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Abstract

Semantic segmentation is a computer vision task of assigning a label describing the

content to each pixel in an image. There has been a lot of progress in this area using

deep neural networks with an encoder-decoder structure. However, these methods

usual place reliance on learning from a lot of data. In this thesis, we study the

performance of semantic segmentation networks trained on small labeled training sets.

This is thereby studied in the context of the application of detecting and counting

red blood cells in microscopic images of a recently developed lensless microscope. In

addition, we use a specifically designed generic dataset to investigate performance

more systematically.

We first study the performance breakdown with the sizes of the training sets using

a synthetic 2D-Gaussian dataset. Then for our microscopic blood images, we evaluate

a method similar to an Expectation-Maximization approach to improve performance

with limited labeled training data through a self-training procedure. In this self-

training procedure, we add unlabeled data to the training set using the model’s own

prediction as pseudo-labels for the unlabeled data. We compare several methods

of producing pseudo-labels and show that only one of them improved lightly the

segmentation performance. Indeed, most of the methods lead to a deterioration of

the accuracy. However, we also noticed that these pseudo-labels that lowered the IoU

accuracy lead to a rapid intensity change in the per-pixel prediction map at locations

associated with edges. Based on this finding we propose a new counting algorithm

and show that this method results in a testing error rate of 6-9% on counting red

blood cells.
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Chapter 1

Introduction

Computer vision is a popular interdisciplinary field since the late 1960s, to build vi-

sual systems for machines [69]. In recent years, machine learning made considerable

progress in various computer vision tasks [60, 37, 70, 76]. In particular, the specific

set of machine learning algorithms called deep neural networks, exhibit good gener-

alization on image data and has become a strong tool for solving application targets

related to computer vision, including autonomous driving [12, 31], a search engine for

images [71], face recognition [63], playing games (classic video games and the famous

game of Go) [26, 66], object tracking in video [71], etc.

Semantic segmentation is one of the core computer vision problems that drive the

development of scene understanding. The task is to assign each pixel of an image

a class label. Deep networks tackling the semantic segmentation problem, surpasses

traditional CV algorithms in terms of the accuracy.

Despite the impressive performance of deep networks on semantic segmentation,

the deep network is tightly coupled with a large amount of data and labels, since

there are a huge number of parameters in a deep network. For example, the well

known 16 layers VGG convolution network [67] has over 138 million parameters.

1.1 Problem and task

There is no guarantee for the amount of labeled data in a real world application. The

situation exists that the novel deep networks are applied to a dataset in a limited

small size.

The project we worked on is to apply a deep network to segment human blood

cells in microscopic images from a recently developed lensless microscope. The goal

for the project is to use the model to segment cells for further analysis. For example,

the model can be used to segment out a specific rare type of blood cells, which human

cannot distinguish from other types very well. The segmentation results can also be

1
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used to count the number of a specific type of recognized cells.

Here our focused discussion is how much labeled data is necessary to get an ex-

pected segmentation performance for our application. Since we do not have accurate

annotations for this microscopic dataset, we look into how many images we should

label. Also, if we can only have a small set of images labeled, we need to propose

methods or model structures that can do semantic segmentation on this microscopic

cell dataset from a small set of labeled training images.

Generally, there is no simple conclusion of how much training data is required to

achieve the desired performance for deep networks. Therefore, it is worthwhile for

performing the experiment of training a deep network on a small labeled dataset, and

do analysis on how the accuracy varies with different training set sizes.

We find that a small dataset may be sufficient to learn enough useful representation

for deep networks in some cases. For example, the U-Net [57] achieves a 6% pixel

error by being trained on only 30 images of ventral nerve cord(VNC) medical dataset

[9]. In the paper of Siamese Neural Networks [35], 70% classification predictions

are correct on MNIST dataset [40] by giving only a single example of each class to

train a pretrained neural network, the process is called one-shot learning. Therefore,

we would like to propose a new approach for improving the performance of a deep

network trained on a small training set of our microscopic blood image dataset.

1.2 Overview

We first review the influential papers proposing novel deep networks for semantic

segmentation since 2015. The summary table in Appendix A, shows the datasets

sizes in these influential papers. We find that there are not as many analysis on

limited or small dataset cases as those for big datasets.

We conduct a breakdown experiment for demonstrating the case of training a deep

network for semantic segmentation with extremely small training sets. We would

like to investigate how small the size of the training set will make the recognition

completely break down, and observe how the accuracy of segmentation varies when

we train a deep network on different-sized training sets using some synthetic data.

We then focus on investigating whether we can train a deep semantic segmenta-

tion model on a small set of labeled images and an additional set of unlabeled images,
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from our microscopic blood cell images to reach expected performance. This is be-

cause manually labeling cell marks is very time-consuming and expensive. Suppose

we only create labels for a small training set. The method for utilizing also unlabeled

images during the training of our deep networks is meaningful. We concentrate on

red blood cells, since red blood cells are the majority of all cells in our microscopic

dataset and appear in every image of our microscopic dataset. Therefore, our task

of semantic segmentation is for two classes: red blood cell and others. Inspired by

some works on self-training for classification problems [4, 47], we implement an EM-

like self-training model based on U-Net [57] for semantic segmentation training on

a small set of labeled images with a set of unlabeled images using the model’s own

prediction as labels. We also propose a counting algorithm that works on output

segmentation maps. In addition, we create a dot labeling tool for making dot anno-

tations to create ground truth for validating our counting algorithm. This tool could

possibly be used as an interactive labeling tool for active learning.

The contribution of our works is as follows:

1. We conduct a breakdown experiment, where we train a semantic segmentation on

some very small training sets separately. We control all the settings to be the

same for all the tests except for the training set size. These training sets are

from the same BBBC cell dataset [32] or synthetic 2D Gaussian dataset. We

use these sets of the decreasing size. We observe the model performance and

show that there is no certain breakdown line for the recognition, which means

there is no certain small training set size that makes the recognition break down.

Remarked overfitting occurs when the number of objects in the training set is

extremely small. The testing accuracy decreased to a remarkedly low value since

the overfitting.

2. We propose an EM-like self-training method for doing semantic segmentation on a

microscopic red blood cells image dataset. We find that results critically depend

on the thresholding method related to uncertainty measure inside the pseudo-

label generation function. We only find a small improvement in that regard for

one of the thresholding method. For other thresholding methods, the self-training

does not improve the model performance.
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3. In addition to pseudo-label generation for unlabeled data, we utilize Monte Carlo

(MC) dropout [21] for assessing a confidence measure to weight the entropy of

each pixel in loss function. The purpose is to give a dynamic small weight for

the entropy of pixels which the model is not confident to predict. This was also

aimed to increase the model performance. However, as we mentioned, training

the model on most types of pseudo-label results in decreasing the accuracy.

4. We show that training the semantic segmentation model on some other pseudo-

labels decrease the accuracy but result in a rapid density changing in output

segmentation map. These changes help with counting the objects. Therefore, we

propose a counting algorithm that works on the output segmentation map of the

self-trained model. The counting algorithm ends up with a testing error of 6-9%

on red blood cells. This counting method can be useful when it’s hard to extract

objects of interests since this method works on the predicted segmentation map

and does not need any additional dot annotation. Some of these findings have

been published in [44].

1.3 Thesis outline

This thesis is organized as follows: Chapter 2 provides the basic concepts of com-

puter vision tasks and semantic segmentation is our focus. Necessary backgrounds

are stated including machine learning, Neural Networks from Perceptron, MLP to

Convolutional Neural Networks. Chapter 3 describes our breakdown experiments.

Chapter 4 presents our approach to do semantic segmentation from a limited training

set of our microscopic blood images data and provide the results and discussions.

Chapter 5 summaries the thesis and discuss future work.



Chapter 2

Basic concepts

This section presents an overview of the tasks in computer vision area including

localization, object detection, instance segmentation, semantic segmentation. Then

we focus on talking about the concepts of semantic segmentation and deep neural

networks, specifically Convolution Neural Networks as the strong model for semantic

segmentation. Analysis and experiments we proposed in later chapters are conducted

based on those concepts.

2.1 Computer vision task

Computer vision is a scientific field, started out in the early 1970s to mimic human

intelligence of vision system for robotic system [69]. It is an interdisciplinary field

for digital image processing, information engineering, machine learning, and neuro-

biology [68]. Computer vision today has a wide variety of real-world applications

including catch match move (for movie industry), motion capture (for robots, self-

driving cars), 3D-modeling, medical imaging, fingerprint recognition, etc. [69].

Recent computer vision works in conjunction with machine learning field are what

we focus on. By definitions in one of the recent influential challenges of this field:

ImageNet Large Scale Visual Recognition Competition (ILSRVC) challenge [60], there

are four main related tasks: localization, object detection, instance segmentation, and

semantic segmentation. Below is a brief summary of these tasks. Figure 2.1 shows

an example of these four computer vision tasks.

(a) Localization ( Single-instance localization )

Localization is the task to assign an input image one label from a fixed set of

categories as well as a bounding box (x,y,w,h) containing the only one object in

the image. (x,y) are the coordinates of the centre and w, h are the width, height

of the bounding box. The label is the category of the only object inside the image.

5
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Figure 2.1: Example of computer vision tasks including object localization, object
detection, instance segmentation, and semantic segmentation. (The raw image is
from [74]).

(b) Object detection

Object detection is the task to find the instances of objects from a fixed set of cat-

egories in an image and output a bounding box for each instance. Suppose there

are j instances, indexed by i = 1, ..., j. Each of the bounding box (xi, yi, wi, hi)

contains one instance of an object, labeled with the category ci of the object.

(c) Instance segmentation

Instance segmentation is the task to detect instances of objects from a fixed set of

categories in an image. For each instance of an object, all pixels of this instance

are labeled with a category label. Pixels that are not recognized as instances will

not be labeled.

(d) Semantic segmentation

Semantic segmentation is the task to assign each pixel in an image a label from

a fixed set of categories. This task is a pixel-wise task for the entire image.

Compared to instance segmentation, object level recognition is not performed.

Therefore, semantic segmentation does not differentiate instances.

These computer vision tasks are easy for the human visual system to distinguish
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and perform. While for machines, to completely automatically process these tasks,

more works are needed. Typical ideas for solving the localization problem is to treat

it as an image classification problem for deciding the class label with a regression

problem for generating the bounding box. While for object detection and instance

segmentation, the methods for feature extractions, the learning algorithms for recog-

nizing and differentiating instances are most essential. Semantic segmentation prob-

lem is what we focus on in this thesis. In the next section, we discuss the details of

semantic segmentation and machine learning, more specifically neural networks, as

the strong solutions and models for this problem.

2.1.1 Semantic segmentation

Semantic segmentation is one of the problems in the field of scene understanding

of computer vision. The task of semantic segmentation is to assign each pixel of

an image an object class such as a tree, a plant, a person, a car for a dataset of

nature. For a medical dataset, the class may include types of organ, tissue or cells,

etc. Semantic segmentation is a pixel level task partitioning an image into parts that

are semantically meaningful.

Many applications need an automatic segmentation process for 2d images, 3d

images, video frames. Such applications include self-driving, face recognition for

security, and robots delivery, etc. To satisfy the need for an automatic process,

semantic segmentation has become one of the most frequently faced problems among

computer vision problems in these applications.

Semantic segmentation could be seen as the classification for all pixels in an image.

