variance of the estimation. For this estimator,

the estimator requires broadcasting Loss(w; x, y) throughout the networks [9]. This

estimator is a special case of the REINFORCE algorithm [116] which uses a sampling

technique to train a neural network in reinforcement learning without any target

labels. In the study of [116], the author shows that when the stochastic action h is

sampled with probability pw(h) and yields a reward R then,

Eh
[
∂logpw(h)

∂w
(R− b)

]
, (2.16)

where b is a baseline. The REINFORCE estimator computes the differentiation be-

tween the binarized activation h and the probability σ(a) to backpropagate it with

the loss. Bengio et al. consider that this is equivalent to the original REINFORCE al-

gorithm, which backpropagates the derivative of the log probability of h with respect

to the weight with the reward.

23

2.3.2 Binary neural networks

Courbariaux et al. [18] introduce the first study of binary neural networks (BNN)

whose weights are binarized. The authors consider that most of the network consists of

real-valued weights, and these real values make the computation time higher because

of matrix-multiplications of these values. Also, large amounts of memory are needed

for these parameters. The authors propose binary neural networks to eliminate the

need for these multiplications by forcing the weights to binarize (+1 or -1). There

are two ways to binarize the weights. The first is a deterministic way to binarize the

weights based on the sign function as follows:

wb =

+1, if w ≥ 0,

−1, otherwise,
(2.17)

where wb is the binarized weight, and w is the real-valued weight. The second is a

stochastic way to binarize the weights:

wb =

+1, with probability p = σ(w),

−1, with probability 1- p,
(2.18)

where σ is the hard sigmoid function:

σ = clip(
x + 1

2
, 0, 1) = max(0,min(1,

x + 1

2
)). (2.19)

These binarizations make the weights smaller than precision weights. These bina-

rizations are known as strong regularizers [18]. The authors discuss that they only

binarize the weights during the forward and backward propagations, and not during

the parameter update, in order to keep good precision weights which are necessary for

stochastic gradient descent to work at all during the update. However, the derivative

of the sign function is zero almost everywhere since the gradient of the cost with

respect to the sign function quantization before discretization is zero, and this prob-

lem does not update the weights at all [19]. To solve this problem, another study by

Courbariaux et al. [19] apply the straight-through estimators [44, 9] to BNN. In that

study, the authors consider the sign function quantization q :

q = sign(r), (2.20)

24

where r can be weights, and sign is the sign function. To obtain the gradient of the

cost function with respect to r, STE is used:

gr = gq · 1|r|≤1, (2.21)

where gq is the estimator of the gradient ∂Loss
∂q

, and gr is the estimator of the gradient

∂Loss
∂r

. The derivative |r| ≤ 1 can be seen as propagating through the hard tanh htanh

as follows:

htanh(x) = clip(x,−1, 1). (2.22)

Courbariaux et al. [19] use these methods for activations to binarized to +1 or -1 in

order to more greatly reduce the computation time and memory usage.

BNN are one of the successful models against adversarial examples with one of

adversarial training, the projected gradient descent (PGD)[70]. Galloway et al. [34]

apply BNN with PGD to both white- and black-box attacks, and BNN are very

robust against these attacks because of combining PGD and binarization, which is

one of the gradient masking approaches. In this study, BNN weights and activa-

tions are quantized to +1 and -1 stochastically or deterministically using Bernoulli

samples (the authors show that implementation in TensorFlow in the paper like

Bernoulli(probs=tf.clip by value((x + 1.)/ 2., 0., 1.))).sample() -1) and the sign func-

tion, respectively. They find that the stochastic quantization for BNN is helpful to

defend against an iterative attack.

2.3.3 Stochastic activation pruning networks

Stochastic activation pruning (SAP) applies randomness to a neural network to defend

against adversarial examples [21]. SAP stochastically masks the activation in each

layer. The probability of masking activations, p is defined as

pij =
|hij|∑ai

k=1 |hik|
, (2.23)

where h is the activation output for each layer. i, j, a are the indices of the layer,

individual activation, and the total number of activations, respectively. These prob-

abilities are used to drop out the activations using the reweighting factor,

qij =
1(hij)

1− (1− pij)r
i
p
, (2.24)

25

where r is the number of outputs sampled, 1 is the indicator function that returns 1

if hij is sampled at least once and 0 otherwise. This q will be used;

Mp(h
i) = hi � qij, (2.25)

where Mp(h
i) is a new activation with dropping out the activations. The authors

apply the SAP technique to a pre-trained deep network (ResNet [42]). Applying SAP

to the networks reduces the performance of classification on a clean dataset slightly,

but increases the robustness against adversarial examples [6]. The SAP model is very

similar to dropout [104]. The difference between SAP and dropout is that SAP is

likely to sample activations with weighted probabilities in absolute values which are

changeable depending on inputs, whereas dropout sample probabilities are always

constant.

2.4 Adversarial examples and training

In this section, at first, we will give an overview of crafting adversarial examples, and

discuss three white-box adversarial attacks. One is the fast gradient method (FGSM),

another one is an iterative method, the basic iterative method (BIM), and the last

one is an iterative and targeted, the iterative least-likely class method (ILL).

2.4.1 Overview of crafting adversarial examples

For crafting an adversarial example, the purpose is to maximize Loss(w; x + γ, y) for

each clean example x, where w are the weights of a model, and y is the target, and γ

is an adversarial perturbation. This x+ γ is replaced by x̃ as an adversarial example.

The x̃ should be similar to the clean image x or perceptible by humans, and the

prediction ỹpred of the model for x̃ and y should be ỹpred 6= y.

2.4.2 Fast gradient sign method

The fast gradient sign method is a common method for crafting adversarial examples

[37]. After training a model on a training dataset, the model parameters are frozen.

The derivative of the cost function with respect to the inputs, Loss(w; x, y), is used

26

to calculate adversarial examples x̃ with a sign function as:

x̃ = x+ ε · sign(∇xLoss(w; x, y)), (2.26)

where x is the input, y is the target, and ε is the hyperparameter to change the

perturbation level or magnitude. Intuitively, this method attempts to increase the

cost function by adding the calculated perturbation to the inputs.

2.4.3 Basic iterative method

The basic iterative method (BIM) [62] iteratively applies the FGSM to images with

a small step size. In this method, the pixel values are clipped after each step. The

equation for crafting perturbed images using this method is given by

xt = xt−1 + ε · sign(∇xt−1Loss(w; xt−1, y)), (2.27)

where t = 1, ..., T describes the number of iterations, x0 is the original image, and

x̃ = xT is the perturbed image after the iterations.

2.4.4 Iterative least-likely class method

The iterative least-likely class method also applies perturbations to images iteratively

with a small step [62]. However, this method crafts a perturbation which moves

the image toward the class with the lowest confidence probability in the original

prediction. The equation of this method is given by

xt = xt−1 − ε · sign(∇xt−1Loss(w; xt−1, yllc)), (2.28)

where t = 1, ..., T is the number of iterations, x0 is the original image, x̃ = xT is the

perturbed image after the iterations, and yllc is the least-likely class for a machine

learning classifier.

2.4.5 Adversarial training

Overview of adversarial training

The first study of adversarial training was conducted by Goodfellow et al. [37]. This

study shows that training a model on a training dataset and adversarial examples

27

simultaneously improve accuracy on an adversarial attack. Most of the studies replace

half of mini-batch with adversarial examples to train the models. For adversarial

training, a loss is described in [37] as:

L̂oss(w; x, y) = τLoss(w; x, y) + (1− τ)Loss(w; x + γ, y), (2.29)

where τ is the constant weight for the loss (when τ is 1, the adversarial loss (Loss(w; x+

γ, y)) will completely be ignored, and the conventional loss (Loss(w; x, y)) will be

used). τ = 0.5 is used for replacing the half of mini-batch with adversarial examples

to train the models. However, one of the studies for adversarial training replaced

the entire mini-batch with adversarial examples [49], and their method improves the

robustness of neural networks against adversarial examples. Kurakin et al. [62] men-

tion that adversarial training acts as a regularizer. Also, Kurakin et al. find that

a deeper model benefits more than a shallower model from adversarial training, and

does not reduce accuracy much on clean examples compared with the shallower model.

However, Galloway et al. [33] point out that adversarial training can be the cause of

overfitting to specific perturbations. The authors show that an adversarially trained

network on FGSM is strong against FGSM but are weak against an unseen attack.

Projected gradient descent

Projected gradient descent (PGD) is introduced by Madry et al. [70]. Their defense

uses the basic iterative method to train a model. It consists of min-max optimization

to defend the model against adversarial examples as follows:

argmin
θ

[
E(x,y)∼D

[
maxγ∈GLoss(w; x + γ, y)

]]
, (2.30)

where D is a data distribution, and G is a set of allowed perturbations. Equation

2.30 describes that the inner maximization aims to find the adversarial perturbation

for x that reaches a high loss. The outer minimization finds model parameters that

minimize the “adversarial loss”. Madry et al. point out that PGD is equivalent

to BIM. This means that when applying PGD to a network, adversarial examples

crafted by BIM are used for adversarial training. PGD is well used for defending

models against both white- and black-box attacks, but Carlini et al. [11] question

28

whether these strong attacks will increase the robustness against all of the attacks or

not similar to the discussion put forth by Galloway et al. [33].

2.4.6 Adversary distortion measurement

In our study, we check the adversary distortion between perturbed and clean images

using a method, `1. We briefly discuss them in this subsection.

`1 and `∞ measurement

There is a commonly used method to measure the closeness between perturbed and

clean images [121]. `m measures the magnitude of perturbation by m-norm distance:

||x||m =

(
n∑
i

||xi||m
) 1

m

. (2.31)

`1 measure the mean absolute distance between the perturbed and clean images; `∞

denote the maximum absolute change for all pixels in adversarial examples. If these

distortion measurements or distances are very small, the perturbed and clean images

are very similar. In our experiment, `1 will be used to measure the distortion.

Chapter 3

Mitigating Overfitting Using Regularization to Defend

Networks Against Adversarial Examples [60]

3.1 Motivation

The cause of adversarial examples is still debated. Goodfellow et al. [37] argued that

adversarial examples generated by one model are often also misclassified by other

models which consist of different architectures or are trained on disjoint training

datasets. Because of these behaviors, the authors argue that overfitting is not related

to the cause of adversarial examples. Instead of overfitting, their explanation for the

cause of adversarial examples in neural networks, even deep neural networks, is that

they are “too linear” (a small perturbation can grow linearly with the dimension of

parameter size) including the activation units that are piecewise linear functions such

as rectified linear units or sigmoid. Moreover, in their paper, the authors applied a

modest L1 weight decay to the first layer of a maxout network that did not resolve

the sensitivity to adversarial examples. They concluded that smaller weight decay

permitted successful training, but conferred no regularization benefit. Furthermore,

Papernot et al. [87] mention that L1 and L2 weight decay will cause underfitting and

therefore should be discarded as a solution to avoid decreasing classification accuracy

on a clean dataset.

On the other hand, Galloway et al. [35] address how researchers have falsely con-

cluded that overfitting is not related to the cause of adversarial examples. The authors

show that pruning overfitting using strong L2 weight decay could be a way to im-

prove the network accuracy on adversarial examples. In their paper, the authors

suggest that starting with smaller models that can handle strong weight decay is

worth exploring as a natural defense against adversarial examples.

However, the legitimacy of the argument presented by Goodfellow et al. [37] is

still unclear. Even if the models are trained with different architectures or on the

29

30

Figure 3.1: An example of the overfitting decision boundary. The overfitted decision
boundary can easily create adversarial examples since examples are very close to the
boundary.

disjoint datasets, these models might learn similar decision boundaries because these

datasets are not completely different.

In this chapter, we add to these arguments that overfitting contributes at least

somewhat to adversarial sensitivity. If overfitting is not problematic, the accuracy

performances of well-generalized networks and overfitted networks on adversarial ex-

amples would not be considerably changed. We consider that harmful adversarial

examples would be hard to create if a decision boundary is well-generalized, but an

overfitting decision boundary would easily flip an example to another class by adding

perturbations. An example of overfitting decision boundary is shown in figure 3.1.

Hence, we study the performances of neural networks with various forms of regu-

larization on adversarial attacks compared with a neural network without any regu-

larizations. In addition to fairly standard methods of regularization such as dropout

and weight decay, stochastic binarized neurons are also regularizers [44]. We there-

fore also study the performance of stochastic binarized neural networks on adversarial

examples.

More specifically, in this chapter, we apply dropout [104] to a shallow convolutional

neural network (CNN) with low to high dropout probabilities. In [37], the authors

applied dropout to a maxout network, but they did not check whether or not changing

the strength regularization affected the network performance on adversarial examples.

31

We check the relationship between the overfitting rates and accuracies by changing

the dropout probability on adversarial examples. Similar to Wang et al. [114], we

study dropout as a regularizer with adversarial examples. However, unlike Wang et

al., we do not use dropout during testing. Rather, we specifically check if overfitting

is a problem. Furthermore, we apply L1 and L2 weight decay to the shallow CNN.

Although Galloway et al. [35] have already shown that L2 weight decay improves the

network performance on adversarial examples, here we add a wider range of λ from

weak to strong in response to Papernot et al. [87], and we show that accuracy is

improved when λ is well-tuned.

Finally, we apply stochastic binarized neural networks to adversarial examples.

Galloway et al. [34] have already shown that the binary neural networks (-1 or 1

on weights and activation) with the straight-through estimator (STE, in this case,

soft STE with the slope-annealing trick) [9] improved robustness against adversarial

examples. In our study, we investigate a stochastic neural network with a special

case of the REINFORCE estimator [9] and compare it with STE and a deterministic

binarized neural network. In our case, our binarizations are only for activations

constrained to 0 or 1. We conduct these experiments on the perturbed MNIST dataset

[65].

To generate adversarial examples, we use a white-box attack with the fast gradient

sign method (FGSM) [37]. This method is fast and straightforward to compute,

and strong perturbation levels are possible. Furthermore, we do not use adversarial

training, but we train the networks on a clean dataset with the regularizations.

These results have been published and presented at the Canadian Conference on

Artificial Intelligence (CanAI 2019).

3.2 Experiments

3.2.1 Parameter setting

We start by applying a shallow convolutional neural network (CNN) with changing

dropout probabilities to the MNIST dataset. This network consists of one convolu-

tional layer with 32 filters whose size is 5×5 and stride is 2. This is followed by a

100-node dense layer and a 10-node softmax output layer. The activations for the

32

convolutional and dense layers are the rectified linear unit except for the output layer.

We use dropout after the first dense layer with the dropout probability 10, 30, 50,

70, 90%, and also compare this to CNN without any regularizations.

The second experiment is the same as the first, but we use L1 and L2 weight

decay instead of dropout. These regularizers are added to each layer including the

convolutional layer(s). The network condition is the same as the first one. The

hyperparameter λ are 1e-5, 1e-4, 1e-3, 1e-2, and 1e-1. As before, we compare the

results to CNN without any regularizations as a baseline for this experiment too.

