Synthetic leaching of uranium from South Mountain Batholith granites and Horton Group siltstones of south central Nova Scotia, using a suite of ionic complexes

Oliver Blume

Submitted in Partial Fulfillment of the Requirements For the Degree of Bachelor of Sciences, Honours Department of Earth Sciences Dalhousie University, Halifax, Nova Scotia April 2016

Distribution License

DalSpace requires agreement to this non-exclusive distribution license before your item can appear on DalSpace.

NON-EXCLUSIVE DISTRIBUTION LICENSE

You (the author(s) or copyright owner) grant to Dalhousie University the non-exclusive right to reproduce and distribute your submission worldwide in any medium.

You agree that Dalhousie University may, without changing the content, reformat the submission for the purpose of preservation.

You also agree that Dalhousie University may keep more than one copy of this submission for purposes of security, back-up and preservation.

You agree that the submission is your original work, and that you have the right to grant the rights contained in this license. You also agree that your submission does not, to the best of your knowledge, infringe upon anyone's copyright.

If the submission contains material for which you do not hold copyright, you agree that you have obtained the unrestricted permission of the copyright owner to grant Dalhousie University the rights required by this license, and that such third-party owned material is clearly identified and acknowledged within the text or content of the submission.

If the submission is based upon work that has been sponsored or supported by an agency or organization other than Dalhousie University, you assert that you have fulfilled any right of review or other obligations required by such contract or agreement.

Dalhousie University will clearly identify your name(s) as the author(s) or owner(s) of the submission, and will not make any alteration to the content of the files that you have submitted.

If you have questions regarding this license please contact the repository manager at dalspace@dal.ca.

Grant the distribution license by signing and dating below.

Name of signatory

Date

Abstract

Many rock formations in Nova Scotia, particularly granitic rocks and siltstones of Devono-Carboniferous age, may have an impact on the groundwater quality of surrounding areas. These geologic units have locally elevated uranium concentrations. Roll front type mineralization is responsible for the high uranium concentrations found in the Carboniferous Horton Group siltstones that are used in this study. The South Mountain Batholith (SMB) is a suite of peraluminous granitic rocks that contain locally high uranium concentrations in late-stage micarich granites and monzogranites. Uranium can also concentrate in late stage fracture and fault structures. Weathering and other geochemical processes can mobilize uranium, which allows the metal to accumulate in groundwater systems in concentrations above recommended guidelines established by Health Canada ($20 \mu g/L$).

This laboratory study focuses on the impact of calcium, chloride, carbonate and sulphate complexes on uranium mobilization, with a focus on geochemical conditions such as pH and Eh as well as lithologic characteristics of the samples. A synthetic leaching procedure using extraction fluids created with the ions listed above, is used to simulate natural weathering processes to try and identify the geochemical components that may be liberating uranium specifically from SMB granites and Horton Group siltstones. These experiments confirm the importance of Eh-pH conditions in mobilizing uranium from these rocks. The sulphate extraction fluids leach elevated U concentrations in oxidizing acidic conditions whereas the carbonate extraction fluids leach elevated U concentrations in oxidizing alkaline conditions. In general, the granites leach higher U levels than the siltstones even with lower U concentrations in the whole rock. It is concluded that, under consistently oxidizing conditions, numerous geochemical and geologic factors have an influence on U mobility, but pH, lithology and mineralogy seem to be the major controlling parameters behind U liberation in this study.

Key words: Uranium, Carbonate, Sulphate, Extraction, Leachate, pH, Eh, Granite, Siltstone

Acknowledgments

There are numerous individuals who contributed to the success of this study. First I would like to thank Meggie Letman, a graduate student who developed the extraction procedure that was used. She was always there for guidance and advise related to laboratory procedures and methods. I would also like to thank Rob Jamieson for providing access to his laboratory which was crucial for the success of this thesis. A big thanks goes out to Anne-Marie Ryan. This thesis would not have been possible without your encouragement, advice and support. I would also like to acknowledge the Nova Scotia Exploration Fund for providing funding for this thesis. Finally, I would like to thank Lawrence Plug and the ERTH 4200 class for their tremendous support which made this thesis possible.

Table of Contents

Abstracti
Acknowledgmentsii
Table of Contentsiii
Table of Figuresvi
Table of Tablesvii
1.0 Introduction
1.1 Statement of Purpose1
1.2 Previous Research 2
1.3 Format of Thesis
2.0 Background
2.1 Geologic Setting
2.2 Uranium-Bearing Rocks in South Central Nova Scotia6
2.2.1 South Mountain Batholith6
2.2.2 Horton Group
2.3 Uranium in Groundwater
2.3.1 Nova Scotia
2.3.1 Nova Scotia82.3.1.1 Harrietsfield Nova Scotia9
 2.3.1 Nova Scotia
2.3.1 Nova Scotia82.3.1.1 Harrietsfield Nova Scotia92.3.2 United States of America92.4 Properties of Uranium10
2.3.1 Nova Scotia82.3.1.1 Harrietsfield Nova Scotia92.3.2 United States of America92.4 Properties of Uranium102.4.1 Uranium as a Radioactive Element10
2.3.1 Nova Scotia82.3.1.1 Harrietsfield Nova Scotia92.3.2 United States of America92.4 Properties of Uranium102.4.1 Uranium as a Radioactive Element102.4.2 Redox Environments and Valence States10
2.3.1 Nova Scotia82.3.1.1 Harrietsfield Nova Scotia92.3.2 United States of America92.4 Properties of Uranium102.4.1 Uranium as a Radioactive Element102.4.2 Redox Environments and Valence States103.0 Methods13
2.3.1 Nova Scotia82.3.1.1 Harrietsfield Nova Scotia92.3.2 United States of America92.4 Properties of Uranium102.4.1 Uranium as a Radioactive Element102.4.2 Redox Environments and Valence States103.0 Methods133.1 Pre-Extraction Phase13
2.3.1 Nova Scotia82.3.1.1 Harrietsfield Nova Scotia92.3.2 United States of America92.4 Properties of Uranium102.4.1 Uranium as a Radioactive Element102.4.2 Redox Environments and Valence States103.0 Methods133.1 Pre-Extraction Phase133.1.1 Rock Samples14
2.3.1 Nova Scotia82.3.1.1 Harrietsfield Nova Scotia92.3.2 United States of America92.4 Properties of Uranium102.4.1 Uranium as a Radioactive Element102.4.2 Redox Environments and Valence States103.0 Methods133.1 Pre-Extraction Phase133.1.1 Rock Samples143.2 Extraction Fluids14
2.3.1 Nova Scotia82.3.1.1 Harrietsfield Nova Scotia92.3.2 United States of America92.4 Properties of Uranium102.4.1 Uranium as a Radioactive Element102.4.2 Redox Environments and Valence States103.0 Methods133.1 Pre-Extraction Phase133.1.1 Rock Samples143.2 Extraction Fluids143.3 Extraction Vessels15
2.3.1 Nova Scotia82.3.1.1 Harrietsfield Nova Scotia92.3.2 United States of America92.4 Properties of Uranium102.4.1 Uranium as a Radioactive Element102.4.2 Redox Environments and Valence States103.0 Methods133.1 Pre-Extraction Phase133.1.1 Rock Samples143.2 Extraction Fluids143.3 pH Measurements15
2.3.1 Nova Scotia82.3.1.1 Harrietsfield Nova Scotia92.3.2 United States of America92.4 Properties of Uranium102.4.1 Uranium as a Radioactive Element102.4.2 Redox Environments and Valence States103.0 Methods133.1 Pre-Extraction Phase133.1.1 Rock Samples143.2 Extraction Fluids143.3 Extraction Vessels153.4 Oxidation-Reduction Potential Measurements15
2.3.1 Nova Scotia82.3.1.1 Harrietsfield Nova Scotia92.3.2 United States of America92.4 Properties of Uranium102.4.1 Uranium as a Radioactive Element102.4.2 Redox Environments and Valence States103.0 Methods133.1 Pre-Extraction Phase133.1.1 Rock Samples143.2.2 Extraction Fluids153.3 pH Measurements153.4 Oxidation-Reduction Potential Measurements16

3.3 Post-Extraction Phase	
3.3.1 pH Measurements	
3.3.2 Oxidation-Reduction Potential Measurements	
3.3.3 Filtration	
3.3.4 Dalhousie Water Lab Analysis Preparation	
3.3.5 Maxxam Laboratories U Analysis	20
3.4 Quality Control	20
4.0 Results	21
4.1 Rock Results	
4.1.1 Horton Group Siltstone	21
4.1.2 Granite from Millet Brook	
4.2.3 Granite from Harrietsfield	
4.2 Extraction Results	
4.2.1 Initial Extraction Components	25
4.2.2 pH Measurements	
4.2.2.1 Siltstone Extractions	
4.2.2.2 Millet Brook Extractions	
4.2.2.3 Harrrietsfield Extractions	
4.2.3 Eh Measurements	
4.2.3.1 Siltstone Extractions	
4.2.3.2 Millet Brook Extractions	
4.2.3.3 Harrietsfield Extractions	
4.2.4 Concentration of Dissolved Uranium in Leachate	
4.2.4.1 Siltstone Extractions	
4.2.4.2 Millet Brook Extractions	
4.2.4.3 Harrietsfield Extractions	
4.2.5 Concentration of Dissolved U vs. pH	
4.2.6 Concentration of Dissolved U vs. Eh	40
4.2.7 Concentration of Dissolved Metals in Leachate	
5.0 Discussion	46
5.1 Uranium Concentration in Rock vs. Leachate	46
5.2 Geochemical Influences on U Mobility	
5.2.1 pH Effect on U Mobility	

5.2.2 Eh effect on U mobility	50
5.3 Natural vs Lab Grade Additives	51
5.4 Dissolved U and Other Metals	52
5.5 Variability Between Duplicate Extractions	53
6.0 Conclusion and Future Recommendations	54
7.0 References	56
Appendices	59
Appendix A - Uranium Decay Chain	59
Appendix B - Mass Calculations for Extraction Fluid Compounds	60
Appendix C - Calibration Methods	61
Appendix D - Alkalinity Values	62
Appendix E - Rock Results	63
Appendix F - Extraction Measurements	64
Appendix G - Dalhousie Water Lab Results (ICP/MS)	65
Appendix H - Maxxam Results (ICP/MS)	75

Table of Figures

Figure 2.1. Geologic map of southern NS with	. 5
Figure 2.2. Geologic map of NS with uranium concentrations in groundwater wells	. 6
Figure 2.3. U stability phase diagrams	12
Figure 3.1. Agitation device	17
Figure 3.2. Filtration procedure	19
Figure 4.1. Sample of the muscovite-biotite monzogranite taken from Harrietsfield	24
Figure 4.2. Sample site for the granite from Harrietsfield	24
Figure 4.3. Changes in pH for the siltstone extractions	27
Figure 4.4. Changes in pH for the Millet Brook extractions	28
Figure 4.5. Changes in solution pH for the Harrietsfield extraction	29
Figure 4.6. Changes in Eh for the siltstone extractions	31
Figure 4.7. Changes in Eh for the Millet Brook extractions	32
Figure 4.8. Changes in Eh for the Harritefield extractions	33
Figure 4.9. Variations of dissolved U for the siltstone extractions	35
Figure 4.10. Variations in dissolved U concentrations for the Millet Brook extractions	36
Figure 4.11. Variations in dissolved U concentrations for the Harrietsfield Extractions	38
Figure 4.12. Relationship between pH and dissolved U for the siltstone extractions	39
Figure 4.13. Relationship between pH and dissolved U for the MBG extractions	39
Figure 4.14. Relationship between pH and dissolved U for the HG extractions	40
Figure 4.15. Relationship between Eh and dissolved U for the siltstone extractions	41
Figure 4.16. Relationship between Eh and dissolved U for the MBG extractions	41
Figure 4.17. Relationship between Eh and dissolved U for the HG extractions	42
Figure 5.1. Variations in dissolved U for the HG extractions	52

Table of Tables

Table 4.1. Elemental concentrations within the Horton Group siltstone	. 22
Table 4.2. Elemental concentrations within the MBG	. 23
Table 4.3. Initial extraction components	. 25
Table 4.4. Extraction fluid and leachate pH measurements for the siltstone extractions	. 26
Table 4.5. Extraction fluid and leachate pH measurements for the Millet Brook extractions	. 28
Table 4.6. Extraction fluid and leachate pH measurements for the Harrietsfield extractions	. 29
Table 4.7. Extraction fluid and leachate Eh measurements for the siltstone extractions	. 30
Table 4.8. Extraction fluid and leachate Eh measurements for the Millet Brook extractions	. 32
Table 4.9. Extraction fluid and leachate Eh measurements for the Harriestfield extractions	. 33
Table 4.10. Concentrations of dissolved U for the siltstone extractions	. 35
Table 4.11. Concentrations of dissolved U for the Millet Brook extractions	. 36
Table 4.12. Concentrations of dissolved U for the Harrietsfield extractions	. 37
Table 4.13. Concentrations of dissolved metals for the siltsone extractions	. 43
Table 4.14. Concentrations of dissolved metals for the Millet Brook extractions	. 44
Table 4.15. Concentrations of dissolved metals for the Harrietsfield extractions	. 45

1.0 Introduction

1.1 Statement of Purpose

Uranium is a naturally occurring element found elevated in a number of geologic formations throughout Nova Scotia, in particular Devonian granitoids of the South Mountain Batholith (SMB) and clastic sedimentary sequences of Carboniferous age. Uranium in drinking water is deemed potentially hazardous when exposure surpasses Health Canada's (2014) drinking water guidelines. The acceptable concentration of uranium in Canadian Drinking water is 20 µg/L (Health Canada, 2014). Roughly 4% of Nova Scotia water wells contain uranium concentrations exceeding the Health Canada guidelines (Drage and Kennedy 2013). Uranium contaminated water can be attributed to groundwater that has been in contact with uranium-bearing geologic components for extensive time frames (Health Canada, 2014). It is common to find uranium in rocks and soils, but some formations contain higher uranium concentrations then others. As well, depending on the specific distribution of U within the rock or soil, the environmental conditions may enhance U mobility. Contaminated water wells pose a threat towards residents who rely on groundwater as their primary water source. Understanding why uranium is found in high concentrations throughout Nova Scotia water wells is necessary to best serve communities potentially impacted by elevated uranium in their well waters. This thesis explores the potential for U mobilization from a selection of Nova Scotia rocks under experimental conditions to deduce the geochemical influences that may be impacting U mobility.

1.2 Previous Research

A number of groundwater studies have been conducted across Nova Scotia to determine areas with elevated uranium concentrations. The community of Grand Pré relies on groundwater wells to produce water for local residents, and there is increased concern regarding uranium in their groundwater (Samolczyk et al., 2012). Groundwater samples from Grand Pré show that four out of the seventeen sampled wells contained uranium concentrations that exceeded the 20 µg/L Health Canada guideline (Samolczyk et al., 2012). High uranium concentrations in this region are thought to be related to leaching processes associated with the local geology and geochemical environment (Samolczyk et al., 2012). Other areas in Nova Scotia have elevated uranium concentrations, some of which may be associated with anthropogenic inputs. Road salt introduces chloride into groundwater systems contributing to the mobilization of uranium (Drage and Kennedy, 2013). Calcium and carbonate-ions are thought to have a strong correlation with uranium mobility (Drage and Kennedy, 2013). Calcium-uranyl-carbonates are considered mobile uranium complexes, believed to be responsible for the elevated uranium concentrations in many Nova Scotia water wells (Drage and Kennedy, 2013). Uranium reacts with sulphates, carbonates and silicate ions to produce soluble compounds (Kronfield et al. 2003). A study using computer modeling approaches concludes that the zero valent, calciumuranyl-carbonate complex is associated with the majority of uranium found in the studied wells (Drage and Kennedy, 2013).

2

1.3 Format of Thesis

This thesis focuses on determining the geochemical process or processes responsible for uranium mobility in Nova Scotia. Chapter 2 addresses essential background information regarding Nova Scotia geology and uranium characteristics, summarizing uranium's complex chemical and geochemical properties. Chapter 3 summarizes the laboratory methods used throughout the study. The geochemical data acquired from laboratory experiments is presented in Chapter 4. A discussion regarding the geologic impact on groundwater quality is included in Chapter 5. The final chapter, Chapter 6 summarizes the key findings of the thesis and includes recommendations for future studies.

2.0 Background

2.1 Geologic Setting

Devono-Carboniferous sedimentary rocks of the Horton Group, and granitic rocks of the Devonian age South Mountain Batholith are known to contain numerous occurrences of uranium locally (Figure 2.1) (Ryan and O'Beirne-Ryan, 2006). MacDonald et al. (1992) describes the South Mountain Batholith (SMB) as a massive granitoid body, outcropping over 7300 km², classified as one of the largest igneous bodies related to the Appalachian Orogeny. One third of Nova Scotia is underlain by the SMB (McKenzie and Clarke, 1975) and approximately 50% of the SMB is comprised of biotite monzogranite (MacDonald et al., 1992). In a number of areas, the SMB is overlain by Carboniferous age clastic sedimentary rocks of the Horton Group (Ryan and O'Beirne-Ryan, 2006). The Horton Group is divided into two formations, the underlying Horton Bluff Formation (HBF) and the upper Cheverie Formation (Bell, 1929). The HBF consists of lacustrine deposits varying from conglomerates to sandstones, siltstones and shales (Bell 1929; Ryan and O'Beirne-Ryan, 2006). A sample of siltstone from this unit is used in my study. The Cheverie Formation is an arkosic sand-dominated sequence (Bell 1929; Ryan and O'Beirne-Ryan, 2006). This Horton Group is overlain by marine limestone and gypsum of the Windsor Group (Bell 1929; Ryan and O'Beirne-Ryan, 2006) which may introduce carbonate or sulphate into groundwater systems.

Within both the SMB and Horton Group sedimentary sequences there are known areas of elevated uranium in the bedrock which, in turn, may contribute to elevated U in groundwater systems (Figure 2.2). South central Nova Scotia is also draped by quaternary deposits of glacial

4

origin (Stea et al, 1992; MacFarlane, 1983). The till deposits are dominated by sand and gravel derived from the underlying SMB and Carboniferous rocks (MacFarlane, 1983). The region has numerous drumlin features that have a northwest-southeast long axis orientation which is indicative of the direction of ice flow (MacFarlane, 1983). These drumlins are comprised of Lawrencetown Till and the Overlying Beaver River Till (Finck and Stea, 1995). Both of these tills include organic soil profiles (Finck and Stea, 1995). The Beaver River Till covers approximately 40% of the SMB (Finck and Stea, 1995) including the Harrietsfield region (Stea et al, 1992). These glacial deposits incorporate material from the Windsor Group (MacFarlane, 1983) indicating that they can include carbonates and sulphates derived from the Carboniferous gypsum and limestone deposits.

Figure 2.1. Map illustrating different geologic units and localities with known elevated uranium concentrations. Samples from these locations are used in my study. The sample from Millet Brook is from the C2-1 core taken from the Nova Scotia Department of Natural Resources core library. The other samples are taken from outcrops at St. Croix and Harrietsfield respectively. (Map Modified from the N.S. Department of Mines and Energy, 1982).

Figure 2.2. Basic geologic map of Nova Scotia illustrating U concentrations within groundwater wells. (Map modified from Drage and Kennedy, 2013).

2.2 Uranium-Bearing Rocks in South Central Nova Scotia

Two types of rock formations in south central Nova Scotia are considered to have higher than typical uranium concentrations. The Intrusive rocks such of the SMB have abnormal quantities of uranium, particularly in some locations (Chatterjee, 1982) as do the Horton Group rocks in certain areas (Durham and Little, 1971; Kronfield et al., 2004).

2.2.1 South Mountain Batholith

The SMB has uranium concentrations locally that exceed those of similar rocks elsewhere (Chatterjee, 1982). The locally-elevated U in the SMB can be divided into different deposit types, each with its own set of lithologic properties. The granite at Millet Brook (MBG) contains approximately 450,000 kg of uranium compounds, making it one of the largest uranium deposits in Eastern Canada (Figure 2.1) (Ryan and O'Beirne-Ryan, 2009). The MBG contains high concentrations of uranium within fracture zones, as uranium concentrated through fluid migration during late stage crystallization of the granite (Chatterjee et al., 1982). As an incompatible element, uranium is found in higher concentrations within late crystalizing rocks such as leucogranites and within fractures and veins within less evolved granites (Chatterjee, 1982). Much of the SMB is dominated by two mica granites such as biotite-muscovite monzogranites (McKenzie and Clark, 1975). The presence of micas indicate that the original magma contained a high content of a volatile phase which facilitated the deposition of uranium in high concentrations within specific areas of the rock (Chatterjee, 1982). Uranium concentrations vary throughout the SMB depending on the presence of volatiles during crystallization and post-crystallization.

2.2.2 Horton Group

High uranium concentrations within sedimentary rocks are usually credited to the erosion of uranium-bearing deposits (Barkhouse and Laffin, 1982). The uranium occurrences within the Maritimes Basin sedimentary rocks is attributed to the erosion of U-bearing highlands of the SMB (Figure 2.1) (Chatterjee, 1977; MacFarlane, 1983). Weathered granites release uranium into surface runoff, which eventually enters permeable Horton Group rocks through groundwater (Ryan et al., 2009). Uranium migrating through the sedimentary sequence is deposited at reduction-fronts such as carbon-rich horizons (Ryan and O'Beirne-Ryan, 2006).

2.3 Uranium in Groundwater

2.3.1 Nova Scotia

Nova Scotia groundwater has been known to contain high concentrations of uranium since 1978 and approximately half of all Nova Scotia residents rely on groundwater as their primary water source (Drage and Kennedy, 2013). Samolczyk et al. (2012) state that natural inputs are responsible for uranium mobility within the Grand Pré area, where Drage and Kennedy (2013) believe anthropogenic inputs also have an influence on U mobility. Kronfeld et al. (2004) found that there is a noticeable increase in uranium concentrations in groundwater in close proximities to uranium-bearing geology (Figure 2.2) due to weathering processes.

There are a number of ions that react with uranium and form soluble complexes. Soluble uranium complexes commonly include calcium carbonate, but other ions such as chloride may be responsible for chemical interactions that mobilize uranium (Drage and Kennedy, 2013) Sulphate is another ion that has the ability to influence uranium transport (Bachmaf et al., 2008). These ions can be introduced into Nova Scotia groundwater systems both naturally and anthroprogenically. Evaporites and limestones are widespread across the Province and may be introducing calcium, carbonate and sulphate into groundwater. Glacial till deposits across the Province may also have elevated levels of sulphate and carbonate within them. Drywall, a common construction waste made of gypsum (CaSO₄··H₂O), is a soluble compound, and improper disposal of such waste may liberate uranium as ions leach into groundwater systems. Similarly, Road salt and seawater are likely the primary sources of chloride in groundwater systems (Drage and Kennedy, 2013).

2.3.1.1 Harrietsfield Nova Scotia

Harrietsfield is a small community located to the southwest of Halifax (Figure 2.1) that has had an ongoing issue with high U concentrations within local groundwater wells. In recent years it has been suggested that a local waste disposal site may have aggravated this situation; the Supreme Court of Nova Scotia believes leachate from the disposal site may have negatively influenced groundwater quality (*3076525 Nova Scotia Ltd. v. Nova Scotia (Environment)*, 2015). MacFarlane (1983) and the Nova Scotia Uranium Task Force (1982) claim that local geology is the main influence on the elevated U levels in groundwater wells. MacFarlane's (1983) study sampled 322 wells and analyzed their U concentrations. The sampled wells are located within various geologic units such as the SMB and glacial tills (MacFarlane, 1983). MacFarlane (1983) concludes that water wells with elevated U concentrations are correlated to pH, redox environments, surrounding lithology and overburden. The report illustrates that Harrietsfield has had an ongoing issue with uranium contaminated groundwater prior to 1983. In recent years, homes in close proximity to the waste disposal site have experienced increased levels of U in their wells (*3076525 Nova Scotia Ltd. v. Nova Scotia (Environment)*, 2015).

2.3.2 United States of America

Many areas in the United States of America (USA) contain naturally occurring uranium in rocks and groundwater. Hess et al. (1985) states that western regions of the USA contain higher values of naturally occurring uranium in groundwater than eastern regions. The Colorado Plateau, Rocky Mountains and the West Central Platform are areas that have the highest uranium concentrations within local geologic units (Hess et al., 1985), thus influencing groundwater quality. The United States Environmental Protection Agency (EPA) deems that 20

9

 μ g/L is the acceptable concentration of uranium within drinking water, but this level is only enforced through public water systems (Orloff et al., 2003). Within Canada 20 μ g/L is also the acceptable limit. Orloff et al., (2003) concludes that surrounding geologic units are responsible for the majority of uranium contaminated groundwater in the USA.

2.4 Properties of Uranium

2.4.1 Uranium as a Radioactive Element

Uranium is a radioactive element and has radioactive properties that are related to its decay chain. Native uranium occurs as three separate isotopes, ²³⁸U, ²³⁵U and ²³²U, each having their own distinct decay series. However, ²³⁸U is the most abundant U isotope as it makes up 99.3% of all natural uranium (Bourdon et al., 2003). Because ²³⁸U dominates, the majority of radiation produced by U decay is associated with ²³⁸U even though all three U isotopes produce radioactive products. Radioactive elements are atomically unstable and achieve stability by emitting energy in the form of radiation. Radiation is emitted through half-life decay which is defined as the amount of time required for half an element's atoms to decay to a new isotope. The half-life of ²³⁸U is 4.47 Gyrs (Bourdon et al., 2003). The U-decay chain consists of many radioactive elements (e.g. radium and radon) but the decay series eventually ends by the formation of a stable isotope of lead. An illustration of the uranium decay chain is given in Appendix A (Bourdon et al., 2003).

