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Abstract

The Ornstein–Uhlenbeck (OU) process is a widely used model for stochastic processes,

where the value drifts towards a fixed stable value. We examine how well the OU

process fits the data by using likelihood ratio tests to compare models of temporal

dynamics of OTUs. Then, we derive the Fisher information of the OU process and

show how it can be used to maximize the temporal efficiency of sampling. We apply

this to parameters estimated from real data to determine optimal sampling schemes

for human microbiomes. We use simulations to show that the asymptotic theory

applies to typical finite sample cases.
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Chapter 1

Introduction

1.1 Background

A significant number of microscopic organisms live in and around the human body.

Recent research was shown that human microbiome plays a significant role in human

health [16] [11] [1] [14].

Technological development in DNA sequencing has permitted a more systematic

study of the microbiome [4]. There has been substantial work studying the instan-

taneous structure of the microbiome, but the temporal dynamics of the microbiome

are largely unstudied. The studies that exist suggest the microbiome is generally

stable. Since the microbiome is often considered as an ecological system, it is natural

to model its temporal dynamics as a stochastic process. The observed stability sug-

gests that a mean-reverting process may be appropriate. In this thesis, we compare

a mean-reverting process with both random drift and a constant state with measure-

ment error. For this thesis, we will focus on the dynamics of a single Operational

Taxonomic Unit (OTU) and ignore interactions between different OTUs [3].

In order to study temporal dynamics, it is important to collect samples at the

correct frequency. Sampling too frequently may result in not covering enough time to

observe the patterns, while large gaps between samples can lead to consecutive sam-

ples being uncorrelated. There are various limitations on the number of samples that

can be collected, such as the cost and availability of participants. Thus determining

the optimal sample size and observation time frequency is very important for studying

the microbial dynamics. Despite the recent advances in sequencing technology, there

still exist some problems. For instance, we have to track our participants to collect

samples and there is still a significant cost to DNA sequencing analysis. If we can

derive an optimal sample size and observation time frequency, it can greatly improve

efficiency and reduce both economic and time costs. This can be done asymptotically

by computing the Fisher information matrix of our model.
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1.2 Thesis Structure

In this thesis, we first use likelihood ratio tests to compare models of temporal dynam-

ics of OTUs. The results of these tests support our hypotheses that a mean-reverting

stochastic process is appropriate for many microbial time series (Chapter 2). In Chap-

ter 3, we derive the Fisher information of the OU process and show how it can be

used to maximize the temporal efficiency of sampling. We apply this to parameters

estimated from real data to determine optimal sampling schemes for human micro-

biomes. Chapter 4 concludes the thesis by discussing the implications of our results

and suggesting future work.



Chapter 2

Fitting an Ornstein-Uhlenbeck Process to Microbiome Data

2.1 Microbiome Data

Trillions of symbiotic microbes are hosted by every part of the human body. They

constitute the microbiome including bacteria, viruses, and fungi. The microbiome

can vary significantly between individuals who have different environments, diet, and

behavior, and it plays a vital role in human health and disease. Some studies have

proved that gut microbes are highly related to health and some diseases such as

digestion function, obesity [1] and inflammatory bowel disease [14].

Technological development in DNA sequencing has permitted a more systematic

study of the microbiome [4]. Marker gene analysis is widely used to target a specific

genetic region and to determine the microbial phylogenies. Operational taxonomic

units (OTUs) can be used to classify different sequences by their similarity. OTUs

are widely used units of microbial diversity in 16S or 18S rRNA marker gene sequence

data sets.

Many studies have already shown that microbiome is generally stable. Since the

microbiome is often considered as an ecological system; it is natural to model its

temporal dynamics as a stochastic process. In this thesis, we study moving picture

data. In the moving picture data, two healthy individuals were sampled at four

body sites (gut, tongue, left, and right palms) almost daily. Researchers observed

one individual for 15 months, and the other for 6 months. Samples were sequenced

using PCR on the V2 region of the 16S rRNA gene [4]. To avoid sparse counts, we

aggregate the data at genus level in this thesis.

3
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2.2 Review of Ornstein-Uhlenbeck Process

A large number of naturally occurring stochastic processes exhibit some form of mean

reversion, where the value drifts towards a fixed stable value. Examples of this be-

haviour come from physics [13], finance [21] and biology [19] [17]. In this section,

we introduce one of the simplest and most commonly used mean reversion models,

namely the Ornstein-Uhlenbeck (OU) process.

2.2.1 Review of Brownian Motion

Brownian motion was originally introduced by Brown in 1827 to model the fast and

irregular motion exhibited by tiny particles in fluid. A thorough introduction of

Brownian motion can be found in [10].

A stochastic process Xt, t ≥ 0 with state space R is said to have a stationary in-

crements if the distribution of the increment Xs+t − Xs over the interval (s, s + t]

depends only on the length of the interval t. A stochastic process Xt, t ≥ 0 with state

space R is said to have an independent increments if the increments Xs+t −Xs over

non-overlapping intervals are independent [20].

A stochastic process Wt, t ≥ 0 with state space R is said to be a Standard Brown-

ian Motion (also called a Wiener process) if Wt, t ≥ 0 has stationary and independent

increments and Wt ∼ N(0, t) for t ≥ 0.

Brownian motion (BM) is a generalization of standard Brownian motion.

Let Wt, t ≥ 0 be a standard Brownian motion. A stochastic process Xt, t ≥ 0 given

by

Xt = x0 + μt+ σdWt, t ≥ 0

is called a Brownian motion with drift parameter μ ∈ R, variance parameter

σ > 0, and starting point x0 ∈ R. We denote this BM by BM(μ, σ).

Brownian motion has the following properties:

1. Xt, t ≥ 0 has stationary and independent increments.

2. Xs+t −Xs ∼ N(μt, σ2t), s, t ≥ 0, and in particular Xt ∼ N(x0 + μt, σ2t)
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Based on these properties, maximum likelihood can be used to estimate the

drift and variance parameters. The log likelihood for a set of observed X(t) val-

ues, x0, x1, . . . xn corresponding to times t0, · · · tn, is

l(x;μ, σ) = −1

2

n∑
i=1

log(2πσ2(ti − ti−1))−
n∑

i=1

[xi − (xi−1 + μ(ti − ti−1))]
2

2σ2(ti − ti−1)

Setting the first derivatives of this equal to 0, we get the following maximum likelihood

estimates:

μ̂ =
xn − x1

tn − t1

σ̂2 =
1

n

n∑
i=1

[
[xi − (xi−1 + μ̂(ti − ti−1))]

2

ti − ti−1

]

2.2.2 Ornstein-Uhlenbeck Process

An Ornstein-Uhlenbeck (OU) Process is a stochastic process. It was first introduced

by Leonard Ornstein and George Eugene Uhlenbeck [22] and is widely used in the

fields of physics and finance. The OU process was developed based on Brownian

motion.

The OU process Xt is defined by the following linear stochastic differential equa-

tion (SDE)

dXt = η(μ−Xt)dt+ σdWt

Where η > 0 is the velocity of the reversion process and μ is the long-term average.

When η increases, the process will revert more quickly back to its mean value. Wt is

a Wiener process, which is the diffusion part of the OU process.