Finally, we apply three versions of a binarized MLP, one with the soft STE and

the slope-annealing trick [15] (STE-MLP), one based on the REINFORCE estimator

(REINFORCE-MLP), and one deterministic binarized MLP (DBN-MLP). The details

of architectures are given in table 3.1. In addition, we add one or two convolutional

layers to the MLPs to examine if the convolutional layer(s) improve the robustness

against adversarial examples. The details of the architectures for one convolutional

(1CNN) and two convolutional layers (2CNN) with binarized activations are given in

tables 3.2 and 3.3. For the slope techniques in the soft STE, we increased the slope m

with the following schedule m = min(5, 1 + 0.04 ∗Nepoch) where Nepoch is the number

of epochs. For the binarized dense layer of DBN, we round the output of logistic

activation function for the output h = round(σ(a)).

Table 3.1: Architecture of multilayer perceptron

Layer Size stride activation

dense 100 stochastic binarized activation
dense 10 softmax

Table 3.2: Architecture of adding one convolutional layer

Layer Size stride activation

conv 32×5×5 2 relu
dense 100 stochastic binarized activation
dense 10 softmax

The networks are trained on the softmax cross-entropy loss function, and we use

Adam optimizer [56] and Xavier initialization [36] for all of the networks. The learning

rate for the two first experiments is 1e-4. For the binarized neuron experiment, the

33

Table 3.3: Architecture of adding two convolutional layers

Layer Size stride activation

conv 32×5×5 2 relu
conv 64×5×5 2 relu
dense 100 stochastic binarized activation
dense 10 softmax

learning rates for MLPs, 1CNNs, and 2CNNs are 1e-2, 1e-3, and 1e-3, respectively.

The training epoch sizes for the 1st and 2nd experiments are 20 epochs, and for the

stochastic neuron experiments, the epoch sizes are 20, 30, and 30 for MLPs, 1CNNs,

and 2CNNs, respectively. All of the accuracies are averaged over 10 runs for the

models trained from scratch. Experiments are conducted on the MNIST dataset [65]

with the regular 60000 28×28 grayscale images as the training dataset and 10000 for

the testing dataset.

3.2.2 Results for changing dropout probability

The network without dropout was the least accurate at classifying adversarial ex-

amples in this experiment (Figure 3.2). This type of network is more vulnerable to

adversarial examples even at small perturbation levels compared with the networks

with dropout. When using a dropout technique, it is common to use a dropout

probability of 50%, but in this study, a dropout probability of 90% was optimal for

the network to mediate adversarial examples. Compared with the network without

dropout, the network with a dropout probability of 90% is more robust, especially

at the medium perturbation level (at ε = 0.1, the difference is around 40%). Fur-

thermore, after training the models, we observed the errors, error = (100-accuracy),

for each model on the clean training and testing datasets to check if overfitting had

occurred for each model. In addition, we checked the confidence levels of the target

classes (the softmax probability only for target classes) on FGSM when we changed

the perturbation level (in this case, ε = 0.01, 0.13, and 0.25 for the dropout proba-

bilities of 10 and 90 %) as seen in figure 3.3. In this figure, at ε = 0.13, it is clear

that most of the target confidence levels for the network with a dropout probability

of 10 % are already zero compared with the confidence levels for the network with a

dropout probability of 90% that gradually changes from high to low. High dropout

34

probabilities suppress rapid changes from high to low confidence. Additional confi-

dence levels for the networks with and without dropout are available in Appendix

A.1.

3.2.3 Results for changing L1 and L2 λ parameters

As seen in figure 3.4, strong L1 weight decay helps the networks to defend against

adversarial examples. The network with the strongest λ underfits the clean dataset.

However, interestingly, this underfitted network was better than the overfitted net-

works at classifying adversarial examples. The overfitted networks are more vulner-

able to adversarial examples even at small perturbation levels. Furthermore, as seen

in figure 3.5, the results for the networks with L2 weight decay were similar to the L1

results. The accuracies of the networks with λ < 1e-2 were not affected by the weight

decay at any perturbation level, but the networks with λ ≥ 1e-2 were more accurate

than the networks with λ < 1e-2 at medium to higher perturbation levels. We also

found that pruning overfitting increases the accuracies of the networks on adversarial

examples in this experiment.

The confidence levels of the target classes on adversarial examples were also

checked for L1 and L2 as seen in figures 3.6 and 3.7. When both weight decays

are overly strong, they might cause the networks to underfit the datasets, reducing

the accuracies of the networks. However, if the λ is well-tuned, it helps the networks

to improve accuracy on adversarial examples.

Additional confidence levels for the networks both with and without L1 and L2

weight decay are available in Appendix A.2.

3.2.4 Results for binarized neural network

The previous experiments have already demonstrated that strong regularizations help

the networks to defend against adversarial examples. We conducted similar experi-

ments with stochastic binarized networks (STE and REINFORCE) and deterministic

binarized networks (DBN). Figures 3.8, 3.9, and 3.10 show the accuracies on adver-

sarial examples for MLP, 1CNN, and 2CNN with both stochastic and deterministic

binarized neural networks. The figures show that both STE and REINFORCE always

perform better than DBN. The graphs at the bottom show the differences in accuracy

35

Figure 3.2: Results of the dropout experiments Left: The accuracies for the network
with dropout on the perturbed testing dataset. Right: The errors for the networks
with dropout and without dropout (w/o DO) on the training and testing dataset
after the training for checking the overfitting levels on each model.

36

Figure 3.3: Proportion (0 to 1) vs confidence level (0-100) for target classes of adver-
sarial examples on changing dropout probability experiments (10 and 90 % probabil-
ities). ε means the perturbation level (in this case, 0.01, 0.13, and 0.25). Dropout
probability of 90 % gradually changes confidence level from high to low while increas-
ing the perturbation level. However, obviously, the confidence level for the probability
of 10 % changes from high to low compared with the confidence level for probability
90 %.

37

Figure 3.4: Results of the L1 weight decay experiments: The accuracies for the
network with L1 weight decay on the perturbed testing dataset. L1 weight decay -
strong λ is helpful to defend the networks against adversarial example, but excessive
λ cannot be helpful.

between the training and testing datasets to check the overfitting levels for each net-

work. Furthermore, we checked the accuracies for all of the networks on the training

and testing datasets as seen in tables 3.4 (MLP), 3.5 (1CNN), and 3.6 (2CNN). Even

though the accuracies of REINFORCE networks on the training and testing were not

38

Figure 3.5: Results of the L2 weight decay experiments: The accuracies for the
network with L2 weight decay on the perturbed testing dataset. L2 weight decay -
strong λ is helpful to defend the networks against adversarial example.

39

Figure 3.6: Proportion (0 to 1) vs confidence level (0-100) for target classes of ad-
versarial examples on changing L1 λ experiments (λ = 1e-5 and 1e-1). At ε = 0.13,
most of the confidence levels the network with λ = 1e-5 are zeros. On the other hand,
confidence levels for λ = 1e-1 gradually change from high to low.

better than the others, REINFORCE networks always generalized well and were more

robust at higher perturbation levels than the others. REINFORCE-1CNN achieved

an accuracy of 78.2±2.4% at ε = 0.25. STE and DBN had very similar differences

in accuracy between the training and testing datasets, but STE was slightly more

accurate than DBN against adversarial examples over all types of networks.

40

Figure 3.7: Proportion (0 to 1) vs confidence level (0-100) for target classes of ad-
versarial examples on changing L2 λ experiments (λ = 1e-5 and 1e-1). At ε = 0.13,
most of the confidence levels the network with λ = 1e-5 are zeros. On the other hand,
confidence levels for λ = 1e-1 gradually change from high to low.

The confidence levels of the target classes on FGSM for all types of 1CNN were

checked in figure 3.11. REINFORCE-1CNN had more robust confidence levels than

the other networks on the confidence levels as well. Even at the highest perturbation

level, 0.25, most of the confidence levels for the target classes were quite high.

Additional confidence levels for the binarized neural networks are available in

41

Appendix A.3.

Table 3.4: Training and testing accuracies for each MLP

Data type DBN-MLP STE-MLP REINFORCE-MLP

Training 98.7±0.2% 98.7±0.1% 91.7±0.04%
Testing 96.7±0.1% 96.9±0.1% 91.7±0.05%

Table 3.5: Training and testing accuracies for each 1CNN

Data type DBN-1CNN STE-1CNN REINFORCE-1CNN

Training 99.9±0.02% 99.9±0.1% 96.9±1.5%
Testing 98.7±0.08% 98.7±0.1% 96.7±1.4%

Table 3.6: Training and testing accuracies for each 2CNN

Data type DBN-2CNN STE-2CNN REINFORCE-2CNN

Training 99.9±0.02% 99.9±0.01% 95.6±0.4%
Testing 98.9±0.07% 99.0±0.07% 95.9±0.5%

3.3 Discussion

Regularizations drastically improved the network accuracies on adversarial examples.

We have shown the performances here with several regularization techniques, includ-

ing dropout, weight decay, and binarized neurons. These clearly demonstrated that

overfitting contributes to the cause of adversarial sensitivity. Such regularization tech-

niques usually help to smooth decisions, thereby moving them further from training

examples.

Regularizers could not completely defend against adversarial examples with strong

perturbation levels. The deterioration in accuracy of the recognition networks should,

therefore, be evaluated in light of some criteria of picture integrity, such as whether

a human would perceive the examples as problematic. Another possible way to catch

adversarial examples with strong perturbations is to include an adversarial class in

the training dataset and hence learn the characteristics of such attacks.

We checked how different the perturbations between CNN without any regulariza-

tions and CNN with L1 weight decay (λ=1e-2) were. These are shown in figure 3.12.

42

Figure 3.8: Stochastic and deterministic binarized MLP accuracies (top) and the
differences in accuracy (bottom) between the training and testing datasets (clean
datasets)

43

Figure 3.9: Stochastic and deterministic binarized 1CNN accuracies (top) and the
differences in accuracy (bottom) between the training and testing datasets (clean
datasets)

44

Figure 3.10: Stochastic and deterministic binarized 2CNN accuracies (top) and the
differences in accuracy (bottom) between the training and testing datasets (clean
datasets)

45

Figure 3.11: Proportion (0 to 1) vs confidence level (0-100) for target classes on
stochastic binarized and deterministic experiments for 1CNN. DBN and STE 1CNN
have very similar behaviors. Most of the confidence levels at a lower ε are 100 %.
while increasing ε, the proportions for DBN and STE are divided into two, close to 0
or 100%, even at ε = 0.25. The proportions of the middle of confidence levels are less.
On the other hand, REINFORCE-1CNN are most robust among all of the models.
The proportions of high confidence levels for REINFORCE gradually decrease but
not too much.

46

(a) ε = 0.01 (b) ε = 0.13 (c) ε = 0.25

Figure 3.12: Comparison of FGSM for CNN without any regularizations (upper) and
CNN with L1 weight decay (λ = 1e-2) (lower). The perturbations for CNN without
any regularizations are well spread on images. In contrast, the perturbations for CNN
with L1 are centered.

Even though the upper parts of figures for both with and without L1 are slightly

different, humans can see that the perturbations with L1 weight decay and without

any regularizations are very similar. Furthermore, we checked if humans can still

classify adversarial examples crafted by these CNNs when the perturbation level is

extremely high. Figure 3.13 shows adversarial examples (FGSM of ε = 0.9) crafted

by the models. The perturbed images crafted by both CNN with L1 weight decay

and without any regularizations are hard for even humans to recognize the targets as

1, 0, and 4.

Overly strong regularizations could be the cause of underfitting such as L1 weight

decay. However, we have seen that in our L1 weight decay experiment, the accuracy

with overfitting on adversarial examples was worse than it was with underfitting. This

is another indication that overfitting is related to the cause of adversarial examples.

While weight decay and dropout helped with protecting against adversarial attacks,

we would suggest using stochastic binarized neural networks for such protection be-

cause of their high performances and confidence levels for the correct classes even at

high perturbation levels. This would especially be the case with the REINFORCE

training of binarized neurons.

A recent study using binary representations of weights and activations with values

-1 or 1 showed the robust results on some adversarial examples [34]. This is another

47

(a) Without any reguralizations

(b) L1 weight decay ((λ = 1e-2))

Figure 3.13: Comparison of FGSM (ε = 0.9) for CNN without any reguralizations
(upper) and with L1 weight decay (λ = 1e-2) (lower). Left: The figure is 1. Center:
The figure is 0. Right: The figure is 4.

example of a regularizer based on binarized neurons [18]. This result also supports

the assertion that overfitting is related to the cause of adversarial examples.

Although the network with these regularizations could not protect themselves at

high perturbation levels, this study reported that the improvement of accuracies at

medium perturbation levels on adversarial examples could be evidence of the relation

to the cause of adversarial examples.

Chapter 4

Learning Adaptive Weight Masking Networks for

Adversarial Examples [61]

4.1 Motivation

In the previous chapter, we have shown that regularizers are helpful in defending

the neural networks against the adversarial examples, especially stochastic binarized

neurons. Also, we have seen that stochastic masking approaches are helpful to defend

the networks [114, 21], which are also forms of regularization.

We consider here combining these two forms of regularization, i.e. binarization

and stochasticity. We thus investigate a partially binarized neural network whose

weights are stochastically masking dependence of each input. We call this model a

stochastic-gated partially binarized network (SGBN). Our model is a type of gradient

masking approach since it estimates the gradient of a non-differentiable function (a

binarized activation) using the hard STE [9]. Also, we consider a stochastic synapse

as a regularizer and implement it with a gate module. The gate module consists of a

shallow convolutional neural network, and it learns the probability with which certain

weights in the main network should be masked. This is similar to DropConnect [113],

but our model tries to learn which connections should be dropped depending on

the current input. This means that training the network with the module in some

senses involves learning to guess the best sub-network for each input and using such

guesses during the testing time. This is related to other examples where the dropout

probability is learned, such as adaptive dropout [7], variational dropout [57], and

excitation dropout [125]. For example, adaptive dropout [7] jointly trains a neural

network with a binary belief network that learns the probability, which depends on the

input of masking the activation nodes of the neural network. Here, we also jointly

train a main network together with a single or multiple gate modules, but in this

case, we learn the probability for masking weights of the main network rather than

48

49

activations, where the probability varies as a function of the input. To gain some

understanding of our model, we visualize the activations of the gate module and the

probabilities of the masking weights.

Wen et al. [115] discuss that stochastic weight methods such as DropConnect [113]

have a serious drawback compared with the stochastic activation methods. Networks

typically have more weights than units, and these stochastic weight methods are done

typically with a single sample per mini-batch because of computational expenses. In

our study, all samples per mini-batch are used to learn the probability of dropping

the connection.

Our models are similar in parts to gated recurrent units (GRU) [16] and long

short-term memory cells (LSTM) [47]. GRUs and LSTMs use gating to determine

how much of the past information stored in the previous state should be preserved,

and how much can be overwritten by the current input. These gates are implemented

at the unit/node level. In our case, the gate module is used to learn the probability

with which weights should be used (turned on or off) to classify a given example.

