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Abstract

Atherosclerosis is a disease of the cardiovascular system that affects humans ubiq-

uitously, and that can lead to myocardial infarction and stroke. It begins in the

arterial blood vessel walls (intima) as an inflammatory response to dysfunction of the

endothelium and access of the intima by oxidized low-density lipoproteins (oxLDLs).

These phenomena trigger the recruitment of white blood cells, specifically mono-

cytes, from the bloodstream. Trapped in the intima, the monocytes differentiate into

macrophages which in turn, after engulfing the oxLDLs, become foam cells, leading

to the production of inflammatory cytokines and further recruitment of white blood

cells. This self-accelerating process results in a dramatic increase of the thickness of

arteries, in the formation of atherosclerotic plaques and, possibly, in their rupture.

We suggest a one-dimensional mathematical model of the initiation and develop-

ment of atherosclerosis which takes into account the concentration of immune cells and

of pro- and anti-inflammatory cytokines. The model consists of a reaction–diffusion

system with Neumann boundary conditions, and describes the recruitment of mono-

cytes as a function of the concentration of inflammatory cytokines.
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Chapter 1

Introduction

The use of mathematics as a tool for understanding biological and medical phenom-

ena has increased significantly in the last few decades. One of the results of the

interaction between mathematics and biology is the development of mathematical

models to help and understand the structure, functioning, evolution, and diseases of

the cardiovascular system.

Atherosclerosis (or atherosclerotic vascular disease) is one of the diseases that

can affect this system. It consists of an anomalous condition affecting the wall of

arterial vessels, characterized by the formation of deposits of fatty materials and the

local formation of lesions called plaques in the wall of large arteries. Such plaques

can form in the artery wall as early as infancy and continue to grow throughout

adulthood, and may lead to significant narrowing of the artery lumen, which in turn

can produce distal tissue ischaemia and thrombosis.

The early stages of atherosclerosis are non-symptomatic. Later on, depending

on where the atherosclerotic plaque grows, symptoms may begin to occur, such as

numbness or pain, and loss of function in certain parts of the body (examples include

angina, peripheral arterial disease and kidney disease). Plaques may eventually be-

come unstable and rupture, causing occlusions of the blood flow to vital organs, that

may result in heart attack (acute myocardial infarction) and stroke (cerebrovascular

accident), which are among the leading causes of death around the world.

1.1 Pathogenesis of Atherosclerosis

Atherosclerosis is a disease characterized by the accumulation of lipids, lipid-laden

immune cells and cells that underwent apoptosis (i.e., programmed cell death) in the

1
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arterial wall. The precursors of atherosclerotic lesions, the so-called fatty streaks, are

observed in humans even during early childhood. Although the fatty streaks that can

occur in infancy may be found throughout the arterial network, the advanced lesions

of the disease of atherosclerosis are found in the larger arteries such as the abdominal

aorta, coronary arteries, cerebral arteries and others [16].

A common site of lesions in the human artery is along the opposing wall of an

arterial bifurcation, near branch points and along inner curvatures, where dynamical

changes occur in the blood flow [33]. Contrary to the expectation that high shear

stress could cause denudation of the arterial wall causing the damage that initiates the

formation of atherosclerotic changes, a higher incidence of lesions has been observed

at the sites of reduced shear stress. In 1969 and 1971, Caro, Fitz-Gerald and Schroter

proposed that the mechanics of blood flow has a controlling rather than causative

influence on atherogenesis. Caro et al. correlate the onset of arterial disease with a

shear-dependent mass transfer mechanism and show that this is consistent with the

observation of higher incidence of lesions at the sites of reduced shear stress [3].

The arteries where atherosclerosis develops, while of different sizes and locations

in the body, have a similar structure. They can be thought of as tubes with a wall

that contains three distinctive layers, whose innermost surface is exposed to flowing

blood (see Figure 1.1).

The outermost layer, the adventitia, consists of fibroblasts, fibrocytes (collagen-

and elastin-producing cells) and thick bundles of collagen fibres that provide rein-

forcement of the arterial wall.

The middle layer, the media, is the largest layer of the artery and consists of

multiple layers of smooth muscle cells (SMCs) and an extracellular matrix of collagen

and elastin. The muscular media is high in strength and is the most resistant layer

to loads both in the axial and circumferential directions [14].

The intima is the innermost layer of the arterial wall. It is characterized by a

mono-layer of endothelial cells that form the interface between the arterial wall and

the blood flow, a thin basal membrane on which the endothelial cells rest and a
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Figure 1.1: The layers of the human arterial wall. The figure shows—from right to
left—the intima composed of the monolayer of endothelial cells, and a subendothe-
lial layer containing proteoglycans and collagen fibrils resting on an internal elastic
lamina. Further into the wall is the media composed primarily of layered SMCs. The
external layer, the adventitia, contains fibroblasts, fibrocytes, and collagen fibres. [34]

subendothelial layer of SMCs, proteoglycans (complex molecules with a protein core

and particular types of sugar, called glycosaminoglycans, attached) and collagen fib-

rils (fibrous protein complexes). The inflammation that characterizes the atherogenic

process takes place primarily within this layer. The endothelial cells serve several

purposes that include providing a smooth surface for fluid flow, secretion of anticoag-

ulants to maintain the fluid state of the blood and chemical signaling of immune cells.

This barrier assumes great significance in the development of and protection against

atherosclerosis by regulating the passage of chemical and cellular species between the

artery wall and the adjacent bloodstream, via increasing or decreasing the expression

of adhesion molecules.

The theory that atherosclerosis is a chronic inflammatory response to injury is

now accepted as a general concept among researchers in the field [28].

The first step of the disease involves endothelial dysfunction. Although poorly
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understood, this process appears to be characterized by a change in the permeability

of the endothelial layer that allows lipids to migrate into the subendothelial layer fol-

lowed by an influx of immune cells. The change in permeability is also accompanied

by an increase in the adhesiveness of the endothelial layer (expression of adhesion

molecules on the surface of the endothelium triggered by the presence of modified

low-density lipoproteins (LDL) [12], and a change from anticoagulant to procoagu-

lant properties [24, 23]. A number of factors have been considered as possible causes

of endothelial dysfunction. These include cigarette smoking, diabetes mellitus and

hypertension (all of which generate free radicals which activate LDL oxidation), el-

evated LDL cholesterol blood levels and possibly even infection by microorganisms

(e.g., herpes viruses or Chlamydia Pneumoniae) [29] (Figure 1.2).

Following endothelial dysfunction and migration of lipoproteins and immune cell,

we identify steps in disease progression. These are chemical modification of LDL,

corruption of the immune response, and lesion growth.

1.1.1 Chemical Modification of LDL. Corruption of the Immune

Response.

Lipoproteins are micellar particles produced by the liver and intestines which contain

regulatory proteins that direct the blood trafficking of cholesterol and other lipids to

various cells in the body. There are four major classes of lipoprotein: very low-density

lipoprotein (VLDL), intermediate-density lipoprotein (IDL), low-density lipoprotein

(LDL) and high-density lipoprotein (HDL). The lipoprotein structure consists of a

lipid core containing cholesterol esters and triglycerides, and a coat that is composed

of regulatory surface proteins, unesterified cholesterol, phospholipids and a variety of

other components that may include molecules associated with antioxidant defences.

