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ABSTRACT 
This thesis focuses on assessing relationships among ecological indicators, including 

identifying pressures that best explain changes in the fish community of two Northwest 

Atlantic ecosystems. The Grand Bank experienced complex ecological changes over 

three decades, including a rapid collapse and partial recovery of fish biomass, and I 

synthesized fish community, environmental, and human indicators that reflect these 

changes. I first used this suite to demonstrate that relationships among fish functional 

groups changed after the collapse, identify a representative subset of pressure indicators, 

show the response to pressures varies over different time scales, and illustrate that a 

common conceptual framework can be misleading. Next, I compared multivariate linear 

regression (MLR) and non-linear neural networks (NN) for modelling the biomasses of 

six fish functional groups using fishing and environmental pressures, identified the most 

influential pressures, and assessed the effect of different delay types and lengths. In 

contrast to MLR, the delays had negligible impact on NN fit, which illustrates the 

powerful ability of NN to extract patterns from data. However, MLR generally had better 

fit than simple 1-hidden node NN ensembles. Both approaches showed that top-down and 

bottom-up pressures are influential, and that the most influential pressures changed after 

the collapse. A preliminary assessment of NN predictive power showed that future efforts 

should continue investigating NN forecast ability. Another case study applying these 

approaches to the Georges Bank fish community supported these main conclusions. 

Different pressures were influential for each region, highlighting the need for ecosystem-

specific indicator sets. My thesis contributes to knowledge of past and present dynamics 

of these ecosystems and can potentially inform ecosystem based fisheries management 

approaches. I recommend MLR models over NN for this application because they are 

easier to construct and interpret, although NN may be able to provide complementary 

information through forecasts. Finally, I discuss implications of my findings and suggest 

future work to build on this research. 
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CHAPTER 1: INTRODUCTION 
 

1.1 Motivation 
Many of the world’s commercial fish stocks are overexploited (FAO, 2012), and there is 

a growing understanding that conventional fisheries management is ill-equipped to 

balance trade-offs between sustainable fishing and socio-economic priorities (Pauly et al. 

2002, Pikitch et al. 2004, Jennings 2005, Link 2010, Fogarty 2014). Traditional 

management aims to maximize the yield of individual stocks without evaluating 

feedbacks among different fisheries, which can result in conflicting management plans 

and excess fisheries removals (Pikitch et al. 2004, Fogarty 2014). There are global calls 

to supplement single species management with more holistic approaches such as 

ecosystem based fisheries management (EBFM; e.g., Misund and Skjoldal 2005, DFO 

2007). EBFM explicitly considers interactions among multiple species in the context of 

changing environment, human use, and social well-being, while balancing economic, 

ecologic, and political trade-offs (Larkin 1996, Link 2010, Fogarty 2014). This type of 

management is supported by policy and legislation worldwide (e.g., Canada’s Oceans 

Act; the United States Magnuson-Stevens Reauthorization Act; the European Marine 

Strategy Framework Directive), although implementation has been slow because of 

perceived and real challenges (Link et al. 2011a, Fogarty 2014). This thesis addresses one 

such challenge, which is identifying subsets of indicators that can inform scientists and 

managers of relevant changes in the ecosystem – and potentially forecast them. 

 

Implementation of EBFM requires quantitative information on the marine ecosystem, 

which can be provided in part by indicators. Indicators are measured or derived metrics of 

the ecosystem, and hundreds have been proposed to describe biological communities, 

environmental conditions, and human activities and well-being (Cury and Christensen 

2005). Biological indicators reflect ecosystem state, which usually refers to the structure 

and function of the fish community, including fish biomass, trophic level, size, and 

diversity based metrics (e.g., Bundy et al., 2012; Coll et al., 2016). Indicators of 

environmental conditions (e.g., temperature, salinity, primary production) and human 

activities (e.g., fishing, oil and gas exploration, shipping) reflect external pressures that 

may cause changes in the fish community (e.g., Large et al., 2015b). Unlike conventional 



 

 
2 

management approaches, EBFM considers humans as part of the ecosystem, and 

indicators have been proposed to monitor the well-being of fishing communities and 

regions (e.g., income, human development index; Link et al. 2010b, Fogarty et al. 2012). 

It is generally understood that multiple indicators from each category are required to 

adequately inform managers on the different dimensions of the ecosystem, and that useful 

indicator sets will be ecosystem specific (Rice 2003, Jennings 2005, Rice and Rochet 

2005, Shin et al. 2010b), although guidelines for selecting indicators are often focused on 

biological indicators that are sensitive to fishing pressure (Perry et al. 2010, Large et al. 

2015b, 2015a, Otto et al. 2018). Criteria for useful indicators have been defined, 

including measurability, sensitivity to change, ecological meaning, and public awareness 

(Cury and Christensen 2005, Jennings 2005, Rice and Rochet 2005). Conceptual 

frameworks that organize indicators into different categories have been suggested as tools 

that can aid indicator selection, identify causal and redundant relationships among 

indicators, and facilitate the presentation of results to stakeholders (EEA, 1999; Gari et 

al., 2015). 

 

Indicators have been used mainly for describing past and current ecosystem status and 

trends (Dambacher et al. 2009, Coll et al. 2016). Extensive indicator sets spanning several 

decades exist for some regions, and are updated regularly (e.g., EcoAP, 2009, 2012). 

Such work provides a baseline of ecosystem conditions, which can be used to monitor the 

extent of changes, and hints at future changes if trends continue; however, these sets can 

be difficult for managers to synthesize and turn into actionable objectives (Dambacher et 

al. 2009). Many regions have few, if any, indicators, because of lack of appropriate data 

over useful time scales, and/or perhaps a lack of political or scientific impetus to 

synthesize and publish them. Indicators have also been recently applied to compare the 

status of exploited marine ecosystems, and to investigate the responses of individual 

biological indicators to human and environmental pressures (e.g., Bundy et al. 2012, 

Large et al. 2015b, 2015a, Coll et al. 2016). These and other efforts to apply indicators 

and contribute to scientific knowledge required for implementing EBFM can be 

complemented by an improved understanding of multivariate pressure-response 

relationships, including the ability to model changes in the fish community, and 
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knowledge of which pressures causing these changes are the most influential (Crain et al. 

2008, Dambacher et al. 2009, Link et al. 2010b, Perry et al. 2010, Large et al. 2015a). 

 

Identifying the most influential pressure indicators is inherently challenging as a result of 

the multivariate, non-linear, and dynamic nature of marine ecosystems, and the varied 

types and ways to measure pressures. Multiple pressures interact and can impact multiple 

ecosystem components with non-additive results, and fishing, the environment, and other 

pressures (e.g., predator-prey interactions) can result in non-linear and indirect responses 

(Daan et al. 2005, Crain et al. 2008, Large et al. 2013, Hunsicker et al. 2016). However, 

many studies focus on single pressure-response relationships, and often the methods used 

to study them inherently assume linear relationships (e.g., Blanchard et al. 2005, Fu et al. 

2012, Probst et al. 2012, Dempsey et al. 2018). Additionally, the relative importance of 

pressures may vary over time because of changes in management strategies, the balance 

of environmental conditions, and biological interactions (Mann and Drinkwater 1994). 

Another difficulty in teasing out important relationships is that pressures can have both 

immediate and delayed impacts on the community. For example, fishing has the 

immediate effect of increased mortality (Beverton and Holt 1957), while changes in size-

based indicators have been associated with fishing pressure lagged up to 20 years (Daan 

et al., 2005; Greenstreet et al., 2011). Finally, there are numerous pressures on marine 

fish communities, and they can be represented by different metrics. For instance, fishing 

indicators include metrics of landings (e.g., total or species aggregates), effort (e.g., hours 

fished), and fishing mortality (e.g., landings/community biomass). Environmental 

indicators include basin-scale metrics such as the North Atlantic Oscillation (NAO) and 

regional conditions such as annual mean temperatures (e.g., surface and bottom) and 

primary production.  

 

This thesis focuses on methods for synthesizing ecological data, with the overall goal of 

identifying pressures that best explain observed changes in the fish community and 

providing insight into the dynamics of two important ecosystems in the Northwest 

Atlantic. Steps taken toward this goal were (i) synthesizing a new set of indicators for an 

ecologically and economically important ecosystem, (ii) demonstrating novel quantitative 

methods for selecting pressure indicators that best explain observed changes, (iii) 
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investigating how to best incorporate delayed effects of human and environmental 

pressures, and (iv) illustrating preliminary forecasts of changes in the fish community on 

management-relevant timescales. These objectives were met using different statistical 

models, including simple correlations, a linear modelling approach (multivariate linear 

regression), and a non-linear modelling approach (neural networks). The Grand Bank 

(Canadian and international waters) was used as the primary case study, and a secondary 

case study of Georges Bank (United States and Canada) was included to test the 

generality of the methods and conclusions. 

 

The Grand Bank and Georges Bank are both traditionally economically and ecologically 

important, data rich fishing grounds in the Northwest Atlantic Ocean (Fig. 1.1; e.g., 

Fogarty and Murawski, 1998; Schrank, 2005). They have supported commercial fisheries 

for centuries, and were among the most productive fishing grounds in the world until the 

late 20th century, when they each experienced complex ecological changes (Atkinson 

1994, Fogarty et al. 1996). Commercially important groundfish species (e.g., cod) 

collapsed in both regions, resulting in changes in the community structure and related 

fishing practices. These ecosystems are of significant interest to the scientific community, 

and there are current efforts to implement EBFM in both regions (Oceans Act 1996, 

NOAA 2007, Link et al. 2011a, Koen-Alonso et al. 2018). The International Council for 

the Exploration of the Seas (ICES) Working Group on the Northwest Atlantic Regional 

Seas (WGNARS) is working on scientific support for Integrated Ecosystem Assessments 

(IEAs), using the Grand Banks and Georges Bank as case studies (ICES 2017). There is a 

wealth of data sources for the Grand Bank that can be used to calculate indicators for the 

past several decades, although no set was published prior to this work. The US Northeast 

Fisheries Science Center has compiled a suite of biological, fishing, and environmental 

indicators for Georges Bank that span several decades (EcoAP 2009, 2012), which was 

provided for this thesis by Robert Gamble and Sean Lucey (personal communication). 

The high interest in these regions and the available data that captures complex changes 

over several decades make these ecosystems excellent case studies for this thesis. 

Additional background is provided on each region in the relevant chapters and in 

Appendix B. 
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Figure 1.1: The Grand Bank and Georges Bank, the two economically and ecologically 
important ecosystems used as case studies in this thesis. Map shows the 100-m and 200-
m isobaths, and the Canadian and United States (US) exclusive economic zones (EEZs). 

 

1.2 Objectives and Overview of Approach 
This thesis has four main objectives, which are each addressed in a dedicated chapter. 

This section outlines the objectives, and provides a brief overview of the approach used 

to address each one. 

 

1. Synthesize and analyze indicators for the Grand Bank to draw insights about 

ecosystem dynamics and investigate the utility of a common management framework 

(Chapter 2). 

There is an abundance of data related to the biological community, environmental 

conditions, and human activities in the Grand Bank, but to date, this data has not been 

synthesized as ecological indicators. To remedy this, I compiled a suite of indicators from 

various data sources, and investigated how these indicators reflect observed changes in 

the ecosystem. I used simple correlations to determine whether relationships among fish 

functional groups changed over time, and whether a subset of indicators is sufficient to 
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characterize each indicator category. I also examined lagged relationships to identify 

when changes in pressures manifest in the fish community structure. Finally, I organized 

indicators into the DPSIR (driver-pressure-state-impact-response) management 

framework to explore whether that categorization is straightforward and useful for 

interpretation.  

 

2. Evaluate the explanatory power of linear models that use fishing and environmental 

pressures to predict changes in the fish community of the Grand Bank before and after 

the biomass collapse (Chapter 3). 

Ecosystem based fisheries management will benefit from assessment of how various 

pressures affect the fish community, including delayed responses. The objective of this 

chapter was to identify which pressures best explain three decades of change in the fish 

community of the Grand Bank, Northwest Atlantic. I developed assemblages of 

multivariate linear regression (MLR) models using nine fishing and environmental 

pressure indicators as predictors of the fish community structure for before and after the 

collapse, as well as the full data series. Explanatory power of the models was evaluated, 

and the most influential pressures identified. I repeated the analyses with different delay 

types (moving average vs. lag) and lengths (0 to 5 years) imposed on the pressures to 

investigate how considering delays changed the results. 

 

3. Assess the utility of neural networks for explaining observed changes in the Grand 

Bank fish community using fishing and environmental pressures (Chapter 4). 

Disentangling the impacts of multiple pressures on the fish community is challenged by 

the complex nature of marine ecosystems. The objective of this chapter was to address 

this challenge using an artificial neural network (NN), which is a non-linear, multivariate 

statistical model, to identify key pressures on the fish community of the Grand Bank over 

the past three decades. Nine fishing and environmental pressures were used to 

simultaneously model the biomass indices of six fish functional groups before and after 

the collapse of fish biomass in the region, and over the full data series. The analysis was 

repeated with time delays of different types (moving average vs. lags) and lengths (0–10 

years) imposed on the pressures. The fit, predictive power, and most influential pressures 
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were evaluated for each period. I compared the results to the linear model and provided a 

preliminary assessment of the forecast potential of NN. 

 

4. Assess both linear and non-linear approaches for explaining changes in the Georges 

Bank fish community and recommend the most useful approach for future analyses 

(Chapter 5). 

The objectives of this chapter were to (i) compare MLR and NN as methods for 

modelling the Georges Bank fish community and identifying its most influential 

pressures; (ii) use the results to make inferences about the dynamics of this fish 

community; (iii) recommend one method for use in future studies. Nine fishing and 

environmental pressures were used to model the biomass indices of six fish functional 

groups using both MLR and NN. The most influential pressures were identified using 

both methods for the Full time series (1985 – 2012), as well as two periods that roughly 

correspond to important management changes in the region. The analyses were repeated 

with delays of different lengths (0–8 years) and types (moving average vs. lags) imposed 

on the predictors, and results from the two approaches were compared. 

 

1.3 Outline 
This thesis includes 6 chapters, including this Introduction. Chapters 2 to 5 are intended 

as standalone manuscripts, and so there is some repetition in content among the chapters. 

Chapters 2 and 3 have been published (Dempsey et al. 2017, 2018), Chapter 4 is in 

review, and Chapter 5 is in preparation for submission in Summer 2019. My co-authors 

are acknowledged at the beginning of each chapter, and I use the first person singular 

pronoun throughout the thesis.  

 

In Chapter 2 I synthesized a suite of fish community, environmental, and human 

indicators that reflect the known changes on the Grand Bank. I used this suite to examine 

relationships among fish functional groups, to identify potentially redundant human and 

environmental indicators, and to suggest causal relationships between indicators. I then 

assessed the utility of categorizing indicators into the DPSIR framework for scientific 

understanding and provision of management advice. I used a carefully selected subset of 

this indicator suite throughout the investigations in the remaining chapters.  
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In Chapter 3 I used an MLR model to identify subsets of pressure indicators with the 

most direct influence on the Grand Bank fish community to gain insight into past and 

present drivers of change. I determined which sets of pressure indicators best model the 

fish community over the past three decades, and explored whether explanatory power can 

be increased by incorporating different types and lengths of delays into the predictors.  

 

In Chapter 4 I conducted a similar analysis to Chapter 3, but used NN, a flexible, non-

linear model, and compared the results (e.g., explanatory power, most influential 

pressures). I made a preliminary assessment of NN forecast potential for fisheries 

applications, and discussed the advantages and disadvantages of each method in the 

context of EBFM.  

 

In Chapter 5 I repeated the MLR and NN analyses for the Georges Bank ecosystem, and 

recommended one for use in future analyses. 

 

Chapter 6 I synthesized the major findings, pointed out implications of the research, and 

recommended future work. 

 

Appendix A includes the copyright permissions for Chapters 2 and 3; Appendix B 

provides additional background on the regions of interest; Appendices C – E are the 

supplementary material for Chapters 2, 3, and 4, respectively; Appendix F shows 

additional exploratory analyses of the indicators used throughout the thesis. 
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CHAPTER 2: COMPILATION AND DISCUSSION OF DRIVER, 
PRESSURE, AND STATE INDICATORS FOR THE GRAND BANK 
ECOSYSTEM, NORTHWEST ATLANTIC1 
 

2.1 Abstract 
There are global calls for new ecosystem based fisheries management (EBFM) 

approaches. Scientific support for EBFM includes assessing ecosystem indicators of 

biological communities, environmental conditions, and human activities. As part of a 

broader research project I synthesized and published a suite of traditional and new 

indicators for the Grand Bank in the Northwest Atlantic. This is an ideal ecosystem for 

indicator analysis because it experienced dramatic changes over the past three decades, 

including a collapse in fish biomass that had profound socio-economic consequences. I 

exploit the wealth of data for this ecosystem to investigate how individual indicators 

reflect observed changes in the ecosystem, and then illustrate two applications of this 

indicator suite. Correlations were used to show that relationships among the fish 

functional groups changed after the collapse, and that a subset of indicators is sufficient 

to characterize each ecosystem category. Lagged correlations highlighted how changes in 

the drivers and pressures are often not immediately manifest in the fish community 

structure. I also organized indicators into the DPSIR (driver-pressure-state-impact-

response) management framework. This exercise illustrated that indicator categorization 

is contextual and not straightforward, and I advocate for use of simpler categories that 

clearly show what is actionable. Additional future analyses that can be performed with 

my newly published suite of indicators are recommended.  

 

2.2 Introduction 
There are global calls to supplement traditional single species fisheries management with 

ecosystem based approaches that account for interactions among multiple factors and 

commercial and non-target species (e.g., Misund and Skjoldal 2005, DFO 2007). To 

                                                
1Based on Dempsey, D. P., Koen-Alonso, M., Gentleman, W. C., and Pepin, P. (2017). Compilation and 

discussion of driver, pressure, and state indicators for the Grand Bank ecosystem, Northwest Atlantic. Ecol. 
Indic. 75, 331–339. doi:10.1016/j.ecolind.2016.12.011. 
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support this holistic type of management, decision makers need quantitative information 

on the state of the marine ecosystem, which can be provided by data-based indicators that 

describe biological communities, environmental conditions, and human activities 

(Jennings 2005). Criteria for useful indicators have been defined, including measurability, 

sensitivity to change, ecological meaning, and public awareness (Cury and Christensen, 

2005; Rice and Rochet, 2005). Many indicators have been developed that meet these 

criteria, and sets of indicators are typically used to capture ecosystem complexity (e.g., 

Rice 2003, Jennings 2005, Houle et al. 2012). Interpreting these sets can be challenging 

and subjective, requiring rigorous analysis and historical context (Shin et al. 2010b). 

 

I am engaged in a long term project focused on quantitative analysis that can identify 

useful sets of indicators for ecosystem based fisheries management (EBFM). As part of 

that research, I compiled data and calculated a suite of indictors for the Grand Bank, 

Northwest Atlantic (Fig. 2.1). I subsequently invested thought into how to identify first-

order relationships between indicators, and how to categorize them using a management 

framework. I recognize the value of these efforts for others working in this region, as well 

as those using indictors for EBFM elsewhere. I made this preliminary work accessible to 

the broader community, and published the indicator suite in the supplementary material 

of Dempsey et al. (2017; Appendix C of this thesis). 

 

The Grand Bank is one of the major ecosystem units within the Newfoundland Shelves 

bioregion (Pepin et al., 2014, NAFO, 2014), and is ideal for indicator analysis because it 

is a tightly coupled human-ecological system. For centuries it was one of the most 

productive fishing grounds in the world (Rose, 2007), but prolonged heavy fishing 

pressure combined with an environmental regime shift led to complex ecological 

changes, best characterized by the collapse of fish biomass in the early 1990s (Atkinson 

1994, NAFO 2010a, Buren et al. 2014). The collapses of major stocks in the bioregion 

prompted the establishment of fishing moratoria, including several Grand Bank stocks 

(e.g., Atlantic cod in 1994). Many moratoria remain in place today (Rose 2007), although 

there are signs of recovery in some stocks (NAFO 2014). These fisheries closures also 

had socio-economic impacts on Canada's province of Newfoundland and Labrador, 

where local harvesters adapted by targeting different species (e.g., shrimp and other 
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shellfish), retiring from the fishing industry, or leaving the province to find employment 

elsewhere (e.g., Hamilton and Butler, 2001; Schrank, 2005). 

 

The bank extends from inside the Canadian exclusive economic zone (EEZ) into 

international waters. Fisheries management is the responsibility of Fisheries and Oceans 

Canada (DFO) within the EEZ, and the Northwest Atlantic Fisheries Organization 

(NAFO; statistical division 3LNO) in international waters (including straddling stocks). 

Both organizations are currently working towards implementing ecosystem approaches to 

management (Oceans Act 1996, DFO 2007, Koen-Alonso et al. 2018). While there have 

been some studies of indicators in the region, most are only available in the grey 

literature, and have not made their indicators available for other analyses.  

 

I first present my compiled time series of fish community, human, and environmental 

indicators for the Grand Bank over the past three decades, and relate these trends to a 

priori knowledge of the ecosystem. I then discuss useful applications of these indicators, 

including correlation analyses to highlight potential redundant and causal relationships, 

and classification into the common DPSIR (driver-pressure-state-impact-response) 

management framework.  
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Figure 2.1: Map of the Grand Bank, showing NAFO areas 3L, 3N, and 3O, the Canadian 
exclusive economic zone (dashed line), and the location of oceanographic monitoring 
Station 27. 
 

2.3 Methods 
A suite of indicators was carefully chosen to describe the complex ecosystem changes 

that have taken place on the Grand Bank over the past three decades. Choices were 

constrained by data availability, as well as criteria identified by previous work (e.g., Rice 

and Rochet, 2005), and were derived from a variety of sources (Appendix C, Table S.1). 

The fish community indicators are annual mean values from 1985 – 2013, while fishing, 

socio-economic and environmental indicators extend back to 1975 to provide a broader 

context. Below I summarize the indicators used and my rationale for their selection. 

 

2.3.1 Fish Community State Indicators 

Three types of fish community indicators were included: biomass, trophic level, and 

biodiversity (Appendix C, Table S.1). These were derived from DFO annual spring 

bottom trawl surveys, which have been carried out since 1985 for Division 3LNO (Fig. 

2.1), and provide biomass and abundance data for nearly 200 fish species. In 1996, there 

was a change from an Engels to a Campelen trawl, which complicates analyses because 
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the Campelen has improved capture efficiency of shellfish and other smaller species 

(Koen-Alonso et al. 2010b, Belgrano and Fowler 2011). Recently, biomass scale factors 

were developed to make Engels biomasses coarsely comparable to Campelen (Koen-

Alonso, unpublished work). Here I refer to periods “Before” (1985 – 1995) and “After” 

(1996 – 2013) the trawl change, which also roughly corresponds to before and after the 

collapse of fish biomass in the region. Scaling was not possible for invertebrates (e.g., 

Pandalus shrimps and snow crab), because those were not consistently recorded during 

the Before period. See Koen-Alonso et al. (2010) and McCallum and Walsh (1997) for 

further details.  

 

I calculated several community biomass indicators to illustrate the ubiquity of the 

collapse, including total biomass as well as biomasses of benthivores (small, medium, 

and large), piscivores, planktivores, plank-piscivores, and shellfish (NAFO, 2010a; see 

Appendix C, Table S.2 for species in each). These functional groups are commonly used 

in DFO and NAFO analyses of the ecosystem. I also calculated four indicators of 

community trophic structure: mean trophic level (TL), the marine trophic index 

(MTIComm), the proportion of predators (PPred) and the mean length (LComm; Shannon et 

al., 2014). I assigned trophic levels to each species collected using established values 

from DFO, FishBase, and the Sea Around Us databases. I recognize that this approach 

introduces a degree of uncertainty (Caddy and Garibaldi 2000); however, these indicators 

are commonly used so I felt it worthwhile to assess their utility for describing changes on 

the Grand Bank (Shannon et al. 2014). TL is weighted by species biomass, and includes 

all surveyed species in the fish community (Shannon et al. 2014). MTIComm is similar, but 

only considers species with a minimum trophic level of 3.25 to reflect changes in higher 

trophic level species (Pauly and Watson, 2005). PPred is the biomass of all species with 

trophic level greater than 3.7 divided by the total community biomass index (Koen-

Alonso et al. 2010a). LComm is the mean length of the fish community weighted by species 

biomass, which is a size based indicator that has been used as metric of fish community 

trophic structure (Shin et al., 2005). Note that because mean length is derived from 

abundance, for which there are no scale factors to approximate Engels data in Campelen 

units, LComm cannot be examined across the trawl change. I did not consider any richness 

indicators of biodiversity, which are based on the number of species recorded in a survey, 
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and therefore prone to bias because rare and dominant species are weighted equally. 

Instead, I considered two biomass-based diversity indicators that take into account the 

relative proportions of each species: Shannon’s index (H) and Pielou’s index (J), where J 

= H/HMax (Peet 1974), and high values indicate more species diversity. Comparison of 

these indicators across the trawl change should be made with caution because of the 

differences in capture efficiency among species.  

 

2.3.2 Human Use Indicators 

Eight landings-based indicators were derived from NAFO’s online database, 

STATLANT 21A (Appendix C, Table S.1). These include: landings of commercial 

species aggregates (groundfish, pelagics, shellfish, and “others”; Appendix C, Table S.3) 

and their sum (total landings); a fishing index (total landings/total community biomass; 

Koen-Alonso et al., 2010b); and trophic level indicators (Pauly et al. 1998, Pauly and 

Watson 2005). The mean trophic level (TLLand) and marine trophic index (MTILand) are 

the landings version of these same indices calculated using the survey data and described 

above. Ecosystem indicators are now often expanded to include socio-economic metrics 

(Levin et al. 2009, McLeod and Leslie 2009). Following the example of Fogarty et al 

(2012), I included two such metrics (Appendix C, Table S.1): Newfoundland and 

Labrador’s human population size and income (real household disposable income per 

capita, in 2002 dollars). These were downloaded from CANSIM, a Statistics Canada 

database.  

 

2.3.3 Environmental Indicators 

Environmental indicators included metrics that have been related to growth, species 

distribution, recruitment, and natural mortality of the Grand Bank fish community 

(Templeman, 2010). I included two basin-scale indicators for the Northwest Atlantic: the 

winter North Atlantic Oscillation (NAO) and the Atlantic Multidecadal Oscillation 

(AMO). On the Grand Bank positive NAO is related to strong north-westerly winds, 

colder temperatures and more ice coverage (Mann and Drinkwater, 1994; Colbourne and 

Anderson, 2003). The AMO is an index of sea surface temperature variability after 

removing the effect of climate change (Kerr, 2000; Knight, 2005). Positive AMO 

corresponds to warmer temperatures in the North Atlantic, and negative AMO to cooler 
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temperatures (Knight 2005). Following Large et al. (2015), I used the average of the 

NAO principal component for December, January, February, and the unsmoothed, 

detrended AMO, both of which were downloaded from US climate organization websites 

(Appendix C, Table S.1). The local environment was characterized using temperature and 

salinity data recorded at DFO monitoring Station 27, which is near St. John’s, 

Newfoundland and considered representative of hydrographic conditions for the Grand 

Bank (Fig. 2.1). I included temperature and salinity at three depths: surface (0 m), middle 

(75 m), and near-bottom (150 m), as well as a density-based index of stratification. The 

DFO spring bottom trawl survey data was used to calculate an additional index, 

temperature at the depth of fishing, which is often much deeper than 150 m and thereby 

indicates temperature over the whole region at depths where fish live.  

  

Arctic sea ice flows onto the Newfoundland-Labrador shelf in the winter, and retreats 

northward in the spring (Tang 1992). The sea ice melt is linked to the spring 

phytoplankton bloom on the Grand Bank, with earlier ice retreat corresponding to earlier 

and longer blooms (Wu et al. 2007). I used three sea ice indicators: total area of ice below 

55°N (AreaIce), minimum latitude of ice extent (LatIce), and timing of ice melt (TimeIce), 

provided by DFO (Buren et al. 2014). TimeIce is the only proxy of the spring 

phytoplankton bloom, as there are no other suitable measures of phytoplankton or 

primary production for the decades considered here. I also used the environmental 

composite index (ECI), which combines 26 different indices for the Northwest Atlantic 

environment, including several described above, as a metric of the overall physical 

conditions on the Newfoundland Shelf (Colbourne et al., 2014).  

 

2.4 Results 

2.4.1 Fish Community State Indicators 

Together, the biomass indicators captured the changes in the fish community (Fig. 2.2 

and Fig. 2.3; NAFO, 2010). Total biomass decreased rapidly until the mid-1990s, and 

slowly increased since, with clear changes in community structure (Fig. 2.2). Prior to the 

collapse, piscivores represented around 40% of total biomass, but since the mid-1990s, 

they account for only an average of 10%. Even factoring in the limited precision of the 

gear-related scaling of biomass, it is undeniable that piscivores represent a smaller 
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fraction than they did in past decades. This illustrates the “collapse of the cod”, but 

examination of the trends at the fish community scale demonstrates that other functional 

groups also exhibited major declines during this period (Fig. 2.2a).  

 

The trophic level indicators (TL, TL3.25, and PPred) summarize the restructuring of the 

fish community biomass. All three had decreasing overall trends until about 2005, 

illustrating the loss of higher trophic level biomass (Fig. 2.2). TLComm (all species) and 

MTIComm (high trophic level species) have the same trend, suggesting the additional 

biomass of lower trophic level species caught by the Campelen trawl had little influence 

on TLComm. Shannon’s index is a scaled version of Pielou’s index, and thus showed the 

same pattern of increase through the Before period and slow decrease through the After, 

with higher values during the After period (Fig. 2.3). These trends are consistent with this 

ecosystem's historic dominance of few species (e.g., cod), whereas it now has a higher 

frequency of occurrence of other species. Some indicators were derived from abundance 

data, and could not be corrected for the gear change because the coarse scaling factors are 

only available for biomass. Abundance decreased throughout the Before period (1985 – 

1995), but initially increased in the After as a result of the decrease of large piscivores 

and proliferation of smaller shellfish and planktivores (Fig. 2.3a). Length also decreased 

throughout the Before period, a potential direct effect of high fishing pressure (Jennings 

et al., 1999; Rochet and Trenkel, 2003), but had no clear trend during the After period 

(Fig. 2.3b).  
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Figure 2.2: Fish community indicators including (a) total biomass index and biomass 
indices of important functional groups; (b) community trophic level (TLComm) and 
community marine trophic index (MTIComm); (c) percentage of predators in the 
ecosystem. Note differences in scale. The vertical dashed line indicates when the survey 
gear switched to a Campelen trawl (i.e., the beginning of the After period). 
 

 
Figure 2.3: Fish community indicators that could not be corrected for the gear change: (a) 
abundance; (b) mean length of the community; (c) Shannon’s diversity index; (d) 
Pielou’s evenness. The vertical dashed line indicates when the survey gear switched to a 
Campelen trawl (i.e., the beginning of the After period). Indicators were normalized by 
their respective mean and standard deviations within each gear series. 
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Consideration of these fish community trends illustrates how a priori understanding of 

the broader ecological context is critical when interpreting indicators. For example, the 

trophic level indicators (Fig. 2.2) could be misinterpreted as the decline and recovery of 

one high trophic level group, rather than the collapse of several functional groups and 

coincidental increase of others. Similarly, the small but significant decreases in diversity 

metrics throughout the “recovery” period show that post-collapse biomass is becoming 

less evenly distributed among species (Fig. 2.3). Taken out of context, this could be 

interpreted as a return towards the historic low diversity of the Newfoundland Shelf (i.e. 

piscivore dominated). However, this is clearly not the case because piscivores are no 

longer the dominant functional group (Fig. 2.2a). 

 

2.4.2 Human Use Indicators 

After the fishing moratoria were imposed, many Newfoundlanders left to find work in 

other provinces (Rose 2007), and this is clearly reflected by the human population 

indicator (Fig. 2.4d). Income had an overall increasing trend, but the rate of increase 

slowed throughout the late 1980s and was essentially zero from 1991- 1997 (Fig. 2.4d), 

after which oil production began on the Newfoundland and Labrador Shelf 

(Newfoundland & Labrador Statistics Agency, 2015). The landings indicators capture the 

major changes in fishing activity, which included harvesters targeting lower trophic level 

species after the groundfish moratoria (Hamilton and Butler, 2001). Total landings 

peaked in the mid-1980s, then decreased until 1994 (the year when the Grand Bank cod 

moratoria was established), and have since increased to about a quarter of their peak (Fig. 