The binarized neural networks for adversarial examples show significant improve-

ment compared with conventional neural networks. Our model, stochastic-gated

partially binarized network (SGBN) will show that improvement and robustness

against some adversarial examples, compared with other binarized neural networks:

A stochastic binarized neural network, a stochastic activation pruning network, and

a binary neural network. We set up five experiments; the first three experiments,

FGSM, BIM, and ILL are on MNIST, the fourth one is FGSM on CIFAR-10. The

last one is a black-box attack with FGSM on MNIST.

Materials and parts of results for these experiments have been published and

presented at the International Joint Conference on Neural Networks (IJCNN 2019).

4.2 Proposed model

In this section, we introduce our network. We give an outline of the network before

discussing the individual models in more detail.

50

4.2.1 Stochastic-gated partially binarized network

We use binarization in different parts of our network. The base network that we call

CNN-BIN is shown in figure 4.1a. In this network, we use two convolutional layers

followed by a dense layer and a softmax output layer. While our convolutional layers

use conventional real-valued filters and ReLU activations, the following dense layer

uses binarized neurons and is trained with the soft STE with the slope-annealing trick

as described in Chapter 2, “Basic concepts”.

While binarizing the dense layer potentially improves resilience against adversarial

attacks, we hope to further improve robustness by incorporating stochasticity in the

preceding convolutional layers. We do this by adding a gating network modules

alongside each convolutional layer, as shown in figure 4.1b. The same features that are

input to the convolutional layer are also passed to the gate module. The output of the

gate module, however, is used to modulate the stochastic activity of the convolutional

filters, as described next.

4.2.2 Gate module

Figure 4.2 depicts the relationship between a gate module and its associated convolu-

tional layer in more detail. The gate module is itself a shallow CNN, with a sigmoid

output layer. These output values are then stochastically binarized (this stochastic

part of the gate module is not differentiable. Thus, the hard STE is used for cal-

culating the gradient. We found our system worked best when using soft STE with

slope-annealing for the dense layer, while using hard STE for the output of the gate

modules) and multiplied element-wise with the convolutional layer’s weights. Thus,

the gate module looks at the image and uses this information to determine which

filter weights should be active when classifying that particular input. That is:

h = g(x),

w′ = w � h,
(4.1)

where g is a gate module, and x is the input (both to the shallow CNN of the gate

module and to its associated convolutional layer). The output of the gate module

has the same shape as the filter weights of its associated convolutional layer in the

51

(a) The architecture of a 2 layer CNN-BIN. This dense layer uses stochastic binarized
activations. The output is a softmax layer.

(b) A 2 layer SGBN framework. An image is used as input both for the convolutional layer
and for the gate module on the first layer. The output from the gate module is used to
modulate the stochastic activity of the convolutional layer’s weights, as described in more
detail in figure 4.2.

Figure 4.1: Two architecture: CNN-BIN (a) and SGBN (b).

main network, so the stochastically masked synapses are computed by the pointwise

product of w and h. The masked weights w′ are then convolved with the inputs of

that layer:

o = f(x;w′), (4.2)

where f is the convolutional layer and o is its output.

The stochastic synapses can be thought of as a learnable version of DropConnect,

where the stochasticity is applied during both training and testing. There are other

architectures that use gates, such as Wavenet [80], which is a network for generating

raw audio wave and Sparsenet [103], which uses gate variables to learn the sparsity for

52

Figure 4.2: This illustrates the relationship between a gate module and a convolu-
tional layer. The activations of the gate module h are converted stochastically into
binary masks h (using the stochastic binarized activation (1 or 0)). For this stochas-
ticity, the hard STE is used for calculating the gradient. These masks, in turn, are
multiplied pointwise with the weights w of a convolutional layer f in the main net-
work to produce new, masked filters w′. The convolutional layer f then use w′ to
convolve the image (or incoming feature maps) to output o.

the weights on each layer. However, they are unit/node-based gating (e.g. Wavenet),

or the gating is not adaptable for each input (e.g. Sparsenet).

4.3 Experimental evaluation

We conduct five experiments to compare the performance of several different stochas-

tic and/or binary models. In the first three, we use the MNIST dataset and apply

three different techniques to generate the adversarial examples: FGSM, BIM, and

ILL. In the fourth experiment, we use the CIFAR-10 dataset and test the networks

against an FGSM-based adversarial attack. In the last experiment, we use the MNIST

53

dataset and FGSM to check if adversarial examples transfer between models.

4.3.1 Network parameters

For the first three experiments (FGSM, BIM, ILL on MNIST) our model’s overall

architecture is comprised of two parts: the main network, and the gate modules:

(1) The main network consists of two convolutional layers, one dense layer, and soft-

max output layer. The two convolutional layers have 32 and 64 filters, respectively,

with rectified linear unit activation. All filter sizes are 5×5. After the convolutional

layers, there are a 100-node dense layer and a 10-node softmax output layer.

(2) Each of the gate modules consists of a shallow CNN. Each shallow CNN consists

of one convolutional layer and three dense layers. The details of the two gate modules

are given in tables 4.1 and 4.2.

We compared the SGBN’s performance against 4 models. The first one consists

of two conventional convolutional layers followed by one dense layer with the rectified

linear unit activation and a softmax output layer. In the second one, we changed

the dense layer’s activation to the stochastic binarized activation (1 or 0) (CNN-BIN,

figure 4.1a). In the third one, we applied stochastic activation pruning method [21]

to the convolutional layers of the CNN-BIN model (SAP). Finally, the fourth model

consists of one conventional convolutional layer and one convolutional layer with

binarized weight (1 or -1) followed by a dense layer with binarized (1 or -1) weight

and the softmax output layer (BNN) with PGD.

All of the networks for the three experiments are configured the same as SGBN

(32 and 64 filters whose size is 5×5 for the 1st and 2nd layer respectively, and 100

hidden nodes and finally a 10-node softmax output layer). For the slope-annealing

techniques, we increased the slope m with the schedule m = min(5, 1 + 0.04 ∗Nepoch)

where Nepoch means the number of epochs. As our model contains more parameters

than the other models because of the gate module, in the discussion section (Section

4.7) we also describe results when re-training the other models with a comparable

number of total parameters.

For PGD (only for BNN), the iteration size is set to 40, and the constant weight τ

is 0.5. The mini-batch and epoch sizes for all of the models are 50 and 25 with early

stopping to avoid overfitting, respectively. These three experiments are conducted on

54

the MNIST dataset [65].

For FGSM, we checked the results on a perturbation level ε from 0.01 to 0.3,

and for each model, the accuracies are calculated using the entire perturbed testing

dataset of 10,000 samples. For BIM and ILL, the number of iterations (T) in our case

is 10. We tested the small step size (perturbation level ε) from 0.01 to 0.1. After 10

iterations, we clipped the color channel values on perturbed images between 0 and 1.

For the fourth experiment (FGSM on CIFAR-10), we changed the parameters of

the networks to accommodate the more complex nature of the images. SGBN consists

of 64, 128, and 128 filters whose sizes are 8×8, 6×6, and 5×5 for the 1st, 2nd, and 3rd

layers, respectively (the same filter sizes are used for each CNN on the gate modules,

with other parameters and activation functions for the gate modules the same as

for the other three experiments, except the hidden layer node sizes of dense layers

in the gate modules are 512, 512, and each filter size of 2nd and 3rd convolutional

layers of the main network), and followed by one dense layer 1. Also, BNN, SAP, and

conventional CNN consist of the same filter and dense layer sizes as SGBN’s main

network. In this experiment, the 1st layers of all the models are full precision. For

PGD (only for BNN), the iteration size is set to 20, and the constant weight τ is 0.5.

Furthermore, the mini-batch and epoch sizes for all of the models are 128 and 40

with early stopping to avoid overfitting, respectively. This experiment is conducted

on the CIFAR-10 dataset [58]. It consists of 60000 32×32 RGB natural images for 10

classes, with 6000 images per class. These are separated into 50000 for training and

10000 for testing dataset. The pixel values of the images are also normalized to real

numbers in the range [0,1] for each color channel in our experiment.

For the last experiment (black-box attack on FGSM), we used the same param-

eters as the MNIST experiment. We computed adversarial examples on one model

and transferred these examples to the other models. This is tested on the highest

perturbation level of ε = 0.3.

For all of our experiments, we use the Adam optimizer [56] and batch normal-

ization [51] for the convolutional layers (including those in the gate module). The

learning rates for all of the models are 1e-3. PGD for BNN is applied for the last 5

epochs. All of the accuracies are averaged over 10 runs for the models trained from

1This architecture comes from [34]

55

scratch. All of the source code for the adversarial attacks are based on Cleverhans

[81]. For BNN with PGD implementation, we used the author’s source code on [32].

Table 4.1: First gate module parameters on MNIST

Layer Size activation Note

conv 32×5×5 relu
dense 512 relu + batch normalization
dense 512 asinh
dense 800 binarized reshaped to 5×5×32×1

Table 4.2: Second gate module parameters on MNIST

Layer Size activation Note

conv 64×5×5 relu
dense 512 relu + batch normalization
dense 512 tanh
dense 51200 binarized reshaped to 5×5×64×32

Table 4.3: First gate module parameters on CIFAR

Layer Size activation Note

conv 128×6×6 relu
dense 512 relu + batch normalization
dense 512 asinh
dense 6912 binarized reshaped to 6×6×128×64

4.4 Results

Figure 4.3 shows the results for FGSM on the MNIST testing dataset. We can see

that the accuracy gets better when binarizations are added to the network. Note

that even for these relatively small networks, adding binarization (i.e. from CNN to

CNN-BIN) improves robustness, and adding stochastic activation pruning on top of

that adds further robustness. In these particular experiments, weight and activation

binarizations for both convolutional and dense layers (i.e. BNNs) helped get results

comparable to SAP. Adding stochastic masking (i.e. from CNN-BIN to SGBN) ap-

pears to further help robustness against this white-box attacks on this dataset. In

56

Table 4.4: Second gate module parameters on CIFAR

Layer Size activation Note

conv 128×5×5 relu
dense 512 relu + batch normalization
dense 512 tanh
dense 409600 binarized reshaped to 5×5×128×128

particular, SGBN achieves an accuracy of 93.1±1.2% at ε = 0.3 and shows clear

improvements over other models.

Figures 4.4a and 4.4b show the accuracies of each network on BIM and ILL. In

these methods, for BNN, stochastic and deterministic quantized weights at the 2nd

layer are applied during testing since Galloway et al. [34] suggest that the stochastic

layers improve the performance at test time and can be a possible defense against

iterative attacks. This stochastic binarization is explained in [34]. The accuracy of

this small CNN at ε = 0.02 is already close to 0 on BIM. Compared with the CNN,

both deterministic and stochastic BNNs and CNN-BIN accuracies are better, but at

a moderate perturbation level of 0.06, the accuracies are less than 10%: 6.3±1.8,

4.6±0.7, and 7.9±1.0% for deterministic BNN, stochastic BNN, and CNN-BIN re-

spectively. SAP applied to the CNN-BIN is resistant at the lower perturbation level

but not at higher perturbation levels. SGBN seems relatively robust against strong

iterative attacks on this dataset even at the highest perturbation level (77.7±5.5%

at ε = 0.1). On both ILL and BIM, the performances for the stochastic binarization

networks are better than those of deterministic networks.

Results for FGSM on CIFAR-10 are in figure 4.5. Our relatively small CNN is

naturally most vulnerable to these examples. Even though SAP helps robustness

on MNIST, it still leaves this particular network vulnerable on CIFAR-10. SGBN

achieves 17.3±0.8% on the highest perturbation level. BNN with PGD achieves the

accuracy of 13.6±1.2%. These experiments need to be interpreted with caution be-

cause it is not clear how these results scale as the networks become larger. For

example, when SAP is applied to a deep ResNet architecture as shown in Dhillon et

al [21], it achieved an accuracy of 80% at a perturbation level of roughly 0.015.

Black-box results for FGSM on MNIST are in figure 4.6. The white-box attacks

are also shown when the sources and targets are the same. Among the models, SGBN

57

Figure 4.3: The accuracies of six models on FGSM for MNIST. Also, the best ac-
curacies of BNN with PGD [34] are plotted on the perturbation level ε = 0.1, 0.2,
0.3. Another model, BNN, is the 2 convolutional layer version of BNN (scaled, the
first layer is a full precision, and the second layer is binarized) and binarized dense
layers without PGD. The other model, SAP, is 2 layer convolutional with stochastic
activation pruning (SAP) and dense layers (with stochastic binarized activation) [21]
without any adversarial training.

58

(a) The accuracies on BIM.

(b) The accuracies on ILL.

Figure 4.4: (a): The accuracies of SGBN, CNN-BIN, BNNs (deterministic (DT) and
stochastic (ST)), and SAP on the basic iterative method (BIM) for MNIST. (b):
The accuracies of SGBN, CNN-BIN, BNN (DT and ST), and SAP on the iterative
least-likely class method (ILL) for the MNIST. Stochasticity (in weights, activation,
or both) seems to be particularly helpful against the ILL-based examples.

59

Figure 4.5: The accuracies of four models on FGSM for the CIFAR-10. Note that
some approaches, such as SAP, for example, were originally applied on much larger
networks than the ones used for testing in this experiment. The accuracies here are
1.7±0.4, 2.3±0.3, 13.6±1.2, and 17.3 % at the highest perturbation level for CNN,
SAP, BNN, and SGBN, respectively.)

60

Figure 4.6: The accuracies of FGSM (ε = 0.3) transferred between models.

is the most resilient with the accuracies from 63.9% to 93.1%, while CNN is the most

vulnerable to the attacks with the accuracies from 15.3% to 77.8%. Furthermore,

SGBN creates the weakest perturbations among the models. The perturbations of

SGBN are easy to classify not only for SGBN but also for the other models even the

undefended model of CNN (average of the accuracies over all of the targets for SGBN

is 77.0% compared with 76.7%, 66.2%, 62.7%, and 54.0% for SAP, BNN, BIN, CNN,

respectively).

4.5 Visualization of SGBN

4.5.1 Visualization of activations of the gate module and main network

How does the masking of a binarized synapse layer change as the input changes? In

this section, we visualize activations of the gate module and associated synapse layer

using the clean MNIST dataset. Figure 4.7 shows activations of the 1st layer’s gate

module along with the corresponding input image after gated CNN filters have been

applied. The gate module turned on or off the specific weights of the main network.

61

Example Activations of GM Activations of 1st SGBN layer

The same target but the different examples:
Example Activations of GM Activations of 1st SGBN layer

Figure 4.7: Examples of activations of the gate modules on the 1st layer of SGBN. In
the first column, there are images for inputs for the networks. The 2nd through 7th
column are outputs from the gate modules on the clean MNIST (zeros are in black,
and ones are in white). The rest of the columns are activations of the 1st layer of the
SGBN. Upper: We picked random 5 filters, in this case, filter number 7 to 12 of 32
filters. Bottom: We also picked the same filters as the previous one. In this case, we
feed the same target but different examples to the model. Some of the activations are
similar to the previous ones, but the rest of the activations have completely changed.