2.4.2 Redox Environments and Valence States

Uranium consists of a two principle valence states U(VI) and U(IV), each defining various geochemical properties. The solubility of uranium is linked to its valence state (Kronfeld et al.,

10

2003; Zhou and Gu, 2005), connecting uranium mobility to redox environments. The two oxidation states are related to different redox environments, which in turn affect the solubility of uranium. U(VI) is a soluble state of U found in oxidizing environments (Duff and Amerhein, 1996; Samolczyk et al., 2012). The reduced state of uranium, U(IV) is insoluble and found in anoxic environments (Duff and Amerhein, 1996; Samolczyk et al., 2012). In oxidizing conditions U(VI) forms soluble complexes with numerous anions including sulphate and carbonate (Kronfeld et al., 2004) (Figure 2.3). Uranium is found in aqueous solutions as the uranyl ion (UO_2^{2+}) (Barkhouse and Laffin, 1982; Bourdon et al., 2003). Uranyl carbonate complexes are the most common soluble uranium compound (Kronfeld et al., 2004) credited for U liberation within groundwater systems (Drage and Kennedy, 2013).

Figure 2.3. Stability phase diagram of soluble uranium complexes under varying geochemical conditions. These diagrams represent stability zones for a specific set of uranium rich solutions. These diagrams show general conditions that produce soluble uranium complexes, but stability zones may vary for different samples. (A) Soluble uranium complexes under certain Eh and pH conditions (Diagram from Kumar et al., 2014). (B) Soluble U complexes under varying pH conditions and their respective concentrations of U(VI) (Diagram from Nair and Merkel, 2011). It is important to note that these diagrams show information calculated for specific data sets, therefore stability zones and concentrations may change depending on the concentrations of additives.

3.0 Methods

This study uses a variety of lab procedures to investigate how different materials impact uranium mobility. The lab procedures were developed by Meggie Letman, a Masters candidate in the Department of Process Engineering and Applied Sciences, and were adapted from the U.S Environmental Protection Agency Synthetic Precipitation Leaching Procedure (Environmental Protection Agency, 1994). The lab procedures and analytical methods I used are adopted to be consistent with those of Letman's (personal communication, 2015) who is conducting a parallel study (MASc in progress). Essentially, the process involves a leaching experiment using natural earth materials with added solutions of varying compositions and concentrations.

There are three important phases associated with the laboratory procedures, the preextraction phase, the agitation sequence and the post-extraction phase. The three phases define the extraction process. Each extraction includes triplicate samples and one blank. Two extractions are conducted simultaneously.

3.1 Pre-Extraction Phase

The pre-extraction phase involves sampling, crushing (fine gravel to sand size) and analyzing the rocks that are being used for the extraction, creating extraction fluids, conducting measurements (pH, Eh and Alkalinity) and preparing the extraction vessels for the extraction. It is important to note that temperature was not monitored throughout the extractions, but is assumed to be relatively consistent between 20-25 °C.

3.1.1 Rock Samples

Three different rock samples are used in this study, two of which are from the SMB and the other from the Horton Group. The SMB samples are granite from Millet Brook and granite from Harrietsfield, NS (Figure 2.1 and Figure 2.2), both regions with known U-bearing groundwater. The Harrietsfield sample is taken from an outcrop located on Old Sambro Road. The Millet Brook Sample is taken from the C2-1 core from the Nova Scotia Department of Natural Resources (37.7-38.9 ft and 39.8-40.5 ft). It is important to note that there is a limited amount of the Millet Brook sample available, therefore granite from Harrietsfield is used as a sample replacement. The timeframe in which this study is conducted does not allow for more Millet Brook samples to be taken due to winter weather conditions which accounts for the limited data produced for the Millet Brook sample. Granite from Harrietfield is used because the area has current issues with elevated levels of uranium in groundwater. The Horton Group sample is siltstone from an outcrop at St. Croix, NS (Figure 2.1). The samples are crushed to a grain size of approximately 2mm. 50-250 g of the crushed rock samples were sent to Maxxam Laboratories for metal analysis (Al, As, Ba, Cd, Cr, Co, Cu, Fe, Pb, Mn, Ni, Se, Sr, Ti, Sn, U V, ZN) conducted using ICP/MS analysis on a total digestion of the samples. It is important to note that the sample from Harrietsfield was not analyzed by Maxxam due to the time constraint of this thesis.

3.2.2 Extraction Fluids

Extraction Fluids are created by dissolving desired quantities of the chemical complex being studied into 4.1L of reverse-osmosis water (RO). The chemical complexes used are lab grade

14

NaCl, NaHCO₃, CaCl₂ · 2H₂O, CaSO₄, naturally occurring gypsum from the Windsor area in NS and seashells (calcium carbonate). The chemical component of the extraction fluid is calculated using stoichiometric relationships and chemistry calculations to convert a desired concentration to a mass (Appendix B). The concentrations chosen are based on concentrations Letman is using to maintain consistency between the two studies. The extraction fluid is undisturbed for 20 minutes to achieve chemical equilibrium.

3.3.3 Extraction Vessels

Each extraction includes four 1 L extraction vessels. 50 g of the crushed rock being analyzed is added into three of the four extraction vessels. The fourth extraction vessel does not contain a rock sample as it is used for quality control. 1 L of the desired extraction fluid is added to each of the four extraction vessels to create a 1 L mixture of the fluid and rock.

3.3 pH Measurements

The pH for each extraction fluid is measured prior to each extraction. The pH is measured before the extraction fluids are mixed with rock samples. The initial extraction fluid pH values are measured using an Accumet 13-620-631 probe which is connected to a Fisher Scientific Accumet Excel XL50 Dual Channel pH/Ion/Conductivity Meter. Calibration methods are given in Appendix C.

3.4 Oxidation-Reduction Potential Measurements

The oxidation reduction potential (ORP) for each extraction fluid is measured prior to each extraction. All ORP values are recorded using an Orion 9179BNMD triode low maintenance ORP

15

probe connected to a Thermo Scientific Orion 5 star pH ISE Cond-DO Portable meter. The unit is calibrated to represent Eh, therefore the ORP readings are equivalent to Eh. The calibration methods are given in the appendix C.

3.5 Alkalinity Test

Approximately 0.1 L of the extraction fluid remains as it is not used to fill the four extraction vessels. This volume of the extraction fluid is used to conduct an alkalinity test. Alkalinity is tested by conducting a titration with the extraction fluid and 0.1 N H₂SO₄ or 0.02 N H₂SO₄ (personal communication, M. Letman, 2016; American Public Health Association, American Water Works Association, Water Environment Federation, 2012). The test is completed when the extraction fluid reaches a pH of 4.6. Alkalinity is determined using Equation 1.

 $Alkalinity = \frac{A \times N \times 50000}{Sample \text{ volume (ml)}}$ (A=acid volume, N=normality of acid). The alkalinity results show inconsistencies and may be inaccurate due to the normality of the acid used, therefore are not used for any analysis and are given in Appendix D.

3.2 Agitation Sequence

Following the preparation of the rock-extraction fluid mixture, the samples are agitated to encourage the leaching and extraction of labile uranium. The extraction vessels for each extraction are placed in a bucket, which is placed on the agitation device as shown in Figure 3.1. Two buckets fit on the rollers, therefore two extractions are conducted simultaneously. The machine is turned on, rotating the buckets at 30 (+/- 2) rpm (Environmental Protection Agency, 1994), causing the extraction vessels to tumble head over head. The agitation device runs for 72 (+/- 2) hours.

Figure 3.1. The agitation device with two rotating buckets. Each bucket contains four extraction vessels and represents one extraction.

3.3 Post-Extraction Phase

Extraction vessels are removed from the agitation device and pH and Eh measurements are taken again. Samples are filtered and sent to Maxxam Laboratories and the Dalhousie Water Lab for select metal analysis.

3.3.1 pH Measurements

The leachate pH values are measured using an Orion 9156BNWP refillable probe connected to a Thermo Scientific Orion 5 star pH ISE Cond-DO Portable meter. Calibration methods are given in Appendix C.

3.3.2 Oxidation-Reduction Potential Measurements

The leachate ORP values are measured using the same probe and meter as in the pre-extraction phase. Calibration methods are given in Appendix C.

3.3.3 Filtration

The leachate from each extraction vessel is filtered to remove all suspended matter. Approximately 500 mL of the leachate is filtered using a vacuum (Figure 3.2). The leachate is filtered twice, initially through a 47 mm microfiber glass filter then through a 45 µm gridded filter. Each filtered sample is poured into two 50 mL digestion tubes. Duplicate samples are necessary as the samples are being analyzed by two laboratories. Trace grade nitric acid is added to both samples until a pH < 2 is achieved in order to preserve the samples (American Public Health Association, American Water Works Association, Water Environment Federation, 2012).

Figure 3.2. Illustrates the filtration procedure. The vacuum is connected to an Erlenmeyer flask and sucking the leachate through a glass filter.

3.3.4 Dalhousie Water Lab Analysis Preparation

An analysis of a full metal suite is conducted at the Dalhousie Water Lab using a Thermo Scientific XSeries 2 ICPMS machine. The blank and two randomly selected samples from each extraction are prepared for analysis. Their analysis requires that the samples are acid digested and diluted to specific concentrations. The samples are digested using standard Dalhousie Water Lab procedures. This includes adding an additional 2.5 mL of trace grade nitric acid to the samples and placing them in the digestion block where they are heated at 110°C for two hours (personal communication, M. Letman, 2015). Once the samples are digested they are diluted to 10x, 100x and 1000x dilutions. Each sample has four solutions, three dilute solutions as stated above as well as a non-dilute solution, all of which are submitted to the Dalhousie water lab for a major metal analysis.

3.3.5 Maxxam Laboratories U Analysis

A second set of samples are sent to Maxxam Laboratories for U analysis. The same sample numbers that are analyzed at the Dalhousie Water Lab are analyzed using ICP/MS by Maxxam.

3.4 Quality Control

This study is based on a limited number of extractions; therefore, quality control is a crucial component in ensuring that accurate data is produced. All lab equipment is thoroughly sanitized between uses. pH and ORP probes are calibrated before every use. Extractions include triplicate samples as well as a blank to ensure quality control. Two of the triplicate samples are randomly selected for analysis. The duplicate results are compared with each other to ensure data accuracy. Uranium analysis is conducted at two labs to ensure results are accurate. Comparing the uranium data from Maxxam and the Dalhousie water lab shows that they both produce similar results (within 1% of each other). Any extractions that appear to produce unreliable data are conducted again to ensure the data produced is accurate. Data is considered unreliable when duplicate samples produce variable results (>5% difference for the siltstone extractions; different order of magnitude for the granite extractions).

4.0 Results

4.1 Rock Results

Three rock types are used in the leaching experiments. Horton Group siltstones from St. Croix NS, granite from Millet Brook (MBG) are analyzed for original metal concentrations. The granite from Harrietsfield (HG) is not analyzed due to the time constraints of this thesis, but known uranium concentrations from similar samples near the sampling site are used to determine an approximate uranium concentration for the Harrietsfield sample.

4.1.1 Horton Group Siltstone

Table 4.1 shows the elemental concentrations within the Horton Group Siltstone. The sample contains 20 ppm of uranium. The sample used is defined as grey siltstone lenses interlayered with reddish arkosic sandstone (personal communication, A.M. Ryan, 2016). Black organic-rich mm sized fragments are evident in the siltstone. The siltstone lenses are separated from the sandstones and define the sample used in this study.

Metals	Concentration		
	(mg/kg)		
Molybdenum (Mo)	ND		
Antimony (Sb)	ND		
Cadmium (Cd)	ND		
Thallium (TI)	1.2		
Cobalt (Co)	2.3		
Beryllium (Be)	4.4		
Selenium (Se)	4.7		
Nickel (Ni)	7.1		
Tin (Sn)	12		
Uranium (U)	20		
Arsenic (As)	22		
Lead (Pb)	25		
Zinc (Zn)	27		
Chromium (Cr)	37		
Copper (Cu)	39		
Strontium (Sr)	76		
Vanadium (V)	78		
Manganese (Mn)	120		
Barium (Ba)	190		
Iron (Fe)	14000		
Aluminum (Al)	98000		

Table 4.1. Elemental concentrations within the Horton Group siltstone. The sample is comprised of 20 mg/kg U. ND defines anelement that is not detected.

4.1.2 Granite from Millet Brook

Table 4.2 shows the elemental concentrations within the MBG. This sample has 8.2 ppm of

uranium. Millet Brook is located within the Salmontail Lake Pluton (SLP). MacDonald (2001)

states that the SLP is an early stage (phase 1) pluton which is comprised of biotite granodiorite,

biotite monzogranite and fined grained leucomonzogranite. The granite in the area of Millet

Brook is predominantly biotite granodiorite (Ham, 1990).

Metals	Concentration (mg/kg)	
Molvbdenum (Mo)	ND	
Antimony (Sb)	ND	
Selenium (Se)	ND	
Cadmium (Cd)	0.23	
Thallium (TI)	0.98	
Beryllium (Be)	2.2	
Tin (Sn)	3.1	
Arsenic (As)	5.6	
Cobalt (Co)	7.1	
Uranium (U)	8.2	
Nickel (Ni)	8.3	
Chromium (Cr)	25	
Lead (Pb)	37	
Vanadium (V)	41	
Copper (Cu)	74	
Strontium (Sr)	120	
Zinc (Zn)	120	
Manganese (Mn)	500	
Barium (Ba)	590	
Iron (Fe)	26000	
Aluminum (Al)	66000	

Table 4.2. Elemental concentrations within the MBG. The sample is comprised of 8.2 mg/kg U. ND defines an element that is notdetected.

4.2.3 Granite from Harrietsfield

Harrietsfield is located on the Halifax Pluton. MacDonald (2001) states that the pluton consists of biotite granodiorite, biotite monzogranite, leucomonzogranite, and muscovite-biotite monzogranite is the dominant lithology of the eastern pluton. The sample used in my study is as a muscovite-biotite monzogranite with noticeable weathering rinds (Figure 4.1.) Although the sample used in my study was not analyzed, it comes from an outcrop proximal to a sample analyzed by MacDonald (2001) with 3 ppm of uranium. Figure 4.2 illustrates the sampling site.

Figure 4.1. Sample of the muscovite-biotite monzogranite taken from Harrietsfield.

Figure 4.2. Sample site for the granite from Harrietsfield. There is evidence of weathering on the outcrop.

4.2 Extraction Results

Synthetic extractions are used to replicate the weathering processes of water on geologic units. Each extraction produces leachate that is analyzed for dissolved uranium as well as other dissolved metals.

4.2.1 Initial Extraction Components

Twelve extractions are conducted using various chemical additives dissolved in reverse osmosis water (RO) and mixed with different rock types. Table 4.3 displays the solutions and rock types used for each extraction: concentrations selected to be consistent with Letman's study (personal communication, M. Letman, 2015).

Extraction #	Solution Composition	lon of Focus	Concentration of Ion of Focus (mg/L)	Rock Type
А	NaCl	Cl⁻	500	Siltstone
В	NaCl	Cl⁻	500	Granite (MBG)
С	NaHCO ₃	HCO₃⁻	500	Siltstone
D	NaHCO ₃	HCO₃⁻	500	Granite (MBG)
E	$CaCl_2 \cdot 2H_2O$	Ca ²⁺	200	Siltstone
F	RO	N/A	N/A	Siltstone
G	CaSO ₄	SO4 ⁻	300	Siltstone
Н	CaSO ₄	SO4 ⁻	500	Siltstone
T	CaSO ₄	SO4 ⁻	500	Granite (HG)
К	RO	N/A	N/A	Granite (HG)
L	$CaCl_2 \cdot 2H_2O$	Ca ²⁺	500	Siltstone
Μ	$CaCl_2 \cdot 2H_2O$	Ca ²⁺	500	Granite (HG)
Ν	Gypsum(CaSO ₄ · 2H ₂ O)	SO_4^-	500	Granite (HG)
0	Seashells(CaCO ₃)	CO32-	500	Granite (HG)
Р	RO	N/A	N/A	Granite (HG)
R	NaHCO ₃	HCO ₃ ⁻	500	Granite (HG)

Table 4.3. Solution compositions and their ion of focus as well as the rock types used in each extraction. RO refers to an extraction that did not consist of additional ions. MBG represents granite from Millet Brook and HG represents granite from Harrietsfield. Each extraction number consists of duplicate samples.

4.2.2 pH Measurements

The pH of the extraction fluids is measured before and after each extraction. The extraction fluid and leachate pH measurements are given for the different rock types in Tables 4.4-4.6 and illustrated in Figures 4.3-4.5.

4.2.2.1 Siltstone Extractions

The siltstone extractions produce extraction fluids that have a higher pH than their respective leachates (Table 4.4). The NaCl extractions show an opposite trend as they produce leachates with a higher pH than the extraction fluid: that is, leaching of the siltstone by all fluids expect the NaCl extraction fluid, resulted in a decrease in pH. The changes in pH for the siltstone extractions are shown in Figure 4.3.

Extraction #	Solution Composition	lon of Focus	Concentration of Ion of Focus (mg/L)	Extraction Fluid pH	Leachate pH
C2			500	7 80	5 33
C2 (dunlicate)			500	7.80	5 34
F6	RO (water)	N/A	N/A	7.10	5.83
F7 (duplicate)	RO (water)	N/A	N/A	7.10	5.84
A2	NaCl	, Cl-	500	6.38	7.33
A4 (duplicate)	NaCl	Cl-	500	6.38	7.56
L2	$CaCl_2 \cdot 2H_2O$	Ca ²⁺	500	5.60	4.08
L4 (duplicate)	$CaCl_2 \cdot 2H_2O$	Ca ²⁺	500	5.60	4.11
E3	$CaCl_2 \cdot 2H_2O$	Ca ²⁺	200	5.99	4.03
E4 (duplicate)	$CaCl_2 \cdot 2H_2O$	Ca ²⁺	200	5.99	4.07
G3	CaSO ₄	SO₄ ⁻	300	5.90	4.13
G4 (duplicate)	CaSO ₄	SO₄ ⁻	300	5.90	4.14
H6	CaSO ₄	SO₄ ⁻	500	6.51	4.12
H7 (duplicates)	CaSO ₄	SO₄⁻	500	6.51	4.09

Table 4.4. Extraction fluid and leachate pH measurements for the siltstone extractions. The leachate pH values decrease except for the NaCl extractions which increase. Duplicate extractions produce similar leachate pH values (<5% difference).

.

Figure 4.3. Changes in pH for the siltstone extractions. There is a decreasing trend in pH from the extraction fluid to the leachate values with the NaCl extractions showing an opposite trend. Each extraction consists of duplicate samples.

4.2.2.2 Millet Brook Extractions

The Millet Brook extractions produce extraction fluids with neutral to alkaline pH values: in both cases, the pH of the leachates have higher values than the original extraction fluids (Table

4.5). Table 4.5 displays the pH values associated with the various extractions and Figure 4.4

illustrates the pH changes between the extraction fluids and leachates for each extraction.
Extraction #	Solution Composition	lon of Focus	Concentration of Ion of Focus (mg/L)	Extraction Fluid pH	Leachate pH
B7	NaCl	Cl-	500	7.00	8.27
B8 (duplicate)	NaCl	Cl	500	7.00	8.27
D7 D8 (duplicate)	NaHCO₃ NaHCO₃	HCO₃⁻ HCO₃⁻	500 500	8.02 8.02	9.78 9.80

 Table 4.5. Extraction fluid and leachate pH values for the Millet Brook extractions. The pH values range from neutral to alkaline.

 Duplicate extractions produce similar leachate pH values (<1% difference).</td>

Figure 4.4. Changes in pH for the Millet Brook extractions. The figure illustrates the changes in pH showing an increase in pH from the extraction fluids to leachates. Each extraction consists of duplicate samples.

4.2.2.3 Harrrietsfield Extractions

There is an overall trend towards increasing pH from the extraction fluids to the leachates. Both the sulphate and calcium extractions produce leachates with slightly alkaline pH and the other extractions produce alkaline leachates. The pH values for the extraction fluids and leachates are given in Table 4.6 and illustrated in Figure 4.5.

Extraction #	Solution Composition	lon of Focus	Concentration of Ion of Focus (mg/L)	Extraction Fluid pH	Leachate pH
N1	Gypsum (CaSO ₄ 2H ₂ O)	SO₄⁻	500	5.32	7.92
N2 (duplicate)	Gypsum (CaSO ₄ 2H ₂ O	SO₄⁻	500	5.32	8.23
P5	RO (water)	N/A	N/A	6.15	8.89
P6 (duplicate)	RO (water)	N/A	N/A	6.13	8.90
03	Seashells (CaCO ₃)	CO32-	500	5.63	8.88
O4 (duplicate)	Seashells (CaCO ₃)	CO32-	500	5.63	8.93
12	CaSO ₄	SO₄⁻	500	5.54	7.70
13 (duplicate)	CaSO ₄	SO₄⁻	500	5.54	7.98
M7	$CaCl_2 \cdot 2H_2O$	Ca ²⁺	500	5.53	7.04
M8 (duplicate)	$CaCl_2 \cdot 2H_2O$	Ca ²⁺	500	5.53	7.20
K6	RO (water)	N/A	N/A	6.84	8.84
K8 (duplicate	RO (water)	N/A	N/A	6.84	8.79
R7	NaHCO ₃	HCO ₃ -	500	7.75	8.43
R8 (duplicate)	NaHCO ₃	HCO ₃ ⁻	500	7.84	8.35

 Table 4.6. Extraction fluid and leachate pH values for the Harrietsfield extractions. There is a trend in increasing pH from

 extraction fluids to leachates. Duplicate extractions produce similar leachate pH values (<5% difference)</td>

Figure 4.5. Changes in pH for the Harrietsfield extraction. There is an overall trend in increasing pH from extraction fluid to leachate values. Each extraction consists of duplicate samples.

4.2.3 Eh Measurements

Oxidation-reduction potential (ORP) measurements for each extraction fluid and leachate is calibrated to equate to Eh. The extraction fluid and leachate Eh values for the different rock type extractions are given in Tables 4.7-4.9 and illustrated in Figures 4.6-4.8.

4.2.3.1 Siltstone Extractions

The siltstone extractions did not show any significant changes between the extraction fluid and leachate Eh values. The Eh values range from approximately 300 mV to 450 mV (Table 4.7 and Figure 4.6). All Eh values indicate that the extraction fluids and the leachates are oxidizing.

Extraction #	Solution Composition	lon of Focus	Concentration of Ion of Focus (mg/L)	Extraction Fluid Eh (mV)	Final Eh (mV)
C2	NaHCO ₃	HCO₃ ⁻	500	426.5	422.5
C3 (duplicate)	NaHCO ₃	HCO ₃ ⁻	500	445.5	445.5
F6	RO (water)	N/A	N/A	321.1	334.3
F7 (duplicate)	RO (water)	N/A	N/A	321.1	312.0
A2	NaCl	Cl⁻	500	293.9	309.0
A4 (duplicate)	NaCl	Cl⁻	500	293.9	305.7
L2	$CaCl_2 \cdot 2H_2O$	Ca ²⁺	500	584.3	492.8
L4 (duplicate)	$CaCl_2 \cdot 2H_2O$	Ca ²⁺	500	580.0	449.7
E3	$CaCl_2 \cdot 2H_2O$	Ca ²⁺	200	362.7	361.4
E4 (duplicate)	$CaCl_2 \cdot 2H_2O$	Ca ²⁺	200	362.7	367.7
G3	CaSO ₄	SO₄⁻	300	320.4	320.8
G4 (duplicate)	CaSO ₄	SO₄⁻	300	320.4	309.6
H6	CaSO ₄	SO₄⁻	500	313.7	309.1
H7 (duplicate)	CaSO ₄	SO₄⁻	500	313.7	324.6

Table 4.7. Extraction fluid and leachate Eh values for the siltstone extractions. The values indicate that the solutions are oxidizing. Most duplicate extractions produce similar leachate Eh values (<5% difference), but C2-C3 and L2-L4 produce variable leachate Eh values (<10% difference).

Figure 4.6. Changes in Eh for the siltstone extractions. There is not much variation between extraction fluid and leachate values except for the Ca²⁺ extractions. Each extraction consists of duplicate samples.

4.2.3.2 Millet Brook Extractions

The Eh values for the Millet Brook extractions show more significant changes between extraction fluid and leachate values than do the siltstones. The extraction fluid and leachate Eh values are given in Table 4.8. The chloride extractions display an increase in Eh from the extraction fluid to leachate values, whereas the bicarbonate extractions illustrate an opposite trend with decreasing Eh (Figure 4.7).