LDL particles transport cholesterol that is needed for various cellular functions such

as cell membrane formation and hormone synthesis. Although LDL particles are not

found in atherosclerotic plaques, oxidatively modified LDL particles are.
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Figure 1.2: Endothelial Dysfunction in Atherosclerosis. The earliest changes that pre-
cede the formation of lesions of atherosclerosis take place in the endothelium. These
changes include increased endothelial permeability to lipoproteins and other plasma
constituents, which is mediated by nitric oxide, prostacyclin, platelet-derived growth
factor, angiotensin II, and endothelin; up-regulation of leukocyte adhesion molecules,
including L-selectin, integrins, and platelet–endothelial-cell adhesion molecule 1, and
the up-regulation of endothelial adhesion molecules, which include E-selectin, P-
selectin, intercellular adhesion molecule 1, and vascular-cell adhesion molecule 1; and
migration of leukocytes into the artery wall, which is mediated by oxidized low-
density lipoprotein, monocyte chemotactic protein 1, interleukin-8, platelet-derived
growth factor, macrophage colony-stimulating factor, and osteopontin. Reproduced
with permission from [29], Copyright Massachusetts Medical Society.
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As described above, the LDL particle contains on its surface a number of antiox-

idant defenses including α-tocopherol (vitamin E). In the plasma, where the concen-

tration of free radicals is low and other antioxidant particles are present, LDL usually

remains in its native, unoxidized form. Following the changes in the permeability

of the endothelial layer and the up-regulation of receptors for LDL by endothelial

cells [29], the LDL particle is transported into the intima, and it may expend all of

its innate defenses against oxidation. Once LDL is oxidized, it is recognized by the

scavenger receptor on the surface of the macrophages. Exacerbating the problem is

the fact that oxLDL particles are trapped in the artery wall [5]. Attracted by oxLDL,

the macrophages in the artery wall attempt to internalize the lipoprotein particles.

This results in an accumulation of lipids -cholesterol esters- and transformation of the

macrophage into a foam cell. In this lipid-laden state, the macrophage is incapable

of functioning normally. As a result, dead or apoptotic cells and other debris (includ-

ing the foam cells) are allowed to build up. In response, chemoattractants (chemical

signals) including monocyte chemotactic protein 1 (MCP-1), interleukin-8 (IL-8) and

macrophage colony-stimulating factor(M-CSF) are secreted by the foam cells and en-

dothelial cells to summon more immune cells to the site. Circulating immune cells

in the blood, such as monocytes and T-lymphocytes, migrate into the subendothelial

layer in response to the chemical signals. Once in the artery wall, monocytes differen-

tiate into macrophages in response to macrophage colony stimulating factor (M-CSF)

[24, 29]. These macrophages begin to exhibit scavenger receptors on their surface [12].

The chemical mediators of inflammation can increase binding of oxLDL to cells in

the arterial wall. Hence, the new macrophages become engorged with oxLDL and the

cycle of chemical signaling continues, instigating plaque growth.

Moreover, a source of additional immune cells include migration via the vasa

vasorum, the vascular network that perfuses the arterial wall with blood.

This auto-amplification phenomenon is compensated by an anti-inflammatory phe-

nomenon mediated by the anti-inflammatory cytokines which inhibit the production

of pro-inflammatory cytokines (biochemical anti-inflammation) (Figure 1.3).
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Figure 1.3: Fatty-Streak Formation in Atherosclerosis. Fatty streaks initially consist
of lipid-laden monocytes and macrophages (foam cells) together with T lymphocytes.
Later they are joined by various numbers of smooth-muscle cells. The steps involved
in this process include smooth-muscle migration, which is stimulated by platelet-
derived growth factor, fibroblast growth factor 2, and transforming growth factor
β; T-cell activation, which is mediated by tumor necrosis factor α, interleukin-2,
and granulocyte–macrophage colony-stimulating factor; foamcell formation, which is
mediated by oxidized low-density lipoprotein, macrophage colony-stimulating factor,
tumor necrosis factor α, and interleukin-1; and platelet adherence and aggregation,
which are stimulated by integrins, P-selectin, fibrin, thromboxane A2, tissue factor,
and the factors described in Figure 1 as responsible for the adherence and migration of
leukocytes. Reproduced with permission from [29], Copyright Massachusetts Medical
Society.
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1.1.2 Lesion Growth

SMCs also respond to chemical signals produced during the accumulation of oxLDL,

foam cells and debris. SMCs migrate around the lesion to form a fibro-muscular cap

overlaying the plaque. This process is also mediated by chemoattractants which entice

SMCs into the region as well as chemoinhibitors that keep the SMCs outside of the

lesion core [25]. The cap of SMCs and poorly formed connective tissue covers the core

which contains dead cells, foam cells and potentially necrotic tissue. Eventually, there

is encroachment of the arterial lumen as the cells, cell matrix and debris accumulate

in the plaque. The overlaying surface becomes thrombogenic resulting in platelet

adherence due to increase in expression of platelet–endothelial cell adhesion molecule

1 (PECAM-1). The thrombus can further diminish or even completely occlude blood

flow at this site [29]. Continued disease progression results in an advanced lesion

described as a fibrous plaque. These types of plaques are characterized by a dense cap

composed of SMCs, collagen, elastin and basement membrane fibres. These plaques

often cause various degrees of arterial occlusion. However, the danger of clinically

significant ischemia imposed by such a lesion has more to do with the stability of

the plaque (which is primarily determined by the composition of the cap and the

lipid core) than the degree of occlusion caused by the plaque [6, 9]. A non-uniform

cap with a region that is thin (commonly found at the ‘shoulders’ of the plaque) is

mechanically unstable. Rupture of an unstable but moderate-sized plaque can result

in complete occlusion of an artery with catastrophic medical consequences such as

stroke or myocardial infarction. Whereas a lesion that may occlude the lumen to a

much greater extent but which has a stable cap may be less of an immediate threat to

a person because neovascular development can compensate for the chronic and slowly

forming occlusion. (Figure 1.4)

The disease of atherosclerosis, and its initiation atherogenesis, involves a com-

plex interplay between mechanical, genetic, pathogenic, and biochemical processes.

Although a comprehensive view of atherosclerosis will ultimately require integration
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Figure 1.4: Formation of an Advanced, Complicated Lesion of Atherosclerosis. As
fatty streaks progress to intermediate and advanced lesions, they tend to form a fi-
brous cap that walls off the lesion from the lumen. This represents a type of healing
or fibrous response to the injury. The fibrous cap covers a mixture of leukocytes, lipid,
and debris, which may form a necrotic core. These lesions expand at their shoulders by
means of continued leukocyte adhesion and entry caused by the same factors as those
listed in Figures 1 and 2. The principal factors associated with macrophage accumu-
lation include macrophage colony-stimulating factor, monocyte chemotactic protein
1, and oxidized low-density lipoprotein. The necrotic core represents the results of
apoptosis and necrosis, increased proteolytic activity, and lipid accumulation. The
fibrous cap forms as a result of increased activity of platelet-derived growth factor,
transforming growth factor β, interleukin-1, tumor necrosis factor α, and osteopontin
and of decreased connective-tissue degradation. Reproduced with permission from
[29], Copyright Massachusetts Medical Society.
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Figure 1.5: Unstable Fibrous Plaques in Atherosclerosis. Rupture of the fibrous cap
or ulceration of the fibrous plaque can rapidly lead to thrombosis and usually occurs
at sites of thinning of the fibrous cap that covers the advanced lesion. Thinning of the
fibrous cap is apparently due to the continuing influx and activation of macrophages,
which release metalloproteinases and other proteolytic enzymes at these sites. These
enzymes cause degradation of the matrix, which can lead to hemorrhage from the
vasa vasorum or from the lumen of the artery and can result in thrombus forma-
tion and occlusion of the artery. Reproduced with permission from [29], Copyright
Massachusetts Medical Society.
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of these various modeling perspectives, building a model that takes into account all

the aspects of this process, even with all the necessary simplifications, would be a

titanic and daunting endeavour. Instead, researchers have been focusing on models

that study particular aspects.