62

Thus, this gating clearly depends on the input image. The activations of the gate

module are indeed adaptive and change in response to changes in the input image.

We also visualize the activation of the same target, but different examples to check if

the activation does or does not change on the examples. The bottom panels of figure

4.7 show the results. When the examples for the same target is fed into the model,

it changes the activation of the gate module to mask the main network.

Furthermore, figure 4.8 visualizes the activations (σ(a)) of the gate module (the

1st layer) before binarized (probabilities of masking) on the testing dataset. The gate

module masks specific weight depending on images. Around 60 % of the weights in

the filter are turned on, and around 40 % of the weights are turned off (figure 4.9).

In addition, we plot the histogram of probabilities of activations (σ(a)) from the gate

module for the second layer before they are binarized in Appendix B. Even though the

gate module uses the stochastic binarized activation function, the activations change

depending on each image in a nearly deterministic way.

The changing of the weights depending on each input may contribute to the ability

of these models to resist adversarial examples in addition to the gradient masking,

even at the high perturbation levels.

4.5.2 Visualization of adversarial examples and perturbation

measurement

We visualize and measure distance metrics of adversarial examples for each model

on a testing dataset of MNIST to check how perturbations are added to images. We

measure the distance, `1 between clean and perturbed images which are crafted by

each model. The measurements of the distance metrics are averaged over 10 runs

for each model trained from scratch. We also use one of the dimension reduction

algorithms, t-SNE [69] to compare the clean and perturbed images of SGBN on the

data representations.

First, we chose a clean image, perturbation, and perturbed image on FGSM (ε =

0.3) for each model as seen in figure 4.10. The perturbations for CNN and CNN-BIN

are spread over the entire image except for the right and bottom sides. Compared

with these models, the perturbations for BNN with PGD and SAP are very unique.

The shapes of these perturbations are similar to the shape of the target, 4. For

63

Probabilities for masking on the weights:
Example 1:

Example 9:

Figure 4.8: Examples of probabilities of activations (σ(a)) from the gate module (1st
layer) before they are binarized (scale is 0 to 1, and the colors are blue to red).
Examples are 1 and 9 from upper panels of figure 4.7.

Figure 4.9: Histogram of probabilities of activations (σ(a)) from the gate module (1st
layer) before they are binarized (scale is 0 to 1). Around 60% of the activations are
close to 1, and around 40 % are close to 0.

SGBN, the perturbations are spread over the entire image. We can see this difference

between clean and perturbed images on the `1 distortion measure in figure 4.11.

In figure 4.11, all of the models had lower `1 distances at lower perturbation

levels, but SGBN, CNN, and CNN-BIN `1 distances kept increasing steadily. On the

other hand, SAP and BNN `1 distances did not increase as steadily for these models.

64

Finally, at ε=0.3, the distortion for SGBN was the highest among the models. On

the other hand, the distortions for SAP and BNN with PGD were very stable even as

the perturbation level increased. There was not a significant difference between CNN

and CNN-BIN on the `1, although the accuracies of these models on the FGSM were

very different.

Figure 4.12b shows the representations of the perturbed dataset using t-SNE for

SGBN. The representations tell us that the digits were still clustered well even though

the distortion was very high for the perturbed images at ε = 0.3 compared with the

representations of the clean dataset (Figure 4.12a). Furthermore, even though the

distortion for BNN with PGD was the lowest, the digits were not clustered well.

4.6 Gaining an understanding of SGBN and the gate module

In this section, to gain an understanding of SGBN and the gate module, we conduct

several experiments. We start by comparing a conventional SGBN and one has a

deterministic non-binarized activation function in the gate modules to discover how

much stochasticity and binarization of the gate modules affect the results of white-

box attacks. After that, we retrain the gate module on the clean MNIST to check

if the gate module learns the proper representations to classify the images. We then

check whether or not SGBN needs double-sized filters, and why SGBN is more ro-

bust against black-box attacks than the other gradient masking models. Finally, we

conduct a simple toy experiment to gain an understanding of how changeable the

gate module activations are. All of the experiments are conducted on the MNIST.

All of the parameter and iteration sizes are the same as in the previous experiment

on white-box attacks for FGSM on MNIST. When we set additional parameters, we

will specifically mention them in each subsection.

4.6.1 Stochastic binarized versus deterministic non-binarized gate

modules

We have already seen that SGBN is robust against adversarial examples. Here, we

would like to check how much stochasticity and binarization of the gate modules af-

fect its performance on a white-box attack. The stochasticity and binarization are

gradient masking approaches. Since gradient masking models do not have useful

65

Example 4 on SGBN :

Example 4 on BNN with PGD:

Example 4 on SAP:

Example 4 on CNN-BIN:

Example 4 on CNN:

Figure 4.10: Examples of clean examples, perturbation, and perturbed examples on
FGSM (ε = 0.3) for SGBN, BNN with PGD, SAP, CNN-BIN, and CNN.

66

Figure 4.11: `1 distance between the clean and perturbed images on each perturbation
level for each model.

gradients to craft adversarial attacks, we hypothesize that these gradient masking

approaches create weak perturbations which can be classified easily even by an un-

defended model. To explain the weakness of these perturbations, we conduct two

experiments. First, we compare the performances of SGBN (SGBN (ST)) and SGBN

with a deterministic non-binarized activation in the gate modules (SGBN (DT)) on a

white-box attack. Second, we compare the performances of other models than SGBNs

on adversarial examples crafted by SGBN (DT) compared with SGBN (ST) to see

if the other models can easily classify the adversarial examples. Additionally, we

check the overfitting rates for SGBN (ST), SGBN (DT), and CNN-BIN to see if both

stochastic binarized and deterministic non-binarized versions of the gate module can

be regularizers. Furthermore, we check the gradients of the cost function with respect

to inputs (∇xLoss(w; x, y)) for each model to see if both binarized and deterministic

non-binarized versions of the gate module affect the gradients.

For SGBN (DT), we replaced the stochastic binarized activation function for the

gate modules with the logistic function. In this case, the synapses w′ were computed

from the pointwise product of w and h, which were the outputs of the logistic function

67

(a) The clean 10000 images of the MNIST testing dataset are reduced to two dimensions
by t-SNE.

(b) The perturbed 10000 images (FGSM with ε = 0.3) of the MNIST testing dataset for
SGBN reduced to two dimensions by t-SNE.

(c) The perturbed 10000 images (FGSM with ε = 0.3) of the MNIST testing dataset for
BNN with PGD reduced to two dimensions by t-SNE.

Figure 4.12: Comparing two t-SNE results: clean dataset (a), adversarial examples
crafted by SGBN (b) and BNN with PGD (c). We can see that adversarial examples
crafted by BNN with PGD changed a lot compared to adversarial examples crafted
by SGBN.

68

Figure 4.13: The accuracies of SGBN (ST), the deterministic non-binarized version
of SGBN (DT), and CNN-BIN on the white-box attack.

for the gate module (without stochastic binarization). The model was trained on the

MNIST from scratch.

First, we checked the accuracies of the stochastic binarized and deterministic non-

binarized version of SGBN on a white-box attack. Figure 4.13 shows the accuracies

of SGBN (ST), SGBN (DT), and CNN-BIN as a baseline on the white-box attack of

FGSM. Although there is not much difference between CNN-BIN and SGBN (DT)

on at ε = 0.0, 0.1, and 0.2, SGBN (DT) achieves an accuracy 61.5±3.7% at ε = 0.3

compared with CNN-BIN (44.6 ±2.7%), but SGBN (ST) is more robust against

FGSM than SGBN (DT). On the clean dataset, we cannot see much difference among

the models. Furthermore, figure 4.14 shows the differences in accuracy between the

training and testing datasets to check the overfitting levels for each network. The

difference in accuracy for SGBN (ST) is smaller than SGBN (DT) and CNN-BIN,

and SGBN (ST) shows better generalization behaviors than SGBN (DT) and CNN-

BIN. Even though the architectures of SGBN (ST) and SGBN (DT) are very similar,

SGBN (DT) is weaker against the white-box attack than SGBN (ST). Of course,

the gate modules in SGBN (DT) are differentiable, so they do not have a gradient

69

Figure 4.14: The differences in accuracy between the training and testing datasets
(clean datasets) for SGBN (ST), the deterministic version of SGBN (DT), and CNN-
BIN.

masking approach.

We also checked how easy it was to classify adversarial examples crafted by SGBN

(ST) compared with SGBN (DT). We applied the examples to SAP, BNN, CNN-BIN,

and CNN.

The accuracies for each model against adversarial examples crafted by SGBN (ST)

and SGBN (DT) are shown in figure 4.15. Obviously, adversarial examples crafted by

SGBN (ST) are easier than the examples crafted by SGBN (DT). Specifically, SGBN

(ST)’s examples are at least 8% easier than SGBN (DT) (stochastic binarized: 62.8%

and deterministic non-binarized: 54.1% on CNN).

We plot histograms for the gradients of the cost function with respect to inputs

as seen in figures 4.16. The gradient variance for SGBN (ST) is larger than SGBN

(DT) and CNN-BIN. This means even if the perturbation level ε is 0.3 (the highest),

the level might not be high enough to flip an example to another class. For the larger

variances of the gradients, larger changes in an input are needed to flip the input

to another class. This may be one of the reasons why SGBN (ST) cannot create

strong perturbations. Furthermore, the reason why the gradient variance for SGBN

70

Figure 4.15: The accuracies of each model on FGSM attack crafted by SGBN (ST)
and SGBN (DT). When target and source models are the same, it is the white-box
attack.

(ST) is larger is the gate module uses hard STE, which returns 1 for the gradients

of the stochastic binarized activations in the gate module. This gradient of 1 might

make the gradients larger than the other models. Wang et al. [114] also discuss that

the larger variances of the gradients are more difficult for the attacker to generate

effective adversarial examples.

Both the stochastic binarized and deterministic non-binarized gate modules, espe-

cially the stochastic binarized gate modules help not only to improve generalization

of the networks but also to protect the networks against adversarial examples. The

stochastic binarized model is more robust against the white-box attack, but the de-

terministic non-binarized model might be useful for more sensitive tasks such as a

toy experiment as in subsection 4.6.5. The stochasticity and binarization do help the

robustness of SGBN against the white-box attack.

71

(a) Histogram of the gradients of the cost function with respect to inputs for SGBN (ST).

(b) Histogram of the gradients of the cost function with respect to inputs for SGBN (DT).

(c) Histogram of the gradients of the cost function with respect to inputs for CNN-BIN.

Figure 4.16: The gradient variance for SGBN (a) are larger than SGBN (DT) (b) and
CNN-BIN (c).

72

Table 4.5: Training a dense layer setting for the first gate module

Parameters dense layer
learning rate 0.001
Iteration size 5000
Optimization function Adam optimizer

Table 4.6: Training a dense layer setting for the second gate module

Parameters dense layer
learning rate 0.0001
Iteration size 5000
Optimization function Adam optimizer

4.6.2 Learning representation and attacking the gate modules

The higher accuracy of SGBN during white- and black-box attacks compared with

the other models is almost certainly caused by adding the gate module(s) to the

convolutional layer(s). We have already seen that the stochasticity and binarization

of the gate module help to defend SGBN during attacks. However, we have not

discovered yet what the gate module has learned. We hypothesize that the gate

module learns the proper representations to classify the images, and it decides which

weights should be turned on or off to improve the SGBN accuracy even on adversarial

attacks. Furthermore, we would like to examine if each gate module is still resilient

to a white-box attack. To test these hypotheses, we designed a simple experiment.

In this experiment, we added one dense output layer to each of the gate modules.

The dense layers were trained on the MNIST dataset with all of the parameters

other than the dense layers were frozen. Figure 4.17 illustrates which part of the

SGBN parameters were trained and frozen (the first gate module with the dense

layer: 1st-GM, and the second gate module with the dense layer: 2nd-GM). After

training the dense layers, the accuracies of each model on a clean dataset and FGSM

were examined. FGSM was crafted by each gate module with the dense layer. The

parameter settings for this experiment are in tables 4.5, 4.6, and 4.7.

The results of this experiment are shown in figure 4.18. In this figure, we also add

the accuracies of the original (2-layer) version of SGBN (2-layer-SGBN) and a 1 layer

version of SGBN (one convolutional layer with one gate module, 1-layer-SGBN) to

the results in order to check how these SGBN performances are related to the gate

73

Table 4.7: 1-layer-SGBN parameters

Layer Size activation

conv 32×5×5 relu
dense 100 the stochastic binarized activation
dense 10 softmax

Figure 4.17: Left: Training the dense layer which is added on the first gate module.
Right: Training the dense layer which is added on the second gate module.

modules’ performances. The figure shows that the curve pattern of 2-layer-SGBN was

very similar to 2nd-GM while the curve pattern of 1-layer-SGBN was similar to 1st-

GM. Furthermore, 1st-GM and 2nd-GM performances on the clean testing dataset

were 84.2% and 95.8%, respectively. These results clearly illustrate that both the

gate modules learned how to classify the images. Moreover, the models with the two

gate modules are more consistently accurate than the ones with the one gate module.

Adversarial examples crafted by the gate modules

The gate modules create weak perturbations because stochasticity and binarization

are gradient masking approaches. We visualize the perturbations crafted by 1st-GM

and 2nd-GM in Appendix D. These are very similar to the perturbations crafted

by SGBN. Because of these similarities, we test whether these examples can still be

easily classified by an undefended model, conventional CNN. If CNN can achieve a

similar accuracy to SGBN during adversarial attacks crafted by the gate modules, this

might show correlations between the perturbations from the gate modules and those

74

Figure 4.18: The accuracies of the first and second gate modules, 2 layer binarized
synapses of SGBN, and 1 binarized synapse of SGBN.

from SGBN. Additionally, we check the gradients of the cost function with respect

to inputs (∇xLoss(w; x, y)) for the gate modules to see if the gradients from the gate

modules and those from SGBN are correlated.

The results are shown in figure 4.19 along with the accuracies of SGBN. These

results show that adversarial examples crafted by SGBN and 2nd-GM were correlated

since their accuracies are very similar. Furthermore, we applied the other models,

CNN-BIN, SAP, BNN with PGD to the examples (Please see Appendix D). The

results also showed the correlation of adversarial examples were crafted by SGBN

and 2nd-GM.

We plot histograms for the gradients of the cost function with respect to inputs

are plotted as seen in figures 4.20. The gradient variances of SGBN are very similar

to the gradient of 2nd-GM, and these are larger than the variance of 1st-GM. The

results also showed the correlation of the gradients of SGBN and 2nd-GM.

