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Abstract

Codon substitution models (CSMs) are commonly fitted to alignments of ho-

mologous protein-coding sequences with the objective of determining whether

sites in the gene underwent positive selection. Under the standard paradigm

such evidence is often assumed to be enough to conclude the gene evolved adap-

tively. CSMs are commonly validated using simulated alignments. A central

theme of this dissertation is use of relatively realistic alignment-generating

processes grounded in mutation-selection (MS) theory (Chapter 1). The MS

framework permits sites to be evolved each on their own site-specific fitness

landscape defined by a vector of fitness coefficients for the twenty amino acids.

A novel MS alignment-generating process was used to show that evidence for

variation in site-specific rate ratios (a.k.a. heterotachy) with episodic positive

selection can be produced by episodic adaptive changes in site-specific fitness

coefficients, consistent with the standard paradigm, but also by a second pre-

viously unrecognized process that I call non-adaptive shifting balance. This

finding undermines sophisticated CSMs specifically designed to infer episodic

adaptation by detecting heterotachy with episodic positive selection (Chap-

ter 2). Processes that tend to generate similar patterns in data are said to

be confounded. Confounding can lead to a novel statistical pathology that I

call phenomenological load. A series of novel CSMs fitted to alignments gen-

erated under a version of MS uniquely formulated to mimic real data were

used to demonstrate that phenomenological load can lead to false biological

conclusions. These analyses were accompanied by a novel method to assess

the potential impact of phenomenological load on any given model parameter

(Chapter 3). Confounding of adaptive and non-adaptive processes that gener-

ate heterotachy can be avoided by abandoning positive selection as an indicator

of adaptation and instead using evidence of changes in site-specific amino acid

fitnesses. This approach was realized by constructing the phenotype-genotype

branch-site model (PG-BSM), a descendant of traditional branch-site models

x



that combines alignment data with a discrete phenotype (i.e., contextual in-

formation) under a unified statistical framework. The PG-BSM was validated

using extensive simulations and produced plausible results when applied to

real data (Chapter 4). This dissertation ends with a discussion of implications

of my findings (Chapter 5).
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Chapter 1

Introduction

This first chapter covers background information in two sections. The first,

entitled “Thinking About Molecular Evolution”, introduces the mechanistic

mutation-selection (MS) framework (Halpern and Bruno, 1998) as a means

to conceptualize evolutionary processes at individual codon sites in a protein-

coding gene. The MS framework provided much insight and in particular led

to the discovery of the significance of the site-specific dynamic I call “non-

adaptive shifting balance” whereby a population first drifts to a suboptimal

codon at a site and subsequently returns to the optimal codon for that site by

a combination of positive selection and drift. The second section, “Codon Sub-

stitution Models”, introduces standard methods used to extract information

from genetic data. Codon substitution models (CSMs) provide phenomenolog-

ical approximations of mechanistic MS processes, and as such are founded on a

number of simplifying assumptions. By presenting MS first, I aim to inculcate

in the reader a mechanistic view of evolutionary processes before presenting

CSMs with all of their necessary simplifications.

1.1 Thinking About Molecular Evolution

1.1.1 Biochemical Information Technology

We find ourselves in a universe in which matter spontaneously congregates

to form organized low entropy structures that seem to defy explanation. The

causal processes that give rise to organization apparently stem from the laws

of thermodynamics, and in particular the laws that govern systems in disequi-

librium (Schneider and Kay, 1994). For example, gradients of various kinds

in the Earth’s atmosphere (temperature, pressure, humidity, etc.) prompt the

formation of structures such as convection cells and hurricanes that persist

for a time in a state of disequilibrium. These structures, we are told, serve

1
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to reduce gradients and move the atmosphere toward equilibrium and a state

of maximum entropy (Schneider and Kay, 1994). It is only the continuous

influx of solar energy that prevents the global atmosphere from ever reach-

ing this quiescent state. Some would characterize living systems in the same

way, as functioning to reduce gradients (England, 2013). Photoautotrophic

organisms, likely among the first life forms on Earth, make use of compounds

such as H2, H2S and H2O to fix carbon (see Lenton and Watson, 2011, for

a history of life on Earth) via processes that ultimately convert high energy

photons into heat. Hence, one might say that such living systems serve to

dissipate the solar influx and increase entropy, just as a hurricane does. How-

ever, there is a fundamental difference between purely physical structures and

living systems, namely biochemical information technology, which on Earth

consists of a double-strand of deoxyribose nucleic acid monomers called DNA

(i.e., long sequences of the four nucleotides thymine, cytosine, guanine and

adenine denoted T, C, G and A ) in combination with an array of protein

machines that maintain, transcribe, translate and replicate the stored infor-

mation. This thesis is centered on models of the processes of change that can

impact a protein-coding gene over macroevolutionary time scales.
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1.1.2 Drift and Selection

Amino Acid Codon Aliases

alanine GCT, GCC, GCA, GCG

arginine CGT, CGC, CGA, CGG, AGA, AGG

asparagine AAT, AAC

aspartic acid GAT, GAC

cysteine TGT, TGC

glutamine CAA, CAG

glutamic acid GAA, GAG

glycine GGT, GGC, GGA, GGG

histidine CAT, CAC

isolucine ATT, ATC, ATA

methionine ATG (start)

leucine TTA, TTG, CTT, CTC, CTA, CTG

lysine AAA, AAG

phenylalanine TTT, TTC

proline CCT, CCC, CCA, CCG

serine TCT, TCC, TCA, TCG, AGT, AGC

threonine ACT, ACC, ACA, ACG

tryptophan TGG

tyrosine TAT, TAC

valine GTT, GTC, GTA, GTG

stop TAA, TAG, TGA

Table 1.1: Amino acids and their codon aliases for the standard genetic code. The stop
codons TAA, TAG and TGA indicate the end of a segment of protein-coding DNA. The
codon ATG serves as both an indicator of the start of a segment of protein-coding DNA
and also as the single codon alias for methionine.

The physical structure of DNA is a double helix (Watson and Crick, 1953),

which in eukaryotes is mostly stored in the nucleus. When appropriately sig-

naled, protein machines within the nucleus unwind a portion of the double

helix to transcribe a segment of DNA (i.e., a gene1) into a strand of ribonu-

cleic acid (RNA). RNA is organized in nucleotide triplets called codons (Table

1.1), and serves as a template with which to build a protein molecule. Each

of the 43 = 64 possible codons indicates one of 20 possible amino acids. In

eukaryotes, the codon template is translated into its corresponding sequence

of amino acids by structures called ribosomes that reside outside the nucleus.

1More broadly, a gene can be defined as a discrete locus of heritable DNA that can impact
organsimal phenotype when it is expresed either as a protein product or as a regulator of
the expression of other genes.
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The resulting protein molecule then folds either spontaneously or with the help

of other proteins to take on its functional three-dimensional configuration.

This sequence of events, DNA transcribed to RNA translated to protein

(i.e., the “central dogma” of molecular biology, Crick, 1970), is one of two

fundamental processes. The other process occurs when strands of DNA are

replicated2. During replication it can happen that one nucleotide is mistak-

enly replaced by another, giving rise to a mutation. Although mutations

are quite rare (e.g., the mutation rate was estimated to be 3 × 10−8 muta-

tions/nucleotide/generation in the Human Y-chromosome, Xue et al., 2009),

they nevertheless provide variations essential for evolution by natural selec-

tion (Darwin, 1859). When a mutated gene is introduced into a population

via a single individual it will either eventually vanish all together or spread to

the entire population (i.e., be “fixed”). Its eventual fate depends in part on

stochastic population processes (drift) and in part on its relative fitness com-

pared to the wild type gene common to the rest of the population (selection).

1.1.3 The Diffusion Approximation

Imagine a diploid population of size Ne in which every individual has the

same version A of a particular gene3. Over the generations there might on rare

occasion occur a mutation in A to give a new variant B that exits in a single

individual. There are many ways a gene can mutate during replication, from

a change at a single nucleotide site up to large scale insertions and deletions

of whole segments of DNA (Patthy, 2008). For the purpose of modeling codon

evolution, it is standard practice to consider mutations that alter a single

2Additional processes include variations in gene expression caused by (i) changes in
the conformation of a chromosome (Krogh et al., 2018) and (ii) changes in the pattern of
epigenetic biochemical markers (Jablonka and Lamb, 2006).

3The symbol Ne typically denotes the effective population size, the number of individuals
an idealized population would have to have to exhibit the same dymanics as observed in a real
population. In the present theoretical context Ne is equated to the number of individuals
in the population from which genes that enter the next generation are randomly drawn.
The symbol N is used throughout this thesis to indicate the number of sequences in an
alignment.
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codon only. Suppose the two variants A and B are as follows:

A : ATC ATA GTA CTC CAA GCC CTA TTA GCC ACC TAT

B : ATC ATA GTA CTC CAA GCC CTA ATA GCC ACC TAT

The two genes are identical everywhere except at one codon site, where a single

nucleotide mutation changed the codon TTA, corresponding to the amino acid

leucine, to the codon ATA, corresponding to the amino acid isolucine. Each

individual in a diploid population has two copies of each gene. Hence, the

population initially consists of Ne−1 individuals with two copies of variant (or

allele) A and one individual with one copy of A and one of B. To approximate

the probability that B will eventually be fixed, suppose pairs of alleles are

passed to the next generation by random sampling, and that the selection

coefficient is sAB = fB − fA, where fA is the fitness of A and fB the fitness4 of

B. Then the probability that B will be fixed is (Fisher, 1922, 1930; Haldane,

1927, 1932; Wright, 1931; Kimura, 1962):

P(B is fixed) ≈ 1− exp(−2sAB)

1− exp(−4NesAB)
(1.1)

A plot of sAB versus P(B is fixed) is sigmoid in shape, and converges asymptot-

ically to one as sAB → +∞ and asymptotically to zero as sAB → −∞. If A and

B are equally fit (i.e., if sAB = 0) then allele B will be fixed just by chance over

the generations with probability 1/(2Ne). In this case the selection regime is

said to be neutral and fixation is said to occur by genetic drift. The effect of

selection is to cause the probability of fixation to deviate from the probability

of fixation by drift alone. Hence, beneficial mutations (i.e., when sAB > 0) will

be fixed with probability P(B is fixed) > 1/(2Ne), and deleterious mutations

with probability P(B is fixed) < 1/(2Ne). Equation (1.1) can be approximated

by:

P(B is fixed) ≈ 2sAB

1− exp(−4NesAB)
(1.2)

Equation (1.2) will be referred to as the diffusion approximation. Note that

equation (1.1) and equation (1.2) both require that |sAB| � 1 and also that the

4Following common practice, I use phrases like “the fitness of B” or “the fitness of a
protein” as shorthand meaning the fitness of the organism in which the gene or protein
resides subject to the usual ceteris paribus assumption.
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mutation rate M per gene per generation is small enough that B will either

be fixed or eliminated long before the next mutation occurs. A population

is segregating for the longest time by a neutral mutation that is destined to

be fixed, when the expected waiting time before fixation is on the order of

4Ne generations (Kimura and Ohta, 1969; McCandlish and Stoltzfus, 2014).

Hence, the maximum expected number of mutations that arise before B is

fixed or eliminated is on the order of (waiting time)×(total mutation rate) =

4Ne × 2NeM . The diffusion approximation therefore requires mutations to

occur infrequently enough that 8N2
eM � 1 or M � 1/(8N2

e ). It commonly

occurs that several variants of a given gene exist in a population at the same

time. This is known as a polymorphism. There are four common blood groups

present in human populations (designated A, B, AB and O), for example,

all of which correspond to different versions of a single gene encoding the

enzyme glycosyltransferase located on chromosome 9. This polymorphism is

apparently stable (Ségurel et al., 2012), meaning that it is unlikely that one of

the four variants will eventually be fixed. Under equations (1.1) and (1.2) it is

assumed that stable polymorphisms do not occur. An idealized Wright-Fisher

population is also assumed, meaning that the population size Ne is fixed and

that the pairs of alleles that are passed on to the next generation are selected

randomly (Fisher, 1922; Wright, 1931).

1.1.4 Site-Specific Substitution Rate Matrix

To model5 the effect of any given mutation at a codon site in a gene, let

fh =
〈
fh1 , ..., f

h
64

〉
be a 1 × 64 row vector that gives the fitness of the gene as

a function of the codon occupying the hth site holding everything else (e.g.,

the codons at other sites in the gene, other genes in the same genome, the

environment, etc.) constant. The probability that a mutation from wild type

A (for which codon i occupies the hth site) to mutant B (for which codon

5The model presented in this section is based on the mutation-selection (MS) framework
(Halpern and Bruno, 1998). Note that MS is seldom used analytically (i.e., it is not fitted
to data), but is presented here because it provides a means to think about the way an
individual codon site evolves in terms of the underlaying population dynamics. MS will also
play a key role in the generation of genetic data for the purpose of model testing in Chapters
2 to 4.
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j occupies that site) occurs in an individual and is subsequently fixed in a

diploid population of size Ne sometime during the time interval ∆t can be

approximated up to o(∆t) as follows for all j 6= i:

Ph
ij(∆t) ≈

 Mij2Ne∆t× 1/(2Ne) if shij = 0

Mij2Ne∆t×
2shij/Ne

1−exp(−4shij)
otherwise

(1.3)

The term Mij represents the i → j mutation rate per individual per unit

time. Since all versions of A are equally likely to mutate and each individual

in the population contains two copies of A, the probability that the i → j

mutation will arise sometime during the time interval ∆t is Mij2Ne∆t. Note

that the selection coefficient shij = Ne(f
h
j − fhi ) in equation (1.3) is scaled by

the population size.

The diffusion approximation gives the probability that a mutation will

eventually be fixed, but does not give the time of fixation. However, the

temporal scale of the population dynamic leading to fixation or elimination is

on the order of thousands of generations (e.g., typically something less than

4Ne in a diploid population). This is virtually instantaneous compared to

the macroevolutionary timescales represented by ∆t (e.g., millions of years)

meaning that the fate of a mutation that arose at t = 0 will be decided long

before the end of the time interval (0,∆t). Hence, the substitution probability

per unit time Ph
ij(∆t)/∆t approximates an instantaneous substitution rate.

Such rates comprise the elements of a 64 × 64 site-specific substitution rate

matrix Ah for all j 6= i:

Ahij ∝

 Mij if shij = 0

Mij
4shij

1−exp(−4shij)
otherwise

(1.4)

Diagonal elementsAhii are specified to make rows sum to zero: Ahii = −
∑

j 6=iA
h
ij.

Of the 64 possible codons in the standard genetic code, three (TAA, TAG

and TGA) are are stop codons that mark the end of a protein-coding seg-

ment of DNA. It is standard practice to ignore the possibility of mutations

to stop codons because such mutations would truncate the sequence of amino

acids and result in a disfunctional protein. Ah can therefore be reduced to a

61 × 61 matrix. The proportionality constant implied by equation (1.4) can
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vary depending on the context, but is set in such a way that time can be

expressed as the expected number of single nucleotide substitutions per codon

site. See Nielsen and Yang (2003); Yang and Nielsen (2008) for the first codon

substitution models based on the mutation-selection framework.

1.1.5 Evolution as a Markov Process

The evolutionary model in equation (1.4) implies a stochastic process in

the form of a chain of substitution events i → j over time. Explicit in its

formulation is the defining characteristic of a Markov chain, namely that the

probability distribution of the next event depends only on the current state of

the chain. This is often referred to as the Markov property. If the evolutionary

process is also assumed to be homogeneous, meaning that Ah does not change

over time, then the probability that i is replaced by j at the end of the time

interval (s, s + t) is given by the (i, j)th entry of the matrix of substitution

probabilities P h(t). This matrix is computed by solving the system of differ-

ential equations dP h(t)/dt = P h(t)Ah subject to the constraint that P h(s) = I

where I is the 61× 61 identity matrix (Yang, 2006). The solution is obtained

by matrix exponentiation P h(t) = exp
(
tAh
)

or equivalently:

P h(t) =
∞∑
k=0

(
tAh
)k

k!
= I + tAh +

∞∑
k=2

(
tAh
)k

k!
(1.5)

The (i, j)th element of P h(t) is the conditional probability that the state will

be j at time s + t given that the state at any starting time s is i: P h
ij(t) =

P(X(s + t) = j | X(s) = i). Time-homogeneity implies that the vector of

fitness coefficients fh is constant. In a real protein fh (if it could be measured)

can change over time via a number of processes. Detecting such changes is

of great interest to biologists because they can be an indication of adaptive

evolution 6. The majority of fitted codon substitution models nevertheless

6The terms “adaptive evolution” and “positive selection” are often consided to be syn-
onymous with a selection coefficient sij > 0 and a rate-ratio ω > 1 (e.g., see Nielsen and
Yang, 2003). Here I use “adaptive molecular evolution” to refer to the specific case where
the fitness coefficients for the twenty amino acids at a site in a protein-coding sequence
change. This is justified by the fact that such changes, which suggest a change in the
functional constraints acting on a protein molecule, are what biologists are most interest
in detecting. The relevance of this statement will become clear in Chapter 2, where it is
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assume time-homogeneity (e.g., the M-series models, Yang et al., 2000a). The

analytic model introduced in Chapter 4 relaxes this assumption by making use

of contextual information in the form of a discrete phenotype.

1.1.6 Stationary Frequencies and Time Reversibility

Imagine a population in which all members are assigned the ith codon at

the hth site in a particular gene at time t = 0. The codon occupying the

site will change over time via a series of substitution events. Let vh(s) =〈
vh1 (s), ..., vh61(s)

〉
be the 1 × 61 row vector indicating the proportion of time

the population was fixed at each of the 61 codons by the end of the time interval

[0, s], so that
∑61

i=1 v
h
i (s) = 1. It is useful to construe the transition probability

matrix P h(t) = exp(tAh) as an operator that projects vh(s) forward in time.

That is, vh(s+ t) = vh(s)P h(t) gives the expected frequencies with which the

61 codons will have occupied the site by time s+ t given that the distribution

was initially vh(s). The operator P h(t) = exp(tAh) can be expressed in terms

of the eigensystem (U,Λ) of Ah (i.e., Ah = UΛU−1), where the columns of U

are orthonormal eigenvectors and Λ is a diagonal matrix of eigenvalues sorted

in descending order:

P h(t) = exp(tAh) =
∞∑
k=0

(
tAh
)k

k!
=
∞∑
k=0

(tUΛU−1)
k

k!
(1.6)

=
∞∑
k=0

tk (UΛU−1)1 (UΛU−1)2 ... (UΛU−1)k
k!

(1.7)

=
∞∑
k=0

tkUΛ (U−1U) Λ (U−1U) ... (U−1U) ΛU−1

k!
(1.8)

=
∞∑
k=0

U
(tΛ)k

k!
U−1 since UU−1 = I (1.9)

= U

(
∞∑
k=0

(tΛ)k

k!

)
U−1 since U and U−1 are constant (1.10)

= U exp(tΛ)U−1 (1.11)

shown that sij > 0 and a rate-ratio ω > 1 can both occur even when fitness coefficients are
constant.
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The substitution processes at a site can be characterized by the limt→∞ vh(t) =

vh(0) limt→∞ P
h(t). To calculate this limit, first note that the largest eigen-

value is always Λ11 = 0, and that the remaining eigenvalues are always less

than zero, Λii < 0 for all i > 1. Hence exp(tΛ) converges to a matrix with

zeros everywhere but with a one in the top-left corner:

lim
t→∞

exp(tΛ) = lim
t→∞


eΛ11t · · · 0

. . .

0 · · · eΛ61,61t

 =


1 · · · 0

. . .

0 · · · 0

 ≡ Z (1.12)

The effect of Z in limt→∞ P
h(t) = UZU−1 ≡ P h(∞) is to make the rows of

P h(∞) all the same. Let πh =
〈
πh1 , ..., π

h
61

〉
be the common row of P h(∞).

Since vh(0) is a 1×61 row vector of zeros but with a one in the ith position, the

product vh(0)P h(∞) is just the ith row of P h(∞) or in other words πh. The

initial value i is therefore forgotten in the limit that t→∞, a consequence of

the Markov property, and so limt→∞ vh(t) = πh for any i ∈ {1, ..., 61}.
An interesting property of P h(t) is that it projects πh to itself. To see why,

consider that vh(s)P h(t) = vh(s+ t) for any starting time s. Taking the limit

as s → ∞ gives πhP h(t) = πh. This means that the vector πh is stationary

with respect to the operator P h(t) (or equivalently, πh is an eigenvector of

P h(t) with a unit eigenvalue). πh is therefore often referred to as the vector of

stationary frequencies for the Markov chain. An alternative way to think about

πh is in terms of rates. From equation (1.5) we have that P h
ij(t) = tAhij + o(t)

for all i 6= j and small t and that P h
ii(t) = 1 + tAhii(t) + o(t). It follows that:

lim
t→0

P h
ij(s+ t)− P h

ij(s)

t

= lim
t→0

(s+ t)Ahij − sAhij + o(t)

t
= Ahij (1.13)

lim
t→0

P h
ii(s+ t)− P h

ii(s)

t

= lim
t→0

1 + (s+ t)Ahii − 1− sAhii + o(t)

t
= Ahii (1.14)

Hence

Ah = lim
t→0

P h(s+ t)− P h(s)

t
(1.15)
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Multiplying both sides by πh:

πhAh = lim
t→0

πhP h(s+ t)− πhP h(s)

t
= lim

t→0

πh − πh

t
= 0 (1.16)

The equality πhAh = 0 suggests a substitution process in dynamic equilibrium

(i.e., where the net rate of change is zero). For this reason πh is also called

the vector of equilibrium frequencies for the Markov chain.

A Markov chain is said to be time-reversible if the probability of consecutive

events does not depend on the order of those events. If X(t) is the state of

the chain at time t, time-reversibility means that:

P (X(0) = i,X(t) = j) = P (X(0) = j,X(t) = i) (1.17)

Equation (1.17), known as the detailed balance criterion, can be expressed in

terms of substitution probabilities and stationary frequencies:

P (X(0) = i,X(t) = j)

= P (X(0) = i) P (X(t) = j | X(0) = i) = πhi P
h
ij(t) (1.18)

P (X(0) = j,X(t) = i)

= P (X(0) = j) P (X(t) = i | X(0) = j) = πhj P
h
ji(t) (1.19)

The necessary and sufficient condition for a Markov chain to be time-reversible

is therefore πhi P
h
ij(t) = πhj P

h
ji(t) (or equivalently πhi A

h
ij = πhjA

h
ji) for all (i, j).

This is known as Kolomogorov’s criterion or more commonly the detailed bal-

ance equation. See the Appendix in Chapter 2 for a proof that the substitution

processes defined by Ah is time-reversible.

1.1.7 Substitution rates and the Canonical Signature of Positive

Selection

The 61 possible codons (excluding stop codons) map to only 20 amino

acids. Hence, most amino acids have more than one codon alias. Arginine,

leucine and serine, for example, have six aliases each in the standard genetic

code, and most amino acids have two or four aliases (Table 1.1). It follows that

there are two types of mutations. Synonymous mutations are those that do not

change the amino acid (e.g., GCT→GCC, both of which code for alanine). The
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selection coefficient for any synonymous i→ j mutation is usually assumed to

be shij = 0. By this assumption synonymous mutations are fixed at the neutral

rate 1/(2Ne) (cf. equation 1.1). Mutations that change the amino acid are

called nonsynonymous (e.g., GCT→ACT changes alanine to threonine). The

selection coefficient for any nonsynonymous i → j mutation is usually either

shij < 0 (with fixation rate < 1/(2Ne)), indicating that the mutation had a

deleterious effect on the fitness of the protein, or perhaps shij ≈ 0, indicating

a neutral or nearly-neutral effect. It is expected that shij > 0 (with fixation

rate > 1/(2Ne)), indicating that the random mutation markedly improved the

fitness of the protein, will happen only rarely because most sites are likely to

be occupied by an optimal or near-optimal amino acid most of the time. The

overall rate of fixation of nonsynonymous mutations is therefore expected to

be something less than the neutral rate 1/(2Ne) most of the time. The canon-

ical exception to this arises in a gene that has undergone adaptive evolution,

when an excess of nonsynonymous substitutions at some sites can be evident,

resulting in a nonsynonymous substitution rate greater than 1/(2Ne). Hence,

an excess of nonsynonymous substitutions can sometimes provide a means to

infer the fixation of beneficial mutations, which is commonly interpreted as

evidence of adaption (Kimura, 1983; Nei and Gojobori, 1986; Hughes and Nei,

1988).

The nonsynonymous-to-synonymous rate ratio, commonly denoted dNh/dSh

for the hth site, provides a measure that can be used to detect an excess in

the nonsynonymous substitution rate above the neutral rate. The neutral rate

dSh is the ratio of the synonymous substitution rate (rSh) to the rate at which

synonymous mutations are expected to arise (rSh0 ). Working from equation

(1.4):

dSh =
rSh

rSh0
=

∑
(i,j) π

h
iMij2Ne∆t`S × 1

2Ne∑
(i,j) π

h
iMij2Ne∆t`S

=
1

2Ne

(1.20)

where `S is an indicator for synonymous (i, j) pairs. The ratio of the non-

synonymous substitution rate (rNh) to the rate at which nonsynonymous mu-

tations arise (rNh
0 ) is similarly expressed, the only difference being that the
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fixation probabilities are different for each nonsynonymous (i, j) pair:

dNh =
rNh

rNh
0

=

∑
(i,j) π

h
iMij2Ne∆t`N ×

2shij/Ne

1−exp(−4shij)∑
(i,j) π

h
iMij2Ne∆t`N

=

∑
(i,j) π

h
i A

h
ij`N∑

(i,j) π
h
iMij`N

× 1

2Ne

(1.21)

The expected site-specific rate ratio is therefore:

dNh/dSh =

∑
(i,j) π

h
i A

h
ij`N∑

(i,j) π
h
iMij`N

(1.22)

The fixation rate under a neutral regime, when shij = 0 for all nonsyn-

onymous (i, j) pairs, is dNh = 1/(2Ne) and so corresponds to dNh/dSh = 1.

Similarly, the fixation rate under a stringent selection regime, when shij < 0

for all nonsynonymous (i, j) pairs (i.e., at a site occupied by its fittest codon),

is dNh < 1/(2Ne) and so corresponds to dNh/dSh < 1. And the fixation rate

when shij > 0 for all nonsynonymous (i, j) pairs (i.e., at a site occupied by its

least fit codon) is dNh > 1/(2Ne), and so corresponds to dNh/dSh > 1, the

canonical signature of positive selection (Goldman and Yang, 1994).

Kimura’s neutral theory of molecular evolution posits that, because the

majority of mutations are selectively deleterious and rapidly eliminated from

populations while very few are beneficial, most of molecular evolution is due to

the fixation of selectively neutral alleles by drift (Kimura, 1968, 1983). By this

theory, the probability that a neutral mutation arises in the next generation

of a diploid population of size Ne is µ2Ne, where µ is the rate at which neutral

mutations arise in a gene per individual per generation. The probability that

the mutation is fixed is 1/(2Ne). It follows that the rate at which a given gene

accumulates neutral differences is µ2Ne × 1/(2Ne) = µ. The rate at which

neutral mutations are fixed over macroevolution time scales (millions of years)

is therefore equal to the rate at which neutral mutations arise in a population

over microevolutionary time scales (thousands of generations).
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1.2 Codon Substitution Models

1.2.1 The Data

TGA TGG CGC GAT GTA ACA CGA GAA AGC ACA TAC ...

TGA TGA CGC GAT GTT ATA CGA GAA GGC ACA TAC ...

TGA TGA CGC GAT GTT ATA CGA GAG AGC ACA TAC ...

TGA TGA CGT GAT GTA ATG CGA GAA AGC ACG TAC ...

TGG TGA CGA GAT GTA GTG CGA GAG AGC ACA TAT ...

TGG TGA CGA GAT GTA GTG CGA GAA AGC ACA TAC ...

TGG TGG CGC GAC GTA GTG CGA GAA GGC ACA TAC ...

TGA TGA CGA GAT ATT GTC CGA GAA AGT ACA TTC ...

TGA TGA CGA GAT ATT GTC CGA GAA AGT ACA TTC ...

TGA TGA CGA GAC ATT ATC CGA GAA AGC ACA TTC ...

TGA TGA CGA GAC ATC ATC CGA GAA AGC ACA TTC ...

TGA TGA CGG GAC ATT ATC CGT GAA AGC ACA TTC ...

TGA TGA CGA GAT GTT ATC CGA GAA AGC ACC TTC ...

TGA TGG CGA GAT ATC ATC CGA GAA AGC ACC TTC ...

TGA TGA CGC GAT ATT ATC CGA GAA AGC ACC TTC ...

TGA TGA CGA GAT ATC ATC CGT GAA GGA ACA TAC ...

TGA TGA CGA GAC GTA ATT CGT GAA GGA ACC TAC ...

TGA TGA CGA GAC ATT GTT CGA GAA GGC ACA TTT ...

TGA TGA CGA GAT ATC ATT CGA GAA GGC ACA TTT ...

TGA TGA CGA GAT ATT GTC CGA GAA GGC ACC TAC ...

Figure 1.1: An example of the object of analysis. A phylogenetic tree T = (τ, t) (left) and
an alignment of homologous protein-coding sequences X (right). The tree is composed of two
components, a topology τ and a vector of branch lengths t. Terminal nodes (white boxes)
indicate extant representatives of different taxonomic lineages (e.g., species). Sequences are
assumed to be homologous, meaning that they evolved from a common ancestor indicated
by the root node of the tree (black box). Each column of the alignment represents a site
pattern. A codon substitution model (CSM) can be fitted to X conditioned on τ using
maximum likelihood. The fitted CSM assigns to each possible site pattern x a probability
P(x; θ̂, t̂) such that

∑
x P(x; θ̂, t̂) = 1.

The MS framework introduced in the previous section provides a way to

think about evolutionary processes at an individual codon site. Here attention

is turned to the problem of inference. The objective is to extract meaningful

summaries of the evolutionary processes that produced a given set of extant

genetic data. To emphasize the magnitude of the problem, consider the ubiq-

uitous protein cytochrome B. CytB is an essential component of the electron
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transport chain that drives the synthesis of the energy-storage molecule adeno-

sine triphosphate (ATP). CytB is consequently found in a wide range of life

forms, meaning that its evolutionary history extends billions of years back-

ward in time. Yet everything that can be said about the evolutionary history

of cytB can only be inferred from extant variants of the gene. A rooted phylo-

genetic tree of N variants of cytB has N − 1 internal nodes each representing

an unknown ancestral sequence. Given that there are 61N−1 possible ances-

tral histories for each codon site, and that the true history is unknown, one

might ask whether it is possible to infer anything about the evolution of the

gene. In fact it is possible: the strategy is to sum over all ancestral histories

at a site (i.e., all possible combinations of codons at the ancestral nodes of

the tree) each weighted by its probability under a given fitted CSM. Summa-

tion can be accomplished using the efficient pruning algorithm (Felsenstein,

1981) provided codon sites are assumed to have evolved independently of one

another.

Prior to introducing the basic elements of a CSM and typical methods

of inference, I first briefly outline the data and where it comes from. The

data consists of a set of homologous sequences, each representing a different

taxonomic grouping thought to have evolved from a common ancestor. The

set is referred to as an alignment, and can be represented by an N × n matrix

X where N is the number of sequences (rows) and n their common length in

codons (columns, e.g., the (r, c)th element of X is some xrc ∈ {1, ..., 61} that

represents the codon in the rth sequence at the cth site). The alignment is

usually accompanied by a topology τ that specifies the relationship between

sequences via a series of ancestral bifurcations. The alignment X and topology

τ can be assembled as follows. The first step is to obtain a sequence S1

corresponding to one variant of the target gene. A good place to look is

the UCSC Genome Browser (University of Santa Cruz Genomic Institute),

which provides access to a large genetic data base along with a variety of

search tools. Next, S1 must be fed into an automated search algorithm to

find homologous sequences likely to be related to S1 by common ancestory.

This can be done using the Basic Local Alignment Search Tool (BLAST)
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hosted by the National Center for Biotechnology Information, which provides

a ranked list of candidate homologues from which the user can choose based on

various statistical measures of similarity. Homologous sequences can vary in

composition. Eukaryotic genes, for example, often have introns or segments of

non-coding DNA interspersed among exons, the segments of coding DNA. The

arrangement of introns and exons can vary from one homologue to the next.

The selected sequences S1, ..., SN must therefore be aligned so that homologous

sites appear in the same column ofX using an algorithm such as Clustal Omega

hosted by the European Molecular Biology Laboratory. The last step is to

estimate the topology τ of the phylogenetic relationships between the aligned

sequences. A variety of tree-estimation tools are available. A good place to

start is RAxML (Randomized Axelerated Maximum Likelihood) because it is

fast and easy to use. All of the above mentioned tools are free to use and

available online.

Each step from S1 to (X, τ) is the subject of various degrees of continu-

ing research. I leave these efforts to experts in the relevant fields. For the

purpose of this dissertation, the application of my expertise in CSMs to real

data will usually start with previously assembled (X, τ) assumed to be error-

free. A CSM can be fitted to X under the assumed topology using maximum

likelihood (ML: here I focus on ML and for convenience use CSM to indicate

a model that is used in conjunction with the ML approach; see Huelsenbeck

and Dyer (2004) for an example of the Bayesian approach). The result is a

vector θ̂ of maximum-likelihood estimates (MLEs) of all the parameters in-

cluded in the model and a vector of estimated branch lengths t̂. Together

these define a probability distribution that assigns to each of the 61N possible

site patterns x at the terminal nodes of the tree a probability P(x; θ̂, t̂) such

that
∑

x P(x; θ̂, t̂) = 1 (Figure 2.6). Under the assumption that sites evolved

independently7, the likelihood of the alignment under the fitted model is a

product across sites:

L(X;θ, t) =
n∏
h=1

P(xh;θ, t) (1.23)

7The validity of various model assumptions are discussed in the last subsection of this
chapter.
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where xh is the hth column of X. The MLE (θ̂, t̂) is the vector that maximizes

equation (1.23).

1.2.2 A Simple CSM

The majority of CSMs are based on an underlying continuous-time homo-

geneous and time-reversible Markov process that describes the rate at which

substitutions occur under a neutral regime (i.e., for which dN/dS = 1). This

process can be specified by a 61 × 61 substitution rate matrix M . There are

numerous ways to define M (e.g., Muse and Gaut, 1994; Goldman and Yang,

1994; Zaheri et al., 2014). The following model is used throughout this thesis

(Jones et al., 2018, 2019b):

Mij ∝


κstΠik 6=jkπ

∗
jk

if s = 1

ακstΠik 6=jkπ
∗
jk

if s = 2

βκstΠik 6=jkπ
∗
jk

if s = 3

(1.24)

Equation (1.24) applies to all pairs of codons (i, j) that differ by s ∈ {1, 2, 3}
nucleotides, st of which are transitions (substitutions of the form T↔C be-

tween the pyrimidine nucleotides or A↔G between the purine nucleotides) and

s − st of which are transversions (substitutions of the form {T,C} ↔ {A,G}
from a pyrimidine to a purine or vice versa). The π∗jk represent position-specific

nucleotide frequencies, κ ≥ 1 the transition bias (i.e., transition substitutions

tend to occur more frequently than transversion substitutions), and α and β

the rate at which double and triple (DT) substitutions arise, respectively. Di-

agonal elements Mii are adjusted to make rows sum to zero. To illustrate, the

rate at which GCT (alanine) is replaced by TTT (phenylalanine) under this

model is ακπ∗T1
π∗T2

, where α accounts for the double substitution, κ the C→T

transition, π∗T1
the frequency of T in the first codon position, and π∗T2

the same

for T in the second codon position. The stationary frequency of any codon

under equation (1.24) is proportional to the product of its position-specific nu-

cleotide frequencies (e.g., πACT ∝ π∗A1
π∗C2

π∗T3
). The majority of CSMs allow sin-

gle nucleotide substitutions only, which can be effected by setting α = β = 0.

Note that equation (1.24) is interpreted differently depending on whether it is

used in a CSM or as part of the MS model introduced in the first section of this
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chapter. It is not possible to separate the mutation and selection processes

that produced an alignment because only those mutations that were fixed can

be observed. In the context of a CSM, it is therefore better to think of M as

the rate at which substitutions occur under a neutral selection regime. Under

MS by contrast, which is presented in this thesis as a data-generating process

(i.e., not a fitted model), M characterizes the mechanisms by which mutations

arise, and is therefore correctly construed as a mutation rate matrix.

Selection effects can be introduced into the model via a parameter ω rep-

resenting a nonsynonymous-to-synonymous rate ratio as follows (where ◦ rep-

resents the element-wise matrix product):

Q(ω) = M ◦ (`S + ω`N)/r, where r =
∑
j 6=i

πiQij(ω){`1 + 2`2 + 3`3} (1.25)

`S is a 61 × 61 indicator matrix whose (i, j)th element is one if i and j are

synonymous and zero otherwise, and `N is a similar indicator matrix for non-

synonymous codon pairs. Diagonal elements ofQ(ω) are modified to make rows

sum to zero. The indicator `k is one if i and j differ by k ∈ {1, 2, 3} nucleotides

and zero otherwise. The constant r scales Q(ω) so that branch lengths give

the expected number of single nucleotide substitutions per codon site. Note

that the stationary frequencies satisfy both πM = 0 and πQ(ω) = 0, and in

fact, any pair of matrices Q(ω1) and Q(ω2) defined by equation (1.25) share

the same vector of stationary frequencies.
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1.2.3 The Pruning Algorithm

Figure 1.2: An arbitrary branching element in a binary tree. Node a is ancestral and i
descendant.

Suppose the CSM represented by equation (1.25) is to be fitted to an

N × n alignment X and topology τ . That is, suppose our objective is to

maximize equation (1.23) with respect to parameters θ = 〈κ, ω〉 and branch

lengths t using an optimization algorithm. Roughly speaking, optimization

is achieved by stepping through parameter space 〈θ, t〉 in “uphill” directions

until a maximum is reached. Each step requires re-evaluation of equation

(1.23), which entails computation of P(xh;θ, t) at each site in the alignment.

An efficient method to compute P(xh;θ, t) is presented in this section.

Let xh =
〈
xh1 , ..., x

h
N

〉
represent the vector of codons at the hth site at the

N terminal nodes of a rooted tree, and let ch =
〈
chN+1, ..., c

h
2N−1

〉
represent one

of the 61N−1 possible ancestral histories for the site, the codons that occupied

the site at each of the N−1 internal nodes of the tree, where ch2N−1 is presumed

to be the codon at the root node. Let ahb ∈ {1, ..., 61} be the codon at the

ancestral node and dhb ∈ {1, ..., 61} the condon at the daughter node of any

given branch b. Given the ancestral state ahb , the substitution process at the

site along that branch is assumed to be independent of the process at that

site on other branches of the tree. Hence, if the site evolved via the Markov

chain specified by Q(ω), then the probability of
〈
xh, ch

〉
is just a product over

branches:

P
(〈

xh, ch
〉

;θ, t
)

= πch2N−1

2N−2∏
b=1

P(ahb → dhb ) (1.26)
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Note that the codon at the root of the tree is assigned the unconditional prob-

ability πch2N−1
equal to its stationary frequency. The probability P(ahb → dhb )

is given by the (ahb , d
h
b )
th element of the transition probability matrix P (tb) =

exp(tbQ(ω)), where tb is the length of branch b. The marginal probability of

xh is the sum over all possible histories:

P(xh;θ, t) =
∑
ch

P
(〈

xh, ch
〉

;θ, t
)

(1.27)

This sum is over 61N−1 elements, and would therefore seem to be infeasi-

ble for all be the smallest number of sequences. However, the probabilities

P
(〈

xh, ch
〉

;θ, t
)

in the summation includes factors P(ahb → dhb ) that appear

many times over. Efficiency can be gained by computing such factors only

once. This is essentially what is achieved by the pruning algorithm (Felsen-

stein, 1981).

The pruning algorithm populates a (2N − 1) × 61 matrix V with entries

vij whose rows correspond to nodes 1, ..., 2N − 1 of the tree and columns to

codons 1, ..., 61. For any i ∈ {1, ..., N} corresponding to the terminal nodes of

the tree, the row vi of V is an indicator vector constructed as follows:

vij =

{
1 if the codon at terminal node i is j

0 otherwise
(1.28)

The remaining rows of V represent conditional probabilities. Consider the

node i ∈ {N +1, ..., 2N−2} as depicted in Figure 1.2. The rows vj and vk will

already have been constructed. They, along with the transition probability

matrices P (tj) = exp(tjQ(ω)) and P (tk) = exp(tkQ(ω)), determine vi:

vi =
(
vjP (tj)

T
)
◦
(
vkP (tk)

T
)

(1.29)

where P (t)T is the transpose of P (t). Let xhi be the vector of codons at the

terminal nodes that descend from the ith internal node of the tree. Elements

of vi give the conditional probability of xhi given the state chi at the ith node:

vi =
〈
P(xhi | chi = 1), ...,P(xhi | chi = 61)

〉
(1.30)

The probability of xh is computed from the last row of V (i.e., row 2N − 1)
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corresponding to the root of the tree, here expressed as a dot product:

P(xh;θ, t) = 〈π1, ..., π61〉 · v2N−1 =
61∑
i=1

πiP(xh | ch2N−1 = i) (1.31)

The efficiency of the pruning algorithm is evident in the fact that the number

61N−1 of elements in the summation in equation (1.27) increases exponentially

with the number of taxa N whereas the number of rows 2N − 1 that need to

computed to calculate equation (1.31) increases only linearly with N .

1.2.4 Inferring Positive Selection

CSMs were initially formulated to provide a means to test whether some of

the differences between homologous protein-coding sequences might have been

due to positive selection. Suppose the null model is Q(ω) with ω constrained

to be equal to one, and the alternative Q(ω) with ω constrained to be greater

than one. Further suppose that each model was fitted to an alignment X to

produce a pair of likelihoods Lnul(X; θ̂nul, t̂nul) and Lalt(X; θ̂alt, t̂alt). Since the

two models are nested, an omnibus test for the ω > 1 signature of positive

selection can be conducted by comparing the resulting log-likelihood ratio

(LLR) to its theoretical limiting distribution. The LLR is computed as follows:

LLR = 2
(

ln
{

Lalt(X; θ̂alt, t̂alt)
}
− ln

{
Lnul(X; θ̂nul, t̂nul)

})
(1.32)

Since the two models differ by a single parameter (i.e., ω = 1 is fixed under the

null and estimated under the alternative), the theoretical limiting distribution

of the LLR is χ2
1. Hence, we could infer that the gene underwent positive

selection at the 5% level of significance whenever LLR > 3.84. Note that the

omnibus test is conducted with the assumption that the data was generated

under the null model. This can be true in simulation, but will seldom if ever

be the case for a real alignment. Furthermore, even if the data was generated

under the null, the assumed distribution is still an approximation because it

is an expectation that holds only in the limit that information (i.e., number of

site patterns in the alignment) is infinite. Violation of regularity assumptions

can also be an issue. There are cases in which the null model is derived from

the alternate model by setting a parameter to a value on the boundary of
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parameter space. Some of these cases have a known limiting distribution,

while others do not (Self and Liang, 1987). And in some cases a parameter

in the alternate model becomes unidentifiable under the null. The assumed

distribution of the LLR is therefore only an approximation when the test is

applied to real data.

