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Abstract 
 

Elevated aluminum levels in rivers is known to be toxic for aquatic species, in particular Salmo 

salar; however it was only recently aluminum has been identified as a potential threat to Salmo 

salar populations in South Western Nova Scotia, Canada (SWNS) (Dennis and Clair 2012). 

Previously, it was thought SWNS rivers contained enough DOC to render the aluminum in rivers 

inactive.  A key remaining question is whether aluminum levels are declining following 

atmospheric pollution reductions. Here we make a first assessment of long-term (1980-2011) 

aluminum concentration trends in three watersheds located in SWNS, as measured by weekly 

grab samples. Our results show that total aluminum levels have significantly increased from 

1980-2011 in all three sites.  Estimates of ionic aluminum levels indicate that the ionic aluminum 

concentration frequently exceeds the threshold for the level of aquatic health determined by the 

European Inland Fisheries Advisory Commission (Howells et al. 1990). Data also indicate that 

calcium levels have yet to recover even with declining concentrations of riverine sulfate. This 

new knowledge that aluminum is at toxic levels and is worsening will have implications for 

policy on acidification mitigation in SWNS; this is an urgent issue as the local salmon population 

numbers currently are declining to near extirpation levels. 

 

 

Keywords: ionic aluminum, Southwest Nova Scotia, chronic acidification, long-term patterns 

(1980-2011), acid episodes, Salmo salar, Atlantic salmon, extirpation 
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1. Introduction 
  

1.1. Problem and Motivation 
 

South-West Nova Scotia (SWNS) has observed widespread acidification of its watersheds 

since the early 1950s (Gorham, 1957; Watt et al., 1979; Watt, 1987; Clair et al., 2004; Dennis and 

Clair, 2012). SWNS is downwind of sulfate (SO4
-2) release in areas such as eastern United States, 

and central Canada (Clair et al., 2002; Clair et al., 2004). Reductions of SO4
-2 emissions began the 

1990s resulting in many watersheds recovering from acidification in eastern North America and 

Europe (Clair et al., 2004; Clair and Hindar, 2005). This has not been the case in SWNS where 

water chemistry has not improved (Clair et al., 2002). SWNS is considered one of the most 

sensitive areas for acidification in Canada (Watt et al., 2000; Clair et al., 2011). 

Diminishing and extirpated Atlantic salmon (Salmo salar) stocks have been linked with 

low pH, and high aluminum levels (Lacoul et al., 2011; Gensemer and Playle, 1999).  Currently 

pH values are stable, but are not recovering to pre-acidification levels in SWNS (Clair et al., 2002; 

Clair et al., 2004). The acid-neutralizing capacity (ANC) in SWNS is directly related to the 

composition of bedrock and its slow weathering rates. Limited soil development following the 

previous glacial period (15,000 ka BP) has left SWNS with thin soils (Clair et al., 2008). The low 

levels of calcium (Ca) found in the soils was stripped with the onset of SO4-2 deposition (Freedman 

and Clair, 1987; Clair et al., 2004). Recovery for Ca in soils to pre-acidification levels is predicted 

to occur by 2100 with 10% reductions to SO4-2, using the Model of Acidification of Groundwater 

in Catchments (MAGIC) (Clair et al., 2004).  
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1.2. Background 
 

1.2.1. Ionic Aluminum and Total Aluminum 
 

Aluminum is the most abundant metallic element found in the lithosphere (Driscoll and 

Schecher, 1990). In neutral conditions (6.0-8.0 pH) aluminum is insoluble whereas in response to 

acidic or alkaline environments aluminum becomes soluble and bioavailable (Driscoll and 

Schecher, 1990). Total aluminum (Alt) is the sum of all forms of aluminum -- soluble, insoluble 

or aluminum complexed with organics (Alo) (Driscoll and Schecher, 1990; Dennis and Clair, 

2012). Ionic aluminum or inorganic monomeric aluminum (Ali) is a soluble form of aluminum 

found at pH below 6.0 (Dennis and Clair, 2012), and found to increase exponentially by a function 

of pH below 5.5 (Driscoll et al., 1984). As Ali increases with decreasing pH, Alo inversely 

decreases with decreasing pH (Driscoll and Newton, 1985; Driscoll et al., 1987). Ali is affected by 

both the availability of organic carbon (OC) and pH (Dennis and Clair, 2012). If Ali is exposed to 

OC in high enough concentrations, the OC bonds with the Ali to create Alo. To calculate Ali, the 

difference between Alt and Alo was taken (Dennis and Clair, 2012). Ali is associated with negative 

effects on aquatic life at concentrations >15 µg/L at pH between 6.0—5.0, and >30 µg/L at pH 

below 5.0 (Howells et al., 1990).  

 

1.2.2. Aluminum Generation in Acidified Watersheds 
 

The source of aluminum for aquatic and biological environments are minerals such as 

alumino-silicates and gibbsite (Driscoll and Schecher, 1990). Large portions of the aluminum 

found in the lithosphere is insoluble and biologically unavailable because it is tied up in alumino-

silicate minerals (Driscoll and Schecher, 1990). As alumino-silcate minerals break down, a portion 
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can react through biogeochemical reactions (Driscoll and Schecher, 1990). The environmental 

processes that include aluminum are poorly understood, but it is generally believed that soils are 

the main source of soluble aluminum found in aqueous environments (Driscoll and Schecher, 

1990).    

In environments without acidic inputs aluminum mobilization is considered to be caused 

by organic acids from decomposing foliage. This transports the aluminum as Alo and mobilizes 

iron from mineral soil horizons (Driscoll and Schecher, 1990). Bicarbonate can also help to 

mobilize aluminum in soils (Driscoll and Schecher, 1990).  

Environments with strong acidic inputs experience increased mobilization of aluminum, 

and more so in locations underlain by granites with soils characterized by low base cations because 

of their limited ability to buffer solutions (Driscoll and Schecher, 1990). When acids, sulfuric acid 

and nitric acid, are in excess of base cations the acids will not be neutralized (Driscoll and 

Schecher, 1990; Clair et al., 2004). In these conditions acidic cations such as Ali can be mobilized 

from the soils into the streams to act as a buffer (Driscoll and Schecher, 1990). As waters become 

more acidified aluminum becomes a dominant buffering agent in the watershed (Driscoll and 

Bisogni, 1984). Ali in acidified watersheds can also be mobilized by organic acids by the same 

reactions found in none acidified watersheds (Driscoll and Schecher, 1990). Generally acidified 

watersheds in Europe and North America experience elevated levels of Ali in watersheds (Driscoll 

and Schecher, 1990). 
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1.2.2.1.  Long-term Aluminum Trends 

 

A comparative study of samples taken in northeastern USA between 1986 and 2001 

following the reduction of acidic deposition in northeastern USA showed decrease to the 

concentrations of Alt, Ali, and Alo in lake water (Warby et al., 2008). In Czech Republic and 

Slovakia a lake water quality study from 1980 to 2000 observed decreased emissions of SO4
-2, 

nitrate, and ammonium, linked to recovery from acidification (Kopacek et al., 2001). As the 

recovery from acidification occurred aluminum played less of a role as a buffering agent in the 

lakes, and the decrease of average aluminum concentrations was 16 ± 13 µg/L per year (Kopacek 

et al., 2001). This paper also found a strong positive correlation between Alt and SO4
-2 (Kopacek 

et al., 2001). In the United Kingdom following reductions in acid rain a noticeable recovery in 

pH and decreasing Alt concentrations was found in soil solutions during a 12 year study from 

1995 to 2006 (Vanguelova et al., 2010). A comparison study between two close watersheds the 

West Bear, and the East Bear, in Maine, where the West Bear received additions of ammonium 

and SO4
-2, the results show aluminum acting as a buffer and Alt increased four-folds over the 

sampling period of 1989 to 2007 in the treated watershed (Fatemi et al., 2012).  

In Birkenes, Norway, a 30 year study looked at acid episodes during recovery from 

acidification (Wright, 2008). This study did not directly look at aluminum concentrations, 

although it did look at other important water quality parameters associated with acidification 

such as ANC, and SO4
-2 (Wright, 2008). This study found that, in the 1990s, SO4

-2 levels 

dropped as the ANC rose, and the frequency and severity of acidic episodes decreased (Wright, 

2008). Under these conditions it is mostly likely the case that Alt concentrations would have 

decreased along with the SO4
-2 reductions, but this was not reported.  
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1.2.2.2. Seasonal Patterns of Aluminum 

 

Abundance of Alt varies throughout the year in stream water (Meranger, 1989). Average 

Alt levels in stream discharge in Shelburne NS, show a seasonal variation of high Alt, 380 µg/L, 

in the fall, and lower Alt, 200 µg/L, in the spring (Meranger, 1989). The solubility of Alt is 

highly dependent DOC content and pH levels (Driscoll and Schecher, 1990). DOC in SWNS has 

a bimodal trend with peaks in spring and fall associated with snowmelt and heavy rains 

respectively (Clair et al., 2008). Umemura et al (2003) observed low pH and peaks of Alt 

occurring simultaneously in Japanese soil solutions. A similar trend was also observed in Central 

Europe with Alt reaching elevated levels in the spring and fall, concurrently with low pH levels 

(Kopacek et al., 2000). 

 

1.2.2.3. Aluminum Episodes 

 

Aluminum episodes are the occurrence of elevated Alt and Ali levels over a short period, 

such as days. Areas effected by aluminum episodes generally have soils and bedrock that do not 

contain abundant of base cations (Monette and McCormick, 2008). Aluminum episodes occur 

concurrently with storm events, and usually have a drop in pH associated with them (Soulsby et 

al., 1995). These episodes usually take place during spring snow-melts and fall storms (Monette 

and McCormick, 2008). The drop in pH allows for an increased mobilization of Alt and Ali 

(Monette and McCormick, 2008). Short-term exposures of acidic pH and high Ali have been 

found to be detrimental to Salmo salar especially so when in the smolt life phase (Monette and 

McCormick, 2008; Magee et al., 2003). Ali episode is very damaging to Salmo salar populations 
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in acidified watersheds, as the smolt phase occurs in the spring, when a substantial amount of 

aluminum episodes occur (Monette and McCormick, 2008). 

 

1.2.3. Acidification Trends in SWNS 
 

1.2.3.1. Limited pH Recovery 

 

Acidification in SWNS has yet to recover to pre-acidification levels (Watt et al., 1979; 

Clair et al., 2002; Clair et al., 2004; Korsi et al., 2013). Even with decreases in SO4
-2 deposition 

since the early 1980s, pH in SWNS has not recovered and is the only studied location in North 

America and Europe not to have seen recovery (Clair et al., 2004; Clair et al., 2011). Extended 

acid rain deposition has leached the base cations from the soils, and the anions must be neutralized 

by an oppositely charged cation (Driscoll and Newton, 1985; Clair et al., 2004). The slow 

weathering rate found in the underlying bedrock, has limited the amount of base cations 

reintroduced into the soils (Clair et al., 2004). With the absence of base cations, aluminum acts as 

a replacement in conditions where it is soluble (Clair et al., 2004). Clair et al (2004) found that the 

pH in SWNS was in equilibrium with SO4
-2 deposition and neutralization capacity (Clair et al., 

2004). In SWNS pH is expected to recover to pre-acidified levels only if there is continued 

reduction of SO4
-2 (Clair et al., 2004). 

 

1.2.3.2. Projected Calcium Levels 

 

In SWNS Ca is the main contributing base cation in calculating ANC (Clair et al., 2011). 

The bedrock in SWNS is characterized by generally having little buffering capacity as well as low 
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levels of Ca (Clair et al., 2007). The bedrock found in SWNS comprises three main units, the South 

Mountain Batholith, the Goldenville Group and the Halifax Group, which all have low levels of 

Ca (Watt et al., 1983). In SWNS bedrock has slow weathering rates, which results in limited 

amounts of cations being reintroduced into the soils (Bobba and Lam, 1989; Clair et al., 2004).  