Necessity of the binarized dense layer

From these results, we hypothesize that the two gate modules might be enough to

defend SGBN against white-box attacks. SGBN might not need to have a stochastic

binarized dense layer, which is also one of the gradient masking approaches. If SGBN

75

Figure 4.19: The accuracies of CNN on FGSM crafted by SGBN (red), first (blue),
and second gate modules (green).

does not need the stochastic binarized dense layer, we might be able to seek a better

activation function to improve the performances of a clean testing dataset and against

adversarial attacks. To test this hypothesis, we trained SGBN without the stochastic

binarized activation but with the rectified linear unit activation for the dense layer

on the MNIST, and we tested these models on FGSM. This result is shown in figure

4.21. The figure shows that even though we changed the activation, SGBN achieved

an accuracy of 91.1±1.1% at the highest perturbation level (ε = 0.3). SGBN with

a stochastic binarized activation function is slightly better, but we cannot see much

difference between these models. For this experiment, the stochastic binarized activa-

tions for the dense layer are not needed for significant improvement on the white-box

attack. For the first consideration, based on the regularization perspective, we still

recommend using the stochastic binarized activation function for the dense layer when

applying SGBN to the other adversarial attacks (The differences in accuracy between

the training and testing MNIST datasets for SGBN and SGBN with relu are avail-

able in Appendix C). Then, the other activation functions should be tested to find the

best activation function for classifying a clean dataset and defending a model against

attacks.

These results provide strong evidence that the two gate modules are the main

76

(a) Histogram of the gradients of the cost function with respect to inputs for SGBN (ST).

(b) Histogram of the gradients of the cost function with respect to inputs for the first gate
module.

(c) Histogram of the gradients of the cost function with respect to inputs for the second
gate module.

Figure 4.20: The gradient variances for SGBN (a) and 2nd-GM (c) are similar and
larger than 1st-GM (b).

77

Figure 4.21: Each accuracy for SGBN with the stochastic binarized activation (red)
vs SGBN with the rectified linear unit activation (blue) on FGSM.

causes of creating the weak perturbations for SGBN.

4.6.3 Double-sized filters for the gate module and the main network

Since the gate module learns the proper representation to classify the inputs, we

arrive at another question: “Does SGBN need double-sized filters, filters for the gate

module of the convolutional layer and filters for the main network of the convolutional

layer, to protect itself against adversarial examples?” If SGBN does not need to have

double-sized filters, we can reduce the parameter size, and this might help to make

our model converge more quickly.

To answer this question, we compared the accuracies of a conventional SGBN on

FGSM and one has shared weights. In this case, the shared weights mean convolu-

tional filters in the main network are reused or shared with the gate modules.

The result is shown in figure 4.22. The accuracies of SGBN with shared weights

(1W-SGBN) are very similar to the original model (2W-SGBN). Even though 2W-

SGBN are slightly more accurate than 1W-SGBN at lower perturbation levels, and

1W-SGBN are slightly more accurate than 2W-SGBN at the perturbation levels

higher than ε = 0.23, there is not much difference between these models. Shar-

ing the weights is very similar to adaptive dropout as described in [7]. In this study,

78

Figure 4.22: The accuracies of the original model (2W-SGBN) and SGBN with the
shared weights (1W-SGBN) on FGSM.)

Figure 4.23: The accuracies of each model, 2 layer of SGBN (2W-SGBN), 2 layer of
SGBN with the shared weights (1W-SGBN), the second gate module (2W-2nd-GM),
the second gate module with the shared weights (1W-2nd-GM), the first gate module
(2W-1st-GM), and the first gate module with the shared weights (1W-1st-GM).

79

the authors at first jointly trained a neural network with a binary belief network

that learned the probability to drop out the activation, but later the authors also

shared the weights of the main network and the belief network and trained them

together. Because the convolutional layers in the gate modules and the main network

learned similar features, the weights of the main network could be shared with the

gate modules.

Classifying images by the gate modules with shared weights

We have already discussed how the two SGBN gate modules learn how to classify

images. To confirm that the of 1W-SGBN gate modules learn how to classify images

too, the first and second gate modules were trained by adding one dense output layer

to the top of the gate modules similar to the last section. This is shown in figure 4.23.

In this figure, we compare the gate modules with shared weights (1W-1st-GM and

1W-2nd-GM for the first and second gate module, respectively) and the gate modules

for the original model (2W-1st-GM and 2W-2nd-GM for the first and second gate

module, respectively). The results of 1W-1st-GM and 2W-1st-GM are very similar.

The results of 1W-2nd-GM and 2W-2nd-GM are also similar even though 2W-2nd-

GM is slightly more accurate at the highest perturbation level than 1W-2nd-GM. We

have not seen much difference between the original model and shared weights version,

especially at the lower perturbation levels. Furthermore, 1W-2nd-GM is less accurate

on the clean dataset than 1W-SGBN even though 1W-2nd-GM uses shared weights.

4.6.4 Robustness on the black-box attack

So far, we have discussed our model’s robustness against white-box attacks. In this

section, we will also discuss the robustness of SGBN against black-box attacks com-

pared with other gradient masking approaches.

We hypothesize that the robustness is caused by binarization constrained to real

values or 0 (turned on or off) on the weights of the convolutional layers because it

makes SGBN possible to ignore some perturbations.

To check this hypothesis, we replaced the stochastic 1 or 0 binarization with the

stochastic +1 or -1 binarization activations (the same stochastic binarization imple-

mentation as Galloway et al. [34]) in the gate modules for SGBN. Furthermore, we

80

Table 4.8: The accuracies of the black-box attacks on FGSM with ε = 0.3.

aaaaaaaaaaaa

Target
Models

Source
Models SGBN SAP BNN CNN-BIN CNN

CNN-BIN 74.0±6.7% 73.5±4.2% 57.9±4.8% 44.6±2.7% 55.8±3.9%
SGBN with +1 or -1 74.9±0.9% 78.9±1.2% 44.0±2.0% 66.2±1.1% 64.7±1.4%
DropConnect 88.3±2.4% 81.6±2.1% 54.8±3.9% 74.7±3.0% 70.2±2.0%
Random Masking 88.7±3.1% 82.7±2.9% 55.6±4.4% 75.4±3.9% 71.6±3.8%
SGBN with randomly shuffled activations 89.9±1.6% 84.8±2.1% 58.3±3.7% 77.5±2.5% 73.0±3.1%
SGBN 93.1±1.2% 89.2±1.9% 63.9±3.9% 81.9±2.8% 75.6±3.0%

applied DropConnect [113] to the convolutional layers with the dropconnect probabil-

ities set to 40 % for the first layer and 50 % for the second layer during both training

and testing time. This is because around 40 % of the weights of SGBN for the first

layer and 50 % of the weights for the second layer are turned off. Also, we replaced

the gate modules with random masking using a Bernoulli distribution (p-value = 0.6

for the first layer and 0.5 for the second layer). We trained these models from scratch

10 times. This is to examine if random masking and dropconnect help the robust-

ness against black-box attacks by allowing the models to ignore random pixels. The

applications of random masking and dropconnect can also help us to understand if

the gate modules learn useful masks or just random ones. Additionally, we applied

one more model in this experiment. This model was based on SGBN, but when we

applied SGBN to adversarial examples after training, we saved the activations of the

gate modules. Then, we reused the activations to mask the weights, but the activa-

tions were randomly shuffled. This is depicted in figure 4.24. For instance, in the

figure, one of the adversarial examples, in this case, an image of 0 with perturbations,

is fed into SGBN, and the activations of the gate modules are saved. However, the

activations of the gate modules for the image are not used for masking the weights.

Rather, other activations (e.g. activations of the gate module for 1, 2, or another

0) are used2. We added this model in this experiment to check whether or not the

performance changes when the activations of the gate modules are not proper for each

input. We tested these models on FGSM of the MNIST for black-box attacks, which

were crafted by SGBN, SAP, BNN with PGD, CNN-BIN, and CNN.

In table 4.8, we also show the performances of CNN-BIN and SGBN. We included

2More specifically, for example, in figure 4.7, the activation of GM for example ”1” might be used
for examples ”9” to mask the weights.

81

Figure 4.24: The activations of the gate modules are saved and randomly shuffled for
testing the model on the black-box attacks.

82

CNN-BIN as a baseline for this experiment since we added some masking techniques

(random masking and dropconnect) or gate modules with binarized activation (-1

or 1 and 0 or 1) to the convolutional layers of CNN-BIN. Random masking and

dropconnect models significantly improve the robustness more than SGBN with +1

or -1 activations, especially against adversarial examples crafted by SGBN and SAP.

However, we cannot see any improvements for these models against BNN. SGBN with

shuffled activations diminish the performances compared with SGBN. The shuffled

model performance is very similar to the performances of the random masking and

dropconnect models.

The performance improvements gained by applying the random masking and drop-

connect models to the black-box attacks might show us why our model is robust

against these attacks. One of the reasons might be our hypothesis, the turning off the

weights can make the model possible to ignore some perturbations. The other rea-

son why SGBN improves the robustness against the attack is the gate module learns

non-random masking since we have seen that the random masking, dropconnect,

and the randomly shuffled activations models are not competitive with SGBN. This

non-random masking the weights helps SGBN to defend itself against the black-box

attacks.

4.6.5 Toy experiment

In previous subsections, some experiments were examined to gain a deeper under-

standing of the gate module and SGBN. However, we still do not know how the gate

module affects the weights. We hypothesize that the activations of the gate module

change to fit the circumstances. For example, if the output values of a layer need

to be small, then the gate module will turn off many of the weights. To gain an

understanding of this dynamics, we conduct a small experiment with SGBN. In this

experiment, we also apply our original model that is implemented with weight inputs.

We compare SGBN with one has the weight inputs to check how different these are.

Experiment setting

The experiment is a very simple regression task. Inputs are real values of [-1,1], and

targets are absolute values of the inputs. We created 300 inputs using the numpy

83

Figure 4.25: Plotting the training and testing targets on the toy experiment.

linspace function (linspace(-1.0, 1.0, 300)) and randomly separated them into a train-

ing dataset with 210 and a testing dataset with 90. Figure 4.25 is plotted for the

training and testing targets.

The parameter settings for this experiment are as follows: The main network of

SGBN consists of 2 nodes in a hidden layer and 1 node in an output layer. The gate

module of SGBN has a perceptron to mask the weights between the hidden layer

and the output layer in the main network. The activation function for the hidden

layer is the tanh activation function. We also apply the original model of SGBN with

weight inputs. This model uses the weights of the main network as inputs to the gate

module. This is depicted in figure 4.26. For example, if there are 2 weights between

the hidden layer and the output layer in the main network, then these 2 weights are

used as inputs for the perceptron in the gate module along with other inputs. We

expect that looking at the weights and input at the same time will accelerate the

network convergence. In this experiment, we do not use convolutional layers for the

gate module and the main network, and the output of the main network is without

any activation function. All of the parameter settings are summarized in tables 4.9

84

Table 4.9: Network parameters and variables for the main network on the toy exper-
iment

Parameters all models
learning rate 0.001
Weights for the input to hidden 1×2
Activation func. in the hidden layer tanh
Weights for the hidden to output 2×1

Table 4.10: Gate module variables for the second layer on the toy experiment

Parameters Gate module
Weights for the gate module with the weight input 4×2
Weights for the gate module without the weight input 2×2
Activation func. in the output of both of the gate module binarized

and 4.10.

MLP is applied as a baseline in this task. MLP and the main network of SGBN

architecture are the same. Furthermore, the deterministic non-binarized versions of

SGBN, with and without the weight inputs, are applied in this task. To create the

deterministic non-binarized version of SGBN, we replaced the stochastic binarized

activation function for the gate modules with the logistic function.

For this experiment, we use the Adam optimizer, and the learning rates for all of

the models are 1e-3. The iterations of this experiment are 5000. We use batch, not

mini-batch, for this experiment.

Result

Each result is shown in figure 4.27. Figure 4.28 shows the learning curves for each

model in this experiment. First of all, conventional MLP (WOGM) could not solve

this task properly. Because the tanh activation function does not have a sharp corner,

the input values close to 0 are really hard to output the targets for WOGM. Compared

with WOGM, deterministic non-binarized SGBN both with and without the weight

inputs (GM DT and GMWOW DT, respectively) are better. The activations of the

deterministic non-binarized gate modules are very dynamic compared with stochastic

binarized models because the deterministic non-binarized gate modules use logistic

activation values. On the other hand, stochastic binarized models (with the weight

inputs: GM ST, without the weight input:GMWOW ST) might not be suitable for

85

Figure 4.26: The original SGBN. A gate module learns which specific weights on the
filter should be turned on or off by the image and weights. The weights from the
convolutional layer will be used as input for the gate module. The weight inputs will
be concatenated on the original input.

86

Figure 4.27: Experimental results on testing data for MLP (WOWGM), SGBN With
the weight input for stochastic binarized and deterministic non-binarized activations
(GM ST and GM DT), and SGBN without the weight input for stochastic binarized
and deterministic non-binarized activations (GMWOW ST and GMWOW DT)).
These results are the best results among 30 training from scratch. Blue dots are
predictions of each model, and red dots are targets.

Figure 4.28: The learning curves for each model, MLP without gate module
(WOGM), stochastic binarized activation gate module with the weight inputs
(GM ST), deterministic non-binarized activation gate module with the weight inputs
(GM DT), stochastic binarized activation gate module without the weight inputs
(GMWOW ST), and deterministic non-binarized activation gate module without the
weight inputs (GMWOW DT) on the toy experiment. These results are averaged
over 30 runs for the models trained from scratch.

87

this problem because 1 or 0 masking does not change outputs dynamically. However,

around the sharp curve (around input=0.0), the outputs of GM ST and GMWOW ST

are very close to the targets.

We also checked the activations of the gate modules with and without the weight

inputs for this experiment in figures 4.30 and 4.31. All of SGBNs change the activa-

tion of the gate module depending on the input. For the stochastic binarized models,

we have not seen much difference between GM ST and GMWOW ST. Both of the

models change the activations at some points. For example, GMWOW ST change

activations around under -0.3 or over 0.5. Compared with these stochastic binarized

models, GM DT and GMWOW DT are more dynamic to change the activations.

Even though GM DT and GMWOW DT are better in this experiment, against ad-

versarial examples, we need stochasticity and more 0 activations of the gate module

(turning off) to protect SGBN against both of the white- and black-box attack.

In the learning curve, our models without the weight inputs (both stochastic and

deterministic) converged faster than with the weight inputs. The parameter sizes and

the bias of the weight inputs might cause these results.

Furthermore, we plot histograms in which the vertical axis represents the fre-

quency and the horizontal axis represents the logistic activation values of the gate

modules in both GM ST and GMWOW ST (before the activations are binarized) for

0, 1000, 3000, and 5000 iterations during the training. These are found in figure 4.29.

We can see that the activations for the gate modules in both stochastic binarized

models gradually become nearly deterministic as the number of iteration increased.

4.7 Discussion

In this chapter’s “Motivation” section, we discussed learning the probability for

Dropout, and that it is very similar to SGBN. To see if learning dropout probability

is also helpful to defend a neural network against adversarial examples, we replace the

gate module with the adaptive dropout [7] on 2 layer CNN with the binarized dense

layer on the MNIST dataset (The dropout is applied to the convolutional layers).