This stochastic differential equation is solved by Oksendal [15] with the following

results

Xt = e−ηtX0 + μ(1− e−ηt) + σ

∫ t

0

eη(s−t)dWs

Where X0 is the variable status at t = 0 and
∫ t

0
eη(s−t)dWs ∼ N(0, 1−e−2ηt

2η
)
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The values Xt therefore follow a multivariate normal distribution with conditional

expectation and variance given by the following equations [18].

E[Xt|X0] = μ+ (x0 − μ)e−ηt

V ar[Xt|X0] =
σ2

2η
(1− e−2ηt)

Cov[Xt, Xs] =
σ2

2η
(e−η|t−s| − e−η(t+s))

Since we know the expectation and variance of every Xi under the OU mean-

reverting process, it is not hard to get the following results given X0 = x0,

E[X2
t ] =V ar[Xt] + (E[Xt])

2

=
σ2

2η
(1− e−2ηt) + (μ+ (x0 − μ)e−ηt)2

E[XtXs] =Cov[Xt, Xs] + E[Xt]E[Xs]

=
σ2

2η
(e−η|t−s| − e−η(t+s)) + (μ+ (x0 − μ)e−ηt)(μ+ (x0 − μ)e−ηs)

The log likelihood function is calculated by Franco [8] and maximum likelihood

can be used to estimate the three parameters μ, η and σ. The log-likelihood function

is

l(x;μ, η, σ) =− n

2
log(2π)− n

2
log

(
σ2

2η

)
− 1

2

n∑
i=1

log(1− e−2η(ti−ti−1))

− η

σ2

n∑
i=1

(xi − μ− (xi−1 − μ)e−η(ti−ti−1))2

1− e−2η(ti−ti−1)

(2.1)

Using the first order condition, for fixed η̂ we can estimate μ and σ2 by estimators

μ̂ and σ̂2 given by the following functions of η̂ [8].

μ̂ = f(η̂) =
n∑

i=1

xi − xi−1e
−η̂(ti−ti−1)

1 + e−η̂(ti−ti−1)

(
n∑

i=1

1− e−η̂(ti−ti−1)

1 + e−η̂(ti−ti−1)

)−1

(2.2)
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σ̂2 = g(μ̂, η̂) =
2η̂

n

n∑
i=1

(xi − μ̂− (xi−1 − μ̂)e−η̂(ti−ti−1))2

1− e−2η̂(ti−ti−1)
(2.3)

Therefore, plugging in the estimates μ̂ and σ̂2, the profile log likelihood function

becomes the following function of η.

V (η) =− n

2
log(2π)− n

2
log(

g(f(η), η)

2η
)− 1

2

n∑
i=1

log(1− e−2η(ti−ti−1))

− η

g(f(η), η)

n∑
i=1

(xi − f(η)− (xi−1 − f(η))e−η(ti−ti−1))2

1− e−2η(ti−ti−1)

(2.4)

We can find the MLE η̂ using an exhaustive grid search by (2.4), and use Equa-

tions (2.2) and (2.3) to get MLE estimates μ̂ and σ̂2.

2.2.3 Taylor Expansion of OU Process Likelihood

When η is close to zero, the formulae (2.2)-(2.4) are numerically unstable. We there-

fore replace the unstable parts of them with Taylor series expansions.

Let di = ti − ti−1. We expand the first five terms of the Taylor expansions

e−ηdi ≈ 1− ηdi +
η2d2i
2!

− η3d3i
3!

+
η4d4i
4!

1− e−ηdi ≈ ηdi − η2d2i
2!

+
η3d3i
3!

− η4d4i
4!

= Ni

1− e−2ηdi

2η
≈ di − 2ηd2i

2!
+

4η2d3i
3!

− 8η3d4i
4!

= Mi

The approximations of μ̂ and σ̂2 are

μ̂Taylor =
n∑

i=1

xi − xi−1e
−η̂di

1 + e−η̂di

(
n∑

i=1

Ni

1 + e−η̂di

)−1

σ̂2
Taylor =

1

n

n∑
i=1

M−1
i (xi − μ̂Taylor − (xi−1 − μ̂Taylor)e

−η̂di)2

Therefore, the Taylor expansion of the profile log-likelihood can be expressed as:
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V (η)Taylor =− n

2
log(2π)− 1

2

n∑
i=1

log

(
σ̂2
Taylor(1− e−2ηdi)

2η

)

− η

σ̂2
Taylor

n∑
i=1

(xi − μ̂Taylor − (xi−1 − μ̂Taylor)e
−ηdi)2

1− e−2ηdi

(2.5)

To get the approximation for the profile log likelihood of OU process, we can

examine the second and the third terms in Equation (2.5).

{Second term} = −1

2

n∑
i=1

log

(
σ̂2
Taylor(1− e−2ηdi)

2η

)

≈ −1

2

[
n∑

i=1

log(σ̂2
Taylor) +

n∑
i=1

log(di) +
n∑

i=1

log

(
1− 2ηdi

2!
+

4η2d2i
3!

− 8η3d3i
4!

)]

Let Pi = −2ηdi
2!

+
4η2d2i
3!

− 8η3d3i
4!

. Taylor expansion of the last term gives
∑n

i=1 log(1−
2ηdi
2!

+
4η2d2i
3!

− 8η3d3i
4!

) =
∑n

i=1 log(1 + Pi) ≈
∑n

i=1(Pi − P 2
i

2
+

P 3
i

3
− P 4

i

4
)

So, the second term of (2.5) is:

{Second term} = −1

2

[
n∑

i=1

log(σ̂2
Taylor) +

n∑
i=1

log(di) +
n∑

i=1

(
Pi − P 2

i

2
+

P 3
i

3
− P 4

i

4

)]

{Third term} = − η

σ̂2
Taylor

n∑
i=1

(xi − μ̂Taylor − (xi−1 − μ̂Taylor)e
−ηdi)2

1− e−2ηdi

= − η

σ̂2
Taylor

n∑
i=1

((xi − xi−1) + (1− e−ηdi)(xi−1 − μ̂Taylor))
2

1− e−2di

= − η

σ̂2
Taylor

n∑
i=1

(
(xi − xi−1)

2

1− e−2ηdi

)
− η

σ̂2
Taylor

n∑
i=1

(
2(xi − xi−1)(xi−1 − μ̂Taylor)

1 + e−ηdi

)

− η

σ̂2
Taylor

n∑
i=1

(
(xi−1 − μ̂Taylor)

2(1− e−ηdi)

1 + e−ηdi

)

And

− η

σ̂2
Taylor

n∑
i=1

(
(xi − xi−1)

2

1− e−2ηdi

)
= − 1

σ̂2
Taylor

n∑
i=1

(
η(xi − xi−1)

2

1− e−2ηdi

)

≈ − 1

2σ̂2
Taylor

n∑
i=1

(
M−1

i (xi − xi−1)
2
)
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So, the third term of (2.5) is:

{Third term} =− 1

2σ̂2
Taylor

n∑
i=1

(
M−1

i (xi − xi−1)
2
)− η

σ̂2
Taylor

n∑
i=1

(
2(xi − xi−1)(xi−1 − μ̂Taylor)

1 + e−ηdi

)

− η

σ̂2
Taylor

n∑
i=1

(
(xi−1 − μ̂Taylor)

2(1− e−ηdi)

1 + e−ηdi

)

Therefore, the approximate form of the profile log likelihood function of the OU

process can be expressed as

V (η) =− n

2
log(2π)− 1

2

[
(

n∑
i=1

log(σ̂2
Taylor) +

n∑
i=1

log(di) +
n∑

i=1

(Pi − P 2
i

2
+

P 3
i

3
− P 4

i

4
)

]

− 1

2σ̂2
Taylor

n∑
i=1

(
M−1

i (xi − xi−1)
2
)− η

σ̂2
Taylor

n∑
i=1

(
2(xi − xi−1)(xi−1 − μ̂Taylor)

1 + e−ηdi

)

− η

σ̂2
Taylor

n∑
i=1

(
(xi−1 − μ̂Taylor)

2(1− e−ηdi)

1 + e−ηdi

)

By maximizing the above Taylor expansion of V (η), we can get a more stable

solution of η̂.