Semantic segmentation problems are being tackled using a class of models within

machine learning, which is deep Convolutional Neural Networks. In this chapter,

we first talk about the general supervised learning in machine learning. Then Neural

Networks, most often Convolutional Neural Networks will be discussed. These are the

basic concepts for semantic segmentation, which our later discussion about limited

data problems is related to.
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2.2 Machine learning

Machine learning is the technique to learn from training seen data to make a prediction

of unseen data, where the data is a collection of vectors or matrices of real numbers,

while the prediction is a class indicator vector or other vectors depending on the

problem task. The learning inside is the process for enabling the model to have the

prediction of unknown based on experience.

2.2.1 Supervised learning

To enable learning for a machine learning model, supervised learning means we pro-

vide the samples given to the model that include a set of example inputs and outputs.

The inputs are called features while the outputs are called label or annotation (each

pixel has a label in an image). Approaches of supervised learning are used to learn

the pattern that maps the input to the output [45]. We focus on supervised learning

since most methods for semantic segmentation are supervised [22]. The limited data

problem we study here is mostly related to the lack of label (annotation), the high

cost for creating labels, rather than the difficulty of collecting raw data.

2.2.2 Semi-supervised learning

Semi-supervised learning algorithms enable learning from a combination of labeled

data and unlabeled data [11]. The model tends to have a better performance trained

on the combination than just trained on labeled data. This is meaningful for reducing

the cost of the whole project. Since human labeling is expensive and time consum-

ing, utilizing unlabeled data help improve the accuracy is useful. Semi-supervised

algorithms explore the unknown patterns inside unlabeled data as that information

presents part of the distribution of all data in a dataset.

2.3 Neural Networks

Artificial Neural Networks are information process models for solving artificial in-

telligence problems. Inspired by biological neurons in the brain, a neural network is

composed of artificial neurons (nodes) forming a structure to do computation through
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a connectionistic approach. Used as a learning algorithm in machine learning, neural

networks alter the weight and bias of each node to map the best output for the input.

Originally devised by neurophysiologist Warren McCulloch and Walter Pitts in

1943, a simple neural network is modeled using electrical circuits [48]. In 1958, re-

sulted from the research of Frank Rosenblatt, a perceptron was built in hardware [58].

The idea of perception maintains a strong influence until today. A single-layer per-

ceptron was found to be useful in classifying a set of inputs into one of two classes.

F =
∑
i

wixi + bi (2.1)

Equation 2.1 denotes a single linear layer perceptron. The output y can be made

for example, by a rule: y = 1 if function value F > c, where c is a constant, otherwise

y = 0. In 1958, the perceptron Rosenblatt proposed is the first model for learning

with an error correction, which is a perceptron convergence algorithm summarized as

shown below [28].

x(n) = [1, x1(n), x2(n), x3(n), ..., xm(n)]T input vector

w(n) = [b, w1(n), w1(n), w1(n), ..., wm(n)]T

b = bias

y(n) = actual response

d(n) = desired response

η = learning rate parameter

First, the weights W (n) will be initialized, where n is the index of step and m is the

dimension of continuous-valued input vector X(n). Further, the algorithm activates

the perceptron by applying x(n) and desired response d(n). Actual response y(n) is

computed by:

y(n) = σ ( wT (n)x(n) ), where σ is the sigmoid function

Next is the update (adaption) of the weight vector of the perceptron to obtain the

followings equations. After that, increase the index of step n by one and keep doing

from activation to adaption.
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w(n+ 1) = w(n) + η( d(n)− y(n) )x(n),

d(n) = +1/− 1 if x(n) belongs to class 1/ class2,

Rosenblatt's learning algorithm above does not work for multiple layers since it

adjusts the weights only for the last and the only layer in perceptron. The learning

rule is devised for a single layer only, therefore lacks the method to adjust the weights

before the final layer if we have multiple layers.

For more complex not linear classifiable problems, Minsky and Papert’s analysis of

perceptrons shows that multiple layers of perceptrons are needed [50] in 1969, which

is a class of feedforward neural networks we call a multilayer perceptron (MLP) today.

An MLP consists of an input layer, one or more hidden layers, and an output layer.

The differences between an MLP and a single-layer perceptron are the multiple hidden

layers and a non-linear activation function applied to the linear combination of node

values or inputs. Non-linearity is essential for multi-layer networks since it enables

the non-linear complex functional mappings between the inputs and response outputs.

Equations above are commonly used activation functions.

Binary step: f(x) =

{
1 if x ≥ 0

0 if x < 0
(2.2)

Sigmoid function: f(x) =
1

1 + e−x
(2.3)

Tanh function: f(x) =
2

1 + e−2x
− 1 = 2 sigmoid(2x)− 1 (2.4)

Rectified Linear Units (ReLU): f(x) =

{
x if x ≥ 0

0 if x < 0
(2.5)

Leaky ReLU: f(x) =

{
x if x ≥ 0

0.01x if x < 0
(2.6)

Exponential linear unit (ELU): f(x) =

{
x if x > 0

a(ex − 1) if x ≤ 0
(2.7)

The learning algorithm for an MLP is backpropagation (BP). The idea is with a

differentiable activation function for a node, derivatives can be calculated to adjust
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the weights. Early BP ideas were derived from 1960s [62]. In 1974, Werbos thought

to apply this principle to Neural Networks [73]. Using the chain rule, the errors are

”backpropagated” from output layers to previous hidden layers and further splited

and ”backpropagated” from one hidden layer to another previous layers. All weights

in each layer are adjusted to minimize the error. Let E denote the error. E can be

a mean square error, cross entropy or other measures of the discrepancy between the

predicted class and the ground truth class. If there is only one hidden layer in the

MLP. The update of weight wij in Figure 2.2 is shown above.

Δwij = η
∂E

∂wij

∂E

∂wij

=
∂E

∂aj

∂aj
∂wij

=
∑
j

δjxi

Figure 2.2: An MLP with one hidden layer. x denotes the value of input nodes, a
denotes the values before activation function F of hidden nodes, and y denotes the
value of output nodes.

For an MLP with multiple hidden layers, we need to consider the current node j is

a neuron connected with the output layer (output node) or an inner neuron connected

with another hidden layer (inner node). Suppose we have two hidden layers and the

second hidden layer is connected with the output layer. The nodes we use as examples

are aj for the first hidden layer, ak for the second hidden layer and ok as the output

of the second hidden layer. Following the chain rule, we can have the derivative:
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∆wij = η
∂E

∂wij

∂E

∂wij

= (
∂E

∂ok

∂ok
∂ak

∂ak
∂yj

)
∂yj
∂aj

∂aj
∂wij

= (
∑
k

δkyjwjk)
∂yj
∂aj

∂aj
∂wij

= (
∑
k

δkyjwjk)F ′(aj)xi

This two-layer MLP demonstrates two cases of nodes: inner node and output node.

To extend the case to arbitrary multiple hidden layers, for convenient expression, let

δ be: δk = ∂E
∂ok

∂ok
∂ak

, an example for output neuron, and ∂E
∂wij

= δjxi: an example for

inner neuron. Suppose t is the ground truth.

δ =

{
error(yj, tj)f

′(aj) when j is output neuron

(
∑

j δjyiwij)f
′(aj) when j is hidden neuron

2.3.1 Convolutional Neural Networks

Convolutional Neural Network (CNN) is a class of neural networks, mostly applied

to visual content such as images, video frames, signals, etc. CNN is well known for

success at vision-oriented classification tasks [40, 38]. CNN is composed of convo-

lution layers for generating feature maps, downsampling layers for feature map size

reduction, and fully connected layers as same as an MLP. Compared to MLPs, CNNs

are built specially for computer vision problems. Instead of extracting the features

in an image by all the neurons, convolution function is used in neurons to reduce the

complexity of neural networks. Also, convolution layers in CNNs enable more effi-

cient learning compared to an MLP, about learning features from objects in different

positions.

For CNNs, the feature map is generated by passing a convolution matrix (kernel)

to the input matrix map (input image), multiplying each entry in the kernel size

and summing. The kernel can be seen as weights for adding neighbor entries for an

entry in an input matrix map (input image) and the weights are shared across all

patches of the map. The weights updating is invariant to the position. Therefore

CNN has translation invariance characteristics, which means the learning will be the

same regardless of object positions. Since convolution layers are consecutive and
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latter layers made compositions of lower level visual features from previous layers,

the output of the last convolution layer will be deep hierarchical features that are

capturing the whole semantic information.

The output layers (fully connected layers) enable classification by connecting all

neurons to the last output layer, which contains the same number of neurons as the

category of classes. Classification is performed by taking the corresponding class with

the highest normalized, for example, Softmax [7] probability.

2.3.2 Neural Networks for semantic segmentation

The general architecture of neural networks for semantic segmentation consists of

encoder layers followed by some decoder layers. Encoding is the process as same as

hierarchical feature extraction and feature map size reduction in a CNN. Instead of

a classification decision as an end result where the fully connected layers in a CNN

do, the decoding is to enlarge the feature map size and project the features extracted

onto the pixel space, therefore recover the morphological details of objects.

For encoder layers, any architecture of convolution and pooling for feature extrac-

tion in a CNN pretrained for classification can be used, such as AlexNet [38], VGG

[67] or ResNet [30]. Decoder layers will be the mirroring layers of encoders replacing

poolings with deconvolution (or called transposed convolutions).

Figure 2.3: Example of a basic structure of a encoder-decoder network for semantic
segmentation. (W, H denote the weight and height of the input. C denotes the
number of classes).

The early papers that popularize the encoder-decoder structure are [64, 43]. They
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observe that the fully connected layers of a CNN can be viewed as a patches-sharing

efficient computation equivalent to convolving the whole image input. Therefore, the

compressed hierarchized features maps in fully connected layers can be used to gain

(or called recover) feature heatmaps same size as input. Then classification decision

can be made on the feature heatmap for each pixel. In an encoder-decoder neural

network, the layers before fully connected layers are encoder layers, while the layers

after fully connected layers are decoder layers.

The method of recovering the feature heatmap is to skip mapping fully-connected

layers to a class vector. Instead, add some structures to interpolate the small size

feature maps so that the feature maps will be up-sampled till the same size as the

input image. The structures are usually transposed convolution (deconvolution) layers

with strides. The stride size is corresponding to the stride size of poolings in encoder

layers. In [43], their implementation of an encoder-decoder network is called Fully

Convolutional Network.

Later encoder-decoder networks introduce adding some shortcut connections be-

tween encoder layers and decoder layers. Some information is copied from encoder

layers and attached to decoder layers. The purpose is to get better recovered details

during upsampling the feature map.

Figure 2.4: Encoder-decoder network with shortcut connections

Figure 2.5: Maxpooling indices are stored during the feature extracting
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Figure 2.6: The architecture of the U-Net. Entire feature maps are copied and con-
catenated from encoder to decoder layers

In SegNet[3], indices from maxpooling are copied. They use these indices to up-

sample the feature maps. Another encoder-decoder network famous for biomedical

images is U-Net[57]. Instead of copying maxpooling indices, U-Net copy and con-

catenate the entire feature maps from encoder layers to up-sampled feature maps

in corresponding decoder layers, and perform transpose convolution in the decoder

layers.

2.4 Evaluation measures for semantic segmentation

Evaluation measures are important when it comes to our study goal: the relation

between the performance of the semantic segmentation and the size of data or label.

