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Abstract

A set-valued functor is “flat” if its tensor product extension is finite-limit preserving. Such a

functor is flat if, and only if, its category of elements is filtered. Analogously, a category-valued

2-functor on a 2-category is defined to be flat in terms of a finite-limit preserving property. The

characterization in the work of M. E. Descotte, E. J. Dubuc, and M. Szyld is that a 2-functor is

flat if, and only if, its 2-category of elements is appropriately 2-filtered. The goal of the present

work is to prove a generalization in the internal 2-category theory of a suitable 1-category. This

follows the pattern of R. Diaconescu’s generalized account of the theory 1-dimensional flatness

in the internal category theory of a 1-topos. The 1-topos is here replaced by the 2-category of

internal categories of an exact 1-category.

This work follows a novel approach. The first step is in computing, for a category-valued

pseudo-functor, a tensor product extension. This is done as a category of fractions. Supposing

this extension is finite-limit preserving, 2-filteredness conditions are obtained related to those

of Descotte, Dubuc and Szyld. The converse result, namely, that our 2-filteredness conditions

imply finite-limit preservation, is approached using the right calculus of fractions. That is,

under the assumption of 2-filteredness, the tensor product is formed through a right calculus

of fractions. This gives a tractable characterization of the morphisms of the tensor product,

from which follows an “elementary” proof that filteredness implies limit-preservation.

For the internal generalization, the right calculus of fractions is described in internal cat-

egory theory. The internal 2-filteredness conditions imply that an internal tensor-product

construction is formed through the internal right calculus of fractions. Finally, it is seen that

internal 2-filteredness implies that the internal tensor product is finite-limit preserving. Partly

this is achieved by showing that the internal tensor product reduces to Diaconescu’s internal

colimit construction. For this reason, exactness of the internal tensor product partly reduces to

known cases. The remaining case is that of certain cotensors, which are shown to be preserved

using an elementary argument.
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List of Abbreviations and Symbols Used

Notation Description

M ⊗R N The tensor product of right- and left-modules M and N over a ring

R.

Ab The category of abelian groups.

Mod-R The category of right R-modules and R-module homomorphisms.

� End of proof.

Set The category of small sets and functions.

Q⊗C P The tensor product of functors Q : C → Set and P : C op → Set.

[C ,Set] The category of functors C → Set and natural transformations.∫
C Q The category of elements of a functor Q : C → Set.

Geom(F ,E ) The category of geometric morphisms between toposes F and E and

geometric transformations.

Flat(C ,Set) The category of flat set-valued functors on C and natural transfor-

mations.

DFib(C) The category of discrete fibrations on a category C internal to a

finitely-complete category E and internal functors over C.

DOpf(C) The category of discrete opfibrations on a category C internal to a

finitely-complete category E and internal functors over C.

Toposes The 2-category of toposes, geometric morphisms and geometric

transformations.

Cat The 2-category of small categories, functors, and natural transfor-
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Cat(E ) The 2-category of categories internal to a finitely-complete category

E , internal functors, and internal natural transformations.

[A,V] The enriched functor category for a V-category A.

Cat The 1-category of categories and functors.∫
CE The 2-category of elements of a pseudo-functor E : C → Cat.

Hom(C,D) The 2-category of pseudo-functors C → D between 2-categories,

pseudo-natural transformations, and modifications.

E �W The pseudo-colimit of a pseudo-functor E : C → K weighted by a

pseudo-functor W : Cop → Cat.
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Notation Description

E ⊗C F The tensor product of category-valued pseudo-functors E : C → Cat
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E ⊗C F The internal tensor product of a discrete 2-opfibration e : E → C
and a discrete 2-fibration f : F → C internal to a finitely-complete

category E .

K(A,B) The category of morphims A → B and 2-cells between them in the

2-category K.

A0 The underlying 1-category of a 2-category A.

K/A The 2-slice of a 2-category K by an object A.

K //A The lax-slice of a 2-category K by an object A.

[A,B] The 2-category of 2-functors between 2-categories A andB, 2-natural

transformations, and modifications.

2-Cat The 3-category of small 2-categories, 2-functors, 2-natural transfor-

mations and modifications.

π0C The connected components of a small 1-category C .

π0A The connected components of a 2-category A.

Alg(T ) The 2-category of pseudo-algebras for a 2-monad T , algebra homo-

morphisms, and their transformations.

DFib(C ) The category of discrete fibrations on a small category C and functors

over C .

DOpf(C ) The category of discrete opfibrations on a small category C and

functors over C .

cFib(C ) The 2-category of cloven fibrations over a small category C , carte-

sian morphism-preserving functors and transformations with vertical

components.

sFib(C ) The 2-category of split fibrations over a small category C , carte-

sian morphism-preserving functors and transformations with vertical

components.

cOpf(C ) The 2-category of opcloven opfibrations over a small category C ,

opcartesian morphism-preserving functors and transformations with

vertical components.
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Notation Description

sOpf(C ) The 2-category of split opfibrations over a small category C , opcarte-

sian morphism-preserving functors and transformations with vertical

components.

C
2 The internal arrow category of a small category C internal to a

finitely-complete category E .

Cat(E ) The 1-category of categories internal to a finitely-complete category

E and internal functors.

Iso(D) The object of isomorphims of an internal category D.

E C The category of internal diagrams on C with action-preserving mor-

phisms.

lim
→C

The internal colimit functor.

C
∗ The constant diagram functor.

DOpf(C) The 2-category of discrete 2-opfibrations over C, cartesian-morphism-

preserving functors over C and transformations with vertical compo-

nents.

DFib(C) The 2-category of discrete 2-fibrations over C.

K2 The internal 2-arrow category of a 2-category K internal to a finitely-

complete category E .

K(a, b) The internal 1-category of internal morphisms and internal 2-cells.

2-Cat(E ) The 2-category of 2-categories internal to E , internal 2-functors, and

internal 2-natural transformations.

π0K The internal connected components of an internal 2-category K.

DFib(C) The 2-category of discrete 2-fibrations over C internal to E , internal

cleavage-preserving functors, and internal 2-natural transformations.

DOpf(C) The 2-category of discrete 2-opfibrations over C internal to E , inter-

nal opcleavage-preserving functors, and internal 2-natural transfor-

mations.

{P,Q}s The 2-limit of a 2-functor Q : J → K between 2-categories J and K

weighted by a 2-functor P : J → Cat.

f/g The comma object of morphisms f : A → C and g : B → C in a

2-category K.

A � A The cotensor of A in a 2-category K with a category A .
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Notation Description

{P,Q} The pseudo-limit of a pseudo-functor Q : J → K weighted by a

pseudo-functor P : J → Cat.

E �s W The 2-colimit of a 2-functor E : C → K weighted by a 2-functor

W : Cop → Cat.

E �W The pseudo-colimit of a 2-functor E : C → K weighted by a 2-functor

W : Cop → Cat.
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C [Σ−1] The category of fractions of C with respect to a subset of arrows Σ.
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viii



Acknowledgements

First and foremost, the author would like to thank his supervisor, Dr. Dorette Pronk, for over

four years of generous, ongoing support and encouragement during the research and writing

that went into this thesis. The author would like to thank Dr. Pieter Hofstra, Dr. Robert
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Chapter 1

Introduction

The present thesis is directed toward a generalization of a characterization of flat category-

valued 2-functors due to M. E. Descotte, E. Dubuc, and M. Szyld in [DDS18b] in terms of

2-dimensional filteredness conditions. The generalization undertaken here is motivated by the

way in which an account of the theory of flat presheaves was given in the internal category

theory of a topos by R. Diaconescu in [Dia73].

1.1 Flat Functors and 2-Functors

1.1.1 Modules

The concept of flatness has its origin in the theory of modules over a ring.

If M is a right module and N is a left module over a ring R with identity 1, the tensor

product of M and N is defined by a universal property as in §IV.5 of [Hun74]. It is an abelian

group T admitting a so-called “middle-linear” map M × N → T that is universal among all

such middle-linear maps. There is a canonical construction of the tensor product as a quotient

of the free abelian group on M ×N . That is, the tensor, denoted M ⊗R N , is given explicitly

as the quotient of the free abelian group on M × N by the subgroup D generated by the

middle-linearity expressions

(x+ y, z)− (x, z)− (y, z)

(x,w + z)− (x,w)− (x, z)

(xr, w)− (x, rw)

where x, y ∈ M , w, z ∈ N and r ∈ R. The map M ×N → M ⊗R N sending (m,n) �→ m⊗ n is

middle-linear. There is a one-to-one correspondence between middle-linear maps M ×N → P

and homomorphisms of abelian groups M ⊗R N → P , for any abelian group P , as described

in Theorem IV.5.2 of [Hun74]. This is given by composition with the canonical middle linear

map M ×N → M ⊗R N .

The tensor-hom adjunction is the statement that homomorphisms M ⊗R N → P into an

abelian group P are in one-to-one correspondence with homomorphisms M → Ab(N,P ), in

1



2

the sense that there is an isomorphism of abelian groups

Ab(M ⊗R N,P ) ∼= HomR(M,Ab(N,P )). (1.1.1)

as in Theorem IV.5.10 of [Hun74].

The induced functor −⊗R N : Mod-R → Ab preserves short exact sequences on the right,

in the sense that, if

0 → M ′ → M → M ′′ → 0

is a short exact sequence of right R-modules, then the tensored sequence

M ′ ⊗R N → M ⊗R N → M ′′ ⊗R N → 0

is still exact. Accordingly, − ⊗R N is said to be right exact. But in general exactness on the

left fails. The example that shows this is the exact sequence

0 → Z
×2−−→ Z → Z/2Z → 0

which has multiplication by 2 as the injective map on one side and projection to the quotient

on the other. The functor −⊗Z Z/2Z takes the above sequence to

Z/2Z
0−→ Z/2Z

Id−→ Z/2Z → 0

which again is exact on the right. The rightmost nonzero map is the identity map. The

sequence is exact in the middle. The leftmost map is the zero map and thus not injective.

Thus, the whole sequence fails to be exact on the left.

Definition 1.1.1. A left R-module N is defined to be flat if −⊗RN : Mod-R → Ab preserves

short exact sequences on the left. In other words, an R-module N is flat if −⊗RN is left exact.

An analogous development and corresponding definitions can be given for the right R-

module M . Any free or projective left R-module is flat. And in fact flat modules are charac-

terized in the following way.

Theorem 1.1.2 (Lazard’s Criterion). An R-module N is flat if, and only if, it is a filtered

colimit of finitely-generated free modules.

Proof. See [Laz64].
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1.1.2 Presheaves

Let C denote a small category. The notation C0 indicates its set of objects; and C1, the set of

arrows. By a presheaf is meant a functor P : C op → Set. A copresheaf is one Q : C → Set.

Throughout these are viewed as set-valued representations of C . This viewpoint generalizes

the case of modules over a ring R which are certain abelian group-valued additive functors.

Any presheaf P and copresheaf Q admit a tensor-product like construction analogous to

that for ordinary modules given above. Let

πP :

∫
C
P → C

denote the usual category of elements of P and its projection to C as in, for example, §III.7
of [Mac98]. The tensor product of P and Q can be defined as the colimit

Q⊗C P := lim→ Q ◦ πP

of the composite diagram Q ◦ πP taken in the category of sets.

Now, the tensor product M ⊗R N of modules over a ring is generated by so-called “simple

tensors” of the formm⊗n, which really are equivalence classes of pairs (m,n) under the relation

generated by the middle linearity expressions. In particular, this means that m⊗ rn = mr⊗n

holds for all m ∈ M , n ∈ N and r ∈ R. Now, the development of §VII.2 of [MLM92] shows

that the tensor product of set-valued functors fits into a coequalizer of sets

∐
C,C′

QC ′ × C (C ′, C)× PC
∐
C

QC × PC Q⊗C P

μ

ρ

where the actions of the parallel maps are

μ(x, f, y) = (Qf(x), y) ρ(x, f, y) = (x, Pf(y)).

Write u ⊗ v for the image of (u, v) ∈ QC × PC in the tensor. Write xf and fy, respectively,

for the actions Qf(x) and Pf(y) whenever (x, f, y) is an element of the coproduct on the left

above. In this notation there is thus the analogous equation x⊗ fy = xf ⊗ y between simple

tensors for any such (x, f, y). Thus, the elements of the tensor Q⊗C P behave somewhat like

those of the tensor M ⊗R N of modules but without the additivity.

And indeed, by the universal property of the colimit, there results a tensor functor

Q⊗C − : [C op,Set] → Set

where [C op,Set] is the 1-category of ordinary presheaves. Let Set(Q,−) denote the functor

Set(Q,−) : Set → [C op,Set]
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given by assigning to each set X the functor

Set(Q(−), X) : C op → Set (1.1.2)

which takes an object C ∈ C0 to the hom-set Set(QC,X). The arrow assignment is given

by composition. The functor of Display 1.1.2 will be denoted by ‘Set(Q,X)’ to cut down on

notational clutter.

Proposition 1.1.3. The tensor functor Q⊗C − : [C op,Set] → Set has the following properties.

1. It fits into a tensor-hom adjunction, that is, a system of isomorphisms

Set(Q⊗C P,X) ∼= [C op,Set](P,Set(Q,X)),

one for each set X, natural in P and X.

2. It fits into a diagram

C

[C op,Set]

Set

∼=

Q

y
Q⊗C −

making Q⊗C − the left Kan extension of Q along the Yoneda embedding.

Proof. See Theorem I.5.2 of [MLM92] for the first statement. See §X.3 of [Mac98] for Kan

extensions and Corollary I.5.4 of [MLM92] for the proof of the second statement.

Remark 1.1.4. The second condition shows that the Yoneda embedding is a unit for the tensor

functor.

Definition 1.1.5. A copresheaf Q : C → Set is flat if the tensor product extension

Q⊗C − : [C op,Set] −→ Set

is left exact in the sense that it preserves, up to isomorphism, finite limits. Let Flat(C ,Set)

denote the category of flat copresheaves.

Of course this definition, while elegant in its abstraction, is not a very concrete characteri-

zation of the phenomenon. Something more tractable is given in the following development.

Definition 1.1.6. A category X is filtered if
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1. it has an object;

2. any two objects X,Y ∈ X fit into a span X ← Z → Y ;

3. any parallel arrows f, g : X ⇒ Y are equalized by an arrow h : Z → X, in that fh = gh.

Remark 1.1.7. The terminology in Definition 1.1.6 is consistent with the usage of §VII.6 of

[MLM92], whereas to be consistent with §IX.1 of [Mac98], it would have to be “cofiltered”

instead. The choice of the former convention is made on aesthetic grounds; for if “filtered”

is characterized by the presence of certain spans and equalizing arrows, then “cofiltered” is

axiomatized as the presence of certain cospans and coequalizing arrows. In any event, the

result characterizing flatness is the following.

Theorem 1.1.8. A copresheaf Q : C → Set is flat if, and only if, either of the following

equivalent conditions hold.

1. Its category of elements

∫
C
Q is filtered in the sense of Definition 1.1.6.

2. The copresheaf Q : C → Set is canonically a filtered colimit of representable functors.

Proof. For the fist condition, see Theorem VII.6.3 of [MLM92] and its proof. As part of that

of the second, note that by Theorem III.7.1 of [Mac98], the functor Q is always colimit over

its category of elements.

Remark 1.1.9. Since the Yoneda embedding is the unit of the tensor product (i.e. representable

functors are the “free modules” over C ), the second condition of the theorem is the copresheaf

analogue of Lazard’s Criterion in Theorem 1.1.2.

Partly the interest in flat copresheaves Q : C → Set is the following classification result. For

this, recall that a geometric morphism between toposes, denoted f : F → E is an adjoint pair of

functors f∗ : E � F : f∗ with f∗, the left adjoint, a finite-limit preserving functor. Call f∗ the

inverse image and f∗ the direct image. A transformation of geometric morphisms is a natural

transformation between inverse images. Geometric morphisms and their transformations form

a category Geom(F ,E ). If Q is a flat copresheaf, then the tensor-hom adjunction

Q⊗C − 
 Set(Q,−)

is thus an example of a geometric morphism Set → [C op,Set]. In general, a point of a topos

E is a geometric morphism g : Set → E . These are classified in the following way.
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Theorem 1.1.10. There is an equivalence of categories

Flat(C ,Set) � Geom(Set, [C op,Set])

sending a flat functor Q : C → Set to the geometric morphism determined by its tensor product

extension Q⊗C −.

Proof. See Theorem VII.5.2 of [MLM92] and its proof.

Remark 1.1.11. The real interest of the theorem is that every point of the presheaf topos

appears, up to isomorphism, as a tensor-hom adjunction associated to a flat copresheaf.

Remark 1.1.12. The foregoing development can be redone in the event that Set is replaced

by a cocomplete topos E . That is, a functor Q : C → E admits a tensor product extension

along the Yoneda embedding and the definition is that Q is flat if the resulting extension is

finite-limit preserving. A generalization of Theorem 1.1.8 is then given in §VII.9 of [MLM92].

The generalization of Theorem 1.1.10 is then given in Theorem VII.7.2 of [MLM92].

1.1.3 Internalization I

R. Diaconescu’s thesis [Dia73] and subsequent paper [Dia75] gave a generalization of the fore-

going results in the internal category theory of an ambient topos E replacing Set. These results

are also summarized over the course of Chapter 2 of [Joh14].

As set up, replace the ambient category of sets by an elementary topos E and work in the

2-category of internal categories Cat(E ). Fix an internal category C. Set-valued presheaves and

copresheaves are replaced by certain “internal diagrams” which will be seen to be equivalent

to internal discrete fibrations and opfibrations over C. A tensor product of an internal discrete

opfibration E : E → C and an internal discrete fibration F : F → C is given as a certain

coequalizer E ⊗C F in E .

Definition 1.1.13. An internal discrete opfibration E : E → C is said to be flat if the induced

tensor functor E ⊗C − : DFib(C) → E on the category of internal discrete fibrations over C is

finite-limit preserving.

The main result, generalizing Theorem 1.1.8, is the following.

Theorem 1.1.14. An internal discrete opfibration E : E → C is flat if, and only if, E is

(suitably internally) filtered.

Proof. See, for example, §2.5 and §4.3 of [Joh14].
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Remark 1.1.15. The proof proceeds by reducing to the exactness of an internal colimit functor

lim
→C

: DFib(C) → E

and showing that lim
→C

is left exact if, and only if, C is suitably internally filtered.

The theorem is a crucial ingredient in the elementary generalization of the classification

result, Theorem 1.1.10. Recall that an E -topos is a topos F equipped with a geometric

morphism f : F → E . The 2-category of E -toposes is denoted by Topos/E . Theorem 2.32

of [Joh14] shows that DFib(C) (denoted by E Cop
in the reference) is an E -topos.

Theorem 1.1.16. Let f : F → E denote a geometric morphism. There is an equivalence of

categories

Flat(f∗
C,F ) � Topos/E (F ,DFib(C))

natural in F .

Proof. See Theorem 4.34 of [Joh14] or Theorem B3.2.7 of [Joh01].

Remark 1.1.17. A crucial step in the proof is that of showing that a certain Yoneda profunctor

is flat. Theorem 1.1.14 is used for this purpose.

The ultimate goal of the research in the present thesis is a fully 2-categorical version of

Theorem 1.1.16. The first step, of course, is understanding the 2-dimensional analogues of the

components of the 1-dimensional result. For example, what is meant by a 2-copresheaf and

what it should mean for such a thing to be flat both need to be understood. To this end,

as in the classical case, the work should begin with the nicest base 2-category, namely, Cat

itself, in the place of Set. Thus, the thesis firstly studies what should be meant by a flat 2- or

pseudo-functor E : C → Cat on a 2-category C. On the basis of these results, and the manner

of their presentation, a more generic 2-categorical version can be pursued. The setting for the

2-categorical generalization will be the 2-category K = Cat(E ) for an exact category E .

1.2 2-Dimensional Flatness

A good deal is known about flat functors E : C → Cat. For example, in the context of V-
categories, flatness seems first to have been studied in §6 of Kelly’s [Kel82b] where a base-

valued V-functor F : A → V is defined to be flat if the induced weighted colimit functor

F � − : [Aop,V] → V is left exact. Thus, it was recognized at this point that the induced

internal colimit functor is a kind of tensor product. This is further confirmed for the case of

V = Cat in the computations of §4.2.2 of the present work.
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Kelly’s paper, referenced above, includes as Theorem 6.11 a kind of enriched analogue

of Theorem 1.1.8 above where the domain is a finitely-complete V-category A. However,

the general connection between flatness and filteredness for the case of V = Cat emerged

only recently in the paper of M. E. Descotte, E. Dubuc, and M. Szyld, namely, [DDS18b].

Approaches to 2-dimensional filteredness were studied, for example, in Dubuc and Street’s

[DS06] and in Kennison’s [Ken92]. The following filteredness definition of [DDS18b] is meant

to be a generalization of Kennison’s.

Definition 1.2.1. Let C denote a 2-category and Σ a 1-subcategory of C containing all the

objects of C. It is said that C is Σ-filtered, or filtered with respect to Σ, if C has an object and

σF0 any two objects X,Y ∈ C fit into a span X ← · → Y with both arrows in Σ;

σF1 given arrows f, g : X ⇒ Y with g ∈ Σ, there is h ∈ Σ with h : Z → X and a 2-cell

α : hf ⇒ hg; if f ∈ Σ too, then α can be taken to be invertible;

σF2 given 2-cells α, β : f ⇒ g with f, g : X → Y and g ∈ Σ, there is a morphism h : Z → X

with α ∗ h = β ∗ h.

Remark 1.2.2. This follows the pattern of Definition 1.1.6 with a nonemptiness condition, a

spanning condition, an equalizing condition, and a uniqueness condition on 2-cells.

To state the main result of [DDS18b], recall that there is a 2-category of elements con-

struction for any 2- or pseudo-functor E : C → Cat, detailed in §1.4 of [Bir84] and in §I,2.5
of [Gra74]. The main result of [DDS18b], namely, Theorem 4.2.7, is then the following.

Theorem 1.2.3. A 2-functor E : C → Cat is flat if, and only if, either of the following equiv-

alent conditions hold.

1. The 2-category of elements

∫
C
E is filtered in the sense of Definition 1.2.1 with respect to

the subcategory of opcartesian arrows.

2. The 2-functor E : C → Cat is a Σ-filtered colimit of representable 2-functors where Σ is

a subcategory of opcartesian arrows.

1.3 Overview of the Thesis

The ultimate goal of the research in the present thesis is a purely elementary phrasing and

proof of a flatness result of the form of Theorem 1.1.14 but in a general 2-categorical setting

where a base topos E is replaced by something like a base 2-topos K in the sense of M.
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Weber’s paper [Web07]. The model for this development is the elementary version of the

topos-theoretic results summarized in the previous section, namely, §1.1.3. This result is not

achieved completely here. Rather a version is given in the case where K is a 2-category Cat(E )

for an exact category E in the sense of M. Barr [Bar71].

The work of the thesis starts with the case of E = Set, essentially obtaining the results

presented in [DDS18b]. But the approach of the present work is somewhat different. The

approach here is geared toward presenting an elementary account that is generalizable in the

internal category theory of such a category E . Summarized below are the points of interest.

Briefly put, Chapters 2 and 3 of the thesis for the most part present background for the rest of

the work; Chapter 4 covers colimits and tensor products; Chapters 5 and 6 are directed toward

the elementary generalizations for the case of K = Cat(E ).

1.3.1 Fibrations

The internal version of the set-theoretic results summarized in §1.1.3 view set-valued functors

as discrete fibrations and opfibrations, since the latter admit of elementary generalization,

whereas the idea of a set-valued functor does not. Chapter 2 will isolate the notion of a

discrete 2-fibration for 2-dimensional generalization. This will be a 2-functor Π: F → C whose

underlying 1-functor is a fibration and that is locally a discrete opfibration. Some argument

is given that this is the correct notion by exhibiting a category of elements construction that

is part of an equivalence between functors F : Cop → Cat and discrete 2-fibrations Π: F → C.

The elementary study of this notion begins in the end of Chapter 3.

1.3.2 Colimits

The main object of the entire work is to describe as explicitly as possible a tensor product

extension

C

Hom(Cop,Cat)

Cat.

�

E

y
E ⊗C −

This is done is §4.2 with the explicit construction appearing in Display 4.2.2. Roughly speaking,

this is done in the following way. On the basis of the colimit computations of §6.4.0 of [AGV72],

the weighted colimit of any pseudo-functor E : C → Cat is constructed as a category of fractions.

If F : Cop → Cat denotes the weight, the universal property of the weighted colimit E � F is
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expressed as the existence of natural isomorphisms

Cat(E �W,X ) ∼= Hom(Cop,Cat)(W,Cat(E,X ))

which is formally a 2-dimensional tensor-hom adjunction analogous to that in Proposition 1.1.3.

The main result of the present work, Theorem 4.2.11, shows that the proposed computation

yields such an isomorphism. For this reason and the fact that E�F turns out to be a coinverter

and a codescent object, the notation E ⊗C F = E � F is adopted. The required extension

property of the first display is shown to hold for this construction in Corollaries 4.2.15 and

4.2.16. Now, make the following definition.

Definition 1.3.1. A pseudo-functor E : C → Cat is flat if the induced tensor 2-functor

E ⊗C − : Hom(Cop,Cat) → Cat

preserves up to equivalence all finite weighted limits.

1.3.3 Flatness

In §4.4, filteredness conditions slightly refining those of Definition 1.2.1 are obtained from the

assumption that E ⊗C − as above is left exact. These conditions are axiomatized in Definition

4.4.8. It is also seen that the obtained conditions imply those of Definition 1.2.1.

Now, in fact a converse for this necessity result is true. That is, it can be seen that if

the 2-category of elements construction is filtered in the sense of our Definition 4.4.8, then the

tensor E ⊗C − is left exact. By the limit-construction result of R. Street in [Str76], this can

be seen by showing that the tensor preserves the terminal object, binary products, equalizers,

and cotensors with 2. This converse result is proved in the internal category theory of an exact

category E over the course of Chapters 5 and 6. But it is worth pointing out here that it can be

seen for the case of E = Set by mimicking the elementary proofs for the case of cotensors given

in §6.3. This involves some tedious cone-building to show that certain diagrams commute in

various tensor products. This cone-building is avoided, at least for conical limits, by a technical

contrivance in the internalization of Chapters 5 and 6.

1.3.4 Internalization II: Internal Calculus of Fractions

The elementary cone-building mentioned in the previous subsection requires knowing what

the morphisms of various tensor products E ⊗C F look like. For the tensor is a category of

fractions formed by inverting pairs of cartesian morphisms of the total 2-categories E and F.

Thus, without further assumptions, all that is known about the arrows of the tensor is that they
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are certain formal sequences of arrows modulo the necessary equations. Seemingly fortuitously,

the 2-filteredness conditions axiomatized in Definition 4.4.8 are shown in Chapter 5 to imply

that the category of fractions giving the tensor product E ⊗C F is formed via a right calculus

of fractions. This is proved in Theorem 5.1.2.

The more abstract characterization given in §4.3.1 is that the tensor product E⊗C F arises

as the reflexive coinverter of the 2-cell induced from the opcleavage for E and the cleavage for

F . On the basis of this result, a tensor product in the internal case can be defined to be a

reflexive coinverter of 2-cells arising from internalized cleavages. Indeed this is the approach

that is taken in §4.3.1. Whether the tensor exists is then the natural question.

There are two parts to our approach to existence, basically suggested by the comments in

the first paragraph above. First is to describe the process of forming a localization through

a right calculus of fractions in internal category theory; second is to show that under our

elementary 2-filteredness conditions, the reflexive coinverter of an appropriate 2-cell can be

constructed through a right calculus of fractions. The first part is solved in §5.2. The second

is solved in §5.3, where it is seen that a suitable internalization of the 2-filteredness axioms

of Definition 4.4.8 implies that the 2-cell coming from the cleavages for the internal discrete

2-fibrations admits a right calculus of fractions in the internal sense of Definition 5.2.1.