We tested the network in deterministic non-binarized and stochastic binarized ways.

These are also tested on ε = 0.3 of FGSM for the MNIST testing dataset, and the

results are

88

0 iteration

1000 iterations

3000 iterations

5000 iterations

(a) GM ST (b) GMWOW ST

Figure 4.29: Comparison of the logistic activation function values for GM ST and
GMWOW ST. The first row is the histograms for 0 iteration, the second row is the
histograms for 1000 iterations, the third is the histograms for 3000 iterations, and the
last one is the histograms for 5000 iterations.

89

Figure 4.30: Results with the output of the stochastic binarized gate modules with
and without the weight inputs. These results are corresponding to GM ST and
GMWOW ST) on figure 4.27. Blue and red dots describe one of the weights for
hidden to output layer will be used, and grey dots describe both weights for hidden
to output layer are used.

Figure 4.31: Results for the output of the deterministic non-binarized gate modules
with and without the weight inputs. These results are corresponding to GM DT and
GMWOW DT on figure 4.27. p1 is outputs of the logistic function on the gate module
for one of the two weights, p2 is for the other one. Both deterministic gate modules
are very dynamic to the inputs.

90

• Adaptive dropout (deterministic): 54.8±4.7%

• Adaptive dropout (stochastic): 62.7±1.6%

These accuracies are again worse than SGBN, but this adaptive dropout does improve

the accuracy (without this dropout, again, CNN-BIN, 44.6±2.7%), especially stochas-

tic one. We find that the stochastic dropout method drops out mostly non-centered

nodes. The reason why this might occur with this method is that the MNIST dataset

is a centered-image dataset. Dropping out the non-centered nodes with perturba-

tions might help to defend against the attack, but is not robust enough compared

with SGBN.

We mentioned SGBN contains more parameters than the other binarized models in

the network parameter section. To test whether or not the additional parameters are

the main reason for our improvement, we trained conventional CNN, CNN-BIN, SAP,

and BNN with the additional parameters (the same or similar size as SGBN’s total

parameter size) on the MNIST and CIFAR-10 testing dataset (parameter settings

are in tables 4.12 and 4.13), and tested them on ε = 0.3 of FGSM (percentages in

parentheses are without the additional parameters):

• MNIST

– CNN: 7.2±0.9% (15.3±2.2%)

– BNN with PGD: 70.3±2.9% (76.8±1.1%)

– CNN-BIN: 61.7% (44.6±2.7%)

– SAP: 63.7±11.9% (73.5±3.1%)

• CIFAR-10

– CNN: 4.3±0.5% (1.7±0.4%)

– BNN with PGD: 14.0±1.1% (13.6±1.2%)

– SAP: 6.3±0.4% (2.3±0.3%)

On MNIST, most of the models are worse than without the additional parameters ex-

cept for CNN-BIN. Even though CNN-BIN improves the accuracy with the additional

parameters, it does not achieve a comparable accuracy with SGBN (93.1±1.2%). On

91

Table 4.11: Summary of each accuracy for each model and each dataset on FGSM

Network Dataset ε = 0.0 ε = 0.1 ε = 0.2 ε = 0.3

SGBN
MNIST 98.3±0.1% 98.0±0.1% 96.8±0.2% 93.1±1.2%

CIFAR10 61.6±1.1% 32.3±1.5% 22.1±0.7% 17.3±0.8%
1W-SGBN MNIST 98.1±0.1% 97.9±0.1% 97.1±0.1% 93.8±0.3%
SGBN (DT) MNIST 98.3±0.1% 93.0±0.5% 80.8±2.3% 61.5±3.7%

BNN with PGD
MNIST [34] 98.9±0.03% 96.8±0.3% 93.4±0.3% 85.6±0.6%

MNIST 95.4±0.4% 92.6±0.5% 86.2±1.0% 76.8±1.1%
CIFAR10 50.4±2.9% 26.5±1.3% 16±1.3% 13.6±1.2%

BNN with PGD (add params)
MNIST 98.1±0.2% 91.6±2.0% 83.4±2.7% 70.3±2.9%

CIFAR10 46.0±3.5% 29.8±1.7% 20.1±1.7% 14.0±1.1%

SAP
MNIST 96±0.3% 95.4±0.4% 93.0±1.6% 73.5±3.1%

CIFAR10 58.2±1.1% 1.6±0.3% 1.6±0.3% 2.3±0.3%

SAP (add params)
MNIST 89.1±2.9% 84.7±5.9% 76.7±7.3% 63.7±6.8%

CIFAR10 57.6±0.6% 6.6±0.5% 5.8±0.5% 6.3±0.4%

CNN-BIN
MNIST 98.3±0.1% 91.8±0.6% 76.5±3.0% 44.6±2.7%

CIFAR10 N/A N/A N/A N/A

CNN-BIN (add params)
MNIST 94.3±6.8% 78.3±15.4% 68.4±13.0% 61.7±11.9%

CIFAR10 N/A N/A N/A N/A

CNN
MNIST 99.0±0.1% 72.5±2.3% 31.8±3.1% 15.3±2.2%

CIFAR10 64.9±1.9% 0.5±0.1% 0.9±0.3% 1.0±0.4%

CNN (add params)
MNIST 99.1±0.1% 69.8±2.8% 18.6±2.1% 7.2±0.9%

CIFAR10 66.2±1.4% 3.1±0.4% 3.3±0.4% 4.3±0.5%
AD MNIST(ST) 98.3±0.1% 92.8±0.2% 82.1±0.6% 62.7±1.6%

MNIST(DT) 98.3±0.1% 91.5±0.5% 76.9±3.6% 54.8±4.7%
AD (add params) MNIST(ST) 96.2±3.7% 88.4±2.9% 74.2±3.3% 59.3±3.2%

MNIST(DT) 97.2±3.0% 87.9±2.6% 72.8±3.4% 57.0±3.3%
RM p=0.6 MNIST 97.5±0.1% 88.6±0.6% 68.6±2.5% 44.6±2.8%
RM p=0.6 (add params) MNIST 93.2±7.5% 83.2±6.4% 66.8±5.4% 50.4±3.5%
DC p = 40% MNIST 97.8±0.1% 89.8±0.7% 70.0±2.3% 46.4±2.0%
DC p = 40% (add params) MNIST 97.3±0.2% 92.0±0.6% 79.8±1.7% 61.5±1.9%

*AD = Adaptive Dropout, *RM = Random Mask, *DC = DropConnect

CIFAR-10, the additional parameters improve all of the model accuracies, indeed sug-

gesting that doing further testing in the future on larger models would be worthwhile.

The gate module is one of the gradient masking approaches and a regularizer.

These two methods protect SGBN itself against adversarial examples because the

gradient masking approach creates weak perturbations, and the regularizer smooth

decisions, thereby moving them further from training examples.

We summarize all of the network performances on the white-box attacks for

MNIST and CIFAR-10 in table 4.11.

92

Table 4.12: Network parameters and variables for the additional parameters experi-
ments on MNIST

Parameters NON-SGBN models
learning rate 0.001
Weights in the first convolutional layer 64×5×5
Weights in the second convolutional layer 128×5×5
Weights in the fully connected layer 6952
Weights in the last fully connected layer 10

Table 4.13: Network parameters and variables for the additional parameters experi-
ments on CIFAR

Parameters NON-SGBN models
learning rate 0.001
Weights in the first convolutional layer 64×5×5
Weights in the second convolutional layer 256×5×5
Weights in the third convolutional layer 256×5×5
Weights in the fully connected layer 1176
Weights in the last fully connected layer 10

Chapter 5

Conclusions and Future Work

5.1 Conclusion

In this dissertation, we first considered that the cause of adversarial examples is re-

lated to overfitting, referring to the work of Galloway et al. [35]. To examine this state-

ment, we have shown that the cause of adversarial examples is related to overfitting by

applying some regularization to a shallow network and adding adversarial sensitivity.

The overly strong regularizations led the network to underfit, but this underfitting

was better than overfitting for adversarial examples. This result is very important

in determining the cause of adversarial examples. In addition, we applied stochas-

tic binarized neural networks with the straight-through estimator and REINFORCE

to adversarial examples. Among them, the strongest regularization, REINFORCE,

had the best performance against adversarial examples. These stochastic binarized

neural networks are, of course, gradient masking approaches which do not have a

useful gradient to craft adversarial examples, but we showed that the strongly regu-

larized model was more robust against adversarial examples among gradient masking

approach models.

A model, SGBN, was presented in this dissertation, as a new model of a recognition

network that could defend itself better against adversarial examples than other state-

of-the-art proposals. This is based on stochastic binarized neurons. We implemented

SGBN with the gate module because we hypothesized that combining stochasticity

and binarization is helpful to defend the networks. SGBN is a regularizer and one

of the gradient masking approaches. We hypothesized that adding a combination of

stochasticity and binarization to the stochastic binarized model that was implemented

for the first study of this dissertation would make it more robust against adversarial

attacks. In the experiments, we tested this model on white- and black-box attacks,

and our model was more robust against adversarial examples than the other gradient

masking models. The cause of this strength against adversarial examples for SGBN

93

94

was, indeed, one of the gradient masking approaches, the larger variances of the

gradient of the cost function with respect to inputs, a regularizer, and 0 or 1 maskings

which ignored some of the perturbed pixels.

SGBN has double-sized filters for the gate module and the convolutional layer in

the main networks. We assumed that our model might not need to have these double-

sized filters for both of the gate modules and convolutional layers in the main network,

and found that the main network’s filters can be shared with the convolutional layers

in the gate module.

The benefits of SGBN are 1) the gate module is a strong regularizer; 2) SGBN is

strong against some adversarial examples including both white- and black-box attacks

compared with the other gradient masking approaches; 3) it is easy to implement or

to understand; 4) our model’s binarization does not greatly harm the accuracy on a

clean dataset.

We did not apply adversarial training to our model in this dissertation to avoid

computational expense and overfitting to specific perturbations. Again, Galloway et

al. [33] showed that adversarial training models overfit specific perturbations, and

these models were weak against other types of attacks. We would like to avoid this

overfitting. Furthermore, for our model, presumably adversarial training would not

work since our model generates weaker perturbations than the other gradient masking

models. We have already seen that perturbations at the highest perturbation level

were classifiable for even a conventional convolutional neural network. This means

adversarial examples crafted by SGBN would be similar to original examples, and

these examples would not be useful to train SGBN adversarially.

Even if a deep neural network model can achieve a high accuracy on the clean

dataset, it is still vulnerable to adversarial examples. From our results and Galloway’s

studies [35, 34, 32], we suggest that some regularization forms, especially the gate

module, should be applied to a model to protect it against adversarial examples

instead of adversarial training, which overfits specific perturbations. In Galloway

et al. [32], the authors applied L2 weight decay to a model, and the model lost

small percentages of accuracy on the clean testing dataset. However, L2 weight

decay drastically improved the performance of the model on adversarial attacks. The

authors believe that this loss in clean testing accuracy in exchange for a huge gain

95

during the attack is a worthwhile trade-off. We also agree with their belief. The gate

module, again, reduces the performance on the clean dataset by a few percentages

but can protect the model against both white- and black-box attacks. This is a good

trade-off for the model with a small price.

5.2 Future work

We did not apply non-FGSM based attack, such as JSMA [86], to our model. JSMA

has very high computation costs due to the need for computing the Jacobian matrix

[68]. We avoided these high costs, but we would like to apply our model to JSMA

in future work to see if SGBN can still defend itself against it. Presumably, SGBN

would be resilient to JSMA, in which perturbations are added to a few pixels because

turning off the weights might ignore the perturbations.

Another thing we are interested in is applying the gate module to parts of deep

network architectures, such as a residual neural network (ResNet) [41]. Many re-

searchers have already shown that ResNet is very robust against adversarial exam-

ples. Combining ResNet and the gate module could be very beneficial for defending

against adversarial examples. Since the gate modules improved our shallow model,

we believe that applying the gate modules to a deeper net such as ResNet would

be beneficial in improving its robustness against adversarial examples. Furthermore,

stochastic activation pruning is applied to ResNet in [21], and SAP reduces the per-

formance on a clean dataset compared with a conventional ResNet. We assume that

the gate modules would not greatly reduce the performance of ResNet on a clean

dataset compared with SAP since we showed that the gate module did not greatly

reduce the performance of our model in this dissertation.

Since we could see that SGBN was still resilient to the adversarial attack when we

changed the dense layer with the stochastic activation to the relu activation function,

we can replace a dense layer with the stochastic activation function with a dense

layer with another activation function depending on each task. Seeking the best

replacement for the activations might help a model to improve its performance on

both the clean testing dataset and adversarial attack.

Furthermore, a deterministic non-binarized gate module’s activation would be still

changeable depending on the task. We have used the logistic activation function for

96

the deterministic non-binarized gate module in this dissertation, but this does not

need to be the activation function. We would replace it with tanh, asinh, rectified

linear unit, and another one depending on each task.

SGBN can be used as an attention model [74, 119, 39]. Typically, attention is

focused on an input, but in our case, attention is focused on the weights. We would

like to apply both stochastic binarized and deterministic non-binarized versions of

SGBN to non-centered images such as Cluttered Translated MNIST [74]. Conven-

tional attention models work well on the dataset because the attention is focused on

the specific part of the image (target image). We would like to compare the perfor-

mances of the attention focused on the input and the attention focused on the weights

on the dataset to see if the attention focused on the weights would still be beneficial

for these cluttered images.

Finally, our model would also be useful for reinforcement learning, especially deep

reinforcement learning [75, 76, 67, 73, 28]. Stochasticity for a reinforcement learning

agent has the potential to improve exploration and handling of uncertainty [31, 29, 30,

88, 99]. In our research, the gate modules used sampling to learn which weights should

be turned on or off stochastically during the training, depending on the input. We

hypothesize that this sampling would work in a reinforcement learning environment.

After the training, the activations of the gate modules would be nearly deterministic

similar to our experiment, but during the training, they would still be a stochastic

way to decide which weights should be turned on or off. We would like to examine if

SGBN improves the performance of an agent in a reinforcement learning environment.

Bibliography

[1] The complete beginner’s guide to deep learning: Convolutional neural
networks and image classification. https://towardsdatascience.com/

wtf-is-image-classification-8e78a8235acb. Accessed: 2019-11-21.

[2] Convolutional neural networks (cnns / convnets). http:http://cs231n.

github.io/convolutional-networks/. Accessed: 2019-07-15.

[3] Image classification using convolutional neural net-
works in keras. https://www.learnopencv.com/

image-classification-using-convolutional-neural-networks-in-keras/.
Accessed: 2019-11-20.

[4] When to use mlp, cnn, and rnn neural net-
works. https://machinelearningmastery.com/

when-to-use-mlp-cnn-and-rnn-neural-networks/. Accessed: 2019-11-19.

[5] Alexander G Anderson and Cory P Berg. The high-dimensional geometry of
binary neural networks. arXiv preprint arXiv:1705.07199, 2017.