2.3 Suitability of OU Process for Modelling Microbial Dynamics

In this section, we assess the suitability of the OU process for modelling real microbial

data, in comparison with the following two alternatives based on the likelihood ratio

tests.

1. Time independence

2. Brownian motion without drift

For this purpose, we use the moving picture data set [3]. This data set follows

two healthy individuals over 6-month and 15-month periods respectively. Four body

sites were observed: gut, tongue, right palm and left palm. Samples are not collected

at completely regular time intervals. Many samples are taken at daily intervals, but

many intervals of multiple days are also present. Samples were sequenced using PCR

on the V2 region of the 16S rRNA gene [4].

Since the OTU counts are sparse, we aggregate them up to genus level. We take the

proportion (Each observation in each genus is divided by total count of all genera) of
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Table 2.1: The number of observations for each individual and body site
Gut Tongue Right Palm Left Palm

Person 1 131 135 134 134
Person 2 336 373 359 365

Nov Jan Mar May

0
10

00
0

20
00

0
30

00
0

Time

O
TU
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ou

nt
s

Figure 2.1: The time series plot of each abundant gut genus for Person 1

each genus to correct for variation in sequencing depth. We also focus our attention

on the most abundant genera. We select all genera with total count of the genus

greater than 10000 for individual 1 and 20000 for individual 2. Table 2.1 and Table

2.2 show the number of observations and abundant genera for each individual and

each body site respectively. Figure 2.1 exhibits the time series plot of each abundant

gut genus for Person 1.

Table 2.2: The number of abundant genera for each individual and body site

Gut Tongue Right Palm Left Palm

Person 1 17 11 12 45

Person 2 32 18 59 29
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2.3.1 Applying Likelihood Ratio Test between i.i.d Normal Distribution

and OU Process to Microbiome Data

We first check the time dependence for each person, body site and genus. The abun-

dant genera should have time dependence to fit the OU process model. Therefore

we compare the log-likelihood of an OU process model, and an i.i.d. normal model

where we assume the abundances at different time points are independent and nor-

mally distributed. For the OU process, we optimize η using a grid search in the range

0− 50 with the step size 0.001

The hypothesis test is

H0 : Xt follows i.i.d. Normal distribution

H1 : Xt follows an OU mean reverting process

First we need to prove that this log-likelihood ratio statistic is invariant under

any linear transformations of the data, i. e.

l(x;μou, η, σou)− l(x;μN , σN) = l(y;μou, η, σou)− l(y;μN , σN)

Where y is the linear transformation of x, which is y = ax+b. Therefore μy = aμx+b

and σ2
y = a2σ2

x.

We know the log-likelihood function of normal distribution is

l(x;μN , σ
2
N) = −n

2
log(2π)− n

2
log(σ2

N)−
1

2σ2
N

n∑
i=1

(xi − μN)
2

Then,
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l(y;μou, η, σou)− l(y;μN , σN)

=− n

2
log(2π)− n

2
log

(
σ2
OU.y

2η

)
− 1

2

n∑
i=1

log(1− e−2η(ti−ti−1))

− η

σ2
OU.y

n∑
i=1

(yi − μOU.y − (yi−1 − μOU.y)e
−η(ti−ti−1))2

1− e−2η(ti−ti−1)

+
n

2
log(2π) +

n

2
log(σ2

N.y) +
1

2σ2
N.y

n∑
i=1

(yi − μN.y)
2

=− n

2
log(σ2

OU.y) +
n

2
log(σ2

N.y) +
n

2
log(2η)− 1

2

n∑
i=1

log(1− e−2η(ti−ti−1))

− η

σ2
OU.y

n∑
i=1

(yi − μOU.y − (yi−1 − μOU.y)e
−η(ti−ti−1))2

1− e−2η(ti−ti−1)
+

1

2σ2
N.y

n∑
i=1

(yi − μN.y)
2

Where

− n

2
log(σ2

OU.y) +
n

2
log(σ2

N.y)

=− n

2
log(a2σ2

OU.x) +
n

2
log(a2σ2

N.x)

=− n

2
log(σ2

OU.x) +
n

2
log(σ2

N.x)

And

− η

σ2
OU.y

n∑
i=1

(yi − μOU.y − (yi−1 − μOU.y)e
−η(ti−ti−1))2

1− e−2η(ti−ti−1)
+

1

2σ2
N.y

n∑
i=1

(yi − μN.y)
2

=− η

a2σ2
OU.x

n∑
i=1

(axi + b− (aμOU.x + b)− (axi−1 + b− (aμOU.x + b))e−η(ti−ti−1))2

1− e−2η(ti−ti−1)

+
1

2σ2
N.x

n∑
i=1

(axi + b− (aμN.x + b))2

=− η

σ2
OU.x

n∑
i=1

(xi − μOU.x − (xi−1 − μOU.x)e
−η(ti−ti−1))2

1− e−2η(ti−ti−1)
+

1

2σ2
N.x

n∑
i=1

(xi − μN.x)
2

Therefore,

l(x;μou, η, σou)− l(x;μN , σN) = l(y;μou, η, σou)− l(y;μN , σN)

We see that the re-scaled data will not influence the likelihood ratio test results

so we can use standard normal distribution to calculate the null distribution.
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Since the normal distribution is a limit case (η → ∞,
σ2
OU

2η
→ σ2) of the OU process,

the likelihood ratio statistic is not guaranteed to follow the usual χ2 distribution.

We, therefore, use a simulation to estimate the null distribution. We simulate 5000

data sets using the same time points as the original data, under a standard normal

distribution. The likelihood ratios for each genus, along with the null distribution for

each data set, are shown in Figure 2.2 and Figure 2.3 (for Person 1) and Figure 2.4

and Figure 2.5 (for Person 2).

From the tables and figures, we see that many of the abundant genera show strong

evidence of dependence between different time points, particularly in more enclosed

body sites, such as the gut. More exposed body sites show less evidence of temporal

dependence, which makes intuitive sense because exposure to external influences is

expected to reduce the stability of the microbial ecosystem.