Extraction #	Solution Composition	lon of Focus	Concentration of Ion of Focus (mg/L)	Extraction Fluid Eh (mV)	Leachate Eh (mV)
B7	NaCl	Cl⁻	500	242.9	307.9
B8 (duplicate)	NaCl	Cl⁻	500	242.9	305.7
D7	NaHCO ₃	HCO ₃ ⁻	500	382.0	255.7
D8 (duplicate)	NaHCO ₃	HCO ₃ ⁻	500	382.0	248.7

Table 4.8. Extraction fluid and leachate Eh values for the Millet Brook extractions. The Eh values are lower than those from the siltstone extractions, but still show that the Millet Brook extraction fluids and leachates are oxidizing. Duplicate extractions produce similar leachate Eh values (<3% difference).

Figure 4.7. Changes in Eh for the Millet Brook extractions. Each extraction consists of duplicate samples.

4.2.3.3 Harrietsfield Extractions

The Eh values for the Harrietsfield extractions range from approximately 250 mV to 600 mV, indicating a fairly large range in Eh (Table 4.9). The extractions show a decrease in Eh from the extraction fluids to leachates except for the bicarbonate extractions which shows an opposite trend (Figure 4.8). The Ca²⁺ extractions display the greatest decrease in Eh.

Extraction #	Solution Composition	lon of Focus	Concentration of Ion of Focus (mg/L)	Extraction Fluid Eh (mV)	Leachate Eh (mV)
N1	Gypsum (CaSO ₄ 2H ₂ O)	SO₄⁻	500	365.2	267.1
N2 (duplicate)	Gypsum (CaSO ₄ 2H ₂ O	SO₄ ⁻	500	365.2	253.9
Р5	N/A	N/A	N/A	308.0	266.1
P6 (duplicate)	N/A	N/A	N/A	395.7	264.3
03	Seashells (CaCO ₃)	CO32-	500	344.7	262.6
O4 (duplicate)	Seashells (CaCO ₃)	CO32-	500	344.7	265.7
12	CaSO ₄	SO₄⁻	500	310.3	268.6
13 (duplicate)	CaSO ₄	SO₄ ⁻	500	310.3	261.5
M7	$CaCl_2 \cdot 2H_2O$	Ca ²⁺	500	580.0	309.3
M8 (duplicate)	$CaCl_2 \cdot 2H_2O$	Ca ²⁺	500	580.0	298.3
К6	RO (water)	N/A	N/A	325.7	265.2
K8 (duplicate	RO (water)	N/A	N/A	325.7	268.0
R7	NaHCO ₃	HCO₃ ⁻	500	241.7	280.0
R8 (duplicate)	NaHCO ₃	HCO ₃ ⁻	500	246.4	283.5

Table 4.9. Extraction fluid and leachate Eh values for the Harriestfield extractions. Oxidizing solutions are produced in each extraction. Duplicate extractions produce similar leachate Eh values (<5% difference).

Extraction Fluid Composition

Figure 4.8. Changes in Eh for the Harritefield extractions. The extraction fluid Eh values are lower than the leachate values except for the bicarbonate extractions. Each extraction consists of duplicate samples.

4.2.4 Concentration of Dissolved Uranium in Leachate

Dissolved uranium concentrations are measured for the leachates produced by the extractions. There are variations in the results depending on the solutions and rock types used. In general, the granites leach more uranium than the siltstone despite having lower U concentrations. The dissolved uranium results are given in the Tables 4.10-4.12 and illustrated in Figures 4.9-4.11.

4.2.4.1 Siltstone Extractions

The quantities of dissolved uranium for the siltstone extractions are displayed in Table 4.10. The sulphate extractions produce the greatest concentrations of dissolved U within the leachate, whereas the bicarbonate extractions produce the least. The extractions are listed in order from the lowest concentration of dissolved U to the highest (Table 4.10). Figure 4.9 illustrates the changes in dissolved U concentrations for the different extractions.

Extraction #	Solution Composition	lon of	Concentration of Ion	Dissolved
		Focus	of Focus (mg/L)	U (ppb)
C2	NaHCO ₃	HCO ₃ ⁻	500	0.15
C3 (duplicate)	NaHCO ₃	HCO ₃ ⁻	500	0.15
F6	RO (water)	N/A	N/A	0.18
F7 (duplicate)	RO (water)	N/A	N/A	0.16
A2	NaCl	Cl⁻	500	0.66
A4 (duplicate)	NaCl	Cl⁻	500	0.46
L2	$CaCl_2 \cdot 2H_2O$	Ca ²⁺	500	0.93
L4 (duplicate)	$CaCl_2 \cdot 2H_2O$	Ca ²⁺	500	0.95
E3	$CaCl_2 \cdot 2H_2O$	Ca ²⁺	200	1.00
E4 (duplicate)	$CaCl_2 \cdot 2H_2O$	Ca ²⁺	200	1.00
G3	CaSO ₄	SO₄ [−]	300	1.8
G4 (duplicate)	CaSO ₄	SO₄⁻	300	1.8
H6	CaSO ₄	SO₄⁻	500	2.4
H7 (duplicates)	CaSO ₄	SO₄⁻	500	2.5

Table 4.10. Concentrations of dissolved U for the siltstone extractions. The concentrations of dissolved U range from 0.15 ppb to 2.5 ppb. Most duplicate extractions produce similar leachate dissolved U concentrations (<5% difference), but A2-A4 produce 30% variations in dissolved U concentrations and F6-F8 produce 12% variations in dissolved U concentrations. These variable results from Maxxam are compared with the Dalhousie Water Lab results which confirms that they are accurate (Appendix G and Appendix H).

Figure 4.9. Variations of dissolved U for the siltstone extractions. Dissolved U concentrations increase from left to right. Each extraction consists of duplicate samples.

4.2.4.2 Millet Brook Extractions

The quantities of dissolved uranium within Millet Brook leachates vary from 4.9 ppb to 8.7 ppb (Table 4.11). The bicarbonate extractions produce higher concentrations of dissolved U than the chloride extractions. The changes in dissolved U concentrations for the different extractions are illustrated in Figure 4.10.

Extraction #	Solution Composition	lon of Focus	Concentration of Ion of Focus (mg/L)	Dissolved U (ppb)	
B7	NaCl	Cl⁻	500	4.9	
B8 (duplicate)	NaCl	Cl⁻	500	6.7	
D7	NaHCO ₃	HCO₃ ⁻	500	7.5	
D8 (duplicate)	NaHCO ₃	HCO ₃ -	500	8.7	

Table 4.11. Concentrations of dissolved U for the Millet Brook extractions. The concentration of dissolved U varies between the chloride and bicarbonate extractions. The duplicate extractions produce leachate dissolved U concentrations that are variable from each other (14% difference for B7-B8 and 23% difference for D7-D8). These variable results from Maxxam are compared with the Dalhousie Water Lab results which confirms that they are accurate (Appendix G and Appendix H).

Dissolved U for Millet Brook Extractions

Figure 4.10. Variations in dissolved U concentrations for the Millet Brook extractions. There is an increasing trend in dissolved uranium from left to right. Each extraction consists of duplicate samples.

4.2.4.3 Harrietsfield Extractions

The Harrietsfield extractions produce the highest concentrations of dissolved U out of the three rock type extractions. The Harriesfield extractions produce dissolved U concentrations ranging from 2.72 ppb to 29.25 ppb (Table 4.12). The bicarbonate extractions produce the highest concentrations of dissolved U. The changes in dissolved U concentrations for the different Harrietsfield extractions are illustrated in Figure 4.11.

Extraction #	Solution Composition	lon of	Concentration of Ion	Dissolved
		Focus	of Focus (mg/L)	U (ppb)
N1	Gypsum (CaSO ₄ 2H ₂ O)	SO₄⁻	500	2.90
N2 (duplicate)	Gypsum (CaSO ₄ 2H ₂ O	SO₄⁻	500	3.10
P5	RO (water)	N/A	N/A	3.30
P6 (duplicate)	RO (water)	N/A	N/A	2.60
03	Seashells (CaCO ₃)	CO32-	500	3.40
O4 (duplicate)	Seashells (CaCO ₃)	CO32-	500	3.60
12	CaSO ₄	SO₄⁻	500	4.51
I3 (duplicate)	CaSO ₄	SO₄⁻	500	4.28
M7	$CaCl_2 \cdot 2H_2O$	Ca ²⁺	500	4.40
M8 (duplicate)	$CaCl_2 \cdot 2H_2O$	Ca ²⁺	500	4.72
К6	RO (water)	N/A	N/A	6.70
K8 (duplicate)	RO (water)	N/A	N/A	6.01
R7	NaHCO ₃	HCO₃ ⁻	500	31.0
R8 (duplicate)	NaHCO ₃	HCO ₃ ⁻	500	31.0

Table 4.12. Concentrations of dissolved U for the Harrietsfield extractions. The concentrations of dissolved U are approximately between 2-6 ppb for all extractions except the HCO₃⁻ extractions (approximately 29 ppb). Most duplicate extractions produce similar concentrations of dissolved uranium (≤ 7% difference), but the P5-P6 and K6-K8 extractions produce variable concentrations of dissolved U (25% difference and 10% difference respectively). It is important to note that the RO extractions are conducted twice for quality control. *These variable Maxxam results are compared with the Dalhousie Water Lab results which confirms that they are accurate (Appendix G and Appendix H).*

Dissolved U for HG Extractions

Extraction Fluid Composition

Figure 4.11. Variations in dissolved U concentrations for the Harrietsfield Extractions. The bicarbonate extractions produce the highest concentrations of dissolved U. Each extraction consists of duplicate samples. RO extractions are conducted twice for quality control and produce variable results. The Maxxam results are compared to the Dalhousie Water Lab results which confirms that the results are accurate.

4.2.5 Concentration of Dissolved U vs. pH

Concentrations of dissolved uranium are plotted against the pH of the leachates for the

different extractions. The relationship between the concentrations of dissolved U and pH for

the siltstone extractions are illustrated in Figure 4.12, Figure 4.13 for the MBG extractions and

Figure 4.14 for the HG extractions. The siltstone extractions produce higher concentrations of

dissolved U in acidic conditions whereas the MBG and HG extractions produce higher

concentrations of dissolved U in alkaline conditions.

Figure 4.12. Relationship between pH and dissolved U for the siltstone extractions. The siltstone extractions produce higher concentrations of dissolved U when pH conditions are acidic (approximately pH 4). SO_4 has the greatest impact on U mobility. Each extraction consists of duplicate samples.

Figure 4.13. Relationship between pH and dissolved U for the MBG extractions. The MBG extractions produce higher concentrations of dissolved U when pH conditions are alkaline (approximately pH 9.8). Each extraction consists of duplicate samples.

Figure 4.14. Relationship between pH and dissolved U for the HG extractions. The HG extractions produce slightly alkaline to alkaline leachates. Each extraction consists of duplicate samples.

4.2.6 Concentration of Dissolved U vs. Eh

Concentrations of dissolved uranium are plotted against the Eh of the leachates for the different extractions. The relationship between dissolved U and Eh for the siltstone extractions is illustrated in Figure 4.15, Figure 4.16 for the MBG extractions and Figure 4.17 for the HG extractions. There is no correlation between the trends in dissolved U concentrations and Eh.

Extraction Fluid Composition

Figure 4.15. Relationship between Eh and dissolved U for the siltstone extractions. Eh varies from 300 mV to 500 mV, but does not show as similar trend as the concentrations of dissolved U. Each extraction consists of duplicate samples.

Figure 4.16. Relationship between Eh and dissolved U for the MBG extractions. Eh slightly decreases as concentrations of dissolved U increase, but due to the small data set and minimal variation in Eh, there is not conclusive evidence that they are related. Each extraction consists of duplicate samples.

Figure 4.17. Relationship between Eh and dissolved U for the HG extractions. Eh values vary for the different extractions but do not correlate to the variations in dissolved U. Each extraction consists of duplicate samples.

4.2.7 Concentration of Dissolved Metals in Leachate

A number of metals are analyzed to determine if they react with the extraction fluids similarly to uranium. The full suite of metal analysis is conducted for all three rock type extractions. The dissolved metal results are given in Table 4.13 for the siltstone extractions, Table 4.14 for the MBG extractions and Table 4.15 for the HG extractions. Full data tables are given in Appendix G. It is important to note that this study focuses on the geochemical parameters that drive U mobility. Dissolved metal analysis is conducted to determine if there are any distinct trends between U and other metals, but is not the primary focus of the study.

Extraction #	lon of Focus					Dissolv	ed Meta	ls (µg/L)				
		U	Li	Al	Р	Ti	V	Cr	Mn	Fe	Со	Ni
C2	HCO3 ⁻	0.150	18.86	154.4	36.08	0.878	0.885	0.138	124.6	811.4	2.021	3.131
C3	HCO ₃ ⁻	0.150	21.13	156.9	22.64	1.717	1.240	0.262	131.7	893.9	2.157	3.309
F6	N/A	0.180	4.333	52.11	23.64	2.144	0.452	0.169	2.415	76.25	0.075	0.368
F7	N/A	0.160	9.004	91.90	27.94	3.883	0.490	0.324	3.681	85.11	0.116	0.239
A2	Cl⁻	0.660	1.099	83.60	30.78	1.959	0.358	0.102	2.012	89.79	0.028	0.094
A4	Cl⁻	0.460	0.785	75.51	31.68	1.286	0.273	0.143	1.876	62.62	0.023	0.115
L2	Ca ²⁺	0.804	21.04	4982	36.27	1.109	1.021	0.542	408.7	4523	5.507	11.94
L3	Ca ²⁺	0.819	20.83	5104	14.68	0.995	0.921	0.537	415.2	4681	5.529	11.24
E3	Ca ²⁺	1.000	26.20	2575	33.25	1.459	0.565	0.411	273.9	3890	4.657	8.737
E4	Ca ²⁺	1.000	25.40	2591	26.65	1.375	0.502	0.408	275.6	4206	4.674	8.707
G3	SO4 ⁻	1.800	24.56	2066	26.75	1.158	0.135	0.471	277.4	2907	4.749	7.670
G4	SO4 ⁻	1.800	24.53	2113	28.39	1.152	0.119	0.539	288.4	3211	4.941	7.808
H6	SO4 ⁻	2.400	23.19	3069	28.52	1.122	0.102	0.602	288.4	3179	4.699	7.941
H7	SO4 ⁻	2.500	22.74	3053	26.37	1.102	0.095	0.631	306.1	3338	4.88	7.790
		U	Cu	Zn	As	Se	Ag	Cd	Sb	Ва	Ce	Pb
C2	HCO ₃ ⁻	0.150	5.860	11.58	0.199	0.242	0.653	0.079	0.000	88.2	0.188	1.574
C3	HCO3 ⁻	0.150	6.056	7.547	0.154	0.229	0.115	0.072	0.000	89.54	0.359	0.618
F6	N/A	0.180	1.656	2.561	0.573	0.577	0.026	0.000	0.000	1.193	0.113	0.352
F7	N/A	0.160	1.707	3.039	0.693	0.629	0.037	0.000	0.000	1.620	0.159	0.611
A2	Cl⁻	0.660	1.653	2.694	0.826	0.525	0.222	0.000	0.011	2.074	0.157	0.665
A4	Cl⁻	0.460	1.078	6.486	0.605	0.363	0.174	0.000	0.000	2.187	0.083	0.451
L2	Ca ²⁺	0.804	36.70	16.46	0.417	0.088	0.134	0.190	-0.061	261.5	3.404	7.771
L3	Ca ²⁺	0.819	36.82	17.22	0.446	0.182	0.091	0.225	-0.14	272.3	3.412	8.126
E3	Ca ²⁺	1.000	23.60	15.94	0.342	0.166	0.152	0.154	0.000	202.2	1.729	4.491
E4	Ca ²⁺	1.000	18.21	13.63	0.391	0.201	0.072	0.160	0.000	202.7	1.639	4.266
G3	SO ₄ -	1.800	13.23	12.31	0.69	0.315	0.100	0.127	0.000	156.0	2.167	3.251
G4	SO4 ⁻	1.800	12.07	11.05	0.744	0.474	0.128	0.125	0.152	146.8	2.279	3.358
H6	SO4 ⁻	2.400	10.44	12.95	0.688	0.445	5.241	0.124	0.000	126.3	3.891	4.287
H7	SO4 ⁻	2.500	10.05	10.51	0.688	0.497	0.155	0.141	0.000	136.9	3.596	5.219

Table 4.13. Concentrations of dissolved U, Li, Al, P, Ti. V, Cr, Mn, Fe. Co, Ni CU, Zn, As, Se, Ag, Cd, Sb, Ba, Ce and Pb for each siltstone extraction.

Extraction	lon of					Dissol	ed Meta	ls (µg/L)				
#	rocus	U	Li	Al	Р	Ti	V	Cr	Mn	Fe	Со	Ni
B7	Cl⁻	4.900	2.238	28.66	30.95	0.994	0.061	0.112	10.17	18.03	0.138	0.856
B8	Cl⁻	6.700	3.433	31.48	33.42	1.120	0.075	0.103	12.47	8.762	0.186	0.587
D7	HCO₃ ⁻	7.500	23.44	961.6	45.65	7.789	4.560	0.260	2.557	93.08	0.076	0.302
D8	HCO₃ ⁻	8.700	24.85	1023	35.67	10.11	5.005	0.260	2.958	118	0.069	0.271
		U	Cu	Zn	As	Se	Ag	Cd	Sb	Ва	Ce	Pb
B7	Cl-	4.900	6.009	5.631	2.782	0.122	0.08	0.015	0.000	5.985	0.083	0.291
B8	Cl⁻	6.700	3.736	3.946	4.167	0.211	0.088	0.014	0.000	6.202	0.121	0.262
D7	HCO₃ ⁻	7.500	1.597	3.503	21.05	0.711	0.182	0.015	0.350	10.00	0.080	0.249
D8	HCO₃ ⁻	8.700	1.598	2.74	21.39	0.711	0.069	0.000	0.146	12.62	0.063	0.236

Table 4.14. Concentrations of dissolved U, Li, Al, P, Ti. V, Cr, Mn, Fe. Co, Ni CU, Zn, As, Se, Ag, Cd, Sb, Ba, Ce and Pb for the MBG extractions.

Extraction #	lon of Focus					Dissol	ed Metal	s (µg/L)				
		U	Li	Al	Р	Ti	V	Cr	Mn	Fe	Со	Ni
N1	CO32-	2.714	22.81	517.9	42.44	1.897	0.626	0.054	4.834	30.88	0.704	0.328
N2	CO32-	2.857	21.64	508.2	33.19	1.092	0.569	0.114	3.898	25.35	0.069	0.372
P5	N/A	3.147	21.01	1140	67.67	40.02	2.446	0.988	13.43	598.9	0.554	0.846
P6	N/A	2.352	21.54	1153	60.00	36.82	2.501	0.342	10.49	507.0	0.170	0.376
03	Cl⁻	3.278	20.82	1140	70.75	38.8	2.385	0.461	11.40	559.2	0.262	0.333
04	Cl⁻	2.451	19.26	1255	68.74	45.66	2.514	1.419	18.28	661.7	0.433	0.998
12	Ca ²⁺	4.010	29.95	237.0	34.08	0.388	0.325	0.002	24.40	-17.83	0.087	1.669
13	Ca ²⁺	3.992	30.32	254.9	43.56	0.671	0.281	-0.002	24.60	-21.96	0.084	1.755
M7	SO₄⁻	3.789	26.67	178.3	39.52	0.541	1.439	0.145	51.52	61.62	0.298	4.706
M8	SO₄ [−]	4.011	26.55	175.6	17.13	0.278	1.328	0.085	55.27	48.45	0.277	4.660
K6	N/A	6.233	21.62	1086	82.66	32.76	2.238	0.276	9.688	456.6	0.166	0.730
K8	N/A	5.749	24.01	1042	74.26	30.82	2.299	0.288	9.256	447.4	0.140	0.487
R7	HC0₃ ⁻	29.25	19.05	640.3	67.07	33.06	1.968	0.349	16.05	400.7	0.536	0.510
R8	HC0₃ ⁻	28.59	18.26	592.7	64.84	29.68	1.570	0.288	13.36	349.1	0.101	0.259
		U	Cu	Zn	As	Se	Ag	Cd	Sb	Ва	Ce	Pb
N1	CO32-	2.714	0.025	0.035	0.032	0.100	0.003	0.002	0.008	0.034	0.002	0.002
N2	CO32-	2.857	1.512	3.542	0.094	-0.149	0.008	-0.014	-0.163	2.975	0.045	0.145
P5	N/A	3.147	8.957	14.18	1.337	-0.161	0.015	-0.003	0.185	3.197	1.356	1.316
P6	N/A	2.352	6.394	4.863	1.067	-0.103	-0.002	-0.005	-0.178	2.863	1.085	0.692
03	Cl⁻	3.278	3.206	4.635	1.307	-0.159	0.016	0.0430	-0.144	4.521	1.315	0.903
04	Cl⁻	2.451	2.952	5.583	1.129	-0.121	0.039	-0.010	-0.151	2.94	1.432	1.299
12	Ca ²⁺	4.010	4.450	4.264	-0.076	-0.125	-0.008	0.001	-0.164	13.57	0.019	1.018
13	Ca ²⁺	3.992	2.628	5.498	-0.104	-0.092	-0.007	0.003	-0.161	8.913	0.029	0.132
M7	SO4⁻	3.789	1.862	2.713	-0.106	0.052	0.007	0.004	-0.130	28.51	0.036	0.472
M8	SO4⁻	4.011	1.329	2.409	-0.190	0.049	-0.008	-0.002	-0.153	29.70	0.029	0.476
K6	N/A	6.233	5.387	8.174	1.596	-0.044	0.016	-0.011	0.091	8.939	1.059	9.552
K8	N/A	5.749	3.828	6.785	0.998	-0.182	0.010	-0.012	-0.117	5.570	0.930	0.794
R7	HC0₃ ⁻	29.25	8.387	5.424	0.685	-0.048	0.028	-0.01	-0.159	3.908	0.845	0.706
R8	HC0₃ ⁻	28.59	5.576	4.141	0.572	-0.074	-0.008	-0.015	-0.179	3.521	0.740	0.454

Table 4.15. Concentrations of dissolved U, Li, Al, P, Ti. V, Cr, Mn, Fe. Co, Ni CU, Zn, As, Se, Ag, Cd, Sb, Ba, Ce and Pb for the HG extractions.

5.0 Discussion

Uranium mobility is influenced by numerous geologic and geochemical factors. Variations in lithology and mineralogy as well as pH and Eh conditions are particularly significant in the case of U mobility.

5.1 Uranium Concentration in Rock vs. Leachate

There is no correlation between the quantities of U within the rock samples and the concentrations of dissolved U produced by each extraction. The granite from Millet Brook (MBG) contains less U than the St. Croix siltstone (8.2 ppb vs. 20 ppb respectively), yet the MBG leaches more dissolved U than the siltstone (4.9-8.7 ppb vs. 0.15-2.5 ppb respectively). The granite from Harrietsfield was not analyzed for U, however likely contains approximately 3 ppm of uranium, the approximate value of uranium concentrations within muscovite-biotite monzogranites in the Harrietsfield region (MacDonald, 2001). MacFarlane (1983) states that higher U concentrations within groundwater systems in Nova Scotia are related to granitic bodies. The analysis of my results suggests that U mobility is strongly correlated to mineralogic, textural and lithologic properties as the different rock types leached different concentrations of dissolved uranium. Where the uranium is situated within the rock itself may account for some of the variations in dissolved uranium between the Siltstone, MBG and HG extractions.

The composition of the MBG plays a major role in U mobilization. Mica-rich granites usually contain higher concentrations of U as they are formed by magmas consisting of a high volatile phase (Chatterjee, 1982). Uranium as an incompatible element can become concentrated in these more volatile components. As well, because U is soluble in oxidizing environments (Duff

and Amerhein, 1996; Samolczyk et al., 2012) uranium can be re-deposited within biotite cleavage planes during weathering or alteration (O'Beirne-Ryan, 2006). Ryan and O'Beirne-Ryan (2006) state that weathered granitoid bodies of the SMB are somewhat depleted of biotite. My study is meant to simulate weathering processes, therefore it is reasonable to consider that the elevated levels of dissolved U from the MBG and HG extractions are related the presence and weatherability of biotite or other easily weathered U-bearing phases: combined with changes in pH and or Eh, this loosely bonded U may be remobilized.

The granite at Millet Brook hosts the largest U deposit in Eastern Canada (Ryan and O'Beirne-Ryan, 2009). The mechanism in which U is concentrated within the MBG may explain the U mobilization observed in my study. The MBG is locally fractured allowing U-rich fluids to mineralize within and close to fracture zones (Chatterjee et al., 1982). The high concentrations of U found in the MBG is the result of secondary mineralizing processes caused by water interactions. Meteoric water entered the granitic body, mobilized U and re-deposited the element within fracture zones (Chatterjee et al., 1982). Similarly, in my study I propose that this uranium is weakly adsorbed within the granitic body and is easily liberated by solution interactions.

The siltstone did not leach high concentrations of uranium. One possible explanation is that the presence of organic matter within the siltstone results in U-reduction causing U to strongly adsorb to these organics, even in the presence of an oxidizing environment. Uranium content within Horton Group rocks is credited to roll front mineralization (Ryan and O'Beirne, 2009). Uranium mineralizes within reducing layers, which is suggests that uranium may be found in

association with organic material. Kumar et al. (2014) and MacFarlane (1982) indicate that uranium has strong sorption to organic material, supporting my interpretation that U within the siltstone is strongly adsorbed to organic material, which may explain why the siltstone leached relatively low concentrations of U.