Models similar to Q(ω) that estimate a single rate ratio for all sites and

branches (e.g., M0, Nielsen and Yang, 1998) tend to have low power to detect

sites the underwent positive selection because most sites evolve under stringent

selection with dN/dS � 1 most of the time. Exceptions include genes under

constant selection pressure (e.g., the class I major histocompatibility complex

first analyzed by Hughes and Nei (1988); see Yang and Bielawski (2000) for

other examples). The quest for greater power to detect positive selection has

led to models that account for spatial and temporal variations in ω. There

currently exits numerous CSMs known as branch-site models designed to de-

tect evidence of positive selection at individual sites along individual branches

(e.g., Yang and Nielsen, 2002; Zhang et al., 2005; Kosakovsky Pond et al.,

2011; Murrell et al., 2015; Smith et al., 2015). Several models of this type are

described in Chapters 2 to 4.

The CSM commonly designated M3(k) is one of a number of M-series

models introduced by Yang et al. (2000a) to account for variation in dN/dS

across sites. Here k designates the number of ω-categories included in the

model. For example, the model M3(k = 2) assumes that each site in an

alignment evolved under one of two possible rate ratios ω1 < ω2 across the

entire tree in proportions p1 and p2 = 1− p1. In this case, the likelihood is a

weighted average:

LM3(X;θM3, t) = p1Lω1(X;κ, ω1, t) + p2Lω2(X;κ, ω2, t) (1.33)

Here θM3 = 〈κ, ω1, ω2, p1〉 and Lωk(X;κ, ωk, t) is the likelihood of the alignment

under the model Q(ωk) of equation (1.25) for k ∈ {1, 2}. A test for positive

selection using M3(k = 2) could be conducted by contrasting a null model

for which ω1 < 1 and ω2 = 1 with an alternate model for which ω1 < 1 and

ω2 > 1. Rejection of the null provides evidence for two categories of sites,

those that evolved under a relatively stringent selection regime with ω̂1 < 1
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and those that evolved under positive selection with ω̂2 > 1.

1.2.5 Post Hoc Analysis

Suppose the LLR for the constrast between M3(k = 2) with ω1 < 1 and

ω2 = 1 and M3(k = 2) with ω1 < 1 and ω2 > 1 was large enough to reject

the null hypothesis (i.e., LLR > 3.84 ). This would indicate that the gene

underwent positive selection. The question remains Which sites underwent

positive selection? The most commonly used method to answer this question

is to compute naive empirical Bayes (NEB, Yang et al., 2005) posteriors, which

for M3(k = 2) are as follows:

P(ω̂2 | xh) =
Lω2(x

h; κ̂, ω̂2, t̂)p̂2

LM3(xh; θ̂M3, t̂)
(1.34)

P(ω̂2 | xh) approximates the posterior probability that the hth site evolved

under ω̂2 > 1 given the estimated prior p̂2 and other MLEs. This approach is

called “naive” because it treats MLEs as if they were known without error. The

approach can be problematic when the information content of the alignment

(i.e. the number of substitutions) is low. Bayes empirical Bayes (BEB Yang

et al., 2005) and smoothed bootstrap aggregation (Mingrone et al., 2016) are

alternatives to NEB that mitigate problems associated with errors in MLEs.

By any method, a site is inferred to have evolved under positive selection when

the posterior is greater than some threshold (e.g., when P(ω̂2 | xh) > 0.95).

1.2.6 Heterotachy and the Covarion-like Model

Covarion-like (CL) models (e.g., Galtier, 2001; Guindon et al., 2004) have

been proposed to account for intragenetic epistatic interactions thought to

be the cause of temporal variations in site-specific evolutionary rates (i.e.,

the covarion phenomenon, Fitch and Markowitz, 1970; Fitch, 1971). We say

“covarion-like” because, although the covarion phenomenon was thought to

arise due to dependencies between interacting sites, CL models maintain the

assumption of site independence and only mimic the phenomenological signa-

ture of epistasis. The simplest expression of this signature is captured by the

covarion-like version of M3(k = 2) called CLM3(k = 2) (Jones et al., 2017).

I introduce CLM3(k = 2) here because the model appears in all subsequent
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chapters of this dissertation and plays a particularly significant role in the

phenotype-genotype model presented in Chapter 4.

CLM3(k = 2) assumes two ω-categories, ω1 < ω2, just as M3(k = 2)

does. But unlike M3(k = 2), where each site is assumed to have evolved

under the same rate ratio over the entire tree, a site under CLM3(k = 2) is

assumed to have switched between ω1 < ω2 randomly over time at a rate δ

switches per unit branch length. The rate matrix for CLM3(k = 2) can be

constructed by expanding the state space from the 61 possible codons to the

122 possible (codon, ω) pairings where codon ∈ {1, ..., 61} and ω ∈ {ω1, ω2}.
The corresponding rate matrix is a concatenation of Q(ω1) and Q(ω2):

QCLM3 =
1

c1

 Q(ω1) 0

0 Q(ω2)

+
δ

c2

 −p2I p2I

p1I −p1I

 (1.35)

Here I is the identity matrix that is the same size as Q(ω1) and Q(ω2) (e.g.,

61 × 61 for the standard genetic code), p1 is the average proportion of time

sites evolved under ω1, and p2 = 1 − p1 the average proportion of time sites

evolved under ω2. The vector of stationary frequencies for all possible (codon,

ω) pairs is the 1 × 122 vector 〈p1π, p2π〉, where πQ(ω1) = πQ(ω2) = 0.

The scaling factor 1/c1 is set to make branch lengths equal to the expected

number of single nucleotide substitutions per codon: c1 = p1r1 + p2r2, where

rk =
∑

j 6=i πiQij(ωk){`1 + 2`2 + 3`3} for k ∈ {1, 2}. Including the scaling

factor 1/c2 = 1/(2p1p2) permits δ to be interpreted as the expected number of

switches between ω1 and ω2 per unit branch length (Jones et al., 2018).

1.2.7 Simplifying Assumptions

CSMs require a number of simplifying assumptions. For example, it is as-

sumed that all sites share the same vector of stationary frequencies π. This

is unrealistic because the fittest codon at many sites depends on the physic-

ochemcial properties required to make the protein fold and function properly

(Patthy, 2008), and will typically vary across sites. Yet this assumption is

necessary in most cases due to sparse information. Even a large alignment

consisting of 100 sequences yields only 100 samples from which to estimate a

site-specific vector of 61 codon frequencies. Nevertheless, models have been
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developed to account for differences in site-specific frequencies (e.g., Tamuri

et al., 2012, 2014), and appear to be reliable when fitted to large alignments

(e.g., of 512 sequences, Spielman and Wilke, 2016). It is also assumed that all

codon sites evolve independently. A sequence of amino acids bound together

in a specific folded structure will often include networks of closely interacting

residues. The fittest codon at a site can change in response to substitutions at

sites it interacts with (i.e., via intraprotein epistasis, Pollock et al., 2012; Starr

and Thornton, 2016). It is therefore unclear what impact the independence

assumption might have on the validity of inferences. What is clear is that

the assumption allows the likelihood of an alignment to be handily expressed

as a product of site-specific likelihoods (see equation 1.23) and thereby vastly

simplifies what could otherwise be an unmanageable calculation.

More subtle is the fact that the basic model represented by Q(ω) in equa-

tion (1.25) assumes that the rate at which the codon i occupying a site is

replaced by a nonsynonymous mutation j is the same for all nonsynonymous

(i, j) pairs. Mechanistically speaking, it is as if fitness applies not to the codons

themselves (as it does under MS), but to the codon site. Hence, a site evolving

with ω > 1 is perpetually unfit under Q(ω), no matter what codon occupies

the site. This observation emphasizes the difference between the mechanistic

construal of evolutionary processes at a codon site under the MS framework

and the phenomenologial summary of such processes offered by CSMs. Given

all of their simplifications, it is somewhat surprising that CSMs can provide

reliable inferences under a wide range of conditions, but that they do has been

demonstrated by numerous simulation studies (e.g., Anisimova et al., 2001,

2002; Wong et al., 2004; Zhang, 2004; Kosakovsky Pond and Frost, 2005; Yang

et al., 2005; Zhang et al., 2005; Yang and dos Reis, 2011; Kosakovsky Pond

et al., 2011; Lu and Guindon, 2013). Furthermore, CSMs have produced nu-

merous biologically plausible results (e.g., Yang and Bielawski, 2000; Yang

et al., 2000b; Bielawski et al., 2004; Yang, 2005; Field et al., 2006; Anisimova

and Kosiol, 2009; Zhai et al., 2012; Romero et al., 2016).
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1.3 Thesis Outline

During the early phase or Phase I of CSM development, the main concern

was the possibility that ω > 1 might be incorrectly inferred due to low in-

formation content or the mismatch between the fitted model and the actual

alignment-generating process. Concern was assuaged by numerous simulation

studies in which CSMs were shown to be reliable when fitted to alignments

generated in silico under a wide range of scenarios. A notable feature of

Phase I, however, was the practice of testing CSMs using alignments generated

from models based on the same CSM framework. It is becoming increasingly

clear that, whereas CSMs are appropriate as tools to extract meaningful phe-

nomenological summaries from genetic data, they are inappropriate as a means

to generate data for model testing. Specifically, the research presented in this

dissertation demonstrates that traditional simulation methods do not gener-

ate site-patterns consistent with variations in site-specific rate ratios (a.k.a.

heterotachy) that match what is commonly observed in real data.

The mutation-selection (MS) framework introduced in Chapter 1 provides a

way to generate heterotachy commensurate to that observed in real data. Each

codon site can be assigned its own vector of fitness coefficients fh for the twenty

amio acids to characterize a site-specific fitness landscape. Substitutions at

the site can be thought of as movement over this landscape that generates

temporal dynamics in rate ratio. When selection is not too stringent, a site can

occasionally move away from its optimal amino acid A by drift to a suboptimal

residue B and then back again to A. This processes can be accompanied by

evidence of a change in the rate ratio at the site from some ωA < 1 while

the site was occupied by A to ωB > ωA following substitution to B, and then

back to ωA once the site is reoccupied by A. The episodic occurrence of this

non-adaptive shifting balance process across sites and over time can result

in phenomenologial shifts between rate ratios ω1 < ω2, often with ω2 > 1.

The possibility of episodic positive selection via non-adaptive shifting balance

undermines the standard paradigm that equates ω > 1 to adaptation. This

issue is explored in Chapter 2.

The majority of CSMs assume that sites evolve by single-nucleotide steps.
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However, double and triple (DT) substitutions do sometime occur, and so it

seems reasonable to introduce parameters to account for them. This was done

with a variety of CSMs including the novel model RaMoSS (for Random Mix-

ture of Static and Switching sites). RaMoSS accounts for a mixture of sites

that evolved under a constant rate ratio and sites that evolved with hetero-

tachy. A contrast based on RaMoSS fitted to a real alignment of mammalian

mtDNA indicated that 9.7% of substitutions were DT. To test this result,

alignments were generated without DT using either standard Phase I methods

(Phase I alignments) or a novel generating model based on the MS framework

and tuned to produce data similar to the real mtDNA (MS alignments). The

false positive rate was less than 5% when the contrast was fitted to Phase

I alignments. However, the same contrast produced a substantial number of

false positives when fitted to the more realistic MS alignments. This demon-

strates that Phase I data-generating methods can be inadequate for model

testing.

The use of realistic data-generating methods for model testing marks the

beginning of a new Phase II of CSM development. Phase II is also marked

by the discovery of a novel statistical pathology called phenomenological load

(PL). Suppose ψ represents some process P1 that did not occur when a par-

ticular set of data was generated. Further, suppose process P2 did occur when

the data was generated, and that P2 tends to produce patterns in the data

similar to those produced by P1. Processes P1 and P2 are said to be con-

founded. Rejection of the null hypothesis in a contrast testing the significance

of ψ is likely because ψ can account for variations in the data generated by P2.

And although rejection of the null would be correct as an indication that the

inclusion of ψ improved model fit, it would also lead to the false conclusion

that process P1 actually occurred. When this happens ψ̂ is said to carry phe-

nomenological load. Confounding and PL in the context of detecting fixation

of DT mutations are covered in Chapter 3.

Heterotachy in the form of random shifts between ω1 < ω2 can be gener-

ated not only by non-adaptive shifting balance but also by episodic adaptive
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changes in site-specific fitness coefficients (a.k.a. peak shifts). The two pro-

cesses are therefore confounded in alignment data, and cannot be disentangled

using the traditional ω > 1 criterion alone. The novel Phenotype-Genotype

Branch-Site Model (PG-BSM) was formulated to break confounding by includ-

ing contextual information in the form of a discrete phenotype to discriminate

heterotachy-by-any-cause (the null model) from specific patterns of change be-

tween ω1 < ω2 that occurred in association with changes in phenotype (the

alternate model). Extensive simulation studies were used to demonstrate the

reliability of the PG-BSM as a tool to detect sites associated with phenotype

via specific mechanisms of adaptation. Analyses of real data sets were con-

ducted to demonstrate the potential utility of the approach. Significantly, the

model was shown to be capable of inferring adapative evolution in association

with phenotype at individual codons sites even when the estimate of ω2 was

< 1. The PG-BSM is the topic of Chapter 4.

The first section of Chapter 5 consists of case studies that illustrate prob-

lems and solutions associated with Phase I and Phase II of CSM development.

It is argued that the discovery of the problems associated with counfounding

and PL introduced in Chapters 2 to 4 mark the transition between the histor-

ical Phase I and the current Phase II. As to the way forward, some maintain

that the next phase of CSM development should see an increase in the mech-

anistic content of fitted models. My findings suggest that this is likely to be

infeasible due to limitations in the information contained in alignment data

in which many processes are likely confounded. Instead, it would seem more

appropriate to increase the mechanistic content of alignment-generating mod-

els to provide more realistic data to test phenomenological CSMs. The first

section of Chapter 5 ends with an agrument supporting this view. The sec-

ond section of Chapter 5 provides other examples to illustrate that problems

associated with confounding and phenomenological load are common to many

areas of study. Confounding and confounding-breaking using contextual in-

formation is illustrated in the context of satellite remote sensing, where the

objective was to discriminate image features associated with sea-surface tem-

perature fronts (e.g., the north wall of the Gulf Stream) from those associated
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with atmospheric processes. PL is shown to invalidate attempts to provide

a mechanistic explanation for variations in the efficiency of photosynthesis.

Given my rejection of ω > 1 as proof of adaptive evolution, I end this disser-

tation with my thoughts on what the canonical signature of adaptation at the

molecular level should in fact be.



Chapter 2

Non-adaptive Shifting Balance on a Static

Mutation-selection Landscape: A Novel Scenario of

Positive Selection.

2.1 Introduction

Codon substitution models (CSMs) have provided the basis for the most

commonly used methods of inferring positive selection in protein-coding se-

quences since the pioneering efforts of Muse and Gaut (1994) and Goldman

and Yang (1994). Such models produce estimates of the ratio of the nonsyn-

onymous substitution rate (after adjusting for neutral opportunity, dN) to the

synonymous substitution rate (likewise adjusted, dS). The rate ratio dN/dS

is represented by the parameter ω in a 61 × 61 substitution rate matrix that

is the building block for a variety of popular CSMs. The simplest CSM is M0

(Nielsen and Yang, 1998; Yang et al., 2000a), which estimates a single ω for

all sites and branches. The limited statistical power of M0 spurred the devel-

opment of models that account for variation in ω across branches (Yang and

Nielsen, 1998), across sites (e.g., the M-series models of Yang et al., 2000a),

and across both branches and sites (Guindon et al., 2004; Yang et al., 2005;

Kosakovsky Pond et al., 2011; Murrell et al., 2015; Smith et al., 2015). Posi-

tive selection is inferred when a model that permits ω to be greater than one

fits the data significantly better than a nested version of the same model for

which all ω are restrained to be one or less. Such inferences are characteristic

of two positive selection scenarios: episodic changes in functional constraints

causing transient increases in ω, and frequency-dependent selection causing

sustained elevations in ω along an entire lineage. The signal for episodic se-

lection is typically restricted to a few branches of a phylogeny, and can occur

in association with events such as horizontal gene transfer (e.g., Yang et al.,

30
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2013), gene duplication (e.g., Pegueroles et al., 2013), or colonization of a

new niche (e.g., Bielawski et al., 2004). The signal of frequency-dependent

selection, which has been consistently connected to immune surveillance (e.g.,

Hughes and Nei, 1988) and reproductive conflict (e.g., Swanson et al., 2003) to

name two scenarios (see Yang and Bielawski, 2000, for a more comprehensive

list of examples of this type), differs in that ω is elevated at some sites over

much longer periods of evolutionary history. Frequency-dependent selection is

consequently easier to detect.

Analytic CSMs (i.e., those fitted to data) are phenomenological in the sense

that they summarize the “net resultants of selection” (Rodrigue and Philippe,

2010), with only limited consideration of the actual generating mechanisms.

The same CSMs are frequently used to simulate alignments for the purpose

of model testing (e.g., Anisimova et al., 2001, 2002; Wong et al., 2004; Zhang,

2004; Kosakovsky Pond and Frost, 2005; Yang et al., 2005; Zhang et al., 2005;

Yang and dos Reis, 2011; Kosakovsky Pond et al., 2011; Lu and Guindon,

2013), despite their lack of realism as a generating process. More mechanis-

tically realistic parameter rich models, such as the mutation-selection (MS)

framework (Halpern and Bruno, 1998) introduced in Chapter 1, can easily

be used to simulate alignments. Sites can each be assigned their own fitness

landscape under MS, and this can result in realistic variations in site-specific

dynamics. An estimate of ω obtained by fitting a CSM to data generated

under MS with static site-specfic landscapes is expected to be consistent with

purifying selection (i.e., ω < 1). Spielman and Wilke (2015b) investigated this

scenario and showed that the expected dN/dS at any site will always be less

than one when fitness coefficients are fixed provided synonymous codons have

equal fitness (Spielman and Wilke, 2015b). However, characterizing evolution

on a static landscape using the long-run average rate ratio ignores temporal

dynamics that can arise from population level processes of mutation and drift.

In this chapter the MS framework is employed to show that a site-specific

temporally dynamic dN/dS can result from non-adaptive shifting balance, a

process whereby drift causes substitution to a less-than-optimal amino acid at

a site and a combination of positive selection and drift subsequently causes
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a rapid series of nonsynonymous substitutions that end when the site is re-

occupied by its optimal amino acid. This process can be detected by CSMs

designed to identify site-specific episodic positive selection, and estimates of

ω obtained by these models can be significantly greater than one under some

conditions. This suggests that temporal variations in ω generated by a non-

adaptive process on a static fitness landscape can be misinterpreted as evidence

of positive selection due to episodic selection and lead to the false conclusion

that adaptive evolution had occurred.

2.1.1 Chapter Outline

The MS framework of Halpern and Bruno (1998) introduced in Chapter 1

was used to derive an expression for the expected rate ratio at a site, dNh/dSh

(equation 1.22). This chapter starts with a discussion of how dN/dS can be

defined under the MS framework in comparison with the CSM framework. The

interpretation of the M-series CSMs of Yang et al. (2000a) as being implicitly

designed to detect frequency-dependent selection is then validated. Although

hinted at by other authors (e.g., Nielsen and Yang, 2003; Kryazhimskiy and

Plotkin, 2008; Mugal et al., 2014) a demonstration has never been published

(but see dos Reis, 2013, unpublished). The demonstration presented herein

helps to elucidate differences between the mechanistic MS framework and the

standard phenomenological CSM approach. The notion of a site-specific MS

landscape is then introduced, and a theoretical explanation for non-adaptive

shifting balance is presented. Two methods of representing a site-specific land-

scape illustrate an interesting ramification of MS that has not been fully ap-

preciated, namely that a site can be occupied by a suboptimal amino acid for

long periods when selection is stringent.

Moving to the main point, the next section provides a tentative mechanistic

model for non-adaptive shifting balance. This is used to show that site-specific

variations in dN/dS are expected to be most pronounced when the substitu-

tion process is not dominated by selection or drift but admits interplay be-

tween the two. It is then shown that the covarion-like model CLM3(k = 2)
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introduced in Chapter 1 can detect temporal variations in ω generated by non-

adaptive shifting balance when this interplay exists. It is also shown that both

CLM3(k = 2) and the branch-site model known as BUSTED (Murrell et al.,

2015) can sometimes detect positive selection due to non-adaptive shifting bal-

ance. These results suggest that the two models cannot distinguish adaptive

changes in function (i.e., where amino acid fitness have changed) from tem-

poral dynamics on static site-specific fitness landscapes. This is followed by

a minor investigation using pairs of sequences generated under an MS model

with peak shifts (dos Reis, 2015) to show that standard CSMs that assume

a stationary process might overestimate branch lengths when fitted to data

generated with nonstationary changes in fitness landscapes.

2.2 Results

2.2.1 Defining dN/dS under the Mutation-Selection Framework

Consider the standard genetic code shown in Table 1.1. Of all 612 possible

codon pairs only 526 differ by a single nucleotide. Of these codon pairs 392 are

nonsynonymous and only 134 are synonymous. Suppose a codon site is evolved

in silico under the rate matrix Q(ω) = M ◦ (`S + ω`N)/r defined in equation

(1.25) using stationary frequencies π = 〈π1, ..., π61〉 (e.g., as estimated from a

real alignment). The expected rate at which nonsynonymous and synonymous

substitutions would occur at the site can be calculated as follows:

rN =
∑
(i,j)

ΠQ(ω) ◦ `N =
1

r

∑
(i,j)

πiωMij`N (2.1)

rS =
∑
(i,j)

ΠQ(ω) ◦ `S =
1

r

∑
(i,j)

πiMij`S (2.2)

where Π is the diagonal matrix with enties π and the summation is over

all of the elements in the 61 × 61 matrix argument. If dN/dS was equated

to rN/rS then its value would be approximately (392/134)ω = 2.93ω de-

pending on π. To account for the excess of possible nonsynonymous single

nucleotide mutations, dN is instead defined as the expected nonsynonymous
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substitution rate under the current selection regime (rN) divided by the ex-

pected nonsynonymous mutation rate1 given by rN0 = 1
r

∑
(i,j) πiMij`N . dS

is similarly defined as the expected synonymous substitution rate under the

current selection regime (rS) divided by the expected synonymous mutation

rate rS0 = 1
r

∑
(i,j) πiMij`S. By this normalization, dN = rN/rN0 = ω,

dS = rS/rS0 = 1 and dN/dS = (rN/rN0)/(rS/rS0) = ω.

Under the MS framework the amino acids each have their own site-specific

fitnesses that determine the vector of site-specific stationary frequencies πh.

These are not the same as the stationary frequencies π for the mutation process

defined by M , although the two are related by πhi ∝ πi exp(4Nef
h
i ) assuming a

ploidy of two. Taking the differences in frequencies into consideration, dos Reis

(2015) defined site-specific rNh and rSh under the MS framework as follows:

rNh =
∑
(i,j)

ΠhAh ◦ `N (2.3)

rSh =
∑
(i,j)

ΠhAh ◦ `S (2.4)

where Πh is the diagonal matrix with entries πh that satisfy πhAh = 0, and

the normalizing factors rN0 and rS0 as:

rN0 =
∑
(i,j)

ΠM ◦ `N (2.5)

rS0 =
∑
(i,j)

ΠM ◦ `S (2.6)

Under these definitions dNh = rNh/rN0 is the expected nonsynonymous sub-

stitution rate at the hth site divided by the expected nonsynoymous mutation

rate at an unrelated site evolving under a neutral selection regime (i.e., with

sij = 0 for all i 6= j) with stationary frequencies π. dSh = rSh/rS0 is simi-

larly defined. By this approach the normalizing factor rS0 has the “desirable

property of being constant over sites” (dos Reis, 2015) similar to rS0 under

the CSM framework.
1The matrix M defined by equation (1.24) is usually interpreted under the CSM frame-

work as giving substitution rates under a neutral selection regime, a macroevolutionary
process. However, the rate at which neutral substitutions occur over macroevolution time
scales is equal to the rate at which neutral mutations arise over microevolutionary time
scales (Kimura, 1983). For the purpose of the theoretical discussion in this section, M will
therefore be construed as a matrix of mutation rates.
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In my view it is more appropriate to define site-specific mutation rates as

follows:

rNh
0 =

∑
(i,j)

ΠhM ◦ `N (2.7)

rSh0 =
∑
(i,j)

ΠhM ◦ `S (2.8)

By this approach, dNh = rNh/rNh
0 is the expected nonsynonymous substi-

tution rate at the hth site divided by the expected nonsynoymous mutation

rate at that same site, taking into account the site’s stationary frequencies πh.

dSh = rSh/rSh0 is similarly defined. This gives the following normalized rates:

dNh =
rNh

rNh
0

=

∑
(i,j) π

h
i A

h
ij`N∑

(i,j) π
h
iMij`N

× 1

2Ne

, dSh =
rSh

rSh0
=

1

2Ne

(2.9)

The site-specific rate ratio is therefore:

dNh/dSh =

∑
(i,j) ΠhAh ◦ `N∑
(i,j) ΠhM ◦ `N

=

∑
(i,j) π

h
i A

h
ij`N∑

(i,j) π
h
iMij`N

(2.10)

Equation (2.10) is consistent with the approach taken by Spielman and Wilke

(2015b), and can be used to compute the theoretical long-run average rate

ratio at a site evolving under Ah with site-specfic fitnesses fh =
〈
fh1 , ..., f

h
61

〉
.

It is also consistent with the CSM approach in the sense that the same vector

of frequencies is used for both the rate terms (rNh and rSh) and the normal-

ization factors (rNh
0 and rSh0 ). The only difference is that πh can vary across

sites under the MS framework whereas π is the same at all sites under the

CSM framework. Note that both frameworks make the assumption that the

normalized synonymous mutation rates dS = 1 and dSh = 1/(2Ne) are uni-

form across sites and over time. See Rubinstein and Pupko (2012) for a review

of sources of variation in dS and Davydov et al. (2019) for a discussion of the

potential impact of the assumption of a constant dS on the false detection of

positive selection.
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2.2.2 M0 is Equivalent to a Model for Frequency-dependent

Selection under the MS Framework

The rate ratio at a site evolving under Q(ω) is constantly ω. When viewed

under the MS framework, this implies a site-specific fitness landscape that

changes with each substitution. Hence, ω > 1 under any CSM for which sites

evolve under the same rate ratio over the entire tree can be interpreted as

an indication of adaptive evolution by something akin to frequency-dependent

selection. Here I demonstrate the veracity of this statement. For an alternative

demonstration see dos Reis (2013).

Q(ω) characterizes the substitution process either for all sites (e.g., as it

would under M0) or for some subset of sites (e.g., under M3 where sites are

apportioned between several ω-categories). Q(ω) is in some ways similar to

the site-specific rate matrix Ah in equation (1.4). In both cases the substitu-

tion rate is usually assumed to be zero for codons that differ by more than a

single nucleotide substitution, and is proportional to Mij when i and j are syn-

onymous. The two rate matrices differ only in their treatment of nonsynony-

mous substitutions: Qij(ω) = ωMij/r for all pairs of nonsynonymous codons,

whereas under Ah the substitution rate between nonsynonymous codons can

be different for each (i, j) pair depending on the selection coefficients shij.

Consider a variation of MS where: (i) the incumbent amino acid at a site

has one fitness coefficient fh while all others have fitness fh + ∆fh; and (ii)

when a substitution occurs, the incumbent and incoming amino acids swap

fitnesses so that condition (i) still holds (Nielsen and Yang, 2003; Mugal et al.,

2014). The vector fh of site-specific fitness coefficients under assumptions (i)

and (ii) is a time-dependent random variable that has no analogue in the CSM

framework. Nevertheless, because the parameters of the process at a site do

not change until a substitution occurs, Markov chain properties imply:

(1) The probability that the codon i occupying a site is substituted by a

codon j is proportional to Mij if (i, j) are synonymous and ωhMij if

(i, j) are nonsynonymous, where ωh = 4Ne∆f
h/(1− exp(−4Ne∆f

h)).

(2) For any codon i that occupies the site, the time until a substitution
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occurs is an exponential random variable with mean ri = −1/Ahii.

Significantly, (1) and (2) define a Markov process with rate matrix Ah = Q(ωh)

(Ross, 1996, Chapter 5). Note that the vector of fitness coefficients fh at a site

is dynamic since it depends on the codon currently occupying the site. It can

therefore be different from one site to the next at any instant. All sites that

share the same ∆fh nevertheless evolve under the same phenomenological rate

matrix Q(ωh).

The equivalence of the rate matrix Ah for a MS process under (i) and

(ii) to the rate matrix Q(ωh) suggests that M-series models can be interpreted

as being designed to detect signatures of frequency-dependent selection where,

for instance, antagonistic interactions between proteins cause the fitness of any

given variant to be inversely proportional to its frequency in the population.

This interpretation makes sense only when ∆fh > 0 (i.e., ωh > 1), however,

as was pointed out by dos Reis (2013). It is more appropriate to think of

Q(ωh) as a model for purifying selection when ∆fh < 0 (ωh < 1), or neutral

selection when ∆fh ≈ 0 (ωh ≈ 1). Furthermore, even when ∆fh > 0, Q(ωh)

only captures the phenomenological effect of frequency-dependent selection,

the sustained elevation in rate ratio to a value greater than one over a branch

or lineage.

2.2.3 Shifting Balance on a static MS Landscape

Returning now to the general MS model, consider equation (1.4), repeated

here for convenience:

Ahij ∝

 Mij if shij = 0

Mij
4shij

1−exp(−4shij)
otherwise

(2.11)

Spielman and Wilke (2015b) proved that positive selection under Ah as in-

dicated by a long-run average dNh/dSh > 1 is not possible when fitness co-

efficients are fixed provided synonymous codons have equal fitness and the

mutation process is symmetrical (i.e., Mij = Mji, but see Appendix for my

own proof that relaxes this assumption). Here I propose a different interpre-

tation that takes into account the temporal dynamics of mutation and drift

on a static fitness landscape. The amino acid occupying the hth site will vary
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over time as long as at least two amino acids have non-negligible equilibrium

frequencies. The expected proportion ph+ of substitutions i→ j that are ben-

eficial with shij > 0 is:

ph+ =

∑
j 6=i π

h
i (Ahij −Mij)`+∑
j 6=i π

h
i A

h
ij

(2.12)

where `+ is an indicator for shij > 0. The summation
∑

j 6=i π
h
i A

h
ij`+ accounts

for the rate at which beneficial substitutions are expected to occur, whereas∑
j 6=i π

h
iMij`+ accounts for the rate at which the same substitutions would

be expected to occur under neutral selection (i.e., by drift). The difference

therefore quantifies the rate at which beneficial substitutions are expected

to occur above what would be expected by drift alone. The denominator∑
j 6=i π

h
i A

h
ij is the rate at which all types of substitutions are expected to

occur.

If the nonsynonymous substitution i → j occurs then so does its reverse.

One of the two must have a positive selection coefficient provided the site is not

evolving under a strictly neutral regime. And since shij > 0→ Ahij > Mij, it is

evident that ph+ must be greater than zero unless the site happens to be fixed

at one amino acid (i.e., when all alternative amino acids are lethal). Equation

(2.12) therefore demonstrates that positive selection can occur on a static

fitness landscape. Let ph− represent the proportion of deleterious substitutions

i → j for which shij < 0. It can be shown that ph+ = ph− (see Appendix).

Hence, beneficial substitutions due to positive selection can be thought of

as “repairing” previously deleterious substitutions caused by drift (Sella and

Hirsh, 2005; Mustonen and Lässig, 2009).

The dynamic implied by the balance ph+ = ph− can be illustrated using a site-

specific MS landscape (cf. Bazykin, 2015), an analogue of the traditional fit-

ness landscape constructed by sorting site-specific stationary frequencies from

largest to smallest as depicted in Figure 2.1. There the frequencies were derived

from fitness coefficients drawn from a normal distribution with a standard de-

viation σ = 0.001. The population size was assumed to be Ne = 1000. Positive

selection can be seen to occur on this landscape by considering how dNh/dSh

varies over time. The dNh/dSh ratio for the site depicted in Figure 2.1 is 0.58.
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But this is a long-run average. The rate ratio in fact varies depending on the

codon currently occupying the site. The codon-specific rate ratio dNh
i /dS

h
i

(where i is the codon currently occupying the site) can be computed from the

ith row of Ah as follows:

dNh
i /dS

h
i =

∑
j 6=iA

h
ij`N∑

j 6=iMij`N
(2.13)

The line plot in Figure 2.1 shows dNh
i /dS

h
i (scaled on the right y-axis) for

each codon. When a codon with low fitness (one far to the right or “tail” of

the MS landscape) occupies the site, the majority of mutations are “up-slope”

with shij > 0. The codon-specific rate ratio (2.13) is consequently greater than

dNh/dSh = 0.58 (as large as 4.10 in this example). As the site moves in

the up-slope direction, the proportion of mutations that are further up-slope

diminishes and dNh
i /dS

h
i decreases to a value below 0.58 (as small as 0.24 in

this example). By this process, chance substitutions (i.e., drift) that move a

site down-slope are balanced by a combination of drift and positive selection

(dNh
i /dS

h
i > 1) that move the site back toward its peak. I call this dynamic

process “non-adaptive shifting balance” because it is evocative of Wright’s

theory2 of the same name (Wright, 1932, 1982). A rate ratio dN/dS > 1

indicates fixation by positive selection by definition. Hence, the possibility

of positive selection on a static fitness landscape is verified by the fact that

dNh
i /dS

h
i can be greater than one.

2Wright introduced shifting-balance theory to explain how a sub-population might move
from one fitness peak across a fitness valley to another higher peak on a fixed landscape
and subsequently cause the entire population to move to that new peak. The processes
is therefore adaptive. Non-adpative shifting balance refers to the movement of an entire
population away from and back to the same peak on a fixed landscape.
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Figure 2.1: A site-specific fitness landscape. The bar plot depicts a MS landscape con-
sisting of equilibrium frequencies sorted from largest to smallest. The line shows the codon-
specific rate ratio dNh

i /dS
h
i for the sorted codons. The rate ratio varies depending on the

codon currently occupying the site, and can be greater than one following a chance substi-
tution into the tail (to the right) of the landscape. In this case the codon specific rate ratio
for the site ranges from 0.24 to 4.10 with a temporal average of dNh/dSh = 0.58.

2.2.4 Split MS Landscapes
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Figure 2.2: A MS and McCandlish landscape. The site depicted is under stringent selec-
tion pressure. A: The MS landscape shows that only three amino acids have non-negligible
frequencies. B: The 2-dimensional McCandlish landscape provides information about the
substitution dynamic. Vertices indicate codons; circle diameters are proportional to station-
ary frequencies; edge lengths are proportional to the expected number of single nucleotide
substitutions required for the site to move from one vertex to the other and back again
(McCandlish, 2011).
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A landscape can be very sparse under a stringent selection regime, meaning

that it is possible for the site-specific vector of stationary frequencies to be

nearly zero for all but a few amino acids. A site can reside for non-negligible

periods of time at suboptimal amino acids under this condition, especially

when movement between viable amino acids via single-nucleotide steps requires

substitution to one or more lethal residues. I call such cases “split landscapes”.

A site can transition from a split landscape that limits substitutions between

some pairs of codons to a broader landscape under which such substitutions

can occur more readily following a decrease in population size.

Figure 2.1 is but one way to visualize site-specific dynamics. An alternative

method makes use of the eigensystem of a transformation of the substitution

probability matrix to produce a graphical representation of a site-specific land-

scape (following McCandlish, 2011, see Appendix). The vertices i ∈ {1, ..., 61}
of the graph, which represent codons, are arranged in such a way that the

length of any edge connecting i to j is approximately proportional to the ex-

pected time it will take for the site to move from i to j and back again to i.

An example is shown in Figure 2.2. The bar plot in Figure 2.2 A shows the

stationary frequencies for codons corresponding to amino acids threonine (T,

with stationary frequency πT = 0.76), glutamic acid (E, πE = 0.19) and lysine

(K, πK = 0.05) for a site under stringent selection. All other amino acids

have low fitness in this example, meaning that their stationary frequencies are

essentially zero. The graph in Figure 2.2 B shows the relative location of each

viable codon. Circles drawn with diameters proportional to the stationary

frequency of the corresponding codon. The graph depicts a site that is occu-

pied by T most of the time, with rapid substitutions between its four codon

aliases ACA, ACC, ACG, ACT. If the site is currently occupied by ACG(T) it

can move to AAG(K) via a single nucleotide substitution C→A in the second

codon position. This would rarely occur, as indicated by the length of the

edge connecting ACG(T) to AAG(K). But once it does occur, the system will

tend to move between the more closely spaced E and K for some time before

returning to T.

Figure 2.3 depicts the same site as in Figure 2.2 but with a 10-fold reduction
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in Ne from 1000 to 100. Mutations with selection coefficients shij = Ne(f
h
j −

fhi ) < 0 that are rarely fixed when Ne = 1000 have a greater probability

of being fixed by drift when Ne = 100. The reduction in Ne consequently

allows the site to be occupied by a wider range of codons over time. This is

evident in the resulting MS landscape shown in Figure 2.3 A, which is much

broader than before reflecting an increase in frequencies that were previously

negligible. Concordantly, the McCandlish landscape in Figure 2.3 B depicts

a much larger network of connections between viable amino acids. Increasing

the role of drift reduced the effect of selection at the site to the extent that

it is now free to move rapidly between the two fittest amino acids T and E

(third column, Table 2.1). Their stationary frequencies are now nearly the

same (πT = 0.083, πE = 0.078). This demonstrates that site-specific codon

frequencies, and the expected rate of nonsynonymous substitutions (Table

2.1), can change dramatically over time due to changes in population size

even while the site’s vector of fitness coefficients remains constant.
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Figure 2.3: A landscape under relaxed selection pressure. The landscape is that depicted
in Figure 2.2 after a 10-fold decrease in the population size. A: The MS landscape is now
broader meaning that many codons have non-negligible equilibrium frequencies. B: The
McCandlish landscape now depicts a site that is free to move between T and E via a large
network of connections.
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codon Ne = 1000 Ne = 100
ACA(T) 0.026 0.20
ACT(T) 5.8× 10−10 0.072
ACC(T) 5.1× 10−4 0.35
ACG(T) 0.026 0.19
GAA(E) 0.15 0.38
GAG(E) 0.15 0.40
AAA(K) 0.74 0.55
AAG(K) 0.74 0.49

Table 2.1: The codon-specific rate ratios. The codon-specific rate ratios for each codon
listed in the first column as a function of the population size Ne. The site-specific MS
landscapes for Ne = 1000 and Ne = 100 are shown in Figures 2.2 and 2.3, respectively.

2.2.5 A Mechanistic Model for Non-adaptive Shifting Balance

In this section the MS framework is used to derive expressions for param-

eters that have meaningful interpretations in the context of CLM3(k = 2).

The purpose of this exercise is two-fold: first, to demonstrate that there is

a mechanism by which a site can switch between two rate ratios on a static

landscape; and second, to identify conditions under which such switches are

expected to be most pronounced. Let `hp be an indicator for codons i for which

dNh
i /dS

h
i ≤ 1 (e.g., near the peak of the MS landscape), and let `ht be the

same for codons for which dNh
i /dS

h
i > 1 (in the landscape’s tail). A site will

shift between its peak and tail, corresponding to switches between ωh1 ≤ 1 and

ωh2 > 1, with equilibrium proportions

ph1 =
∑
i

πhi `
h
p (2.14)

ph2 = 1− ph1 (2.15)

The corresponding expected rate ratios can be computed using equation (2.10)

by restricting the sum to either the peak or tail of the MS landscape:

ωh1 =

∑
(i,j)

πhi
p1
Ahij`N`

h
p∑

(i,j)
πhi
p1
Mij`N`hp

, ωh2 =

∑
(i,j)

πhi
p2
Ahij`N`

h
t∑

(i,j)
πhi
p2
Mij`N`ht

(2.16)

The expected number of switches between ωh1 and ωh2 per single nucleotide

substitution is given by:

δh =

∑
(i,j) π

h
i A

h
ij`switch∑

j 6=i π
h
i A

h
ij

(2.17)
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where `switch is an indicator for pairs of codons (i, j) for which one codon is in

the peak and the other in the tail of the MS landscape. Since a switch can

only occur upon a substitution, δh can be no greater than one.
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Figure 2.4: Distributions of site-specific rate ratios. The distributions of the site-specific
rate ratio dNh/dSh for 250 sites under each of the three values of σ used in this study. A:
σ = 0.0001 is consistent with nearly neutral evolution, as most sites evolve under a rate
ratio close to one. B: the rate ratio varies over a broad range of values when σ = 0.001. C:
σ = 0.01 is consistent with stringent selection for which most sites evolve under a rate ratio
close to zero.

Sets of 250 vectors of site-specific fitness coefficients fh were drawn from

a multivariate normal distribution centered at zero and with covariance σ2I

where I is the 61 × 61 identity matrix. Each was used to construct a site-

specific rate matrix Ah after the fitnesses of each group of synonymous codons

were adjusted to make them equal. The assumed mutation process was that

described in equation (1.24) with κ = 4, and with α = β = 0 to allow single

nucleotide substitutions only. Uniform position-specific nucleotide frequencies

were assumed. The site-specific rate ratio was calculated for each Ah using

equation (2.10). Figure 2.4 shows how the distribution of dNh/dSh changes

with σ. Figure 2.4 A demonstrates that σ = 0.0001 corresponds to a nearly

neutral selection regime, as the site-specific rate ratio is very nearly one for

most of the 250 sites. Figure 2.4 B shows that sites evolve over a wide range

of site-specific rate ratios when σ = 0.001, where dNh/dSh ranges from 0.06

to 0.74 with a median of 0.39. And sites are mostly under stringent selection

selection with ωh ≈ 0 in Figure 2.4 C, where σ = 0.01. In the remainder of this

section the differences between these three selection regimes are characterized

in terms of the distributions of theoretical parameters
〈
ωh1 , ω

h
2 , p

h
2 , δ

h
〉
.



45

Figure 2.5 shows box plots for parameter values computed from an addi-

tional draw of 250 vectors of fitness coefficients for each value of σ. First con-

sider the case of nearly neutral evolution (σ = 0.0001). The median expected

proportion of single nucleotide substitutions attributed to positive selection

(ph+, Figure 2.5 A) is only 3.4% . The median probability that a site is in the

tail of its MS landscape (ph2 , Figure 2.5 B) is just under 43%. The median

switching rate (δh, Figure 2.5 C) is 0.44, indicating approximately one switch

for every two substitutions. The rate ratio from the tail (ωh2 , Figure 2.5 D)

is tightly distributed around a median of 1.1; ωh1 (not shown) is similarly dis-

tributed but with a median of 0.91. In this scenario the population moves

easily in and out of the tail, with only a small difference between ωh1 and ωh2 ,

because the landscape is nearly flat (i.e., with only slight variations in the πhi

and dNh
i /dS

h
i across codons).
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Figure 2.5: Distributions for the parameters of the mechanistic non-adaptive shifting
balance model. Values were computed for 250 simulated sites. The span of each box
represents the 50% of values that fall within the inter-quartile range; the midline shows the
median value; whiskers show the range of the data excluding outliers, which are indicated
by circles. A: ph+, the expected proportion of substitutions due to positive selection; B: ph2 ,
the proportion of time a site is expected to be found in the tail of its MS landscape; C: δh,
the expected number of switches between the peak and tail of its MS landscape per single
nucleotide substitution; D: ωh

2 , the expected rate ratio for the site when in the tail of its MS
landscape.

Next consider the case where a population is being tightly held to its fitness

peak (σ = 0.01). The median value ph2 is much less than one percent, reflecting

a low probability of drift away from the peak. The rate ratio ωh2 from the tail is
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relatively large, with median 2.7. The median proportion of single nucleotide

substitutions due to positive selection ph+ and the median switching rate δh are

both very low. This scenario is consistent with strong selective pressure that

inhibits non-adaptive shifting balance by preventing movement away from the

fittest amino acid.