1.3.5 Internalization III: Limit Preservation

The internal category of fractions construction has the following consequence that allows cir-

cumvention of all tedious cone-constructions in the case of conical limits. It was noted above

that the arrows of the internal localization are obtained as a certain coequalizer in a slice of

E . The parallel arrows coequalized turn out to be domain and codomain morphisms of an in-

ternal groupoid under the 2-filteredness hypothesis in Definition 5.3.1. Thus, the consequence,

summarized in Theorem 6.1.7, is that the arrow object of the internal tensor product E ⊗C F
is equal to the internal colimit functor from §1.1.3 for a certain internal groupoid. This will be

shown in §6.1.
It turns out, additionally, that 2-filteredness in the sense of Definition 5.3.1 implies that

the groupoid is filtered in the ordinary internal sense presented, for example, in §2.5 of [Joh14].

This filteredness is equivalent to exactness of the internal colimit functor (Theorem 2.58 and

Theorem 2.59 in the reference). And as a result, it will be seen in §6.2 and ultimately Theorem

6.2.6, that the tensor E ⊗C − preserves all finite conical limits.

It will be left to see that the tensor preserves cotensors with 2. The following sections,

namely, §6.3 and §6.4 give first the elementary proof in the case of E = Set; and then a
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proof that cotensors are preserved in the case of E exact and K = Cat(E ). The stress in the

final section is on the proof that the canonical internal functor is suitably internally essentially

surjective. The proof of internally fully faithful follows a similar pattern.

1.4 Application: Classification of Principal 2-Bundles

Throughout let G denote a topological group. As in §VIII.1 of [MLM92], a principal G-bundle

over a space X is a continuous map p : E → X equipped with a fiber-wise continuous (left)

action of G that is “locally trivial” in the sense that X admits an open cover {Ui} and a system

of appropriately compatible isomorphisms φi : G × Ui
∼= p−1(Ui) for each i. Connections on

principal bundles model particle trajectories along 1-dimensional paths.

When G is discrete, a principal G-bundle is equivalently a so-called “torsor,” namely, a

étale morphism of spaces p : E → X equipped with a fiber-wise continuous (left) action of G

that is free and transitive in each fiber. Phrased in terms of sheaves on a space, a torsor is thus

a sheaf F on X, such that F → 1 is an epimorphism, together with an action μ : ΔG×F → F

that is free and transitive in the sense that

〈μ, π2〉 : ΔG× F
∼=−→ F × F

is an isomorphism. This motivates the following.

Definition 1.4.1. A G-torsor in a topos E over Set is an object T ∈ E equipped with an

action μ : g∗G× T → T such that T → 1 is an epimorphism and for which

〈μ, π2〉 : g∗G× T
∼=−→ T × T

is an isomorphism where g is the geometric morphism g : E → Set. Let Tor(E , G) denote the

category of G-torsors in E and suitably equivariant maps between them.

The characterization is that the topos BG of right G-sets classifies torsors, hence principal

bundles, in the following sense.

Theorem 1.4.2. For any discrete group G and topos g : E → Set over sets, there is an

equivalence of categories

Tor(E , G) � Geom(E ,BG)

where BG denotes the topos of right G-sets.

Proof. See Theorem VIII.2.7 of [MLM92]. The generalization of Theorem 1.1.10 shows that

geometric morphisms correspond to flat functors. Thus, the point of the proof consists in
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showing that flat functors G → E correspond to G-torsors in E . For a more elementary line of

development, see §8.3 of [Joh14].

The categorification of gauge theory in the work of J. Baez and coauthors (for example,

[BS07], [BL04], [BC04]) is an area of potential application of the results of the thesis. In this

research program, the intended use of higher connections on higher principal bundles is to

model trajectories of strings along surfaces. First recall that a (strict) 2-group G is a group

object in Cat. A topological 2-group G is a group object in category objects in a nice category

of spaces. As part of the higher gauge theory program, T. Bartels [Bar04] developed the

notion of a principal 2-G -bundle for a topological 2-group G . This involves the definition of

2-space and what it means for a 2-group action to be “locally trivial.” The idea of 2-space was

further pursued in U. Schreiber’s thesis [Sch05] as a category object in a certain category of

smooth spaces, and principal 2-G -bundles were developed there in that context. The goal of our

application is to show that principal 2-bundles, at least for discrete topological 2-groups, are

essentially the same as flat functors on G valued in some 2-topos-like 2-category of spaces, as

in the proof of Theorem 1.4.1 above. The idea is that this result would facilitate showing that

some 2-category of (potentially category-valued) representations of G is a classifying geometric

2-topos for principal 2-G -bundles.



Chapter 2

Background and Notation

The present chapter summarizes the needed background on 2-categories, fibrations, and exact

1-categories that will be used throughout. Some original material appears in the section on

fibrations, where the notion of a “discrete 2-fibration” is isolated in Definition 2.2.15 as one of

the central definitions of the thesis.

2.1 2-Categories

Roughly, the assumed background in the theory of 2-categories corresponds to Chapters I,2

and I,3 of Gray’s [Gra74]. Other references are Chapter 7 of [Bor94], Chapter B1 of [Joh01],

and the overview paper of [KS74]. The material on 2-monads can be found in, for example, §1
of [Lac02]. Some notation and terminology will differ, so here will be summarized notions used

throughout the paper.

A 2-category K consists of objects, 1-cells, and transformations satisfying well-known axioms

(see §7.1 of [Bor94] for example). Vertical composition of 2-cells will be denoted by juxtapostion

‘βα’; while horizontal composition is denoted by ‘∗’ as in γ ∗ δ. When horizontally composing

a 2-cell with a vertical identity morphism write, for example, ‘α ∗ f ’ or ‘g ∗ β’. In general

K(A,B) denotes the vertical category of morphisms A → B of K and 2-cells between them.

Any 2-category is a bicategory in the sense of [Bén67] with strict unit and associativity.

The notation ‘Kop’ indicates the 1-dimensional dual of K; and ‘Kco’ denotes the 2-dimensional

dual with 2-cells formally reversed; and ‘Kcoop’ indicates the 2-category with both 1- and 2-cells

formally reversed.

The basic example is the 2-category Cat of small categories relative to a fixed category

of sets Set, functors between them, and their natural transformations. The notation CAT

will be used for an enlarged 2-category of categories containing a 1-category Set of sets as an

object. The notation Cat is used for the 1-category of small categories and functors between

them, without considering the 2-dimensional structure. Generally, any 2-category A has an

underlying 1-category A0 obtained by forgetting the 2-cells. Thus, Cat0 and Cat are notation

for the same category.

Example 2.1.1. Every 1-category is a “locally discrete” 2-category whose 2-cells are identities.

14
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Example 2.1.2. Given a 2-category K, the 2-slice over A ∈ K is the 2-category whose objects

are morphisms x : X → A. A morphism from x : X → A to y : Y → A is a morphism f : X → Y

of K such that yf = x holds. A 2-cell between such morphisms f and g is one of K of the form

α : f ⇒ g such that y ∗ α = x holds. Denote the 2-slice over A by K/A, as usual.

Example 2.1.3. The lax slice of a 2-category K is the same as the 2-slice above, with the

difference that a morphism from x : X → A to y : Y → A is a morphism f : X → Y and a

2-cell α : x ⇒ yf . The 2-cells then satisfy an analogous commutativity condition. Denote the

lax slice by K //A.

Example 2.1.4. Given a 2-category K, the 2-arrow category K2 has as its objects morphisms

of K, as its arrows those pairs of arrows of K making commutative squares in K, and as its

2-cells those cells making two composites yielding an equality of 2-cells

X Y

Z W

=

X Y

Z W

= =⇒ ⇒

For a discrete 2-category, this definition reduces to that of the usual arrow category.

Definition 2.1.5. A pseudo-functor, or “homomorphism” as in [Bén67], between 2-categories

F : K → L assigns to each object A ∈ K an object FA of L; to each arrow f of K an arrow

Ff of L; and to each 2-cell α of K a 2-cell Fα of L; and includes coherence isomorphisms

φf,g : FgFf ⇒ F (gf) and φA : 1FA → F1A for each object A ∈ K and composable pair of

arrows f and g all satisfying the axioms of Definition B1.1.2 on p.238 of [Joh01]. Among

these is the statement that F (βα) = FβFα holds for any vertically composable 2-cells α and

β. There is also the requirement that for horizontally composable 2-cells

A ⇓ α B ⇓ β C

f

g

h

k

the relationship between the images under F is described by the equation

φg,k(Fβ ∗ Fα) = F (β ∗ α)φf,h. (2.1.1)

A pseudo-functor is “normalized” if the φA as above are identities. Pseudo-functors will always

be assumed to be normalized in the present work. A pseudo-functor is called a 2-functor if all

of the cells φf,g are identities.
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Definition 2.1.6. A lax-natural transformation α : F → G of pseudo-functors F,G : K ⇒ L

consists of a family of arrows αA : FA → GA of L indexed over the objects A ∈ K together

with, for each arrow f of K, a 2-cell

FA GA

FB GB

αf ⇒

αA

Ff Gf

αB

satisfying the following two compatibility conditions.

1. For any composable arrows f and g of K, there is an equality of 2-cells

FA GA

FB GB

FC GC

⇒

⇒

=

FA GA

FC GC

⇒ ∼= GB.∼=

αA

Ff Gf

αB

Fg Gg

αC

αA

F (gf) G(gf)

αC

F (gf)

Gf

Gg

2. For any 2-cell θ : f ⇒ g of K, there is an equality of 2-cells as depicted in the diagram

FA GA

FB GB

⇒

FA GA

FB GB.

= ⇒Fθ⇒ Gθ⇒

αA

Ff Fg Gg

αB

αA

Ff Gf Gg

αB

A lax-natural transformation is “pseudo natural” if the cells αf are invertible. If they are

identities, the transformation is “2-natural.”

Remark 2.1.7. Pseudo-naturality is the basic concept in the present work. Lax natural trans-

formations would, in the language of §I,2.4 of [Gra74], be called “quasi-natural.”

Definition 2.1.8. A modification m : α → β of lax-natural transformations α, β : F ⇒ G

consists of a family of 2-cells mA : αA ⇒ βA of L satisfying the following condition.
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1. For an arrow f : A → B of K, there is required an equality of 2-cells

FA GA

FB GB

⇑ mA

⇒ αf

=

FA GA

FB GB.

⇒ βf

⇑ mB

GfFf

βA

αA

αB

βA

Ff
βB

αB

Gf

Example 2.1.9. The 2-functors between 2-categories F : A → B, with 2-natural transforma-

tions and modifications, form a 2-category, denoted using the “internal hom” notation [A,B].

In particular, [C,Cat] denotes the 2-category of category-valued 2-functors, 2-natural transfor-

mations, and modifications. Pseudo-functors K → L, together with pseudo-natural transforma-

tions and modifications between them, form a 2-category, denoted Hom(K,L). Thus, in par-

ticular, Hom(K,Cat) denotes the 2-category of category-valued pseudo-functors, pseudo-natural

transformations, and modifications.

Remark 2.1.10. The ‘Hom’ notation will be used since pseudo-functors are also called “homo-

morphisms” in [Bén67]. In general this notation will always indicate “pseudo” whereas the

brackets ‘[−,−]’ will always mean taking everything as strict as possible. When dealing with

1-categories there is no distinction, so the brackets will be used. Since strict “2-structure” is

always pseudo, there is an inclusion

[A,B] → Hom(A,B).

If C is a 1-category, viewed as a locally discrete 2-category, both [C op,Cat] and Hom(C op,Cat)

are potential 2-categorical analogues of the category of ordinary presheaves [C op,Set].

Example 2.1.11. Small 2-categories, 2-functors, 2-natural transformations, and modifications

form a 3-category in the sense of §7.3 of [Bor94]. Roughly speaking, a 3-category is in a suitable

sense “enriched in 2-categories.” The “hom objects” are precisely the strict 2-categories [A,B]

in the bracket notation above.

Every set is a category whose objects and arrows are just the members of the set. Such a

category is “discrete” and there is a “discrete category” functor disc : Set → Cat of ordinary

1-categories. The discrete category functor is right adjoint to the “connected components”
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functor π0 : Cat → Set given by sending a category C to the set of its connected components.

In other words, π0C is given as a coequalizer

C1 C0 π0C
d0

d1

of the domain and codomain functions coming with the category structure. As observed, for

example, in §I,2.3 of [Gra74], there is a similar situation in dimension 2. For 1-categories can be

viewed as “locally discrete” 2-categories in the sense that all 2-cells are identities. This extends

to a 2-functor disc : Cat → 2-Cat. Again disc has a left adjoint, a “connected components”

functor, given by taking a 2-category A to the 1-category π0A, having the same objects and

whose morphisms between say A,B ∈ A are given by taking the connected components of the

hom-category

(π0A)(A,B) := π0A(A,B).

In other words, π0A is given by taking connected components locally. This construction also

makes sense for bicategories. In particular, it is discussed in §7.1 of [Bén67] where it is called

the “Poincaré category” of the bicategory.

2.1.1 2-Monads and their Algebras

Definition 2.1.12. A 2-monad on a 2-category K is a 2-functor T : K → K with 2-natural

transformations η : 1 → T and μ : TT → T for which the following diagrams commute:

TTT TT

TT T

T TT T.

T

= = =

Tμ

μμT

μ

Tη ηT

μ1 1

Definition 2.1.13. A lax algebra for T : K → K is an object A with an arrow a : TA → A and

2-cells

TTA TA

TA TA

A TA

A

τ ⇒ ι ⇒

μA

aTa

a

ηA

a1

satisfying the following conditions.
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1. An associativity condition, namely, that there is an equality of 2-cells as in

TTTA TTA

TTA TA τ ⇒

τ ⇒

TA

A.TA

=

TTTA TTA

TTA TTATτ ⇒ TA

TA A

τ ⇒

μTA

TTa Ta

μA

μA

Ta

a

a

a

μTA

TTa

μA

Ta

μA

Ta

TμA

a

a

2. A unit condition asserting that each of the composite 2-cells is equal to the identity on a:

TA

τ ⇓

TA

TTA ATA

Tι ⇓ TA TTA TA

A TA A

τ ⇒

ι ⇑

Ta a

μA a

TηA

1

1

ηTA μA

a Ta a

ηA a

1

A lax algebra is a pseudo-algebra if τ and ι are invertible; and is a strict 2-algebra if they are

identity cells. In general an algebra is “normalized” if ι is an identity whether or not τ is one.

Proposition 2.1.14. Pseudo-algebras, their homomorphisms, and transformations between

them comprise a 2-category, denote by Alg(T ).

Proof. The definitions of homomorphism and transformation are stated in [Lac02].

2.2 Fibrations and Category of Elements Constructions

Throughout let C denote a small category. Recall the following standard definition.

Definition 2.2.1. A discrete fibration over C is a functor F : F → C such that for each

morphism f : C → FX with X ∈ F , there is a unique morphism Y → X of F above f .

A functor E : E → C is a discrete opfibration if Eop is a discrete fibration. Let DFib(C )

denote the category of discrete fibrations over C and DOpf(C ) denote the category of discrete

opfibrations over C .
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Remark 2.2.2. Notice that F as above is a discrete fibration if, and only if, the square

F1 C1

F0 C0

�

F1

d1 d1

F0

is a pullback in Set. A functor E as in the definition is a discrete opfibration if, and only if,

an analogous square with domain arrows replacing the codomain arrows is a pullback.

For each set-valued functor E : C → Set, there is an associated category of elements,

or “Grothendieck semi-direct product,” detailed for example in §II.6 and §III.7 of [Mac98],

yielding a discrete opfibration

πE :

∫
C
E → C .

The source category has as objects pairs (C, x) with C ∈ C0 and x ∈ EC and as morphisms

(C, x) → (D, y) those morphisms f : C → D of C with Ef(x) = y.

Theorem 2.2.3. The category of elements construction is half of an equivalence of categories

DOpf(C ) � [C ,Set].

The pseudo-inverse sends a discrete opfibration e : E → C to the functor C → Set whose

action on C ∈ C is to take the fiber of E above C.

Definition 2.2.4. A functor F : F → C is a fibration if for each x : X → FA there is an

f : B → A of F having the property that whenever h : C → A makes a commutative triangle

xu = Fh as below there is a unique F -lift C → B over u making a commutative triangle in F

as indicated in the following picture

F

B A

C

X FA.

FC

C

F

f

h
!

x

Fh
u
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Such a morphism f is “cartesian” over x. A morphism of F is F -vertical if its image under

F is an identity. The fiber of F over an object C ∈ F is the subcategory of F of objects and

vertical morphisms over C via F . A functor E : E → C is an opfibration if Eop is a fibration;

in this case the morphisms of E having the special lifting property are called “opcartesian.”

A cleavage σ for a fibration specifies a cartesian morphism in F for each such x : X → FA

in C . Denote the chosen cartesian morphism by σ(x,A). A fibration with a cleavage is said

to be “cloven.” Notice that each discrete fibration is a cloven fibration. An opfibration with

chosen opcartesian morphisms is said to be “opcloven” or to be equipped with an “opcleavage.”

Remark 2.2.5. In general a cleavage σ for a fibration F : F → C need not be functorial. That

is, given composable arrows f : X → Y and g : Y → FB of C , there is a diagram of chosen

cartesian arrows in F of the form

f∗g∗B g∗B

(gf)∗B B.

=

σ(f, g∗B)

∼= σ(g,B)

σ(gf,B)

The dashed arrow exists since a composition of cartesian morphisms is again cartesian. It is

an isomorphism by the uniqueness aspect of the definition. But in general this isomorphism

is not an identity. When every such isomorphism is an identity, the fibration F : F → C is

said to be split. The difference between cloven and split fibrations is precisely the difference

between category-valued pseudo-functors and 2-functors, as will be seen presently.

Let cFib(C ) denote the 2-category of cloven fibrations over C , whose arrows are functors

over C that preserve cartesian morphisms (but not necessarily the cleavage), and whose 2-cells

are those transformations between such functors whose components are vertical. Let sFib(C )

denote the full sub-2-category of split fibrations over C . Dually, cOpf(C ) denotes the 2-category

of opcloven opfibrations over C and sOpf(C ) the 2-category of split opfibrations over C .

As set-up for the next result, consider the 2-monad in the sense of Definition 2.1.12 on

Cat/C given by sending a functor H : X → C to the pullback d∗1H as in

C 2 ×C X X

C 2 C

�

π2

d∗1H H

d1
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composed with the domain functor d0 : C 2 → C . Let T denote this 2-monad.

Theorem 2.2.6. Cloven fibrations over C are precisely the normalized pseudo-T-algebras as

in Definition 2.1.13 for T as above. Additionally, a cleavage for a fibration is, equivalently, a

natural transformation

C 2 ×C F σ ⇓ F

m

πF

where m denotes the action coming with the pseudo-algebra structure. Split fibrations are the

strict 2-algebras for the same 2-monad. Dually, cloven/split opfibrations over C are precisely

the normalized pseudo/strict 2-algebras for the 2-monad on Cat/C given by pulling back along

d0 : C 2 → C and then composing with d1 : C 2 → C .

Proof. The correspondence is discussed in §I,3.5 of [Gra74]. A detailed account is in [Gra66].

The correspondence led to the definition of a fibration in a 2-category as a certain pseudo-

algebra in §2 of [Str74]. This approach will be followed in Definition 3.3.1 below.

Now, start with a pseudo-functor E : C → Cat. Denote the image of f : C → D in C by

f! : EC → ED. As in the discrete case, there is an associated opfibration arising as a category

of elements construction

πE :

∫
C
E → C .

The source category has objects pairs (C,X) with X ∈ EC and as morphisms (C,X) → (D,Y )

pairs (f, u) where f : C → D and u : f!X → Y is a morphism of ED. The units and composition

are described for example in §B1.3 of [Joh01].

Theorem 2.2.7. The category of elements construction is one-half of an equivalence of 2-

categories

cOpf(C ) � Hom(C ,Cat).

Again the pseudo-inverse sends a cloven opfibration E to the pseudo-functor that associates to

each C ∈ C the fiber of E over it. Moreover, this equivalence restricts to one

sOpf(C ) � [C ,Cat]

between split opfibrations and strict category-valued 2-functors.

Proof. See Theorem B1.3.5 of [Joh01] for example.
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Several sources, namely, §I,2.9 of [Gra74] and more recently §2.1.6 of [Buc14], boost up

both the domain and codomain of the given representation to a 2-functor E : C → 2-Cat on an

honest 2-category C and then give an associated 2-category of elements construction

πE :

∫
C
E → C.

Each source give a definition of a 2-(op)fibration and show a correspondence between 2-

category-valued functors and 2-fibrations, one direction of which is the 2-category of elements

construction. This should be seen as a 2-dimensional analogue of the correspondence between

category-valued functors on a 1-category and cloven opfibrations as in Theorem 2.2.7 above.

Now, there is an evident gap in the sense that there ought to be an analogue of Theorem

2.2.3 for the 2-dimensional case. That is, just as set-valued functors are the discrete objects

relative to 1-categorical opfibrations, there should be a concept of discrete 2-fibration giving

the discrete objects relative to 2-fibrations. The insight is that objects of Set are discrete

relative to objects of Cat; analogously, objects of Cat are discrete relative to objects of 2-Cat.

Thus, the representation to be considered is a 2-functor E : C → Cat. The goal is to find the

discrete 2-fibration concept corresponding to this under a category of elements construction.

Now, the development will be more precise. For the pseudo-functor E : C → Cat and

any arrow f : C → D of C, denote the corresponding transition functor by f! : EC → ED.

Similarly, let α! : f! ⇒ g! denote the transformation associated to a 2-cell α : f ⇒ g of C. To

avoid cluttering notation, subscripts on components of α may be dropped. For the following,

compare §1,2.5 of [Gra74].

Definition 2.2.8. The 2-category of elements of E is the 2-category whose

1. objects are pairs (C,X) with C ∈ C and X ∈ EC;

2. arrows are pairs (f, u) : (C,X) → (D,Y ) with f : C → D in C and u : f!X → Y in the

fiber ED;

3. and whose 2-cells α : (f, u) ⇒ (g, v) are those α : f ⇒ g in C for which there is a com-

mutative triangle

f!X

g!X

Y

u

v

(α!)X

of arrows in the category ED.
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Denote this 2-category by

∫
C
E. There is an evident projection 2-functor Π:

∫
C
E → C.

Remark 2.2.9 (Dualization). Some care must be exercised in forming the category of elements

of a contravariant pseudo-functor F : Cop → Cat on a 2-category C. Denote the image of an

arrow f : C → D under F by f∗ : FD → DC. Now, objects of the 2-category of elements are

again pairs (C,X) where X ∈ FC. But morphisms (C,X) → (D,Y ) are pairs (f, u) where

u : X → f∗Y is a morphism of FC. Note the difference that u has the action of the transition

functor on Y as its codomain. Consequently the commutative triangles in the definition of a

2-cell will be of the form
f∗Y

g∗Y

X

u

α∗
Y

v

This is consistent with forming the 1-categorical dual of the construction in Definition 2.2.8.

Moreover, the indicated direction of the morphisms u is required to prove associativity of

composition.

Proposition 2.2.10. Let E : C → Cat denote a pseudo-functor. The 2-functor Π:

∫
C
E → C

from the 2-category of elements has the following fibration properties.

1. The ordinary functor Π0 of underlying 1-categories is a cloven opfibration.

2. Locally Π is a discrete fibration.

Additionally, if E is in fact a 2-functor, then Π0 is a split opfibration.

Proof. Since at the level of 1-categories, the 2-category of elements is the same as the ordinary

1-category of elements, the first point has been established. The final comments also follows

for the same reason.

Now, for the discrete fibration claim, start with a morphism (g, v) : (C,X) → (D,Y ) and a

cell α : f ⇒ g : C ⇒ D to the codomain of (g, v) under Π in C. The required lift is the cell

(C,X) ⇓ α (D,Y )

(f, u)

(g, v)

where u is defined as the composite u := v(α!)X . This is defined to give the correct commutative

triangle as in Definition 2.2.8 and evidently is over α via the projection Π.
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Remark 2.2.11. As a result of Remark 2.2.9 above, the 2-category of elements construction for

a pseudo-functor F : Cop → Cat will be a cloven fibration at the level of underlying 1-categories

and a discrete opfibration locally.

Proposition 2.2.12. In the notation of the proof of Proposition 2.2.10, the lifts coming with

the opfibration and discrete fibration properties of Π are compatible in the following sense.

1. For α and its lift as in the proof of Proposition 2.2.10 and a vertical morphism u : X → Y ,

the composite 2-cells

(C,X) (D, g!X)

(C, Y ) (D, g!Y )

(C,X) (D, g!X)

(C, Y ) (D, g!Y ).

=

⇓ α

⇓ α

(f, (α!)X)

(g, 1)
(1, u) (1, g!u)

(g, 1)

(f, (α!)X)

(1, u) (1, g!u)
(f, (α!)Y )

(g, 1)

are equal.

Proof. The condition follows by the naturality of α.

For a 2-functor E : E → C, let EC denote the fiber of E over C. What follows in the next

two results is a sort of inverse to the 2-category of elements construction above, specific to the

discrete case. Compare the proofs here to the material of §2.2.3 and §2.2.4 in [Buc14].

Proposition 2.2.13. Let E : E → C denote a 2-functor such that

1. the functor E0 : E0 → C0 of underlying 1-categories is an opfibration with opcleavage ρ;

2. E is locally a discrete fibration;

It then follows, conversely, that E determines a pseudo-functor Ẽ : C0 → Cat.

Proof. For C ∈ C, take the object assignment to be the fiber EC . For a morphism f : C → D,

a transition functor f! : EC → ED is given in the following way. On an object X of the fiber

over C, take f!X to be the codomain of the opcartesian morphism ρ(X, f) : X → f!X specified

by the opcleavage. Thus, for a morphism u : X → Y of the fiber EC , the value f!u is the unique
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lift of identity in the square

X f!X

Y f!Y.

=

ρ

u f!u

ρ

This is plainly functorial by uniquesness.

Proposition 2.2.14. Suppose that E : E → C satisfies the hypotheses of the last result, Propo-

sition 2.2.13. It then follows that E : E → C satisfies the following compatibility condition:

1. Let α : f ⇒ g : C ⇒ D denote a 2-cell of C and u : X → Y an arrow of the fiber EC .

Since E is locally a discrete fibration, there are unique 2-cells

X α̃X ⇓ g!X Y α̃Y ⇓ g!Y

ρ(X, g) ρ(Y, g)

each over α. It follows that the composite 2-cells

X g!X

Y g!Y

X g!X

Y g!Y.

=

⇓ α̃X

⇓ α̃Y

u g!u

ρ(Y, g)

ρ(X, g)

u g!u

are equal, that is, in equations, that g!u ∗ α̃X = α̃Y ∗ u.

Consequently, the pseudo-functor Ẽ : C0 → Cat in Proposition 2.2.13 extends to one C → Cat

making the same underlying assignments.

Proof. The compatibility condition follows since E is locally a discrete fibration. For a given 2-

cell α : f ⇒ g : C ⇒ D, define the component of a purported natural transformation α! : f! ⇒ g!

in the following way. Since locally E is a discrete fibration, there is a unique cell

X f!X

X g!X

α̃X ⇓

ρ

1 (α!)X

ρ
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over α. In particular the domain of the lift is over f . Thus, the desired component of α! then

occurs as a lift of identity making a commutative triangle as above. Naturality of α! now follows

by the compatibility condition. For the condition says precisely that the two ways around the

naturality square

f!X f!Y

g!X g!Y

=

f!u

(α!)X (α!)Y

g!u

solve the same lifting problem and thus are identical by uniqueness.