[6] Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give
a false sense of security: Circumventing defenses to adversarial examples. arXiv
preprint arXiv:1802.00420, 2018.

[7] Jimmy Ba and Brendan Frey. Adaptive dropout for training deep neural net-
works. In Advances in Neural Information Processing Systems, pages 3084–3092,
2013.

[8] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural ma-
chine translation by jointly learning to align and translate. arXiv preprint
arXiv:1409.0473, 2014.

[9] Yoshua Bengio, Nicholas Léonard, and Aaron C. Courville. Estimating or propa-
gating gradients through stochastic neurons for conditional computation. arXiv
preprint arXiv:1308.3432, 2013.

[10] Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim Šrndić,
Pavel Laskov, Giorgio Giacinto, and Fabio Roli. Evasion attacks against ma-
chine learning at test time. In Joint European conference on machine learning
and knowledge discovery in databases, pages 387–402. Springer, 2013.

[11] Nicholas Carlini, Guy Katz, Clark Barrett, and David L Dill. Provably
minimally-distorted adversarial examples. arXiv preprint arXiv:1709.10207,
2017.

97

https://towardsdatascience.com/wtf-is-image-classification-8e78a8235acb
https://towardsdatascience.com/wtf-is-image-classification-8e78a8235acb
http:http://cs231n.github.io/convolutional-networks/
http:http://cs231n.github.io/convolutional-networks/
https://www.learnopencv.com/image-classification-using-convolutional-neural-networks-in-keras/
https://www.learnopencv.com/image-classification-using-convolutional-neural-networks-in-keras/
https://machinelearningmastery.com/when-to-use-mlp-cnn-and-rnn-neural-networks/
https://machinelearningmastery.com/when-to-use-mlp-cnn-and-rnn-neural-networks/

98

[12] Nicholas Carlini, Pratyush Mishra, Tavish Vaidya, Yuankai Zhang, Micah Sherr,
Clay Shields, David Wagner, and Wenchao Zhou. Hidden voice commands. In
Proceedings of the 25th USENIX Conference on Security Symposium, SEC’16,
pages 513–530, Berkeley, CA, USA, 2016. USENIX Association.

[13] Nicholas Carlini and David Wagner. Towards evaluating the robustness of neu-
ral networks. In 2017 IEEE Symposium on Security and Privacy (SP), pages
39–57. IEEE, 2017.

[14] Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and Cho-Jui Hsieh. Zoo:
Zeroth order optimization based black-box attacks to deep neural networks
without training substitute models. In Proceedings of the 10th ACM Workshop
on Artificial Intelligence and Security, pages 15–26. ACM, 2017.

[15] Junyoung Chung, Sungjin Ahn, and Yoshua Bengio. Hierarchical multiscale
recurrent neural networks. arXiv preprint arXiv:1609.01704, 2016.

[16] Junyoung Chung, Çaglar Gülçehre, KyungHyun Cho, and Yoshua Bengio. Em-
pirical evaluation of gated recurrent neural networks on sequence modeling. In
NIPS Deep Learning Workshop, 2014.

[17] Ronald Clark, Sen Wang, Andrew Markham, Niki Trigoni, and Hongkai Wen.
Vidloc: A deep spatio-temporal model for 6-dof video-clip relocalization. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 6856–6864, 2017.

[18] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binaryconnect:
Training deep neural networks with binary weights during propagations. In
Corinna Cortes, Neil D. Lawrence, Daniel D. Lee, Masashi Sugiyama, and Ro-
man Garnett, editors, NIPS, pages 3123–3131, 2015.

[19] Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua
Bengio. Binarized neural networks: Training deep neural networks with weights
and activations constrained to + 1 or-1. arXiv preprint arXiv:1602.02830, 2016.

[20] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet:
A large-scale hierarchical image database. In 2009 IEEE conference on computer
vision and pattern recognition, pages 248–255. Ieee, 2009.

[21] Guneet S. Dhillon, Kamyar Azizzadenesheli, Zachary C. Lipton, Jeremy Bern-
stein, Jean Kossaifi, Aran Khanna, and Anima Anandkumar. Stochastic acti-
vation pruning for robust adversarial defense. arXiv preprint arXiv:1803.01442,
2018.

[22] Lynn E Dobrunz and Charles F Stevens. Heterogeneity of release probability,
facilitation, and depletion at central synapses. Neuron, 18(6):995–1008, 1997.

99

[23] Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su, Jun Zhu, Xiaolin Hu,
and Jianguo Li. Boosting adversarial attacks with momentum. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pages
9185–9193, 2018.

[24] Gamaleldin Elsayed, Dilip Krishnan, Hossein Mobahi, Kevin Regan, and Samy
Bengio. Large margin deep networks for classification. In Advances in Neural
Information Processing Systems, pages 842–852, 2018.

[25] Gamaleldin Elsayed, Shreya Shankar, Brian Cheung, Nicolas Papernot, Alexey
Kurakin, Ian Goodfellow, and Jascha Sohl-Dickstein. Adversarial examples that
fool both computer vision and time-limited humans. In Advances in Neural
Information Processing Systems, pages 3910–3920, 2018.

[26] Ryosuke Enoki, Yi-ling Hu, David Hamilton, and Alan Fine. Expression of long-
term plasticity at individual synapses in hippocampus is graded, bidirectional,
and mainly presynaptic: optical quantal analysis. Neuron, 62(2):242–253, 2009.

[27] Ivan Evtimov, Kevin Eykholt, Earlence Fernandes, Tadayoshi Kohno, Bo Li,
Atul Prakash, Amir Rahmati, and Dawn Song. Robust physical-world attacks
on deep learning models. arXiv preprint arXiv:1707.08945, 1, 2017.

[28] Farzaneh S Fard and Thomas P Trappenberg. A novel model for arbitration be-
tween planning and habitual control systems. arXiv preprint arXiv:1712.02441,
2017.

[29] Carlos Florensa, Yan Duan, and Pieter Abbeel. Stochastic neural networks for
hierarchical reinforcement learning. arXiv preprint arXiv:1704.03012, 2017.

[30] Meire Fortunato, Mohammad Gheshlaghi Azar, Bilal Piot, Jacob Menick,
Ian Osband, Alex Graves, Vlad Mnih, Remi Munos, Demis Hassabis,
Olivier Pietquin, et al. Noisy networks for exploration. arXiv preprint
arXiv:1706.10295, 2017.

[31] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation:
Representing model uncertainty in deep learning. In international conference
on machine learning, pages 1050–1059, 2016.

[32] Angus Galloway. Source for paper attacking binarized neural networks.
https://github.com/AngusG/cleverhans-attacking-bnns, 2018.

[33] Angus Galloway, Thomas Tanay, and Graham W Taylor. Adversarial training
versus weight decay. arXiv preprint arXiv:1804.03308, 2018.

[34] Angus Galloway, Graham W. Taylor, and Medhat Moussa. Attacking bina-
rized neural networks. International Conference on Learning Representation,
abs/1711.00449, 2018.

100

[35] Angus Galloway, Graham W. Taylor, and Medhat Moussa. Predicting adver-
sarial examples with high confidence. arXiv preprint arXiv:1802.04457, 2018.

[36] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep
feedforward neural networks. In In Proceedings of the International Conference
on Artificial Intelligence and Statistics (AISTATS’10). Society for Artificial
Intelligence and Statistics, 2010.

[37] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and
harnessing adversarial examples. arXiv preprint arXiv:1412.6572, 2014.

[38] Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. Speech recogni-
tion with deep recurrent neural networks. In 2013 IEEE international confer-
ence on acoustics, speech and signal processing, pages 6645–6649. IEEE, 2013.

[39] Karol Gregor, Ivo Danihelka, Alex Graves, Danilo Jimenez Rezende, and Daan
Wierstra. Draw: A recurrent neural network for image generation. arXiv
preprint arXiv:1502.04623, 2015.

[40] Chuan Guo, Mayank Rana, Moustapha Cisse, and Laurens van der Maaten.
Countering adversarial images using input transformations. arXiv preprint
arXiv:1711.00117, 2017.

[41] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into
rectifiers: Surpassing human-level performance on imagenet classification. In
Proceedings of the IEEE international conference on computer vision, pages
1026–1034, 2015.

[42] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 770–778, 2016.

[43] Neal A Hessler, Aneil M Shirke, and Roberto Malinow. The probability of
transmitter release at a mammalian central synapse. Nature, 366(6455):569,
1993.

[44] Geoffrey Hinton. Lecture 9.3 – Using noise as a regularizer. COURSERA:
Neural Networks for Machine Learning, 2012.

[45] Geoffrey Hinton, Li Deng, Dong Yu, George Dahl, Abdel-rahman Mohamed,
Navdeep Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Brian
Kingsbury, et al. Deep neural networks for acoustic modeling in speech recog-
nition. IEEE Signal processing magazine, 29, 2012.

[46] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a
neural network. arXiv preprint arXiv:1503.02531, 2015.

[47] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735–1780, 1997.

101

[48] Emily P Huang and Charles F Stevens. Estimating the distribution of synaptic
reliabilities. Journal of neurophysiology, 78(6):2870–2880, 1997.

[49] Ruitong Huang, Bing Xu, Dale Schuurmans, and Csaba Szepesvári. Learning
with a strong adversary. arXiv preprint arXiv:1511.03034, 2015.

[50] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua
Bengio. Binarized neural networks. In Advances in neural information process-
ing systems, pages 4107–4115, 2016.

[51] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. In Francis R. Bach and
David M. Blei, editors, ICML, volume 37 of JMLR Workshop and Conference
Proceedings, pages 448–456, 2015.

[52] Robin Jia and Percy Liang. Adversarial examples for evaluating reading com-
prehension systems. arXiv preprint arXiv:1707.07328, 2017.

[53] Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas Leung, Rahul Suk-
thankar, and Li Fei-Fei. Large-scale video classification with convolutional neu-
ral networks. In Proceedings of the IEEE conference on Computer Vision and
Pattern Recognition, pages 1725–1732, 2014.

[54] Alex Kendall and Roberto Cipolla. Modelling uncertainty in deep learning for
camera relocalization. In 2016 IEEE international conference on Robotics and
Automation (ICRA), pages 4762–4769. IEEE, 2016.

[55] Alex Kendall, Matthew Grimes, and Roberto Cipolla. Posenet: A convolutional
network for real-time 6-dof camera relocalization. In Proceedings of the IEEE
international conference on computer vision, pages 2938–2946, 2015.

[56] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-
tion. arXiv preprint arXiv:1412.6980, 2014.

[57] Diederik P Kingma, Tim Salimans, and Max Welling. Variational dropout
and the local reparameterization trick. In Advances in Neural Information
Processing Systems, pages 2575–2583, 2015.

[58] Alex Krizhevsky. Learning multiple layers of features from tiny images. Tech-
nical report, 2009.

[59] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. In Advances in neural information
processing systems, pages 1097–1105, 2012.

[60] Yoshimasa Kubo and Thomas Trappenberg. Mitigating overfitting using reg-
ularization to defend networks against adversarial examples. In Canadian AI
2019: Advances in Artificial Intelligence, 2019.

102

[61] Yoshimasa Kubo, Michael Traynor, Thomas Trappenberg, and Sageev Oore.
Learning adaptive weight masking networks for adversarial examples. In Inter-
national Joint Conference on Neural Networks, 2019.

[62] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial machine learn-
ing at scale. arXiv preprint arXiv:1611.01236, 2016.

[63] Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio. Adversarial examples in
the physical world. arXiv preprint arXiv:1607.02533, 2016.

[64] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-
based learning applied to document recognition. Proceedings of the IEEE,
86(11):2278–2324, 1998.

[65] Yann LeCun and Corinna Cortes. MNIST handwritten digit database. 1998.

[66] Feifei Li, Justin Johnson, and Serena Yeung. Lecture 6 – Training Neural Net-
works I. Lecture collection: Convoluitional neural networks for visual recogni-
tion (Spring 2017), 2017.

[67] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom
Erez, Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with
deep reinforcement learning. arXiv preprint arXiv:1509.02971, 2015.

[68] Shiqing Ma, Yingqi Liu, Guanhong Tao, Wen-Chuan Lee, and Xiangyu Zhang.
Nic: Detecting adversarial samples with neural network invariant checking. In
NDSS, 2019.

[69] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne.
Journal of machine learning research, 9(Nov):2579–2605, 2008.

[70] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras,
and Adrian Vladu. Towards deep learning models resistant to adversarial at-
tacks. arXiv preprint arXiv:1706.06083, abs/1706.06083, 2017.

[71] Stuart McIlroy, Yoshimasa Kubo, Thomas Trappenberg, James Toguri, and
Christian Lehmann. In vivo classification of inflammation in blood vessels with
convolutional neural networks. In 2017 International Joint Conference on Neu-
ral Networks (IJCNN), pages 3022–3027. IEEE, 2017.

[72] Thomas M. Mitchell. Machine Learning. McGraw-Hill, Inc., New York, NY,
USA, 1 edition, 1997.

[73] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Tim-
othy Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asyn-
chronous methods for deep reinforcement learning. In International conference
on machine learning, pages 1928–1937, 2016.

103

[74] Volodymyr Mnih, Nicolas Heess, Alex Graves, et al. Recurrent models of visual
attention. In Advances in neural information processing systems, pages 2204–
2212, 2014.

[75] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari with deep
reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.

[76] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Ve-
ness, Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland,
Georg Ostrovski, et al. Human-level control through deep reinforcement learn-
ing. Nature, 518(7540):529, 2015.

[77] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar Fawzi, and Pascal
Frossard. Universal adversarial perturbations. In 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 86–94. Ieee, 2017.

[78] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. Deep-
fool: A simple and accurate method to fool deep neural networks. In CVPR,
pages 2574–2582. IEEE Computer Society, 2016.

[79] Anh Nguyen, Jason Yosinski, and Jeff Clune. Deep neural networks are easily
fooled: High confidence predictions for unrecognizable images. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pages
427–436, 2015.

[80] Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan,
Oriol Vinyals, Alex Graves, Nal Kalchbrenner, Andrew Senior, and Koray
Kavukcuoglu. Wavenet: A generative model for raw audio. arXiv preprint
arXiv:1609.03499, 2016.

[81] Nicolas Papernot, Ian Goodfellow, Ryan Sheatsley, Reuben Feinman, and
Patrick McDaniel. cleverhans v1. 0.0: an adversarial machine learning library.
arXiv preprint arXiv:1610.00768, 10, 2016.

[82] Nicolas Papernot and Patrick McDaniel. On the effectiveness of defensive dis-
tillation. arXiv preprint arXiv:1607.05113, 2016.

[83] Nicolas Papernot and Patrick McDaniel. Extending defensive distillation. arXiv
preprint arXiv:1705.05264, 2017.

[84] Nicolas Papernot, Patrick McDaniel, and Ian Goodfellow. Transferability in
machine learning: from phenomena to black-box attacks using adversarial sam-
ples. arXiv preprint arXiv:1605.07277, 2016.

