The relationship between urban tree canopy cover and socioeconomic status in urban Halifax

ENVS 4902 Environmental Science Undergraduate Honours Thesis

Proposal Submitted by:

Chantelle Fynn

BA. Combined Honours Environmental Science

Dalhousie University, Halifax, NS

April 20th, 2018th

Supervisor:

Dr. Daniel Rainham

Course Coordinator:

Dr. Tarah Wright, Environmental Science

Table of Contents

Tables and Figuresiii
Acknowledgementsiv
Abstractv
1. Introduction1
1.1 Motivation and Background 1
1.2 Definitions2
1.3 Summary of literature4
1.4 Goals and Objectives
2. Literature Review
2.1 Urbanization and its impact on the environment7
2.2 Vegetation in urban environments impact on human life
2.3 The importance of urban trees in urban landscapes11
2.4 Impact of socioeconomic status and urban tree canopy cover12
2.5 Literature on the methods used
3. Methods
3.1 Methods Overview15
<i>3.2 Study area</i> 15
3.3 Data Sources
<i>3.4 Methods</i> 19
4. Results
5. Discussion
6. Conclusion
References
Appendix I: Tables40
Appendix II: Statistical Data47

Tables and Figures

<i>Table 1</i> : The 4 dimensions of the Canadian Marginalization Index and its 18 corresponding variables
Table 2: Neighbourhood names in alphabetical order based on Waye Mason Neighbourhood Map Project37
<i>Table 3.</i> Dissemination areas dissolved into neighbourhoods with corresponding population, marginalization, and tree count. Plus, the calculated <i>tree canopy cover per capita</i> and <i>tree canopy cover as proportion of total neighborhood area</i>
Table 4. Neighbourhood information from GIS (tree canopy cover per capita and tree canopy cover as
proportion of total neighborhood area.) that was exported to SPSS for statistical analysis
Table 5. Test of normality tree canopy cover per capita and tree canopy cover as proportion of total
neighborhood area47
Table 6. Rank scores of marginalization and tree canopy cover per capita and tree canopy cover as proportion
of total neighborhood
area 50
Table 7. Kruskal-Wallis statistical results for marginalization and tree canopy cover per capita and tree canopy cover as proportion of total neighborhood area.
Figure 1. Study area situated in context of Halifax Regional Municipality16
Figure 2. The study area (urban Halifax) situated in context of Nova Scotia
Figure 3. Waye Mason Neighbourhood Map Project
Figure 4. Mean marginalization of urban Halifax neighbourhoods22
Figure 5. Tree canopy cover as proportion of total neighbourhood area in urban Halifax24
Figure 6. Tree canopy cover per capita of neighbourhoods in urban Halifax25
Figure 8. Histogram of the dependent variable <i>tree canopy cover per capita</i>
Figure 9. Histogram of dependent variable <i>tree canopy cover as proportion of total neighbourhood area</i> 49

Acknowledgements

I would like to thank my supervisor Dr. Daniel Rainham for his guidance and feedback throughout my thesis. I would also like to thank Dr. Chris Greene and Jennifer Strang for their help in answering any questions I had about GIS no matter how rudimentary they were, and for strengthening my proficiency in ARC GIS; Dr. Tarah Wright for continually checking up on the progression of my thesis and ensuring I was where I needed to be. Finally, I would like to thank my Honours classmates who went through the shared stress of completing an Honours thesis in two very short semesters.

Abstract

Urbanization has highlighted the importance of vegetation in city environments. The influx of people into city centers are concentrating larger populations into smaller areas, and this is having a negative impact on the environment. Urban vegetation, particularly urban trees, provide a range of environmental and social benefits to mitigate the negative effects of urbanization. The rapid expansion of city centers, is also negatively impacting some residents access to urban trees and the benefits that they provide. This project will determine whether there is a difference in the distribution of trees amongst neighbourhoods in urban Halifax, and investigate whether this difference is related to socioeconomic status. Socioeconomic status will be measured using the Canadian Marginalization Index, where low marginalization may represent a higher socioeconomic status, and high marginalization is associated with lower seriocomic status. The 2007 QuickBird multi-spectral satellite imagery and the 2006 Canadian Marginalization Index were used to determine the tree canopy coverage and socioeconomic status in each neighbourhood in urban Halifax. The relationship between socioeconomic status and tree canopy coverage was visualized using geographic information systems. To measure tree canopy coverage, the variables tree canopy per capita and tree canopy as a proportion of neighborhood area were developed. Neither tree canopy per capita nor tree canopy as a proportion of neighborhood area were statistically associated with marginalization. Thus, there is no association between tree canopy cover and the socioeconomic status neighborhoods in urban Halifax

1. Introduction

1.1 Motivation and Background

Urbanization has highlighted the importance of vegetation in city environments. Urbanization been changing landscapes across the world for centuries, and the construction of cities is considered the most profound modification of earth's surface (Martin, Warren, & Kinzig, 2004).The influx of people into city centers is concentrating larger populations into smaller areas, and this is having a negative impact on the environment (Martin et al., 2004). This rapid migration into the urban core has resulted in natural landscapes being transformed into pavements, new housing, and business fronts in order to provide for the increasing population (Botkin & Beveridge, 1997). Due to the importance given to creating new structures to support growing populations, the inclusion of vegetation in city environments has declined. Therefore, it is important to note how and why vegetation is important in urban environments.

Keniger et al. state that interacting with nature is not only for survival, but is imperative for quality of life (Keniger, Gaston, Irvine, & Fuller, 2013). Nature in urban environments has been shown to reduce stress, improve health, and reduce mortality (Donovan et al., 2013; Maas, Verheij, Groenewegen, de Vries, & Spreeuwenberg, 2006; Pearson & Craig, 2014), but certain groups have less access to these beneficial aspects of urban vegetation. The allocation of vegetation varies across different regions of cities, and those differences can be attributed to factors such as age, income and race (Landry & Chakraborty, 2009; Mitchell & Popham, 2008; Tooke, Klinkenber, & Coops, 2010).

Urban vegetation consists of many features such as shrubs and grass, but this study will focus on urban trees. Urban trees are important to the functioning of city ecosystems because they

provide air infiltration services, decrease windspeed and reduce the rate of storm water runoff (Dwyer, Mcpherson, Schroeder, & A. Rowntree, 1992; Nowak & Dwyer, 2007). Therefore, access to them in a city environment is important. To determine whether the beneficial aspects of urban trees are felt across urban Halifax, this thesis investigates whether the distribution of trees are different in neighbourhoods across urban Halifax (city interchangeably), and whether that distribution is associated socio-economic status.

1.2 Definitions

This thesis is focused on investigating whether there is a difference in the distribution of tree canopy coverage in urban Halifax, and whether that difference is associated with socio-economic status. To measure the socioeconomic status in each neighborhood, marginalization is being used. Marginalization is defined as the process which creates inequalities along multiple axes of social differentiation (Matheson, Dunn, Smith, Moineddin, & Glazier, 2012). This includes economic, cultural, legal, political, and social inequality and exclusion, which creates a state of being underprivileged and excluded (Grabska, 2006). A marginalization index called the Canadian Marginalization Index (Can-Marg) is a tool utilized to quantify marginalization. The Can-Marg index uses 18 variables to measure marginalization under four main dimensions which are: residential instability, material deprivation, ethnic concentration, and dependency (Matheson et al., 2012). Table 1 shows the other variables used to define marginalization, such as the proportion of government transfer payment under material deprivation, and labour force participation rate under dependency. The Can-Marg index also categorizes marginalization on a scale from one to five (Matheson et al., 2012). One represents the least marginalized meaning that a group is privileged and not excluded, and five represents the most marginalized which means that a group is underprivileged and excluded.

Table 1. The 4 dimensions of the Canadian Marginalization Index and its 18 corresponding

variables (Matheson et al., 2012)

Residential instability
Proportion living alone
Proportion of youth population aged 5-15
Crowding: Average number of persons dwelling
Proportion multi-unit housing
Proportion of population that is married/common law
Proportion of dwellings that are owned
Proportion of residential mobility (same house as 5 years ago)
Material deprivation
Proportion 25+ without certificate, diploma, or degree
Proportion of lone parent families
Proportion of government transfer payment
Proportion of unemployment 15+
Proportion below low-income cut-off
Proportion of homes needing major repair
Dependency
Proportion of seniors (65+)
Dependency ratio (0-14 +65+)/ (15-64)
Labour force participation rate (aged 15 and older)
Ethnic concentration
Proportion of 5-year recent immigrants
Proportion of visible minorities

Another term that needs to be defined is urban area. Liu et al.'s definition of an urban area is the administrative area within the boundaries of a city that includes all of the impervious surfaces, vegetated land, and water (Liu, He, Zhou, & Wu, 2014). The terms urban and city will be used interchangeably to describe the study area. Only the urbanized landscape of Halifax will be assessed to determine whether there is a difference in tree canopy coverage and marginalization. Urban Halifax for this thesis, has a population of 232,445 from the 2006 census data and 96 neighbourhoods based on the Waye Mason HRM Neighbourhood Map Project.