Table 2.3: The proportion of abundant genera which reject the null hypothesis of
i.i.d. Normal distribution for each individual and body site

Gut Tongue Right Palm Left Palm

Person 1 14/17 7/11 4/12 16/45

Person 2 23/32 17/18 39/59 0/29

2.3.2 Applying the Likelihood Ratio Test between Brownian Motion

and OU Process to Microbiome Data

In this section, we will examine whether the data have mean reversion. Therefore,

we use a likelihood ratio test to determine whether the OU process fits the data

better than Brownian motion. Since the data are compositional, the drift parameter

for Brownian motion is set to 0, to avoid a model which will eventually violate the

constraints.

Because the Brownian motion is a non-identifiable case of an OU process, the

standard χ2 distribution does not apply. We, therefore, use simulation to empirically

estimate the null distribution. We simulate 5000 data sets under Brownian motion

with the starting point x0 = 0, mean μ = 0 and variance equal to the Brownian

motion variance of genus T546 in Person 2’s gut data. Since the Brownian motion



14

Figure 2.2: Likelihood ratio test between i.i.d normal distribution and OU mean
reverting process for Person 1’s gut and tongue genera
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Figure 2.3: Likelihood ratio test between i.i.d normal distribution and OU mean
reverting process for Person 1’s right and left palm genera
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Figure 2.4: Likelihood ratio test between i.i.d normal distribution and OU mean
reverting process for Person 2’s gut and tongue genera
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Figure 2.5: Likelihood ratio test between i.i.d normal distribution and OU mean
reverting process for Person 2’s right and left palm genera
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and the OU process are both translation and scale distributions, the choice of the

starting points and the values of σ2 should not affect the values of the likelihood ratio

statistics.

Because the data are simulated under Brownian motion, the η estimated for the

OU mean-reverting process should be close to zero. To avoid rounding errors we use

the Taylor expansion approximation given in Section 2.2.3 to estimate the parameters

and log-likelihood.

The null and alternative hypotheses are

H0 : Xt follows Brownian motion with μ = 0

H1 : Xt follows an OU mean reverting process

Similarly, we need to prove that

l(x;μou, η, σou)− l(x;μBM , σBM) = l(y;μou, η, σou)− l(y;μBM , σBM)

Where y is the linear transformation of x, which is y = ax+b. Therefore μy = aμx+b

and σ2
y = a2σ2

x.

We know the log-likelihood function of Brownian motion without drift is

l(x; σBM) = −1

2

n∑
i=1

log(2πσ2
BM(ti − ti−1))−

n∑
i=1

(xi − xi−1)
2

2σ2
BM(ti − ti−1)

l(y;μou, η, σou)− l(y;μBM , σBM)

=− n

2
log(2π)− n

2
log

(
σ2
OU.y

2η

)
− 1

2

n∑
i=1

log(1− e−2η(ti−ti−1))

− η

σ2
OU.y

n∑
i=1

(yi − μOU.y − (yi−1 − μOU.y)e
−η(ti−ti−1))2

1− e−2η(ti−ti−1)

+
1

2

n∑
i=1

log(2πσ2
BM.y(ti − ti−1)) +

n∑
i=1

(yi − yi−1)
2

2σ2
BM.y(ti − ti−1)

=− n

2
log(σ2

OU.y) +
n

2
log(σ2

BM.y) +
n

2
log(2η)− 1

2

n∑
i=1

log(1− e−2η(ti−ti−1))

− η

σ2
OU.y

n∑
i=1

(yi − μOU.y − (yi−1 − μOU.y)e
−η(ti−ti−1))2

1− e−2η(ti−ti−1)
+

n∑
i=1

(yi − yi−1)
2

2σ2
BM.y(ti − ti−1)

Where
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− n

2
log(σ2

OU.y) +
n

2
log(σ2

BM.y)

=− n

2
log(a2σ2

OU.x) +
n

2
log(a2σ2

BM.x)

=− n

2
log(σ2

OU.x) +
n

2
log(σ2

BM.x)

And,

− η

σ2
OU.y

n∑
i=1

(yi − μOU.y − (yi−1 − μOU.y)e
−η(ti−ti−1))2

1− e−2η(ti−ti−1)
+

n∑
i=1

(yi − yi−1)
2

2σ2
BM.y(ti − ti−1)

=− η

a2σ2
OU.x

n∑
i=1

(axi + b− (aμOU.x + b)− (axi−1 + b− (aμOU.x + b))e−η(ti−ti−1))2

1− e−2η(ti−ti−1)

+
n∑

i=1

(axi + b− (axi−1 + b))2

2a2σ2
BM.x(ti − ti−1)

=− η

σ2
OU.x

n∑
i=1

(xi − μOU.x − (xi−1 − μOU.x)e
−η(ti−ti−1))2

1− e−2η(ti−ti−1)
+

n∑
i=1

(xi − xi−1)
2

2σ2
BM.x(ti − ti−1)

Therefore

l(x;μou, η, σou)− l(x;μBM , σBM) = l(y;μou, η, σou)− l(y;μBM , σBM)

We see that the re-scaled data will not influence the likelihood ratio test results

so we can choose any Brownian motion to calculate the null distribution.

The likelihood ratio statistics for all abundant genera in each body site are shown

in Figure 2.6 and Figure 2.7 (for Person 1) and Figure 2.8 and Figure 2.9 (for Person

2), along with the null distribution and critical values. We find that all the log-

likelihood ratio tests for the real genus data reject the null hypothesis at the 5%

significance level. This indicates that all abundant genera are subject to some mean

reversion.



20

Figure 2.6: Likelihood ratio test between Brownian motion and OU mean reverting
process for Person 1’s gut and tongue genera
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Figure 2.7: Likelihood ratio test between Brownian motion and OU mean reverting
process for Person 1’s right and left palm genera
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Figure 2.8: Likelihood ratio test between Brownian motion and OU mean reverting
process for Person 2’s gut and tongue genera

Figure 2.9: Likelihood ratio test between Brownian motion and OU mean reverting
process for Person 2’s right and left palm genera



Chapter 3

Fisher Information of OU Mean Reverting Process and

Optimal Sampling

In this chapter, we consider the accuracy of the estimated parameters, and based on

this, we also consider the most efficient sampling scheme for estimating the parameters

with particular attention to the mean reversion velocity of the OU process. The

asymptotic behaviour of MLEs for parameters is controlled by the Fisher information.

We begin by reviewing the theory of Fisher information in Section 3.1. In Section

3.2 and 3.3, we derive the Fisher information matrix for an OU process and use it

to determine optimal sampling frequency. In Section 3.4, we use simulations to show

that the asymptotic theory applies to typical finite sample cases.

3.1 Review of Fisher Information

Fisher Information introduced by Ronald Fisher [12] is an important tool in asymp-

totic theory, used to measure the amount of information in the sample data. A review

of its use can be found in [12] [9] . The main use of Fisher information for the purposes

of this theory is the following theorem about the asymptotic behaviour of MLEs [2] [5].