2.4a). Proportions of commercial groups that make up the total catch also changed over 

time (Fig. 2.4a). Notably, groundfish were about 60% of total landings in 1986, but only 

15% on average since 1995. Conversely, there were limited shellfish landings prior to 

1991, but since 1995 they comprise about 40% of total landings. The fishing index, 

which evaluates landings as a proportion of the community biomass, declined overall 

throughout the time period of interest, with the substantial peaks (1992, 2002) revealing 

years of highest fishing pressure (Fig 2.4c). TLLand was much lower after the collapse 

than before, reflecting the shift from groundfish to shellfish landings as fishers redirected 

their efforts. MTILand remained relatively flat for the entire time series because shellfish 
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are not included in the calculation, so this index does not reflect the decreasing proportion 

of higher trophic level species that are landed.   

 

 
Figure 2.4: Human indicators including (a) total landings and landings of commercially 
important species aggregates; (b) landings trophic level (TLLand) and landings marine 
trophic index (MTILand); (d) fishing index (landings/biomass); and (d) population and 
income for Newfoundland and Labrador. “Anomaly” represents normalized data, i.e. 
differences from the mean of the time series, which are scaled by the standard deviation. 
Note differences in scale. 

 

2.4.3 Environmental Indicators 

Environmental changes characterized as a regime shift occurred in the early 1990s (Buren 

et al. 2014), as reflected in the indicators shown in Fig. 2.5. In the early 1990s, the NAO 

increased to well above its average, which is associated with the cooler and fresher water 

during this time. Since then, the NAO exhibited relatively low variance, except in 2010, 

when it reached an extreme negative value. The ECI anomalies were generally opposite 

to the NAO – well below zero in the mid-1990s and well above it in 2010. The AMO was 

negative from the mid-1970s until the mid-1990s, with an overall increasing trend. All 

four temperature indicators generally increased since reaching minimum values in 1991. 

Salinity did not have distinct trends, although reduced variance for all three depths was 

noticeable after the mid-1990s. The early 1990s had the maximum sea ice area and the 

most southern latitude reached by sea ice in the period of interest (Fig. 2.5e). The past 
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two decades have seen a decrease in the extent of sea ice cover, along with high inter-

annual variability and no trend in the timing of sea ice retreat. The stratification index 

also had high inter-annual variability and no overall trend (Fig. 2.5d). 

 

 
Figure 2.5: Environmental indicators including (a) NAO, AMO, and ECI; (b) temperature 
measured at Station 27 at 0 m (T0), 75 m (T75) and 150 m (T150) and from DFO bottom 
trawl surveys (TFish); (c) salinity measured at Station 27 at 0 m (S0), 75 m (S75), and 150 
m (S150); (d) the stratification index; (e) area of sea ice south of 55◦ N (AreaIce) and 
latitude of southernmost ice edge (LatIce); and (e) timing of the sea ice retreat. “Anomaly” 
represents normalized data, i.e. differences from the mean of the time series, which are 
scaled by the standard deviation. Note differences in scale. 

 

2.5 Discussion 
The indicators can be used for a variety of applications. Here I illustrate a simple 

correlation analysis and a management categorization exercise, and I discuss the lessons 

learned from each. The supporting figures and tables are available in Appendix C. 
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2.5.1 Correlation Analysis 

Correlations were used to assess relationships among fish functional groups, identify 

potentially redundant human and environmental indicators, and to suggest causal 

relationships. Spearman’s rank coefficient (r) was used to evaluate the association among 

indicators instead of the more common Pearson coefficient because I do not expect 

indicators to be linearly related (e.g., Coll et al., 2016). A strong relationship can be 

inferred by a high value of r (here, r ³ 0.6), although the significance of this correlation 

was not assessed because values within individual time series are not independent. 

 

I used such analyses to demonstrate that relationships among the functional groups 

changed among three periods: Before (i.e., during) the collapse (1985 – 1995), After the 

collapse (1996 – 2013), and over the Full time series (Appendix C, Table S.2). For 

example, large and medium benthivores, piscivores, and planktivores were highly 

correlated Before the collapse, with their biomasses decreasing. Recovery has been less 

coherent, with functional groups changing such that 20 years later there does not yet 

appear to be a stable community structure (Fig. 2.2a). Considering only correlations for 

the Full time period would have obscured these changing relationships. It is clear that this 

ecosystem is undergoing change, and this exercise illustrates the importance of selecting 

an ecologically meaningful time frame for indicator analysis. 

 

Strong correlations between pairs of indicators were used to identify potential 

redundancies within human and environmental indicator groups (Appendix C, Tables S.8 

– S.12). Almost half of the correlations between human indicators were high, likely a 

result of the low inter-annual variability of these indicators. To simplify decision-making, 

future analyses could exploit such redundancy by considering only a subset of human 

indicators. For example, the streamlined subset of total landings, pelagic landings, 

shellfish landings, and MTILand would reflect the important changes fisheries removals 

(via total landings) as well changes in fishing practices (via the remaining indicators). 

The correlations also showed that landings trophic level indicators do not always reflect 

the community trophic structure (Appendix C, Table S.10), which is contrary to some 

literature (Pauly and Watson, 2005). I surmise that these findings illustrate the differential 
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pressure fishing exerts on different species, and therefore I do not recommend using 

trophic level of landings to represent the changes in the fish community. 

 

There is clearly redundancy among the environmental indicators (Fig. 2.5, Appendix C, 

Table S.12), so a selected subset of these could be used to simplify future analyses. I 

suggest use of the set: NAO, T0, S0, S150, and TimeIce, as it incorporates indicators that 

are linked to the fish community through different mechanisms and scales. NAO is an 

index of basin-scale atmospheric forcing (e.g., Halliday and Pinhorn, 2009), while T0 

represents the regional thermal environment because temperature, ice, AMO, and ECI 

indicators were all highly correlated. Similarly, S0 and S150 together characterize 

changing salinity and stratification conditions, whereas TimeIce is a proxy for the spring 

phytoplankton bloom (Wu et al. 2007). Another approach to reduce redundancy would be 

to generate summary indicators based on ordination analyses that can serve to identify the 

inter-relationships among variables and separate out the major patterns of variation. 

 

I also examined correlations between each functional group and lagged versions of other 

functional groups as well as fishing and environmental indicators to determine when 

maximal direct effects were manifest (Appendix C, Figs S.1 – S.3). For example, I 

calculated the values of r between shellfish biomass during 1985 – 2013 with 

temperature from 1984 – 2012 (lag 1), 1983 – 2011 (lag 2), etc. through lag 10 and 

identified that lag 2 had the highest correlation. Between functional groups, correlations 

generally increased at non-zero lags, with many cases resulting in strong relationships 

that did not have high r at zero lag. Between small and medium benthivores, r = 0.53 at 

lag 0 and increased to r = 0.84 when small benthivores were lagged 8 years. Similarly, 

the correlation between piscivores and small benthivores increased from r = -0.58 at lag 

0 to r = -0.83 when piscivores were lagged 2 years. These lagged relationships could 

indicate a causal relationship between the functional groups (e.g., reduced predation, 

competitive release), or that both groups elicit response to the same pressure on different 

time scales.  

 

The functional groups generally had more high correlations with lagged fishing indicators 

than lagged environmental indicators. This is likely the result of the different timescales 
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over which these two types of pressures affect the community. By removing individuals, 

fishing reduces the biomass at the time this pressure is exerted. Over longer time scales, 

fishing can also skew the size spectrum (Shin et al. 2005), or impact future recruitment, 

both of which can reduce the biomass. Environmental changes generally take longer to 

percolate through the system because changes in reproductive and growth potential need 

to be manifest as changes in recruitment before they affect biomass. Furthermore, fishing 

is regulated so fishing indicators have less inter-annual variability than many 

environmental indicators. The higher variability of the environmental indicators makes 

correlations less likely to be high. Use of a high pass filter (e.g., moving average) may 

help to smooth the environmental variability that masks the relationship. 

 

2.5.2 Management-related categorization 

Conceptual indicator frameworks can help clarify causal relationships among indicators, 

and thereby facilitate decision-making and communication among stakeholders (EEA, 

1999; Gari et al., 2015). When I attempted to organize the indicators into a framework 

(DPSIR, see below) I discovered that such classification was not straightforward, which 

stimulated debate on the coupled human-environmental ecosystem. I found this debate to 

be useful for honing my conceptual understanding, and therefore I open the discussion to 

the broader community. 

 

DPSIR (driver-pressure-state-impact-response) is a common framework that categorizes 

indicators based on their relationship with the ecosystem state (Fig. 2.6). In the context of 

EBFM, “state” often refers to the fish community, as characterized by biomass, trophic 

level, and length indicators. Pressures are forcing factors that can directly affect the state 

(OECD 2003). The correlation results above suggest that both fishing (e.g., total 

landings) and the local environment (e.g., temperature) are pressures for the Grand Bank. 

Drivers have a remote influence on the state, generally through their action on pressures 

(OECD 2003). Social and political motivations for fishing as well as large-scale 

environmental metrics, such as the NAO and AMO, are considered as drivers for the 

Grand Bank. Impacts are the consequences of changes in the state, for example the 

decrease in Newfoundland’s human population after the collapse of fish biomass, while 

responses are generally designated as policy or management actions. 
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Figure 2.6: (a) Example conceptual model of the DPSIR framework (e.g., Gari et al., 
2015); (b) Revised conceptual model that better reflects fisheries management 
considerations. 

 

Organizing the indicators into the DPSIR categories was not straightforward, as 

illustrated by several examples. One issue relates to the interactions among the 

components of the state. Functional groups are related through predator-prey and 

competitive relationships that are manifest over different time scales, as described above. 

In this sense, some components of the state are “pressures” and "impacts" for other 

components. While DPSIR does not explicitly recognize such state-to-state relationships, 

it could be emphasized by adding a “state to state” arrow (Fig. 2.6b). I also found that it is 

not sufficient to base categorization on previous DPSIR analyses, because of the 

profound differences among ecosystems. For example, human population is considered a 

driver for many ecosystems (e.g., EEA, 1999; Fogarty et al., 2012), which would suggest 

that the decreasing population of Newfoundland resulted in less fishing pressure and the 

decreased landings post-1990s on the Grand Bank. However, the reverse is actually true: 

decreased landings resulted in less economic opportunities in the province, so people left 

to seek employment elsewhere (Hamilton and Butler, 2001; Rose, 2008), such that human 

population is better characterized as an impact for this system. Landings are arguably the 

best representative of the complexity of indicator classification. As discussed above, 

landings are generally considered pressures because they quantify direct removal of fish 

biomass from the ecosystem. On the Grand Bank, landings are regulated through 

management restrictions such as total allowable catches (TACs), which are based on the 

Drivers ImpactsPressures States

Responses

Drivers ImpactsPressures States

Responses

(a)

(b)
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current and projected status of the stock. Thus, landings can be considered impacts as 

well as pressures under the DPSIR framework.  

 

Another important lesson highlighted by the DPSIR exercise was that responses 

differentially affect the other categories. In terms of fisheries management, responses do 

not generally directly affect the state as indicated in Fig. 2.6a. Instead they influence 

drivers and pressures, resulting in changes to the state. This can have unintended 

consequences as illustrated by historical management responses on the Grand Banks. In 

1977 Canada extended its exclusive economic zone (EEZ) to 200 nautical miles. A 

consequence of this expansion of jurisdiction was the displacement of foreign fleets out 

of some historical fishing grounds (Rose 2007). Landings from 3LNO were initially 

lower, but increased as Canada expanded its domestic fleet and fish processing capacity 

(Fig. 2.4a), and as foreign fleets continued to fish just outside the EEZ. The continued 

fishing pressure is considered one of the main causes of the collapse of biomass (e.g., 

Hutchings and Myers 1994, Hutchings 1996). This collapse triggered another response, in 

the form of moratoria on commercially important stocks, which put tens of thousands of 

Newfoundlanders out of work (Hamilton and Butler 2001). While the total biomass 

started to recover shortly after the moratoria, the structure of the community shifted 

towards historically less fished species. A related response is that more harvesters began 

to target shrimp, especially in area 3L and the northern bank. On the other hand, the state 

may directly influence responses if decision-makers do not wait for negative impacts to 

manifest before implementing regulations. Management decisions are often proactive, 

made based on the current and projected state of the fish stock or community, as 

illustrated in Fig. 2.6b. 

 

I found it more useful to categorize forcing factors as endogenic (manageable) or 

exogenic (unmanageable) than as drivers and pressures (Elliott 2011). This distinction is 

important in a decision-making context because managers can regulate endogenic 

pressures, but should do so with the understanding of exogenic pressures influences on 

state (Elliott 2011). The exercise supports this approach, as it was less ambiguous to 

categorize indicators as manageable or unmanageable than into DPSIR. For example, 

landings can be managed using TACs, moratoria, closed areas, or other strategies that 
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should take into account the effects of exogenic pressures such as climate change, which 

cannot be regulated on a fisheries management timescale. 

 

2.6 Conclusions 
The suite of indicators for the Grand Bank can have broad applicability for scientists and 

managers studying the region and EBFM. Here I explored the lessons learned from two 

simple analyses using these indicators, and have set the stage for a host of future indicator 

analyses. I showed that drivers and pressures impart different scales of responses at 

different time lags among state indicators, which reiterates the need to include multiple 

metrics of ecosystem status in analyses intended to support management decisions (e.g., 

Jennings, 2005; Rice, 2003). This suggests applying multivariate statistical analysis 

techniques that can account for simultaneous changes in different variables as well as 

prioritize monitoring needs by identifying sets of drivers and pressures with comparable 

explanatory power. Finally, explanation of both time-lags and recognition of early 

warning signals will need to derive from complementary approaches, such as can be 

afforded through use of mechanistic or process-based food web models. 
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CHAPTER 3: EXPLANATORY POWER OF FISHING AND 
ENVIRONMENTAL PRESSURES ON THE FISH COMMUNITY OF 
THE GRAND BANK BEFORE AND AFTER THE BIOMASS 
COLLAPSE2 
 

3.1 Abstract  
Ecosystem based fisheries management will benefit from assessment of how various 

pressures affect the fish community, including delayed responses. The objective of this 

study was to identify which pressures best explain changes in the fish community of the 

Grand Bank, Northwest Atlantic. These changes are characterized by a collapse and 

partial recovery of fish biomass and shifting trophic structure over the past three decades. 

All possible subsets of nine fishing and environmental pressure indicators were evaluated 

as predictors of the fish community structure (represented by the biomasses of six fish 

functional-feeding groups), for periods Before (1985 – 1995) and After (1996 – 2013) the 

collapse, and the Full time series. I modelled these relationships using multivariate linear 

regression, which simultaneously evaluates the effect of one or more predictors on 

several response variables. The analysis was repeated with different lengths (0 to 5 years) 

and types (moving average vs. lags) of time delays imposed on the predictors. Both 

fishing and environmental indicators were included in the best models, reinforcing that no 

single type of pressure impacts the fish community in this region. Results show notable 

differences in the most influential pressures Before and After the collapse, which reflect 

changes in harvester behaviour. The best models Before the collapse had strikingly high 

explanatory power when compared to the other periods, which is because of changes in 

the relationships among and within the pressures and responses. Moving average 

predictor sets generally had higher explanatory power than lagged sets, implying that 

trends in pressures are important for predicting changes in the fish community. Assigning 

a carefully chosen delay to each predictor further improved explanatory power, which is 

indicative of the complexity of interactions between pressures and responses. Here I add 

                                                
2 Based on Dempsey, D. P., Gentleman, W. C., Pepin, P., and Koen-Alonso, M. (2018). Explanatory Power 

of Human and Environmental Pressures on the Fish Community of the Grand Bank before and after the 
Biomass Collapse. Front. Mar. Sci. 5, 1–16. doi:10.3389/fmars.2018.00037. 
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to the current understanding of this ecosystem while demonstrating a method for 

selecting pressures that could be useful to scientists and managers in other ecosystems. 

 

3.2 Introduction 
Marine fisheries collapses worldwide have important socio-economic and ecological 

consequences, highlighting the need for ecosystem based fisheries management (EBFM; 

e.g., DFO, 2007; Misund and Skjoldal, 2005). EBFM supplements conventional single 

species approaches by explicitly considering interactions among species (target and non-

target) in the context of changing human activities and environmental conditions. 

Implementation of EBFM requires information about the whole ecosystem, which can be 

provided in part by data-based indicators, i.e. measured or derived proxies of biological 

status and ecological pressures (Larkin 1996, Jennings 2005). Biological indicators 

include measures of the fish community structure (e.g., biomass, mean length, and trophic 

level of the community). Both fishing and the environment are external pressures on the 

fish community, and can be quantified by a range of indicators (e.g., Link et al., 2010; 

Shannon et al., 2010). Fishing indicators can refer to metrics of landings (e.g., total or 

species aggregates), effort (e.g., hours fished), and fishing mortality (e.g., 

landings/community biomass), while environmental indicators can include large-scale 

metrics of atmospheric forcing, such as the North Atlantic Oscillation (NAO), and 

region-specific features such as annual mean temperature and salinity. Managers can 

regulate (at least partially) fishing pressures, but not environmental pressures (on relevant 

timescales; Elliott, 2011), and yet their decisions must account for future changes in the 

environment. It is generally accepted that a suite of indicators from several categories 

(e.g., biological, fishing, and environmental) is required for successful EBFM (e.g., 

Jennings, 2005; Link et al., 2010). Considerable effort has focussed on determining 

which of the hundreds of proposed biological indicators are the most informative (Rice 

2003, Jennings 2005, Rice and Rochet 2005, Shin et al. 2010b), but there remains a 

pressing need to determine which sets of pressures are best predictors of change  

(Ojaveer and Eero 2011, Large et al. 2015a). 

 

Improving scientific understanding of multivariate pressure-response relationships can 

contribute to implementation of EBFM. Identifying which pressures are most directly 
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related to changes in the fish community can help focus investigations of thresholds, 

guide modelling and planning of management scenarios, and direct monitoring efforts. 

Determining which pressures are the most informative is challenging because of the 

range ways to quantify them, and because the mechanistic relationships are currently not 

well defined. For example, there has been fierce debate about whether fishing or poor 

environmental conditions caused the infamous collapse of cod and other species on the 

Grand Banks in the 1990s (Myers et al. 1996, Bundy 2001, Halliday and Pinhorn 2009). 

Furthermore, changes in pressures can have both immediate and delayed effects on fish 

communities (e.g., Greenstreet et al. 2011, Gröger and Fogarty 2011, Dempsey et al. 

2017), adding an additional layer of complexity to the analysis. For example, immediate 

effects of fishing include the removal of biomass, while delayed effects include changes 

in the size structure of the community (Daan et al. 2005, Devine et al. 2007). While 

previous studies have acknowledged such delays (e.g., Chen and Ware, 1999; Large et 

al., 2015), more investigation into appropriate types and lengths of delays is warranted 

(Large et al. 2015a).  

  

The objective here was to identify sets of pressures most directly related to three decades 

of changes in the structure of the fish community of the Grand Bank, Northwest Atlantic 

(Fig. 3.1). This will add to the current understanding of this ecosystem while 

demonstrating a method that could be useful to scientists and managers for other areas. 

This region provides a valuable case study because it experienced complex ecological 

changes resulting in two distinct periods, which are spanned by the suite of indicators 

(Dempsey et. al., 2017). I identified pressure indicators from within this suite that can 

best predict fish community state over the full time series as well as for the two periods, 

and use the results to examine the past and present dynamics of this ecosystem. I also 

investigate models with different delay lengths (0 to 5 years) and types (moving average 

and lags) to determine which delays have the best explanatory power.  

 

3.3 Methods 

3.3.1 Study Area 

Here I provide historical context for the study area to highlight some of the ecological 

changes that have occurred in the region over the period of interest. The Grand Bank, 
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within the Northwest Atlantic Fisheries Organization (NAFO) statistical division 3LNO, 

and the adjacent southern Labrador and northeast Newfoundland shelf (NAFO Division 

2J3K) are recognized as major subunits within the Newfoundland-Labrador shelf in the 

Northwest Atlantic (Fig. 3.1; NAFO, 2014b). The shelf is partly within the Canadian 

exclusive economic zone (EEZ) established in 1977, but extends into international waters 

(Fig. 3.1).  

 

For centuries, this region was one of the most productive fishing grounds in the world, 

with global fisheries for many species including Atlantic cod, flounder, and capelin 

(Rose, 2007). Fisheries management in the region is the responsibility of Fisheries and 

Oceans Canada (DFO) within the EEZ, and NAFO in international waters. Throughout 

the 1980s the primary management strategy for both NAFO and DFO was to set 

independent quotas for each fish stock; however, these measures were largely ineffective 

because these limits were ignored by some vessels, and because of error in the calculation 

of sustainable exploitation rates (e.g., Rose, 2007). In the 1990s, prolonged heavy fishing 

pressure combined with an environmental regime shift precipitated complex ecological 

changes, characterized by a collapse of fish biomass. This is commonly referred to as 

“the collapse of the cod” even though many other species were also impacted (e.g., 

Atkinson, 1994; NAFO, 2010b). In response to the low biomass of many stocks, 

groundfish moratoria were enforced for 2J3KL in 1992 and the southern Grand Bank in 

1994. Harvesters adapted by targeting different species (e.g., shrimp and crab), retiring 

from fishing, or leaving the province to find other employment (e.g., Hamilton and 

Butler, 2001). Over 20 years after imposition of these moratoria, many remain in place 

(see Annex I.A in NAFO, 2017). The total fish biomass has recovered slowly, although 

different species are recovering at different rates such that the structure of the ecosystem 

has shifted from piscivore dominated to include more species at lower trophic levels (Fig. 

3.2; Pedersen et al., 2017). 

 

Both DFO and NAFO are working towards ecosystem approaches to management 

(NAFO, 2010a, 2010b; Oceans Act, 1996; DFO, 2009). Current management strategies 

include the At-Sea Observer Program (DFO 2014), National Vessel Monitoring System 
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(DFO 2018a), restrictions on total allowable catches (e.g., for redfish and yellowtail 

flounder; NAFO 2017) gear restrictions, and restricted entry programs.   

 

 
Figure 3.1: Map of the study area, showing the Grand Bank (NAFO division 3LNO), 
Station 27, and the Canadian exclusive economic zone (dashed lines). 

 

3.3.2 Indicators 

The indicator time series used here were synthesized and presented in Chapter 2 

(Dempsey et al. 2017). Fish community indicators are annual values for 1985 – 2013, and 

pressures used to predict them additionally extend to 1980 – 1984 for use with the time 

delay analysis. Below I present a general overview of these indicators to facilitate the 

reader's appreciation of the current multivariate analysis, and refer interested readers to 

Chapter 2 (Dempsey et al. 2017) for more details on indicator trends and data sources.  

 

3.3.2.1 Indicators of fish community status 

The structure of the fish community was represented by the mean annual biomass indices 

of six fish functional feeding groups (aggregated species), which have been analyzed by 

Dempsey et al. (2017) and others (e.g., NAFO, 2010, 2014; Table 1). Such functional 
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groups are meaningful units to fisheries scientists and managers (NAFO 2014), are 

compatible with modern ecosystem models (Link et al. 2010a, Heymans et al. 2016), and 

benefit the present analysis by reducing the number of response variables when compared 

to the use of individual species (Fogarty 2014). The annual biomass index of each 

functional group was calculated from DFO spring scientific bottom trawl surveys for 

NAFO area 3LNO by summing the average catch per tow of the species included in the 

group. In 1996, the survey gear changed from a commercial Engels to a finer-meshed 

Campelen trawl, such that the biomass indices cannot be directly compared before and 

after the gear change due to differing capture efficiencies (Belgrano and Fowler, 2011; 

McCallum and Walsh, 1997). Scaling factors have been developed to coarsely compare 

the Engels and Campelen biomasses for most species; however, it was not possible to 

scale the biomasses of invertebrate species (i.e. shellfish) because they were not sampled 

consistently by the Engels trawl (Koen-Alonso, unpublished data).  

 

The mid-1990s also correspond to the minimum total fish biomass in the region, marking 

the end of the rapid collapse of biomass and the beginning of the recovery. These have 

been characterized as two ecologically different periods (e.g., Buren et al., 2014; 

Dempsey et al., 2017). Here I analyzed three time periods: the Full period (1985 – 2013; 

using the scaled Engels data) as well as Before (1985 – 1995) and After (1996 – 2013) 

the collapse. “Before” and “After” also correspond to the survey gear change to eliminate 

the reliance on the coarse scaling factors. Note that because there is no appropriate 

biomass index for shellfish prior to 1996 (NAFO 2010a), this functional group had to be 

excluded from the Full and Before analyses. I do not expect this exclusion to affect 

results because even though the build-up of shrimp (the major species by biomass in this 

group) is believed to have started in the mid 1980s, it only peaked on the Grand Bank in 

the 2000s (Lilly et al. 2000, NAFO 2014). As discussed later, some After analyses were 

completed with and without the shellfish index to determine the effect of including this 

functional group.  
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Figure 3.2: Fish functional group biomass in NAFO division 3LNO, illustrating the 
collapse of total biomass and changing structure of the community. All functional groups 
except shellfish are included as response variables. The Before period is from 1985 to 
1995, the After period is from 1996 to 2013, and the Full period includes 1985 – 2013 
(Before + After). 
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Table 3.1: Functional groups used to represent the fish community structure of the Grand 
Bank (adapted from NAFO 2010a). See Appendix C, Table S.1 for the species included 
in each group. 

Functional 
Group 

Number 
of Species 

Size Range 
(cm) 

Dominant Species 
(by biomass) 

Large 
Benthivores 

22  max size1 > 80 American plaice  
(Hippoglossoides 
platessoides) 

Medium 
Benthivores 

33 45 < max size <80 Yellowtail flounder 
(Limanda ferruginea) 

Small 
Benthivores 

44 max size < 45 Common grenadier2 
(Nezumia bairdi) 
Mailed sculpins3 
(Triglops sp.) 

Piscivores 25 All Atlantic cod 
(Gadus morhua) 

Plank-piscivores 9 All Redfish 
(Sebastes mentella) 

Planktivores 14 All Capelin 
(Mallotus villosus) 

Shellfish4 3 All Shrimp 
(Panda borealis) 

1Max size is the maximum length recorded for a given species. 
2Before the collapse 
3After the collapse 
4Biomass index begins in 1996; not included in most analyses in this paper 
 

3.3.2.2 Indicators of fishing and environmental pressures 

The nine pressures chosen as predictors for this analysis were based on the results of 

Chapter 2 (Dempsey et al. 2017; Fig. 3.3). Note that I do not distinguish “pressures” from 

“drivers,” as some authors do (e.g., in the DPSIR framework, see Gari et al., 2015 and 

references therein), because they both ultimately influence the fish community and as 

such it would be a matter of semantics for this analysis. 

 

Four fishing indicators were included (Fig. 3.3): total, pelagic, and shellfish landings, as 

well as the marine trophic index (MTI; denoted “MTILand” in Chapter 2). Total landings 

are the sum of groundfish, pelagic, shellfish, and “other” species landings, and provide a 

metric of fishing pressure on the entire community. Pelagic landings are dominated by 

capelin, which is a key forage species in the system, and shellfish landings are dominated 

by shrimp and queen crab (also known as snow crab). MTI is the mean trophic level of 
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the landings weighted by the biomass of species landed, including only species with 

trophic level greater than 3.25 (e.g., Atlantic cod, haddock). MTI reflects evolving fishing 

practices as fishers target different species to adapt to changes in fishing technologies, the 

ecosystem, and end markets (Caddy and Garibaldi 2000). 

 

In general, the fishing indicators were highly correlated Before the collapse and for the 

Full period (Pearson correlation coefficient > 0.60, not shown), but not After the collapse 

(not shown). Total and pelagic landings both increased in the early 1980s, and then 

decreased from the late 1980s until the mid-1990s, and to this day remain lower than in 

the late 1970s and 1980s. MTI also decreased throughout the Before period, but has no 

trend in the After. Shellfish landings increased over the Full period due to the 

proliferation of shrimp and crab stocks in the 1980s and a shift in target species after the 

groundfish moratoria (Dempsey et al. 2017; Schrank 2005), but have been declining since 

the mid-2000s (Fig. 3.3; Department of Fisheries and Aquaculture 2014; Dempsey et al. 

2017).  

 

Five environmental indicators were included as predictors (Fig. 3.3): the North Atlantic 

Oscillation (NAO), surface salinity (SSS), salinity at 150 m (S150), surface temperature 

(SST), and the timing of the sea ice melt (TimeIce). The NAO represents basin scale 

atmospheric circulation patterns that are related to winds, salinity, temperature, and sea 

ice (Hurrell, 1995; Petrie, 2007). The remaining indicators characterize physical 

environmental factors local to the Grand Bank, which are thought to have played a 

critical role in the collapse of fish biomass in the 1990s (e.g., Halliday and Pinhorn, 

2009). TimeIce was included as a proxy of the timing of the spring phytoplankton bloom 

(Wu et al. 2007) because there are no other suitable measures of phytoplankton biomass 

or productivity over the required historical time frame.  

 

In general, the environmental pressures were not highly correlated with each other or the 

fishing pressures for any period (not shown). SST was the only environmental pressure 

with clear trends: it decreased until 1991, and has generally increased since. The 

remaining indicators were characterized by inter-annual variability. The NAO was well 

above its average in the early 1990s, which has been related to the cooler and fresher 
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water at this time, which in turn has been characterized as a regime shift (Buren et al. 

2014). The salinity indicators had higher variability Before the collapse, with extreme 

minimum values in the mid-1990s. In contrast, TimeIce had higher variability After the 

collapse (Fig. 3.3).  

 
Figure 3.3: Pressure indicators used as predictors in this analysis. Fishing indicators: (A–
D); Environmental indicators: (E–I). The thick dashed line indicates the beginning of the 
After period. 
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3.3.3 Method of Data Analysis 

3.3.3.1 Multivariate Linear Regression  

Multivariate linear regression (MLR) was used to assess how well different sets of the 

pressures modelled the biomasses of all six functional groups over a period of n years. 

MLR uses p predictors in matrix X[n x p] to model r responses in matrix Y[n x r]. The 

explanatory power is characterized using goodness of fit metrics related to variances in 

the responses, the model, and/or the residuals. Commonly used metrics are the coefficient 

of determination (R2) and the adjusted-R2. The R2 measures the fraction of the total 

variance in the response(s) that is explained by the variance in predictor matrix X. The 

adjusted-R2 is a modification to R2, which enables comparison among models using 

different numbers of predictors (see below; Legendre and Legendre, 2012). 

  

The first step in MLR is a multiple linear regression of each response variable (r multiple 

regressions), which are typically done simultaneously for computational efficiency. The 

modelled values are stored in the matrix 𝐘?[n x r], while matrix 𝛃?[p x r] holds the coefficients 

for linear combinations of the columns of X that result in the smallest sum of squares of 

the residuals for each response: 

 

𝐘? = 𝐗𝛃? = 𝐗(𝐗𝐓𝐗)Y𝟏𝐗𝐓𝐘    (3.1) 

 

where the superscript symbols “T” and “-1” respectively denote the matrix transpose and 

inverse. It is assumed that the columns of X are linearly related to the columns of Y, and 

so appropriate transformations must be applied if necessary. Commonly, predictors and 

responses are normalized by centering and scaling them by their respective mean and 

standard deviation to minimize numerical error in solving for 𝐘? (Legendre and Legendre 

2012). Due to the skewed nature of the fish biomass data, in this analysis responses were 

the log-transformed, normalized biomass indicators, and the predictors were normalized 

pressure indicators.  
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A goodness of fit value for each of the r multiple regressions can be calculated. R2 is 

given by 

 

R3/ =
[[\]

[[*]
= 	

∑ _àb,]Yc̀]d
ef

bgh

∑ _`b,]Yc̀]df
bgh
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= 1 −	
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e                   (3.2B) 

 

where SSMj is the sum of squares of the model, SSTj is the sum of squares, and SSEj is 

the sum of squared errors, all for response j. The adjusted-R2 "penalizes" models with 

more predictors (for models with the same number of predictors, the relative change in 

adjusted-R2 is the same for that of the R2; Equation 3.3).  

 

adjusted-R/ = 	1 − (1 −	R/) :Yl
:YmYl

     (3.3) 

 

Note that in the fraction :Yl
:YmYl

 (Equation 3.3), the numerator is the degrees of freedom of 

the model for the constant of best fit (i.e., mean), and the denominator is the degrees of 

freedom of the MLR model error. 

 

The second step of MLR as it is used here is to calculate a single goodness of fit metric 

that simultaneously evaluates the r separate regressions. R*+,-./  (also called the “bivariate 

redundancy statistic”; Legendre and Legendre, 2012) is given by: 
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      (3.4B) 

 

where SSMTotal is the total sum of squares of the model, SSTTotal is the total sum of 

squares of Y, and SSETotal is the total sum of squared errors. This is also equal to the 

average of the R2’s for each multiple regression when the responses are normalized 
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(Legendre et al. 2011; Appendix D). The R*+,-./  can be modified as in Equation 3.3 to 

give adjusted-R*+,-./ . The adjusted-R2 metrics were used to evaluate models in this 

analysis because I compared subsets comprised of different numbers of indicators (i.e., 

different numbers of predictor columns in X). I designated changes in adjusted-R2 >0.05 

as “notable.” Note that the significance (e.g., p-value) of the model fit was not evaluated 

because of the presence of autocorrelation in the predictors and responses. This 

autocorrelation does not affect the value of the R2, but it could affect the adjusted-R2 

because the reduced independence of the observations changes the effective number of 

observations (Priestley 1994). As discussed in section 3.5, this is not expected to have a 

large impact on the results of this analysis. 