Although there are many types of urban vegetation located within city landscapes, urban trees are the focal point of this thesis. Urban trees are defined as the sum of all trees that are located in an ecosystem that has been highly altered, where human beings are the main drivers of their types, amounts, and distribution (Escobedo, Kroeger, & Wagner, 2011).

The term distribution also needs to be defined. In this thesis, distribution will be operationalized as *tree canopy cover per capita*, which means the sum of tree canopy cover area in a neighbourhood relative to the sum of the population in each neighbourhood. Also included in the definition of distribution is the *tree canopy cover as proportion of total neighborhood area*. The terms distribution and tree canopy cover area will be used interchangeably in this thesis. Tree canopy cover and distribution were chosen as the main variables because they are primary indicators used to describe urban forests (Heynen & Lindsey, 2003).

1.3 Summary of Literature

This thesis analyzes a wide range of literature that focuses on the distribution of urban vegetation and marginalization, as well as the importance of urban vegetation and health outcomes. For example, research has shown that neighbourhoods that had low income, more renters and a

higher density of minorities had fewer trees on the public right of ways (Landry & Chakraborty, 2009). Another study conducted by Wolch et al revealed that lower income residents had poorly maintained greenspace compared to those with higher incomes (Wolch, Wilson, & Fehrenbach, 2005). Both Wolch et al., and Landry and Chakratorty have seen positive correlations in their studies assessing the relationship between the distribution of urban vegetation and socioeconomic status; however, other studies have concluded otherwise. A study that analyzed the variation of urban forest canopy cover due to socioeconomic status found that there was a weak correlation between income and urban canopy cover (Heynen & Lindsey, 2003). Another study that did not find a correlation between urban vegetation and socioeconomic status was by Boone et al, who found that minorities in Baltimore lived closer to parks (Boone, Buckley, Grove & Sister, 2009). Although similar studies have been conducted, this study uses 18 variables from the Canadian Marginalization Index under four dimensions that can be seen in Table 1. Therefore, this study uses a broader range of socioeconomic indicators to measure the socioeconomic status of each neighbourhood. Despite there being a few Canadian studies that measure vegetation coverage and socioeconomic status (Greene, Robinson, & Millward, 2018; Kardan et al., 2015; Pham, Apparicio, Séguin, Landry, & Gagnon, 2012), this study is novel because no study of this kind has been conducted in urban Halifax using the Can-Marg index.

1.4 Goal and Objectives

The purpose of this study is to determine whether there is a difference of tree canopy cover in neighbourhoods in urban Halifax and whether that difference is associated with the socioeconomic status of each neighbourhood. The results of this study aim to provide relevant information for city planners and government officials to make access to urban trees more equal for all residents in Halifax. This thesis will answer the question: **do neighbourhoods with a**

lower socioeconomic status have less tree canopy than neighbourhoods with a higher socioeconomic status in urban Halifax? I am hypothesizing that distribution of trees in neighbourhoods of urban Halifax is associated with socioeconomic status and that neighbourhoods with a lower socioeconomic status have less tree canopy cover.

2. Literature Review

Urbanization has drastically transformed farmland and natural open landscapes to condensed city centers (Kleppel, 2002). The economic advantages brought forth by cities, as well as the world's increasing population, have made cities more prevalent (Lineback, 2017). Megacities, which are cities with more than 10 million people, have increased tenfold since 1950 (Lineback, 2017). This begs the question whether vegetation is being taken into consideration during the development of cities and whether those living in cities have equal access to vegetation and the benefits that they provide.

To answer these questions, this thesis reviews peer-reviewed articles that discuss the impact of urbanization and its effect on the environment, the importance of urban vegetation on human life, the importance of urban trees, and the relationship between socioeconomic status and urban tree coverage. The thesis also analyses articles that have used similar methodology. The articles reviewed focus primarily on North American literature, as well as Asian and Australian literature which were found using databases such as Google Scholar, PubMed, and ProQuest. The keywords used in these databases were socioeconomic status, urban vegetation, health, urban trees, tree canopy cover, urbanization and North America. Literature that dated before 1991 was not used for this thesis. What will be discussed first is literature that concentrates on urbanization and its impact on the environment.

2.1 Urbanization and its impact on the environment

The literature analyzed for this thesis concludes that urbanization has negative effects on the environment. For example, the limited space of urban environments make it difficult to provide urban vegetation to city residents (Shanahan, Lin, Gaston, Bush, & Fuller, 2014). This is

because city centers are smaller, and structures such as apartment and office buildings take precedence over urban vegetation (Shanahan et al., 2014). Urbanization has increased the amount of land covered by impermeable surfaces which impacts water infiltration into urban ecosystems (Mullaney, Lucke, & Trueman, 2015). Impermeable surfaces are usually dark which contribute to the urban heat island effect, and this increases the temperature of city centers which facilitates the formation of pollutants such as ground-level ozone (Grimm et al., 2008). Increased development also increases habitat fragmentation, which isolates certain species and threatens the existence of others (Grimm et al., 2008). City centers alter the biogeochemical cycles in cities and this is because of the large concentrations of transportation and businesses (Grimm et al., 2008). The release of carbon dioxide (CO_2) and many other greenhouse gases contribute to the warming of earths' climate (Grimm et al., 2008). Although urbanization has negative impacts on the environment, Newman argues that urbanization is better than having low density areas (Newman, 2006). Newman claims that low-density land is more damaging than urbanized areas because of the extent of the land loss, and the car dependency on those who live in low-density areas (Newman, 2006). Although Newman highlights how urbanization reduces car dependency and utilizes land, the rest of the literature reviewed maintain that urbanization has negative impacts on the environment.

2.2 Vegetation in urban environments impact on human life

The articles analysed for this thesis has shown the importance of urban vegetation on human well-being. A study conducted by Kaplan and Kaplan explains Attention Restorative Theory (ART). ART is how people in urban environments are overstimulated by hard features (buildings and concrete) and must use their attention to overcome the negative effects such as stress and mental fatigue (Pearson & Craig, 2014). People located in natural environments have less

demand of their executive based decisions (working memory) and concentrate more on the nature surrounding them which creates feelings of pleasure (Pearson & Craig, 2014). Jiang et al discovered that there was a strong positive correlation between the density of street trees and the self-reported stress recovery in a study that made participants watch videos of streets that varied in tree density (Jiang, Li, Larsen, & Sullivan, 2016). Their results showed that there was a 60% increase in stress recovery in a video with 62% tree cover density (Jiang et al., 2016). Other studies have also reported the benefits of natural environments on stress. Ulrich et al determined that patients who had a view of nature while recovering from cholecystectomy surgery healed faster than those who did not (Ulrich, 1984). Hernandez and Hidaglo showed 214 undergraduate students randomly assigned into 12 groups, photos of urban environments with and without vegetation. They concluded that increased vegetation in urban environments produced higher psychological restorativeness (less stress) than urban environments without vegetation (Hernández & Hidalgo, 2005).

As well as reducing stress, urban environments have been shown to improve an individuals' perceptions of health, and reduce deaths related to cardiovascular illness. A study conducted by Karden et al. showed that people who lived closer to green spaces in Toronto reported higher health perceptions which included overall health, cardio-metabolic conditions, and mental health, than people who did not live closer to greenspaces (Kardan et al., 2015). Donovan et al. also reported that areas, where there was significant tree loss due to the emerald ash borer, had increased deaths related to cardiovascular and respiratory illness (Donovan et al., 2013). Loss of the emerald ash borer was associated with 6.8 additional deaths per year per 100,000 adults due to respiratory illness; the marginal effect of the ash borer on cardiovascular mortality was 16.7 additional deaths per year per 100,000 adults (Donovan et al., 2013). Maas et al assessed the

relationship between health and green living environments. Their study took the health records of 250,782 people and assessed their perceived health based on their proximity to green space (Maas et al., 2006). The results showed that those who lived closer to green spaces reported higher perceptions of general health than those who did not (Maas et al., 2006). A study conducted by Keniger et al. analyzed literature that focused on nature and human well being to determine the benefits of interacting with nature based on categories of interactions which are indirect, incidental and intentional (2013). Their conclusion based on extensive literature review of human well being and nature was that nature provided many psychological, cognitive and spiritual benefits (Keniger et al., 2013).

These studies are important because they show how nature in urban environments can reduce human stress and increase health benefits, therefore highlighting why urban vegetation is important in city environments. Despite these findings of the benefits of urban vegetation, there were some concerns about adding urban vegetation in city neighbourhoods. A study conducted by Pinctl et al. showed that residents were hesitant about urban vegetation initiatives because of the amount of maintenance required to sustain urban vegetation (Pincetl, 2010). The residents were concerned about the additional water cost to irrigate their land, and fines if the trees damage the sewer lines (Pincetl, 2010). Residents were also concerned that urban vegetation would reduce their safety, because they provided a space for criminals to hide (Pincetl, 2010). Another study that assessed whether green space in urban environments had an impact on stress, showed that there was no significant relationship between vegetation in urban environments and human stress (Beil & Hanes, 2013). Although these studies show that urban vegetation does not always have a positive impact to human life, the prevailing literature reviewed exhibited that nature in urban environments is beneficial to humans. The work by Donovan et al. 2013,

Hernandez and Hidaglo 2005, Jiang et al. 2014, Kardan et al. 2015, Pearson and Craig 2014, Ulrich et al. 1991 showed the positive effects of urban vegetation and the environment. Therefore, they are important to this thesis because they accentuate the advantages of humans interacting with nature in an urban context.