5.2 Geochemical Influences on U Mobility

Uranium mobility is also influenced by numerous geochemical factors. Variations in pH and redox environment in turn influence the U-complexes that form within groundwater systems (MacFarlane, 1983). Analyzing the pH and Eh conditions for the extractions gives further insight into the geochemical processes that drive U mobility from the different geologic units studied.

5.2.1 pH Effect on U Mobility

The concentrations of dissolved U is influenced by pH: concentrations of dissolved uranium increase when pH decreases for the siltstone extractions and increase when pH increases for the granite extractions (Figure 4.12, Figure 4.13 and Figure 4.14). The variations in dissolved uranium between the three rock type extractions shows that there is a strong relationship between U mobility and pH conditions (Figure 4.12, Figure 4.13, Figure 4.13 and Figure 4.14). The relationship between pH and dissolved U concentrations suggests that uranium forms different soluble complexes under varying pH conditions.

Sulphate has the greatest influence on U mobility with respect to the siltstone extractions. The sulphate extraction fluids produced approximately 200% more dissolved uranium than the other extraction fluids for the siltstone extractions (Figure 4.12). Sulphate had an opposite

impact on the HG extractions as it produced the lowest quantities of dissolved uranium with respect to the other extraction fluids. Bachmaf et al. (2007) states that sulphate can impact uranium sorption depending on geochemical conditions. Analyzing the results from the sulphate extractions suggests that uranyl-sulphate complexes form under acidic conditions.

The sulphate extraction fluids produce the lowest concentrations of dissolved U for the HG extractions, contrary to the highest concentrations for the siltstone extractions (Figure 4.14 and Figure 4.12). The sulphate-siltstone extractions produce an acidic leachate as opposed to the alkaline leachate of the sulphate-HG extractions. A recent study of groundwater composition related to uranium content found that uranyl-sulphate complexes form in acidic conditions (pH < 6) (Kumar et al., 2014). My study shows similar results, as sulphate has the greatest impact on uranium liberation in an acidic solution (Figure 4.12).

Carbonate forms soluble complexes with uranium and plays a major role in U mobilization (Drage and Kennedy, 2013; MacFarlane, 1983). Carbonate is used in extraction fluids for the siltstone, MBG and HG extractions, but only leaches elevated levels of uranium when pH conditions are alkaline (Figure 4.12, Figure 4.13 and Figure 4.14). Carbonate leaches the highest concentrations of uranium for the MBG and HG extractions. MacFarlane (1983) states that Nova Scotia Granites have an influence on increasing the pH of groundwater which contributes to the elevated concentrations of dissolved U. Previous studies conclude that uraniumcarbonate complexes are soluble under alkaline conditions as carbonate is a strong ligand (Figure 2.3) (Bachmaf et al., 2007; Kumar et al., 2014). The results from my study support this

observation, as the carbonate extractions leached higher quantities of uranium under alkaline conditions.

5.2.2 Eh effect on U mobility

The analysis of the relationship between Eh and U mobility suggests that there is little correlation between the two in my study. Each extraction produces variable concentrations of dissolved U under different Eh conditions (Figure 4.15, Figure 4.16 and Figure 4.17). Kumar et al. (2014) states that oxidizing waters (Eh > 200mV) contain higher concentrations of uranium complexes. Every extraction conducted in my study produces oxidizing leachates with an Eh > 200, however there is no evidence that Eh variations measured contribute to the liberation of uranium (Table 4.7, Table 4.8 and Table 4.9). Figure 4.15, Figure 4.16 and Figure 4.17 illustrate that there is not a trend between Eh and dissolved U. Even though the slight variations in Eh did not drastically influence U mobility, the fact that the leachate is oxidizing in every case does have an influence U mobility. The general oxidizing nature of the leachate allowed uranyl complexes to form (UO_2^{2+}) : uranyl-sulphate and uranyl-carbonate complexes are soluble in oxidizing environments (Kumar et al., 2014). Interpretations of the dissolved U results shows that an oxidizing environment alone is not enough to liberate uranium. The fact that the NaHCO₃ and CaSO₄ extractions have varying effects on U mobility even though they both produce oxidizing leachates is indicative that other factors such as pH are responsible for U mobility.

5.3 Natural vs Lab Grade Additives

The HG extractions include extraction fluids that are comprised of both natural and anthropogenic additives. The lab grade compounds have a greater influence on U mobility than the natural materials (Figure 5.1). This may be credited to the grain size variations between the lab grade and natural additives as well as compositional differences. There may be other constituents within the natural materials that have an influence on U mobility; for example, the gypsum used also has mud lenses present. It may be that sulphate strongly adsorbs to these clay particles, therefore does not form uranium-sulphate complexes. It is possible that synthetic sulphate additives may have a greater influence on U mobility as they do not contain other material that may impact sulphates sorption potential. The seashell extractions have a lesser influence on U mobility than other Ca²⁺ or CO₃²⁻ bearing compounds (CaCl2 · 2H2O and NaHCO3). As well the CaCl2 · 2H2O and NaHCO3 extractions both have a greater influence on U mobility than the seashells (CaCO₃). This may be credited to the variations in chemical formulas between the materials. To accurately state that natural occurring carbonate has a varying effect on U mobility than synthetic carbonate, one must conduct extractions using similar material (Seashells and lab grade calcium carbonate). Interpretations from the results suggest that seashells used (or limestone) may have a lesser influence on U mobility than other carbonate materials, but further investigation must be conducted to confirm this hypothesis.

Figure 5.1. Variations in dissolved U for the HG extractions. The overall trend shows an increase in dissolved U from left to right. The natural materials (gypsum and seashells) produce the lowest concentrations of dissolved U. Two RO extractions are conducted producing four results as each extraction consists of duplicate samples. There are differences in dissolved U concentrations between the two RO extractions. It is possible that grain size variations or compositional differences between the crushed rocks used for the two extraction is causing this discrepancy.

5.4 Dissolved U and Other Metals

Preliminary assessment from this thesis suggests there is no direct correlation between U mobility and any other metal (Table 4.10, Table 4.11 and Table 4.12). It is worth noting that the scope of this study is to determine the geochemical influences that drive U mobility, therefore the materials and methods used are geared towards highlighting uranium mobility.

5.5 Variability Between Duplicate Extractions

Each extraction consists of duplicate samples, but some duplicates show variations in dissolved uranium concentrations. This is most evident with the MBG and HG extractions illustrated in Table 4.11 and Table 4.12. This is likely related to the spatial variations of uranium within the samples credited to both the abundance and weathering of biotite. The siltstone extractions show much stronger correlation between duplicate samples (Table 4.10) which may suggest that uranium is more uniformly distributed within the rock than the granites. The siltstone is also crushed to a more uniform grain size, therefore duplicate extractions are comprised of more identical crushed rock samples.

6.0 Conclusion and Future Recommendations

Groundwater systems are complex environments which are influenced by numerous geochemical factors. Nova Scotia has several geologic units that contain elevated levels of uranium. Uranium can be mobilized from rocks through geologic and weathering processes, or by the interaction with anthropogenic inputs. Carbonates form soluble complexes with uranium in oxidizing alkaline solutions. Sulphates can also form soluble complexes with uranium, but under oxidizing acidic conditions. Lithology and mineralogy play a crucial role in uranium liberation as well as pH and Eh conditions in this study. The Horton Group siltstone contain higher whole rock quantities of uranium than the MBG and HG samples yet they leach lower concentrations of uranium during the leaching procedure. Nova Scotia has had a history of uranium groundwater contamination which is believed to be the result of the local geology. MacFarlane (1983) and the Nova Scotia Uranium Task Force (1982) discuss that many regions within Nova Scotia have been subjected to groundwater uranium levels that surpassed Health Canada guidelines in the past. Many water wells still contain elevated uranium levels (Drage and Kennedy, 2013), but it is still unclear if anthropogenic inputs have increased the quantities of uranium within groundwater systems. My study has concluded that the differences in lithologic and mineralogic properties between the rock samples likely have a significant impact on U mobilization. The siltstone extractions suggest that uranium strongly adsorbs to organic particles within the rock, therefore the siltstone leaches low concentrations of uranium under the conditions of my experiments. The weatherability of biotite within the granites allows intruding extraction fluids to mobilize uranium from within cleavage planes, which may be why these extractions leach higher concentrations of uranium. It is important to note that my study

includes a small sample size only focusing on three rock types. Future work should analyze a wider variety of geology with a focus on glacial till as MacFarlane (1983) credits high levels of dissolved U to glacial features such as drumlins. These drumlins can incorporate sulphates and carbonates from the Windsor Group. Glacial till in Southern Nova Scotia may contain organic material locally, which my study has shown can have an influence on U-mobility. Surficial geology consists of re-worked older geology, therefore the glacial features found throughout Nova Scotia can incorporate material derived from the SMB and Carboniferous sediments. It is important to consider the inputs these glacial features may have on groundwater systems and their impact on uranium mobility.

In conclusion, the results from my study confirm that uranium in Nova Scotia is mobilized in oxidizing environments and forms a variety of soluble complexes dependent on pH, Eh and regional geology.

7.0 References

3076525 Nova Scotia Ltd. vs. Nova Scotia (Environment), 2015 NSSC 137, Supreme Court of Nova Scotia.

American Public Health Association, American Water Works Association, Water Environment Federation, (2012), Standard methods for the examination of water and wastewater (22nd ed), Washington, D. C.: The Association, Washington, D. C.

Bachmaf, S., B. Planer-Friedrich, and B. J. Merkel (2008), Effect of sulfate, carbonate, and phosphate on the uranium (VI) sorption behavior onto bentonite, Radiochim. Acta, 96(6/2008), 359-366.

Barkhouse, R., and J. J. Laffin (1982), Uranium in Nova Scotia: a background summary for the uranium inquiry, 82-7, Halifax, Nova Scotia, Nova Scotia Department of Mines and Energy.

Bell, W. A. (1929), Horton-Windsor district, Nova Scotia, Geologic Survey of Canada Memoir, 155, 268.

Bourdon, B., S. Turner, G. M. Henderson, and C. C. Lundstrom (2003), Introduction to U-series Geochemistry, Reviews in Mineralogy and Geochemistry, 52(1), 1-21.

Chatterjee, A. K. (1977), Uranium mineralization at Mclean Point, Cumberland County, in Mineral Resources Division, Report of Activities 1976, 77-1, pp. 89-98, Nova Scotia, Nova Scotia Department of Energy.

Chatterjee, A. K., J. Robertson, and D. Pollock (1982), A summary on the petrometallogenesis of the uranium mineralization at Millet Brook, South Mountain Batholith, Nova Scotia, in Nova Scotia Department of Mines and Energy Report, 782-1, pp. 57-67, Nova Scotia.

Drage, J., and K. W. Kennedy (2013), Occurrence and Mobilization of Uranium in Groundwater in Nova Scotia, paper presented at GeoMontréal, Montréal.

Duff, M. C., and C. Amrhein (1996), Method for the separation of uranium(IV) and (VI) oxidation states in natural waters, Journal of Chromatography A, 743(2), 335-340.

Durham, C.C., and H.W. Little (1971), Uranium in stream sediments in Carboniferous rocks of Nova Scotia, Geological Survey of Canada, Paper 70-54, Halifax, Nova Scotia, Department of Energy, Mines and Resources.

Environmental Protection Agency (1994), Synthetic Leaching Procedure. Method 1312, retrieved from https://www.epa.gov/sites/production/files/2015-12/documents/1312.pdf.

Finck, P. W., and R.R Stea (1995), The compositional development of tills overlying the South Mountain Batholith, Halifax, Nova Scotia, Nova Scotia Department of Natural Resources.

Ham, L. J. (1990), Geological map of Windsor, NTS 21A/16 west half and part of 21H/01, scale 1:50000, Nova Scotia Department of Mines and Energy, Halifax, Nova Scotia.

Health Canada (2014), Guidelines for Canadian Drinking Water Quality: Guideline Technical Document, Radiological Parameters: Federal-Provincial-Territorial Committee on Drinking Water of the Federal-Provincial-Territorial Committee on Health and the Environment.

Hess, C. T., J. Michel, T. R. Horton, H. M. Prichard, and W. A. Coniglio (1985), The occurrence of radioactivity in public water supplies in the United States, Health Physics, 48(5), 553-586.

Kronfeld, J., D. I. Godfrey-Smith, D. Johannessen, and M. Zentilli (2004), Uranium series isotopes in the Avon Valley, Nova Scotia, Journal of Environmental Radioactivity, 73, 335-352.

Kumar, A., R. M. Tripathi, R. Rout, M. K. Mishra, P. M. Ravi, and A. K. Ghosh (2014), Characterization of groundwater composition in Punjab state with special emphasis on uranium content, speciation and mobility, Radiochim. Acta, 102(3), 239-254.

MacDonald, M. A. (2001), Geology of the South Mountain Batholith, Southwestern Nova Scotia, in Minerals and Energy Branch, Open File Report ME 2001-2, Halifax, Nova Scotia, Nova Scotia Department of Natural Resources.

MacDonald, M. A., R. J. Horne, M. C. Corey, and L. H. Ham (1992), An overview of recent bedrock mapping and follow up petrological studies of the South Mountain Batholith, Atlantic Geology, 28, 7-28.

MacFarlane, D. (1983), The Hydrology and Distribution of Naturally-Occurring Uranium in Well Water in Nova Scotia, in Uranium Task Force Report, Nova Scotia, Nova Scotia Environment

McKenzie, C. B., and D. B. Clarke (1975), Petrology of the South Mountain Batholith, Nova Scotia, Canadian Journal of Earth Sciences, 12(7), 1209-1218, doi:10.1139/e75-110.

Nair, S., and Merkel B.J. (2011), Effect of Mg-Ca-Sr on the sorption behavior of Uranium (VI) on silica, in The New Uranium Mining Boom, Springer Geology, 763-770.

Orloff, K. G., K. Mistry, P. Charp, S. Metcalf, R. Marino, T. Shelly, E. Melaro, A. M. Donohoe, and R. L. Jones (2004), Human exposure to uranium in groundwater, Environmental Research, 94, 319-326.

O'Beirne-Ryan, A.M. (2006), Weathering History of Granitoids of the South Mountain Batholith, N.S., Canada: Mineralogy, Geochemistry and Environmental Implications of Saprolites, Ph.D, Dalhousie University, Halifax, Nova Scotia.

Ryan, R. J., and A. M. O'Beirne-Ryan (2006), Preliminary Report on the Origin of Uranium Occurances in the Horton Group of the Windsor Area, Nova Scotia, in Mineral Resources Branch, Report on Activities, ME 2007-1, pp. 137-157, Nova Scotia, Department of Natural Resources.

Ryan, R. J., and A. M. O'Beirne-Ryan (2009), Uranium occurrences in the Horton Group of the Windsor area, Nova Scotia and the environmental implications for the Maritimes Basin, Atlantic Geology, 45, 171-190.

Ryan, R. J., A. M. O'Bierne-Ryan, D. S. Finlayson, and A. Parsons (2009), Mobility of Uranium and Radon Associated with Uranium Roll Front Occurrences in the Horton Group of the Windsor Area, Nova Scotia, Canada, 162-165.

Samolczyk, M. A., I. S. Spooner, and S. R. Clifford (2012), A model for uranium mobility in groundwater in the Grand Pré region, Nova Scotia, Canada, Atlantic Geology, 48, 1-13.

Stea, R.R., H. Conley, and Y. Brown (1992), Surficial Geology Map of the Province of Nova Scotia, ME 1992-3, scale 1:500000, Nova Scotia Department of Natural Resources, Halifax, Nova Scotia.

Zhou, P., and B. Gu (2005), Extraction of Oxidized and Reduced Forms of Uranium from Contaminated Soils: Effects of Carbonate Concentration and pH, Environmental Science & Technology, 39(12), 4435-4440. Appendices

Appendix A - Uranium Decay Chain

(From Bourdon et al., 2003)

Extraction #	Extraction Fluid	Ion of	Concentration	Molar Mass of	Molar Mass of Ion	Mass of
	Composition	Focus	of Ion of Focus	Extraction Fluid	of Focus (g/mol)	Extraction Fluid
			(mg/L)	Compound (g/mol)		Compound (g)
A1,A2,A3,A4	NaCl	Cl-	500	58.4400	35.4530	3.3796
B5,B6,B7,B8	NaCl	Cl-	500	58.4400	35.4530	3.3796
C1,C2,C3,C4	NaHCO ₃	HCO ₃ -	500	84.0060	61.0160	2.8224
D5,D6,D7,D7	NaHCO ₃	HCO ₃ -	500	84.0060	61.0160	2.8224
E1,E2,E3,E4	$CaCl_2 \cdot 2H_2O$	Ca ²⁺	200	147.0160	40.0780	3.0080
F5,F6,F7,F8	RO	N/A	N/A	N/A	N/A	N/A
G1,G2,G3,G4	CaSO ₄	SO4-	300	136.1400	96.0626	1.7432
H5,H6,H7H8	CaSO ₄	SO4-	500	136.1400	96.0626	2.9053
11,12,13,14	CaSO ₄	SO4-	500	136.1400	96.0626	2.9053
K5,K6,K7,K8	RO	N/A	N/A	N/A	N/A	N/A
L1,L2,L3,L4	$CaCl_2 \cdot 2H_2O$	Ca ²⁺	500	147.0160	40.078	7.5225
M5,M6,M7M8	$CaCl_2 \cdot 2H_2O$	Ca ²⁺	500	147.0160	40.078	7.5225
N1,N2	Gypsum(CaSO ₄ \cdot 2H ₂ O)	SO4-	500	172.1710	96.063	3.6741
03,04	Seashells(CaCO ₃)	CO32-	500	100.0870	60.010	3.4190
P5,P6	RO	N/A	N/A	N/A	N/A	N/A
R7,R8	NaHCO ₃	HCO ₃ -	500	84.0060	61.016	2.8224

Appendix B - Mass Calculations for Extraction Fluid Compounds

Formulas Used to Calculate Mass of Extraction Fluid Compound

 $m (lon of Focus) = \frac{Concentration of Ion of focus}{Volume of Extraction Fluid (1000mL)}$

 $n \ (Ion \ of \ Focus) = \frac{m \ (Ion \ of \ Focus)}{M \ (Ion \ of \ Focus)}$

mol of Ion of Focus = mol of Extraction Fluid Compound

m (extraction Fluid Compound) = n (Extraction Fluid Compound) X M (Extraction Fluid Compound)

m (4.1L solution) = m (Extraction Fluid Compound

(n=mol, m=mass, M=molar mass)

*All extraction fluids are prepared as 4.1L extraction fluids.

Appendix C - Calibration Methods

pH Calibration

The pH probes are calibrated prior to every set of measurements. The probe is calibrated using three buffer solutions with varying pHs. The three solutions had a pH of 4, 7 and 10. Approximately 20 mL of each Buffer solution was poured into a 50 mL beaker. The initial calibration step involves placing the pH electrode into the pH 4 buffer solution. The calibration is conducted by pressing the calibration button on the pH meter and adjusting the reading until the meter displays a pH reading of 4. The same calibration procedure is conducted for the other buffer solutions. The pH electrode is rinsed with RO between each calibration.

Eh Calibration

The Eh probes are calibrated prior to each set of measurements. The probe is calibrated using an oxidation-reduction (ORP) potential buffer solution. Approximately 20 mL of the buffer solution is poured into a 50 mL beaker. The ORP electrode is placed in the buffer solution and the calibrate button is pressed on the ORP meter. The Eh calibration is temperature dependent so the Eh reading is adjusted until it displays the correct Eh measurement for the appropriate solution temperature (424 mV at 20°C)

Appendix D - Alkalinity	Values
-------------------------	--------

Extraction #	Extraction Fluid Composition	Rock Type	Extractio n Fluid Volume (mL)	Initial Burette Volume (mL)	Initial pH	Final Burette Volume (mL)	Normality of H ₂ SO ₄ Used	Volume of H ₂ SO4 Used (mL)	Alkalinity
A1,A2,A3,A4	NaCl	Siltstone	100	0	6.50	0.5	0.1	0.5	25.0
B5,B6,B7,B8	NaCl	Granite (MBG)	70	0.5	8.52	1.1	0.1	0.6	42.9
C1,C2,C3,C4	NaHCO ₃	Siltstone	100	1) 2.0 2) 0	8.22	1) 25 2) 12.5	0.02	35.5	355.0
D5,D6,D7,D7	NaHCO ₃	Granite (MBG)	100	1) 0 2) 11.0	8.22	1) 25 2) 22	0.02	36	360.0
E1,E2,E3,E4	$CaCl_2 \cdot 2H_2O$	Siltstone	71	12.7	4.91	12.8	0.1	0.2	14.1
F5,F6,F7,F8	RO	Siltstone	81	13.9	6.95	14.1	0.1	0.2	12.3
G1,G2,G3,G 4	CaSO ₄	Siltstone	99	9.7	6.04	9.9	0.1	0.2	10.1
H5,H6,H7H8	CaSO ₄	Siltstone	99	9.9	6.84	10.1	0.1	0.2	10.1
11,12,13,14	CaSO ₄	Granite (HF)	100	10	5.98	9.82	0.1	0.18	9.0
K5,K6,K7,K8	RO	Granite (HF)	100	9.82	7.01	9.61	0.1	0.21	10.5
L1,L2,L3,L4	$CaCl_2 \cdot 2H_2O$	Siltstone	100	1) 0 2) 10	5.63	1) 25 2) 12	0.02	27	270.0
M5,M6,M7 M8	$CaCl_2 \cdot 2H_2O$	Granite (HF)	100	1) 0 2) 10	5.52	1) 25 2) 16	0.02	29	290.0
N1,N2	Gypsum(CaSO ₄ · 2H ₂ O)	Granite (HF)	100	1) 1 2) 10	5.31	1) 25 2) 14	0.02	28	280.0
03,04	Seashells(CaCO ₃)	Granite (HF)	100	1) 2 2) 9	5.64	1) 25 2) 18	0.02	32	220.0
P5,P6	RO	Granite	Not	Not	Not	Not	Not	Not	Not
		(HF)	Measured	Measured	Measured	Measured	Measured	Measured	Measured
R7,R8	NaHCO ₃	Granite	Not	Not	Not	Not	Not	Not	Not
		(HF)	Measured	Measured	Measured	Measured	Measured	Measured	Measured

 $Alkalinity = \frac{A \times N \times 50000}{\text{Sample volume (ml)}}$

(A=acid volume, N=normality of acid)

It is important to note that the normality of the acid used has an impact on the accuracy of alkalinity measurements. The $0.1 \text{ N H}_2\text{SO}_4$ is very strong and rapidly changes pH, therefore it is difficult to get an accurate measurement of the volume of acid required to achieve a pH of 4.6. The $0.02 \text{ N H}_2\text{SO}_4$ alkalinity tests require larger volumes of acid to achieve a pH of 4.6, therefore the burette is filled multiple times and is represented in the table by volumes 1 and 2.