 

3.3.3.2 All Possible Models  

An MLR model was fit for each possible combination of the nine predictors so that a total 

of 511 models were evaluated for each period (Full, Before and After). Models were 

ranked by their adjusted-R*+,-./ , with a rank of 1 indicating the predictor set with the 

highest explanatory power. I chose to evaluate all possible models versus stepwise 

methods to avoid sensitivity of the results to the selection algorithm (e.g., 

forward/backward; see Whittingham et al. 2006 and references therein). Additionally, 

identifying and focussing on a single model ignores the potential that other subsets of 

predictors may have similar explanatory power (Whittingham et al. 2006). Here, I am not 

interested in one “best” model; rather, I evaluated a range of models that include different 

types and numbers of predictors to see if there are multiple sets with similarly high 

explanatory power. 

 

I repeated the analysis using different lengths and types of time delays in the predictors. I 

considered two types of delays, lags and moving averages, for delay length from k = 1 to 

k = 5 years (Fig. 3.4). For the lag analysis, predictors were shifted forward k years to 

simulate a delayed response. For an analysis of the Before period, the response time 

series was from 1985 – 1995, and the predictor time series was from 1984 – 1994 for k = 

1, 1983 – 1993 for k = 2, etc. For the moving average analysis, the predictor value at year 

i was the average of the current year and the previous k years (resulting in a k+1 year 

moving average). I was therefore able to compare the explanatory power of past predictor 
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values (lags) and low-pass filter values (moving average). All predictors were normalized 

after the delay was applied, which resulted in minor differences in the values of the lag 

predictors, and less damping of the moving average predictors as seen in Fig. 3.4. These 

methods of incorporating time delays did not reduce the length of the time series because 

the predictors have longer historical data records than the responses. For clarity, “zero 

delay” (ZD) refers to the original predictors, while Lagk and Avgk refer to lagged and 

moving average predictors, respectively, that incorporate k years of past data. 

 

I first used a simple approach of incorporating delays by evaluating all combinations of 

predictors with the same type and length of delay (e.g., all predictors either Avgk  or 

Lagk; Chen and Ware, 1999). Because pressures may manifest in the fish community 

biomass on different timescales (i.e., fishing acts immediately, environment generally 

takes longer), I repeated the analysis using different delay types and lengths for each 

predictor as presented in the Results section.  
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Figure 3.4:  Illustration of the different types of time delays for surface temperature (SST) 
at k = 3: (A) forward lag shift; (B) moving average. 

 

3.4 Results 

3.4.1 Zero Delay Models 

The results for the three time periods using the ZD predictors are illustrated in Fig. 3.5. 

Appendix D, Tables S.1 – S.3 list which pressures were included in the top 50 models 

(i.e., top 10%) for each period. Inclusion of shellfish as a response in the After models 

had minimal effects, increasing the explanatory power only slightly, and highlighting the 

same number and most frequent predictors. 

 

In general, the Before models had notably higher adjusted-R*+,-./  than the After models, 

and the Full models had intermediate values (Fig. 3.5). The best Before models had 

strikingly high explanatory power when compared to the other periods (adjusted-R*+,-./ = 
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0.94 vs. ~0.60); however, lower-ranked (smaller adjusted-R*+,-./ ) Before and Full models 

had similar explanatory power. The high adjusted-R*+,-./  of the best Before models 

highlights the common signal among functional groups and the external pressures during 

this period. Most of the functional group biomasses decreased (Fig. 3.2), as did total 

landings and MTI, while shellfish landings increased (Fig. 3.3). The environmental 

pressures were more variable, but SST had a strong decreasing trend from the late 1980s 

until the early 1990s (Fig. 3.3).  

 

The adjusted-R*+,-./  of the top 50 models and the corresponding adjusted-R2 for each 

functional group further highlighted differences between the two periods (Fig. 3.6). The 

high explanatory power for large benthivores and piscivores (average adjusted-R2 of 0.95 

and 0.91, respectively) contributed to the remarkably high overall explanatory power for 

the Before period. The adjusted-R2 for medium and small benthivores was also notably 

higher than the adjusted-R*+,-./  for this period, while planktivores and plank-piscivores 

had the lowest average explanatory power. In contrast, plank-piscivores and medium 

benthivores had the highest explanatory power for the After period. Piscivores and small 

benthivores, which were among the best predicted in the Before period, had the lowest 

average adjusted-R2 for the top 50 After models.  

 

There is a clear plateau in the overall explanatory power of the Full models, with the best 

set of three predictors (total landings, MTI and SST; Appendix D, Table S.1) having only 

a marginally different adjusted-R*+,-./  than sets with more predictors (Fig 3.5b). Six 

predictors were used in the best model for the Full period, (adjusted-R*+,-./  = 0.60), 

although all top 50 sets had adjusted-R*+,-./  within 0.05 (sets of 3 – 9 predictors). In 

contrast, the Before models did not plateau, with the best set requiring all 9 predictors 

(adjusted-R*+,-./  = 0.94). All of the top 50 Before models had higher explanatory power 

than the best Full and After models. The best After model used 8 predictors (adjusted-

R*+,-./  = 0.59 including shellfish as a response, and 0.56 excluding shellfish), although 

there were sets of 6, 7, and 9 predictors with similar explanatory power. The lower 

adjusted-R*+,-./ 	of the After (and Full) models suggests that there is at least one pressure 

not included here that could improve the explanatory power for these periods. In general, 
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using less predictors in the Before and After models sacrificed more explanatory power 

than for the Full models. The range of adjusted-R*+,-./  for a given number of predictors is 

generally smaller for the Full time series compared to the Before and After models (Fig 

3.5b). For example, the range for 6-predictor Before models is over 3 times larger than 

that of 6-predictor Full time series models. This suggests that for the Full models, the 

number of predictors included is more important than which predictors are included. For 

the other two periods, a specific set of p predictors has high explanatory power, while 

other sets of p predictors do not.  

 

Several predictors have much different inclusion frequencies Before and After the 

collapse, suggesting that different pressures were most influential in these two periods 

(Fig. 3.5c). These differences are obscured by considering only the Full time series, 

underscoring the importance of selecting an ecologically coherent time frame for 

indicator analysis (Dempsey et al. 2017). As expected, the frequency of landings 

indicators reflects the change in target species after the collapse and subsequent 

groundfish moratoria. Total landings (which are highly correlated with groundfish 

landings; Appendix C), are more frequent in the Before models, while pelagic and 

shellfish landings are more frequent in the After models. The MTI was included in almost 

all the Full and After models, but less than half of the Before models. This may be 

explained by the changes in fishing pressures after the collapse and moratoria. Before the 

collapse, MTI was highly correlated with the other fishing predictors because most of the 

landings were high trophic level species. After the collapse, MTI was not highly 

correlated with the other fishing predictors, indicating that it provides different 

information, which may be why it is included in so many of the best After models. The 

most notable differences in the environmental predictors were NAO and SST, which were 

included in all or most of the Before models, respectively, but in only about 60% of the 

After models. This suggests that environmental conditions were more influential Before 

the collapse, and/or that relationships between the fish functional groups and these 

specific environmental pressures were more linear before the collapse.  
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Figure 3.5: (A) Adjusted − R*+,-./   for zero-delay indicators of the three time periods; (B) 
The range of adjusted − R*+,-./  for a given number of predictors for each time period; 
(C) Proportion of times each predictor appeared in the top 50 models of each time period. 
(“After_shell” indicates analysis that included the community shellfish biomass index as 
a response.) 
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Figure 3.6: The adjusted-R*+,-./  of the top 50 models and corresponding adjusted-R2 of 
each functional group for (A) Before models, ZD predictors; (B) After models, ZD 
predictors; (C) Before models, Avg1 predictors; (D) After models, Avg1 predictors. The 
legend is the same for each panel. 
 

3.4.2 Delay Models 

The above analysis showed that there are ecologic differences between the Before and 

After periods, and that the relationships for Full period do not represent either. As such, 

for the delay analysis I focussed on the two periods separately. In general, the moving 

average predictors improved the explanatory power more than the lag predictors (Fig. 

3.7). The delay with the highest explanatory power for both periods was Avg1, a 2-year 

moving average including the current year, i and year i - 1. The Before Avg1 models 

were marginally better than the top 10 ZD models, and were notably better for most of 
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the remaining models. The other Before moving average models had lower or marginally 

higher explanatory power than ZD models (until worse ranks). The After Avg1 models 

were marginally different than the top 25 ZD models, and notably better for the rest of the 

models.  

 

I investigated how delays affect the explanatory power of individual functional groups 

using the Avg1 predictors (i.e., the best delay type and length). In general, the adjusted-

R2 for each functional group increased for the Avg1 predictors compared to the ZD 

predictors (Fig. 3.6). The most notable improvements were for plank-piscivores and 

planktivores in the Before period, and large benthivores for the After period (adjusted-R2 

increased by ~0.30 for each). The explanatory power for several functional groups 

decreased with the Avg1 predictors (small and medium benthivores Before; small 

benthivores, plank-piscivores and planktivores After), but these changes were minor 

when compared to the improvements of the other groups. Another striking feature of Fig. 

3.6 is the reduced variance in the adjusted-R2 for each functional group (except large 

benthivores) for the Avg1 predictors. This is most noticeable for the adjusted-R2 of the 

planktivores in the Before period, which had a standard deviation of 0.29 with ZD 

predictors vs. 0.08 with Avg1 predictors. 
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Figure 3.7: Adjusted-R*+,-./  in decreasing rank for models using predictors with time 
delays: (A) Before models, moving average predictors; (B) After models, moving average 
predictors; (C) Before models, lag predictors; (D) After models, lag predictors. 

 

The results of the lag analysis were less consistent between the two periods. All the 

models with lag predictors for the Before period had notably lower explanatory power 

than ZD. This could suggest that the major pressures on the fish community during this 

time were related to fisheries removals, which have immediate primary effects on the 

ecosystem. In contrast, the After Lag4 models had similar explanatory power as the ZD 

models, while the Lag5 predictors were similar or marginally better for the top 50 

models, and notably better for some models at worse ranks. This suggests that the fish 

community could be experiencing indirect effects of fishing (e.g., Daan et al. 2005; 
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Koen-Alonso et al. 2010), or environmental effects that require time to manifest in the 

system.  

 

For most delays, subsets of the predictors had similar or higher explanatory power than 

the full suite (Fig. 3.8; Appendix D, Figs. S.1 and S.2). In general, the range of adjusted-

R*+,-./  for a given number of predictors was larger for the Before models than the After, 

suggesting that which pressures were included in the subset was more important Before, 

and the number of pressures included was more important After. For all delays (except 

Before Avg1 and Avg3), the adjusted-R*+,-./  plateaued or decreased after a certain 

number of predictors were used.  

 

There are some notable differences in the patterns of most frequent predictors between 

the two delay types (Fig. 3.9). In the Before models, total landings were most frequent at 

ZD, which was expected because the ecosystem was heavily exploited during this period, 

especially for groundfish (represented by total landings). Pelagic and shellfish landings 

were also expected to be most frequent at ZD, but were more frequent at higher delays, 

which suggests indirect effects of fishing. Shellfish landings were included in about 80% 

of the ZD and Avg2 models, and almost all the Lag1, Lag2, and Lag3 models. This was 

unexpected because shellfish was not included as a functional group response. One 

possible interpretation is that because shellfish landings were increasing approximately 

linearly with time (Fig. 3.3), they were highly negatively correlated with the declines in 

the other functional groups, and therefore contributed to explaining variance in the 

responses. Both MTI and NAO were included in almost all of the top Lag3 models, but 

only about 60% of the Avg3 models. In contrast, SST was included in all of the Avg2 and 

Avg3 models, but less than half of the lag models at these same k. S150 and TimeIce were 

also included in more Avg models than Lag models. 

 

In the After models, total landings were more frequent at delays (Avg3 and Lag1; Fig. 

3.9), which could indicate delayed effects of fishing on the fish community structure. 

Pelagic landings were most frequent at ZD (closely followed by Lag2), and shellfish 

landings were included in almost all the ZD and Lag1 models, which is curious because 

the community shellfish index was not included as a response for that analysis. MTI was 
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included in most of the ZD, Avg1, and Avg2 models. NAO was included in all the Lag2 

models, but only about 80% of the Avg models, while SST was most frequent at delays 

of 2 and 3 years for both delay types. SSS was not particularly frequent in any of the lag 

models, but was included in about 70% of of Avg1. S150 and TimeIce were most frequent 

at the same k for both delay types (k=1 and k = 3, respectively). 

 

 
Figure 3.8: The range of Adjusted-R*+,-./  for a given number of predictors all delayed by 
k for moving average and lag predictors (A) Before models; (B) After models. Select k 
shown here; see Appendix D, Figures S.1 – S.2 for all k. 
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Figure 3.9: Proportion of times each predictor appeared in the top 50 models of the 
Before and After models for each delay type and length: (A) Before models, moving 
average predictors; (B) After models, moving average predictors; (C) Before models, lag 
predictors; (D) After models, lag predictors.  

 

I repeated the analysis using specific delays for each predictor (“Mix” models) based on 

the idea that fishing pressures have shorter time delays, while environmental pressures 

generally take longer to manifest in the fish community. None of the combinations of 

delay types and lengths I tested had notably higher explanatory power than the best ZD 

and Avg1 Before models (not shown). In contrast, several combinations of mixed delay 

pressures were notably better than the best After models (e.g., Mix1 and Mix2, Fig. 3.10). 

Mix1 and Mix2 both had shorter time delays (ZD, k = 1) for most of the fishing pressures 

and longer delays (k = 2+) for most of the environmental pressures. The top 50 Mix1 

models included sets of 5 – 9 predictors, with total landings, MTI, and SST being the 

most frequent. The best set used 7 predictors, but there were other sets of 7 – 9 with only 

marginally different explanatory power. The top 50 Mix2 models included sets of 4 – 9 

predictors, with pelagic landings, NAO, SST, and TimeIce the most frequent. The best 

Mix2 set used 6 predictors, and there were other sets of 5 – 8 with only marginally 

different explanatory power. The delays for Mix3 were chosen to provide a counter-

example where all pressures have longer delays except NAO, which was assigned ZD. As 
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expected, Mix3 was notably worse than the After ZD models, and NAO was not present 

in most of these “best” models. 

 
Figure 3.10: (A) Adjusted-R*+,-./  in decreasing rank for After models using predictors 
with mixed time delays; (B) Proportion of times each predictor appeared in the top 50 
models for each set of After mix delays.  Refer to table legend for type and length of 
delay used for each predictor. 

 

3.5 Discussion 
This analysis adds to the literature demonstrating that there is no single type of pressure 

driving fish community dynamics on the Newfoundland shelf (e.g., Mann and Drinkwater 

1994, Devine et al. 2007, Koen-Alonso et al. 2010b). In this study, both fishing and 
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environmental indicators were included in nearly all the top models for all types and 

lengths of time delays (exceptions are five After models with adjusted-R*+,-./ ≤ 0.40), 

which highlights that managers in this area should factor both types of pressures into their 

decisions. The dominant pressures Before the collapse of fish biomass (i.e., those that 

caused the collapse) in the Northwest Atlantic have been the subject of debate, especially 

for commercially important species such as Atlantic cod. Some authors conclude that 

fishing mortality was the sole major cause of the collapse (e.g., Myers et al., 1996, 1997), 

even though non-commercial species were also impacted (e.g., Gomes et al. 1995 for 

Division 2J3KL; NAFO 2010a for Divisions 2K3KL and 3LNO). Others assert the poor 

environmental conditions were an important driving pressure (e.g., Parsons and Lear 

2001, Rothschild 2007, Halliday and Pinhorn 2009), pointing out for example that the 

community recovered from a similar collapse in the 1970s, when fishing pressure was 

high, but environmental conditions were more favorable than the early 1990s. My 

analysis supports a broader argument that the combination of these two drivers (high 

fishing and poor environment) were necessary for the extensive and widespread changes 

that occurred (e.g., Rose 2004, Devine et al. 2007, Koen-Alonso et al. 2010b). 

Specifically, total landings (here also a proxy for groundfish landings), NAO and SST 

were the most frequent pressures included the best (top 50) Before models. The best 1-

predictor model was total landings (adjusted-R*+,-./  = 0.55), while the best 2-predictor 

model included total landings and NAO (adjusted-R*+,-./  = 0.63), and including SST 

further improved the explanatory power (adjusted-R*+,-./  = 0.67). The inclusion of both 

NAO and SST speaks to the importance of both basin-scale and local environmental 

effects on the ecosystem, further strengthening the need to have regional information to 

understand and predict changes in the fish community.  

 

The analysis here shows that there was a shift in which fishing and environmental 

pressures were most directly related to the fish community structure Before and After the 

collapse. The environment can clearly influence fish community dynamics on the Grand 

Bank, but the most frequently included pressures in the ZD After models were pelagic 

and shellfish landings and MTI. This set of three pressures had notably higher overall 

explanatory power Before the collapse; however, its adjusted-R*+,-./  represents a higher 

percentage of the maximum explanatory power for the After period. This suggests that 
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the remaining pressures (e.g., environment) add relatively less predictive information in 

the After models. This shift reflects the changes in target species after the groundfish 

moratoria, although it is surprising that shellfish landings were included in all but two top 

models because the community shellfish biomass was not included as a response. 

Shellfish landings consist mainly of snow crab and Pandalus shrimp, while pelagic 

landings are mainly capelin. Shrimp and capelin are considered important forage species 

on the Grand Bank (DFO 2015a, 2015b), and are managed conservatively (for example 

there is a capelin moratorium in 3NO); however, the analysis suggests landings of these 

species are impacting the ecosystem. Shellfish landings increased overall in the After 

period (despite a slight decrease in the last several years), and are negatively correlated 

with the biomass indices of small benthivores, piscivores, and plank-piscivores, 

suggesting that they are hindering the recovery of these functional groups. The question 

remains whether this is indicative of a causal relationship, or is only correlative. One 

potential mechanistic explanation is given by Koen-Alonso et al. (2010), who speculated 

that fishing may be reducing food availability for key species on the Grand Banks, and 

thus hindering their recovery. Another hypothesis is that there are secondary effects on 

the fish community from shrimp beam trawls. These trawls are considered to have low 

bycatch rates (for commercial species; NAFO 2014), but they could be negatively 

impacting the habitat of other species in the community. 

  

Another striking difference between the two periods is the remarkably high explanatory 

power of the best Before models compared to the best After models (Fig. 3.5) for any 

time delay (type or length) or number of predictors. I speculate that the reasons for this 

relate to changes in relationships among and within the pressures and responses. For 

example, there was a strong common signal in the responses Before the collapse. The 

biomasses of many functional groups were relatively highly correlated (Dempsey et al. 

2017), such that any set of predictors with high explanatory power for one particular 

group was also high for several of the others (e.g., small, medium, and large benthivores 

and piscivores; Fig. 3.6). The weaker relationship among the responses After the collapse 

means prediction of all six functional groups may require a broader spectrum of 

pressures.  
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I showed the pressures that were driving changes Before the collapse are no longer as 

influential After, and the relatively lower adjusted-R*+,-./  suggests that there may be 

pressures missing from the After models. Bottom up pressure indicators such as primary 

production and trophic transfer efficiencies were not included here because there was no 

suitable data for the required time frame. The models include the timing of the sea ice 

melt as a proxy for the timing of phytoplankton spring bloom, but other characteristics of 

the bloom (e.g., magnitude), or lower trophic level energy transfer may prove better 

predictors for this period through some mechanism not identified here. Other missing 

pressures are measures of predation by sea birds and marine mammals that could exert a 

top-down influence on the fish community. For example, harp seals migrate from the 

Arctic to northern Newfoundland in the Fall, and prey predominantly on capelin, but also 

eat other species (e.g., Atlantic herring, Arctic cod, shrimp, and Atlantic cod; Stenson 

2013). The Northwest Atlantic harp seal population has been increasing rapidly since the 

1980s (Hammill et al. 2011), and some authors suggest that seal predation has supressed 

the recovery of fish species on the Newfoundland-Labrador shelf (e.g., Bundy 2001, 

Devine et al. 2007). One type of human-related pressure specific to the After period that 

wasn’t considered here is oil production. While oil exploration has occurred on the Grand 

Banks since the 1960s, active platforms have only been producing oil since 1997. Related 

pressures could include chemical pollution from regular discharge or accidental spills 

(Templeman 2010), which can be especially harmful to early life stages, and can disrupt 

development, growth, and reproductive rates (etc., see JWL 2007 and references therein). 

These pressures were not included here because I did not expect them to significantly 

influence the Grand Bank fish community; however, the analyses suggest that future 

investigations into these pressures are warranted.  

 

Finally, non-linearity in the relationships between pressures and responses may have a 

stronger influence during the After period, through some unidentified mechanism. 

Predator-prey relationships, population dynamics, environmental changes, and human 

impacts can all result in non-linearity in marine ecosystems (Liu et al. 2014). Given the 

significant changes in the fish community structure and related pressures, I can speculate 

that the relationships among them could be less linear After the collapse, resulting in 

lower explanatory power because MLR is a linear model. This could be tested by 
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comparing this analysis to results from a non-linear model such as neural networks or 

generalized additive models. These flexible models don’t require the user to specify the 

forms of the relationships between predictors and responses, which affords a potential 

advantage of being able to capture the nonlinearity when the mechanistic forms of these 

relationships are unknown.  

 

The analysis showed that incorporating delays can improve explanatory power, but that 

the type and length of delay should be carefully considered. In general, moving average 

predictors had higher explanatory power than lagged predictors for both periods. Since 

the moving averages incorporate the trend in the predictors, causing the responses to 

change gradually over time (see Fig. A1 in Gentleman and Neuheimer 2008), the results 

suggest that trends in these pressures are influencing the fish community. For the models 

with the same delay type and length for each predictor, Avg1 was the best, notably 

improving the explanatory power compared to ZD for both periods. Avg1 also increased 

the explanatory power and reduced the variability in the adjusted-R2 for most of the 

individual functional groups (Fig. 3.6). Other delays, particularly those with lagged 

predictors, had notably worse explanatory power than ZD. While some of the improved 

fit of the moving averages may be an artifact of smoothing, the results still strongly 

suggest that the rates of change are useful for predicting.  

 

There was no one set of pressures that best predicted fish community status for any 

period or delay type or length, which suggests there are strong indirect effects of many 

pressures on different trophic levels, such that changes in fish functional group biomass 

can be directly predicted from different pressures. Examination of Mixed delays 

illustrated that the explanatory power of the Avg1 After models can be further improved 

by incorporating pressure-specific delays (Fig. 3.10). This suggests that including the 

different timescales of influence for the pressures is important for this period, and could 

improve the ability to forecast changes in the fish community. Even longer time delays 

could be beneficial because changes in some pressures may take more than five years to 

manifest in the fish community. For example, Daan et al. (2005) and Greenstreet et al. 

(2011) found that secondary effects of fishing could impact different size-based metrics 

of the fish community in the North Sea after lags of 6 - 12 years and 12 – 20 years, 
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respectively. However, while I showed that different mixed delays among the predictor 

set resulted in similar overall explanatory power, I also showed it could be worse. I 

therefore recommend that future investigations into suitable delays – and their 

mechanisms – should come from analysis of mechanistic models, which go beyond 

statistical relationships by including biologically relevant, measurable parameters.  

 

For all three periods (Full, Before, and After) and delay types and lengths, there was no 

one set of pressures that “best” predicted fish community status. Rather there was a range 

of sets, differing in number and type of indicators that had similar explanatory power 

(Appendix D, Tables S.1 – S.5). For example, there are two sets of 6-pressure Avg1 After 

models with only marginally different explanatory power; however, one includes two 

fishing indicators (pelagic landings and MTI) and four environmental indicators (all 

except S150; adjusted-R*+,-./  = 0.68), while the other includes all four fishing and two 

environmental (S150 and TimeIce; adjusted-R*+,-./  = 0.70). In many cases the same base 

indicators were used in most or all of the top sets (Fig. 3.5c; e.g., for ZD After: pelagic 

and shellfish landings and MTI), while other pressures improved the explanatory power 

by adding additional information. This is not to say that any set of nine pressures would 

have high explanatory power – I curated these pressures because I expected them to have 

measurable impacts on the Grand Bank fish community.  The point here is that pressure 

sets with similar predictive power may be comprised of different types of strategically 

selected data. This suggests that effects of many pressures occur for different ecological 

constituents, such that changes in fish functional group biomass can be directly predicted 

from different pressures. Therefore, if there was a lack of one type of pressure data, it 

may be possible to replace it with another type without compromising explanatory power. 

Furthermore, using a suite of models to predict future changes can provide a measure of 

uncertainty, much like the model ensembles used by the Intergovernmental Panel on 

Climate Change to forecast climate changes and associated impacts (Kirtman et al. 2013). 

 

Here I recognize the untreated autocorrelation in the predictors and responses that could 

affect the results. Calculation of the adjusted-R2 assumes uncorrelated error, because the 

number of independent observations is used to adjust the R2 (Equation 3.3). In the case of 

autocorrelated errors, the effective number of observations (n*) is less than the length of 
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the time series, i.e., n* < n (Priestley 1994). Accounting for n* could potentially change 

the relative ranking of the models in this analysis, and therefore the most influential 

predictors, because the fraction :Yl
:YmYl

  (in Equation 3.3) will not be the same for models 

with a different number of predictors (p). However, because larger p is also associated 

with higher R2, the changes in the model ranking would likely be small. Problems with 

autocorrelation can be dealt with by removing it (e.g., by differencing; Thompson and 

Page 1989); however, it was deemed inappropriate to do so for this study. Removing the 

autocorrelation would effectively remove trends from the data, which represent true 

signals that should be included in the model. I recommend that future analyses investigate 

the effect of autocorrelation on the adjusted-R2 when comparing models using different 

subsets of a predictor set. It may also be valuable to revisit the current problem of 

identifying the most influential pressures for the Grand Bank using time series analysis 

techniques to account for the autocorrelation (e.g., generalized least squares regression). 

 

Here I provided one case study of how MLR can be applied to learn about the Grand 

Bank ecosystem. Ultimately the best predictor set(s) for the Grand Bank and other 

ecosystems would depend on a number of considerations, including the final application 

of the model. Other considerations may include the responses of interest (i.e., if structure 

of the fish community were expanded to also consider length and/or biodiversity 

measures), the explanatory power for the individual responses (Fig. 3.6), data availability 

(e.g., types of indicators and length of time series), and costs of monitoring (e.g., data 

collection, database entry, analysis). As well as potentially varying with application-

specific criteria, best sets will likely be ecosystem-specific, and depend on the unique 

combination of exploitation history, oceanographic conditions, and ecological 

interactions. Finally, because ecosystems are dynamic and the types and intensity of 

pressures may change over time, the best predictor sets may differ for different time 

periods of the same ecosystem. Scientists and managers should be aware of this, and 

watch for declines in the ability of these sets to predict changes in the ecosystem. Here I 

offer a statistical approach that can be used with various types of data, and is suggestive 

of being easily calibrated to different systems. This could serve as a useful 

complementary tool that could help design modelling studies, plan field programs, and 

direct monitoring efforts. The synergistic use of statistical and mechanistic models to help 
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guide identification of the most informative pressures, their most influential time delays, 

and their mechanisms are important future research directions that could improve ability 

to forecast changes in the fish community, and implement appropriate management 

measures. 
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CHAPTER 4: APPLICATION OF NEURAL NETWORKS TO 
MODEL CHANGES IN FISH COMMUNITY BIOMASS IN 
RELATION TO PRESSURE INDICATORS AND COMPARISON 
WITH A LINEAR APPROACH3 
 

4.1 Abstract 
Neural networks (NN) are considered well suited to modelling ecological data, especially 

non-linear relationships, and were applied here to investigate which pressures best model 

changes in the fish community of the Grand Bank, Northwest Atlantic. Nine fishing and 

environmental pressures were used to simultaneously model the biomasses of six fish 

functional groups before and after the collapse of fish biomass in the region, and over the 

full data series. The most influential pressures were identified, and both the fit and 

predictive power were evaluated. The analysis was repeated with time delays of different 

lengths (0–10 years) and types (moving average vs. lags) imposed on the pressures. 

Results were compared to those of a similar analysis using a multivariate linear 

regression model. Both types of models showed different influential pressures before 

compared to after the collapse, but the MLR models generally resulted in better fit. NN 

potentially have useful forecast ability, although future work is required to improve the 

preliminary forecasts shown here before they can be directly used to inform management. 

I highlight new insights into the ecosystem function and contrast these analytical 

approaches in the context of ecosystem based fisheries management. 

 

4.2 Introduction 
Ecosystem based fisheries management (EBFM) is generally accepted by scientists, 

managers, and policy makers as necessary for promoting sustainable fishing and 

preventing future fisheries collapses (DFO 2007, Large et al. 2013, Bundy et al. 2016). 

EBFM will supplement traditional single species assessments by explicitly accounting for 

multiple pressures on the fish community (e.g., fishing and environmental conditions), as 

                                                
3Based on Dempsey, D. P., Pepin, P., and Koen-Alonso, M., and Gentleman, W. C. (In review). 

Application of neural networks to model changes in fish community biomass in relation to pressure 
indicators and comparison with a linear approach. 
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well as interactions among species (target and non-target). This requires a great deal of 

information on the ecosystem, which can be provided in part by indicators of these 

pressures and related biological responses. For example, fishing and the environment are 

both types of external pressures on marine fish communities. Fishing indicators include 

metrics of landings, effort, and fishing mortality, while environmental indicators include 

basin-scale metrics (e.g., North Atlantic Oscillation), regional conditions (e.g., bottom 

and surface temperature and salinity), and ecosystem-specific features (e.g., presence of 

sea ice). Biological indicators are metrics of the fish community, including biomass, 

mean trophic level, and size-based indices. Hundreds of such indicators have been 

proposed and vetted (Rice 2003, Cury and Christensen 2005), and significant effort has 

focussed on determining which biological ones are the most informative (Rice and 

Rochet 2005, Shin et al. 2010a). However, efforts to implement EBFM will benefit from 

further investigations into which sets of pressures can best model changes in the fish 

community, and ultimately forecast them (Jennings 2005, Ojaveer and Eero 2011, Large 

et al. 2015b). 

 

Identifying the most informative pressure indicators is inherently challenging because of 

the dynamic, multivariate nature of marine ecosystems. Although many studies have 

traditionally focussed on single pressure-response relationships, multiple pressures 

interact and can impact multiple ecosystem components, with cascading effects across 

different pathways, and the results are not necessarily additive (Large et al. 2013, 

Hunsicker et al. 2016). Identifying the most influential pressures is further complicated 

because their relationships to the changes in these components are often not well 

understood. Fishing and the environment as well as other pressures (e.g., predator-prey 

interactions) can result in non-linear responses (Daan et al. 2005, Hunsicker et al. 2016), 

but the functional form of these relationships is typically unknown. Hunsicker et al. 

(2016) found that pressure-response relationships should be assumed as non-linear, unless 

there is strong evidence of linearity. Despite the prevalence of non-linear ecosystem 

interactions, many methods used to study pressure-response relationships assume linear 

relationships (Blanchard et al. 2005, Fu et al. 2012, Probst et al. 2012, Dempsey et al. 

2018). Additionally, the relative importance of pressures may vary over time because of 

changes in management strategies, the balance of environmental conditions, and 
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biological interactions (Mann and Drinkwater 1994). A final difficulty in teasing out 

important relationships is that the fish community can have both immediate and delayed 

responses to changes in pressures. For example, immediate effects of fishing include 

increased mortality, while changes in size-based indicators and life history characteristics 

have been associated with fishing lagged up to 20 years (Daan et al. 2005, Greenstreet et 

al. 2011, Laugen et al. 2014). The impacts of environmental conditions on the fish 

community can be mediated through the food web; for example, pressures such as 

temperature and salinity can influence the timing of plankton production, which can 

result in a match or mismatch with the food sources of juvenile fish (Cushing 1969). Poor 

environmental conditions could therefore reduce survivorship of larval fish, which will 

affect the production rate of the stock when the cohort reaches maturity (Colbourne and 

Anderson 2003). 