Some fluid dynamical models consider the interaction between blood flow and

vessel walls [31, 32], or study the coupling of the haemodynamics and mass transfer

with a simple lesion growth in the intima.

Mathematical approaches have been used to study lipoprotein transport and ac-

cumulation in the arterial wall [26, 30], and in vitro LDL oxidation [5].

Other types of mathematical models, such as that of the present work, have been

devised to study the role of the biochemical processes in the formation of plaques.

They are based on partial or ordinary differential equations, describing the reac-

tions between immune cells (primarily macrophages), smooth muscle cells, chemo-

attractant and low-density lipoproteins, see for instance [4, 8, 17].

El Khatib et al. have proposed one and two-dimensional reaction–diffusion models

to describe the response in the intima of the artery vessel [8]. Related works are

Cobbold et al.[5], Li et al.[21], Ougrinovskaia et al.[27]; El Khatib et al.[7]; Hidalgo

et al.[13].

In this paper we propose a mathematical model that describes the early stages

of atherosclerosis, focusing on the inflammatory component of atherogenesis. In par-

ticular, we model the secretion of and the response to chemotactic stimuli by var-

ious immune-cell species and LDL, and the behaviour of immune cells – primarily

macrophages – in the presence of oxidatively modified LDL and cytokines, in the

blood and arterial wall. Our model incorporates many parameters characterizing such

things as the rate at which macrophages move within the intimal tissue in response

to chemokine (chemoattractants, cytokines), degradation rates of various chemicals,

chemical reaction rates and so forth.

Because this study centres on the interplay between chemical and cellular species

in the human arteries and bloodstream, we employ a classical model of chemotaxis



12

(which is the phenomenon of micro-organisms or cells “sensing” chemical gradients

and moving in response to them) first presented by E. F. Keller and Lee Segel in

their seminal 1970 work [19]. The original model consists of two partial differential

equations (PDEs) which couple together the density of amoebae and the concentration

of the chemo-attractant. Keller-Segel system and its variants have been used in a wide

variety of contexts. It is one of the simplest systems of PDE models that has very

intricate solution structure but that is still accessible to a wide range of mathematical

techniques, including the study of existence/uniqueness of solutions, blowup analysis,

and pattern formation. For an extensive review see [15] and references therein.

The purpose of this paper is to study basic pattern formation in a model of

chemotaxis with self-production terms. To this end we will analyze a coupled system

of non-linear reaction diffusion equations describing the state of the various species

involved in the disease process.

This approach is inspired by the study by Kolokolnikov et al. [20]

In chapter 2 we lay out the assumptions upon which the mathematical model is

constructed. This is followed by a presentation and an analysis of the general model.

In chapter 3 we discuss our results.

The computations in this paper were performed by using Maple™. The numerical

simulations in this paper were performed by using FlexPDE solver (FlexPDE6 PDE

Solutions Inc., URL www.pdesolutions.com)



Chapter 2

The Model

In constructing our model we had to adopt by necessity a simplified view of a com-

plicated process.

Our work is based on a continuum mechanical view of the process of formation

of an atherosclerotic plaque. Hence, the equations governing the dynamics of various

species involved are derived by considering a balance of mass of each species. To this

end, we identify the cellular and chemical species most significant to the process and

consider their production, movement, and death in an arbitrary region. In so doing,

we account for the highly interactive nature of disease development, the secretion of

chemical species by cells, movement of cells in response to chemical signals and so

forth.

2.1 Modelling Assumptions

Based on the literature we identify the following four cellular and chemical species

that are to be considered responsible for disease described in this model:

I: A density measurement for immune cells (g/mm3). These are primarily monocyte-

derived macrophages but may also include monocytes, T-lymphocytes and other im-

mune response cells.

F : A density measurement for foam Cells (g/mm3 ). These are modified macrophages.

C: A concentration measurement for chemoattractant (e.g., µmol/l). Here, we

make no distinction between various types of chemoattractants, such as macrophage

colony-stimulating factor, monocyte chemotactic protein, interleukin-1 and others.

Rather, C refers to any chemical that induces positive chemotaxis (i.e., in the direction

of higher concentration of the chemoattractant).

13
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L: A concentration measurement for OxLDL (oxidized LDL molecules)(mmol/l).

The change in the concentration of each species is subject to the following assumed

conditions:

1. Endothelial dysfunction occurs by an unspecified mechanism allowing LDL to

enter the intima.

2. Immune cells exhibit positive chemotaxis in response to chemoattractant and

oxLDL. Cells are sensitive to the relative concentration gradient with respect

to taxis. This is consistent with the observation that cells are highly sensitive

to changes in chemical concentration at very low concentrations, and it also

accounts for saturation effects at high concentrations.

3. Chemoattractant is produced by cells in the arterial intima (immune cells, en-

dothelial cells, etc.), and is removed in an unspecified way (i.e., by a combination

of the following mechanisms: neutralization on contact by immune cell or SMC,

inhibition by the anti-inflammatory cytokines, or because of its kinetics).

4. Immune cells die or become corrupted to produce debris.

5. The concentration of foam cells increases due to corruption of macrophages, and

it decreases by degradation by immune cells in the course of normal immune

function.

6. All species are subject to some random flux through the boundary of a volume.

2.2 Model Equations

In our model, we first considered a one-dimensional reaction-diffusion system of four

PDEs on an interval representing the arterial intima:
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Lt = DLLxx +
αL

L+ β
− µLL−KLLI

Ct = DcCxx +KFF +KII − µCC

Ft = ε2Fxx +KLLI − µFF

It = DIIxx +
αI

I + β
− µII −KLLI − χ

(
I

C
Cx

)
x

Successive numerical simulations have suggested that the pattern formation in-

volved in the building of an atherosclerotic plaque is driven by the change in the

concentrations of immune cells and chemo-attractant. So, for the sake of clarity, we

will analyze the simplest reasonable model:

It = DIIxx +
αI

I + βI
− µII − χ(ICx)x

Ct = DcCxx +KII − µCC,
(2.1)

coupled with Neumann boundary conditions

Ix(±L, t) = 0 = Cx(±L, t). (2.2)

In the first equation of Equation (2.1), the term DIIxx describes the diffusion of

the immune cells from the arterial blood to the arterial wall, and DI represents the

diffusion coefficient of the immune cells. The term αI
I+βI

describes the production of

immune cells, αI represents the production rate of immune cells, and βI represents

the negative feedback on production of the immune cells, which, for the purpose of

this study, is caused by unspecified anti-inflammatory chemical species (notice that

the added constant βI in the denominator guarantees that this quantity doesn’t grow

without bound). The term µII describes the decay of immune cells; here µI is the

decay rate of the immune cells. The term χ(ICx)x describes the chemotaxis of immune

cells from the blood into the intima, promoted by the inflammatory cytokines. This

term models the sensing mechanism and cells diffuse with diffusion coefficient DI .