Existing measures of semantic segmentation includes region based measure, contour-

based measures.

2.4.1 Region based measure

Most evaluation of measures for semantic segmentation focus on pixel level classifi-

cation accuracies. These measures are region based since all pixels of an input image

are evaluated and pixels forming regions correspond to objects such as human, plant,
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vehicle, animal, cell, building, etc., and scenes such as street, sky, lawn, cytoplasm,

etc.

In the paper of Fully Convolutional Networks [43], four evaluation metrices used

in the paper become widely used in papers of semantic segmentation. These metrices

are summarized in Equation 2.8 - 2.11 below. Mean Intersection over Union (Mean

IoU, Jaccard index) and Dice coefficient (F1 score) are two most widely used metrices.

The following notations are used: n ij: the number of pixels of class i predicted to

belong to class j, where there are n cl different classes. ti: the total number of pixels

of class i.

Pixel accuracy (Ovarall Pixel) =
∑
i

nii/
∑
i

ti (2.8)

Mean accuracy (Per Class) = (1/ncl)
∑
i

nii/ti (2.9)

Mean IoU (Jaccard index) = (1/ncl)
∑
i

nii/(ti +
∑
j

nji − nii) (2.10)

Frequency-weighted IoU = (
∑
k

tk)−1
∑
i

tinii/(ti +
∑
j

nji − nii) (2.11)

Mean Dice coefficient (F1 score) = (1/ncl)(2×
∑
i

nii)/(ti +
∑
j

nji) (2.12)

Semantic segmentation classifying each pixel of an image can be considered as

a process of three steps [23]: object detection, shape recognition and classification.

Many studies and researches are specially and explicitly focused on improving the

accuracy of the last two steps by highlighting the improvement of the IoU, or Dice

coefficient [22]. In term of the statistical measure, IoU is
tp

tp+ fp+ fn
while dice
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Figure 2.7: Simple bounding box example of IoU and F1 measures: ratios of statistical
measures.

coefficient is
2tp

2tp+ fp+ fn
. Their function is equivalent in terms of measuring score

averaging over all classified pixels.

The difference is that the IoU metric tends to penalize more to single incorrectly

classified instances while the Dice coefficient tends to penalize less as shown in the

equation below.

Dice coefficient (F1) =
2IoU

IoU + 1
therefore

F1

2
≤ IoU ≤ F1

Region based measures are commonly used for benchmarks and challenges of se-

mantic segmentation. Microsoft COCOs standard metric [41], simply denoted as

mAP@[0.5, 0.95], is calculated by averaging mean Average Precision (mAP) over IoU

thresholds the segmentation probability output map from 0.5 to 0.95 with step 0.05.

PASCAL VOCs metric is mAP@0.5 [19].

2.4.2 Contour based measure

For some applications of segmentation, the contour quality significantly contributes

to the perceived segmentation quality [36]. Popular contour-based measures such

as [46, 20] are based on doing the closest match between boundary points in the

prediction and ground truth segmentation maps. In [46], they do an F1-measure

using set a distance error tolerance θ for checking if a point of the boundary has a

match. In [16], they further extend this to an F1-measures contour based score in

semantic segmentation as (2.13) shows. For a class c, calculate the precision (P c) and

recall (P c) by comparing contour map for the binarized predicted segmentation map

with the ground truth contour map.
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F c
1 =

2 · P c ·Rc

P c +Rc
(2.13)

2.4.3 Benchmark dataset for semantic segmentation

During the development of deep learning model for semantic segmentation, when novel

models or extensions are proposed, some datasets are used as standard benchmarks.

We will list some most influential benchmark datasets for semantic segmentation

below.

(a) The PASCAL Visual Object Classes(VOC) 2012 [19]: This dataset contains im-

ages of 20 classes: person, bird, cat, cow, dog, horse, sheep, aeroplane, bicycle,

boat, bus, car, motorbike, train, bottle, chair, dining table, potted plant, sofa,

tv/monitor. For semantic segmentation challenge, the training set and valida-

tion set contain 1464 and 1449 images respectively. The annotations are full

pixel-level.

(b) Microsoft Common Objects in Context (COCO [41]): This dataset is large-scale

and contains very diverse objects. There are over 80 classes including person,

transportation: car, bike, bus, truck, boat, train, plane, etc., animals: bird sheep

dog, etc., fruits, electronics, sports equipment etc. There are 80k images for

training and 40k images for validation and the dataset keeps growing. COCO is

famous for its large scale and wide range of object classes.

(c) Cityscapes [14]: This dataset contains street scene images in 8 classes: humans,

vehicles, flat surfaces, constructions, objects, nature, sky, and void. There are

5k images with fine annotations and 20k coarse annotated images. The layouts

and locations of objects on the street are diverse. This dataset is influential for

projects related to driving.

(d) PASCAL Content [52]: This dataset provides an extension of PASCAL VOC

2010, adding images to 10k in 540 classes (60 frequent classes + 480 rare classes).

Much more classes are created for the background in original PASCAL VOC

dataset. This dataset focuses on setting more complex scenes that more difficult

to generalize.
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(e) ventral nerve cord(VNC) medical dataset [9]: The dataset contains 30 images

(512x512 pixels) from a serial section Transmission Electron Microscopy (ssTEM)

data set of the Drosophila first instar larva ventral nerve cord (VNC). Each image

comes with a corresponding fully annotated ground truth segmentation map for

cells and membranes.

(f) NYU Depth Dataset V2 (NYUDv2) [65]: This dataset contains video sequences

from a variety of indoor scenes across 26 scenes, where there are 35,064 distinct

objects of 894 different classes (table, chair, bed, canibet etc.). The dataset

consists of 1449 RGBD images, gathered from a wide range of commercial and

residential buildings in three different US cities.

(g) SIFT Flow [42]: This dataset contains outdoor scenes including streets, moun-

tains, fields, beaches, etc. There are 2688 (256×256) images of 33 classes. The

dataset has a number of issues, including unannotated images and missing classes

from the test set.

(h) CamVid road scenes [8]: This dataset contains road scenes captured by cameras

mounted on a car. The video sequences are sampled adding up to 701 frames

(images). Those images are manually annotated with 32 classes including void,

building, wall, tree, vegetation, etc.

(i) Person-Part dataset [13]: The dataset provides images and pixel-level labels for

six person parts including Head, Torso, Upper/Lower Arms and Upper/Lower

Legs. The rest of each image is considered the background. There are training

1717 images and 1818 test images.

(j) ADE20K [77]: The dataset focuses on scene parsing or objects and stuff recog-

nizing in an image. The images are both indoor and outdoor. There are 20,210

images for the training set, 2,000 images in the validation set, and 3,000 images

in the testing set. All the images are exhaustively annotated with objects. Some

objects are even annotated with their parts. For example, the chair object class

consists of chair-back, chair-seat, chair-leg, etc.
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(k) Semantic Boundaries Dataset (SBD) [27]: This dataset is an extension of PAS-

CAL VOC, providing category-level and instance-level annotation without bound-

aries (Original annotations contain boundaries in PASCAL VOC) for 11k images

from PASCAL VOC 2011. This dataset is divided into 8498 images for training

and 2957 images for validation.

(l) Stanford Background dataset [25]: The dataset contains outdoor scene images

from multiple public datasets including LabelMe, MSRC, PASCAL VOC, and

Geometric Context. There are 715 (320×240) images and the number of classes

in annotations depends on the algorithm provided in their paper to generates the

labels differentiates the objects, regions and geometry of a scene.

Most standard benchmarks need to be diverse and representative enough to judge

a model’s general performance. When a novel techniques or extension are proposed,

to make fair comparison between sophisticated neural networks possible, existing

standard representative datasets are necessary. Standard large-scale datasets are

convincing and representative enough for some of real scene in applications. Those

benchmark datasets are growing with more data and evolve over time so they end

up with a large number of samples till today. Table 2.1 summaries the data quantity

growing of Pascal VOC and MS COCO datasets.

Pascal VOC data sets MS COCO datasets

Year class size ( the number of images - objects (+ segments) ) Year class size
2005 4 1578 - 2209 2014 91 83K(train) + 41K(val/test)
2006 10 2618 - 4754 2015 91 81K(test)
2007 20 9,963 - 24,640 2017 91 118K(train) +5K(val) +41K(test)
2008 20 4,340 - 10,363
2009 20 7,054 - 17,218 + ( 3,211 )
2010 20 10,103 - 23,374 + ( 4,203 )
2011 20 11,530 - 27,450 + ( 5,034 )
2012 20 11,530 - 27,450 + ( 6,929 )

Table 2.1: The growing dataset size of Pascal VOC and MS COCO benchmarks

2.5 Limited data problem

In order to properly understand how semantic segmentation is influenced by limited

data, we first outline what we mean with a limited data problem. A dataset can be

limited in a variety of ways.
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Limited dataset size

The size of a dataset can be limited, which means there is a very small amount of

raw data. The data is insufficient for training a model to get a performance goal.

Although many standard benchmark datasets have been grown to be large scale, real-

world problems are different. For a specific research or application, it’s possible to

have small size dataset due to the sample resources limit, technical limit or time cost

requirement for collecting data. For example, in some competitions of the robotic

solution, collection and labeling need to be performed in a short available time. The

robot will work in several scenes and need to make a quick collection of photos used

as data for future behavior [49]. In the medical domain, many datasets contain only

a small number of training samples, such as Drosophila first instar larva ventral nerve

cord (VNC) dataset in the U-Net paper contains only 30 images (512x512 pixels). In

Broad Bioimage Benchmark Collection [32], there are over 40 medical image datasets

including datasets of human red blood cells, Human Hepatocyte, Mouse trophoblast

stem cells, etc. Most of these datasets contain less than 200 sample images.

Limited label

Labels for semantic segmentation can be limited. Label (annotation) for an image

is a separate map with the same resolution as the image data. Intuitively, it means

every pixel has its own class number as label. The class label refers to its enclosing

object or scene. The labels can be limited in quality or quantity.

Label quantity Lack of labels is the most common problem after collecting the

data, because the financial cost and time cost for creating labels are higher than

collecting raw images. There are many labeling tools for helping create annotations

for images. [17]. Nevertheless, creating labels is currently not completely automa-

tized and is done by manual work mainly. Creating labels manually is expensive.

In the medical domain, label creating is even more expensive compared to natural

datasets. It needs to be precise and often require domain experts to do it profession-

ally and attentively, such as human cancer cell image or other image data for medical

diagnoses.
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Label quality In addition to the quantity of labels, the quality of labels can be

limited. Labels can be coarse, incomplete or mis-labeled. The quality of label rep-

resents how accuracy the annotation match the shape, structure and boundaries of

the object. This is related to the features, patterns extracting and decision making

for a neural network. Since it is time-saving and cheap to produce a low quality ap-

proximate label, imperfect labels are common in public natural datasets such as the

MS COCO and the Cityscapes, etc. In the Cityscapes dataset, for example, there are

fine annotations for around 5000 images and about 20000 coarsely annotated images.

For custom datasets where different people collect image data and creating labels for

their own, it is very possible to have imperfect labels since object boundary is difficult

to accurately annotate.

The term of coarse label here refers to the fact that the label locates objects well

but not accurately represent the boundaries. A typical case is that of a polygon

enclosing an object. An incomplete label means the annotation is incomplete so that

some instances of objects missed being annotated in the annotation image. Except

for coarse labels and incomplete labels, mis-labeling can happen in every dataset.