 

To deal with these potential problems, the objective here was to use artificial neural 

networks (NN), which are non-linear, multivariate statistical models, to identify key 

pressures on the fish community of the Grand Bank, Northwest Atlantic over the past 

three decades (Fig. 4.1). NN are a type of machine learning inspired by the numerous 

connections among brain neurons, which allow humans and animals to solve complex 

problems (e.g., pattern recognition, classification; Jain et al., 1996). They can be 

considered a type of non-linear regression, although the parallels are not commonly noted 

in the literature, likely in part because of the jargon used to explain NN (Table 4.1; Sarle 

1994). They have been applied to a variety of problems in different fields (e.g., ecology, 

economics, epidemiology), including aquatic ecology and fisheries science (e.g., Lek et 

al. 1995, Chen and Ware 1999, Olden et al. 2006, Krekoukiotis et al. 2016). The main 

advantage of NN over traditional statistical approaches is that NN can implicitly model 

non-linear relationships between p predictors and r responses, i.e., the user is not required 

to specify the form of these relationships. Additionally, many studies have shown that 

NN have better fit (i.e., smaller error) and predictive power (i.e., ability to model out-of-

sample data) than traditional linear models (e.g., Lek et al. 1995, Chen and Ware 1999, 

Olden et al. 2006). 
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Table 4.1: Regression vocabulary and related neural network term (adapted from Sarle, 
1994). 

Regression Neural Network 
Independent variables Inputs 
Predicted values Outputs 
Dependent variables Targets/training values 
Residuals Errors 
Estimation Training/learning 
Observations Training pairs 
Parameter estimates Weights 
Regression Supervised learning 
Interpolation and Extrapolation Generalization  

 

The Grand Bank, within Northwest Atlantic Fisheries Organization (NAFO) statistical 

division 3LNO, is one of the major subunits of the Newfoundland-Labrador shelf, which 

extends from the Canadian exclusive economic zone (EEZ) into international waters (Fig. 

4.1; NAFO 2014). This region and the adjacent division (2J3K) were among the most 

productive fishing grounds in the world for centuries, with global fisheries for many 

species including Atlantic cod and yellowtail flounder (Rose 2007). Fisheries 

management responsibilities are split between Fisheries and Oceans Canada (DFO; inside 

the EEZ) and NAFO (outside the EEZ). Quotas were set for each commercial stock 

through the 1980s, although sustainable exploitation rates were over-estimated, and these 

limits were ignored by some vessels (Rose 2007). By the 1990s, the heavy fishing 

pressure combined with poor environmental conditions resulted in extensive ecological 

changes, including declines in total fish biomass commonly called the “collapse of the 

cod,” although other species were also impacted (e.g., Atkinson 1994; NAFO 2010). In 

response to these changes, groundfish moratoria were enforced in 3LNO in 1994, and 

harvesters began targeting different species, for example northern shrimp (Pandalus 

borealis) and snow crab (Chionoecetes opilio; also called queen crab). Many of these 

moratoria remain in place (NAFO 2017), and both DFO and NAFO are currently working 

towards implementing ecosystem approaches to management (Oceans Act 1996, NAFO 

2010a, Koen-Alonso et al. 2018). Despite these efforts, the total fish biomass recovery is 

slow, and the structure of the ecosystem has shifted from piscivore dominated to include 

more species at lower trophic levels (Pedersen et al. 2017). 
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Figure 4.1: Map of the study area, showing the Grand Bank (NAFO Division 3LNO), 
Station 27, and the Canadian exclusive economic zone (dashed line). 

 

For this analysis, the fish community was represented by the biomass indices of six fish 

functional-feeding groups, which reflect the collapse and partial recovery of the total fish 

biomass, and changes in the trophic structure (Dempsey et al. 2017). Key pressures were 

selected from a suite of four fishing and five environmental indicators considered 

representative of pressures in the region (Dempsey et al. 2017). The fishing pressures 

capture the decrease in total landings throughout the 1980s, and the subsequent increase 

in shellfish landings. The environmental pressures reflect the change in conditions before 

and after the mid-1990s, which have been referred to as a regime shift (e.g., Buren et al. 

2014). A recent analysis of these pressures and fish community responses on the Grand 

Bank using a multivariate linear regression (MLR) model showed that explanatory power 

was higher before the collapse, and that the most influential pressures were different 

before vs. after the collapse (Dempsey et al. 2018). Here I build on this earlier work by 

applying a more flexible, non-linear model, extending the delay analysis to include more 

years of historical data, and providing a preliminary assessment of the forecast potential 

of NN. This analysis will add to the current knowledge of the region, while 

demonstrating the value of a potentially powerful tool that could be applied by scientists 

and managers to other regions. Finally, I compare the results of the linear and non-linear 
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models, with the goal of highlighting advantages and disadvantages of the two methods 

in an EBFM context.  

 

4.3 Methods 

4.3.1 Indicators 

The indicator time series used in this analysis were synthesized and used to assess linear 

pressure-response relationships on the Grand Bank in Chapters 2 and 3 (Dempsey et al. 

2017, 2018). Below I present a general overview of these indicators, and refer interested 

readers to Chapter 2 (Dempsey et al. 2017) for more details. Fish community indicators 

are annual values from 1985 – 2013, and pressure indicators extend back to 1975 for use 

with the time delay analysis (described below).  

 

4.3.1.1 Fish community indicators 

The fish community was represented by the mean annual biomass indices of six fish 

functional-feeding groups (NAFO 2010a, 2014, Dempsey et al. 2017, 2018). The biomass 

indices are the sum of the random stratified mean biomass per tow for core strata of all 

species included in each functional group (Fig. 4.2), as measured by the DFO spring 

bottom trawl surveys for Division 3LNO (Fig. 4.1). The survey gear changed in 1996 

(McCallum and Walsh 1997), so appropriate scaling factors were applied to the biomass 

indices prior to this year such that the “Full” historical time series of survey data (1985 – 

2013) could be analyzed (Koen-Alonso, unpublished work). I also analyzed each period 

separately, partly to avoid using scaling factors, but more importantly to investigate 

differences “Before” (1985 – 1995) and “After” (1996 – 2013) the collapse of fish 

biomass in the region, which occurred approximately coincident with the gear change 

(Dempsey et al. 2018). 

 

Large benthivores, medium benthivores, and piscivores were highly correlated 

(Spearman’s correlation coefficient > 0.6) Before (i.e., “during”) the collapse, when their 

biomasses decreased rapidly (Fig. 4.2). Planktivore biomass spiked in the mid-1980s, and 

then decreased for the remainder of this period (highly correlated with medium 

benthivores and piscivores). In contrast, small benthivore biomass increased, and plank-

piscivores had no trend. In the After period, large and medium benthivores were still 
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highly correlated, with recovering biomasses. Piscivores and plank-piscivores were also 

highly correlated, with increasing biomasses from the mid-2000s. Small benthivore 

biomass decreased overall, while planktivores had no trend (Fig. 4.2). 

 
Figure 4.2: Functional group biomass indices (logged and linearly mapped to [0, 1]) used 
as responses in this analysis. The thick dashed line indicates the beginning of the After 
period. 

 

4.3.1.2 Fishing and environmental pressures 

I used the same four fishing and five environmental pressures investigated in Chapter 3 

(Dempsey et al. 2018) so I could compare the most influential pressures identified with 

the MLR to those highlighted by the NN (Table 4.2; Fig. 4.3). In general, the fishing 

pressures were highly correlated over the Full and Before periods, while the 

environmental pressures were not highly correlated with any pressures for any period. 

Total and pelagic landings decreased overall from the late 1970s until the mid-1990s, but 

have no trend in the After period. In contrast, shellfish landings increased over the Full 

period, due in part to the shift in target species after the groundfish moratoria (Schrank 

2005, Dempsey et al. 2017), but have been declining since the mid-2000s. The mean 
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trophic index (MTI) increased in the late 1970s until the mid-1980s, and then until the 

mid-1990s, but has no trend After the collapse. Sea surface temperature (SST) was the 

only environmental pressure with clear trends, and it has been generally increasing since 

1991. Sea surface salinity (SSS) and bottom salinity decreased overall from the mid-

1970s until the early 1990s, and showed high inter-annual variability. This variability was 

smaller After the collapse, but there were no clear trends. The NAO was well above its 

average in the early 1990s, which has been related to the cooler and fresher water at this 

time (Fig. 4.3, panels E – H; Buren et al. 2014). The timing of the sea ice melt (TimeIce) 

had no trends, but had higher variability After the collapse (Fig. 4.3).  
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Table 4.2: Pressure indictors used as predictors in this analysis. 

Pressure Definition Relevance  

Total landings Sum of reported groundfish, 
pelagic, shellfish, and “other” 
species landings 

Metric of fishing pressure on the 
entire community 

Pelagic landings Reported landings of pelagic 
species  

Dominated by capelin, a key 
forage species 

Shellfish 
Landings  

Reported landings of shellfish  Dominated by snow crab; 
indicative of changing fishing 
practices after the 1994 moratoria 

Mean trophic 
index (MTI) 

Mean trophic level of the landings 
weighted by the biomass of 
species landed. Only includes 
species with trophic level ≥ 3.25 

Indicative of changing target 
species as harvesters adapt to 
changes in fishing technologies, 
the ecosystem, and end markets  
(Caddy and Garibaldi 2000) 

North Atlantic 
Oscillation 
(NAO) 

Index of basin scale atmospheric 
circulation patterns  

Related to wind, salinity, 
temperature, and sea ice; linked to 
fish biomass collapse 
(Halliday and Pinhorn 2009) 

Sea surface 
temperature 
(SST) 

Average annual surface 
temperature measured at Station 
27 

Local environmental condition, 
related to fish growth; linked to 
fish biomass collapse (Halliday 
and Pinhorn 2009) 

Sea surface 
salinity (SSS) 

Average annual surface salinity 
measured at Station 27 

Local environmental condition; 
linked to water column 
stratification and production of 
lower trophic levels (Greene et al. 
2013) 

Bottom Salinity Average annual salinity at a depth 
of 150 m measured at Station 27 

Local environmental condition; 
linked to productivity (Dutil and 
Brander 2003) 

Timing of sea ice 
melt (TimeIce) 

The day the sea ice edge reaches 
the southernmost most latitude on 
the Newfoundland-Labrador shelf 
in a given season 

Proxy of the timing of the spring 
phytoplankton bloom (no other 
suitable measures of 
phytoplankton 
biomass/productivity were 
available over the required 
timescales; Wu et al. 2007) 
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Figure 4.3: Pressure indicators used as predictors in this analysis. Fishing indicators: (A) 
– (D); Environmental indicators: (E) – (I). The unshaded area represents the zero delay 
pressures; the shaded area represents the additional data used in the time delay analysis. 
The thick dashed line indicates the beginning of the After period. 

 

4.3.2 Neural Networks: Overview 

4.3.2.1 Structure 

The most common type of NN for regression problems is the feed-forward multi-layer 

perceptron (MLP) with one hidden layer, which is considered sufficient to approximate 

any continuous function (Hornik et al. 1989, Olden and Jackson 2001). I refer readers 
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interested in other types of NN to the text of Ripley, 1996. The basic units of a NN are 

nodes (also called neurons), which are arranged into three layers: an input layer with p 

nodes (one for each predictor), a hidden layer with h nodes (user-specified), and an 

output layer with r nodes (one for each response; Fig. 4.4). The number of nodes in each 

layer describes the architecture (also called the structure) of the NN. Each node connects 

to all of those in the adjacent layer, and the strength of the connections is given by 

weights. Each node in the hidden layer sums the weighted predictor values and a bias 

weight (similar to the intercept term in linear regression), and then transforms the data 

through a continuous, differential activation function (also called a transfer function), 

usually a logistic function (Jain et al. 1996, Basheer and Hajmeer 2000; Appendix E.1). 

The results from each hidden node are treated similarly (i.e. multiplied by their associated 

weights, summed with a bias, and transformed through an activation function) in each 

output node (Equation 4.1; Olden and Jackson, 2001): 

 

𝑦2u = 	∅IJKv𝛽u + ∑ 𝑤Au ∗	z
A{l ∅FGH(𝛽A +	∑ 𝑤GA ∗ 𝑥G)

}
G	{l ~                  (4.1) 

 

Here, 𝑦2u are the modelled output (i.e., response) values, xi are the predictor values, wij are 

the weights from input node i to hidden node j, 𝛽A is the bias associated with hidden node 

j, and ∅FGH is the activation function in the hidden nodes. Similarly, wjk are the weights 

from hidden node j to the output node k, 𝛽u is the bias associated with output node k, and 

∅IJK is the activation function in the output nodes. 
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Figure 4.4: Illustration of neural network structure, with one input node for each 
predictor, xi, one output node for each modelled response, y23, and h hidden nodes. Each 
node is connected to all of the nodes in the next layer by weights; biases are associated 
with each hidden and output node (similar to regression y-intercept). Subscripts “HN” 
and “ON” refer to weights/biases from the input nodes to hidden nodes, and the hidden 
nodes to output node, respectively. 
 

4.3.2.2 Training  

The fitting procedure is called “training,” and the NN is often described as learning 

patterns in the data (Jain et al. 1996). The most common training algorithm is 

backpropagation, which minimizes an error function by iteratively adjusting the initial 

weights based on the gradient of the error function (i.e., gradient descent; Rumelhart et al. 

1986). Initial weights are assigned randomly with small values to improve the probability 

and speed of convergence (Bishop 1995). As with other non-linear regression algorithms, 

backpropagation is sensitive to the initial conditions (weights), and may converge on a 

local minimum. An ensemble model approach is recommended to address these 

problems, where the NN is trained multiple times with different initial weights (but the 

same architecture), and the average results are reported (e.g., Zhou 2003, de Ona and 

Garrido 2014). Other training parameters include the learning rate and momentum, which 

increase the rate of convergence while avoiding local minima (Bishop 1995, Günther and 

Fritsch 2010). There are several options for stopping criteria, including defining a 

minimum error threshold.  
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The magnitude and sign of the final weights describe the connections between the 

predictors and responses. In this sense, they are similar to regression coefficients, 

although their interpretation is complicated by the need to consider the input-hidden and 

hidden-output connections, as well as the backpropagation algorithm’s sensitivity to the 

initial weights. Several methods for using the final weights to rank the importance of the 

predictor variables have been proposed and applied in different disciplines (Garson 1991, 

Goh 1995, Olden and Jackson 2002). Other techniques, including sensitivity analyses 

(e.g., Lek et al. 1996) and partial derivatives (e.g., Dimopoulos et al. 1999), have also 

been used for this purpose. There is no consensus on which way is the best for ranking 

variable importance; however, de Oña and Garrido (2014) examined four different 

methods and showed they give similar results when an ensemble approach is used. 

 

The number of nodes in the hidden layer is specified by the user, and can affect the fit, 

out-of-sample predictions, training duration, and predictor importance (e.g., Basheer and 

Hajmeer 2000). The hidden layer gives the NN its flexibility by introducing non-linearity 

through the activation functions (Sarle 1997). Increasing the number of hidden nodes will 

improve the fit to the data used for training; however, too many hidden nodes will allow 

the NN to model the noise rather than the signal. This is called over-fitting the data, and 

generally results in poor predictions on out-of-sample data. Too few hidden nodes will 

under-fit the data, which also results in poor predictive performance (Appendix E.2). 

Despite the importance of this modelling decision, there are no stringent rules for 

choosing the number of hidden nodes, and many authors use a trial and error approach 

(e.g., Ozesmi and Ozesmi 1999, Heiat 2002; Appendix E.1). The model is generally 

trained on a subset of data and tested on the remaining observations, and a separate 

goodness of fit metric is calculated for the training and test data. The model should 

perform suitably well on the test data for the NN to be considered “general enough,” with 

the threshold determined by the user. n-fold cross validation (as described below) is 

commonly used to evaluate the predictive performance because it has been shown to 

provide unbiased estimates, unlike other data splitting methods (Olden and Jackson 

2000). In general, a small number of hidden nodes should be used to improve 

generalization and reduce training time (Ozesmi and Ozesmi 1999).  
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Finally, the scaling of predictors and responses prior to use in the NN can impact the 

training, results, and interpretation of the model (Bishop 1995, Sarle 1997). While not 

strictly necessary from a theoretical perspective, the predictors should be standardized to 

a similar measurement scale (e.g., z-score: subtract mean and divide by standard 

deviation). Such scaling can speed up convergence of the gradient descent in the 

backpropagation algorithm (Sarle 1997), reduce numerical errors due to computation with 

finite precision, and facilitate interpretation of the final weights for predictor contribution 

analyses (similar to analysis of regression coefficients; Olden and Jackson 2001; Ozesmi 

and Ozesmi 1999). The response variables should be scaled to reflect their relative 

importance. If they are all equally important, the outputs should be scaled to the same 

range (often [0,1], see Appendix E.1) or standard deviation so that the NN does not spend 

effort learning the one with the highest values to the exclusion of the others (Basheer and 

Hajmeer 2000). Table E.1 in Appendix E.1 lists the modelling decisions (e.g., number of 

hidden nodes, training/testing procedures, scaling) and rationale (where discussed) for 

applications of NN, with a focus on regression-type problems in marine ecology. 

 

4.3.3 Neural Networks: Application 

4.3.3.1 Zero Delay Analysis 

I used a one hidden layer feedforward MLP trained by resilient backpropagation with 

weight backtracking (Joy and Death 2004, Fritsch and Guenther 2012). The predictors 

were the nine pressures (Table 2; Fig. 4.3), centered and scaled by their respective mean 

and standard deviation. The responses were the biomass indices of the six fish functional 

groups, logged to account for the skewed nature of trawl biomass, and then linearly 

mapped to the interval [0,1] (Fig. 4.2). I chose a sigmoidal logistic function for the hidden 

nodes (Fig. 4.5; Equation 4.2), one of the most common choices of activation function 

(Appendix E.1). The output nodes had a linear activation function, which is 

recommended for regression problems where the response is unbounded (Sarle 1997, 

Palacz et al. 2013).  

 

𝑓(𝑥) = l
lÄÅÇÉ

           (4.2)  
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Figure 4.5: The sigmoidal logistic function, a common choice of activation function. 
Applied in the present analysis as the activation function in the hidden nodes. 

 

I used the sum of squared errors (SSE; Equation 4.3) as the error function (another 

common choice; Appendix E.1), where n is the number of observations, the 𝑦A are the 

observed values, and the 𝑦2A are the modelled values. Finally, the maximum number of 

iterations was set to 104, and all models converged. All NN were trained and tested using 

the neuralnet package in R (Günther and Fritsch 2010, Fritsch and Guenther 2012, R 

Core Team 2015). 

 

		𝑆𝑆𝐸 = 	∑ _𝑦A −	𝑦2Ad
/Ü

A{l            (4.3) 

 

An n-fold cross validation procedure was used to inform the decision of the number of 

hidden nodes to include for each time period, and to assess the predictive power (i.e., 

ability to model out-of-sample data) of each model (Zhou 2003). I chose n-fold cross 

validation over other procedures based on the recommendation in Olden 2000, and 

because preliminary attempts at block validation showed the results were highly sensitive 

to the number of observations in each block. First, the network was trained on n – 1 

observations, and tested on the remaining one. This was repeated n times, such that each 

observation was used as test data, and an average goodness of fit for both the training and 

test data was recorded. To address the potential variability caused by choosing different 

initial weights, I used a model ensemble approach (e.g., Zhou 2003, de Ona and Garrido 

2014, Krekoukiotis et al. 2016). The training procedure was repeated with 35 different 

sets of initial weights (following Krekoukiotis et al. 2016), assigned randomly from a 

0.0

0.2

0.4

0.6

0.8

1.0

Lo
gi

st
ic

 F
un

ct
io

n

−5 −4 −3 −2 −1 0 1 2 3 4 5
Index



 

 
74 

uniform distribution on the range of [-0.3, 0.3] (Lek et al. 1995, Aoki and Komatsu 

1997). The range and average mean squared error (MSE; Equation 4.4) of the 35 trials for 

both the training data (MSE777777*8-9:) and the test data (MSE777777*;<,) were recorded. This 

procedure was performed with 1 to 10 hidden nodes, and I chose the number that 

minimized MSE777777*;<, for each period. Differences in MSE > 0.050 were considered 

“notable.”  

 

𝑀𝑆𝐸 = 	 l
Ü
∗ 𝑆𝑆𝐸      (4.4) 

 

To assess the relative importance of each predictor, I trained an ensemble using the 

optimal number of hidden nodes and all of the observations, where each ensemble 

consisted of 35 models trained with different initial weights (Krekoukiotis et al. 2016). 

The percent contribution of each predictor to each response was evaluated for each 

ensemble using the product of connection weights method (PCW; Olden and Jackson 

2002, Olden et al. 2004), modified for multivariate responses and an ensemble method. 

PCW performed the best in a previous comparison of different methods for quantifying 

variable importance in NN (Olden et al. 2004), and preserves the sign of the relationship 

between variables (i.e., signifies the nature of the relationship like the correlation 

coefficient in linear regression; Olden and Jackson 2002, Olden et al. 2004). The PCW 

assigns a relative importance (RI) for a given predictor-response pair by summing 

together the product of the input-hidden and hidden-output weights for all hidden nodes. 

Because this method assigns a relative importance to the input variables, the raw RI 

values should not be compared between models (Beck 2016). To use this method with the 

ensemble approach, I converted the RIs to percent contributions, and then reported the 

average value over the ensemble (Olden et al. 2006). To calculate the percent 

contribution of predictor i to response j, I divided RIi,j (RI of predictor i to response j) by 

the total contribution to response j (sum of the absolute values of the RI of each predictor 

to response j; Equation 4.5): 

 

%𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛G,A = 	
∑ àâ,ä∗àä,ã
å
ägh

∑ çéè(∑ àê,ä∗àä,ãå
ägh )ë

êgh
∗ 100% = ìîâ,ã	

∑ çéè_ìîê,ãd
ë
êgh

∗ 100%   (4.5) 
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where h is the number of hidden nodes and p is the number of predictors. I considered a 

predictor to be “influential” if it had an average percent contribution >10.0% for at least 

three of the functional groups. The raw RI values were calculated using the 

NeuralNetTools package in R (Beck 2016); %Contributions were calculated using 

original script written in R Version 3.2.0 (R Core Team 2015). 

 

For a NN with only 1 hidden node, a given predictor will have the same magnitude 

contribution to each response (although the sign can differ). This is because w1,o (the 

weight from the single hidden node to the given output) can be factored out of the 

numerator and denominator of Equation 4.5, leaving only:  

 

%𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛G,A = 			
àâ,h

∑ çéè_àê,hd
ë
êgh

∗ 100%    (4.6) 

 

which does not depend on the output of interest. However, because the sign of the 

contribution can be different, there may be some discrepancy in the contributions to each 

response over the entire ensemble. 

 

4.3.3.2 Delay Analysis 

I repeated the analysis using two different methods of incorporating delays in the 

predictors: moving averages and lags (Dempsey et al. 2018), and considered delay 

lengths from k = 1 to k = 10 years (Appendix E.2), based on the recommendation in 

Chapter 3 (Dempsey et al. 2018). The delay type and length for which each pressure has 

maximum impacts on the fish community is unknown, and so I chose to impose the same 

delay on each pressure in a given model (Chen and Ware 1999). Avgk refers to the set of 

moving average predictors at delay length k (values calculated as the average of the 

current year and the previous k years), while Lagk refers to the set of lag predictors at 

delay length k (values shifted forward k years). These methods did not reduce the length 

of the time series because the predictors have longer historical data records than the 

responses (Fig. 4.3). “Zero delay” (ZD) refers to the original (k = 0) predictors. 
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4.3.3.3 Forecast Ability 

The predictive power of the n-fold cross validation provides an estimate of how well the 

model will perform on out-of-sample data and can be roughly interpreted as a metric of 

the model’s ability to forecast. To further investigate the forecast ability, I separated the 

observations into training data (first 24 years) and test data (remaining 5 years). The NN 

ensemble was fit using the training observations (with the predictors standardized and 

responses linearly mapped to the interval [0,1] as above), and then used to predict the test 

data response matrix. Each column of the test data predictor matrix was standardized (i.e., 

“centered” and scaled) using the mean and standard deviation of the corresponding 

column of the training predictor matrix. Similarly, the mapping of the test data response 

matrix was based on the maximum and minimum values of the corresponding column 

from the training matrix. Note that this can result in response test values outside of the 

range [0,1] if the maximum or minimum observation occurs in the test data. 

 

To compare the n-fold and forecast models, I calculated the MSE777777*;<, for each functional 

group from the observed values and the average predicted values from the ensemble for: 

(i) all values of the n-fold procedure, (ii) the last 5 years of the n-fold procedure (nfold-

5), and (iii) the 5 test values of the forecast model (forecast-5).  

 

4.4 Results  
4.4.1 Zero delay 

4.4.1.1 n-fold cross validation 

As expected, the MSE777777*8-9: decreased as the number of hidden nodes increased for each 

period, reaching nearly zero (MSE777777*8-9: < 0.01) with 9 nodes for Full, 5 for Before, and 7 

for After (Fig. 4.6). The range of MSE777777*8-9: over the ensemble was negligible in all cases 

(range < 0.05). The MSE777777*;<, were more variable, and were all higher than the 

corresponding MSE777777*8-9: (Fig. 4.6). The MSE777777*;<, for the Full period were lower than most 

of those for the other periods, suggesting that models constructed for the Full period have 

better predictive power. The Full MSE777777*;<, was minimized with 2 hidden nodes, although 

1 hidden node was not notably worse. The MSE777777*;<, for both the Before and After periods 

was minimized with only 1 hidden node.  
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Figure 4.6: n-fold cross validation results for each period using zero delay predictors: 
mean (points) and range (lines) of the MSE777777*8-9: and MSE777777*;<,	 for a given number of 
hidden nodes. (A) Full period, (B) Before and (C) After the collapse. Note that the range 
of  MSE777777*8-9: is so small that is not visible at this scale. 
 

4.4.1.2 Predictor Contributions 

For the Full period predictor contribution analysis, I first trained an ensemble with 2 

hidden nodes, and then repeated the analysis with 1 hidden node to test the sensitivity of 
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the results (Figs. 4.6A and 4.6B). The 2-hidden node ensemble highlighted four 

influential variables: total, pelagic, and shellfish landings, and bottom salinity (Fig. 

4.7A). Total landings had positive relationships with large and small benthivores and 

negative relationships with the other functional groups, while the remaining influential 

pressures had positive relationships with all of the functional groups except small 

benthivores. The 1-hidden node ensemble also highlighted three fishing pressures, 

although pelagic landings was replaced by MTI. Two different environmental pressures 

were included: NAO and TimeIce (Fig. 4.7B). These results suggest that the most 

influential pressures are sensitive to the number of hidden nodes. 

 

The Before period had similar influential pressures as the Full period trained with 2 

hidden nodes: total landings, shellfish landings, SST, and bottom salinity (Fig. 4.7C). 

Total landings and bottom salinity had negative relationships with small benthivores and 

plank-piscivores, and positive relationships with the other functional groups; shellfish 

landings and SST had the opposite relationships. Shellfish landings was the only pressure 

also highlighted for the After period, and it had opposite relationships to most functional 

groups in the two periods. Four other pressures were considered influential for the After 

period: pelagic landings, MTI, NAO, and SSS (Fig. 4.7D). SSS had a positive 

relationship with small benthivores, and negative relationships with the other functional 

groups. In contrast, the other influential predictors had positive relationships with all of 

the functional groups except small benthivores. 
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Figure 4.7: Average percent contributions of each ZD predictor to each functional group. 
The thick dashed line indicates average contribution of 10%. (A) Full period, 2 hidden 
nodes; (B) Full period, 1 hidden node; (C) Before period, 1 hidden node; (D) After 
period, 1 hidden node. 
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4.4.2 Delay Analysis 

4.4.2.1 n-fold cross validation 

Models with 1 hidden node resulted in the minimum MSE777777*;<, (or an MSE777777*;<, not notably 

different from the minimum) in most cases of the n-fold cross validation procedure with 

delayed predictors (not shown). For consistency, the delay models analyzed here are 1-

hidden node ensembles (Zhou 2003).  

 

There were no notable differences in MSE777777*8-9: within a given period for any type or 

length of delay, and very few between the periods (Fig. 4.8A). The similarity of the 

MSE777777*8-9: across types and lengths of time delays illustrates the ability of small NN to 

extract patterns from differing inputs to fit the same responses. Differences in MSE777777*;<, 

were more prevalent, and the Avg models generally had better MSE777777*;<, than the Lag 

models for a given period and delay length.  
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Figure 4.8: (A) – (C) MSE777777*8-9: and (D) – (F) MSE777777*;<, from the cross validation 
procedure of models with delayed predictors (1 hidden node). Note the difference in scale 
between the left and right columns. 

 

4.4.2.2 Predictor Contributions 

Here I describe the predictor contribution results from the “best” models, which I 

consider as the delay lengths resulting in MSE777777*;<, that were not notably different than the 
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lowest MSE777777*;<, within each period and delay type. I summarized the results for each 

period in a single figure (Fig. 4.9). 

 

For the Full period, none of the moving average models were notably different than the 

best model (Fig. 4.8A), although different influential pressure sets were highlighted for 

each delay length (Fig. 4.9A). Overall, more fishing than environmental pressures were 

included, with shellfish landings being the most frequent, followed by total landings and 

the MTI. Only fishing pressures were highlighted at two delay lengths (Avg4 and Avg5). 

Salinity (surface and bottom) and TimeIce were the most frequent environmental 

pressures. The best Lag models for the Full period were Lag1, which highlighted two 

fishing pressures, and Lag2, which highlighted one additional fishing and environmental 

pressure (Fig. 4.9A). The best Before Avg models were Avg1, Avg3, Avg4, and Avg5 

(Fig. 4.7B), and more environmental pressures were influential (Fig. 4.9B). NAO was 

included in all four models, and SST included in three. Avg5 included only 

environmental pressures. In contrast, fishing pressures were more frequent in the best Lag 

models for this period (Lag2, Lag6, and Lag9). Lag6 and Lag9 included only fishing 

pressures, while Lag2 included two fishing pressures, and one environmental. For the 

After period, the ZD models had the lowest MSE777777*;<, (Fig. 4.8C), which was notably 

better than all delay types and lengths. Disregarding ZD, the best Avg models included a 

broad range of delay lengths (Avg3, Avg4, Avg6, Avg10). These models all highlight 

both fishing and environmental pressures, with total landings included in all four (Fig. 

4.9C). The best Lag models were Lag4, Lag5, and Lag6 (Fig. 4.8C), which also 

highlighted both fishing and environmental pressures, with shellfish landings included in 

all three (Fig. 4.9C). The inclusion of both fishing and environmental pressures for most 

of the best delay models over the Full period and each period separately suggests that 

both top-down and bottom-up pressures are measurably impacting the fish community in 

this region. Additionally, the results suggest that pressures can be manifest in the fish 

community on short (i.e., “immediate”) and longer time scales (up to 10 years based on 

this analysis). 
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Figure 4.9: Most influential pressures for the ZD and best delay models for each period. 
Orange shading indicates influential fishing pressures; green shading indicates influential 
environmental pressures. (A) Full period; (B) Before period; (C) After period. Note that 
“land” and “S_bottom” stand for “landings” and “bottom salinity,” respectively. 

 

4.4.3 Reduced Models 

I compared MSE777777*8-9: and MSE777777*;<, of models using all predictors (9-predictor models) to 

those using only the most influential predictors (reduced models; Fig. 4.10) for the ZD 

and best delay models. For all three periods and delay types, the difference between 

MSE777777*8-9: of the 9-predictor and the reduced models was negligible (Appendix E.2). The 

same was true for the MSE777777*;<, for the Full period, and most Before models (Fig. 4.10). In 

contrast, for the After period the reduced models were either notably better or not notably 

different than the corresponding 9-predictor models.  
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Figure 4.10: MSE777777*;<, of the best delays for each period. Dark grey represents the models 
trained with all predictors; light grey represents the models trained with the reduced 
predictor set (i.e., only the most influential pressures for the given delay). (A) Full period; 
(B) Before period; (C) After period. Faint shaded box indicators the moving average 
models (to differentiated from ZD and lag).  

 

4.4.4 Forecast Potential 

To include the maximum number of observations for training, I assessed the forecast 

potential using the Full period (ZD, 2 hidden nodes, all pressures). The n-fold cross 

validation showed that the model was able to capture the general trends in each functional 

group, although there were some obvious discrepancies (e.g., in the early 1990s for large 

benthivores and piscivores; Fig. 4.11A). The main exception was plank-piscivores, for 

which the model had difficulty predicting the inter-annual variability. The 5-year forecast 

model also performed poorly for the plank-piscivores, underestimating the biomass by 

about 50% for each year, perhaps because the test observations were near or above the 
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maximum value included in the training data. The forecasts were variable for the other 

functional groups, under-estimating piscivore biomass for several years, over-estimating 

small benthivore biomass, and predicting planktivore biomass noticeably well.  