Theorem (Asymptotic normality of MLE) Let {f(x|θ) : θ ∈ Ω} be a paramet-

ric model, where θ ∈ R is a single parameter. Let X1, X2, . . . , Xn be i.i.d. with f(x|θ)
for θ0 ∈ Ω and let θ̂ be the MLE based on X1, . . . , Xn. Suppose certain regularity

conditions hold, including:

1. All PDFs/PMFs f(x|θ) in the model have the same support

2. θ0 is an interior point (i.e., not on the boundary) of Ω

3. The log-likelihood l(θ) is twice differentiable in θ

23
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4. θ̂ is the unique value of θ ∈ Ω that score function can be 0

Then θ̂ is consistent and asymptotically normal, with

√
n(θ̂ − θ0)

d→ N(0, I−1(θ0))

A good explanation of this theorem and its proof can be found in [2].

Fisher information is a way of measuring the amount of information that a random

variable X contains about an unknown parameter θ for the distribution of X. It is the

expectation of the observed information [6]. The Fisher information can be derived

as

I(θ) = E

[
− ∂2

∂θ2
l(x; θ)

]

Where − ∂2

∂θ2
l(x; θ) = Jn(θ) is the observed information which is the negative of the

second derivative of the log likelihood function with respect to θ, based on the sample

size n.

When there are N parameters, so that θ is an N × 1 vector θ = [θ1, θ2, . . . , θN ]
T ,

the Fisher information takes the form of an N ×N matrix. This matrix is called the

Fisher information matrix (FIM) and has typical element

[I(θ)]i,j = −E

[
∂2

∂θiθj
L(x;θ)

]

Similarly, we can derive the following results for multiple parameters.

θ̂
app.∼ N(θ, I−1(θ))

3.2 Fisher Information Derivation for OU Mean Reverting Process

3.2.1 Observed Information

To derive the Fisher information of the OU process, we have to first calculate the

observed information. We compute:
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− ∂2

∂μ2
l(x;μ, η, σ) =− ∂2

∂μ2

[
− η

σ2

n∑
i=1

(xi − μ− (xi−1 − μ)e−ηdi)2

1− e−2ηdi

]

=− ∂

∂μ

[
2η

σ2

n∑
i=1

(xi − μ− (xi−1 − μ)e−ηdi)

(1 + e−ηdi)

]

=− 2η

σ2

n∑
i=1

−1 + e−ηdi

1 + e−ηdi

(3.1)

− ∂2

∂μ∂σ
l(x;μ, η, σ) =− ∂2

∂μ∂σ

[
− η

σ2

n∑
i=1

(xi − μ− (xi−1 − μ)e−ηdi)2

1− e−2ηdi

]

=
∂

∂σ

[
2η

σ2

n∑
i=1

(xi − μ− (xi−1 − μ)e−ηdi)

1 + e−ηdi

]

=
4η

σ3

n∑
i=1

(xi − μ− (xi−1 − μ)e−ηdi)

1 + e−ηdi

(3.2)

In order to simplify our expression for observed information, we can set

(xi − μ− (xi−1 − μ)e−ηdi) = Bi. Therefore (3.2) becomes

− ∂2

∂μ∂σ
l(x;μ, η, σ) =

4η

σ3

n∑
i=1

Bi

1 + e−ηdi

− ∂2

∂σ2
l(x;μ, η, σ) =− ∂2

∂σ2

[
−n

2
log(

σ2

2η
)− η

σ2

n∑
i=1

(xi − μ− (xi−1 − μ)e−ηdi)2

1− e−2ηdi

]

=− ∂

∂σ

[
−n

σ
+

2η

σ3

n∑
i=1

(xi − μ− (xi−1 − μ)e−ηdi)2

1− e−2ηdi

]

=− n

σ2
+

6η

σ4

n∑
i=1

(xi − μ− (xi−1 − μ)e−ηdi)2

1− e−2ηdi

=− n

σ2
+

6η

σ4

n∑
i=1

B2
i

1− e−2ηdi

(3.3)
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− ∂2

∂μ∂η
l(x;μ, η, σ) =− ∂2

∂μ∂η

[
− η

σ2

n∑
i=1

(xi − μ− (xi−1 − μ)e−ηdi)2

1− e−2ηdi

]

=− ∂

∂η

[
2η

σ2

n∑
i=1

(xi − μ− (xi−1 − μ)e−ηdi)

1 + e−ηdi

]

=− 2

σ2

n∑
i=1

Bi

1 + e−ηdi
− 2η

σ2

∂

∂η

[
n∑

i=1

Bi

1 + e−ηdi

]
(3.4)

We calculate

∂

∂η

[
n∑

i=1

Bi

1 + e−ηdi

]
=

n∑
i=1

(di(xi−1 − μ)e−ηdi)(1 + e−ηdi) + die
−ηdiBi

(1 + e−ηdi)2

=
n∑

i=1

die
−ηdi(xi−1 − μ) + die

−ηdi(xi − μ)

(1 + e−ηdi)2

− ∂2

∂σ∂η
l(x;μ, η, σ) =− ∂2

∂σ∂η

[
−n

2
log(

σ2

2η
)− η

σ2

n∑
i=1

(xi − μ− (xi−1 − μ)e−ηdi)2

1− e−2ηdi

]

=− ∂

∂η

[
−n

σ
+

2η

σ3

n∑
i=1

(xi − μ− (xi−1 − μ)e−ηdi)2

1− e−2ηdi

]

=− 2

σ3

n∑
i=1

B2
i

1− e−2ηdi
− 2η

σ3

∂

∂η

[
n∑

i=1

B2
i

1− e−2ηdi

]

(3.5)

we calculate

∂

∂η

[
n∑

i=1

B2
i

1− e−2ηdi

]
=2

[
n∑

i=1

Bi(di(xi−1 − μ)e−ηdi)

1− e−2ηdi

]
− 2

[
n∑

i=1

die
−2ηdiB2

i

(1− e−2ηdi)2

]

=2

[
n∑

i=1

Bidi[(xi−1 − μ)e−ηdi − (xi − μ)e−2ηdi ]

(1− e−2ηdi)2

]
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− ∂2

∂η2
l(x;μ, η, σ) =

∂2

∂η2

[
n

2
log(

σ2

2η
) +

1

2

n∑
i=1

log(1− e−2ηdi) +
η

σ2

n∑
i=1

B2
i

1− e−2ηdi

]

=
n

2η2
− 2

n∑
i=1

d2i e
−2ηdi

(1− e−2ηdi)2
+

2

σ2

∂

∂η

[
n∑

i=1

B2
i

1− e−2ηdi

]

+
η

σ2

∂2

∂η2

[
n∑

i=1

B2
i

1− e−2ηdi

]

(3.6)

And

∂2

∂η2

[
n∑

i=1

B2
i

1− e−2ηdi

]

=2
∂

∂η

[
n∑

i=1

Bi(di(xi−1 − μ)e−ηdi)

(1− e−2ηdi)

]
− 2

∂

∂η

[
n∑

i=1

die
−2ηdiB2

i

(1− e−2ηdi)2

]

=2

[
n∑

i=1

(xi−1 − μ)2e−2ηdid2i
(1− e−2ηdi)

−
n∑

i=1

Bid
2
i (xi−1 − μ)e−ηdi

(1− e−2ηdi)
− 2

n∑
i=1

e−3ηdid2iBi(xi−1 − μ)

(1− e−2ηdi)2

]