The factor χ represents the strength of the chemoattractant.
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In the second equation of Equation (2.1), the term DcCxx describes the diffusion

of chemo-attractant to the arterial blood, and DC represents the diffusion coefficient

of the chemoattractant. The term KII describes the production of chemo-attractant

by the immune cells, here KI represents the production rate of chemoattractant by

immune cells. The term µCC describes the decay of chemo-attractant; the factor µC

represents the decay rate of the chemoattractant.

The homogeneous Neumann conditions imposed on the concentration of immune

cells I and on the concentration of chemoattractant C represent the inability of these

species to pass through the respective boundaries. That is, we assume that the

velocity of fluid flow in the axial direction is sufficiently large to result in a near-zero

flux of immune cells and chemoattractant into or out of the region of interest (from

the lumen).

2.3 The Scaled Model

Since it was first presented in 1970, the Keller-Segel model of chemotaxis has been

studied extensively [15], and it is well known that it generates spike-type solutions,

which correspond to small localized regions of high concentration of the quantities

under study (in our case immune cells and chemoattractant cytokines), with relatively

small concentrations of them elsewhere.

Numerical simulations suggest that the height of a spike solution to our system

is O
(
1
ε

)
. It is of practical benefit (for instance, to simplify numerical simulations) to

scale Equations (2.1) by applying the following transformations, after dropping the

*’s :

I =
1

ε
I∗, C =

1

χ
C∗, DI = ε.

Here ε << 1, because in our model we assume that the immune cells do not have a

great deal of movement.
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So, we obtain the following equations:

It = εIxx − (ICx)x + ε2
αI

I + εβI
− µII,

Ct = DcCxx +
χKII

ε
− µCC.

(2.3)

We will first construct a solution consisting of a single spike for I which is centered

at the origin, x = 0, and has a width O(ε). We will call this region centered at the

origin inner region, and we will call any x in this interval an inner variable. We will

call the region where |x| > O(ε) outer region, and we will call any x in this interval

an outer variable.

We investigate two theoretically possible solutions for the system in Equation

(2.3); following the example of Kolokolnikov et al. [20], we will call them Type 1

solution and Type 2 solution, respectively.

Type 1 solution is characterized by strict localization of I to the inner region. We

will show that such solution cannot exist. Nonetheless it does make sense to consider

local Type 1 solution, since it will be one of the two terms that constitute Type 2

solution. We study Type 1 solution in Section 2.3.1. Type 2 solution, which we study

in Section 2.3.2, is a feasible solution of our system; it is also more complicated, and,

in the outer region, it satisfies a nonlinear third order ordinary differential equation

(ODE).

We note here that the values used to perform the numerical simulations were

assigned ad hoc so that the initial assumptions would be qualitatively satisfied. The

attainment of biologically precise parameter values can be very difficult especially

with respect to in vivo studies. The values we used were chosen to highlight the

impact of the various parameters. We expected this simpler system would capture

two primary features of the disease process, namely localization and aggregation.

The parameter values used in all calculations are given in the table below:

2.3.1 Type 1 Solution

We begin the analysis of our simplified system by considering the steady state of

Equations (2.3). We will then proceed to construct a symmetric spike centered at
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Table 1 Parameter Values
ε 0.1 DC 4
αI 0.75 KI 1.95
βI 1 χ 14
µI 1 µC 4

Table 2.1: Parameter Values

the origin. This is equivalent to constructing a half-spike on the interval [0, L], with

Neumann boundary conditions for I and C at x = 0, L.

At the steady state the equations on the half domain x ∈ [0, L] are:

εIxx − (ICx)x +
ε2αI
I + εβI

− µII = 0

DcCxx +
χKII

ε
− µCC = 0,

(2.4)

with Neumann boundary conditions

Ix(0, t) = Ix(L, t) = Cx(0, t) = Cx(L, t) = 0.

The analysis of this system is similar to that in [20].

To study the behavior of the solutions of our system of differential equations in

the inner region we introduce the following change of the inner variable:

x = εy

I = Ĩ(y)

C = C0 + εC̃(y)

where C0 = C(0) is to be determined, and C̃(0)=0.

Notice that the scaling of x, which will benefit us in our calculations, is equivalent

to zooming in on the interval (−ε, ε) around the origin.

Then, we can perform the following changes:
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εIxx →
1

ε
Ĩyy

(ICx)x = IxCx + ICxx →
1

ε
(ĨyC̃y + ĨC̃yy) =

1

ε
(ĨC̃y)y

DcCxx →
Dc

ε
C̃yy

So we obtain the following problem in the inner variable:

1

ε
Ĩyy −

1

ε
(ĨC̃y)y + ε2

αI

Ĩ + εβI
− µI Ĩ = 0

Dc

ε
C̃yy +

χKI Ĩ

ε
− µC(εC̃ + C0) = 0

or

Ĩyy − (ĨC̃y)y + ε3
αI

Ĩ + εβI
− εµI Ĩ = 0

DcC̃yy + χKI Ĩ − εµC(εC̃ + C0) = 0.

(2.5)

with the Neumann Boundary Conditions

Ĩ0y(0, t) = Ĩ0y(∞, t) = C̃0y(0, t) = C̃0y(∞, t) = 0.

By means of ε-power series expansion, we can write the functions Ĩ and C̃ as

Ĩ = Ĩ0 + εĨ1 + ...

C̃ = C̃0 + εC̃1 + ...

We substitute these expressions in Equation (2.5). To leading order, considering

ε << 1, we obtain the system

Ĩ0yy −
(
Ĩ0C̃0y

)
y

= 0

DcC̃yy + χKI Ĩ0 = 0.

(2.6)
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with the Neumann boundary conditions

Ĩ0y(0, t) = Ĩ0y(∞, t) = C̃0y(0, t) = C̃0y(∞, t) = 0.

From the first equation in Equation (2.6) we can see that Ĩ0y− Ĩ0C̃0y = c, for some

constant c.

Since Ĩ0y → 0 and C̃0y → 0 as y → 0 (because of the Neumann boundary condi-

tions), we have that c = 0.

So we obtain the following:

C̃0y =
Ĩ0y

Ĩ0
(2.7)

and

DcC̃yy + χKI Ĩ0 = Dc(
Ĩ0y

Ĩ0
)y + χKI Ĩ0 = 0. (2.8)

Thus

(
Ĩ0y

Ĩ0

)
y

+
χKI

Dc

Ĩ0 = 0. (2.9)

Let u = log(Ĩ0) and Ĩ0 = eu.

Differentiating these expressions we obtain

uy =
Ĩ0y

Ĩ0
and uyy =

(
Ĩ0y

Ĩ0

)
y

.

Substituting these in Equation (2.8) we have

uyy +
χKI

Dc

eu = 0.