Proposing new models to learn from imperfect labels is worth doing. Some deep

learning models are shown to be robust when trained on some datasets with noise

labels and errors [56].

2.5.1 Labeling data

Utilizing deep learning requires the labels(annotation) for data as most deep networks

are supervised or semi-supervised. The cost of doing labeling is related to the target-

ing computer vision task. For some tasks, we need accurate pixel-wise annotation of

objects. Others may just need objects to be labeled by landmarks or bounding boxes.

Table 2.2 provides a summary of required label type and cost estimation for tasks

in the field of Computer Vision. We make an estimate of the cost of labels, label

quality demanding, graded starting from one to several stars, depending on how

much difficulty and time consuming for putting works on it. We also mention some

online labeling applications for these computer vision tasks.
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Computer Vision Task Labeling tools Labeling cost
Label quality
demanding

Output

Image
level

Localization
Single object,
bounding box

OpenLabeling [10],
Dataturks [18]

* *

Object
detection

Multiple objects,
bounding boxses

** *

Pixel
level

Instance
segmentation

Multiple objects,
pixel-wise annotation

Labelbox [39],
LabelMe [61]

*** **

Semantic
segmentation

Multiple objects
and scenes,

pixel-wise annotation
*** **

Table 2.2: Summary of the required label types and cost estimation for computer
vision tasks

2.5.2 Using outside data resources

In addition to the type of targeting computer vision task, the challenge we face in

real-world applications is that data has different representation in different domains.

Domain refers to the specialized background field of data. There is a strong resem-

blance between the information represented for the data in the same domain.

Application Domain Related datasets

Self-driving, navigation Driving Cityscapes, CamVid, SYNTHIA, KITTI
Household object capture Indoor NYUDv2, SUNRGBD, rgb-d object dataset
Natural object capture Outdoor SIFT Flow
Face regnition Portrait Adobes Portrait Segmentation, CASIA, MS-Celeb-1M
Investigate Material Materials in Context Database (MINC)
Diagnosis Medical

Table 2.3: Domains of applications and the related datasets

Limited data problem tends to be more challenging in uncommon domains than

the domains that are fully supplied with domain expertise. When the source data

is limited, the problem can be tackled by utilizing outside resources, if the domain

of dataset that needs to be worked on is common and has related public sources.

Pretraining or domain adaption are the techniques that can be applied to enable

utilizing the outside related datasets. Table 2.3 shows some specialized purposes

applications and their domains.

In addition to the dataset itself, domain knowledge helps make sure whether data
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is enough to reasonably select meaningful features from source data and find the re-

lationships between source data and target data. Utilizing outside data and domain

expertise should be considered and may substantially improve the predictive perfor-

mance. That is essential before confirming that more data must be collected and

more labels must be created.



Chapter 3

Breakdown Experiment

3.1 Motivation

In general, semantic segmentation with deep learning has enormous success when the

dataset is large-scale, and most of the popular benchmark datasets as described in

Chapter 2.4.3 are large-scale. There is no a common standard for claiming a dataset is

large-scale or not large-scale. Here we describe large-scale by meaning the number of

images in a dataset is more than one thousand, and usually the unit of measurement

for the data in that dataset is thousand(k). For example, the training set of PASCAL

VOC 2012 for segmentation contains 1.4k images, and the training set of Cityscapes

dataset contains 3k images.

Influential deep learning semantic segmentation methods surpassing the former

methods in recent years, are evaluated using the popular benchmarks. We made a

summary table of the datasets and the number of data images used in the papers of

the most influential deep learning methods for semantic segmentation. Most of the

datasets used in the papers are large-scale. The table is located at Appendix A.1.

These papers lack the results for how the performance of their models will be, if the

model is trained on data that is less than they used for their experiments. This is the

reason for us to analyze the case of limited data for deep network methods.

For many machine learning algorithms, estimation of how much data is required

to achieve an expected performance goal has been studied. Support Vector Machine

[15] as an example, is a model classifying data by constructing a set of hyperplanes,

mapping data points into a high dimension space. In that space, the SVM learns from

training data for making the hyperplane have the largest distance (margin) between

all training data points of all classes. The amount of training data needed for an

SVM classifier depends on the complexity of the classifier. Vapnik − Chervonenkis

(VC) dimension, defined as the size of the largest set of points that the classifier can

shatter, is introduced to measure the the complexity of the classifier. For example,

25
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suppose we know the number of the features or dimensions of the data. To map

the data into an even higher dimension, we set some hyperparameters of the SVM to

make the generalization abilities higher. How much data we need to learn for an SVM

is about how many mistakes for a number of samples will make when SVM learning

converges. The bound is about how many mistakes will be is less than a bound that

is related the to the number of samples [5].

|ε̂(h)− ε(h)| ≤ O

(√
d

m
log

m

d
− 1

m
logδ

)
(3.1)

Equation 3.1 is a theorem of agnostic learning of VC bounding. Suppose m is the

number of points, d is the VC dimension, h is one model (classifier) from the model

functions family H. And ε is the error for testing data, ε̂ is the error for training data.

Their difference is the final mistakes when the SVM converges. Then with probability

at least 1-δ ,for all h belongs to H, the mistake bound is less than the right-hand side

of the equation, where O means space complexity. To guarantee any hypothesis that

perfectly fits the training data is with probably 1 - δ have error tolerance rate ε on

testing data from the same distribution. The number of training sample m should be

as equation 3.2 shows [51].

m ≥ 1

ε
(4log2(2/δ) + 8V C(H)log2(13/ε)) (3.2)

Compared to other machine learning models, a deep learning model has a huge

number of parameters. For example, The total number of parameters in AlexNet is 62

million, and the 16 layers VGG convolution network has over 138 million parameters.

Suggesting the smallest training data size for training a deep network to achieve

a performance goal is a complex problem. Therefore our experiments aim only at

exploring the cases for some very small training sets, since the scenarios exist that we

have to apply a novel deep learning technique to the current dataset of a small size.

Our experiment consists of many tests, where we train a deep network with train-

ing sets of different sizes separately. We summarize the performance to explore how

the model performance decreases as the reduction of training set size. We would like

to investigate how testing accuracy is related to training set size, and how small the

training set will make the recognition of the objects broken.
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3.2 Related work

Some related works have been done for predicting how accuracy varies with training

data size, such as [33]. They demonstrate the accuracy versus training data size

for MNIST classification. The model is a weighted least squares regression. The

classifiers are a shallow CNN and a deep CNN. They have three proposals for how

error depends on training data size n (b,c are two variables): Error = bn−c, Error

= a + bn−1/2, Error = a + bn−c. These three proposals are used to extrapolates the

testing results of the classifier. They plot an error vs training size graph where each

dot represents an accuracy test on the same testing set run on a different-sized subset

of training data. Error axis has a linear scale, training size axis has a log scale. They

show the linear regression line of three proposals. Their purpose is about predicting

training data requirements while our research focuses on how the generalization will

be for a deep network trained on the extremely small dataset size.

3.3 Methods

We set up a semantic segmentation model and keep using the same configurations

for running each separate test. The architecture we use is the U-Net. For each test,

we train the model for the same 300 iterations and validate the performance on the

same testing data. The only control variable is that, for each test, we have a different

training set size: the number of training images, the resolution and the number of

objects. We have a group of training sets, where the one of largest size is a training

data size that enables the model to achieve a sufficient performance. Here we mean

sufficient by a performance the deep network model can recognize most of the objects

while could be having some errors in the shape of the objects or type of objects.

With regards to accuracy, we choose a mean IoU of around 50% to be our sufficient

performance.

We reduce the size of that first largest training set to make the rest training sets,

until the training set becomes extremely small with only very few objects in it. To

summarize the model performance in each test, we generate the curves for testing

accuracy against training set size. We also demonstrate some model predicted map

of testing images corresponding to the size of the training set, visually showing some
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examples of errors.

Datasets

The datasets we use for our first experiment is a dataset of cell images from Broad

Bioimage Benchmark Collection (BBBC) [32]. The images represent some clustered

nuclei, with annotation of two classes: 0.background, 1.nuclei. There are 100 images in

total, where each image with resolution (950×950) contains exactly 300 cells (nuclei).

(a) Image (b) Annotation

Figure 3.1: Example image and ground truth annotation of BBBC cells data

The other dataset we use is a synthetic dataset where we generate a certain number

of 2D-Gaussian objects at random positions in an image with Gaussian noisy as

background. The standard deviation of those 2D-Gaussian objects are in range 1 to

5 pixels. We save the coordinate of the centre of each Gaussian object after they are

generated.

Figure 3.2: Example image and ground truth annotation of synthetic 2D Gaussians
dataset (100 Gaussian objects)
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class background None

class 0. Normal all Gaussian objects not class 1.2.3.

class 1. Big x y stddev >c big

class 2. Small x y stddev <c small

class 3. Long
if not big, not small, and

| x stddev - y stddev | >c long

Table 3.1: Five classes of the synthetic 2D-Gaussian dataset, where c big, c small,
c long are constants for thresholding when generating the Gaussian objects

We divide the objects into 5 classes depending on the size and shape and generate

their corresponding annotations as shown in Table 3.1 and Figure 3.2. If the standard

deviation (stddev) of both horizontal and vertical are large than a constant c big, the

object is set to class 1: Big. In contrast, if both are smaller than a constant c small,

the object is set to class 2: Small. Objects that are not big or small and the difference

between its horizontal and vertical stddev is larger than a constant c long, are set to

class 3: Long. All others are set to class 0: Normal.

Experiment

The only variables we control here is the size of the training set: the number of

training images, the size (resolution) of them and the number of instances in those

images. Table 3.2 demonstrates examples of the training data sizes in a decreasing

order.

Dataset 1: BBBC synthetic cell image

1-256x256-300 1/2-128x256-130± 1/4-128x128-60± 1/6-102*102-27

1/8-90x90-12 1/12-77x77-10 1/16-64x64-5 1/25-50*50-2
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Dataset 2: Synthetic 2D Gaussian dataset

1-520x380-200 1/2-520x190-97 1/2-260x380-109 1/4-260*190-53

1/6-173x190-33 1/6-260x130-33 1/8-130x190-24 1/8-260x97-24

1/12-173x97-15 1/12-86x190-15 1/16-130x97-11 1/25-104*78-4

Table 3.2: Examples of the training data in descending order of training size in

configurations: [number of images - resolution - number of instances]

As shown in Table 3.2 shows, We augment the cropped part of an image (also

annotation) to its original resolution by repeating this sub-image filling the output

with its repeated copies. For example, if we use a quarter (260× 190) of a 520× 380

image, there will be four same sub-images filling a 520×380 image. These augmented

images are used for training.