 

In general, the MSE777777*;<, of the n-fold cross validation was not notably different than the 

MSE777777*;<,  of the nfold-5 or forecast-5 for a given functional group (Fig. 4.12). The sole 

exception was plank-piscivores, for which the n-fold MSE777777*;<, was notably worse than 

that of the nfold-5, but notably better than that of the forecast-5. Note that MSE777777*;<,  

comparisons among functional groups should be made with caution because the error 

represents a different fraction of total sum of squares for each functional group. Here, 

some general observations can be made that are supported by visual observations from 

Fig. 4.11. For example, plank-piscivores were modelled relatively poorly, while large 

benthivores were modelled relatively well. 
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Figure 4.11: (A) Average and standard deviation of the test values of the n-fold cross 
validation predictions for each functional group over the Full period using ZD predictors 
(2 hidden nodes). (B) Average and standard deviation of predictions for the last five years 
of data for each functional group using ZD predictors (2 hidden nodes). 
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Figure 4.12: Mean squared error of the predictions for each functional group over the Full 
period using ZD predictors for the three prediction cases. (Lbenth = large benthivores; 
Mbenth = medium benthivores; Sbenth = small benthivores; Pisc = piscivores; PP = 
plank-piscivores; Plank = planktivores.) 

 

4.5 Discussion 
The cause of the collapse of groundfish biomass on the Newfoundland-Labrador shelf has 

been highly debated, particularly for commercially important species such as cod. Some 

authors conclude that fishing pressure was the main cause of the collapse (Myers et al. 

1996, 1997), while others argue that the poor environmental conditions played a larger 

role (e.g., Parsons and Lear 2001, Rothschild 2007, Halliday and Pinhorn 2009). Still 

others have shown that the combination of heavy fishing and harsh environmental 

conditions were necessary for the pervasive changes that occurred in the region (e.g., 

Mann and Drinkwater 1994, Koen-Alonso et al. 2010b, Dempsey et al. 2018). The 

findings here support the latter theory by highlighting both fishing metrics and 

environmental conditions as influential pressures Before (i.e., during) the collapse (Fig. 

4.9B). The functional groups have been recovering at different rates After the collapse, 

such that the community biomass is now more evenly spread over several groups, rather 

than being piscivore-dominated (e.g., Dempsey et al. 2017). This has been described as 

an ecologically different period than Before the collapse (Buren et al. 2014, Dempsey et 

al. 2017, 2018). The analysis supports this description by highlighting different 

influential pressures for each period (Fig. 4.9).  
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For the Before and Full periods, models with delayed pressures were the best overall, 

although the ZD models were not notably different. In apparent contrast, the ZD model 

had the best predictive power for the After period, and was notably better than all of the 

other delays (for the 9-predictor models; Fig 4.7C). This suggests that post-collapse, the 

primary impacts of the pressures were manifest in the community on very short 

timescales (<1 year), for example through fishing activity, which has an immediate effect 

by directly removing biomass. Pelagic and shellfish landings and MTI were all 

considered influential at this time, pointing to continued fishing in the region as a 

significant immediate pressure on the community. However, the reduced models for this 

period suggest that there are also significant delayed impacts on the community. Most of 

the After reduced models improved the predictive power significantly (compared to 

models with all pressures), such that their MSE777777*;<, was not notably different from the ZD 

model (Fig. 4.10C). This is a non-intuitive result and implies that pressures included in 

the full suite misdirected the model. MTI, NAO, and bottom salinity were not included in 

most of the After period reduced models, suggesting they represent signals that weaken 

the predictive power of the NN for this period. This is an interesting result, particularly 

for NAO, which was considered an influential pressure for the ZD After ensemble and for 

most of the best Before delay ensembles. It suggests that the fish community was less 

dependent on basin-scale processes in the After period, and highlights the differences 

between the two periods. Together, the results for all three periods suggest that a 

combination of current and past pressures influence the fish community on the Grand 

Bank, and illustrate the complexity of teasing them apart. Future analyses could explore 

incorporating both ZD and delayed pressures into the same model, which could 

potentially improve the fit and predictive power (Mann and Drinkwater 1994).  

 

Shellfish landings was the only common influential ZD pressure for the Before and After 

periods, and it was included in most of the best delay models for all three periods. This 

supports and adds to the findings of the MLR, which also identified shellfish landings as 

an important predictor for the After ZD and several Before and After delay models. This 

is a curious result because the community shellfish biomass index – which one would 

expect to be the primary correlate – was not included as a response for any of these 

analyses. To investigate, I review some historical changes in shellfish landings that are 



 

 
89 

not explicitly reflected by the pressure indicator. There are three main types of shellfish 

landed on the Grand Bank (Fig. 4.12): snow crab and Pandalus shrimp, which are mainly 

caught in the more northern region of the study area, and clams (plus other molluscs), 

which are mainly harvested in the more southern region. Throughout the 1970s and 

1980s, most of the fishing effort in the region targeted groundfish. Shellfish landings 

were limited, and consisted mainly of snow crab caught in baited traps (DFO 2010). 

Snow crab landings increased until the late 1990s, and it continues to be the most landed 

shellfish species by biomass. Hydraulic dredging of clams began in the late 1980s, and 

there have been two main peaks in these landings: one from 1990 – 1996, and a smaller 

one from 2001 – 2006 (Fig. 4.12). After the groundfish moratoria in 1994, many 

harvesters began targeting shrimp using bottom trawls, and total shellfish landings 

continued to increase, as reflected by the indicator (Fig. 4.3). Shrimp landings increased 

rapidly throughout the 2000s, but have declined since 2010, and the fishery was closed in 

2015. The precise mechanism(s) through which these landings impact the functional 

groups is unknown, but based on the changes in the main shellfish species landed over 

time (Fig. 4.12), there could be different mechanisms Before and After the collapse. 

Shrimp are considered an important forage species in the region for cod and other 

groundfish (i.e., piscivores and benthivores; DFO 2018), so one simple explanation is that 

fishing reduces the food available to key species within the functional groups (Koen-

Alonso et al. 2010b, Dempsey et al. 2018). Another explanation is that fishing for 

shellfish has a negative physical impact on the habitat of other species. A panel of 97 

stakeholders (fishermen, scientists, conservation professionals, and managers) ranked 

bottom trawls and dredging in the top three “most destructive” fishing gears (out of 11 

gears; Fuller et al. 2008). It is also possible that shellfish landings act as a proxy for 

another pressure not identified here. For example, groundfish landings are highly 

negatively correlated (Pearson correlation coefficient < -0.80) with shellfish landings 

over the Full and Before periods, so the shellfish pressure could be reflecting groundfish 

landings. The same does not hold true for the After period, for which these pressures are 

essentially uncorrelated (correlation = -0.02). For more insight into the mechanism(s) 

relating shellfish landings to the fish functional groups included here, it may be useful to 

consult additional fishing indicators that account for changes in effort, gear type, and/or 
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spatial considerations. The findings suggest that more research should be done to identify 

the effects of shellfish exploitation on the broader fish community. 

 

The results clearly indicate that the Grand Bank fish community has been impacted by 

fishing over the Full study period. All of the ZD and best delay models included at least 

one fishing pressure, and three included only fishing pressures (Fig. 4.9A). As discussed 

above, shellfish landings were an important fishing pressure indicator over this period, as 

were total landings. Here I note that landings in the region are regulated in part through 

total allowable catches (TACs), which in turn are based on the stock assessments of the 

target species (i.e., includes consideration of the stock biomass). While this cyclic 

relationship could potentially confound some analyses, the pressures and responses are 

suitably decoupled such that the interpretation and conclusions here are not erroneous. 

First, TACs are based on the status of individual stocks rather than the community or 

functional group level. Second, some functional groups are not targeted by fisheries (e.g., 

small benthivores). Conversely, shellfish landings are included as a pressure, but the 

shellfish functional group was not included as a response. Finally, total landings 

aggregates catches from several functional groups that change their correlation structures 

over time. 

 
Figure 4.13: Shellfish landings from NAFO Division 3LNO (data from the NAFO 
Statlant 21A database). 

 

Surface and bottom salinity were among the most frequently included environmental 

pressures over the Full period, each occurring in three moving average models at long 

delays, and one lag model for short delays. Changes in salinity could be related to 

changes in the freshwater content exported from the Arctic (Greene and Pershing 2007) 
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that can impact primary and/or secondary production. In this analysis, salinity could be 

acting as a proxy for lower-trophic level dynamics. In other Northwest Atlantic 

ecosystems, changes in salinity have been linked to changes in the abundance and size 

structure of zooplankton communities (Pershing et al. 2005, Kane 2007), which in turn 

has been related to fish community dynamics, including recruitment regimes (Perretti et 

al. 2017), record high levels of planktivore biomass (Kane 2007), and recovery (or lack 

thereof) of commercially important species (Mountain and Kane 2010). On the 

Newfoundland shelf, changes in zooplankton community structure have been linked to 

water mass properties (e.g., Pepin et al. 2011, 2015), but the relationship with salinity is 

less well defined and thought to vary seasonally (Pepin et al. 2015). TimeIce, which is 

linked to the timing and duration of the spring phytoplankton bloom, was also included in 

several models for this period. Together, the results suggest that both top-down and 

bottom-up forcing have influenced the fish community over the past several decades.  

 

There were very few notable differences in fit within a given period for any type or 

length of delay imposed on the predictors (Fig. 4.8). The differences in fit between the 

periods were also negligible, although this should be interpreted with caution and is not 

discussed further because the error represents a different fraction of total sum of squares 

for each period. The MLR showed that moving average predictors generally had better 

explanatory power than lagged predictors, so it was surprising to find here that the delay 

type had negligible differences on the fit. This result perhaps speaks more to the ability of 

“simple” NNs (i.e., one hidden node) to extract patterns from data than to the dynamics 

of the fish community.  

 

It is not trivial to choose a metric to compare the fits of the NN and MLR models. The 

adjusted-R2 was used to evaluate the MLR models (Chapter 3; Dempsey et al. 2018), but 

this metric is based on the R2 and is therefore not suitable for evaluating non-linear 

models (Appendix E.3; Kvalseth 1985, Spiess and Neumeyer 2010). The MSE, applied 

here to evaluate the NN model fit, is only useful if the responses are scaled the same for 

both approaches, which may not be the case for NN and MLR. As is common practice, in 

this thesis NN outputs were linearly mapped to the interval [0,1] to increase the speed of 

convergence of the backpropagation (gradient descent) algorithm, while MLR outputs 
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were normalized to have zero mean and unit variance to reduce numerical errors. To 

compare with the NN fits, I re-ran the MLR all-possible-combinations analyses (Chapter 

3; Dempsey et al. 2018) with the responses linearly mapped to [0,1]. I calculated the 

MSEs for the top 50 ZD models for each period and reported the average and best MSE 

of the assemblage (Fig. 4.14). I compared these to the average and best MSE of the NN 

ensemble trained on all observations. The average MSE of the MLR models was better 

than that of the NN ensemble for all three periods (although not notably so for the After 

period), and the best MLR model was notably better than that of the 1-hidden node NN 

ensemble for all three periods. The difference is particularly striking for the Before 

period, for which the best MLR model is about 60 times better than the best NN model. 

In Chapter 3 (Dempsey et al. 2018), I suggested that the exceptionally small error of the 

best MLR model for the Before period was caused by the high coherency among the 

pressures and responses during the collapse. I expected the NN to also take advantage of 

this coherency, but that does not appear to be the case.  

 

 
Figure 4.14: Average fit of the NN ensembles and top 50 MLR models for ZD pressures. 
Open circles indicate the overall best fit of each approach.  

 

Considering the significant array of literature showing that NN outperform MLR for a 

variety of metrics and applications (Appendix E.1), the fact that the MLR resulted in 

better fit than NN was surprising. However, in the literature reviewed, it is more common 

to compare MLR and NN models with a single output rather than multiple outputs 
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(Appendix E.1). The current analysis illustrates that including multiple outputs can be 

more challenging for NN, which minimize the total error of all responses simultaneously 

(i.e., with one set of weights). In contrast, MLR minimizes the error for each response 

separately (i.e., each response has a unique set of coefficients) and reports the average 

goodness of fit. Future investigations could consider fitting a separate NN for each 

functional group and comparing the average of these MSEs to the MLR. However, the 

ability of the NN to fit multiple outputs with a single set of weights may be considered an 

advantage in an EBFM context because it implicitly accounts for the relationships among 

functional groups. Of course, increasing the number of hidden nodes in the NN can 

improve the fit to the data. Here, the average fit and best model for the 2-hidden node 

ensemble for the Full period were about the same as those of the MLR model for this 

period (Fig. 4.14). The NN fits for the Before and After periods could also be improved 

by including more hidden nodes. For example, for the After period, a 3-hidden node NN 

ensemble has an average fit that is notably better than the average MLR fit and about the 

same as the best MLR model. However, increasing the number of hidden nodes for these 

periods would sacrifice predictive power (Fig. 4.6), and potentially result in overfitting 

the data (i.e., modelling the noise as well as the signal). Additionally, the most influential 

pressures can be highly sensitive to the number of hidden nodes (Fig. 4.7A and B). 

Clearer guidelines on how to choose the number of hidden nodes for given application 

would be valuable for this type of situation, and may make this type of modelling more 

appealing to more ecologists. In the meantime, I recommend a careful consideration of 

the tradeoff between fit and predictive power (also called the “bias-variance dilemma”; 

Geman et al., 1992) for any NN application. 

 

Because the differences in the fit of the NN ensembles were so slight, I used the n-fold 

cross validation predictive power (MSE777777*;<,) as the main metric for comparing the models 

within a given period. In general, the moving average predictors performed better at a 

given delay length than the lag predictors, although the best models for each delay type 

were often similar for a given period (Fig. 4.8). Comparisons of predictive power 

between periods should be made with caution for the same reason noted above. Overall, 

the Before period had the worst predictive power, which is likely due to the challenge of 

predicting the collapse from a short time series (only 10 observations for training). The 



 

 
94 

Full period performed notably better than both periods separately, even considering the 

improved MSE777777*;<, of the After reduced models. This suggests that forecasts of changes in 

the fish community should be made using a NN trained on the whole time series and not 

only observations from the After period. 

 

In general, the MSE777777*;<, of the n-fold cross validation provided an accurate assessment of 

the predictive power of the model (Fig. 4.12), despite concerns about autocorrelation in 

the predictors and responses (e.g., the model knows the conditions before and after the 

observation omitted during the training). The preliminary analyses showed that the 

quality of the forecast differs among functional groups (Figs. 4.11, 4.12). The forecasts 

were particularly poor for the plank-piscivore functional group, which is dominated by 

deepwater redfish (Sebastes mentella; >95% by biomass on average over the Full period), 

a species that is notoriously difficult to sample (COSEWIC, 2010). This highlights a 

challenge of using survey-based indices: the index is assumed to be an accurate 

representation of reality, but there is inherent uncertainty associated with the sampling 

that these models are not considering. I suggest further rigorous investigations into the 

forecast abilities of such models for fisheries applications. Even if forecast ability 

remains variable, such analyses could inspire new investigations that provide additional 

scientific insight into the dynamics of the fish community. For example: What additional 

pressures improve forecasts for piscivores and plank-piscivores? Why were forecasts for 

medium benthivores so much better than for the other groups? Is it necessary to sacrifice 

forecast ability for one group to improve that of another? Forecasts using the NN method 

proposed here would require future projections of the pressures for the ZD and moving 

average predictors, because they incorporate information on the current year in the 

prediction. To reduce the reliance on such projections, it would be worth exploring 

whether the predictive power of lagged pressures can be improved by applying a low-

pass filter to extract the trends prior to forecasting. Additionally, the forecast ability may 

be improved using pressure-specific delays, including the same pressure at different delay 

lengths to account for primary and secondary impacts, and/or building separate models 

for each functional group. I recommend further investigation into suitable delays and 

pressures for forecasting using additional statistical analyses and/or mechanistic models.  
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Both types of models discussed here were built with the same relatively small dataset of 

pressures and responses. Based on the current understanding of the Grand Bank 

ecosystem, these methods identified reasonable influential pressure sets for the three 

periods. The two approaches have the potential to inform EBFM in similar ways, for 

example in the “indicator development” step of an Integrated Ecosystem Assessment 

(Levin, 2009) or other indicator scoping exercises to highlight pressures that should be 

monitored throughout the management process. Results could also help focus studies of 

ecological thresholds and those characterizing pressure-response relationships (e.g., 

Large et al. 2015b, Hunsicker et al. 2016) by prioritizing which pressures should be 

included. Finally, they could help account for changes in the ecosystem over time by 

highlighting different influential pressures for ecologically disparate periods (Francis et 

al. 2007, Dempsey et al. 2018).  

 

Each approach has advantages and disadvantages that should be considered prior to such 

applications. The main advantage of the MLR approach is that linear regression has been 

an accepted ecological tool for decades. It is readily understood by ecologists and 

relatively easy to explain results to decision makers. Its main disadvantage is the 

assumption that predictors and responses are linearly related, which is rarely the case for 

ecological interactions (Hunsicker et al. 2016). Linear models can represent non-linear 

relationships if transformations are applied to the predictors and/or responses, but the 

appropriate form of these relationships is generally unknown. In contrast, NN implicitly 

model non-linear relationships between predictors and responses, which is also an 

advantage over non-linear regression methods that require the user to specify the forms of 

the relationships. Another potential advantage in an EBFM context is that the NN 

algorithm finds one set of parameters that minimizes the total error of the responses, 

which may provide a more holistic representation of the interactions between functional 

groups. Finally, as demonstrated here, smaller predictor sets can have the same or better 

predictive power and fit than the full suite of predictors, which may prove advantageous 

in data-poor regions. However, NN are considered relatively complicated, and have been 

criticized as “black boxes,” especially before methods for analyzing their weights were 

developed (e.g., Garson 1991, Olden and Jackson 2002). Perhaps the main disadvantage 

of NN is the absence of best practices for building and interpreting the model. Results can 
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be sensitive to these modelling decisions, as illustrated by the influential pressures 

identified by the 1- and 2-hidden node ensembles for the Full period (Fig. 4.7). There is 

no universally accepted method of quantifying predictor contributions, and there has been 

recent criticism of the PCW method (Fischer 2015, Giam and Olden 2015). There is a 

wealth of literature on these subjects (Bishop 1995, Hagan et al. 2014), but these 

publications are often conflicting (e.g., Fischer 2015, Giam and Olden 2015), vague, and 

full of technical jargon. This may be prohibitive to some fisheries scientists and 

managers, who are not traditionally trained to use and interpret NN, and may partly 

explain why NN are not as common in ecology as some other fields (Olden 2008). 

 

My results suggest that the MLR approach is better than the NN approach for this 

application. The MLR models had similar or better fit than the NN ensembles and were 

also easier to build and interpret. However, I recognize that NN have been shown to be 

powerful tools in other applications, and believe it is worth continuing to investigate how 

NN can be applied to fisheries management problems. For example, rather than focusing 

on the model fit, it may be useful to exploit the NN ability to generalize and continue 

investigating their forecast potential on management timescales. If NN can be shown to 

produce accurate forecasts using landings and environmental pressure data, they could be 

used as low-cost (in terms of data, and time to build, run, and analyze) strategic models to 

complement existing mechanistic modeling approaches. While I do not suggest that NN 

models can replace current mechanistic models, they may provide a viable alternative in 

data-poor regions, or in data-rich areas where such models are not yet operationalized 

(Link et al. 2010a, Olsen et al. 2016). The potential of NN suggests that at least a basic 

understanding should be in the modelling toolbox of ecologists, and their ability to 

inform the implementation of EBFM should be further explored. 
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CHAPTER 5: COMPARISON OF A LINEAR AND A NON-LINEAR 
APPROACH FOR EXPLAINING CHANGES IN THE GEORGES 
BANK FISH COMMUNITY 
 

5.1 Abstract  
Disentangling the impacts of multiple pressures on a fish community is inherently 

challenged by the dynamic, non-linear, multivariate nature of marine ecosystems. Here I 

compare multivariate linear regression (MLR) and non-linear neural networks (NN) for 

modelling the Georges Bank (US and Canada) fish community and identifying its most 

influential pressures. Nine fishing and environmental pressures were used to model the 

biomass indices of six fish functional groups using first MLR, and then NN. The most 

influential pressures were identified for the Full time series (1985 – 2012) and two 

periods that roughly correspond to important management changes in the region (1985 – 

1995 and 1996 – 2012). The analyses were repeated with delays of different lengths (0 – 

8 years) and types (moving average vs. lags) imposed on the predictors. MLR models 

were more straightforward to fit and interpret than the NN models, and also resulted in 

better fit, which suggests that the MLR approach is more suitable for this application. 

However, NN are considered skillful at out-of-sample predictions and may be able to 

provide complementary information through forecasts. Here, preliminary investigations 

of NN forecast ability suggest that n-fold cross validation provides a useful estimation of 

predictive power, particularly for short term forecasts, although future efforts are needed 

to improve these forecasts.  

 

5.2 Introduction 
Ecosystem based fisheries management (EBFM) is meant to supplement traditional single 

species assessments by explicitly considering interactions among fish species, multiple 

pressures on the community, and socio-ecological trade-offs (Link 2010). EBFM is 

generally accepted as necessary to prevent future fisheries collapses, and although 

implementation has been slow (Link et al. 2011a), it is supported by policy and 

legislation worldwide (e.g., Canada’s Oceans Act; the United States Magnuson-Stevens 

Act; the European Marine Strategy Framework Directive). This holistic management 

approach requires substantial and diverse information on the ecosystem, which can be 
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provided in part by data-based indicators of the fish community status and the pressures 

impacting it. Fish community indicators include metrics of biomass, trophic level, length 

and diversity, while pressure indicators include measures of fishing (e.g., landings, 

mortality, effort) and the environment (e.g., North Atlantic Oscillation, temperature). 

Hundreds of indicators have been proposed and vetted (Rice 2003, Cury and Christensen 

2005), and significant effort has focussed on determining which fish community 

indicators are the most informative. Efforts to implement EBFM will benefit from 

improved understanding of multivariate pressure-response relationships, and in particular, 

methods to identify the most influential pressures on a fish community. 

 

Disentangling the impacts and ranking the influences of different pressures acting on a 

fish community is challenged by the dynamic, multivariate nature of the ecosystem. To 

reduce this complexity, previous studies often focused on linear pressure-response 

relationships and/or univariate responses (e.g., Blanchard et al. 2005, Fu et al. 2012, 

Probst et al. 2012, Dempsey et al. 2018). However, individual pressures can impact 

multiple ecosystem components through cascading effects or different pathways, and 

multiple pressures can interact with each other with non-additive results (Large et al. 

2013, Hunsicker et al. 2016). Identifying the most influential pressures is further 

complicated because both fishing and the environment as well as other pressures (e.g., 

predator-prey interactions) can result in non-linear responses (Daan et al. 2005, 

Hunsicker et al. 2016), and the functional form of these relationships is not generally 

known. Additionally, the relative importance of pressures may vary over time because of 

changes in management strategies, environmental conditions, and biological interactions 

(Mann and Drinkwater 1994). A further difficulty in teasing out important relationships is 

that changes in pressures can be manifest in the fish community over different timescales. 

For example, fishing has the immediate impact of increasing the mortality of the target 

and bycatch species, but can also impact the size distribution of the community over 

longer periods (Daan et al. 2005, Greenstreet et al. 2011). 

 

The objective of this chapter was to asses a linear and a non-linear approach for 

explaining changes in the Georges Bank fish community and recommend the most useful 

approach for future analyses. I first compared multivariate linear regression (MLR) and 
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neural networks (NN) as methods for modelling the Georges Bank fish community and 

identifying its most influential pressures. I used the results to make inferences about the 

dynamics of this fish community, evaluate forecast potential, and make recommendations 

as to which method should be used in future studies. Georges Bank is a highly productive 

ecosystem in the Northwest Atlantic, with commercial fisheries for scallops, haddock and 

other species. Complex ecological changes and management responses have occurred in 

the region over the past few decades (as discussed below). It has long garnered interest 

from the scientific community, and there exist relatively long time series of many 

ecological indicators. For example, Georges Bank was a focus of the U.S. GLOBEC 

(GLOBal Ocean ECosystems Dynamics) program, which was implemented in the 1990s 

with the aim of understanding how climate change will influence the structure and 

function of marine ecosystems and fisheries. The International Council for the 

Exploration of the Seas (ICES) Working Group on the Northwest Atlantic Regional Sea 

(WGNARS) is currently using Georges Bank as a case study in their work on providing 

scientific support for Integrated Ecosystem Assessments (one component of EBFM; 

ICES 2017). Additionally, there has been significant progress in developing and applying 

an end-to-end ecosystem model for Georges Bank and the surrounding region (the 

Atlantis model; Link et al. 2010; Olsen et al. 2016). Identifying which pressures are most 

directly related to changes in the fish community could benefit such efforts by directing 

monitoring, focussing indicator investigations, and guiding modelling scenarios. 

 

Here, I first identified the most influential pressures from a predefined suite using both an 

MLR approach (Dempsey et al. 2018), and a NN approach (Dempsey et al. in review). 

Both methods can use multiple pressure indicators to model multiple metrics of the fish 

community, represented here by the biomass indices of six fish functional groups. The 

main difference between these approaches is that MLR is confined to modelling linear or 

user-defined non-linear relationships, while NN can implicitly model non-linear 

relationships. Within each approach, I also investigated the effects of incorporating 

different delay types (moving average vs. lag) and lengths (from k = 0 to k = 8 years) on 

the most influential pressures and model fit. Influential pressures for each delay were 

identified from a predefined suite of four fishing and five environmental pressures in the 

region. The four fishing pressures capture the overall decrease and high inter-annual 
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variability of total and mollusk landings, and the rapid increase of pelagic (e.g., herring, 

mackerel) and elasmobranch (e.g., dogfish and skates) landings in the region over the 

time period of interest. Environmental pressures capture changes in basin-scale and local 

metrics, including freshening in the 1990s that may have led to changes in the 

zooplankton community and higher trophic level predators (Kane 2007, Mountain and 

Kane 2010, Perretti et al. 2017). 

 

I synthesized the results of all analyses to make general observations about the efficacy of 

the analytic methods and what the results imply about the dynamics of the Georges Bank 

ecosystem. This analysis provides a complementary case study to recent work that 

compares the results and ease of use of these methods for the Grand Bank (Chapters 3 

and 4; Dempsey et al. 2018, in review), another historically rich ecosystem in the 

Northwest Atlantic.  

 

5.3 Methods 

5.3.1 Study Area 

Georges Bank is a shallow plateau in the Gulf of Maine (Fig. 5.1), bordered by three 

American states (New Hampshire, Massachusetts, and Maine), and two Canadian 

provinces (New Brunswick and Nova Scotia; Herbert 1995). It is considered one of the 

four ecological productivity units (i.e., EBFM management unit) of the Northeast 

Continental Shelf Large Marine Ecosystem (Lucey and Fogarty 2013), and is considered 

particularly vulnerable to climate change because it is at the southern edge of an ecotone 

separating cold and warm fish species (GLOBEC 1991). This region is characterized by 

high productivity and is a historically rich fishing ground for a variety of species 

including scallops, cod, haddock, and flounder (Bubier and Rieser 1986, Fogarty and 

Murawski 1998). Like other regions in the Northwest Atlantic (e.g., Scotian Shelf, Grand 

Banks), the Georges Bank fish community experienced complex ecological changes over 

the past several decades. Commercially important gadid and flatfish species (e.g, cod, 

haddock) collapsed throughout the 1960s, followed by small pelagic species (e.g., 

Atlantic herring, Atlantic mackerel) in the 1970s. In contrast, the biomass of species with 

relatively low economic value such as elasmobranches (e.g., dogfish and skates) 

increased rapidly (Fogarty and Murawski 1998). These species remained dominant 
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throughout the 1980s and 1990s, although their biomass has been generally decreasing 

since 1990 (particularly dogfish). More recently, there has been significant recovery of 

Atlantic herring, which are now at historically high levels (NMFS 2009). 

 

Fisheries management in the Georges Bank region is also complex, and has evolved 

throughout the decades since restrictions were first advised in the 1950s. In 1977, Canada 

and the US extended their exclusive economic zones (EEZs), creating a disputed area 

where the claims overlapped (Fig. 5.1; Herbert 1995). After failed attempts at a bilateral 

agreement, the dispute was brought to the International Court of Justice (ICJ). With little 

regard to the fisheries or related management and socio-economic considerations, the ICJ 

decided on a boundary between the original Canadian and US claims (Herbert 1995). 

This resulted in several transboundary stocks, and differing management philosophies on 

either side of the boundary (Bubier and Rieser 1986, Herbert 1995, Pudden and 

Vanderzwaag 2010). Canadian management focussed on fishing mortality limits, and 

management regulations primarily relied on effort control, including limited entry 

programs and vessel licensing, as well as output control such as total allowable catches 

(TACs) and quotas. US management aimed to conserve the spawning stock biomass 

(SSB), and management regulations included minimum mesh sizes and closed areas 

(Herbert 1995).  
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Figure 5.1: Map of the study area, showing Georges Bank (NAFO division 5Ze), the 100 
and 200-m isobaths, the Canada-US border, and the Canadian an US exclusive economic 
zones. 

 

Today, transboundary management in the region is coordinated by the Canada-US 

Steering Committee, which was formed in 1995 and oversees three sub-committees. The 

Transboundary Management Guidance Committee (TMGC) provides non-binding 

management advice in an annual Guidance Document for cod, haddock, and yellowtail 

flounder. The Transboundary Resource Assessment Committee (TRAC) conducts joint 

Canada-US assessments for these stocks, providing the results to the TMGC. The 

Canada–USA Integration Committee, the newest of the cooperative initiatives, is meant 

to facilitate the Ecosystem Approach to Management by coordinating relevant working 

groups (Pudden and Vanderzwaag 2007). More generally, significant scientific and 

management efforts are underway to implement EFBM in the Georges Bank-Gulf of 

Maine region (e.g., EcoAP 2012, NEFMC 2016, WGNARS 2018). 

 

5.3.2 Indicators 

The suite of indicator time series used here were provided by the US National Ocean and 

Atmospheric Administration’s (NOAA) Northeast Fisheries Science Center (NEFSC). 

Fish community indicators are annual values for 1985 – 2012 (the “Full” period), and 
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pressure indicators extend from 1977 – 2012 for use with the delay analysis. Significant 

changes in the Georges Bank ecosystem occurred in the 1990s (Pershing et al. 2005, Liu 

et al. 2014, Perretti et al. 2017), so to determine how pressures on the fish community 

have changed over time, and for comparison with analyses of the Grand Bank, I also split 

the Full data series into Time1 (1985 – 1995) and Time2 (1996 – 2012). Below I present 

a general overview of these indicators to give context for the current analysis.  

 

5.3.2.1 Indicators of Fish Community Status  

The fish community was represented by the biomass indices of six fish functional groups 

(i.e., groups of species with similar feeding behaviors; Table 5.1). Functional groups are 

expected to be more stable than individual species because of within-group compensatory 

dynamics (Fogarty 2014), and are considered meaningful units to fisheries scientists and 

managers (NAFO 2014, NEFMC 2016). Additionally, they benefit the present analysis 

and other modelling studies by reducing the number of response variables when 

compared to using individual species (Fogarty 2014). Fisheries-independent bottom trawl 

surveys are conducted on Georges Bank in the spring and fall by the NEFSC. Fish 

species found in the region have been assigned to a functional group (NEFMC 2016; 

called “feeding guilds” in that document). The annual spring biomass index for each 

functional group was calculated by summing the expanded, swept-area biomass 

(corrected for catchability) of each species assigned that group in a given year (Fig. 5.2). 

Here, the “biomass” and “biomass index” of a functional group refers to the logged index 

(to account for the skewed nature of the trawl data), and the logged indices were 

additionally scaled appropriately for each approach (see section 2.3). 
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Table 5.1: Functional groups used to represent the fish community structure of Georges 
Bank. 

Functional Group Number 
of Species Dominant Species (by biomass) 

Benthos 2 Sea scallops (Placopecten magellanicus) 

Benthivores 21 Haddock (Melanogrammus aeglefinus) 

Mesoplanktivores 6 Atlantic herring (Clupea harengus) 

Macroplanktivores 6 Longhorn sculpin (Myoxocephalus 
octodecemspinosus) 

Macrozoo-piscivores 11 Little skate (Leucoraja erinacea) 

Piscivores 11 Spiny dogfish (Squalus acanthias) 
 

Benthos and mesoplanktivore biomass had no trend over Time1, but increased marginally 

over Time2 and the Full period (Fig. 5.2A, 5.2C). Mesoplanktivore biomass had two 

main dips (in the late 1980s and the early 2000s) that were each followed by a dip in 

benthos biomass (early 1990s and mid-2000s). Benthivores also had high variability in 

Time1, but had the most obvious increasing trend over the Full period and Time2 (Fig. 

5.2B). Macroplanktivore biomass generally increased over Time1, with a spike in the 

early 1990s, followed by an overall decreasing trend from 2000 – 2012 (Fig 5.2D). 