The foregoing development now justifies the following definition.

Definition 2.2.15. A discrete 2-opfibration is a 2-functor E : E → C such that

1. the underlying functor E0 : E0 → C0 is an opcloven opfibration;

2. E itself is locally a discrete fibration, in that each functor E : E(X,Y ) → C(EX,EY ) is

a discrete fibration.

A discrete 2-fibration is a 2-functor F : F → C whose underlying functor of 1-categories is a

cloven fibration and which is locally a discrete opfibration.

Remark 2.2.16. Notice that in the definition of a discrete 2-fibration it is required that F0 be

a fibration and that F be locally a discrete opfibration. This “mixed variance” is a result of

the formation of the 2-category of elements as summarized in the Dualization Remark 2.2.9.

That is, the category of elements construction for contravariant pseudo-functors establishes

a correspondence with discrete 2-fibrations, as defined above, as a result of the definition of

morphisms in the construction.

Let DOpf(C) denote the 2-category of discrete 2-opfibrations over C, cartesian-morphism-

preserving functors over C and transformations with vertical components. Similarly, letDFib(C)

denote the 2-category of discrete 2-fibrations over C.

2.3 Regular and Exact Categories

A morphism of a 1-category is a regular epimorphism if it is a coequalizer of some pair of

arrows of the category. Every regular epimorphism is an epimorphism. A strong epimorphism
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of X is an epimorphism e : A → B such that for any monomorphism m of X fitting into a

square

A C

B D

f

e m

g

there is a lift as depicted by the dashed arrow, making two commutative triangles. The com-

position of strong epimorphisms is again a strong epimorphism.

Example 2.3.1. Every regular epimorphism is strong. Every split epi is regular.

Proof. For the first statement, see, for example, Theorem 2.6 of [Bar71].

Lemma 2.3.2. If e : A → B is a regular epi and factors as e = fg for a regular epimorphism

g, then f is a regular epimorphism too.

Proof. By the assumption e is the coequalizer of some pair of morphisms. It follows that f is

thus the coequalizer of the same pair postcomposed with g.

Lemma 2.3.3. A morphism that is regular epi and a monomorphism is also an isomorphism.

Proof. See Corollary 2.7 of [Bar71].

Recall that the kernel pair of a morphism is its pullback along itself, if it exists.

Definition 2.3.4. A category X is regular if it possesses all finite limits and

1. regular epimorphisms are stable under pullback; and

2. every kernel pair has a coequalizer.

An image factorization for a morphism f : X → Y in a regular category X is a commutative

triangle

X Y

I

f

e m

in X where e is a regular epimorphism and m is a monomorphism. This is required to be

universal in that any other such factorization f = m′e′ admits a unique arrow I ′ → I making

two commutative triangles.
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Lemma 2.3.5. Every morphism of a regular category has a pullback-stable image factorization.

Proof. This is proved in Theorem 2.3 of [Bar71].

Proposition 2.3.6. A finitely-complete category X is regular if every arrow of X has a

pullback-stable factorization as a regular epimorphism followed by a monic.

Proof. Any regular epimorphism is a factorization of itself as a regular epimorphism followed

by a monic. Therefore, regular epimorphisms are stable under pullback. So, let f : X → Y

denote any morphism with d0, d1 : Z ⇒ X denoting its kernel pair. By the assumption f has

a factorization f = me where e is regular epi and m is monic. Note that ed0 = ed1 since m is

monic. Now, e is the coequalizer of, say, p, q : W ⇒ X. Since the kernel pair of f is a pullback,

there is a unique arrow h : W → Z making hd0 = p and hd1 = q as in the diagram

Z X Y

I

W

d0

d1

f

e m

qp

h

Thus, if r is any morphism coequalizing d0 and d1, then r also coequalizes p and q, yielding a

unique morphism t such that te = r. Thus, e is the coequalizer of d0 and d1.

Thus, a regular category is equivalently a finitely-complete category with a pullback-stable

image factorization for each morphism.

Remark 2.3.7. In fact a bit more is true. In the notation of the proof above, d0, d1 : Z ⇒ X is

actually the kernel pair of e as well since m is monic. And conversely in the presence of image

factorizations (for example, in a regular category), that e and f have the same kernel pair will

imply that m is monic.

Example 2.3.8. Any 1-topos is regular. This is proved in §IV.6 and §IV.7 of [MLM92].

Example 2.3.9. As a 1-category, Cat is not regular. A proof is sketched in A1.5 of [Joh01]

on p.48. Let 2+2 denote the coproduct of 2 with itself. There is a functor 2+2 → 3, sending

the first summand to {0 ≤ 1} and the second to {1 ≤ 2}. This is an epimorphism in Cat and

is the coequalizer of two injections 1 ⇒ 2+ 2. This epimorphism can be pulled back along the

functor 2 → 3 whose image is {0 ≤ 2}. The resulting morphism from the pullback to 2 is not

an epimorphism.
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2.3.1 Pullback-Image Lemma

The following lemma makes precise the idea that a square that is “almost a pullback” becomes

one when passing to certain images. It does not seem to appear in the literature and may be

folklore. In any event, as it will be of vital importance in the proof of Lemma 6.1.4, a complete

proof is given here.

As set up, consider, in a regular category E , a commutative square

A B

C D

f

h k

g

Each of the horizontal morphisms f and g has an image factorization, denoted respectively,

by I and J . In each case, it is obtained as the coequalizer of the kernel of the morphism in

question. There results a morphism h̃ between the images, as in the diagram

A I B

C J D

= =

u m

h h̃ k

v n

f

g

making two commutative squares.

Lemma 2.3.10 (Pullback-Image Lemma). Let E denote a regular category and use the notation

established immediately above. Suppose that the commutative square

A B

C D

f

h k

g

has the existence but not necessarily the uniqueness aspect of the universal property of a pullback
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square. The induced commutative square arising from the image factorizations, namely,

I B

J D

m

h̃ k

n

is then a pullback.

Proof. Let X denote any object of E admitting two maps x : X → J and y : X → B satisfying

the equation nx = ky. Form the pullback

P X

C J

π2

π1 x

v

Note that π2 is a regular epimorphism because v is one. It is a straightforward computation

that the equation kyπ2 = gπ1 holds. Thus, by the assumption on the square in the first

display of the statement of the lemma, there is a morphism w : P → A for which it is true that

fw = xπ2 and hw = π1. Now, since π2 is a regular, hence strong, epi, there is a (unique) lift

as in the diagram

P I

X B

uw

π2 m

y

ỹ

making two commutative triangles. By construction ỹ is the required arrow X → I verifying

the universal property of a pullback. For on the one hand

nh̃ỹ = kmỹ = ky = nx

so that since n is monic, h̃ỹ = x holds; and on the other hand mỹ = y is true by construction.

Uniqueness follows now since any morphism satisfying these last two equations would also be

a lift of y as above.

Remark 2.3.11. Notice that the hypotheses of the lemma can be weakened. For the fact that

hw = π1 holds was not used in the course of the proof. Hence it need only be required that the

square in the assumption of the lemma yields a morphism to A making a commutative triangle

with f as one side, without any further statement about a commutative triangle involving h.
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2.3.2 Exact Categories

Exact categories were introduced by M. Barr in [Bar71]. As stated in the introduction to

that paper, the intention was to axiomatize the features of those categories that are somehow

abelian but not necessarily additive. Exact categories are in particular regular, as above, but

additionally have the property that each internal equivalence relation is a kernel.

Definition 2.3.12. A pair of arrows d0, d1 : R ⇒ X in a finitely-complete category E is an

equivalence relation on X ∈ E if

1. the morphisms d0 and d1 are jointly monic;

2. reflexivity holds in the sense that the diagonal factors through 〈d0, d1〉 as in

R X ×X

X

〈d0, d1〉

i Δ

making a commutative triangle;

3. symmetry holds in the sense that there is a twist morphism (−)−1 as in

R X ×X

R

〈d0, d1〉

(−)−1 〈d1, d0〉

making a commutative triangle;

4. the corner object of the pullback

T R

R X

�

π2

π1 d0

d1

factors through 〈d0, d1〉 as in

R X ×X

T

〈d0, d1〉

◦ 〈d0π1, d1π2〉
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making a commutative triangle.

Definition 2.3.13. A regular category E is exact if every equivalence relation is the kernel of

some morphism.

Example 2.3.14. Any 1-topos is an exact category. See, for example, §1.5 of [Joh14].

Example 2.3.15. The category of torsion-free abelian groups is regular but not exact. See

§A1.3 on p.24 of [Joh01].

Lemma 2.3.16. In an exact category E , every equivalence relation is the kernel of its coequal-

izer.

Proof. By exactness every equivalence relation is the kernel of some arrow. But by regularity,

every kernel has a coequalizer. It follows then that the equivalence relation is also the kernel

of its coequalizer.

Lemma 2.3.17. The slice of any regular or exact category is again regular or exact, as the

case may be.

Proof. See Theorem 5.4 of [Bar71].



Chapter 3

Internal Category Theory

3.1 Internal 1-Categories

Let E denote a regular category as in Definition 2.3.4. Most of the following is standard

material found in any reference on category theory or topos theory, for example, Chapter 8

of [Bor94], Chapter XII of [Mac98], or Chapter V of [MLM92], or Chapter 2 of [Joh14].

Definition 3.1.1. A 1-category C internal to E consists of the data of objects and arrows of

E , displayed as

C1 ×C0 C1 C1 C0

π1

π2

◦
d0

d1

i

subject to the requirements that

1. d0i = d1i = 1;

2. d0◦ = d0π1 and d1◦ = d1π2;

3. ◦〈1, id1〉 = 1C1 and ◦〈id0, 1〉 = 1C1;

4. ◦(◦ × 1) = ◦(1× ◦).

Display the data as a tuple C = (C0, C1, d0, d1, i, ◦). Given such C, the internal opposite cate-

gory, denote by C
op, is formed from the data of C but with the roles of d0 and d1 interchanged.

Remark 3.1.2. In the first display of Definition 3.1.1, the object C1×C0 C1 is formed by pulling

back d0 along d1 as in

C1 ×C0 C1 C1

C1 C0

�

π2

π1 d0

d1

Thus this object of composable pairs is written in the “diagrammatic order.” This will always

be the convention when dealing with internal 1-categories.

34
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Remark 3.1.3. The third condition of Definition 3.1.1 is a unit condition requiring that the

triangles

C1 C1 ×C0 C1 C1 C1 ×C0 C1

C1 C1

〈1, id1〉

1
◦

〈id0, 1〉

1
◦

each commute. Notationally, the expressions ◦〈1, id1〉 and ◦〈id0, 1〉 in the equations, and others

of the same form involving composition and angle brackets ‘〈−,−〉’, will be written

◦〈id0, 1〉 =: id0 ◦ 1 ◦ 〈1, id1〉 =: 1 ◦ id1

treating ◦ as though it has two arguments − ◦ − taking generalized elements of C1 as values.

Example 3.1.4. Any object X ∈ E can be viewed as a “discrete” internal category X with

X0 = X1 = X and all required morphisms identities.

Example 3.1.5. For any internal category C, the internal arrow category C
2 is given in the

following way. The object of objects is C1. The object of arrows is given as the corner object

of the pullback

(C2)1 C1 ×C0 C1

C1 ×C0 C1 C1

�

π2

π1 − ◦ −

− ◦ −

The domain arrow is π1π2 : (C
2)1 → C1 and the codomain arrow is π2π1 : (C

2)1 → C1. The

composition is induced from that of C.

Definition 3.1.6. An internal groupoid is an internal category G = (G0, G1, d0, d1, i, ◦), as

in Definition 3.1.1, equipped with an additional morphism (−)−1 : G1 → G1 for which the

equations

1. d0(−)−1 = d1 and d1(−)−1 = d0

2. 1G1 ◦ (−)−1 = id0

3. (−)−1 ◦ 1G1 = id1

are satisfied.
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Remark 3.1.7. The last two conditions express that the morphism (−)−1 : G1 → G1 provides

each “arrow” of G with an inverse under internal composition. These equations express the

commutativity of the two squares

G1 G1 ×G0 G1

G0 G1

=

G1 G1 ×G0 G1

G0 G1.

=

〈1, (−)−1〉

d0 ◦

i

〈(−)−1, 1〉

d1 ◦

i

Definition 3.1.8. A generalized arrow f : X → D1 of D is an (internal) isomorphism if there

is an arrow g : X → D1 such that

1. d1f = d0g and d0f = d1g

2. f ◦ g = id0f

3. g ◦ f = id0g

are each valid equations. A pair of generalized objects x, y : X ⇒ D0 are (internally) isomorphic

if there is a regular epimorphism p : Z → X and an internal isomorphism f : Z → D1 between

them, in the sense that d0f = xp and d1f = yp each hold.

Lemma 3.1.9. Every generalized morphism of an internal groupoid G is an isomorphism in

the sense of Definition 3.1.8 above.

Example 3.1.10. Given an object X ∈ E , the chaotic internal groupoid on X is given by the

simplicial data

X ×X ×X X ×X X

π1,2

π2,3

π1,3

π1

π2

Δ

It will be seen in Lemma 3.1.21 that any such groupoid on an “inhabited” object X is suitably

“weakly equivalent” to the terminal internal category.

Proposition 3.1.11. An equivalence relation d0, d1 : R ⇒ X as in Definition 2.3.12 determines

a groupoid internal to E as above in Definition 3.1.6.

Proof. The three morphisms i, (−)−1, and ◦ given in Definition 2.3.12 above give the required

morphisms for the category and groupoid structure. The four conditions in Definition 2.3.12

give all the category and groupoid axioms except the associativity, unit and inverse laws.

Proofs of these follow a similar pattern. The diagrams expressing each law commute up to

post-composition with the arrow 〈d0, d1〉 : R → X ×X, which cancels since it is monic.
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Definition 3.1.12. A functor of internal categories f : C → D consists of arrows f0 : C0 → D0

and f1 : C1 → D1 satisfying the functoriality conditions

1. f0d0 = d0f1

2. f0d1 = d1f1

3. f1 ◦ f1 = f1(− ◦ −)

4. f1i = if0.

Let Cat(E ) denote the 1-category of internal categories and internal functors.

Example 3.1.13. The discrete category as in Example 3.1.4 on a terminal object of E is a

terminal object of Cat(E ).

Definition 3.1.14 (Internally Fully Faithful). A functor of internal categories f : C → D is

internally fully faithful if the commutative square

C1 D1

C0 × C0 D0 ×D0

f1

〈d0, d1〉 〈d0, d1〉

f0 × f0

is a pullback.

Construction 3.1.1 (Object of Isomorphisms). Let D denote an internal category. Construct

the object of isomorphisms in D. First form the pullback

B D0

D1 ×D0 D1 D1

�
i

◦

whose elements are interpreted as pairs of morphisms composing to identity. Denote the images

of the two projections from B to D1 by I and J , respectively. The object Iso(D) is then the

pullback

Iso(D) J

I D1

�
n

m

Let d0, d1 : Iso(D) ⇒ D0 denote the associated domain and codomain morphisms.
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Lemma 3.1.15. Any internal isomorphism of D determines a generalized object of Iso(D).

Proof. Let f : X → D1 denote an internal isomorphism with inverse g : X → D1 as in Definition

3.1.8. Consider the canonical morphisms to B induced by its universal property, as in the

diagrams

B D0

D1 ×D0 D1 D1

�

X

B D0

D1 ×D0 D1 D1.

�

X

i

◦

〈f, g〉

d0f

x

i

◦

〈g, f〉

d0g

y

Denote the projections B → I and B → J by p and q, respectively. By construction, the

equations f = π1π1x = mpx and f = π2π1y = nqy hold. Thus, by the universal property

of Iso(D) as constructed above there is a universal map z : X → Iso(D) with π1z = px and

π2z = qy, as required.

Now, compare the following definition to Proposition 1.5 on p. 376 of [BP79].

Definition 3.1.16. An internal functor f : C → D is essentially surjective on objects if the

composite d1d
∗
0(f0) in the diagram

P Iso(D)

C0 D0

�
D0

d∗0(f0)

d0

f0

d1

is a regular epimorphism.

Definition 3.1.17. An internal functor f : C → D is surjective-on-objects if the object part

f0 : C0 → D0 is a regular epimorphism.

Example 3.1.18. In a regular category, E , any surjective-on-objects internal functor is inter-

nally essentially surjective. For d0 splits and thus is regular epi; and d∗0(f0) is a pullback of a

regular epi. The composition of regular epis is again a regular epi.

Definition 3.1.19. A functor f : C → D of internal categories is a weak equivalence if f is

internally essentially-surjective and internally fully-faithful.



39

Definition 3.1.20. An object A ∈ E is inhabited if the canonical map A → 1 is a regular

epimorphism.

Lemma 3.1.21. The chaotic category from Example 3.1.10 on an inhabited object A ∈ E is

weakly equivalent to the terminal object 1 in K.

Proof. By the example, above, the unique functor A → 1 in K is essentially surjective since it

is inhabited. Additionally, the square

A×A 1

A×A 1

1 = 〈π1, π2〉

is evidently a pullback, showing that A → 1 is fully-faithful as in Definition 3.1.14.

Definition 3.1.22. An internal natural transformation θ : f ⇒ g between internal functors

f, g : C → D is an arrow θ : C0 → D1 satisfying the conditions

1. d0θ = f0;

2. d1θ = g0;

3. θd0 ◦ g1 = f1 ◦ θd1.

Proposition 3.1.23. Internal 1-categories, functors, and natural transformations form a 2-

category Cat(E ). Additionally, Cat(E ) is finitely complete and is cartesian closed if E is.

Proof. Finite limits are constructed, for example, in §7.2 of [Jac99]. Exponentials are given,

for example, in §B2.3 of [Joh01].

3.2 Internal Diagrams and Colimits

Much of the following material is summarized in Chapter 2 of [Joh14]. These results, and the

main one, Theorem 3.2.7, originate in [Dia73] and the subsequent paper [Dia75].

Throughout let C denote an internal category in E , an exact category. Think of E as the

base category replacing Set. As motivation for the following definition, note that a copresheaf

E : C → Set on a small category is also called a set-valued diagram on C . Insofar as Set is

the “base-category” of category theory, such E could be called a “base-valued diagram on C .”

Notice that such a diagram yields a coproduct

∐
C∈C0

EC
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admitting a certain action of C1 that respects the fibers of the projection of the coproduct to

C0. In fact to give a base-valued diagram on C is essentially the same as giving a set function

e : E → C0 admitting a suitable action of C1. This correspondence is discussed in more detail

in §V.7 of [MLM92]. The point is that the latter description admits of an internal formulation

when the base category Set is replaced by E whereas the notion of an E -valued functor on an

internal category does not even make sense.

Definition 3.2.1. An internal base-valued diagram, or an internal diagram, is a morphism

e : E → C0 of E equipped with an action morphism m : E×C0 C1 → E, where E×C0 C1 denotes

the pullback of d0 along e, such that the equations

1. em = d1πC1

2. m〈1, ie〉 = 1

3. m(1×m) = m(m× 1)

are satisfied. A morphism of internal diagrams is one g : E → E′ with e′g = e that commutes

with the given actions. Let E C denote the category of such diagrams. Analogously, E Cop
is the

category of contravariant diagrams on C.

Definition 3.2.2. An internal functor e : E → C is an internal discrete opfibration if, as in

remark 2.2.2, the square

E1 C1

E0 C0

�

e1

d0 d0

e0

is a pullback. An internal functor is a discrete fibration if the analogous square with codomain

arrows instead is a pullback. A morphism of discrete opfibrations e : E → C and g : G → C is

a internal functor h : E → G such that gh = e. Morphisms of internal discrete fibrations are

analogous. Denote these categories by DOpf(C) and DFib(C), respectively.

Theorem 3.2.3. An internal category of elements construction, as for example in §2.1 of

[Joh14], gives an equivalence of categories

E C � DOpf(C)

between internal diagrams and discrete opfibrations. An analogous result holds for contravariant

internal diagrams and discrete fibrations.
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Proof. The proof is discussed more explicitly in Proposition B2.5.3 and its proof of [Joh01].

Lemma 3.2.4. The category E C � DOpf(C) has finite limits.

Proof. The category Cat(E ) is finitely-complete since E is; thus the slice Cat(E )/C is finitely-

complete too. The forgetful functor DOpf(C) → Cat(E )/C creates finite limits. Explicitly,

the terminal object is the identity 1: C → C. Products are given by taking a pullback in

Cat(E ). Finally equalizers are given by taking equalizers in Cat(E ) as well.

Recall that a reflexive pair in E is a pair of parallel arrows f, g : A ⇒ B with a common

splitting, that is, an arrow p : B → A with fp = 1 = gp. Now, assume that E has coequalizers

of reflexive pairs. Let π0 : Cat(E ) → E denote the functor induced by taking the coequalizer

C1 C0 π0(C).
d0

d1

This is a connected components functor, left adjoint to the “discrete category” functor as in

the case of E = Set discussed in §2.1. Now, let lim
→C

denote the functor DOpf(C) → E induced

by declaring

lim
→C

e := π0(E). (3.2.1)

Let C
∗ : E → DOpf(C) denote the “constant diagram” functor taking an object X ∈ E0

to the discrete opfibration X × C → C given by projection where (X × C)0 = X × C0 and

(X × C)1 = X × C1. Since these functors are adjoint lim
→C


 C
∗, the colimit notation is

appropriate. Accordingly, lim
→C

will be referred to as an “internal colimit functor.” Notice that

E is thus “internally cocomplete” if, for example, it has coequalizers of reflexive pairs.

Definition 3.2.5. The internal category C is cofiltered if

1. the arrow C0 → 1 is a regular epimorphism;

2. for any two generalized objects c, d : U ⇒ C0, there is a regular epimorphism p : V → U

and arrows f, g : V → C1 with d1f = d1g such that d0f = cp and d0g = dp;

3. for any two f, g : U ⇒ C1 with d0f = d0g and d1f = d1g, there is a regular epimorphism

p : V → U and an h : V → C1 with d1h = d0fp = d0gp and h ◦ fp = h ◦ gp.

Remark 3.2.6. Definition 3.2.5 is an “elementary” version of the original definition, phrased in

terms of the existence of certain regular epimorphisms in [Dia73] and [Dia75].
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Theorem 3.2.7. The internal colimit functor

lim
→C

: DOpf(C) −→ E

is finite-limit preserving if, and only if, C is a cofiltered internal category in the sense of

Definition 3.2.5.

Proof. See, for example, the developments of §2.5 of [Joh14].

3.3 Internal Fibrations, 2-Fibrations, and Discreteness

Following [Str74] and the development summarized above, a fibration in a 2-category K is a

pseudo-algebra for a certain 2-monad on a slice of K. Here the definitions are specialized to

the case of K = Cat(E ) for finitely-complete E . Throughout fix C an internal category.

Definition 3.3.1. An internal cloven opfibration e : E → C is a normalized pseudo-algebra for

the 2-monad

T : K/C −→ K/C

given by pulling back along d0 : C
2 → C and then composing with d1 : C

2 → C. Such an

opfibration is understood to be split if it is a strict 2-algebra and not merely pseudo. Denote the

corresponding 2-categories by cOpf(C) and sOpf(C). The duals are internal cloven fibrations

and internal split fibrations, namely, normalized pseudo- and strict-algebras for the 2-monad

on K/C given by pulling back along d1 : C
2 → C and then composing with d0 : C

2 → C. The

corresponding 2-categories are denoted by cFib(C) and sFib(C), respectively.

The abstract definition can be reconciled with the internal version of the following ordinary

notion.

Definition 3.3.2. Let e : E → C denote an internal functor. A generalized morphism g : X →
E1 is e-opcartesian, or just opcartesian, if given any morphism f : X → E1 with d0f = d0g for

which there exists a fill k : X → C1 with e1g ◦ k = e1f in C, there then exists a unique lift of

k, say, k̃ : X → E1 over k in that e1k̃ = k and making a commutative triangle g ◦ k̃ = f in E.

Lemma 3.3.3. The composite of any two (op)cartesian morphisms is (op)cartesian.

Proof. This is just a translation of the usual set-theoretic argument into elementary terms.

Proposition 3.3.4. For an internal opcloven opfibration e : E → C with action morphism

m : E×C C
2 → E,
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1. there is an internal natural transformation ρ : πE ⇒ m where πE is the projection to E;

2. for each morphism 〈x, g〉 : X → E0 ×C0 C1, the composite ρ〈x, g〉 is opcartesian over g;

and e1ρ〈x, g〉 = x holds;

3. ρ is normalized in the sense that ρ〈x, ie0x〉 = ie0.

Remark 3.3.5. Street [Str74] has this result in full generality, in the sense that the paper shows

that the 2-monad is lax idempotent.

Proof. 1. Let ker(◦) denote the kernel of the composition in C, obtained as the pullback of ◦
along itself. Let q denote the canonical map C1 → ker(◦) arising by the universal property in

the following diagram

ker(◦) C1 ×C0 C1

C1 ×C0 C1 C1.

C1

π2

π1 ◦

◦

〈id0, 1〉

〈id0, 1〉

Now, the composite m1(i×q) determines the required natural transformation ρ : π ⇒ m. That

the two identities

d0m1(i× q) = π d1m1(i× q) = m0

hold follows readily; the first because i splits d0; and the second because m is an internal

functor. Naturality is the requirement that m1d0 ◦ m1 = π ◦ m1d1 holds. That this is true,

set-theoretically speaking, follows essentially by equality of composed squares

· · · · · ·

· · · · · ·

· · · · · ·

=

1 1

1 1 f u h h
f 1

u h k 1 1 g

g g

which can easily be translated into the language of projection morphisms of E.
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2. The action satisfies the commutativity condition expressed by the diagram

E×C C
2

E

C
2 C

=

m

e

d1

which ensures that the condition e1ρ〈x, g〉 = g holds. In this sense ρ〈x, g〉 is “over g.” That

ρ〈x, g〉 is opcartesian now follows by the functoriality of the action m. For let f : X → E1

denote a morphism with d0f = x and let k : X → C1 denote a fill in C with k ◦ g = e1f . Now,

m applied to each side of the internal analogue of the situation

· · · · · ·

· · ·

· · · · · ·

=

1 1

1 1 g

f e1f e1f
g

f e1f k

1 1

in E×CC
2 yields the required commutative square in E by functoriality and the unit conditions

from the algebra axioms.

3. Normalization follows from the unit laws for the algebra.

Remark 3.3.6. Thus, the result says that the internal natural transformation ρ is an internal

normalized opcleavage for e. Dually, an internal cloven fibration f : F → C with action n

yields an internal normalized cleavage σ as a natural transformation σ : n ⇒ π with the right

properties.

Lemma 3.3.7. If e : E → C is a split opfibration, then the opcleavage is functorial in the sense

that the equation

ρ〈f ◦ g, x〉 = ρ〈f, x〉 ◦ ρ〈g,m0x〉

holds for any generalized morphisms f and g, and generalized object x.

Proof. This follows from the fact that e is a strict algebra as in Definition 3.3.1 and from the

associativity condition in Definition 2.1.13.

Lemma 3.3.8. The opcleavage ρ : E0×C0C1 → E1 coming with an internal opcloven opfibration

e : E → C is monic. Similarly for a cleavage σ : C1 ×C0 F0 → F1 for an internal fibration.
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Proof. Supposing that ρ〈x, f〉 = ρ〈y, g〉 holds, it follows that f = g since each morphism is

over f or g, respectively, via e. Additionally, x = y holds since each is domain of the same

opcartesian morphism.

3.4 Internal 2-Categories

The present section culminates in an elementary axiomatization of the notion of a discrete

2-fibration from Definition 2.2.15. First some set-up and generalities.