Multiplying both sides by uy we get

uyyuy +
χKI

Dc

euuy = 0,

or



21

d

dy

[
1

2
(uy)

2 +
χKI

Dc

eu
]

= 0.

Therefore we have

1

2
(uy)

2 +
χKI

Dc

eu = c1, (2.10)

where c1 is a constant.

At x = 0 we have that Ĩ0(0) = ξ (where ξ is to be determined) and Ĩ0y(0) = 0,

because of the Neumann boundary conditions.

So u(0) = log(ξ) and uy(0) = 0.

Hence Equation (2.10) becomes

χKI

Dc

elog(ξ) = c1.

Thus, we see that

c1 =
χKI

Dc

ξ.

Substituting c1 in Equation (2.10) we get

1

2
(uy)

2 +
χKI

Dc

eu =
χKI

Dc

ξ,

or

(uy)
2 = 2

χKI

Dc

(ξ − eu).

Therefore we have that

uy = ±
√

2
χKI

Dc

(ξ − eu).

Here we consider only the negative solutions since u is a decreasing function.

Now we may integrate the expression
du

dy
= −

√
2χKI
Dc

(ξ − eu) to obtain

∫
− du√

2χKI
Dc

(ξ − eu)
=

∫
dy,
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− 1√
2χKI
Dc

∫
du√
ξ − eu

= y + c2,

− 1√
2χKI
Dc

log
(
|
√
ξ−eu−

√
ξ|√

ξ−eu+
√
ξ

)
√
ξ

= y + c2,

2√
2χKI
Dc

tanh−1
(√

ξ−eu√
ξ

)
√
ξ

= y + c2,

tanh−1
(√

ξ − eu√
ξ

)
= (y + c2)

√
ξχKI

2Dc

.

So

√
ξ − eu√
ξ

= tanh

[
(y + c2)

√
ξχKI

2Dc

]
.

Thus

ξ − eu = ξ tanh2

[
(y + c2)

√
ξχKI

2Dc

]
.

Therefore

Ĩ0 = eu = ξ

{
1− tanh2

[
(y + c2)

√
ξχKI

2Dc

]}
= ξ sech2

[
(y + c2)

√
ξχKI

2Dc

]
.

Differentiating this expression, we get

Ĩ0y = −ξ
√
ξχKI

2Dc

sech2

[
(y + c2)

√
ξχKI

2Dc

]
tanh

[
(y + c2)

√
ξχKI

2Dc

]
. (2.11)

Since Ĩ0y(0) = 0, due to the boundary conditions, and because

−
√
ξχKI

2Dc

sech2

[
(c)

√
ξχKI

2Dc

]
6= 0
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for all values of c2, in order for the right-hand side of equation (2.11) to be 0 at y = 0,

we must have that tanh
[
(y + c)

√
ξχKI
2Dc

]
= 0.

Since χKI
Dc
6= 0, we see that c2 = 0.

Then

Ĩ0 = ξ sech2

(
y

√
ξχKI

2Dc

)
,

where ξ, the height of the spike, is the free parameter that is due to the scaling

invariance of the problem in Equation (2.4). We will solve for ξ by matching the inner

and outer solutions.

Substituting the expression for Ĩ0 in Equation (2.7), we can also find an expression

for C̃0y:

C̃0y =
Ĩ0y

Ĩ0
=
−ξ
√

2ξχKI
2Dc

sech2
(
y
√

ξχKI
2Dc

)
tanh

(
y
√

ξχKI
2Dc

)
ξ sech2

(
y
√

ξχKI
2Dc

)
= −ξ

√
2ξχKI

2Dc

tanh

(
y

√
ξχKI

2Dc

)
.

Summarizing, in the inner region we have the solution

Ĩ0 = ξ sech2

(
y

√
ξχKI

2DC

)

C̃0y = −
√

2ξχKI

DC

tanh

(
y

√
ξχKI

2DC

)
.

(2.12)

To determine the height ξ of the spike, we now consider the outer region

|x| >> ε.

First, we shall find a function C that solves the second equation in (2.6) away

from the center of the spike. We will then use it to find a global solution on the entire

interval which, in turn, will be instrumental in finding ξ.

To this end, we notice that in the outer region I ∼ 0. Then from the second

equation in Equation (2.4) we have

DcCxx − µcC = −χKI

ε
I ∼ 0.
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Let us consider the right hand side of this equation. We notice that the quantity

I
ε

behaves like a rectangular pulse of width ε and height 1
ε
. In the limit as ε→ 0, this

approaches an infinitely concentrated pulse δ(x−x0), which would be zero everywhere

except at x = 0, where it would be ∞.

Thus, we can treat −χKI
ε
I as a multiple of the δ-function, that is

χKI

ε
I(x) = βδ(x− x0).

So C in the outer region satisfies the problem

DcC
′′(x)− µcC(x) = −βδ(x− x0)

C ′(x)(±L) = 0,

or

C ′′(x)− µC
DC

C(x) = −βδ(x− x0)

C ′(x)(±L) = 0.

(2.13)

Let us now consider the linear differentiable operator LC = C ′′ − C.

It turns out that, in order to solve the problem in Equation (2.13), we can instead

solve the problem

LC = −χKI

ε
I(x) = βδ(x− x0) (2.14)

with homogeneous boundary conditions.

Because of the similarity between the behaviours of the δ-function and of our

function, we can use the following equation

L [G(x, x0)] = δ(x− x0),

where G(x, x0) is the Green’s function.
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Thus we see that

βL [G(x, x0)] = LC.

Because the operator L is linear, the solution of the problem in Equation (2.13)

that we are seeking must have the form

C = βG. (2.15)

In order to find this solution, we will first solve the related problem

Gxx(x;x0)−
µc
Dc

G(x;x0) = −δ(x− x0), for x 6= x0

Gx(±L) = 0.

(2.16)

The associated characteristic equation is

r2 − µcC

Dc

,

and its roots are

r = ±
√
µC
DC

.

So the solution of problem in Equation (2.16) is

G = c1e

√
µC
DC

x
+ c2e

−
√

µC
DC

x
.

Thus we have that

G = A cosh

(√
µC
DC

x

)
+B sinh

(
−
√
µC
DC

x

)
.

Considering the boundary conditions we obtain

G =


A cosh

[√
µC
DC

(x− L)
]

0 < x < L

B cosh
[√

µC
DC

(x+ L)
]
−L < x < 0
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Using the symmetry of the solution we can only consider one of the two expres-

sions, namely

G = A cosh

[√
µC
DC

(x− L)

]
, when x is near the origin. (2.17)

To determine the constant A we shall use the the following facts about the Green’s

function on a small interval around the origin [−ε, ε]:

G(0+) = G(0−) (continuity condition)

G′(0+)−G′(0−) = −1 (jump condition).

Thus we have the system


A cosh

[√
µC
DC

(x− L)
]

= B cosh
[√

µC
DC

(x+ L)
]

A
√

µC
DC

sinh
[√

µC
DC

(x− L)
]
−B

√
µC
DC

sinh
[√

µC
DC

(x+ L)
]

= −1

with x ∈ [−ε, ε].