Macrozoo-piscivores exhibited high inter-annual variability throughout Time1 and over 

the Full period, but had an overall increasing trend throughout Time2 (Fig. 5.2E). In 

contrast, piscivore biomass generally decreased over all three periods, with a small peak 

in 2003 (Fig. 5.2F). Pearson and Spearman correlation coefficients were used to assess 

pairwise correlation between the functional groups. None of the functional group biomass 

indices were highly correlated (defined as correlation coefficient ≥ 0.60) over any of the 

time periods using either metric. 
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Figure 5.2: Functional group biomass indices (logged, centered and scaled over the Full 
period) used as responses in this analysis. The thick dashed line indicates the beginning 
of Time2. 

 

5.3.2.2 Indicators of Fishing and Environmental Pressures 

The NEFSC’s Ecosystem Assessment Group has calculated an annual suite of 41 fishing 

and environmental indicators spanning 1977 – 2012 (EcoAP 2012). This suite was 

provided for the current analysis, and I selected four fishing and four environmental 

indicators to include as predictors (along with one additional environmental indicator; 

Fig. 5.3). When possible, I chose indicators to mirror those used in recent analyses of the 

Grand Bank (Chapters 3 and 4; Dempsey et al. 2018; Dempsey et al. in review)  to 

facilitate comparison of the most influential pressures in each region. However, there are 

some discrepancies because of data constraints and differences between the two 

ecosystems. 

 

The four fishing indicators include: total, pelagic, mollusk, and elasmobranch landings 

(Fig. 5.3). Total landings decreased overall from 1977 – 1995, although there was a slight 
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increase from 1985 – 1991. Since 1995, total landings have fluctuated with high inter-

annual variability. Mollusks (mainly sea scallops) are one of the most lucrative fisheries 

in the region (NOAA 2018). They contribute about 35% of the total landed biomass (on 

average over the Full period), and were highly correlated with total landings for all three 

periods. No other landings indicator pairs were highly correlated for any period. 

Commercial fishing for elasmobranchs (mainly dogfish and skates) began in the early 

1990s, after the collapse of the valuable groundfish stocks (MAFMC and NEFMC 1999, 

NEFMC 2003). Elasmobranch landings increased rapidly throughout Time1, but there 

has been no discernable trend throughout Time2. There was little directed fishing on 

pelagic species in Time1 because of the collapse of the Atlantic herring stock in the late 

1970s, but the stock has since recovered and pelagic landings have generally increased 

since the mid-1990s (Melvin and Stephenson 2007).  

 

Total and pelagic landings were included in the prior Grand Bank analysis. For that 

analysis, mollusk and crustacean landings were combined in the “shellfish landings” 

pressure. Here I kept mollusks separate, because they are one of the main landings in the 

Georges Bank region (in terms of biomass and value; NOAA 2018). I did not want to 

confound the influence of mollusks landings with that of crustaceans, which are generally 

a minor component of total landings (3% on average over the whole time period, but up 

to 12% in 2005). The fourth fishing-related pressure used in the Grand Bank analysis was 

the mean trophic index of the landings (MTI). This could not be calculated using the data 

provided by NEFSC, because the data only included the total biomass landed within each 

commercial group, rather than the biomass of each species in the group. Instead, I 

included elasmobranch landings, which have increased along with pelagic landings as 

groundfish and total landings decrease. This may be a more useful pressure to include 

than MTI, because it is more directly linked to management action. It can be difficult to 

parse out what is causing changes in the MTI, and how that relates to changes in the fish 

community. In contrast, elasmobranch landings has the direct effects of removing 

biomass from the community and disrupting habitat (plus other related impacts such as 

bycatch).  
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The five environmental indicators include: the winter North Atlantic Oscillation (NAO); 

as calculated and applied in previous chapters (Dempsey et. al 2017, 2018, in review), sea 

surface temperature (SST), surface salinity (SSS), bottom salinity (Sbottom), and total 

copepod abundance (all provided by NEFSC). The NAO is a metric of basin-scale 

atmospheric forcing that is related to local environmental conditions in the Northwest 

Atlantic. On Georges Bank, positive NAO is related to warmer temperatures, increased 

precipitation, and stronger westerly winds; the converse is true for negative NAO values. 

A 2-year lag between changes in the NAO index and subsequent changes in the local 

Georges Bank environmental conditions has been observed (Greene and Pershing 2007). 

Temperature is one of the most influential pressures on marine organisms, and increasing 

temperature is generally correlated with increased growth, metabolism, and maturity rates 

of many fish species (Jones 1976, Gillooly et al. 2001, Colbourne and Anderson 2003). 

Temperature also influences species distribution, and there has been a poleward shift in 

the distribution of several species on the US continental shelf in response to warming 

waters over the past several decades (Nye et al. 2009). Changes in temperature could be 

particularly important for the Georges Bank ecosystem in the coming decades, because 

the Gulf of Maine region has been shown to be warming faster than 99% of the world’s 

oceans (Pershing et al. 2015). Many organisms are also sensitive to changes in salinity, 

which is influenced by the interactions of Gulf Stream and Scotian Shelf Water in the 

region (Lentz 2003). Specifically, salinity can impact the abundance and community 

composition of lower trophic level species such as zooplankton (Pershing et al. 2005, 

Kane 2007, MERCINA 2012). Calanoid copepods are the dominant group of zooplankton 

on Georges Bank, and form an important link in the marine food web. They feed on 

phytoplankton and smaller zooplankton, and are the primary food source for forage fishes 

(e.g., herring and mackerel), the larvae of several fish species (e.g., cod and haddock), 

and baleen whales (e.g., the endangered North Atlantic right whale; EcoAP 2012). 

Copepod abundance and size regime shifts have been linked to regimes of fish 

recruitment on the Northeast continental shelf, with periods of lower zooplankton 

abundance dominated by larger zooplankton species and corresponding to lower fish 

recruitment across 18 fish species (and vice versa; Perretti et al. 2017).      
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The NAO was characterized by inter-annual variability (Fig. 5.3). It had several years of 

sustained positive values from the late 1980s until the mid-1990s, and a notable 

anomalously low value in 2010. SSS and bottom salinity both decreased over the Full 

period, although the trend is harder to discern in each period separately because of high 

inter-annual variability (Fig. 5.3). The salinity metrics were very highly correlated with 

one another for all three periods. They were both kept for this analysis to be parallel with 

the Grand Bank analysis (where they were not highly correlated). Similar to the salinity 

metrics, SST increased over the Full period, but had no notable trend within each time 

period (Fig. 5.3). SST was highly correlated with both SSS and bottom salinity for 

Time1. Copepod abundance was relatively low from the late 1970s until the mid 1980s, 

at which point it increased rapidly until the early 2000s, when it decreased again (Fig. 

5.3).  

 

Local values of SST, SSS, and bottom salinity, as well as the basin-scale NAO were 

calculated and used in the prior Grand Bank analyses and these Georges Bank analyses. 

The main difference in these two environmental pressure sets is the metric representing 

lower trophic levels (e.g., primary and secondary production). There was no consistent, 

direct measure of these on the Grand Bank over the period of interest, so the timing of the 

sea ice melt was included as a proxy of the timing and duration of the spring 

phytoplankton bloom. However, sea ice is not expected to have a significant impact on 

Georges Bank, and a more direct measure of secondary producers was available over the 

Full period for this region, so I used total copepod abundance instead of the timing of the 

sea ice melt. 
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Figure 5.3: Pressure indicators used as predictors in this analysis (centered and scaled 
over Full period). Fishing indicators: (A) – (D); Environmental indicators: (E) – (I). The 
unshaded area represents the zero delay pressures; the shaded area represents the 
additional data used in the time delay analysis. The thick dashed line marks the beginning 
of Time2. 

 

5.3.3 Data Analysis  

This analysis followed the methods of Chapters 3 and 4 (Dempsey et al. 2018, in review), 

identifying the most influential pressures first using MLR, and then NN. Significant 

similarities and discrepancies in the results are examined in the discussion. The methods 
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are outlined briefly here, but readers are referred to the Chapters referenced above for 

more detailed explanations. 

 

5.3.3.1 Delay Analysis 

For both methods, the pressure indicators were used as predictors to model the six 

functional group biomass indices (responses) for the Full period, Time1, and Time2. The 

“zero delay” (ZD) analysis used predictors and responses over the same time period (e.g., 

for the Full period, all predictors and responses span 1985 – 2012). The analysis was then 

repeated using different types and lengths of time delay in the predictors. I considered 

two delay types: moving averages and lags, for delay lengths from k = 1 to k = 8 years. 

The predictor value at year i for moving average predictors was the average of the current 

year and the previous k years (resulting in a k +1 year backwards moving average). For 

the lag analyses, predictors were shifted forward k years to simulate a delayed response. 

Incorporating delays did not reduce the number of observations used to fit the model 

because the predictor data series are longer than the responses. Within a given model, all 

predictors had the same type and length of delay. I refer to moving average and lag 

predictors that incorporate k years of past data as Avgk and Lagk models, respectively. To 

streamline presentation and discussion of results, the most influential pressures for each 

period will be determined for only the best delay lengths within each delay type (ZD, 

Avg, and Lag). The criteria for best models and most influential pressures depend on the 

method, as described below.  

 

5.3.3.2 Multivariate Linear Regression  

For each period, an MLR model was fit for all of the possible combinations of the nine 

predictors (resulting in a total of 511 models), first with ZD predictors, and then again for 

each delay length and type. I call the set of models for a given period and delay an 

“assemblage.” Within an assemblage, the models were ranked on their explanatory 

power, with the model with the highest adjusted-R*+,-./  (i.e., the average of the adjusted-

R2 of each functional group; see Appendix D) given a rank of 1. For linear models, the R2 

will always increase with an additional predictor (that is not perfectly correlated with 

previous predictors). The adjusted-R2 applies a penalty to the R2 for every predictor 

included, which makes it a better metric for comparing linear models with different 
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numbers of predictors. I considered any difference in adjusted-R*+,-./  > 0.050 to be 

“notable.” Predictors and responses were centered and scaled by their respective standard 

deviations within each period and delay. 

 

I focussed the analysis of the results on the top 50 models (i.e., top 10%) of each 

assemblage.  For a given period and delay type, the best delay lengths were those with 

average adjusted-R*+,-./  (of the top 50 models) that was not notably different than the best 

average adjusted-R*+,-./ . I additionally calculated the average and best MSE for 

comparison with the NN. The most influential pressures were determined for the best 

assemblages of each period. To do this, I calculated the proportion of times each 

predictor was included in the top 50 models (P50; e.g., maximum = 50/50 = 1; minimum 

= 0/50 = 0). Within a given assemblage, a predictor was considered influential if it had 

P50 within 0.10 of the most frequent predictor. For example, if one predictor was 

included in all of the top 50 models, the other predictors must have P50 ≥ 0.90 to be 

considered influential.  

 

5.3.3.3 Neural network analysis 

For the NN analysis, the optimal number of hidden nodes for each period was determined 

using n-fold cross validation. A model ensemble approach (N = 35 models in each 

ensemble) was applied to account for sensitivity to the starting weights. I trained and 

tested networks with 1 to 5 hidden nodes, and evaluated the average mean squared error 

(MSE) of the fit (based on the training data; MSE777777*8-9:) and predictive power (based on 

the test data; MSE777777*;<,). I chose the number of hidden nodes resulting in the best 

predictive power (i.e., smallest MSE777777*;<,). 1 hidden node was considered optimal for each 

period using the ZD predictors, and so I chose to also use 1 hidden node for each of the 

delay analyses to facilitate comparison among models. Other NN parameters (e.g., 

activation function, threshold) were the same as those used in Chapter 4 (Dempsey et al. 

in review). Predictors were centered and scaled by their respective standard deviations, 

while responses were linearly mapped to the interval [0,1] within each period and delay. 

 

Next, a NN ensemble with the optimal number of hidden nodes (one) was fit to all of the 

data observations using all of the predictors. This was repeated for all types and lengths 
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of time delay, and I identified the most influential pressures for the best delay lengths 

within each type. The best delay lengths were those that resulted in ensembles with 

predictive power (MSE777777*;<,) that was not notably different than the overall lowest 

MSE777777*;<, for the given period and delay type (differences in MSE > 0.050 were 

considered “notable”). I identified the most influential predictors using the product of 

connection weights (PCW) algorithm, modified for multivariate output and the ensemble 

approach (Dempsey et al. in review, Olden and Jackson 2002, Olden et al. 2004). This 

method sums together the product of the input-hidden and hidden-output weights for a 

given predictor and response, and uses this to calculate the percent contribution of each 

predictor for modelling each response. Because only one hidden node was used, each 

predictor contributed the same to modelling a given functional group (i.e., percent 

contribution is based entirely on the input-hidden weights; see Chapter 4). Predictors 

were considered influential if they contributed	³10.0% to modeling at least three 

functional groups.  

  

n-fold cross validation was also used as a rough metric of the NN forecast ability. To 

further investigate how well the model performed on out-of-sample data, I built two 

“forecast” models. One was trained on the first 23 years of data and tested on the last 5 

(forecast-5), while the other was trained on the first 18 years of data and tested on the last 

10 (forecast-10; see Chapter 4 for more detail on the training/testing procedure). To 

compare the n-fold and forecast models, I calculated the MSE777777*;<, for each functional 

group from the observed values and the average predicted values from the ensemble for 

all values of the n-fold procedure, the last 5 and 10 years of the n-fold procedure (nfold-5 

and nfold-10, respectively), and the test values of the forecast models. The nfold-5 and 

nfold-10 provide a metric that is more directly comparable to the forecast-5 and forecast-

10 models, because their MSEs are calculated for the same subset of data. If n-fold cross 

validation provides a useful estimation of the predictive power of the NN for a given 

functional group, I would expect the MSE777777*;<, of the n-fold to be about the same as that of 

the forecast models.  

 

5.3.3.4 Comparison of modelling approaches 
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There are some obvious and subtle differences between the model approaches that could 

influence interpretation and discussion of the results. The most obvious difference is that 

MLR is restricted to modelling linear relationships between predictors and responses, 

while NN implicitly model non-linear relationships. This leads to a subtler point, which is 

reflected in the goodness of fit metrics used to evaluate each type of model. The fit of a 

linear model will improve with the addition of a predictor that is independent of the ones 

already included, and metrics that account for this should be used to compare models 

with different numbers of predictors. Hence, the adjusted-R*+,-./ was used for the MLR 

analysis, which evaluated models with one to nine predictors. In contrast, the fit of a non-

linear model is not guaranteed to improve with an extra predictor, and the mean squared 

error of the training data (MSE777777*8-9:) was used to evaluate the fit of NN models. For 

comparisons among NN models, the MSE777777*;<,	was used (because there were no notable 

differences in fit for any delay length within a given delay type and period; see Results 

section, Fig. 5.9). It was not trivial to choose a metric to compare the fits of these 

different models. Based on the rationale in Appendix E.3, I chose the MSE, although 

there were still some differences in its calculation for the two approaches. For the MLR 

approach, the MSE was calculated for the top 50 MLR models (ranked by adjusted-

R*+,-./ ), and the average and best MSE were reported. Note that each of these MLR 

models was built from a different subset of the nine predictors. For the NN approach, I 

reported the average and best MSE of the ensemble, i.e., the 35 NN iterations trained with 

different starting weights, using all observations and all nine pressures. Because the MSE 

is scale dependent, care should be taken when comparing MSEs for models of different 

responses (e.g., for different periods and functional groups). A final relevant difference 

between the approaches is that the MLR fits each response separately, while the NN 

optimizes the fit for all responses simultaneously. 

 

5.4 Results 

5.4.1 Multivariate Regression 

Here I describe the results of the MLR analysis for each period, focussing on the top 50 

models for each assemblage. In general, Time1 had the highest explanatory power, and 

Time2 had the lowest (Fig. 5.4). Within a given period, the Avg assemblages generally 

had better explanatory power than the Lag assemblages. The most influential pressures 
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were different for each period, and varied within periods depending on the delay type and 

length (Fig. 5.5).  

 
Figure 5.4: Adjusted-R*+,-./  in decreasing rank for moving average predictors (left) and 
lag predictors (right) for the three periods. Top: Full; middle: Time1; bottom: Time2. 
Panels in each column have the same legend. 

 

For the Full period, the ZD assemblage had moderate adjusted-R*+,-./ , ranging from about 

0.32 to 0.35 (Fig. 5.4). The most influential ZD predictors were pelagic and 

elasmobranch landings and copepod abundance (Fig. 5.5). All of the models in the Avg 

assemblages had higher explanatory power than the correspondingly ranked ZD model, 

and most were notably higher (Fig. 5.4). The best Avg assemblage for the Full period was 

Avg7, which was notably better than all of the other delay types and lengths for most of 
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the top 50 models (adjusted-R*+,-./  about 0.48 to 0.56; Fig. 5.4). The most frequent Avg7 

predictors were two fishing pressures: total and mollusk landings (Fig. 5.5). The best Lag 

models were Lag4, Lag5, and Lag6 (adjusted-R*+,-./  about 0.31 to 0.41). All three of 

these models highlighted elasmobranch landings, while Lag5 also highlighted NAO, and 

Lag6 highlighted copepod abundance (Fig. 5.5). The overall best Avg and Lag models 

each had 8 predictors (all except elasmobranch landings for Avg7; all except mollusk 

landings for Lag4), while the best for the ZD assemblage included only 6 predictors (all 

except total and mollusk landings and bottom salinity; not shown).  

 

Time1 had the highest explanatory power of the three periods, with the top three models 

overall (Avg4 and Avg7) having adjusted-R*+,-./  ≥ 0.80 (Fig. 5.4). The ZD assemblage 

had adjusted-R*+,-./  ranging from about 0.45 to 0.69. The most frequent ZD predictors 

were pelagic landings and the two salinity metrics (Fig. 5.5). The best Avg assemblages 

were Avg4 and Avg7. Similar delay lengths were highlighted for the Lag models: Lag4, 

Lag7, and Lag8; however, the most influential pressures differed between the delay types 

(Fig. 5.5). Avg4 and Avg7 both highlighted only fishing pressures (pelagic landings for 

Avg4; total and mollusk landings for Avg7). In stark contrast, Lag4 and Lag7 highlighted 

only environmental pressures (SSS, Sbottom, and copepod abundance for Lag4; NAO 

and SST for Lag7). The most frequent Lag8 predictors included both fishing and 

environmental pressures: total and mollusk landings and copepod abundance. The best 

overall Avg model used 8 predictors (Avg7; all except pelagic landings), while the best 

Lag model used 7 (Lag8; all except pelagic landings and SSS). 

 

The Time2 ZD assemblage had about the same explanatory power as the Full ZD 

assemblage; however, the Time2 delay assemblages were generally worse than those for 

the Full period (Fig. 5.4). The only ZD predictor highlighted for this period was copepod 

abundance. Most of the Avg assemblages had similar explanatory power, such that all 

delay lengths except Avg1 and Avg8 were considered in the predictor contribution 

analysis. A single environmental pressure was influential for four Avg assemblages (Fig. 

5.5; copepod abundance for Avg2 and Avg3; NAO for Avg4 and Avg5). Total landings 

and NAO were both influential for Avg7. Most of the Lag models also had similar 

explanatory power, and Lag3 – Lag7 were included in the predictor analysis (Fig 5.4). 
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Most of these delay lengths highlighted both fishing and environmental pressures, 

although copepod abundance was the only influential predictor highlighted for Lag5. 

Copepod abundance was also highlighted for three of the other Lag assemblages (Fig. 

5.5). 

 
Figure 5.5: Most influential pressures from the multivariate regression analysis for the 
ZD and best models for each delay type and period. Orange shading indicates influential 
fishing pressures; green shading indicates influential environmental pressures. (A) Full 
period; (B) Time1; (C) Time2. 

 

I evaluated the explanatory power of the best assemblages for each period and delay type 

using only their respective influential pressures as predictors (“reduced predictor sets”; 

Fig. 5.6). In most cases, the reduced sets consist of only one or two predictors (Fig. 5.5), 

and the explanatory power of the resulting model is far worse than the best model of the 
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assemblage (difference in adjusted-R*+,-./  >> 0.05; Fig. 5.6). For two delay lengths (ZD 

for the Full period and Lag7 for Time2), there is no notable difference between the 

explanatory power of the reduced model and the best model of the assemblage (although 

these “best” models had only moderate explanatory power to begin with). On average, the 

reduced models explained about 44% of the variance explained by the best model in the 

assemblage. 

 
Figure 5.6: Adjusted-R*+,-./  of the best MLR assemblages for each delay type and period. 
Dark grey bars show the best overall explanatory power; light grey bars show the 
explanatory power of the reduced predictor set (i.e., only the most influential pressures 
for the given delay). (A) Full period; (B) Time1; (C) Time2. The faint shaded boxes 
indicate the moving average models (to differentiate from ZD and lag). 
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5.4.2 Neural Network Analysis 

As expected, MSE777777*8-9: decreased as the number of hidden nodes increased for each 

period, and its range over the 35 repetitions of the n-fold cross validation procedure was 

negligible in all cases (range < 0.05; Fig. 5.7). In contrast, MSE777777*;<, was more variable 

and generally increased with additional hidden nodes, such that 1 hidden node minimized 

MSE777777*;<, for all periods with the ZD predictors. One hidden node was used in all 

remaining ZD and delay analyses to facilitate comparison among models. These analyses 

showed there were no notable differences in MSE777777*8-9: within a given period for any delay 

type or length (Fig. 5.8A).  
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Figure 5.7: n-fold cross validation results for each period using zero delay predictors: 
mean (points) and range (lines) of the MSE777777*8-9: and MSE777777*;<, for a given number of 
hidden nodes. (A) Full period, (B) Time1 and (C) Time2. Note that the range MSE777777*8-9: is 
so small that is not visible at this scale. 

 

All of the Full period delay ensembles had similar predictive power (Fig. 5.8B), which 

was notably better than all of the corresponding Time1 ensembles, and most of Time2. 

Only the ZD ensemble was notably worse than the best Avg ensemble (Avg4), and only 
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ZD and Lag5 were notably worse than the best Lag ensembles (Lag2 and Lag4; Fig. 

5.8B). The most influential ZD predictors were the four fishing pressures and copepod 

abundance (Fig. 5.9). The most influential pressure sets depended on the delay length and 

type, although some general observations can be made. All of the Avg influential sets 

included at least one fishing pressure, and all of the Lag sets included at least two. 

Elasmobranch landings were influential for all except one delay (Avg2), and pelagic 

landings were influential for several Avg and all of the Lag ensembles. Avg5 only 

included the four fishing pressures, while Lag4 included only three fishing pressures 

(total, pelagic, and elasmobranch landings). Both salinity metrics were included in five of 

the Avg influential pressure sets, and three of the Lag (Fig. 5.9). 
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Figure 5.8: (A) – (C) MSE777777*8-9: and (D) – (F) MSE777777*;<, from the cross validation 
procedure of models with delayed predictors (1 hidden node). Note the difference in scale 
between left and right columns. 

 

The best Avg ensembles for Time1 were Avg3, Avg4, and Avg8, all of which had 

notably better predictive power than the ZD. Lag1 was notably better than all of the other 

Lag ensembles and the ZD ensemble for this period. The most influential ZD predictors 
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were fishing pressures: total, pelagic, and mollusk landings (Fig. 5.9). Pelagic landings 

and SSS were considered influential for all three Avg ensembles. Lag1 influential 

pressures were elasmobranch and mollusk landings and NAO.  

 

For Time2, the best Avg (Avg3, Avg5, Avg7, and Avg8) and Lag (Lag3, Lag4, and 

Lag5) ensembles all had notably better predictive power than the ZD ensemble. This was 

the only period that had a Lag ensemble with the best overall predictive power (Lag4). 

The most influential ZD predictors were total, pelagic, and elasmobranch landings and 

copepod abundance (Fig. 5.9). The two salinity metrics were influential for three of the 

Avg ensembles, and were the only pressures included in Avg8. Total and mollusk 

landings were influential for the three lag ensembles, with Lag4 and Lag5 including those 

and copepod abundance (Fig. 5.9). 
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Figure 5.9: Most influential pressures from the NN analysis for the ZD and best models 
for each delay type and period. Orange shading indicates influential fishing pressures; 
green shading indicates influential environmental pressures. (A) Full period, moving 
average predictors; (B) Full period, lag predictors; (C) Time1; (D) Time2. 
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I evaluated the fit and predictive power of the best ensembles for each period using only 

their respective influential pressures as predictors (“reduced predictor sets”). There were 

no notable changes in fit for the Full period or Time1, although there were several Time2 

models (Avg3, Lag4, Lag5) for which the reduced predictor set had notably worse 

MSE777777*8-9: than the whole set (not shown). Results for predictive power were mixed. The 

MSE777777*;<, of the ZD ensemble was notably improved with the reduced predictor set for all 

three periods. The smaller set also improved the predictive power of Avg3 and Avg4 for 

Time1 and Avg5 and Avg8 for Time2, suggesting that the training is being misdirected 

by extraneous information in at least one of the pressures in the full suite. In contrast, 

Lag4 and Lag5 for Time2 were notably worse with the reduced set (Fig. 5.10). 
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Figure 5.10:  MSE777777*;<, of the best delay lengths for each delay type and period. Dark grey 
bars represent the models trained with all predictors; light grey bars represent the models 
trained with the reduced predictor set (i.e., only the most influential pressures for the 
given delay. (A) Full period, moving average predictors; (B) Full period, lag predictors; 
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(C) Time1; (D) Time2. The faint shaded boxes indicate the moving average models (to 
differentiate from ZD and Lag). Note difference in scale for Time1. 

 

I assessed the forecast potential using the Full period to include the maximum number of 

observations for training. The Avg4 pressures had the best predictive power for this 

period and were therefore used to build the forecast models. The n-fold cross validation 

results showed that the model captured the general trends in the functional groups, but 

little of the variability around the trends (Fig. 5.11A). For example, the benthivore and 

piscivore biomass indices exhibited obvious linear trends over the Full period, which 

were well represented by the model. In contrast, the macrozoo-piscivore index had high 

inter-annual variability with no overall trend, and the model essentially fit the mean of the 

index (Fig. 5.11A). This is likely a consequence of the simple NN structure (e.g., 1 

hidden node), which constrains the flexibility of the model. 

 

The forecast-5 model generally reflected the results of the n-fold cross validation. 

The accuracy of the forecast-5 predictions varied for the different functional groups, and 

generally did not reflect inter-annual variability. Based on Fig. 5.11B and 5.12, this 

model performed the best for benthivores and piscivores, and tended to underestimate the 

biomass of the other functional groups (particularly macrozoo-piscivores). The only 

notable difference in MSE777777*;<, between the forecast-5 and n-fold cross validation results 

was for macrozoo-piscivores, for which the forecast-5 MSE777777*;<, was notably worse than 

that of the n-fold and nfold-5 (by a factor of about 2.5; Fig. 5.12). In contrast, the 

forecast-10 model performed notably worse than the n-fold cross validation for three 

functional groups: benthivores, macroplanktivores, and piscivores (by a factor ranging 

from about 2.5 to 6; Fig. 5.12). This model generally underestimated the biomass of 

benthivores and overestimated that of macroplanktivores and piscivores (Fig. 5.11C). 

There was more uncertainty in the ensemble predictions of most functional groups for the 

forecast-10 models compared to the n-fold and forecast-5 models (Fig. 5.11). 
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Figure 5.11: Average and standard deviation of the predictions for each functional group 
over the Full period using Avg4 predictors: (A) n-fold cross validation; (B) 5-year 
forecast; (C) 10-year forecast. 
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Figure 5.12: Mean squared error of the predictions for each functional group over the Full 
period using Avg4 predictors for the three prediction cases. (mesoplank = 
mesplanktivore; macroplank = macroplanktivore; zoopisc = macrozoo-piscivore.) 

 

5.4.3 Results comparison 

The best delay lengths and most influential pressures varied depending on the model 

type, delay type, and period. The NN models generally highlighted more influential 

pressures than the MLR models. Avg predictors generally performed the best for both 

approaches, with most delay lengths similar to or notably better than the corresponding 

ZD predictors. Most of the NN Lag ensembles were also similar to or notably better than 

the ZD predictors, although three delay lengths for Time2 were notably worse (Fig. 5.8). 

In contrast, the MLR Lag assemblages were similar to or notably worse than the 

corresponding ZD predictors. Considering the best NN models, a higher proportion of 

environmental pressures were considered influential in the Avg ensembles compared to 

the Lag ensembles for each period. In contrast, a higher proportion of environmental 

pressures were considered influential for the best MLR Lag assemblages – in fact, no 

environmental pressures were influential for the Full or Time1 Avg assemblages. There 

were no such patterns for the fishing pressures.  

 

There was some overlap in the best delay lengths for each period across the model types 

(where best delay lengths were identified with the adjusted-R2 for the MLR assemblages 

and MSE777777*;<, for the NN ensembles; see sections 5.3.3.2  and 5.3.3.3). Here I highlight 

these common delay lengths (including ZD) to provide a more direct comparison of the 

goodness of fit and influential pressures resulting from each method. In all cases, the 
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MLR assemblages had notably better fit than the corresponding NN ensembles. The 

difference in MSE between the two approaches was smallest for the Full period, which 

had three overlapping best delay types and lengths: Avg7, Lag4, and Lag6. No single 

pressure was influential in all of these models, although elasmobranch landings was 

influential for all except one (MLR Avg7). For all delay lengths except Avg7, the NN 

highlighted the same pressures as the MLR analysis, plus two additional fishing 

pressures. This provides strong evidence for considering these common pressures as 

influential for the associated delay length and type, and is consistent with the observation 

that the NN criteria generally highlighted more pressures than the MLR criteria. The 

common pressures included pelagic and elasmobranch landings and copepod abundance 

for ZD; elasmobranch landings for Avg4; and elasmobranch landings and copepod 

abundance for Lag6. Both Lag4 models and the MLR Avg7 model highlighted only 

fishing pressures. Influential environmental pressures were copepod abundance (in both 

ZD and Lag6 models), SSS, and bottom salinity (in NN Avg7).  

 

Time1 had the largest difference in fit between the NN and MLR models (Fig. 5.13). The 

only overlapping delays were ZD and Avg4, so I also compared the fits of the best overall 

Lag results from each approach (Lag1 for NN; Lag7 for MLR). The average MLR MSE 

was about 3.5 times better than the corresponding average NN MSE, while the best MLR 

model was about 15 times better than the best NN model for ZD and Avg4. The ZD and 

Avg4 models for both NN and MLR included pelagic landings and SSS. The NN Avg4 

ensemble additionally highlighted mollusk landings, SST, and SSS. The NN ZD 

ensemble highlighted two additional fishing pressures (total and mollusk landings), while 

the MLR ZD assemblage highlighted bottom salinity.  

 

Time2 had the most overlapping delay lengths, with three Avg delays (Avg3, Avg5, 

Avg7), and three Lag delays (Lag3, Lag4, Lag5). The average MLR MSE ranged from 

1.5 to 2 times better than the average NN MSE. Most of these delays had common 

pressures between the two approaches: copepod abundance for ZD; total landings and 

NAO for Avg7; total landings and SSS for Lag3; total landings for Lag4; copepod 

abundance for Lag5. Copepod abundance was the only influential pressure for several 

MLR models (ZD, Avg3, and Lag5). 
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Figure 5.13: Average fit of the NN ensemble (dark bars) and MLR assemblage (light 
bars) for the common best delay lengths. Open circles indicate the overall best fit of the 
ensemble or assemblage. Note that for Time1 there was no common delay length for the 
lag models, so I compared the best delay length for each approach (Lag1 for NN; Lag7 
for MLR). 

 

The MLR approach generally highlighted one to three influential pressures for each 

assemblage (Fig. 5.5). On average, these reduced models explained less than half (~44%) 

of the variance explained by the best model in the assemblage (Fig. 5.6). In contrast, the 

NN approach generally highlighted three to five influential pressures for each ensemble, 

and these reduced sets typically had marginally different fit and predictive power as 

compared to the whole predictor set (Figs. 5.9 and 5.10), although there were a few 

exceptions.  
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5.5 Discussion 
Here I synthesized the results to gain new insight into the methods used and the dynamics 

of the Georges Bank fish community. The average fit of the MLR assemblages was 

notably better than that of the corresponding NN ensembles (Fig. 5.13). This is likely 

because MLR finds the best fit for each functional group, and then averages the MSEs. In 

contrast, NN fits all of the responses simultaneously, which may result in compromises 

among the different functional groups (i.e., for a given functional group the fit could be 

worse than if it was the only response). Increasing the number of hidden nodes does 

improve the NN fit. For example, for Time1 ZD pressures, a 3-hidden node ensemble has 

about the same average fit as the corresponding MLR assemblage, and the best model of 

a 4-hidden node ensemble has about the same fit as the best MLR model. However, 

increasing the number of hidden nodes may be at the cost of losing predictive power (Fig. 

5.8), and care should be taken when applying this strategy to avoid over-fitting the data.  