Table 3.3 presents the class balance of all the training sample configurations. The

first left column indicates the cropped parts corresponding to configurations as shown

in Table 3.2.
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Cropped part 1 image 3 images 8 images
fraction-(height,width)

1-(1.0, 1.0) [130 21 26 23] [404 60 68 68] [1055 163 192 190]

1/2-(0.5, 1.0) [60 10 11 16] [193 26 35 36] [526 80 100 94]

1/2-(1.0, 0.5) [73 11 16 9] [209 31 38 34] [518 81 104 85]

1/4-(0.5, 0.5) [34 4 8 7] [94 10 21 17] [245 39 62 42]

1/6-(0.5, 0.3333) [21 2 7 3] [60 5 15 8] [163 26 39 28]

1/6-(0.3333, 0.5) [20 4 5 4] [60 8 14 11] [148 31 42 23]

1/8-(0.5, 0.25) [16 2 3 3] [43 5 10 7] [117 24 27 23]

1/8-(0.25, 0.5) [14 3 4 3] [47 6 12 8] [117 22 31 19]

1/12-(0.25, 0.3333) [9 1 4 1] [31 2 9 2] [77 14 21 12]

1/12-(0.5, 0.1667) [9 2 2 2] [24 3 5 6] [70 18 18 18]

1/16-(0.25, 0.25) [7 1 2 1] [23 2 6 2] [52 12 15 10]

1/25-(0.2, 0.2) [1 1 2 0] [12 2 5 0] [31 8 13 6]

Table 3.3: The number of Gaussian objects and their class distribution in training
samples in format[class 0: Normal class 1: Big class 2: Small class 3: Long]

3.4 Results

In this section we present the results of our break down experiment and our observa-

tions from the predictions of the testing images.

Dataset 1: BBBC cells images dataset

The training and testing accuracy of mean IoUs are shown in Figure 3.3. Mean IoU

axis has a linear scale, while number of training objects axis has a log scale. Over-

fitting occurs since there exists a generalization gap between the training accuracy

curve and the testing accuracy curve, especially when the number of objects is very

small.

We compared our testing results with the proposals in [33] for how error depends

on training data size n: Error = a+ bn−1/2, Error = a+ bn−c. The Pearson coefficient

of correlation (r) between the testing curve and the square-root relationship accuracy

= 1 − (a + bn−1/2) is 0.955. The Pearson coefficient of correlation (r) between the
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Figure 3.3: The results of training and testing accuracy of mean IoUs given the
training sample size and how many objects in training images, tested on 10 testing
images (950×950), averaged over 6 runs. Variances are shown as errorbars

testing curve and the extended power law relationship accuracy = 1 − (a + bn−2) is

0.875. The testing curve and the proposed relationship curves has the strong linear

association. Then we did a least square regression to find the best a and b fitting our

testing curve.

Figure 3.4: Testing accuracies with the regression line of proposal relationship:
accuracy = 1− (bn−1/2), and accuracy = 1− (a+ bn−2)
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In Figure 3.4, the yellow dash line shows the least squares regression of the proposal

accuracy = 1 − (a + bn−1/2). The regression coefficients result is a=0.282, b=0.628.

The cyan dash line shows the least squares regression of the proposal accuracy =

1 − (a + bn−2). The regression coefficients result is a=0.554, b=0.364. This simple

test for comparing our results with those proposals shows that the power-law or

the square-root relationship cannot perfectly fit the testing curves and cannot be a

bound for the relationship between accuracy and training set sizes in our semantic

segmentation experiment.

Here we focus on finding how small the training set will make the recognition break

down. By checking the outputs, we find that training the networks on our smallest

training set: 1/25 of one full image containing only 2 cells, results in predicting the

whole testing image to all background class for most of the testing samples. However,

as shown in Table 3.4 (case 1), for a few samples in some runs, the model predicts the

testing images with some correct segmented cells. Therefore, the recognition of the

model does not completely break down. The model overfits to this extremely small

size unbalance training set, where the only 2 cells in the training image take up very

small proportions of the pixels, while all other pixels are background class.

Training set size Prediction Ground Truth

1/25-50x50-2 Case 1, appears in 2 of 6 runs, only for a few testing images.

Case 2, appears in all 6 runs, for most of the testing images.

Table 3.4: Example of the inference results of a testing image of the model trained

on 1/25 of a full image (resolution 50x50) containing only 2 cells.
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Dataset 2: Synthetic 2D-Gaussian dataset

In each test, we test on 10 testing images (520×380) for the synthetic 2D-Gaussian

dataset. Figure 3.5 shows a curve of IoUs against the sizes of sampled training data.

These three curves correspond to three groups of different-sized subsets of training

sets. These three training sets contain 1 image, 3 images, 8 images relatively. The

horizontal axis label represents how large the parts are. The parts mean that we use

a cropped fraction of each of the training image in the set. For example, 1/4 of 3

images with resolution (520×380) means we use the upper-left corners (260×190) of

each of the 3 images for training.

Figure 3.5: Testing results for mean IoUs given the training sample size in configura-
tions: [number of images - [fraction part size] - number of instances], averaged over 6
runs. Variances are shown as shaded

We compared our testing results with the proposals: Error = a+ bn−1/2, Error =

a+ bn−c. The square-root relationship accuracy = 1− (a+ bn−1/2), has the Pearson

coefficient of correlation (r) of 0.761. The extended power law relationship accuracy

= 1 − (a + bn−2) has the Pearson coefficient of correlation (r) of 0.555. The testing

curves and the proposed relationship curves have less linear association than those of

dataset 1.

In Figure 3.5, the yellow dash line shows the least squares regression of the proposal

accuracy = 1− (a+ bn−1/2), a = 0.339, b = 0.772. the green dash line shows the least



35

Figure 3.6: Training and testing results for mean IoUs given the training sample size
and how many objects in training images, averaged over 6 runs. Variances are shown
by the error bars

squares regression of the proposal accuracy = 1 − (a + bn−2), a = 0.619, b = 0.997.

Similar to the comparison for results of dataset 1, the comparison shows that these

simple proposed relationships cannot fit the testing curves very well for dataset 2.

The training curves and testing curves in Figure 3.6 show the overfitting occurs

in all the tests. We find that mean IoU for 3 of 1/25 images (containing 17 Gaussian

objects) seems to be higher than 1 of 1/8 image (containing 24 Gaussian objects).

Similarly, mean IoU for 8 of 1/25 images (containing 58 Gaussian objects) seems

higher than 3 of 1/8 images (containing 69 Gaussian objects) as shown in Figure 3.5.

The mean IoU is calculated by averaging IoUs over all 5 classes, not demonstrating

the model performance in details. Therefore we provide the curves of IoUs against

the size of the training sets for each class as Figure 3.7 shows.
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Figure 3.7: Testing results for [1 image], [3 images] [8 images] from top to bottom,
showing IoUs of each class given the training sample sizes and how many objects in
training images, averaged over 6 runs. Variances are shown as shaded
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Testing image Testing label

Prediction Overlay Prediction Overlay

1-[1-520x380]-200 1-[1/4-260x190]-53

1-[1/16-130x95]-11 1-[1/25-104x76]-4

Table 3.5: Example of the inference results of testing images for training sets group

of [1 image], by models trained on in descending order of training size in configura-

tions: [number of images - [part size - resolution] - number of instances]. In overlays,

blue refers to correctly classified pixels, yellow refers to pixels of detected, type mis-

classified Gaussian objects, and red refers to pixels of undetected Gaussian objects

Table 3.5 shows some outputs of the model trained on the different-sized parts of

1 image, applied to the testing images. We observe that when the model is trained

on this [1 image] group of the training set, the curve in Figure 3.7 shows that the

IoUs of most of the classes except for class 0 are less than 20%, indicating a poor

segmentation performance. In tests of all configurations of training parts of 1 image,

overfitting occurs markedly. As Table 3.5 shows, training the model on a very small

number of objects ends up with many pixels of undetected Gaussian objects (red in

overlays) in the testing output. Overfitting on 1/25 of 1 image containing 4 Gaussian
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objects, ends up with a broken object shape recognition. This [1 image] training set

gives an evident example of the limited data issue as mentioned in Chapter 1: high

sample bias, high outliers proportion, not representative for the data distribution.

Testing image Testing label

Prediction Overlay Prediction Overlay

3-(1-520x380)-600 3-(1/4-260x190)-142

3-(1/16-130x95)-33 3-(1/25-104x76)-19

Table 3.6: Example of the inferenced results of testing images for training sets group

of [3 images]. The format of the configuration and the overlays is as same as those of

[1 image] above

Table 3.6 shows some outputs of the model trained on the different-sized parts of

3 images, applied to the testing images. In tests of all these configurations of training

sets, the recognition does not break down. No prediction maps show many pixels of

undetected Gaussian objects (red in overlays). However, the class balance of testing

output deteriorates. As Figure 3.7 shows, the curve of each class crosses each other

obviously.

Overfitting on some of the small size training sets results in well detected shape

of Gaussian objects but with a broken class balance. The class balance in prediction
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is labile as the objects in the training set are of imbalanced classes. For example, in

Table 3.3, we can see that 1/4 of [3 images] training set containing 94 normal, 10 big,

21 small, 17 long class Gaussian objects. The IoU for class 1.big decreases from 20%

to 2%, compared to it for 1/2 of [3 images]. Therefore the small fractions of data are

likely to be unrepresentative for the distribution of the whole data with full images.

Testing image Testing label

Prediction Overlay Prediction Overlay

1-[1-520x380]-1600 1-[1/4-260x190]-388

1-[1/16-130x95]-89 1-[1/25-104x76]-58

Table 3.7: Example of the inferenced results of testing images for training sets group

of [8 images]. The format of configuration and overlay are as same as those of [1

image] above

Table 3.7 shows some outputs of the model trained on the different-sized parts of 8

images, applied to the testing images. Objects recognition and segmented shapes are

with relatively better performance compared to [3 images] training set. The accuracy

is decreasing when training set size is decreasing. The decreasing is with a relatively

more stable class balance as shown in Figure 3.7, compared to [3 images] training set.

In summary, there will be no certain small training set size making the recognition
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broken. Instead, various representation of overfitting occurs. As mentioned before,

a small training set is more likely to have issues of high sample bias, high outliers

proportion compared to a large training set. In our experiment, we demonstrate

that small size training data of our synthetic 2D-Gaussian image data may represent

constrained objects distributions or imbalanced object classes.

We mentioned that the accuracy of training the model on 8 of 1/25 images (con-

taining 58 Gaussian objects) is higher than 3 of 1/8 images (containing 69 Gaussian

objects). By checking class distribution in training set in Table 3.3, we know that

8 of 1/25 images contain 31 normal, 8 big, 13 small, 6 long Gaussians, while 3 of

1/8 images contain 43 normal, 5 big, 10 small, 7 long Gaussians, Although 8 of 1/25

images contain less number of sample objects, the class is more balanced than 3 of

1/8 images.



Chapter 4

Approaches for semantic segmentation from limited labeled

microscopic blood image dataset

4.1 Motivation

For our project, we have a dataset of microscopic blood images, while we don’t have

labels (annotations) for any type of objects such as red blood cells, white blood cells,

platelets, etc. To train a deep network on the data for segmenting or counting, labels

are necessary. For example, labeled data in the form of pixel-wise annotations are

required to develop semantic segmentation. Counting objects in an image using deep

regression networks requires position annotation often in the form of a dot at the

centre of the object.

Human annotations are time consuming and sometimes inaccurate. Other limits

such as lack of domain experts will make human labeling error prone, therefore it may

be unlikely to obtain large amounts of well labeled data. In our case, we generate

some labels for the red blood cells to have a set of labeled images. We propose

approaches based on deep networks to train on only a small set of labeled images

with an additional set of unlabeled images, and evaluate the methods on images

with red blood cell annotations to see whether unlabeled images improve the model

performance. For future analysis, we can apply our proposed method to other types

of blood cells or platelets.