Some parameters have outliers under the σ = 0.01 scenario. Outliers in

ωh2 tend to correspond to cases where ph2 is very small. Among the 53 trials

for which ωh2 was greater than 5, for example, the median value of ph2 was

less than 2 × 10−10. Such values indicate very strong selection pressure that

prevents movement into the tail. Outliers in δh and ph+ can be attributed

to chance relationships in a reduced space of viable codons (i.e., a sparse

landscape). An example is depicted in Figure 2.6, where codons were sorted by

dNh
i /dS

h
i rather than frequency so that the point of separation between peak

and tail could be represented (i.e., where dNh
i /dS

h
i = 1, vertical dashed line).

Two amino acids M and I dominate the landscape; almost all substitutions

are between them and consist of single nucleotide substitutions in the third

position. Since M has only one codon alias, any substitution from the peak

can only be nonsynonymous. And since a substitution from M across the

dNh
i /dS

h
i = 1 boundary to ATA(I) is about 25% more likely than a substitution

to either ATT(I) or ATC(I) due to transition bias κ = 4 (Table 2.2), δh and ph+

are both unusually large for the σ = 0.01 scenario (δh = 0.58 and ph+ = 0.28).
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Figure 2.6: A MS landscape dominated by Methionine. The MS landscape depicted here
was constructed by sorting codons by dNh

i /dS
h
i . The vertical dashed line shows the point of

separation between peak (where dNh
i /dS

h
i < 1) and tail (where dNh

i /dS
h
i > 1). The site is

dominated by substitutions between M and the three codons for I. Although substitutions
away from M are rare, when they do occur they are nonsynonymous since M has only one
alias (ATG), and they are almost always to I. Codon aliases for I appear in order: ATT,
ATC, and ATA. Substitutions to the right-most alias ATA(I) in the tail of the landscape
are favored due to transition bias (κ = 4). As a result, both δh = 0.58 and ph+ = 0.28 are
unusually large for this scenario.

Now consider the case between the nearly neutral and stringent selection

scenarios, where σ = 0.001. Population dynamics on this landscape lead to a

relatively large median value of ph+, which indicates that about 10% of single

nucleotide substitutions are due to positive selection. The median switching

rate is 0.26, close to one switch for every four substitutions. The median

rate ratio from the tail is 1.5. Whereas the previous two scenarios represent

extreme cases where one process strongly dominates (i.e., drift dominates when

σ = 0.0001, and selection dominates when σ = 0.01), this scenario reflects an

interplay between both processes. Here, the population occasionally moves

away from its peak. But such events are quickly corrected because selection

remains an effective force for moving the population back. This is the scenario

that produces the strongest transient signature of positive selection on a fixed

landscape.
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ATG(M) ATT(I) ATC(I) ATA(I)
ATG(M) 0 0.30 0.30 0.39
ATT(I) 0.76 0 0.17 0.07
ATC(I) 0.76 0.17 0 0.07
ATA(I) 0.87 0.06 0.06 0

Table 2.2: Substitution Probabilities. Numbers give the probabilities that the incumbent
codon in a row is next substituted by the codon in a column for the MS landscape depicted
in Figure 2.6.

The way fitness coefficients are selected introduces a phenomenological

component to the mutation-selection framework, since an assumed distribution

is used in lieu of actual values. Although a few investigations suggest that the

shij (and therefore the fhi ) are sometimes consistent with a normal distribution

(Nielsen and Yang, 2003; Tamuri et al., 2012), there is no reason not to try

alternatives. Figure 2.7 shows the result of a repeat of the experiment that

generated the data in Figure 2.5 but with fitnesses drawn from exponential

distributions with variance µ2 ∈ {1×10−8, 1×10−6, 1×10−4}. The patterns are

similar: a lower variance corresponds to the nearly neutral scenario dominated

by drift, a higher variance to the stringent scenario where selection dominates,

and something in between to a balance between selection and drift under which

shifting balance is strongest.
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Figure 2.7: Alternate distributions for the parameters of the mechanistic non-adaptive
shifting balance model. Fitness coefficients were drawn from exponential distributions. The
mean µ (or variance, µ2) of the exponential distribution plays a similar role here as σ did in
Figure 2.5. With smaller values of µ, most fitness coefficients are similar to one another, all
being close to zero. As µ becomes larger it becomes more likely that a few or one amino acid
will draw a fitness coefficient much larger than the rest. As in Figure 2.5, three scenarios
are indicated. When µ = 0.0001 the rate ratio is always something very close to one, a sites
spends about half the time in the tail of its distribution, and switches about once every
two substitutions. When µ = 0.01 a site is typically held to its peak indicating stringent
selection with ph+ ≈ 0 but with the exception of a small number of outliers. And when
µ = 0.001 the non-adaptive shifting balance phenomenon is more pronounced, with the
median ph+ ≈ 0.10 as before.

2.2.6 Detecting Transient Changes in ω Caused by Non-adaptive

Shifting Balance

In the previous section a mechanistic process by which a site can theo-

retically switch between two rate ratios as it moves over its fixed MS land-

scape was investigated. The objective in this section is to demonstrate that

CLM3(k = 2) can detect site-specific variations in rate ratio under certain

conditions. To this end, alignments were generated on an 8-taxon symmet-

rical tree with branch lengths b ∈ {0.25, 0.5, 1} using fitness coefficients with

σ ∈ {0.0001, 0.001, 0.01} and Ne = 1000 as described in Methods. For each

scenario defined by (σ, b) the same set of 500 vectors of fitness coefficients was

used to generate 50 unique alignments. CLM3(k = 2) and M3(k = 2) were

fitted to each to provide a test for the significance of the switching rate δ.

Table 2.3 shows the number of trials out of 50 for which the M3-CLM3 con-

trast rejected the null hypothesis and therefore detected switching. The test,
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conducted at the 5% level of significance, seldom detected evidence for switch-

ing under the nearly neutral (σ = 0.0001) and stringent selection (σ = 0.01)

scenarios, the exception being the (σ, b) = (0.01, 1) scenario where the test was

significant in 15/50 trials. Shifting was detected in all trials when σ = 0.001

and b ∈ {0.5, 1}, and in most trials when σ = 0.001 and b = 0.25. These

results are in agreement with the mechanistic model that predicted that the

scenario where neither drift nor selection dominate (σ = 0.001) would produce

the strongest covarion-like signal due to non-adaptive shifting balance.

b/σ 0.0001 0.001 0.01
1.00 0 (0.51,1.2) 50 (0.00,0.77) 15 (0.00,0.06)
0.50 1 (0.75,1.2) 50 (0.12,0.68) 1 (0.00,0.08)
0.25 2 (0.69,1.1) 39 (0.05,0.79) 1 (0.00,0.08)

Table 2.3: Detecting Heterotachy. The left-most column gives the branch length and the
top-most row the value of σ used to generate 50 alignments for the nine (b, σ) scenarios.
Each cell shows the number of cases out of 50 for which the M3-CLM3 contrast detected
site-specific switches between ω1 and ω2. The numbers inside the brackets give the median
MLEs for ω1 and ω2.

Previous investigations indicated that a covarion-like model can detect

switching even when data is generated without switching, and that this may oc-

cur when the number of ω-categories used to generate the data is greater than

the number assumed by the fitted model (Lu and Guindon, 2013). The site spe-

cific rate ratio can vary greatly under the generating scenario with σ = 0.001,

with values as small as dNh/dSh = 0.06 and as large as dNh/dSh = 0.74

for the 250 trials depicted in Figure 2.4 B. To rule out the possibility that

this variation might produce false signatures of switching, an additional set

of vectors of fitness coefficient was drawn with σ = 0.001. The rate ratio

ωh = dNh/dSh was computed for each vector. Each rate ratio was used

to construct a site-specific phenomenological substitution rate matrix Q(ωh).

The resulting generating model was thus similar to an M-series model but with

a different ωh for each site. This model was used to generate fifty 500-codon

alignments on a symmetrical 8-taxon rooted tree with all branch lengths b = 1.

Since each site was evolved under its own rate matrix with ωh = dNh/dSh,

the alignments had a similar distribution of rate ratios across sites as data

generated under MS but without the covarion-like rate shifts that can occur
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under MS. The M3-CLM3 contrast failed to reject the null at the 5% level of

significance in all 50 trials, indicating no detectable switching. Hence, the re-

jection of the null under the σ = 0.001 scenario in Table 2.3 can be attributed

to covarion-like rate shifts caused by non-adaptive shifting balance.

2.2.7 Detecting ω > 1 Caused by Non-adaptive Shifting Balance

The results in Table 2.3 show that shifting balance can manifest as het-

erotachy under some circumstances. In this section I show that non-adaptive

shifting balance can also manifest as episodic positive selection with ω̂2 > 1.

For this purpose, alignments simulated under MS were fitted to a new test

for positive selection based on CLM3(k = 2), as well as a popular analytical

framework called the branch-site unrestricted statistical test for episodic diver-

sification or BUSTED (Murrell et al., 2015). In its original form, CLM3(k = 2)

allows sites to switch between ω1 < ω2 at a rate of δ switches per unit branch

length. This framework can be used to construct a test for positive selection

by placing restrictions on ω1 and ω2. To that end, I define the null model

CLM3a as CLM3(k = 2) but restricted so that ω1 < 1 and ω2 = 1. Posi-

tive selection is therefore not permitted under CLM3a. Under the alternative

model CLM3b the larger rate ratio ω2 is estimated with the restriction that

ω2 ≥ 1. Hence, the CLM3a versus CLM3b contrast provides a likelihood ra-

tio test for episodic positive selection. Under BUSTED, sites are assumed to

switch randomly between three rate ratios over time (see Methods). Unlike

CLM3, under which a site can switch between ω1 and ω2 multiple times along a

branch, it is assumed under BUSTED that the rate ratio at a site is constant

along any given branch, but can change from one branch to the next. The

null hypothesis under BUSTED is that ω0 ≤ ω1 ≤ ω2 = 1 in contrast to the

alternative for which ω0 ≤ ω1 ≤ 1 ≤ ω2.
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b/σ 0.0001 0.001 0.01
1.00 (1, 3) (20, 11) (10, 3)
0.50 (1, 2) (20, 1) (3, 1)
0.25 (2, 3) (5, 0) (0, 0)

Table 2.4: Detecting Positive Selection. The left-most column gives the branch length and
the top-most row the value of σ used to generate 50 alignments for the nine (b, σ) scenarios.
Each cell shows the number of cases (x, y) out of 50 for which positive selection was detected
by BUSTED (x) and the CLM3a-CLM3b (y) contrast.

The null and alterative model for CLM3a vs CLM3b and BUSTED were

fitted to the same alignments that were used to generate the data in Table

2.3. In each case, the test for positive selection was conducted only if ω̂2 > 1

under the alternative. All tests were conducted at the 5% level of significance.

Table 2.4 shows the number of trials in each scenario for which BUSTED

and the CLM3a-CLM3b contrast found evidence of positive selection. Both

models inferred positive selection in substantially more than 5% of the trials

with (σ, b) = (0.001, 1) (40% of trials under BUSTED and 22% under CLM3a

vs CLM3b). BUSTED also detected positive selection in 40% of trials with

(σ, b) = (0.001, 0.5). Both models detected positive selection in data generated

under the σ = 0.0001 and σ = 0.01 scenarios at a rate consistent with what

would be expected by chance under each of their null models (i.e., close to

5% or 2 to 3 trials out of 50), except that BUSTED found signal in 20% of

trials in the (σ, b) = (0.01, 1) scenario. The distribution of the MLEs for ω2

and p2 among the trials for which ω̂2 > 1 and the null was rejected are shown

in Figure 2.8, with the exception of 13 trials for which the MLE for ω2 under

BUSTED was greater than 50. These results demonstrate that both models

can detect the phenomenological signature of positive selection due to non-

adaptive shifting balance under the σ = 0.001 scenario where neither selection

nor drift dominate.
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Figure 2.8: Distributions of MLEs estimated under CLM3 and BUSTED. Box plots show
the distribution for the MLEs of A: ω2 and B: p2 estimated under the alternative model for
BUSTED and under CLM3b for the trials where the null hypothesis of no positive selection
was rejected under each model respectively. The plots for BUSTED do not show 13 trials
for which ω̂2 > 50.

2.2.8 Changing Fitness Landscapes

Up to this point it was shown that the substitution process at a site under

the MS framework can be dynamic even if site-specific landscapes are fixed.

An episodic shift in a fitness landscape can produce a similar dynamic that

can be detected if such were to occur at a number of sites at the same time.

The dynamic following a change in a fitness landscape was recently illustrated

by dos Reis (2015) (also see Mustonen and Lässig, 2009). Under his environ-

mental shift (MSES) model, Ah is the rate matrix defining the selection regime

for the hth site of an ancestral sequence. At t = 0 the regime switches to a dif-

ferent matrix Bh. This change initiates a non-stationary substitution process

characterized by an elevated rate ratio dNh(t)/dSh(t) that can be quantified

in the following way (cf. equation 2.10):

dNh(t)/dSh(t) =

∑
(i,j) Πh(t)Bh ◦ `N∑
(i,j) Πh(t)M ◦ `N

(2.18)

where Πh(0) is the diagonal matrix with entries πh(0) =
〈
πh1 (0), ..., πh61(0)

〉
that

give the stationary frequencies for the site consistent with Ah, and Πh(t) is the

diagonal matrix with entries πh(t) = πh(0) exp
(
tBh

)
that converges to the



54

new set of stationary frequencies consistent with Bh as t→∞. Consider what

happens when M0 is fitted to pairs of sequences (S1, S2) generated by the non-

stationary process that follows simultaneous changes in fitness coefficients at n

codon sites. Modeling a non-stationary process as stationary can be thought of

as a way of estimating an average effect. It is therefore reasonable to interpret

estimates of ω under M0 as a mean taken across all codon sites (n) over the

branch length (b)3. One possible way to formulate this under MSES is:

ω̄(b) =
1

b

∫ b

0

1

n

n∑
h=1

dNh(t)/dSh(t)dt (2.19)

This provides a means to predict the estimate of ω under M0.
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Figure 2.9: Investigation of the MSES model. Circles are median values of maximum like-
lihood estimates (MLE ω) produced by fitting data generated under MSES to M0. Dashed
lines indicate the inter-quartile range. A: A comparison of the predicted versus estimated
rate ratios computed from pairs of sequences generated under the MSES model. B: A
comparison of generating and estimated branch lengths.

To compare predictions with MLEs, 200 pairs or sequences (S1, S2) with

n = 1000 codons sites were generated under MSES with σ = 0.001 and Ne =

1000, and with branch lengths ranging between 0 and 1. Each site had its

own pair of rate matrices Ah and Bh. The first sequence S1 was generated by

evolving each site of a random starting sequence under its assigned rate matrix

Ah long enough to reach a codon near or at the peak of its site-specific fitness

3Analyses in Chapter 3 suggest that the complexity of the MSES generating model
compared to the simplicity of M0 may well obfuscate this desirable interpretation.
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landscape. The second sequence S2 was then generated by evolving each site

under its new rate matrix Bh along a branch of length b. M0 was subsequently

fitted to each pair of sequences. Figure 2.9 A shows that the median MLE

for ω estimated by M0 is highly correlated with the prediction ω̄(b) (ρ =

0.98, p-value � 0.0001), decreases as b gets larger, but with a positive bias

compared to predicted values, especially for longer branch lengths. This effect

might account in part for the observed negative correlation between ω̂ and b̂

estimated from real pairs of sequences (dos Reis and Yang, 2013). Figure 2.9

B shows that branch lengths b̂ are consistently overestimated compared to the

generating branch length b. Figure 2.9 A and B suggest that (i) elevations in

site-specific rate ratios following peak shifts are less likely to be detected on

longer branches; and (ii) failing to adjust for non-stationary processes following

peak shifts can result in overestimation of branch lengths. These issues will be

revisited in Chapter 4 where my phenotype-genotype branch-site model will

be shown to mitigate (ii) by accounting for non-stationary processes in the

form of site-specific peak shifts.

2.3 Discussion

The mutation-selection (MS) framework of Halpern and Bruno (1998) de-

scribed in Chapter 1 provides a mechanistic description of the codon sub-

stitution process that is more realistic than that implied by commonly used

phenomenological CSMs. CSMs implicitly assume that all amino acids have

the same fitness save the one currently occupying the site, for example, as was

demonstrated in Section 2.2.2. MS, by contrast, permits amino acids to have

different fitnesses, and for these to vary across sites. The difference between

the two approaches has many implications, several of which were explored in

this chapter via theoretical arguments and computer simulations.

A site-specific MS landscape can in theory be split between two amino

acids. Such landscapes can lead to patterns consistent with what is commonly

called Type II functional divergence (FD) (Gu, 1999, 2001, 2006). Suppose

a site were to evolve in two segregated populations under the site-specific

landscape depicted in Figure 2.3 long enough for each population to be fixed
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at a different amino acid. Further, suppose that each population were to

subsequently undergo a 10-fold increase in population size, so that the site

now evolves under the MS landscape depicted in Figure 2.2. It could happen

that one population becomes fixed at T, and the other at E, depending in part

on the starting codon for each population. Subsequent changes at other sites

and/or in other genes might then canalize this difference as the populations

diverge over macroevolutionary time scales (e.g., Pollock et al., 2012). By this

process, a site might eventually exhibit the constant-but-different pattern of

Type II FD without any change in its fitness coefficients. To cite a real case,

Gu (2006) identified sites in the COX gene that exhibited Type II FD in the

form of physicochemical properties among the amino acids at a site that were

similar within two clades (labeled COX1 and COX2) but radically different

between the clades. This included a site for which T (categorized as polar)

and E (charge-negative) dominated the COX1 and COX2 clades respectively.

Although the apparent change in the physicochemical requirement of the site

from polar to charge-negative might suggest an adaptive change in fitness

coefficients, the observed pattern could also have arisen without adaptation

under a split static MS landscape.

The mechanistic model for non-adaptive shifting balance in Section 2.2.5

indicated that sites are relatively free to move across their MS landscapes

under the scenario where neither selection nor drift dominate. Box plots for

ph2 in Figure 2.5 B show that approximately 10% of sites can be expected to

be in the tails of their respective landscapes at any instant when σ = 0.001

and Ne = 1000. These sites would be forced toward their fitness peaks all at

the same time if a population evolving under this scenario were to undergo a

rapid increase in effective size. This could result in a transient ω > 1 signature

of positive selection very similar to that following simultaneous peak shifts

at a number of sites. The two processes might therefore be indistinguishable

without accounting for changes in effective population size as part of the fitted

CSM.

Setting aside the effect of changes in Ne, it has been commonly assumed

that statistical evidence for ω > 1 at some sites and/or branches in a tree is
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indicative of positive selection due to episodic or continuous (e.g., frequency-

dependent) changes in fitness coefficients. However, it was demonstrated in

Section 2.2.5 that there are conditions under which a site evolving with fixed

coefficients can undergo episodic positive selection by non-adaptive shifting

balance. Furthermore, it was demonstrated in Section 2.2.7 that non-adaptive

shifting balance can manifest as phenomenological switches between ω1 ≤ 1

and ω2 > 1 that are detectable by commonly used branch-site models. Hence,

it might not be possible to determine whether a site inferred to have under-

gone positive selection did so as a result of changes in fitness coefficients or

non-adaptive shifting balance based on estimates of ω alone. Additional in-

formation about the role of the protein or the history of the organism would

no doubt decide the issue in many cases. A protein implicated in an arms

race, such as an immune surveillance protein in conflict with a pathogenic

immune evasion protein, is very likely to have undergone changes in fitness co-

efficients at some sites (e.g., Hughes and Nei, 1988). So too for a protein that

has been linked to variations in phenotype correlated with changes in habitat

(e.g., Yokoyama et al., 2008). In the absence of corroborating evidence of some

kind however, positive selection by non-adaptive shifting balance might be the

appropriate null hypothesis.

Although branch-site models commonly used to infer site-specific changes

in the rate ratio can detect non-adaptive shifting balance under some con-

ditions, M-series models that do not allow site-specific variations in ω are

insensitive to this process. Spielman and Wilke (2015b) proved that the the-

oretical site-specific rate ratio dNh/dSh cannot exceed one when synonymous

codons are equally fit. Whereas this proof applies to a single site, empirical

results suggest that an equivalent statistical statement holds for the estimate

of a single ω from an alignment with variations in dNh/dSh across sites. The

likelihood ratio test for the contrast of M0 with ω = 1 versus M0 with ω > 1

was applied to alignments generated under each of the nine (σ, b) scenarios of

Tables 2.3 and 2.4. The test never rejected the null at the 5% level of signif-

icance, and so ω was never inferred to be greater than one. It was shown in

Section 2.2.2 that an M-series model is consistent with frequency-dependent
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selection among sites evolving under ω > 1. Taken together, these results

suggests that it might be more appropriate to use M-series models when an-

alyzing a gene suspected to have undergone frequency-dependent selection, if

only to remove the possibility of detecting non-adaptive shifting balance and

confusing it for episodic positive selection. However, evidence of a sustained

elevation in ω over only a portion of a tree might easily be overlooked, resulting

in reduced power.

The analysis of the MSES model in Section 2.2.8 underlines a potential

difference between non-adaptive shifting balance and episodic changes in fit-

ness landscapes. Non-adaptive shifting balance is a site-wise process, meaning

that sites might be expected to undergo positive selection due to non-adaptive

shifting balance randomly across sites and over time. Under the MSES model,

by contrast, it is possible for a change in environment to impact a collection

of sites all at the same time (e.g., sites that correspond to a functional domain

or epitope). Hence, whereas M0 never detected ω > 1 in the alignments gen-

erated with fixed fitness coefficients when signatures of positive selection were

generated randomly across sites and over time, it was able to detect evidence of

positive selection in alignments generated under MSES where positive selection

occurred at all sites at the same time (Figure 2.9). By contast, CLM3(k = 2)

and BUSTED detected ω > 1 in a sizable proportion the alignments gener-

ated with fixed fitness coefficients. The apparent inability of models such as

CLM3(k = 2) and BUSTED to discriminate between episodic positive selec-

tion caused by adaptive versus non-adaptive processes might be addressed by

introducing dependencies between sites to account for simultaneous changes

in landscapes. This approach is investigated in detail in Chapter 4.

Non-adaptive shifting balance has implications beyond codon substitution

models. For example, consider the method of estimating the proportion α of

amino acid substitutions attributed to positive selection. Estimation of α is

based on a comparison of the fixation ratio Dn/Ds, the number of observed

nonsynonymous (Dn) and synonymous (Ds) differences between two closely

related species, with the mutation ratio Pn/Ps, the total number of nonsyn-

onymous (Pn) and synonymous (Ps) polymorphisms within each species (Smith
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and Eyre-Walker, 2002). Neutrality is implied when Pn/Ps = Dn/Ds making

α = 1 − (Pn/Ps)/(Dn/Ds) = 0, whereas an excess of nonsynonymous substi-

tutions Dn above that expected under neutrality implies that some nonsyn-

onymous mutations were fixed by positive selection, making α > 0. Estimates

of α range between about 10% for humans to more than 50% for Drosophila

(Grossmann et al., 2014, and references therein). While substitution by posi-

tive selection is often taken as an indication of adaptive evolution, the analysis

in Section 2.2.5 suggest that as much as 10% of substitutions by positive se-

lection can be attributed to non-adaptive shifting balance on a static fitness

landscape. Thus, it seems possible that the human genome might not be

evolving in response to changes in selection pressure, but merely experiencing

non-adaptive shifting balance. Likewise, some fraction of positive selection

in Drosophila might be due to the same process. The key question is “How

prevalent is non-adaptive shifting balance in real data?”.

2.4 Methods

2.4.1 Alignment Generation

Alignments were generated using the MS framework as follows. Mutations

were modeled using equation (1.24) with κ = 4, uniform nucleotide frequencies,

and α = β = 0 to allow single nucleotide substitutions only. Vectors of

site-specific fitness coefficients fh were drawn from a zero-mean multivariate

normal distribution with covariance matrix σ2I, where I is the 61×61 identity

matrix. Each vector was modified to make synonymous substitutions equally

fit before using equation (2.11) to construct a site-specific rate matrix Ah. All

Ah were divided by the mean rate r̄ = (1/n)
∑n

h=1

∑
j 6=i π

h
i A

h
ij to make branch

lengths interpretable as the expected number of single nucleotide substitutions

per codon. The population size was set to Ne = 1000 for all simulations.

All alignments were generated on a symmetrical eight-taxa rooted tree with

uniform branch lengths b ∈ {0.25, 0.50, 1.00} except where otherwise indicated.

Variations in the strength of the non-adaptive shifting balance phenomenon

were effected by using values of σ ∈ {0.0001, 0.001, 0.01}.
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2.4.2 The M3(k = 2) vs CLM3(k = 2) Contrast

CLM3(k = 2) is equivalent to M3(k = 2) when δ = 0, on the boundary

of its parameter space, δ ∈ [0, 1]. The M3(k = 2) vs CLM3(k = 2) contrast

therefore provides a likelihood ratio test for heterotachy (δ > 0). The limiting

distribution for the LLR for the M3(k = 2) vs CLM3(k = 2) contrast is

an equal mixture of a point-mass at zero and the χ2
1 distribution (e.g., Case

5 in Self and Liang, 1987), with a critical value of 2.71 at the 5% level of

significance. The variant CLM2b with ω2 > 1 is equivalent to CLM3a when

ω2 is fixed at one. The CLM3a vs CLM3b contrast therefore provides a test

for episodic positive selection (ω2 > 1). The theoretical limiting distribution

for the LLR for this contrast is χ2
1, with a critical value of 3.84 at the 5% level

of significance.

2.4.3 BUSTED

The branch-site unrestricted statistical test for episodic diversification or

BUSTED (Murrell et al., 2015) assumes that each site evolved under one of

three rate ratios {ω0, ω1, ω2} along each branch of the tree selected randomly

in proportions {p0, p1, 1− p0− p1}. The unrestrained model allows each of the

three rate ratios to take on any non-negative value. If the largest estimated

rate ratio is greater than one then a test for positive selection contrasting the

model with ω0 ≤ ω1 ≤ ω2 = 1 versus the model with ω0 ≤ ω1 ≤ 1 ≤ ω2 is

conducted. The distribution of the LLR for this test is an unknown mixture

of χ2
0, χ2

1 and χ2
2. To be conservative, BUSTED uses χ2

2 to compute p-values.

BUSTED differs from CLM3 in that sites switch between three rate ratios

instead of two, and switching is from branch-to-branch instead of at any point

along any branch.
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2.5 Appendix

2.5.1 A Demonstration of ph+ = ph−

Here I establish the expected balance between beneficial and deterimen-

tal substitutions on a static site-specific MS fitness landscape. Consider the

expected proportion ph+ of substitutions that are beneficial with shij > 0:

ph+ =

∑
(i,j) π

h
i A

h
ij`+∑

j 6=i π
h
i A

h
ij

−
∑

(i,j) π
h
iMij`+∑

j 6=i π
h
i A

h
ij

(2.20)

where `+ is an indicator for shij > 0. The first addend of ph+ accounts for the

rate at which beneficial substitutions occur. The second addend accounts for

the rate at which the same substitutions would be expected to occur if they

were neutral (i.e., if shij = 0). Since shij > 0 ↔ shji < 0, it follows that the

counterpart expression for the proportion of substitutions that are deleterious

is:

ph− =

∑
(i,j) π

h
jA

h
ji`+∑

j 6=i π
h
jA

h
ji

−
∑

(i,j) π
h
jMji`+∑

j 6=i π
h
jA

h
ji

(2.21)

Since every term in ph+ has a counterpart in ph−, the difference between the two

can be written as:

ph+ − ph− =

∑
(i,j)

(
πhi A

h
ij − πhjAhji

)
`+∑

j 6=i π
h
i A

h
ij

+

∑
(i,j)

(
πhiM

h
ij − πhjMh

ji

)
`+∑

j 6=i π
h
i A

h
ij

(2.22)

Since both M and Ah are time reversible, it follows from the detailed balance

equation that πhiM
h
ij − πhjMh

ji = 0 and πhi A
h
ij − πhjAhji = 0. Hence, ph+ = ph−.

2.5.2 dNh/dSh ≤ 1 When fh is Fixed

Equation (2.10) gives the expected or long-run average rate ratio at a

site. An important property of dNh/dSh is that it is bounded above by one.

Following Spielman and Wilke (2015b), this property can be demonstrated by

proving that the substitution rate between any nonsynonymous (i, j) pair is

bounded by the mutation rate:

πhi A
h
ij + πhjA

h
ji ≤ πhiMij + πhjMji (2.23)
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Simplifying:

2πhi A
h
ij ≤ πhiMij + πhjMji

since the process is time-reversible: πhi A
h
ij = πhjA

h
ji

2Ahij ≤ Mij +
πhj
πhi
Mji

2Ahij ≤ Mij +Mij exp(4shij)

since πhj /π
h
i = (Mij exp(4Nef

h
j ))/(Mji exp(4Nef

h
i ))

Mij

4shij
1− exp(−4shij)

≤ Mij(1 + exp(4shij))

Notice that the term Mij can be divided out, meaning that the proof does not

require that Mij = Mji (as was assumed by Spielman and Wilke, 2015b). If

we let x = 4shij, the proof is reduced to showing that:

x

1− e−x
≤ 1 + ex (2.24)

To prove (2.24), first note that ex−e−x =
∑∞

n=0 2x2n+1/(2n+1)!. When x > 0,

multiplying both sides of (2.24) by 1− e−x gives x ≤ ex− e−x. This inequality

is true because:

ex − e−x = 2x+
∞∑
n=1

2x2n+1/(2n+ 1)! > x (2.25)

When x < 0, multiplying both sides of (2.24) by 1 − e−x gives x ≥ ex − e−x

or −x ≤ −(ex − e−x). Since both x and ex − e−x are odd functions (i.e.,

−f(x) = f(−x)) and since x < 0, the inequality is equivalent to x ≤ (ex−e−x)
with x > 0, which was already shown to be true. Hence the inequality (2.24)

holds for all x = 2shij. It follows that dNh/dSh ≤ 1 since equation (2.23)

applies to all nonsynonymous (i, j) pairs.

2.5.3 A Demonstration that Ah is Time-Reversible

The matrix M was defined in Chapter 1 as follows (equation 1.24):

Mij ∝


κstΠik 6=jkπ

∗
jk

if s = 1

ακstΠik 6=jkπ
∗
jk

if s = 2

βκstΠik 6=jkπ
∗
jk

if s = 3

(2.26)
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Recall that equation (2.26) applies to any pair of codons (i, j) that differ by s

nucleotides st of which are transversions, and that the π∗jk are position-specific

nucleotide freqencies, κ the transition bias, and α and β rate parameters that

account for pairs of codons that differ by s = 2 or s = 3 nucleotides. When M

is used to construct a phenomenological rate matrix Q(ω) ∝ M ◦ (`S + ω`N)

it is interpreted as quantifying the rate at which substitutions occur under

a neutral selection regime. When M is used to construct a site-specific rate

matrix Ah (as in equation 2.11) it is interpreted as quantifying the rate at which

mutations arise. Only single nucleotide differences were permitted under both

usages for all analyses presented in this chapter (i.e., α and β were always

assumed to be zero). Nevertheless, the following demonstrates that M as

defined in equation (2.26) is time-reversible.

Let i = ni1ni2ni3 and j = nj1nj2nj3 represent an arbitrary pair of nucleotide

triplets each of which occurs with stationary frequency π0
i = π∗i1π

∗
i2
π∗i3/r and

π0
j = π∗j1π

∗
j2
π∗j3/r, where r =

∑61
i=1 π

∗
i1
π∗i2π

∗
i3

is a common normalization con-

stant. M is time-reversible if the following holds:

π0
iMij = π∗i1π

∗
i2
π∗i3(cij/r)Πik 6=jkπ

∗
jk

= π∗j1π
∗
j2
π∗j3(cji/r)Πik 6=jkπ

∗
ik

= π0
jMji (2.27)

where cij = cji is a coefficient composed of the appropriate combination of κ,

α and β. The proof therefore requires a demonstration that:

π∗i1π
∗
i2
π∗i3Πik 6=jkπ

∗
jk

= π∗j1π
∗
j2
π∗j3Πik 6=jkπ

∗
ik

(2.28)

The products Πik 6=jkπ
∗
ik

and Πik 6=jkπ
∗
jk

are composed of frequencies at positions

where i and j differ, whereas the products π∗i1π
∗
i2
π∗i3 and π∗j1π

∗
j2
π∗j3 may contain

common factors. The removal of common factors from π∗i1π
∗
i2
π∗i3 leaves only

Πik 6=jkπ
∗
ik

. Likewise, the removal of the same factors from π∗j1π
∗
j2
π∗j3 leaves only

Πik 6=jkπ
∗
jk

. Equation (2.28) can therefore be reduced to:

Πik 6=jkπ
∗
ik

Πik 6=jkπ
∗
jk

= Πik 6=jkπ
∗
jk

Πik 6=jkπ
∗
ik

(2.29)

which is evidently true.

Next I demonstrate that πhi ∝ π0
i e

4Nefhi . Following Wang et al. (2014), let

phij be the probability that the i→ j mutation is fixed, and note that:

phij
phji

=
4shij
4shji

1− e−4shji

1− e−4shij
=

1− e4shij

1− 1

e
4sh
ij

= e4shij (2.30)
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Given equation 2.30 and the fact that M is time reversible, it follows that:

Ahij
Ahji

=
π0
j

π0
i

π0
iMijp

h
ij

π0
jMjiphji

=
π0
j

π0
i

e4shij =
π0
j

π0
i

e4Nefhj

e4Nefhi
(2.31)

Now recall that πhAh = 0 and that the rows of Ah sum to 0:∑61
k=1 π

h
kA

h
kj = πhi A

h
ij +

∑
k 6=i π

h
kA

h
kj = 0∑61

k=1 A
h
jk = Ahji +

∑
k 6=iA

h
jk = 0

(2.32)

Combining the Ahij/A
h
ji ratio in (2.31) with a similar ratio constructed from

the two sums in (2.32) yields:

πhi
Ahij
Ahji

= πhi
π0
j

π0
i

e4Nefhj

e4Nefhi
=
−
∑

k 6=i π
h
kA

h
kj

−
∑

k 6=iA
h
jk

(2.33)

Solving for πhi yields the required relation:

πhi = π0
i

(
1

π0
j e

4Nefhj

∑
k 6=i π

h
kA

h
kj∑

k 6=iA
h
jk

)
e4Nefhi ∝ π0

i e
4Nefhi (2.34)

The constraint that
∑61

i=1 π
h
i = 1 implies the proportionality constant c =∑61

i=1 π
0
i e

4Nefhi . Returning to equation (2.31):(
πhi
πhj

)
Ahij
Ahji

=

(
πhi
πhj

)
π0
j

π0
i

e4Nefhj

e4Nefhi
=

(
π0
i e

4Nefhi /c

π0
j e

4Nefhj /c

)
π0
j

π0
i

e4Nefhj

e4Nefhi
= 1 (2.35)

It follows that Ah is time-reversible.

2.5.4 Visualizing Substitution Dynamics

It section 1.1.6 it was shown that P h(t) = exp(tAh) can be expressed in

terms of the eigensystem (U,Λ) of Ah:

P h(t) = U exp(tΛ)U−1 (2.36)

It follows that P h(t) has the same eigenvectors as Ah but with eigenvalues

0, etλ2 , ..., etλ61 . Let 0 = λ1 > λ2 ≥ ... ≥ λ61 the be the eigenvalues of Ah sorted

in descending order and let 1/
√

61,u2, ...,u61 be the corresponding eigenvec-

tors. It is convenient to write P h(t) as a sum of matrices:

P h(t) =
61∑
k=1

etλkuku
T
k = 11TΠh +

61∑
k=2

etλkuku
T
k (2.37)
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where 11TΠh is a matrix whose rows are all equal to πh. Suppose i is the codon

occupying the hth site of a gene in all members of a population as represented

by a 1×61 row vector vh(0) consisting of zeros but with one in the ith position.

The probability distribution for the codons that will be fixed at the site during

the interval (0, t) is given by vh(t) = vh(0)P h(t):

vh(t) = vh(0)11TΠh + vh(0)
61∑
k=2

etλkuku
T
k = πh +

61∑
k=2

etλkuiku
T
k (2.38)

Since λk < 0 for k ∈ {2, ..., 61} it follows that limt→∞ vh(t) = πh (cf. section

1.1.6). Equation (2.38) characterizes the transient dynamic of the evolution of

the hth site as the site moves back to its optimal amino acid following fixation

to a suboptimal codon i in terms of the row vectors uTk and weights etλkuik that

diminish over time. This is the essential idea behind the McCandlish landscape

but for details surrounding the way the landscape is actually constructed.

Those details start with a Laplacian matrix as described in the next paragraph.

Following Koren (2005) let G = (V,E,W ) be any weighted graph, where

V is a set of n vertices, E a set of edges and W a set of weights. Each wij ∈
W measures the similarity of the two vertices connected by edge (i, j) ∈ E,

meaning that wij = wji. Each vertex i ∈ V has a set of neighbourhoods

defined as N(i) = {j | (i, j) ∈ E}. The degree of each vertex is given by

deg(i) =
∑

i∈N(i) wij. Assuming that every pair of distinct vertices is connected

by an edge, the elements of the Laplacian L of G are defined as follows:

Lij =

{
deg(i) if i = j

−wij if i 6= j
(2.39)

Let xT = 〈x1, ..., xn〉 and yT = 〈y1, ..., yn〉 be any pair of n × 1 vectors whose

elements (xi, yi) give the location of the ith vertex in 2-dimensions. Suppose

the objective is to represent G in 2-dimensions in such a way that pairs of

vertices that are more similar (with larger wij) tend to be closer together than

pairs of vertices that are less similar (with smaller wij). Following the criterion

specified by Koren (2005), the desired two-dimensional representation of G is

given by the pair (x,y) that minimizes the weighted sum of squared edge
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lengths:

xTLx + yTLy =
∑

(i,j)∈E

wij[(xi − xj)2 + (yi − yj)2] (2.40)

subject to the constraint that (x,y) are orthonormal. The Laplacian is sym-

metric and so has n real eigenvalues 0 = λ1 < λ2 ≤, ...,≤ λn with correspond-

ing eigenvectors 1
√
n,q2, ...,qn. It can be shown that the second and third

eigenvectors (corresponding to smallest two non-zero eigenvalues) satisfy the

minimization problem (Koren, 2005):

(q2,q3) = arg min
{
xLxT + yLyT

}
(2.41)

The graph G can therefore be depicted in 2-dimensions by placing vertices at

points {(qi2,qi3), i = 1, ..., n}.
This result was used by McCandlish (2011) to construct his site-specfic

landscapes as follows. Let q1, ...,q61 be the 61 × 1 orthonormal eigenvectors

for the transformationD1/2P h(t)D−1/2 of P h(t) with corresponding eigenvalues

1 = λ1 > λ2 ≥ ... ≥ λ61, where D1/2 = (Πh)1/2. P h(t) can be expressed in

terms of the qk as follows:

P h(t) = D−1/2
(
D1/2P h(t)D−1/2

)
D1/2

= D−1/2

(
61∑
k=1

λtkqkq
T
k

)
D1/2 (2.42)

Equation (2.38) can therefore be re-expressed in terms of the left qTkD
1/2 and

right D−1/2qk eigenvectors of P h(t), where qT1D
1/2 = πh and D−1/2q1 = 1:

vh(t) = πh + vh(0)
61∑
k=2

λtk(D
−1/2qkq

T
kD

1/2)

= πh +
61∑
k=2

λtkqik√
πhi

qTkD
1/2 (2.43)

The dynamic following fixation to the suboptimal codon i is therefore char-

acterized by the left eigenvectors qTkD
1/2 with weights λtkqik/

√
πhi . In terms

of graphical representation, McCandlish (2011) defined the alternative Lapla-

cian L = D(I − P h(t = 1)) = D(I − P ) for which wij = πhi Pij for i 6= j and
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deg(i) = πhi (1−Pii) =
∑

j 6=i π
h
i Pij. It can be shown that the right eigenvectors

of P h(t) are the generalized right eigenvectors of the L = D(I − P ) but with

eigenvalues 0 = 1− λ1 < 1− λ2 ≤ ...,≤ 1− λ61 (McCandlish, 2011):

LD−1/2qk = D(I − P )D−1/2qk (2.44)

= DD−1/2qk −DPD−1/2qk (2.45)

= D1/2qk − λkD1/2qk (2.46)

= (1− λk)D(D−1/2qk) (2.47)

The criterion in equation (2.41) is therefore satisfied by

(x,y) = (D−1/2q2, D
−1/2q3).

An additional innovation proposed by McCandlish (2011) was to include scal-

ing factors to make (x,y) =
(
D−1/2q2/

√
1− λ2, D

−1/2q3/
√

1− λ3

)
to make

the length of an edge (i, j) ∈ E approximately proportional to the expected

time it will take for the population to move from i to j and back again to i

(McCandlish, 2011).



Chapter 3

Phenomenological Load on Model Parameters can lead

to False Biological Conclusions.

3.1 Introduction

There are two ways to quantitatively describe a natural process. The phe-

nomenological approach is to summarize relationships between variables with

little or no reference to causation. The alternative is to specify a model based

on known or hypothetical mechanistic links between variables that explain

their relationships. For example, although Newton’s law of universal gravita-

tion provides a highly accurate description of the apparent force of attraction

between objects, it does so without explaining the cause of that attraction.

Newton’s law is therefore phenomenological. Einstein, by contrast, described

gravitation as the result of the causal process of mass generating curvature in

space-time. Einstein’s general theory of relativity is therefore comparatively

mechanistic. Highly complex biological processes pose a particular challenge

to modellers. On the one hand, there is the natural desire to build mechanistic

models that capture as much of the complexity and richness of a process as

possible. On the other hand, limitations in information and computational

resources often make simplifying assumptions unavoidable, thereby forcing a

more phenomenological approach. This tension often results in models that

include both phenomenological and mechanistic components together under

the same framework (Rodrigue and Philippe, 2010).

The defining feature of a parameter characterized as mechanistic is that it

is interpretatable with respect to some real data generating process (Liberles

et al., 2013). This suggests that a parameter can be thought of as being

mechanistic only to the extent that its interpretation is valid, meaning that

it will account for variations in the data generated only by the processes it

was intended to represent. Consider the two components of a typical codon

68
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substitution model (CSM), one for neutral substitution processes (the DNA

submodel) and the other for the effects of selection at the amino acid level

(the selection submodel). The DNA submodel used throughout this thesis is:

Mij ∝


κstΠik 6=jkπ

∗
jk

if s = 1

ακstΠik 6=jkπ
∗
jk

if s = 2

βκstΠik 6=jkπ
∗
jk

if s = 3

(3.1)

To review, equation (3.1) applies to any pair of codons (i, j) that differ by s

nucleotides st of which are transversions, where the π∗jk are position-specific

nucleotide freqencies, κ the transition bias, and α and β rate parameters that

account for pairs of codons that differ by s = 2 or s = 3 nucleotides. These

parameters are often thought of as mechanistic (e.g., Miyazawa, 2011; Zaheri

et al., 2014) despite the lack of explicit connections to mechanism. The param-

eter for transition bias κ, for example, is not linked to any specific mechanism

that promotes transitions over transversions. Instead, it is interpreted as ac-

counting for all mechanisms that do so. It would seem that this is valid in part

because the neutral substitution process is considered to be constant across

sites, making the maximum likelihood estimate κ̂ unambiguously interpretable

at any particular site in the alignment1. By contrast, consider a selection sub-

model that includes a single rate ratio ω. This parameter might be contrued as

mechanistic since it is correctly interpreted as accounting for all mechanisms

that might impact the dN/dS rate ratio. However, ω̂ has little meaning when

applied to any individual site because it is an average of a process that is in

fact heterogeneous across sites and over time. It is therefore incorrect to inter-

pret ω̂ in the context of the mechanisms behind the evolution of any particular

site. The rate ratio ω in a CSM is therefore seldom if ever considered to be

mechanistic.