2.3 The importance of urban trees in urban landscapes

This section analyzes literature that emphasizes the importance of trees in urbanized landscapes. Mullaney et al. explain that urban trees provide storm water runoff, shade, and improve air quality which makes cities more suitable to live in (Mullaney et al., 2015). Trees in urban environments have also been noted to reduce crime and decrease the sounds produced by daily city activities (Mullaney et al., 2015). However, urban trees can also cause millions of dollars worth of damage to pavements. For example, 17 cities in the United States stated that they spent a total of US\$0.17 per capita (\$1.28 million) to reduce the damaging effects of street trees on their pavements (Mcpherson, 2000). Despite the expenses associated with urban trees, they reduce the rate and volume of storm water runoff which aids in mitigating flood damage (Dwyer et al., 1992). Energy savings are another valuable aspect of urban trees. They provide shading in the summer, which reduces the amount of money spent on cooling buildings and urban trees also lower air temperatures through evapotranspirational cooling (Dwyer et al., 1992). Evapotranspirational cooling is a combination of evaporation and transpiration. During evaporation, water is transformed from liquid to vapour, and during transpiration water drawn up from the soil, evaporates from the leaves (Dwyer et al., 1992). Trees in city environments are recognized for their ability to sequester carbon. In the United States, urban trees sequestered 700 million metric tons of carbon annually (Nowak & Dwyer, 2007).

Urban trees also have negative qualities. Urban trees can cause issues such as gentrification. Urban trees in cities increase housing prices, which makes it arduous for those areas to support low income families (Schwarz et al., 2015). Urban trees can also release allergens into the environment, negatively impacting human health, as well as being a source for pollution precursors such as volatile organic compounds (VOC's) (Pataki et al., 2011). While there are some negative characteristics of urban trees, a study conducted by researchers at the University of New Brunswick discovered that the increase of urban vegetation, including urban trees, near homes significantly decreased the number of premature deaths caused by natural causes (Crouse et al., 2017). In addition to the health benefits of urban trees deliver, urban trees also provide aesthetic benefits. Well-maintained trees in city business districts have been shown to attract more residential, commercial, and public investments together with increasing consumer purchase rates (Orland, Vining, & Ebreo, 1992). Although urban trees can cause gentrification and produce allergens, they are an important necessity because of the environmental benefits they provide.

2.4 Impact of socioeconomic status and urban vegetation

Studies that analyzed the impact of socioeconomic status and urban vegetation showed varied results that were either statistically significant or insignificant. A study that assessed the importance of socioeconomic qualities and access to nature discovered that there was a low correlation between socioeconomic status and vegetation cover (Shanahan et al., 2014). Other studies (Abercrombie et al., 2008; Boone et al., 2009; Heynen & Lindsey, 2003; Mills, Cunningham, & Donovan, 2016; Shanahan et al., 2014) found that there was no statistical association between urban vegetation cover and socioeconomic status. Although these studies found little to no association between urban vegetation cover and socioeconomic status, other

studies have concluded the opposite. A study that assessed whether there was an uneven distribution of vegetation in Montreal Quebec, determined that areas with low incomes had disparities in vegetation cover (Pham et al., 2012). Another study that evaluated vegetation cover and equity in Canada, concluded that areas in Montreal, Vancouver, and Toronto that had lower vegetation cover had low income and areas with higher vegetation cover had high incomes (Tooke et al., 2010). Nesbitt and Meitner also concluded in their study that Asians and Caucasians with graduate-level education lived in neighbourhoods that had higher vegetation cover than minority neighbourhoods (Nesbitt & Meitner, 2016). Wen et al. discovered that disadvantaged neighbourhoods, which were neighbourhoods with a large percentage of minorities and low-income residents, had less vegetation cover than advantaged neighbourhoods (Wen, Zhang, Harris, Holt, & Croft, 2013). Whether or not these findings were statistically significant or insignificant could be due to different sampling sizes, such as some studies using dissemination areas versus census tracts or whole city populations during the analysis.

2.5 Literature on the methods used

The use of remote sensor data and census data has become increasingly popular among scholars (Liverman, National Research Council (U.S.), & Committee on the Human Dimensions of Global Change, 1998). Geospatial information is expensive, therefore by combining it with social science research, it becomes more valuable and necessary to government officials (Liverman et al., 1998). A study conducted by Lo and Faber used remote sensing and census data to assess the quality of life with an environmental perspective in Athens Clarke County Georgia (Lo & Faber, 1997). The study found that there was a strong correlation between Landsat data for normalized vegetation index (NDVI) and the census variables which were per capita income, population density, and median home value (Lo & Faber, 1997). A study conducted by Greene,

Robinson, and Milwarda that assessed whether tree canopy differed among ranges of resident income, used the 2006 census data for their study and used the 2007 Quickbird satellite imagery to retrieve tree canopy cover (Greene et al., 2018). Karden et al used the 2007 Quickbird satellite to measure the relationship between greenspace proximity and perceived health (Kardan et al., 2015). A study that evaluated whether there were any differences among social groups and four variables (proximity to open space, proximity to Lake Michigan, tree canopy cover and bird biodiversity) also used Quickbird imagery to retrieve information that described the Chicago natural environment (Davis et al., 2012)

3. Methods

3.1 Methods Overview

This study entails a cross-sectional analysis of the relationship between tree canopy cover and socioeconomic marginalization in Halifax. Marginalization was measured using the Canadian Marginalization Index. This thesis focused on urban Halifax as the main study area, and the neighbourhoods were created by joining dissemination areas together, using Waye Mason's HRM Neighbourhood Project as a guide. The Kruskal-Wallis test was employed to determine the association between marginalization and tree canopy coverage in urban Halifax.

3.2 Study Area

Halifax Nova Scotia has a total population of 403, 390, and is located on the Eastern coast of Canada (Government of Canada, 2017). The city of Halifax is home to 45% of the Nova Scotian population and is the largest city in Nova Scotia (Government of Canada, 2017). This thesis focuses on urban Halifax as the main study area. The population of urban Halifax according to the Canadian Marginalization index and 2006 census data is 232,445. Figure 1 is an image of the study area situated in context of the Halifax Regional Municipality, and Figure 2 is an image of the study area situated in context with Nova Scotia.

Figure 1. Study area situated in context of Halifax Regional Municipality

Figure 2. The study area (urban Halifax) situated in context of Nova Scotia

3.3 Data Sources

The tree canopy coverage of Halifax used in this thesis was retrieved by the 2007 Quickbird Satellite. The satellite Imagery is multi-spectral with a 2.4 m² resolution. An unsupervised classification approach in ArcGIS was used to process this imagery, and create a count of tree canopy cover pixels in each dissemination area. The 2006 census information of Halifax, called HRMQN_SA, was a data source used in this thesis. It includes all the dissemination areas in Halifax, as well as the corresponding population for each dissemination area. Another data source used, was the Canadian Marginalization Index created by the Centre for Research on Inner City Health (Webb et al., 2017). The CAN-Marg index is a marginalization index that uses 4 dimensions created at the dissemination area and census tract level for the census years of 2001 and 2006 (Matheson et al., 2012). The four dimensions used in the CAN-Marg index are: residential instability, material deprivation, ethnic concentration, and dependency (Matheson et al., 2012). The CAN-Marg index measures marginalization by categorizing the marginalization information and ranking them from one (least marginalized) to five (most marginalized) (Matheson et al., 2012). The Can-Marg index believes that there are more elements of marginalization other than economic status and they use 18 other variables to define marginalization (Webb et al., 2017). The neighbourhoods were created based on the Waye Mason HRM Neighbourhood Map Project (Mason, 2011), and they were ranked from least to most marginalized to represent the marginalization in each neighbourhood.

3.4 Methods

First, the tree canopy data and the Halifax census data were uploaded onto ARC GIS. The tree canopy cover data had to be isolated and this was done by reclassifying the data to ensure that 0 equaled no canopy and 1 equaled canopy. The next steps were done to aggregate the raster (tree canopy) and polygon (Halifax census data). To combine the polygon and raster data, the Spatial Analyst tool, Zonal Statistics as Table was used. The Halifax census data was used as the feature zone data, the dissemination areas were chosen as the zone field, and the tree canopy data was picked for the input value raster. The statistics type, sum, was selected to calculate the sum of tree canopy in each dissemination area in the study area. The table created contained the dissemination areas, and the count of the pixels and the sum of the tree canopy. This was joined to the Halifax census data based on dissemination areas, and only matching records were kept during the join. Once they were successfully aggregated, the Can-Marg data, which was converted into a csv (comma delimited file), was added into ARC GIS and joined with the aggregated tree canopy (raster) data and the Halifax census (polygon) data. This was exported as a new map. The new map contained the dissemination areas, their populations, the sum of the dissemination areas canopy, and their marginalization's. The next step was to create the neighbourhoods.