Clair et al (2004) projected Ca, pH and ANC in Nova Scotian rivers using the model 

MAGIC, with three scenarios, no change to SO4
-2 deposition, a 10% reduction of SO4

-2 per decade, 

or a 20% reduction of SO4
-2 per decade. Even with the reduction of 20% of SO4

-2 per decade, Ca 

levels were not predicted to recover to pre-acidified levels in most rivers in the next 100 years 

(Clair et al., 2004). This limits the ability to neutralize acidic deposition of watersheds in Nova 

Scotia. With reductions of 10% per decade pH is predicted to recover to pre-acidified levels by 

2070 in most Nova Scotian rivers (Clair et al., 2004). Recoveries to Ca and pH are not expected to 

occur in the near future in Nova Scotian watersheds. 

 

1.2.4. Salmo salar Trends in SWNS 
 

The Southern Upland Salmo salar population in Nova Scotia was recommended to be listed 

as endangered by Committee on the Status of Endangered Wildlife in Canada in 2010 (COSEWIC, 

2011). This population has been declining over the past century (Watt el al, 1983; COSEWIC, 

2011; DFO, 2013)). A 2008 study to observe juvenile Salmo salar populations detected their 

presence in only 20 of 51 rivers surveyed which once held populations (COSEWIC, 2011). 

Acidification is thought to be the leading cause in the decline of the Southern Uplands Salmo salar 

population (COSEWIC, 2011; Dennis and Clair, 2012). 
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Watt et al (1983) looked at historical angling records in SWNS of rivers underlain with the 

South Mountain Batholith (SMB), the Goldenville Group, and the Halifax Group. Since the 1940s 

there have been declining angled Salmo salar in SWNS (Watt et al., 1983). The Nova Scotia 

Southern Upland Salmo salar population has declined by 61% of mature individuals in the three 

previous generations (COSEWIC, 2011). Two major rivers, the Gold River and the St Mary’s 

River, have seen declines in Salmo salar populations of 88% and 99% respectively since the 1980s 

(DFO, 2013).  

 

1.2.4.1. Mechanisms for Aluminum Toxicity in Salmo salar 

 

When Salmo salar is exposed to Ali life expectancy decreases (Monette, 2007; Magee et 

al., 2003). It is believed that Ali is an issue because it is only biologically available under conditions 

where the majority of life did not evolve (Driscoll and Schecher, 1990). There are multiple 

mechanisms for aluminum toxicity for Atlantic salmon. The epithelium of Salmo salar gills are 

vulnerable to Ali, positively charged Ali bonds with the negatively charged gills causing mucous 

build-up resulting in suffocation (Monette, 2007; Dennis and Clair, 2012). A laboratory 

experiment has shown that episodic exposure to Ali is not as detrimental for Salmo salar smolts as 

constant exposure to Ali (Magee et al., 2003), although they do require more than two weeks to 

recover from exposure to Ali (Nilsen et al., 2013).  

The substantial change which occurs to the physiology of Salmo salar during the parr-

smolt transformation is one of the most susceptible times for aluminum toxicity (Rosseland and 

Skogheim, 1984; Rosseland et al., 2001). This is the period when the salmon are preparing to move 

from freshwater to saltwater (Monette, 2007). Multiple changes to physiology occur, and these 

natural pressures with the additional stress from aluminum toxicity leaves the juvenile salmon 
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vulnerable (Monette, 2007). The European Inland Fisheries Advisory Commission (EIFAC) 

suggests that 15 µg/L of Ali not be exceeded where pH is between 5.0 and 6.0, for safety of fish 

species and macroinverebrates, and at pH below 5.0 show not surpass 30 µg/L Ali (Howells et al., 

1990). 

 

1.3. Knowledge Gaps 
 

In SWNS studies examining aluminum influence on watersheds are limited, which leaves 

knowledge gaps in this area. Firstly, there have not been any studies conducted in SWNS which 

look at increasing trends of aluminum. Finally, the chemical influences on aluminum peaks are 

still not fully understood (Driscoll and Schecher, 1990). A greater understand of the occurrences 

of aluminum peaks in SWNS would be beneficial to Ali predictions.  

 

1.4. Research Questions and Objectives 
 

Here we use the analysis of long-term data from Environment Canada to observe long-

term trends and seasonal patterns at our three sites in SWNS. This study aims to answer the 

following four research questions: 

1. Are there long-term trends in total aluminum in SWNS? 

2. How do trends in aluminum relate to Ca, DOC, SO4
-2 and pH? 

3. What is the reliability of existing models to predict Ali?  What are the limitations 

of the model produced by Dennis and Clair (2012) in predicting Ali? How do other 

empirical models using same data perform?  
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4. What do these models predict for ionic aluminum values, and what is there 

relationship to the Ali EIFAC threshold for aquatic life? 



11 
 

2.  Methods 
 

2.1.  Study Area 
 

Water quality data was collected at three site locations across SWNS within close 

proximity to Kejimkujik National Park (KNP), approximately 60 km inland from the Atlantic 

Ocean (Figure 2.1). The three sites are Mersey River (MR), Moose Pit Brook (MPB) and Pine 

Marten Brook (PMB). The area is found in a temperate climate, experiencing 1352 mm of mean 

annual precipitation, with 56% occurring between November and April (Clair et al., 2001). This 

area was recently glaciated in the last 15 ka, which created drumlins and left the area with limited 

soil development (Clair et al., 2008). The bedrock is comprised of Meguma Group slate, 

Goldenville greywackes and South Mountain Batholith. All of these rock units are characterized 

by their low levels of Ca. The soils around KNP in pre-acidified times had base cations which 

reflected proportions found in the underlying bedrock. These base cations were stripped from the 

soils through wet deposition of acid as precipitation hit the area. The study area surrounding KNP 

has seen a reduction in sulfur deposition from the 1980s of approximately 45% (Clair et al., 2008). 

All three of the sites experienced low levels of human development, with some forest harvesting 

and roads in the catchments.  
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Figure 2.1 Site locations with respect to Kejimkujik National Park. Black box with white 

center indicates sampling station in MR. Grey box with black center indicates the 

sampling location of PMB, and the Canadian Air and Precipitation Monitoring Network 

(CAPMoN) Site. After Clair et al., 2008. 
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2.1.1.  Mersey River 
 

The MR site is the largest of the three sites encompassing 297 km2. The sampling site for 

MR is upstream of Kejimkujik Lake. The geologic makeup of the catchment is South Mountain 

Batholith granite, Halifax Group slates with some quartzites, and Goldenville Group greywacke 

(Bobba and Lam, 1989). The catchment’s soils are primarily glacial tills made of acidic sandy 

loams or organic peat and are low in Ca (Bobba and Lam, 1989). The MR drainage is dominated 

by coniferous forest (94%) with minimal hardwood and mixed forests (Bobba and Lam, 1989). 

The sampling site is located one kilometer SW of the Maitland Bridge on Nova Scotia Trunk 8 

Highway, just below Mill Falls.  

 

2.1.2.  Moose Pit Brook 
 

MPB is located east of the MR catchment (Fig 2.1) occupying 17 km2 (Clair et al., 2008), 

and shares the same rock units as MR. The structural layout of the rock units at the MPB and PMB 

catchments (Figure 2.2). The MPB soils are defined as the Gibraltar Series characterized by 

extremely permeable sandy loam with granitic pebbles to cobbles (MacDougall et al., 1969). 

Forests found in MPB are similar to those found at the nearby MR (Clair et al., 2008).  

 

2.1.3.  Pine Marten Brook 
 

Pine Marten Brook (PMB) is the smallest of the three site locations and encompasses 1.3 

km2. The catchment is located along the north eastern boundary of KNP with 42% of the catchment 

lying outside the park (Fig 2.1). At this catchment there are two sampling sites, Upper Pine Marten 
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and Lower Pine Marten (Fig 2.3). The upstream site is located above a gravel road with a culvert, 

and the lower site is below a bog, allowing for observations of inputs of natural acids associated 

with wetlands. PMB catchment has minimal outcrops. Digging soil pits revealed that the catchment 

is underlain by the Greenfield Formation and the Cunard Formation of the Halifax Group (Bachiu, 

T., 2010). The soils and tills found at PMB are defined as part of the Bridgewater Series 

(MacDougall et al., 1969), characterized by sandy clay loams with low permeability and steep 

drumlins with minimal soil development (Bachiu, T., 2010).  
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Figure 2.2 Geologic map of area that includes MPB and PMB from White, 2007. 
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Figure 2.3 Location of upper and lower sampling sites, and the CAPMoN site in PMB 

catchment with respect to Hwy-8, and MR (Bachiu, T, 2010).  
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2.2.  Data Sources 
 

2.2.1. Water quality Sampling Frequency and Duration 
 

Each site has a different length of data collection. Water samples at MR began to be taken 

weekly or more frequently starting in 1980, while samples at MPB began to be gathered in 1983. 

Sampling in the PMB catchment started at the end of 1990. Water sampling continued until July 

2011 for all three sites. Samples were analyzed in Moncton, New Brunswick at the Environment 

Canada laboratory. The laboratory has accreditation by the Canadian Environmental Analytical 

Laboratory Association (CAEL), and the Environment Canada Acid Precipitation program inter-

calibration (Clair et al., 2008).    

 

2.2.2. Total Organic Carbon 
 

Total organic carbon (TOC) is the combination of dissolved organic carbon (DOC), and 

suspended organic carbon. In SWNS rivers it is assumed that TOC is within 5% of DOC (Clair et 

al., 2007, Dennis and Clair, 2012). For this reason TOC is considered equivalent to DOC in the 

study. When analyzing for TOC prior to March 1995, an automated UV-persulfate wet oxidation 

method (Clair et al., 2008) was used. This method was found to be consistently under calculating 

by ~28% (Koprivnjak et al., 1995). TOC measurements calculated prior to March 1995 were 

adjusted by 28% to account for this error. From March 1995 onwards a Shimadzu HTC instrument 

was used for analyses of TOC (Clair et al., 2008).   
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2.2.3. Laboratory Analysis of Aluminum 
 

2.2.3.1. Total Aluminum 

 

During the study two methods to calculate Alt were used, from 1980 to 2008 Atomic Absorption 

Spectroscopy (AAS) was used, and from 2008 to 2011 Inductively Coupled Plasma Optical 

Emission Spectrometry (ICP/-OES) was used. AAS can be used to find trace metals from water 

samples by exciting the elements to emit an electron, which will have a given wavelength 

depending on the element (Walsh, 1955). ICP/-OES measures the emission of photons from 

atoms and ions when exposed to radiofrequency (Mermet, 2005; Hou and Jones, 2000). Water 

samples are vaporized, when photons are excited the wavelength was measured (Hou and Jones, 

2000). Wavelength of a photon is associated with an element or ion, and the number of photons 

is directly proportional to the concentration of the elements which they were emitted from 

(Mermet, 2005; Hou and Jones, 2000). 

2.2.3.2. Ionic Aluminum.  

 

In the study Ali was not measured directly, instead it was estimated through empirical formulas. 

An empirical formula was created by Dennis and Clair (2012) who also did not measure Ali 

directly, but estimated it by calculating Alt and Alo and taking the difference of the two 

parameters. Measuring Ali has been problematic in the past, resulting in variable results (Dennis 

and Clair, 2012). Sampling reported in Dennis and Clair (2012) took place during the fall, 2006 

using samples from 97 rivers in Atlantic Canada with minimal disturbance by anthropogenic 

sources.  
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Dennis and Clair (2012) created a formula to predict Ali using linear regression with the 

independent predictors Alt, pH, and TOC. Their linear model predicating Ali is shown in Equation 

2-1, with a resulting r2 = 0.68,  

𝐴𝑙𝑖 =  −166.5 + 0.5 ∗  𝐴𝑙𝑡 − 5.06 ∗ 𝑇𝑂𝐶 + 23.5 ∗ 𝑝𝐻     2-1 

The majority of values in our sites have pH values, >98%, are below 6.0 (Figure 3.2). Many 

papers summarized in Driscoll and Schecher (1990) found Ali levels above 4-8 µg/L to be 

detrimental to a variety of aquatic species, for this reason we found it suitable to apply the threshold 

for aquatic life of 15 µg/L of Ali set by for the sampling period (Howells et al., 1990).  