 

For a broad perspective on the pressures in the region, I reviewed the most influential 

pressures from the best NN ensembles and MLR assemblages. The salinity metrics stand 

out as the most common influential environmental pressures overall for the NN models 

(Fig. 5.9). Both SSS and bottom salinity were influential in most of the best NN 

ensembles for the Full period, and several of the best Time2 ensembles, while SSS was 

included in most of the best ensembles for Time1. Salinity has been related to 

zooplankton community size structure on Georges Bank and adjacent regions (Pershing et 

al. 2005, Kane 2007), which in turn has been related to fish community dynamics, 

including recruitment regimes (Perretti et al. 2017), record high levels of planktivore 

biomass (Kane 2007), and recovery (or lack thereof) of commercially important species 

(Mountain and Kane 2010). It is reasonable to suggest that in the analysis, changes in 

salinity were a proxy for changes in the structure of the zooplankton community. A more 

direct measure of copepod abundance was also included as a pressure; however, it was 

considered influential less often than salinity for the best NN models of all three periods. 

This suggests that zooplankton community structure is a more important non-linear driver 

of the fish community than total abundance. Shifts in zooplankton community structure 

may favour certain fish species over others, thus impacting the structure of the fish 

community. For example, Mountain and Kane (2010) suggest that a shift to smaller 



 

 
132 

zooplankton on Georges Bank in the 1990s contributed to the recovery of haddock and 

lack of recovery of cod because of the different feeding characteristics of the two fish 

species. In contrast to the NN results, total copepod abundance was the most common 

influential environmental pressure for the MLR models. It was considered influential 

more often than either salinity metric for the best MLR assemblages, and is the only 

influential pressure highlighted for several of the Time2 models (Fig. 5.5). This suggests 

a direct, linear relationship between total copepod abundance and the fish community 

biomass, but that it can be eclipsed by the strength of the non-linear relationships 

extracted by the NN. It is encouraging that both types of model highlight environmental 

pressures related to secondary production, and this provides strong evidence that it is an 

important driver. 

 

The most influential fishing pressure was less coherent across the periods. Over the Full 

period, the most influential fishing pressure was elasmobranch landings for both types of 

model (Fig. 5.5 and Fig. 5.9). This suggests that unlike copepod abundance, 

elasmobranch landings have a first-order linear impact not dwarfed by non-linearity in 

the other pressures. Historically, elasmobranches were considered low-value, “under-

utilized” species on Georges Bank and the surrounding regions (MAFMC and NEFMC 

1999, NEFMC 2003). Landings were low (Fig. 5.3), and often the result of bycatch in 

other fisheries (Burgess et al. 2005). Throughout the 1980s, the more lucrative fishery for 

groundfish (e.g., cod, haddock) collapsed, and directed fishing on alternative species such 

as dogfish and skates was encouraged (NEFMC 2003, Burgess et al. 2005). Spiny dogfish 

(Squalus acanthias) is the dominant species by biomass in the piscivore functional group, 

and is thought to be the major predator in the region (i.e., can out-compete other 

piscivores for food resources; Link and Garrison 2002). The dogfish fishery was 

unregulated and expanded rapidly in the early 1990s, as total piscivore biomass decreased 

(Fig. 5.2; MAFMC and NEFMC, 1999). Landings peaked in 1996, at about five times 

higher than the average of the 1980s (NEFSC 2003). Landings subsequently declined, 

and stringent management quotas were implemented in the early 2000s (NEFSC 2003). 

By the late 2000s, dogfish spawning stock biomass had recovered (NMFS 2009). Skates 

are targeted with trawls as bait for lobster traps, and are also sometimes landed as food 

for humans when caught as bycatch in other fisheries (e.g., monkfish, scallops; NEFMC 
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2003, Burgess et al. 2005). The three main landed species are: little skates (Leucoraja 

erinacea), which is the dominant species in the macro-zoopiscivore functional group, and 

winter skates (Leucoraja ocellata) and thorny skates (Amblyraja radiata), which are both 

piscivores (Burgess et al. 2005). Elasmobranch landings are likely considered influential 

over the Full period because they reflect major changes that occurred in the ecosystem, 

including the collapse of groundfish species, and the decline and recovery of dogfish, the 

major piscivore. Additionally, these landings directly impacted two functional groups by 

removing biomass, and likely indirectly impacted others through removal of predators 

and competition.  

 

Pelagic and mollusk landings were the most influential fishing pressures for Time1, 

particularly for the NN ensembles. Pelagic fisheries target several species, including 

Atlantic herring, which dominates the meso-planktivore functional group, and Atlantic 

mackerel, another meso-planktivore (Tyrrell et al. 2008). These small pelagic fish are 

considered key forage species in the region, providing a trophic link between secondary 

producers and higher trophic level consumers (e.g., cod, sharks, seabirds, and whales). 

Like elasmobranches, pelagic landings were low throughout the 1980s, albeit for different 

reasons. While harvesters attempted to avoid elasmobranch species, the principal pelagic 

species were heavily exploited through the 1960s and 1970s. This contributed to a 

collapse of herring stocks, and subsequently limited pelagic landings (Melvin and 

Stephenson 2007). However, the results here suggest that the pelagic fishery continued to 

have immediate and delayed impacts on the fish community. Even small landings at this 

time would have represented a relatively large proportion of the forage fish available to 

predators, and may have kept the food supply sufficiently low to limit growth of higher 

trophic level species. In fact, the biomass indices of most functional groups in this 

analysis had small, negative slopes over this period (Fig. 5.2; slope values not shown), 

indicating there was a decrease in abundance and/or decrease in mean size of individuals. 

The mollusk fishery targets and mainly lands Atlantic sea scallops (dominant species in 

the “benthos” functional group), which is one of the most lucrative fisheries in the region 

(NEFSC 2014). There was no distinct trend in mollusk landings for this period. Landings 

were high in the late 1970s, but there was a rapid decline from 1977 – 1985, prior to a 

small increase in the late 1980s and subsequent decrease in the early 1990s (Fig. 5.3). 
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Medium to long delays were among the best models for this period (Avg4, Avg8 for NN; 

Avg7, Lag8 for MLR), which suggests that delayed effects of the previously high 

landings were still affecting the fish community during Time1. Shorter delays from the 

NN analysis (ZD, Lag1) also suggest more immediate impacts on the community, such as 

direct removals of benthos biomass. Indirect impacts could be removal of prey, and 

destruction of habitat from scallop dredges (Hall-Spencer and Moore 2000, Fuller et al. 

2008). 

 

Few fishing pressures were considered influential for Time2 in the MLR analysis, 

particularly for the ZD and Avg assemblages (Fig. 5.5). This may be related to 

management measures, including the three year-round Closed Areas (two on Georges 

Bank proper and one in southern New England) that were implemented to support the 

recovery of groundfish. These regions (comprising nearly 25% of the bank; Link et al. 

2005) were closed to commercial bottom trawling gear in late 1994, and have yet to be 

fully re-opened (i.e., have been closed for the duration of Time2). Closed areas have been 

shown to improve size, density, biomass, and diversity of organisms inside compared to 

outside the area (Halpern 2003, Davies et al. 2015). Increases in mean individual size of 

several species (e.g., haddock, skates, scallops) and dramatic increases in scallop density 

(~25-fold) have been reported inside the Georges Bank Closed Areas (Link et al. 2005, 

Fogarty and Botsford 2007, Davies et al. 2015). The reduced fishing pressure in these 

regions may have made environmental pressures such as NAO and copepod abundance 

relatively more influential on the whole community. In contrast to the MLR results, total 

landings were included in most of the best NN models for Time2, along with mollusk 

landings (Fig. 5.9). This suggests that impacts of fishing are still occurring in the region, 

but through non-linear or indirect mechanisms.  

 

Alternatively, the differences in the NN and MLR results for Time2 could be an 

indication that the criteria for selecting influential pressures from the MLR analysis was 

too stringent. This may also explain why the MLR analysis generally highlighted fewer 

pressures than the NN. To investigate, I ran a brief sensitivity analysis on the thresholds 

used for identifying influential pressures. First, I increased the threshold for the MLR 

analysis such that a pressure was considered influential if it had P50 within 0.20 of the 
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most frequent pressure (from the original threshold of 0.10). This did not change the 

conclusions for the Full and Time1 periods, although additional pressures were 

highlighted for several assemblages. For Time2, additional environmental as well as 

fishing pressures were highlighted, including for assemblages that only had influential 

environmental pressures at the lower threshold (e.g., pelagic and mollusk landings for 

ZD; pelagic landings for Avg2; total landings for Avg4; not shown). This shows that 

fishing pressures, while not technically “influential” based on the original criteria, are 

still important during this period. I also experimented with the threshold used for the NN 

analysis. First, I doubled it such that pressures with %Contribution ³0.20 were 

considered influential, but this highlighted very few pressures for any period or delay 

(i.e., no pressures were considered influential for most ensembles). Next, I halved the 

threshold, which was also not informative because it highlighted most pressures for most 

ensembles. This supports the use of the original, moderate threshold. I recommend that 

future applications of these methods apply such sensitivity analyses to provide a measure 

of confidence in the results. 

 

The most influential pressures were sensitive to modelling decisions, including choice of 

model, delay type and length, and the number of observations. Some of this may reflect 

real ecosystem dynamics. For example, the NN can reflect non-linear pressure-response 

relationships. The delay types incorporate different information into the predictors: the 

Avg predictors smooth the data, and reflect the trend in the pressure, while the Lag 

predictors emphasize the inter-annual variability. Additionally, it is not unreasonable to 

expect the relative influence of pressures to change over delay length and time period 

studied (Mann and Drinkwater 1994). For example, I argued that total landings were less 

influential for the MLR models in Time2 because large portions of the bank were closed 

to fishing. 

 

Although the fit was generally improved with the MLR models, there remains 

unexplained variance in the model. It is unreasonable to expect the model to explain all of 

the variance in such a dynamic system, particularly because there is inherent uncertainty 

in the data used to calculate the response and pressure indicators; however, the fit could 

possibly be improved by including pressures not considered here. Based on the results, 
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alternative indicators of secondary production may be useful. For example, direct metrics 

of the size structure of the zooplankton community (e.g., small-large copepod anomaly, 

as recorded by the NEFSC) may be more ecologically meaningful than total copepod 

abundance, because they better reflect the availability of food for size-selective predators 

(Mountain and Kane 2010, Suca et al. 2018). Different metrics of fishing pressure may 

also prove to be informative (e.g., fishing mortality rate or fishing effort). Other metrics 

of mortality not represented in the models include recreational landings and predation by 

sea birds and mammals. I also recommend monitoring and eventually including new 

pressures on the ecosystem, for example noise and chemical pollution from future oil and 

gas activities (Templeman 2010, DOI 2018), and ocean acidification (Preziosi and Runge 

2014, Di Santo 2015, Lesser 2016). 

 

The accuracy of the forecasts was variable among the functional groups (Fig. 5.11), but in 

general there was significant room for improvement in all of the forecast models analyzed 

here. It appears that the 1-hidden node NN ensembles were only able to model the trends 

in the data and did not have the flexibility required to capture inter-annual variability. 

Increasing the number of hidden nodes is a tempting option to increase the complexity of 

the model. I re-ran the forecast analyses (n-fold, forecast-5, and forecast-10) using 2 

hidden nodes, but the only notable difference was worse predictive power for 

mesoplanktivores in the forecast-5 model (by a factor of about 3). This, along with the 

results in Fig. 5.7, demonstrates that the added complexity can over-fit the data, resulting 

in worse forecast ability. I recommend exercising caution when increasing the number of 

hidden nodes. Results of the forecast analysis suggest that the predictive power of the n-

fold cross validation provides a good estimation of the model’s performance on short-

term forecasts (e.g., 5 years), but not for longer term forecasts (e.g., 10 years). However, 

it is possible that the forecast-10 results were relatively poor because reserving 10 years 

of data for testing left a small number of observations for training. I recommend 

continued monitoring and analysis of traditional and novel pressure indicators to create 

long time series for such applications. Although the forecasts in their current incarnation 

would not be precise enough to directly inform management, the exercise highlights 

additional questions for scientific inquiry (e.g., Which additional pressure(s) could 

improve forecast ability and why? Would including pressure-specific delays improve the 
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predictive power? Is forecast ability improved when a separate model is built for each 

functional group?).  

 

Linear regression has been an accepted ecological tool for decades, but its assumption 

that predictors and responses are linearly related is rarely appropriate for ecological 

interactions, and the form of these relationships is generally unknown (Hunsicker et al., 

2016). It may therefore seem intuitive that NN, which can implicitly model non-linear 

relationships, would be a more appropriate tool for ecological investigations. However, 

MLR had a better fit and was easier to build and interpret than NN for the current 

application. It is possible that the approaches could provide complementary information 

in a management context, because NN are often considered skillful at out-of-sample 

predictions (e.g., forecasts). NN forecasts in this analysis were variable and could 

possibly be improved by including longer time series and pressure-specific delays. I 

recommend that future analyses compare the forecast ability of these two approaches and 

apply the results to EBFM initiatives. 
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CHAPTER 6: CONCLUSIONS 
 

Marine fisheries collapses worldwide – including in Canada and the US – have led to 

global calls to supplement traditional single species management with EBFM approaches, 

which explicitly consider interactions among species in the context of changing 

environment, human use, and social well-being (e.g., Misund and Skjoldal 2005, DFO 

2007). EBFM requires a vast array of information about the coupled human-ecological 

system. This can be provided in part by data-based indicators, including metrics of the 

fish community, pressures on this community, and socio-economic conditions. 

Implementation of EBFM will benefit from a better understanding of the relationships 

among these indicators, and analytic methods for choosing which to include in scientific 

and management exercises.  

 

Throughout this thesis, I developed methods for assessing relationships among ecological 

indicators, including identifying pressures that best explain changes in the fish 

community. I first synthesized a suite of indicators for the Grand Bank, and used simple 

correlations to examine relationships among fish functional groups, to identify potentially 

redundant human and environmental indicators, and to suggest causal relationships 

between indicators. Efforts to categorize them into a commonly used conceptual 

framework were used to critique the ability of such qualitative approaches to interpret 

indicators. Next, I applied a multivariate linear regression approach to model the biomass 

indices of six fish functional groups using nine fishing and environmental pressures, and 

identified the most influential pressures. I conducted a similar analysis using a neural 

network approach, assessing the fit, predictive power, and most influential pressures, and 

then compared the results to the linear approach where appropriate. Finally, I applied 

both approaches to the Georges Bank ecosystem to test the generality of the results and 

conclusions. 

6.1 Major Findings 
The major findings of this thesis correspond to the objectives listed in Chapter 1, as 

summarized below. 
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1. Synthesize and analyze indicators for the Grand Bank to draw insights about 

ecosystem dynamics and investigate the utility of a common management framework. 

I synthesized and published a suite of 39 biological, human activity, and environmental 

indicators spanning 29 – 39 years for the Grand Bank ecosystem. These indicators can be 

used in a variety of applications, which I illustrated in this chapter with correlation 

analyses and a management categorization exercise. I demonstrated that relationships 

between the fish functional groups changed among the three periods of interest, and that 

correlations between these functional groups generally increased at non-zero lags. I 

identified a subset of indicators that were representative of the human activities and 

environmental categories, and showed that the fish community responds to changes in 

drivers and pressures over different time scales. These findings reiterated the need to 

include multiple indicators in analyses intended to support management decision-making, 

and illustrated the importance of selecting an ecologically meaningful time frame for 

indicator analysis. The attempt to organize the indicators into the DPSIR framework 

showed that this classification is not straightforward, and could have resulted in 

erroneous conclusions about the ecosystem dynamics. I proposed a revised DPSIR 

framework that better reflects fisheries management considerations, including 

interactions among components of the state and management responses differentially 

affecting the other categories. I found it was more useful to categorize forcing factors as 

endogenic (manageable) or exogenic (unmanageable) than as drivers and pressures.  

 

2. Evaluate the explanatory power of linear models that use fishing and environmental 

pressures to predict changes in the fish community of the Grand Bank before and after 

the biomass collapse (Chapter 3). 

A linear approach was used to evaluate the explanatory power of all possible subsets of 

nine pressures for predicting changes in six fish functional group biomass indices. I 

identified the most influential predictors, and showed that there is no single type of 

pressure driving fish community dynamics on the Grand Bank. The Before period had 

remarkably high explanatory power compared to the other periods, due to changes in the 

relationships among and within the pressures and responses. Results showed a shift in the 

most influential pressures After the collapse, which reflects the change in environmental 

conditions and harvester behavior in response to the groundfish moratoria in the mid-
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1990s. There was no one set of pressures that best predicted fish community status for 

any period or delay type length, which suggests there are strong indirect effects of many 

pressures on different ecosystem constituents, such that changes in fish functional group 

biomass can be directly predicted from different combinations of pressures. In general, 

moving average predictors had higher explanatory power than lagged predictors for both 

periods, which suggests that trends in pressures are important for predicting changes in 

the fish community. My analysis of pressure-specific delays showed that assigning a 

carefully chosen delay to each predictor can further improve the explanatory power; 

however, many of the mixed delay models did not, which highlighted the need for 

mechanistic models to investigate suitable delays. Here I added to the current 

understanding of this ecosystem, while demonstrating a method for selecting pressures 

that could be useful to scientists and managers in other ecosystems. 

 

3. Assess the utility of neural networks for explaining observed changes in the Grand 

Bank fish community using fishing and environmental pressures (Chapter 4). 

Neural networks (NN), a non-linear approach, was used to model the six fish functional 

group biomass indices using nine fishing and environmental pressures. I evaluated the fit 

and predictive power, and identified the most influential pressures for each period for 

different delay types (moving average and lag) and lengths (0 – 10 years). Unlike for the 

multivariate linear regression (MLR) approach, the delay type and length had negligible 

impacts on the NN fit; however, the MLR fit was notably better than that of the 

corresponding NN models. The NN predictive power was impacted by the delay choices, 

and I showed that a combination of current and past pressures is needed to best predict 

the fish community on the Grand Bank. The results of both approaches suggested that 

both top-down and bottom-up forcing have influenced the fish community over the past 

several decades, and that the most influential pressures shifted after the collapse. A 

preliminary investigation of NN forecast ability showed that the accuracy of the forecast 

differs among functional groups, and that n-fold cross validation provides a useful 

estimation of the model’s predictive power. Finally, I summarized advantages and 

disadvantages of the linear and non-linear approaches, and concluded that MLR may 

prove more useful for this application, although NN may be able to provide 

complementary information from other applications. 
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4. Assess both linear and non-linear approaches for explaining changes in the Georges 

Bank fish community, and recommend the most useful approach for future analyses 

(Chapter 5). 

I compared the linear (MLR) and non-linear (NN) approaches developed in the previous 

chapters for modelling the Georges Bank fish community, and for identifying the most 

influential pressures over different time periods comprising three decades. MLR models 

were more straightforward to build and interpret than the NN models, and also resulted in 

better fit, which suggests that the MLR approach is more suitable for this application. 

Total copepod abundance was the most influential environmental pressure for the MLR 

models, suggesting a direct, linear relationship between total copepod abundance and the 

fish community biomass. Elasmobranch landings were the most influential fishing 

pressure over the Full period, likely because they reflect major changes that occurred in 

the region, directly impact two functional groups, and indirectly impact others by 

removing predators and competition. Preliminary investigations of NN forecast ability 

suggest that n-fold cross validation provides a useful estimation of predictive power, 

particularly for short term forecasts, although future efforts are needed to improve these 

forecasts. I recommended MLR as the most useful approach for the current application, 

but suggested that future analyses into NN forecast ability are warranted. 

 

6.2 Implications 
The MLR approach is superior to the NN approach for this application 

There are advantages and disadvantages associated with both modelling approaches. The 

results of this thesis show that the MLR approach is superior to the NN approach for the 

application explored here. The MLR models consistently fit the data better than the 

corresponding 1-hidden node NN in both regions, which implies that we can give more 

credence to the influential pressures identified from the MLR approach. Additionally, the 

MLR models were easier to build and interpret, which suggests that it would be more 

straightforward disseminate results among non-experts (e.g., managers and other 

stakeholders). 
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Fishing and environmental pressures are influential  

With few exceptions, all of the best models (particularly NN) highlighted both fishing 

and environmental pressures as influential for the two ecosystems. This implies that other 

analyses attempting to model (mechanistically or statistically) the fish community in 

these regions should consider both types of pressures. Additionally, this implies that 

environmental conditions should be considered in management decisions, e.g., managers 

should adjust the pressures they can control to account for the ones they cannot. 

 

Influential pressures are sensitive to modelling decisions 

For a given region and period of interest, the most influential pressures were sensitive to 

modelling decisions, including choice of model, and delay type and length. This 

highlights that the two approaches model different types of relationships, demonstrates 

that the delay types provide different information to the model, and illustrates that the 

delay length impacts the relative importance of pressures. While these differences may 

have ecological meaning, the range of best sets can be difficult to parse. To refine the 

results, I recommend only applying only MLR for the reasons discussed above. 

Depending on the objective of the analysis, it may also be appropriate to choose a delay 

type and length of interest a priori (e.g., 3 – 5 year delay lengths for medium-term 

management forecasts). Otherwise, it is reasonable to identify the most influential 

pressures as those that influence the fish community consistently over different delays, as 

done here. 

 

Influential pressures sets should be updated after pronounced ecosystem change  

I showed that the most influential pressures changed in the mid-1990s for both 

ecosystems, illustrating the dynamic nature of marine ecosystems. This implies that the 

most influential pressures should be re-evaluated after pronounced change (e.g., regime 

shift, significant management changes), and provides motivation for incorporating 

principles of adaptive management (i.e., adjusting strategies based on new scientific 

insights; DFO 2018c) into EBFM approaches. 
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Pressure sets should be ecosystem specific 

There were differences in the pressure sets highlighted for each region, even though most 

of the candidate pressure indicators were the same. This implies there are true differences 

between these ecosystems, and provide evidence for development of ecosystem-specific 

pressure sets for scientific and management purposes. 

 

Collect and analyze lower trophic level data 

I found that the structure of the zooplankton community may be an important pressure on 

the Georges Bank fish community, which implies that programs to continue collecting 

and monitoring these data should be supported.  

 

6.3 Future Work 
Address autocorrelation 

Throughout this thesis I chose to mainly ignore the issue of autocorrelation. In terms of 

the MLR approach, it is possible that autocorrelation could affect the goodness of fit 

(adjusted-R2) and therefore the influential pressures. It may be useful to run a simulation 

exercise to investigate this issue. For example, one could simulate a dataset such that: 

 

𝐘 = 𝐗𝛃 + 	𝛜            (6.1) 

 

where Y is an n x r matrix of response variables; X is an n x p matrix of predictor 

variables, 𝛃 is a p x r matrix of regression coefficients, and 𝝐 is an n x r error matrix, 

where each column of 𝝐 is drawn from an autoregressive model (i.e., errors are 

correlated). Next, calculate the adjusted-R2 (Equation 3.3). The level and/or type of 

autocorrelation in 𝛜 can then be modified to evaluate how this impacts the adjusted-R2.  

Similar methods could be used to explore how the number of predictors and the number 

of observations affect these results. 

 

It is unclear if or how autocorrelation may have impacted the fit and influential pressures 

of the NN approach. Based on the literature review for this thesis (e.g., Appendix E.1), it 

appears that autocorrelation is rarely discussed in the context of NN models. Some NN 

users claim that interpretation of NN does not rely on assumptions about the underlying 
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error distribution of the data (e.g., Olden and Jackson 2001); however, this has been 

refuted (Sarle 1997). In terms of forecast potential, autocorrelated variables could over-

estimate the predictive power of the models, particularly when it is assessed using n-fold 

cross validation (i.e., the model knows the values of the pressures and responses before 

and after the observation omitted during the training, and because of the trends in the 

indicators, the model can essentially interpolate the omitted value). This was addressed to 

some extent with the forecast models, which showed that the n-fold cross validation 

provided a useful estimate of predictive power for most functional groups, particularly for 

short-term forecasts (e.g., 5 years). Another method to address the autocorrelation in this 

application would be to used block validation (e.g., train on all except k observations, k > 

1, and then test on the omitted values). 

 

Finally, future work could apply methods of time series analysis to model the 

autocorrelation (e.g., generalized least squares regression; Shannon et al. 2009, Bundy et 

al. 2012) and identify the most influential pressures, and compare the results to those 

presented here. 

 

Capitalize on forecast potential 

This thesis mainly focussed on interpreting model fit and most influential pressures from 

the two approaches, but did a preliminary assessment of the forecast potential of the NN 

models. I recommend assessments of the predictive power of the MLR models for 

comparison with the NN. Further investigations into the approach that performs the best 

should include additional rigorous test procedures, for example using more recent data 

(e.g., 2014 – 2018) to validate models trained on the data available for this thesis. 

Interpretation should consider the overall model as well as the results for each functional 

group separately, which could highlight groups that respond differently to the pressures, 

suggest the need to include additional pressures, and expose issues with data. Ultimately, 

these models could be used as low-cost (in terms of data, and time to build, run, and 

analyze) strategic models to complement existing approaches, and could provide warning 

signs of change in the fish community, allowing for early management action. 
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Identify pressure-specific delays 

Most of the models in this thesis were fit using the same delay type and length imposed 

on all of the pressures; however, it is reasonable to expect different pressures to manifest 

over different time scales. A brief analysis in Chapter 3 showed that the MLR fit can be 

improved using pressure-specific delays, but it was beyond the scope of this work to 

identify the most useful delay type and length for each pressure. I do not expect pressure-

specific delays to improve the NN fit, which was not notably impacted by the delay type 

and length; however, imposing meaningful delays on the pressures may improve NN 

predictive power and/or MLR fit. Additionally, a single pressure may manifest over 

different times scales (e.g., fishing has immediate and long-term impacts; Beverton and 

Holt 1957, Daan et al. 2005, Greenstreet et al. 2011), and so including the same pressure 

at different delays may also improve NN predictive power and/or MLR fit. I recommend 

further investigation into suitable pressure-specific delays for modelling and forecasting 

using additional statistical analyses or mechanistic models. 

 

Develop an idealized model  

In this thesis, two statistical approaches for modelling and identifying the most influential 

pressures on the fish community were applied to empirical data from two regions. These 

analyses would be complemented by development of an idealized model of a generic 

ecosystem, with pressure and response indicators simulated such that the responses have 

varying degrees of dependence on the pressures (e.g., from highly linear or non-linear to 

no relationship). Such a model would be particularly useful for verifying how well each 

approach ranks the most influential predictors. It could help refine details of the 

approach, including the optimal number of candidate pressure indicators to include as 

predictors (for fitting efficiency and ranking importance). For the NN approach, it could 

also help to determine the most efficient number of ensembles and the most effective 

number of hidden nodes for identifying the influential pressures. 

 

Additionally, a random variable (RV) could be included as a pressure in the empirical 

models used here to see how often the approach identified such erroneous information as 

an influential pressure. If the RV is rarely considered influential, this would improve 

confidence that the model highlighted truly influential pressures. In contrast, if the RV is 
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highlighted as influential, this could indicate that none of the candidate pressures have 

strong relationships with the responses, or that the model is over-fitting the data. 

 

Assess impacts of harvesting shellfish on the finfish community 

The linear and non-linear approaches both highlighted shellfish landings as an influential 

pressure on the Grand Bank fish community, even though no metric of community 

shellfish biomass was included as a response. The mechanism(s) through which these 

landings impact the fish community could include the reduction of available food and 

alteration of habitat. Alternatively, shellfish landings could be acting as a proxy for 

another pressure not included here. I recommend further studies on the community 

impacts of shellfish harvesting. For example, statistical analyses of stomach content of 

key fish species could reveal how satiation levels and proportion of shellfish in their diet 

have changed over the period of interest. Underwater video assessments of the seafloor 

(e.g., using a “HabCam”) inside and outside of shrimp fishing areas would provide 

insight into whether habitat destruction is slowing the recovery of benthic species. 

Additionally, mechanistic modelling of the ecosystem could simulate removal of shellfish 

biomass and habitat destruction to help resolve their impacts on the community. Finally, 

further research could assess whether shellfish landings were considered influential in 

these analyses because they are a proxy for a co-occurring or highly correlated pressure 

(e.g., groundfish landings) through additional literature review and modelling exercises.  

 

Continue and expand monitoring of marine ecosystems 

Here I calculated indicators from a variety of data sources for the Grand Bank. I 

recommend continued efforts to collect and process these data so the indicators can be 

updated regularly to build long indicator time series (e.g., similar to the Ecosystem 

Assessment Program updates to the Georges Bank indicator set; EcoAP 2012). Long time 

series provide a baseline of ecosystem conditions and allow scientists and managers to 

monitor changes over time, and may also result in more robust statistical analyses 

(Hardison et al., in press). I also recommend expanding monitoring and/or data 

processing to calculate additional indicators, including metrics of lower trophic level 

dynamics (see below) and pressures that could become more influential in the future 

(e.g., acidification). Additionally, the spatial and/or temporal extent of data collection and 
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processing could be expanded. For example, the local environmental indicators for the 

Grand Bank are based on point observations from Station 27; separate indicators for 

disparate locations may provide additional useful information. Similarly, indicators 

presented here were annual values (generally averages), while seasonal signals may prove 

more informative. Ideally, these indicators will be stored in a single database and easily 

accessed by scientists at various government and academic institutions.  

 

Investigate alternative lower trophic level pressure indicators 

Different metrics of lower trophic level dynamics were included for the two regions. 

TimeIce was included as a metric for the timing of the spring phytoplankton bloom for the 

Grand Bank, and total copepod abundance was included for Georges Bank. Copepod 

abundance was considered an influential pressure for Georges Bank far more often than 

TimeIce was for the Grand Bank (when considering MLR and NN results). This could 

imply that lower-trophic level dynamics are more important for Georges Bank; however, 

it is possible that TimeIce as a proxy for the timing of the spring phytoplankton bloom is 

too far removed from higher trophic level dynamics to be a useful predictor of the fish 

community. To investigate the influence of secondary production on the Grand Bank, 

future analyses could incorporate zooplankton data from the Atlantic Zone Monitoring 

Program (AZMP), which has collected biological, chemical, and physical data from the 

Newfoundland shelf since the late 1990s (e.g., Pepin et al. 2005). I suggest repeating key 

analyses for the new time period using the pressures in this thesis along with zooplankton 

abundance to see how much it improves the fit and whether it is considered influential. 

Additionally, based on results in Chapter 5, future analyses should assess the utility of 

metrics of the zooplankton community structure (e.g., small−large copepod anomaly; 

Perretti et al., 2017) rather than total abundance. 

 

Expand consideration of ecosystem state 

Throughout this thesis the biomass indices of fish functional groups were considered the 

main metrics of ecosystem state; however, other ecosystem characteristics such as 

biodiversity are also of interest for EBFM (e.g., CBD, 2010; Fogarty, 2014). The 

approaches outlined in this thesis could potentially be applied to model, forecast, and 

identify the most influential pressures on these characteristics, given appropriate indicator 
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time series. I recommend assessing the utility of these models, because the results could 

complement those discussed in this thesis, and provide a broader picture of the pressures 

impacting the ecosystem. 

 

Apply methods to other ecosystems 

The approaches used in this thesis can also be applied to other ecosystems. Scientists at 

DFO and NOAA have expressed interest in using these methods to explore dynamics of 

the Scotian Shelf (off the Southwest coast of Nova Scotia) and the Mid-Atlantic Bight 

(along the US East coast from southern New England to North Carolina). These analyses 

would complement the Northwest Atlantic case studies included in this thesis, and could 

add to the understanding of how the Atlantic region will respond to climate change. It 

would also be worthwhile to explore more disparate ecosystems to contribute to (or 

begin) efforts to learn about pressure-response relationships in those regions. I suggest 

partnering with the IndiSeas project to help inform which ecosystems to focus on and for 

access to data. As shown in this thesis, such analyses and their interpretation should be 

assessed by a local expert, e.g., someone familiar with the history of the ecosystem, 

including significant regime shifts, exploitation, and management decisions. 

 

Improve understanding of neural networks 

NN are considered relatively complicated, have been criticized as “black boxes,” and 

have limited accessible best practices for building and interpreting the model. I 

recommend a comprehensive review that expands on my table in Appendix E.1 by also 

suggesting best practices, including how to choose the number of hidden nodes and 

quantify predictor contributions. Additionally, I recommend that ecologists include at 

least a basic understanding of NN in their modelling toolbox.  

 

Apply results to EBFM initiatives 

These approaches for identifying the most influential pressure sets could be applied in an 

EBFM context in the “indicator development” step of an Integrated Ecosystem 

Assessment (Levin et al. 2009) or other indicator scoping exercises to highlight pressures 

that should be monitored throughout the management process. Results could also help 

focus studies of ecological thresholds and those characterizing pressure-response 
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relationships (Large et al. 2015b, Hunsicker et al. 2016) by prioritizing which pressures 

should be included. Finally, these approaches could be used for management strategy 

evaluations in data-poor regions, or in data-rich areas as where mechanistic models are 

not yet operationalized. 
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APPENDIX B: Additional Background on Regions of Interest 
 

B.1 Common History 

The Grand Bank, (of Canadian and international waters), and Georges Bank (United 

States and Canada) are both economically and ecologically important, data rich fishing 

grounds in the Northwest Atlantic (e.g., Fogarty and Murawski 1998, Schrank 2005). 