At x = 0 this system yields

A = −
cosh

[√
µC
DC

(L)
]

√
µC
DC

sinh
(

2
√

µC
DC
L
) ,

which we plug into equation (2.18) to obtain an expression for G:

G = −
cosh

[√
µC
DC

(L)
]

√
µC
DC

sinh
(

2
√

µC
DC
L
) cosh

[√
µC
DC

(x− L)

]
.

Now we proceed to find the constant β. To this end, we consider the equation on

the right side of Equation (2.14), and, after the usual change of variable x = εy, we

integrate it over R:
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∫ ∞
−∞
−χKI

ε
Ĩ0(y)ε dy =

∫ ∞
−∞

βδ(x− x0) dx0,∫ ∞
−∞
−χKIξ sech2

(
y

√
ξχKI

2DC

)
dy = β

∫ ∞
−∞

δ(x− x0) dx0.

Thus we obtain

−χKI

∫ ∞
−∞

ξ sech2

(
y

√
ξχKI

2DC

)
dy = β,

β = −χKI2

√
2DCξ

χKI

= −2
√

2DCξχKI ,

where we used the property of the integral of the δ-function over R,∫ +∞

−∞
δ(x− x0) dx0 = 1.

Therefore, plugging our expressions for G and β into Equation (2.15), we have that

C = 2
√

2DCχKIξ
cosh

[√
µC
DC

(L)
]

√
µC
DC

sinh
(

2
√

µC
DC
L
) cosh

[√
µC
DC

(x− L)

]
.

We may now find the composite solution for C.

In order to do so, we need to consider the behaviour of C near the core of the

spike. By integrating the second expression in Equation (2.12) we obtain

C̃0 = −2ε log

[
cosh

(
y

√
ξχKI

2DC

)]
,

so that in the inner region we have that

C ∼ C̃0 − 2ε log

[
cosh

(
y

√
ξχKI

2DC

)]
.

Using Van Dyke’s matching principle, we get the composite solution for C:
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C = Cinner + Couter − Coverlap

∼ 2
√

2DCχKIξ
cosh

[√
µC
DC

(L)
]

√
µC
DC

sinh
(

2
√

µC
DC
L
) cosh

[√
µC
DC

(L)

]

− 2ε log

[
cosh

(
y

√
ξχKI

2DC

)]

+ 2
√

2DCχKIξ
cosh

[√
µC
DC

(L)
]

√
µC
DC

sinh
(

2
√

µC
DC
L
) cosh

[√
µC
DC

(x− L)

]

= 2
√

2DCχKIξ
cosh

[√
µC
DC

(L)
]

√
µC
DC

sinh
(

2
√

µC
DC
L
) {cosh

(√
µC
DC

L

)
+ cosh

[√
µC
DC

(x− L)

]}

− 2ε log

[
cosh

(
y

√
ξχKI

2DC

)]
.

We now want to find an expression for the height of the spike ξ. In order to

do that, we integrate the first equation in Equation (2.4) to obtain the solvability

condition: ∫ L

−L

[
εIxx − (ICx)x +

ε2αI
I + εβI

− µII
]
dx = 0.

Because of the Neumann boundary conditions, Ix(±L, t) = 0 = Cx(±L, t), we

have that ∫ L

−L
εIxx dx = 0 and

∫ L

−L
(ICx)x dx = 0.

So we have the following integral

∫ L

−L

(
ε2αI
I + εβI

− µII
)
dx = 0,

or

∫ L

−L

ε2αI
I + εβI

dx =

∫ L

−L
µII dx.

Now we use the fact that I is zero almost everywhere in the outer region to obtain

∫ L

−L

ε2αI
I + εβI

dx ∼
∫ L

−L

ε2αI
I + εβI

dx =
2εαIL

βI
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and ∫ L

−L
µII dx ∼

∫ ∞
−∞

µIξ sech2

(
y

√
ξχKI

2DC

)
dy = 2µI

√
2DCξ

χKI

.

Thus we have the equality

2εαIL

βI
= 2µI

√
2DCξ

χKI

.

Therefore

ξ =
ε2α2

IL
2χKI

2DCβ2
Iµ

2
I

. (2.18)

In summary, the uniform asymptotic expansion of Type 1 equilibrium state of

(2.3) is given by

I ∼ ε2α2
IL

2χKI

2DCβ2
Iµ

2
I

sech2

(
x

ε

√
ε2α2

IL
2χ2K2

I

4D2
Cβ

2
Iµ

2
I

)
=
ε2α2

IL
2χKI

2DCβ2
Iµ

2
I

sech2

(
x

√
α2
IL

2χ2K2
I

4D2
Cβ

2
Iµ

2
I

)
,

C ∼ 2

√
ε2α2

IL
2χ2K2

I

β2
I

cosh
[√

µC
DC

(L)
]

√
µC
DC

sinh
(

2
√

µC
DC
L
) {cosh

(√
µC
DC

L

)
+ cosh

[√
µC
DC

(x− L)

]}

− 2ε log

[
cosh

(
x

ε

√
ξχKI

2DC

)]
.

We observe that, since ξ = O(ε2), the spike is no longer confined to the in-

ner region. This result contradicts the assumption that I behaves like a δ-function.

Therefore this Type 1 solution cannot be a solution of our system.

2.3.2 Type 2 Solution

We now examine Type 2 solutions. The spike construction in the inner region |x| ≤

O(ε) is identical to the one presented in subsection 2.3.1, and gives rise to the same

equations as the ones in Equations (2.12) and (2.18). The difference is that in the

outer region I is no longer assumed to be zero, but O(ε). Then the height ξ will
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no longer be given by Equation (2.18), but will be determined along with the outer

solutions for I and C.

Away from the center of the spike, in the outer region, |x| > O(ε), we scale

I = εÎ.

So our Type 2 solution will have the form

I = Ĩ(y) + εÎ(x).

Here a similar calculation to that in subsection 2.3.1 gives

Ĩ ∼ ξ sech2

(
y

√
ξχKI

2DC

)
To match the inner and outer regions, we integrate the second equation in Equa-

tion (2.4) on a small interval [0, δ], where ε << δ << 1:∫ δ

0

(
DCCxx +

χKII

ε
− µCC

)
dx = 0.

So we have

DCCx(δ) +
χKI

ε

∫ δ

0

I dx = µC

∫ δ

0

C dx,

or

Cx(δ) +
χKI

εDC

∫ δ

0

I dx =
µC
DC

∫ δ

0

C dx. (2.19)

We start by considering the term

χKI

εDC

∫ δ

0

I dx.

In order to estimate the value of this integral, we perform the change of variable

x = εy and obtain

χKI

εDC

∫ δ

0

I dx =
χKI

εDC

∫ δ
ε

0

[
Ĩ(y) + εÎ(y)

]
ε dy.

We notice that, to leading order, we can ignore the term that contains εÎ(y), so

we have
χKI

εDC

∫ δ

0

I dx ∼ χKI

εDC

∫ δ
ε

0

Ĩ(y)ε dy.
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Then we can calculate

χKI

εDC

∫ δ

0

I dx ∼ χKI

DC

∫ δ
ε

0

Ĩ(y) dy

∼ χKI

DC

∫ ∞
0

Ĩ0 dy

=
χKI

DC

∫ ∞
0

ξ sech2

(
y

√
ξχKI

2DC

)
dy

=
ξχKI

DC

√
2DC

ξχKI

=

√
2ξχKI

DC

.