 

2.2.4. Laboratory Analysis of ANC 
 

ANC is used to predict a solutions buffering ability (Wright, 2008). There are two 

commonly used methods to calculate ANC gran titration (ANCg) and calculated ANC (ANCc). 

The ANCc method used for ANC values, which takes the difference between the base cations and 

anions (Equation 2-2). Negative values have limited buffering capacity from the excess of anions 

compared with cations.  

 ANC𝑐 =  𝐶𝑎+2 + Mg+2 + Na+ + K+ −  SO4
-2 −  NO3

- −  Cl-      2-2 

 

2.2.5. Laboratory Analysis of pH 
 

The electrometric method was used through the sampling period to calculate pH (EPA, 

2004). 
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2.2.6. Laboratory Analysis of Sulfate 
 

Analysis of SO4
-2 in the laboratory used Ion Chromatography (IC) through the sampling 

period. This process is calculated by running a sample solution through column, depending on 

the ion’s charge strength, they will adhere to the column (Weiss, 1995). The concentration of the 

ions can then be calculated by how many ions bonded with the column (Weiss, 1995). 

 

2.2.7. Laboratory Analysis of Calcium 
 

Analytical calculation of Ca from the start of the sampling period in 1980 to November 

2001 used AAS. From November 2001 to November 2011 Inductively Coupled Plasma Mass 

Spectrometry (ICP-MS) was used to calculate Ca concentrations. ICP-MS detects trace elements 

by ionizing a sample with an inductively coupled plasma, in this case argon, and then running 

mass spectrometer on the sample to find the concentrations (Beachemin, 2008). 

 

2.2.8. Discharge 
 

Discharge calculations at MR began in 1968 while MPBs began in 1981. Clair et al. (2008) 

calculated the discharge at PMB using the ForHyM2 hydrological model. Yanni et al. (2000) 

modeled the discharge at the MR and MPB catchments and found that discharge rates were similar, 

and concluded that the hydrogeological conditions have limited spatial variability in this area, and 

was used to predict PMB discharge. This technique has given similar results throughout the 

Kejimkujik area with the exception of storm flow events being occasionally misrepresented with 

low values (Clair et al., 2008).  
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2.3.  Methods Used to Determine Long-Term Patterns of Total Aluminum and 

Ionic Aluminum 
 

Using the R Statistical Package, the time-series data was analyzed to find long-term trends 

of Alt and Ali and major water quality parameters. For trend analysis, water quality values were 

averaged to generate weekly values and we used interpolation if a week was not sampled. Monthly 

averages were calculated on a site dependent basis over the sampling period. To eliminate seasonal 

trends from the data the overall monthly averages were also subtracted from samples collected in 

the respective month. This removed the seasonal fluctuation, and examined the underlying trend. 

We applied the gls function to the updated time series data to determine the overall trend in Ali. 

The gls function allows for a correlation structure to be included, which we used first order 

autoregressive correlation structure, to allow for a time-dependence structure, and remove any 

violations of independent residuals. Using this model we were able to determine the overall trend 

in Alt and Ali through time. The gls function is contained in the ‘nlme’ package (Pinheiro et al. 

(2013). 

Testing for trend significance was done using two tests, significance by fitting the 

generalized least squares with the gls function trend-line and by the Mann Kendall test. Using 

either tests, a result was found significant if p<5%.  
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2.3.1. Preliminary Data Analysis 

 

To ensure that any faulty samples were not included in the data, we plotted water quality 

parameters against discharge to ensure that they occur during a flooding event, as there would be 

no justification for values that physically high without a flooding event. If this critierium was 

met, values were excluded on the basis that they were most likely were the result of machine-

error.  

 

2.4. Evaluation of existing Empirical models to estimate Ali  
 

To evaluate the linear model generated by Dennis and Clair (2012) for estimates of Ali, we 

requested their original data. We examined the range of these original data values for the predictor 

variables used in the Dennis and Clair (2012), model (Alt, DOC, pH) with those measured in our 

Keji catchments, and we examined the residuals of their model to determine if they violated any 

linear model assumptions, or were the best possible fit to these data. 

 

2.5. Creation of New Ali Empirical Model 
 

To create an alternate empirical model for Ali prediction we used a process to determine 

the best predictors, which used the Bayesian Information Criterion (BIC). Adding additional 

parameters will always increase the R2 term, and thus using the BIC, which allows for a 

penalization of terms better to determine the fit, was a more robust method for fitting these data 
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(Kadane and Lazar, 2004). We used all the parameters which both Dennis and Clair (2012) and 

our study shared in common as possible predictors when using this analysis.  

2.5.1. Preliminary Data Analysis of New Model 

 

After applying our new model to the dataset, we found that in limited instances predicted 

values of Ali were unrealistic. In these cases the predicted Ali was larger than Alt. There was four 

occurrences of this happening over the sampling period. These instances were removed from all 

data analysis to have a consistent, and comparable dataset. 
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3. Results 
 

3.1.  Long-term Alt Trends 
 

After removing the seasonal variation, there was an increase in Alt over time at all sites 

(Table 3.2).  The trend was significant at all sites as determined by the Mann Kendall test, and was 

significant at MR and MPB determined by which significance test when fitting the generalized 

least squares. There was a strong seasonal pattern associated with Alt, with the highest levels seen 

at summer and fall at all sites (Figure 3.1). When the analytical method for calculating Alt changed 

from AAS to ICP/-OES in 2008, there was not an observable change in calculated values as a 

results. 

Of the three sites, MR had the largest rate of increase for Alt, with an increase of 2.15 µg/L 

per year, as determined by the slope of the fitted gls line (Table 3.2). Extreme values of Alt at MR 

appeared more frequently between 2000 and 2011 (Figure 3.1a). A consistent increase of decade 

means was observed at MR (Table 3.2). 

MPB had a significantly increasing trend of Alt of 1.4 µg/L per year (Table 3.2). MPB saw 

no extremely high Alt values, above the standard seasonal variation (Figure 3.1b). Decadal means 

also increased at MPB throughout the sampling period (Table 3.2). 

The significant increasing trend found at PMB was 1.1 µg/L per year (Table 3.2). PMB 

frequently had Alt values peaking above the seasonal patterns between June and August (Figure 

3.1c).  
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3.2. Calcium and its relationship with Sulfate and Alt 
 

There are significant decreases in Ca for two of the three sites, but no consistent direction 

of change in Ca concentrations among the sites (Table 3.2). Decadal means do not show a 

consistent trend for all three sites. Ca does have a seasonal variation, which varied between each 

site (Figure 3.2).  

MR has significantly decreasing Ca concentrations over the sampling period (Table 3.2). 

Ca levels at MR peak during the fall September through to November (Figure 3.2a). Ca at MPB 

does not have a significant change (Table 3.2). Peaks of Ca concentrations at MPB occur between 

August and October (Figure 3.2b). Ca in PMB is significantly declining in concentration (Table 

3.2). Ca peaks range in occurrence from July to October (Figure 3.2c). 

SO4
-2 has a significantly decreasing trend at all site locations (Table 3.2; Figure 3.2). At all 

sites the occurrence of yearly extreme peaks of sulfate has been reduced in frequency since the 

early 2000s (Figure 3.2). A strong relationship between SO4
-2 and Ca is observable at all sites 

(Figure 3.2), except there has been a decoupling of SO4
-2 and Ca spikes in the last decade. 

At MR a strong association was observed between Ca and SO4
-2 (Figure 3.2a). Elevated 

levels of Ca related with higher SO4
-2 content (Figure 3.2a). From 2000 to the end of the sampling 

period, as SO4
-2 declined, the values of both parameters became comparable in value (Figure 3.2a). 

An association of Ca and SO4
-2 is evident at MPB (Figure 3.2b). At MPB, spikes in SO4

-2 

generally occur concurrently with spikes in Ca, although SO4
-2 levels remain elevated for months 
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after the Ca levels has dropped after peak events (Figure 3.2b). Spikes of Ca and SO4
-2 become 

decoupled in the last decade (Figure 3.2b). 

PMB shares a similar Ca and SO4
-2 relationship to MPB (Figure 3.2c; Figure 3.2b). 

Elevated SO4
-2 levels occur simultaneously to peaks in Ca concentrations, with Ca levels quickly 

declining over the following weeks, with SO4
-2 remaining at elevated levels for months (Figure 

3.2c). Spikes of Ca and SO4
-2 become decoupled in the last decade (Figure 3.2c). 

MBP and PMB have strong observable seasonal trends of peaks in fall in the sample period. 

At PMB similar to MPB, spikes in calcium are closely followed or occur simultaneously with 

sulfate spikes (Figure 3.2C). Ca levels than drop during the following week, with sulfate plateauing 

at elevated levels for weeks to months. At MR, elevated levels of SO4
-2 also occur concurrently 

with elevated Ca, although Ca levels remain elevated for as long as SO4
-2 is (Figure 3.2A).  

The ratio of Ca to Alt has a significantly negative trend at all site locations (Table 3.2), as 

a result of the proportion of Alt increasing as the quantity of calcium is declining, MR and PMB, 

or remaining constant, MPB (Table 3.2). The ratio of Alt/Ca also shows a strong seasonal trend in 

all locations.  At all sites there are yearly Alt/Ca peaks in the summer and late fall (Figure 3.3). At 

MR along with the peaks in the summer and fall, there are also winter peaks that do not occur 

annually (Figure 3.3a).  
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3.3.  DOC, ANCc and pH Trends 
 

3.3.1.  DOC 
 

There is a significant increase of DOC at all sites in the study area (Table 3.2). The Mann 

Kendall test finds all sites significant, > 95%, and PMB is also significant under the generalized 

least squares. At all sites the decade 1990 – 1999 had the lowest mean (Table 3.2). The following 

decade 2000-2011 had the highest mean in all sites (Table 3.2). DOC shows a strong seasonal 

pattern with the highest values in the fall (Figure 3.4). Seasonal DOC trends appear to be strongly 

associated with Alt (Figure 3.4). This strong association is also seen in scatter plots between the 

two variables, DOC and Alt (Figure 3.5). 

  

3.3.2. ANCc 

 

All sites have significant ANCc trends as determined from both the Mann Kendall and 

generalized least squares. All sites have an increasing ANCc trend (Table 3.2). All sites have 

negative mean values in every decade (Table 3.2). MPB has the largest increase, and the closest 

decade mean to neutral (Table 3.2). MR has the lowest rate of increase, and the lowest decade and 

overall means (Table 3.2). For the first time after 2000 MR began to observe positive ANCc values 

(Table 3.2). 

 

3.3.3.  pH 
 

The mean pH found in every decade at all sites is determined to be acidic. Table 3.2 shows 

the mean pH for all sites is <6.0, a level below which Ali toxicity is detrimental to aquatic biota 
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(Dennis and Clair, 2012).  MR and MPB have every decadal means close to 5.0, and 4.7 

respectively (Table 3.2). The lowest pH value observed, 3.7 on March 3, 1983, was found in MR. 

There is also a weak positive correlation between pH and Alt at MR and MPB, and with decreasing 

levels of pH there are increasing levels of Alt (Figure 3.6).  

 

3.4. Prediction of Ali using Existing Model 
 

Samples collected by Dennis and Clair (2012) had Alt values range from 12.47 to 464.03 

µg/L, and Ali values range from 0.57 to 199.84 µg/L (Table 3.1). When the range of the dataset 

used to create a linear model exceeds the values used to derive the model, the projections are less 

reliable, and the values are no longer being interpolated, but extrapolated. Mean levels of all water 

quality parameters used to predict Ali fell within the range of data collected by Dennis and Clair 

(2012) (Table 3.1; Table 3.2).  