Under the maximum likelihood (ML) framework the likelihood of a set of

model parameters such as ω and the vector of branch lengths t is expressed

in the form of a likelihood function L(ω, t | X, τ), where X represents the

1Selection effects in fact undermine the intended mechanistic interpretation of κ because
its estimate is influenced not only by synonymous substitutions that are assumed to be
selectively neutral but also by nonsynonymous substitutions some of which may have been
fixed by positive selection.
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alignment and τ the assumed topology of the tree. The maximum likelihood

estimate (MLE) for (ω, t) is the vector (ω̂, t̂) that maximizes the likelihood

L(ω̂, t̂ | X, τ) of the data. A key feature of the ML framework is that the

likelihood of the data always increases when a new parameter is added to the

fitted model. For example, L(ω̂, t̂, ψ̂ | X, τ) must theoretically be greater than

L(ω̂, t̂ | X, τ). The new parameter ψ is said to have improved the fit of the

model in proportion to the size of the increase in likelihood it engendered,

and is said to be statistically significant if the increase is larger than some

prespecified threshold. Under this framework it is possible to find that ψ is

statistically significant even if the process it represents did not actually play

a role in the generation of the data. Any mechanistic interpretation assigned

to ψ can thereby be invalidated. The risk of this is in part a function of

differences between the fitted model and the actual data-generating process.

All CSMs are misspecified, meaning that they do not match the true gener-

ating process. The substitution rate matrix Q(ω), for example, characterizes

the selection process with one rate ratio ω for all sites and branches. It is

underspecified because it does not account for the type of heterogeneity in the

selection process typically observed in real data. In general, if the selection

submodel of a CSM fails to absorb a substantial proportion of the variation

in site patterns due to selection effects, some of this variation might be inap-

propriately absorbed by parameters of the DNA submodel. This is especially

likely to occur when a parameter of the DNA submodel represents a process

that is counfounded with selection effects. Two process are confounded if they

produce similar patterns or “signatures” in the data. It was shown in Chapter

2 that heterotachy can arise by episodic movement away from and back to the

optimal amino acid for a given site provided neither selection nor drift dom-

inates. This process of non-adaptive shifting balance would be confounded

with any other process that produces similar variations in rate ratio over time,

such as episodic adaptive changes in site-specific landscapes over time.

The concepts of percent reduction in deviance (PRD) and phenomenolog-

ical load (PL) are introduced in this chapter to provide a means to assess the

impact of confounding on the MLE of a model parameter. Deviance is the
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difference between the maximum log-likelihood (LL) of a given CSM and the

maximum log-likelihood of the saturated model (Ms) when both are fitted to

the same alignment. The saturated model, analogous to a regression model

in which there are as many predictor variables as observations, will always

provide the largest LL of any CSM. The difference between this and the LL

of M0 provides a baseline deviance score for comparison with differences be-

tween other pairs of models. The deviance under a model M can be reduced

by the addition of a new parameter ψ. The PRD is the decrease in deviance

the inclusion of ψ engenders normalized by the baseline score. A large PRD

is generally considered to indicate that the new parameter improved model

fit. However, better fit does not imply a better model. If ψ has a mechanistic

interpretation, and if the process it represents either did not actually occur

when the data was generated or is confounded with other processes, then its

mechanistic interpretation is invalid and its PRD is equated to PL. A large

PL is a concern because it not only invalidates the mechanistic interpretation

of ψ̂, but also increases the likelihood that ψ will found to be statistically

significant. Under this scenario, the model M with ψ will provide a better fit,

but might also lead to false conclusions about the true data generating process

if its mechanistic interpretation is taken at face value.

The analyses in this chapter are focused on detection of the fixation of si-

multaneous double and triple (DT) mutations. The majority of CSMs assume

that sites evolve by a series of single nucleotide substitutions, despite evidence

for fixation of DT mutations (Whelan and Goldman, 2004; Kosiol et al., 2007;

Tamuri et al., 2012). Several authors have argued that it would be beneficial

to add a few extra parameters to the DNA submodel of any standard CSM

to account for DT mutations (e.g., Miyazawa, 2011; Zaheri et al., 2014). To

investigate the utility of this recommendation, DT parameters (α and β in

equation 1.24) were added to a variety of CSMs. The main study in this chap-

ter illustrates the propensity of these models to detect DT substitutions in

alignments generated with single nucleotide substitutions only. Two smaller

studies were also conducted, including an analysis of the impact of PL on a
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parameter intended to measure changes in the intensity of selection (the RE-

LAX model of Wertheim et al., 2014), and an analysis of the impact of PL

on parameters intended to account for variations in the synonymous substitu-

tion rate (dS) across sites (Kosakovsky Pond and Muse, 2005). The results

of all three analyses provide evidence for the universal applicability of the PL

concept.

3.2 New Approaches

3.2.1 Modeling a Mixture of Static and Switching Sites: RaMoSS

Many commonly used CSMs assume either that rate ratios vary across sites

but not time (e.g., the M-series models of Yang et al., 2000a), or that temporal

variations occur at all sites (e.g., the branch-site models of Guindon et al.,

2004; Kosakovsky Pond et al., 2011; Murrell et al., 2015). One exception is the

branch-site model of Yang and Nielsen (2002), which allows some sites to evolve

under one rate ratio across the whole tree, and others to switch from a stringent

or neutral selection regime to positive selection at a specific location in the tree.

The location of the switch, based on prior information, is treated as a fixed

effect. Although this approach is well suited for identifying episodic directional

selection on a specific branch, it is inappropriate for detecting random site-

specific variations in rate ratio. Since real alignments might include both static

and switching sites, I propose a new model, RaMoSS (for Random Mixture

of Static and Switching sites), that combines the standard M-series model

M3(k = 2) with the covarion-like model CLM3(k = 2) (cf., Galtier, 2001;

Guindon et al., 2004). Specifically, RaMoSS mixes with proportion pM3 one

selection submodel with two rate-ratio categories ω1 < ω2 that are constant

over the entire tree with a second selection submodel with proportion pCLM3 =

1 − pM3 under which sites switch randomly in time between ω′1 < ω′2 at an

average rate of δ switches per unit branch length.



73

3.2.2 Quantifying Phenomenological Load

Phenomenological load can be quantified using the concept of statistical

deviance. Consider the likelihood of a vector of parameters θM for model

M given an alignment X and topology τ under the usual assumption of site

independence:

LM(θM | X, τ) =
n∏
h=1

LM(θM | xh, τ) (3.2)

It is standard practice to apply a natural-log transform to (3.2) to obtain the

log-likelihood (LL):

LLM(θM | X, τ) = ln{LM(θM | X, τ)} =
k∑
i=1

yi ln{LM(θM | xi, τ)} (3.3)

Here xi ∈ {x1, ...,xk} represent the unique site patterns in the alignment,

each of which occurs yi times. The objective of the ML approach is to find

the vector θ̂M that maximizes LLM or equivalently minimizes the deviance of

the fitted model. Deviance is defined as the difference between the LL of the

fitted model compared to the LL of the most general iid model (a.k.a., the

saturated model, Ms). The MLE for the probability of a site pattern xi under

the saturated model can be shown to be its observed relative frequency yi/n.

Hence, the LL for the saturated model is:

LLMs(X) =
k∑
i=1

yi ln(yi/n) (3.4)

Any CSM fitted to an N-taxon alignment can be thought of as a multinomial

distribution for the 60N possible site patterns (60 for mammalian mitochondrial

DNA, 61 for the standard genetic code). Ms is the unique multinomial distri-

bution defined by the vector of observed relative frequencies (y1/n, ..., yk/n).

In other words, the saturated model is specified by the empirical site-pattern

distribution of X. Because it takes none of the mechanisms of mutation or se-

lection into account, ignores the phylogenetic relationships between sequences

(i.e., is independent of τ), and excludes the possibility of site patterns that

were not actually observed (i.e., the probability of a site pattern that was
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not observed is assumed to be zero), Ms can be construed as the maximally

phenomenological explanation of X (e.g., none of its parameters can be inter-

preted in terms of real data-generating processes). The salient feature of (3.4)

is that it is always larger than the LL for any CSM. It is in this sense that

Ms is saturated, akin to a regression model with the same number of predic-

tor variables as observations. Ms therefore provides a natural benchmark for

model comparisons.

The selection submodel under M0 consists of one rate ratio for all sites,

similar to a regression model that fits an intercept only. The deviance under

M0 is defined as:

DM0 = 2{LLMs(X)− LLM0(θ̂M0 | X, τ)} (3.5)

Equation (3.5) provides a baseline with which to compare changes in deviance

for other model contrasts. For example, suppose Mψ is the same model as

M but with one extra parameter ψ. The statistical significance of this new

parameter can be assessed by conducting a hypothesis test based on the log-

likelihood ratio (LLR) for the M vs Mψ contrast:

LLR = DM −DMψ
= 2{LLMψ

(θ̂Mψ
| X, τ)− LLM(θ̂M | X, τ)} (3.6)

Equation (3.6) is an absolute measure of the decrease in deviance caused by

the addition of ψ to M. An alternative relative measure is what I call the

percent reduction in deviance (PRD):

PRD(ψ̂) =
DM −DMψ

DM0

× 100% (3.7)

This quantity can be construed as reflecting the strength of the signature

for the process represented by ψ combined with random error and possibly

PL. However, if an alignment is generated without the process represented

by ψ, then PRD(ψ̂) is due to phenomenological load and random error only.

The notation PRD(ψ̂) is replaced by PL(ψ̂) when this is the case. Hence,

the notation PL(ψ̂) is used when ψ is estimated from alignments generated

in silico without the process ψ represents, whereas PRD(ψ̂) is used when ψ

is estimated from a real alignment for which the true generating process is

unknown.
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3.2.3 Assessing the Realism of Alignments Simulated under MS

The standard way to assess the sensitivity of a CSM to misspecification

has been to fit the model to alignments simulated using another, perhaps

more complex, CSM (Anisimova et al., 2001, 2002; Wong et al., 2004; Zhang,

2004; Kosakovsky Pond and Frost, 2005; Yang et al., 2005; Zhang et al., 2005;

Yang and dos Reis, 2011; Kosakovsky Pond et al., 2011; Lu and Guindon,

2013). The problem with this approach is that alignments generated under

even a relatively complex CSM are not misspecified in the same way as real

data. Off-the-shelf CSMs make the unrealistic assumption that all sites evolve

under the same vector of stationary frequencies, and assume that all nonsyn-

onymous substitutions have the same probability of fixation for a given rate

ratio. These assumptions preclude the generation of realistic levels of variation

in rate ratio across sites and over time, and have until now prevented recogni-

tion of the problem of PL. The MS framework of Halpern and Bruno (1998)

introduced in Chapter 1 provides a way to evolve a codon site over a tree

that is consistent with the dynamics of an ideal Wright-Fisher population on

a static fitness landscape. Under this framework, each site can be assigned its

own vector of fitness coefficients. Amino acid proclivities and the stringency

of selection reflected by the average rate ratio at a site can therefore be made

to vary across sites in a way that is consistent with a real alignment. Align-

ments generated under MS can also exhibit heterotachy, which may comprise

a significant proportion of the total variation in a real alignment (Lopez et al.,

2002; Jones et al., 2017). MS therefore seems to be the ideal framework for

generating realistic data with which to assess the reliability of a CSM.

The degree to which an alignment generated under MS mimics real data

is in large part dependent on how site-specific fitness coefficients are specified.

The most direct approach is to make use of site-specific amino acid frequencies

derived from real data. For example, Spielman and Wilke (2016) estimated

vectors of site-specific fitness coefficients from frequencies observed in struc-

turally curated alignments of at least 150 taxa. These were then fed into

Pyvolve (Spielman and Wilke, 2015a), among the first open-source software

packages with the option to evolve sites using the MS framework, to produce
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simulations of the original alignments. To explore how model misspecification

might have influenced the analysis of the 20-taxon alignment of mammalian

mtDNA presented in this chapter it was necessary to simulate alignments con-

sistent with those data. Unfortunately, the methods presented in Spielman

and Wilke (2016) are inappropriate for such a limited number of taxa. A new

method, called MSm(ammalian)mtDNA, was therefore devised to generate

plausible vectors of site-specific fitness coefficients. See Methods for details.

More important than the new method of simulation is the way it was as-

sessed for realism. MSmmtDNA was validated by comparing distributions of

summary statistics from simulated alignments to those of the real mtDNA

alignment. The summary statistics considered were (i) the distribution of

the number of amino acids per codon site, (ii) the overall amino acid and

codon frequencies, and (iii) the frequency with which each pair of amino

acids occur in the same site pattern. In addition, the expected distribution of

simulated scaled selection coefficients for all mutations, all substitutions, all

nonsynonymous mutations and all nonsyonymous substitutions generated un-

der MSmmtDNA were compared to their empirical counterparts reported by

Tamuri et al. (2012). The choice to use an alignment of mammalian mtDNA

was largely motivated by the availability of these empirical distributions, which

were derived from a concatenated alignment of 12 genes (3598 codon sites) from

244 mammal species.
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3.3 Results

3.3.1 Putative DT Mutations are Detectable in a Real Alignment

African

chimpanzee

bonobo

gorilla

orangutan

Sumatran orangutan

common gibbon

harbor seal

grey seal

cat

horse

Indian rhinoceros

cow

fin whale

blue whale

rat

mouse

wallaroo

opossum

platypus

Figure 3.1: The phylogeny for the concatenation of 12 H-strand mitochondrial DNA
sequences (3331 codon sites). The data is from 20 mammalian species as distributed by
the PAML software package Yang (2007). The topology is that reported in Cao et al.
(1998). Branch lengths (expected number of single nucleotide substitutions per codon) were
estimated using RaMoSSwDT (the best fitting of the models used in this study). The scale
on the horizontal axis is the expected number of single nucleotide substitutions per codon.

My objective was to use DT as a case study to test the hypothesis that an

underspecified selection submodel combined with confounding can lead to false

biological conclusions due to PL. The first step was to identify DT in a real

alignment. To that purpose, models M0, M3(k = 2), CLM3(k = 2), and the

new model RaMoSS, as well as their counterpart models that allow fixation

of DT mutations, were fitted to an alignment of 20 mammalian mtDNA se-

quences. The tree with branch lengths estimated under the best fitting model

(RaMoSSwDT) is depicted in Figure 3.1. Table 3.1 lists the LL and param-

eter estimates for each model. Table 3.2 shows the results for various model

contrasts.
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Model LL rate ratios proportions δ % S,D,T

Ms -26,752

M0 -92,006 0.04

M3 -89,162 0.01,0.15 p̂1 = 0.71

CLM3 -88,880 0.00,0.21 p̂1 = 0.77 0.06

RaMoSS -88,677 0.00,0.08 p̂M3 = 0.73
0.01,0.44 p̂1 = 0.80 0.21

p̂′1 = 0.66

M0wDT -91,280 0.03 76.4,21.5,2.1

M3wDT -88,930 0.01,0.12 p̂1 = 0.71 83.0,16.7,0.3

CLM3wDT -88,786 0.00,0.16 p̂1 = 0.75 0.06 86.5,13.5,0.0

RaMoSSwDT -88,635 0.00,0.08 p̂M3 = 0.68 90.3,9.7,0.0
0.02,0.34 p̂1 = 0.80 0.12

p̂′1 = 0.73

Table 3.1: Parameter estimated for the real data. Log-likelihood (LL) and parameter
estimates for each model fitted to the mammalian mtDNA alignment shown in Figure 3.1.

The LLR was statistically significant for M0 vs M3(k = 2), M3(k = 2)

vs CLM3(k = 2), and CLM3(k = 2) vs RaMoSS (Table 3.2). Collectively,

these contrasts provide evidence for variation in rate ratio across sites and

branches, and support the existence of both static and temporally dynamic

sites within the alignment. The four contrasts of the form model-M vs model-

MwDT were also statistically significant, and therefore apparently detected DT

substitutions. However, the signal for DT became weaker with each increment

in the complexity (i.e., number of parameters) of the selection submodel. The

proportion of DT substitutions was inferred to be 23.6% under the simplest

model contrast M0 vs M0wDT. Accounting for variations in rate ratio across

sites (M3 vs M3wDT) reduced this to 17.0%. By allowing sites to switch rate

ratio (CLM3 vs CLM3wDT), and allowing a mixture of static and switching

sites (RaMoSS vs RaMoSSwDT), the DT proportion was further reduced to

13.5% and 9.7%, respectively. Similarly, the PRD(α̂, β̂) decreased from 1.11%

for the M0 vs M0wDT contrast to 0.36%, 0.14%, and 0.06% under M3(k =

2) vs M3wDT, CLM3(k = 2) vs CLM3wDT and RaMoSS vs RaMoSSwDT,

respectively.
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Contrast LLR crit.val. Detected PRD

M0 vs M3(k = 2) 5668 5.99 yes 4.36%

M3 vs CLM3(k = 2) 564 2.71 yes 0.43%

CLM3 vs RaMoSS 406 9.49 yes 0.31%

M0 vs M0wDT 1452 5.99 yes 1.11%

M3 vs M3wDT 464 5.99 yes 0.36%

CLM3 vs CLM3wDT 188 5.99 yes 0.14%

RaMoSS vs RaMoSSwDT 84 5.99 yes 0.06%

Table 3.2: Model contrasts for the real data. Results for model contrasts applied to the
mammalian mtDNA alignment shown in Figure 3.1.

An investigation was conducted to determine which site patterns con-

tributed the most to the 42-point difference in LL for RaMoSS (LL = -88,677)

compared to RaMoSSwDT (LL = -88,635). Of the 3331 sites patterns, 83 were

invariant, 25 had nonsynonymous differences only, 1730 had synonymous dif-

ferences only, and 1493 were mixed with both synonymous and nonsynonymous

differences. The contribution of each of these site-pattern categories to the to-

tal LL under RaMoSS and RaMoSSwDT is listed in Table 3.3. RaMoSSwDT

provided a slightly better fit to the 2.49% of site patterns that were invariant.

This is because invariant sites become less likely as branch lengths increase,

and RaMoSS produced larger branch lengths than RaMoSSwDT. These sites

accounted for only 3 the total difference of 42 LL points. Less than 1% of all

site patterns had nonsynonymous differences only. RaMoSSwDT fitted these

sites slightly better as expected given that allowing DT substitutions increases

the probability that a nonsynonymous substitution will occur. But since there

were so few site patterns in this category, the total contribution was only 1

out of 42 LL points. Approximately 52% of site patterns had synonymous

differences only. RaMoSSwDT provided a slightly worse fit to these sites.

Most synonymous differences can be explained by a single nucleotide substi-

tution at the third codon position. Allowing DT substitutions, most of which

are nonsynonymous, apparently reduces the probability of a site pattern with

synonymous differences only. This effect was very small however, contributing

a difference of only -1 LL points, despite the large number of site patterns

in this category. Approximately 45% of sites had mixed site patterns, and

these accounted for 39 out of the 42 LL points difference between RaMoSS
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and RaMoSSwDT. This demonstrates that mixed site patterns are more likely

when the model permits DT. Critically, mixed site patterns are also more likely

to exhibit heterotachy. Of the 297 site patterns with a posterior probability of

switching > 0.80 (computed using equation 3.11 in Methods), 289 had mixed

site patterns. The remaining 8 were among the site patterns with nonsynony-

mous differences only. This suggests that episodic but rare DT substitutions

can be confounded with non-adaptive shifting balance since both processes

can produce signatures consistent with heterotachy.

site-pattern cat. number (%) ∆LL Post. > 0.80

invariant 83 (2.49) 3 0

nonsynonymous 25 (0.75) 1 8

synonymous 1730 (51.94) -1 0

mixed 1493 (44.82) 39 289

TOTAL 3331 42 297

Table 3.3: Site pattern analysis. Each row reports the number (and %) of sites in the
corresponding site-pattern category, the total change in LL associated with each category,
and the number of sites for which the posterior probability of switching was > 0.80.

A heuristic for inferring DT substitutions is to examine sites occupied by

serine only (Averof et al., 2000). Codon aliases for serine include TCN, where N

is any nucleotide, and AGY, where Y is a pyrimidine. Minimum paths between

TCN and AGY by single nucleotide steps require substitution to cystine or

threonine. But these amino acids are physicochemically different than serine,

and can be assumed to be less fit than serine at a site observed to be occupied

by serine only. The existence of serine sites with a mix of TCN and AGY

would therefore suggest that some double mutations of the form TC ↔ AG

were fixed. Of the 112 serine sites in the real mtDNA alignment, one site was

occupied by a single alias for serine, 19 were occupied by a combination of AGT

and AGC, and 92 were occupied by a combination of TCC, TCT, TCA and

TCG. Aliases from the AGY and TCN groups did not appear together in any

of the sites. This result, combined with the observed decrease in the strength

of the evidence for DT with each incremental increase in the complexity of

the selection submodel, casts doubt on the veracity of the detection of DT

substitutions in the real mtDNA under RaMoSS vs RaMoSSwDT. Simulation

studies were therefore conducted to investigate the possibility of false detection
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of DT, as reported in the next section.

3.3.2 The Extent to which DT Parameters Carry PL is Related

to Model Misspecification

There is substantial heterogeneity in selection pressure across sites within

the mammalian mitochondrial genome (Garvin et al., 2015). It is therefore

likely that the single rate ratio of M0 provides a highly inadequate summary of

variations due to selection effects in the real mtDNA alignment. The analysis

reported in the previous section revealed a substantial PRD for the M0 vs

M0wDT contrast (1.11% PRD, corresponding to a highly significant LLR of

1452) and a relatively large estimated proportion of DT substitutions (23.6%).

One would expect a reduction in both PRD and %DT with an increase in the

complexity of the selection submodel if the analysis was influenced by PL.

This is exactly what was observed. RaMoSS vs RaMoSSwDT resulted in a

much smaller PRD (only 0.06%) and indicated a smaller proportion of DT

substitutions (9.7%). However, even the selection submodel under RaMoSS is

likely to be underspecified compared to the actual data-generating process.

Three simulation studies were conducted to assess the relationship between

model misspecification and the PL detected by the four M vs MwDT contrasts.

Each study was conducted using a different alignment generating method,

none of which included DT substitutions. Alignments were generated under

RaMoSS in the first simulation. Hence, this study covered the scenario under

which the selection submodel of the RaMoSS vs RaMoSSwDT contrast was not

misspecified. Alignments were generated under a substantially more complex

CSM in the second simulation in which each site was assigned an independent

rate ratio ωh and evolved under Q(ωh). Alignments were therefore generated

with more variation in rate ratio across sites than accounted for by any of

the M vs MwDT contrasts. Alignments were generated under MSmmtDNA

in the third simulation study to mimic variations in rate ratio across sites and

over time comparable (as will be shown) to the real mtDNA alignment. The

analyses of these simulations revealed that, although PL was readily identified
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in all simulation studies under the contrast with the simplest selection sub-

model (M0 vs M0wDT), it was only detected under the most complex contrast

(RaMoSS vs RaMoSSwDT) in alignments generated using the more realistic

MSmmtDNA generating model.

3.3.3 Simulation Study 1: MLEs for the DT Process Carry

Substantial PL when the Selection Submodel is

Underspecified, but False Conclusions are Avoided when

the Selection Submodel is Correctly Specified

Contrast Testing For ... median LLR Detected

M0 vs M3 var. across sites 171 98

M3 vs CLM3 var. across time 34.0 99

CLM3 vs RaMoSS static and switching sites 19.6 95

M0 vs M0wDT DT mutations 29.7 99

M3 vs M3wDT DT mutations 5.69 49

CLM3 vs CLM3wDT DT mutations 0.01 3

RaMoSS vs RaMoSSwDT DT mutations 0.00 0

Table 3.4: Simulation 1 Results. Median values for log-likelihood ratios (LLR) and the
number of times DT was detected from 100 alignments generated under RaMoSS with
α = β = 0.

In the first simulation study, one-hundred 300-codon alignments were gen-

erated on the tree depicted in Figure 3.1 using RaMoSS as the generating

model. A starting sequence was constructed by selecting codons in proportion

to their empirical frequencies estimated from the real mtDNA. All alignments

were generated starting with this same sequence. Parameters for the selec-

tion submodel (including ω1, ω2, p1, ω
′
1, ω

′
2, p
′
1, pM3 and δ) were set to values

estimated from the real mtDNA alignment using RaMoSSwDT (i.e., the best

fitting model; see Table 3.1 for parameter values). Similarly, parameters for

the DNA submodel, including κ and position-specific nucleotide frequencies,

were set to values estimated from the real alignment, except that α and β were

set to zero to exclude DT substitutions. Table 3.4 shows median results for the

various likelihood ratios tests (see Appendix for median parameter estimates).

The contrast with the simplest selection submodel (M0 vs M0wDT) in-

correctly rejected the null hypothesis and inferred DT mutations in almost all
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trials (99/100). Improving the selection submodel by accounting for variations

in rate ratio across sites (M3 vs M3wDT) yielded a substantial reduction in the

false positive rate (49/100). Accounting for heterotachy (CLM3 vs CLM3wDT

and RaMoSS vs RaMoSSwDT) further reduced the number of false positives

to 3/100 and 0/100 respectively. RaMoSS provided the best fit in all trials,

and produced median parameter estimates similar to their generating val-

ues: ω̂1 = 0.00 (generating ω1 = 0.00), ω̂2 = 0.03 (0.08), p̂1 = 0.86 (0.80),

ω̂′1 = 0.01 (0.01), ω̂′2 = 0.44 (0.44), p̂′1 = 0.88 (0.66), p̂M3 = 0.72 (0.73) and

δ̂ = 0.17 (0.21). It was no surprise to find that RaMoSS produced reliable

parameter estimates, and that RaMoSS vs RaMoSSwDT did not falsely de-

tect the fixation of DT mutations, since RaMoSS was an exact match to the

generating process. However, it was interesting to find that the MLEs α̂ and

β̂ for the DT process carry substantial PL when the selection submodel was

underspecified, as indicated by the high false detection rate, and that DT was

only detected by the two models that do not account for heterotachy (M0 and

M3). This demonstrates that random variations in site-specific rate ratios,

produced in this simulation study by the CLM3(k = 2) component of the gen-

erating model, can create false signal for DT substitutions when heterotachy

is not accounted for by the selection submodel.

3.3.4 Simulation Study 2: Adding Complexity to the Selection

Submodel Reduces PL even when the Submodel is

Substantially Underspecified

Contrast Testing For ... median LLR Detected

M0 vs M3 var. across sites 867 100

M3 vs CLM3 var. across time 5.88 75

CLM3 vs RaMoSS static and switching sites 62.9 98

M0 vs M0wDT DT mutations 63.3 100

M3 vs M3wDT DT mutations 1.03 10

CLM3 vs CLM3wDT DT mutations 0.20 3

RaMoSS vs RaMoSSwDT DT mutations 0.01 5

Table 3.5: Simulation 2 Results. Median values for log-likelihood ratios (LLR) and the
number of times DT was detected from 100 alignments generated under M3(k = n) with
α = β = 0.
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In the second simulation study, one-hundred 300-codon alignments were

generated on the tree depicted in Figure 3.1 using M3(k = n) as the generating

model (where n is the number of codon sites). The objective was to produce

the same level of variation in rate ratio across sites as in the real mtDNA but

without heterotachy. First, a vector of codon fitness coefficients fh was drawn

for each site using the MSmmtDNA model. The MS rate matrix Ah was then

constructed with α = β = 0 and used to determine the expected rate ratio for

the site (from equation 2.10):

ωh =

∑
(i,j) π

h
i A

h
ij`N∑

(i,j) π
h
iMij`N

(3.8)

The rate matrix Q(ωh) for the site-specific generating model was then con-

structed. Note that the rate ratio at a site evolving under Q(ωh) is always

ωh regardless of the incumbent codon. An alignment generated using the set

of Q(ω1), ..., Q(ωn) will therefore have the same level of variation in the ex-

pected rate ratio across sites as an alignment generated using the Ah (e.g.,

using MSmmtDNA), but without heterotachy.

Table 3.5 shows median results for the various likelihood ratios tests (see

Appendix for median parameter estimates). As expected, the M0 vs M3(k = 2)

contrast detected substantial signal for variations in rate ratio across sites in all

trials. Quite unexpected was the result that the M3(k = 2) vs CLM3(k = 2)

contrast implied signal for heterotachy in 75/100 trials. This is in apprent

contradiction to the design of the generating process, which precluded hetero-

tachy. However, the signal for changes in rate ratio over time was relatively

weak: the median switching rate was only δ̂ = 0.02 or one switch per 50 sin-

gle nucleotide substitutions. Furthermore, the median LLR for M3(k = 2)

vs CLM3(k = 2) was only 5.88 (compared to the critical value of 2.71 for a

5% test) with a corresponding p-value of 0.008. Given that CLM3(k = 2) is

equivalent to M3(k = 2) when δ = 0, these results are not entirely inconsistent

with sites evolving under fixed rate ratios. Nevertheless, they seem to indicate

that δ̂ carried some PL in three-quarters of the trials. The CLM3(k = 2) vs

RaMoSS contrast similarly implied a fraction of sites with signal for hetero-

tachy. The LLR for this contrast was significant in 98/100 trials (median LLR
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= 62.9), but with a very small switching rate (δ̂ = 0.00). RaMoSS is the same

as M3(k = 4) when δ = 0, so in this case it seems that RaMoSS provided

the better fit not because of PL on δ̂, but because four ω-categories provided

a significantly better fit than two, reflecting the level of variation in ω across

sites under the M3(k=n) generating process.

Turning to the tests for fixation of DT mutations, the contrast involving

the simplest selection submodel (M0 vs M0wDT) incorrectly inferred DT mu-

tations in all 100 trials (Table 3.5). Again, improving the selection submodel

substantially reduced the false positive rate. Even limited accommodation of

variations in rate ratio across sites using M3(k = 2) (e.g., with only two rate-

ratio categories) reduced the false positive rate to 10/100. This was reduced

further to only 3/100 and 5/100 by CLM3 vs CLM3wDT and RaMoSS vs

RaMoSSwDT. These are consistent with the 5% level of significance of the

likelihood ratio test, and seem to imply that both CLM3 vs CLM3wDT and

RaMoSS vs RaMoSSwDT might reliably fail to detect the fixation of DT mu-

tations when they do not occur. It must be remembered however that the

generating model M3(k = n) is unrealistic, and in particular does not sim-

ulate heterotachy. A more rigorous test of the reliability of the RaMoSS vs

RaMoSSwDT contrast requires use of a more realistic alignment-generating

process.

3.3.5 Simulation Study 3: RaMoSS vs RaMoSSwDT is Unreliable

when Fitted to Data Generated using MSmmtDNA

Contrast Testing For ... median LLR Detected

M0 vs M3 var. across sites 767 100

M3 vs CLM3 var. across time 30.6 100

CLM3 vs RaMoSS static and switching sites 57.1 100

M0 vs M0wDT DT mutations 147 100

M3 vs M3wDT DT mutations 25.7 97

CLM3 vs CLM3wDT DT mutations 12.3 76

RaMoSS vs RaMoSSwDT DT mutations 4.34 41

Table 3.6: Simulation 3 Results. Median values for log-likelihood ratios (LLR) and the
number of times DT was detected from 100 alignments generated under MSmmtDNA with
α = β = 0.
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The M3(k = n) generating model reflects the traditional approach of test-

ing the impact of model misspecification by simulating alignments using a

more complex CSM. However, the absence of heterotachy means that the sim-

ulated distribution of site patterns can only be unrealistic compared to the

real mtDNA alignment. In the third simulation study, one-hundred 300-codon

alignments were generated on the tree depicted in Figure 3.1 using the generat-

ing process called MSmmtDNA, which was formulated to produce alignments

that match the real mtDNA alignment as closely as possible. The median value

of parameters estimated by fitting RaMoSS to the simulated alignments were:

ω̂1 = 0.00 (compared to ω̂1 = 0.00 for the real mtDNA) ω̂2 = 0.12 (0.08),

p̂1 = 0.82 (0.80), ω̂′1 = 0.00 (0.01), ω̂′2 = 0.56 (0.44), p̂′1 = 0.60 (0.66), p̂M3 =

0.80 (0.73) and δ̂ = 0.20 (0.21) . These results suggest a substantial degree

of “phenomenological similarity” between the real and simulated alignments.

Note that this was not by design, since the MLEs derived from the real mtDNA

alignment were not used in the formulation of MSmmtDNA. Instead, the sim-

ilarity was a consequence of the method used to generate site-specific fitness

coefficients (see Methods). Further comparisons between the real alignment

and those simulated using MSmmtDNA appear in the next section. The re-

mainder of this section reports the results of model fits.

The impact of PL when the models were fitted to alignments generated

under MSmmtDNA is apparent in Table 3.6. The contrast involving the sim-

plest selection submodel (M0 vs M0wDT) incorrectly inferred DT in all 100

trials, as might be expected given previous results. However, unlike the previ-

ous two simulation studies, accounting for variations in rate ratio across sites

(M3 vs M3wDT) had negligible impact on the false positive rate (97/100).

Although accounting for heterotachy (CLM3 vs CLM3wDT and RaMoSS vs

RaMoSSwDT) reduced the number of false positives (to 76/100 and 41/100,

respectively), the lowest rate was still too large given the 5% level of sig-

nificance of the test. It seems that the selection submodel for RaMoSS is

underspecified with respect to the MSmmtDNA generating process, with the

result that substantial PL was conferred to α̂ and β̂ in a large number of trials.

It now seems plausible that the detection of DT in the real mtDNA was a
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false positive due to PL. If it is true that MSmmtDNA produces alignments

consistent with the real data, then it can be used to estimate the distribution

of PL(α̂, β̂) for each of the M vs MwDT model contrasts for comparison with

results from the real alignment. To this end, MSmmtDNA was used to generate

50 full-scale alignments, each with 3331 codon sites without DT. Each model

contrast was fitted to these alignments to produce distributions of PRD(α̂, β̂).

Because α and β were set to zero in the generating process, PRD can be

equated to PL. The resulting distributions are shown as boxplots in Figure

3.2. The previously described decline in the PRD(α̂, β̂) obtained by fitting

the contrasts to the real mtDNA (last column of Table 3.2) is reflected by a

similar decline in the median PL(α̂, β̂) with each incremental increase in the

complexity of the selection submodel.

The diamond in each boxplot of Figure 3.2 marks the PRD(α̂, β̂) for the

corresponding contrast fitted to the real mtDNA alignment. This value falls

just within the upper tail of the estimated distribution of PL(α̂, β̂) for the

RaMoSS vs RaMoSSwDT contrast (also see first boxplot in Figure 3.4). For

comparison, a single full-sized alignment was generated using MSmmtDNA

with α and β set to the values estimated by RaMoSSwDT fitted to the real

mtDNA (e.g., with 9.7% double and 0.0% triple nucleotide mutations under

MSmmtDNA, see Table 3.1). The small square in each boxplot marks the

PRD(α̂, β̂) obtained by fitting each contrast to this alignment. As the signal

for DT was real in this case, PRD(α̂, β̂) cannot be equated to PL(α̂, β̂), but

can be interpreted as an indication of real signatures for DT. The decrease

in PRD with each increase in the complexity of the selection submodel is still

evident however, and suggests that α̂ and β̂ carry some PL. These comparisons,

combined with the large number of false detections reported in Table 3.6,

suggest that either the detection of DT substitutions in the real mtDNA was

false or it was a true but that the rate of DT was overestimated. PL played a

role in the analysis in either case.
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Figure 3.2: PL versus PRD. Boxplots show the distribution of PL(α̂, β̂) for each of the
M vs MwDT model contrasts fitted to 50 full-scale alignments (20 taxa, 3331 codon sites)

generated under MSmmtDNA with α = β = 0. Diamonds show PRD(α̂, β̂) for each contrast

fitted to the real mtDNA. Squares show the PRD(α̂, β̂) for each contrast fitted to a full-
scale alignment generated under MSmmtDNA with α and β set to values estimated from the
real mtDNA using RaMoSSwDT. Circles indicate outliers in PL(α̂, β̂) for the corresponding
boxplot.

3.3.6 Alignments Generated under MSmmtDNA are Realistic by

Several Measures of Comparison

The design of the third simulation study represents a substantial depar-

ture from the first two, and demonstrates that the role PL might have played

in the analysis of the real mtDNA can be assessed only insofar as simulated

alignments match real data. Hence, rather than using an M-series CSM as

the generating process, the more realistic MS framework was used. Under

MS, each site can be assigned its own vector of fitness coefficients fh. This

determines the stringency of selection (the average rate ratio) and temporal

dynamics (heterotachy) at the site. The purpose of using MS was to sim-

ulate alignments with heterogeneity in rate ratio across sites and over time

and with heterogeneity in site patterns consistent with the real mammalian

mtDNA. This section reports results that show that MSmmtDNA can produce

alignments similar to the real data by several measures of comparison.
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p(sij < −2) p(−2 < sij < 2) p(sij > 2)

all mutations 0.61 (0.65) 0.39 (0.34) 0.00 (0.01)

nonsyn. mutations 0.90 (0.89) 0.09 (0.10) 0.01 (0.01)

all substitutions 0.03 (0.03) 0.94 (0.94) 0.03 (0.03)

nonsyn. substitutions 0.18 (0.14) 0.64 (0.72) 0.18 (0.14)

Table 3.7: Simulated versus real selection coefficient distributions. Comparison of interval
probabilities for scaled selection coefficients sij under the generating model MSmmtDNA
versus those derived empirically by Tamuri et al. (2012) (shown in parentheses).

Empirical distributions of scaled selection coefficients for all mutations, all

substitutions, all nonsynonymous mutations and all nonsyonymous substitu-

tions derived from mammalian mtDNA have already been published (Tamuri

et al., 2012). MSmmtDNA was therefore adjusted to make the estimated

probability density functions of generated scaled selection coefficients match

those published as closely as possible. The predicted distributions derived

from 105 sites simulated under the resulting MSmmtDNA model were simi-

lar in shape to their empirical counterparts (cf. Figure 3.5 in Appendix vs

Figure 2 in Tamuri et al., 2012) and had similar probabilities p(sij < −2),

p(−2 < sij < 2) and p(sij > 2) (Table 3.7). Further comparisons between

MSmmtDNA and the real mtDNA were based on a full-sized simulated align-

ment of 3331 codon sites. Amino acid frequencies for the simulated alignment

were highly correlated with those in the real data (correlation = 0.91, p-value

<< 0.001, Appendix Figure 3.6), as were the codon frequencies (correlation =

0.83, p-value << 0.001). The frequencies with which each pair of amino acids

was observed within a given site pattern were found to be strongly concordant

(correlation = 0.91, p-value << 0.001, Appendix Figure 3.7). The distribu-

tions of the number of amino acids realized at each site were also very similar

(Appendix Figure 3.8). And the simulated alignment had a similar number of

invariant, nonsynonymous, synonymous, and mixed site patterns compared to

the real data: (87, 18, 2052, 1174) in the simulated alignment versus (83, 25,

1730, 1493) as reported in Table 3.3.
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3.3.7 Evidence of Confounding

Simulation studies demonstrate that PL(α̂, β̂) is related to the degree

to which the selection submodel is underspecified with respect to the data-

generating process. Misspecification alone is likely insufficient to produce PL

however. There must also be some measure of confounding between the pro-

cesses governed by the mechanistic parameters in the DNA submodel with

processes that generate variations in selection effects. To further illustrate

this issue, the effects of changes in κ and α (both of which are parameters of

the DNA submodel) on the expected number of nonsynonymous substitutions

per unit branch length rN and the predicted switching rate δ (measures that

reflect variations in selection effects) were examined. Specifically, the changes

in rN and δ when κ was increased from 1 to 10 with α = β = 0, and the

changes in the same when α was increased from 0.015 (corresponding to 2.5%

double mutations) to 0.075 (11% double mutations) with κ fixed at 4 and β

fixed at zero were assessed.

Figure 3.3: Investigating confounding. Distributions of the change in the expected number
of nonsynonymous substitutions per unit branch length (∆rN) and the expected switching
rate (∆δ) for 1000 sites with fitness coefficients generated using MSmmtDNA. A: ∆rN when
κ is increased from 1 to 10 with α = β = 0, B: ∆δ when κ is increased from 1 to 10 with
α = β = 0, C: ∆rN when α is increased from 0.015 to 0.075 with κ = 4 and β = 0, D: ∆δ
when α is increased from 0.015 to 0.075 with κ = 4 and β = 0.
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Vectors of site-specific fitness coefficients were first generated using the

MSmmtDNA generating model with α = β = 0. Each was used to compute

theoretical predictions of site-specific values for rN and δ, once with κ = 1

and again with κ = 10 using the following equations:

rNh =
∑
(i,j)

πhi A
h
ij`N , δh =

∑
(i,j) π

h
i A

h
ij`switch∑

j 6=i π
h
i A

h
ij

(3.9)

The resulting distributions for the change in rN and δ (∆rN and ∆δ respec-

tively) with κ were both roughly symmetric and centered at zero (Figure 3.3 A

and B). Hence, the same change in κ sometimes increased and sometimes de-

creased both rNh and δh. The net effect of changes in κ on these two quantities

is therefore negligible when averaged across sites. In a subsequent simulation

study, 100 alignments were generated using MSmmtDNA with κ = 1. Both

M0(κ = 1) (i.e., M0 with κ fixed at 1) and M0 (under which κ is estimated)

were fitted to these alignments. The M0(κ = 1) vs M0 contrast reliably failed

to reject the null hypothesis of no transition bias in all trials (i.e., estimates of

κ carried no PL), despite the fact that the submodel for selection under M0 is

highly underspecified with respect to MSmmtDNA.

In the second analysis, vectors of fitness coefficients were generated under

MSmmtDNA with κ = 4 and β = 0 (to prohibit fixation of triple mutations).

Each vector was used to compute site-specific values for rN and δ, with α set to

either 0.015 (corresponding to 2.5% double mutations) or 0.075 (11% double

mutations). The distributions for ∆rN and ∆δ show that these values are

almost always non-negative (Figure 3.3 C and D). Hence, an increase in α can

result in an increase in both the expected nonsynonymous substitution rate

and expected degree of heterotachy measured by δ when effects are averaged

across sites. These simulations support the view that the process under which

rare DT substitutions occur can be confounded with selection effects, and

illustrate a method by which the potential for a parameter to take on PL

might be assessed.
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3.3.8 Assessing PL in a Model for Detecting Relaxation of

Selection Pressure.