− 2

[
n∑

i=1

−2d2i e
−2ηdiB2

i + 2d2i e
−3ηdiBi(xi−1 − μ)

(1− e−2ηdi)2
−

n∑
i=1

4e−4ηdid2iB
2
i

(1− e−2ηdi)3

]

=2

[
n∑

i=1

(xi−1 − μ)e−ηdid2i [2(xi−1 − μ)e−ηdi − (xi − μ)]

(1− e−2ηdi)

]

− 4

[
n∑

i=1

d2i e
−2ηdiBi[3e

−ηdi(xi−1 − μ)− (xi − μ)]

(1− e−2ηdi)2

]
+ 8

[
n∑

i=1

e−4ηdid2iB
2
i

(1− e−2ηdi)3

]

So the observed information matrix will be

J =−

⎡
⎢⎢⎣

∂2

∂μ2 l(x;μ, η, σ)
∂2

∂μ∂η
l(x;μ, η, σ) ∂2

∂σ∂μ
l(x;μ, η, σ)

∂2

∂μ∂η
l(x;μ, η, σ) ∂2

∂η2
l(x;μ, η, σ) ∂2

∂σ∂η
l(x;μ, η, σ)

∂2

∂σ∂μ
l(x;μ, η, σ) ∂2

∂σ∂η
l(x;μ, η, σ) ∂2

∂σ2 l(x;μ, η, σ)

⎤
⎥⎥⎦
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3.2.2 Fisher Information

From Equations (3.1)-(3.6) it is straightforward to calculate the Fisher information

by taking expectation for each term:

[I(θ)]μ,μ =− E

[
∂2

∂μ2
l(x;μ, η, σ)

]

=− E

[
2η

σ2

n∑
i=1

−1 + e−ηdi

1 + e−ηdi

]

=
2η

σ2

n∑
i=1

1− e−ηdi

1 + e−ηdi

(3.7)

[I(θ)]σ,σ =− E

[
∂2

∂σ2
l(x;μ, η, σ)

]

=− E

[
n

σ2
− 6η

σ4

n∑
i=1

B2
i

1− e−2ηdi

]

=− n

σ2
+

6η

σ4

n∑
i=1

E(B2
i )

1− e−2ηdi

(3.8)

Using E[B2
i ] = V ar[Bi] + (E[Bi])

2, it is not hard to derive that E[Bi] = 0 and

V ar[Bi] =
σ2

2η
(1− e−2ηdi). Therefore, E[B2

i ] =
σ2

2η
(1− e−2ηdi).

[I(θ)]η,η =− E

[
∂2

∂η2
l(x;μ, η, σ)

]

=
n

2η2
− 2

n∑
i=1

d2i e
−2ηdi

(1− e−2ηdi)2
+

2

σ2

[
n∑

i=1

E[−2die
−2ηdiB2

i ]

(1− e−2ηdi)2

]

+
2η

σ2

n∑
i=1

(E[x2
i−1]− 2E[xi−1]μ+ μ2)e−2ηdid2i

(1− e−2ηdi)

+
2η

σ2

n∑
i=1

E[2d2i e
−2ηdiB2

i ]

(1− e−2ηdi)2
+

2η

σ2

n∑
i=1

E[4d2i e
−4ηdiB2

i ]

(1− e−2ηdi)3
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[I(θ)]μ,σ =− E

[
∂2

∂μ∂σ
L(x;μ, η, σ)

]

=− E

[
−4η

σ3

n∑
i=1

Bi

1 + e−ηdi

]

=0

[I(θ)]μ,η =− E

[
∂2

∂μ∂η
l(x;μ, η, σ)

]

=− E

[
2

σ2

n∑
i=1

Bi

1 + e−ηdi

]

− E

[
2η

σ2

n∑
i=1

(di(xi−1 − μ)e−ηdi)(1 + e−ηdi) + die
−ηdiBi

(1 + e−ηdi)2

]

=− 2η

σ2

[
n∑

i=1

E[(di(xi−1 − μ)e−ηdi)]

(1 + e−ηdi)

]

=− 2η

σ2

[
n∑

i=1

(di(x0 − μ)e−ηti)

(1 + e−ηdi)

]

[I(θ)]σ,η =− E

[
∂2

∂σ∂η
l(x;μ, η, σ)

]

=− E

[
2

σ3

n∑
i=1

B2
i

1− e−2ηdi
+

2η

σ3

∂

∂η

[
n∑

i=1

B2
i

1− e−2ηdi

]]

=− 2

σ3

n∑
i=1

E[B2
i ]

1− e−2ηdi
− 2η

σ3

[
n∑

i=1

−2die
−2ηdiE[B2

i ]

(1− e−2ηdi)2

]

So the Fisher information matrix will be

I =

⎡
⎢⎢⎣

[I(θ)]μ,μ [I(θ)]μ,η [I(θ)]μ,σ

[I(θ)]μ,η [I(θ)]η,η [I(θ)]η,σ

[I(θ)]μ,σ [I(θ)]η,σ [I(θ)]σ,σ

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

2η
σ2

∑n
i=1

1−e−ηdi

1+e−ηdi
− 2η

σ2

∑n
i=1

(di(x0−μ)e−ηti )

(1+e−ηdi )
0

− 2η
σ2

∑n
i=1

(di(x0−μ)e−ηti )

(1+e−ηdi )
[I(θ)]η,η − n

ση
+ 2

σ

∑n
i=1

die
−2ηdi

(1−e−2ηdi )

0 − n
ση

+ 2
σ

∑n
i=1

die
−2ηdi

(1−e−2ηdi )
2n
σ2

⎤
⎥⎥⎦

Where
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[I(θ)]η,η =
n

2η2
− 2

n∑
i=1

d2i e
−2ηdi

(1− e−2ηdi)2
− 2

η

n∑
i=1

die
−2ηdi

(1− e−2ηdi)
+ 2

n∑
i=1

d2i e
−2ηdi

(1− e−2ηdi)

+
2η

σ2

n∑
i=1

[
σ2

2η
(1− e−2ηti−1) + (x0 − μ)2e−2ηti−1

]
e−2ηdid2i

(1− e−2ηdi)
+ 4

n∑
i=1

d2i e
−4ηdi

(1− e−2ηdi)2

3.3 Determining Optimal Sampling

3.3.1 Fisher Information Matrix with Equal Space Sampling

Fisher information allows us to estimate the variance of our parameter estimates.