Table 3.1. The ranges of parameters used in the prediction of Ali during Dennis and Clair’s 

(2012) sampling period, and our site locations. Ali values at MR, MPB, and PMB were 

calculated using the linear model Equation 2-1, the majority of Ali values calculated using 

this parameter were negative (bold). 

Dennis and Clair (2012)  Mersey River Moose Pit Brook Pine Marten Brook 

 Max Min Max Min Max Min Max Min 

Alt (µg/L) 464.03 12.47 609 20 552 9 796.2 47.7 

Ali (µg/L) 199.84 0.57 200.7 -111.55 103.11 -149.873 218.9 -40.698 

TOC (mg/L) 29.1 2.4 28 2.5 43.2 2.6 27.4 1.9 

pH 8.25 4.05 6.9 3.7 6 4.28 8.9 4.5 

Ca (mg/L) 28 0.49 1.9 0.32 2.35 0.2 4.34 0.3 

SO4-2 (mg/L) 21.9 0.5 8.8 0.77 8.23 0.3 25.39 0.27 
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Upon applying Dennis and Clair’s (2012) model (Equation 2-1) to the dataset we found 

that over 70% of calculated Ali values were below zero, a physically impossible value (Figure 3.7). 

By examining the linear model we found that there was a violation of independent random 

variables. The distribution of the data’s residuals was inconsistent with expectations with the 

distribution being more log-normal than normal (Figure 3.8).  

Using the original dataset used to fit the model we were able to refit Dennis and Clair’s 

(2012) model and determine if there were any improvements that could be made. By taking the 

natural log of the data, and centering the variables we generated a model (Equation 3-1).  

𝐴𝑙𝑖 = 𝑒𝑥𝑝 { 
1.1(𝐴𝑙𝑡−178.24)

114.78
+

−0.36(𝑇𝑂𝐶−9.72)

5.1
+

0.43(𝑝𝐻−6.77)

0.95
+ 2.94}       3-1 

Equation 3-1 has lowered the R2 value from 0.68 to 0.54, but removed the problems with 

its residuals. While the R2 value decreased, the BIC decreased indicating a better fit to the data. 

This can be observed in Figure 3.9, where the parabolic trend has been removed. The residuals are 

randomly distributed as is desired, and there are no violations of model assumptions.  

 

3.5. Prediction of Ali using a Newly Created Model 
 

We created a new model for Ali prediction using BIC criterion in a linear model (Appendix 

B).  We used the parameters Ca, TOC, Fe, Alt, and SO4
-2 to predict Ali. Of the variables previously 

used in Equation 2-1, it was determined that pH was not a significant predictor of Ali. We removed 

the variable Fe from the model, as there was not a known causal relationship between Fe and Ali. 

Alt and Fe are known to react with organic carbon in acidic conditions in a similar fashion (Jansen, 

2003), but the lack of a causal relationship between Fe and Ali does not exist, so the addition of Fe 
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as a model parameter was unnecessary. After rerunning the model fitting algorithm (Appendix B), 

with the exclusion of the variable Fe we then created a new formula Equation 3-2.  

𝐴𝑙𝑖 = 𝑒𝑥𝑝 {
0.94(𝐴𝑙𝑡−178.24)

114.78
+

−0.27(𝑇𝑂𝐶−9.73)

5.1
+

0.32(𝑝𝐻−6.77)

0.95
+

0.21(𝑆𝑂4−3.71)

3.7
+ 2.95}  3-2 

When we examined the residuals of the model (Equation 3-2), we found that they did not 

violate any model assumptions (Figure 3.10). Equation 3-2 has an R2 value of 0.57. 

When Ali is predicted using the linear model Equation 3-2 there is significant increase in 

Ali at MR, and MPB over the sampling period. All three catchments have Ali levels higher than 

the recommended threshold at least once per year during the study period (Figure 3.7). The 

majority of Ali episodes occurred in the fall or springtime (Figure 3.7). All site locations have 

mean value within 5 µg/L of the EIFAC 15 µg/L guideline for aquatic health for Ali.  

MR has the highest rate of increase in Ali (Table 3.2).  In addition to the increase in the 

annual mean, extreme peaks of Ali are also increasing in frequency and magnitude over the study 

period, with much larger extremes in the last decade (Figure 3.7a). Decadal means at MR increased 

every decade in the sampling period from 10.3 to 14.2 µg/L; the annual mean concentration for 

Ali in the last decade is only 1 µg/L below the maximum recommended value for Ali. In a given 

year MR is exceedance of the toxic threshold during multiple events (Figure 3.7a). In 1996, for 

instance, Ali exceeded guidelines from July1st to December 31st (Figure 3.7a). 

MPB exceeded the Ali threshold on an annual basis, usually once per year (Figure 3.7b). 

Ali events occurred from July through to October, peaks remain elevated two to three weeks before 

decreasing in Ali concentrations (Figure 3.7b). Decadal means of Ali at MPB increased each 

decade during the sampling period (Table 3.2).  
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PMB is the only site without a significant trend of Ali (Table 3.2). PMB observed the 

highest Ali at 501.7 µg/L on July 29, 2003. PMB 
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Table 3.2   Site trends, means, and ranges of river water parameters. Bold trend data is significant under Mann-Kendall Test (p<5%). 

Trend data with * is significant under generalized least of squares (p<5%). 

 

 Mersey River Moose Pit Brook Pine Marten Brook 

 Concentration [mean (range)] Trend/yr Concentration [mean (range)] Trend/yr Concentration [mean (range)] Trend/yr 

  1980-2011 1980-1989 1990-1999 2000-2011 1980-2011 1983-2011 1983-1989 1990-1999 2000-2011 1983-2011 1990-2011 1990-1999 2000-2011 1990-2011 

Alt 
(µg/L) 

188 175 187 214 2.15* 
229 211 229 246.4 

1.4* 
139 133 144 

1.1 

(20-609) (20-370) (60-400) (89-609) (9-552) (61-520) (29-552) (9-545) (48-722) (57-650) (48-722) 

Eq 2-1  
Ali (µg/L) 

-2.9 -10.3 -0.4 7.9 0.82 
-23.3 -33.0 -18.7 -19.9 

0.46 
-5.3 -9.5 -1.5 

0.82* 

(-112-898) (-112-78.9) (-46-92.9) (-35-898) (-150-103) (-143-103) (-112-63) (-150-85) (-41-329) (-41-137) (-41-329) 

Eq 3-2  
Ali (µg/L) 

11.7 10.3 11.9 14.2 0.22* 
10.4 8.9 10.9 11.3 

0.07* 
11.5 9.9 13.1 

0.27 

(2.1-302.4) (2.1 -48.3) (4.9-50.2) (6.2-302.4) (1.3-77.6) (2.2-77.6) (2.8-39.0) (1.3-67.1) (4.7-501.7) (4.7-162) (5.4-501.7) 

pH 
5.0 5.0 5.0 5.0 -0.0019 

4.7 4.7 4.7 4.7 
0.0029 

5.3 5.1 5.5 
0.042 

(3.7-6.9) (3.7-6.1) (4.5-6.3) (4.2-6.9) (4.3-6) (4.4-5.5) (4.3-6) (4.3-5.9) (4.5-8.9) (4.5-6.9) (4.6-8.9) 

H+ 
(meq/L) 

11.9 11.7 11.8 12.3 
0.057 

20.7 21.4 20.6 20.1 
-0.13 

6.1 8.2 4.2 
-0.4* 

(0.12-198) (0.8-198) (0.5-31.4) (0.1-67.1) (1.0-52.1) (3.1-39.5) (1.0-52.1) (1.3-49.7) (0.001-31.4) (0.1-31.4) (0.001-26) 

DOC 
(mg/L) 

9.6 9.6 8.9 10.4 0.04 
16.3 16.2 15.3 17.3 

0.058 
6.7 6.0 7.4 

0.16* 

(2.5-28) (3.4-28) (2.5-19.7) (4.4-18.3) (2.6-43) (4.2-42) (2.6-43.2) (5-39.1) (1.9-27) (1.9-27.4) (2.6-27) 

ANCc 

(mg/L) 

-2.7 -2.8 -2.7 -2.6 0.034* 
-1.1 -1.5 -1.2 -0.6 

0.16* 
-2.2 -2.8 -1.52 

0.043* 

(-14-0.2) (-14- (-0.3)) (-4.9- (-0.1)) (-5.3-0.2) (-5.4-3.0) (-5.4-1.8) (-4.6-2.8) (-3.5-3.0) (-16.5-5.0) (-16.5-1.4) (-10.8-5.0) 

Ca 
(mg/L) 

0.9 0.9 0.8 0.9 -0.0021 
0.85 0.8 0.8 0.9 

0.001 
0.7 0.7 0.7 

-0.00078 

(0.3-1.9) (0.4-1.8) (0.3-1.6) (0.4-1.9) (0.2-2.4) (0.2-2.0) (0.3-2.35) (0.4-2.0) (0.3-4.3) (0.3-4.3) (0.4-3.0) 

SO4
-2  

(mg/L) 

2.5 2.7 2.6 2.1 
-0.05* 

2.0 2.2 2.2 1.6 
-0.04* 

2.2 2.6 1.8 
-0.1 

(0.8-8.8) (1-8.8) (0.8-5.6) (1.0-5.7) (0.3-8.2) (0.4-6.6) (0.5-8.2) (0.3-4.5) (0.3-25.4) (0.4-25.4) (0.3-14) 

Cl (mg/L) 
5.5 5.3 5.3 6.2 

0.03* 
3.6 3.8 3.4 3.5 -0.02* 4.3 4.6 4 -0.07* 

(1.4-31) (2.2-31) (1.4-7.6) (3.1-10.3) (1.4-7.6) (1.7-6.2) (1.6-6.7) (1.4-7.6) (1.1-8.6) (1.2-8.6) (1.1-7.0) 

Ca/Alt         -0.071*         -0.018       -0.071 
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Fig 3.1 Aluminum concentration in Kejimkujik calibrated catchments as measured from grab 

samples A) Mersey River (MR), B) Moose Pit Brook (MPB), C) Pine Marten Stream (PMB). 

Trend lines are calculated from interpolated weekly averages.  
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Fig 3.2 Weekly mean interpolated calcium and sulfate calculated from grab samples from 

Kejimkujik calibrated catchments. A) MR, B) MPB, C) PMB.  
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Fig 3.3 Ratio of total aluminum to calcium in Kejimkujik calibrated catchments as measured 

from grab samples. Trend lines are calculated from interpolated weekly averages of the ratio. 
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Figure 3.4 Weekly mean total aluminum and DOC as calculated from grab samples from 

Kejimkujik calibrated catchments. A) MR, B) MPB, C) PMB. DOC trend line calculated from 

interpolated weekly averages.  
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Figure 3.5 Scatter plot of total aluminum and dissolved organic carbon. A) MR, B) MBP, 

C)PMB.   
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Figure 3.6 Scatter plot of total aluminum and pH in Kejimkujik catchments. A) MR, B) MPB, C) 

PMB. The horizontal trend seen in B is the result of precision for calculating pH using the 

electrometric method. 
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Figure 3.7. Calculated ionic aluminum concentrations in Kejimkujik calibrated catchments. 

Values calculated by Equation 2-1 are shown in red with blue dashed line showing predicted Ali 

of 0 µg/L. Values calculated by Equation 3-2 are shown in blue. A) MR, B) MPB, C) PMB. 

Black line is the 15 µg/L EIFAC guideline for aquatic biota health. 
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Figure 3.8 Residuals of raw data from Dennis and Clair’s (2012) Equation 2-1 with a parabolic 

trend. 
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Figure 3.9 Residuals from Equation 3-1 adapted from Dennis and Clair’s (2012) formula. 