Ma xxa m I D		BFH862		BFH863		BFH865			
Sampling Date		10/15/2015		10/15/2015		10/15/2015			
	UNITS	тмр	RDL	Siltstone	RDL	Granite (MBG)	RDL	MDL	QC Batch
Metals									
Total Aluminum (Al)	mg/kg	40000	10	98000	100	66000	10	N/A	4247978
Total Antimony (Sb)	mg/kg	ND	2.0	ND	2.0	ND	2.0	N/A	4247978
Total Arsenic (As)	mg/kg	ND	2.0	22	2.0	5.6	2.0	N/A	4247978
Total Barium (Ba)	mg/kg	120	5.0	190	5.0	590	5.0	N/A	4247978
Total Beryllium (Be)	mg/kg	ND	2.0	4.4	2.0	2.2	2.0	N/A	4247978
Total Cadmium (Cd)	mg/kg	ND	0.15	ND	0.15	0.23	0.15	N/A	4247978
Total Chromium (Cr)	mg/kg	4.8	2.0	37	2.0	25	2.0	N/A	4247978
Total Cobalt (Co)	mg/kg	1.9	1.0	2.3	1.0	7.1	1.0	N/A	4247978
Total Copper (Cu)	mg/kg	7.2	2.0	39	2.0	74	2.0	N/A	4247978
Total Iron (Fe)	mg/kg	5300	50	14000	50	26000	50	N/A	4247978
Total Lead (Pb)	mg/kg	33	0.50	25	0.50	37	0.50	N/A	4247978
Total Manganese (Mn)	mg/kg	680	2.0	120	2.0	500	2.0	N/A	4247978
Total Molybdenum (Mo)	mg/kg	ND	2.0	ND	2.0	ND	2.0	N/A	4247978
Total Nickel (Ni)	mg/kg	6.2	2.0	7.1	2.0	8.3	2.0	N/A	4247978
Total Selenium (Se)	mg/kg	ND	2.0	4.7	2.0	ND	2.0	N/A	4247978
Total Strontium (Sr)	mg/kg	26	5.0	76	5.0	120	5.0	N/A	4247978
Total Thallium (Tl)	mg/kg	0.30	0.10	1.2	0.10	0.98	0.10	N/A	4247978
Total Tin (Sn)	mg/kg	4.3	2.0	12	2.0	3.1	2.0	N/A	4247978
Total Uranium (U)	mg/kg	13	0.10	20	0.10	8.2	0.10	N/A	4247978
Total Vanadium (V)	mg/kg	15	2.0	78	2.0	41	2.0	N/A	4247978
Total Zinc (Zn)	mg/kg	ND	5.0	27	5.0	120	5.0	N/A	4247978

Appendix E - Rock Results

RDL = Reportable Detection Limit QC Batch = Quality Control Batch ND = Not Detected N/A = Not Applicable
Appendix F - Extraction Measurements

Extraction #	Solution Composition	Mass of Solution	Rock Type	Rock Mass	Extract	ion Fluid	Lea	chate
		Compound (g)		(g)	Ηα	Eh	На	Eh
A1	NaCl	3.3769	Siltstone	N/A	6.38	293.9	8.25	300.8
Δ2	NaCl	3 3769	Siltstone	49 964	6 38	293.9	7 33	309.0
A3	NaCl	3,3769	Siltstone	50.048	6.38	293.9	7.45	307.9
Δ4	NaCl	3 3769	Siltstone	49 974	6 38	293.9	7.56	305.7
B5	NaCl	3 3795	Granite (MBG)	Ν/Δ	7.00	242.9	8.21	301.9
B6	NaCl	3 3795	Granite (MBG)	50.042	7.00	242.9	8 30	288.0
B7	NaCl	3 3795	Granite (MBG)	50.037	7.00	242.5	8 27	285.7
B8	NaCl	3 3795	Granite (MBG)	50.082	7.00	242.9	8.27	287.6
C1		2 8223	Siltstone	N/A	7.00	426.5	10.04	143.6
C2	NaHCO ₂	2.0223	Siltstone	19 960	7.80	426.5	5 3 3	172.5
C2 C3	NaHCO ₂	2.0223	Siltstone	49.900	7.80	420.5	5.30	422.5
C4	NaHCO ₂	2.0223	Siltstone	50.007	7.80	420.5	5.30	445.5
D5	NaHCO ₂	2.0225	Grapito (MBG)	N/A	8.02	282.0	10.04	121.0
DS	NaHCO ₂	2.8220	Granite (MBG)	10.004	8.02	282.0	0.04	220.7
		2.8220	Granite (MBG)	49.994 E0.012	8.02	202.0	0.70	250.7
	Nanco3	2.0220	Granite (MBG)	40.075	0.02	202.0	9.70	255.7
D8		2.8220	Granite (IVIBG)	49.975	8.02 F.00	382.0	9.80	248.7
E1 E2		3.0045	Siltstone	N/A 40.007	5.99	262.7	2.00	209.1
E2		3.0043	Siltstone	49.997	5.99	362.7	3.99	389.0
E3		3.0043	Siltstone	49.999	5.99	362.7	4.03	361.4
E4		3.0043	Slitstone	49.990	5.99	362.7	4.07	367.7
F5	RO	N/A	Siltstone	N/A	7.10	321.1	8.89	237.5
F6	RO	N/A	Siltstone	49.967	7.10	321.1	5.83	334.3
F7	RO	N/A	Siltstone	49.988	7.10	321.1	5.84	312.0
F8	RO	N/A	Siltstone	49.943	7.10	321.1	5.80	318.2
G1	CaSO ₄	1.7420	Siltstone	N/A	5.90	313.7	6.58	322.2
G2	CaSO ₄	1.7420	Siltstone	49.990	5.90	313.7	4.10	357.6
G3	CaSO ₄	1.7420	Siltstone	50.008	5.90	313.7	4.13	320.8
G4	CaSO ₄	1.7420	Siltstone	50.015	5.90	313.7	4.14	309.6
H5	CaSO ₄	2.9040	Siltstone	N/A	6.51	313.7	7.13	270.6
H6	CaSO ₄	2.9040	Siltstone	50.009	6.51	313.7	4.12	309.1
H7	CaSO ₄	2.9040	Siltstone	50.014	6.51	313.7	4.09	324.6
H8	CaSO ₄	2.9040	Siltstone	49.955	6.51	313.7	4.14	324.7
11	CaSO ₄	2.9066	Granite (HG)	N/A	5.54	310.3	5.45	348.3
12	CaSO ₄	2.9066	Granite (HG)	50.083	5.54	310.3	7.70	268.6
13	CaSO ₄	2.9066	Granite (HG)	50.079	5.54	310.3	7.98	261.5
14	CaSO ₄	2.9066	Granite (HG)	49.992	5.54	310.3	8.17	262.4
К5	RO	N/A	Granite (HG)	N/A	6.84	325.7	8.56	258.6
К6	RO	N/A	Granite (HG)	50.012	6.84	325.7	8.84	263.2
K7	RO	N/A	Granite (HG)	50.026	6.84	325.7	8.93	265.2
К8	RO	N/A	Granite (HG)	50.025	6.84	325.7	8.79	268.0
L1	$CaCl_2 \cdot 2H_2O$	7.5228	Siltstone	N/A	5.60	584.3	4.94	554.4
L2	$CaCl_2 \cdot 2H_2O$	7.5228	Siltstone	49.920	5.60	584.3	4.08	492.8
L3	$CaCl_2 \cdot 2H_2O$	7.5228	Siltstone	49.996	5.60	584.3	4.08	456.4
L4	$CaCl_2 \cdot 2H_2O$	7.5228	Siltstone	50.086	5.60	584.3	4.11	449.7
M5	$CaCl_2 \cdot 2H_2O$	7.5225	Granite (HG)	N/A	5.53	580.0	5.48	410.8
M6	$CaCl_2 \cdot 2H_2O$	7.5225	Granite (HG)	49.991	5.53	580.0	6.55	283.5
M7	$CaCl_2 \cdot 2H_2O$	7.5225	Granite (HG)	49.999	5.53	580.0	7.04	309.3
M8	$CaCl_2 \cdot 2H_2O$	7.5225	Granite (HG)	50.075	5.53	580.0	7.20	298.3
N1	Gypsum (CaSO ₄ · 2H ₂ O)	3.6770	Granite (HG)	49.973	5.32	365.2	7.92	267.1
N2	Gypsum (CaSO ₄ · 2H ₂ O)	3.6770	Granite (HG)	49.969	5.32	365.2	8.23	253.9
03	Seashells (CaCO ₃)	3.4178	Granite (HG)	49.975	5.63	344.7	8.88	262.6
04	Seashells (CaCO ₃)	3.4178	Granite (HG)	49.987	5.63	344.7	8.93	265.7
P5	RO	N/A	Granite (HG)	49.68	6.15	308.0	8.89	266.1
P6	RO	N/A	Granite (HG)	50.011	6.13	395.7	8.90	264.3
R7	NaHCO ₃	0.6872	Granite (HG)	49.986	7.75	241.7	8.43	280.0
R8	NaHCO ₃	0.6873	Granite (HG)	49.985	7.84	246.4	8.35	283.5

%RSD	s	×					/00/00	S S	×					%RSD	s	×						%RSD	S	×					%RSD	s	×					%RSD	S	×						Run
			3 13:43	2 13:43	1 13:42					3 13:40	2 13:40	1 13:39					3 13:38	2 13:37	1 13:36						3 13:35	2 13:34	1 13:34					3 13:32	2 13:31	1 13:33					3 13:29	2 13:29	1 13:28	-		Time
			:49	12	:36	OBB		-		159	:23	:46	OBB				:10	<u>;;;</u>	57	OBB					:20	:43	:07	OB A				3	ŝ	17	OBA				:43	<u>2</u>	:27	OB A	ppb	4.5B
0	0	0	0	0	0	8 NaCl o	-		0	0	0	0	7 NaCl G	0	0	0	0	0	0	5 NaCl b	_	0	0	0	0	0	0	4 NaCIS	0	0	0	0	0	0	.2 NaCl S	0	0	0	0	0	0	1 NaCl b	pp	kg 7Li
0.352	0.012	3.433	3.436	3.419	3.443	Granite fr	T./ 3	1 70	2.378	2.392	2.33	2.411	ranite fro	3.607	0.007	0.185	0.177	0.189	0.188	ank 12/		2.262	0.018	0.785	0.765	0.79	0.8	iltstone	0.523	0.006	1.099	1.093	1.1	1.104	Itstone	1.88	0.004	0.236	0.234	0.241	0.234	lank 12/	p	2
1.042	0.328	31.48	31.55	31.77	31.12	om Millet	0.333	0.285	28.66	28.95	28.67	28.38	om Millet I	2.227	0.113	5.06	4.964	5.184	5.033	7/2015 1:3		0.788	0.595	75.51	75.81	75.9	74.83	12/7/20	0.103	0.086	83.6	83.51	83.6	83.68	12/7/201	0.96	0.111	11.6	11.61	11.7	11.48	7/2015 1:2	d dc	7AI 3:
9.059	3.028	33.42	33.51	30.35	36.41	Brook	0.034	2.672	30.95	28.28	30.94	33.63	Brook 1	9.777	3.033	31.02	28.63	30	34.43	6:57 PM		16.97	5.375	31.68	29.35	27.86	37.82	15 1:34:0	11.5	3.539	30.78	30.33	27.48	34.52	5 1:31:17	12.2	4.174	34.2	30.61	33.22	38.78	8:27 PM	8	ΙP
1.234	0.01259	1.02031	1.0319	1.02212	1.00692	12/7/2015	1.1.71	0.0114	1.00787	1.01227	1.01642	0.99492	2/7/2015 1	1.548	0.01541	0.99564	1.00678	1.00208	0.97805			0.807	0.00792	0.98226	0.98874	0.9846	0.97343	7 PM	1.428	0.01397	0.97806	0.99103	0.97989	0.96327	PM	2.04	0.01921	0.94183	0.95669	0.94868	0.92014		ppb	45Sc
1.897	0.021	1.12	1.136	1.096	1.128	1:42:36 PN	4.530	0.046	0.994	1.004	1.034	0.944	:39:46 PM	17.1	0.064	0.375	0.408	0.301	0.416			3.083	0.04	1.286	1.241	1.3	1.317		6.236	0.122	1.959	2.092	1.934	1.852		13.85	0.05	0.363	0.36	0.315	0.415		ppb	471
5.616	0.004	0.075	0.071	0.08	0.075		0.001	0 601	0.061	0.062	0.061	0.061		21.06	0.003	0.015	0.014	0.012	0.018			1.284	0.004	0.273	0.277	0.272	0.27		1.809	0.006	0.358	0.351	0.364	0.357		11.85	0.005	0.043	0.042	0.048	0.038		ppb	51V
11.83	0.012	0.103	0.097	0.095	0.117		0.100	0.009	0.112	0.107	0.107	0.123		41.75	0.022	0.054	0.039	0.042	0.08			13.96	0.02	0.143	0.13	0.134	0.166		9.755	0.01	0.102	0.098	0.094	0.113		23.84	0.018	0.076	0.056	0.08	0.091		ppb	52Cr 5
0.819	0.102	12.47	12.54	12.52	12.35		0.000	0.09	10.17	10.26	10.18	10.08		0.5	0.009	1.853	1.855	1.861	1.843			0.692	0.013	1.876	1.885	1.882	1.861		0.973	0.02	2.012	1.998	2.034	2.004		0.265	0.011	4.003	4.013	4.003	3.992		dd	55Mn 5
32.58	2.854	8.762	6.309	8.083	11.89		01.01	15 10	18.03	16.06	16.88	21.16		108.8	3.67	3.373	0.457	2.169	7.495			4.396	2.753	62.62	60.8	61.28	65.79		2.864	2.571	89.79	87.33	89.59	92.46		126.9	3.178	2.504	-0.023	1.464	6.073		dq p	6Fe 5
2.725	0.005	0.186	0.19	0.187	0.18		/10.7	0.004	0.138	0.137	0.142	0.134		6.999	0.001	0.014	0.015	0.013	0.014			11.14	0.003	0.023	0.023	0.021	0.026		3.363	0.001	0.028	0.028	0.027	0.029		5.617	0.002	0.042	0.043	0.043	0.039		d dd	9Co 6
1.624	0.01	0.587	0.598	0.583	0.58		1.102	1 1 00	0.856	0.861	0.844	0.863		2.566	0.008	0.32	0.323	0.325	0.31			10.86	0.012	0.115	0.124	0.101	0.119		7.605	0.007	0.094	0.087	0.101	0.094		4.292	0.023	0.534	0.525	0.517	0.56	_	do	JNi 65
1.573	0.059	3.736	3.803	3.711	3.693		1.405	1 /50	6.009	6.11	5.964	5.952		1.12	0.024	2.174	2.179	2.195	2.147			2.737	0.029	1.078	1.112	1.058	1.064		0.345	0.006	1.653	1.66	1.649	1.651		1.084	0.124	11.41	11.53	11.42	11.28		ē	Cu
1.241	0.049	3.946	3.993	3.95	3.895		0.00	0.031	5.631	5.667	5.613	5.612		1.33	0.052	3.88	3.872	3.833	3.935			0.901	0.058	6.486	6.545	6.485	6.428		1.92	0.053	2.749	2.694	2.799	2.752		0.978	0.064	6.499	6.431	6.556	6.511		opb F	j6Zn 7
0.664	0.028	4.167	4.135	4.185	4.181		0.040	0.101	2.782	2.788	2.678	2.88		173.9	0.032	-0.019	-0.056	0	0			2.789	0.017	0.605	0.59	0.623	0.603		3.232	0.027	0.839	0.826	0.87	0.82		23.77	0.037	0.155	0.113	0.175	0.178		dd dd	'5As 7
0	0	0	0	0	0		-		0	0	0	0		0	0	0	0	0	0			0	0	0	0	0	0		0	0	0	0	0	0		0	0	0	0	0	0		6	7Ar Cl
14.1	0.03	0.21:	0.178	0.23	0.218		02.0	0.10	0.12	0.19	0.00	0.16		225.8	0.113	-0.0	-0.17	-0.012	0.039			22.26	0.08	0.363	0.299	0.45	0.33		18.7	0.098	0.52	0.51	0.43	0.628		267.4	0.09	0.036	0.0	0.139	-0.05		ppb	82Se
12.7	0.01	. 0.08	0.05	0.05	0.07		+	10.0		0.08	0.08	0.06		6.9	0.01	0.20	0.20	0.20	0.18			11.5	0.0	0.17	0.17	0.19	0.15		10.4	0.02	0.22	0.22	0.24	0.19		6.60	0.03	0.50	0.48	0.54	. 0.48		ppb	107Ag
19 19.1	.1 0.0	88 0.0	97 0.0	2 0.0	0.0		1.0	11 10.0	0.0	36 0.0	35 0.0	0.0		40.	.4 0.0)1 -0.0	9 -0.0	9 -0.0	-0.0			39 38.)2 0.0	14 -0.0	⁷⁹ -0.0	2 -0.0	2 -0.0		12 66.1	0.0	2 -0.0	-0.0	-0.0	-0.0)4 23.1	3 0.0	0.0	36 0.0	11 0.0	82 0.0		ррb	111Cd
56 1.1	0.010	14 0.959	16 0.965	15 0.965	11 0.946		2.1	0.011	15 0.955	17 0.964	15 0.960	15 0.942		27 1.5	0.015	0.945	0.955	0.952	0.927			16 1.3	0.012	0.934	0.943	0.940	0.92		82 1.2	0.011	0.932	0.940	0.936	0.918		34 2.2	0.020	0.903	0.921	12 0.909	01 0.881		ppb	115In
.44 9.	98 0.0	46 -0.0	71 -0.0	-0.0	-0.0		2.	0.0	87 -0.0	-0.0	85 -0.0	52 -0.0		95 9.2	0.0	-0.0	-0.0	-0.0	81 -0.0			32 39.	46 0.0	-0.0	45 -0.0	37 -0.0	-0.0		44 100	59 0.0	04 0.0	97 0.	21 0.0	-0.0		96 13.	76 0.0	96	42 0.1	45 0.2	.01 0.2		ррb	121Sb
55 1.2	0.0	53 6.20	56 6.2	6.2	58 6.1			0.0	49 5.9	14 5.96	51 5.9	6.0		36 2.23	0.0	52 0.89	57 0.93	52 0.90	58 0.8			93 1.69	14 0.03	34 2.18	19 2.1.	38 2.2	45 2.1		1.4 0.99	11 0.02	11 2.0	02 2.06	13 2.09	2.05		01 0.43	26 0.00	1.2 2.00	71 2.03	2.0	21 1.99		ppb	137Ba
2 2.	.0	0.	.0	.0	.1		+		.0	0	0.	.7 0.		50	22	0.	.5	0.	⁷⁶ 0.			5.5	57 0.	§7 0.	78 0.	0	.0		1.	.0	⁷ 4 0.		97 0.	57 0		.2 3.	.0	.0	.2	.5	99		ppb	140Ce
584	003 0.0	121 1.0	123 1.0	122 1.	117 0.9		Ì	002 0.0	083 1.0	.08	084 1.0	084 0.9			0 0.0	008 0.9	007 1.0	008 1.0	008 0.9			716 (005 0.	084 0.9	083 0.9	.08 0.9	089 0.9		584	002 0.0	157 0.9	156 0.9	159 0.9	154 0.9	-	697	001 0.0	021 0.9	022 0.9	021 0.9	021 0.9	-	ppb	159T
341	1356	1098	2347	0129	9656			1403	0359	013	1032	8747		849	1847	9866	1237	0595	7766).931	0092	8773	9546	9018	7756		.353	1335	6698	9999	8769	7331		2.011	1942	6583	7786	7621	4343	-	ppb	o 208
0.549	0.001	0.262	0.261	0.261	0.263		1.040	1 3/0	0.291	0.296	0.291	0.288		0.8	0.009	1.128	1.122	1.139	1.123			1.809	0.008	0.451	0.455	0.457	0.442		0.578	0.004	0.665	0.661	0.669	0.664		0.617	0.005	0.759	0.759	0.764	0.754	-	ppb	Pb 220
0	0	0	0	0	0				0	0	0	0		0	0	0	0	0	0			0	0	0	0	0	0		0	0	0	0	0	0		0	0	0	0	0	0			.5Bkg
0.619	0.038	6.168	6.19	6.19	6.124		0.373	0.041	4.221	4.265	4.213	4.184		14.26	0	-0.003	-0.004	-0.003	-0.003			1.42	0.007	0.459	0.463	0.464	0.452		0.693	0.004	0.614	0.61	0.618	0.612		26.26	0.001	0.004	0.004	0.006	0.003		dqc	<u>1</u> 38U

Appendix G - Dalhousie Water Lab Results (ICP/MS)

%RSD	s	×					%RSD	S	×					%RSD	s	×					%RSD	S	×					%RSD	S	×					%RSD	s	×						Run
			3 14:06:2	2 14:05:4	1 14:05::					3 14:03:3	2 14:02:5	1 14:02:2					3 13:55:(2 13:54:3	1 13:53:					3 13:52:2	2 13:51:4	1 13:51:0					3 13:49:2	2 13:48:	1 13:48:					3 13:46:3	2 13:46:(1 13:45:2			Time
			24	71	6	OB D8				4	51	10	OB D.				8	31	4	OB DS				8	#	5	OB CE				29	23	15 00 0	3				99	22	<u>16</u>	OB C1	dad	4.5Bk
0	0	0	0	0	0	3 NaHCC	0	0	0	0	0	0	7 NaHCO	0	0	0	0	0	0	NaHCO	 0	0	0	0	0	0	8 NaHCC	0	0	0	0	0			0	0	0	0	0	0	L NaHCC	bog	g 7Li
0.981	0.244	24.85	24.58	24.92	25.05	13 Granit	0.349	0.082	23.44	23.42	23.53	23.37	3 Granite	1.36	0.007	0.504	0.511	0.503	0.497	3 blank	 0.969	0.205	21.13	21.08	20.96	21.36	3 Siltsto	1.159	0.219	18.86	18.61	18.98	18.99		2.072	0.006	0.278	0.278	0.272	0.284	3 blank	2	2
0.337	3.447	1023	1020	1027	1022	e from Mi	0.998	9.595	961.6	968.9	965.1	950.7	e from Mil	0.347	0.032	9.095	9.127	9.094	9.064	12/7/201	 0.208	0.327	156.9	157.2	157.1	156.6	ne 12/7/	0.787	1.215	154.4	154.4	155.6	IE 153.1		0.526	0.059	11.17	11.13	11.24	11.15	12/7/201	9	7 <u>A</u> 3
6.153	2.195	35.67	33.2	36.4	37.4	llet Broo	10.12	4.62	45.65	41.6	44.67	50.69	let Broo	4.346	3.173	73	70.67	71.71	76.61	5 1:53:54	9.17	2.076	22.64	20.35	23.16	24.4	2015 1:51	8.752	3.158	36.08	33.03	35.89	55.55 34.1 CTO		4.782	1.724	36.06	34.82	35.33	38.03	5 1:45:26	8	1P
2.305	0.02625	1.13881	1.16051	1.14629	1.10963	k 12/7/2	2.324	0.02588	1.11346	1.13332	1.12286	1.08419	< 12/7/20	2.388	0.02674	1.11965	1.14158	1.12752	1.08986	PM	2.324	0.02566	1.10425	1.11954	1.11859	1.07463	L:05 PM	2.29	0.02481	1.08344	1.10567	1.08798	1.05667		3.23	0.03522	1.09068	1.11738	1.10391	1.05076	PM	daa	45Sc
2.081	0.21	10.11	10.34	10.06	9.927	015 2:05:10	0.372	0.029	7.789	7.806	7.805	7.755)15 2:02:20	7.344	0.042	0.573	0.605	0.589	0.525		1.275	0.022	1.717	1.72	1.693	1.737		8.613	0.076	0.878	0.791	0.928	0.915		14.11	0.076	0.542	0.461	0.552	0.613	-	dad	47Ti
0.647	0.032	5.005	4.975	5.003	5.039)PM	0.514	0.023	4.56	4.581	4.564	4.534	ΡM	10.86	0.131	1.203	1.094	1.169	1.348		3.008	0.037	1.24	1.277	1.24	1.202		12.84	0.114	0.885	1.005	0.872	0.779		7.05	0.036	0.513	0.554	0.501	0.484		daa	51V
5.678	0.015	0.26	0.243	0.266	0.272		4.353	0.011	0.26	0.247	0.264	0.268		15.39	0.014	0.091	0.081	0.084	0.107		3.233	0.008	0.262	0.255	0.259	0.271		2.245	0.003	0.138	0.134	0.138	0.14		20.65	0.014	0.065	0.055	0.061	0.081		dad	52Cr
0.537	0.016	2.958	2.975	2.957	2.943		0.811	0.021	2.557	2.574	2.562	2.534		2.052	0.007	0.337	0.337	0.344	0.33		0.704	0.927	131.7	132.5	131.9	130.7		0.229	0.286	124.6	124.7	124.8	124.3		0.945	0.007	0.741	0.748	0.734	0.74	1	dad	55Mn
3.086	3.642	118	114.4	118	121.6		3.239	3.015	93.08	90.77	91.98	96.49		84.19	2.883	3.424	0.786	2.986	6.501		0.18	1.612	893.9	894.7	895	892.1		0.695	5.636	811.4	806	810.9	817.2		47.25	3.411	7.219	4.372	6.286	11		dad	56Fe
2.48	0.002	0.069	0.067	0.07	0.071		6.885	0.005	0.076	0.07	0.077	0.081		2.366	0.001	0.031	0.032	0.03	0.031		0.989	0.021	2.157	2.14	2.181	2.151		0.212	0.004	2.021	2.022	2.016	2.025		2.748	0.002	0.066	0.064	0.067	0.067	1	dad	59Co
3.358	0.009	0.271	0.263	0.269	0.281		5.85	0.018	0.302	0.293	0.29	0.322		73.17	0.008	0.011	0.02	0.008	0.005		0.652	0.022	3.309	3.286	3.313	3.328		1.274	0.04	3.131	3.146	3.086	3.161		9.863	0.01	0.106	0.094	0.115	0.107		dad	60Ni
1.03	0.016	1.598	1.593	1.616	1.584		2.067	0.033	1.597	1.559	1.62	1.611		0.978	0.007	0.741	0.742	0.748	0.734		0.884	0.054	6.056	6.014	6.116	6.039		0.516	0.03	5.86	5.851	5.893	5.834		0.73	0.015	2.12	2.103	2.126	2.132	1	dad	65Cu
0.749	0.021	2.74	2.761	2.737	2.721		0.795	0.028	3.503	3.494	3.534	3.481		1.48	0.041	2.782	2.787	2.821	2.739		1.119	0.084	7.547	7.555	7.459	7.628		0.705	0.082	11.58	11.6	11.49	11.65		0.227	0.01	4.382	4.393	4.375	4.378	1	dqq	66Zn
0.324	0.069	21.39	. 21.38	21.33	. 21.47		0.373	0.078	21.05	20.96	21.09	. 21.1		36.52	0.036	-0.098	-0.118	-0.12	-0.057		15.71	0.024	0.154	0.172	0.126	0.162		18.62	0.037	0.199	0.172	0.241	0.184		2432	0.058	-0.002	-0.065	0.009	0.049	1	dad	75As
	_	~																_	_			_	_	_	_	_				_	_						_	_	_		1	dad	77Ar Cl
) 17.	0.1	0.7	0.8	0.5	0.7		28.	0.1	0.7	0.6	.0	.0		238	0.1	-0.0	-0.2	-0.0	0.1		6.5	0.0	0.2	0.2	0.2	0.2		23.	0.0	0.2	0.2	0.2	0.3		18	0.1	0.0	-0.1	0.0	0.1	1	dad	82Se
84 9.4	27 0.0	11 0.0	29 0.0	77 0.0	26 0.0		05 10	99 0.0	11 0.1	62 0.1	54 0.2	93 0.1		3.1 0.3	62 0.1	68 47	23 47	82 47	01 47		93 8.4	15 0	29 0.1	29 0.1	44 0.1	14 0.1		23 3.6	56 0.0	42 0.6	01 0.6	18 0.6	06		21 10	47 0.0	08 0.1	41 0.1	12 0	53 0.0	1	dad	107Ag
164 22	07 0.0	.0.0)71 -0.1)74 -0.1)62 -0.1		.24 19	0.0	.82 0.1	166 0.1	03 0.0	178 0.1		378 2	178 0.1	.22 -0.1	.34 -0.1	.02 -0.1	.32 -0.1		122 7.1	.01 0.0	15 0.0	23 0.1	16 0.0	104 0.1		573 5)24 0.1	53 0.0	576 0.1	54 0.0	0.0		.47 17	011 0.0	.03 -0.1	.09 -0.1	.11 -0.0	91 -0.0	3	dad	111Cd
.04 1.	001 0.01	003 1.03	002 1.05	003 1.04	003 1.01		.91 2.	0.0	015 1.01	011 1.03	016 1.02	016 0.99		9.9 2.	001 0.02	005 1.01	003 1.03	005 1.02	006 0.98		951 2.	0.02	072 1.01	079 1.02	071 1.02	0.98		259 2.	004 0.02	0.99	075 1.01	084 1.00	0.97		.83 2	001 0.02	005 0.99	004 1.01	005 1.01	005 0.96	1	dqq	115In
908 5.	983 0.	967 0.	582 0.	565 0.	753 0.		368 13	241 0.	791 (641 0.	667 0.	066 0.		402 9.	443 0.	733 -0.	397 -0.	874 -0.	928 -0.		385 11	412 0.	141 -0.	- 998	172 -0.	385 -0.		021 8.	018 0.	891 -0.	603 -0.	405	-0		967 8.	964 0.	897 -0.	902 -0.	297 -0.	493 -(dad	121Sb
.734 0.	008 0.	146 1	156	142	141 1		3.84 1	048	0.35	302 1	349 1	.399 9		822 0.	008 0.	084 1	076 1	.083 1.	.093 1.		1.96 0.	008 0.	890	0.06 9	.067 8	076 8		.035 0.	006 0.	072	8	075	076 8		787 1	.007 0.	082	.078 0.	.078 0.	0.09 0.	1	dad	137Ba
562 3	071 0	2.62 0	12.7 0	12.6 0	2.56 0		797	0.18 0	10	0.12 0	0.09 0	795 0		349 3	004 0	242 0	245 0	243 0	237 0		736 1	659 0	9.54 0	0.12 0	9.66 0	3.82 0		519 2	458 0	38.2 0	3.45 0	.48	1.67 0		667 4	014 0	0.85 0	864 0	852 0	835 0	1	dad	1400
.019 2	.002 0	.063 1.1	.064 1.1	.063 1.1	.061 1.0		7.06 2	.006 0.0	0.08 1.0	.074 1.1	.082 1.0	.085 1.0		9.59 2	.001 0.0	.002 1.0	.003 1.	.002 1.0	.001 1.0		.124 2	.004 0.0	.359 1.0	.364 1.0	.358 1.0	.356 1.0		.427 2	.005 0.0	.188 1.0	.184 1.0	.193 1.0	188		.813 2	.001 0.0	.021 1.0	.021 1.0	.019 1.1	.021 1.	1	dad	e 159Th
2.075	0.023	6080	2388 (1869 (8171 (2.049	2224	8541 (0444	9083 (6096		2.376 (2566	7999	0994 (8967 (5089		2.345 (2515	7244	9409 (7839	4485		2.031	2151	5922	7669	6578	3519	-	2.791	2964 (6209	8596	0714 (0289	3	ddd	b 208P
2.896	0.007	0.236	0.243	0.235	0.229		1.266	0.003	0.249	0.247	0.253	0.248		0.156	9.001	0.846	0.845	0.846	0.847		0.671	9.004	0.618	0.621	0.62	0.613		0.633	0.01	1.574	1.583	1.575	1 564		1.345	0.004	0.273	0.277	0.272	0.27	1	dqq	b 220.5
0	0	0	0	0	0		0	0	0	0	0	0		0	0	0	0	0	0		0	0	0	0	0	0		0	0	0	0	0			0	0	0	0	0	0			Bkg 2
0.768	0.062	8.025	8.091	8.017	7.968		1.435	0.1	6.943	6.984	7.015	6.829		9.313	0.001	0.008	0.008	0.009	0.009		0.374	0	0.123	0.124	0.123	0.123		0.163	0	0.123	0.123	0.123	0.124		1.486	0	-0.006	-0.006	-0.006	-0.006		8	18£