Let E denote a finitely-complete 1-category. Assume as give objects K0, K1 and K2 of E

with certain morphisms between them, displayed as

K2 K1 K0

s

t

ι

d0

d1

i

Think of K0 as an object of objects; K1 as an object of 1-cells, or morphims; and K2 as an

object of 2-cells, or transformations. Form three pullbacks

K1 ×K0 K1 K1

K1 K0

�
K2 ×K1 K2 K2

K2 K1

�
K2 ×K0 K2 K2

K2 K0

�

π2

π1 d1

d0

π2

π1 s

t

π2

π1 d1s

d0t

The leftmost pullback is an object of pairs of composable morphisms. The middle is an object of

pairs of vertically composable 2-cells; and the rightmost object is one of horizontally composable

cells. Now, the corner objects of the following pullbacks

M K2 ×K0 K2

K2 ×K0 K2 K1 ×K0 K1

�
N K2 ×K1 K2

K2 ×K0 K2 K0

�
〈s, s〉

〈t, t〉

d0tπ1

d1tπ1

are isomorphic. Each is interpreted as an objects of elements consisting of four 2-cells with

two pairs to be composed horizontally, and two pairs to be composed vertically. The object M

sets up to do the horizontal compositions first and then the vertical one; while N sets up to

do the vertical first and then the horizontal. For the following compare the “global” definition

of a bicategory in §1.3 of [Bén67].
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Definition 3.4.1. In the notation of the discussion above, a 2-category internal to E is given

by the data of objects and maps displayed as

K2 ×K0 K2 K1 ×K0 K1

K2 K1 K0

K2 ×K1 K2

� ◦
s

t

ι

d0

d1

i

∗

subject to the following axioms:

1. splitting:

(a) d0i = d1i = 1 and sι = tι = 1;

(b) d0s = d0t and d1s = d1t;

2. domain/codomain of compositions:

(a) d0◦ = d0π2 and d1◦ = d1π2;

(b) s∗ = sπ2 and t∗ = tπ1;

(c) s� = ◦(s× s) and t� = ◦(t× t);

3. identities:

(a) id1 ◦ 1 = 1 and 1 ◦ id0 = 1;

(b) ιs ∗ 1 = 1 and 1 ∗ ιt = 1;

(c) ιid0s� 1 = 1 and 1� ιid1s = 1;

4. associativity:

(a) ◦(◦ × 1) = ◦(1× ◦);

(b) ∗(∗ × 1) = ∗(1× ∗)

(c) �(�× 1) = �(1×�)
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5. the interchange law holds, as in the commutativity of the diagram

M ∼= N K2 ×K1 K2

K2 ×K0 K2 K2

〈∗, ∗〉

〈�,�〉 �

∗

6. compatibility of identities, in the sense that

K1 ×K0 K1 K2 ×K0 K2

K1 K2

〈ι, ι〉

◦ �

i

commutes.

Remark 3.4.2. In the definition, K0 is the object of objects; K1 is the object of arrows or 1-cells;

and K2 is the object of transformations, or 2-cells. The morphism ◦ is the composition of 1-

cells, while ∗ is the vertical composition of 2-cells and � is the horizontal composition of 2-cells.

Think of � as an “external” composition; hence it is written here in diagrammatic order. Now,

the first equations just mean that i and ι are simultaneous splittings for the domain/source

and codomain/target maps, respectively. The next four pairs of equations say that sources

and domains of the various composites are what they should be. Identity, associativity, and

interchange are more-or-less self-explanatory.

Example 3.4.3. Let K denote an internal 2-category as in Definition 3.4.1. What follows is

an elementary version of the 2-arrow category of Example 2.1.4. The internal 2-arrow category

of K, denoted by K2, has as its object of objects K1, the object of arrows of K. The object of

arrows is the corner object of the pullback

(K2)1 K1 ×K0 K1

K1 ×K0 K1 K1

�

π2

π1 − ◦ −

− ◦ −
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that is, the object of commutative squares of K. The domain and codomain morphisms are

d0 = π1π2 and d1 = π2π1, respectively. The object of 2-cells is then given as as a limit in E in

the following way. First form the limit of the diagram

K2 (K2)1 K2

K1 K1

K2 ×K1 (K2)1 (K2)1 ×K1 K2

P

t π1π1 π2π2 s

π1 π2

π1

π1 π2

π2

as indicated by the dashed arrows. Let w1 and w2 denote the composites

w1 := π1 � d1π2 : K2 ×K1 (K2)1 → K2

w2 := d0π1 � π2 : (K2)1 ×K1 K2 → K2.

The object of 2-cells is then the equalizer

(K2)2 P K2.
w1π1

w2π2

With induced compositions, K2 is an internal 2-category.

Lemma 3.4.4. If K is a 2-category internal to E , then the data

K2 ×K1 K2 K2 K1

π1

π2

∗
s

t

ι

determines a category object of E , called the “vertical category” of K.

Proof. That the axioms for an internal category from §3.1 are satisfied follows from the axioms

for K in Defintion 3.4.1.

Definition 3.4.5. Let K denote an internal 2-category and a, b : X ⇒ K0 any pair of objects.

By K(a, b) denote the internal category with

K(a, b)0 · X

· K1 K0

X K0

� �

�

K(a, b)1 · X

· K2 K0

X K0.

� �

�

b

d1

d0

a

b

d1s

d0s

a
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Definition 3.4.6. Let A and B denote 2-categories internal to a finitely-complete 1-category

E . An internal 2-functor l : A → B consists of three arrows

l0 : A0 → B0 l1 : A1 → B1 l2 : A2 → B2

such that

1. l0 and l1 give an internal functor A0 → B0 of underlying internal 1-categories;

2. l2 satisfies the functoriality conditions

(a) l2 � l2 = l2(−�−);

(b) l2 ∗ l2 = l2(− ∗ −);

(c) l2ι = ιl1.

Lemma 3.4.7. Any internal 2-functor l : A → B in the above sense determines, for each

a, b : X ⇒ A0, an internal functor la,b : A(a, b) → B(l0a, l0b) of internal hom categories as in

Definition 3.4.5.

Proof. By the construction of A(a, b)0 and B(l0a, l0b)0, the object-part of the functor (la,b)0 can
be induced from universal properties using l0 and l1 and assumed functoriality. Similarly for

the arrow-part (la,b)1. Functoriality follows by the functoriality assumed in Definition 3.4.6.

Remark 3.4.8. Let P , informally speaking, stand for some property of internal 1-functors (such

as being internally fully faithful, or internally eso et cetera). An internal 2-functor is said to

be locally P if each induced functor as in Lemma 3.4.7 has property P .

Definition 3.4.9. An internal 2-natural transformation θ : k ⇒ l between internal 2-functors

k, l : A ⇒ B is a natural transformation θ of the underlying functors k, l : A0 ⇒ B0 satisfying

the compatibility condition

k2 ∗ ιθd1t = ιθd0s ∗ l2.

Remark 3.4.10. The further compatibility condition, for ordinary 2-categories in the case that

E = Set, is exactly the requirement that there is an equality of composite 2-cells

KA LA

KB LB

=

KA LA

KB LB.

= =
Kα⇒ Lα⇒

αA

Kf Kg Lg

αB

αA

Kf Lf Lg

αB
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where α : f ⇒ g : A ⇒ B is a 2-cell of A. Let 2-Cat(E ) denote the 2-category of 2-categories

internal to E with internal 2-functors and internal 2-transformations.

3.4.1 Internal Connected Components

Consider now the following way of looking at the connected components construction for 2-

categories that was summarized in §2.1 in the case of E = Set. In particular note that the

collection of morphisms of π0A, for an ordinary 2-category A, occurs as the coequalizer, taken

in Set/A0 ×A0 of the source and target maps as in

A2 A1 (π0A)1

A0 ×A0

s

t

〈d0, d1〉

Of course this makes sense because the slice of Set is cocomplete. And indeed the fibers of

the resulting map over A0 ×A0 are precisely the sets π0A(A,B) as the objects A,B vary over

A0 × A0. This shows, then, how to give an elementary version of the connected components

construction for internal 2-categories.

For let K denote an internal 2-category as in Definition 3.4.1 where E is an exact category

with pullback-stable coequalizers of reflexive pairs. Let π0K denote what will be an internal

1-category whose objects are those of K and whose object of arrows is the coequalizer

K2 K1 (π0K)1

K0 ×K0

qs

t

〈d0, d1〉

taken in the slice E /K0 ×K0.

Proposition 3.4.11. The construction π0K defines an internal 1-category. Moreover π0 ex-

tends to a 2-functor π0 : 2-Cat(E ) → Cat(E ), left adjoint to the discrete 2-category functor

disc : Cat(E ) → 2-Cat(E ).

Proof. Composition for π0K is induced from the universal property of the coequalizers. This

requires that q × q is a coequalizer of s × s and t × t. This statement follows by pullback

stability and the “3 x 3 Lemma” of §0.17 in [Joh14]. That π0 is a functor is immediate and

the adjunction is a routine verification.



51

3.4.2 Internal Discrete 2-Fibrations

Now let e : E → C denote an internal 2-functor of internal 2-categories. Following Definition

2.2.15, the internal version is now the following.

Definition 3.4.12. The 2-functor e is an internal discrete 2-opfibration if

1. the underlying internal 1-functor e0 : E0 → C0 is a split internal opfibration;

2. locally E is an internal discrete fibration.

The dual notion is that of an internal discrete 2-fibration f : F → C which is an internal split

fibration at the level of its under 1-functor and should be locally an internal discrete opfibration.

Definition 3.4.13. A morphism of internal discrete 2-fibrations f : F → C and g : G → C with

cleavages σ and τ , respectively, is an internal 2-functor h : F → G over C in that f = gh holds

strictly and for which the cleavage-preservation condition

f1σ = τ(1× f0) (3.4.1)

holds. A transformation of such morphisms θ : h ⇒ k is an internal 2-natural transformation

as in Definition 3.4.9 vertical over C. Denote the 2-category of internal discrete 2-fibration by

DFib(C). Dually, DOpf(C) denotes the 2-category of internal discrete 2-opfibrations.

Theorem 3.4.14. The 2-categories DFib(C) and DOpf(C) have all finite conical limits.

Proof. These are inherited from 2-Cat(E ) in a manner similar to the proof of Lemma 3.2.4.



Chapter 4

Limits and Colimits

The present chapter gives further background on 2-categorical limits and colimits. The main

original result is Theorem 4.2.11 which shows how to compute the weighted pseudo-colimit of

any category-valued pseudo-functor on a small 2-category. Some further arguments are given

that this weighted pseudo-colimit ought to be seen as a tensor product of pseudo-functors.

4.1 Limits

A standard reference for 2-categorical limits and colimits is Kelly’s [Kel89]. More generally

Chapter 3 of [Kel82a] describes the theory of enriched limits of which the 2-limits in Cat are

but an instance.

Let Q : J → K denote a 2-functor on a 2-category. Treat this as a diagram of shape

J in K. For each A ∈ K there is a canonical functor K(A,Q(−)) : K → Cat. Denote this by

K(A,Q). Let P : J → Cat denote another 2-functor called the “weight.” A 2-cone is a 2-natural

transformation P → K(A,Q).

Definition 4.1.1 (Weighted 2-Limit). In the notation above, the 2-limit of Q weighted by P

is an object {P,Q}s of K together with a unit ζ : P → K({P,Q}s, Q) making an isomorphism

of 1-categories

K(A, {P,Q}s) ∼= [J,Cat](P,K(A,Q)). (4.1.1)

where [J,Cat], as in the Example 2.1.9, denotes the 2-category of category-valued 2-functors

on J, 2-natural transformations, and modifications. A 2-limit is called conical if the weight

2-functor P : J → Cat is constant at the value 1. A 2-limit is finite if J is a finite 2-category

and each P (J) is finitely-presentable.

Example 4.1.2. In Cat, the usual finite products and equalizers are again finite 2-products

and 2-equalizers in Cat, since these can be seen to satisfy automatically the 2-dimensional aspect

of the universal property in 4.1.1.

One important 2-categorical limit is the comma object associated to morphisms f : A → C

and g : B → C of K. As a weighted limit, take J to consist of a generic corner · → · ← ·.
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Take Q as the diagram that takes J to the cospan with legs f and g; additionally, P to be the

diagram on J with values

1 2 1.
0 1

The 2-limit is an object f/g with two morphisms p : f/g → A and q : f/g → B and a cell

φ : fp ⇒ gq that is universal in the following sense: given any arrows s : D → A and t : D → B

and a cell ψ : fs ⇒ gt, there is a unique r : D → f/g making two commutative triangles as on

the left diagram of the figure

f/g B

A C

φ ⇒

D

B

A C.

ψ ⇒

D

=
q

p g

f

s

t

r

g

f

s

t

The further 2-dimensional aspect of the universal property is discussed in §1 of [Str74].

Comma objects can be constructed from cotensors and pullbacks. The cotensor of A ∈ K

with some category A is a finite weighted 2-limit on the indexing category 1. It consists of an

object A � A of K inducing an isomorphism

K(B,A � A) ∼= [A ,K(B,A)]

for any B ∈ K. Now, cotensors with A = 2 together with pullbacks gives a construction of

comma squares. That is, given arrows f and g, the comma object f/g is the vertex in the

diagram of pullbacks

f/g T A

S 2 � B B

A B.

� �

�

g

d1

d0

f

For an object A, the identity 2-cell 1A ⇒ 1A induces a morphism i : A → A2 from the universal
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property for the cotensor; additionally, the composite cell arising from

B2 ×B B2 B2 B

B2 B B

B B

�
⇒

⇒

d1

d0 1

d1

1

d0 1

1

yields a morphism

c : B2 ×B B2 −→ B2.

Propositions 2 and 8 in §1 and §2 of [Str74] indicate that these morphisms make B2 ⇒ B into

a category object in K. The same result also shows that any morphism f : A → B extends to

a functor A2 → B2.

Example 4.1.3. Let F : F → C denote a discrete 2-fibration as in Definition 2.2.15. The

cotensor of F with 2 = {0 ≤ 1} is given in the following way. The objects are vertical maps

u : X → Y of the total 2-category F. The arrows and 2-cells are those of the 2-arrow category

as in Example 2.1.4. There is an evident forgetful 2-functor to C. Denote the total 2-category

and forgetful 2-functor by Π: 2 � F → C. That this is the cotensor in DFib(C) is easy to check.

Example 4.1.4. For a category C internal to a finitely-complete category E , the internal arrow

category 2 � C ∼= C
2 from Example 3.1.5 is the cotensor with 2 in the 2-category K = Cat(E ).

Example 4.1.5. Let f : F → C denote an internal discrete 2-fibration as in Definition 3.4.12.

The cotensor 2 � f in the 2-category DFib(C) has the following description. The object of

objects is given as the corner of the pullback

(2 � f)0 F1

C0 C1

�
f1

i

that is, as the object of the maps of F that sit over identity morphisms of C via f . The object

of arrows is that object of commutative squares with domain and codomain in (2 � f)0. That
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is, the object of arrows is given as the corner object of the pullback

(2 � f)1 (2 � f)0 ×F0 F1

F1 ×F0 (2 � f)0 F1

�
− ◦ −

− ◦ −

viewing the composition law of F as restricted to (2 � f)0 → F1. The 2-cells are given in a

manner analogous to that of the internal 2-arrow category from Example 3.4.3. First take the

limit of the diagram

F2 (2 � f)1 F2

F1 F1s
t π1π1 π2π2 s

and then take the equalizer in E of the analogous pair of arrows. Note that there is an internal

inclusion 2-functor 2 � f → F2 and an internal projection 2-functor Π: 2 � f → C. And Π is

an internal discrete 2-fibration since f is assumed to be one.

Just as ordinary 1-categorical limits and colimits are constructed canonically from certain

basic limit shapes, arbitrary finite pseudo-limits can be constructed from simpler ones. The

following result of R. Street gives the precise sense in which this is the case.

Theorem 4.1.6 (Limit Construction). In a 2-category K, finite weighted 2-limits can be con-

structed from a terminal object, binary products, equalizers, and cotensors with 2.

Proof. The argument on p. 106 of [Kel89] is that every weighted 2-limit is obtained as the

equalizer of a certain parallel pair of morphisms between products of cotensors with the cate-

gories indexed by P . Cotensors with categories can be constructed from cotensors with 2.

The notion of “2-limit” is that of enriched category theory with V = Cat. There are

variations obtained by weakening either the notion of weighted cone or the universal property.

For example, let Q : J → K denote a pseudo-functor on a 2-category. For each object A of K

there is a canonical functor K(A,Q). Let P : Jop → Cat, a pseudo-functor, denote the weight.

Definition 4.1.7 (Weighted Pseudo-Limit). In the notation above, the pseudo-limit of Q

weighted by P is an object {P,Q} of K together with a unit ζ : P → K({P,Q}, Q) making

an isomorphism of 1-categories

K(A, {P,Q}) ∼= Hom(J,Cat)(P,K(A,Q)). (4.1.2)
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where Hom(J,Cat), as in the Example 2.1.9, denotes the 2-category of category-valued pseudo-

functors on J, pseudo-natural transformations, and modifications. A conical pseudo-limit is

one weighted by the constant functor taking 1 as its only value.

Example 4.1.8. The pseudo-equalizer in Cat of parallel functors F,G : C ⇒ D has as its

objects those pairs (C, φ) where φ : FC ∼= GC is an isomorphism in D .

Remark 4.1.9. The isomorphism in Display 4.1.2 expresses the universal property of the pseudo-

limit as in §1.14 of [Str80]. This isomorphism could be weakened to require only an equivalence

of categories, in which case would be given the definition of the pseudo-bilimit of Q weighted

by P as in §1.13 of [Str80]. In general bilimits and bicolimits will not be considered in the

present work. That is, limits and colimits will always have universal properties expressed by

isomorphisms of categories such as that above.

Remark 4.1.10. The “pseudo” in pseudo-limit refers to the fact that the cones on the right

side of Display 4.1.2 are pseudo-natural transformations P → K(A,Q). There are analogous

limit-concepts in the cases that pseudo-natural transformations are replaced by lax- or oplax-

natural transformations. Each also admits of a weakened universal property as a bilimit. Thus,

considering all the various combinations, one might study oplax-bilimits, or 2-bilimits, or any

other combination that makes sense. In the present work, however, only 2-(co)limits and

pseudo-(co)limits will be studied.

4.2 Weighted Colimits of Category-Valued Functors

Let C denote a 2-category. Let E : C → Cat and W : Cop → Cat denote pseudo-functors. There

is a “hom” 2-functor

Cat(E,−) : Cat −→ [Cop,Cat]

given by sending a small category X to the pseudo-functor

Cat(E,X ) : Cop → Cat

given on objects by taking each C of Cop to the 1-category of functors and natural transfor-

mation Cat(EC,X ). The 2-functor Cat(E,−) could also be viewed as taking its values in

Hom(Cop,Cat) since every 2-functor is pseudo. In general a separate notation will not be used

to indicate this change of target. A pseudo-cocone on E weighted by W is a pseudo-natural

transformation W → Cat(E,X ).

The present section is concerned primarily with pseudo-colimits. For the ensuing compu-

tations are more involved in the pseudo-case. And so in this section “pseudo” is taken as the

primary notion. The development here is specialized to K = Cat.
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Definition 4.2.1 (Weighted Pseudo-Colimit). The pseudo-colimit of E weighted by W is a

category E � W together with a cocone ξ : W → Cat(E,E � W ) inducing into an isomorphism

of categories

Cat(E �W,X ) ∼= Hom(Cop,Cat)(W,Cat(E,X )) (4.2.1)

for any small category X . A pseudo-colimit is conical if W has 1 as its only value. It is finite

if C is a finite 2-category and each WC is finitely-presentable.

The strict version is also of interest. For completeness it is recalled here.

Definition 4.2.2 (Weighted 2-Colimit). Suppose that E and W are in fact 2-functors. The 2-

colimit of E weighted by W is a category E�sW together with a cocone ξ : W → Cat(E,E�sW )

inducing an isomorphism of categories

Cat(E �s W,X ) ∼= [Cop,Cat](W,Cat(E,X ))

for any small category X . A 2-colimit is conical if W has 1 as its only value.

Example 4.2.3. The coinverter of a 2-cell is a 1-morphism that universally inverts the 2-cell

by horizontal composition. That is, let s, t : S ⇒ C denote arrows admitting a 2-cell α : s ⇒ t.

The coinverter of α is an arrow q : C → Q such that q∗α is invertible and such that composition

with q induces an isomorphism of categories

K(Q,X) ∼= K(C,X)α

where K(C,X)α is the full subcategory of arrows C → X inverting α by horizontal composition.

Following the slight abuse of language in [KLW93], a coinverter will be called “reflexive” if the

2-cell α admits a morphism i : A → S with α ∗ i = 1.

The main result of the section, Theorem 4.2.11, is a computation of the weighted pseudo-

colimit in the case K = Cat and a direct verification of the universal property as in 4.2.1.

Theorem 4.2.11 should be seen as a weighted and genuinely 2-categorical generalization of

the computation of §6.4.0 in [AGV72], where the pseudo-colimit of a pseudo-functor on a 1-

category C → Cat is computed as a category of fractions. Colimit computations have been of

some interest recently. In §3.2 of F. Lawler’s thesis [Law13], there is a computation of conical

pseudo-colimits indexed by bicategories similar to the one subsequently presented here. From

this, Lawler computes weighted bicolimits using certain descent diagrams. The paper [DDS18a]

of Descotte, Dubuc, and Szyld shows how to compute certain σ-filtered σ-colimits in Cat.

The insight leading to the present construction in §4.2.1 is the observation that the category

of fractions technique can be carried out for both a category-valued functor and its weight by
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using a “diagonal category” Δ(E,W ) that carries out each functor’s category of elements

construction simultaneously. (It is worth pointing out that this would not just be the 2-

category of elements of the product bifunctor given by E and W .) Of course 2-cells must be

added in to account for the indexing 2-category, but passing to connected components makes

the candidate sufficiently 2-categorically discrete not only to be a 1-category but also to satisfy

all the necessary 2-dimensional coherence conditions. Passing to connected components seems

first to have featured in the conical colimit computations of §I,7.11 of [Gra74].

4.2.1 Candidate for Colimit

Let Δ(E,W ) denote the category with objects triples (C,X, Y ) with C ∈ C and X ∈ EC

and Y ∈ WC; and with arrows (C,X, Y ) → (D,A,B) those triples (f, u, v) with f : C → D

and u : f!X → A and v : Y → f∗B. Call a morphism (f, u, v) “cartesian” if both u and v

are invertible. Composition and identities in Δ(E,W ) are as in the 2-category of elements

of category-valued pseudo-functors. Boost Δ(E,W ) up to a 2-category as follows. Declare a

2-cell (f, u, v) ⇒ (g, x, y) to one α : f ⇒ g of C for which there are commutative triangles

U

f!X

g!X

V

f∗Y

g∗Y

(α!)X

u

x

v

y

(α∗)Y

in the respective fibers. Notice that this construction basically combines the 2-category of

elements constructions of Definition 2.2.8 for each pseudo-functor “along the diagonal.”

Now, recall from §2.1 that there is a “connected components” functor π0 : 2-Cat → Cat

taking a 2-category A to its 1-category of connected components, given by taking the π0 in the

usual sense of each hom-category A(X,Y ) for X,Y ∈ A. Now, declare as notation

E �W := π0Δ(E,W )[Σ−1] (4.2.2)

by first taking the connected components of the 2-category Δ(E,W ) and then inverting Σ,

the set of images of cartesian morphisms in the resulting 1-category. The notation may seem

somewhat prejudicial, but Theorem 4.2.11 – perhaps the central result of the present work

– shows that this construction is in fact a computation of the weighted pseudo-colimit of E.

For the computations, note that there is a canonical map L : Δ(E,W ) → E � W viewing a

morphism (f, u, v) as a span with left leg identity.
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Remark 4.2.4. Recall that category-valued pseudo-functors on 2-categories correspond, roughly

speaking, to discrete 2-fibrations, axiomatized in Definition 2.2.15. Thus, bracketing, temporar-

ily, the question of the correctness of the colimit computation in 4.2.2 above, let us notice that

an analogous construction can be carried out for a discrete 2-fibration F : F → C and a dis-

crete 2-opfibration E : E → C. Start by taking the ordinary pullback of the total 2-categories,

namely, E×C F. Then apply the connected components functor π0 and pass to the category of

fractions

E ⊗C F := π0(E×C F)[Σ
−1] (4.2.3)

where Σ is the set of images of arrows of the pullback whose components are (op)cartesian.

The use of the tensor notation is tendentious, but it will be justified in Corollary 4.2.13 below.

4.2.2 Assignments and Universal Property

Let E : C → Cat and W : Cop → Cat denote pseudo-functors on a small 2-category C.

Now, begin to define a correspondence

Φ: Cat(E �W,X ) −→ Hom(Cop,Cat)(W,Cat(E,X )) (4.2.4)

Start with a functor F : E � W → X . The image under Φ should be a pseudo-natural trans-

formation Φ(F ) whose components over C ∈ C should be functors

Φ(F )C : WC → Cat(EC,X ). (4.2.5)

To define such Φ(F )C , fix an object Y ∈ WC. The image should be a functor EC → X . For

an object X ∈ EC, declare

Φ(F )C(Y )(X) := F (C,X, Y ). (4.2.6)

And for an arrow u : X → Z of EC, the image under Φ(F )C(Y ) is taken to be the image under

F of (1, u, 1) viewed as a span in E �W with left leg identity, i.e., as the image of (1, u, 1Y ) of

Δ(E,W ) viewed in the category of fractions under the canonical map L above. Of course this

means that Φ(F )C(Y ) : EC → X is a functor since F is one.

Now, finish the assignment of 4.2.5. For an arrow v : Y → Z of WC, declare Φ(F )C(v)

to be the natural transformation Φ(F )C(Y ) ⇒ Φ(F )C(Z) whose components Φ(F )C(v)X are

the images of the morphisms (1, 1X , v) viewed as a span with left leg identity. Naturality in

X ∈ EC and that Φ(F )C is a functor both follow because F is a functor.

Now, the components Φ(F )C as in 4.2.5 indexed over C ∈ C comprise a pseudo-natural
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transformation. To see this, required are invertible cells

WD Cat(ED,X )

WC Cat(EC,X )

∼=f∗ (f!)
∗

for each f : C → D of C. Such a cell should be a natural isomorphism with components indexed

over Y ∈ WD. For such Y , the component of the coherence isomorphism should be a natural

isomorphism Φ(F )C(f
∗Y ) ⇒ (f!)

∗Φ(F )D(Y ) of functors EC → X . For X ∈ EC, a component

will be the image under F of the arrow in E �W given by the span

(C,X, f∗Y ) (C,X, f∗Y ) (D, f!X,Y ).
1 (f, 1, 1)

Note that the image of the span above upon passing to the category of fractions E � W is an

isomorphism. That these arrows amount to a natural isomorphism results from the fact that F

and the canonical morphisms L are functors. Now, the proposed components of the purported

isomorphism in the square above should be natural in Y ∈ WD. For v : Y → Z in WD, the

naturality square commutes because L and F are functors.

Lemma 4.2.5. The components Φ(F )C over C ∈ C as in 4.2.5, with coherence isos as above,

are a pseudo-natural transformation. Thus, the object assigment for Φ as in 4.2.4 is well-

defined.