Residuals are randomly scattered to create a linear trend 
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Figure 3.10 Residuals from Equation 3-2 with randomly scattered residuals creating a linear trend 

line.   
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           4. Discussion  

 

3.6. Alt Values and Trends 
 

Alt was found to be significantly increasing in all of our site locations over the sampling 

period. This is the only known location worldwide where this is currently occurring except for the 

West Bear watershed in Maine, where there has been continued artificial inputs of SO4
-2 and 

ammonium from 1989 to 2007, which resulted in increases in Alt (Fatemi et al., 2012). All other 

areas in long-term Alt studies have seen a reduction in Alt concentrations with decreased emissions 

of SO4
-2. Watt et al (1983) showed an increase of Alt in four SWNS rivers from 1954-1981, the 

Roseway, Medway, LaHave, and Mersey River. We see a continuation of this trend to the end of 

the sampling period in July 2011.  

Similar positive correlations between the relationship of Alt and pH found in our study 

are synonymous to other findings, which indicates at lower pH increased mobilization of 

aluminum occurs in the soils (Dennis and Clair, 2012; Driscoll and Schecher, 1990).  
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3.7. Calcium and Sulfate Predictions in SWNS 
 

Watt et al. (1983) found that in four SWNS rivers including the Mersey River, from 1954-

1981 there was a significant increase in sulfate and a decline in calcium. Later Watt et al, (2000) 

showed that sulfate declined in rivers in SWNS rivers from 1982-1996 following the decline of 

emissions after the Eastern Canada SO2 Control Program and the Clean Air Act. We observed a 

similar trend at all sites. Sulfate is significantly decreasing over the entire sampling period, 1980-

2011, in all sites (Figure 3.5). Calcium trends in Mersey River during 1954-1981 were found to be 

decreasing (Watt et al, 1983), this trend has continued from 1980-1996 (Watt et al, 2000), as well 

as in our data set. These trends follow the predictions of soil recovery from acidic deposition in 

NS by Clair et al (2004). With the reductions of sulfate deposition from anthropogenic sources 

calcium levels are still expected to take 100 years to recover to pre-acidified levels (Clair et al., 

2004). 

 

3.8. DOC Trends   
 

There is a strong relationship between DOC and Alt at all sites in our study. Dennis and 

Clair (2012) observed a leveling off of Alt levels at ~450 µg/L with DOC values at ~15 mg/L 

(Figure 4.2). This was not observed in our study, where we saw a linear increase of DOC to Alt, 

exceeding both the Alt and DOC values captured by Dennis and Clair (2012) (Figure 3.7). This 

relationship between Alt and DOC is well documented, and DOC helps to mobilize Alt from soil 

(Jansen, 2003; Driscoll and Schecher, 1990). 
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3.9. pH Trends 
 

Our study indicates that there are minimal changes over the sampling period of pH levels 

near Kejimkujik National Park (KNP). Studies of paleolimnology in the KNP area have shown a 

decrease in pH of ~0.5 ± 0.2 since pre-industrialization (Korosi et al., 2013). Since the 1980s long-

term monitoring of pH in Nova Scotia has not observed a recovery of pH, even with large 

reductions in SO4
-2 emissions (Clair et al., 2011).    

3.10. Predictive Power of Empirical Models New and Old 
 

Upon analysis of the existing model for Ali prediction (Equation 2-1), we found issues 

arising from its ability to predict physically plausible results from our dataset as well as from the 

original dataset used to create it.  We found that this was because the existing model (Equation 2-

1) failed to address its violation of independent normally distributed residuals or address that all 

predicted values should be greater than zero. Our model (Equation 3-2) is an equation that 

generates normal residuals as well as only positive values, thus not violating any assumptions of 

least squares. This new model (Equation 3-2) was used to predict Ali concentrations over the 

sampling period, which were found to be frequently above the threshold for aquatic biota, and 

significantly increasing in two of the three sites, MR and MPB (Table 3.2). There are still issues 

associated with our model. There are physical restraints on the generation of Ali, and in particular 

it only exists in pH below 6.0. With this in mind Ali values which are calculated need to be 

excluded if the pH is greater than 6.0, there was not a check for this during the prediction for Ali 

in this study, which was also absent from the previous model (Equation 2-1).  
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3.11. Limitations of the Study 
 

Our site locations only include three watersheds in SWNS, which are in a close proximity to one 

another (Figure 2.1). They do not necessarily reflect the water quality trends of entire SWNS 

watersheds.  

Dennis and Clair (2012)’s original data was collected during one fall sampling period, in SWNS 

there is evident seasonal variation associated with water quality parameters, this limited 

sampling period has limited the range of empirical models created from this dataset. Dennis and 

Clair (2012)’s collected data has a limited range, which has reduced the ability to effectively 

predict Ali values during Alt events.  
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Figure 4.1 Scatter plot created by Dennis and Clair (2012) with a negative correlation between pH 

and Alt. 

 

Figure 4.2 Relationship observed by Dennis and Clair (2012) between Alt and TOC. At TOC 

values >15 mg/L there is a leveling off of Alt at values of ~450 µg/L. 

 



49 
 

5  Conclusion 
 

Based on the results produced in this thesis I have concluded the following about the 

three studied watersheds: 

 

1. Alt has been increasing significantly over the study period in all sites, and 

historical data suggests it has been increasing at least since the 1950’s. Besides a 

test watershed with artificial inputs of SO4
-2, SWNS is the only known location 

with increasing Alt levels presently. 

2. Projected levels of Ali are of concern for Salmo salar, because they are above 

threshold limits but are highly uncertain. Our new model (Equation 3-2) for 

estimating Ali indicates Ali concentrations frequently exceed EIFAC thresholds 

for aquatic life. Previous models for Ali (Equation 2-1) prediction was limited 

because it predicted negative values of Ali and because the residuals violated 

assumptions about random distributions. 

3. Conditions for the generation of Ali is met for the majority of the sampling period. 

Using our model we found Ali was significantly increasing in MR and MPB 

between 1980 to 2011, and 1983 to 2011 respectively. Levels of Ali were found to 

be at levels which can be detrimental to aquatic life when using both models. 
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5.1. Recommendation for Future Work 
 

Top priority should be to collect more data on Alt, Ali, and DOC, following Dennis and 

Clair (2012) methods over a wider range of flows and seasons to create an improved empirical 

model for Ali prediction. Another study to be conducted similar to Dennis and Clair (2012) over 

a longer study period. To gain a better understanding of Ali in SWNS watersheds. 
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Appendices  
 

A. R Statistical Package Code 
 

The following is a list of R code which was used to calculate trends, significance, and to produce figures. 

 

 

 

for(k in 1:3){ 

data_1=read.csv(paste0("R",k,".u.csv")) 

 

#replace all the ionic values below 0 to 0 

data_1[data_1[,2] < 0,2] = 0 

  

 

#create the julien date 

data_1$Jul = julian(data_1$Month,data_1$Date,data_1$Year)-3708 

#Creates a week column based off Julien Date 

data_1$Week = ceiling(data_1$Jul/7) 

#loops through each row of the csv table 

 

#calculate the weekly average 

Alt = c() 

Ali = c() 

pH = c() 

DOC = c() 

H = c() 

week = c() 

   

for(i in 1:min(data_1$Week)){ 
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 Alt[i] = NA 

 Ali[i] = NA 

 pH[i]  = NA 

 DOC[i] = NA 

 H[i] = NA 

 week[i] = NA 

  temp = NA 

  } 

 

for(i in min(data_1$Week):max(data_1$Week)){ 

 Rnew = data_1[data_1$Week ==i,] 

  

 temp = sd(Rnew[,1]) 

  

 Alt[i] = mean(Rnew[,1]) 

 Ali[i] = mean(Rnew[,2]) 

 pH[i]  = mean(Rnew[,6]) 

 DOC[i] = mean(Rnew[,7]) 

 H[i] = mean(Rnew[,8]) 

 if(dim(Rnew)[1] <1){ 

  week[i] = NA} 

 else{ 

  week[i]= Rnew$Week 

 } } 

  

new_Date = data.frame(Alt = Alt, Ali = Ali, pH = pH, DOC = DOC, H = H, 

week = week) 

 

Alt.i =interpNA(Alt[min(data_1$Week):length(Alt)]) 

Ali.i =interpNA(Ali[min(data_1$Week):length(Alt)])  

pH.i =interpNA(pH[min(data_1$Week):length(Alt)]) 
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H.i =interpNA(H[min(data_1$Week):length(Alt)]) 

DOC.i =interpNA(DOC[min(data_1$Week):length(Alt)])  

Week.i = interpNA(week[min(data_1$Week):length(Alt)]) 

 

week.new = Week.i-min(Week.i)    

 

if(k==1){start1 = 1980  } 

if(k==2){start1 = 1991  } #SA Nov 23 

if(k==3){ start1 = 1983}  #SA Nov 23   

  

  if(k==1){ label   = "pH vs Alt MR.png"  } 

  if(k==2){ label   = "pH vs Alt PMS.png" } 

  if(k==3){ label  = "pH vs Alt MPB.png"  } 

  if (k==1){ label2   = "A"  } 

  if(k==2){ label2   = "C" } 

  if(k==3){ label2  =  "B"} 

png(file= label, units="in", width=5, height=5, res=300) 

 

plot(pH,Alt, xlab = "pH", ylab = "Aluminium (ug/L)",  col = "red",pch 

= 19,cex = .5,)#main = paste("Aluminium vs pH at",river[k]))   #plots 

the first values  

 fit <-lm(Alt~pH) 

  #abline(fit) 

  legend("topright", bty="n", label2)#legend=paste("R^2 is", 

format(summary(fit)$adj.r.squared, digits=4)))  

 

      dev.off()} 

 

  ######  Figure 4.1  ######  

 

 if(k==1){ label   = "Fig4.1. test MR.png"} 
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 if(k==2){ label   = "Fig4.1. test PMS.png"} 

 if(k==3){ label  = "Fig4.1. testMPB.png"} 

 if (k==1){ label2   = "A"  } 

 if(k==2){ label2   = "C" } 

 if(k==3){ label2  =  "B"} 

 

png(file= label, units="in", width=11, height=4, res=300) 

model.t = gls(Alt.i~week.new, corr = corAR1())  

  rate.t = 52*model.t$coef[2] 

  rate.t = round(rate.t, digits=2) 

   

  plot(Alt,ylim = c(0,1000),ylab = NA, xaxt = "n", xlab = "Date",  col 

= "red",pch = 19,cex = .5)   #plots the first values                                  

ylab = "Aluminium(ug/L)" 

  axis(1, at = seq(1,1638,52.1), labels = seq(1980,2011, 1))  # adds 

the x axis labels to the plot using the dates 

  if(k==1){legend("topleft", bty="n", legend= 

c(expression(paste("Total Aluminum ( " ,mu, "g / L)")), 

legend=paste("Yearly Change: ", rate.t))) }   # 

  if(k==2 || k==3){ legend("topleft",bty="n", legend=paste("Yearly 

Change: ", rate.t))} 

  legend("topright", bty="n", legend=paste( label2) ) 

  abline(model.t)   

dev.off() 

 

  Alt.test = Alt.i/100 

 

  if(k==1){ label   = "Fig 4.3 MR.png"  } 

  if(k==2){ label   = "Fig 4.3 PMS.png" } 

  if(k==3){ label  = "Fig 4.3 MPB.png"  } 

 

  png(file= label, units="in", width=11, height=4, res=300) 
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  plot(Alt.test, type = "l", ylim = c(min(Alt.test), max(DOC.i+10)),  

xaxt = "n",  col = "red", ylab = NA)   #plots the first values                                  

ylab = "Aluminium(ug/L)" 

      if (k ==3){axis(1, at = seq(-20,length(Alt.test),52), labels = 

seq(start1,2011, 1))} 

if (k == 1 || k ==2){axis(1, at = seq(0,length(Alt.test),52), labels = 

seq(start1,2011, 1))} 

 points(DOC.i, type = "l", col = "blue") 

if(k==1){  legend("topleft",legend=c("Total Aluminium ( ug /100L ) 

","DOC ( mg / L )"),pch=c(19,19),col=c("red","blue"), bty = "n")  } 

    legend("topright", legend=c(label2), bty = "n")     

    model.d = gls(DOC.i~week.new, corr = corAR1())     