The utility of the PL framework for assessing the validity of the interpre-

tation of model parameters in other CSMs is illustrated in this and in the

next section by applying the methods to two other inferential scenarios. The

first is a test for changes in selection intensity in one clade compared to the

remainder of the tree (RELAX, Wertheim et al., 2014). Under the RELAX

model, it is assumed that each site evolved with a rate ratio randomly drawn

from ωR = {ω1, ..., ωk} on a set of pre-specified reference branches, and from

a modified set of rate ratios ωT = {ωm1 , ..., ωmk } on test branches, where m is

an exponent. A value 0 < m < 1 moves the rate ratios in ωT closer to one

compared to their corresponding values in ωR, consistent with relaxation of

selection pressure at all sites on the test branches. Relaxation is indicated

when the contrast of the null hypothesis that m = 1 versus the alternative

that m < 1 is statistically significant. RELAX was fitted to the real mtDNA

with three ω-categories using the HyPhy software package (Kosakovsky Pond

et al., 2004). Test branches were set to all of those in the primate clade,

including the long branch leading to that clade (see Figure 3.1). The test

revealed significant evidence for relaxation of selection pressure among the

branches in the primate clade (m = 0.81, LLR = 18, p-value = 2.2 × 10−5,

PRD(m̂) = 0.015%). The model was also fitted to the 50 full-scale alignments

generated using MSmmtDNA, under which no relaxation occurred. The null

was falsely rejected in 31/50 trials. Furthermore, PRD(m̂) estimated from the

real alignment fell well within the distribution of PL(m̂) from the 50 simu-

lated alignments (Figure 3.4, middle boxplot). These results suggest that PL

provides a plausible explanation for the detection of relaxation in selection

pressure in the primate clade of the real mtDNA.

3.3.9 Assessing PL in a Model for Detecting variations in dS.

The vast majority of CSMs assume that the synonymous substitution rate

is constant across sites, despite evidence that dS can vary (particularly in mi-

tochondrial DNA, e.g., Bielawski and Gold, 2002). The second scenario is a
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test for variation in dS across sites (Kosakovsky Pond and Muse, 2005). This

test has no moniker that I am aware of, so it will be designated here as M3wdS

(M3 with changes in dS) due to its similarity to the M-series model M3 (Yang

et al., 2000a). Under M3wdS, it is assumed that there are k dS categories

and k dN categories that combine to produce k2 ω-categories. M3wdS(k) is

contrasted with the null model M3(k) that assumes dS constant across sites.

Rejection of the null is interpreted as evidence for variations in dS across sites.

M3(k) was first fitted to the real mtDNA using HyPhy with k ∈ {3, 4, 5}. Four

categories were sufficient to account for all of the variation in rate ratio across

sites (i.e., four categories fit the alignment better than three and just as well

as five). M3(k = 4) was then contrasted with M3wdS(k = 4) using HyPhy.

The contrast was found to be significant (LLR = 252, PRD(dS) = 0.19%).

The M3(k = 4) vs M3wdS(k = 4) contrast was then fitted to the 50 full-scale

alignments generated using MSmmtDNA under which dS is constant. The null

was rejected in 0/50 trials. Furthermore, the phenomenological load PL(dS)

associated with the parameters for dS variation was very close to zero in all

fifty trials (Figure 3.4, right-most boxplot). These results support the inter-

pretation of M3wdS as detecting genuine variations in dS in the real mtDNA

alignment. Interestingly, there is biochemical support for the notion of spatial

variation in dS within the mitochondrial genome: due to the different amount

of time that mtDNA spends in the single-strand state during its replication

process (Clayton, 1982), it will be subject to different probabilities of spon-

taneous mutational damage (Tanaka and Ozawa, 1994), which is expected to

lead to different synonymous substitution rates (Reyes et al., 1998; Bielawski

and Gold, 2002; Raina et al., 2005).
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Figure 3.4: PL in other CSMs. Boxplots show the distributions of PL for parameters in
models fitted to the same 50 full-scale alignments generated under MSmmtDNA (20 taxa,
3331 codon sites). Circles indicate outliers. Diamonds show PRD for each contrast fitted
to the real mmtDNA. The left-most boxplot is the same as that shown in Figure 3.2 for the
assessment of PL in RaMoSSwDT. The middle boxplot is for the assessment of PL in the
RELAX model described in section 3.3.8. The right-most boxplot is for the assessment of
PL in the test for variations in dS described in section 3.3.9. The PRD was statistically
significant in 48/50 trials under RaMoSS vs RaMoSSwDT contrast, in 31/50 trials under
RELAX, and in 0/50 trials under M3(k = 4) vs M3wdS(k = 4).

3.4 Discussion

Codon substitution models have evolved toward ever increasing complex-

ity since their introduction by Muse and Gaut (1994) and Goldman and Yang

(1994), motivated in part by the rapid increase in the quantity of information

available. With greater information comes greater opportunity to tease out

the effects of subtle processes. This can be achieved by adding parameters

for such processes to a standard CSM. Or so it would seem. Sites for which

mutation and selection are in balance can exhibit signatures consistent with

random changes in site-specific rate ratios or heterotachy (e.g., mixed site pat-

terns, Table 3.3) caused by non-adaptive shifting balance. But signatures of

heterotachy can also be produced by the occasional fixation of double or triple

mutations. Hence, non-adaptive shifting balance and DT are confounded pro-

cesses. Consequently, if a CSM accounts for DT in its DNA submodel but

fails to account for non-adaptive shifting balance in its selection submodel,

the rate parameters (α, β) will be forced to account for signatures of hetero-

tachy alone. The analyses in this chapter demonstrate that confounding can

result in false inference for DT. They also provide an example of a general
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principle, namely that it is possible for a parameter meant to support a spe-

cific interpretation (a so-called mechanistic parameter) to be inferred to be

statistically significant even if the process it represents did not occur. When

this happens the parameter’s MLE is said to carry phenomenological load and

its intended interpretation is lost.

The basal cause of PL was shown to be confounding. It was stated in

the introduction that two processes are confounded if they produce a common

signature in the data. This implies that the generating process is the ultimate

source of confounding. But whether or not counfounding manifests depends on

the relationship between the fitted model and the data. This is in part because

different CSMs are sensitive to different signatures. The existence of multiple

processes that generate heterotachy has little or no impact on the estimation

of the parameters in M0 because this model ignores temporal dynamics, for

example. By contrast, the above analyses suggest that RaMoSSwDT overes-

timated DT in the real mmtDNA (≈ 10% DT substitutions), and that this

occurred because the parameter for site-specific shifts in rate ratio (δ), and the

parameters for the rates of double (α) and triple (β) mutation, are all sensi-

tive to the same signatures in the alignment, those consistent with heterotachy.

An analysis of a similar although larger set of mammalian mtDNA (244 taxa

with 3598 codon sites) using the site-wise mutation-selection model (swMut-

Sel, Tamuri et al., 2012) produced an estimate of DT an order of magnitude

smaller (approximately 1% DT substitutions). swMutSel utilizes signatures

in the alignment that RaMoSSwDT is insensitive to in the form of empirical

site-specific codon frequencies. The temporal dynamics at a site is to a large

degree characterized by its site-specific frequencies, as illustrated in Chapter

2, so their inclusion in swMutSel likely captured some variation in selection

effects due to non-adaptive shifting balance. This apparently faciliated the

detection of distinct signatures for DT (if DT was real), or else reduced the

PL carried by DT parameters (if it was not). Hence, the degree to which con-

founding impacts inference is dependent on the signatures present in the data

that the model is sensitive to, or in other words on the relationship between

model and data (Jones et al., 2019a).
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It can happen that two processes produce signatures that differ only slightly

and in such a way that they are confounded under a given CMS when infor-

mation is sparse, but readily disentangled when information is rich. Such a

scenario might not be uncommon, particularly among mixture models (Min-

grone et al., 2018), but is an issue only if the amount of data required to ame-

liorate associated pathologies (e.g., false positives due to PL) is prohibitively

large. Under this scenario it might be said that the processes are only nearly

confounded. In the analyses presented in this chapter, by contast, the reduc-

tion in deviance engendered by the inclusion of the parameters for DT was

associated with mixed site patterns in the real mtDNA alignment (Table 3.3).

A larger taxonomic sample or the addition of more genes to the concatenation

would result in more mixed site patterns, and would presumably increase the

probablity of falsely inferring DT. This is supported by the observation that

the false positive rate for DT under RaMoSS vs RaMoSSwDT increased from

41% (41/100) to 96% (48/50) among alignments generated using MSmmtDNA

when the number of sites was increased from 300 to 3331. It therefore seems

that false detection of DT substitutions by RaMoSS vs RaMoSSwDT was not

driven by lack of information, but by an abundance of information (cf. Kumar

et al., 2011). It is under the scenario where more site patterns (or more taxa)

only worsen PL that the two processes are said to be perfectly confounded. To

be clear, the introduction of information of a different type into the analysis,

such as site-specific codon frequencies in the case of swMutSel (or a discrete

phenotype as shown in Chapter 4), can potentially allay pathologies associated

with perfect confounding.

It would be helpful to have a means to assess in advance whether con-

founding might impact inference under a given CSM. This was attempted in

the section 3.3.7, where it was shown that an increase in κ (a property of the

mutation process) is not correlated with an increase in the rate of fixation of

nonsynonymous mutations (a property of the substitution process), but that

an increase in the double mutation rate is. Such a result is intuitive, since

the fixation of a double mutation at a site along a branch (e.g., TTA(L) →
GCA(A)) can be consistent with the fixation of two single mutations in rapid
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succession (e.g., TTA(L) → GTA(V)→ GCA(A)), and therefore manifest as

a transient elevation in the nonsynonymous to synonymous rate ratio at that

site under a model that does not allow DT. Indeed, such intuition might have

been used to predict the possibility of confounding between episodic elevations

in dN/dS and episodic fixation of DT mutations. The analysis in section 3.3.7

was based on predictions derived from a mechanistic model however, not by

fitting a CSM to data. Given the supposition that the impact of confounding

on inference depends on the relationship between a CSM and the actual data

it is to be fitted to, it would seem that the only currently available method to

identify PL is a case-by-case application of the approach illustrated in Figure

3.4. To reiterate: suppose a mechanistic parameter ψ were introduced into a

substitution model M to give the model Mψ. Further suppose that the M vs

Mψ contrast indicated a significant PRD(ψ̂) when fitted to a real alignment.

To determine whether the cause of the balance of this reduction was real signal

or PL, one can first generate alignments in such a way as to resemble the real

alignment as closely as possible but without the mechanistic process repre-

sented by ψ. These would be fitted to M vs Mψ to produce a null distribution

for PL(ψ̂). Confounding would be inferred to have influenced the analysis

when the PRD(ψ̂) computed from the real alignment is found to be no greater

than the 95% percentile of the PL(ψ̂) distribution. This approach requires a

method to mimic the real alignment. The Pyvolve software package (Spielman

and Wilke, 2015a) provides a way to generating alignments consistent with a

large real alignment. The methods used in this chapter (described in Methods)

provide an alternative approach for smaller alignments.

The results presented in this chapter have implications about how the

performance of a CSM should be assesesed. Early efforts to test the reliability

of CSMs made use of the comparatively simplistic generating models available

at the time under the assumption that the findings of such analyses would be

applicable to real alignments (Anisimova et al., 2001, 2002; Wong et al., 2004;

Zhang, 2004; Yang et al., 2005; Zhang et al., 2005; Yang and dos Reis, 2011;

Lu and Guindon, 2013). Implicit in this methodology is the presupposition

that the reliability of a CSM has little to do with the data. In its original
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instantiation, for example, the Yang-Nielsen Branch-Site Model (YN-BSM,

Yang and Nielsen, 2002) was evaluated using real data only. It was later shown

via simulation that the original YN-BSM is prone to falsely infer positive

selection under certain testing scenarios (Zhang, 2004). A modified verison

of the model was subsequently shown to be reliable under the same testing

scenarios (Zhang et al., 2005). Hence the problem was implicitly assumed to be

with the model, with little consideration of the role the data might have played

in the observed pathology. The problem with this approach is that it leaves

open the possiblity that the modified YN-BSM might still be unreliable when

fitted to alignments simulated using an alternative, more realistic, generating

scenario. Indeed, some of the results presented in Chapter 4 support this

conjecture.

The importance of the using a realistic data-generating process was illus-

trated by three simulation studies. In the first study, alignments were gener-

ated using RaMoSS to assess the reliability of the RaMoSS vs RaMoSSwDT

contrast in the absence of any model misspecification. The fixation of double

and triple mutations was not inferred in any of the 100 simulated alignments.

To assess performance in the presence of some misspecification, alignments

in the second simulation study were generated using M3(k = n), a model

that typifies traditional methods to assess model reliability. The false postive

rate for DT under the RaMoSS vs RaMoSSwDT contrast was only 5/100. In

the past this result would have been sufficient to conclude that the contrast

is a reliable instrument with which to detect signatures of DT in real data,

similar to the conclusion implicit in Zhang et al. (2005) about the modified

YN-BSM. However, alignments in the third simulation study were generated

to have variations in selection effects across sites and over time that mimic the

real mtDNA alignment. Under this generating scenario, RaMoSS vs RaMoSS-

wDT falsely detected DT in 41/100 of the 300-codon alignments and 48/50 of

the full-scale alignments. These results illustrate that pathologies associated

with confounding might only be realized by fitting a contrast to be applied

to a real data set to alignments that are comparable with that data. It was

shown that the generating model MSmmtDNA can produce alignments that
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are similar in many respects to the real mtDNA alignment used in this study.

However, MSmmtDNA neglects many important aspects of molecular evolu-

tion that might further impact inference. For example, MSmmtDNA does

not include changes in site-specific fitness coefficients that initiate site-specific

dynamics consistent with adaptive evolution (dos Reis, 2015), and does not

take into account epistatic interactions that preserve thermodynamic stability

(Pollock et al., 2012). It might therefore be necessary to continue to work to-

ward the formulation of data-generating methods that include these and other

such processes.

3.5 Methods

3.5.1 RaMoSS

RaMoSS is a mixture of two standard CSMs: M3(k = 2) to account for

static sites (those evolving under one of two rate ratios ω1 or ω2 across the tree)

and CLM3(k = 2) to account for switching sites (those that change between

ω′1 and ω′2 randomly over time). The likelihood for RaMoSS is a therefore

a weighted average of the likelihoods for the M3(k = 2) and CLM3(k = 2)

components:

LRaMoSS (θRaMoSS | X) = pM3LM3 (θM3 | X) + (1− pM3)LCLM3 (θCLM3 | X) (3.10)

where X represents the alignment, and θRaMoSS = 〈pM3,θM3,θCLM3〉 a vector

that includes the model parameters for both M3(k = 2) and CLM3(k = 2),

as well as the additional parameter pM3 for the proportion of sites evolving

under M3(k = 2). The posterior probability that the rate ratio at the hth site

switched episodically between ω′1 and ω′2 can be estimated from the MLE for

θRaMoSS using the standard naive empirical Bayesian approach:

P(switching | xh, θ̂RaMoSS) =
LCLM3(x

h | θ̂CLM3)(1− p̂M3)

LRaMoSS(xh | θ̂RaMoSS)
(3.11)

3.5.2 Model Contrasts

Nested models (a null model versus an alternative, e.g., M0 vs M0wDT)

can be compared using a log-likelihood ratio test. The null hypothesis is that
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the data was generated under the simpler of the two models (e.g., M0). This

is rejected if the log-likelihood ratio (LLR) for the test is larger than a critical

value determined by the limiting distribution of the LLR statistic and the

level of significance of the test. In this chapter the models M0, M3(k = 2),

CLM3(k = 2) and RaMoSS were fitted to real and simulated alignments.

Each allows single nucleotide substitutions only (e.g., α = β = 0). The four

models have counterparts that allow double and triple substitutions (e.g., α

and β are estimated): M0wDT, M3wDT, CLM3wDT, and RaMoSSwDT. The

contrast between M and MwDT provides a test for DT mutations, where M

∈ {M0, M3(k = 2), CLM3(k = 2), RaMoSS}. In a similar fashion, the M0

vs M3 contrast provides a tests for variation in the rate ratio across sites;

M3(k = 2) vs CLM3(k = 2) a test for variations in the rate ratio over time;

and CLM3(k = 2) vs RaMoSS a test for a combination of static and switching

sites in the same alignment compared to switching sites only. The limiting

distribution of the LLR statistic is often unknown when parameters are on the

boundary under the null hypothesis. In such cases, it is standard practice to

use a distribution that is thought to be more conservative (i.e., less likely to

reject the null hypothesis) than the unknown true distribution.

contrast d.f. distribution implemented crit. val.

M vs MwDT 2 n/a χ2
2 5.99

M0 vs M3(k = 2) 2 n/a χ2
2 5.99

M3(k = 2) vs CLM3(k = 2) 1 0.5χ2
0 + 0.5χ2

1 0.5χ2
0 + 0.5χ2

1 2.71

CLM3(k = 2) vs RaMoSS 4 n/a χ2
4 9.49

Table 3.8: List of Critical Values. Critical values used for the log-likelihood ratios tests
in this article. d.f. is the number of extra parameters in the larger model compared to its
nested counterpart.

The distributions used for the tests in this study are listed in Table 3.8,

along with the corresponding critial values for 5% level of significance. The

null hypothesis for all of the M vs MwDT contrasts places both α = 0 and

β = 0 on the boundary of the parameter space. The theoretical limiting

distribution is therefore a mixture of the χ2
0, χ2

1 and χ2
2 distributions (Self and

Liang, 1987). The mixing weights are unknown however, so the χ2
2 distribution

was used to be conservative. The proportion of sites in the ω2 category under
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the null for the M0 vs M3(k = 2) contrast is p2 = 0, making ω2 unidentifiable.

Similarly, the proportion of sites evolving with constant rate ratio under the

null for the CLM3(k = 2) vs RaMoSS contrast is pM3 = 0, making ω′1, ω′2 and p′1

unidentifiable. The theoretical limiting distributions for these contrasts are not

available from Self and Liang (1987). The conventional χ2
df distribution with

degrees of freedom (df) equal to the difference in the number of parameters

(Table 3.8) was used in these cases. The theoretical limiting distribution for

the M3(k = 2) vs CLM3(k = 2) contrast is known to be an equal mixture of

a χ2
0 and a χ2

1 (Self and Liang, 1987).

3.5.3 Generating Alignments using MSmmtDNA

The most direct way to simulate alignments consistent with real data is

to estimate site-specific fitness coefficients {f1, ..., fn} from that data (Tamuri

et al., 2012, 2014). The MS framework can then be used to construct site-

specific substitution rate matrices {A1, ..., An} from which to generate data.

The Pyvolve software package (Spielman and Wilke, 2015a) includes modules

for this purpose. In the course of the study presented in this chapter it was

necessary to generate data consistent with the 20-taxon concatenated align-

ment of H-strand mammalian mitochondrial DNA sequences provided by the

PAML software package (Yang, 2007). This alignment is too small for the

direct approach. It was therefore necessary to devise a more approximate

generating procedure, which is described in this section.

The degree to which an alignment generated under MS can be said to be

realistic is in large part dependent on how site-specific amino acid fitnesses

are constructed. One method is to draw vectors of fitness coefficients from a

normal distribution as described in Chapter 2. But since fitnesses are random,

it is possible to draw a vector that assigns nearly the same fitness to a pair

of amino acids with very different physicochemical properties. Hence, a site

pattern might easily contain both isoleucine (hydrophobic) and serine (polar),

for example. This is unlikely to occur at a real site evolving under stringent

selection without a drastic change in the physicochemcial requirements for

that site. It would be more realistic to see isoleucine occur together with the
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similarly hydrophobic aliphatic amino acids leucine and valine. Furthermore,

the stringency of selection, determined by the standard deviation of the normal

distribution, must have a realistic level of variance across sites.

Taking these requirements into account, the following MSmmtDNA gen-

erating model was used to produce a vector of fitness coefficients for a codon

site:

1. A codon for the hth site was randomly drawn using a multinomial dis-

tribution with probabilities equal to the empircal codon frequencies for

the real mtDNA.

2. The amino acid X corresponding to the chosen codon was assigned a

provisional fitness of 0.25.

3. A provisonal vector of fitnesses for the remaining amino acids was con-

structed by dividing 〈vY1 , ..., vY19〉 by its largest element, where vY is the

number of site patterns in the real mtDNA that included both amino

acids X and Y. This gave the amino acid that paired most frequently

with X (call it Z) a fitness of one and all other amino acids Y 6= X a

fitness less than one.

4. Each element of 〈vY1 , ..., vY19〉 was then reduced by a random draw from

a half-normal distribution with mean zero and standard deviation one.

The expected value of the half-normal distribution is
√

2/π ≈ 0.80. The

expected fitness of Z was therefore 0.20, slightly less than the fitness of

X. Other amino acids tended to have lower fitness.

5. A scaling factor σh ∼ 0.001 + (0.01−0.001)×B was drawn to determine

the stringency of selection at the site, where B ∈ [0, 1] is a beta random

variable with shape parameters u, v > 0. Values of σh ∈ [0.001, 0.01]

closer to the upper bound correspond to greater stringency, whereas

values closer to the lower bounded correspond to a balance between

selection and drift that typically results in heterotachy (Jones et al.,

2017). Parameters u and v for the beta distribution were chosen to
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make the distributions of scaled selection coefficients sij match those

reported by Tamuri et al. (2012) as closely as possible.

6. A vector fh of fitness coefficients for the 60 codons (i.e., for mammalian

mitochondrial DNA) was then constructed from the amino acid fitnesses

assuming synonymous codons to be equally fit. This vector was scaled

to make its standard deviation equal to σh.

7. fh was then used to construct the site-specific rate matrix Ah.

The following describes how the parameters (u, v) for the beta distribution

were determined. For a given (u, v), 1000 draws of fh were used to approximate

the PDFs of the sij for all mutations, nonsynonymous mutations, all substi-

tution and nonsynonymous substitutions (as detailed in the next section).

Probabilities p(sij < −2), p(−2 < sij < 2) and p(sij > 2) were calculated

and compared with empirical values reported by Tamuri et al. (2012). This

process was repeated over a grid of (u, v) coordinate pairs. The coordinate

corresponding to the smallest sum of squared differences between simulated

and empirical probabilities was found to be (u, v) = (0.08, 0.02). These values

give σh a U-shaped density function with most of its mass near the upper and

lower bounds of its domain [0.001, 0.01].

Site-specific fitness coefficients fh =
〈
fh1 , ..., f

h
60

〉
for the 60 codons were

converted into scaled selection coefficients shij = Ne(f
h
j − fhi ) assuming an

effective population size of Ne = 1000 and a ploidy of one for mtDNA. These

were used to construct a site-specific substitution rate matrix Ah as follows:

Ahij ∝

 Mij if shij = 0

Mij
2shij

1−exp(−2shij)
otherwise

(3.12)

Diagonal elements Ahii were specified to make rows sum to zero. The transition

bias κ and position-specific nucleotide frequencies {π∗ik | i ∈ {T,C,G,A}, k ∈
{1, 2, 3}} for the mutation rate matrix M were set to values estimated from

the real mtDNA alignment. The double and triple nucleotide mutation rate α

and β were both set to zero for all simulations unless otherwise indicated (e.g.,

Figure 3.2). Each resulting Ah has its own vector of stationary frequencies
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πh =
〈
πh1 , ..., π

h
60

〉
and its own expected rate rh:

rh =
∑
j 6=i

πhi A
h
ij{`1 + `2 + `3} (3.13)

The indicator `k is one if i and j differ by k ∈ {1, 2, 3} nucleotides and zero

otherwise. All Ah were divided by the mean r = (1/n)
∑h

h=1 r
h so that branch

length could be interpreted as the expected number of single nucleotide sub-

stitutions per codon.

3.5.4 Constructing PDFs for Scaled Selection Coefficients

~
A B

C D

Figure 3.5: Distributions of scaled selection coefficients. Each distribution resulted from
the proposed method of simulating vectors of site-specific fitness coefficients for mammalian
mtDNA. A: all mutations; B: nonsynonymous mutations; C: all substitutions; and D: non-
synonymous substitutions. These are very similar to empirical distributions obtained in an
analysis of 12 mitochondrial genes from 244 placental mammal species (Tamuri et al., 2012).

The probability density functions for the scaled selection coefficients de-

picted in Figure 3.5 were approximated by discrete probability mass functions

(PMFs). This section explains how the PMFs were constructed. It started

with a fixed set of n = 105 vectors of site-specific fitness coefficients from

which scaled selection coefficients were produced. The PMF for all mutations

was then constructed as follows:
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1. phij = πhiMij was computed for each shij; p
h
ij is proportional to the long-

run probability that a mutation will occur at site h and correspond to

i→ j with associated scaled selection coefficient shij.

2. The elements of S (the set of all shij) were then partitioned into 50 bins.

The left-most bin was the interval (−∞,−10) and the right-most bin

was (10,+∞). The remaining bins between ±10 were constructed with

bin width ≈ 0.4.

3. Each bin was assigned a sum cb =
∑

i,j,h p
h
ij`(s

h
ij ∈ the bth bin) where

`(shij ∈ the bth bin) is one if shij is in the bth bin and zero otherwise.

4. Each cb was then divided by
∑50

b=1 cb.

5. The resulting values were plotted against the bin centers, except for the

end points c1 and c50, for which the abscissa was -10 and +10, respec-

tively.

The PMF for all substitutions was constructed by first setting phij = πhi A
h
ij,

where Ahij is the site-specific substitution rate matrix, followed by the same

steps 2 to 5. The PMFs for nonsynonymous mutations and nonsynonymous

substitutions were similarly constructed using shij and phij corresponding to

nonsynonymous pairs of codons i and j. The resulting PMFs approximate

continuous distributions of scaled selection coefficients sij, and can be used to

approximate integrals.
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3.6 Appendix

3.6.1 Tables of Median MLEs for Simulation Studies

Model LL rate ratios proportions δ % S,D,T
M0 -6972 0.02
M3 -6890 0.00,0.08 p̂1 = 0.84
CLM3 -6866 0.00,0.21 p̂1 = 0.93 0.06
RaMoSS -6859 0.00,0.03 p̂M3 = 0.72

0.01,0.44 p̂1 = 0.86 0.17
p̂′1 = 0.88

M0wDT -6960 0.01 90.5,7.1,2.4
M3wDT -6888 0.00,0.07 p̂1 = 0.85 94.1,4.6,1.3
CLM3wDT -6866 0.00,0.19 p̂1 = 0.92 0.06 98.6,1.1,0.3
RaMoSSwDT -6859 0.00,0.03 p̂M3 = 0.73 99.6,0.4,0.0

0.01,0.43 p̂1 = 0.85 0.18
p̂′1 = 0.88

Table 3.9: Simulation 1 Medians. Median values for parameter estimates derived from
100 alignments generated under RaMoSS with α = β = 0.

Model LL rate ratios proportions δ % S,D,T
M0 -10,023 0.13
M3 -9589 0.01,0.42 p̂1 = 0.70
CLM3 -9585 0.01,0.45 p̂1 = 0.71 0.02
RaMoSS -9551 0.00,0.31 p̂M3 = 0.69

0.05,0.69 p̂1 = 0.74 0.00
p̂′1 = 0.65

M0wDT -9985 0.11 88.7,4.5,6.8
M3wDT -9588 0.01,0.41 p̂1 = 0.70 98.5,0.7,0.7
CLM3wDT -9583 0.01,0.44 p̂1 = 0.71 0.02 99.1,0.4,0.5
RaMoSSwDT -9550 0.00,0.31 p̂M3 = 0.69 99.5,0.2,0.5

0.05,0.70 p̂1 = 0.74 0.00
p̂′1 = 0.65

Table 3.10: Simulation 2 Medians. Median values for parameter estimates derived from
100 alignments generated under M3(k=n) with α = β = 0.
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Model LL rate ratios proportions δ % S,D,T
M0 -8056 0.05
M3 -7713 0.01,0.25 p̂1 = 0.76
CLM3 -7698 0.00,0.30 p̂1 = 0.78 0.05
RaMoSS -7670 0.00,0.12 p̂M3 = 0.79

0.00,0.62 p̂1 = 0.82 0.22
p̂′1 = 0.57

M0wDT -8018 0.04 80.9,13.7,5.4
M3wDT -7702 0.00,0.21 p̂1 = 0.76 90.3,7.6,2.1
CLM3wDT -7691 0.00,0.25 p̂1 = 0.78 0.05 92.8,5.7,1.5
RaMoSSwDT -7666 0.00,0.12 p̂M3 = 0.80 96.3,2.9,0.8

0.00,0.56 p̂1 = 0.82 0.20
p̂′1 = 0.60

Table 3.11: Simulation 3 Medians. Median values for parameter estimates derived from
100 alignments generated under MutSel-mmtDNA with α = β = 0.

3.6.2 Observed versus Simulated

A

B

Figure 3.6: A comparison of the observed versus simulated amino acid frequencies. A:
Frequencies obtained from the real data; B: the same for the simulated alignment (20 taxon,
3331 sites).



108

Figure 3.7: A comparison of the observed versus simulated relative pairwise amino acid
frequencies. For any cell, the value is the proportion of sites where the amino acids indicated
were both present. A: Values obtained from the real mtDNA alignment; B: values obtained
from a simulated alignment (20 taxon, 3331 sites). The same grayscale applies to both
panels.

Figure 3.8: A comparison of the observed versus simulated distribution of the number of
amino acids realized at a site for mammal mtDNA (20 taxon, 3331 sites).



Chapter 4

A Phenotype-Genotype Codon Substitution Model for

Detecting Adaptive Evolution.

4.1 Introduction

Statistical models for the evolution of phenotypes have traditionally been

formulated independently of models for the evolution of gene sequences. Yet

the two approaches share a common motivation, namely to provide a means

to test various evolutionary hypotheses regarding apparent structural and/or

functional novelties that might have occurred as a result of adaptation. Ana-

lyzing the two data types separately neglects any possible advantage of combin-

ing information and belies the fundamental objective of identifying individual

genes whose evolution can be mechanistically linked to adaptive changes in

phenotype. The centrality of this objective underlines the need for models

that combine the two types of data under a common statistical framework.

This chapter presents such a model.

Among the first models for the evolution of phenotype were those developed

to infer the rate and mode (e.g., gradual or punctuated) of phenotypic evolu-

tion, or to infer correlations between two phenotypic measures or between a

phenotype and a contextual variable (for a brief review see Cornwell and Nak-

agawa, 2017). Such models typically assume either a continuous phenotype

that evolved via Brownian Motion (Felsenstein, 1985) or a discrete phenotype

that evolved via a Markov process (Pagel, 1994). These provide the basis for

a wide variety of phylogenetic comparative methods or PCMs. Sophisticated

PCMs include models that assume an Ornstein-Uhlenbeck “mean-reverting”

evolutionary process (Hansen, 1997), models that account for temporal dy-

namics in the form of changes in the rate of change in a phenotype over the

tree (Butler and King, 2004; O’Meara et al., 2006; Eastman et al., 2011), and

109
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models that can be used to infer a relationship between phenotype and diversi-

fication (e.g., lineage diversification PCMs such as the binary state speciation-

extinction model, Maddison et al., 2007). More recently, several models for

the analysis of multivariate data have been proposed (for a critical assessment

of such methods see Adams and Collyer, 2018). The relevant point here is that

the majority of PCMs use alignments of homologous protein-coding genes to

estimate phylogenetic relationships that are treated as fixed and known for

the remainder of an analysis based on the phenotype data alone.

Codon substitution models (CSMs) were developed to detect evidence of

adaptation at the molecular level. Under the current paradigm, the canonical

signature of positive selection in the form of a nonsynonymous-to-synonymous

rate ratio (typically denoted ω) greater than its neutral expectation (i.e.,

ω > 1) is considered evidence of adaptation (e.g., Yang et al., 2000a). Among

the more sophisticated CSMs in common use today are the branch-site models

(BSMs) designed to detect evidence of adaptation at some sites along partic-

ular branches of the tree (Yang and Nielsen, 2002; Yang et al., 2005; Zhang

et al., 2005). An alternative approach, based on amino acid substitution mod-

els (ASMs), was formulated to detect clade-specific changes in the replacement

rate (Type I functional divergence or FD) or the preferred amino acid at a site

(Type II FD) (Gu, 1999, 2001, 2006; Gaston et al., 2011). Both approaches

(CSMs and ASMs) require a priori specification of the branches over which

changes in the substitution process are thought to have occurred. This is often

realized via informal use of external information such as phenotype.

Models that account for molecular and phenotypic evolution under a unified

statistical framework have been proposed (Mayrose and Otto, 2011; Lartillot

and Poujol, 2011; O’Connor and Mundy, 2013; Karin et al., 2017). In CoEvolve

(Lartillot and Poujol, 2011), for example, log(ω) is assumed to have evolved

continuously over the tree via Brownian motion and the model objective is

to estimate correlations between it and other continuous variables, such as

body size, longevity, and metabolic rate. Similarly, in TrateRateProp (Karin

et al., 2017) the objective is to determine whether a subset of nucleotide sites

evolved under one of two substitution rates depending on the state of a binary
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phenotype. Neither model appeals to mechanisms by which evolution of the

phenotype might be linked to evolution of the gene. A novel approach is pro-

posed in this chapter, the phenotype-genotype branch-site model (PG-BSM),

the objective of which is to link phenomenological signatures of site-specific

variations in ω (a.k.a. heterotachy, Lopez et al., 2002) to specific mechanis-

tic processes, including those that occurred in association with changes in a

discrete character state (e.g., a phenotype).

The mutation-selection (MS) framework of Halpern and Bruno (1998) pre-

sented in Chapter 1 together with the notion of a site-specific fitness landscape

presented in Chapter 2 (McCandlish, 2011; Jones et al., 2017) provides a means

to think about mechanistic processes that can give rise to heterotachy in real

alignments. Under MS, each site is assumed to evolve independently with its

own vector of fitness coefficients for the twenty amino acids (i.e., a site-specific

fitness landscape). A site evolving on a static landscape can undergo chance

fixation to a suboptimal amino acid followed by a period of positive selection

that restores the site to its optimal state. This results in heterotachy via

non-adaptive shifting balance as was demonstrated in Chapter 2. Heterotachy

can also be caused by episodic changes in site-specific landscapes congruent

with molecular adaptation, such as a change in the optimal amino acid (i.e., a

peak shift) or a change in the stringency of selection at a site. Non-adaptive

shifting balance and episodic changes in site-specific landscapes can both be

represented phenomenologically as random switches between two rate ratios

ω1 < ω2. It was shown in Chapter 2 that non-adaptive shifting balance on

static fitness landscapes and episodic adaptive changes in landscapes can both

manifest as transient elevations to ω2 > 1. It follows that the canonical ω > 1

signature of positive selection does not necessarily provide unequivocal evi-

dence of adaptation.

The PG-BSM was formulated to identify sites that likely underwent adap-

tive events without appealing to evidence of positive selection. It does so by

making formal use of a discrete phenotype assigned to the terminal nodes of

the tree. Branches over which the phenotype might have changed are deter-

mined by a distribution of ancestral phenotypic states at the internal nodes of
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the tree derived from a model for phenotype evolution (cf. Karin et al., 2017).

It is assumed under the null hypothesis that all heterotachous sites evolved

on static fitness landscapes independently of the phenotype and that their ob-

served site patterns are consistent with the phenomenological CL process of

random shifts between ω1 < ω2. The alternative model permits specific modes

of switching between ω1 < ω2 that occurred in coordination with changes in

the discrete phenotype. The modes are specified to be consistent with either

a change in the stringency of selection or a change in the optimal amino acid

at a site. The PG-BSM therefore represents a paradigm shift in both the in-

formation utilized (genotype and phenotype) and the evidence used to infer

molecular adaptation (specific modes of heterotachy).

4.2 Materials and Methods

4.2.1 Background

The traditional way of characterizing codon evolution is to estimate the

ratio of the nonsynonymous substitution rate dN to the synonymous substi-

tution rate dS, accounting for differences in the rate at which nonsynonymous

and synonymous mutations arise. Selection regimes are categorized according

to ω = dN/dS, such that ω < 1 indicates a conservative regime, ω ≈ 1 a

neutral regime, and ω > 1 the canonical positive selection regime. CSMs can

be used to infer ω > 1 by contrasting a null model that allows sites to evolve

under a set of ω-categories all constrained to be ≤ 1 with an alternate model

that includes an additional category for sites with ω > 1. Rejection of the null

is interpreted as evidence that positive selection occurred somewhere in the

gene. Subsequent analysis can be conducted to identify sites at which positive

selection is most likely to have occurred (e.g., Yang and Nielsen, 1998).

The majority of CSMs are based on a continuous-time homogeneous and

time-reversible Markov process that describes the rate at which nucleotide

substitutions occur under a neutral regime (i.e., for which dN/dS = 1). As
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we’ve seen in previous chapters, this can be represented by the following:

Mij ∝


κstΠik 6=jkπ

∗
jk

if s = 1

ακstΠik 6=jkπ
∗
jk

if s = 2

βκstΠik 6=jkπ
∗
jk

if s = 3

(4.1)

Equation (4.1) applies to all pairs of codons (i, j) that differ by s ∈ {1, 2, 3}
nucleotides, st of which are transitions (substitutions of the form T↔C or

A↔G) and s−st of which are transversions (substitutions of the form {T,C} ↔
{A,G}). π∗jk is the frequency of the jth nucleotide in the kth ∈ {1, 2, 3} codon

position, κ the transition/transversion rate ratio, and α and β the rate at which

double and triple (DT) substitutions arise, respectively. Diagonal elements Mii

are adjusted to make rows sum to zero. The selection process is parameterized

by ω, which can be introduced into the model via an element-wise matrix

product:

Q(ω) = M ◦ (`S + ω`N)/r, where r =
∑
j 6=i

πiQij(ω) (4.2)

Equation 4.2 represents the simplest possible CSM and provides the basis for

more sophisticated models such as those that take into account variations

in ω across sites and/or over time. It was emphasized in Chapter 1 that

Q(ω) is unsuitable as a means of thinking about the substitution process at

a site. For example, the rate ratio ω, a proxy for the strength of selection

for (ω > 1) or against (ω < 1) the i to j substitution, is assumed to be the

same for all nonsynonymous (i, j) pairs. This is conceptually misleading for

the majority of proteins because it implies that the fitness of an amino acid

at a site is independent of its physicochemical properties. It is more useful

to think of the evolutionary process at a codon site in terms of the dynamic

on its site-specific fitness landscape as described in Chapter 2. If codon sites

are assumed to evolve independently, a site-specific fitness landscape can be

defined for the hth site by a vector of fitness coefficients fh or its implied vector

of equilibrium codon frequencies πh (Sella and Hirsh, 2005). These determine

the way it moves across its landscape over macroevolutionary time scales.

Possible dynamic regimes include: non-adaptive shifting balance, under which

the site moves episodically away from the peak of its static fitness landscape
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(i.e., the fittest amino acid) via drift and back again by positive selection;

adaptive evolution, under which a change in the landscape in the form of a

peak shift is followed by movement of the site toward its new fitness peak; and

neutral or nearly-neutral evolution, under which drift dominates and the site

is free to move over a relatively flat landscape constrained primarily by biases

in the mutation process.

The objective of many CSMs is to identify sites that likely underwent

positive selection at some point in time. Among the most sophisticated CSMs

developed for this purpose are the branch-site models. Two approaches have

been considered. Under the fixed-effects approach (e.g., the branch-site models

of Yang and Nielsen, 2002; Yang et al., 2005; Zhang et al., 2005, herein referred

to as YN-BSM) branches over which positive selection is thought to have

occurred (a.k.a. the foreground or FG) are specified a priori. The contrast

between the null and alternative models provides a means to detect sites that

switched from ω ≤ 1 on background (BG) branches to ω > 1 on FG branches.

The fixed-effect approach has good power when the FG is correctly specified

(Yang and dos Reis, 2011). However, there is often no means to identify the

correct FG, in which case the random-effect approach (Kosakovsky Pond et al.,

2011; Smith et al., 2015; Murrell et al., 2015) is applicable. Under the adaptive

branch-site random effects likelihood model (aBSREL Smith et al., 2015), a

different ω-distribution is estimated independently for each branch of the tree.

This is meant to account for variations in site-specific rate ratios from one

branch to the next and can include episodic switches to ω > 1. Rejection of

the null under either the fixed-effects or random-effects BSM has traditionally

been interpreted as evidence of adaptive evolution.

The amino acid model of Gu (1999, 2001, 2006) offers an alternative ap-

proach for detecting adaptive evolution that does not rely on evidence of pos-

itive selection. The model can be used to infer whether a protein had under-

gone a change in function following a duplication event, or what the author

calls functional divergence (FD). A distinction is made between changes in

substitution rate (Type I FD) and changes in the preferred amino acid at a

site (Type II FD). Type I FD can either entail a change in the substitution
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rate (e.g., an increase due to relaxation of selection pressure on one copy of

the gene) without a peak shift, or a change in both rate and the preferred

amino acid. Type II FD is associated with site patterns that are constant

within clades but different between clades consistent with a peak shift at a

site that otherwise evolved under stringent selection. Gu (2006) also makes

a distinction between radical and conserved substitutions by partitioning the

amino acids into four groups: positive charge (K, R, H); negative charge (D,

E); hydrophilic (S, T, N, Q, C, G, P); and hydrophobic (A, I, L, M, F, W,

V, Y). Substitutions between members of the same group are considered to

be physicochemically conservative, while those between members of different

groups are labeled radical. The underlying assumption is that a site that is

conserved within each clade but radically different between clades is consistent

with a change in function, and that the detection of such sites can be adduced

as evidence of adaptive evolution.

The fixed-effects BSM for codon sequences requires specification of the

FG branches. Similarly, ASMs for detecting FD require specification of the

clades to be compared. In both cases this can be effected by informal use

of information gleaned from tree topology and branch lengths combined with

other sources of information such as phenotype. The random-effects BSM

avoids this prerequisite but by doing so can be sensitive to positive selection by

non-adaptive shifting balance as was shown in Chapter 2. The challenges posed

by previous approaches can be minimized by combining alignment data with

contextual information under a unified statistical framework. The potential

of this approach is demonstrated in this chapter using the novel PG-BSM,

the formulation of which was motivated by two considerations. First was the

realization that heterotachy with episodic shifts to ω > 1 is possible at a

site without adaptation via non-adaptive shifting balance on a static fitness

landscape (Jones et al., 2017). Second was the idea that specific types of site

patterns might be more indicative of adaptation (Gu, 1999, 2001; Pupko and

Galtier, 2002; Philippe et al., 2003; Gu, 2006). With these considerations in

mind, the PG-BSM was formulated to distinguish site patterns consistent with

non-adaptive shifting balance from those less likely to occur without changes
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in their site-specific fitness landscapes.

4.2.2 The PG-BSM

The PG-BSM consists of three components : (1) a model for the evolution

of the codon sequence; (2) a model for the evolution of a discrete phenotype;

and (3) a model that accounts for the mechanism(s) by which (1) and (2) are

associated. The model chosen for the evolution of the phenotype is analogous

to F81 for DNA (Felsenstein, 1981) as characterized by the following rate

matrix (in this case assuming k = 3 distinct phenotypes):

QF =
λ

rF


∗ π2

F π3
F

π1
F ∗ π3

F

π1
F π2

F ∗

 where rF =
∑
i 6=j

πiFπ
j
F (4.3)

Each ∗ in (4.3) indicates a value that makes the corresponding row sum to zero.

The πiF represent the stationary frequencies for the three phenotypic states i ∈
{1, 2, 3}. The scaling factor rF is included so that the rate constant λ gives the

expected number of changes in the discrete phenotypic state per unit branch

length. Equation (4.3) is used not only to compute the probability of the vector

of observed phenotypes, but also to generate samples from the distribution of

ancestral phenotypes that are required to inform the mechanism(s) of PG

association described below.

For sequence evolution it was decided to use a model that accounts for both

invariant sites (those with no observed replacement substitutions) and sites

with some degree of heterotachy (covarion-like sites that exhibit at least one

replacement substitution). The null PG-BSM assumes that some proportion

π0 of sites evolved under ω0 = 0 over the tree while the remaining sites switched

randomly between ω1 < ω2 over time under the covarion-like model CLM3(k =

2). Alignments typically exhibit variations in rate ratio across sites (RAS) in

addition to site-specific variations over time. It is possible to account for RAS

using an M-series model such as M3(k = 2) (Yang et al., 2000a), which assumes

sites evolved under either ω1 or ω2 over the entire tree without heterotachy.