The neighbourhoods were created by using Waye Mason's HRM Neighbourhood Project Map as a guide. A new text field called "Neighbours "was added to the attribute table of the new map that was created. The dissemination areas that resembled the Waye Mason's neighbourhoods were selected and they were named using the field calculator. The dissemination areas that had marginalization value of zero were removed from the map after they had been named by the field calculator. The dissemination areas that were removed were in the neighbourhoods named Saint

Mary's University, North End, Portland Estates, a Spring Garden Road Area and North End Dartmouth. Once all the dissemination areas had been named and the marginalization that equaled zero were removed, a dissolve was ran on the "Neighbours" field to merge all the dissemination areas with similar names into neighbourhoods. The sum of the "Neighbours" population and the mean of the "Neighbours" marginalization were also dissolved. The completed attribute table should have the count of trees, the sum of the population, mean marginalization and area of each neighbourhood. The figures below show the neighbourhoods in Waye Mason Neighbourhood Map Project (Figure 3) and the mean marginalization of each urban Halifax neighbourhoods (Figure 4).

Figure 3. Waye Mason Neighbourhood Map Project (Mason, 2011)

Figure 4. Mean marginalization of urban Halifax neighbourhoods

Next, the proportion of tree canopy cover area per population and the area of trees as a proportion of the area of each neighbourhood had to be calculated. This was done by creating a new double field in the dissolved neighbourhoods attribute table. Using the field calculator, the equation (**COUNT** * **2.4** * **2.4** m²)/**Area** m² was entered to get the *area of trees as a proportion of the total area of each neighbourhood*. The COUNT of tree canopy was multiplied by 2.4² m² because the pixel size of the canopy was 2.4m by 2.4m. Another double field was added to the attribute table to measure the number of *tree canopy cover per capita*. Using the field calculator, the equation **COUNT** ***2.4*****2.4** m²/**SUM of Population** m² was entered to get the proportion of trees per population. The neighbourhood names, the mean marginalization, *tree canopy cover per capita* and *tree canopy cover as proportion of total neighborhood area* were exported to SPSS to conduct a Kruskal-Wallis statistical test. Below, Figure 5 shows the *tree canopy cover as proportion of total neighborhood area* and Figure 6 shows *tree canopy cover per capita*.

Figure 5. Tree canopy cover as proportion of total neighborhood area in urban Halifax (Classification: Natural Breaks-Jenks)

Figure 6. Tree canopy cover per capita of neighbourhoods in urban Halifax (Classification: Natural Breaks-Jenks)

Before the statistical test was conducted, the dependent variables *tree canopy cover per capita* and *tree canopy cover as proportion of total neighborhood area* were tested for normality in SPSS using the normality test. The significance level for this test was 0.05. The Shapiro-Wilk tests showed that the significance of *tree canopy cover per capita* and *tree canopy cover as proportion of total neighborhood area* had a W value of 0.000 meaning that it was not normally distributed because the null hypothesis that the data was normally distributed had to be rejected. Therefore, the Kruskal-Wallis test was employed because the variables were not normally distributed, and this can be viewed in Table 7 of appendix II.

The Kruskal-Wallis test was used to determine the significance of *tree canopy cover per capita* and *tree canopy cover as proportion of total neighborhood area*. *Tree canopy cover per capita* and *tree canopy cover as proportion of total neighborhood area* were the dependent variables and marginalization was the independent variable. The Kruskal-Wallis test was chosen because it is a rank based non-parametric test that could determine whether there were statistically significant differences between the ranking of marginalization and the dependent variables. The significant value used to determine the significance was 0.05.

4. Results

What was observed between marginalization and *tree canopy cover per capita* and *tree canopy cover as proportion of total neighborhood area* through the Kruskal-Wallis H test was not significant. There were no statistically significant differences in the dependent variables, *tree canopy cover per capita* and *tree canopy cover as proportion of total neighborhood area*, between the marginalization categories from one to five. For *tree canopy cover per capita*, x^2 (4, N = 96) = 7.224, p = 0.122, the p-value (0.122) was greater than the level of significance (0.05) which can be seen in Table 7 of appendix II, and this means that the number of trees per population was not accounted for by marginalization. The calculation to obtain the variability of *tree canopy per capita* and marginalization was employed, and the equation used was;

Chi-square value / N -1* 100: 7.224/ 95 *100 = 7.6%

Therefore, 7.6% of the variability in the ranks scores for tree canopy cover per capita is accounted for by marginalization.

For area of trees as a proportion of the total area of the neighbourhood, what was obtained from the Kruskal-Wallis test done in SPSS was x^2 (44, N = 96), p = 0.084. The p value was 0.084, which is greater than the level of significance (0.05), meaning that the area of *tree canopy cover as proportion of total neighborhood area* is not explained by marginalization. The variability of the *tree canopy cover as proportion of total neighborhood area* was calculated using the chi-square equation;

Chi-square value / N -1* 100: 8.229/ 95 *100 = 8.6%

This means that 8.6% of the variation in the rank scores *for tree canopy cover as proportion of total neighborhood area* is accounted for by marginalization.

Therefore, the null hypothesis: neighbourhoods with a lower socioeconomic status do not have less trees than neighbourhoods with higher socioeconomic status, cannot be rejected.

5. Discussion

The results of this study show that tree distribution in urban Halifax is not associated with socioeconomic marginalization taken from the CAN-Marg index. The calculations for the Kruskal-Wallis test showed that the results were not statistically significant because the p-values were greater than the level of significance (0.05), meaning that the null hypothesis could not be rejected. The chi-square calculation to obtain the variability showed that only 7.6% of the variability in the rank scores for tree canopy cover per capita were accounted for by marginalization. The chi-square value tree canopy cover as proportion of total neighborhood area also showed that only 8.6% of the variability in rank scores was accounted for by marginalization. These results show that the difference of the tree distribution between neighbourhoods in urban Halifax is not related to socioeconomic status, and that neighbourhoods with a low socioeconomic status (high marginalization) do not have a lower distribution of trees than neighbourhoods with a high socioeconomic status (low marginalization). This indicates that urban Halifax does not distribute trees based on a neighbourhood's socioeconomic status. This study attempted to fill the gap in the literature of tree distribution studies conducted in urban Halifax based on socioeconomic status and the conclusion is that urban Halifax tree canopy cover is not related to socioeconomic status.

The results of this study are consistent with studies conducted in North American cities that show that there is no correlation between socioeconomic factors and vegetation cover (Abercrombie et al., 2008; Boone et al., 2009; Heynen & Lindsey, 2003; Mills et al., 2016). Abercrombie et al wanted to investigate whether low socioeconomic (high minority and low income) neighbourhoods had less access to public parks, open spaces and private recreation and what they found was a weak correlation between high minority areas and access to parks

(Abercrombie et al., 2008). Boone et al also found that areas with a high percentage of African Americans and high need populations had better access to parks (Boone et al., 2009). In their study that investigated the difference between tree canopy cover and socioeconomic indicators, Mills et al found that there was no correlation between race and tree canopy cover in the Pacific North West (Mills et al., 2016). Heyen and Lindsay also concluded that factors such as population density and median household income do not correlate with urban canopy cover (Heynen & Lindsey, 2003).

Although the results of this thesis were not significant, other studies have discovered that urban vegetation in cities was explained by socioeconomic status. A study conducted that evaluated vegetation cover and equity in three Canadian cities (Montreal, Vancouver and Toronto), discovered that low income areas had low vegetation cover, and high incomer areas had a higher vegetation cover (Tooke et al., 2010). Another study also showed that neighbourhoods in American cities, with a large percentage of minorities and low-income residents had less vegetation cover than high-income neighbourhoods (Wen et al., 2013). Explanations of why the hypothesis of this study was not met could be due to combining the dissemination areas to represent neighbourhoods. The aggregation of the dissemination areas could have skewed the results because it combined several socioeconomic factors into one neighbourhood. The results also showed that most of the neighborhoods in urban Halifax had a 95% to 100% tree canopy coverage. This could be due the creation of the Halifax neighborhoods, and could have influenced the final results. The aggregation of the dissemination areas into neighbourhoods could have made the neighbourhoods not follow the resolution of (2.4^{2}) m² exactly and they could have connected as a full pixel when they were not a full pixel. Six dissemination areas had to be removed because they had a marginalization score of zero, and this could have had an

impact on the final results. An issue that could have influenced the results of this study were the 18 variables of the CAN-Marg index. The strength of each of the 18 variables and their relationship to tree canopy coverage in urban Halifax were not assessed, therefore their individual importance could not be analyzed.

A limitation of this study was that there were no predetermined neighbourhood classifications of urban Halifax that coincided with the Canadian census data. Therefore, the neighbourhoods had to be created by converging dissemination areas together according to the Waye Mason Neighbourhood Map Project. Time constraint was also a large limitation for this study. This study also did not distinguish between trees on private and public land which could have increased or decreased tree canopy cover in urban Halifax, due to time constraints.