We also have that

∫ δ

0

C dx =
2

ε

√
2DCχKIξ

cosh
[√

µC
DC

(L)
]

√
µC
DC

sinh
(

2
√

µC
DC
L
) ∫ δ

0

cosh

[√
µC
DC

(x− L)

]
dx.

Since, as δ → 0,

∫ δ

0

cosh

[√
µC
DC

(x− L)

]
=

sinh
(√

µC
DC
L
)

√
µC
DC

−
sinh

(√
µC
DC
L− µC

DC
δ
)

√
µC
DC

→ 0,

we have

∫ δ

0

C dx = O(δ).

Substituting these into Equation 2.19, we obtain the following expression:

Cx(δ) = −χKI

εDC

∫ δ

0

Idx+
µC
DC

∫ δ

0

Cdx = −
√

2ξχKI

DC

+
µC
DC

O(δ).

Therefore, to leading order, in the outer region we have that

C ′(0+) ∼ −
√

2ξχKI

DC

. (2.20)

We now want to find C in the outer region. In order to do that, we look at the

equilibrium system
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ε2Îxx − ε(ÎCx)x +
εαI

Î + βI
− εµI Î = 0

DcCxx + χKI Î − µCC = 0.

(2.21)

Since ε << 1, to leading order, the steady state satisfies the system

(ÎCx)x −
αI

Î + βI
+ µI Î = 0

DcCxx + χKI Î − µCC = 0.

(2.22)

In order to find our solution, we would like each equation of this system to involve

solely the I function and its derivatives or solely the C function and its derivatives.

But, since I 6= 0 in the outer region, the variables I and C are still linked; i.e., the

system is still coupled.

To decouple this system, we proceed as follows.

From the first equation in Equation (2.22) we get

(ÎCx)x(Î + βI) + µI Î(Î + βI)− αI = 0,

(ÎxCx + ÎCxx)(Î + βI) + µI Î(Î + βI)− αI = 0,

(ÎCx)x = ÎxCx + ÎCxx =
αI − µI Î2 − βIµI Î

Î + βI
,

Î ÎxCx + βI ÎxCx + Î2Cxx + βI ÎCxx + µI Î
2 + βIµI Î − αI = 0.

Solving for Î = µCC−DCC′′
χKI

, which we get from the second equation in Equation

(2.22), we obtain a third order ordinary differential equation (ODE) for C in the outer

region:
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0 =
1

χ2K2
I

(µCC −DCC
′′)(µCC −DCC

′′)′C ′ +
1

χKI

βI(µCC −DCC
′′)′C ′

+
1

χ2K2
I

µI(µCC −DCC
′′)2 +

1

χKI

βIµI(µCC −DCC
′′)

+
1

χ2K2
I

(µCC −DCC
′′)2C ′′ +

1

χKI

βI(µCC −DCC
′′)C ′′ − αI

= (µCC −DCC
′′)(µCC

′ −DCC
′′′)C ′ + βIχKI(µCC

′ −DCC
′′′)C ′

+ µI(µCC −DCC
′′)2 + βIµIχKI(µCC −DCC

′′)

+ (µCC −DCC
′′)2C ′′ + βIχKI(µCC −DCC

′′)C ′′ − αIχ2K2
I

= (µCC −DCC
′′)[(µCC

′ −DCC
′′′)C ′ + µI(µCC −DCC

′′)(µCC −DCC
′′)C ′′]

+ βIχKI [(µCC
′ −DCC

′′′)C ′ + µI(µCC −DCC
′′) + (µCC −DCC

′′)C ′′]

− αIχ2K2
I .

So

0 = (µCC −DCC
′′ + βIχKI)[C

′(µCC
′ −DCC

′′′) + C ′′(µCC −DCC
′′)

+ µI(µCC −DCC
′′)]− αIχ2K2

I .

We shall now proceed to find the appropriate boundary conditions for this ODE.

We obtain the first one directly from the Neumann boundary conditions (see

Equation (2.2)) , namely

C ′(L) = 0.

We can also obtain the second boundary condition directly from Equation (2.20),

namely

C ′(0) ∼ −
√

2ξχKI

DC

.

In order to find the third boundary condition, we substitute the expression Î =

µCC−DCC′′
χKI

into the equation

ÎCx −
αI

Î + βI
+ µI Î = 0,
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which we have obtained by applying the Neumann boundary conditions to the

first equation in Equation (2.21).

Therefore we get

0 =
µCC −DCCxx

χKI

Cxx −
αI

µCC−DCCxx
χKI

+ βI
+
µCC −DCCxx

χKI

µI

=
(µCC −DCCxx)Cxx + µI (µCC −DCCxx)

χKI

− αIχKI

(µCC −DCCxx) + βIχKI

= (µCC −DCCxx)Cxx [(µCC −DCCxx) + βIχKI ]

+ µI (µCC −DCCxx) [(µCC −DCCxx) + βIχKI ]− αI(χKI)
2

= D2
C(Cxx)

3 +
(
D2
CµI − 2DCµCC − βIχKIDC

)
(Cxx)

2

+
(
µ2
CC

2 + βIχKIC − 2DCµCµIC − βIχKIDCµI
)
Cxx

+ µ2
CµIC

2 + βIχKIµCµIC − αI(χKI)
2

Using Maple™ (see Appendix for the Maple™ worksheet) we find the three roots

– one real and two complex – of this cubic equation. We can use the real root as

the third boundary condition we seek; for our convenience we will denote it by rr1,

similarly to worksheet.

In summary, in order to find C in the outer region, we have to solve the third

order ODE

0 = (µCC −DCC
′′ + βIχKI)[C

′(µCC
′ −DCC

′′′) + C ′′(µCC −DCC
′′)

+ µI(µCC −DCC
′′)]− αIχ2K2

I

subject to the boundary conditions

C ′(L) = 0; C ′(0) ∼ −
√

2ξχKI

DC

; C ′′(L) = rr1.

This is a third order nonlinear problem whose exact solution might be very hard

to find, if even possible. We shall then seek an approximate solution C. Luckily

Maple™solver shall come to our aid, in that we will use the Continuation Method first
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and then the Newton’s Method for systems – which are included into the software –

to find a numerical solution C for different values of ξ.

Note that those values of the function C are not shown explicitly, but are used in

subsequent calculations to find the height of the spike at the origin (see Appendix).

The next step towards calculating ξ requires us to integrate the first equation in

Equation (2.4) on the interval [−L,L]:∫ L

−L

[
εIxx − (ICx)x +

ε2αI
I + εβI

− µII
]
dx = 0.

Because of the boundary conditions, we have that∫ L

−L
εIxxdx = 0 and

∫ L

−L
(ICx)xdx = 0.

Thus we are left with the following integral:∫ L

−L

(
ε2αI
I + εβI

− µII
)
dx = 0,

or ∫ L

−L

ε2αI
I + εβI

dx =

∫ L

−L
µIIdx.

Since we look for a solution of the form I = Ĩ(y) + εÎ(x), we can re-write our integral

in the following way:∫ L

−L

ε2αI
1
ε

(
Ĩ
(
x
ε

)
+ εÎ

)
+ εβI

dx =

∫ L

−L
εµI Îdx+

∫ L
ε

−L
ε

ε
1

ε
µII

(x
ε

)
dx.