However, by accounting for variable amino acid site patterns via the process

of random switching between ω1 and ω2 over time, the covarion-like model
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implicitly accounts for variations in site-specific time-averaged rate ratios (cf.

Wu and Susko, 2009). Hence, with only one extra parameter (the switching

rate δ), CLM3(k = 2) captures both heterotachy and RAS, and consequently

often provides a better fit to real alignments compared to M3(k = 2) (e.g.,

see Table 3.1). Furthermore, the CLM3(k = 2) component of the PG-BSM

provides a means to account for non-adaptive shifting balance, and in doing

so reduces the probability of falsely rejecting the null hypothesis of no PG

association (as shown in the analysis of the phytochrome A&CF gene).

Genetic information is assumed to consist of an alignment X of N homol-

ogous protein-coding sequences of length n with a known rooted topology τ .

The phenotype, encoded by a vector F, can be any discrete character state,

such as a property of the gene’s protein product (i.e., a molecular phenotype),

some characteristic of the organism, or an environmental variable. Given τ , the

likelihood function under the null hypothesis that the phenotype and genotype

evolved independently is computed as follows:

Lnul(X,F;λ,θ, t) = P(F;λ, t)
n∏
h=1

(
π0P0(xh;θ, t) + (1− π0)PCL(xh;θ, t)

)
(4.4)

P(F;λ, t) is the probability of the vector of phenotypes given the rate parame-

ter λ and branch lengths t, P0(xh;θ, t) is the probability of the site pattern xh

assuming the site evolved under ω0 = 0, PCL(xh;θ, t) is the probability of the

site pattern assuming it evolved under CLM3(k = 2), and θ = (ω1, ω2, p1, δ, κ)

is a vector of parameters for sequence evolution. All probabilities are computed

using the pruning algorithm (Felsenstein, 1981).
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CW rCW BW

Figure 4.1: An illustration of the differenece between the cladewise (CW and rCW)
and branchwise (BW) evolutionary processes. Each process accounts for a specific form of
heterotachy associated with changes in phenotype. The empty and filled markers at the
terminal nodes indicate three phenotypic states. ω1 < ω2 are dN/dS rate ratios. The grey
disks indicate the nodes at which a change in phenotype occurred. CW sites are assumed
to have evolved under ω1 prior to a change in phenotype and under ω2 after a change. rCW
sites are assumed to have evolved under ω2 prior to a change in phenotype and under ω1

after a change. BW sites are assumed to have evolved under ω2 over branches along which a
change in phenotype occurred and under ω1 everywhere else in the tree. The model assumes
a rooted tree because the interpretation of the CW and rCW processes require a particular
order of change in rate ratio.

The alternative PG-BSM enforces dependencies between phenotype and

genotype evolution at some fraction of sites. Various mechanisms of depen-

dency are amenable to phenomenological representation as distinct modes of

heterotachy (Figure 4.1). Here I consider three. First, a change in phenotype

along a branch can coincide with a reduction in the stringency of selection at

a site due to loss of functional importance (e.g., the site’s role in the main-

tenance of the protein’s tertiary structure, Pupko and Galtier, 2002) in the

descendant clade. This mechanism is expressed phenomenologically in the

PG-BSM as the cladewise (CW) process under which a proportion πCW of

sites are assumed to have evolved under the smaller ω1 prior to a change in

phenotype and under the larger ω2 over the entire clade descending from the

branch over which a change in phenotype occurred (CW tree in Figure 4.1).
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Second, a change in phenotype along a branch can coincide with an increase

in the stringency of selection at a site reflecting an increase in its functional

importance. This mechanism is represented in the PG-BSM by the reverse

cladewise (rCW) process under which a proportion πrCW of sites are assumed

to have evolved under the larger ω2 prior to a change in phenotype and under

the smaller ω1 over the entire clade descending from the branch over which a

change in phenotype occurred (rCW tree in Figure 4.1). Third, a change in

phenotype can coincide with changes in site-specific fitness landscapes in the

form of peak shifts. This mechanism is represented in the PG-BSM by the

branchwise (BW) process under which a proportion πBW of sites are assumed

to have evolved under the larger ω2 over branches along which the phenotype

changed and under the smaller ω1 everywhere else in the tree (BW tree in

Figure 4.1).

Sites consistent with the phenomenological CW, rCW or BW process (herein

referred to as CW, rCW or BW sites) represent a subset of those assumed by

the null PG-BSM to have evolved under the CL process (i.e., sites deemed

to have undergone at least one replacement substitution). It is therefore as-

sumed that all four processes (CW, rCW, BW and CL) share the same ω1 and

ω2. This is in contrast to the standard approach exemplified by the YN-BSM

A. That model partitions sites into four categories according to the way they

are assumed to have evolved along background (BG) and foreground (FG)

branches. Category 0 sites evolved under ω0 < 1 over the entire tree; category

1 sites evolved neutrally with ω1 = 1 over the entire tree; category 2a sites

evolved under ω0 < 1 on BG branches and under ω2 ≥ 1 on the FG; and cat-

egory 2b sites evolved under ω1 = 1 on the BG and under ω2 ≥ 1 on the FG.

Hence, ω2 applies to category 2 sites only. This approach gives the YN-BSM

A the power to detect evidence of positive selection (i.e., ω2 > 1) at a small

number of sites along the FG, but also introduces the risk of issues related

to irregularity (e.g., Baker et al., 2016; Mingrone et al., 2018). Specifically,

ω2 becomes nearly unidentifiable when the proportion p2 of category 2 sites

is small. Its maximum likelihood estimate (MLE) can consequently be very

large and potentially misleading. Using ω1 and ω2 for all non-invariant sites
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under the PG-BSM makes it much less likely that these parameters will be

unidentifiable, but undoubtedly reduces the statistical power to detect a small

number of sites that evolved under an exceptionally large rate ratio. The po-

tential impact of this loss is mitigated by the fact that the PG-BSM does not

rely on evidence of ω > 1 to reject the null.

To infer PG associations of any kind requires knowledge of the ancestral

branches over which the phenotype changed or remained constant. This in-

formation is provided by realizations of ancestral phenotypes at the internal

nodes of the tree generated using equation (4.3), each of which is converted to

a change map z = (z1, ..., z2N−2) as follows (see Figure 4.1):

zb =

{
0 if the phenotype is the same at the two ends of branch b

1 if the phenotype is different at the two ends of branch b
(4.5)

The likelihood function under the alternative hypothesis can in principle be

computed by summing over all possible change maps:

Lalt(X,F;λ,θ, t) = P(F;λ, t)
∑
z

{
P(z | F, λ, t)

n∏
h=1

g(xh; z)

}
(4.6)

where P(z | F, λ, t) is the probability of the change map z given the terminal

states F, the rate constant λ and a vector of branch lengths t. The mix-

ture probability g(xh; z) depends on the particular combination of processes

included in the alternate PG-BSM. If the objective was to detect sites consis-

tent with either the CW or BW process, for example, the mixture probability

would be as follows:

g(xh; z) = π0P0(xh;θ, t) + πCLPCL(xh;θ, t)

+πCWPCW(xh;θ, t, z) + πBWPBW(xh;θ, t, z) (4.7)

Here PCW(xh;θ, t, z) and PBW(xh;θ, t, z) give the probabilities of the site pat-

tern xh assuming the site evolved under the CW and BW process, respectively,

and π0 + πCL + πCW + πBW = 1.

The number of possible change maps can be very large depending on the

number of taxa and phenotypic states. It is therefore often infeasible to com-

pute equation (4.6) exactly by summing over all z. Instead, P(z | F, λ, t)
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was approximated by the relative frequency π̂z of z in a sample of 105 real-

izations of ancestral phenotypes. These were generated using the MLEs for λ

and t as described in Methods. The summation in equation (4.6) was then

over all unique change maps that appeared in the sample using π̂z in place of

P(z | F, λ, t). Computation time increases with the number of unique change

maps. To reduce computational load, change maps z that occurred with a

frequency < 10−3 were excluded and the probabilities π̂z were renormalized

to sum to one. Note that estimates of λ and t are required to generate an-

cestral phenotypes. An exact but costly approach would be to resample from

P(z | F, λ, t) with each iterative update of λ and t inside the optimization

function. A less costly approximation was implemented instead as follows.

The MLEs (λ̂, t̂) obtained by fitting the null PG-BSM to the data were first

used to generate a preliminary sample. The alternate PG-BSM was then fit-

ted to the data using this sample to produce new MLEs (λ̂, t̂). To account for

any resulting changes in (λ̂, t̂), a second sample was generated using the new

MLEs and the alternate PG-BSM was fitted once more to produce the final

results. The alternate PG-BSM characterized by equation (4.7) was fitted to

all simulated alignments and to the real data. In some analyses of real data

the alternate model was modified to detect the phenomenological signature of

a single mechanism of PG association alone (e.g., either the CW, rCW or BW

process by itself).

An omnibus log-likelihood ratio (LLR) test is conducted to contrast the

null and alternative components of the PG-BSM. The components can differ by

m ∈ {1, 2, 3} parameters among the proportions {πCW, πrCW, πBW} depending

on which mechanistic processes of PG association are included in the alternate

model. In all cases the null PG-BSM is the same as the alternative when the

proportions are on the boundary of the parameter space (i.e., when πCW =

πrCW = πBW = 0). The theoretical limiting distribution of the LLR is therefore

a 50:50 mixture of the χ2
0 and χ2

1 distributions when m = 1 and an unknown

mixture of the χ2
0, χ2

1,...χ2
m distributions when m ∈ {2, 3} (Self and Liang,

1987). Note that Self and Liang (1987) does not apply to mixture models

in general, but can be shown to apply in this case because ω1 and ω2 can
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always be estimated under the CL component of the null model. Although

the mixture weights for the LLR distribution are unknown when m ∈ {2, 3},
the 95th percentile of a mixture of the χ2

0, χ2
1,...χ2

m distributions is always at

most that for the χ2
m distribution (i.e., 3.84, 5.99, and 7.81 for m = 1, m = 2,

and m = 3, respectively). Using these as critical values for the omnibus test

should therefore be conservative and produce less than 5% type I error rate.

Rejection of the null hypothesis of the omnibus test provides evidence for an

association between the gene and the phenotype. Naive empirical Bayes (NEB)

analysis is then used post hoc to identify the most likely category for each site.

Let c ∈ {CW, rCW,BW} index the three categories of PG-associated sites

possibly included in the alternative model. The posterior probability that a

site evolved under the process indicated by category c is evaluated at the MLE

for the alternate PG-BSM as follows:

P(c | xh) =
Lalt(x

h | c)π̂c
Lalt(xh)

(4.8)

A false positive occurs when a site is incorrectly assigned to one of the three

categories. The false positive rate (the proportion of all sites falsely inferred

to be associated with the phenotype) is usually controlled by assigning sites to

category c ∈ {CW, rCW,BW} only when their posteriors P(c | xh) are greater

than some threshold such as 0.95 (e.g., Yang et al., 2000a). An alternative

approach, also based on the posteriors, is to aim to control the proportion

of sites assigned to category c that in fact did not evolve under category c

(i.e., the false discovery rate or FDR, Newton et al., 2004; Guindon et al.,

2006). To see the difference between the two approaches, consider an analysis

of an alignment with 1000 codon sites. Suppose 10 sites were inferred to have

evolved under the CW process (i.e., there were 10 “discoveries”) and that 5 of

these were incorrect. Then the false positive rate would only be 0.5% (5 sites

out of 1000), whereas the FDR would be 50% (5 sites out of 10). Hence, a low

false positive rate does not necessarily imply a low FDR, particularly when

the number of discoveries is small.

The FDR approach was used in all analyses but with one modification.

Rather than controlling the proportion of false discoveries of a given category
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c ∈ {CW, rCW,BW}, it was decided to control the number of false discov-

eries or the “false discovery counts” (FDC) for each category. For example,

to assess the results of the post hoc analyses for our simulation studies, the

mean observed FDC (and the mean power) were computed for each set of S

alignments as follows:

FDC(c) =
1

S

S∑
i=1

Fi(c), Power =
1

S

S∑
i=1

Di(c)− Fi(c)
n(c)

(4.9)

Here Fi(c) is the number of false discoveries of category c sites and Di(c) the

total number of discoveries of category c sites, both for the ith alignment,

and n(c) is the number of sites in the alignment that were evolved under the

process indicated by category c. The expected number of false discoveries

E{FDC} = E{Fi(c)} can be controlled by setting a posterior threshold that is

specific to the alignment under consideration (see Methods). This threshold

can change from one data set to another. For the analyses presented in this

chapter I used E{FDC} ∈ {1, 2} for each category c ∈ {CW, rCW,BW} of

sites included in the alternate PG-BSM.

To quantify the evidential support for branches over which the phenotype

is thought to have changed, the probability of the most frequently sampled

change map z∗ conditioned on the combined data is estimated as follows:

P(z∗ | X,F, λ, t) =
Lalt(X,F | z∗)π̂z∗

Lalt(X,F)
(4.10)

where π̂z∗ is the frequency of the most commonly sampled change map. Equa-

tion (4.10) is evaluated at the MLE for the alternate PG-BSM. The algorithm

that generates realizations of ancestral phenotypes makes use of estimates of

λ and t. But λ is independent of the alignment. The observed frequency π̂z∗

therefore depends on X only through branch length estimates. The likelihood

Lalt(X,F | z∗), by contrast, also depends on the existence of individual site

patterns that match to greater or lesser degree the patterns of PG association

indicated by z∗. An alignment generated with no PG association will tend

to result in Lalt(X,F | z∗)/Lalt(X,F) ≈ 1 making P(z∗ | X,F, λ, t) ≈ π̂z∗ , in

concordance with an alignment that contains no information about ancestral

phenotypic states. When there is PG association at some sites the ratio of
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likelihoods will be greater than one depending on the strength of the signal for

PG association (e.g., the proportion of sites generated under the CW, rCW

and BW processes) and on the extent to which z∗ matches the change map

that generated the data. A good match combined with strong signal will tend

to result in Lalt(X,F | z∗)/Lalt(X,F) > 1 making P(z∗ | X,F, λ, t) > π̂z∗ .

Hence, confidence in the most probable ancestral history can be increased by

accounting for PG associations in the combined data when such associations

exist.

4.2.3 Rigorous Model Assessment Requires a Realistic Data

Generating Process

The accuracy and power of a new CSM is usually assessed by fitting the

model to alignments generated under a similar model (Anisimova et al., 2001,

2002; Wong et al., 2004; Zhang, 2004; Kosakovsky Pond and Frost, 2005; Yang

et al., 2005; Zhang et al., 2005; Yang and dos Reis, 2011; Kosakovsky Pond

et al., 2011; Lu and Guindon, 2013). One drawback to this approach is that

standard CSMs constructed from rate matrices of the form Q(ω) = M ◦ (`S +

ω`N) cannot mimic site-specific variations in ω caused by processes such as

adaptation following episodic peak shifts (dos Reis, 2015) or non-adaptive

shifting balance (Jones et al., 2017). This is an issue because heterotachy may

well be pervasive in real alignments (e.g., Fitch and Markowitz, 1970; Fitch,

1971; Lopez et al., 2002; Philippe et al., 2003; Wang et al., 2007; Whelan et al.,

2011) and can engender novel statistical pathologies in models fitted to such

data (e.g., phenomenological load, Jones et al., 2018). It follows that rigorous

assessment of a CSM requires fitting the model to alignments generated with

realistic levels of heterotachy.

A direct way to produce such alignments is to base the generating model on

the MS framework (Halpern and Bruno, 1998; Spielman and Wilke, 2015a,b;

Jones et al., 2017). Two such generating models were used in this study.

The first, MSm(ammalian)mtDNA, was developed in Chapter 3 to mimic 12

concatenated H-strand mitochondrial DNA sequences (3331 codon sites) from

20 mammalian species as distributed in the PAML software package (Yang,
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2007). MSmmtDNA was shown to produce data similar to the real alignment

by several measures of comparison (Jones et al., 2018). In particular, it was

shown to produce alignments with similar levels of heterotachy. However, while

MSmmtDNA is more realistic as a generating model, it represents only a small

proportion of the space of all distributions of vectors of site-specific fitness co-

efficients that might arise in reality. A second generating model that samples

with replacement from a set of 3598 such vectors estimated from an alignment

of 12 mitochondrial genes taken from 244 mammalian species (Tamuri et al.,

2014) was therefore used for some of simulations. This generating process will

be referred to as MSTGdR (Tamuri, Goldman and dos Reis) after the au-

thors of that study. Substitutions between codons that differ by two or three

nucleotides can only occur in single nucleotide steps under the PG-BSM, con-

sistent with the majority of CSMs in common use today. It was demonstrated

in Chapter 3 that the occasional fixation of double or triple mutations can

manifest as an additional source of heterotachy. It was not clear what effect

DT might have on power and accuracy when left unaccounted for by the PG-

BSM. Alignments were therefore generated using both MSmmtDNA with 0%

DT and MSmmtDNA with 6% DT (recent studies suggest that DT mutations

comprise between 1% and 3% of all mutations, Keightley et al., 2009; Schrider

et al., 2014; De Maio et al., 2013; Harris and Nielsen, 2014). To assess the sta-

tistical properties of the PG-BSM without misspecification the null PG-BSM

was also used to generate alignments.

The mutation-selection framework has been used in several recent studies

to simulate alignments (Spielman and Wilke, 2015b, 2016; Jones et al., 2017,

2018). In all cases the substitution process was stationary, meaning that fit-

ness coefficients and the stringency of selection were made to be constant at

each site over the entire tree. In this study, MSmmtDNA and MSTGdR were

formulated to include a subset of sites evolved under non-stationary processes

in the form of changes in the stringency of selection and/or fitness coefficients

at specific nodes of the tree (Figure 4.1). Changes in the stringency of se-

lection starting along a single branch leading to a clade can manifest as a
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cladewise difference in the mean rate ratio ω to produce site patterns phe-

nomenologically consistent with the CW or rCW processes. Similarly, changes

in fitness coefficients (a peak shift) along a single branch can result in site

patterns phenomenologically consistent with the BW process, particularly if

they occur at sites otherwise evolved under stringent selection. In this way, the

MS framework was used to produce alignments with realistic levels of hetero-

tachy due to multiple processes. The purpose was to assess the ability of the

PG-BSM to distinguish heterotachy due to non-adaptive processes from that

due to changes in site-specific landscapes. The proposed approach represents

a significant improvement over traditional methods of model testing based on

data generated using rate matrices of the form Q(ω) = M ◦(`S+ω`N). Details

of all generating processes are provided in Methods.

4.3 Results

4.4 Simulations

The results of three broad simulation studies encompassing a wide variety

of evolutionary scenarios are reported in this section. Simulation 1 was de-

signed to test the statistical properties of the PG-BSM by fitting the model

to alignments generated under the null PG-BSM. Simulation 2 was conducted

to assess the impact of differences between the process as assumed under the

fitted model and the process used to generate the data (i.e., misspecification).

For this purpose, alignments were generated using MSmmtDNA with 0% DT

or 6% DT and MSTGdR with 0% DT. Furthermore, in some cases the alternate

PG-BSM was fitted with the phenotype designated incorrectly. Simulation 3

was designed to assess the performance of the model under a scenario with

four phenotypes. Increasing the number of phenotypes introduces greater un-

certainty in the distribution of change maps (i.e., P(z | F, λ, t) becomes more

dispersed) and therefore represents a greater challenge to the model. The

analyses of real alignments that follow this section includes further simulation

studies designed to mimic specific aspects of those data sets.
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4.4.1 Simulation 1: Generating under the Null PG-BSM

0 1

Clocked Tree

0 2.6

Unclocked Tree

Figure 4.2: The clocked and unclocked trees used in Simulations 1, 2, and 3. Tree depths
give the expected number of single nucleotide substitutions per codon. Symbols at the nodes
indicate different phenotypes, with k = 2 phenotypes on the clocked tree and k = 4 on the
unclocked tree.

According to ML theory, when the PG-BSM is fitted to data generated

under the null PG-BSM, and as information (e.g., the number of codon sites)

increases without bound, (i) the distribution of the LLR for the contrast be-

tween the null (equation 4.4) and alternate PG-BSM (equations 4.6 and 4.7)

will converge to some unknown mixture of the χ2
0, χ2

1 and χ2
2 distributions (Self

and Liang, 1987), and (ii) the distribution of the MLE for each model param-

eter will converge to a normal centered on the parameter’s generating value.

The objective of the first simulation was to assess how well these expectations

hold. To that end, 100 alignments 300 codons in length and 100 alignments

1000 codons in length were generated on the clocked and unclocked trees shown

in Figure 4.2. The generating model was the null PG-BSM with the following

parameters: π0 = 0.65, ω1 = 0.10, ω2 = 1.50, p1 = 0.80, δ = 0.20, πCW = 0,

πBW = 0. The parameters for the mutation process, including position-specific

nucleotide frequencies and the transition/transversion rate ratio, were set to
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values estimated from the alignment of 12 concatenated H-strand mitochon-

drial DNA sequences from 20 mammalian species. The phenotypes assumed

under the alternate PG-BSM were those indicated by the different symbols at

the terminal nodes in Figure 4.2 (e.g., F = (0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0)

for the clocked tree and F = (1, 1, 1, 1, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 3, 3) for the un-

clocked tree).

As the limiting distribution of the LLR is unknown, the test was conducted

as if it was χ2
2 to be conservative, using the critical value 5.99 for a 5% test.

Table 4.1 compares the relative frequency of the empirical LLR in each of

the three intervals [0, 0.50), [0.50, 5.99) and (5.99,+∞) for all four simulation

scenarios to that expected under the χ2
2 distribution. Using the 5.99 cut-off

gave a false positive rate of at most 2/100 among Simulation 1 scenarios.

Furthermore, the relative frequencies in the [0, 0.50) interval fell between 0.65

and 0.78 compared to the expected probability 0.22 for the χ2
2 distribution.

This result is not inconsistent with the fact that the actual LLR distribution

places a substantial weight of 1/2 on the χ2
0 distribution (i.e., a point mass

at zero) and 1/2-p on the χ2
1 distribution for some unknown p ∈ [0, 1/2).

Nevertheless, the χ2
2 distribution was used for the remainder of analyses as a

buffer against inevitable misspecifications and/or issues associated with low

information content, as is standard practice when the exact distribution of

the LLR is unknown (e.g., Wong et al., 2004; Zhang et al., 2005; Yang, 2007,

2017).

The mean, median and standard deviation of the MLEs of select model pa-

rameter for each generating scenario are shown in Table 4.2. In each case the

mean and median were either the same or nearly so, indicating symmetrical

distributions. A one-sample Kolomogorov-Smirnov test for normality applied

to each set of 100 MLEs failed to reject the null hypothesis of a normal dis-

tribution in all cases (p-value ≥ 0.16). Furthermore, the mean MLE for each

parameter was either the same or very close to its generating value in all four

scenarios. And in each case the standard deviation was smaller for the 1000

codon scenario compared to its counterpart 300 codon scenario. These re-

sults suggest that the PG-BSM is statistically well behaved when fitted to
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alignments generated under the scenarios considered.

scenario 0 to 0.50 0.50 to 5.99 5.99 to +∞ false +ve

PG-BSM C 300 sites 0.66 0.32 0.02 2/100

PG-BSM UC 300 sites 0.68 0.32 0.00 0/100

PG-BSM C 1000 sites 0.65 0.34 0.01 1/100

PG-BSM UC 1000 sites 0.78 0.22 0.00 0/100

expectation under χ2
2 0.22 0.73 0.05 5/100

Table 4.1: Empirical vs Expected. Comparison of the empirical LLR with χ2
2 for Simula-

tion 1 scenarios on the clocked (C) and unclocked (UC) trees shown in Figure 4.2. The last
column shows the number of times the omnibus test incorrectly rejected the null to give a
false positive (false +ve).

parameter generating C 300 C 1000

π0 0.65 0.65/0.65,(0.03) 0.65/0.65,(0.01)

ω1 0.10 0.10/0.10,(0.03) 0.10/0.10,(0.01)

ω2 1.50 1.51/1.50,(0.25) 1.57/1.54,(0.18)

p1 0.80 0.78/0.78,(0.03) 0.83/0.83,(0.02)

δ 0.20 0.19/0.18,(0.07) 0.21/0.20,(0.04)

κ 4.61 4.71/4.66,(0.42) 4.53/4.53,(0.20)

parameter generating UC 300 UC 1000

π0 0.65 0.65/0.65,(0.01) 0.65/0.65,(0.01)

ω1 0.10 0.10/0.10,(0.02) 0.10/0.10,(0.01)

ω2 1.50 1.56/1.55,(0.26) 1.51/1.52,(0.14)

p1 0.80 0.80/0.80,(0.03) 0.79/0.79,(0.02)

δ 0.20 0.20/0.19,(0.06) 0.20/0.19,(0.03)

κ 4.61 4.60/4.63,(0.37) 4.54/4.54,(0.19)

Table 4.2: Mean/median,(standard deviation) of select MLEs for Simulation 1.

4.4.2 Simulation 2: Generating under MSmmtDNA and

MSTGdR

The second simulation study was conducted to assess the statistical accu-

racy and power of the PG-BSM when fitted to alignments simulated using a

more complex generating model compared to the null PG-BSM. In particular,

the aim was to generate alignments using the MS framework in such a way as

to mimic realistic levels of heterotachy caused by non-adaptive shifting bal-

ance and episodic changes in site-specific fitness landscapes. The simulation

is comprised of five scenarios, each of which was tested under three different

sequence generating processes, yielding 15 cases in total (Table 4.3). In the
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first scenario (denoted 2a (πCW, πBW) = (0%, 0%)) alignments were generated

with no PG association, but with substantial heterotachy due to non-adaptive

shifting balance, and therefore contained signal for the CL process that could

potentially be misconstrued as signal for the CW and BW processes under the

alternate PG-BSM. The second scenario (denoted 2b (πCW, πBW) = (5%, 0%))

included signal in the form of a small fraction (πCW = 5% of 300 sites) of sites

generated with a reduction in the stringency of selection. The third scenario

(denoted 2c (πCW, πBW) = (0%, 5%)) included sites generated with peak shifts

(πBW = 5%). In the fourth scenario (denoted 2d (πCW, πBW) = (0%, 0%)) the

effect of phenotype error was investigated by using the data generated for 2c

but with a misspecified vector of phenotypes. Signal for PG association was

increased in the final scenario (denoted 2e (πCW, πBW) = (5%, 5%)) by including

both sites generated with a reduction in the stringency of selection (πCW = 5%)

and sites with peak shifts (πBW = 5%). The three generating processes used

were: MSmmtDNA with 0% DT, MSmmtDNA with 6% DT, and MSTGdR

with 0% DT. In each case, 50 alignments 300-codons in length were gener-

ated on the clocked tree in Figure 4.2. Changes in the stringency of selection

and/or peak shifts were effected along the branch marked in bold. The correct

phenotype designation was F = (0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0), while the

incorrect designation used in 2d was F = (0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0).

The omnibus test correctly failed to reject the null in all Scenario 2a

(πCW, πBW) = (0%, 0%) trials (Table 4.3). In Scenario 2b (πCW, πBW) = (5%, 0%),

the null was correctly rejected in 47/50, 46/50 and 42/50 trials, indicating good

power, and the CW and BW processes were inferred at an average of (7%,1%),

(7%,1%) and (4%,0%) of sites, in approximate agreement with their generating

values. The agreement was also good in Scenario 2c (πCW, πBW) = (0%, 5%)

where the null was rejected in 46/50, 38/50 and 50/50 trials, and the CW

and BW processes were inferred at an average of (1%,9%), (2%,7%) and

(1%,7%). The null was rejected in only 1/50, 1/50 and 2/50 trials, in Sce-

nario 2d (πCW, πBW) = (0%, 0%), well below the expected 5% error rate. And

in Scenario 2e (πCW, πBW) = (5%, 5%) the null was rejected in all trials and the

CW and BW processes were inferred at an average of (6%,9%), (6%,8%) and
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(6%,6%) of sites.

Results of the post hoc analysis applied to alignments with signal for PG

association (Scenarios 2b, 2c, and 2e) are summarized in Table 4.4. Analyses

were conducted with E{FDC} = 1 for each category c ∈ {CW,BW}. For

Scenario 2b (πCW, πBW) = (5%, 0%) MSmmtDNA 0% DT (first row of Table

4.4), for example, the average FDC was 0.80 CW sites and 0.86 BW sites per

alignment. The average power to detect CW sites was 0.31 corresponding to

an average of 4.72 correctly identified sites per alignment out of the 15 sites

generated with a reduction in the stringency of selection. Among all scenarios

included in Table 4.4, the average FDC ranged between 0.62 and 2.12 with

mean 1.32 and standard deviation 0.44, and were approximately normal in

distribution. The FDC was therefore slightly biased toward values greater

than the nominal E{FDC} = 1. Note that FDC = 1.32 correpsonds to a mean

false positive rate of 1.32/300 sites × 100% = 0.44%.

To determine the impact of the generating scenario on the number of false

discoveries, a generalized linear model was fitted to the counts of each type

for each alignment using as predictor variables: the generating MS model

(xMS = 1, 2 or 3 for MSmmtDNA 0% DT, MSmmtDNA 6% DT, and MST-

GdR 0% DT); the presence or absence of sites evolved under the CW process

(xCW = 1 or 0); and the presence or absence of sites evolved under the BW

process (xBW = 1 or 0). The generating MS model was found to have no

significant effect on either the expected FDC(CW) (p-value = 0.08) or the

expected FDC(BW) (p-value = 0.12). After removing xMS from the analysis,

the following significant relationships were found:

log {FDC(CW)} = −0.37 + 0.80xBW (4.11)

log {FDC(BW)} = −0.27 + 0.34xCW + 0.51xBW (4.12)

For alignments generated with no PG association (i.e., with xCW = xBW = 0)

the first model predicts an average FDC(CW) = 0.69 per alignment and the

second model an average FDC(BW) = 0.76 per alignment, both slightly under

the target E{FDC} = 1. The first model predicts an average FDC(CW) = 1.54

for alignments generated with BW sites whether or not CW sites were present.
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The second model predicts FDC(BW) = 1.07 for alignments generated with

CW sites only and FDC(BW) = 1.27 for alignments generated with BW sites

only. The predicted rate is nearly two false detections per alignment when

the generating process includes both CW and BW sites, with FDC(BW) =

1.78 per alignment, corresponding to a false positive rate of 1.78/300 sites ×
100% = 0.59%.

Turning to the last two columns of Table 4.4, the model performed well with

respect to identifying the correct evolutionary history of the phenotype. The

change map z∗ corresponding to the most frequently sampled history matched

that used to generate the alignment in no less than 44/50 trials and often in

50/50 trials. Furthermore, P(z∗ | X,F, λ, t) was always greater than π̂z∗ with

average differences ranging between 0.22 < P(z∗ | X,F, λ, t) − π̂z∗ < 0.27.

This result illustrates how accounting for PG associations can substantially

reduce uncertainty in the inferred history of the phenotype.

generating model π̂0 ω̂2 π̂CW π̂BW rejections

Scenario 2a (πCW, πBW) = (0%, 0%)

MSmmtDNA 0% DT 0.59 1.10 0.01 0.00 0/50 false

MSmmtDNA 6% DT 0.65 1.40 0.01 0.01 0/50 false

MSTGdR 0% DT 0.76 2.31 0.00 0.00 0/50 false

Scenario 2b (πCW, πBW) = (5%, 0%)

MSmmtDNA 0% DT 0.55 1.11 0.07 0.01 47/50 true

MSmmtDNA 6% DT 0.58 1.25 0.07 0.01 46/50 true

MSTGdR 0% DT 0.71 1.38 0.04 0.00 42/50 true

Scenario 2c (πCW, πBW) = (0%, 5%)

MSmmtDNA 0% DT 0.59 1.10 0.01 0.09 46/50 true

MSmmtDNA 6% DT 0.57 2.20 0.02 0.07 38/50 true

MSTGdR 0% DT 0.73 1.35 0.01 0.07 50/50 true

Scenario 2d (πCW, πBW) = (0%, 0%)

MSmmtDNA 0% DT 0.60 1.27 0.01 0.01 1/50 false

MSmmtDNA 6% DT 0.56 2.30 0.01 0.00 1/50 false

MSTGdR 0% DT 0.72 1.37 0.00 0.00 2/50 false

Scenario 2e (πCW, πBW) = (5%, 5%)

MSmmtDNA 0% DT 0.55 1.10 0.06 0.09 50/50 true

MSmmtDNA 6% DT 0.57 1.42 0.06 0.08 50/50 true

MSTGdR 0% DT 0.70 1.36 0.06 0.06 50/50 true

Table 4.3: Simulation 2 Results. Select mean MLEs and omnibus test results for Sim-
ulation 2. Note that Scenario 2d used the same alignments as Scenario 2c but with a
misspecificed vector of phenotypes.
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model CW FDC CW Power BW FDC BW Power (prior, post) =

Scenario 2b (πCW, πBW) = (5%, 0%)

1 0.80 0.31(4.72) 0.86 - (0.73,0.96) 48

2 0.66 0.34(5.12) 1.16 - (0.70,0.96) 47

3 0.62 0.36(5.44) 1.20 - (0.62,0.88) 44

Scenario 2c (πCW, πBW) = (0%, 5%)

1 1.30 - 1.54 0.37(5.60) (0.76,1.00) 50

2 1.86 - 1.08 0.24(3.54) (0.72,0.98) 49

3 1.76 - 1.20 0.59(8.88) (0.73,1.00) 50

Scenario 2e (πCW, πBW) = (5%, 5%)

1 1.04 0.29(4.38) 2.12 0.28(4.14) (0.75,1.00) 50

2 1.90 0.26(3.90) 1.76 0.34(5.10) (0.77,1.00) 50

3 1.44 0.46(6.86) 1.48 0.42(6.18) (0.78,1.00) 50

Table 4.4: Simulation 2 post hoc analysis. Results of the post hoc analysis of Simulation
2 datasets. Column headings: CW FDC - the average number of CW sites discovered per
alignment that were false; CW Power - average proportion of sites generated under the CW
processes that were correctly identified (in brackets is the average number of true discoveries
per alignment); BW FDC and BW power are similarly defined; prior = π̂z∗ - the frequency
of the most frequently sampled change map z∗ averaged over trials; post = P(z∗ | X,F, λ, t)
- the probability of z∗ conditioned on all of the data averaged over trials; “=” represents
matches - the number of trials for which z∗ matched the generating change map. Models:
1 = MSmmtDNA 0% DT; 2 = MSmmtDNA 6% DT, 3 = MSTGdR 0% DT.

4.4.3 Simulation 3: A Scenario with Four Phenotypic States

The third simulation study was conducted to assess the statistical accu-

racy and power of the PG-BSM under scenarios with more than two phenotypic

states. In this case only MSmmtDNA was used to generate data because the

results of Simulation 2 indicated no substantial differences between the three

MS generating processes used there. Fifty 300-codon alignments were gen-

erated on the unclocked tree in Figure 4.2 under four scenarios. In the first

scenario (denoted 3a (πCW, πBW) = (0%, 0%)) alignments were generated with

no PG association. In the second scenario (denoted 3b (πCW, πBW) = (5%, 0%))

alignments were generated with a reduction in the stringency of selection at

5% of sites. In the third scenario (denoted 3c (πCW, πBW) = (0%, 5%)) align-

ments were generated with peak shifts at 5% of sites. And in the last scenario

(denoted 3d (πCW, πBW) = (5%, 5%)) alignments were generated with both a

reduction in the stringency of selection at 5% of sites and peak shifts at 5% of

sites. In all cases the stringency of selection and/or peak shifts were effected

along the branches marked in bold. The phenotype assumed by the alternate
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PG-BSM was F = (1, 1, 1, 1, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 3, 3) in all scenarios. The

unclocked tree is arguably more consistent with real data in both its irregular

topology and depth compared to the clocked tree in Figure 4.2, and was cho-

sen, in combination with the increase in the number of phenotypes, to provide

a more challenging test of model performance.

The omnibus test correctly failed to reject the null hypothesis in all Sce-

nario 3a (πCW, πBW) = (0%, 0%) trials under which alignments were generated

with no PG association (Table 4.5). The null was correctly rejected in all Sce-

nario 3c(πCW, πBW) = (0%, 5%) and Scenario 3d (πCW, πBW) = (5%, 5%) trials.

However, in Scenario 3b (πCW, πBW) = (5%, 0%) the null was correctly rejected

in only 15/50 trials. The PG-BSM apparently had difficulty identifying sites

generated with a reduction in the stringency of selection. Concordantly, the av-

erage power to detect CW sites was 0.16 for Scenario 3b (πCW, πBW) = (5%, 0%)

alignments and 0.36 for Scenario 3d (πCW, πBW) = (5%, 5%) alignments, as re-

ported in Table 4.6, much less than the average power to detect BW sites,

which was 0.67 for Scenarios 3c (πCW, πBW) = (0%, 5%) and 3d (πCW, πBW) =

(5%, 5%). The power to detect BW sites was substantially better overall in

Simulation 3 (0.67) compared to Simulation 2 (0.24 ≤ power ≤ 0.59), and

the FDCs for both CW and BW sites were significantly lower (no more than

0.78 false discoveries per alignment compared to as much as 2.12 among Sim-

ulation 2 scenarios). There was also a marked increase in uncertainty in the

ancestral phenotypes in Simulation 3, with an average 0.38 ≤ π̂z∗ ≤ 0.56

(Table 4.6) compared to 0.62 ≤ π̂z∗ ≤ 0.78 (Table 4.4) for Simulation 2. How-

ever, the combined use of information in both the alignment and the vector

of phenotypes made up the difference, as 0.80 ≤ P(z∗ | X,F, λ, t) ≤ 1.00

for Simulation 3 scenarios compared to 0.88 ≤ P(z∗ | X,F, λ, t) ≤ 1.00 for

Simulation 2. More telling is the fact that P(z∗ | X,F, λ, t) was at least twice

as large as π̂z∗ in all Simulation 3 scenarios with PG association, underlining

one benefit of combining phenotype and sequence data when such associations

exist.

A possible explanation for the low power of the omnibus test in Scenario

3b (πCW, πBW) = (5%, 0%) is confounding due to “branch-length effects”. As
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was stated in Chapter 3, two alignment-generating processes (real or simu-

lated) are nearly confounded if the site-pattern distributions they produce are

approximately the same (Jones et al., 2018). Sites evolved under MSmmtDNA

on the unclocked tree in Figure 4.2 with relaxation of selection pressure along

the three branches marked in bold tend to produce site patterns consistent

with the phenomenological CW process, (i.e., with greater diversity among

amino acids at the terminal nodes indicated by the filled markers and less

diversity among terminal nodes indicated by the open marker). But similar

patterns can arise on that tree at sites evolved on static fitness landscapes

due to the fact that the distances from the root to the terminal nodes indi-

cated by the filled markers are relatively long (increasing the probability of

replacement subsitutions) whereas the tip-to-root distances for terminal nodes

indicated by the open marker are relatively short (decreasing the probability

of replacement substitutions). Heterotachous site patterns xh generated with

relaxation of selection pressure in Scenario 3b (πCW, πBW) = (5%, 0%) there-

fore tended to be approximately as likely under the CL process as they were

under the CW process: PCL(xh;θ, t) ≈
∑

z PCW(xh;θ, t, z)π̂z. The LLR for

the contrast between the null and alternate PG-BSM consequently tended to

be small, and often something less than the critical value 5.99 (assuming the

χ2
2 distribution for the LLR and a 5% significance test). Note that modifying

the alternate PG-BSM to test for the CW process only, which permits the use

of the χ2
1 distribution for the LLR and a critical value of 3.84 for a 5% test,

increased the power of the omnibus test only slightly (19/50 rejections instead

of 15/50).

Scenario π̂0 ω̂2 π̂CW π̂BW rejections

3a, (πCW, πBW) = (0%, 0%) 0.62 1.00 0.00 0.00 0/50 false

3b, (πCW, πBW) = (5%, 0%) 0.59 1.05 0.02 0.00 15/50 true

3c, (πCW, πBW) = (0%, 5%) 0.60 2.21 0.00 0.06 50/50 true

3d, (πCW, πBW) = (5%, 5%) 0.57 1.52 0.04 0.05 50/50 true

Table 4.5: Selected results for Simulation 3 where there were four phenotypes evolved
from three discrete changes over the tree.
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Scenario CW FDC CW Power BW FDC BW Power (prior, post) =

3b 0.08 0.16(2.46) 0.14 - (0.38,0.80) 49

3c 0.44 - 0.32 0.67(10.18) (0.50,1.00) 50

3d 0.68 0.36(5.38) 0.78 0.67(10.12) (0.56,1.00) 49

Table 4.6: Simulation 3 post hoc analysis. Results of the post hoc analysis of Simulation
3 datasets. See caption for Table 4.4 for definitions of each column heading.

4.5 Analysis with Real Data

4.5.1 mmtDNA

0 2.6 3.8

null PG-BSM

0 2.9 3.4

alt PG-BSM

Primate
Non-Primate

human
chimpanzee
bonobo
gorilla
orangutan S
orangutan B
common gibbon
harbor seal
gray seal
cat
horse
rhinoceros
cow
fin whale
blue whale
rat
mouse
wallaroo
opossum
platypus

Figure 4.3: Branch lengths (the expected number of single nucleotide substitutions per
codon) estimated by fitting the null and alternate PG-BSM to the alignment of 12 con-
catenated H-strand mitochondrial DNA sequences (3331 codon sites) from 20 mammalian
species distributed in alignment form by the PAML software package (Yang, 2007). Trees
are drawn to the same scale. Vertical dashed lines indicate the average tip-to-root distance
(di, i = 1, ..., 20) across terminal nodes. Accounting for non-stationary processes under the
alternate model caused the tree to be more consistent with the molecular clock hypothesis,
with less variation in the di.

Mitochondrial genes encode proteins involved in basic metabolic processes

and are therefore thought to be functionally constrained most of the time.

Signatures of adaptation in mammalian mmtDNA have nevertheless been de-

tected. For example, Pupko and Galtier (2002) detected a significant difference
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in the replacement rates at some sites in mitochondrial genes within a clade of

7 simian primates compared to a clade of 27 other mammalian lineages. The

authors interpreted this as evidence of adapation and speculated that it might

have been due to changes in metabolic requirements related to an increase in

the size of the neocortex among primates compared to the other mammals

included in their analysis (Pupko and Galtier, 2002). In this section I present

an analysis of a similar alignment of 12 mmtDNA genes 3331 codons in length

taken from 20 mammalian species (Yang, 2007). Primate/non-primate was

used as a binary phenotype to facilitate comparison with Pupko and Galtier

(2002), but consider this to be a proxy for an unobserved and unknown phe-

notype and view our analysis as exploratory.