6. Conclusion

The significant finding in this study was that socioeconomic status was not associated to the difference of tree distribution between neighbourhoods in urban Halifax. Neighbourhoods with low socioeconomic status did not have less trees than neighbourhoods with a higher socioeconomic status. This implies that the distribution of trees in Halifax neighbourhoods is not associated with socioeconomic status. Therefore, Halifax does not have an issue of providing more trees or less trees to neighbourhoods with high or low socioeconomic status. This means that Halifax city planners can avert their focus from providing more trees to low socioeconomic neighbourhoods and focus on providing other aspects such as access to recreational activities. This is the first study in Canada that investigates whether tree distribution in urban neighbourhoods is related to socioeconomic status using the Can-Marg index. Although urbanization is altering landscapes at a rapid pace, providing access to urban tress despite a neighbourhood's socioeconomic status is not an issue in urban Halifax.

Suggestions for further research in determining whether the difference in tree distribution in neighbourhoods is associated with socioeconomic status is considering the different racial makeup of each neighbourhood and relating them to tree canopy coverage. Other suggestions include distinguishing between trees on private and public land, and determining the age of the neighbourhoods during the analysis to provide a more detailed assessment on tree distribution and socioeconomic status in urban Halifax.

References

Abercrombie, L. C., Sallis, J. F., Conway, T. L., Frank, L. D., Saelens, B. E., & Chapman, J. E. (2008). Income and Racial Disparities in Access to Public Parks and Private Recreation Facilities. *American Journal of Preventive Medicine*, *34*(1), 9–15. https://doi.org/10.1016/j.amepre.2007.09.030

Beil, K., & Hanes, D. (2013). The Influence of Urban Natural and Built Environments on Physiological and Psychological Measures of Stress— A Pilot Study. *International Journal of Environmental Research and Public Health*, *10*(4), 1250–1267. https://doi.org/10.3390/ijerph10041250

Boone, C. G., Buckley, G. L., Grove, J. M., & Sister, C. (2009). Parks and People: An Environmental Justice Inquiry in Baltimore, Maryland. *Annals of the Association of American Geographers*, 99(4), 767–787. https://doi.org/10.1080/00045600903102949

Botkin, D. ., & Beveridge, C. . (1997). Cities as environments. Urban Ecosystems, 1, 3–19.

- Crouse, D. L., Pinault, L., Balram, A., Hystad, P., Peters, P. A., Chen, H., ... Villeneuve, P. J. (2017). Urban greenness and mortality in Canada's largest cities: a national cohort study. *The Lancet Planetary Health*, *1*(7), e289–e297. https://doi.org/10.1016/S2542-5196(17)30118-3
- Davis, A. Y., Belaire, J. A., Farfan, M. A., Milz, D., Sweeney, E. R., Loss, S. R., & Minor, E. S. (2012). Green infrastructure and bird diversity across an urban socioeconomic gradient. *Ecosphere*, *3*(11), 1–18. https://doi.org/10.1890/ES12-00126.1
- Donovan, G. H., Butry, D. T., Michael, Y. L., Prestemon, J. P., Liebhold, A. M., Gatziolis, D., & Mao, M. Y. (2013). The Relationship Between Trees and Human Health: Evidence from

the Spread of the Emerald Ash Borer. *American Journal of Preventive Medicine*, 44(2), 139–145. https://doi.org/10.1016/j.amepre.2012.09.066

- Dwyer, J., Mcpherson, E., Schroeder, H., & A. Rowntree, R. (1992). Assessing the benefits and costs of the urban forest. *J. Arbor.*, *18*.
- Escobedo, F. J., Kroeger, T., & Wagner, J. E. (2011). Urban forests and pollution mitigation: Analyzing ecosystem services and disservices. *Environmental Pollution*, *159*(8), 2078–2087. https://doi.org/10.1016/j.envpol.2011.01.010
- Government of Canada, S. C. (2017, February 8). Focus on Geography Series, 2016 Census -Census metropolitan area of Halifax. Retrieved March 4, 2018, from http://www12.statcan.ca/census-recensement/2016/as-sa/fogs-spg/Facts-cmaeng.cfm?LANG=Eng&GK=CMA&GC=205
- Grabska, K. (2006). Marginalization in Urban Spaces of the Global South: Urban Refugees in Cairo. *Journal of Refugee Studies*, *19*(3), 287–307. https://doi.org/10.1093/jrs/fel014
- Greene, C. S., Robinson, P. J., & Millward, A. A. (2018). Canopy of advantage: Who benefits most from city trees? *Journal of Environmental Management*, 208, 24–35. https://doi.org/10.1016/j.jenvman.2017.12.015
- Grimm, N. B., Faeth, S. H., Golubiewski, N. E., Redman, C. L., Wu, J., Bai, X., & Briggs, J. M. (2008). Global Change and the Ecology of Cities. *Science*, *319*(5864), 756–760. https://doi.org/10.1126/science.1150195
- Hernández, B., & Hidalgo, M. C. (2005). Effect of urban vegetation on psychological restorativeness. *Psychological Reports*, 96(3 Pt 2), 1025–1028. https://doi.org/10.2466/pr0.96.3c.1025-1028

- Heynen, N. C., & Lindsey, G. (2003). Correlates of Urban Forest Canopy Cover: Implications for Local Public Works. *Public Works Management & Policy*, 8(1), 33–47. https://doi.org/10.1177/1087724X03008001004
- Jiang, B., Li, D., Larsen, L., & Sullivan, W. C. (2016). A Dose-Response Curve Describing the Relationship Between Urban Tree Cover Density and Self-Reported Stress Recovery. *Environment and Behavior*, 48(4), 607–629. https://doi.org/10.1177/0013916514552321
- Kardan, O., Gozdyra, P., Misic, B., Moola, F., Palmer, L. J., Paus, T., & Berman, M. G. (2015).
 Neighborhood greenspace and health in a large urban center. *Scientific Reports*, *5*, 11610. https://doi.org/10.1038/srep11610
- Keniger, L. E., Gaston, K. J., Irvine, K. N., & Fuller, R. A. (2013). What are the Benefits of Interacting with Nature? *International Journal of Environmental Research and Public Health*, 10(3), 913–935. https://doi.org/10.3390/ijerph10030913
- Kleppel, G. S. (2002). Urbanization and Environmental Quality: Implications of Alternative Development Scenarios. *Albany Law Environmental Outlook Journal*, 8, 37.
- Landry, S. M., & Chakraborty, J. (2009). Street Trees and Equity: Evaluating the Spatial
 Distribution of an Urban Amenity. *Environment and Planning A: Economy and Space*,
 41(11), 2651–2670. https://doi.org/10.1068/a41236
- Lineback, N. (2017, February 17). Geography in the news: The growth of megacities. Retrieved January 21, 2018, from https://blog.nationalgeographic.org/2014/02/17/geography-in-thenews-the-growth-of-megacities/
- Liu, Z., He, C., Zhou, Y., & Wu, J. (2014). How much of the world's land has been urbanized, really? A hierarchical framework for avoiding confusion. *Landscape Ecology*, 29(5), 763–771. https://doi.org/10.1007/s10980-014-0034-y

Liverman, D. M., National Research Council (U.S.), & Committee on the Human Dimensions of Global Change. (1998). *People and pixels: linking remote sensing and social science*.
Washington, D.C.: National Academy Press. Retrieved from http://site.ebrary.com/id/10055054

- Lo, C. P., & Faber, B. J. (1997). Integration of landsat thematic mapper and census data for quality of life assessment. *Remote Sensing of Environment*, 62(2), 143–157. https://doi.org/10.1016/S0034-4257(97)00088-6
- Maas, J., Verheij, R. A., Groenewegen, P. P., de Vries, S., & Spreeuwenberg, P. (2006). Green space, urbanity, and health: how strong is the relation? *Journal of Epidemiology and Community Health*, 60(7), 587–592. https://doi.org/10.1136/jech.2005.043125
- Martin, C. A., Warren, P. S., & Kinzig, A. P. (2004). Neighborhood socioeconomic status is a useful predictor of perennial landscape vegetation in residential neighborhoods and embedded small parks of Phoenix, AZ. *Landscape and Urban Planning*, 69(4), 355–368. https://doi.org/10.1016/j.landurbplan.2003.10.034
- Mason, W. (2011, October 3). HRM Neighbourhood Map Project. Retrieved April 4, 2018, from http://wayemason.ca/hrm-map-project/
- Matheson, F. I., Dunn, J. R., Smith, K. L. W., Moineddin, R., & Glazier, R. H. (2012).
 Development of the Canadian Marginalization Index: A New Tool for the Study of Inequality. *Can J Public Health*, *103*(8), 12–16.
- Mcpherson, E. (2000). Expenditures associated with conflicts between street tree root growth and hardscape in California, United States. *Journal of Arboriculture*, 26.