We know from our simulation that the contribution of I(x
ε
) in the expression on

the left-hand side is negligible. We will then omit this quantity from the calculations.

The same is not true in the expression on the right-hand side.

So we can re-write our equation as∫ L

−L

ε2αI

εÎ + εβI
dx =

∫ L

−L
εµI Îdx+

∫ L
ε

−L
ε

ε
1

ε
µII

(x
ε

)
dx.

After we have performed the change of variable x = εy and simplified, we obtain∫ L

−L

εαI

Î + βI
dx = εµI

∫ L

−L
Îdx+ εµI

∫ ∞
−∞

Ĩ(y)dy,
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or

∫ L

−L

αI

Î + βI
dx = µI

∫ L

−L
Îdx+ µI

∫ ∞
−∞

Ĩ(y)dy,

hence

∫ L

−L

(
αI

Î + βI
− µI Î

)
dx = µI

∫ ∞
−∞

Ĩ(y) dy.

From our calculation for the Type 1 solution, we know that∫ ∞
−∞

Ĩ(y) dy ∼
∫ ∞
−∞

ξ sech2

(
y

√
ξχKI

2DC

)
dy = 2

√
2DCξ

χKI

;

thus

∫ L

−L

(
αI

Î + βI
− µI Î

)
dx ∼ 2µI

√
2DCξ

χKI

. (2.23)

We now recall that we found numerical approximations of C for different values of

ξ. If we were to plug those values into the equation Î = µCC−DCC′′
χKI

, we would obtain

numerical approximations of Î at different ξs, Î(C; ξ). This means that we can find

the values of the integral on the left-hand side in Equation (2.23) for given values of

ξ. Hence we can treat the said integral as a function of ξ:

f1(ξ) ∼
∫ L

−L

(
αI

Î + βI
− µI Î

)
dx.

It is clear that we can also treat the right-hand side of equation (2.23) as a function

of ξ:

f2(ξ) ∼ 2µI

√
2DCξ

χKI

.

By resorting to Maple™ again, we can plot f1(ξ) and f2(ξ) and find the value of

ξ we are looking for at the point where the functions intersect; we will denote this

value by ξ∗. Indeed, we have found that ξ∗ = 1.840230049 (see Appendix).

We can now use this value ξ∗ to obtain the solution I that we seek.
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Figure 2.1: Graphs of f1(ξ) (black) and f2(ξ) (green).
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Figure 2.2: Graphs of I (the equilibrium density of immune cells) in the inner region,
obtained by using Maple™ (blue) and FlexPDE (red). The calculations were per-
formed using the following parameters: ε = 0.1, αI = 0.75, βI = 1, µI = 1, DC = 4
KI = 1.95, χ = 14, µC = 4.

Therefore we have obtained the following solution:

I ∼ ξ∗ sech2

(
x

ε

√
ξ∗χKI

2DC

)
+ ε

µCC −DCC
′′

χKI

and C = f(x; t).
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Figure 2.3: Graphs of C (the equilibrium concentration of chemoattractant) obtained
by using Maple™ (blue) and FlexPDE (red). The calculations were performed using
the following parameters: ε = 0.1, αI = 0.75, βI = 1, µI = 1, DC = 4 KI = 1.95,
χ = 14, µC = 4.



Chapter 3

Conclusion

In this work we have proposed a mathematical model of the inflammatory response

involved in the formation of an atherosclerotic plaque. Our focus has been on the

early stages of this process, specifically on the immune system response to chemical

stimuli secreted by endothelial cells, monocytes/macrophages, and other cells after

injury to the arterial wall and lipid accumulation in the intimal layer. This response

is characterized by chemotaxis, which consists of the movement of immune cells from

the arterial blood to the site of plaque formation, in the intima. We studied it by using

suitable mathematical techniques. The foremost mathematical model that describes

chemotaxis is the Keller-Segel model, first presented in 1970 [18]. The “classical”

Keller-Segel model corresponds to setting αI = 0 and µI = 0 in the first equation in

Equation (2.1).

The question that we wanted to answer in this paper was whether our model could

generate a pattern, that is, describe aggregation, or, in our case describe atheroscle-

rotic plaque formation. In order to give a positive answer, we needed to find solutions

of our system of PDEs that are stable, i.e., that neither collapse to a point (chemotac-

tic collapse) nor grow without bound (blow-up solution), and whose spike dynamics

are consistent with a self-sustained process.

Our study of the basic pattern formation yielded two types of spike solutions that

we called Type 1 and Type 2. Notice that in both cases we focused on the study

of a single spike. The behaviour of the solutions and their stability has been partly

inferred from numerical simulations and partly shown analytically by our calculations.

Our results strongly suggest that Type 1 solution is not a viable solution of the

reaction-diffusion system introduced in our model, since its existence would contradict

our working assumptions. On the other hand, Type 2 solution can be accepted as a

40
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solution of the system, in that it does not vanish as x → ±∞, is stable, and it does

not blow up in a finite time. Hence, our results suggest that, under the appropriate

conditions, our model does generate a pattern; thus, our model can describe the early

stages of atherosclerotic plaque formation.

We acknowledge that we have imposed a number of simplifications in this study

that are not fully consistent with the complex nature of atherogenesis — e.g., taking

fixed boundaries, ignoring HDL cholesterol, assuming a constant level of free radicals

and so on. This allows us to capture some of the characteristics of the disease but

not others.

Our intent is not to propose that the system is a definitive model of atherogenesis,

but rather to offer a preliminary mathematical framework with which we begin to

study the onset of atherosclerosis as the result of chronic inflammation.

It must be stressed that our work was intended to be a viability study of the

mathematical model we had built. Therefore our results are to be considered prelim-

inary; nonetheless they are encouraging and seem to warrant further investigations.

These should include a full stability analysis of our solutions and a study of the spike

dynamics.

The present work could be enriched in several ways. For instance, since atheroscle-

rotic plaques seem to form preferentially near branch points and along inner curva-

tures, where the endothelial shear stress is low or oscillatory, it would be interesting

to include in a future model the changes in the blood flow along the arteries. Another

interesting addition would be that of an advection term of the form −uxIx in the first

equation of Equation (2.2). This term represents the contribution of the blood flow

with velocity ux to the change in the concentration of the immune cells present in the

region considered in the model. Numerical simulations showed that our system has a

very interesting dymanics with spike creation, spike insertion, and periodic behaviour

(see Figure 3.1). So it would be worthwhile to do an analysis of these regimes. It

would also be desirable to test our model in two and three dimensions.

We also want to mention that a future cooperation with experts in biomechanics,
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biophysics, biochemistry, and medicine could be beneficial, in particular to set up

experiments providing appropriate data.
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Figure 3.1: This figure shows an example of the dynamics that can be generated by
the system in Equation (2.3). In particular here it is shown a periodic dynamics of
the contour plot of I in time and space, where spikes are formed in the middle of the
region in the picture, and then migrate to its boundaries. The picture was obtained
using MATLAB® R2018b c○ 1984-2018 The Mathworks, Inc. The calculations were
performed using the following parameters: ε = 0.1, αI = 0.75, βI = 1, µI = 1, DC = 2
KI = 1.95, χ = 14, µC = 4.
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