Proof. Condition 1 of the pseudo-natural transformation axioms in 2.1.6 can be seen to hold

in the following way. Let f : B → C and g : C → D denote two arrows of C. The equality of

the corresponding 2-cells of the form of the first part of the condition then follows from the

commutativity of the figure

(B,X, f∗g∗Y )

(C, f!X, g∗Y ) (D, g!f!X,Y )

(D, (gf)!X,Y )

(B,X, (gf)∗Y )

(f, 1, 1)

(g, 1, 1)

(1,∼=, 1)

(gf, 1, 1)(1, 1,∼=)

and the fact that the canonical map L and the given F are functors.
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The second pseudo-naturality condition of 2.1.6 is verified in the following way. Start with

a 2-cell α : f ⇒ g between arrows f, g : C ⇒ D of C. The equality of 2-cells in the condition

boils down to the commutativity of the square

(C,X, f∗Y ) (C,X, g∗Y )

(D, f!X,Y ) (D, g!X,Y )

(1, 1, α)

(f, 1, 1) (g, 1, 1)

(1, α, 1)

when reduced to path-classes and subsequently to the category of fractions E � W . But this

can be seen by exhibiting a path between the composite sides of the square, namely, (f, α, 1)

and (g, 1, α). The path is a 2-cell of Δ(E,W ) between these two arrows. Take α itself. The

commutative triangles

g!X

f!X

g!X

f∗Y

f∗Y

g∗Y

(α!)X

(α!)X

1

1

(α∗)Y

(α∗)Y

show precisely that α : (f, α, 1) ⇒ (g, 1, α) is such a 2-cell, hence a path in the localization

E �W , meaning that the two arrows in the commutative square reduce to the same class in the

localization. Thus, the images of these classes under F are equal, proving the condition.

Now, continue the assignments for 4.2.4. In particular, take a natural transformation

α : F ⇒ G for functors F,G : E �W ⇒ X . The image under Φ should be a modification Φ(α)

with components

Φ(α)C : Φ(F )C → Φ(G)C (4.2.7)

indexed over C ∈ C. Each such component should be a natural transformation with components

Φ(α)C,Y : Φ(F )C(Y ) → Φ(G)C(Y ) (4.2.8)

indexed by Y ∈ WC. Further each such component should be a natural transformation

Φ(α)C,Y,X : Φ(F )C(Y )(X) → Φ(G)C(Y )(X) (4.2.9)

indexed over X ∈ EC. Unpacking the last condition from the definitions, this means that

Φ(α)C,Y,X ought to be an arrow of X of the form F (C,X, Y ) → G(C,X, Y ). Thus, make the

definition

Φ(α)C,Y,X := αC,X,Y : Φ(F )C(Y )(X) → Φ(G)C(Y )(X). (4.2.10)
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That the collections indicated by the displays 4.2.8 and 4.2.9 are natural in their proper vari-

ables follows from the definition in 4.2.10 by the naturality of α. What remains to check is

that the components of 4.2.7 comprise a modification.

Lemma 4.2.6. The arrow assignment for Φ with components Φ(α)C over C ∈ C as in 4.2.7

is a modification. In particular, the arrow assignment for Φ of 4.2.4 is well-defined.

Proof. Let f : C → D denote an arrow of C. The modification condition in Definition 2.1.8

requires equality of two composite 2-cells making two sides of a cylindrical figure. Chasing

Y ∈ WD around each composite reveals that the equality will follow from commutativity of

the square

F (C,X, f∗Y ) F (C,X, f∗Y )

F (D, f!X,Y ) F (D, f!X,Y )

αC,X,f∗Y

F (f, 1, 1) F (f, 1, 1)

αD,f!X,Y

But this is commutative in X because it is a naturality square for α at the morphism (f, 1, 1).

Lemma 4.2.7. The assignments giving Φ of 4.2.4 are functorial.

Proof. This follows by the definition of composition of natural transformations on the one hand

and of modifications on the other.

Now, begin assignments for a reverse correspondence, namely, what will be a functor

Ψ: Hom(Cop,Cat)(W,Cat(E,X )) −→ Cat(E �W,X ). (4.2.11)

Start with a pseudo-natural transformation θ : W → Cat(E,X ) of the domain. The image

Ψ(θ) will be a functor; it can be induced from the underlying category π0Δ(E,W ) of E � W

using the universality of the category of fractions construction. To this end, define

Ψ(θ) : π0Δ(E,W ) −→ X (4.2.12)

in the following way. On an object (C,X, Y ) of the domain, take

Ψ(θ)(C,X, Y ) := θC(Y )(X). (4.2.13)
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Now, for an arrow assignment, observe first that since θ is pseudo-natural, it comes with

coherence isomorphisms for each arrow f : C → D of C of the form

WD Cat(ED,X )

WC Cat(EC,X )

∼=

θD

f∗ f!

θC

Denote such a coherence isomorphism by θf . Thus, for a morphism (f, u, v) of Δ(E,W ) with

morphisms u : f!X → U and v : Y → f∗V of the appropriate fibers, take Ψ(θ)(f, u, v) to be the

composite morphism

θC(Y )(X) θC(f
∗V )(X) θD(V )(f!X) θD(V )(U)

θC(v)X θf,V,X θD(V )(u)

of X . It must be shown that this induces a well-defined assigment when passing to path-classes.

Lemma 4.2.8. The arrow assignment immediately above is independent of representative of

path-class. Additionally, the induced assignment on π0Δ(E,W ) gives a functor Ψ(θ) as in

4.2.12.

Proof. The first statement reduces to the case where α : (f, u, v) ⇒ (g, x, y) is a 2-cell of

Δ(E,W ) between arrows (C,X, Y ) ⇒ (D,U, V ). The claim is that the top and bottom sides

of the outside of the following figure are equal.

θC(f
∗V )(X) θD(V )(f!X)

θC(g
∗V )(X) θD(V )(g!X)

θD(V )(U)θC(Y )(X)

θf

θC(α)X θD(V )(α)

θg

θC(v)X

θC(y)X

θD(V )(u)

θD(V )(x)

But this is immediate. For the dashed vertical arrows give a square in the center that commutes

by the second coherence condition for θf and θg in 2.1.6 and the two triangles are the images

of the commutative triangles coming with the 2-cell α under θC and under θD(V ), respectively.

Thus any two such arrows connected by such a 2-cell α are in the same path class. Since an

arbitrary path is just alternating 2-cells of this form, this special case proves the first claim.

Therefore, the assignments for Ψ induce assignments on π0Δ(E,W ). That the arrow as-

signment is functorial also follows. The unit condition is trivial. That the assignment respects
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composition is involved but ultimately straightforward. One sets up a triangular figure each

of whose sides is a three-fold composite of morphisms arising as in the arrow assignment. The

claim is that one side of the triangle is equal to the composite of the other two. This can be

seen by filling in the figure with the various naturality and coherence conditions, a tedious but

straightforward task.

Corollary 4.2.9. The functor Ψ(θ) : π0Δ(E,W ) → X inverts the images of cartesian mor-

phisms, hence induces a functor on the category of fractions, also denoted by Ψ(θ) : E�W → X .

In particular the object assignment of Ψ above in 4.2.11 is well-defined.

Proof. The main claim basically follows from the definition of the arrow assignment for Ψ. For

if (f, u, v) is cartesian, then u and v are invertible and so are θC(v) and θD(V )(u). Of course

the components of θf are invertible. Thus, Ψ(θ)(f, u, v) for such (f, u, v) is invertible in X .

For an arrow assignment for Ψ, begin with a modification m : θ → γ of two given pseudo-

natural transformations θ, γ : W ⇒ Cat(E,X ). It suffices to induce the required natural

transformation from the underlying category Δ(E,W ). Take an object (C,X, Y ). The evident

definition of the required Ψ(m) : Ψ(θ) ⇒ Ψ(γ) is just

Ψ(m)C,X,Y := mC,Y,X : θC(Y )(X) → θC(Y )(X) (4.2.14)

that is, the X-component of the Y -component of the C-component of the modification m.

Lemma 4.2.10. The definition of 4.2.14 defines a natural transformation. Thus, in particular,

the arrow assignment of Ψ from 4.2.11 is well-defined. Additionally, Ψ, so defined, is a functor.

Proof. That the required naturality square commutes is just a result of the modification condi-

tion 2.1.8 satisfied by m. That Ψ is a functor again follows by the definitions of the assignments

and the definitions of composition of modifications and of natural transformations.

Theorem 4.2.11 (Colimit Computation). The functors Φ and Ψ of 4.2.4 and 4.2.11 are

mutually inverse. In particular, for pseudo-functors E : C → Cat and W : Cop → Cat, the

category E � W is the pseudo-colimit of E weighted by W in the sense that Φ and Ψ thus

provide an isomorphism

Cat(E �W,X ) ∼= Hom(Cop,Cat)(W,Cat(E,X ))

of categories for any small category X .

Proof. That Φ and Ψ are mutually inverse follows by computation from the definitions given

over the preceding development. That E �W is the pseudo-colimit follows by definition.



65

Remark 4.2.12. The theorem is the 2-dimensional analogue of the presheaf tensor-hom adjunc-

tion from Proposition 1.1.3.

4.2.3 Consequences of Theorem 4.2.11

Notice that for E and W , co- and contravariant pseudo-functors on a 2-category C as in the

previous subsection, the pseudo-colimit extends to a 2-functor E � − : Hom(Cop,Cat) → Cat.

The assignments on arrows and on 2-cells are the ones suggested by the construction of E �W .

Corollary 4.2.13. The induced 2-functor E �− is left 2-adjoint to the 2-functor Cat(E,−).

Proof. Theorem 4.2.11 almost proves this. The isomorphism in the conclusion of the statement

is also natural in X and in W , as can be seen from the definitions of the morphisms giving

the isomorphism.

Remark 4.2.14. The 2-adjunction of Corollary 4.2.13 above is, formally speaking, a 2-categorical

“tensor-hom adjunction” analogous to the 1-categorical case reviewed in the introduction.

Thus, to emphasize the analogy, use the notation

E ⊗C W := E �W (4.2.15)

and call this the tensor product of the pseudo-functors E and W over C.

Now, if C ∈ C is an object, then consider the colimit weighted by the canonical representable

2-functor yC : Cop → Cat. The computation underlying Theorem 4.2.11 shows explicitly that

E ⊗C yC is equivalent to the fiber EC. For indeed on the one hand there is a functor

F : EC → π0Δ(E,yC)

given by

F (X) = (C,X, 1) F (u) = (1, u, 1) (4.2.16)

where the latter arrow is viewed reduced modulo its path class in the target. The assignments

for F are completed by then passing to the category of fractions. Denote the composite again

by F . This is plainly a functor. On the other hand, there is a functor G : Δ(E,yC) → EC

given in the following way. On an object (B,X, f) with f : B → C, take the image under G to

be the image of X under the transition functor f!, namely,

G(B,X, f) := f!X. (4.2.17)
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Now, fix a morphism (B,X, f) → (D,Y, g) given by (h, u, θ) with u : h!X → Y in ED and

θ : f ⇒ gh a 2-cell of C. The image under G is defined to be the composite

f!X g!h!X g!Y
(θ!)X g!u

where of course θ! is the image under E of the 2-cell θ. That G is a functor follows by the

naturality of the images of the various 2-cells under E. But Δ(E,yC) is also a 2-category.

The assignments for G are well-defined on paths in Δ(E,yC). For let α : (h, u, θ) ⇒ (k, v, γ)

denote such a 2-cell. In particular, the 2-cells α, γ, and θ satisfy the relationship

C

B

D

⇓ γ C.

B

D

α
⇐ ⇓ θ=k

f

g

f

g

hk

And so, the images under G of the two 1-cells of Δ(E,yC) above are the left and right sides

of the diamond in the following figure.

g!h!X g!k!X

f!X

g!Y

(I)

(II)

(θ!)X (γ!)X

g!u g!v

The dashed arrow is the image under the transition functor g! of the component (α!)X . The

triangle (I) commutes by the condition on the 2-cells α, γ, and θ mentioned above. The triangle

(II) commutes since it is the image under the transition functor g! of the commutative triangle

Y

h!X

k!X

(α!)X

u

v

coming by definition with the 2-cell α. In particular, the discussion shows that G extends to

a functor on the 1-category of connected components, also denoted by G : π0Δ(E,yC) → EC,

since every path is constructed from such 2-cells.
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Corollary 4.2.15. For each C ∈ C, the functors F and G in the discussion above induce an

equivalence of categories E ⊗C yC � EC.

Proof. In fact, it follows immediately from the definitions that GF = 1. On the other hand, it

is straightforward, again from the definitions, to construct a natural system of maps 1 ⇒ FG,

each component of which is a cartesian arrow in Δ(E,yC), hence invertible when passing to

the category of fractions, and thus yielding the rest of the equivalence.

Corollary 4.2.16. The equivalence E ⊗C yC � EC of Corollary 4.2.15 is pseudo-natural in

C, yielding a pseudo-natural equivalence E ⊗C y � E. In this sense, Yoneda is a unit for the

tensor 2-functor E ⊗C −.

Proof. For an arrow f : C → D of C, the required coherence cell

EC E ⊗C yC

ED E ⊗C yD

φf
∼=

FC

f! 1 � yf

FD

has as its X-component for X ∈ EC, the arrow

(f, 1, 1) : (C,X, f) → (D, f!X, 1)

which is plainly cartesian, hence invertible in E⊗CyD. Naturality inX follows straight from the

definition. The two pseudo-naturality conditions of Definition 2.1.6 follow by the construction

of the colimit.

Corollary 4.2.17. Every category-valued pseudo-functor E : C → Cat has a “strictification.”

Proof. The previous corollary shows that E is pseudo-naturally equivalent to a strict 2-functor.

Remark 4.2.18. Corollaries 4.2.15 and 4.2.16 admit another, but substantially less informative,

proof from Theorem 4.2.11. That is, in the following display, the theorem provides the following

left-most isomorphism, while the equivalence on the right is the pseudo-Yoneda lemma:

Cat(E ⊗C yC,X ) ∼= Hom(C op,CAT)(yC,Cat(E,X )) � Cat(EC,X ).

These hold pseudo-naturally in C and X , which yields an equivalence E � E⊗CyC. That this

is pseudo-natural in C is a further consequence of the pseudo-naturality of the equivalences.
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4.3 The Tensor Product as a Coinverter

For the moment, let P : C op → Set and Q : C → Set denote ordinary functors. There is

another characterization of their tensor product, based on the construction of colimits from

coproducts and coequalizers. For this, recall that P and Q can be viewed as functions P → C0

and Q → C0 where P and Q are the sets formed by taking the disjoint unions of the sets PC

and QC over all C ∈ C0. The arrows of C act on P and Q. For example, n : C1×C0 P → P is

the action n(f, p) = Pf(p). The action m on Q is given analogously. And the tensor product

Q⊗C P is then the coequalizer of these actions as in the diagram

Q⊗C P.Q ×C0 PQ ×C0 C1 ×C0 P
1× n

m× 1

This is described in VII.5.(3) on p.379 of [MLM92]. Notice that it is the formation of these

actions that suggests viewing Q as a right C -module and P as a left C -module.

What follows is a 2-dimensional version of the coequalizer condition above for the tensor

product of discrete 2-fibrations constructed in the last subsection.

Let F : F → C denote a discrete 2-fibration with cleavage σ; and let E : F → C denote a

discrete 2-opfibration; each as in Definition 2.2.15. The first lemma gives part of the proof of

the omnibus fibration theorem from Chapter 2, namely, Theorem 2.2.6.

Lemma 4.3.1. In the notation above, the cleavage and opcleavage determine a 2-cell

E0 ×C0 (C0)
2 ×C0 F0 π0(E×C F)⇓ ρ× σ

1× n

m× 1

between the action functors coming with the algebra structure.

Proof. Given a morphism (X, f, Y ) → (Z, g,W ) in the domain category on the right with

components (u, h, k, v) represented by

C D

A B

Y

W

X

Y

=

f

h k

g

vu
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the naturality square takes the following form. The naturality square is represented by the

diagram

(X, f∗Y ) (f!X,Y )

(Z, g∗W ) (g!Z,W )

=

(ρ, σ)

(u, !) (!, v)

(ρ, σ)

This square evidently commutes by definition of the unique lifts.

Theorem 4.3.2. The tensor product E⊗CF , constructed as in Equation 4.2.3 with its universal

map L as in

E0 ×C0 (C0)
2 ×C0 F0 π0(E×C F) E ⊗C F⇓ ρ× σ

L

1× n

m× 1

is the reflexive coinverter of the cell ρ× σ as in Example 4.2.3.

Proof. Since the cleavage and opcleavage are assumed to be normalized, the 2-cell ρ × σ is

reflexive. And indeed the canonical morphism L : π0(E×C F) → E ⊗C F inverts the images of

cartesian morphisms. The task is to show that it does so suitably universally.

To see this, start with a functor K : π0(E ×C F) → X with a reflexive cell ζ : K(1 × n) ∼=
K(m× 1). The required induced functor

K̃ : E ⊗C F → X

arises in the following way. The point is that K inverts the images of cartesian morphisms.

But it suffices to show that K inverts the cell ρ×σ since any cartesian morphism is isomorphic

to one specified by ρ× σ. To this end, consider the morphism

C D

D D

Y

Y.

X

f!X

=

f

f 1

1

1ρ(X, f)
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Now, the naturality square corresponding to this morphism under the given normalized iso-

morphism ζ : K(1× n) ∼= K(m× 1) takes the form

K(X, f∗Y ) (f!X,Y )

(f!X,Y ) (f!X,Y )

=

ζX,f,Y

K(ρ, σ) K(1, 1)

ζf!X,1,Y

showing that K(ρ, σ) = ζX,f,Y , an isomorphism. Thus, there is a functor K̃ : E ⊗C F → X

induced by the universal property of the category of fractions making an appropriate commu-

tative triangle. The 2-dimensional aspect of the universal property of a reflexive coinverter is

similarly established.

4.3.1 Elementary Construction of Tensor Product

The last theorem motivates an internal definition of the tensor product in the case of K = Cat(E )

for suitable E . Let e : E → C denote a discrete 2-opfibration with underlying opcleavage ρ; and

let f : F → C denote a discrete 2-fibration with underlying cleavage σ, each as in Definition

3.4.12. The cleavage and opcleavage determine an internal natural transformation of underlying

internal 1-functors as displayed in the following diagram; the tensor product is defined to be

the coinverter, as in Example 4.2.3, of the reflexive 2-cell

E0 ×C0 (C0)2 ×C0 F0 π0(E ×C F) E ⊗C F⇓ ρ× σ
L

1× n

m× 1

appearing as the dashed arrow, if it exists. Recall that the ‘π0’ indicates the internal connected

components construction of §3.4.1. Provided that the tensor always exists, it will define a

2-functor

E ⊗C − : DFib(C) −→ K = Cat(E ).

The following section extracts necessary filteredness conditions under which the tensor product

can be seen to arise through a right calculus of fractions, both in the classical case of ordinary

categories and internally in the elementary case of K = Cat(E ) for sufficiently nice E , as

described in Chapter 5.
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4.4 Extraction of Filteredness Conditions

What follows are necessary “intrinsic” conditions following from the assumption that the tensor

2-functor E ⊗C − : Hom(Cop,Cat) → Cat preserves finite weighted limits. Throughout use the

result of Theorem 4.2.11 that there is an equivalence E ⊗C yC � EC for any C ∈ C.

Definition 4.4.1. A pseudo-functor E : C → Cat is 2-filtered if

1. some fiber EC has an object;

2. for any objects X ∈ EC and Y ∈ ED, there is a span in C with legs f : B → C and

g : B → D and an object Z ∈ EB such that f!Z ∼= X and g!Z ∼= Y in the respective fibers;

3. for any parallel f, g : C ⇒ D of C and an object X ∈ EC with f!X ∼= g!X, there is an

arrow h : B → C and an object Z ∈ EB such that

(a) fh = gh holds;

(b) h!Z ∼= X holds; and

(c) the coherence condition

g!h!Z g!X

f!h!Z f!X

=

g!w

∼= ∼=

f!w

holds;

4. for each arrow u : X → Y of any fiber EC, there is a 2-cell

B ⇓ α C

f

g

and an object Z ∈ EB yielding between u and (α!)X an isomorphism

X Y

f!Z g!Z

=

u

∼= ∼=

(α!)Z

in the arrow category E(C)2.
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Remark 4.4.2. The above definition is justified in the following proposition. Notice first how it

recalls the standard definitions of filteredness in a 1-categorical case, namely, that of Moerdijk’s

“principal C -bundle” in Definition 2.2 of [Moe95]. For this reason, here in Definition 4.4.1,

the first condition is a non-emptiness, or non-triviality condition. The second is a spanning, or

transitivity condition. The third is a freeness condition. The significance of the last condition

is explained partly below.

Example 4.4.3. Let C denote a 2-category. Any representable 2-functor

yC = C(C,−) : C → Cat

is 2-filtered as above. This is essentially the analogue of a free module over a ring R being flat.

Now, Definition 4.4.1 is justified by the following result. The pattern of the proof follows

that of the necessity direction of Theorem VII.6.3 of [MLM92], showing that left-exactness of

the set-theoretic tensor product implies the usual 1-categorical notion of filteredness.

Proposition 4.4.4. Let E : C → Cat denote a pseudo-functor. If the tensor 2-functor

E ⊗C − : Hom(Cop,Cat) → Cat

preserves finite weighted pseudo-limits up to equivalence, then E is 2-filtered in the sense of

Definition 4.4.1.

Proof. Since E ⊗C 1 is weakly equivalent to the terminal category 1, there is some fiber of E

with an object, which verifies the non-emptiness condition.

Let yA and yB denote two representables at A and B in C. By the preservation hypothesis,

there is a sequence of equivalences

E ⊗C (yA× yB) � (E ⊗C yA)× (E ⊗C yA) � EA× EB

the left being weak and the rightmost being the equivalence as a consequence of 4.2.11. In any

event, since the composite is essentially surjective, given two objects X ∈ EC and Y ∈ ED,

there is in particular a span f : B → C and g : B → D in C and an object Z in EC such that,

by definition of the functors making the equivalence, it follows that there are isomorphisms

f!Z ∼= X and g!Z ∼= Y , as required.

For the equalizing condition, suppose that there are morphisms f, g : C ⇒ D of C and an

object X ∈ EC with f!X ∼= g!X. Let ε : Q → yC denote the pseudo-equalizer in [Cop,Cat] of
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the induced arrows f∗, g∗ : yC ⇒ yD. Now, since E is a 2-functor, the squares on the right in

the following diagram commute and thus there is an induced dashed arrow

E ⊗C Q E ⊗C yC E ⊗C yD

E EC ED

E ⊗ ε E ⊗ f∗

E ⊗ g∗

K

f!

g!

∃ ! � �

where K : E → EC is the pseudo-equalizer of f!, g! : EC ⇒ ED in Cat. The dashed arrow is

in particular essentially surjective by the preservation hypothesis; and this yields the arrow h

and object Z with the desired properties. The coherence condition follows from the fact that

the squares on the right side of the diagram commute up to isomorphism.

Finally, by the preservation hypothesis, there is a sequence of equivalences

E ⊗C (2 � yC) � 2 � (E ⊗C yC) � (EC)2

the rightmost being a weak equivalence and the leftmost coming from the corollary to Theorem

4.2.11. Since in particular the composite is essentially surjective, there is an object (B,Z, α)

of the domain whose image is isomorphic to u : X → Y in the target. The definitions of the

object correspondences in the equivalences show that this yields the required isomorphism in

the statement of the condition.

Remark 4.4.5. In fact, a converse to Proposition 4.4.4 holds. The proof again is by considering

the various finite-limit shapes and can be executed, technically speaking, by building cones on

the required diagrams in the manner of the proofs of the lemmas leading to Theorem 6.3.6.

But in any event, the elementary results of Chapter 6 prove this converse in greater generality.

If C is a 1-category, then requiring 2-filteredness of a category-valued pseudo-functor E on

C essentially forces E to take sets as values. Thus, such E is basically a discrete opfibration.

Corollary 4.4.6. Each category EC, for a 2-filtered pseudo-functor E : C → Cat on a 1-

category C , is a connected preordered groupoid, thus equivalent to a set.

Proof. The proof of Proposition 4.4.4 shows that any morphism u : X → Y in a given category

EC is isomorphic in the arrow category E(C)2 to a component of the natural transformation

of the image of 2-cell of C under E. However, as C is 2-categorically discrete, such a transfor-

mation can only be an identity morphism, meaning that u is isomorphic in the arrow category

to an identity, making it invertible itself. The remaining filteredness conditions now imply that
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between any two objects of each category EC there is precisely one morphism. Thus, each EC

is equivalent to a set.

Remark 4.4.7. Now, consider the 2-category of elements construction of E : C → Cat from

Definition 2.2.8, denoted in the usual fashion by

Π:

∫
C
E −→ C.

Recall from Proposition 2.2.10 that Π is a discrete 2-fibration in the sense that Π0 is an opcloven

opfibration and locally Π is a discrete fibration. The 2-filteredness conditions of Definition 4.4.1,

stated in terms of the existence of certain arrows in the completion, take the following form.

1. There is an object (C,X) of the category of elements construction.

2. For any two objects (C,X) and (D,Y ), there is a span with legs (f, v) : (B,Z) → (C,X)

and (g, v) : (D,Y ) with u and v invertible.

3. For any parallel arrows (f, u), (g, v) : (C,X) ⇒ (D,Y ) with u and v invertible, there is

an arrow (h,w) : (B,Z) → (C,X) with w invertible, equalizing the given parallel pair.

4. Each arrow (1, u) : (C,X) → (C, Y ) fits into a 2-cell

(B,Z) ⇓ α

(C,X)

(C, Y )

(f, u)

(g, v)

(1, u)

with u and v invertible.

It follows that E is filtered in the sense of Definition 4.4.1 if, and only if, the conditions

immediately above are satisfied. Recalling that the morphisms (f, u) with u invertible are

precisely the opcartesian morphisms for the underlying opfibration Π0, this discussion justifies

the following definition.

Definition 4.4.8. A discrete 2-opfibration E : E → C with opcleavage ρ as in Definition 2.2.15

is understood to be 2-filtered with respect to the opcartesian morphisms of the underlying opfi-

bration E0 if

1. the 2-category E has an object;

2. for any two objects A,B ∈ E, there is a span A ← Z → B with both arrows opcartesian;
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3. for any parallel opcartesian arrows A ⇒ B of E, there is a further opcartesian arrow

D → A that equalizes the given parallel pair;

4. each vertical arrow u : A → B of E fits into a 2-cell

Z ⇓ α

A

B

u

with the two unlabeled arrows opcartesian.

Remark 4.4.9. The conditions of Definition 4.4.8 differ from those of the notion of “bifiltered,”

given in Definition 3.2 of [Ken92]. Here no equifying condition on parallel 2-cells is required

since E is already locally discrete. For the same reason, and for the reason that there are no lax

cells under consideration here, Definition 4.4.8 also differs from the more recent Definition 3.1.1

of [DDS18b]. Here follow technical results that will be needed in subsequent developments.

Lemma 4.4.10. Let E : E → C denote a discrete 2-opfibration. Assume that E is filtered with

respect to opcartesian morphisms as in Definition 4.4.8. Then for any arrows f, g : A ⇒ B of

E with g opcartesian, there is opcartesian h : Z → A and a 2-cell α : fh ⇒ gh of E.

Remark 4.4.11. This shows that for any discrete 2-opfibration, filtered in the present sense, the

condition ‘σF1’ of Definition 3.1.2 in [DDS18b] is also satisfied. It will be used in the proof of

Theorem 5.1.2.

Proof. The given arrow f factors as f = vk an opcartesian followed by a vertical morphism.

This factorization and the rest of the proof is contained in the following diagram.

Z · · A B

·

·
⇒

w u

f

g

k v

The 2-cell arises from the fact that the vertical arrow v fits into such a cell by the fourth

condition of Definition 4.4.8. Each unmarked arrow is opcartesian. The span of arrows making
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the square is the “spanning” condition of the same definition; the arrow u making a commu-

tative square arises from the “freeness” condition; finally the arrow w equalizes the topmost

and bottommost composites of opcartesian arrows, yielding the desired 2-cell. In particular, h

is the composite of the rightmost three opcartesian arrows Z → A.