- Mills, J. R., Cunningham, P., & Donovan, G. H. (2016). Urban forests and social inequality in the Pacific Northwest. Urban Forestry & Urban Greening, 16, 188–196. https://doi.org/10.1016/j.ufug.2016.02.011
- Mitchell, R., & Popham, F. (2008). Effect of exposure to natural environment on health inequalities: an observational population study. *The Lancet*, 372(9650), 1655–1660. https://doi.org/10.1016/S0140-6736(08)61689-X
- Mullaney, J., Lucke, T., & Trueman, S. J. (2015). A review of benefits and challenges in growing street trees in paved urban environments. *Landscape and Urban Planning*, 134, 157–166. https://doi.org/10.1016/j.landurbplan.2014.10.013
- Nesbitt, L., & Meitner, M. (2016). Exploring Relationships between Socioeconomic Background and Urban Greenery in Portland, OR. *Forests*, 7(8), 162. https://doi.org/10.3390/f7080162
- Newman, P. (2006). The environmental impact of cities. *Environment and Urbanization*, *18*(2), 275–295. https://doi.org/10.1177/0956247806069599
- Nowak, D. J., & Dwyer, J. F. (2007). Understanding the Benefits and Costs of Urban Forest Ecosystems. In J. E. Kuser (Ed.), *Urban and Community Forestry in the Northeast* (pp. 25–46). Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-1-4020-4289-8_2
- Orland, B., Vining, J., & Ebreo, A. (1992). The Effect of Street Trees on Perceived Values of Residential Property. *Environment and Behavior - ENVIRON BEHAV*, 24, 298–325. https://doi.org/10.1177/0013916592243002
- Pataki, D. E., Carreiro, M. M., Cherrier, J., Grulke, N. E., Jennings, V., Pincetl, S., ... Zipperer,W. C. (2011). Coupling biogeochemical cycles in urban environments: ecosystem

services, green solutions, and misconceptions. *Frontiers in Ecology and the Environment*, 9(1), 27–36. https://doi.org/10.1890/090220

Pearson, D. G., & Craig, T. (2014). The great outdoors? Exploring the mental health benefits of natural environments. *Frontiers in Psychology*, 5. https://doi.org/10.3389/fpsyg.2014.01178

Pham, T.-T.-H., Apparicio, P., Séguin, A.-M., Landry, S., & Gagnon, M. (2012). Spatial distribution of vegetation in Montreal: An uneven distribution or environmental inequity? *Landscape and Urban Planning*, 107(3), 214–224. https://doi.org/10.1016/j.landurbplan.2012.06.002

- Pincetl, S. (2010). From the sanitary city to the sustainable city: challenges to institutionalising biogenic (nature's services) infrastructure. *Local Environment*, 15(1), 43–58. https://doi.org/10.1080/13549830903406065
- Schwarz, K., Fragkias, M., Boone, C. G., Zhou, W., McHale, M., Grove, J. M., ... Cadenasso,
 M. L. (2015). Trees Grow on Money: Urban Tree Canopy Cover and Environmental
 Justice. *PLOS ONE*, *10*(4), e0122051. https://doi.org/10.1371/journal.pone.0122051
- Shanahan, D. F., Lin, B. B., Gaston, K. J., Bush, R., & Fuller, R. A. (2014). Socio-economic inequalities in access to nature on public and private lands: A case study from Brisbane, Australia. *Landscape and Urban Planning*, *130*, 14–23. https://doi.org/10.1016/j.landurbplan.2014.06.005
- Tooke, T. R., Klinkenber, B., & Coops, N. C. (2010). A geographical approach to identifying vegetation-related environmental equity in Canadian cities. *Environment and Planning B: Planning and Design*, 37(6), 1040–1056. https://doi.org/10.1068/b36044

- Ulrich, R. S. (1984). View through a window may influence recovery from surgery. *Science* (*New York, N.Y.*), 224(4647), 420–421.
- Webb, S., Janus, M., Duku, E., Raos, R., Brownell, M., Forer, B., ... Muhajarine, N. (2017).
 Neighbourhood socioeconomic status indices and early childhood development. SSM -Population Health, 3, 48–56. https://doi.org/10.1016/j.ssmph.2016.11.006
- Wen, M., Zhang, X., Harris, C. D., Holt, J. B., & Croft, J. B. (2013). Spatial Disparities in the Distribution of Parks and Green Spaces in the USA. *Annals of Behavioral Medicine : A Publication of the Society of Behavioral Medicine*, 45(Suppl 1), 18–27. https://doi.org/10.1007/s12160-012-9426-x
- Wolch, J., Wilson, J. P., & Fehrenbach, J. (2005). Parks and Park Funding in Los Angeles: An Equity-Mapping Analysis. Urban Geography, 26(1), 4–35. https://doi.org/10.2747/0272-3638.26.1.4

Appendix I: Tables

Table 2. Neighbourhood names in alphabetical order based on Waye Mason Neighbourhood

Map Project (Mason, 2011)

Neighbourhoods
Africville Area
Armdale
Auburn
Austenville
Barrington South
Basinview
Bedford Hills
Bedford Waterfront
Bel Avr
Birch Cove
Boulderwood
Brightwood
Burnside Business Park
Central Bedford
Clayton Park
Clayton Park West
Colby Village
Cole Harbour
Cowie Hill
Cresthaven
Crichton Park
Dalhousie Sexton Campus
Dalhousie University
Dartmouth Common North
Dartmouth Cove
Downtown Dartmouth
Downtown Halifax
Eaglewood
Eastern Passage
Fairmount
Fairview
Flemming Heights
Forest Hills
Fort Sackville
Gaston Road Area
Glen Moir
Glenborne
Gorsebrook Park Area
Graham's Corner
Grewstone
Halifax Citadel Area
Halifax Seaport
Harbourview
Hemlock Ravine
Highfield Park
Imperiol
Indimore
Inpile
Keamey Lake
Kemite Rad Area
Kline Heights/Stanley Park
Lake Charles
Larry Utteck
Leiblin Park
Manor Dark

Meadowbrook
Melville Cove
Mic Mac Area
Moirs Mill
Montebello
Mount Royal
Nantucket
Nelson's Landing
North End
North End Dartmouth
North Street Area
North West Arm
North/Park
Penhorn
Point Pleasant Park Area
Portland Estates
Ridgevale
Rockingham
Rosebank
Russell Lake
Shearwater
Sherwood Heights
South End
Southdale
Spring Garden Road Area
Spryfield
Sunnyside
Tam O'Shanter Ridge
Thornhill Park
Tufts Cove
Wedgewood
West End
Westmount
Westphal
Westwood & The Pubs
Williams Lake
Willowdale & Astral Projects
Windmill Road
Woodlawn
Woodside Industrial Park
Wrights Cove

Table 3. Dissemination areas dissolved into neighbourhoods with corresponding population,

marginalization, and tree count. Plus, the calculated *tree canopy cover per capita* and *tree*

agnony gover as	nronartion	oftotal	naiabh	arhood area
canopy cover as	proportion	<i>oj i0iai</i> .	neigno	ornooa area

Neighbo	SUM_	MEAN_	SUM_C	SUM_	OBJEC	Neighbo	ZONE_C	COU	ARE	SU	Per_	Tree_
urs	Рор	depri	OUNT	Area	TID	ur_1	ODE	NT	Α	Μ	Capit	Prop
											a	
Africville	655	1	172399	993059.	1	Africville	1	17238	99296	3166	1515.9	99.990
Area	1570	1	01704	7136	-	Area	2	9	0.6	9	704	023
Armdale	1578	1	81724	557936. 7761	2	Armdale	2	81732	4/0// 63	3406 0	298.33 734	84.378 077
Auburn	2922	2	379924	2193265	3	Auburn	3	37991	21883	1701	748.91	99.774
				.068	-		-	7	22	19	236	621
Austenvill	1368	4	44995	276950.	4	Austenvill	4	44985	25911	1208	189.41	93.559
e				2334	-	e			3.6	1	053	625
Barringto	2546	3	37639	216831.	5	Barringto p South	5	37652	21687	8765	85.182	100.02
Basinvie	2271	1	184255	1061240	6	Basinvie	6	18424	10612	7676	467 30	100.00
w		-		.471		w	-	5	51	2	568	1011
Bedford	698	1	56744	326945.	7	Bedford	7	56757	32692	2417	468.36	99.992
Hills				5787		Hills			0.3	5	722	274
Bedford	584	1	1280351	8851535	8	Bedford	8	13236	76241	6616 20	13055.	86.134
t				.192		t		43	04	20	109	027
Bel Ayr	1256	2	98658	617370.	9	Bel Ayr	9	98673	56835	3075	452.51	92.060
				9694					6.5	7	312	772
Birch	816	1	50535	534144.	10	Birch	10	50533	29107	1740	356.70	54.492
Cove	657	2	169095	313	11	Cove	11	16807	0.1	3	353	779
ood	037	2	108985	9383	11	ood	11	2	8.7	8	984	847
Brightwo	1175	2	132397	764560.	12	Brightwo	12	13243	76280	3661	649.19	99.770
od				7611		od		2	8.3	7	857	791
Burnside	1163	2	2940801	1778408	13	Burnside	13	29406	16938	1244	14564.	95.244
Business				0.35		Business		96	409	260	41	784
Central	661	1	304985	1793505	14	Central	14	30497	17566	2260	2657.5	97 945
Bedford	001	1	501705	.491	11	Bedford	14	6	62	3	821	714
Clayton	3766	2	173036	1002351	15	Clayton	15	17302	99663	6781	264.64	99.429
Park				.167		Park		7	5.5	4	034	776
Clayton	11251	2	601023	3464181	16	Clayton	16	60102	34619	2367	307.69	99.934
Park West	6756	2	507130	.028	17	Park West	17	9 50714	27	90	95 432 37	934
Village	0750	2	507159	.805	17	Village	17	3	44	37	769	613
Cole	1705	3	1092815	7830898	18	Cole	18	11072	63776	7358	3740.5	81.442
Harbour				.647		Harbour		30	45	43	541	055
Cowie	1726	4	71111	409612.	19	Cowie	19	71114	40961	2429	237.32	100.00
Hill	462	2	41221	1501	20	Hill	20	41214	0.0	3	134 512.92	1096
n	402	2	41221	6975	20	n	20	41214	2.6	5	688	813
Crichton	1935	2	109123	628631.	21	Crichton	21	10911	62851	3667	324.81	99.982
Park				8436		Park		8	9.7	5	637	157
Dalhousie	519	1	21489	123762.	22	Dalhousie	22	21483	12374	4446	238.42	99.983
Campus				7356		Campus			2.1		405	31
Dalhousie	2061	2	146685	845016.	23	Dalhousie	23	14667	84485	3716	409.92	99,980
Universit				3456		Universit		6	3.8	2	419	759
у						у						
Dartmout	1023	4	79840	459849.	24	Dartmout	24	79821	45976	1162	449.43	99.982
n Common				2452		h Common			9	1	202	541
North						North						
Dartmout	948	4	25887	149127.	25	Dartmout	25	25891	14913	4084	157.31	100.00
h Cove				3828		h Cove			2.2		241	3203
Downtow	1748	2	107852	625404.	26	Downtow	26	10784	62116	1666	355.36	99.322
n Dartmourt				1895		n Dartmout		2	9.9	8	037	955
h						h						
Downtow	1981	1	137192	790204.	27	Downtow	27	13717	79009	7422	398.83	99.986
n Halifax				0137		n Halifax		0	9.2		857	736