     

    abline(model.d) 

 

dev.off() 

 

 

#### Figure 4.2 Ali vs time####### 

 

# gls model for ionic 

   if(k==1){ label   = "Fig test 4.2 MR.png"  } 

   if(k==2){ label   = "Fig test 4.2 PMS.png" } 

   if(k==3){ label  = "Fig test 4.2 MPB.png"  } 

png(file=label, units="in", width=11, height=4, res=300) 

   

    

model.i = gls(Ali.i~week.new, corr = corAR1()) 

  rate.i = 52*model.i$coef[2] 

  rate.i = round(rate.i, digits=2) 
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plot(Ali.i,  ylim = c(min(Ali.i), max(Ali.i)), xaxt = "n", ylab = NA,  

xlab = "Date",  type = "l", col= "red")         #, main = paste("Ionic 

Aluminium Trend at ",river[k])     

legend("topright", bty="n", legend=paste( label2) ) 

if(k==1){legend("topleft", bty="n", legend= c(expression(paste("Ionic 

Aluminum ( " ,mu, "g / L)")), legend=paste("Yearly Change: ", 

rate.i))) }  

if(k==2 || k==3){ legend("topleft",bty="n", legend=paste("Yearly 

Change: ", rate.i))} 

#axis(1, at = seq(1,1638,52.1), labels = seq(1980,2011, 1))   

testline = 15 

abline(15,0) 

if (k ==3){axis(1, at = seq(-20,length(Ali.i),52), labels = 

seq(start1,2011, 1))}  

if (k == 1 || k ==2){axis(1, at = seq(0,length(Ali.i),52), labels = 

seq(start1,2011, 1))}   

 

  dev.off() 

 

#preparing for mann kendal  

data_1$Month2 = (data_1$Year-1980)*12 + data_1$Month 

 

#calculate the monthly average 

Alt_month = c() 

Ali_month = c() 

H_month = c() 

DOC_month = c() 

month = c() 

 

for(i in 1:min(data_1$Month2)){ 

 

 Alt_month[i] = NA 

  Ali_month[i]= NA 
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  H_month[i] = NA 

  DOC_month[i] = NA 

 month[i] = NA    

 } 

for(i in min(data_1$Month2):max(data_1$Month2)){ 

 Rnew = data_1[data_1$Month2 == i,] 

 Alt_month[i] = mean(Rnew[,1])  

 Ali_month[i] = mean(Rnew[,2])  

 H_month[i] = mean(Rnew[,8])  

 DOC_month[i] = mean(Rnew[,7])  

 } 

 

AltMonth.i =interpNA(Alt_month[min(data_1$Month):length(Alt_month)]) 

AliMonth.i =interpNA(Ali_month[min(data_1$Month):length(Ali_month)]) 

HMonth.i =interpNA(H_month[min(data_1$Month):length(H_month)]) 

DOCMonth.i =interpNA(DOC_month[min(data_1$Month):length(DOC_month)]) 

 

if (k ==1){ 

 

 ts_Alt = ts(AltMonth.i, start = c(1980, 2), end = c(2011,7), freq 

= 12) 

 ts_Ali = ts(AliMonth.i, start = c(1980, 2), end = c(2011,7), freq 

= 12) 

 ts_H= ts(HMonth.i, start = c(1980, 2), end = c(2011,7), freq = 

12) 

 ts_DOC = ts(DOCMonth.i, start = c(1980, 2), end = c(2011,7), freq 

= 12) 

 } 

  

if (k ==2){ 

 ts_Alt = ts(AltMonth.i, start = c(1989, 2), end = c(2011,7), freq 

= 12) 
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 ts_Ali = ts(AliMonth.i, start = c(1989, 2), end = c(2011,7), freq 

= 12) 

 ts_H=   ts(HMonth.i, start = c(1989, 2), end = c(2011,7), freq = 

12) 

 ts_DOC = ts(DOCMonth.i, start = c(1989, 2), end = c(2011,7), freq 

= 12) 

 } 

if (k==3){  

  ts_Alt = ts(AltMonth.i, start = c(1983, 2), end = c(2011,7), freq = 

12) 

 ts_Ali = ts(AliMonth.i, start = c(1983, 2), end = c(2011,7), freq 

= 12) 

 ts_H= ts(HMonth.i, start = c(1983, 2), end = c(2011,7), freq = 

12) 

 ts_DOC = ts(DOCMonth.i, start = c(1983, 2), end = c(2011,7), freq 

= 12) 

  } 

 

print(SeasonalMannKendall(ts_Alt)) 

print(SeasonalMannKendall(ts_Ali)) 

print(SeasonalMannKendall(ts_H)) 

print(SeasonalMannKendall(ts_DOC)) 

 

for(k in 4:6){ 

data_1=read.csv(paste0("R",k,".u.csv")) 

 

data_1$Jul = julian(data_1$Month,data_1$Date,data_1$Year) 

#Creates a week column based off Julien Date 

data_1$Week = ceiling(data_1$Jul/7) 

#loops through each row of the csv table 

 

#calculate the weekly average 

Ca = c() 
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ANC = c() 

Mg = c() 

Na = c() 

K = c() 

SO4 = c() 

NO3 = c() 

Cl = c() 

week = c() 

 

for(i in 1:min(data_1$Week)){ 

 Ca[i] = NA 

 ANC[i] = NA 

 Mg[i]  = NA 

 Na[i] = NA 

 K[i] = NA 

 SO4[i] = NA 

 NO3[i] = NA 

 Cl[i] = NA 

 week[i] = NA 

 } 

  

for(i in min(data_1$Week):max(ceiling((data_1$Jul)/7))){ 

 Rnew = data_1[data_1$Week ==i,] 

  

 Ca[i] = mean(Rnew[,2]) 

 ANC[i] = mean(Rnew[,1]) 

 Mg[i]  = mean(Rnew[,3]) 

 Na[i] = mean(Rnew[,4]) 

 K[i] = mean(Rnew[,5]) 

 SO4[i] = mean(Rnew[,6]) 
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 NO3[i] = mean(Rnew[,7]) 

 Cl[i] = mean(Rnew[,8]) 

 if(dim(Rnew)[1] <1){ 

 week[i] = NA} 

 else{ 

 week[i]= Rnew$Week 

 } } 

  

new_Date = data.frame(Ca = Ca, ANC = ANC, Mg = Mg, Na = Na,K = K, SO4 

= SO4, NO3 = NO3, Cl = Cl, week = week) 

 

## INTERPOLATION OF MISSING VALUES 

 

 

Ca.i =interpNA(Ca[min(data_1$Week):length(Ca)]) 

ANC.i =interpNA(ANC[min(data_1$Week):length(Ca)])  

Mg.i =interpNA(Mg[min(data_1$Week):length(Ca)]) 

Na.i =interpNA(Na[min(data_1$Week):length(Ca)])  

K.i =interpNA(K[min(data_1$Week):length(Ca)])  

SO4.i =interpNA(SO4[min(data_1$Week):length(Ca)]) 

NO3.i =interpNA(NO3[min(data_1$Week):length(Ca)])  

Cl.i = interpNA(Cl[min(data_1$Week):length(Ca)]) 

 

Week.i = interpNA(week[min(data_1$Week):length(Ca)]) 

 

if(k==4){start1 = 1980   

  label2   = "A" 

  label   = "Ca SO4 MR.png" } 

if(k==5){start1 = 1991   

label2   = "C" 

label   = "Ca SO4 PMS.png" } #SA Nov 23 
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if(k==6){ start1 = 1983 

label2  =  "B" 

label  = "Ca SO4 MPB.png"}  #SA Nov 23   

  

  ###### Figure 4.4 ###### 

  

png(file= label, units="in", width=11, height=4, res=300) 

plot(Ca.i,ylim = c(0, max(SO4.i+2)), type="l", ylab = NA, xaxt = "n", 

xlab = "Date",  col = "red",pch = 19,cex = .5,)   #plots the first 

values 

   axis(1, at = seq(0,length(Ca.i),52), labels = seq(start1,2011, 1))  

   points(SO4.i, type= "l",col = "blue",cex = .5, pch = 19)    

   legend("topright",legend=c(label2), bty="n" ) 

   if(k==4){ legend("topleft", bty="n", legend=c("Calcium ( mg / L )", 

"Sulfate ( mg / L )"), pch=c(19,19),col=c("red","blue") )  } 

dev.off() 

 

  if(k==4){ label   = "Cl MR.png"  } 

  if(k==5){ label   = "Cl PMS.png" } 

  if(k==6){ label  = "Cl MPB.png"  } 

png(file= label, units="in", width=11, height=4, res=300) 

Week.model = Week.i-min(Week.i) 

model.Cl = gls(Cl.i~Week.model, corr = corAR1())  

plot(Cl.i, type = "l", col = "blue",  ylim = c(min(Cl.i), max(Cl.i)), 

xaxt = "n", ylab = NA , xlab = "Date") 

axis(1, at = seq(0,length(Cl.i),52), labels = seq(start1,2011, 1)) 

legend("topright",legend=c(label2), bty="n" )   

if(k==4){ legend("topleft", bty="n", legend=c("Chloride ( mg / L )" )  

) } 

 

abline(model.Cl) 

#to see coefficients 
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model.Cl$coef 

 

  dev.off() 

 

 

#for mann kendal 

data_1$Month2 = (data_1$Year-1980)*12 + data_1$Month 

Ca_month = c() 

Anc_month = c() 

SO4_month = c() 

Cl_month = c() 

month = c() 

for(i in 1:min(data_1$Month2)){ 

 Ca_month[i] = NA 

 Anc_month[i] = NA 

 SO4_month[i] = NA 

 Cl_month[i] = NA 

 month[i] = NA   #jm edit dec 6 

 } 

for(i in min(data_1$Month2):max(data_1$Month2)){ 

 Rnew = data_1[data_1$Month2 == i,] 

 Ca_month[i] = mean(Rnew[,2]) 

 Anc_month[i] = mean(Rnew[,1]) 

 SO4_month[i] = mean(Rnew[,6]) 

 Cl_month[i] = mean(Rnew[,8]) 

 } 

CaMonth.i =interpNA(Ca_month[min(data_1$Month2):length(Ca_month)]) 

AncMonth.i =interpNA(Anc_month[min(data_1$Month2):length(Anc_month)]) 

SO4Month.i =interpNA(SO4_month[min(data_1$Month2):length(SO4_month)]) 

ClMonth.i =interpNA(Cl_month[min(data_1$Month2):length(Cl_month)]) 
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if (k ==4){ 

 ts_Ca = ts(CaMonth.i, start = c(1980, 2), end = c(2011,7), freq = 

12) 

 ts_Anc = ts(AncMonth.i, start = c(1980, 2), end = c(2011,7), freq 

= 12) 

 ts_SO4 = ts(SO4Month.i, start = c(1980, 2), end = c(2011,7), freq 

= 12) 

 ts_Cl = ts(ClMonth.i, start = c(1980, 2), end = c(2011,7), freq = 

12) 

  

 } 

if (k ==5){ 

 ts_Ca = ts(CaMonth.i, start = c(1990, 12), end = c(2011,7), freq 

= 12) 

 ts_Anc = ts(AncMonth.i, start = c(1990, 12), end = c(2011,7), 

freq = 12) 

 ts_SO4 = ts(SO4Month.i, start = c(1990, 12), end = c(2011,7), 

freq = 12) 

 ts_Cl = ts(ClMonth.i, start = c(1990, 12), end = c(2011,7), freq 

= 12) 

 } 

if (k==6){ 

 ts_Ca = ts(CaMonth.i, start = c(1983, 5), end = c(2011,7), freq = 

12) 

  ts_Anc = ts(AncMonth.i, start = c(1983, 5), end = c(2011,7), freq = 

12)   

  ts_SO4 = ts(SO4Month.i, start = c(1983, 5), end = c(2011,7), freq = 

12) 

  ts_Cl = ts(ClMonth.i, start = c(1983, 5), end = c(2011,7), freq = 

12) 