4.2 Related Work

Semi-supervised methods tackle the problem of limited training labels by making

use of weak or unlabeled data for training. In the field of semi-supervised learning

for classification, there are recent approaches showing high performance using fewer

labels for MNIST classification.

One of the approaches that build an EM algorithm on a CNN is [59], getting

41
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a 2.06% error rate using 300 labeled MNIST samples with 59k unlabeled samples.

Compared to use only 300 labeled samples, the error rate decreased 6%. Their model

is a 4 convolution layers CNN. Their method first learns the labeled data, followed by

applying the model to unlabeled data to cluster it and pseudo-label it. A combined

loss is defined by first a cross entropy between ground truth and prediction of real

labeled data, and also another classification entropy for unlabeled data is added as an

additional term. This is interpreted as an EM algorithm. They also have a confidence

measure to acquire samples with high classification uncertainty. These are the samples

that will be made pseudo-labels and added to the training set.

Another approach that uses both labeled and unlabeled samples is [4], reaching

a 0.91 accuracy while the initial training accuracy with labeled data was at 0.84

for MNIST classification. They also train a CNN on some labeled data. Instead

of a combined loss, they add the unlabeled data with the model’s own prediction

as pseudo-label, which is a self-training process. Their empirical results show that

the classification accuracy increases the most 7%, comparing the accuracy after the

self-training to the accuracy before the self-training.

For semantic segmentation, semi-supervised methods such as [53] shows that using

a small number of pixel-level annotated images with a large number of weakly anno-

tated images can obtain better performance compared to just using those pixel-level

annotated images. In [53], they train two deep CNNs, where the first one is trained

on images with pixel annotations, while the second one is trained on other images

with the weak annotations such as the bounding boxes. The second CNN generates

some bias for all object classes. These biases are used to boost present foreground

classes more than the background class. The biases are involved in the loss of the first

CNN, therefore their model proposed can train from with both images with strong

labels and images with weak labels. They have a testing IoU of 67.6% by training

their model on all 10k images with pixel-level annotations. The combined datasets of

1.4k pixel-level labeled images and 9k bounding box labeled images achieve a testing

IoU of 64.6%. Training the model on only 1.4k pixel-level labeled images results in

a testing IoU of 62.5%. Their semi-supervised model increases the mean IoU by 2%

for semantic segmentation validated on PASCAL VOC 2012 dataset.
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4.3 Self-training (Bootstrapping) method

Bootstrapping, or self-training, is one of the semi-supervised methods that start with

training on a small quantity of labeled data and continues the training, adding unla-

beled data into the training set with its own prediction as ground truth. Self-training

is an unsupervised scheme that makes it possible to continue a learning process on

unlabeled data to help increase performance. Inspired by these previous works in

Chapter 4.2, we investigate an EM-like self-training method for semantic segmenta-

tion with the purpose of counting. In our case, this begins with a supervised stage, in

which the model is initially trained on limited labeled data. An unsupervised stage

follows that, where the model predicts labels for the next batch of (unlabeled) data

and uses its own predictions as pseudo-labels. The prediction is the probability map

provided by the last sigmoid layer. The question we investigate here is how we should

convert these probability maps into labels. In particular, we would like the network

to train only on those pixels for whose predictions the network is sufficiently confi-

dent. For this reason, we need a confidence measure for thresholding. To measure

the prediction confidence, Monte Carlo (MC) Dropout [21] can be used to calculate

pixel-wise image uncertainty estimation by computing the mean and variance of T

forward passes through the network predicting the same pixel with dropout, thus

obtaining an uncertainty map the same size as the output. The following methods

are compared to generate pseudo labels.

1. Mean probability

The mean (overlined) of the T Monte Carlo samples of the sigmoid layer output

probabilities (pb1, ..., pbT ) (i.e. a real value in [0, 1]) will be added into the training

set as the label (L) for that pixel (p).

L(p) = pb1, ..., pbT (4.1)

2. Mean binary threshold

For each pixel label L(p), we consider its mean probability value over T Monte

Carlo samples. If the mean is higher than a threshold τ , then this pseudo-label
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is set to 1, otherwise it is set to 0.

L(p) =

1, if pb1, ..., pbT > τ

0, otherwise
(4.2)

3. Mean probability threshold

For each pixel label L(p), we consider its mean probability value over T Monte

Carlo samples. If the mean is higher than a threshold τ , then this pseudo-label

is set to 1, otherwise it is set to the mean probability value.

L(p) =

1, if pb1, ..., pbT > τ

pb1, ..., pbT , otherwise
(4.3)

4. Nearby pixels threshold

The label L(p) of a pixel depends on the sum of the sigmoid probabilities of the

3x3 pixel patch (pt3×3) that contains the pixel under consideration. For each of

the T Monte Carlo samples, a threshold τ is compared against the sum of the

predicted values of the pixel patch. If the sum is greater than τ , the label of the

pixel is set to 1. If the sum is smaller for all T samples, the pseudo-label is set

to the mean probability value.

L(p) =

1, if any t ∈ T
∑
pbt(pt3×3) > τ

pb1, ..., pbT , otherwise
(4.4)

In addition to measuring the confidence of predictions when generating self-supervised

labels, we make the loss function in our approach a weighted pixel-wise cross entropy

(CE), which utilizes the variance of T predictions to help the classifier assess the

trustworthiness of the label of a pixel.

Loss =
∑
i,j

1

σ̃2
ij

∗ CE(ypij , ŷpij) (4.5)

Let i, j denote the coordinates of an image pixel. Further, ŷpij
is the predicted

class of the pixel and ypij
is the true label of the pixel. For each pixel, σ̃2

ij denotes

the variance of its T predicted probabilities normalized (min-max scaled) to interval



45

[1,100] over all variances of pixels in this image. The weight we use is the reciprocal

of the σ̃2
ij. Therefore, pixels with high variance predictions are weighted less during

the training, reducing the effect of learning from pixels with uncertain predictions.

Our self-training approach is based on segmentation with U-Net, which is a pop-

ular encoder-decoder network for semantic segmentation in the medical domain. It

has down-sampling layers and up-sampling layers forming a u-shaped architecture. In

particular, U-Net has shown excellent performance on cell tracking in biomedical im-

age segmentation tasks. It was one of the winners of the ISBI cell tracking challenge

in 2015. Figure 4.1 shows the work-flow of our approach.

Figure 4.1: The work-flow of our self-training model based on U-Net

Our approach starts with training the U-Net on a very small number of images

with annotations. We pretend to not have annotations for the rest of the images

to simulate the scenario in which we lack ground truth. After the initial supervised

stage, the self-training model makes predictions on the next batch of unlabeled data

and generates pseudo labels using the various confidence threshold methods. The

pseudo-labeled data is added into the training set and the model is re-trained. This

is repeated for multiple iterations.

4.3.1 Results on semantic segmentation

The experiments are done with a human blood sample taken with a lensless micro-

scope from Alentic Microscience Inc. [1]. The dataset contains 600 image samples,
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where each image has a fixed size of 128×128 RGB pixels containing more than 150

cells which are not superimposed over each other. The pixel-wise annotations are

binary masks of two classes: red blood cells, and others. We split these data into 504

training and 112 test samples. Our self-training model is based on an implementation

with Keras of the U-Net architecture [24]. The self-training approach will not work

if the initial accuracy is not sufficiently high because it makes the model more likely

to amplify errors. On the other hand, if the initial training set is large enough to

yield high accuracy, there will likely be little improvement with self-training. The test

results of segmentation pixel accuracies and Intersection over Union(IoU) averaged

over 5 runs for 300 iterations with different initial training sizes are shown in Figure

4.2. We found that training on one 128×128 image gives sufficient accuracy for the

rest of the method to work well.

Figure 4.2: Average testing accuracies and IoUs for training the network with different
initial training sizes in configurations given by: [percent of a full image, pixels, number
of objects]

We tested all methods for generating pseudo-labels for predicting unlabeled data.

We use T = 100 forward passes and a dropout rate of 50% for MC dropout inference

on unlabeled data. For each iteration, the model is trained on the current training set

and predicts the labels of the next one unlabeled image. In each iteration, we train 100

epochs on the current training set. The results are presented in Table 4.1, including
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testing accuracy(acc), Intersection over Union(IoU), positive predictive value (PPV),

true positive rate (TP), true negative rate (TN) and the positive prediction rate (P)

averaged over 5 runs.

Threshold iters Measures
acc IoU PPV TP TN P

Mean probability 15 0.889→0.720 0.734→0.349 0.886→0.971 0.814→0.269 0.936→0.995 0.349→0.105
(±0.010)(±0.017) (±0.020)(±0.029) (±0.008)(±0.006) (±0.021)(±0.045) (±0.004)(±0.001) (±0.007)(±0.017)

Mean binary 28 0.889→0.851 0.735→0.621 0.880→0.970 0.818→0.628 0.932→0.988 0.353→0.246
threshold (±0.013)(±0.020) (±0.029)(±0.052) (±0.011)(±0.005) (±0.028)(±0.056) (±0.006)(±0.003) (±0.009)(±0.023)

Mean probability 28 0.885→0.910 0.723→0.759 0.889→0.885 0.796→0.878 0.939→0.929 0.334→0.377
threshold (0.5) (±0.008)(±0.014) (±0.021)(±0.091) (±0.007)(±0.024) (±0.022)(±0.056) (±0.005)(±0.019) (±0.010)(±0.032)

Mean probability 28 0.887→0.902 0.728→0.764 0.885→0.880 0.807→0.858 0.936→0.928 0.346→0.370
threshold (0.55) (±0.015)(±0.014) (±0.034)(±0.030) (±0.014)(±0.021) (±0.035)(±0.020) (±0.008)(±0.013) (±0.013)(±0.008)

Nearby pixels 15 0.889→0.745 0.732→0.389 0.889→0.974 0.809→0.338 0.938→0.994 0.346→0.132
threshold (8) (±0.007)(±0.023) (±0.015)(±0.045) (±0.023)(±0.004) (±0.026)(±0.063) (±0.016)(±0.002) (±0.018)(±0.025)

Table 4.1: Summary of mean and variance of segmentation accuracies, IoU, PPV,
TP, TN, P over 5 runs. Left: Performance measures in evaluation after training on
labeled data (before self-training). Right: After self-training.

For using mean probabilities as pseudo-labels, the initial accuracy and IoU were

88.9% and 73.4%. After 15 iterations with 15 images with pseudo-labels added into

the training set, the accuracy and IoU decrease to 72.0% and 34.9%, and the positive

prediction rate decreases from 34.9% to 10.5%. The predicted values of positive

predicted pixels become smaller with an increase in PPV of 97.06%. TN would be

high when most of the predictions are 0s.

In our tests with pseudo-labels using a mean binary threshold, the accuracy de-

creases slightly from 88.9% to 85.1%. The IoU and TP become lower from 73.5% to

62.1%, 81.8% to 62.8% respectively. Since our threshold for the pseudo-labels makes

the pseudo-labels binarized. This results in the fact that the predicted labels of the

model trained with these pseudo-labels will be produced close to 0 or 1. This leads

to an increase in PPV of 97.0%. As Figure 4.3 shows, cells become thinner, which

shows a result of under-segmentation.