Eaglewoo d	580	2	63362	364963. 844	28	Eaglewoo d	28	63359	36494 7.8	2782 5	629.22 041	99.995 615
Eastern Passage	7890	2	2215309	1490385 1.03	29	Eastern Passage	29	23403 20	13480 243	1242 940	1708.5 226	90.448 054
Fairmount	3334	2	202386	1166796 .633	30	Fairmount	30	20240 5	11658 53	7094 3	349.68 59	99.919 109
Fairview	9473	4	401516	2312651 758	31	Fairview	31	40151	23127	9396 6	244.13 814	100.00
Flemming Heights	1227	2	87693	505640. 278	32	Flemming Heights	32	87692	50510 5 9	3187 2	411.65	99.894 32.1
Forest	6335	3	418172	2437313	33	Forest	33	41814	24085	1130	380.19	98.818 924
Fort	519	1	70666	407981.	34	Fort	34	70681	40712	3020	784.43	99.789
Gaston	1743	4	152781	881229.	35	Gaston	35	15278	88001	6550	504.88	99.861
Road Area				0427		Road Area		0	2.8	1	399	983
Glen Moir	446	1	25810	148646. 6493	36	Glen Moir	36	25811	14867 1.4	9715	333.34 386	100.01 6624
Glenborn e	3760	2	118206	705048. 8561	37	Glenborn e	37	11822 9	68099 9	3753 8	181.11 677	96.588 915
Gorsebro ok Park Area	2158	2	46484	267687. 6476	38	Gorsebro ok Park Area	38	46466	26764 4.2	1097 1	124.02 417	99.983 754
Graham's Corner	463	2	34645	277328. 2154	39	Graham's Corner	39	34647	19956 6.7	1273 8	431.02 963	71.960 482
Greystone	621	5	30594	176177. 1023	40	Greystone	40	30588	17618 6.9	9877	283.71 478	100.00 555
Halifax Citadel Area	608	1	152052	881899. 7146	41	Halifax Citadel Area	41	15204 8	87579 6.5	2890 1	1440.4 547	99.307 945
Halifax Seaport	1830	2	185800	1070398 .807	42	Halifax Seaport	42	18582 4	10703 46	1312 7	584.88 866	99.995 089
Harbourvi ew	516	5	46534	267989. 3721	43	Harbourvi ew	43	46539	26806 4.6	6039	519.50 512	100.02 8086
Hemlock Ravine	2519	2	577177	3347170 063	44	Hemlock Ravine	44	57715 7	33244 24	3350 44	1319.7 397	99.320 449
Highfield	2723	4	73140	421291.	45	Highfield	45	73136	42126	1219	154.70	99.993 376
Imperoil	1220	5	647481	4087723	46	Imperoil	46	70642 6	40690	3087 22	3335.2 572	99.542 301
Jollimore	764	2	125288	804433. 8227	47	Jollimore	47	12529	72168	6691 6	944.60 984	89.713 025
Jubilee	3829	2	114323	658446. 5317	48	Jubilee	48	11432	65851 2	4135	171.98	100.00
Kearney Lake	1028	2	199474	1317461 426	49	Kearney Lake	49	19948 1	11490 11	8731 9	1117.7 146	87.213 981
Kempt Road Area	819	2	125126	720707. 5066	50	Kempt Road Area	50	12512 1	72069 7	8462	879.97 187	99.998 537
Kline Heights/S tanley Park	813	4	27054	158985. 0517	51	Kline Heights/S tanley Park	51	27600	15897 6	7122	195.54 244	99.994 307
Lake Charles	994	1	192026	1950771 .474	52	Lake Charles	52	19197 1	11057 53	4435	1112.4 275	56.682 855
Larry Uteck	2407	2	398352	2308324 .867	53	Larry Uteck	53	39836 4	22945 77	2583 72	953.29 316	99.404 407
Leiblin	1200	4	376507	2276356	54	Leiblin	54	37651	21687	2545 44	1807.2	95.271 577
Manor	3647	3	209087	1420392	55	Manor	55	20907	12042	6773	330.21	84.785 244
Meadowb	1979	3	149557	861462.	56	Meadowb	56	14954	86138	5704 7	435.26	99.990 98
Melville	1081	1	77555	446682.	57	Melville	57	77560	44674	3171	413.27	100.01
Mic Mac	870	1	175522	1483589	58	Mic Mac	58	18658	10747	6007 7	1235.2	72.439
Moirs Mill	1695	1	215792	1501023	59	Moirs	59	21577	12428	1322	733.24	82.799 972
Montebell	5162	2	522191	3356532	60	Montebell	60	2 52222	47 30080	1538	582.72	972 89.616
Mount	431	4	143335	826818.	61	Mount	61	14333 2	82559	1118	1915.5 274	423 99.851
Nantucket	1420	1	76277	515791.	62	Nantucket	62	2 76270	43931	2560	2/4 309.37	85.172
Nelson's	398	2	17082	98332.8 2024	63	Nelson's	63	17079	98375	5411	247.17	988 100.04
Landing		1		2934		Landing		1	.04		347	2926