% RSD	S	Х					%RSD	5	Х					%RSD	2	Х					%RSD	s	Х					%RSD	S	Х					% RSD	S	Х						Run
			3 14:2	2 14:2	1 14:2		-			3 14:2	2 14:1	1 14:1					3 14:1	2 14:1	1 14:1					3 14:1	2 14:1	1 14:1					3 14:1	2 14:1	1 14:1					3 14:0	2 14:0	1 14:0			Time
			3:24	2:47	2:11	OBF	_			0:34	9:58	9:21	OBP				7:45	7:08	6:31	OBF				4:54	4:18	3:41	OBE				2:04	1:27	0:50	OBE	-			9:14	8:37	8:00	OBE	ppb	4.5B
0	0	0	0	0	0	-7 RO sil	0	0	0	0	0	0	-6 RO silt	0	0	0	0	0	0	5 RO bla	0	0	0	0	0	0	4 CaCl2	0	0	0	0	0	0	13 CaCl2	0	0	0	0	0	0	1 CaCI2	PB	kg 7L
0.235	0.021	9.004	9.025	9.003	8.983	tstone 1	0.669	0.029	4.333	4.308	4.327	4.365	stone	3.965	0.005	0.135	0.138	0.129	0.139	ank 12/	0.499	0.127	25.4	25.27	25.42	25.52	2H2O sil	0.058	0.015	26.2	26.21	26.2	26.18	2H2O sil	1,684	0.003	0.191	0.19	0.195	0.188	2H2O bla	ē	
1.006	0.924	91.9	92.57	92.29	90.84	2/7/2015	0.307	0.16	52.11	52.29	51.98	52.08	12/7/2015	1.407	0.087	6.205	6.141	6.304	6.168	1/2015 2:1	0.358	9.287	2591	2598	2594	2580	tstone 1	0.911	23.45	2575	2582	2593	2548	tsone 12	0.64	0.065	10.08	10.03	10.16	10.06	nk 12/7,	b	7AI
14.45	4.037	27.94	25.82	25.42	32.6	2:22:11 P	15.1	3.568	23.64	19.82	24.19	26.89	2:19:21 P	8.954	3.235	36.13	33.98	34.57	39.85	6:31 PM	10.89	2.902	26.65	24.2	25.89	29.85	2/7/2015	11.17	3.715	33.25	33.5	29.41	36.83	7/20152	9.185	3.351	36.48	33.46	35.9	40.09	2015 2:00	opb	81P
135.90%	1.47%	108.45%	109.47%	109.11%	106.76%	<u> </u>	137.30%	1.49%	108.34%	109.07%	109.32%	106.63%	M	142.30%	1.64%	115.16%	116.46%	115.71%	113.32%		124.50%	1.51%	121.59%	122.47%	122,45%	119.84%	2:13:41 PN	42.80%	0.53%	122.55%	122.33%	123.15%	122.17%	:10:50 PM	140.40%	1.96%	139.24%	140.69%	140.02%	137.02%	3:00 PM	ppb	45Sc
2.244	0.087	3.883	3.956	3.786	3.906		3.015	0.065	2.144	2.072	2.196	2.163		8.688	0.027	0.31	0.311	0.282	0.336		2.881	0.04	1.375	1.331	1,406	1.389		1.464	0.021	1.459	1.483	1.443	1.451		10.21	0.049	0.481	0.434	0.476	0.532		ppb	47Ti
1.443	0.007	0.49	0.487	0.498	0.485		3.96	0.018	0.452	0.467	0.458	0.432		7.491	0.016	0.213	0.197	0.214	0.229		5.336	0.027	0.502	0.478	0.499	0.531		7.855	0.044	0.565	0.524	0.558	0.612		2.104	0.009	0.451	0.444	0.448	0.462		ppb	51V
2.369	0.008	0.324	0.316	0.323	0.332		8.15	0.014	0.169	0.16	0.162	0.185		28.08	0.025	0.089	0.07	0.08	0.117		5.878	0.024	0.408	0.394	0.393	0.435		6.631	0.027	0.411	0.395	0.396	0.443		15.97	0.016	0.099	0.088	0.092	0.117		ppb	52Cr
1.749	0.064	3.681	3.708	3.728	3.608		0.307	0.007	2.415	2.42	2.419	2,407		2.317	0.016	0.67	0.674	0.684	0.653		0.624	1.721	275.6	277.2	275.9	273.8		1.331	3.645	273.9	276.6	275.3	269.7		0.778	0.004	0.455	0.452	0.459	0.453		ppb	55Mn 5
3.558	3.028	85.11	83.34	83.37	88.6		6.099	4.651	76.25	72.55	74.73	81.47		46.58	3.86	8.286	5.312	6.898	12.65		0.51	21.44	4206	4221	4216	4182		1.235	48.03	3890	3924	3911	3835		12.02	3.915	32.57	28.74	32.39	36.57		ppp p	6Fe 5
3.223	0.004	0.116	0.118	0.119	0.112		0.504	0	0.075	0.074	0.075	0.075		9.348	0.001	0.014	0.013	0.016	0.014		0.285	0.013	4.674	4.659	4.684	4.679		1.033	0.048	4.657	4,657	4.706	4.609		4.01	0.005	0.125	0.124	0.12	0.13		pb p	9Co 6
3.664	0.009	0.239	0.235	0.25	0.234		4.239	0.016	0.368	0.372	0.382	0.351		3.214	0.004	0.134	0.129	0.134	0.138		1.616	0.141	8.707	8.545	8,781	8.795		0.385	0.034	8.737	8.713	8.722	8.775		4.067	0.077	1.888	1.842	1.844	1.976		pb pj	DNi 65
0.649	0.011	1.707	1.72	1.698	1.704		1.974	0.033	1.656	1.683	1.667	1.62		1.51	0.014	0.94	0.955	0.927	0.936		0.3	0.055	18.21	18.26	18.23	18.15		1.122	0.265	23.6	23.68	23.81	23.3		0.575	0.021	3.652	3.663	3.666	3.628		p	iCu 6
0.63	0.019	3.039	3.02	3.058	3.04		1.219	0.031	2.561	2.579	2.525	2.578		0.299	0.008	2.765	2.772	2.756	2.767		0.162	0.022	13.63	13.64	13.64	13.6		0.615	0.098	15.94	16.01	15.99	15.83		0.305	0.013	4.154	4.14	4.162	4.161		pb p	6Zn 7
4.24	0.029	0.693	0.687	0.667	0.725		9.533	0.055	0.573	0.614	0.595	0.511		89.8	0.028	-0.031	0	-0.053	-0.042		8.787	0.034	0.391	0.399	0.354	0.421		8.764	0.03	0.342	0.365	0.353	0.308		49.92	0.013	-0.026	-0.012	-0.038	-0.028		pp pi	5As 77
0	0	0	0	0	0		0	0	0	0	0	0		0	0	0	0	0	0		0	0	0	0	0	0		0	0	0	0	0	0		0	0	0	0	0	0		8	Arci
3.752	0.024	0.629	0.611	0.621	0.656		15.67	0.09	0.577	0.644	0.613	0.474		266.9	0.151	0.057	0.195	-0.104	0.079		16.35	0.033	0.201	0.236	0.172	0.193		47.3	0.078	0.166	0.132	0.256	0.11		86.83	0.064	-0.073	-0.008	-0.076	-0.135		рр	32Se
4.964	0.002	0.037	0.036	0.038	0.035		27.04	0.007	0.026	0.03	0.031	0.018		3.359	0.01	0.311	0.314	0.32	0.299		14.95	0.011	0.072	0.08	0.075	0.06		3.922	0.006	0.152	0.157	0.153	0.146		3.341	0.014	0.422	0.436	0.423	0.408		ppb	107Ag
15.	0.00	-0.00	-0.00	-0.00	-0.00		21.4	0.00	-0.00	-0.00	-0.00	-0.00		16.6	0.00	-0.00	-0.00	-0.00	-0.00		4.25	0.00	0.1	0.16	0.16	0.15		2.88	0.00	0.15	0.1	0.15	0.15		8.85	0.00	0.03	0.03	0.02	0.03		ppb	111Cd
1 164.009	1 1.799	4 109.349	3 110.489	4 110.279	4 107.279		5 148.009	2 1.619	7 108.909	7 109.819	5 109.849	9 107.039		9 112.209	1 1.299	7 115.109	7 115.75%	5 115.939	7 113.619		134.409	7 1.569	6 115.809	5 116.419	2 116.969	3 114.039		4 112.609	4 1.319	116.079	5 117.189	2 116.419	8 114.639		9 142.609	3 1.809	2 126.439	2 127.329	9 127.629	5 124.369		ppb	115In
5 26.25	5 0.006	6 -0.023	6 -0.02	-0.019	-0.029		6 14.66	6 0.006	5 -0.04	-0.034	5 -0.04s	6 -0.042		5.016	5 0.005	-0.097	-0.092	-0.099	-0.101		5 3.663	6 0.003	-0.085	-0.082	5 -0.084	-0.088		9.342	6 0.007	-0.076	6 -0.07	-0.076	-0.084		6.682	6 0.005	-0.068	-0.065	-0.066	-0.073		ppb	12.1Sb
1.979	0.032	1.62	1.639	1.637	1.583		0.454	0.005	1.193	1.187	1.194	1.198		0.737	0.003	0.444	0.443	0.447	. 0.441		1.157	2.345	202.7	204.6	203.3	200		-	2.021	202.2	203.3	203.4	199.8		1.037	0.03	2.922	2.956	2.909	2.9		ppb	137Ba
5.36	0.00	0.15	0.16	0.16	0.1		3.00	0.00	0.11	0.11	0.11	0.1		2.41	0.00	0.08	0.0	0.08	0.08		0.43	0.00	1.63	1.64	1.64	1.63		0.99	0.01	1.72	1.74	1.73	1.71		20.1	0.00	0.00	0.0	0.00	0.00		ppb	140Ce
3 163.309	9 1.79	9 109.649	1 110.919	7 110.419	5 107.599		4 103.409	8 1.139	3 109.599	5 110.259	6 110.259	1 108.299		4 143.609	1.659	9 114.829	9 115.369	9 116.139	6 112.96		3 111.409	1.329	9 118.249	1 119.125	5 118.889	1 116.739		2 109.109	7 1.299	9 118.329	5 119.379	2 118.719	1 116.889		7 145.309	1.849	9 126.829	1 128.249	8 127.479	17 124.749		ppb	159Tb
6 0.3	6 0.00	6 0.61	6 0.61	6 0.61	6 0.60		6 1.30	6 0.00	6 0.35	6 0.35	6 0.35	6 0.34		6	6 0.00	6 0.19	6 0.19	6 0.19	6 0.19		6 1.07	6 0.04	6 4.26	6 4.28	6 4	6 4.21		6 0.32	6 0.01	6 4.49	6 4.50	6 4.49	6 4.47		6 0.17	6 0.00	6 1.06	6 1.06	6 1.06	6 1.06		ppb	208Pb
4		-									5	5,		7	~	3,						3,	5,										<u>,</u>				5,					ppb	220.58kg
0	0	0	0	0	0		0	0	0	0	0	0		0	0	•	0	0	0		0	0	0	0	0	0		0	0	0	0	0	0		0	0	0	0	0	0		ppb	2381
1.056	0.002	0.233	0.234	0.235	0.23		0.965	0.002	0.197	0.199	0.198	0.195		4.352	0	0.007	0.008	0.007	0.008		1.585	0.015	0.949	0.958	0.956	0.931		0.929	0.009	0.944	0.945	0.952	0.935		4.94	0	0.01	0.01	0.009	0.01			-

%RSD	S	×					%RSD	S	×					%RSD	s	×					10100	%RSD	S	×					%RSD	S	×					%RSD	S	×						Run
			3 14:4	2 14:4	1 14:4					3 14:4	2 14:4	1 14:4					3 14:4	2 14:4	1 14:4						3 14:4	2 14:3	1 14:3					3 14:2	2 14:2	1 14:2					3 14:2	2 14:2	1 14:2			Time
			8:49	8:12	7:35	OB	_			5:58	5:22	4:45	OB				3:09	2:32	1:55	BO	_				0:18	9:41	9:05	ОВ		-	_	9:04	8:28	7:51	OB	_			6:14	5:38	5:01	OB	bb	4.5E
0	0	0	0	0	0	H7 CaSO-	0	0	0	0	0	0	H6 CaSO	0	0	0	0	0	0	H5 CaSO		5	0	0	0	0	0	G4 CaSO	0	0	0	0	0	0	G3 CaSO-	0	0	0	0	0	0	G1 CaSO	2	3kg 7L
0.006	0.001	22.74	22.74	22.74	22.74	4 (high) s	0.51	0.118	23.19	23.2	23.3	23.06	4 (high) :	4.662	0.028	0.604	0.607	0.63	0.574	4 (high) b		0.66	0.161	24.37	24.53	24.38	24.21	4 (low) s	0.38	0.094	24.66	24.58	24.76	24.64	4 (low) si	13.75	0.037	0.271	0.302	0.28	0.23	4 (low) b	8	<u> </u>
0.935	28.55	3053	3072	3066	3020	iltstone	0.937	28.76	3069	3081	3090	3036	iltstone 1	0.883	0.435	49.22	49.43	49.5	48.71	lank 12/		0 794	16.78	2113	2122	2122	2093	lltsone 12	0.769	15.89	2066	2076	2075	2048	Itstone 1	1.319	0.267	20.21	20.35	20.38	19.91	ank 12/7/	500	ZAI S
15.69	4.138	26.37	23.06	25.03	31.01	12/7/2019	16.56	4.723	28.52	24.98	26.7	33.88	12/7/2015	9.035	2.56	28.33	25.97	27.97	31.05	7/2015 2:		16.7	4.74	28.39	25.53	25.77	33.86	/7/2015 2	13.03	3.486	26.75	25.23	24.28	30.74	2/7/2015	8.038	2.495	31.05	28.17	32.32	32.64	2015 2:25	р <u>в</u>	31P
1.028	0.01283	1.24846	1.25103	1.25981	1.23454	5 2:47:35 P	0.799	0.00996	1.2473	1.25522	1.25057	1.23612	2:44:45 PM	3.188	0.04074	1.27776	1.31238	1.28802	1.23287	:41:55 PM		1.984	0.02229	1.12382	1.14187	1.1307	1.0989	2:39:05 PM	0.837	0.00957	1.1434	1.15058	1.14709	1.13254	2:27:51 PN	3.193	0.03802	1.19058	1.22274	1.20036	1.14862	:01 PM	bbp	45Sc
6.194	0.068	1.102	1.103	1.169	1.033	≤	1.325	0.015	1.122	1.109	1.138	1.119	>	4.057	0.014	0.333	0.335	0.345	0.318		0.000	5.502	0.063	1.152	1.225	1.125	1.107		1.226	0.014	1.158	1.171	1.143	1.159		2.998	0.013	0.427	0.431	0.438	0.413		bbp	47Ti
1.953	0.002	0.095	0.094	0.094	0.097		2.226	0.002	0.102	0.102	0.104	0.1		10.98	0.002	0.021	0.02	0.019	0.023			3.973	0.005	0.119	0.116	0.116	0.124		1.288	0.002	0.135	0.136	0.133	0.134		11	0.006	0.057	0.05	0.057	0.063		ddd	51V
1.63	0.01	0.631	0.621	0.632	0.641		1.155	0.007	0.602	0.598	0.61	0.598		3.907	0.011	0.269	0.258	0.272	0.278			4 51	0.024	0.539	0.512	0.545	0.559		1.432	0.007	0.471	0.464	0.475	0.476		18.64	0.015	0.078	0.064	0.078	0.093		p dq	52Cr 5
1.556	4.762	306.1	310.3	307.2	300.9		1.025	2.956	288.4	289.8	290.4	285		3.143	0.021	0.656	0.667	0.67	0.633			1.379	3.976	288.4	290.2	291.1	283.8		1.272	3.529	277.4	279.2	279.8	273.4		1.377	0.008	0.608	0.612	0.615	0.599		dd dd	55Mn 5
0.942	31.42	3338	3361	3350	3302		0.965	30.68	3179	3186	3206	3146		13.52	3.983	29.46	26.14	28.35	33.87			1.13	36.27	3211	3211	3247	3174		0.824	23.94	2907	2918	2923	2879		10.95	3.311	30.22	27.44	29.34	33.88		dd	i6Fe 5
0.389	0.019	4.88	4.874	4.901	4.865		0.863	0.041	4.699	4.676	4.746	4.675		6.292	0.006	0.095	0.088	0.097	0.099			1.106	0.055	4.941	4.885	4.994	4.944		0.747	0.035	4.749	4.761	4.778	4.71		6.206	0.005	0.08	0.076	0.078	0.085		8	9Co 6
0.411	0.032	7.79	7.813	7.804	7.754		1.755	0.139	7.941	7.857	7.864	8.102		3.717	0.067	1.797	1.759	1.759	1.875			1.601	0.125	7.808	7.683	7.933	7.809		0.605	0.046	7.67	7.689	7.618	7.705		2.796	0.033	1.164	1.166	1.13	1.195		pb dq	ONi 6
0.461	0.046	10.05	10.02	10.1	10.02		0.495	0.052	10.44	10.44	10.49	10.38		2.68	0.035	1.293	1.265	1.331	1.281			1.003	0.121	12.07	12	12.21	11.99		0.878	0.116	13.23	13.24	13.34	13.11		1.026	0.052	5.065	5.039	5.124	5.031		8	5Cu 6
0.233	0.025	10.51	10.5	10.54	10.5		0.503	0.065	12.95	12.98	12.88	12.99		0.724	0.056	7.783	7.784	7.726	7.839		0100	0.88	0.097	11.05	11.09	11.11	10.94		0.978	0.12	12.31	12.24	12.44	12.24		1.512	0.049	3.256	3.277	3.291	3.199		8	6Zn 7
5.343	0.037	0.688	0.699	0.718	0.647		3.301	0.023	0.688	0.698	0.662	0.703		 408.2	0.042	-0.01	0.015	0.014	-0.059		-	11.5	0.086	0.744	0.664	0.735	0.834		3.833	0.026	0.69	0.707	0.704	0.659		78.76	0.02	-0.026	-0.049	-0.01	-0.018		pb dq	5As 77
0	0	0	0	0	0		0	0	0	0	0	0		0	0	0	0	0	0			0	0	0	0	0	0		0	0	0	0	0	0		0	0	0	0	0	0		6 0	Ar CI 8
23.79	0.118	0.497	0.584	0.544	0.362		19.81	0.088	0.445	0.537	0.438	0.361		133.9	0.049	0.037	0.083	0.044	-0.016			45.71	0.217	0.474	0.278	0.438	0.707		34.95	0.11	0.315	0.346	0.406	0.193		3145	0.076	-0.002	-0.091	0.042	0.042		8	2Se
3.913	0.006	0.155	0.158	0.159	0.148		0.784	0.041	5.241	5.206	5.286	5.23		1.684	0.004	0.262	0.267	0.261	0.258		-	3 341	0.004	0.128	0.128	0.132	0.124		3.234	0.003	0.1	0.103	0.1	0.097		0.203	0.036	17.95	17.97	17.96	17.9		р <mark>р</mark>	107Ag
5.485	0.008	0.141	0.14	0.149	0.134		1.514	0.002	0.124	0.122	0.126	0.124		129.9	0.001	0.001	0	0.003	0			4 755	0.006	0.125	0.12	0.123	0.132		2.575	0.003	0.127	0.13	0.126	0.124		214.5	0.003	-0.001	-0.004	-0.001	0.001		dd	111Cd 1
1.374	0.01684	1.22599	1.23651	1.23489	1.20657		1.457	0.01767	1.21222	1.22288	1.22196	1.19183		3.112	0.03806	1.22318	1.25613	1.23189	1.18152			2.003	0.02203	1.10014	1.11677	1.10849	1.07515		1.459	0.01627	1.11517	1.1247	1.12444	1.09639		3.042	0.03505	1.15232	1.18304	1.15977	1.11414		р 00	15In 1
11.5	0.007	-0.057	-0.055	-0.052	-0.065		11.32	0.004	-0.04	-0.035	-0.04	-0.044		16.82	0.009	-0.051	-0.045	-0.047	-0.061			22 FS	0.035	0.152	0.119	0.15	0.188		5.708	0.004	-0.072	-0.067	-0.074	-0.075		2.068	0.002	-0.097	-0.096	-0.096	-0.1		d qd	21Sb 1:
0.697	0.954	136.9	137.4	137.4	135.8		0.594	0.75	126.3	126.8	126.8	125.5		1.191	0.015	1.289	1.304	1.273	1.289			1 44	2.114	146.8	148.3	147.7	144.4		0.964	1.504	156	157.3	156.4	154.4		1.472	0.03	2.043	2.051	2.068	2.01		dq dq	37Ba 14
1.332	0.048	3.596	3.615	3.632	3.542		1.283	0.05	3.891	3.924	3.915	3.833		0.176	0	0.122	0.122	0.122	0.121			1.544	0.035	2.279	2.294	2.305	2.239		1.064	0.023	2.167	2.178	2.182	2.14		2.987	0.006	0.213	0.219	0.215	0.206		8	10Ce
1.629	0.02069	1.26983	1.27816	1.28504	1.24627		1.489	0.01856	1.24672	1.2577	1.25717	1.22529		3.25	0.0405	1.24633	1.28223	1.25433	1.20242			2.182	0.02498	1.14486	1.16521	1.15239	1.11698		1.584	0.01819	1.14838	1.15991	1.15782	1.12741		2.672	0.03102	1.16065	1.18559	1.17046	1.12592		gg	159Tb
1.121	0.059	5.219	5.273	5.227	5.157		1.655	0.071	4.287	4.322	4.333	4.205		0.966	0.002	0.244	0.243	0.246	0.242			1.044	0.035	3.358	3.372	3.385	3.319		1.274	0.041	3.251	3.288	3.259	3.207		0.963	0.006	0.629	0.631	0.633	0.622		ddd	208Pb
6	_	~	6	6					6	_	6	-			~		-	_	_						~				-			6		-						-	-		bb	20.5Bkg
1.325	0.033	2.469	2.504) 2.464) 2.439		1.842	0.044	2.396) 2.436	2.404	2.349		1.255	0	-0.007	-0.007	-0.007	-0.007			1.619	0.029) 1.76	1.787	1.763) 1.731) 1.796	0.031	1.721	1.749	1.726	1.688		3.541	0.001	0.016	0.016	0.017	0.016		ddd	238U