These regions share common history, beginning in the Middle Ages when Vikings and 

Basques discovered and began to exploit their abundant fish stocks (Kurlansky 1997). 

Other European nations joined the fishing throughout the 1500s, and these distant water 

fisheries transitioned into temporary settlements, which eventually became permanent. 

These regions were still considered among the most productive fishing grounds in the 

world throughout the 20th century (Herbert 1995, Rose 2007).  

 

In the 1930s and 1940s it was recognized that fish stocks in the Northwest Atlantic were 

declining (Bubier and Rieser 1986). In response, an international convention was signed 

by countries with fishing interests in the region (e.g., Canada, United States, Portugal, 

Spain, United Kingdom) to create the International Commission for the Northwest 

Atlantic Fisheries (ICNAF) in 1949. ICNAF was responsible for coordinating the 

management of stocks fished by more than one country. They organized scientific studies 

and set regulations meant to conserve the resources (Bubier and Rieser 1986); however, 

members were free to file formal objections to any regulations, and then ignore them. 

ICNAF had no real enforcement power, and stocks continued to decline (Rose 2007). 

 

In 1977, Canada and the United States (US) each extended their exclusive economic zone 

(EEZ) from 12 nautical miles (nm) to 200 nm. The EEZ delimits an area where the state 

has sole exploitation rights over natural resources (including fish), and the responsibility 

for managing and conserving living marine resources (UNCLOS 1982). The number of 

stocks fished by more than one country decreased dramatically, so several countries 

withdrew from ICNAF, which disbanded (Rose 2007). In its stead, a treaty was signed to 

form the Northwest Atlantic Fisheries Organization (NAFO) in 1979. NAFO adopted 

some of the responsibilities of ICNAF, including scientific research for species outside of 

the 200 nm zones (essentially only Grand Banks stocks). All of the former ICNAF 
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nations signed the treaty, except for the US, whose main resources fell within its new 

EEZ (Rose, 2007).  

 

B.2 The Grand Bank 

The Grand Bank (NAFO Division 3LNO) and the adjacent southern Labrador and 

northeast Newfoundland shelf (NAFO Division 2J3KL) are the major subunits of the 

Newfoundland-Labrador Shelf in the Northwest Atlantic (NAFO 2010a). The banks are a 

series of shallow plateaus where the cold Labrador current meets the warm Gulf stream, 

creating a nutrient rich environment that is an ideal spawning and feeding ground for 

many fish species. For centuries, this region was one of the most productive fishing 

grounds in the world, with global fisheries for Atlantic cod, flatfishes, and other species 

(Rose 2007). 

  

In the late 1970s there was a decline Canadian landings from the Grand Banks (NAFO 

divisions 2J3KLNO), which was blamed on foreign trawlers (Rose 2008). In response, 

Canada extended its EEZ to 200 nm (the maximum allowed under international law), 

excluding foreign vessels from most of the area. Fisheries management in the region 

became the responsibility of Fisheries and Oceans Canada (DFO) within the EEZ, and 

NAFO in international waters (including straddling stocks, which cross between the EEZ 

and the high seas; Rose 2007). Canadian landings initially increased, but declined again 

as foreign fleets continued to fish on the edge of the EEZ, and Canada expanded its 

offshore fleet (Rose 2007, 2008). Throughout the 1980s the main management strategy 

for both NAFO and DFO was to set independent quotas for each fish stock; however, 

these measures were largely ineffective due to the disregard of these limits by some 

vessels and scientific challenges in calculating sustainable quotas (e.g., Rose 2007). In 

the 1990s prolonged heavy fishing pressure combined with an environmental regime shift 

caused complex ecological changes characterized by a collapse of fish biomass. This is 

known worldwide as “the collapse of the cod” even though many other species were also 

impacted (e.g., Atkinson 1994; NAFO 2010b).  

 

In response to the low biomass of many stocks, groundfish moratoria were enforced for 

2J3KL in 1992, and two years later for the Grand Bank. The moratoria were meant to 
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reduce fishing pressure so that the fish community could rebuild (Rose 2007). At the 

time, government officials estimated the fisheries would be closed for two years, but 

many of the moratoria still remain in place over 20 years later (Rose 2007). These 

fisheries closures are likely part of the reason there has been some degree of recovery in 

the community biomass, but they also had socio-economic impacts on Newfoundland and 

Labrador, requiring fishers to adapt by targeting different species (e.g., shrimp and other 

shellfish), retiring from the fishing industry, or leaving the province to find employment 

elsewhere (e.g., Hamilton and Butler 2001, Schrank 2005). 

 

Both DFO and NAFO are currently working towards implementing ecosystem 

approaches to management (NAFO, 2010a, 2010b; Oceans Act, 1996; DFO, 2009). 

Current management strategies include the At-Sea Observer Program (DFO 2014), 

National Vessel Monitoring System (DFO 2018a), restrictions on total allowable catches 

(e.g., for redfish and yellowtail flounder; NAFO 2017) gear restrictions, and restricted 

entry programs.   

 

There is a wealth of data sources for Newfoundland and the Grand Bank that can be used 

to calculate indicators, although no set was previously published for use by scientists and 

managers. For example, fisheries-independent bottom trawl surveys have been carried out 

by DFO consistently since 1985, and provide annual biomass and abundance indices for 

nearly 200 fish species (McCallum and Walsh 1997). Local environmental indicators can 

be derived from data recorded at DFO monitoring Station 27, which is located near St. 

John’s, Newfoundland, and is considered representative of hydrographic conditions for 

the Grand Bank. Basin scale environmental indicators can be downloaded from US 

climate organization websites. NAFO has a database of commercial landings in the 

region, which can be used to calculate several fishing-related indicators, including 

landings of aggregate species, trophic level of landings, and fishing pressure. Finally, 

socioeconomic indicators data can be downloaded from the Statistics Canada database 

CANSIM. 

 

 

 



 

 
176 

B.3 Georges Bank 

Georges Bank is a shallow plateau in the Gulf of Maine, bordered by three American 

states (New Hampshire, Massachusetts, and Maine), and two Canadian provinces (New 

Brunswick and Nova Scotia; Herbert 1995) in NAFO Division 5Ze. It is considered one 

of the four ecological productivity units (i.e., management unit) of the US Northeast 

Continental Shelf Large Marine Ecosystem (Lucey and Fogarty 2013), and is considered 

particularly vulnerable to climate change because it is at the southern edge of an ecotone 

separating cold and warm fish species (GLOBEC 1991). Like the Grand Bank, this region 

is characterized by high productivity and is a historically lucrative fishing ground for 

scallops, cod, haddock, and other species (Bubier and Rieser 1986).  

 

The 200 nm limit imposed by Canada and the US created a 30,000 km2 disputed area 

where the EEZs overlapped (Herbert, 1995). Canada claimed the boundary should be 

equidistant from each country, which would place the north-eastern half of Georges Bank 

under Canadian jurisdiction. The US argued that the Northeast Channel created a natural 

ecological boundary, which would place the entire Bank under US jurisdiction (Herbert 

1995). Several attempts at bilateral agreements ultimately failed, and the boundary 

dispute was brought to the International Court of Justice (ICJ) in The Hague, Netherlands 

(Herbert 1995). The final decision was a 260 nm (480 km) long boundary between the 

original Canadian and US claims. Little to no regard was given to the fisheries or the 

related management and socio-economic considerations (Herbert 1995), and the 

boundary resulted in several transboundary stocks (those that cross between the EEZs of 

more than one country). The need for cooperative management of these stocks was 

recognized almost immediately; however, different management philosophies evolved on 

either side of the boundary (e.g., Bubier and Rieser 1986, Herbert 1995, Pudden and 

Vanderzwaag 2010). As on the Grand Banks, Canadian management focussed on fishing 

mortality limits, and management regulations primarily relied on effort control, including 

limited entry programs and vessel licensing, as well as output control such as TACs and 

quotas. US management aimed to conserve the spawning stock biomass (SSB), and 

management regulations included minimum mesh sizes and closed areas (Herbert 1995). 

Informal discussions for more cooperative management of groundfish began in 1994, and 
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resulted in coordinated efforts on both sides of the boundary (Pudden and Vanderzwaag 

2010).  

 

Like the Grand Bank, Georges Bank experienced complex ecological changes over the 

past several decades. The biomass of commercially valuable groundfish species 

collapsed, and in response three important spawning areas in the US were closed to 

fishing year round, beginning in 1994 (Murawski et al. 2000). An increase in the 

biomasses of other species lead to a shift in the community structure and fishing effort 

towards species of relatively low economic value such dogfish and skates (MAFMC and 

NEFMC 1999, NEFMC 2003) 

 

Today management in the region is coordinated by the Canada-US Steering Committee 

(SC), which was formed in 1995 and oversees three sub-committees. The Transboundary 

Management Guidance Committee (TMGC) provides non-binding management advice in 

an annual Guidance Document for cod, haddock, and yellowtail flounder. The 

Transboundary Resource Assessment Committee (TRAC) conducts joint Canada-US 

assessments for these stocks, providing the results to the TMGC. The Canada–USA 

Integration Committee (IC), the newest of the cooperative initiatives, is meant to 

facilitate the Ecosystem Approach to Management by coordinating relevant working 

groups (Pudden and Vanderzwaag 2007). There are also other significant efforts to 

implement ecosystem management approaches in the region (e.g., Link et al. 2011b, 

EcoAP 2012, WGNARS 2018). The Georges Bank ecosystem has long been of interest to 

scientists, and long data series exist. The NEFSC’s Ecosystem Assessment Group has 

calculated a suite of biological, fishing, and environmental indicators (EcoAP, 2012), 

which was used in this thesis. 
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APPENDIX E.3: Discussion of fit metrics for comparing NN and MLR  
 
It is not trivial to choose a goodness of fit metric to compare the neural network (NN) and 

multivariate linear regression (MLR) results. Here I first describe three tempting yet 

naïve metrics, and then discuss the metric used in this thesis. The first “naïve” metric is 

the R2, which is among the most extensively used metrics for evaluating regression 

models (Kvalseth 1985); however, R2 is not suitable for non-linear models, e.g., NN 

(Kvalseth 1985, Spiess and Neumeyer 2010). For linear models: 

 

SS*+,-. = SS\+ò;. + SSk88+8      (1) 

 

where SS*+,-. is the total sum of squares of the response, SS\+ò;. is the sum of squares of 

the model, and SSk88+8 is the sum of squares of error (residuals).  

 

SS*+,-. = ∑ (y9 − y7)/:
9{l 	     (2) 

 

SS\+ò;. = ∑ _y9 − y27d
/:

9{l = ∑ (y9 − y7)/:
9{l 		   (3) 

 

SSk88+8 = ∑ (y9	 − 	y29)/:
9{l      (4) 

 

Where n is the number of observations, y9 are the observed values, y29 are modelled 

values, y7 is the mean of the observed values, and y27 is the mean of the modelled values. 

For linear models, y7 = y27, leading to the two equations for SS\+ò;. (equation 3). Note that 

equations 2, 3, and 4 are for models with a single response variable. For multivariate 

models, these metrics are summed across each response prior to inclusion in equation 1. 

 

Equation 1 holds true because the vector of errors is perpendicular to the vector subspace 

containing the predicted values of the responses, and leads to the common R2 equations: 

R/ = [[ôoöõr
[[nopqr

       (5A) 

R/ = 1 − [[ússos
[[nopqr

      (5B) 
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For non-linear models, equation 1 may not hold true because the error vector is no longer 

guaranteed to be perpendicular to the vector of predicted responses. This leads to 

problems calculating R2, e.g.,  equations 5A and 5B (and other R2 formulations) may not 

be equivalent (Kvalseth 1985), and R2 may be less than 0 or greater than 1 (Spiess and 

Neumeyer 2010). Spiess and Neumeyer (2010) used a simulation model to demonstrate 

that R2 can lead to erroneous conclusions, and recommend other metrics be used when 

investigating non-liner models. Note that the adjusted-R2 (which was used to evaluate the 

MLR models in Chapter 3 and Chapter 5) is based on the R2, and so the above discussion 

also applies to why I did not compare the approaches using adjusted-R2. Additionally, 

adjusted-R2 recognizes that the degrees of freedom of the error vector decreases as more 

predictors are added, which is not necessarily true for non-linear models. 

 

A second “naïve” metric that is often applied in the NN literature is the squared 

correlation between the modelled and observed values (Appendix E.1), here designated 

with the lower-case r2 to distinguish it from the R2 of the multiple regression shown in 

equation 5. Intuitively, it may seem that a high r2 suggests a good model; however, this 

only holds true when the modelled vs. observed values fall on the 1-to-1 slope line. A 

relationship with a higher or lower slope could also have a high r2 but would suggest a 

bias in the model (i.e., over- or under-estimating the observations; Fig. 1). While it may 

be possible to identify and correct the bias, this does not appear to be common in the 

literature. 

 
Figure 1: Illustration of why the r2 of the modelled vs. observed values is not a useful 
goodness of fit metric. The r2 is high for both models, but the model in panel B over-
estimates the observations. 
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Finally, it may seem reasonable to compare the approaches using a metric based only on 

the errors between the observed and modelled values, for example the mean squared error 

(MSE). 

 

MSE = l
:
∑ (y9 − y29)/:
9{l      (6) 

 

Where (as above) n is the number of observations, y9 are the observed values, and y29 are 

the corresponding modelled values. This metric is valid only if the responses are scaled 

the same for both approaches, which may not be the case for NN and MLR. NN outputs 

are generally linearly mapped to the interval [0,1] to increase the speed of convergence of 

the backpropagation (gradient descent) algorithm, while MLR outputs are generally 

normalized to have zero mean and unit variance to reduce numerical errors. Figure 2 

shows two models that at first glance appear to have the same fit, but inspection of the 

scale of the ordinate axes shows that the errors in B are larger than those in A, i.e., they 

have different units. For a proper comparison of the fits, the outputs must be on the same 

scale. Additionally, because MSE depends on scale, it should not be used to compare 

models for data sets that have different ranges of values. 

 

Figure 2: Illustration of how different scaling of the output can influence the value of the 
errors. Note that because SS*+,-. is also on a different scale in the two figures, the ratio 
SSk88+8/SS*+,-. is the same, and hence they have the same R2. 
 
 

To compare the fits of the two approaches, I re-ran the MLR all-possible-combinations 

analyses with the responses linearly mapped to [0,1] to be consistent with the scaling of 

the NN responses. 
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APPENDIX F: Principal Component Analysis and Redundancy 
Analysis: Methods and Results 
 

This section briefly describes the methods and results of (i) principal component analyses 

on the functional group biomass indices and the pressure indicators for the three periods 

of interest, and (ii) redundancy analysis using the functional group indices as responses 

and the pressures and predictors. 

 

F.1 Methods 
F.1.1 Principal component analysis 
Principal component analysis (PCA) is a data reduction technique that partitions the 

variability of a dataset Ynxr into r linear combinations of the original variables. It is often 

used to identify and explore common trends in the variables comprising the columns of 

Y. The linear combinations are called principal components (PC), and are defined such 

that the “first” PC accounts for as much of the variance in Y as possible. The “second” 

PC accounts for as much of the remaining variance as possible, under the constraint that 

it is orthogonal to the first. Successive PCs continue to explain the remaining variance, 

subject to the constraint of being orthogonal to all of the preceding components. All r 

PCs are required to reproduce the total variability of Y, but in general most of this 

variability can be accounted for by the first k PCs.  

 

The orthogonal transformation of the original data into the matrix of PCs (𝐘û:ü8) is given 

by the eigenvectors of the covariance matrix of Y,  𝐒𝐘𝐘 (Equation F.1): 

 

𝐘û = 𝐘 ∗ 𝐄8ü8      (F.1) 

 

where each column of 𝐄8ü8 is one eigenvector. Thus, the coefficients for the ith PC are 

the elements of the ith eigenvector of 𝐒𝐘𝐘, denoted 𝒆𝒊 (Equation F.2). The variance of the 

resulting PCi is given by the corresponding eigenvalue, 𝜆G, such that 𝜆l > 	𝜆/ >	. . . 𝜆ß. 

The eigenvalues guide selection of k, i.e., the number of principal components that 

together represent an acceptable amount of the variability in Y (as defined by the user). 
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The elements of eigenvector i provide insight into the relationships highlighted by PCi 

(Equation F.3). 

 

𝑃C9 = 𝐘 ∗ 𝐞𝐢     (F.2) 

 

PC9 = 	 ≠

yll y/l … y8l
yl/ y// … y8/
⋮ ⋮ … ⋮
yl: y/: … y8:

∞ ∗ [el e/ … e8]9*      (F.3) 

 

Here, PCA was used to identify the dominant trends in the functional groups and 

pressures for the three periods of interest. 

 

F.1.2 Multivariate Regression  
Multivariate regression is an extension of simple linear regression that uses n 

observations on p predictors in Xnxp to fit a multiple regression model for each of the r 

responses in Ynxr (Equation F.4). The fitted (also called “modelled” or “predicted”) 

values are stored in the matrix 𝐘?:ü8, and matrix 𝜷?:ü8 holds the coefficients for linear 

combinations of the predictors. The values of 𝜷?:ü8 that minimize the squared error 

between the modelled values and observations are calculated using the normal equations: 

 

𝛃? = (𝐗𝐓𝐗)Y𝟏𝐗𝐓𝐘         (F.4) 

 

where the superscript symbols “T” and “-1” respectively denote the matrix transpose and 

inverse. It is assumed that the columns of X are linearly related to the columns of Y, and 

so appropriate transformations must be applied if necessary. Commonly, predictors and 

responses are normalized by centering and scaling them by their respective mean and 

standard deviation to minimize numerical error in solving for 𝐘? (Legendre and Legendre 

2012). When the predictors are scaled, the 𝛃? values can be interpreted to help to identify 

the most influential predictors. For example, if ¥𝛃?l,l¥ ≫ 	 ¥𝛃?/,l¥, then  predictor 1 is more 

influential for modelling response 1 than predictor 2. 

 



 

 
187 

F.1.3 Redundancy Analysis 
Redundancy analysis (RDA) is a combination of multivariate regression and PCA that 

can be used to identify the most influential predictors of a multivariate analysis. As 

applied here, RDA has three main steps:   

 

1. Multivariate regression:  𝐘? = 𝐗 ∗ 𝜷? 

Compute 𝐘?, i.e., the “predictable part” of Y. 

 

2. PCA: 𝐘û𝐤 = first	𝑘	columns	of		𝐘û = 	𝐘? ∗ 𝐄8ü8 

Perform PCA on 𝐘? to determine the k dominant modes.  

 

3. Multivariate regression: 𝛃? = (𝐗𝐓𝐗)Y𝟏𝐗𝐓𝐘û𝐤 

Model 𝐘û𝐤, the k dominant modes of  𝐘?. Compute 𝜷? and analyze coefficients to determine 

the most influential predictors. 

 

RDA was applied here to see which pressures had the most influence on the predictable 

part of the functional groups biomass matrix. 

 

F.2 Results for the Grand Bank 

F.2.1 Principal Component Analysis 
F.2.1.1 Full Period 

Functional Groups 

The dominant mode of the Full period functional group biomass indices (PC1Full,Fgroups) 

accounts for nearly half of their variance (47%; Fig. F.1). It approximately represents the 

sum of large benthivores and piscivores contrasted with small benthivores (and to a lesser 

extent planktivores contrasted with medium benthivores; Fig. F.2A). This PC shows a 

rapid decline from the late 1980s to the mid-1990s, and a slow increase over the 

remainder of the period, reflecting the collapse and slow recovery of fish biomass on the 

Grand Bank over the past three decades (Fig. F.2A). The second mode (PC2Full,Fgroups) 

accounts for 30% of the variance, such that together the first two PCs account for 77% of 

the functional group biomass variability over the Full period (Fig. F.1). PC2Full,Fgroups is a 
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weighted average of the six functional groups (Fig. F.2A), with highest weights for 

medium benthivores, planktivores, and plank-piscivores; mid-range weights for large and 

small benthivores; piscivores have an insignificant role. PC2Full,Fgroups reflects a similar 

overall trend as PC1Full,Fgroups, but incorporates more inter-annual variability from the 

planktivores and plank-piscivores, begins to increase earlier (~1992 vs. 1996), and 

increases at a faster rate. 

 

Pressures 

The dominant mode of the Full period pressure indicators (PC1Full,Press) accounts for 38% 

of the variance (Fig. 3). It mainly reflects the fishing pressures, and represents the sum of 

total and pelagic landings contrasted with shellfish landings (and to a lesser extent, 

temperature; Fig. 4A). It declines until the late 1990s, and then has no trend for the 

remainder of the period (Fig. 4A). The second mode (PC2Full,Press) accounts for 20% of 

the variance, such that together the first two PCs account for over half (58%) of the 

variation in the pressures of the Full period (Fig. F.3). PC2Full,Press mainly reflects the 

environmental pressures, and is an average of SST, SSS, bottom salinity, and Time_Ice 

(and to a lesser extent, pelagic and shellfish landings; Fig. F.4A). The sharp reduction in 

salinity in the the early 1990s is reconstructed with this index (Fig. F.4A). 

 

F.2.1.2 Before Period 

Functional Groups 

The dominant mode of the Before period functional group biomass indices 

(PC1Before,Fgroups) accounts for 63% of their variance, more than for any other period (Fig. 

F.1). It approximately represents the sum of large and medium benthivores, piscivores, 

and planktivores contrasted with small benthivores (Fig. F.2B). It has an overall 

decreasing trend with little inter-annual variability, reflecting the collapse of fish biomass 

in the region during this period (Fig F.2B). The second mode (PC2Before,Fgroups) accounts 

for 21% of the variance, such that together the first two PCs account for 84% of the 

variance (Fig. F.1). PC2Before,Fgroups is a weighted sum of the functional groups, with the 

highest weight on plank-piscivores, mid-range weights for medium and small benthivores 

and planktivores, and small negative weights for large benthivores and piscivores (Fig. 

F.2B). PC2Before,Fgroups mainly captures the changes in plank-piscivore biomass, which is 
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highlighted by the high correlation between the two indices (Pearson correlation 

coefficient = ~0.91; not shown). 

 

Pressures 

The dominant mode for the Before period pressure indicators (PC1Before,Press) accounts for 

50% of their variance, more than for any other period (Fig. F.3). It had no trend for the 

first five years, but decreased rapidly for the last five years (Fig. F.4B). This index is a 

weighted average of the nine predictors, with the highest weights for total and pelagic 

landings, shellfish landings (negative), MTI, and SSS, and moderate weights for NAO 

(negative), SST, Sbottom, and Time_Ice (Fig. F.4B). The moderate differences in the 

weights for each pressure shows they all contributed to this dominant decreasing trend. 

The second mode (PC2Before,Press) accounts for 18% of the variance, such that together 

these two modes account for 68% of the variance in the pressure over the Before period 

(Fig. F.3). Shellfish landings, SST, bottom salinity, and TimeIce have the highest 

weights, while total landings (negative), MTI (negative), NAO, and SSS have moderate 

weights (Fig. F.4B). This PC has a slight overall increase over the period, with a sharp 

decrease in the early 1990s reflecting the salinity anomaly at that time (Fig. F.4B). 

 

F.2.2.3 After 

Functional Groups 

The dominant mode of the After period functional group biomass indices (PC1After,Fgroups) 

represents nearly half of their variance (~48%; Fig. F.1). This mode increases over the 

period, and approximately represents the average of all the functional groups except small 

benthivores (Fig. F.2C). The second mode (PC2After,Fgroups)  accounts for 19% of the 

variance, so together the first two PCs account for 67% of the variance (Fig. F.1). 

PC2After,Fgroups is a weighted average of small benthivores, plank-piscivores, and 

planktivores contrasted with large and medium benthivores (Fig. F.2C). It has a slight 

decreasing trend over the period, but little to no trend in the later years of the period, 

reflecting the slow recovery of fish biomass in the region (Fig. F.2C). 
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Pressures 

The dominant mode of the After period pressures accounted for 26% of the variance, 

notably less than the other periods (about half of that explained for the Before period; 

Fig. F.3). It increased from the beginning of the period until about 2006, and then 

decreased (Fig. F.4C). Total and shellfish landings had the highest weights, with 

moderate weights assigned to pelagic landings, MTI (negative), bottom salinity, and 

Time_Ice (Fig. F.4C). The second mode (PC2After,Press) accounted for 19% of the variance, 

such that the first two modes accounted for 45% of the variance (Fig. F.3). PC2After,Press 

had no distinct trend over this period. It was dominated by bottom salinity, but the 

remaining pressures (except for SST and Time_Ice) had moderate weights (Fig. F.4C). 

 

 
Figure F.1: Scree plot for the PCA of the Grand Bank fish functional group biomasses for 
each period. 
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Figure F.2: Weights (left column) and values (right column) for the principal components 
of the Grand Bank fish functional groups for the (A) Full, (B) Before, and (C) After 
periods. 

Lbenth Mbenth Sbenth Pisc PP Plank
−1.0

−0.6

−0.2

0.2

0.6

1.0

PC
 W

ei
gh

t

PC1 (47%)
PC2 (30%)

Lbenth Mbenth Sbenth Pisc PP Plank
−1.0

−0.6

−0.2

0.2

0.6

1.0

PC
 W

ei
gh

t

PC1 (63%)
PC2 (21%)

−4
−3
−2
−1
0
1
2
3
4

PC
 V

al
ue

1985 1987 1989 1991 1993 1995
Year

PC1 (63%)
PC2 (21%)

−4
−3
−2
−1
0
1
2
3
4

PC
 V

al
ue

1985 1990 1995 2000 2005 2010
Year

PC1 (47%)
PC2 (30%)

−4
−3
−2
−1
0
1
2
3
4

PC
 V

al
ue

1996 1999 2002 2005 2008 2011
Year

PC1 (48%)
PC2 (19%)

Lbenth Mbenth Sbenth Pisc PP Plank
−1.0

−0.6

−0.2

0.2

0.6

1.0

PC
 W

ei
gh

t

PC1 (48%)
PC2 (19%)

(C)	After

(B)	Before

(A)	Full



 

 
192 

 
Figure F.3: Scree plot for the PCA of the Grand Bank pressure indicators for each period. 
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Figure F.4: Weights (left column) and values (right column) for the principal components 
of the Grand Bank pressure indicators for the (A) Full, (B) Before, and (C) After periods. 
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(Fig. F.7). In contrast, there was no obvious single most important predictor for the After 

period. Two fishing related pressures (MTI and shellfish landings) had the highest 

coefficients. The smallest magnitude coefficient was for S150, and the remaining 

pressures had mid-range coefficient values (Fig. F.7). 

 
Figure F.5: Scree plot for the PCA of fitted values of the Grand Bank fish functional 
group biomasses (𝐘?) for each period. 
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Figure F.6: Weights (left column) and values (right column) for the principal components 
of the fitted values of the Grand Bank fish functional groups for the (A) Full, (B) Before, 
and (C) After periods. 
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Figure F.7: Regression coefficients for PC1 projected onto the pressure indicators for 
each period (Grand Bank). 
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changes in salinity, with a decreasing trend from 1985 – 1998 and no distinct trend for the 

rest of the period (Fig. F.11A). The second mode (PC2Full,Press) accounts for 23% of the 

variance, such that together the first two PCs account for over half (52%) of the variance 

in the pressures of the Full period (Fig. F.10). PC2Full,Press mainly reflects the sum of total 

landings and mollusk landings, with moderate weights for pelagic landings, SST, and 

copepod abundance (Fig. F.11A). This PC is characterized by inter-annual variability, 

and has no distinct trend over the Full period (Fig. F.11A).  

 

F.3.1.2 Time1 

Functional Groups 

The dominant mode of the Time1 functional group biomass indices (PC1Time1,Fgroups) 

accounts for 38% of their variance (Fig. F.8). It approximately represents the sum of 

benthos, macrozoo-piscivores, and piscivores contrasted with mesoplanktivores, and has 

an overall decreasing trend (Fig. F.9B). The second mode (PC2Time1,Fgroups) accounts for 

24% of the variance, such that together the first two PCs account for 62% of the variance 

(Fig. F.8). PC2Time1,Fgroups is the sum of macroplanktivores and macrozoo-piscivores (and 

to a lesser extent mesoplanktivores and piscivores) contrasted with benthivores. This 

index has very little variability until 1989, at which point it increases until 1992, and then 

decreases for the remaining three years. 

 

Pressures 

The dominant mode for the Time1pressure indicators (PC1Time1,Press) accounts for 45% of 

their variance, more than for any other period (Fig. F.10). It is approximately the sum of 

SST, SSS, and bottom salinity contrasted with total landings, mollusk landings, NAO, 

and copepod abundance. It decreased until 1992, and then increased for the remaining 

three years (Fig. F.11B). The second mode (PC2Time1,Press) accounts for 26% of the 

variance, such that together these two modes account for 71% of the variance in the 

pressure over the Before period (Fig. F.10). PC2Time1,Press is approximately the sum of 

elasmobranch landings, NAO, and copepod abundance contrasted with the sum of total 

landings and mollusk landings. This PC has an overall increasing trend throughout this 

period (Fig. F.11B). 
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F.3.2.3 Time2 

Functional Groups 

The dominant mode of the Time2 functional group biomass indices (PC1Time2,Fgroups) 

represents 35% of their variance (Fig. F.8). This mode is approximately the sum of 

benthos, mesoplanktivores, and macrozoo-piscivores. It has a slight increasing trend over 

the period, but a notable decrease from 2001 – 2006 (Fig. F.9C), which reflects a similar 

decrease in the biomass indices of these functional groups. The second mode 

(PC2Time2,Fgroups) accounts for 20% of the variance, so together the first two PCs account 

for 55% of the variance (Fig. F.8). PC2Time2,Fgroups is approximately the sum of 

benthivores and macroplanktivores, and has no distinct trend over the period (Fig. F.9C). 

 

Pressures 

The dominant mode of the Time2 pressures (PC1Time2,Press)  accounted for 35% of the 

variance (Fig. F.10). It was approximately a weighted average of six pressures (total 

landings, pelagic landings, mollusk landings, SST, SSS, and bottom salinity) contrasted 

with elasmobranch landings. It increased from the beginning of the period until about 

2002, and then decreased and had no trend for the rest of the period (Fig. F.11C). The 

second mode (PC2Time2,Press) accounted for 24% of the variance, such that the first two 

modes accounted for 59% of the variance (Fig. F.10). This mode also had similar weights 

for several pressures, and was approximately the sum of total landings mollusk landings, 

and copepod abundance contrasted with NAO, SSS, and bottom salinity. It had a slight 

decreasing trend over the whole period, but was mainly characterized by inter-annual 

variability. 
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Figure F.8: Scree plot for the PCA of the Georges Bank fish functional group biomasses 
for each period. 
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Figure F.9: Weights (left column) and values (right column) for the principal components 
of the Georges Bank fish functional groups for the (A) Full period, (B) Time1, and (C) 
Time2. 
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Figure F.10: Scree plot for the PCA of the Georges Bank pressure indicators for each 
period. 
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Figure F.11: Weights (left column) and values (right column) for the principal 
components of the Georges Bank pressure indicators for the (A) Full, (B) Time1, and (C) 
Time2. 
 

F.3.2 Redundancy Analysis 
The first principal component of the fitted values for the Full period accounted for more 

variance than that of the other periods (53% for the Full compared to 39% for Time1 and 

36% for Time2; Fig. F.12). In general, the weights and values of the dominant modes 

were similar to their counterparts for the PCA performed on the Y matrix (Figs. 9 and 

13), which shows that the regressions were able to model the dominant trends in the fish 

community data reasonably well.  
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The salinity metrics were very clearly the most important predictors for Time1, with 

regression coefficients ~4.5 times larger than the next largest coefficient (Fig. F.14A). 

The most important predictors for Time2 were total landings, pelagic landings, and the 

salinity metrics. For the Full period, pelagic landings had the largest coefficient, closely 

followed by total landings, mollusk landings, and the two salinity metrics (Fig. F.14B). 

 

 
Figure F.12: Scree plot for the PCA of fitted values of the Georges Bank fish functional 
group biomasses (𝐘?) for each period. 
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Figure F.13: Weights (left column) and values (right column) for the principal 
components of the fitted values of the Georges Bank fish functional groups for the (A) 
Full period, (B) Time1, and (C) Time2. 
 



 

 
205 

 
Figure F.14: Regression coefficients for PC1Fgroups projected onto the pressure indicators 
for each period (Georges Bank). (A) shows the coefficients for the salinity metrics for 
Time1; (B) zooms in on the y-axis to more clearly show the coefficients for the other 
periods. 
 

 

 

 

 

 

 