Reaching a slight improvement of accuracy and IoU can be achieved by using mean

probability threshold pseudo-labels. Pixel accuracy increases 1-2% and IoU increases

3-4%. This threshold scheme guides the network to emphasize confident high-value

pixels, making the network make 3-4% more positive predictions and a 5-7% more

true positive predictions. The TN rate decreases very slightly around 1%. More pixels

of cell walls are predicted as positive as shown in Figure 4.3.
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Figure 4.3: Inference results: (a0)x, (a0)y: Input data and label. (a1)-(a4): After
training on labeled data. (b1): After 15 self-training iterations(ends up with training
on 1 labeled data + 15 pseudo-labeled data) using mean probability pseudo-labels.
(b2): After 28 self-training iterations using mean binary threshold (0.5) pseudo-labels.
(b3): After 28 self-training iterations using mean probability threshold (0.5) pseudo-
labels. (b4): After 15 self-training iterations using nearby pixels threshold (8) pseudo-
labels.

For nearby pixels threshold pseudo-label, a threshold value of 8 means that when

creating the pseudo-label, a pixel is set to 1 only if the predicted values of the sum of

a 3×3 pixel patch containing current pixel is greater than 8. This results in a very low

TP of 33.8%. When the model is trained on Nearby pixels threshold pseudo-labels,
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the speed of decrease in the value of different predicted pixels varies remarkedly. In

particular, the predicted value of pixels near cell walls change rapidly, a fact that we

can use later for our counting algorithm.

4.4 Counting algorithm

While the self-training approach did not improve much the results of segmentation,

we noticed a slight image level improvement on the shape mask of cells. In particular,

the cells’ boundaries become somewhat clearer after applying self-training with nearby

pixels threshold. Therefore, we propose here a counting method based on these pixel

value changes to test this hypothesis. This algorithm is outlined below.

Algorithm 1 Using output sigmoid map of self-training for counting

Require: Segmentation sigmoid output map after self-training

1: procedure Sub maps(map, c1, c2, n) . Subtraction between a

Laplacian filtered map of pixels less than a constant c1 and a map of Laplacian

filtered pixels greater than a constant c2

2: map1← NORM(LF (map)) < c1

3: map2← NORM(LF (map)) > c2

4: . LF: Laplacian filter

5: . NORM: Standard scaler [54]

6: diff ← map1−DILATED(map2)

7: dot pred← CLEAN(diff, n)

8: return dot pred . the dots prediction

9: end procedure

10:

We first apply a Laplacian filter: a 2-D isotropic measure of the 2nd spatial

derivative of an image [34], on the predicted map (M) of the self-trained model to

get a map (∇M) indicating rapid changes. An image is a matrix of discrete values

so the derivatives are approximate by convolving an image with a kernel [[0,1,0],[1,-

4,1],[0,1,0]] in OpenCV [6]. The values of the ∇M are normalized to remove the mean

and scaled to unit variance. We choose two thresholds c1 and c2. Let map1 be a
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11: function Clean(map,n)

12: for all pixel ∈ map do

13: current window ← GET AREA(pixel,map, n)

14: . get a n×n window of map

15: if SUM(current window) > 1 then

16: current pixel← 1

17: current windows← 0 for other pixels

18: end if

19: end for

20: return map

21: end function

binary map with 1’s only at those pixels where ∇M had a value less than c1. map1

corresponds to the regions where the change in M was small. Similarly, let map2 be

a binary map with 1’s only at those pixels where ∇M has a value larger than c2.

We subtract map2 from a map1 to get our pixels of interest (diff): isolated pixel

components corresponding to individual cells. Since map1 and map2 do not overlap,

map2 is dilated by a 2 × 2 kernel before subtraction. The resulting image (diff) is

then cleaned by being scanned by a n × n window, replacing small non-connected

pixel components with a single dot denoting a cell.

We conduct experiments on our microscopic cell dataset and a synthetic 2D-

Gaussian dataset generated by ourselves. In our test with cell images, the results

shown here are averages over 5 runs for 50 testing images (128×128) with manual

dot annotations where each dot corresponds to one cell. Since the predicted dots are

not necessary to be the centre of the cells, we evaluate the dot prediction by doing an

injective function. Each dot in the prediction map is mapped to at most one dot in

the ground truth map with a restriction of a limited distance (≤7 Euclidean distance

of pixels). The dots that end up being not mapped in predictions are labeled as FP,

while those in the ground truth are FN.

In Table 4.2, the results of counting cells images are presented. A higher threshold

value c2 increases the number of P(positive prediction), leading to a higher TPR but

lower PPV. A lower threshold value c1 does the opposite. Figure 4.4 shows an example
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method c1 c2 evaluation measure
P GT TP FP FN TPR PPV

our -1.00 0.45 140.9 144.7 131.8 9.0 12.8 0.911 0.936
method (±9.6) (±10.2) (±9.1) (±3.3) (±4.5)

-1.00 0.85 147.3 144.7 134.8 12.5 9.9 0.932 0.915
(±9.9) (±10.2) (±9.6) (±3.6) (±3.5)

-1.45 0.45 130.7 144.7 125.2 5.4 19.4 0.866 0.958
(±8.5) (±10.2) (±8.3) (±2.4) (±5.7)

Circle Hough 132.0 144.7 122.8 9.3 21.8 0.849 0.930
transfrom (±9.6) (±10.2) (±8.5) (±3.4) (±5.7)

Table 4.2: Evaluation of cell counting on 50 testing images by three pairs of (c1,c2),
iterations of self-training=7, n=5. The numbers in columns: P(positive), GT(ground
truth), TP(true positive), FP(false positive), FN(false negative) correspond to mean
and standard deviation of the number of cells, in columns: TPR(true positive rate),
PPV(positive predictive value) correspond to rates calculated from the whole 50 sam-
ples.

Figure 4.4: A test sample for the counting process on cells images: (a): Prediction
after training on 1 labeled data. (b): Prediction after 7 self-training iterations (1
labeled data + 7 pseudo-labeled data. Pseudo label: Nearby pixels threshold ). (c):
Laplacian filtered(b). (d): map1 in Alg 1. (e): map2 in Alg 1. (f): diff in Alg 1.
(g): Dots prediction

of the counting process on a test sample. This algorithm is one of the possible ways

to utilize the output map of self-training by creating thresholds. Algorithms such

as the Circle Hough Transform(CHT) algorithm [2] or watershed segmentation [55]
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could also be used to process output segmentation map after self-training to count

cells.

CHT is an image processing algorithm to detect circles, and we use this algorithm

here to compare it to our algorithm although our algorithm is more general as it

can detect different shapes. The CHT algorithm outputs a dot annotation same size

as the input image where each dot is the centre of a circle detection. The minimum

search radius is set to 4 and the maximum is set to 5 pixels. We evaluate the detection

performance using the same method as stated above. The result of using CHT to

count cells is shown in Table 4.2. Our algorithm outperforms CHT by a 7% more

TPR with c1 of -1 and c2 of 0.45.

The other dataset we used to test our algorithm is a synthetic dataset where we

generate 200 2D-Gaussian objects at random positions in an image with Gaussian

noisy as background. The standard deviations of those 2D-Gaussian objects are in

range 1 to 5 pixels. We save the coordinate of the mean(centre) of each Gaussian

object after they are generated. The main difference between this dataset and the

cell dataset is the Gaussian objects may overlap one another. We repeated the same

experiment on this dataset as on the cell data. That is, we train the UNet on one im-

age of this 2D-Gaussian image with annotation, followed by self-training using nearby

pixels threshold. The results of applying our counting algorithm to the segmentation

map of those 2D-Gaussian images are presented in Table 4.3. Since it’s more chal-

lenging to count objects that may overlap, the TPR is 1-2% lower and the PPV is

2-3% lower than results for cells images. Figure 4.5 shows an example of result for

counting on a 2D-Gaussian image.

c1 c2 evaluation measure
P GT TP FP FN TPR PPV

-2.00 1.00 196.6 200.0 180.3 16.3 19.7 0.902 0.917
(±9.3) (±0.0) (±5.0) (±5.7) (±5.0)

-2.00 2.00 209.6 200 183.0 26.6 17.0 0.915 0.873
(±11.2) (0.0±) (±5.0) (8.1±) (±5.0)

Table 4.3: Evaluation of counting on 10 testing images of synthetic 2D-Gaussian by
two pairs of (c1,c2), iterations of self-training=8, n=6.
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Figure 4.5: A test sample for the counting on 2D-Gaussian synthetic images. Left:
predictions. Right: Ground truth (centres of each 2D-Gaussian objects). P:192,
TP:183, FP:9, FN:17.

4.5 Discussion

While we proposed this self-training method originally for improving segmentation

accuracies for datasets with small numbers of examples using self-training, we found

that results critically depend on the thresholding method, and we only found a small

improvement in that regard for one of the methods proposed. Interestingly, we found

that visually modifying the data based on the pseudo-labels helped with the identi-

fication of cell boundaries. This in turn helped with the identification of cells and,

ultimately, with the corresponding counting. This is a promising new direction for

using model predictions in combinations with uncertainty measure. We hope that by

using a machine learning approach, we can first match results on the easier tasks,

and then will have a better chance of generalizing to the ones that are still considered

very hard.

Counting red blood cells is possible to solve with traditional Computer Vision(CV)

techniques, but those techniques such as color or shape detection do not generalize

to harder visual contexts. This counting method may be useful when it’s hard to

extract objects of interests since this method works on the predicted segmentation

map. We hope to try more for generalizing the contexts considered harder: other

datasets containing more classes and a variety of shapes and sizes of objects. It

would also be worth trying to make the pseudo-label generation be dynamic based

on scenes or classes.
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4.5.1 Active learning

Active learning is another learning method that we consider combining into our self-

training application. Active learning is the learning method involving human users

during the training. These methods are proposed for human users/teachers to have

more control over the training process. With regard to the limited labeled data

problem, if the assumed scenario is that collecting unlabeled data is not high-cost,

while labeling is high-cost. In such a scenario, active learning algorithms can reduce

the cost by interactively querying the user for doing online labeling.

During this labeling process, the user can choose some targeted samples (unlabeled

images) to label, which means some manual selection. The selection is for adding

informative training samples, avoiding adding abundant training samples. Therefore,

the user will seek the least but sufficient amount of labeled data required to have

a certain desired performance. There are two parts of an active learning method is

important: query strategy and interaction tool.

The query strategy is various and essential for active learning algorithms. The

query strategy can be selecting the more representative unlabeled samples by picking

the most uncertainty samples. This strategy is based on an uncertainty measure.

Another query strategy can be selecting those unlabeled samples, where the prediction

of the model made most errors. With this strategy, the active process aims at error

reduction and better generalization.

The interaction tools can be either self-made labeling tool or outsource labeling

applications. For example, we made a dot annotation labeling tool used in our count-

ing experiment as Figure 4.6 shows. If we train a deep network such as fully regression

convolutional networks [75] for counting objects. We can actively create dot anno-

tations for images, reaching the number of labeled images needed for an expected

performance. In addition to self-made labeling tools, outsource labeling applications

can be used, such as open source tools mentioned in Chapter 2.5.1. Using some well-

built open source labeling applications is time-saving and reliable. The interaction

tool can be embedded into the training program, being opened when querying the

user. This kind of embedding methods cost more memories. To save memories, an-

other way is when the query happened, the model stops, saves all the weights and

call the interaction tool. After the user finished actions, the model reloads all the
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weights and continue the training.