  }  

print(SeasonalMannKendall(ts_Ca)) 

print(SeasonalMannKendall(ts_Anc)) 
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print(SeasonalMannKendall(ts_SO4)) 

print(SeasonalMannKendall(ts_Cl)) 

 

  #Creating scatter plots and Alt/Ca plots 

 

for(k in 1:3){ 

# for alum/ca/ANC plots 

names_1 = c("ANC_Alt_mersey.csv", "ANC_Al_Pinemarten.csv", 

"ANC_Al_Moosepit.csv") 

names_2 = c("ANC_Alt_Mersey", "ANC_Al_Pinemarten", "ANC_Al_Moosepit") 

 

#This is for ANC_Alt_mersey 

data_1= read.csv(names_1[k]) 

#create the julian date 

julian(data_1$Month,data_1$Date,data_1$Year) 

data_1$Jul = julian(data_1$Month,data_1$Date,data_1$Year)-3708 

#Creates a week column based off Julien Date 

data_1$Week = ceiling(data_1$Jul/7) 

#loops through each row of the csv table 

#calculate the weekly average 

Alt = c() 

Al = c() 

week = c() 

Ca = c() 

ANC = c() 

SO4 = c() 

DOC = c() 

CL = c() 

CB = c() 

CaAlt = c() 
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for(i in 1:min(data_1$Week)){ 

 Alt[i] = NA 

 Al[i] = NA 

 Ca = c() 

 ANC = c() 

 SO4 = c() 

  DOC = c() 

  CB= c() 

  CL =c() 

 #add extra variables here 

 week[i] = NA 

 CaAlt[i] = NA} 

 

for(i in min(data_1$Week):max(data_1$Week)){ 

 Rnew = data_1[data_1$Week ==i,] 

  

 Alt[i] = mean(Rnew$Alt) 

 Al[i] = mean(Rnew$Al) 

 Ca[i]  = mean(Rnew$Ca) 

  CB[i] = mean(Rnew$CB) 

 ANC[i] = mean(Rnew$ANC) 

 SO4[i] = mean(Rnew$SO4) 

  DOC[i] = mean(Rnew$DOC) 

  CL[i] = mean(Rnew$CL)  

  CaAlt[i] = mean(Rnew$CaAlt) 

   

 if(dim(Rnew)[1] <1){ 

  week[i] = NA} 

 else{ 

  week[i]= Rnew$Week 
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 } } 

new_Date = data.frame(Alt = Alt, Al = Al, Ca = Ca, ANC = ANC, week = 

week, SO4 = SO4, DOC = DOC, CaAlt = CaAlt, CB = CB, CL = CL) 

   if(k==1){ label   = "Scatter plots MR.png"  } 

   if(k==2){ label   = "Scatter plots PMS.png" } 

   if(k==3){ label  = "Scatter plots MPB.png"  } 

   if (k==1){ label2   = "A"  } 

   if(k==2){ label2   = "C" } 

   if(k==3){ label2  =  "B"} 

 

png(file= label, units="in", width=5, height=5, res=250)          

 

  plot(DOC, Alt , xlab = "DOC(mg/L)", ylab = "Aluminium (ug/L)",  col 

= "red",pch = 19,cex = .5, main = paste("Aluminium vs DOC 

at",river[k]))   #add DOC to the cvs file 

  fit <-lm(Alt~DOC) 

  abline(fit) 

  legend("topright", bty="n", label2)  

  legend ("topleft", bty="n", legend=paste("R^2 is", 

format(summary(fit)$adj.r.squared, digits=4))) 

 

 plot(Alt,Ca , ylab = "Calcium(mg/L)", xlab = "Aluminium (ug/L)",  

col = "red",pch = 19,cex = .5,main = paste("Aluminium vs Ca 

at",river[k]))   #plots the first values  

 fit <-lm(Ca~Alt) 

  abline(fit) 

  legend("topright", bty="n", legend=paste("R2 is", 

format(summary(fit)$adj.r.squared, digits=4))) 

 

 plot(Alt,ANC ,ylab = "ANC", xlab = "Aluminium (ug/L)",  col = 

"red",pch = 19,cex = .5, main = paste("Aluminium vs ANC at",river[k]))   

#plots the first values  

  fit <-lm(ANC~Alt) 
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  abline(fit) 

  legend("topright", bty="n", legend=paste("R2 is", 

format(summary(fit)$adj.r.squared, digits=4)))  

    

 plot(Ca,ANC ,ylab = "ANC", xlab = "Calcium (mg/L)",  col = 

"red",pch = 19,cex = .5, main = paste("Calcium vs ANC at",river[k]))   

#plots the first values     # adds the x axis labels to the plot using 

the dates 

 fit <-lm(ANC~Ca) 

  abline(fit) 

  legend("topright", bty="n", legend=paste("R2 is", 

format(summary(fit)$adj.r.squared, digits=4))) 

   

  plot(SO4,ANC ,ylab = "ANC", xlab = "Sulfate (mg/L)",  col = 

"red",pch = 19,cex = .5, main = paste("Sulfate vs ANC at",river[k]))  

  fit <-lm(ANC~SO4) 

  abline(fit) 

  legend("topright", bty="n", legend=paste("R2 is", 

format(summary(fit)$adj.r.squared, digits=4))) 

  

dev.off() 

} # ends the loop 

 

#Caculates Al/Ca, Ca/Al, Al/ANC 

for(k in 1:3){ 

# for alum/ca/ANC plots 

names_1 = c("ANC_Alt_mersey.csv", "ANC_Al_Pinemarten.csv", 

"ANC_Al_Moosepit.csv")        

names_2 = c("ANC_Alt_Mersey", "ANC_Al_Pinemarten", "ANC_Al_Moosepit") 

 

#This is for ANC_Alt_mersey 

data_1= read.csv(names_1[k]) 

#create the julien date 
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#julian(data_1$Month,data_1$Date,data_1$Year) 

data_1$Jul = julian(data_1$Month,data_1$Date,data_1$Year)-3708 

#Creates a week column based off Julien Date 

data_1$Week = ceiling(data_1$Jul/7) 

#loops through each row of the csv table 

#calculate the weekly average 

CaAlt = c() 

AlDoc = c() 

AlAnc = c() 

AltCa = c() 

week = c() 

 

for(i in 1:min(data_1$Week)){ 

  CaAlt[i] = NA 

  AlDoc[i] = NA 

  AlAnc[i] =  NA 

  AltCa[i] = NA  

  week[i] = NA} 

 

for(i in min(data_1$Week):max(data_1$Week)){ 

 Rnew = data_1[data_1$Week ==i,] 

 CaAlt[i] = mean(Rnew[,16]) 

 AlDoc[i] = mean(Rnew[,17]) 

 AlAnc[i] = mean(Rnew[,18]) 

 AltCa[i] = mean(Rnew[,20]) 

 

 if(dim(Rnew)[1] <1){ 

  week[i] = NA} 

 else{ 

  week[i]= Rnew$Week 
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 } } 

  

new_Date = data.frame(CaAlt = CaAlt, AlDoc = AlDoc, AlAnc = AlAnc, 

week = week) 

 

CaAlt.i =interpNA(CaAlt[min(data_1$Week):length(CaAlt)]) 

AlDoc.i =interpNA(AlDoc[min(data_1$Week):length(AlDoc)]) 

AlAnc.i =interpNA(AlAnc[min(data_1$Week):length(AlAnc)]) 

AltCa.i =interpNA(AltCa[min(data_1$Week):length(AltCa)]) 

Week.i = interpNA(week[min(data_1$Week):length(CaAlt)]) 

 

week.new = Week.i-min(Week.i)  

 

CaAlt_plot = c(CaAlt[1:min(data_1$Week)-1], CaAlt.i) 

AlDoc_plot = c(AlDoc[1:min(data_1$Week)-1], AlDoc.i) 

AlAnc_plot = c(AlAnc[1:min(data_1$Week)-1], AlAnc.i) 

AltCa_plot = c(AltCa[1:min(data_1$Week)-1], AltCa.i) 

 

model.CaAlt = gls(CaAlt.i~week.new, corr = corAR1())  

model.AlDoc = gls(AlDoc.i~week.new, corr = corAR1())  

model.AlAnc = gls(AlAnc.i~week.new, corr = corAR1())  

model.AltCa = gls(AltCa.i~week.new, corr = corAR1()) 

 

  if(k==1){start1 = 1980  } 

  if(k==2){start1 = 1991  } #SA Nov 23 

  if(k==3){ start1 = 1983}  #SA Nov 23   

  if(k==1){ label2   = "A"  } 

  if(k==2){ label2   = "C" } 

  if(k==3){ label2  =  "B"} 

 

  ###### Figure 4.5 ###### 
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  if(k==1){ label   = "Alt-Ca MR.png"  } 

  if(k==2){ label   = "Alt-Ca PMS.png" } 

  if(k==3){ label  = "Alt-Ca MPB.png"  } 

 

 png(file= label, units="in", width=11, height=4, res=300) 

plot(AltCa, , xaxt = "n", ylim = c(min(AltCa.i), max(AltCa.i)) , col = 

"black",pch = 19,cex = .5, ylab= NA,  xlab = "Date") 

    axis(1, at = seq(1,1638,52.1), labels = seq(1980,2011, 1)) 

    abline(model.AltCa) 

    legend("topright", bty="n", legend=paste( label2) ) 

    if(k==1){legend("topleft",bty="n", legend=paste("Total Aluminum ( 

mg / L ) / Calcium ( mg / L )"))}        

 dev.off() 

     if(k==1){ label   = "Ca - Alt MR.png"  } 

     if(k==2){ label   = "Ca - Alt PMS.png" } 

     if(k==3){ label  = "Ca - Alt  MPB.png"  } 

             

     png(file= label, units="in", width=11, height=4, res=300)  

      

  plot(CaAlt, ylim = c(0, 50),xaxt = "n", col = "black",pch = 19,cex = 

.5, ylab= NA,  xlab = "Date") 

    axis(1, at = seq(1,1638,52.1), labels = seq(1980,2011, 1)) 

     legend("topright", bty="n", legend=paste( label2) ) 

      if(k==1){legend("topleft",bty="n", legend=paste("Calcium ( mg / 

L ) / Total Aluminum ( mg / L )"))}    

      abline(model.CaAlt) 

       

      dev.off() 

 

 

plot(AlDoc, xaxt = "n", col = "black",pch = 19,cex = .5, ylab= "Total 

Aluminum / DOC",  xlab = "Date", main = paste("Total Aluminum / DOC vs 

Time at ",river[k])) 
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    axis(1, at = seq(1,1638,52.1), labels = seq(1980,2011, 1)) 

    abline(model.AlDoc) 

    legend("topleft", bty="n",  legend=paste("Weekly Change: 

",model.AlDoc$coef[2]))  

     

    plot(AlAnc, xaxt = "n", col = "black",pch = 19,cex = .5, ylab= 

"Total Aluminum / ANC",  xlab = "Date", main = paste("Total Aluminum / 

ANC vs Time at ",river[k])) 

    axis(1, at = seq(1,1638,52.1), labels = seq(1980,2011, 1)) 

    abline(model.AlAnc) 

    legend("topleft", bty="n",  legend=paste("Weekly Change: 

",model.AlAnc$coef[2]))   

     

  ##Monthly Data calulated 

  

data_1$Month2 = (data_1$Year-1980)*12 + data_1$Month 

 

#calculate the monthly average 

 

CaAlt_month = c() 

AlDoc_month = c() 

AlAnc_month = c() 

AltCa_month = c() 

month = c() 

for(i in 1:min(data_1$Month2)){ 

 CaAlt_month[i] = NA 

 AlDoc_month[i] = NA 

  AlAnc_month[i] = NA 

  AltCa_month[i] = NA 

 month[i] = NA   #jm edit dec 6 

 } 

for(i in min(data_1$Month2):max(data_1$Month2)){ 
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 Rnew = data_1[data_1$Month2 == i,] 