70100	8,000	×	<				%KSD	S	×					7000	5	×					100	%BCD	n ×					Non-Dec	%RSD	×						%RSD	S	×					
			T:CC:/T	2 17:35:0.	1 17:34:48					3 17:33:38	2 17:33:2:	1 17:33:12					3 1/:32:04	2 17:31:49	1 17:31:36					3 1/:30:20	2 17:30:1:	1 17:30:00					3 17:28:50	2 17:28:37	1 17:28:24						3 17:27:14	2 17:27:02	1 17:26:48		
			+			OB B8 10							OB B7 10							OB B5 10							OB A4 10						4	OB A2 10		_	_	_	4	0		OB A1 10	add
J 0.21	- 1 941.			17360	0 19130	00x 11/2	4.220	STOT O	24080	23360	236400	252400	00x 11/2	0.00	98/.	0///1	1/1400	17270	18910	00x 11/2				18640	18920	20350	00x 11/2	1.00	1 4 78	21630	20930	211400	22820	00x 11/2		0 4.68	0 9709	207400	200200	203500	21850	00x 11/2	add
20.00		2000	4002	1 0344	8221	5/2015 5:34	8.219	2015	37660	35060	36830	41080	5/2015 5:33	+	L 1/54	3160	3051	2871	5040	5/2015 5:31		2011	1700	4815	5873	8307	5/2015 5:30	10.00	10 85		19260	20560	23730	5/2015 5:28		59.89) 1461	2440	976.8) 2443	3899	5/2015 5:26	add
0.944		0067		4 28590	. 32200	1:48 PM	1.625	1014	21150	20200	20250	23020	3:12 PM	0 		282	1961	. 2801	3791	L:36 PM				/89.6	1892	3042	0:00 PM	1.00	14 65	750 1	4573	4925	6026	3:24 PM		22.16	. 770.5	3477	2663	3575	4194	5:48 PM	add
5. TO	. 0.03322	1 L.U4294		1 07518	1.00882		3.133	0.0328/	1.04907	1.08379	1.04497	1.01844		+.001	0.041/3	1.04295	. 1.08275	. 1.04657	. 0.99952			2 61/	5 1.04147	1.0/455	1.04935	1.00051			2 767	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.06537	1.04598	1.00874			2.791	0.02881	1.03218	1.05921	1.03544	1.00188		add
2.994		LOCOLT	1 1 0 2061	1 07038	1.00805		3.02/	0.03161	1.04431	1.07595	1.04426	1.01272			0.04086	1.04055	1.08085	1.04178	0.99915				1 0 03600	1.08301	1.04448	. 1.00904				1.041	1.07293	1.04707	1.00301			2.33	. 0.02414	1.0361	. 1.05934	1.03781	1.01115		add
10.7	0.024	. 1.04032		1 06616	1.01689		2877	. 0.02902	. 1.04284	1.07171	1.04312	1.01368		0.001	0.03542	1.0446/	1.0/954	1.04575	1.00872			2 1	. 1.0498	1.0851	1.04329	1.021			2 851	1.04855	1.07743	1.05047	. 1.01775			2.564	0.02669	. 1.04093	1.06706	. 1.042	1.01372		add
																																	0			_	0		0				add
70730	N DCD	×					%RSD	s	×					%RSD	S	×					%RSD	s	×					%RSD	s	×					%RSD	s	×						T
-																															ωI							,	N	, _ц			
-			3 1/:48	2 17:4/	1 17:47					3 17:46	2 17:46	1 17:46					3 17:41	2 17:41	17:41					3 17:40	2 17:39	1 17:30					17:38	17:30	, ,					3 17:36	17:36	17:36	ì		
			3 1/:48:07	2 17:47:54	1 17:47:41	OB DS				3 17:46:29	2 17:46:16	1 17:46:03	OB D				3 17:41:39	2 17:41:26	17:41:13	OB D				3 17:40:02	2 17:39:49	1 17:39:36					17:38:26	0 17:38:00	, 13.000 DBC					3 17:36:50	17:36:37	17:36:24	OB C1		udd
c			3 1/:48:0/ 0 3	2 17:47:54 0 3	1 17:47:41 0 4	OB D8 1000x	0	0	03	3 17:46:29 0 3	2 17:46:16 0 3	1 17:46:03 0 3	OB D7 1000x	0	0	0	3 17:41:39 0 3	2 17:41:26 0 3	1 17:41:13 0 3	OB D5 1000x	0	0	0 4	3 17:40:02 0 4	2 17:39:49 0 4	1 17:39:36 0 4		0	0	0	17:38:26 0 3	0 17·38·13 0 3	X0001.7.7.80		0	0	0	3 17:36:50 0 3	17:36:37 0 3	17:36:24 0 3	OB C1 1000x		- ppp
0 4.327	0 4 577	0 301/00	3 1/:48:0/ 0 3/0000	2 17:47:54 0 373500 2 17:48:07 0 270000	1 17:47:41 0 401500	OB D8 1000x 11/26/20	0 4.874	0 18120	0 371800	3 17:46:29 0 358900	2 17:46:16 0 364000	1 17:46:03 0 392600	OB D7 1000x 11/26/20	0 6.702	0 24040	0 358600	3 17:41:39 0 343800	2 17:41:26 0 345700	1 17:41:13 0 386300	OB D5 1000x 11/26/20	0 5.147	0 22340	0 434100	3 17:40:02 0 418200	2 17:39:49 0 424500	1 17:39:36 0 459700		0 4.978	0 15590	0 313200	17:38:26 0 301900	0 17:38:00 0 306800			0 4.897	0 16480	0 336600	3 17:36:50 0 324500	17:36:37 0 329900	17:36:24 0 355400	OB C1 1000x 11/26/20		044
CU.UL 12C.P U	0 4 537 10 03	0 381/00 22440	3 1/:48:0/ 0 3/0000 20520	2 17:47:54 0 373500 21880 2 17:40:07 0 370000 20520	1 17:47:41 0 401500 24920	OB D8 1000x 11/26/2015 5:47:41	0 4.874 13.18	0 18120 2514	0 371800 19070	3 17:46:29 0 358900 16970	2 17:46:16 0 364000 18390	1 17:46:03 0 392600 21860	OB D7 1000x 11/26/2015 5:46:03	0 6.702 9.929	0 24040 4822	0 358600 48570	3 17:41:39 0 343800 44840	2 17:41:26 0 345700 46850	1 17:41:13 0 386300 54010	OB D5 1000x 11/26/2015 5:41:13	0 5.147 6.692	0 22340 5532	0 434100 82670	3 17:40:02 0 418200 78540	2 17:39:49 0 424500 80520	1 17:39:36 0 459700 88960		0 4.978 13.79	0 15590 2167	0 313200 15720	17:38:26 0 301900 13820	17-38-13 0 306800 152800 0 306800 15260	UB CZ 1000X 11/26/2015 5:38:00		0 4.897 14.53	0 16480 1827	0 336600 12580	3 17:36:50 0 324500 10850	17:36:37 0 329900 12390	17:36:24 0 355400 14490	OB C1 1000x 11/26/2015 5:36:24		על מלל מלל
U 4.327 10.03 10.19	0 1/280 2251 1325		3 1/:48:U/ U 3/UUUU 2/052U 1191U	2 17:47:54 0 373500 21880 12630	1 17:47:41 0 401500 24920 14480	OB D8 1000x 11/26/2015 5:47:41 PM	0 4.874 13.18 6.337	0 18120 2514 564.2	0 371800 19070 8904	3 17:46:29 0 358900 16970 8450	2 17:46:16 0 364000 18390 8727	1 17:46:03 0 392600 21860 9536	OB D7 1000x 11/26/2015 5:46:03 PM	0 6.702 9.929 17.33	0 24040 4822 1118	0 358600 48570 6451	3 17:41:39 0 343800 44840 5721	2 17:41:26 0 345700 46850 5895	1 17:41:13 0 386300 54010 7738	OB D5 1000x 11/26/2015 5;41:13 PM	0 5.147 6.692 6.114	0 22340 5532 1945	0 434100 82670 31810	3 17:40:02 0 418200 78540 30190	2 17:39:49 0 424500 80520 31270	1 17:39:36 0 459700 88960 33970	OB C3 1000 11/36/3015 E-30.36 BM	0 4.978 13.79 223.1	0 15590 2167 731	0 313200 15720 -327.6	17:38:26 0 301900 13820 -886.7	17:38:13 0 306800 15260 -595.7	UB C2 1000X 11/26/2015 5:38:00 PM		0 4.897 14.53 7.395	0 16480 1827 671.6	0 336600 12580 9081	3 17:36:50 0 324500 10850 8555	17:36:37 0 329900 12390 8851	17:36:24 0 355400 14490 9838	OB C1 1000x 11/26/2015 5:36:24 PM		1d ndd ndd ndd
728.2 ET.NT CO'NT 1/2C+0	0 1 1/280 2/251 15/25 U.U2993		3 1/:48:0/ 0 3/0000 20520 11910 1.08924	2 17:47:54 0 373500 21880 12630 1.05708 2 17:49:07 0 270000 20520 11010 1.06024	1 17:47:41 0 401500 24920 14480 1.02944	OB D8 1000x 11/26/2015 5:47:41 PM	0 4.874 13.18 6.337 3.824	0 18120 2514 564.2 0.04042	0 371800 19070 8904 1.0569	3 17:46:29 0 358900 16970 8450 1.09509	2 17:46:16 0 364000 18390 8727 1.06106	1 17:46:03 0 392600 21860 9536 1.01457	OB D7 1000x 11/26/2015 5:46:03 PM	0 6.702 9.929 17.33 3.667	0 24040 4822 1118 0.03871	0 358600 48570 6451 1.05554	3 17:41:39 0 343800 44840 5721 1.08993	2 17:41:26 0 345700 46850 5895 1.06307	1 17:41:13 0 386300 54010 7738 1.01362	OB D5 1000x 11/26/2015 5:41:13 PM	0 5.147 6.692 6.114 2.767	0 22340 5532 1945 0.02932	0 434100 82670 31810 1.05971	3 17:40:02 0 418200 78540 30190 1.08612	2 17:39:49 0 424500 80520 31270 1.06485	1 17:39:36 0 459700 88960 33970 1.02816		0 4.978 13.79 223.1 3.279	0 15590 2167 731 0.0346	0 313200 15720 -327.6 1.05535	17:38:26 0 301900 13820 -886.7 1.08855	17:38:00 0 306800 15260 -595.7 1.05801	UB CZ 1000X 11/ 26/2015 5:38:00 PM		0 4.897 14.53 7.395 2.559	0 16480 1827 671.6 0.0269	0 336600 12580 9081 1.05134	3 17:36:50 0 324500 10850 8555 1.07867	17:36:37 0 329900 12390 8851 1.05047	17:36:24 0 355400 14490 9838 1.02488	OB C1 1000x 11/26/2015 5:36:24 PM		ילו הלול הלול הלול
0 4.327 10.03 10.19 2.627 2.52	0 1/280 2251 1525 0.02995 0.0507		3 1/:48:U/ U 3/UUU 2U52U 1191U 1.08924 1.08533	2 17:47:54 0 373500 21880 12630 1.05708 1.05186	1 17:47:41 0 401500 24920 14480 1.02944 1.02387	OB D8 1000x 11/26/2015 5:47:41 PM	0 4.874 13.18 6.337 3.824 3.706	0 18120 2514 564.2 0.04042 0.03893	0 371800 19070 8904 1.0569 1.05025	3 17:46:29 0 358900 16970 8450 1.09509 1.08749	2 17:46:16 0 364000 18390 8727 1.06106 1.05344	1 17:46:03 0 392600 21860 9536 1.01457 1.00983	OB D7 1000x 11/26/2015 5:46:03 PM	0 6.702 9.929 17.33 3.667 2.669	0 24040 4822 1118 0.03871 0.02799	0 358600 48570 6451 1.05554 1.04871	3 17:41:39 0 343800 44840 5721 1.08993 1.07415	2 17:41:26 0 345700 46850 5895 1.06307 1.05325	1 17:41:13 0 386300 54010 7738 1.01362 1.01872	OB D5 1000x 11/26/2015 5:41:13 PM	0 5.147 6.692 6.114 2.767 2.771	0 22340 5532 1945 0.02932 0.02915	0 434100 82670 31810 1.05971 1.05175	3 17:40:02 0 418200 78540 30190 1.08612 1.0791	2 17:39:49 0 424500 80520 31270 1.06485 1.05505	1 17:39:36 0 459700 88960 33970 1.02816 1.02109	OD C3 1000- 11/36/3015 E-30-36 DM	0 4.978 13.79 223.1 3.279 3.105	0 15590 2167 731 0.0346 0.03269	0 313200 15720 -327.6 1.05535 1.05286	17:38:26 0 301900 13820 -886.7 1.08855 1.08342	17-38-13 0 306800 15260 -595.7 1.05801 1.05677	0B CZ 1000X 11/26/2015 5:38:00 PM		0 4.897 14.53 7.395 2.559 2.993	0 16480 1827 671.6 0.0269 0.03124	0 336600 12580 9081 1.05134 1.04383	3 17:36:50 0 324500 10850 8555 1.07867 1.07566	17:36:37 0 329900 12390 8851 1.05047 1.0426	17:36:24 0 355400 14490 9838 1.02488 1.01322	OB C1 1000x 11/26/2015 5:36:24 PM		d ndd ndd ndd ndd
CCE:7 76'7 178'7 6T'NT CN'NT 172C'H N			3 1/:48:0/ 0 3/0000 20520 11910 1.08924 1.08535 1.08832	2 17:47:54 0 373500 21880 12630 1.05708 1.05186 1.0431 2 17:49:67 0 270000 20520 14010 1.05024 1.05523 1.05232	1 17:47:41 0 401500 24920 14480 1.02944 1.02387 1.02866	OB D8 1000x 11/26/2015 5:47:41 PM	0 4.874 13.18 6.337 3.824 3.706 3.118	0 18120 2514 564.2 0.04042 0.03893 0.03279	0 371800 19070 8904 1.0569 1.05025 1.05172	3 17.46:29 0 358900 16970 8450 1.09509 1.08749 1.08562	2 17:46:16 0 364000 18390 8727 1.06106 1.05344 1.0494	1 17:46:03 0 392600 21860 9536 1.01457 1.00983 1.02015	OB D7 1000x 11/26/2015 5:46:03 PM	0 6.702 9.929 17.33 3.667 2.669 2.433	0 24040 4822 1118 0.03871 0.02799 0.02547	0 358600 48570 6451 1.05554 1.04871 1.04693	3 17:41:39 0 343800 44840 5721 1.08993 1.07415 1.07329	2 17:41:26 0 345700 46850 5895 1.06307 1.05325 1.04503	1 17:41:13 0 386300 54010 7738 1.01362 1.01872 1.02246	OB D5 1000x 11/26/2015 5:41:13 PM	0 5.147 6.692 6.114 2.767 2.771 2.686	0 22340 5532 1945 0.02932 0.02915 0.02846	0 434100 82670 31810 1.05971 1.05175 1.05971	3 17:40:02 0 418200 78540 30190 1.08612 1.0791 1.08679	2 17:39:49 0 424500 80520 31270 1.06485 1.05505 1.06228	1 17-39-36 0 459700 88960 33970 1.02816 1.02109 1.03005		0 4.978 13.79 223.1 3.279 3.105 3.272	0 15590 2167 731 0.0346 0.03269 0.03454	0 313200 15720 -327.6 1.05535 1.05286 1.05543	17:38:26 0 301900 13820 -886.7 1.08855 1.08342 1.09361	17:38:13 0 306800 15260 -595.7 1.05801 1.05677 1.04631	UBCZ 1000X 11/26/2015 5:38:00 PM		0 4.897 14.53 7.395 2.559 2.993 2.994	0 16480 1827 671.6 0.0269 0.03124 0.03139	0 336600 12580 9081 1.05134 1.04383 1.04851	3 17:36:50 0 324500 10850 8555 1.07867 1.07566 1.08276	17:36:37 0 329900 12390 8851 1.05047 1.0426 1.04168	17:36:24 0 355400 14490 9838 1.0Z488 1.013ZZ 1.0Z11	OB C1 1000x 11/26/2015 5:36:24 PM		d ndd ndd ndd ndd