Four models of increasing complexity were fitted to the alignment: (i)

the model M3(k = 2) (Yang et al., 2000a), which assumes that some pro-

portion p1 of sites evolved under a smaller ω1 and the remaining sites under

a larger ω2 across the tree without heterotachy; (ii) the covarion-like model

CLM3(k = 2) (Jones et al., 2017), which assumes that sites evolved under ω1 a

proportion p1 of the time but switched randomly between ω1 and ω2 at a rate

of δ switches per single nucleotide substitution; (iii) the null PG-BSM, which

combines CLM3(k = 2) with a category of sites that evolved under ω0 = 0;

and (iv) the alternate PG-BSM, which adds to the null model two categories

of sites for the CW and BW processes. Note that CLM3(k = 2) is fitted to the

alignment X alone, whereas the PG-BSM is fitted to X together with the vec-

tor of phenotypes F. The log-likelihood of the PG-BSM was therefore reported

as the sum of two values. From equation (4.4), where θ = 〈ω1, ω2, p1, δ, κ, 〉:

ln{Lnul(X,F;λ,θ, t)}

= ln{P(F;λ, t)}+ ln

{
n∏
h=1

(
π0P0(xh;θ, t) + (1− π0)PCL(xh;θ, t)

)}
= LLF(F;λ, t) + LLX(X;θ, t)

Similarly:

LLCL(X;θ, t) = ln

{
n∏
h=1

PCL(xh;θ, t)

}
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The LLR = 2 {LLX(X;θ, t)− LLCL(X;θ, t)} evaluated at the MLEs for the

two models provides a means to test the significance of accounting for sites

evolving under ω0 = 0. Note however that, whereas t is estimated from (X,F)

under the null PG-BSM, it is estimated from X alone under CLM3(k = 2).

Hence the LLR is only approximate. It is likely to be a close approximation

however, since the information in F generally has a very small impact on the

MLE for t, which is determined primarily by the information in X.

Accounting for heterotachy resulted in a large improvement in fit, as the

M3 vs CLM3 contrast produced LLR = 2(89, 162 − 88, 880) = 564 on one

parameter (δ) (Table 4.7). Including a category for sites that evolved under

ω0 = 0 also resulted in a large improvement in fit, with LLR = 2(88, 880 −
88, 719) = 322 on one parameter (π0) for the CLM3 vs null PG-BSM contrast.

Accounting for PG association resulted in a smaller but also highly significant

improvment, with LLR = 2(88, 719 − 88, 681) = 76 on two parameters (πCW

and πBW). Trees with branch lengths estimated under the null and alternate

PG-BSM are shown in Figure 4.3. It is interesting that accounting for non-

stationary CW and BW processes under the alternate PG-BSM reduced the

length of the branch leading to the primate clade from 2.2 single nucleotide

substitutions per codon under the null model to 1.3 under the alternate model.

This was accompanied by an increase in the average of the distances d1, ..., d20

from each terminal node to the root from 2.6 to 2.9. The combined effect was

a reduction in the variance of the di. Accounting for the non-stationary CW

and BW processes therefore caused the tree to be more consistent with the

molecular clock hypothesis.

The alternate PG-BSM inferred a fraction of sites (π̂CW = 0.06, π̂BW = 0.04)

to be associated with the change from non-primate to primate. The post hoc

analysis identified a total of 17 sites (11 CW and 6 BW) that likely under-

went changes in their site-specific fitness landscapes along the branch lead-

ing to the primate clade. Substitution patterns for these sites are shown in

Figure 4.4. CW sites with posteriors 0.77 ≤ P(CW) ≤ 0.87 (where the up-

per bound 0.87 corresponds to the maximum value of P(CW) and the lower
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bound was determined by setting E{FDC(CW)} = 2) exhibit patterns consis-

tent with Type I FD, consisting of two or more amino acids among primates

and typically a single amino acid among non-primates. BW sites with pos-

teriors 0.67 ≤ P(BW) ≤ 0.75 (where the upper bound 0.75 corresponds to

the maximum value of P(BW) and the lower bound was determined by set-

ting E{FDC(BW)} = 2) exhibit patterns consistent with Type II FD, with

a single amino acid among primates and a single different amino acid among

non-primates.

YN-BSM A and B were also fitted to the alignment using the long branch

leading to the primate clade as the FG. The YN-BSM B is similar to Model A

but estimates the three rate ratios ω0, ω1, and ω2 freely and uses M3(k = 2)

as the null model (Yang and Nielsen, 2002). Note that the M3 vs Model B

contrast is not a test for ω2 > 1, but only for a change to ω2 at some sites

along the FG branch. Model A detected no evidence of positive selection

along the branch leading to the primate clade (LLR = 2.62 compared to a

critical value of 3.84 for a 5% test assuming LLR ∼ χ2
1, Table 4.8). Model B

detected strong evidence (LLR = 54.44 compared to a critical value of 5.99 for

a 5% test assuming LLR ∼ χ2
2) for an elevation in the rate ratio at some sites

along the same branch (ω̂2 = 0.98, p̂2 = 0.15). Akaike’s Information Criterion

(AIC = 2m − 2LL, where m is the number of estimated model parameters

and LL is the log-likelihood of the data under the model) is frequently used to

compare non-nested models under the maximum likelihood framework. The

better of any two models is the one with the smaller AIC. By this criterion

the PG-BSM provided the best fit, as the AIC was 177,456 for the PG-BSM,

178,358 for Model B and 181,777 for Model A.

Figure 4.5 shows 13 sites inferred by YN-BSM B to have undergone an

elevation in rate ratio to ω̂2 = 0.98 on the FG branch after FDC control was

applied to the BEB (or Bayes-Empirical-Bayes, Yang et al., 2005) posteriors

with E{FDC} = 2. Three of these sites have amino acid patterns that match

the primate/non-primate phenotype (marked by filled circles in Figure 4.5).

All three are among the 6 sites inferred by the PG-BSM to have undergone the

BW process. None of the sites are consistent with the CW process. However,
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seven of them are consistent with the rCW process, exhibiting one amino acid

among primates and several among non-primates (marked by filled triangles in

Figure 4.5). Similar site patterns were identified by Pupko and Galtier (2002)

in their data, and were interpreted as evidence of functional shifts. Motivated

by the presence of site patterns of this kind, the alternate PG-BSM accounting

for the rCW process alone was fitted to the alignment. No evidence for the

rCW process was detected (π̂rCW = 0.00) despite the fact that the alignment

includes a fair number of site patterns that are apparently consistent with this

process (e.g., there are 828 sites patterns with one amino acid among primates

and 2 or more among the 13 non-primates).

The fact that the PG-BSM did not detect evidence for the rCW process

suggests that the CL component of the null model provides a measure of

protection against branch-length effects (although possibly at the expense of

statistical power, cf. Scenario 3b (πCW, πBW) = (5%, 0%)). A site that evolved

on a static fitness landscape over the tree in Figure 4.3 is likely to exhibit a sin-

gle amino acid among the primates because the branches within the primate

clade are very short. The same site is likely to exhibit considerable amino

acid diversity among the remaining terminal nodes because the non-primates

consist of three clades each with relatively long terminal branches. It follows

that the site-pattern distribution implied by evolution on static fitness land-

scapes is similar to that implied by the mechanism whereby sites undergo an

increase in the stringency of selection along the branch leading to the primate

clade. Heterotachous site patterns xh in the mmtDNA alignment consistent

with the rCW process therefore tended to be approximately equally likely un-

der the CL process: PCL(xh;θ, t) ≈
∑

z PrCW(xh;θ, t, z)π̂z. Inclusion of the CL

process in the null model consequently resulted in no evidence for the rCW

process, possibly preventing a type I error.

Model LLX LLF π̂0 ω̂1 ω̂2 p̂1 δ̂ π̂CW π̂BW

M3(k = 2) -89,162 - - 0.01 0.15 0.71 - - -

CLM3(k = 2) -88,880 - - 0.00 0.21 0.77 0.06 - -

null PG-BSM -88,719 -4 0.47 0.02 0.35 0.76 0.12 - -

alt PG-BSM -88,681 -4 0.48 0.02 0.31 0.70 0.13 0.06 0.04

Table 4.7: Results of the analysis of the mmtDNA.
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Figure 4.4: Patterns for sites in the mmtDNA alignment. Sites shown are those inferred to
have evolved in association with a change in the primate/non-primate binary character state
that remained after application of FDC control with E{FDC} = 2. Rows designate taxa in
the same order as they appear in the tree shown in Figure 4.3. Columns designate sites.
The horizontal line separates primates from non-primates. The vertical line separates CW
from BW sites. Sites of each type are arranged in order of decreasing posterior probability
estimated using equation (4.8). CW sites (left) exhibit patterns of Type I FD consistent
with an elevated replacement rate along branches within the primate clade. BW sites
(right) exhibit patterns of Type II FD with conserved but different amino acids within the
two groups of taxa. The value below each CW site pattern indicates the number of different
amino acids among primates at that site.

Model A LLR = 2.62 < 3.84 Model B LLR = 54.44 > 5.99

category proportion BG ω FG ω proportion BG ω FG ω

0 0.89 0.03 0.03 0.70 0.01 0.01

1 0.07 1.00 1.00 0.28 0.15 0.15

2a 0.04 0.03 1.79 0.01 0.01 0.98

2b 0.00 1.00 1.79 0.01 0.15 0.98

Table 4.8: Results of the fit of alternate YN-BSM A and B to the mmtDNA data.
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Figure 4.5: Patterns for sites in the mmtDNA alignment inferred to be in category 2a
or 2b by the YN-BSM B. Sites shown remained after application of FDC control with
E{FDC} = 2. Rows designate taxa in the same order as they appear in the tree shown
in Figure 4.3. Columns designate sites. The horizontal line separates primates from non-
primates. Sites are arranged in order of decreasing posterior probability estimated using
YB-BSM B. Filled triangles and circles mark site patterns most consistent with the rCW
and BW process, respectively.
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4.5.2 Phytochrome A&CF
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Figure 4.6: Branch lengths (the expected number of single nucleotide substitutions per
codon) estimated by fitting the alternate PG-BSM to the phytochrome A&CF alignment.

Phytochrome is a plant photo-receptor associated with the regulation of

developmental processes. Most seed plants contain variants phyA, phyB and

phyC, but some also include variants phyD, phyE and phyF, which arose

following duplication of phyB (Mathews, 2010). An analysis of an alignment

of 15 angiosperm phytochrome sequences 1072 codons in length (Figure 4.6)

was conducted. Previous analyses of the same data performed as a test case

for the YN-BSM partitioned the sequences as phyCF versus phyA (Yang and

Nielsen, 2002; Zhang et al., 2005). The same partition was used here as a

binary phenotype.

Models M3(k = 2), CLM3(k = 2), and the null and alternate PG-BSM

were fitted to the data. Accounting for heterotachy resulted in a large improve-

ment in fit, as the LLR for the M3 vs CLM3 contrast was 2(28, 818−28, 739) =

158 on one parameter (δ) (Table 4.9). Including a category for sites that

evolved under ω0 = 0 also improved the fit, with LLR = 2(28, 739−28, 708) =

62 on one parameter (π0) for the CLM3 vs null PG-BSM contrast. Accounting

for PG associations engendered no improvement (LLR = 0), meaning that PG
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associations were not detected. Discordantly, both YN-BSM A and B rejected

their respective nulls (Table 4.10). Model A detected evidence of positive selec-

tion at some sites along the branch leading to the phyCF clade (i.e., category

2 sites with ω̂2 = 30.17, p̂2 = 0.12) and identified 29 sites with BEB posteriors

0.95 < P(cat 2) < 1.00, all of which remained after FDC control was applied

with E{FDC} = 1 (Figure 4.7). Model B detected evidence for an elevation

in the rate ratio at some sites along the same branch (ω̂2 = 5.56, p̂2 = 0.05).

The AIC was 57,510 for the null PG-BSM, 57,700 for Model B and 58,255

for Model A. Thus the null PG-BSM provided the best fit of the three mod-

els. The alignment nevertheless contains site patterns consistent with the CW

and BW processes (e.g., those marked by filled triangles and circles in Figure

4.7). The data might contain true signal for PG association that went un-

detected due to the unusually large proportion (70%) of variable sites in the

alignment. To test this hypothesis, a fourth simulation was conducted under

which MSmmtDNA was used to generate sets of 50 alignments 1072 codons in

length on the phytochrome tree (Table 4.11). The proportion of variable sites

can be controlled under MSmmtDNA by changing the proportion of sites with

landscapes that admit non-adaptive shifting balance (i.e., landscapes with a

selection regime somewhere between stringent and neutral, Jones et al., 2017).

Alignments under scenarios 4a and 4b were generated with either ≈ 40% or

≈ 70% variable sites, including 5% CW and 5% BW sites. These were used to

assess and compare the power of the PG-BSM and YN-BSM A omnibus tests.

Alignments under scenarios 4c and 4d were generated with either ≈ 40% or

≈ 70% variable sites but with no PG association. These were used to assess

and compare the accuracy of the omnibus tests.

The PG-BSM correctly detected PG association in 50/50 alignments gener-

ated with 40% variable sites (scenario 4a (πCW, πBW) = (5%, 5%)), but in only

42/50 alignments generated with 70% variable sites (scenario 4b (πCW, πBW) =

(5%, 5%), see Table 4.11). Although 42/50 indicates substantial statistical

power, the reduction in the number of detections in comparison with 40%

variable sites is consistent with our hypothesis that the power of the PG-

BSM can be reduced when sequences are highly divergent. The PG-BSM
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produced 0/50 false positives when there was no PG association regardless of

the proportion of variable sites. The YN-BSM A, by contrast, inferred pos-

itive selection (i.e., ω2 > 1) at some sites along the branch leading to the

phyCF clade in 11/50 alignments generated with 40% variable sites (scenario

4c (πCW, πBW) = (0%, 0%)) and in 31/50 alignments generated with 70% vari-

able sites (scenario 4d (πCW, πBW) = (0%, 0%)). Some of these might be true

evidence of ω > 1 on the FG since positive selection due to non-adaptive

shifting balance is expected to occur some of the time (Jones et al., 2017).

However, they are all false positives when interpreted as evidence of adaptive

evolution.

The PG-BSM was specifically designed to account for non-adaptive shift-

ing balance with the inclusion of CLM3(k = 2) as a component of the mixture

in equation (4.7). The importance of this component is illustrated by fixing

δ = 0 and fitting the resulting modified PG-BSM to scenario 4d alignments

(70% variable sites, no PG association). Setting the switching rate to zero has

the effect of making CLM3(k = 2) equivalent to M3(k = 2), since ω1 < ω2

are still estimated but sites can no longer switch between them. Sites most

consistent with M3(k = 2) are those that evolved at a constant rate over the

tree. The modified version of the alternate PG-BSM can therefore accommo-

date heterotachous sites only by appealing to the CW and BW processes. The

modified PG-BSM incorrectly inferred PG association in 33/50 trials when

fitted to scenario 4d alignments compared to 0/50 for the regular PG-BSM.

Model LLX LLF π̂0 ω̂1 ω̂2 p̂1 δ̂ π̂CW π̂BW

M3(k = 2) -28,818 - - 0.03 0.22 0.55 - - -

CLM3(k = 2) -28,739 - - 0.01 0.30 0.62 0.13 - -

null PG-BSM -28,708 -4 0.22 0.04 0.40 0.68 0.20 - -

alt PG-BSM -28,708 -4 0.22 0.04 0.40 0.68 0.20 0.00 0.00

Table 4.9: Results of the analysis of the phyA&CF data.
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Model A LLR = 22.67 > 3.84 Model B LLR = 23.27 > 5.99

category proportion BG ω FG ω proportion BG ω FG ω

0 0.81 0.09 0.09 0.55 0.03 0.03

1 0.07 1.00 1.00 0.40 0.23 0.23

2a 0.11 0.09 30.17 0.03 0.03 5.56

2b 0.01 1.00 30.17 0.02 0.23 5.56

Table 4.10: Results of the fit of alternate YN-BSM A and B to the phyA&CF data.

Figure 4.7: Patterns for sites in the phytochrome alignment inferred to be in category
2a or 2b by the YN-BSM A. Sites shown remained after application of FDC control with
E{FDC} = 1. Rows designate taxa in the same order as they appear in the tree shown
in Figure 4.6. Columns designate sites. The horizontal line separates phyA from phyCF.
Sites are arranged in order of decreasing posterior probabilities estimated using YB-BSM
A. Filled triangles and circles mark site patterns most consistent with the CW and BW
processes, respectively.

scenario % variant % CW % BW PG-BSM YN-BSM A

4a 40 5 5 50/50 50/50

4b 70 5 5 42/50 50/50

4c 40 0 0 0/50 11/50

4d 70 0 0 0/50 31/50

Table 4.11: Simulation 4 Results. Counts of the number of times the null was rejected for
omnibus tests applied to Simulation 4 alignments. % variant gives the approximate propor-
tion of site patterns in the simulated alignments that exhibited some degree of heterotachy.
The columns PG-BSM and YN-BSM A show the number of trials out of 50 for which the
relevant model rejected the null hypothesis. Rejections are true for scenarios 4a and 4b and
false for scenarios 4c and 4d.
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4.5.3 Invertebrate Cytochrome B
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Figure 4.8: Branch lengths (the expected number of single nucleotide substitutions per
codon) estimated by fitting the null PG-BSM to the cytochrome B alignment.

Euthyneura (snails and slugs) have adapted to diverse habitats, including

marine, intertidal, terrestrial and freshwater. Their mitochondrial genome in-

cludes cytochrome B, an essential component of the electron transport chain
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common to most life forms on Earth. Given its crucial role, one would ex-

pect cytB to be highly conserved. It is nevertheless reasonable to suspect

that transition from the marine to the other three environments might have

required some adaptations (e.g., for differences in osmotic pressure or the risk

of dessication). To test this hypothesis, the PG-BSM and YN-BSM were fitted

to an alignment consisting of 45 cytB sequences 341 codons in length. The

sequences were selected from a larger published data set (Romero et al., 2016)

to produce four homogeneous clades. Tree topology was estimated from the

DNA sequences using RAxMLv0.6.0 with default settings, and the tree was

rooted to produce that shown in Figure 4.8.

The PG-BSM was initially fitted to the alignment using the different envi-

ronments to define a phenotype with four states, but no signal for PG associ-

ation was found. The data were then re-analyed using three different binary

phenotpes: terrestrial vs non-terrestrial, freshwater vs non-freshwater, and in-

tertidal vs non-intertidal. Furthermore, the PG-BSM was modified to detect

either CW, rCW or BW sites alone (i.e., using three versions of the alternate

model). The YN-BSM A was also fitted to the alignment using the branch

leading to the terrestrial, freshwater, and intertidal clade each in turn as the

foreground (marked in bold in Figure 4.8). Signal was detected for BW sites

by the PG-BSM when phenotype was set to freshwater vs non-freshwater,

with LLR = 2(24, 537 − 24, 527) = 20 compared to a critical value of 5.73

(assuming LLR ∼ χ2
1 and using a level of significance α = 0.05/3 to adjust

for the fact that three tests were conducted on the alignment with freshwa-

ter vs non-freshwater as the phenotype). The MLEs for the analysis were

ω̂1 = 0.00, ω̂2 = 0.08, p̂1 = 0.58, δ̂ = 0.06 and π̂BW = 0.06. The YN-BSM

A detected evidence of positive selection in two cases, once along the branch

leading to the terrestrial clade (LLR = 2(25, 819 − 25, 812) = 14, ω̂2 = 999,

p̂2 = 0.04) and again along the branch leading to the freshwater clade (LLR

= 2(25, 811 − 25, 807) = 8, ω̂2 = 999, p̂2 = 0.12). As in the previous two

analyses with real data, here the PG-BSM provided the better fit: AIC was

51,700 for YN-BSM A but 49,146 for the alternate PG-BSM with BW alone

using the freshwater vs non-freshwater phenotype.
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It is instructive to compare the distribution of amino acids among each

clade at sites identified by the YN-BSM and PG-BSM via post hoc analysis.

Following application of FDC control with E{FDC} = 1, the YN-BSM A

identified 11 sites with strong evidence of having undergone episodic positive

selection on the branch leading to the freshwater clade. Table 4.12 shows the

distribution of the amino acids at six of those sites for which P(cat 2) ≥ 0.95.

Site 329, for example, is occupied by four amino acids among the 20 taxa in

the marine clade, 12 by L (Leucine), 5 by M (Methionine), 2 by I (Isolucine)

and 1 by V (Valine). A comparison of distributions across clades gives some

clue as to the process that might have generated the data. Sites 153 and 239,

for example, exhibit one amino acid among the freshwater clade (T at site

153 and K at site 239) but are dominated by a different amino acid among

the other three clades (N at site 153 and M at site 239). These patterns

are consistent with peak shifts at these sites along the branch leading to the

freshwater clade (i.e., the BW process). Site 329 and 127 show one amino

acid among the freshwater clade and two or more different amino acids among

each of the remaining clades. These sites are consistent with intensification

of selective constraint in the freshwater clade (i.e., the rCW process) possibly

following a peak shift (since the amino acid in the freshwater clade, C at site

329 and M at site 127, does not occur in any of the other three clades).

The PG-BSM fitted using freshwater vs non-freshwater as the phenotype

detected seven sites with 0.52 ≤ P(BW) ≤ 0.99 after post hoc analysis was

conducted with E{FDC} = 1. The first six of these are shown in Table 4.13.

The first four sites (153, 144, 25, and 239) are highly consistent with the BW

process, being dominated by one amino acid among the freshwater clade and

a different amino acid among the non-freshwater clades. Sites 182 and 64 are

both occupied by serine only. There are eight codon aliases for serine in the

invertebrate mtDNA, including TCN and AGN where N is any nucleotide.

Paths between TCN and AGN by single nucleotide substitutions require a

minimum of one nonsynonymous change to either tryptophan, cysteine or

threonine. The existence of serine sites with a mix of TCN and AGN would

therefore suggest one or more replacement substitutions. The fact that sites
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64 and 182 were identified in the post hoc analysis is explained by the codons

that appear within each clade: both sites are occupied by AGN everywhere

in the freshwater clade but are dominated by TCN among all remaining taxa

data not shown. This suggests that substitutions to intermediate amino acids

occurred along the branch leading to the freshwater clade. Note that the YN

BSM A assigned the largest posterior to sites 64 and 182, and also assigned

them equal probability P(cat 2) = 0.9970 despite the fact that the two sites

have different codon substitution patterns (data not shown). The PG-BSM,

by comparison, placed less weight on these sites and was apparently sensitive

to their differences, since P(BW) = 0.9221 for site 182 but only P(BW) =

0.7509 for site 64.

Clade site 64 site 182 site 153 site 329 site 239 site 127

Marine S20 S20 N20 L12M5I2V1 M20 L13V5A1I1

Freshwater S8 S8 T8 C8 K8 M8

Terrestrial S9 S9 N9 L7F1A1 M8L1 L7F2

Intertidal S8 S8 N8 L3A3S2 M8 L6V2

P(cat 2) 0.9970 0.9970 0.9610 0.9590 0.9530 0.9500

Table 4.12: Amino acid compositions, YN-BSM A. Composition for sites with P(cat
2) ≥ 0.95 are shown, as determined by the YN-BSM A using the branch leading to the
Freshwater clade as the FG. Sites are shown in order of descending BEB posteriors. Letters
represent amino acids and subscripts the number of taxa with that amino acid among the
corresponding clade.

Clade site 153 site 144 site 25 site 239 site 182 site 64

Marine N20 G20 L20 M20 S20 S20

Freshwater T8 S8 F8 K8 S8 S8

Terrestrial N9 G9 I5L4 M8L1 S9 S9

Intertidal N8 G8 L8 M8 S8 S8

P(BW) 0.9859 0.9799 0.9458 0.9433 0.9221 0.7509

Table 4.13: Amino acid compositions, PG-BSM. Composition for the first six sites iden-
tified by the PG-BSM to be associated with the Freshwater vs Other phenotype are shown.
Sites are in order of descending P(BW). Letters represent amino acids and subscripts the
number of taxa with that amino acid among the corresponding clade.
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4.6 Discussion

Branch-site CSMs provide a means to detect evidence that a codon site

underwent positive selection along a specified foreground branch of a phy-

logeny. Such evidence, in the form of an estimated rate ratio ω > 1, is widely

considered to be sufficient to infer adaptive evolution at a codon site (i.e., a

site-specific peak shift). However, ω > 1 does not necessarily imply adaptation.

It is true that the dynamic at a codon site following a peak shift is character-

ized by a transient increase in the expected rate ratio, and that the increase

can sometimes be to ω > 1 (dos Reis, 2015). But the same can also occur

on a static fitness landscape following chance fixation to a less-than-optimal

amino acid (i.e., by non-adaptive shifting balance, Jones et al., 2017, 2019a).

It is therefore not possible to distinguish an episodic change in a site-specific

landscape from non-adaptive shifting balance on a static landscape using esti-

mates of ω alone. Furthermore, adaptation does not necessarily imply ω > 1.

The increase in the rate ratio following a peak shift rapidly diminishes as the

site moves toward its new fitness peak (dos Reis, 2015). This suggests that

the initial elevation in rate ratio can be more difficult to detect as sequences

become more divergent. The analysis at the end of Chapter 2 supports this

intuition. Peak shifts were implemented using the MS framework by simul-

taneously changing the fitness coefficients at all 1000 codon sites in an initial

sequence S1 that was subsequently evolved over a branch of length b to obtain

a second sequence S2. M0 was then fitted to (S1, S2) to obtain ω̂. The median

estimate across 200 trials was ω̂ ≈ 1.4 when b = 0.2, but ω̂ ≈ 1.0 when b = 1.0

(see Figure 2.9). It follows from all the above that adaptive evolution and the

infernece that ω > 1 are not only not equivalent, but neither one necessarily

implies the other.

The PG-BSM provides an approach for inferring adaptation that does not

rely on evidence of positive selection. The method is based on the supposition

that mechanisms of adaptation at the molecular level consist of changes in site-

specific fitness landscapes. The mechanisms considered in this study consisted

of either a persistent change in the stringency of selection at a site or a peak

shift at a site along a particular branch of the tree. Changes in stringency
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are represented by the CW and rCW processes as cladewise changes in rate

ratio, whereas a peak shift is represented by the BW process as a transient

elevation in rate ratio along specific branches of the tree. The locations of

branches over which these processes may have occurred are informed by a

discrete character state (e.g., a phenotype) via a model for the evolution of that

character state. This constraint provides additional information that makes

it possible to identify among all variant sites those with replacement patterns

that imply PG association. The model also includes a covarion-like component

to account for variant site patterns inconsistent with PG association. The CL

component therefore provides the null hypothesis, which is rejected by the

presence of site patterns that are more likely to have occurred under one of

the CW, rCW or BW processes. Because these represent phenomenological

outcomes consistent with changes in site-specific fitness landscapes, rejection

of the null can be adduced as evidence of a change in functional constraint.

The rCW process implies an increase in functional constraint and the BW

process a peak shift. Evidence of either therefore suggests molecular adapta-

tion. The CW process, by contrast, was intended to detect sites that might

have undergone a reduction in functional importance (expressed in the data as

a reduction in the stringency of selection) along branches over which the phe-

notype changed, a process not necessarily associated with adaptation. How-

ever, many of the CW site patterns identified in the real mmtDNA suggest

not only a reduction in the stringency of selection among primates but also

a peak shift along the branch leading to the primate clade. The first CW

site pattern in Figure 4.4, for example, consists of one amino acid (arginine)

among non-primates and two amino acids among primates. A peak shift is

suggested by the fact that the amino acids among primates are both different

than arginine (histidine and tyrosine). Most of the CW sites in Figure 4.4

have similar patterns. It might therefore be the case that sites that underwent

a reduction in the stringency of selection in combination with a peak shift are

more readily detected by the CW component of the alternate PG-BSM than

sites that underwent a reduction in stringency alone. This provides an alterna-

tive explanation for the low power to detect CW sites in Simulation Scenario
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3b (πCW, πBW) = (5%, 0%), where CW sites were generated by reducing the

stringency of selection alone (i.e., by rescaling the vector fh of site-specific

fitness coefficients without changing the relative order of amino acid fitnesses

as described in Methods). The alternate PG-BSM does not provide a formal

test for the co-occurrence of a reduction in the stringency of selection with

a peak shift however because both processes are expressed in the model as a

phenomenological switch to the larger rate ratio ω2. That co-occurrance can

be identified informally by appealing to contextual information (e.g., Figure

4.4) demonstrates that it might be formally detected by the PG-BSM via in-

clusion of measures to discriminate between amino acids (c.f., Gu, 2006). I

leave this task for future efforts.

The PG-BSM framework offers several advantages over the YN-BSM. First,

it includes a model for the evolution of a discrete phenotype that not only frees

the analyst from the task of specifying the FG, but also automatically takes

into account less likely but nevertheless possible evolutionary histories of the

phenotype. Second, it includes a CL component to account for random shifts

between ω1 < ω2 consistent with all processes that can potentially result in het-

erotachy. Covarion-like models (e.g., Galtier, 2001; Guindon et al., 2004) were

originally intended to account for epistatic interactions between codons sites

thought to be the cause of the covarion (i.e., concomitantly variable codons,

Fitch and Markowitz, 1970; Fitch, 1971) phenomenon. Potential sources of

heterotachy include non-adaptive shifting balance and the fixation of DT mu-

tations in addition to episodic changes in site-specific fitness landscapes, as

demonstrated in Chapters 2 and 3. The utility of using the CL model as the

null hypothesis was illustrated by simulations of the phytochrome A&CF align-

ment, where inclusion of the CL component of the PG-BSM was instrumental

in reducing the false positive rate of the omnibus test. Third, pathologies such

as false positives that can sometimes arise under the YN-BSM due to statis-

tical irregularities (e.g., Baker et al., 2016; Mingrone et al., 2018) are avoided

under the PG-BSM. The YN-BSM assumes that category 2 sites evolved under

a separate rate ratio ω2 on the FG. The rate ratio ω2 is consequently nearly
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unidentifiable when p2 is small. Under this irregular condition, the maximum-

likelihood estimate ω̂2 is sometimes very large and potentially misleading (e.g.,

in our analysis of cytB, the YN-BSM A yielded ω̂2 = 999 with p̂2 = 0.04 or

p̂2 = 0.12). This issue is avoided under the PG-BSM because estimates of

ω1 and ω2 make use of information contained in all variant sites. Fourth, the

PG-BSM can identify sites consistent with specific mechanisms of adaptation

even without evidence of positive selection. This key feature was empirically

validated using simulation studies in which the null hypothesis was correctly

rejected for the majority of alignments generated with changes in site-specific

landscapes. Moreover, a fair proportion of sites generated under specific mech-

anisms (relaxation or intensification in the stringency of selection, a peak shift)

were correctly identified via post hoc analysis.

The chance fixation into the tail of a static site-specific landscape and an

adaptive change in a site-specific landscape both cause a site to be temporarily

occupied by a less-than-optimal amino acid, say B. In either case the result is

a transient increase in rate ratio to some value ωB that decays exponentially

while positive selection drives the site from B to the fittest amino acid A. Once

A is fixed the rate ratio stabilizes to some value ωA < ωB. These processes

manifest across the sites in an alignment as covarion-like switching between

ω̂1 < ω̂2. The magnitude of ω̂2 depends on the distribution of the ωB, which

in turn depends on the magnitude of the selection coefficients sAB = fB −
fA < 0. In Simulations 2 and 3, where sites were evolved using models based

on the MS framework, the mean value of ω̂2 was never less than one. This

indicates that the magnitude of the sAB tended to be large enough to make

the ωB > 1. In the real data the rate ratio was always less than one, with

ω̂2 = 0.31 for the mmtDNA, ω̂2 = 0.40 for phytochrome AC&F, and only

ω̂2 = 0.08 for cytochrome B. Sites in real proteins are undoubtedly subject

to both intragenetic (e.g., Pollock et al., 2012; Starr and Thornton, 2016) and

intergenetic (e.g., Phillips, 2008) epistatic constraints. These can be difficult to

model because they depend on unique aspects of the structure and function of a

given protein as well as the nature of its interactions with other proteins. These

and other potential sources of constraint are therefore absent in the majority
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of generating models used in simulation studies (e.g., Anisimova et al., 2001,

2002; Wong et al., 2004; Zhang, 2004; Kosakovsky Pond and Frost, 2005; Yang

et al., 2005; Zhang et al., 2005; Yang and dos Reis, 2011; Kosakovsky Pond

et al., 2011; Lu and Guindon, 2013), including those used in this chapter. Such

constraints might have the effect pushing the sAB closer to zero. For example,

there is evidence that epistasis can cause the magnitude of sAB at a site to

diminish over time due to compensating substitutions at other sites (e.g., via an

evolutionary Stokes shift, Pollock et al., 2012). This can have the overall effect

of reducing the ωB. Differences in the depth of the tree might also have played

a role in the lower rate ratios among the real alignments, since the real data

was considerably more divergent than the simulated alignments (especially

cytochrome B), and estimates of ω tend to diminish with larger divergences

(dos Reis and Yang, 2013; Jones et al., 2017). The PG-BSM managed to detect

evidence of adaptive evolution in the mmtDNA and cytochrome B alignments

in the form of site patterns consistent with either a reduction of the stringency

of selection (the CW sites) or a change in the optimal amino acid (the BW

sites) despite the small estimate of ω2. This was possible only because the

model was designed to identify patterns of change in ω consistent with specific

mechanisms of adaptation without imposing bounds on the magnitude of ω2.

The YN-BSM A, by contrast, did not infer adaptive evolution in the mmtDNA

precisely because it can do so only when there is evidence for ω2 > 1.

Like the vast majority of CSMs, the YN-BSM framework assumes evolu-

tion occurs via a series of single nucleotide substitutions (SNS). Consequently,

whether or not a site is inferred to have undergone positive selection depends

in part on the codon distribution implicitly inferred by the pruning algorithm

at the two nodes of the FG branch. Positive selection is more often inferred

when the codons that most likely occupied those two nodes differ by more than

one SNS. Indeed, it was recently shown that the majority of support for posi-

tive selection in real data under the YN-BSM A consists of sites patterns that

suggest multiple SNS along the FG (Venkat et al., 2018). Yet instantaneous

double and triple (DT) mutations can occur, with recent estimates indicat-

ing roughly 1% and 3% of all mutations being DT (Keightley et al., 2009;
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Schrider et al., 2014; De Maio et al., 2013; Harris and Nielsen, 2014). The

chance fixation of a DT mutation along the FG can only be misconstrued by

the YN-BSM A as evidence of multiple SNS. Hence, positive selection was of-

ten falsely inferred by the YN-BSM A in simulated alignments generated with

rare fixation of DT mutations (Venkat et al., 2018). It follows that positive

selection due to genuine episodic peak shifts can be confounded not only by

non-adaptive shifting balance (Jones et al., 2017), but also by the fixation of

DT mutations (Venkat et al., 2018). The PG-BSM was specifically formulated

with the understanding that evidence of positive selection in the form of ω > 1

can result from multiple processes, some of which are non-adaptive. This was

the point of the move away from the standard ω > 1 paradigm. The PG-BSM

is apparently robust to DT, since, although the inclusion of 6% DT mutations

resulted in larger ω̂2 compared to simulations with 0% DT, the omnibus test

never incorrectly rejected the null.

The current trend in CSM development is toward greater realism via the ad-

dition of parameters that represent specific mechanistic processes (e.g., Liber-

les et al., 2013; Zaheri et al., 2014; Pollock et al., 2017; Venkat et al., 2018).

The study presented in Chapter 3 suggests that this approach is not guaranteed

to give better models (Jones et al., 2018, 2019a). Under the ML framework,

the addition of any parameter ψ to a null model M will alway result in a

better fit (i.e., larger likelihood). To guard against a spurious increase in like-

lihood, the null is rejected only if LLR = 2
(

ln
{

Lalt(θ̂M, ψ̂)
}
− ln

{
Lnul(θ̂M)

})
is greater than some prespecified threshold chosen to limit the false positive

rate to some maximum upper bound (e.g., 5%). The trend toward realism

implicity assumes that rejection of the null can only occur if the model with

ψ provides a better representation of the actual data-generating process than

the model without ψ. It is becoming increasingly clear that this assumption

is incorrect due to the problem of confounding and phenomenological load, as

was illustrated in Chapter 3.

The covarion-like component of the PG-BSM confers some robustness against

PL. Under the null PG-BSM, the CL component accounts for all mechanisms

that might generate heterotachy, whether adaptive (i.e., episodic peak shifts)
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or non-adaptive (shifting balance, DT substitutions, epistasis). Hence, the

parameters 〈ω1, ω2, δ〉 for the CL process account for multiple mechanisms.

By contrast, the parameters α and β in equation (4.1) have specific mech-

anistic interpretations as the rate at which instantaneous double and triple

nucleotide substitution arise. It was recently suggested that existing CSMs

should be modified to account for the possibility of DT substitutions (Venkat

et al., 2018). However, CSMs that include α and β as estimated parameters

can result in false detection of DT substitutions due to PL (Jones et al., 2018).

PL is avoided under the PG-BSM by allowing that the MLEs for 〈ω1, ω2, δ〉 re-

sult from an unknown combination of mechanisms, including DT substitutions.

Hence, for example, finding that δ̂ is significantly > 0 in a contrast between

the null PG-BSM with δ = 0 versus the null PG-BSM with δ estimated need

not be interpreted as evidence for any particular mechanism of heterotachy,

but only for “heterotachy-by-any-cause”. In this way, the possibility of DT

substitutions is subsumed in the parameters for the CL process, and false con-

clusions due to the confounding of processes that generate heterotachous site

patterns are avoided. The PG-BSM framework therefore not only provides a

means to identify site patterns consistent with specific adaptive mechanisms,

but through the addition of external phenotypic information also offers a solu-

tion to several recently discovered problems associated with confounding and

PL (Jones et al., 2017, 2018; Venkat et al., 2018).

4.7 Methods

4.7.1 Data Generation using MSmmtDNA and MSTGdR

Simulations under the MS framework were conducted as follows. First,

parameters of the mutation process, including position-specific nucleotide fre-

quencies and the transition/transverion rate ratio, were estimated from a

real alignment consisting of 12 concatenated H-strand mitochondrial DNA

sequences (3331 codon sites) from 20 mammalian species as distributed in

alignment form by the PAML software package (Yang, 2007). Most alignments

were simulated without fixation of DT mutations by setting (α, β) = (0, 0).

In cases where alignments were generated with fixation of DT mutations,
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(α, β) = (0.0371, 0.0030) so that ≈ 6% of all mutations would be double

(≈ 5.8%) or triple (≈ 0.2%). Recent studies suggest that DT mutations com-

prise between 1% and 3% of all mutations (Keightley et al., 2009; Schrider

et al., 2014; De Maio et al., 2013; Harris and Nielsen, 2014). A larger value

(i.e., 6%) was used to investigate the impact of DT substitutions on model

power and accuracy when unaccounted for. Next, vectors of amino acid fitness

coefficients were drawn for each site using either MSmmtDNA (as described in

Jones et al., 2018) or MSTGdR (i.e., drawn with replacement from the set of

3598 vectors estimated from real mmtDNA using swMutSel with a Dirichlet-

based penalty and with σ = 0.1 as described in Tamuri et al., 2014). These

were scaled and converted to site-specific substitution rate matrices as follows:

1. A scaling factor σh ∼ 0.001 + (0.01−0.001)×B was drawn to determine

the stringency of selection at the site, where B ∈ [0, 1] is a beta random

variable with shape parameters u, v > 0. Values of σh ∈ [0.001, 0.01]

closer to the upper bound correspond to greater selection stringency,

whereas values closer to the lower bound correspond to a balance between

selection and drift that typically results in non-adaptive shifting balance

(Jones et al., 2017). Parameters u and v for the beta distribution were

chosen to make the distributions of scaled selection coefficients sij drawn

under MSmmtDNA match those reported by Tamuri et al. (2012) as

closely as possible (Jones et al., 2018) (i.e., u = 0.08 and v = 0.02).

2. A vector fh of fitness coefficients for the 60 codons for the mammalian

mitochondrial genetic code was then constructed from the amino acid

fitnesses with the assumption that synonymous codons are equally fit.

This vector was scaled to make its standard deviation equal to σh.

3. fh =
〈
fh1 , ..., f

h
60

〉
for the 60 codons was converted into a matrix W h of

fixation probabilities computed from scaled selection coefficients shij =

Ne(f
h
j − fhi ) assuming an effective population size of Ne = 1000 and a

ploidy of one for mtDNA:

W h
ij ∝

 1 if shij = 0
2shij

1−exp(−2shij)
otherwise

(4.13)
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The corresponding site-specific rate matrix Ah = M ◦ W h was then

constructed by taking the element-wise product of the matrix of mutation

rates M and the matrix of fixation probabilities W h.

The expected number of single nucleotide substitutions per codon per unit

branch length at each site was then computed as follows:

rh =
∑
i 6=j

πiA
h(i, j){`1 + 2`2 + 3`3} (4.14)

where the indicator `s is one if i and j differ by s ∈ {1, 2, 3} nucleotides and

zero otherwise. When generating an alignment with no PG association, all rate

matrices were divided by r̄ = (1/n)
∑n

h=1 r
h to make branch lengths equal to

the expected number of single nucleotide substitutions per codon.

A CW shift was implemented by reducing the stringency of selection to

σh = 0.0001 at a subset of sites. Such shifts were made to occur at the

ancestral node of the branch over which the phenotype changed and were

made to persist along all descendant branches. This was intended to mimic

an increase in the replacement rate among a subset of sites over a clade; rCW

shifts were similarly implemented but with the stringency of selection increased

to σh = 0.01. A BW shift was implemented by drawing new vectors of fitness

coefficients for a subset of sites to mimic peak shifts. These new vectors were

scaled to increase the stringency of selection to σh = 0.01 and were applied

starting at the ancestral node of the branch over which the phenotype changed

and along all descendant branches. When CW, rCW and/or BW shifts were

implemented, all rate matrices were scaled by dividing by r̄a = (1/n)
∑n

h=1 r
h

with site-specific rates averaged over branches:

rh =

∑2N−2
b=1 rh(b)t(b)∑2N−2

b=1 t(b)
(4.15)

Here rh(b) is the rate for the site along branch b computed using (4.14) and

t(b) is the length of that branch.
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4.7.2 Generating Ancestral Phenotypes

Figure 4.9: An arbitrary branching element in a binary tree. Node a is ancestral and i
descendant.

Ancestral phenotypic states were sampled using the marginal approach

described in Yang (2006) pp 121. Consider the root node of the tree where

the state xr is unknown. The probability of xr conditioned on the vector of

phenotypes F at the terminal nodes of the tree can be expressed using Bayes’

theorem as follows (omitting the rate parameter λ and the vector of branch

lengths t for brevity):

P(xr = x | F) =
P(F | xr = x)P(xr = x)

P(F)
=

P(F | xr = x)πxF∑3
x=1 P(F | xr = x)πxF

(4.16)

Here we assume three discrete phenotypes. Note that the conditional prob-

abilities P(F | xr = x) are readily computed using the pruning algorithm

(Felsenstein, 1981). The vector

〈P(xr = 1 | F),P(xr = 2 | F),P(xr = 3 | F)〉

can be used to draw a realization of the state at the root node of the tree.

This is used in turn to compute a vector of marginal probabilities for the two

nodes that descend from the root node. Thus the algorithm moves inductively

from the root to the terminal nodes of the tree.

Consider the ith internal node of the tree. A realization xa for the parent

of the ith node will already have been drawn. The conditional probabilility of

the state at the ith node can be computed as follows:

P(xi = x | xa,Fi) =
P(Fi | xi = x)P(xi = x | xa)

P(Fi)

=
P(Fi | xi = x)Pi(xa, x)∑3
x=1 P(Fi | xi = x)Pi(xa, x)

(4.17)
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Here Fi denotes the vector of phenotypes at terminal nodes that descend from

the ith node. Pi(xa, x) is the element of the transition probability matrix

Pi = exp(tiQF ) corresponding to the xa → x change of state, where ti is the

length of the branch connecting the ith node to its parent. The vector

〈P(xi = 1 | xa,Fi),P(xi = 2 | xa,Fi), xa,P(xi = 3 | Fi)〉

can be used to draw a realization of the state at the ith node. The algorithm

continues in this way until all internal nodes have been assigned a phenotypic

state. The resulting vector of states then constitutes one realization of the

evolution of the phenotype conditioned on the values F at the terminal nodes

of the tree.