 CaAlt_month[i] = mean(Rnew[,16]) 

 AlDoc_month[i] = mean(Rnew[,17]) 

 AlAnc_month[i] = mean(Rnew[,18]) 

 AltCa_month[i] = mean(Rnew[,20]) 

  

 } 

CaAltMonth.i 

=interpNA(CaAlt_month[min(data_1$Month):length(CaAlt_month)]) 

AlDocMonth.i 

=interpNA(AlDoc_month[min(data_1$Month):length(AlDoc_month)]) 

AlAncMonth.i 

=interpNA(AlAnc_month[min(data_1$Month):length(AlAnc_month)]) 

AltCaMonth.i 

=interpNA(AltCa_month[min(data_1$Month):length(AltCa_month)]) 

if (k ==1){ 

 ts_CaAlt = ts(CaAltMonth.i, start = c(1980, 2), end = c(2011,7), 

freq = 12) 

 ts_AlDoc = ts(AlDocMonth.i, start = c(1980, 2), end = c(2011,7), 

freq = 12) 

 ts_AlAnc = ts(AlAncMonth.i, start = c(1980, 2), end = c(2011,7), 

freq = 12) 

 ts_AltCa = ts(AltCaMonth.i, start = c(1980, 2), end = c(2011,7), 

freq = 12) 

  

 } 

if (k ==2){ 

 ts_CaAlt = ts(CaAltMonth.i, start = c(1989, 12), end = c(2011,7), 

freq = 12) 

 ts_AlDoc = ts(AlDocMonth.i, start = c(1989, 2), end = c(2011,7), 

freq = 12) 

 ts_AlAnc = ts(AlAncMonth.i, start = c(1989, 2), end = c(2011,7), 

freq = 12) 

 ts_AltCa = ts(AltCaMonth.i, start = c(1989, 12), end = c(2011,7), 

freq = 12) 
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 } 

if (k==3){ 

 ts_CaAlt = ts(CaAltMonth.i, start = c(1983, 5), end = c(2011,7), 

freq = 12) 

  ts_AlDoc = ts(AlDocMonth.i, start = c(1983, 2), end = c(2011,7), 

freq = 12) 

 ts_AlAnc = ts(AlAncMonth.i, start = c(1983, 2), end = c(2011,7), 

freq = 12) 

 ts_AltCa = ts(AltCaMonth.i, start = c(1983, 5), end = c(2011,7), 

freq = 12) 

  }  

print(SeasonalMannKendall(ts_CaAlt)) 

print(SeasonalMannKendall(ts_AlDoc)) 

print(SeasonalMannKendall(ts_AlAnc)) 

print(SeasonalMannKendall(ts_AltCa)) 

} 
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B. BIC R Statistical Package Code 

 

Used to determine the best predictors for the estimation of Ali 

 

#Creates a lm to calculate ionic aluminium 

 

setwd("S:\\HSRG\\122 - Aluminum Survey EC Data\\Jeff\\R") 

data = read.csv("RawData.csv") 

data = data[,-c(67:dim(data)[2])] 

data = data[-c(93:dim(data)[1]),] 

plots = data[,c(9:dim(data)[2])] 

 

##possible variables: 

 

for(i in 1:dim(plots)[2]){ 

 plots[,i] = as.numeric(as.character(plots[,i])) 

} 

 

# completed so iron is NOT included 

 selected = data.frame(CA = (plots$CA-mean(plots$CA))/sd(plots$CA) 

, CL =  (plots$CL-mean(plots$CL))/sd(plots$CL), TOC = (plots$TOC-

mean(plots$TOC))/sd(plots$TOC),  

 PH = (plots$PH-mean(plots$PH))/sd(plots$PH), SO4 =  (plots$SO4-

mean(plots$SO4))/sd(plots$SO4), AL =  (plots$AL_T-

mean(plots$AL_T))/sd(plots$AL_T),IA =  log(plots$AL_F)) 

 

 

#this extracts the variables tom and dennis used 

plots$TOC = as.numeric(as.character(plots$TOC)) 

plots$AL_C = as.numeric(as.character(plots$AL_C)) 

plots$AL_T = as.numeric(as.character(plots$AL_T)) 

plots$PH = as.numeric(as.character(plots$PH)) 
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#this creates the model tom use, the model with standardised variables 

and the model with the log 

pdf("Model.pdf") 

#raw data 

model1 = lm(AL_F ~ AL_T + TOC + PH, data = plots) 

summary(model1) 

plot(model1) 

#very bad residuals 

 

ALT_cen = (plots$AL_T - mean(plots$AL_T)) / sd(plots$AL_T) 

TOC_cen = (plots$TOC - mean(plots$TOC)) / sd(plots$TOC) 

PH_cen = (plots$PH - mean(plots$PH)) / sd(plots$PH) 

 

#centered data 

model2 = lm(plots$AL_F ~ ALT_cen + TOC_cen + PH_cen) 

summary(model2) 

plot(model2) 

 

#natural log of AL 

model3 = lm(log(plots$AL_F) ~ ALT_cen + TOC_cen + PH_cen) 

summary(model3) 

plot(model3) 

dev.off() 

 

#plots each of the variables against the line 

#individual plots 

pdf("Veriables.pdf") 

plot(ALT_cen, log(plots$AL_F), pch = 19) 

abline(model3$coef[1], model3$coef[2]) 
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plot(TOC_cen, log(plots$AL_F), pch = 19) 

abline(model3$coef[1], model3$coef[3]) 

 

plot(PH_cen, log(plots$AL_F), pch = 19) 

abline(model3$coef[1], model3$coef[4]) 

dev.off() 

 

#Ionic = exp(2.9464116  + 1.1077030((ALT- 178.2412)/114.7843) -

0.3586587((TOC-9.726087)/ 5.100611) +   0.4271494((PH- 6.770978)/ 

0.9478038) 

 

#try out the possible combinations 

head(selected) 

########################################### 

########################################### 

#This is the code to find the BEST model possible 

########################################### 

########################################### 

  

 library(nlme) 

 #make sure the selected dataframe is run before - or there are erro 

with teh words 

 rem = 

matrix(c(selected$CA,selected$CL,selected$TOC,selected$PH,selected$SO4

,selected$AL), ncol =6) 

 colnames(rem) = c("CA","CL","TOC", "PH", "SO4","AL") 

 IA = selected$IA 

 model = lm(IA~rem) 

 BICval =  BIC(model) 

 

  for (i in 1:floor(ncol(rem)/2)){ 

      select = NULL 
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      select = combn(ncol(rem), i) 

      iter = length(select)/i 

       

      if (i == 1){ 

        for (k in 1:iter){ 

          rem1 = rem[,-select[1,k]] 

          rem2 = matrix(rem[,select[1,k]  ], ncol =1) 

          colnames(rem2) = c(colnames(rem)[select[1,k]]) 

           

          model1 = lm(IA~rem1 ) 

          model2 = lm(IA~rem2 ) 

          if (BIC(model1) < BICval){ 

            BICval = BIC(model1) 

            model = model1  

            remhold = rem1 

            code = colnames(rem1) 

             

            } 

          if (BIC(model2) < BICval){ 

            BICval = BIC(model2) 

            model = model2 

            remhold = rem2 

            code = colnames(rem2)         

          } 

      }} 

     

    if (i == 2){ 

      for (k in 1:iter){ 

        rem1 = rem[,-select[2,k]] 

        rem1 = rem1[,-select[1,k]] 
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        rem2 = matrix(c(rem[,select[1,k]], rem[,select[2,k]]), ncol = 

2) 

        colnames(rem2) = c(colnames(rem)[select[1,k]], 

colnames(rem)[select[2,k]] ) 

        model1 = lm(IA~rem1) 

        model2 = lm(IA~rem2) 

        if (BIC(model1) < BICval){ 

          BICval = BIC(model1) 

          model = model1 

          remhold = rem1 

          code = "no" } 

        if (BIC(model2) < BICval){ 

          BICval = BIC(model2) 

          model = model2 

          remhold = rem2 

          code = "no"} 

        }} 

     

    if (i == 3){ 

      for (k in 1:iter){ 

        rem1 = rem[,-select[3,k]] 

        rem1 = rem1[,-select[2,k]] 

        rem1 = rem1[,-select[1,k]] 

        rem2 = matrix(c(rem[,select[1,k]], 

rem[,select[2,k]],rem[,select[3,k]]), ncol = 3) 

        colnames(rem2) = c(colnames(rem)[select[1,k]], 

colnames(rem)[select[2,k]],colnames(rem)[select[3,k]]) 

        model1 = lm(IA~rem1) 

        model2 = lm(IA~rem2) 

        #if (k == 30){print(BIC(model1))} 

        if (BIC(model1) < BICval){ 

          BICval = BIC(model1) 
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          model = model1 

          remhold = rem1  

          code = "no"} 

        if (BIC(model2) < BICval){ 

          BICval = BIC(model2) 

          model = model2 

          remhold = rem2 

          code = "no"} 

        }} 

     

    if (i == 4){ 

      for (k in 1:iter){ 

        rem1 = rem[,-select[4,k]] 

        rem1 = rem1[,-select[3,k]] 

        rem1 = rem1[,-select[2,k]] 

        rem1 = rem1[,-select[1,k]] 

        rem2 = matrix(c(rem[,select[1,k]], 

rem[,select[2,k]],rem[,select[3,k]],rem[,select[4,k]]), ncol = 4) 

        colnames(rem2) = c(colnames(rem)[select[1,k]], 

colnames(rem)[select[2,k]],colnames(rem)[select[3,k]],colnames(rem)[se

lect[4,k]]) 

        model1 = lm(IA~rem1) 

        model2 = lm(IA~rem2) 

        if (BIC(model1) < BICval){ 

          BICval = BIC(model1) 

          model = model1 

          remhold = rem1 

          code = "no" } 

        if (BIC(model2) < BICval){ 

          BICval = BIC(model2) 

          model = model2 
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          remhold = rem2 

          code = "no"} 

        }} 

     

    if (i == 5){ 

      for (k in 1:iter){ 

        rem1 = rem[,-select[5,k]] 

        rem1 = rem1[,-select[4,k]] 

        rem1 = rem1[,-select[3,k]] 

        rem1 = rem1[,-select[2,k]] 

        rem1 = rem1[,-select[1,k]] 

         

        rem2 = matrix(c(rem[,select[1,k]], 

rem[,select[2,k]],rem[,select[3,k]],rem[,select[4,k]],rem[,select[5,k]

]), ncol = 5) 

        colnames(rem2) = c(colnames(rem)[select[1,k]], 

colnames(rem)[select[2,k]],colnames(rem)[select[3,k]],colnames(rem)[se

lect[4,k]],colnames(rem)[select[5,k]]) 

        model1 = lm(IA~rem1) 

        model2 = lm(IA~rem2) 

      if (BIC(model1) < BICval){ 

        BICval = BIC(model1) 

        model = model1 

        remhold = rem1 

        code = "no" } 

      if (BIC(model2) < BICval){ 

        BICval = BIC(model2) 

        model = model2 

        remhold = rem2 

        code = "no"} 

      }}} 
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#the best MODEL selected above is called MODEL 

summary(model) 

 

pdf("Veriables_35.pdf") 

plot(selected$TOC, selected$IA, pch = 19) 

abline(model$coef[1], model$coef[3]) 

 

plot(selected$AL, selected$IA, pch = 19) 

abline(model$coef[1], model$coef[6]) 

 

plot(selected$CA,selected$IA, pch = 19) 

abline(model$coef[1], model$coef[2]) 

 

plot(selected$SO4, selected$IA, pch = 19) 

abline(model$coef[1], model$coef[5]) 

 

plot(selected$FE_T, selected$IA, pch = 19) 

abline(model$coef[1], model$coef[4]) 

dev.off() 
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C. Original Alt Time Series Data with Outliers Included 
 

Raw Alt values without interpolation or outlier removal. A) MR B) MPB C) PMB.  

 