[85] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z Berkay
Celik, and Ananthram Swami. Practical black-box attacks against machine
learning. In Proceedings of the 2017 ACM on Asia Conference on Computer
and Communications Security, pages 506–519. ACM, 2017.

104

[86] Nicolas Papernot, Patrick D. McDaniel, Somesh Jha, Matt Fredrikson,
Z. Berkay Celik, and Ananthram Swami. The limitations of deep learning in
adversarial settings. pages 372–387. IEEE, 2016.

[87] Nicolas Papernot, Patrick Drew McDaniel, Xi Wu, Somesh Jha, and Ananthram
Swami. Distillation as a defense to adversarial perturbations against deep neural
networks. In IEEE Symposium on Security and Privacy, pages 582–597. IEEE
Computer Society, 2016.

[88] Matthias Plappert, Rein Houthooft, Prafulla Dhariwal, Szymon Sidor,
Richard Y Chen, Xi Chen, Tamim Asfour, Pieter Abbeel, and Marcin
Andrychowicz. Parameter space noise for exploration. arXiv preprint
arXiv:1706.01905, 2017.

[89] Sebastian Raschka. Python machine learning. Packt Publishing Ltd, 2015.

[90] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi.
Xnor-net: Imagenet classification using binary convolutional neural networks.
In European Conference on Computer Vision, pages 525–542. Springer, 2016.

[91] Joseph Redmon and Ali Farhadi. Yolo9000: better, faster, stronger. In Proceed-
ings of the IEEE conference on computer vision and pattern recognition, pages
7263–7271, 2017.

[92] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards
real-time object detection with region proposal networks. In Advances in neural
information processing systems, pages 91–99, 2015.

[93] Maria Rigaki. Adversarial deep learning against intrusion detection classifiers,
2017.

[94] Christian Rosenmund, John D Clements, and Gary L Westbrook. Nonuni-
form probability of glutamate release at a hippocampal synapse. Science,
262(5134):754–757, 1993.

[95] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning
internal representations by error propagation. Technical report, California Univ
San Diego La Jolla Inst for Cognitive Science, 1985.

[96] Pouya Samangouei, Maya Kabkab, and Rama Chellappa. Defense-gan: Pro-
tecting classifiers against adversarial attacks using generative models. arXiv
preprint arXiv:1805.06605, 2018.

[97] Arthur L Samuel. Some studies in machine learning using the game of checkers.
ii—recent progress. In Computer Games I, pages 366–400. Springer, 1988.

[98] Ludwig Schmidt, Shibani Santurkar, Dimitris Tsipras, Kunal Talwar, and Alek-
sander Madry. Adversarially robust generalization requires more data. In Ad-
vances in Neural Information Processing Systems, pages 5014–5026, 2018.

105

[99] Wenling Shang, Douwe van der Wal Herke, Herke Van Hoof, and Max Welling.
Stochastic activation actor-critic methods. 2018.

[100] Farzaneh Sheikhnezhad Fard. Modelling human target reaching using a novel
predictive deep reinforcement learning technique. 2018.

[101] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[102] Liwei Song and Prateek Mittal. Inaudible voice commands. arXiv preprint
arXiv:1708.07238, 2017.

[103] Suraj Srinivas, Akshayvarun Subramanya, and R Venkatesh Babu. Training
sparse neural networks. In Computer Vision and Pattern Recognition Work-
shops (CVPRW), 2017 IEEE Conference on, pages 455–462. IEEE, 2017.

[104] Nitish Srivastava, Geoffrey E. Hinton, Alex Krizhevsky, Ilya Sutskever, and
Ruslan Salakhutdinov. Dropout: a simple way to prevent neural networks from
overfitting. Journal of Machine Learning Research, 15(1):1929–1958, 2014.

[105] Jiawei Su, Danilo Vasconcellos Vargas, and Kouichi Sakurai. One pixel attack
for fooling deep neural networks. IEEE Transactions on Evolutionary Compu-
tation, 2019.

[106] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning
with neural networks. In Advances in neural information processing systems,
pages 3104–3112, 2014.

[107] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabi-
novich. Going deeper with convolutions. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 1–9, 2015.

[108] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru
Erhan, Ian J. Goodfellow, and Rob Fergus. Intriguing properties of neural
networks. International Conference on Learning Representation, 2014.

[109] Thomas Tanay and Lewis Griffin. A boundary tilting persepective on the phe-
nomenon of adversarial examples. arXiv preprint arXiv:1608.07690, 2016.

[110] Wei Tang, Gang Hua, and Liang Wang. How to train a compact binary neural
network with high accuracy? In AAAI, pages 2625–2631, 2017.

[111] Florian Tramèr, Alexey Kurakin, Nicolas Papernot, Ian Goodfellow, Dan
Boneh, and Patrick McDaniel. Ensemble adversarial training: Attacks and
defenses. arXiv preprint arXiv:1705.07204, 2017.

106

[112] Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani, and Manohar
Paluri. Learning spatiotemporal features with 3d convolutional networks. In
Proceedings of the IEEE international conference on computer vision, pages
4489–4497, 2015.

[113] Li Wan, Matthew D. Zeiler, Sixin Zhang, Yann LeCun, and Rob Fergus. Reg-
ularization of neural networks using dropconnect. In ICML (3), volume 28 of
JMLR Proceedings, pages 1058–1066, 2013.

[114] Siyue Wang, Xiao Wang, Pu Zhao, Wujie Wen, David Kaeli, Peter Chin, and
Xue Lin. Defensive dropout for hardening deep neural networks under adver-
sarial attacks. arXiv preprint arXiv:1809.05165, 2018.

[115] Yeming Wen, Paul Vicol, Jimmy Ba, Dustin Tran, and Roger Grosse. Flipout:
Efficient pseudo-independent weight perturbations on mini-batches. arXiv
preprint arXiv:1803.04386, 2018.

[116] Ronald. J. Williams. Simple statistical gradient-following algorithms for con-
nectionist reinforcement learning. Machine Learning, 8:229–256, 1992.

[117] Cihang Xie, Jianyu Wang, Zhishuai Zhang, Zhou Ren, and Alan Yuille. Mitigat-
ing adversarial effects through randomization. arXiv preprint arXiv:1711.01991,
2017.

[118] Cihang Xie, Jianyu Wang, Zhishuai Zhang, Yuyin Zhou, Lingxi Xie, and Alan
Yuille. Adversarial examples for semantic segmentation and object detection. In
Proceedings of the IEEE International Conference on Computer Vision, pages
1369–1378, 2017.

[119] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan
Salakhudinov, Rich Zemel, and Yoshua Bengio. Show, attend and tell: Neural
image caption generation with visual attention. In International conference on
machine learning, pages 2048–2057, 2015.

[120] Neha Yadav, Anupam Yadav, and Manoj Kumar. An introduction to neural
network methods for differential equations. Springer, 2015.

[121] Xiaoyong Yuan, Pan He, Qile Zhu, and Xiaolin Li. Adversarial examples: At-
tacks and defenses for deep learning. IEEE transactions on neural networks and
learning systems, 2019.

[122] Joe Yue-Hei Ng, Matthew Hausknecht, Sudheendra Vijayanarasimhan, Oriol
Vinyals, Rajat Monga, and George Toderici. Beyond short snippets: Deep
networks for video classification. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 4694–4702, 2015.

107

[123] Guoming Zhang, Chen Yan, Xiaoyu Ji, Tianchen Zhang, Taimin Zhang, and
Wenyuan Xu. Dolphinattack: Inaudible voice commands. In Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications Security,
pages 103–117. ACM, 2017.

[124] Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and Yuheng
Zou. Dorefa-net: Training low bitwidth convolutional neural networks with
low bitwidth gradients. arXiv preprint arXiv:1606.06160, 2016.

[125] Andrea Zunino, Sarah Adel Bargal, Pietro Morerio, Jianming Zhang, Stan
Sclaroff, and Vittorio Murino. Excitation dropout: Encouraging plasticity in
deep neural networks. arXiv preprint arXiv:1805.09092, 2018.

Appendices

108

Appendix A

Confidence level

In this thesis, confidence levels for each model are checked in Chapter 3. The specific

perturbation levels are shown in the chapter, so here, the results at all of the pertur-

bation levels are shown. At first, the confidence levels for the dropout are shown, L1

and L2, and binarized neural networks models are shown.

109

110

A.1 Confidence level on changing dropout probability

Figure A.1: Proportion (0 to 1) vs confidence level (0-100) for target classes of ad-
versarial examples on changing dropout probability experiments (without any regu-
larizations, 10, 50, and 90 % probabilities). ε means perturbation level (0.01 to 0.25).
Proportion 0 means none of the examples, and 1 means all of the examples. Also,
Confidence level 0 means 0 % confidence for the target class, and 100 means 100 %
confidence for the target class.

111

A.2 Confidence level on changing L1 and L2 λ parameters

A.2.1 L1 weight decay

Figure A.2: Proportion (0 to 1) vs confidence level (0-100) for target classes of
adversarial examples on changing L1 λ experiments (without any regularizations,
λ = 1e − 5, 1e − 2, 1e − 1). The confidence levels for W/O any regularizations and
λ = 1e − 5 change very similarly. At ε = 0.15, most of both confidence levels are
zeros. On the other hand, confidence levels for λ = 1e − 2, 1e − 1 gradually change
from high to low.

112

A.2.2 L2 weight decay

Figure A.3: Proportion (0 to 1) vs confidence level (0-100) for target classes of
adversarial examples on changing L2 λ experiments (without any regularizations,
λ = 1e − 5, 1e − 2, 1e − 1). These results are similar to L1. The high λ gradually
change the confidence levels from high to lower, but the lower change the confidence
levels rapidly.

113

A.3 Confidence levels on binarized neural networks

A.3.1 MLP

Figure A.4: Proportion (0 to 1) vs confidence level (0-100) for target classes on
stochastic and deterministic binarized neuron experiments for MLP.

114

A.3.2 1CNN

Figure A.5: Proportion (0 to 1) vs confidence level (0-100) for target classes on
stochastic and deterministic binarized neuron experiments for 1CNN. DBN and ST
1CNNs have very similar behaviors. Most of the confidence levels at a lower ε are 100
%. while increasing ε, the proportions for DBN and ST are divided into two, close to
0 or 100%, even at ε = 0.25. The proportions of the middle of confidence levels are
less. On the other hand, REINFORCE-1CNN are most robust among the models.
The proportions of high confidence levels for REINFORCE gradually decrease but
not too much.

115

A.3.3 2CNN

Figure A.6: Proportion (0 to 1) vs confidence level (0-100) for target classes on
stochastic and deterministic binarized neuron experiments for 2CNN. Similar to
1CNN result, DBN and ST 2CNNs are very similar behaviors. The proportions
for REINFORCE at high confidence levels are more robust than the others in this
experiment too.

Appendix B

The activations (σ(a)) of the gate module for the 2nd layer

before binarized (probabilities of masking) on the testing

dataset.

Figure B.1: Histogram of probabilities of activations (σ(a)) from the gate module
(2nd layer) before they are binarized (scale is 0 to 1). Around 50% of the activations
are close to 1, and around 50 % are close to 0.

116

Appendix C

The differences in accuracy between the training and testing

MNIST datasets (clean datasets) for SGBN and SGBN with

relu activation

Figure C.1: The differences in accuracy between the training and testing MNIST
datasets (clean datasets) for SGBN and SGBN with relu activation

117

Appendix D

Adversarial examples crafted by the gate module and

accuracies of each model on the examples

Figure D.1: An adversarial example crafted by the first gate module.

Figure D.2: An adversarial example crafted by the second gate module.

118

119

Figure D.3: The accuracies of CNN-BIN on FGSM crafted by SGBN (red), the first
(blue), and the second gate modules (green).

Figure D.4: The accuracies of SAP on FGSM crafted by SGBN (red), the first (blue),
and the second gate modules (green).

120

Figure D.5: The accuracies of BNN with PGD on FGSM crafted by SGBN (red), the
first (blue), and the second gate modules (green).

Appendix E

Notices of permission to use excerpts from author’s

publications

In this thesis, large and small excerpts were taken verbatim from two of the author’s

own published papers [60, 61]. A form of the student’s contribution to the manuscript

is signed and submitted to the graduate studies office.

Both Springer (publishers of the Canadian Conference on Artificial Intelligence)

and IEEE (publisher of the proceedings of the International Joint Conference on

Neural Networks) state in the documents reproduced on the pages linked below that

use of the author’s work in their own dissertation is allowed.

Please see the copyright forms for permissions:

121

122

123

124

125

126

127

	Title Page
	Table of Contents
	List of Tables
	List of Figures
	Abstract
	List of Abbreviations Used
	Acknowledgements
	Introduction
	Overview
	Focus of thesis
	Overview of adversarial methods
	Adversarial attacks
	Defending against adversarial examples
	Adversarial examples in the real world
	The cause of adversarial examples

	Contributions of studying adversarial examples and this thesis
	Stochastic-gated partially binarized network - A general overview
	Thesis outline

	Basic concepts
	Supervised Learning
	Neural networks
	Feedfoward neural networks
	Neural networks in image classification
	Convolutional neural networks

	Binarized neural networks and estimating gradients
	Binarized neurons and gradient estimators
	Binary neural networks
	Stochastic activation pruning networks

	Adversarial examples and training
	Overview of crafting adversarial examples
	Fast gradient sign method
	Basic iterative method
	Iterative least-likely class method
	Adversarial training
	Adversary distortion measurement

	Mitigating Overfitting Using Regularization to Defend Networks Against Adversarial Examples Kubo19a
	Motivation
	Experiments
	Parameter setting
	Results for changing dropout probability
	Results for changing L1 and L2 h parameters
	Results for binarized neural network

	Discussion

	Learning Adaptive Weight Masking Networks for Adversarial Examples Kubo19b
	Motivation
	Proposed model
	Stochastic-gated partially binarized network
	Gate module

	Experimental evaluation
	Network parameters

	Results
	Visualization of SGBN
	Visualization of activations of the gate module and main network
	Visualization of adversarial examples and perturbation measurement

	Gaining an understanding of SGBN and the gate module
	Stochastic binarized versus deterministic non-binarized gate modules
	Learning representation and attacking the gate modules
	Double-sized filters for the gate module and the main network
	Robustness on the black-box attack
	Toy experiment

	Discussion

	Conclusions and Future Work
	Conclusion
	Future work

	Bibliography
	Appendices
	Confidence level
	Confidence level on changing dropout probability
	Confidence level on changing L1 and L2 h parameters
	L1 weight decay
	L2 weight decay

	Confidence levels on binarized neural networks
	MLP
	1CNN
	2CNN

	The activations ((a)) of the gate module for the 2nd layer before binarized (probabilities of masking) on the testing dataset.
	The differences in accuracy between the training and testing MNIST datasets (clean datasets) for SGBN and SGBN with relu activation
	Adversarial examples crafted by the gate module and accuracies of each model on the examples
	Notices of permission to use excerpts from author's publications