Lemma 4.4.12. Let E : E → C denote a discrete 2-opfibration as in Definition 2.2.15. If

E is filtered in the sense of Definition 4.4.8, then, for any morphism f : A → Z of the total

2-category E, there are opcartesian morphisms w and r and a 2-cell fw ⇒ r of E.

Remark 4.4.13. This result will play a crucial role in the proof of Lemma 6.3.1.

Proof. Again f factors as f = vk for k opcartesian and v vertical. By the assumed filteredness

conditions, f with its factorization fits into a diagram

· · ·

·

A Z

⇒
k v

f

with all unlabeled arrows opcartesian; the 2-cell exists since v is vertical; the rightmost horizon-

tal arrow equalizes the two sides of the diamond figure construced by the spanning condition.

This shows that there are opcartesian arrows w and r and a 2-cell θ : fw ⇒ r.



Chapter 5

Localization of Internal Categories

5.1 A Calculus of Fractions

The colimit computation lim→ F = F [Σ−1], reviewed in §4.2, under certain filteredness con-

ditions on the base category, admits a right calculus of fractions. This is proved in §6.4.0
of [AGV72]. This is a desirable situation. For the ordinary category of fractions has as its

morphisms only certain formal “zig-zags” of alternating arrows coming from the free category

construction. The right calculus of fractions gives a more tractable characterization of these

morphisms as equivalence classes of certain spans. The point of the computation is that fil-

teredness should imply the existence of a right calculus of fractions. Such a result ought to

extend to the colimit construction of 4.2.2 in the present work under the filteredness conditions

of Definition 4.4.1 or Definition 4.4.8. That it does is the content of the present subsection.

Let us recall the definition which originated with [GZ67].

Definition 5.1.1. A set of arrows Σ of a category C admits a right calculus of fractions if

1. Σ has all identities and is closed under composition;

2. any corner diagram with horizontal arrow in Σ can be completed to a commutative square

· ·

· ·

τ

σ

with τ also in Σ;

3. any parallel arrows coequalized by one in Σ are also equalized by one in Σ as in the

diagram

· · · ·τ σ

again with τ in Σ.

The description of the resulting category C [Σ−1] is set out in detail over the course of §5.2
of [Bor94]. The objects are just the objects of C . And for such Σ, the morphisms are given by

77
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equivalence classes of spans · ← · → · whose left leg is in Σ and whose right leg is an arbitrary

arrow of C . Two such spans are considered to be equivalent if there is a further span indicated

by the dashed arrows in

· · ·

·

·

σ′

σ

making two commutative squares with each side of the leftmost square composing to an arrow

of Σ. The process of forming a category of fractions from a set admitting a calculus of fraction

will be referred to as “localization.”

Theorem 5.1.2. Let E : E → C denote a discrete 2-opfibration as in Definition 2.2.15. If E

is 2-filtered as in Definition 4.4.8, then for any discrete 2-fibration, F : F → C, the set Σ of

images of cartesian morphisms, inverted to form the tensor product E ⊗C F as in Equation

4.2.3, admits a right calculus of fractions as described in Definition 5.1.1.

Proof. The set Σ of images of cartesian morphisms of E×CF contains all identities and is closed

under composition. Thus, for the second condition, assume given a corner diagram of the form

(A,B)

(X,Y ) (Z,W )

(e, f)

(s, t)

with s opcartesian and t cartesian. The arrows e and s determine a corner in E that, by the

spanning condition of the hypothesis and the extra filteredness condition of Lemma 4.4.10, can

be completed to a cell by cartesian arrows u and v as at left below. The image in C under E

is on the right.

C A

X Z

⇐
EC EA

EX EZ

⇐

v

u e

s

Ev

Eu Ee

Es

The objects B and Y of F are over EA and EX, respectively. Since F is in particular a

fibration, there are chosen cartesian arrows

σ(Ev,B) : E(v)∗B → B σ(Eu, Y ) : E(u)∗Y → Y
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of F over Ev and Eu, respectively. In the following diagram, the 2-cell arises because F is

locally a discrete fibration and the image in C of the constructed 2-cell in E thus lifts to a 2-cell

of F whose target is over E(s)E(u).

E(v)∗B B

E(u)∗Y Y W

⇓

σ

h f

σ t

Additionally, since tσ(Eu, Y ) is cartesian over E(s)E(u), there is a unique h : E(u)∗Y →
E(v)∗B arising as a vertical lift of identity on EC making the depicted triangle commute in F.

Thus, the initially given corner diagram can be completed to a 2-cell of E×C F by the arrows

u and v of E and the arrows σh and σ of F as in

(C,E(v)∗B) (A,B)

(X,Y ) (Z,W )

⇐

(v, σ)

(u, σh) (e, f)

(s, t)

which of course becomes a commutative square upon passing to path-classes in the reduction

π0(E×C F). This verifies the second condition.

Finally, a statement stronger than the third condition is true. Let e, g : A ⇒ X denote

parallel arrows of E. The diagram below is constructed in the following way. The fourth

condition of the 2-filteredness definition guarantees that e and g each fit into the depicted

2-cells with opcartesian morphisms. The commutative square is formed using the spanning

and equalizing conditions. And finally r equalizes the two outside legs of the triangle with

codomain A.

· · = X

·

·

A

A

⇓

⇑

r

e

g
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Now, all the morphisms in the diagram beside possibly e and g are opcartesian. Therefore,

the diagram shows that there is an opcartesian morphism l : D → A and a path of 2-cells

between el and gl. Now, since F : F → C is a fibration and locally a discrete opfibration, for

any f, h : B ⇒ Y of F over Ee and Fh, respectively, there is a cartesian morphism k : C → B

over El and a path between fk and hk in F over the image in C of the path in E under E.

Thus, for any parallel pair of morphisms of E×C F as in

(D,C) (A,B) (X,Y )
(l, k) (e, f)

(g, h)

a dashed cartesian arrow exists admitting a path in E×C F between the compositions. This is

certainly still true, if, as in the hypothesis of the final condition for a right calculus of fractions,

the image of the parallel pair modulo connected components is coequalized by the image of a

cartesian morphism.

5.2 Localization, Internally

Throughout let E denote an exact category in the sense of §2.3.2. Let K denote Cat(E ), viewed

as a 2-category. Fix throughout C, a category internal to E displayed as the tuple

C = (C0, C1, d0, d1, i, ◦)

and satisfying the axioms of §3.1.
The subsequent sections are directed toward reproducing in K the calculus of fractions

constructions as summarized in §5.1.1. To this end, let s : Σ → C1 denote a monomorphism.

The internalized version of Definition 5.1.1 is now the following.

Definition 5.2.1 (Internal Right Calculus of Fractions). The morphism s : Σ → C1 admits a

right calculus of fractions if

1. given x : X → C0, the composite ix : X → C1 factors through s : Σ → C1;

2. given f, g : X ⇒ Σ, the C-composite sf ◦ sg : X → C1 factors through s : Σ → C1;

3. given generalized morphisms f : X → C1 and g : X → Σ with d1f = d1sg, there exists a

regular epimorphism p : Z → X and generalized morphisms h : Z → C1 and k : Z → Σ

for which the equation sk ◦ fp = h ◦ sgp holds;

4. and finally given f, g : X ⇒ C1 and h : X → Σ such that the equations



81

(a) d0f = d0g

(b) d1f = d1g

(c) d0sh = d1f = d1g

(d) f ◦ sh = g ◦ sh

all hold, it follows that there exist a regular epimorphism p : Z → X and a generalized

morphism k : Z → Σ such that sk ◦ fp = sk ◦ gp.

Remark 5.2.2. Think of the third condition as a sort of (pseudo) “spanning” condition; and of

the fourth condition as a sort of “freeness” condition.

Remark 5.2.3. The axioms above are given in an “elementary” form. However, the conditions

can be stated in terms of the existence of certain regular epimorphisms. For example, one such

condition is implied by the spanning condition above. For this, let X and Y denote the corner

objects of the pullbacks

Y Σ

C1 C0

�
X C1 ×C0 Σ

Σ×C0 C1 C1

�

π2

π1 d1s

d1

π2

π1 ◦(1× s)

◦(s× 1)

There is induced a canonical morphism X → Y by the universal property of Y .

Lemma 5.2.4. If s : Σ → C1 admits a right calculus of fractions as in Definition 5.2.1, then

the canonically induced morphism r : X → Y as above is a regular epimorphism.

Proof. By the spanning axiom for the right calculus of fractions there is are regular epimor-

phisms p : Z → Y and q : Z → X. These can be taken to have the same domain by taking

pullbacks. By uniqueness these satisfy rq = p. Hence by Lemma 2.3.2, the induced map

r : X → Y is a regular epimorphism.

5.2.1 Arrows of Localization

From the classical construction, the object of objects of a category of fractions for s : Σ → C1

ought to be nothing other than C0 itself. Thus, the non-trivial task is to give an object of

arrows. This is constructed in the present subsection as a certain coequalizer. Throughout,
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denote by S the corner object of the pullback

S C1

Σ C0

�

π2

π1 d0

d0s

This is the object of spans of C whose left leg is in Σ. Think of d1sπ1 : S → C0 as giving the

domain of a span; and of d1π2 : S → C0 as giving the codomain. Denote by S × S the total

object of the product of 〈sd1π1, d1π2〉 : S → C0 ×C0 with itself in the slice E /C0 ×C0. This is

formed as a pullback in E .

Remark 5.2.5. It is worth noting that the exactness hypothesis on E will be essential in the

following development. The sequence resulting from Theorem 5.2.7 below will be a kernel by

exactness of E . That the sequence is thus a coequalizer and a kernel pair is used in the proof

that the composition morphism as defined in Construction 5.2.2 is well-defined.

Construction 5.2.1. Let P denote the corner object of the pullback on the left and Q the limit

object of the diagram on the right

P C1 ×C0 C1

C1 ×C0 C1 C1

�
Q C1 ×C0 Σ

C1 ×C0 Σ C1.

Σ

π2

π1 ◦

◦

π2

π1 ◦(1× s)

◦(1× s)

π3

s

These are the objects of commutative squares and commutative squares with two bottom sides

in Σ and whose sides compose to an element Σ, respectively. Let R denote the corner object of

the pullback

R P

Q C1 × C1.

�

π2

π1 〈π1π1, π1π2〉

〈π1π1, π1π2〉

An element of R is a pair of spans related in the manner depicted in the remark immediately

below. Note that by the universal property of the pullback giving S, there are two canonical
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maps

S C1

Σ C0

�

R

S C1

Σ C0

�

R

π2

π1 d0

d0s

π2π1π1

π2π1π2

δ0

π2

π1 d0

d0s

π2π2π1

π2π2π2

δ1

since the outside squares commute. Let R0 denote the object of the image factorization

R S × S

R0

〈δ0, δ1〉

taken in E /C0 ×C0. Denote the components of the monomorphism R0 → S × S by ∂0 and ∂1.

Interpret R0 as the set of pairs of elements of S related by a span in the manner of R above.

Remark 5.2.6. Under set-theoretic interpretation in the case that E = Set, an element of R,

viewed as a set, is a figure of the form

· · ·

·

·

σ′

σ

with the left square composing again to an element of Σ. The right square comes from the set

P and the left from Q. Note that a chosen dashed span comes with each such element of R

whereas for any element of R0 the two outside spans are related by some such dashed span,

but a particular one is not given.

Theorem 5.2.7. The image R0 → S × S is an equivalence relation in the slice E /C0 × C0.

Proof. The reflexivity and symmetry conditions of 2.3.12 have straightforward elementary con-

structions using the conditions of Definition 5.2.1. As set-up for transitivity, take three gener-

alized spans φ,ψ,χ viewed as arrows X → S over C0 × C0. Suppose further that, on the one

hand, there is α : X → R0 for which ∂0α = φ and ∂1α = ψ hold; and, on the other hand, that

there is β : X → R0 such that ∂0β = ψ and ∂1β = χ. Refer to this as the “given diagram.”
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Using the conditions of Definition 5.2.1, it is possible to build a cone on the given diagram,

that is, a regular epimorphism N → X fitting into a commutative square

N R0

X S × S

〈∂0, ∂1〉

〈∂0α, ∂1β〉

viewed in the slice category over C0 × C0. Since the right vertical arrow is a monomorphism,

and since each regular epimorphism is strong by Example 2.3.1, the dashed arrow making two

commutative triangles exists. This is the required arrow for the transitivity condition.

Definition 5.2.8. Let u : S → C[Σ−1]1 denote the coequalizer in E /C0 × C0 of the equiva-

lence relation R ⇒ S from Theorem 5.2.7. Notice that C[Σ−1]1 thus comes with domain and

codomain arrows d0, d1 : C[Σ
−1]1 ⇒ C0 induced from 〈sd1π1, d1π2〉 : S → C0 × C0.

Corollary 5.2.9. The pair R0 ⇒ S of Construction 5.2.1 is the kernel of u in E /C0 × C0.

Proof. This follows by Theorem 5.2.7 and exactness, in particular, Lemma 2.3.16.

Corollary 5.2.10. The parallel pair R0 ⇒ S of Construction 5.2.1 determines a groupoid

internal to E /C0 × C0.

Proof. This follows by Theorem 5.2.7 and Theorem 3.1.11.

5.2.2 The Composition Arrow

Suppose that s : Σ → C1 admits a right calculus of fractions as in Definition 5.2.1. Use

u : S → C[Σ−1]1 to denote the coequalizer as in Definition 5.2.8.

Construction 5.2.2. Let V denote the corner object of the pullback

V C1 ×C0 S

Σ×C0 S C1

�

π2

π1 − ◦ s

s ◦ −

taken in E . The corner object Σ ×C0 S is the pullback of d0π2 along d1s; the other corner is

the pullback of d0π2 along d1. Thus, V is the object of compositions of two composable spans
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in S. In the set-theoretic case, an element is depicted in the display of the remark below. In

the general case, there are two useful equations, namely,

d1sπ1π1 = d0π2π2π1 = d0sπ1π2π1 (5.2.1)

and

d1π1π2 = d0sπ1π2π2 = d0π2π2π2 (5.2.2)

which show that the codomains of the arrows of the top span do match with the appropriate

domains of the arrows of the two bottom spans. By the construction of V above, there are

morphisms V → Σ and V → C1 arising by equations 5.2.1 and 5.2.2. These appear in the

following diagram:

S C1

Σ C0

�

V

d0

d1

π1π1 ◦ π1π2π1

π1π2 ◦ π2π2π2

c

Since the outside commutes, the dashed arrow V → S exists by the universal property of S.

In the set theoretic interpretation, the effect of this induced morphism is to compose the spans

making an element of V and to send the result to the outside span.

Remark 5.2.11. Set-theoretically speaking, an element of such a set V would be a figure of the

form

· · ·

· ·

·

with all southwest-pointing arrows in Σ. So, an element of V is a pair of composable spans of

S with a chosen span composing them. The arrow c : V → S of Construction 5.2.2 composes

all the arrows of the above figure and sends the result to the corresponding span. In the

general case, this morphism will induce the required composition arrow for C[Σ−1]1 provided

that the assignment is well-defined on equivalence classes. That this is the case will be shown

in Proposition 5.2.16. The rest of this section provides constructions and set-up required for

this result and those in subsequent sections.
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The object of composable pairs of elements of S is the corner object of the pullback

S ×C0 S S

S C0

�

π2

π1 d1sπ1

d1π2

taken in E . An arrow q : V → S ×C0 S is given by the universal property of S ×C0 S as in the

diagram

S ×C0 S S

S C0.

�

V

d0sπ1

d1π2

π2π1

π2π2

q

as the outside square commutes by the category axioms for C.

Lemma 5.2.12. The arrow q : V → S ×C0 S immediately above is regular epi.

Proof. The claim is that q is a pullback of a regular epimorphism. To see this, note that S×C0S

and V admit canonical arrows to the objects Y and X from remark 5.2.3, respectively, as in

the diagrams

Y Σ

C1 C0

�

S ×C0 S

X C1 ×C0 Σ

Σ×C0 C1 C0.

�

V

π2π1

π1π2

〈π1π1, π2π2π1〉

〈π1π2, π1π2π2〉

The resulting square

V X

S ×C0 S Y

q

is a pullback in E . Commutativity follows from the uniqueness clause of the universal property

for Y . Universality follows from universality for V .
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The object of composable classes of spans is the corner object of the pullback

C[Σ−1]1 ×C0 C[Σ
−1]1 C[Σ−1]1

C[Σ−1]1 C0.

�

π2

π1 d0

d1

Notice that there is a canonical map

u× u : S ×C0 S −→ C[Σ−1]1 ×C0 C[Σ
−1]1

given by universal properties.

Lemma 5.2.13. The arrow u × u : S ×C0 S → C[Σ−1]1 ×C0 C[Σ−1]1 is regular epi. Hence

v = (u× u)q is regular epi.

Proof. Factor u× u as the composition (1× u)(u× 1). The maps 1× u and u× 1 are regular

epis because they are pullbacks of u. The second statement follows since regular epis are stable

under composition.

Construction 5.2.3. The object K0 is given in the following way. First let I0 and J0 denote

the corner objects of the two pullbacks

I0 V

R0 S

�
J0 R0

V S

�

π2

π1 π2π1

∂1

π2

π1 ∂0

π2π2

with V as above and R0 with kernel arrows ∂0 and ∂1 as in Construction 5.2.1. The object K0

then denotes the corner object of the pullback square

K0 J0

I0 S × S

�

π2

π1 〈π2π1π1, ∂1π2〉

〈∂0π1, π2π2π2〉

Intuitively, an object of K0 consists of two elements of V whose first spans are related under

R0 and whose second spans are related by R0.
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Lemma 5.2.14. The object K0 is the kernel of v. As a consequence, v is the coequalizer of

canonical morphisms K0 ⇒ V .

Proof. By Lemmas 5.2.12 and 5.2.13, the map v is a regular epi, hence the quotient of its

kernel, whatever it is. Now, to prove the first statement, note that it is a direct calculation

that the square

K0 V

V C[Σ−1]1 ×C0 C[Σ
−1]1

π1π2

π2π1 v

v

is a pullback. That the square commutes follows by the uniqueness clause of the universal

property for the pullback object in the lower righthand corner. That the universal property is

satisfied uses twice that R ⇒ S → C[Σ−1]1 is exact, hence in particular a kernel on the left side

by Corollary 5.2.9. Regularity means that every regular epi is the coequalizer of its kernel.

Construction 5.2.4. There is a further object K that is to K0 as R is to R0, at least in the

sense that an element of K is essentially one of K0, but with specified structures under which

the elements are related. It is constructed in the following way. First let I and J denote the

corner objects of the two pullbacks

I V

R S

�
J R

V S

�

π2

π1 π2π1

δ1

π2

π1 δ0

π2π2

with V as above and R with kernel arrows δ0 and δ1 as in §5.2.1. The object K is then denotes

the corner object of the pullback square

K J

I S × S

�

π2

π1 〈π2π1π1, δ1π2〉

〈δ0π1, π2π2π2〉

Intuitively, an object of K consists of two elements of V whose first spans are related under R

and whose second spans are related by R.
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There are canonical maps I → I0 and J → J0 arising by universal properties from the map

e : R → R0. Accordingly, K admits a canonical morphism to K0 as in

K0 J0

I0 S × S.

�

K

by the construction of K0 in §5.2.3 above.

Corollary 5.2.15. The canonical map K → K0 is regular epi.

Proof. The square

K R×C0 R

K0 R0 ×C0 R0

〈π1π1, π2π2〉

e× e

〈π1π1, π2π2〉

is a pullback in E .

Proposition 5.2.16. Composition is well-defined on equivalence classes in the sense that there

is an induced morphism as in the diagram

V S

C[Σ−1]1 ×C0 C[Σ
−1]1 C[Σ−1]1

c

v u

c

where c is as in Construction 5.2.2.

Proof. The calculus of fractions conditions in Definition 5.2.1 suffice for the purpose of building

a cone on elements of K from Construction 5.2.4 above in the form of a regular epimorphism

E → K. Under set-theoretic interpretation an element of K has four open corners that can

be closed successively using the spanning and freeness conditions of the mentioned definition.

Now, an element of each such cone thus relates the two V -sides of an elements of K; and so E
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admits a map r : E → R making the two top squares of the following diagram commute:

E

K0

V

C[Σ−1]1 ×C0 C[Σ
−1]1

R

R0

S

C[Σ−1]1

ε

π1π2π2π1

v

e

∂1∂0

u

r

c

c

by definition of δ0 = ∂0e and δ1 = ∂1e as in Construction 5.2.1. Therefore, since uδ0 = uδ1

holds by construction, it follows that

uδ0r = ucπ2π1ε = ucπ1π2ε = uδ1r.

Since the regular epimorphism ε cancels, this means that the morphism uc coequalizes π2π1

and π1π2. Since v is the coequalizer of π2π1 and π1π2 by Lemma 5.2.14, the dashed morphism

in the display above exists.

5.2.3 Composition is Associative

It will be seen in Proposition 5.2.21 that the associativity condition holds up to precomposition

with a certain regular epimorphism morphism. Recall that V from Construction 5.2.2 denotes

the object of compositions of composable elements of S.

Construction 5.2.5. Form the pullback

V ×S V V

V S.

�

π2

π1 π2π1

π2π2

Thus, set-theoretically, an element of V ×S V would be a pair of elements of V having one of

their respective bottom spans in common. By the universal property of the three-fold pullback

on the right below, there is a canonical map

〈π2π1π1, ξ, π2π2π2〉 : V ×S V → S ×C0 S ×C0 S
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where ξ denotes either map of the pullback defining the object V ×S V above. Its composite

with three instances of the projection u appears on the left side of the square

V ×S V S ×C0 S

C[Σ−1]1 ×C0 C[Σ
−1]1 ×C0 C[Σ

−1]1 C[Σ−1]1 ×C0 C[Σ
−1]1

c× π2

u× u

c× 1

which commutes by the universality of the pullback in the lower right corner. The unlabeled

morphism on the left side is a regular epimorphism.

Construction 5.2.6. An object W of three-fold compositions of elements of S can be con-

structed from V ×S V . First note that V ×S V admits a morphism to Y of Construction 5.2.3

as in the diagram

Y Σ

C1 C0

�

V ×S V

π2

π1 d1s

d1

π1π2π1

π1π1π2

by the commutativity of the outside square. Define W to be the corner object of the pullback

W X

V ×S V Y

�

π2

π1

with V ×S V → Y as above and X → Y as in Construction 5.2.3. Set-theoretically, an element

of W consists of two elements of V with one overlapping span and an element of S capping the

open corner between the two V -elements. Note that π1 is regular epi.
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Remark 5.2.17. Set-theoretically, an element of the W is a figure of the form

· · · ·

· · ·

· ·

·

all of whose southwest-facing arrows are elements of Σ. This is why, in general, W should be

viewed as an object of thrice-fold compositions of spans of the form of elements of S. The map

π1 : W → V ×S V projects to the figure without the topmost span.

Construction 5.2.7. Let p denote the composite of the projection π1 : W → V ×S V with

the morphism on the lefthand side of the last square in Construction 5.2.5. Notice that p is a

regular epimorphism. The object W admits two canonical morphisms to the corner objects of

the diagram of which V is a pullback as in

Σ×C0 S S

Σ C0

�

W

C1 ×C0 S S

C1 C0

�

W

d0π2

d1s

π1π1π2

cπ1π1

φ

d0π2

d1

l

π2π2π2π1

ψ

where l denotes the C-composite π1π2π2 ◦ π1π2π2π1.
The morphism λ is the canonical one arising by the universal property of V as in the

diagram

V C1 ×C0 S

Σ×C0 S C1.

�

W

π2

π1 d1s

d1

φ

ψ

λ

That the outside of the square does indeed commute is a moderatly involved computation from

the definitions using the following result.
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Remark 5.2.18. The set-theoretic interpretation is that the morphism λ has the following

effect. It sends a figure as at the left below to the figure at the right by making the obvious

compositions:

· · · ·

· · ·

· ·

·

· · ·

·

·

·

�→

Another map ρ : W → V can be built along the lines of Construction 5.2.7 but sending a given

element of W as at the left below to the figure on the right:

· · · ·

· · ·

· ·

·

· · ·

·

·

·

�→

The details of the construction are left to the reader. The point is that λ and ρ each do one

or the other of the first two possible compositions given three consecutive composable spans.

And in any case, the pictures provide intuition for the next lemma and following remark.

Lemma 5.2.19. The square

W V

V ×S V S ×C0 S

λ

π1 q

c× π2

with q as in Lemma 5.2.12 is commutative.

Proof. This follows by the uniqueness clause of the universal property of S ×C0 S by checking

on the projections.

Remark 5.2.20. A result analogous to Lemma 5.2.19 holds for ρ : W → V from Construction

5.2.18 in relation to the induced map π1 × c. By construction of u, v and p, these lemmas
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therefore imply that the equations

c(c× 1)p = ucλ c(1× c)p = ucρ

both hold.

Proposition 5.2.21. The induced morphism

c : C[Σ−1]1 ×C0 C[Σ
−1]1 −→ C[Σ−1]1

of Construction 5.2.2 satisfies the associativity law.

Proof. Consider the diagram

W C[Σ−1]1 ×C0 C[Σ
−1]1 ×C0 C[Σ

−1]1 C[Σ−1]1

C[Σ−1]1 ×C0 C[Σ
−1]1

C[Σ−1]1 ×C0 C[Σ
−1]1

p

1× c

c× 1

c

c

with p as above in Construction 5.2.6. The equation cλ = cρ holds by the construction of λ

and ρ above and by the uniqueness aspect of the universal property of S ×C0 S. Therefore, by

Lemma 5.2.19 and Remark 5.2.20 the diagram commutes. The statement of the proposition

now follows since p is an epimorphism, hence right cancelable.

5.2.4 An Identity Morphism

Consider the canonical morphism arising from the universal property of S as in the diagram

S C1

Σ C0

�

C1

d0

d0s

jd0

1

where j : C0 → Σ factors i through s as in Definition 5.2.1. Denote this canonical map by

〈jd0, 1〉; it is the elementary equivalent of the canonical reduction map that views an arrow
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of C as an arrow of C [Σ−1] in the set-theoretic case. Now, let ι : C0 → C[Σ−1]1 denote the

composite

ι := u〈jd0, 1〉i (5.2.3)

where u is the coequalizer of Definition 5.2.8.

Lemma 5.2.22. The map ι in Equation 5.2.3 splits d0, d1 : C[Σ
−1]1 → C0 given in Definition

5.2.8.

Proof. The two computations are straightforward. For example, there is the computation

d0ι = d0u〈jd0, 1〉i (definition of ι above)

= d1sπ1〈jd0, 1〉i (construction of d0 and d1 in Definition 5.2.8)

= d1sjd0i

= d1id0i (hypothesis of Definition 5.2.1)

= 1

The other is similar.

5.2.5 Universal Property

Definition 5.2.23. An internal functor f : C → D inverts a generalized morphism s : Σ → C1

of C if there is a morphism

f1(s)
−1 : Σ → D1

for which the equations

1. d0f1(s)
−1 = d1f1s

2. d1f1(s)
−1 = d0f1s

3. f1(s) ◦ f1(s)−1 = if0d0s

4. f1(s)
−1 ◦ f1s = if0d1s

all hold. Let K(C,D)Σ denote the full subcategory of K(C,D) of such internal functors.