Figure 4.6: A self-made dot annotation labeling tool

In our experiments of doing semantic segmentation on cell images, active learn-

ing is not used during the training. The labeling tool we built is for testing the

counting algorithm. The idea of combining self-training and active learning is worth-

while to be discussed. One good entry point for utilizing active learning is to fix

the mis-labeled pixels in pseudo-labels manually and if the pseudo-labels generated

deteriorates during the self-training process, human interaction can stop it and adjust

the hyperparameters.

Another work that is worth trying is to make a secondary structure for self-

training. One possible method aimed at achieving a better performance, is that using

dot annotated predictions as a second type pseudo-labels, where we can manually

correct the errors using our dot annotation tool easily. Dot annotations can be added

into the training set as the object-level labels to influence the segmentation and

ultimately improve the accuracy of both the segmentation and the counting. The

labels for training a semantic segmentation are the pixel level annotations that do

not distinguish objects. If we use the dot annotations to indicate the individual

objects. The object-level labels can improve the model performance by constructing

some frameworks trained on both pixel-level labels and object-level labels.
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Conclusion

In this section, we present a summary of the results of all our experiments, and

provide potential future work.

5.1 Summary of results

In the thesis, the results of our breakdown experiment show that when the model

is trained on an extremely small training set, there is no certain breakdown line for

the recognition while remarked overfitting occurs. The overfitting makes the model

generalize monotonously leading to a low testing accuracy. The results suggest that

creating and labeling some representative data is more important than enlarging the

size of the dataset.

The results of our self-training method doing semantic segmentation from mi-

croscopic limited labeled blood images show that choosing the type of pseudo-label

is essential. The performance of the self-trained model critically depends on the

thresholding method related to uncertainty measure inside the pseudo-label gener-

ation function. We only found a small improvement in that regard for one of the

thresholding method.

The results of our counting method which works on the segmentation output

show that there are 6-9% errors for our blood cell dataset and synthetic 2D-Gaussian

dataset. The algorithm needs to be improved and there is some space to increase the

accuracy of counting. Since our algorithm is based on two thresholdings of the changes

in pixel values, the thresholding scheme to generate the non-connected components

representing objects can be improved by a better normalization of all pixel values.

Also, the scan method replacing each of the non-connected components with a dot

label can be improved by adding some condition check. The check can focus on, for

example, whether a long or big connected component is multiple objects or whether

a small area containing multiple non-connected components is a single object.

56
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5.2 Future work

The proposed self-training method is a first attempt for combining the idea of boot-

strapping into semantic segmentation. The discussion on adding active learning func-

tions to improve the model performance has been provided. To do this, we will start

by building the interactive function that can query the user during the self-training

process. The query strategy could be error reduction oriented, with human fixing

the error of pseudo-label manually. For each time the model picks some of the unla-

beled images and predicts on those images, the prediction, the overlay, and the MC

confidence heatmap will be shown to users through a user interface. The user inter-

face embeds some labeling tools with some functions such as highlighting the object

shape’s outline, to help the user fix the pixels of the edges of an object. The user can

fix the errors by observing the overlay and also the MC confidence heatmap to see

the pixels that the deep network are not confident to predict on.

Since the self-training is interpreted as an Expectation Maximization, the user

can guide the E step by interrupting and tuning the parameters in the pseudo-label

generation. For example, the user can change the thresholding constant during the

training process. If the user see more and more pixels of the edges of an object are

classified as part of the object by the model with an increasing confidence, while the

user’s expectation for the segmentation is that a low false positive must be guaranteed,

which means the model should make the least pixels not part of the object to be

mis-classified as part of the object. The user can increase the value of thresholding

constants to guide the model to be more strict to classify a pixel as part of the object.

The interactive functions are where the active idea combined.

Recently, some hybrid methods combining the sub-structure of the one-shot learn-

ing model, Regional CNN proposal model, demonstrates doing fast object tracking

and semi-supervised object segmentation in real time [72]. We can combine similar

ideas that can accelerate the model. One idea is to make user label just object-level

of annotation such as bounding box or landmark instead of pixel-level annotation. A

specific pretrained network such as a mask-RCNN [29] is responsible for detecting the

shape inside the bounding box or landmark. Another idea is once the first frame of

a video is labeled with bounding boxes, the latter frames are predicted by the model

to generate more training data. We would like to explore approaches doing semantic
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segmentation for real-time video frames data with limited labels.
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Appendix A

Dataset sizes in papers of deep learning models for semantic

segmentation

Architecture Benchmark datasets

VOC COCO Cityscapes other

FCN VOC 2010: T:8494

NYUDv2 T: 795 E: 654SIFT

Flow: T: 2,488 E: 20033

classes

PASCAL-

Context:VOC 2010: 59

classes

Segnet

CamVid road scenes:T: 367 E:

233SUN RGB-D: T: 5285 E:

5050

Unet VNC: T:30

RefineNet
VOC2012: T:1464,

V:1449, E:1456
T:2975 E:500.

Person-Part: T: 1717, E:

1818NYUDv2 T: 795 E:

654SUN RGB-D: T: 5285 E:

5050ADE20K MIT: 20K

PASCAL-

Context:VOC 2010:59

classes T: 4998 E: 5105

DeepLab v1
VOC2012: T:1464,

V:1449, E:1456

DeepLab v2

VOC2012:T:1464,

V:1449,

E:1456PASCAL-

Context:VOC 2010: 59

classes T: 4998 E:

5105 Person-Part: T:

1716 E:1817

T:2975

E:500V: 1525

DeepLab v3
VOC2012: T:1464,

V:1449, E:1456

T:2975

E:500V: 1525

COCO: images that have

annotation regions larger than

1000 pixels and contain the

classes defined in PASCAL

VOC 2012
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PSPNet

VOC2012:

T:10,582(augmented),

V:1449, E:1456

T:2975

E:500V: 1525

ADE20K: 150 classes, 1,038

image-level labels.

Large Kernel Matters

VOC2012: T:1464,

V:1449, E:1456
Semantic Boundaries Dataset

T: 10,582

CRFasRNN

A Customized

VOC2012:total of

11,685 images

PASCAL-Context:

VOC 2010:T:10,103

E:9,637 images.

MS COCO

2014: 66,099

DeepMask
PASCAL VOC 2007:

9,96320 classes

MS COCO

2014: T:80,000

E:5000

2D-LSTM

Stanford Background

dataset:T: 572 E: 143 8

classesSIFT Flow: T: 2,488 E:

20033 classes

R-CNN

PASCAL VOC 2007:

9,96320

classesVOC2012:

T:1464, V:1449,

E:1456

ILSVRC2012(auxiliary):1000

categories and 1.2 million

images

Fast R-CNN

VOC 2007 + VOC

2012:augmented 16.5k

in total

MS COCO:T:

80k

Faster R-CNN

PASCAL VOC 2007:

9,96320

classesVOC2012:

T:1464, V:1449,

E:1456

MS COCOT:

80k

V:40kE:20k

Mask R-CNN

MS COCO:T:

80k + 35kE:

5k

T:2975

E:500V: 1525

Table A.1: Summary of the dataset and the number of data used for influential deep

learning semantic segmentation networks. Samples are denoted as T : training, E:

Evaluation(validation or testing).



Bibliography

[1] Alentic Microscience Inc. http://www.alenticmicroscience.com/, 2019.

[2] Tim J Atherton and Darren J Kerbyson. Size invariant circle detection. Image
and Vision computing, 17(11):795–803, 1999.

[3] Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. Segnet: A deep
convolutional encoder-decoder architecture for image segmentation. IEEE trans-
actions on pattern analysis and machine intelligence, 39(12):2481–2495, 2017.

[4] Dor Bank, Daniel Greenfeld, and Gal Hyams. Improved training for self training
by confidence assessments. In Science and Information Conference, pages 163–
173. Springer, 2018.

[5] Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Manfred K War-
muth. Learnability and the vapnik-chervonenkis dimension. Journal of the ACM
(JACM), 36(4):929–965, 1989.

[6] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software Tools, 2000.

[7] John S Bridle. Probabilistic interpretation of feedforward classification network
outputs, with relationships to statistical pattern recognition. In Neurocomputing,
pages 227–236. Springer, 1990.

[8] Gabriel J Brostow, Jamie Shotton, Julien Fauqueur, and Roberto Cipolla. Seg-
mentation and recognition using structure from motion point clouds. In European
conference on computer vision, pages 44–57. Springer, 2008.

[9] Albert Cardona, Stephan Saalfeld, Stephan Preibisch, Benjamin Schmid, Anchi
Cheng, Jim Pulokas, Pavel Tomancak, and Volker Hartenstein. An integrated
micro-and macroarchitectural analysis of the drosophila brain by computer-
assisted serial section electron microscopy. PLoS biology, 8(10):e1000502, 2010.

[10] Joo Cartucho. Openlabeling: open-source image and video labeler. https:

//github.com/Cartucho/OpenLabeling, 2019.

[11] Olivier Chapelle, Bernhard Scholkopf, and Alexander Zien. Semi-supervised
learning (chapelle, o. et al., eds.; 2006)[book reviews]. IEEE Transactions on
Neural Networks, 20(3):542–542, 2009.

[12] Chenyi Chen, Ari Seff, Alain Kornhauser, and Jianxiong Xiao. Deepdriving:
Learning affordance for direct perception in autonomous driving. In Proceedings
of the IEEE International Conference on Computer Vision, pages 2722–2730,
2015.

62



63

[13] Xianjie Chen, Roozbeh Mottaghi, Xiaobai Liu, Sanja Fidler, Raquel Urtasun,
and Alan Yuille. Detect what you can: Detecting and representing objects us-
ing holistic models and body parts. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 1971–1978, 2014.

[14] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus En-
zweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The
cityscapes dataset for semantic urban scene understanding. In Proc. of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

[15] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learn-
ing, 20(3):273–297, 1995.

[16] Gabriela Csurka, Diane Larlus, Florent Perronnin, and France Meylan. What is
a good evaluation measure for semantic segmentation?. In BMVC, volume 27,
page 2013. Citeseer, 2013.

[17] Stamatia Dasiopoulou, Eirini Giannakidou, Georgios Litos, Polyxeni Malasioti,
and Yiannis Kompatsiaris. A survey of semantic image and video annotation
tools. In Knowledge-driven multimedia information extraction and ontology evo-
lution, pages 196–239. Springer, 2011.

[18] Dataturks. Dataturks online tool to build Image Bounding Box, NER, NLP and
other ML datasets. https://dataturks.com/index.php, 2019.

[19] M. Everingham, S. M. A. Eslami, L. Van Gool, C. K. I. Williams, J. Winn,
and A. Zisserman. The pascal visual object classes challenge: A retrospective.
International Journal of Computer Vision, 111(1):98–136, January 2015.
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Yann LeCun. Overfeat: Integrated recognition, localization and detection using
convolutional networks. arXiv preprint arXiv:1312.6229, 2013.

[65] Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob Fergus. Indoor
segmentation and support inference from rgbd images. In European Conference
on Computer Vision, pages 746–760. Springer, 2012.

[66] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George
Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershel-
vam, Marc Lanctot, et al. Mastering the game of go with deep neural networks
and tree search. nature, 529(7587):484, 2016.

[67] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[68] Carsten Steger, Markus Ulrich, and Christian Wiedemann. Machine vision al-
gorithms and applications. John Wiley & Sons, 2018.

[69] Richard Szeliski. Computer vision: algorithms and applications. Springer Science
& Business Media, 2010.
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