This is very useful for designing experiments. To simplify this problem, we will re-

strict attention to equally spaced time points for all i (di = ti − ti−1 = Δt). Fisher

information will be greatly simplified. For example, we can calculate the optimal sam-

pling scheme for given parameter values. The simplified Fisher information matrix

is

[I(θ)]η,η =
n

2η2
− 2

n∑
i=1

d2i e
−2ηdi

(1− e−2ηdi)2
+

2

σ2

[
n∑

i=1

E[−2die
−2ηdiB2]

(1− e−2ηdi)2

]

+
2η

σ2

n∑
i=1

(E[x2
i−1]− 2E[xi−1]μ+ μ2)e−2ηdid2i

(1− e−2ηdi)

+
2η

σ2

n∑
i=1

E[2d2i e
−2ηdiB2]

(1− e−2ηdi)2
+

2η

σ2

n∑
i=1

E[4d2i e
−4ηdiB2]

(1− e−2ηdi)3

=
n

2η2
− 2n

Δt2e−2ηΔt

(1− e−2ηΔt)2
− 4nΔte−2ηΔt(σ

2

2η
)

σ2(1− e−2ηΔt)

+
2η

σ2

n∑
i=1

(σ
2

2η
(1− e−2ηti−1) + (x0 − μ)2e−2ηti−1)e−2ηΔtΔt2

(1− e−2ηΔt)

+
2nη

σ2

2Δt2e−2ηΔt(σ
2

2η
)

(1− e−2ηΔt)
+

2nη

σ2

4Δt2e−4ηΔt(σ
2

2η
)

(1− e−2ηΔt)2

(3.9)

Suppose the observed process is in stationary state, we can take expectation E[(x0−
μ)2] = σ2

2η
. Set 1

1−e−2ηΔt = G1(Δt) = G1 so (3.9) becomes
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[I(θ)]η,η =
n

2η2
− 2n

Δt2e−2ηΔt

(1− e−2ηΔt)2
− 4nΔte−2ηΔt(σ

2

2η
)

σ2(1− e−2ηΔt)

+
2nη

σ2

σ2

2η
e−2ηΔtΔt2

(1− e−2ηΔt)
+

2nη

σ2

2Δt2e−2ηΔt(σ
2

2η
)

(1− e−2ηΔt)

+
2nη

σ2

4Δt2e−4ηΔt(σ
2

2η
)

(1− e−2ηΔt)2

=
n

2η2
− 2nΔt2G1(G1 − 1)− 2n

η
Δt(G1 − 1) + 3nΔt2(G1 − 1)

+ 4nΔt2(G1 − 1)2

=
n

2η2
+ nΔt2(G1 − 1)(2G1 − 1)− 2n

η
Δt(G1 − 1)

(3.10)

[I(θ)]μ,μ =− 2η

σ2

n∑
i=1

−1 + e−ηdi

1 + e−ηdi
= −2nη

σ2

(−1 + e−ηΔt

1 + e−ηΔt

)

=

[
2η

σ2
(
1− e−ηΔt

1 + e−ηΔt
)

]
n

(3.11)

Set 1
1+e−ηΔt = G2(Δt) = G2

[I(θ)]μ,μ =

[
2η

σ2

(
1− e−ηΔt

1 + e−ηΔt

)]
n =

2η

σ2
(2G2 − 1)n (3.12)

[I(θ)]σ,σ =− n

σ2
+

6η

σ4

n∑
i=1

E[B2
i ]

1− e−2ηdi

=− n

σ2
+

6η

σ4
n
(σ

2

2η
)(1− e−2ηΔt)

1− e−2ηΔt

=
2n

σ2

(3.13)
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[I(θ)]μ,σ = 0 (3.14)

I(θ)μ,η = − 2η

σ2

[
n∑

i=1

(di(x0 − μ)e−ηti)

(1 + e−ηdi)

]

=− 2η

σ2

[
n∑

i=1

(Δt(x0 − μ)e−ηti)

(1 + e−ηΔt)

]

=− 2η

σ2

Δt(x0 − μ)

(1 + e−ηΔt)

n∑
i=1

e−ηti

(3.15)

As mentioned before, E[x0 − μ] = 0. Therefore,

I(θ)μ,η = 0 (3.16)

[I(θ)]σ,η =− 2

σ3

n∑
i=1

E[B2
i ]

1− e−2ηdi
− 2η

σ3

[
n∑

i=1

−2die
−2ηdiE[B2

i ]

(1− e−2ηdi)2

]

=− 2

σ3

n∑
i=1

σ2

2η
(1− e−2ηdi)

1− e−2ηdi
− 2η

σ3

[
n∑

i=1

−2die
−2ηdi σ

2

2η
(1− e−2ηdi)

(1− e−2ηdi)2

]

=− n

ση
+

2nΔt

σ

e−2ηΔt

1− e−2ηΔt

=− n

ση
+

2nΔt

σ
(G1 − 1)

(3.17)

So the Fisher information matrix will be
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I =

⎡
⎢⎢⎣

[I(θ)]μ,μ [I(θ)]μ,η [I(θ)]μ,σ

[I(θ)]μ,η [I(θ)]η,η [I(θ)]η,σ

[I(θ)]μ,σ [I(θ)]η,σ [I(θ)]σ,σ

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

2η
σ2 (2G2 − 1)n 0 0

0 n
2η2

+ nΔt2(G1 − 1)(2G2 − 1)− 2n
η
Δt(G1 − 1) − n

ση
+ 2nΔt

σ
(G1 − 1)

0 − n
ση

+ 2nΔt
σ

(G1 − 1) 2n
σ2

⎤
⎥⎥⎦

3.3.2 Numerical Results

From the previous derivation, each element of the simplified Fisher information matrix

is a function of time difference Δt, sample size n, mean reversion parameter η and

variance parameter σ. This means that the covariance matrix is also a function of

these four parameters. Our objective is to estimate the rate of mean reversion, η as

accurately as possible. For the reason that η is the parameter that represents the

temporal dynamics and labels microbiome stability. That is we want to minimize

V ar(η̂) = [I(θ)]−1
η,η.

From the former calculation, we know that

[I(θ)]−1
η,η =

2n/σ2

[I(θ)]η,η [I(θ)]σ,σ − [I(θ)]2η,σ

By plugging in the results,

[I(θ)]−1
η,η =

2n/σ2

[ n
2η2

+ nΔt2(G1 − 1)(2G2 − 1)− 2n
η
Δt(G1 − 1)]2n

σ2 − [− n
ση

+ 2nΔt
σ

(G1 − 1))2]

=
2n/σ2

2n2Δt2

σ2 (G1 − 1)(2G2 − 2G1 + 1)

= [nΔt2(G1 − 1)(2G2 − 2G1 + 1)]−1

(3.18)

Where G1 =
1

1−e−2ηΔt and G2 =
1

1+e−ηΔt

From the above result, we know that σ will not influence the value of V ar(η̂).

Therefore, we need to maximize nΔt2(G1 − 1)(2G2 − 2G1 + 1)

Let K = e−ηΔt. Δt becomes − logK
η

. The Equation (3.18) is
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[I(θ)]−1
η,η

=[nΔt2(G1 − 1)(2G2 − 2G1 + 1)]−1

=

[
nΔt2(

1

1− e−2ηΔt
− 1)(

2

1 + e−ηΔt
− 2

1− e−2ηΔt
+ 1)

]−1

=

[
−n

(logK)2

η2
K2(K2 + 2K − 1)

(1−K2)2

]−1

(3.19)

Let f(K) = −n (logK)2

η2
K2(K2+2K−1)

(1−K2)2
. We need to calculate the first order derivative to

maximize f(K)

f ′(K) =− n

[
(logK)2

η2

]′
K2(K2 + 2K − 1)

(1−K2)2
− n

(logK)2

η2

[
K2(K2 + 2K − 1)

(1−K2)2

]′

=− 2n

η2
logK

[
K

(1−K)2
− 2K

(1−K2)2

]

− n

η2
(logK)2

[
2

(1−K)3
− 2

(1−K)2
− 4K

(1−K2)2
− 8K3

(1−K2)3

]

=− 2nK

η2
logK[(1−K2)(K2 + 2K − 1) + logK(K3 +K2 + 3K − 1)]

=0

(3.20)

Using Newton’s method, we find that when K = 0.2060614, f ′(K) ≈ 0. Then, we

can find the relation between the optimal time difference Δt and η

ΔtOptimal =
− logK

η
=

− log(0.2060614)

η
=

1.579581

η

For fixed sample size n, V ar(η̂) is affected by time difference Δt. A number of

these functions are shown in Figure 3.1. We see that for small Δt, there is not enough

time to observe mean reversion so η̂ is inaccurate, while for large Δt, consecutive xi’s

are almost independent, making the estimation of η difficult. Figure 3.1 clearly shows

that there is an optimal sampling frequency for estimating η. We can also see that

the optimal time difference Δt is the same for all sample sizes.