Remark 5.2.24. Put another way, the generalized arrow f1(s) : Σ → D1 of the internal category

D is an isomorphism with inverse f1(s)
−1 : Σ → D1 in the sense of Definition 3.1.8. As a

consequence, for such f : C → D, there is an induced generalized element Σ → Iso(D) as in

Lemma 3.1.15 and its proof.
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Definition 5.2.25. A category of fractions for a monomorphism s : Σ → C1 is an internal

category F admitting a functor l : C → F inverting s : Σ → C1 and that is universal in the sense

that there is an isomorphism of categories

K(F,D) ∼= K(C,D)Σ

induced by composition with L.

For the rest of the subsection, let f : C → D denote a functor of internal categories that

inverts s : Σ → C1. The subsequent development shows that C[Σ−1] as in the next result,

Theorem 5.2.26, is the category of fractions for s : Σ → C1. First a few necessary preliminaries.

Theorem 5.2.26. The tuple

C[Σ−1] = (C0,C[Σ
−1]1, d0, d1, i, c)

defines a category object in E .

Proof. It remains only to verify the domain and codomain equations. For the unit equations

were verified in Lemma 5.2.22 and associativity is Proposition 5.2.21. But the domain equation

is a straightforward computation:

d0cv = d0uc

= d1sπ1c (definition of d0 in Definition 5.2.8)

= d1s(π1π1 ◦ π1π2π1) (construction of c in Construction 5.2.2)

= d1sπ1π2π1

= d0uπ1q (construction of q as before Lemma 5.2.12)

= d0π1v (construction of v in Lemma 5.2.13)

Since v is regular epi, it cancels so that d0c = d0π1 holds, as required. The computation for

the codomain arrow is similar.

Lemma 5.2.27. A functor of internal categories l : C → C[Σ−1] is given by

l0 = 1: C0 → C0 l1 = u〈jd0, 1〉 : C1 → C[Σ−1]1

with 〈jd0, 1〉 as above and u as in Definition 5.2.8.

Proof. That the axioms of Definition 3.1.12 hold follows from the universal properties of the

given constructions.
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Lemma 5.2.28. The internal functor l of Lemma 5.2.27 above inverts s : Σ → C1.

Proof. The inverse is the composite u〈1, id0s〉 : Σ → C[Σ−1]1, where 〈1, id0s〉 is the canonical

map arising in the diagram

S C1

Σ C0

�

Σ

d0

d0s

1

id0s

That the required equations do hold is an exercise in cone-building.

For f : C → D consider f1(s)
−1 ◦ f1 : S → D1. This is well-defined on equivalence classes

of spans in the sense that it coequalizes ∂0, ∂1 : R ⇒ S from Construction 5.2.1. Essentially,

the construction of R allows the computation on p. 187 of [Bor94] to be reproduced using

projection morphisms:

(f1(s)
−1 ◦ f1)δ0 = f1(s)

−1π1δ0 ◦ f1π2δ0
= f1(s)

−1π2π1π1 ◦ f1π2π1π2
= f1(s)

−1(π1π1π1 ◦ π2π1π1) ◦ f1(π1π1π1 ◦ π2π1π1) ◦ f1(s)−1π2π1π1 ◦ f1π2π1π2
= f1(s)

−1(π1π1π1 ◦ π2π1π1) ◦ f1π1π1π1 ◦ f1π2π1π2
= f1(s)

−1(π1π1π1 ◦ π2π1π1) ◦ f1π1π1π1 ◦ f1π2π2π1 ◦ f1(s)−1π2π2π1 ◦ f1π2π1π2
= f1(s)

−1π2π2π1 ◦ f1π2π2π2
= (f1(s)

−1 ◦ f1)δ2

In particular, it follows that

(f1(s)
−1 ◦ f1)∂0 = (f1(s)

−1 ◦ f1)∂1

holds since the morphism R → R0 is regular epi, hence cancelable on the right. Therefore,

there exists a morphism C[Σ−1]1 → D1 making a commutative triangle, as in

S C[Σ−1]1.

D1

u

f1(s)
−1 ◦ f1 (f̃)1
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For the morphism u is a coequalizer in E /C0 × C0, hence in E , since the forgetful functor

E /C0 × C0 → E is a left adjoint.

Lemma 5.2.29. The choices (f̃)0 := f0 and (f̃)1 as in the discussion immediately above yield

an internal functor f̃ : C[Σ−1] → D.

Proof. The identity law is very easily proved. Recall that the identity arrow was defined in

Equation 5.2.3. Now, compute that

(f̃)1u〈jd0, 1〉i = (f1(s)
−1 ◦ f1)〈jd0, 1〉i = f1i = i

since f is an internal functor. And indeed f̃ respects composition as well; for the usual square

expressing this fact is equalized by the morphism v from Lemma 5.2.13, a regular epi, hence a

right-cancelable morphism.

Theorem 5.2.30. The category object C[Σ−1] is, up to isomorphism, the category of fractions

associated to Σ in the sense of Definition 5.2.25.

Proof. With f̃ as in Lemma 5.2.29, the diagram of internal functors

C C[Σ−1]

D

l

f f̃

commutes. At the level of objects, this is immediate. At the level of arrows, compute that

(f̃)1u〈jd0, 1〉 = (f1(s)
−1π1 ◦ f1π2)〈jd0, 1〉 = f1(s)

−1jd0 ◦ f1 = f1

as required. By construction f̃ is unique. The 2-dimensional aspect of the universal property

is trivial. For a natural transformation θ : f ⇒ g of internal functors that invert s : Σ → C1

is really a morphism θ : C0 → D1 satisfying the conditions of Definition 3.1.22. Thus, by

construction of the localization, for the required lift θ̃ : f̃ ⇒ g̃, just take θ itself.

The last point of the general development is to show that the localization is a reflexive

coinverter in the sense of Example 4.2.3. Maintain the hypothesis that the monomorphism

s : Σ → C1 admits a right calculus of fractions as in Definition 5.2.1. Denote by (Σ2)1 the

corner object of the pullback

(Σ2)1 Σ×C0 Σ

Σ×C0 Σ Σ.

�
◦

◦
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Let d0 := π1π2 : (Σ
2)1 → Σ and d1 := π2π1 : (Σ

2)1 → Σ. Evidently, then take (Σ2)0 := Σ.

Lemma 5.2.31. If s : Σ → C1 admits an internal right calculus of fractions, then Σ2 is an

internal category. And functors dom, cod: Σ2 ⇒ C are given with object-level assignments

dom0 := d0s : Σ → C0 cod0 := d1s : Σ → C0

respectively; and arrow-level assignments

dom1 := d0s : (Σ
2)1 → C1 cod1 := d1s : (Σ

2)1 → C1

with in this case d0 and d1 as above in the discussion.

Proof. Straightforward verification.

Lemma 5.2.32. The monomorphism s : Σ → C1 determines an internal natural transforma-

tion σ : dom ⇒ cod. Additionally, as a 2-cell σ is reflexive.

Proof. The equations specified in Definition 3.1.22 are all satisfied by the construction of the

internal functors dom and cod.

Theorem 5.2.33. The internal category of fractions construction l : C → C[Σ−1] is the reflex-

ive coinverter of σ : dom ⇒ cod.

Proof. This is entirely a restatement of Theorem 5.2.30 in light of Example 4.2.3.

5.3 Elementary 2-Filteredness

Throughout let E denote an exact category with pullback-stable coequalizers of reflexive pairs;

and K, the 2-category of internal categories Cat(E ). Let C denote an internal 2-category

as in Definition 3.4.1. The following is perhaps the central definition of the present work,

axiomatizing the condition extracted from the exactness assumption in the special case of

E = Set in Theorem 4.4.4 and enshrined in Definition 4.4.8.

Definition 5.3.1. A discrete 2-opfibration e : E → C is 2-filtered with respect to opcartesian

morphisms if the following conditions are satisfied.

1. The canonical map E0 → 1 is a regular epimorphism.

2. Given two generalized objects x, y : X ⇒ E0, there is a regular epimorphism p : Z → X

and opcartesian generalized morphisms f, g : Z ⇒ E1 such that the following hold
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(a) d0f = d0g

(b) d1f = xp

(c) d1g = yp.

3. For generalized opcartesian morphisms f, g : X ⇒ E1 with d0f = d0 and d1f = d1g, there

is a regular epimorphism p : Z → X and a generalized opcartesian morphism h : Z → E1

such that the following equations hold:

(a) d1h = d0fp = d0gp

(b) h ◦ fp = h ◦ gp.

4. For any vertical generalized morphism u : X → E1, there is a regular epi p : Z → X,

opcartesian morphisms f, g : Z ⇒ E1, and a generalized 2-cell α : Z → E2 for which the

following equations are satisfied

(a) d0f = d0g

(b) d1f = d0up

(c) d1g = d1up

(d) sα = f ◦ up
(e) tα = g.

Remark 5.3.2. Definition 5.3.1 is an internal version of Definition 4.4.8 for an ordinary discrete

2-opfibration. Basically it says in purely elementary language of internal 2-categories that e is

non-trivial; that any two objects are connected by an opcartesian span (transitivity); that any

two opcartesian arrows are equalized by a third (freeness); and finally that any vertical arrow

of the total category pulls back by an opcartesian arrow to an opcartesian arrow. The main

result will be that if e is 2-filtered with respect to opcartesian morphisms, then the induced

tensor product E ⊗C − as in 4.3.1 has certain expected exactness properties.

Lemma 5.3.3. Let e : E → C denote an internal discrete 2-opfibration that is 2-filtered in the

sense of Definition 5.3.1 above. For any parallel generalized morphisms h, k : X → E1 with

k internally opcartesian, there is a regular epimorphism p : Z → X, a opcartesian generalized

morphism w : Z → E1, and a generalized 2-cell α : w ◦ hp ⇒ w ◦ kp.

Proof. The proof of Lemma 4.4.10 can be rewritten in the internal category theory of E .

Lemma 5.3.4. Let e : E → C denote a internal discrete 2-fibration. Suppose that e is 2-filtered

in the sense of Definition 5.3.1. It follows that for each generalized morphism j : X → E1,
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there is a regular epimorphism p : Z → X, two generalized opcartesian morphisms l, r : Z → E1

and a generalized 2-cell θ : Z → E2 such that the equations

1. d0l = d0r

2. d1l = d0j

3. d1r = d1j

4. sθ = l ◦ jp

5. tθ = r

all hold.

Proof. The given filteredness conditions allow the elementary construction of a cell of the form

of that in the proof of Lemma 4.4.12.

Remark 5.3.5. The proof of Theorem 5.1.2 can now be internalized. In particular, all but the

third condition of Definition 5.2.1 are trivially rewritten in the elementary internal category

theory of E . The following gives an outline of the elementary proof of the third condition.

Construction 5.3.1. Let e : E → C denote an internal discrete 2-opfibration and f : F → C
an internal discrete 2-fibration as in Definition 2.2.15. Denote by Σe,f the corner object of the

successive pullbacks

Σe,f C1 ×C0 F0 F0

E0 ×C0 C1 C1 C0

E0 C0.

� �

�

f0

d1

d0

e0

By construction, there is then a morphism ρ× σ : Σ −→ E1 ×C1 F1 commuting with the appro-

priate projections. Now, as in the opening of §5.2, form the object of distinguished spans in

E ×C F by taking the pullback

Se,f E1 ×C1 F1

Σe,f E0 ×C0 F0.

�
d0 × d0

ρ× σ
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In particular, this whole process applies to the identity fibration over C and yields the object of

spans in E as a pullback

S E1

Σ E0

�
d0

ρ

together with a canonical morphism π : S → S induced by the projections.

Theorem 5.3.6. If an internal discrete 2-opfibration e : E → C is 2-filtered in the sense of

Definition 5.3.1, then for any internal discrete 2-fibration f : F → C, the morphism

ρ× σ : Σe,f → E1 ×C1 F1

admits an internal right calculus of fractions as in Definition 5.2.1.

Proof. Lemma 3.3.8 shows that ρ× σ is a monomorphism.

The fact that e : E → C is a split internal opfibration means that the opcleavage is functorial,

hence closed under composition as in Lemma 3.3.7.

Let z : X → Σ and 〈h, k〉 : X → E1 ×C1 F1 denote morphisms with d1h = d1ρz and

d1k = d1σz. Use the notation

d0h =: a, d0k =: b, d0ρz =: x, d0σz =: y.

This gives the elementary analogue of the corner diagram that starts the proof in the case

E = Set. Now, in the E-component, the filteredness axioms and Lemma 5.3.3 give a regular

epimorphism p : Z → X, suitably composable opcartesian morphisms u, v : Z → E1, and finally

a 2-cell α : Z → E2 with α : hp ◦ v ⇒ xp ◦ u. Viewed in C via e : E → C, this gives a cell

e2α : e1v ◦ e1h ⇒ e1u ◦ e1i. Now, since f : F → C is an internal cloven fibration, there are

internally cartesian generalized morphisms

σ〈e1v, bp〉 : Z → F1

σ〈e1u, yp〉 : Z → F1

over e1v and e1u, respectively, in the sense that

f1σ〈e1v, bp〉 = e1v

f1σ〈e1u, yp〉 = e1u.
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Thus, since, additionally, e1h = f1k holds and f : F → C is locally an internal discrete opfibra-

tion, there is a unique lifted 2-cell

ẽα : σ〈e1v, bp〉 ◦ k ⇒ l

over α for some generalized arrow l : Z → F1 over e1u ◦ e1i in that f1l = e1u ◦ e1i. Now, since
e1i = f1j and f : F → C is an internal fibration, there is a unique lift of identity w : Z → F1

such that

w : d0l → d0σ〈e1u, yp〉

w ◦ σ〈e1u, yp〉 ◦ jp = l.

Thus, α and the lift ẽα yield a 2-cell of E ×C F that when reduced modulo internal connected

components as in §3.4.1 via the coequalizer

E ×C F → π0(E ×C F)

completes the given corner diagram to a commutative square, as required.

Corollary 5.3.7. Under the same hypotheses, the tensor product E⊗C F arises through a right

calculus of fractions as in Definition 5.2.1. It defines a 2-functor

E ⊗C − : DFib(C) → K

by the universal property of the coinverter.

Proof. This is a restatement of the above result using the interpretation of Theorem 5.2.33 and

the internalized definition of the tensor product in §4.3.1.



Chapter 6

Elementary Account of Flatness

Now that it is assured that a tensor product exists under 2-filteredness conditions, its exactness

properties can be studied. The present chapter culminates in an internalized version of the

result that a discrete 2-fibration E : E → C, 2-filtered in the sense of Definition 4.4.8, is flat in

that the tensor E ⊗C − : DFib(C) → Cat has several exactness properties.

6.1 Conical Limits Reduce to the Internal Colimit

Work in K = Cat(E ) for a exact 1-category E with pullback-stable coequalizers of reflexive

pairs. Fix e : E → C, an internal discrete 2-opfibration and let f : F → C denote an internal

discrete 2-fibration, as in Definition 2.2.15. Think of f as variable. The opcleavage for the

underlying opfibration of e is a morphism ρ : E0×C0 C1 → E1 making a natural transformation

ρ : π ⇒ m, where m is the action of 2 � C0 on E0 as described in §3.3. Similarly, let σ denote

the cleavage for f .

Construction 6.1.1. Form the objects Pe, Qe and Pe,f , Qe,f for the internal categories E
and E ×C F as in Construction 5.2.1, respectively. Then the relations objects Re and Re,f are

formed as pullbacks

Re Pe

Qe E1 × E1

�
Re,f Pe,f

Qe,f (E1 ×C1 F1)× (E1 ×C1 F1).

�
〈π1π1, π1π2〉

〈π1π1, π1π2〉

〈π1π1, π1π2〉

〈π1π1, π1π2〉

From the evident projection morphisms π : Pe,f → Pe and π : Qe,f → Qe, there is a canonical

projection morphism induced π : Re,f → Re making the appropriate commutative diagram.

Henceforth Re and Re,f will be confused with the object of their respective image factorizations,

unless for some reason in either case the image and the original object need to be distinguished;

in the former case use ∂0, ∂1 and in the latter case use δ0, δ1. Thus, as in Construction 5.2.1,

each relation object comes with parallel arrows Re ⇒ Se and Re,f ⇒ Se,f jointly monic in the

appropriate slice category.

104
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Theorem 6.1.1. If e : E → C is 2-filtered in the sense of Definition 4.4.8, then the morphisms

∂0, ∂1 : Re,f ⇒ Se,f define a groupoid internal to E /E0 × E0. Denote this groupoid by Se,f .

Proof. From Theorem 5.2.7 and Theorem 5.3.6, it follows that Re,f ⇒ Se,f determines an

equivalence relation, hence an internal groupoid, in the slice over the product (E0 ×C0 F0) ×
(E0×C0F0). However, that it is an equivalence relation over E0×E0 follows as well. The proofs

of reflexivity and symmetry are essentially the same. For transitivity, note that the pullback

T taken over E0 × E0 in the set-up for the condition can also be viewed as a pullback over

(E0×C0F0)×(E0×C0F0). Thus, the arrow required for transitivity over E0×E0 arises by using

transitivity over (E0 ×C0 F0)× (E0 ×C0 F0). The result now follows by the proposition.

Corollary 6.1.2. If e : E → C is 2-filtered as in Definition 4.4.8, then Re ⇒ Se is a groupoid

in E /E0 × E0, denoted by Se.

Proof. Take the identity fibration on C in the previous theorem.

Corollary 6.1.3. If e : E → C is 2-filtered as in Definition 4.4.8, the projection π : E ×CF → E
determines an internal functor of groupoids π : Se,f → Se.

Proof. Evidently, the components of π are the projections π : Se,f → Se and π : Re,f → Re

from the discussion above. For example, the two squares in

Re,f Se,f

Re Se

∂0

∂1

π π

∂0

∂1

commute by the uniqueness clause of the pullback Se. The other conditions for an internal

functor as in Definition 3.1.12 are similarly verified.

Lemma 6.1.4. The commutative square

Re,f Se,f

Re Se

δ1

π π

δ1
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satisfies the modified hypotheses of Lemma 2.3.10 given in Remark 2.3.11. Consequently, the

commutative square of images

Rf Se,f

Re,f Se

∂1

∂1

is a pullback.

Remark 6.1.5. The proof below in the internal category theory of E is technical and uninfor-

mative. Set-theoretically, the proof is an exercise in cone-building. For E = Set, the point is

that assumed as given is a figure of the form

· · ·

·

·

x

y

s f

t g

of arrows of E , relating by x and y two of the special spans with left legs s and t opcartesian;

as well as a span · ← · → · of E ×C F , namely,

· · ·(t, r) (g, l)

projecting to its E-components t and g above. The condition of Lemma 2.3.10 requires con-

struction of a diagram of arrows in E ×C F of the same form, namely,

· · ·

·

·

one side of which projects to the given span · ← · → · of E ×C F , but does not necessarily

project to the given figure in E , above. Such a figure can be constructed using the fact that

F : F → C is a cloven fibration. Indeed take the chosen cartesian morphisms of F over sx and

tx and over y with appropriate codomains, denoted, respectively, by u, v and w. These almost

work, but the required squares do not necessarily commute. So, take p and q, lifts of identities

such that up = rw and vq = lw. Then the E- and F-components of the required diagram in
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E ×C F are represented by

· · ·

·

·

· · ·

·

·

1

y

sx fx

t g

1

w

up vq

r l

respectively. Evidently, this will project to the given span of E ×C F . Now, the following proof

rephrases these remark in the internal category theory of E .

Proof. Let X denote an object with two morphisms h : X → Re and k : X → Se,f satisfying

the equation πk = δ1h as in

Re,f Se,f

Re Se

X

δ1

π π

δ1

h

k

The goal is to produce the dashed arrow X → Re,f making the top triangle commute. Use the

fact that f is a cloven fibration to build a cone. Indeed there are the following three cartesian

morphisms:

1. u := σ〈e1π1π1π1h ◦ e1π2π1π1h, π2π2π1k〉 : X → F1

2. v := σ〈e1π1π1π2h ◦ e1π2π1π2h, d1π2π2k〉 : X → F1

3. w := σ〈e1π1π2h, d0π2π2k〉 : X → F1.

That is, for example, u is the cartesian morphism picked by the cleavage for f : F → C over the

composite e1π1π1π1h ◦ e1π2π1π1h and having codomain π2π2π1k. Now, since, in particular, u

and v are cartesian, there are lifts of identity, denoted by p, q : X ⇒ F1 satisfying

d0p = d0w = d0q d1p = d0v d1q = d0u

and, most importantly, making commutative squares in F , given in equations by

p ◦ v = w ◦ π2k q ◦ u = w ◦ π1k.



108

The required morphism X → Re,f arises as in the following diagram, essentially by inserting

an identity morphism:

Re,f Pe,f

Qe,f (E1 ×C0 F1)× (E1 ×C0 F1)

�

X

〈π1π1, π1π2〉

〈π1π1, π1π2〉

〈〈id0q, q ◦ u〉, 〈w, π1k〉〉

〈〈id0p, p ◦ v〉, 〈w, π2k〉〉

r

That the outside does commute is an easy computation. It now follows that δ1r = k holds in

the first diagram of the proof, as can be seen by checking on components.

Corollary 6.1.6. If e : E → C is 2-filtered as in Definition 4.4.8, then the internal functor

π : Se,f → Se is a discrete fibration internal to E /E0 × E0.

Proof. This is just an interpretation of Lemma 6.1.4 in light of Definition 3.2.2.

Corollary 6.1.7. If e : E → C is 2-filtered as in Definition 4.4.8, then the object of arrows

(E ⊗C F)1 of the tensor product is the internal colimit of Equation 3.2.1, in that there is an

equality

(E ⊗C F)1 = lim
→S

op
e

πe,f

with πe,f the internal discrete fibration of Corollary 6.1.3.

Proof. By Lemma 6.1.4, (E ⊗C F)1 is formed through the right calculus of fractions, hence as a

certain coequalizer in a slice of E . Since the forgetful functor from the slice preserves colimits,

the two objects thus have the same definition. Since a choice of colimits is assumed, the values

are literally equal.

Lemma 6.1.8. If e : E → C is 2-filtered as in Definition 4.4.8, then the groupoid Se is internally

filtered as in Definition 3.2.5.

Proof. The non-emptiness condition is trivial. Suppose that given are two elements of Se over

E0 × E0 as depicted in the diagram

U Se.

E0 × E0

x

y
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Now, set theoretically, this is just to give two spans with the same endpoints, as depicted in

the square
· ·

· ·

A cone relating the two spans can be built using the filteredness assumptions on E at the level

of 1-cells. The equalizing condition is trivial.

Theorem 6.1.9. If the discrete 2-opfibration e : E → C is 2-filtered as in Definition 4.4.8, then

the internal colimit functor

lim
→S

op
e

: DFib(Se) −→ E /E0 × E0

is left exact.

Proof. By the Lemma 6.1.8 above and Lemma 3.2.7.

6.2 Preservation of Conical Limits

As a result of the last corollary, it can now be seen that E ⊗C − has the required left-exactness

properties if e : E → C is 2-filtered as in Definition 4.4.8. Recall that by Corollary 5.3.7, if

e : E → C is 2-filtered, then the tensor is a 2-functor

E ⊗C − : DFib(C) −→ K

where K = Cat(E ) for E an exact category with pullback-stable coequalizers of reflexive pairs.

In particular, E ⊗C F is given as the reflexive coinverter of the cleavage and opcleavage coming

with e and f . If e is 2-filtered as in Definition 4.4.8, then the tensor always exists, given as

a right calculus of fractions. For the first part of the proof, recall that the terminal object of

DFib(C) is the identity fibration 1: C → C.

Lemma 6.2.1. If e : E → C is 2-filtered as in Definition 4.4.8, then E ⊗C − preserves the

terminal object.

Proof. Since e is 2-filtered, the tensor arises through a right calculus of fractions. Thus, by

construction, the object of objects of the tensor is

(E ⊗C 1)0 = E0 ×C0 C0
∼= E0.
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On the other hand, by Corollary 6.1.7, the object of arrows is given by the coequalizer in the

definition of the internal colimit

(E ⊗C 1)1 ∼= lim
→S

op
e

1

since π1 = 1. Now, since the groupoid Se is filtered, this internal colimit is isomorphic to the

terminal object in the slice over E0 ×E0. That is, the object of arrows is, up to isomorphism,

E0 × E0. Therefore, the tensor E ⊗C 1, up to isomorphism, as an internal category, is the

chaotic category on E0, which is weakly equivalent to 1 in K by Lemma 3.1.21.

The product of two internal discrete 2-fibrations f : F → C and g : G → C with cleavages σ

and τ , respectively, is given by their pullback, namely,

F ×C G G

F C

g

f

taken in 2-Cat(E ). In particular, the objects and arrows are given by (f ×C g)0 = F0 ×C0 G0

and (f×C g)1 = F1×C1 G1 respectively. In the sequel, by either ‘f×g’, or ‘F×C G’ the product
in this sense will always be meant, depending upon whether the morphisms or total categories

need to be emphasized.

Now, if e : E → C is 2-filtered as in Definition 4.4.8, there are three internal groupoids,

namely, Se,f×g and Se,f and Se,g built from the respective objects of spans and objects of

related spans according to the right calculus of fractions construction. These admit projection

morphisms to Se. Denote these by subscripting with the name of the fibration, as in

πf×g : Se,f×g → Se πf : Se,f → Se πg : Se,g → Se.

Lemma 6.2.2. Suppose that the discrete 2-opfibration e : E → C is 2-filtered as in Definition

4.4.8. There is then an isomorphism of internal discrete fibrations

πf×g
∼= πf × πg

in DFib(Se). In particular, there is an isomorphism

Se,f×g
∼= Se,f ×Se Se,g

of internal groupoids.
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Proof. The argument is essentially that all constructions involved in formation of the π’s are

pullbacks and universally induced arrows. The key to the argument, however, is the observation

that the squares

Rf×g Rg

Rf Re

�
Sf×g Sg

Sf Se.

�

formed by the induced projection morphisms are both pullbacks by construction. The argument

for the square on the right is straightforward. For the square on the left, it should first be

observed that there are isomorphisms Pf×g
∼= Pf ×Pe Pg and Qf×g

∼= Qf ×Qe Qg by the

construction of the P ’s and Q’s as in §5.2.1. Since the respective R’s are pullbacks of these,

the conclusion follows.

Corollary 6.2.3. If the discrete 2-opfibration e : E → C is 2-filtered as in Definition 4.4.8,

then the tensor E ⊗C − preserves binary products.

Proof. Since ρ filters each of the tensor products, they each arise by the right calculus of

fractions construction. Thus, at the level of objects, there is the computation

(E ⊗C F)0 ×(E⊗C1)0 (E ⊗C G)0 = (E0 ×C0 F0)×E0 (E0 ×C0 G0)

∼= E0 ×C0 (F0 ×C0 G0)

= (E ⊗C (F ×C G))0.

Now, at the level of morphisms, compute that

(E ⊗C F)1 ×(E⊗C1)1 (E ⊗C G)1 ∼= lim
→S

op
e

πf × lim
→S

op
e

1 lim
→S

op
e

πg (by Cor. 6.1.7)

� lim
→S

op
e

πf ×E0×E0 lim
→S

op
e

πg (by Lemma 6.2.1)

∼= lim
→S

op
e

πf × πg (by Theorem 6.1.9)

∼= lim
→S

op
e

πf×g (by Lemma 6.2.2)

∼= (E ⊗C (F ×C G))1 (by Cor. 6.1.7)

using the fact that lim→ is exact and the previous result.
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Lemma 6.2.4. Fix f : F → C and g : G → C, internal discrete 2-fibrations over an internal

2-category C as in Definition 3.4.12. For an equalizer diagram

Q F Gr h

k

in DFib(C), the canonically induced sequence of internal functors

Se,q Se,f Se,g
r h

k

is an equalizer diagram in DFib(Se).