North End	17166	3	760331	4379568 .286	64	North End	64	76035 3	43796 33	1548 02	255.13 418	100.00 1484
North End	3853	4	181649	1307502	65	North End	65	18163	10462	5482	271.53	80.017
Dartmout h				.513		Dartmout h		8	35	6	773	81
North	427	4	53882	328475.	66	North	66	56297	32427	2149	759.41	98.719
Street Area				7135		Street Area			0.7	3	621	846
North	2502	2	758716	6589276	67	North	67	76299	43948	3968	1756.5	66.697
West Arm North/Par	499	5	41173	.125	68	West Arm North/Par	68	9 41169	74 23713	86 9916	445	376 99 990
k		5		4893	00	k	00		3.4	,,,10	732	281
Penhorn	1688	4	131558	803632. 876	69	Penhorn	69	13155 6	75776 2.6	2707 8	448.91 147	94.292 13
Point	438	1	175279	1010375	70	Point	70	17527	10095	8681	2304.9	99.921
Pleasant Park Area				.150		Pleasant Park Area		5	84	/	803	697
Portland	4672	1	556358	4259909	71	Portland	71	55641	32049	2263	685.99	75.235
Ridgevale	853	1	61911	494938.	72	Ridgevale	72	76100	43833	24 2252	513.87	88.563
Dealringh	2420	2	201549	0476	72	Destringh	72	22155	6	4	573	812
am	2430	2	521546	.524	15	am	15	9	80	64	393	653
Rosebank	1043	2	59388	342067. 1032	74	Rosebank	74	59382	34204 0 3	2391 4	327.93 895	99.992 17
Russell	990	1	418026	3026320	75	Russell	75	41796	24074	2406	2431.8	79.551
Lake	870	2	910310	.776 6258357	76	Lake Shearwate	76	6 10229	84 58921	65 3535	022 6772.6	519 94 149
r	0/0	-	910510	.083	70	r	70	50	92	07	345	182
Sherwood Heights	2684	2	153504	885028. 8615	77	Sherwood Heights	77	15351 0	88421 7.6	5579 0	329.44 024	99.908 335
South End	4415	2	229490	1321900	78	South End	78	22950	13219	8940 3	299.42 346	100.00
Southdale	1788	3	175717	1012951	79	Southdale	79	17570	10120	6926	566.03	99.913
Spring	1314	1	41634	239836.	80	Spring	80	8 41644	23986	6 6714	92 182.54	100.01
Garden				8788		Garden			9.4		904	3576
Road Area						Road Area						
Spryfield	6035	4	640077	3910597 814	81	Spryfield	81	66223 1	38144 51	3403 93	632.05 477	97.541 367
Sunnyside	1454	2	82890	1018493	82	Sunnyside	82	98362	56656	1527	389.65	55.627 761
Tam	1197	5	57425	330797.	83	Tam	83	57427	33077	1458	276.34	99.994
O'Shanter Ridge				6507		O'Shanter Ridge			9.5	4	045	519
Thornhill	686	4	52183	301854.	84	Thornhill	84	52193	30063	1789	438.23	99.594
Park Tufts	457	5	74543	7312	85	Park Tufts	85	74554	1.7	9 2395	86 939.67	821
Cove	107	5	1 10 10	0093	00	Cove	00	7 100 1	1	6	405	0939
Wedgewo od	2623	2	189319	1171613 .26	86	Wedgewo od	86	20280 7	11681 68	8887 5	445.35 582	99.705 966
West End	9195	3	312783	1801676	87	West End	87	31277	18015	9423 7	195.93	99.995 502
Westmou	3297	2	206511	1189455	88	Westmou	88	20650	11894	5889	360.77	100.00
nt Westphal	3833	3	303626	.158	89	nt Westphal	89	8 30362	86 17489	8 9112	831 456.27	26 83.441
westphai	3635	5	303020	.51	07	westphar	07	9	03	9	525	841
Westwoo d & The	2400	4	165581	953722. 7362	90	Westwoo d & The	90	16556 4	95364 8.6	3790 0	397.35 36	99.992 231
Pubs				7302		Pubs		4	0.0	0	30	231
Williams Lake	686	3	117158	697273. 8831	91	Williams Lake	91	11715 0	67478 4	5293 9	983.65 015	96.774 598
Willowda	3158	1	233213	1765855	92	Willowda	92	23318	13431	8338	425.31	76.061
le & Astral				.461		le & Astral		3	34	0	162	383
Projects						Projects						
Windmill Road	4119	4	196042	1129235 .15	93	Windmill Road	93	19606 1	11293 11	4357 8	274.17 125	100.00 6749
Woodlaw	10412	2	820052	4850498	94	Woodlaw	94	82004	47234	2426	453.65	97.380
n Woodside	1867	5	313570	.027 1812885	95	n Woodside	95	5 31473	59 18128	43 4511	532 971.00	912 99.998
Industrial	1007	-	515510	.883	10	Industrial		3	62	8	272	687
Wrights	714	5	647742	3759502	96	Wrights	96	64779	37313	2003	5225.9	99.249
Cove				.361		Cove		6	05	34	173	97

Table 4. Neighbourhood information from GIS (tree canopy cover per capita and tree canopy

cover as proportion of total neighborhood area) that was exported to SPSS for statistical

analysis

Neighbours	Per_Capita	Tree_Prop
Africville Area	1515.970443	99.990023
Armdale	298.337338	84.378077
Auburn	748.912361	99.774621
Austenville	189.410526	93.559625
Barrington South	85.182844	100.020409
Basinview	467.30568	100.001011
Bedford Hills	468.367221	99.992274
Bedford Waterfront	13055.10904	86.134027
Bel Ayr	452.513121	92.060772
Birch Cove	356.703529	54.492779
Boulderwood	1481.398356	99.685847
Brightwood	649.19857	99.770791
Burnside Business Park	14564.41011	95.244784
Central Bedford	2657.582088	97.945714
Clayton Park	264.64034	99.429776
Clayton Park West	307.699497	99.934934
Colby Village	432.377691	96.760613
Cole Harbour	3740.554135	81.442055
Cowie Hill	237.321344	100.001096
Cresthaven	513.836883	99.984813
Crichton Park	324.816372	99.982157
Dalhousie Sexton Campus	238.424046	99.98331
Dalhousie University	409.924192	99.980759
Dartmouth Common North	449.432023	99.982541
Dartmouth Cove	157.312405	100.003203
Downtown Dartmouth	355.360366	99.322955
Downtown Halifax	398.838566	99.986736
Eaglewood	629.220414	99.995615
Eastern Passage	1708.522586	90.448054
Fairmount	349.685903	99.919109
Fairview	244.138144	100.002978
Flemming Heights	411.659267	99.894321
Forest Hills	380.193642	98.818924
Fort Sackville	784.436532	99.789383
Gaston Road Area	504.883993	99.861983
Glen Moir	333.343857	100.016624
Glenborne	181.116766	96.588915
Gorsebrook Park Area	124.024171	99.983754
Graham's Corner	431.029633	71.960482
Greystone	283.714783	100.00555
Halifax Citadel Area	1440.454737	99.307945
Halifax Seaport	584.888656	99.995089
Harbourview	519.505116	100.028086
Hemlock Ravine	1319,739706	99.320449

Highfield Park	154.705604	99.993376
Imperoil	3335.25718	99.542301
Jollimore	944.609843	89.713025
Jubilee	171.980151	100.009943
Kearney Lake	1117.714553	87.213981
Kempt Road Area	879.971868	99.998537
Kline Heights/Stanley Park	195.542435	99.994307
Lake Charles	1112.427525	56.682855
Larry Uteck	953.293162	99.404407
Leiblin Park	1807.2672	95.271577
Manor Park	330.212098	84.785244
Meadowbrook	435.262739	99.99098
Melville Cove	413.270675	100.014084
Mic Mac Area	1235.288276	72.43922
Moirs Mill	733.242903	82.799972
Montebello	582.720744	89.616425
Mount Royal	1915.527425	99.851683
Nantucket	309.376901	85.172988
Nelson's Landing	247.173467	100.042926
North End	255.134177	100.001484
North End Dartmouth	271.537732	80.01781
North Street Area	759.416206	98.719846
North West Arm	1756.54446	66.697376
North/Park	475.217315	99.990281
Penhorn	448.911469	94.29213
Point Pleasant Park Area	2304.986301	99.921697
Portland Estates	685.991096	75.23518
Ridgevale	513.875733	88.563812
Rockingham	762.213926	99.839653
Rosebank	327.938945	99.99217
Russell Lake	2431.802182	79.551519
Shearwater	6772.634483	94.149182
Sherwood Heights	329.440238	99.908335
South End	299.423456	100.004097
Southdale	566.039195	99.913746
Spring Garden Road Area	182.549041	100.013576
Spryfield	632.054774	97.541367
Sunnyside	389.659642	55.627761
Tam O'Shanter Ridge	276.340451	99.994519
Thornhill Park	438.238601	99.594821
Tufts Cove	939.674048	100.000939
Wedgewood	445.355822	99.705966
West End	195.932085	99.995502
Westmount	360.778308	100.0026
Westphal	456.275252	83.441841
Westwood & The Pubs	397.3536	99.992231
Williams Lake	983.650146	96.774598
Willowdale & Astral Projects	425.311615	76.061383
Windmill Road	274.171245	100.006749
Woodlawn	453.655321	97.380912
Woodside Industrial Park	971.002721	99.998687
Wrights Cove	5225.917311	99.24997
		1

Appendix II: Statistical Data

Table 5. Test of normality for tree canopy cover per capita and tree canopy cover as proportion

of total neighborhood area

Tests of Normality										
	Koln	nogorov-Smir	mov ^a		Shapiro-Wilk					
	Statistic	df	Sig.	Statistic	df	Sig.				
Tree Canopy Cover Per	.320	96	.000	.402	96	.000				
Capita										
Tree Canopy Cover as a	.308	96	.000	.615	96	.000				
proportion of the										
Neighbourhood Area										

Figure 8. Histogram of the dependent variable *tree canopy cover per capita*

Figure 9. Histogram of dependent variable *area of trees as a proportion of the area of the neighbourhood*

Table 6. Rank scores of marginalization and tree canopy cover per capita and area of trees as aproportion of the total area of the neighbourhoods

	Ranks		
	Marginalization	Ν	Mean Rank
Tree Canopy Cover Per Capita	1	23	56.00
	2	35	49.43
	3	13	41.38
	4	16	35.63
	5	9	58.89
	Total	96	
Trees as a Proportion of the Total Area of the Neighborhood	1	23	39.61
	2	35	46.11
	3	13	49.77
	4	16	53.75
	5	9	69.33
	Total	96	

Table 7. Kruskal-Wallis statistical results for marginalization and tree canopy cover per capitaand tree canopy cover as proportion of total neighborhood area

Test Statistics^{a,b}

	Tree Canopy Cover Per Capita	Trees Canopy Cover ass Proportion of Total Neighbourhood Area
Chi-Square	7.224	8.229
Df	4	4
Asymp. Sig.	.125	.084

a. Kruskal Wallis Test

b. Grouping Variable: Marginalization