Figure 3.2 shows the relation between V ar(η̂) and sample size, for various values

of Δt. As excepted, V ar(η̂) is inversely proportional to sample size.

Figure 3.3 shows the optimal time interval as a function of η.
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Figure 3.1: Relation between time difference Δt and V ar(η̂) for various sample sizes
n for true parameter values η = 0.5, σ = 0.01, x0 = 0, μ = 0

Figure 3.2: Relation between sample sizes n and time difference Δt for true parameter
values η = 0.5, σ = 0.01, x0 = 0, μ = 0
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3.3.3 Application to Moving Picture Data

We apply this method to the moving picture data. Estimated values of η̂ for all

abundant genera at each body site are shown in Figure 3.4 (for Person 1) and Figure

3.5 (for Person 2). We see that for most genera, we estimate η̂ in the range from 0.4

to 1.5 for Person 1 and 0.5 to 2 for Person 2. Based on our previous method, we can

calculate estimated values of μ̂ and σ̂ at each body site, which are shown in Figure

3.6 - Figure 3.9. We see that for most genera, estimated values of μ̂ is in the range

from 0.0070 to 0.0074 for Person 1 and 0.00270 to 0.00300 for Person 2. The range

of σ̂ is from 0.007 to 0.014 for Person 1 and 0.001 to 0.013 for Person 2.

From the previous result, we know that it is η that determines the optimal sam-

pling time. For the estimated values of η, we examine the relation between Δt and

V ar(η̂). For Person 1, Figure 3.10-3.13 show the variance of η̂ for different Δt. In the

same body site with different sample sizes, the optimal time difference is similar, but

with larger sample sizes, V ar(η̂) becomes smaller. In different body site, the optimal

time difference is different as well. We find that enclosed body sites have smaller

optimal sampling frequency than the external ones. Internal body sites’ estimated

eta values are relatively smaller than external body sites’ estimated eta values, so the
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Figure 3.10: Variance of η̂ as function of Δt for different genera (different curves) in
gut of Person 1

optimum sampling time intervals for internal body sites can be slightly larger than

that of external body sites.

When we estimate the optimal sampling for Person 2, Figures 3.14-3.16 show

similar results.

From the results, we can see that the optimal time difference is approximately 1

sample per day.

3.4 Simulation

3.4.1 Simulation Design

The asymptotic normality of MLE theorem states that for a large enough sample

size, the asymptotic behaviour of MLEs can be described by the Fisher information

matrix. However, it does not specify what sample size is needed for this asymptotic

approximation to be reasonable. We therefore conduct a simulation study to confirm
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tongue of Person 2



47

0 2 4 6 8

0.
0

0.
5

1.
0

1.
5

n = 100

Δt

Va
r(η̂
)

0 2 4 6 8

0.
0

0.
4

0.
8

n = 200

Δt

Va
r(η̂
)

0 2 4 6 8

0.
0

0.
2

0.
4

n = 500

Δt

Va
r(η̂
)

0 2 4 6 8

0.
00

0.
10

0.
20

0.
30

n = 1000

Δt

Va
r(η̂
)

Figure 3.16: Variance of η̂ as function of Δt for different genera (different curves) in
right palm of Person 2



48

Table 3.1: Sample size and time difference for each simulation data set

Time difference Δt = 0.002 Δt = 0.01 Δt = 0.02

Sample size 5000 1000 500

Time difference Δt = 0.1 Δt = 0.2 Δt = 1

Sample size 100 50 10

Table 3.2: Distance of Fisher information inverse matrix and covariance

Time difference Δt = 0.002 Δt = 0.01 Δt = 0.02

Distance 0.2871476 0.2641229 0.2696390

Time difference Δt = 0.1 Δt = 0.2 Δt = 1

Distance 0.2657307 4.9819356 6.2466051

that the asymptotic approximation can be used for realistic sample sizes.

In order to test our derived Fisher information matrix, we simulate 6 different

OU mean reverting microbiome data sets with the same period from 0 to 10 but

different sample sizes. The parameters for the simulation are η = 0.8, σ = 0.01 and

μ = 0. For each sample size, we compute the MLEs for η̂, σ̂ and μ̂. We compare the

covariance matrices estimated over 5000 simulations, using the following widely-used

matrix distance [7].

d2(A,B) = tr(log(A−1/2BA−1/2))

3.4.2 Simulation Results

For each simulation, we calculate the MLEs for 5000 simulated datasets. We estimate

the covariance matrix for these MLEs, and compare with the inverse of the Fisher

information matrix. The result is shown in Table 3.2. We see that Fisher information

provides a good approximation when n ≥ 100. Therefore, we consider that our use

of Fisher information is appropriate, and our conclusions about optimal sampling

protocols are justified.



Chapter 4

Discussion

Conclusion

In this thesis, we first find evidence of temporal dependence and mean reversion in

moving picture data using the likelihood ratio test. We see that for enclosed body

sites, more abundant genera show strong evidence of dependence than for external

ones. Furthermore, all of the abundant genera show evidence of mean reversion. Then

we consider the accuracy of our estimated mean reversion velocity and the most effi-

cient sampling scheme for estimating the parameters, particularly the mean reversion

velocity η. We derive the Fisher information matrix to determine the optimal sam-

pling frequency. For different body sites, the optimal time difference is different.

The optimal sampling frequency for enclosed body sites is smaller than for exposed

body sites. The results suggest that future studies be most efficient for understand-

ing microbial dynamics if the sampling frequency is approximately 1 sample per day.

Moreover, we performed simulations to confirm that the asymptotic theory applies to

our finite sample cases.

Future work

This thesis suggests many promising directions for future work. In this thesis, OU

process is used to model the temporal dynamics of the moving picture data. The OU

process is the simplest model with a linear velocity parameter mean reversion. We will

fit a more elaborate model in the future allowing multiple stable points, such as a non-

linear mean reversion model. Moreover, we can also develop a model to incorporate

interactions between OTUs for our future studies because the microbiome is driven

by the interaction of many different microbes. We can also incorporate measurement

error in sampling to derive more accurate estimates. This thesis currently analyzes

proportional genera data sets. Another important direction for future research is to

adapt our method to directly deal with count data.
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