Proof. This is a tedious argument by finite limit construction. Note that the strictness condi-

tion, Equation 3.4.1 is used to induce required map Σe,f ⇒ Σe,g.

Corollary 6.2.5. If the discrete 2-opfibration e : E → C is 2-filtered as in Definition 4.4.8,

then the induced tensor 2-functor E ⊗C − preserves equalizers.

Proof. The preservation statement at the level of objects is similar to that in the product proof

above. Now, for the arrows, use the lemma immediately above and the characterization of the

object of arrows of the tensor product as the internal colimit, namely, Corollary 6.1.7. In the

commutative diagram

Re,q Re,f Re,g

Se,q Se,f Se,g

lim→ πe,q lim→ πe,f lim→ πe,g

∂1∂0 ∂1∂0 ∂1∂0

the bottom row is a equalizer diagram by the exactness of the internal colimit result, Theorem

6.1.9. But this sequence is precisely the required sequence of arrow objects of tensor products

(E ⊗C Q)1 (E ⊗C F)1 (E ⊗C G)1r h

k

by the cited corollary, as required.

Theorem 6.2.6. If the discrete 2-opfibration e : E → C is 2-filtered as in Definition 4.4.8,

then the induced tensor E ⊗C − : DFib(C) → K preserves binary products and equalizers up to

isomorphism and the terminal object up to equivalence.



113

Proof. The statement follows now from Lemma 6.2.1 and Corollaries 6.2.3 and 6.2.5.

6.3 Preservation of Ordinary Cotensors

Let F : F → C denote a discrete 2-fibration between ordinary 2-categories. Let 2 = {0 ≤ 1}
denote the usual ordinal category. Recall from Example 4.1.3 that the cotensor 2 � F in the

2-category DFib(C) is given in the following way. Objects are vertical arrows u : X → Y of the

total category F. Arrows are commutative squares between such vertical arrows. The 2-cells

are those pairs yielding equalities

X Y

Z W

=

X Y

Z W

= =⇒ ⇒

u

v

u

v

of composite 2-cells. Thus, 2 � F is the full sub-2-category of the ordinary 2-arrow category

F2 consisting of the vertical arrows relative to F : F → C.

At the object-level, the canonical map E ×C (2 � F ) → 2 � (E ⊗C F ) sends a pair (X,u)

with u vertical in F over EX to the the span

(A,B) (A,B) (A,W ).
(1, 1) (1, u)

viewed modulo connected-components. For the following lemma, suppose that E : E → C is

filtered by opcartesian arrows as in Definition 4.4.8. Since the resulting tensor E ⊗C F is thus

formed through a right calculus of fractions as in Theorem 5.1.2, an arbitrary morphism of the

tensor is represented as a span

(X,Y ) (A,B) (Z,W ).
(h, k) (f, g)

with h opcartesian and k cartesian with each leg viewed modulo connected components. The

following lemma and its proof show that if E is 2-filtered as in Definition 4.4.8, then every such

map of the tensor, up to isomorphism, is of the form of those in the image of the canonical

map above; and additionally that the vertical morphism u arises in a canonical way.

Lemma 6.3.1 (Factorization Lemma I). If the discrete 2-opfibration E : E → C is 2-filtered by

opcartesian arrows as in Definition 4.4.8, then the arrow of the tensor above is isomorphic to

one in the image of the canonical map E×C (2 � F ) → 2 � (E ⊗C F ).
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Proof. From Lemma 4.4.12, the morphism f fits into a 2-cell θ : fw ⇒ r with w and r op-

cartesian; let C denote the domain of w and r. Now, σ(Er,W ) and σ(Ew,B) denote chosen

cartesian arrows of F over Er and Ew, respectively. Since F is locally a discrete fibration there

is a lift in F of the 2-cell Eθ as appearing in

E(w)∗B B

W.E(r)∗W

∃! ⇓

σ(Ew,B)

g∃!u

σ(Er,W )

Since the target of the lifted 2-cell is over the morphism Er, there is a unique lift of the identity,

E(w)∗B → E(r)∗W , making a commutative triangle, as indicated by the other dashed arrow.

This shows that there is a 2-cell (f, g)(w, σ) ⇒ (r, σ)(1, u) in E ×C F, which reduces to an

equality modulo connected components.

Now, the claim is that the morphism above is then isomorphic to the morphism

(C,E(w)∗B) (C,E(w)∗B) (C,E(r)∗W ).
(1, 1) (1, u)

The following diagram of spans in π0(E ×C F) produces the required isomorphism. The given

span from the first display in the proof is the top row; and the span immediately above

runs along the bottom. The vertical spans are evidently isomorphisms as each has both legs

cartesian.

(X,Y ) (A,B) (Z,W )

(C,E(w)∗B) (C,E(r)∗W )

(C,E(w)∗B) (C,E(w)∗B) (C,E(r)∗W ).

(C,E(w)∗B)

(C,E(w)∗B)

(C,E(w)∗B)

(I)

(II)

(h, k) (f, g)

(hw, kσ) (r, σ)

1 1

1 (1, u)

(w, σ)

(1, u)

1

1

1

1

The dashed arrows indicate how the spans can be composed and that they are indeed related in

E⊗C F. The square in the upper-right corner commutes by passing to connected-components;
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the hexagons (I) and (II) evidently commute by construction. This shows that the original

morphism is indeed isomorphic to the image of the constructed one.

Remark 6.3.2. Lemma 6.3.1 shows, in other words, that each morphism of the tensor product

factors as a morphism in the image of E ×C (2 � F ) → 2 � (E ⊗C F ) pre- and post-composed

with isomorphisms. Each of these three is determined by the data of the original morphism of

the tensor. In this sense, Lemma 6.3.1 is a “Factorization Lemma.”

Corollary 6.3.3. Under the same hypotheses, the canonical map E⊗C(2 � F ) → 2 � (E⊗CF )

is essentially surjective.

Proof. The map E×C (2 � F ) → E⊗C (2 � F ) inverts the cartesian morphisms of the domain.

Thus, there is an induced map from the tensor product as in the statement. The previous

lemma is precisely the statement that it is essentially surjective.

Lemma 6.3.1 and its corollaries show that the canonical map of cotensors

Υ: E ⊗C (2 � F ) −→ 2 � (E ⊗C F )

is essentially surjective if E is filtered in the sense of Definition 4.4.8. But under these hy-

potheses, this canonical morphism is also a weak equivalence.

Lemma 6.3.4. If E : E → C as above is 2-filtered by opcartesian arrows, the canonical map

Υ: E ⊗C (2 � F ) −→ 2 � (E ⊗C F )

is full.

Proof. An arrow between the images of (A, u) and (B, v) under Υ will be a commutative square

in the target taking the following form. The image of (A, u) and (B, v) are the horizontal outside

spans; the components of the morphism in the target are the vertical outside spans; the other

interior arrows are any that compose and then relate the resulting compositions.

(A,X) (A,X) (A, Y )

(C,P ) (I, J) (D,Q)

(B,Z) (B,Z) (B,W )

1 (1, u)

(s, t) (pi, k) (p, q)

(a, b) (i, j)

(e, f) (gi, fb) (g, h)

1 (1, v)



116

Without loss of generality, the legs (p, q) and (s, t) of the components of the morphism are

cartesian. And note that by definition of the relation, the morphisms sa and pi are opcartesian;

and that the morphisms tb and k are cartesian. Now, j : J → Q factors as j = σ(Fj,Q)r

for a vertical lift r : J → F (j)∗Q in the fiber over FJ . Thus, the horizontal arrows of the

commutative square

X J Z

Y F (j)∗Q W

= =

k fb

u r v

qσ(Fj,Q) hσ(Fj,Q)

define a morphism of the domain of Υ in the form of a span

(A, u) (I, r) (B, v).
(pi, (k, qσ)) (gi, (fb, hσ))

That the components of the image of this span under Υ are equivalent to the components of

the given morphism in the target, displayed above, is straightforward to establish using the

given morphisms.

Lemma 6.3.5. If E : E → C as above is 2-filtered by opcartesian arrows, the canonical map

Υ: E ⊗C (2 � F ) −→ 2 � (E ⊗C F )

is faithful.

Proof. Take two objects of the domain (A, u) and (B, v) and two morphisms between them,

represented by the spans

(A, u) (C, z) (B, v) (A, u) (D,w) (B, v)
(h, i, j) (k, p, q) (f, a, b) (g,m, n)

Suppose that the images of these morphisms under Υ are equal. That is, the respective

components of the two resulting morphisms under Υ are related in the manner specified by the

calculus of fractions. This means that there are spans from vertices (M,N) and (R,S) in the
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following figure, making four commutative squares

(A, Y ) (M,N) (B,W )

(D,V )

(C,Q)

(A,X) (R,S) (B,Z)

(D,U)

(C,P )

(f, b) (g, n)

(h, j) (k, q)

(l, r)

(s, t)

(f, a) (g,m)

(h, i) (k, p)

where the composites making the left-hand square in each diagram are cartesian. Now, in fact,

only the figure at the right matters for the purpose of constructing a span relating the original

arrows. The arrows l and s suffice for the E-component. The 2 � F -component requires more

care. For this, take r and t and factor the composites with w and z respectively as a vertical

followed by a chosen cartesian morphism as in the diagram

U S P

V · · Q

r t

w c d z

σ(F (wr), V ) σ(F (zt), Q)

But of course the two chosen cartesian morphisms fit into a figure together with b and j over a

commutative square of C. Since all these morphisms are cartesian, the domains of the chosen

cartesian arrows are isomorphic; the isomorphism commutes with the vertical fills c and d by

uniqueness. But vertical isomorphims are cartesian; so, effectively, this induced isomorphism

can be ignored. In any event, the figure immediately above makes two commutative squares

with the center arrow vertical with respect to the fibration F ; each horizontal span consists

of cartesian arrows. And, together with the lifted isomorphism, the chosen cartesians on the

bottom make commutative squares with b and j on the one hand and with u and q on the

other. Thus, the original morphisms of the domain are related by the span

(D,w) (R, c) (C, z)
(l, r, σ) (s, t, σ)

as can be seen by a computation from the constructions given in the proof.
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Theorem 6.3.6. If E : E → C as above is 2-filtered by opcartesian arrows, the canonical map

Υ: E ⊗C (2 � F ) −→ 2 � (E ⊗C F )

is a weak equivalence.

Proof. Lemma 6.3.1 and Lemmas 6.3.4 and 6.3.4 show that cotensors are preserved up to

equivalence.

6.4 Preservation of Cotensors: Internalization

The results of the previous section can be translated into the internal category theory of an

exact category E with pullback-stable coequalizers of reflexive pairs. For this elementary devel-

opment, fix throughout e : E → C, an internal discrete 2-opfibration; and let f : F → C denote

an internal discrete 2-fibration, each as in Definition 2.2.15. The ideas for the internalization

are already in the foregoing proofs and the internalization itself is purely technical. For this

reason, here is proved the essential surjectivity, while the proof of fully faithful is mostly left

to the reader.

First observe that the iso-construction of Construction 3.1.1 can be applied to any internal

arrow category, yielding the object Iso(C2), for any internal category C. In the case of E = Set,

this object will consist of commutative squares

· ·

· ·
=∼= ∼=

with the two vertical sides isomorphisms. Think of the top horizontal arrow as the domain and

the bottom as the codomain. In more detail, consider the following.

Construction 6.4.1. In the internal case, Iso(C2) can be given in terms of Iso(C). That is,

it occurs as the corner object of the pullback

Iso(C2) C1 ×C0 Iso(C)

Iso(C)×C0 C1 C1

�

π2

π1 ◦

◦
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by restricting the composition of C to the subobject Iso(C). Consistent with Construction 3.1.1,

declare the “domain” map to be the composite projection

π1π2 : Iso(C
2) → C1

and the codomain to be the composite projection π2π1.

Now, use the notation S = Se,f and Σ = Σe,f for the constructions from §5.3.1. Addition-

ally, let q : S → (E ⊗C F)1 denote the quotient map to the object of morphisms of the tensor

product in E /E0 ×E0 as in Definition 5.2.8. The following development constructs a general-

ized object of Iso((E ⊗C F)2). By the construction above, this can be given by specifying two

morphisms to the object of isomorphisms and two to (E ⊗CF)1, all mimicking in an elementary

the construction of Lemma 6.3.1. These morphisms given over the course of the subsequent

three constructions. As set-up, establish the following notation. Declare

1. h := ρπ1 : S → E1

2. k := σπ1 : S → F1

3. j := π1π2 : S → E1

4. g := π2π2 : S → F1.

And set

1. x := d1h and a := d0h = d0f

2. y := d1k and b := d0k = d0g

3. z := d1f and w := d1g.

Thus, set-theoretically, S is interpreted as yielding a span of generalized internal objects and

arrows of the form

(x, y) (a, b) (z, w).
(h, k) (j, g)

as in the set-up preceding Lemma 6.3.1. Now, by the filteredness assumption, Lemma 5.3.4

implies that there is a regular epimorphism p : Z → S and opcartesian generalized arrows

r, l : Z → F1, appropriately composable with j, and a generalized 2-cell θ : Z → F1 with

θ : l ◦ jp ⇒ r. This cell plays a crucial role in what follows as it did in the proof of the

Factorization Lemma 6.3.1.
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Construction 6.4.2. For the first map to Iso(E ⊗C F), let φ denote the morphism

φ := 〈l ◦ hp, σ〈e1l, bp〉 ◦ k〉 : Z → E1 ×C1 F1.

This arrow corresponds to the non-identity side of the leftmost vertical span in the last diagram

in the proof of Lemma 6.3.1. Now, let ψ denote the arrow

ψ := 〈d0l, i, d0σ〈e1l, bp〉〉 : Z → Σ.

This arrow corresponds to the identity leg of the same span. Thus, by construction and the

normalization of the cleavage and opcleavage, the outside of the following diagram commutes:

S E1 ×C1 F1

Σ E0 ×C0 F0.

�

Z

d0 × d0

d0ρ× d0σ

ψ

φ

The dashed arrow reconstructs the required span, viewed as a generalized element of S. Since

both legs of the span Z → S are cartesian, this morphism induces one Z → Iso(E ⊗C F) by

Remark 5.2.24.

Construction 6.4.3. For the second map, use the morphism ψ : Z → Σ from above. As in the

proof of Lemma 6.3.1, the cell e1α of C lifts to one ẽ1α of F . And since f : F → C is a fibration,

there is a unique lift u : Z → F1 of an identity morphism such that tẽ1α = u ◦ σ〈e1r, wp〉. Let

χ denote the morphism

χ := 〈idol, u〉 : Z → E1 ×C1 F1.

These fit into the following diagram, whose outside commutes by construction

S E1 ×C1 F1

Σ E0 ×C0 F0.

�

Z

d0 × d0

d0ρ× d0σ

ψ

χ

The dashed universal arrow is the required span. Followed by the canonical reduction to the

tensor product, this gives the required morphism Z → (E ⊗C F)1.
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Construction 6.4.4. For the last required morphism, let ζ denote the morphism

ζ := 〈d0r, i, d0σ〈e1r, wp〉〉 : Z → Σ.

This is the identity side of the rightmost vertical span in the last diagram of the proof of Lemma

6.3.1. Let ξ denote the morphism

ξ := 〈r, σ〈e1r, wp〉〉 : Z → E1 ×C1 F1.

These fit into the following diagram, the outside of which commutes by construction:

S E1 ×C1 F1

Σ E0 ×C0 F0

�

Z

d0 × d0

d0ρ× d0σ

ζ

ξ

The dashed arrow thus exists. And since each side of the span represented by this arrow is

cartesian, this arrow induces the last required morphism Z → Iso(E ⊗C F) by Remark 5.2.24.

Lemma 6.4.1. The three induced maps given in Constructions 6.4.2, 6.4.3, and 6.4.4 compose

and thus yield a morphism to the object of isomorphisms of the tensor as in the diagram

Iso((E ⊗C F)2) (E ⊗C F)1 ×(E⊗CF)0 Iso(E ⊗C F)

Iso(E ⊗C F)×(E⊗CF)0 (E ⊗C F)1 (E ⊗C F)1

�

Z

◦

◦

〈〈ψ, φ〉, p〉

〈〈ψ, χ〉, 〈ζ, ξ〉〉

θ

with the pullback square as appearing in Construction 6.4.1.

Proof. Let V denote the corner object of the following pullback as in Construction 5.2.2. The
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object Z then admits two morphisms to V induced by universality as in

V (E1 ×C0 F1)×E0×C0
F0 S

Σ×E0×C0
F0 S E1 ×C1 F1

�

Z

π2

π1 − ◦ s

s ◦ −

〈p, 〈ψ, φ〉〉

〈〈l, σ〉, p〉

x

and

V C1 ×C0 S

Σ×C0 S C1

�

Z

π2

π1 − ◦ s

s ◦ −

〈p, 〈ψ, χ〉〉

〈χ, 〈ζ, ξ〉〉

y

The induced composition c : V → S of Construction 5.2.2 coequalizes x and y, as can be

calculated directly by checking on components. Now, recall that, by construction of c, the

composite qc factors through the composition morphism

◦ : (E ⊗C F)1 ×(E⊗CF)0 (E ⊗C F)1 → (E ⊗C F)1.

via the reduction map

v : V → (E ⊗C F)1 ×(E⊗CF)0 (E ⊗C F)1

of 5.2.13. Thus, the morphism ◦v coequalizes x and y. By construction of x, y and v, this

implies that the outside of the diagram in the statement commutes, as required.

Now, since u : S → F1 is a vertical morphism of f : F → C, it factors through the object of

objects of the arrow category of f , namely, (2 � f)0, as given in the pullback

(2 � f)0 F1

C0 C1

�
f1

i
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as in Example 4.1.3. Now, this means that, by construction, the outside square in the following

diagram commutes, yielding a canonical morphism indicated by the dashed arrow:

B Iso((E ⊗C F)2)

E0 ×C0 (2 � f)0 (E ⊗C F)1

�

Z

d0

u

θ

〈u, θ〉

Now the map indicated by ‘d0’ above is the codomain morphism π1π2 of the iso object viewed

as a subobject of the internal arrow category. Thus, d0θ = 〈ψ, χ〉. On the other hand, the

domain morphism

π2π1 : Iso((E ⊗C F)2) → (E ⊗C F)1

has d1θ = qp. Thus, the constructions and foregoing discussion proves the following result.

Theorem 6.4.2 (Factorization Lemma II). The diagram of maps from the above discussion

B Iso((E ⊗C F)2) (E ⊗C F)1.

Z

d1

〈u, θ〉 qp

is commutative.

Canonical Map of Cotensors is Essentially Surjective

Let I denote the image object of the arrow B → (E ⊗C F)1 at the base of the triangle above.

Thus, the arrow B → (E ⊗C F)1 factors as mp for a regular epimorphism p : B → I and a

monic m : I → (E ⊗C F)1.

Lemma 6.4.3. The commutative square

S S

I (E ⊗C F)1

=

1

p〈u, θ〉 q

m
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of arrows in the triangle immediately above is a pullback. In particular, p〈u, θ〉, and hence the

monic arrow m : I → (E ⊗C F)1, are regular epimorphisms.

Proof. Straightforward computation. The arrow m is regular epi since q and p〈u, θ〉 are. Notice

that since m is thus monic and regular epi it is an isomorphism by Lemma 2.3.3.

Corollary 6.4.4. The canonical map of cotensors

E ⊗C (2 � f) −→ (E ⊗C F)2

is essentially surjective.

Proof. Lemma 6.4.3 immediately above shows that the arrow running along the top row of

B Iso((E ⊗C F)2)

E0 ×C0 (2 � f)0 (E ⊗C F)1

�
(E ⊗C F)1

d0

d1

is a regular epimorphism, in the sense that the codomain (E ⊗C F)1 is isomorphic to its image

I. This is precisely the condition required by Definition 3.1.16.

Theorem 6.4.5. If e : E → C is 2-filtered as in Definition 4.4.8, then the induced tensor

product 2-functor

E ⊗C − : DFib(C) → K

preserves up to equivalence finite products, equalizers, and cotensors with 2.

Proof. Theorem 6.2.6 shows that E ⊗C − preserves finite conical limits. The previous result

shows that the canonical internal functor of cotensors is internally essentially surjective. That

this is also internally fully faithful in the sense of Definition 3.1.14 involves showing that a

certain square is a pullback. That this is the case is another exercise in cone-building in the

internal category theory of E inspired by the proofs of Lemmas 6.3.4 and 6.3.5.



Chapter 7

Conclusion: Future Work

7.1 Limit Preservation

It is clearly unsatisfactory not to have a complete statement as to whether the tensor product

E ⊗C − : DFib(C) → Cat

is finite-limit preserving if E : E → C is 2-filtered with respect to opcartesian morphisms. The

results of Chapter 6 do prove that E ⊗C − preserves the terminal object, binary products,

equalizers, and cotensors with 2, but only up to equivalence. In particular, it is the terminal

object and cotensors with 2 that are only preserved up to equivalence. Where the present

account falters is in the question of whether or not the construction of finite 2-limits from

these primitive 2-limit shapes is also preserved by the tensor. Only in the case that it is can it

be stated with confidence that finite 2-limits are preserved. It is not immediately clear that the

tensor does preserve the construction. Thus, the obvious next step is to inquire into whether or

not the construction of 2-limits and of pseudo-limits is preserved by the tensor product. Then

an internal version of the same result should be sought.

7.2 Bicategories

Something about the fact that the limit preservation mentioned above is only an equivalence

suggests that perhaps an “enriched” approach to 2-dimensional category theory is not the

right one. Generally speaking “preservation” in enriched category theory means “up to iso-

morphism.” Thus, the focus in the latter chapters of this thesis on 2-functors and 2-naturality,

which are enriched notions, has a kind of artificiality to it. Rather it is suspected that the

theory developed here is a fragment of a more genuinely bicategorical approach. What this

looks like however is not yet clear.

Some musings, however, might be appropriate. For example, the domain of our represen-

tations might be boosted up to a bicategory B so that under consideration would be homo-

morphisms E : B → Cat and F : Bop → Cat. The question would then be as to whether or not

there is a tensor extension

E ⊗B − : Hom(Bop,Cat) → Cat

125
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as some kind of bicolimit; and how or whether its exactness properties can be characterized

by filteredness conditions on the bicategory of elements construction associated to E as in

§3.3 of [Buc14]. This construction involves the tricategorical structure on the collection of

bicategories.

But it is not clear that the strict 2-category Cat is the correct target of truly bicategorical

representations. That is, would not a representation of a bicategory actually be a homomor-

phism into some “base” bicategory? The question is then what this would be. It might be the

bicategory Prof of categories, profunctors and their transformations. Then a representation

of a bicategory would be a homomorphism E : B → Prof. One would then have to describe a

tensor extension as a bicolimit in Prof. One would like a concrete computation. Of course Prof

is the bicategorical part of the double category Prof of categories, functors, profunctors and

their transformations. So, alternatively, if one views Set, the double category of sets, functions

and spans, as a sort of “set-theoretic” base double category, then perhaps Cat, the double

category of categories, functors and spans, is the “category-theoretic” base double category.

So, on this view, the bicategorical structure of categories and spans might provide the correct

setting for representations of bicategories. Again the main task here would be giving a concrete

computation of a tensor product as a bicolimit.

7.3 Further Internalization

One nagging question is about the existence of the tensor product in the internal account of

Chapters 5 and 6. It was seen that the tensor exists under the conditions of 2-filteredness and

that it was formed through a right calculus of fraction. However, it is not clear that the tensor

exists whether or not the discrete 2-opfibration is filtered. That is, without the filteredness,

there is no guarantee that the tensor is formed through a right calculus of fractions. It would be

nice to be able to give conditions on E such that some kind of “internal category of fractions”

construction can be carried out. The idea of course is that this should construct the “internal

colimit.” In the 1-dimensional case, a sufficient condition for internal cocompleteness was that

the base category have coequalizers of reflexive pairs. Some sufficient condition on E for internal

cocompletess of K = Cat(E ) is needed. This might have the form of further exactness properties

or perhaps an axiomatization of some internal “free category modulo relations” construction.

The true goal of the present research was to get a purely elementary account of flatness

and filteredness in a suitably exact and cocomplete 2-category on the model of Diaconescu’s

results generalizing the set-theoretic theory of flatness to elementary toposes. His main tools

in constructing the basic objects of the theory (the internal colimit and the tensor product
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for example) were the exactness and cocompleteness properties of toposes, namely, that any

elementary topos is an exact, hence a regular, category and that any topos admits all finite

colimits. One of the problems with working in Cat is that if it is to be the “base 2-topos” it is

not yet clear how to understand which are the most essential of its exactness properties to be

axiomatized in, or perhaps deduced from, general 2-topos axioms such as those of [Web07].

The paper [BG14] studies certain kernel-quotient systems defined on 2-categories as certain

weighted diagram shapes and defines notions of regularity and exactness with respect to these

kernel-quotient systems. Each kernel-quotient system comes with a natural notion of factoriza-

tion system on the 2-category. The authors identify several choices in Cat that fit this overall

pattern. For example, essentially surjective functors on the one hand for the “epimorphism-

like” class and on the other hand fully faithful functors form the “monomorphism-like” class;

or one could take essentially surjective and full functors on the one hand and faithful functors

on the other; or one could take surjective on objects functors on the one hand and fully faithful

injective on objects functors on the other. The question, however, as to which choice is suitable

for the 2-topos axioms seems to be unaddressed.

7.4 A Tricategory of Category-Valued Pseudo-Profunctors?

Whether or not the desired exactness results will hold in a purely elementary fashion, there are

nonetheless interesting questions about the categorical structure of the collection of discrete

2-fibrations over some base and about category-valued pseudo-profunctors more generally.

Recall from §7.8 of [Bor94], for example, that a profunctor (or “distributor”) between

categories M : C •−→ D is an ordinary functor M : C op × D → Set. Thus, ordinary functors

E : C → Set are profunctors E : 1 •−→ C and those F : C op → Set are profunctors F : C •−→ 1.

Profunctors N : B •−→ C and M : C •−→ D compose by a coend formula

N ⊗M(B,D) :=

∫ C

N(C,D)×M(B,C).

The tensor notation is justified by the considerations of IX.6 of [Mac98], where the composition

of profunctors E : 1 •−→ C and F : C •−→ 1 is shown to be isomorphic to the tensor product

of E and F as set-valued functors:

E ⊗C F ∼=
∫ C

EC × FC.

Composition of profunctors is associative up to isomorphism in the sense that there are natural

isomorphisms

P ⊗ (N ⊗M) ∼= (P ⊗N)⊗M.
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This is part of the bicategory structure on Prof whose objects are categories, whose morphisms

are profunctors, and whose 2-cells natural transformations of profunctors.

A natural question about the work of the present thesis is as to whether the tensor product

of a discrete 2-opfibration E : E → C and a discrete 2-fibration F : F → C given as

E ⊗C F := π0Δ(E,F )[Σ−1]

is a fragment of a more general composition law for certain category-valued profunctors on 2-

categories. Our conjecture is that this is true. In fact, the work of the thesis has suggested that

category-valued profunctors can be organized into a tricategory with objects small 2-categories

whose composition law is given as a generalized bicoend having the tensor product above as a

special case.

Tricategories seem first to have been studied in [GPS95]. These are essentially 3-dimensional

categories obtained as somehow “weakly enriched over bicategories.” The details of this formu-

lation are formidable. Additionally, there is the issue that Cat is not regular as a 1-category. In

particular, regular epimorphisms are not stable under pullback. This makes trouble for even a

definition of a canonical map between the two possible compositions of three category-valued

profunctors. However, a relatively recent draft paper [Cor17] provides a calculus of certain

bicoends that does give an associativity result that might be of use in this direction.
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1980.

[Web07] M. Weber. Yoneda structures from 2-toposes. Applied Categorical Structures, 15:259–
323, 2007.