4.7.3 Computing Scaling Constants for the PG-BSM

All rate matrices included in the PG-BSM were constructed as follows for

k ∈ {0, 1, 2}:

Q(ωk) = M ◦ (`S + ωk`N)/r (4.18)

The value of the common scaling constant r was specified so that estimated

branch lengths would give the expected number of single nucleotide substitu-

tions per codon. The scaling contant for any individual rate matrix depends

only on ωk and can be computed as follows:

rk =
∑
i 6=j

πiQij(ωk){`1 + 2`2 + 3`3} (4.19)

If π0 is the proportion of sites that evolved under Q(ω0), πCL = 1 − π0 the

proportion of sites that evolved covarion-like, and p1 the proportion of time a

CL site is expected to spend evolving under ω1, then the scaling constant for

the null PG-BSM is:

r = π0r0 + πCLrCL = π0r0 + (1− π0)(p1r1 + (1− p1)r2) (4.20)

Under the alternate PG-BSM accounting for CW and BW sites, the scaling

constant is:

r = π0r0 + (1− π0 − πCW − πBW)rCL + πCWrCW + πBWrBW (4.21)
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Values for rCW and rBW can be calculated using an average that accounts for

the rate ratio at a site on any particular branch weighted by the length of that

branch, and the distribution of ancestral histories (i.e., via change maps). For

example, the scaling factor for the BW process is:

rBW =
∑
z

π̂z

∑2N−2
b=1 r(zb)t(b)∑2N−2

b=1 t(b)
(4.22)

where r(zb) = r1 if zb = 0 and r2 if zb = 1. Scaling factors rCW and rrCW are

similarly computed by taking into account branches over which the site was

evolved under ω1 or ω2.

4.7.4 False Discovery Control

The algorithm described by Newton et al. (2004) was applied to NEB

posteriors to control the false discovery count (FDC) for our post hoc analyses.

The objective was to identify as many sites with evidence of PG association

as possible while controlling the number of false discoveries to some specified

value. The procedure was as follows, here described for BW sites:

1. Suppose ph = 1−P(BW | xh) is the conditional probability that assigning

the hth site to the BW category is a type I error.

2. Let p1, ..., pn be a list of these probabilities for all n sites.

3. For any specified bound κ, assign a site to the BW category if ph ≤ κ.

4. By this rule, the expected number of false discoveries given the data is:

E {FDC} =
n∑
h=1

ph`(ph ≤ κ) (4.23)

where `(ph ≤ κ) is 1 if ph ≤ κ and zero otherwise (Newton et al., 2004).

5. To control the FDC to be no more than k ∈ {1, 2}, κ can be set to

the largest value for which E {FDC} ≤ k. Note that this expectation

is across data sets, and is only approximate because it depends on how

well the fitted model matches the data-generating process (Newton et al.,

2004).

In practice ph was approximated using the NEB approach in equation 4.8.
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4.7.5 Dealing with Underflow

Likelihood functions are typically optimized in log-space. For example, the

log-likelihood for the alternate component of PG-BSM is:

ln {Lalt(X,F;λ,θ, t)} = ln {P(F;λ, t)}+ ln

{∑
z

π̂z

n∏
h=1

g(xh; z)

}
(4.24)

It is convenient to express the second addend of (4.24) as follows:

ln

{∑
z

π̂z

n∏
h=1

g(xh; z)

}
= ln

{∑
z

π̂z exp (`z)

}
(4.25)

where `z = ln

{
n∏
h=1

g(xh; z)

}
(4.26)

A problem arises when the probability exp(`z) is too small to be represented

digitally, an issue commonly referred to as underflow. This can be mitigated

by a simple transformation:

ln

{∑
z

π̂z

n∏
h=1

g(xh; z)

}
= max{`z}+ ln

{∑
z

π̂z exp (`z −max{`z})

}
(4.27)

Since ∀z `z < 0, the transformation `z −max{`z} moves the log-probabilities

to the right toward zero (i.e., toward larger values), making underflow less

likely.

The transformation method can also be used to avoid underflow in equation

(4.10). Let z∗ represent the change map that maximizes `z (i.e. maximizes

the likelihood of the alignment). The natural log of (4.10) at z∗ is:

ln {P(z∗ | X,F, λ, t)}

= ln {Lalt(X,F | z∗)}+ ln {π̂z∗} − ln {Lalt(X,F)} (4.28)

Applying the transformation:

ln {Lalt(X,F)}

= ln {P(F;λ, t)}+ `z∗ + ln

{∑
z

π̂z exp (`z − `z∗)

}
(4.29)

= ln {Lalt(X,F | z∗)}+ ln

{∑
z

π̂z exp (`z − `z∗)

}
(4.30)
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Substituting into (4.28) gives:

P(z∗ | X,F, λ, t) =
π̂z∗

π̂z∗ +
∑

z 6=z∗ π̂z exp (`z − `z∗)
(4.31)

Equation (4.31) demonstrates that the strength of the evidence for the ances-

tral reconstruction corresponding to z∗ is a function of the relative frequency

of the most frequently sampled change map π̂z∗ and the differences `z − `z∗

in log-likelihoods of the alignment under the various other z. When evidence

for the PG processes dictated by z∗ is strong, it will be the case ∀z 6= z∗ that

exp{`z − `z∗} ≈ 0 making P(z∗ | X,F, λ, t) ≈ 1.



Chapter 5

Discussion

5.1 Historical Development of CSMs.

The evolution of CSMs can be divided in two phases. Phase I began with

the pioneering efforts of Muse and Gaut (1994) and Goldman and Yang (1994)

when they proposed CSMs to estimate a single rate ratio ω from an alignment.

Subsequent models developed during this phase account for variations in ω

across branches (Nielsen and Yang, 1998) across sites (Yang et al., 2000a),

and across both branches and sites (Yang and Nielsen, 2002; Zhang et al.,

2005), each by including multiple ω-categories. The use of multiple categories

permits post hoc identification of sites and/or branches where ω > 1 was likely

to have occurred. The characteristic feature of Phase I was the development

of simple CSMs (e.g., with few parameters) tested using data-generating algo-

rithms based on the same CSM framework. The main concern during Phase I

was the possibility of a false detection of ω > 1 due either to model misspec-

ification (the mis-match between the model and the data-generating process)

or low information content. Phase II is marked by a leap in model complexity

with the introduction of several parameter-rich CSMs (Kosakovsky Pond et al.,

2011; Zaheri et al., 2014; Murrell et al., 2015; Smith et al., 2015). The main

concern in the ongoing Phase II is the growing realization of problems caused

by confounding and PL. Problems and solutions associated with Phase I and

Phase II concerns are illustrated in this section via a series of case studies.

5.1.1 Phase I: Simple Models, Simple Problems

The first effort to detect positive selection at the molecular level (Hughes

and Nei, 1988) relied on heuristic counting methods (Nei and Gojobori, 1986).

Phase I of CSM development followed with the introduction of formal statis-

tical approaches based on ML (Muse and Gaut, 1994; Goldman and Yang,

165
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1994). The first CSMs were used to infer whether the estimate ω̂ of a single

nonsynonymous-to-synonymous substitution rate ratio averaged over all sites

and branches was significantly greater than one. This approach was found to

have low power due to the pervasiveness of synonymous substitutions at most

sites within a typical gene (Yang and Bielawski, 2000). An early attempt to

increase the statistical power to infer postive selection was the CSM designed

to detect ω̂ > 1 on specific branches (Yang and Nielsen, 1998). Models ac-

counting for variations in ω across sites were subsequently developed, the most

prominent of which are the M-series CSMs (Yang et al., 2000a). These were

accompanied by methods to identify individual sites under positive selection.

The quest for power culminated in the development of models that can be used

to identify branches over which specific sites evolved under positive selection

(e.g., Yang and Nielsen, 2002; Forsberg and Christiansen, 2003; Bielawski and

Yang, 2004; Zhang et al., 2005). Two case studies are employed to illustrate

some of the inferential challenges associated with Phase I models. Case Study

A exemplifies the problem of low information content. The subject of the

study is the M1a vs M2a model contrast applied to the tax gene of the human

T-cell lymphotropic virus type I (HTLV-I Suzuki and Nei, 2004; Yang et al.,

2005). Case Study B illustrates how model misspecification can lead to false

inferences. The subject of this study is the Yang-Nielsen Branch-Site Model

(YN-BSM, Yang and Nielsen, 2002) applied to simulated data.

Case Study A: Low Information Content

An example setting with low information content arises when there are

a substantial number of invariant sites, since these provide little information

about the substitution process. Consider the pair of nested M-series models

known as M1a and M2a (Wong et al., 2004; Yang et al., 2005). Under M1a sites

are partitioned into two categories, 0 < ω0 < 1 and ω1 = 1 in proportions p0

and p1 = 1− p0. M2a includes an additional category for a proportion of sites

p2 = 1− p0 − p2 that evolved under positive selection with ω2 > 1. The issue

of low information content is well illustrated by the application of the M1a vs

M2a contrast to the tax gene, HTLV-I (Suzuki and Nei, 2004). The alignment
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consists of 20 sequences with 181 codon sites, 158 of which are invariant.

The 23 variable sites appear to have undergone only one substitution each:

2 are synonymous and 21 are nonsynonymous. The high nonsynonymous-

to-synonymous substitution ratio suggests that the gene underwent positive

selection. This hypothesis was supported by analytic results: the LLR for the

M1a vs M2a contrast was 6.96 corresponding to a p-value of approximately 0.03

(Yang et al., 2005). However, the MLE for p2 under M2a was p̂2 = 1. Using

this in the post hoc analysis (i.e., using the method modeled by equation 1.34)

gives a posterior probability of Pr(ω > 1 | x, θ̂M2a) = 1 for all sites, including

the 158 invariable sites. Such an unreasonable result can occur under NEB

because θ̂M2a is treated as known despite the possibility of large sampling errors

in the MLEs.

The analysis of the tax gene led to the development of methods such as

Bayes empirical Bayes (BEB, Yang et al., 2005), smoothed bootstrap aggre-

gation (SBA, Mingrone et al., 2016), and the penalized likelihood ratio test

(Mingrone et al., 2018) to reduce errors in estimates of posterior probabili-

ties associated with low information content. Using BEB in the analysis of

the tax gene, for example, resulted in posterior probabilities 0.91 < Pr(ω >

1 | x, θ̂M2a) < 0.93 for the 21 sites with a single nonsynonymous change and

0.55 < Pr(ω > 1 | x, θ̂M2a) < 0.61 for the remaining sites (Yang et al., 2005).

Results such as these undoubtedly promoted confidence in the ability of CSMs

to deal with low information content, which at the time was largely associated

with the obvious case of low divergence. Interestingly, problems associated

with low information content can also occur in alignments exhibiting an abun-

dance of variant sites. The problem of confounding between non-adaptive

shifting balance and episodic adaptation (Chapter 2), for example, is not due

to a lack of variant site patterns, but to a lack of contextual information. The

addition of such information in the form of a discrete phenotype was shown to

break confounding and permit detection of changes in site-specific landscapes

that co-occurred with changes in phenotype (Chapter 4). The discovery of

this novel low-information scenario would have to wait until the increase in

the complexity of analytic CSMs that marked the beginning of Phase II was
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matched by the use of more realistic data-generating methods that reveal the

problem of confounding (i.e., Chapter 2).

Case Study B: Model Misspecification

The mechanisms that give rise to the diversity of site patterns in a set of

homologous genes are highly complex and not fully understood. CSMs are

therefore necessarily simplified representations of the true generating process,

and are in this sense misspecified. The extent to which misspecification might

cause an omnibus test to falsely detect positive selection was of primary con-

cern during Phase I. The first branch-site model (the YN-BSM, Yang and

Nielsen, 2002) illustrates this issue. The YN-BSM in its orginal form assumes

a null under which a proportion p0 of sites evolved under stringent selection

with ω0 = 0 and the remaining sites evolved under a neutral regime with

ω1 = 1 on all branches of the tree (i.e., model M1 in Nielsen and Yang, 1998).

This is contrasted with Model A, which is the same as M1 except that it as-

sumes that some stringent sites and some neutral sites evolved under positive

selection with ω2 > 1 on a pre-specified branch called the foreground (FG)

branch. The original omnibus test contrasting M1 with Model A was there-

fore designed to detect a subset of sites that evolved adaptively on the same

FG branch.

ω regime X 1.00 1.00 0.80 0.80 0.50 0.50 0.20 0.20 0.00 0.00

ω regime Z 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 5.1: Simulated selection regimes. Rate ratios (ω) for regimes X and Z taken from
Zhang (2004). Each rate ratio applies to 20 codon sites. Alignments were generated with
100 sites in total.

The standard method used to test the impact of misspecification on the

reliability of the LRT during Phase I was to generate alignments using a more

complex version of the CSM to be tested. This usually involved adding more

variability in ω across sites and/or branches than assumed by the fitted CSM

while leaving all other aspects of the generating model the same. In Zhang

(2004), for example, alignments were generated using site-specific rate matrices

Q(ω) with rate ratios ω specified by pre-determined selection regimes, two

of which are shown in Table 5.1. In one simulation, 200 alignments were
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generated using regime Z on a single foreground branch and regime X on all of

the remaining branches of a 10 or 16 taxon tree. The gene therefore underwent

a mixture of stringent and neutral evolution over most of the tree (regime X),

but with complete relaxation of selection pressure on the foreground branch

(regime Z). Positive selection did not occur at any of the sites. Nevertheless,

the M1 vs Model A contrast inferred positive selection in 20% to 55% of the

alignments, depending on the location of the foreground branch. Such a high

rate of false positives was attributed to the mismatch between the process used

to generated the data compared to the process assumed by the null model M1

(Zhang, 2004).

The branch-site model was subsequently modified to allow 0 < ω0 < 1

instead of ω0 = 0 (Modified Model A in Zhang et al., 2005). Furthermore, the

new null model assumes that some proportion p0 of sites (the stringent sites)

evolved with 0 < ω0 < 1 everywhere in the tree except on the foreground

branch, where those same sites evolved neutrally with ω2 = 1. All other sites

in the alignment (the neutral sites) are assumed to have evolved neutrally

with ω1 = 1 everywhere in the tree. This is contrasted with the Modified

Model A, which assumes that some of the stringent sites and some of the

neutral sites evolved under positive selection with ω2 > 1 on the FG. Hence,

unlike the original omnibus test that contrasts M1 with Model A, the new

test contrasts Modified Model A with ω2 = 1 against Modified Model A with

ω2 > 1. These changes to the YN-BSM were shown to mitigate the problem

of false inference. For example, using the same generating model with regimes

X and Z, the modifed omnibus test falsely inferred positive selection in only

1% to 7.5% of the alignments, consistent with the 5% level of significance of

the test (Zhang et al., 2005).

This case study demonstrates how problems associated with model mis-

specification were traditionally identified, and how they could sometimes be

corrected through relatively minor changes to the fitted model. However, the

generating methods employed by studies such as Zhang (2004) and Zhang

et al. (2005), although sophisticated for their time, can only produce align-

ments that are highly unrealistic compared to real data. In particular, such
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methods fail to generate heterotachy beyond simple branch-wise changes simi-

lar to those implied by the selection regimes in Table 5.1. While the mitigation

of statistical pathologies due to low information content (e.g., using BEB) was

a critical advancement during Phase I of CSM development, other statistical

pathologies went unrecognized due to reliance on such unrealistic simulation

methods.

5.1.2 Phase II: The Rise in Complexity

A typical protein-coding gene evolves adaptively only episodically (Struder

and Robinson-Rechavi, 2009). The evidence of adaptive evolution of this type

can be very difficult to detect. For example, it is assumed under the YN-BSM

that an unknown subset of sites switched from a stringent or neutral selection

regime to positive selection together on the same set of foreground branches.

The power to detect a signal of this kind can be very low when the proportion

of sites that switched together is small (Yang and dos Reis, 2011). Perhaps

encouraged by the reliability of Phase I models demonstrated by extensive

simulation studies (Anisimova et al., 2001, 2002; Wong et al., 2004; Zhang,

2004; Kosakovsky Pond and Frost, 2005; Yang et al., 2005; Zhang et al., 2005;

Yang and dos Reis, 2011; Kosakovsky Pond et al., 2011; Lu and Guindon,

2013), combined with experimental validation of results obtained from their

application to real data (Yang and Bielawski, 2000; Yang, 2005; Anisimova

and Kosiol, 2009), investigators began to formulate increasingly complex and

parameter-rich CSMs (Rodrigue et al., 2010; Kosakovsky Pond et al., 2011;

Tamuri et al., 2012, 2014; Rodrigue and Lartillot, 2014; Murrell et al., 2015;

Smith et al., 2015). The hope was that carefully selected increases in model

complexity would yield greater power to detect subtle signatures of positive

selection overlooked by Phase I models. Phase II models fall into three broad

categories:

1. Phase I CSMs modified to account for more variability in selection effects

across sites and branches than previously assumed with the aim of in-

creasing the power to detect subtle signatures of positive selection (e.g.,

the Branch-Site Random Effects Likelihood model, Kosakovsky Pond
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et al., 2011).

2. Phase I CSMs modified to contain parameters for mechanistic processes

not directly associated with selection effects. Many such models have

been motivated either by a particular interest in the added mechanism

(e.g., the fixation of double and triple mutations, Miyazawa, 2011; Za-

heri et al., 2014; Jones et al., 2018), or by the notion that increasing

the mechanistic content of a CSM can only improve inferences about

selection effects (e.g., by accounting for variations in the synonymous

substitution rate, Kosakovsky Pond and Muse, 2005; Rubinstein et al.,

2011).

3. Models that abandon the traditional CSM approach in favor of a sub-

stitution process expressed in terms of explicit population genetic pa-

rameters, such as population size and selection coefficients (Nielsen and

Yang, 2003; Rodrigue et al., 2010; Tamuri et al., 2012, 2014; Rodrigue

and Lartillot, 2014, 2016).

An example of the first category of models is BUSTED (for Branch-site Un-

restricted Statistical Test for Episodic Diversification, Murrell et al., 2015),

which is used to illustrate the problem of confounding in Case Study C. The

second category of models includes those formulated by adding parameters

for the rate of double and triple mutations to a traditional CSM, an example

of which is RaMoSSwDT (for Random Mixture of Static and Switching sites

with Double and Triple substitutions, Jones et al., 2018). This model is used

in Case Study D to illustrate the problem of phenomenolgical load. Models in

the third category are the most ambitious CSMs currently in use, and are far

more challenging to fit to real alignments than traditional models. One of the

most impressive examples is the site-wise mutation-selection model (swMut-

Sel: Tamuri et al., 2012, 2014). Based on the mutation-selection framework

of Halpern and Bruno (1998), swMutSel estimates a vector of selection coeffi-

cients for each site in an alignment. This and similar models (e.g., Rodrigue

et al., 2010; Rodrigue and Lartillot, 2014, 2016) appear to be reliable (Spiel-

man and Wilke, 2016), but require a very large number of taxa (e.g., several
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hundred). Phase II models of this category are therefore impractical for the

majority of empirical datasets.

Case Study C: Confounding

The MS framework facilitates investigation of complex evolutionary dy-

namics, such as non-adaptive shifting balance on a fixed fitness landscape or

adaptation to a change in selective constraints (i.e., a peak shift, dos Reis,

2013; Jones et al., 2017). The phenomenological outcomes of these processes

are difficult to mimic in alignments generated using traditional methods. MS

can therefore be used to generate more variation in rate ratio across sites and

over time than has been realized in past simulation studies (e.g., Table 5.1)

and can be adjusted to produce alignments that closely mimic real data, as was

shown in Chapter 3. It was only when the MS framework was used to generate

data for the purpose of model testing that the problem of confounding between

adaptive and non-adaptive processes was revealed. BUSTED (Murrell et al.,

2015), for example, is a model that was intended to detect episodic adaptive

evolution by accounting for random variations in the intensity of selection over

sites and branches. The rate ratio at each site/branch combination is assumed

to be an independent draw from the distribution {(ω0, p0), (ω1, p1), (ω2, p2)}.
The model contrasts the null hypothesis that ω0 ≤ ω1 ≤ ω2 = 1 with the

alternative that ω0 ≤ ω1 ≤ 1 ≤ ω2. As was reported in Chapter 2, BUSTED

inferred episodic positive selection due to non-adaptive shifting balance in as

many as 40% of MS-generated alignments. Whereas positive selection did

likely occur in those alignments, it could only have been due to non-adaptive

shifting balance. Hence, the intended interpretation of BUSTED as a test for

episodic adaptive evolution is negated by the possibility of confounding. Con-

founding between non-adaptive shifting balance and episodic peak shifts can

be broken by the addition of contextual information (e.g., phenotype), as was

demonstrated in Chapter 4.

Case Study D: Phenomenological Load

PL was illustrated by the RaMoSS vs RaMoSSwDT contrast in Chapter 3.

Recall that RaMoSS is a mixture of the standard M-series model M3(k = 2)
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with the covarion-like model CLM3(k = 2), and that RaMoSSwDT includes

two extra parameters (α, β) to account for the fixation of double and triple

mutations. RaMoSS and RaMoSSwDT were fitted to fifty alignments simu-

lated to mimic a real alignment of mammalian mtDNA using MSmmtDNA

as the generating model. Since DT substitutions are not permitted under

MSmmtDNA, any reduction in deviance (expressed as the percentage PRD,

equation 3.7) caused by (α̂, β̂) in each trial could only be attributed to PL plus

noise. Non-adaptive shifting balance can produce site patterns similar to those

produced by a process that includes DT substitutions1. DT was consequently

falsely inferred in 48 of 50 trials at the 5% level of significance. PL was only

identified as an issue when model contrasts were fitted to data generated with

realistic evolutionary dynamics using the MS framework.

1It has previously been noted that the rapid fixation of compensatory mutations following
substitution to an unstable base pair (e.g., AT→GT→GC) can also produce site patterns
that suggest fixation of DT mutations (Yang, 2014, page 46).
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5.1.3 An Argument for Phenomenological CSMs

Figure 5.1: A cartoon of the (61N − 1)-dimensional simplex containing all possible site-
pattern distributions for an N-taxon alignment. The inner-most ellipse represents the sub-
space {PM0(θM0) | θM0 ∈ ΩM0} that is the family of distributions that can be specified using
M0, the simplest of CSMs. This is nested in the family of distributions that can be specified
using M1 (blue ellipse), a hypothetical model that has the same parameters as M0 plus
some extra parameters. Similarly, M1 is nested in M2 (red ellipse). Whereas models are
represented by subspaces of distributions, the true generating process is represented by a
single point PGP, the location of which is unknown. The empirical site-pattern distribution
PS(θ̂S) correponds to the fitted saturated model; with large samples PS(θ̂S) ≈ PGP. For
any other model M, the member PM(θ̂M) ∈ {PM(θM) | θM ∈ ΩM} most consistent with
X is the one that minimizes deviance, which is twice the difference between the maximum
log-likelihood of the data under the saturated model and the maximum log-likelihood of the
data under M.

CSMs have become increasingly complex with the addition of more free

parameters since the introduction of the M-series models in Yang et al. (2000a).

The prima facie objective of this trend is to produce models that provide

better mechanistic explanations of the data. It is assumed that this will lead

to more accurate inferences about evolutionary processes, particularly as the

volume of genetic data increases (Liberles et al., 2013; Pollock et al., 2017).

However, the significance of a new model parameter is assessed under the ML

framework by a comparison of site-pattern distributions without reference to

mechanism. Combined with the possibility of confounding, this feature of

maximum likelihood means that the objective of improving model fit does

not necessarily coincide with the objective of providing a better mechanistic

representation of the true generating process.
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Given any CSM with parameters θ it is possible to compute a vector that

assigns to each of the 61N possible site patterns x for an N-taxon alignment a

probability P(x;θ) such that
∑

x P(x;θ) = 1 (i.e., a multinomial distribution

for 61N categories assuming the standard genetic code). Figure 5.1 depicts

the space of all possible site-pattern distributions for an N-taxon alignment.

Each ellipse represents the family of distributions {PM(θM) | θM ∈ ΩM}, where

PM(θM) is the site-pattern distribution for model M given θM and ΩM is the

vector-space of all possible values of θM. For example, {PM0(θM0) | θM0 ∈ ΩM0}
is the family of distributions that can be specified using M0, the simplest

CSM that assumes a common substitution rate matrix Q(ω) for all sites and

branches. This is nested inside {PM1(θM1) | θM1 ∈ ΩM1}, where M1 is a hypo-

thetical model that is the same as M0 but for a few extra parameters. Likewise,

M1 is nested in M2. The location of the site-pattern distribution for the true

generating process is represented by PPG in Figure 5.1. Its location is fixed

but unknown. It is therefore not possible to assess the distance between it and

any other distribution. Instead, comparisons are made using the site-pattern

distribution inferred under the saturated model.

Whereas {PM(θM) | θM ∈ ΩM} represents a family of multinomial distribu-

tions, the fitted saturated model PS(θ̂S) is the unique multinomial distribution

defined by the MLE θ̂S = (y1/n, ..., ym/n)T , where yi > 0 is the observed fre-

quency of the ith site pattern, m is the number of unique site patterns, and

n is the number of codon sites. In other words, the fitted saturated model is

the empirical site-pattern distribution for a given alignment. Because it takes

none of the mechanisms of mutation or selection into account, ignores the phy-

logenetic relationships between sequences, and excludes the possibility of site

patterns that were not actually observed (i.e., yi/n = 0 for site patterns i not

observed in X), PS(θ̂S) can be construed as the maximally phenomenological

explanation of the observed alignment. An alignment is always more likely

under the saturated model than it is under any other CSM. PS(θ̂S) therefore

provides a natural benchmark for model improvement.

The MLE over the family of distributions {PM(θM) | θM ∈ ΩM} is repre-

sented by a fixed point PM(θ̂M) in Figure 5.1. PM(θ̂M) is the distribution that
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minimizes the statistical deviance between PM(θM) and PS(θ̂S) for any given

data set. Deviance is defined as twice the difference between the maximum

log-likelihood (LL) of the data under the saturated model and the maximum

log-likelihood of the data under M:

D(θ̂M, θ̂S) = 2
{

LL(θ̂S | X)− LL(θ̂M | X)
}

(5.1)

This is represented by the distance between PM(θ̂M) and PS(θ̂S) in Figure 5.1.

A key feature of deviance is that it always decreases as more parameters are

added to the model, corresponding to an increase in the probability of the

data under that model. For example, suppose {PM2(θM2) | θM2 ∈ ΩM2} is the

same family of distributions as {PM1(θM1) | θM1 ∈ ΩM1} but for the inclusion of

one additional parameter ψ, so that θM2 = (θM1, ψ). The improvement in the

probability of the data under PM2(θ̂M2) over its probability under PM1(θ̂M1) is

assessed by the size of the reduction in deviance induced by ψ:

∆D(θ̂M1, θ̂M2) = D(θ̂M1, θ̂S)−D(θ̂M2, θ̂S)

= 2
{

LL(θ̂M2 | X)− LL(θ̂M1 | X)
}

(5.2)

Equation (5.2) is just the familiar log-likelihood ratio (LLR) used to compare

nested models under the maximum likelihood framework.

Given this measure of model improvement, the de facto objective of model

building is not to move closer to the true generating process (e.g., by adding

parameters for mechanisms thought to have occurred when the data was gen-

erated), but only to move closer to the site-pattern distribution corresponding

to the fitted saturated model, (which is maximally phenomenologial and there-

fore minimally explanatory). Real alignments are limited in size, so there will

always be some distance between PS(θ̂S) and PGP due to sampling error (as

represented in Figure 5.1). But even with an infinite number of codon sites,

when PS(θ̂S) converges to PGP, the criterion of minimizing deviance does not

inevitably lead to a better explanation of the data because of the possibility of

confounding. As stated in Chapter 3, two process are said to be confounded if

they can produce similar patterns in the data. Hence, if ψ represents a process

that did not actually occur when the data was generated, and if that process
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is confounded with another process that did occur, the LLR in equation (5.2)

can still be significant. Under this scenario, the addition of ψ to M1 would

engender movement toward PS(θ̂S) and PGP, but the new model M2 would also

provide a worse mechanistic explanation of the data because it would falsely

indicate that the process represented by ψ actually occurred.

Models of molecular evolution require validation. The data-generating pro-

cesses that gave rise to any particular real alignment are largely unknown, and

so the most expedient method of validation is to generated alignments in silico.

Sophisticated generating methods include those based on the MS framework

represented in this thesis by MSmmtDNA and MSTGdR (Chapter 4), and var-

ious models based on physical considerations such as thermodynamic stability

Pollock et al. (e.g., 2012). The possibility of confounding and PL suggests

that it is unlikely that a CSM can ever produce MLEs that match all of the

parameters used in such models. It is more realistic to expect a CSM to pro-

vide phenomenological summaries of major sources of variation that can be

meaningly interpreted in terms of mutation and selection processes. The null

PG-BSM, for example, captures a major component of variation with a simple

phenomenological model for heterotachy (i.e., the CLM3 component). This

null provides an effective contrast for the alternate PG-BSM that accounts for

specific modes of heterotachy consistent with the phenomenological outcomes

expected to arise from changes in site-specific amino acid fitness coefficients

that co-occurred with a change in phenotype. In this way, the relatively sim-

ple PG-BSM provides a meaningful phenomenolgical summary of the most

biologically salient result (i.e., adaptation) of a complex generating process.

As the volume of genetic data increases there is a natual tendency to want to

make CSMs more complex with the addition of a greater number of ostensi-

bly mechanistic parameters. I maintain that this is a mistake, and that the

appropriate place for greater mechanistic realism is in alignment-generating

processes used to test what should remain largely phenomenological CSMs.
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5.2 Other Examples of Confounding and PL

Confounding was a common theme in the material presented in Chapters

2, 3 and 4. It first appeared in Chapter 3. There it was argued that positive

selection caused by non-adaptive shifting balance can be difficult to distinguish

from positive selection caused by adaptive changes in site-specific landscapes

based on an analysis of alignment data alone. This is illustrated in Figure

5.2. The red dashed line in Figures 5.2A and 5.2B mark the point where the

codon-specific rate ratio changes from a value ω < 1 (to the left of the mark)

to a value ω > 1 (to the right of the mark). Phenylalanine (F, TTT) is the

fittest amino acid in the landscape depicted in Figure 5.2A. During the course

of evolution it can sometimes happen that the population becomes fixed at an

amino acid such as valine (V, GTT) in the tail of that landscape. This will

be followed by a temporary elevation in the rate ratio at the site to a value

greater than one as positive selection moves the site back to F by a series

of replacement substitutions e.g., V (GTT) → G (GGT) → C (TGT) → F

(TTT). Similarly, a change in one or more external factors that impact the

functional significance of the site can change the landscape from that depicted

in Figure 5.2A to that depicted in Figure 5.2B where glutamine (Q) is fittest.

If at the time of the change the site is occupied by F, then the site-specific rate

ratio would similarly be elevated to a value ω > 1 as positive selection moves

the site toward its new peak at Q e.g., F (TTT) → Y (TAT) → H (CAT) →
Q (CAA). Both processes can manifest a detectable elevation in rate ratio to

ω > 1.
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Figure 5.2: An Example of Confounding: Non-adaptive drift into the tail of a static site-
specific fitness landscape (A) and an adaptive shift at a site from the landscape in (A) to
the landscape in (B) can both be followed by a rapid series of substitutions that take the
site to its optimal amino acid. It follows that both procesess can generate evidence for a
transient increase in a site-specific rate ratio sometimes to a value dN/dS > 1.

In this section I present brief summaries of two studies drawn from my pre-

vious work to further illustrate confounding and PL. The objective in the first

study was to devise automated methods to identify signatures of sea-surface

temperature (SST) fronts in radar images of the ocean surface. Confounding

was a problem in that data because atmospheric and oceanographic processes

tend to generate image features that look very similar. Confounding was

overcome by the inclusion of additional contextual information in the form of

concurrent wind vectors. The objective in the second study was to account for

variations in the way the efficiency of photosynthesis declines with increasing

irradiance via a single parameter p representing a specific mechanistic process.

In the course of that study it was realized that confounding between a vari-

ety of processes that impact efficiency meant that p could only be interpreted

phenomenologically. In the parlance of Chapter 3, I would now say that esti-

mates of p carry phenomenological load. The SST study provides an excellent

example of confounding because it can be seen directly in the imagery. The
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photosynthesis study supports my view that a phenomenological approach can

often be more appropriate that the mechanistic approach advocated by some

(in the context of molecular evolution, e.g., Miyazawa, 2011; Liberles et al.,

2013; Zaheri et al., 2014; Pollock et al., 2017).

5.2.1 Confounding in the Automated Detection of SST Fronts

The location of the North Wall of the Gulf Stream (NWGS) is tactically

important in submarine warfare, and also of interest to certain fisheries. Sea-

surface temperature (SST) fronts are readily identified by spaceborne pas-

sive radiometry (e.g., the Moderate Resolution Imaging Spectroradiometer or

MODIS instrument). However, MODIS is not a reliable source of informa-

tion because clouds typically obscure its view of the western Atlantic between

about 45% and 90% of the time depending on the season (Jones et al., 2013).

An alternative data source comes from Synthetic Aperture Radar (SAR), an

active sensor that can penetrate cloud cover to measure variations in cm-scale

surface waves (i.e., the roughness of the ocean-surface). Surface roughness is

modulated by large-scale atmospheric and oceanographic processes to produce

regions of high (bright) and low (dark) backscatter. SST fronts often appear

as edges between dark and bright regions (a.k.a. brightness fronts) due to

several mechanisms that increase surface roughness where the water is warmer

compared to adjacent cooler water bodies.

Figure 5.3 A shows two contiguous RADARSAT-2 images acquired on 7

March 2009. The corresponding MODIS SST image acquired the same day is

shown in Figure 5.3 B. A number of interesting features are evident. The most

obvious is the large meander in the Gulf Stream at the bottom of both images.

Other features in the RADARSAT-2 image include (1) evidence of horizontal

mixing of cooler shelf water and warmer water just north of the Gulf Stream

meander between 39◦N and 40◦N; (2) an intrusion of cooler water along the

eastern side of the Gulf Stream meander; (3) the imprint of atmospheric gravity

waves that appears as alternating dark and bright bands just south of Cape

Cod; (4) evidence of surfactant accumulation (oils or biomass that smooth the

ocean surface ) in the lee of the Gulf Stream meander; (5) bright filaments
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consistent with convergence zones commonly associated with strong currents;

and finally (6) brightness fronts caused by large-scale atmospheric processes

marked by WIN (for wind) in the lower portion of the image. All of these

features can be correctly identified from the RADARSAT-2 image alone by

a human operator after a little training. But they all look more-or-less the

same from the point of view of an automated edge detector. Their generating

processes are therefore confounded from the perspective of that edge detector.

A B

Figure 5.3: Satellite images. (A): Two contiguous RADARSAT-2 SCNA VV frames
acquired on 7 March 2009 at approximately 2230 UTC. SST front signatures appear as
well-defined brightness fronts. Signatures of horizontal wind shear can be seen in the lower
portion of the image, identifiable as brightness fronts misaligned with SST fronts in the
MODIS image on the right. (B): Composite MODIS SST image acquired between 1300
and 1900 UTC on the same day. (Images from Jones et al. (2013), RADARSAT-2 data and
products c©2009 MacDonald, Dettwiler and Associates Ltd. - all rights reserved.)

Standard methods of automated feature classification are based on tex-

tural measures extracted from pixels surrounding features of interest. This

approach proved to be completely ineffective as a means to discriminate SST

fronts from WIN fronts. Instead, external contextual information in the form

of wind vectors measured no more than a few hour before or after acquisi-

tion of the RADARSAT-2 image was found to be helpful. Specifically, it was

found that any given brightness front identified by automated edge-detection

software was statistically more likely to be SST when the wind was blowing
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across the brightness front and more likely to be WIN when the wind was

blowing along the brightness front. A decision rule based on the mean angle

between a brightness front and its near-concurrent wind vectors was found to

discriminate between the two signatures with an accuracy of 0.80 to 0.85 using

cross-validation (Jones et al., 2013).

Contextual information made it possible to discriminate SAR features gen-

erated by SST fronts from those generated from purely atmospheric processes.

Similarly, I showed in Chapter 4 that the introduction of contextual infor-

mation in the form of a discrete phenotype makes it possible to discrimi-

nate heterotachy caused by changes in site-specific fitness landscapes from

heterotachy-by-any-means. The inclusion of other types of information might

therefore provide a general solution to the problem of confounding. This idea

is not new to the study of molecular evolution. The probability of the i → j

substitution at a codon site in gene is a function of both time ∆t and the

substitution rate Rij: Pij(∆t) = ∆tRij + o(∆t). Rates are therefore con-

founded with chronological time, and furthermore can change over time as

lineages diverge. Rate and time can be disentangled by explicitly account-

ing for variations in evolutionary rates (Thorne et al., 1998) and additionally

by applying calibrations using contextual information gleaned from the fossil

record (Kishino et al., 2001). The principle of using other sources of informa-

tion seems to have been limited to such calibrations up to the introduction of

the phenotype-genotype models cited in Chapter 4 (i.e., Mayrose and Otto,

2011; Lartillot and Poujol, 2011; O’Connor and Mundy, 2013; Karin et al.,

2017; Jones et al., 2019b).

5.2.2 PL and the Efficiency of Photosynthesis

Most of carbon fixation by oxygenic photosynthesis that occurs in the

world’s oceans is performed by autotrophic phytoplankton. Estimations of

the potential of local assemblages of phytoplankton to fix carbon are based

on the relationship between the rate of photosynthesis P and the intensity

of irradiance E. Measurements of P (E) can be collected by exposing water

samples to various levels of irradiance for a time and measuring the amount
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of carbon fixed per unit biomass. Such data can be summarized by a simple

P (E) relationship.

Figure 5.4: Two typical P (E) curves. The rate of transition from a linear relationship at
low levels of irradiance to a constant value at high levels of irradiance is a function of the
efficiency with which photons are absorbed and used to fix carbon. Curve“a” represents a
system that is more efficient than curve “b”.

A number of P (E) models have been proposed (e.g., Blackman, 1905; Baly,

1935; Webb et al., 1974; Jassby and Platt, 1976; Bannister, 1979), most of

which contain two adjustable parameters, the saturated rate of photosynthesis

Pmax and the saturating irradiance Ek. Each two-parameter model assumes

an intrinsic level of the efficiency with which photons are converted to fixed

carbon, expressed as different values for P (Ek), where lower P (Ek) correspond

to lower efficiency (Figure 5.4). Many P (E) data sets exhibit substantial vari-

ations in efficiency and are therefore not easily summarized by a single model.

Motivated by this, Bannister (1979) introduced an additional parameter b to

account for variations in efficiency. The Bannister equation often fits data bet-

ter than any two-parameter model (e.g., Jones et al., 2014), but is nevertheless

seldom used, perhaps because b is not easily assigned a mechanistic interpre-

tation. Two attempts were made to account for variations in efficiency via a

mechanistic process, one based on variations in the availability of resoures in

the electron transport chain (the queue model, Honti, 2007) and another based

on properties of the light-harvesting apparatus (the connectivity model, Jones

et al., 2014). In the latter case, the parameter p ∈ [0, 1] was used to represent

variations in efficiency via a specific mechanism. Variations in efficiency can
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only manifest as variations in P (Ek) however, so mechanisms by which effi-

ciency might vary are confounded under normal laboratory conditions. Such

mechanisms include not only those proposed by Honti (2007) and Jones et al.

(2014), but also processes that can occur at the level of the cell (e.g., vari-

ations in the level of intracellular self-shading of closely packed chloroplasts)

and at the level of the culture (variations in intercellular self-shading in dense

cultures). Using the terminology introduced in Chapter 3, an efficiency pa-

rameter meant to account for a specific mechanistic cause is likely to carry

substantial PL. Indeed, Jones et al. (2014) concluded that the parameter p

can only be interpreted as accounting for variations in efficiency by any cause.

5.3 Final Thoughts: What is the Canonical Signature of

Molecular Adaptation?

In Chapter 2 it was argued that the traditional signature of positive se-

lection in the form of a rate ratio ω > 1 is in general insufficient to infer

adaptation at the level of an individual codon site. It can be sufficient in cases

where an elevation in the nonsynonymous substitution rate is sustained due to

intergenetic interactions (e.g., an immune surveillance/evasion conflict Hughes

and Nei, 1988). It is not sufficient in general because episodic elevations to

ω > 1 can be generated by both adaptive and non-adaptive processes. So

what should we consider to be the canonical signature of molecular adapta-

tion? The material in Chapter 4 suggests that it might be defined as evidence

for a change in a site-specific fitness landscape as detected by the PG-BSM.

This was based on the results of simulation studies however, which necessar-

ily used alignment generating processes that are simple in comparison to the

actual processes of nature. Unrecognized sources of confounding in real data

might therefore undermine the PG-BSM. Indeed, as was noted at the end

of Chapter 4, an evolving protein is subject to both intragenetic and inter-

genetic epistatic constraints (Pollock et al., 2012; Starr and Thornton, 2016;

Phillips, 2008). These make it possible for a site to manifest a change in its

landscape that only serves to maintain the current function of the protein.
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Such function-preserving change is arguably non-adaptive. Changes in site-

specific landscapes due to epistasis might therefore be confounded with those

due to genuine adaptation where the protein undergoes some form of change

in function.

Thermodynamic stability models have been used to investigate evolution-

ary processes associated with intragenetic epistasis. Such models mimic evolu-

tion over a sequence-to-sequence landscape on which the fitness of each possi-

ble sequence is fixed. It has been shown that the modeled process can include

episodes of contingency-and-entrenchment at a site (Pollock et al., 2012, 2017),

in which (i) the stationary frequency of the resident amino acid at a site de-

creases over time until it becomes replaced by drift (contingency), and (ii)

the stationary frequency of the newly fixed amino acid increases over time as

other sites undergo substitutions that adjust for its fixation (entrenchment).

Recall that, whereas the PG-BSM can be used to infer changes in site-specific

landscapes, it does so via specific patterns of heterotachy informed by a dis-

crete phenotype. Changes in site-specific landscapes due to processes arising

from intragenetic epistasis can also manifest as heterotachy. Contingency, for

example, might sometimes lead to a transient burst of amino acid substitu-

tions (Pollock et al., 2017), and these can be followed by a decline in the

substitution rate due to entrenchment. But if the resulting changes in site-

specific substitution rates occur independently of changes in phenotype, they

will contribute to the signature of heterotachy-by-any-cause accounted for by

the covarion-like component of the PG-BSM, and will therefore be unlikely to

lead to false inference of adaptive peak shifts.

Nevertheless, as was stated more than once in this thesis, I believe that

the reliability of inferences made by fitting a CSM to a real alignment can be

assessed only insofar as the simulated data matches the real data. Alignment-

generating methods based on the MS framework represent a big step forward,

and arguably a new phase in CSM development. But it is unclear whether such

methods (e.g., MSmmtDNA, MSTGdR) can mimic all of the variation found

in a real alignment that might impact inference. Some argue for an increase

in the mechanistic content of fitted models with the apparent objective of
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extracting increasingly subtle signatures from alignment data (e.g., Liberles

et al., 2013; Pollock et al., 2017). By contrast, I argue for an increase in the

mechansitic realism of the processes used to generate data with the objective

of identifying and accounting for all potential sources of confounding. I leave

this challenging task for future research efforts. In the mean time I conclude

that, whatever the signature for molecular evolution is taken to be, it should

be based on statistical summaries extracted from alignment data combined

with whatever contextual information (e.g., phenotype, protein structure) is

required to break confounding.
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