S	×	ы	2	1		%RSD	S	×	ω	2	ц		%KSD	S	×	ω	2	4			%RSD	S	×	ω	2	<u>ц</u>		%KSD	S	×	ш	2	4		%RSD	S	×	ω	2	ц			Run
		17:57:44	17:57:31	17:57:18					17:56:08	17:55:54	17:55:42					17:54:31	17:54:19	17:54:06						17:52:56	17:52:42	17:52:30					17:51:20	17:51:06	17:50:54					17:49:43	17:49:30	17:49:18			Time
0	0	0	0	0	OB F7 100	C	0	0	0	0	0	OB F6 100	c		0	0	0	0	OB F5 100		0	0	0	0	0	0	OB E4 100	C	0	0	0	0	0	OB E3 100	0	0	0	0	0	0	OB E1 100	bbp	4.5BKg
2374	27050	25360	26020	29770	0x 11/26,	8.307	2096	25230	23580	24520	27580	0x 11/26,	5.668	30/5	54250	51960	53050	57750	0x 11/26,		5.768	5007	86810	83260	84630	92530	0x 11/26,	6.151	4391	71390	68290	69460	76410	0x 11/26,	6.073	2073	34130	32560	33350	36480	0x 11/26,	bbp	23Na
1665	3808	2126	3842	5455	/2015 5:57:	59.45	1731	2912	1190	2893	4652	/2015 5:55:	12.58	2270	18040	16020	17610	20500	/2015 5:54:		8.638	3594	41600	38650	40550	45610	/2015 5:52:	8.829	4072	46120	42720	45010	50630	/2015 5:50:	26.96	1845	6842	5128	6604	8794	/2015 5:49:	bbp	JAK
704.1	-34.53	-558.7	-310.7	765.8	18 P M	84.58	429.4	-507.7	-900.7	-573	-49.41	42 P M	13.24	/41.9	5603	5256	5099	6455	06 P M		4.995	9163	183400	175600	181100	193500	30 P M	5.702	10160	178200	171100	173700	189900	54 P M	3.976	8128	204400	198000	201800	213600	18 P M	ppb	44Ca
0.03151	1.05311	1.08713	1.04726	1.02493		3.563	0.03764	1.05663	1.09469	1.05577	1.01942		3.4UI	0.03591	1.05578	1.09187	1.05541	1.02005			2.78	0.02944	1.05883	1.09017	1.05458	1.03175		3.286	0.03469	1.0558	1.09006	1.05667	1.02069		3.104	0.03276	1.05555	1.08853	1.05513	1.02301		bbp	455C
0.03342	1.04008	1.07657	1.03272	1.01096		3.516	0.03699	1.05202	1.08516	1.05879	1.01211		3.00	0.03826	1.04539	1.08432	1.044	1.00784			2.914	0.03057	1.04903	1.08317	1.03971	1.0242		3.04	0.03183	1.0469	1.07919	1.04596	1.01555		3.128	0.03273	1.04616	1.07986	1.04414	1.0145		ddd	UICTT
0.03389	1.03603	1.07436	1.02372	1.01002		3.247	0.03415	1.05168	1.08728	1.04856	1.0192		3.964	0.04133	1.04251	1.08268	1.04474	1.00011			2.344	0.02454	1.04711	1.07437	1.04017	1.02678		3.112	0.03255	1.04592	1.08034	1.0418	1.01563		2.797	0.02925	1.04561	1.07708	1.04052	1.01925		bbp	DIACT
0	0	0	0	0		C	0	0	0	0	0		c		0	0	0	0			0	0	0	0	0	0		c	0	0	0	0	0		0	0	0	0	0	0		bbp	220.5BKg
s	×					%RSD	s	×					%RSD	S	×						%RSD	s	×					%RSD	S	×					%RSD	s	×						Run
		3 18:12:	2 18:12:	1 18:11:					3 18:10:	2 18:10:	1 18:10:					3 18:08:	2 18:08:	1 18:08:						3 18:07:	2 18:07:	1 18:06:					3 18:00:	2 18:00:	1 18:00:					3 17:59:	2 17:59:	1 17:58:			lime
		13	8	48	OB H7 1				36	23	10	OB H6 1				8	15	33	OB H5 1					22	90	6	OB G4 1				6	εt	8	OB G3 1				20	70	54	OB G1 1	ppb	4.5BKg
0 29	0 409	0 384	0 402	0 441	.000x 11/	0 7.2	0 33	0 462	0 434	0 454	0 500	000x 11/	U /.6	0 36	0 481	0 454	0 467	0 523	.000x 11/		0 6.3	0 29	0 460	0 438	0 448	0 493	.000x 11/	0 7.6	0 40	0 526	0 495	0 510	0 571	.000x 11/	0 6.8	0 49	0 716	0 675	0 702	0 770	.000x 11/	ppb	23Na
43 24	50 189	00 165	80 188	70 214	26/2015 6	96 12.	77 28	90 226	40 200	00 222	20 257	26/2015 6	45 1b.	84 23	90 144	20 123	90 140	70 169	26/2015 6		36 11.	15 23	10 211	80 190	20 208	30 236	26/2015 6	93 12.	47 29	00 242	50 216	60 236	90 274	26/2015 6	45 10	01 34	10 334	00 302	90 329	40 371	26/2015 5	ppb	39K
60 102	20 1910	00 1817	40 1894	20 2019	:11:48 PM	69 6.	76 113	70 1833	20 1728	50 1818	30 1953	:10:10 PM	03 5.2	15 9/	50 1839	30 1754	80 1818	20 1945	:08:33 PM		02 5.3	35 53	366 06	40 947	60 992	80 1054	:06:56 PM	21 5.2	60 47	40 896	50 856	885	70 949	:00: 30 PM	0.4 6.0	75 77	20 1277	10 1214	60 1252	10 1364	:58:54 PM	ppb	44Ca
10 0.033	00 1.071	00 1.106	00 1.06	00 1.041		17 3.2	10 0.034	1.066	00 1.103	1.059	1.03		92 3.4	34 0.03	00 1.065	00 1.102	1.06	00 1.029			37 2.9	27 0.03	10 1.050	90 1.082	30 1.048	00 1.020		75 3.1	31 0.033	90 1.056	70 1.087	00 1.062	00 1.02		78 3.5	60 0.037	00 1.059	00 1.098	1.055	00 1.023		ppb	45Sc
04 0.03	58 1.059	82 1.099	66 1.058	31 1.02		12 3.4	26 0.0	58 1.057	82 1.095	53 1.051	64 1.024		24 3.4	0.0	85 1.052	58 1.091	54 1.0	58 1.019			13 3.0	06 0.032	62 1.041	01 1.075	99 1.036	87 1.012		82 3.0	63 0.032	89 1.047	51 1.081	25 1.044	09 1.017		61 3.7	72 0.039	21 1.049	73 1.091	28 1.045	61 1.012		ppb	115In
97 0.0315	55 1.0550	78 1.085;	77 1.0575	04 1.0218		06 2.82	36 0.0304	02 1.056;	58 1.090	18 1.0480	29 1.031		3.0:	36 0.032	91 1.0600	12 1.094;	48 1.0542	62 1.031;			77 2.81	0.0293	36 1.043	51 1.0775	36 1.0306	11 1.0234		/1 1.9,	18 0.020;	38 1.050;	56 1.0726	53 1.0482	14 1.0313		53 3.78	39 0.0396	58 1.0469	08 1.0865	1.0468	57 1.0072		ppb	159Tb
Q	B	17	52	\$7		\$2	5	74	6	I	16		51		00	74	36	.86				5	6	ŭ	66	8		76	77	12	ы С	12	12		8	ы С	1(8	6	71		ppb	220.5BK
	s 0 2374 1665 704.1 0.03151 0.03342 0.03389 0 s 0 2943 2460 10210 0.03304 0.0397 0.03199	x 0 27050 3808 -34.53 1.05311 1.04008 1.03603 0 x 0 40950 18920 191000 1.07158 1.05965 1.05503 s 0 2374 1665 704.1 0.03342 0.03389 0 s 0 2943 2460 10210 0.03304 0.03199	3 17:57:44 0 25360 2126 -558.7 1.08713 1.07657 1.07436 0 3 18:12:13 0 38400 16500 181700 1.0862 1.09978 1.08571 x 0 27050 3808 -34.53 1.05311 1.04008 1.03603 0 x 0 40950 18920 191000 1.07158 1.05965 1.05503 s 0 2374 1655 704.1 0.03342 0.03389 0 s 0 2943 2460 10210 0.03304 0.03979 0.03199	2 17:57:31 0 26020 3842 -310.7 1.04726 1.02372 0 2 18:12:00 0 40280 18840 189400 1.0666 1.05877 1.05752 3 17:57:44 0 25360 2126 -558.7 1.08713 1.07657 1.07436 0 3 18:12:13 0 38400 16500 1.10682 1.09978 1.08571 x 0 27050 3808 -34.53 1.05311 1.04008 1.03603 0 x 0 40950 18920 191000 1.07158 1.05503 s 0 2374 1655 704.1 0.03151 0.03342 0.03389 0 s 0 2943 2460 10210 0.03304 0.03199	1 17:57:18 0 29770 5455 765.8 1.02493 1.01092 0 1 18:11:48 0 44170 21420 201900 1.04131 1.0204 1.02187 2 17:57:31 0 26020 3842 -310.7 1.04726 1.0272 1.02372 0 2 18:12:00 0 40280 1.8840 1.89400 1.0666 1.05877 1.05752 3 17:57:44 0 25360 2126 -558.7 1.08713 1.07657 1.07436 0 3 18:12:13 0 38400 1.6500 1.10682 1.09978 1.08571 x 0 27050 3808 -34.53 1.05311 1.04008 1.03603 0 x 1 0 40950 1.8920 1.9978 1.05503 s 0 2374 1.655 704.1 0.03141 0.03342 0.03389 0 s 0 2943 2460 10210 0.03304 0.03199	OB F7 1000 11/26/2015 5:57:18 PM V V V V OB H7 1000 11/26/2015 6:11:48 PM V V V OB H7 1000 11/26/2015 6:11:48 PM V V V V V V V V V V V V OB H7 1000 11/26/2015 6:11:48 PM V	%RSD 0 8.307 59.45 84.58 3.516 3.247 0 %RSD 0 7.296 12.69 6.17 3.212 3.466 2.882 1 17.57:18 0 29770 5455 765.8 1.0243 1.01002 1 18:11:48 0 4170 21420 201900 1.02187 1.02187 1.02172 1.02372 0 2 18:11:48 0 44170 21420 201900 1.02187 1.02187 1.02172 1.02372 0 2 18:11:48 0 44020 1.8840 1.8840 1.8840 1.0264 1.02187	s 0 209 171 429.4 0.03649 0.03415 0 s 0 3377 2876 1130 0.03426 <	x 0 25230 2912 -507.7 1.05633 1.05202 1.05168 0 x 0 46290 2670 183300 1.06658 1.05702 1.05674 s 0 2096 1731 429.4 0.03764 0.03699 0.03415 0 s 0 3377 2876 11310 0.03426 0.0369 0.03415 0 s 0 3377 2876 11310 0.03426 0.0369 0.03415 0 s 0 3377 2876 11310 0.03426 0.0369 0.03415 0 s 0 3377 2876 11310 0.03426 0.0369 0.03415 0 s 0 7.296 12.69 6.17 3.102 0 s 0 7.296 12.69 6.17 3.406 2.882 0 0 7.296 12.69 6.17 3.102 0 1.01002 0 1 1.11.48 N U 1.02141 1.02141 1.0204	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	MACD V O Sole 1.2.4 3.4.1 3.64 3.94 O MACD MACD Sole Sole<	S S O S S O S S O S	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	I Introduct Introd	I Image: Im	SRSD V O S/R6 R.63 A.995 Z/R 2.914 C SRSD C SRSD L O G.335 L102 S.337 Z.914 C SRSD L O G.335 L102 S.337 Z.911 S.337 Z.937 L1047 L041 L1047 L1047 L1044 L10443 L10443 L10443 <	Shy I O Sort Sort Condition Condition Condition Sort Condition Condition <thcondition< th=""> Condit <thcondit< th=""></thcondit<></thcondition<>	x x	3 17:52:50 0 83:80 13:60:1 10:007 10:37 0 3 10:772 0 83:00 10:007 10:017 0 33 10:772 0 83:00 10:001 10:075 <th< td=""><td>2 17:52-4 0 64630 44550 16371 16471 0 2 18:07.20 0 4880 2080 9923 16381 16307 x 1 75:55 0 8880 1660 18:07 16:07 3 16:07 16:07 16:07 16:07 16:08 16:08 16:093 16:07 16:07 16:08 16:08 16:093 16:07 16:08 16:08 16:093 16:07 16:07 16:08 16:08 16:093</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>Metric Oberlam Lize/2015 65:2:30 M Metric Number of the sector of</td><td>MSD OBELION L1752/05 State State</td><td>S O 4.31 4.71 MD16 0.0349 0.0349 0.0325 0.0025 0.0407 MD16 0.0225 0.023 0.0027 0.</td><td>M O 1739 4102 11063 10493 00002 N O 4200 9800 10083 10093 00027 9800 10083 10093 00027 9800 10083 00027 10083 00027 9800 10093 00027 10093 00027 10093 00027 10093 00027 10093 00027 10093 00027 10093 00027 10093 00027 10093 00027 10093 00027 10093 00027 10093 00027 000 10093 00027 10093 1</td><td>3 3 3 3 5 0 6 6 6 6 5 6 6 5 6 6 5 6 6 5 6 6 5 6 6 5 6 6 5 6 6 5 6 6 7 3 1</td><td>2 175130 0 66440 47300 17300 16667 16667 16678 16671 16711<</td><td>1 1</td><td>$\begin{array}{$</td><td>SMSD O O SMSD SMSD<</td><td>Sign O Sign Si</td><td>x (i) (i)< (i)< (i)< (i)< (i)< (i)< (i)</td><td></td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td></td><td>International state Operational state</td><td>$\begin{array}{$</td></th<>	2 17:52-4 0 64630 44550 16371 16471 0 2 18:07.20 0 4880 2080 9923 16381 16307 x 1 75:55 0 8880 1660 18:07 16:07 3 16:07 16:07 16:07 16:07 16:08 16:08 16:093 16:07 16:07 16:08 16:08 16:093 16:07 16:08 16:08 16:093 16:07 16:07 16:08 16:08 16:093	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Metric Oberlam Lize/2015 65:2:30 M Metric Number of the sector of	MSD OBELION L1752/05 State State	S O 4.31 4.71 MD16 0.0349 0.0349 0.0325 0.0025 0.0407 MD16 0.0225 0.023 0.0027 0.	M O 1739 4102 11063 10493 00002 N O 4200 9800 10083 10093 00027 9800 10083 10093 00027 9800 10083 00027 10083 00027 9800 10093 00027 10093 00027 10093 00027 10093 00027 10093 00027 10093 00027 10093 00027 10093 00027 10093 00027 10093 00027 10093 00027 10093 00027 000 10093 00027 10093 1	3 3 3 3 5 0 6 6 6 6 5 6 6 5 6 6 5 6 6 5 6 6 5 6 6 5 6 6 5 6 6 5 6 6 7 3 1	2 175130 0 66440 47300 17300 16667 16667 16678 16671 16711<	1 1	$ \begin{array}{ $	SMSD O O SMSD SMSD<	Sign O Sign Si	x (i) (i)< (i)< (i)< (i)< (i)< (i)< (i)		$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		International state Operational state	$ \begin{array}{ $

%RSD	S	×					10100	%RSD	s	×					%RSD	s	×						%RSD	s	×					101100	%PCD						%RSD	S	×						Run
			3 21:45:0	2 21:44:2	1 21:43:4						3 21:42:1	2 21:41:3	1 21:41:0					3 21:39:2	2 21:38:5	1 21:38:1						3 21:36:4	2 21:36:0	1 21:35:2					CC:T7 C	2 21:33:1	1 21:32:4					3 21:31:0	2 21:30:3	1 21:29:5			Time
			22	26	61	M8 C					5	39	22	M7Ca				28	21	5	M5 0					Ħ	4	27	L3 Ca				U U	; 5	B	60 ZJ				70	8	8	Ц :	ddd	4.5Bk
0	0	0	0	0	0	aCl2 · 2H		0	0	0	0	0	0	HCI2 · 2H	0	0	0	0	0	0	aCl2 · 2H	-	0	0	0	0	0	0	CI2 · 2H2		-			0	0	CI2 · 2H2	o	0	0	0	0	0	aCl2 · 2H	ppt	g 7Li
0.53	0.141	26.55	26.4	26.56	26.68	20 Gran	9	0.272	0.073	26.67	26.59	26.73	26.68	20 Grani	6.011	0.013	0.217	0.232	0.208	0.21	120 blan		0.276	0.057	20.83	20.84	20.77	20.89	0 Siltsto	0.500	0.025	10054	CO.12	21.1	20.99	20 Siltsto	5.966	0.018	0.298	0.278	0.31	0.308	120 blan	5	N
0.8	1.405	175.6	175.7	177	174.2	ite from H	0.000	0.501	0.893	178.3	179	178.6	177.3	te from Ha	0.842	0.128	15.23	15.18	15.38	15.14	k 3/9/2016		0.318	16.21	5104	5122	5097	5091	ne 3/9/2	0.00	د <u>م</u> ۱	4982	4970	5017	4955	one 3/9/20	0.493	0.029	5.984	5.955	6.014	5.985	< 3/9/2016	90	JAI 3
17.31	2.965	17.13	14.03	17.43	19.93	arrietsfielo		7.064	2.791	39.52	38.67	37.25	42.64	rrietsfield	6.956	5.07	72.89	68.3	72.03	78.33	9:38:15 PN		14.82	2.175	14.68	12.96	13.95	17.12)169:35:27	16.01	13 21	30.2/	24.90	32.61	41.25	169:32:40	7.965	2.485	31.2	29.01	30.69	33.9	9:29:53 PM	dq	1P 4
1.807	0.02447	1.35407	1.37043	1.36585	1.32594	1 3/9/201	00000	0.513	0.00708	1.38084	1.37364	1.3878	1.38108	3/9/2016	2.889	0.04167	1.44264	1.47908	1.45165	1.3972	5		0.788	0.01015	1.28912	1.28204	1.30075	1.28456	PM	0.001	0.267.20	1.34040	1.331/4	1.34439	1.34525	PM	5.803	0.08667	1.49366	1.56402	1.52012	1.39684		dd	ISSc 4
8.126	0.023	0.278	0.261	0.269	0.303	69:43:49 P		9.97	0.054	0.541	0.586	0.481	0.555	9:41:02 PN	8.388	0.046	0.55	0.507	0.599	0.545			1.407	0.014	0.995	0.979	1.003	1.004		1.000	2 263	20 U	1 100	1.08	1.137		4.305	0.014	0.317	0.307	0.332	0.311		ddc	171
4.941	0.066	1.328	1.266	1.322	1.397	Z	:	7.422	0.107	1.439	1.369	1.386	1.562		7.929	0.115	1.453	1.557	1.474	1.329			9.397	0.087	0.921	0.861	0.882	1.02		0.010	908	0 U U	4 0014	1.009	1.117		4.515	0.051	1.125	1.177	1.123	1.076		ddc	517
30.13	0.026	0.085	0.063	0.078	0.113		2.000	14.95	0.022	0.145	0.13	0.135	0.17		4.195	0.008	0.179	0.179	0.187	0.172			6.525	0.035	0.537	0.526	0.51	0.577		0.705	2 762	0.542	0.220	0.537	0.565		17.15	0.021	0.122	0.106	0.114	0.145		dqc	52Cr
0.631	0.348	55.27	55.38	55.55	54.88			0.91	0.469	51.52	51.66	51.91	51		0.464	0.006	1.309	1.304	1.316	1.308			0.628	2.607	415.2	418.1	414.2	413.2		0.0	0 20	4U8./	409.7	410.1	406.3		1.165	0.006	0.525	0.521	0.532	0.523		ddc	55Mn
15.64	7.58	48.45	42.68	45.63	57.03			11.19	6.894	61.62	56.53	58.86	69.46		8.88	5.756	64.82	59.72	63.67	71.06			0.13	6.096	4681	4688	4678	4677		0.601	0.957	4523	4014	4536	4518		7.794	4.924	63.19	58.75	62.33	68.48		dd	i6Fe 5
6.437	0.018	0.277	0.26	0.274	0.296			6.732	0.02	0.298	0.278	0.3	0.318		5.43	0.015	0.275	0.264	0.269	0.292			0.742	0.041	5.529	5.532	5.486	5.568		0.1 10	0 716	0.00/	J.400	5.546	5.506		4.364	0.011	0.241	0.231	0.239	0.252		dd	9Co
6.16	0.287	4.66	4.509	4.48	4.991			6.225	0.293	4.706	4.398	4.736	4.982		1.376	0.073	5.293	5.255	5.377	5.248			2.512	0.282	11.24	11.04	11.12	11.57			3 706	0 33/	11.00	11.81	12.32		4.898	0.241	4.924	4.676	4.939	5.158		dd	ioni 6
1.831	0.024	1.329	1.301	1.346	1.34			1.054	0.02	1.862	1.861	1.882	1.843		0.566	0.019	3.332	3.347	3.339	3.311			0.889	0.327	36.82	36.63	36.64	37.2		0.000		30./	00.00	36.94	36.5		0.687	0.019	2.752	2.738	2.746	2.774		dd	5Cu 6
3.084	0.074	2.409	2.323	2.449	2.454		1	1.443	0.039	2.713	2.671	2.748	2.72		0.299	0.009	3.144	3.145	3.153	3.134			0.905	0.156	17.22	17.11	17.15	17.4		0.120	90 D	10.40	10.45	16.51	16.44		0.888	0.066	7.457	7.425	7.414	7.534		dd	6Zn 7
89.69	0.17	-0.19	-0.323	-0.249	0.002			103.6	0.109	-0.106	0.02	-0.182	-0.154		22.47	0.058	-0.258	-0.31	-0.196	-0.268			18.63	0.083	0.446	0.39	0.406	0.542		0.000	0 7 26	0.41/	0.307	0.402	0.462		35.38	0.077	0.218	0.129	0.259	0.266		đđ	SAS 8
212.7	0.103	0.049	-0.035	0.016	0.164		01.00	57.98	0.03	0.052	0.027	0.086	0.044		638.5	0.089	0.014	-0.089	0.061	0.07			15.77	0.029	0.182	0.212	0.155	0.179		10.22	78 55	0.000	DODOO	0.008	0.125		95.52	0.079	0.082	-0.007	0.142	0.111		pb dq	2Se 1
1.837	0	-0.008	-0.008	-0.008	-0.008		0,100	67.33	0.005	0.007	0.009	0.01	0.002		19	0.013	0.07	0.078	0.077	0.055			2.71	0.002	0.091	0.093	0.092	0.088			5,503	0.134	0.141	0.136	0.126		9.95	0.011	0.113	0.122	0.116	0.1		dq	07Ag 1
92.46	0.002	-0.002	-0.002	-0.004	0			21.65	0.001	0.004	0.003	0.005	0.004		8.321	0.006	0.067	0.073	0.062	0.067			0.904	0.002	0.225	0.223	0.226	0.226		10	7 200 .	0.00 U	010	0.194	0.185		5.466	0.003	0.059	0.059	0.063	0.056		dq	11Cd 1
1.857	0.02285	1.23064	1.24449	1.24317	1.20427			0.967	0.01201	1.24174	1.24119	1.25402	1.23001		2.829	0.03591	1.26922	1.29662	1.28246	1.22857			1.304	0.01554	1.19166	1.19524	1.2051	1.17464		0.001	0.0202	1.21008	1.20244	1.22224	1.20735		5.102	0.06559	1.28559	1.33544	1.31005	1.21129		d d	15In 1
10.94	0.017	-0.153	-0.137	-0.151	-0.17			12.71	0.017	-0.13	-0.118	-0.123	-0.149		15.2	0.02	-0.13	-0.111	-0.13	-0.15			26.19	0.037	-0.14	-0.106	-0.136	-0.179		07.20	67 10	-0.01	1C0.0-1	-0.044	-0.107		15.1	0.009	0.062	0.063	0.071	0.053		dq dq	21Sb 1
0.736	0.219	29.7	29.86	29.79	29.45			1.147	0.327	28.51	28.64	28.76	28.14		0.629	0.026	4.06	4.061	4.085	4.034			0.535	1.456	272.3	272.4	273.7	270.8		0.000	0 668	CT07	202.2	261.4	259.8		0.853	0.024	2.818	2.845	2.799	2.811		d qd	37Ba 1
2.705	0.001	0.029	0.029	0.028	0.03			3.248	0.001	0.036	0.038	0.036	0.035		33.67	0.005	0.014	0.019	0.014	0.009			0.618	0.021	3.412	3.436	3.4	3.4		001	0643	5.404	3.424	3.408	3.381		6.632	0.001	0.016	0.016	0.017	0.015		d qd	40Ce 1
1.997	0.0246	1.2317	1.24809	1.24359	1.20341		0.000	0.511	0.00637	1.24604	1.25125	1.24794	1.23894		2.172	0.02788	1.28364	1.30426	1.29474	1.25191			1.08	0.01303	1.20611	1.21528	1.21187	1.1912		0.000	0.0202	1.22884	1 77004	1.23783	1.21727		4.337	0.05579	1.28633	1.32673	1.30959	1.22268		d qd	59Tb 2
0.812	0.004	0.476	0.472	0.479	0.478			2.61	0.012	0.472	0.481	0.477	0.458		4.93	0.006	0.116	0.122	0.116	0.111			0.455	0.037	8.126	8.144	8.15	8.083		9-1-J-J	0.453	1.//1	1.0U9	7.765	7.739		0.976	0.004	0.445	0.44	0.445	0.449		do)8Pb 2:
0	0	0	0	0	0			0	0	0	0	0	0		0	0	0	0	0	0			0	0	0	0	0	0						0	0		0	0	0	0	0	0		ß	20.5Bkg
0.843	0.034	4.011	4.032	4.029	3.972			1.752	0.066	3.789	3.825	3.831	3.713		121.4	0.006	-0.005	0	-0.003	-0.011			0.961	0.008	0.819	0.818	0.827	0.811		1.761	1 277	0.804	U.01	0.809	0.791		62.28	0.004	0.007	0.006	0.012	0.003		ppb	238U

	%RSD	s	×						%RSD	s	×					%RSD	s	×					%RSD	s	×						s ncn	×					%RSD	S	×						Run
	_			3 22	2 22	1 22						3 22	2 22	1 22					3 21:	2 21:	1 21:		-			3 21:	2 21:	1 21:		-		-	3 21:	2 21:	1 21:		-			3 21:	2 21:	1 21:	-		Πm
				:07:28	:06:51	:06:14	~					:04:38	:04:02	:03:25	~				:56:14	:55:37	:55:00	~				:53:26	:52:49	:52:12					:50:38	:50:01	:49:24	5				:47:50	:47:13	:46:37	=	q	e 4
		_	_		_	_	8 RO Gra		_	_	~		_	_	6 RO Gra				_	_	~	5 RO bla			_	_	_		3 CaSO4						_	2 CaSO4							LCaSO4	р,	.5Bkg
			24	2	23	23	anite fro		0.0	0.0	21	2	21	21	anite fro		0.0	.0	0.0	0.	0	ink 3/9/	0.	0.0	30	30	30	30	Granite	ę		29	29	29	30	Granite	6		0.	0.0	0.	0	blank 3	ppb	7Li
	416	. <u>3</u> 4	.01	4.4	.79	.84	m Harri		282	018	22	1.6	22	ສ	m Harri	148	015	188	173	186	204	20169:5	334	101	.32	.24	.29	.4	from Ha	ST (12	; ; ; ; ; ;	.95	.73	.16	from Ha	327	2	311	ß	33	295	/9/2016	ddd	27A
	0.779	8.121	1042	1048	1046	1033	etsfield		0.411	4.459	1086	1088	1089	1081	etsfield	0.301	0.066	22.02	22	22.09	21.96	5:00 P M	0.49	1.248	254.9	255.2	255.9	253.5	rrietsfie	0.414	0.982	237	238.1	236.7	236.3	rrietsfie	0.746	0.085	11.34	11.27	11.44	11.32	9:46:37	q	- ω
	8.752	6.499	74.26	68.66	72.75	81.39	3/9/20		7.029	5.81	82.66	76.91	82.53	88.53	3/9/20	12.07	4.685	38.81	36.45	35.77	44.2		9.449	4.115	43.56	39.76	42.97	47.93	ld 3/9	10.01	4.550	34.08	29.85	33.51	38.87	ld 3/9	11.3	3.918	34.67	32.45	32.37	39.2	PM	9	ΙP
	2.1	0.020	0.958	0.972	0.969	0.934	016 10:06		1.5	0.015	0.963	0.97	0.97	0.946	16 10:03:	3.1	0.033	1.063	1.084	1.080	1.023		1.2	0.012	1.035	1.042	1.042	1.021	/2016 9:5		0.007	1.051	1.046	1.060	1.047	/2016 9:4	3.7	0.042	1.111	1.152	1.114	1.068		ppb	45Sc
	76 1	86	75 3	88	13 3	73 3	:14 PM		51 0	040	3	36	30	18 3	25 PM	97 1	066	05	37 0	39	89		8	13 0	59 0	95	0	23 0	2:12 PM	2	, 7	2 59	86	76 0	14 0	19:24 PM	8		83	8	8	11		bbp	4711
	.432	.441	0.82	0.84	1.24	0.36			1.229	1.075	2.76	2.84	2.69	2.76		.6.76	1.049	1.289	1.234	1.316	1.319		7.92	1.053	1.671	1.615	1.721).677	_	.7.12	0.10/4	0.388	0.33	.361	.471		.548	0.03	.311	0.33).276	1.325	-	pp	51\
	0.91	0.021	2.299	2.305	2.316	2.276			0.444	0.01	2.238	2.249	2.237	2.229		3.565	0.002	0.059	0.06	0.061	0.057		1.712	0.005	0.281	0.28	0.278	0.287		2.7.2	400.0	0.325	0.323	0.335	0.318		28.7	0.074	0.258	0.193	0.242	0.338		-	
	'n	0.01	0.28	0.27	0.28	0.30			5.44	0.01	0.27	0.26	0.26	0.29		252.	0.02	0.00	-0.00	-0.00	0.03		151	0.02	-0.00	-0.02	-0.00	0.02		571	100	0.00	-0.00	-0.01	0.03		17.0	0.01	0.1	0.09	.0	0.13		dqc	52Cr
	0	.0	8 9.	3 9.	8 9.	3 9.			4 0.	.0	6 9.	6 9.	9 9.	4 9.		2 0.	.0	9	5	4 0.	6		0.	.0	2 2	3 24	8 24	6 24		-	, c	, ,	9 24	8 24	3 24		6	9	1.	8	1.			ppb	55Mn
	S	047	256	289	276	203			562	064	<u>8</u>	749	595	521		222	201	.57	.57	572	.57		742	183	4.6 -	.71 -	.71 -	:39 9		203	149	4.4	.44	ŝ	.24 -		113	015	328	319	3 45	.32	-	ddd	56Fe
	0.271	1.21	447.4	446.2	448.6	447.5			0.818	3.733	456.6	453.1	456.2	460.5		42.42	3.692	8.703	6.03	7.164	12.92		3.51	0.771	21.96	22.74	21.93	-21.2		.124	1.02	17.83	16.65	18.37	18.45		10.23	5.406	52.86	48.13	51.7	58.75	:	p	50
	2.266	0.003	0.14	0.142	0.141	0.136			0.632	0.001	0.166	0.165	0.166	0.167		2.358	0	0.014	0.014	0.014	0.015		11.45	0.01	0.084	0.077	0.08	0.095		10.0	10.009	0.087	0.076	0.092	0.092		7.915	0.007	0.083	0.077	0.081	0.09		8	ĉ
	0.26	0.00	0.48	0.48	0.48	0.48			1.48	0.01	0.7	0.72	0.74	0.72		1.92	0.00	0.31	0.31	0.30	0.31		6.72	0.11	1.75	1.6	1.71	1.88			4 U.L	1.66	1.58	1.61	1.80		5.55	0.09	1.71	1.61	1.72	1.80		ppb	60Ni
	0	р 0	37 3	86 	88 	88 33			.0	0	ت ب	Ся ул		5		128	0.0		.6	0.	17 0.		0	.8	25	26	9 2	87 2		đ			\$7 4	4	6 4		0	0.0	1	60	8	8 1		ddd	65Cu
	343	013	828	.842	826	816			546	029	.387	415	5.39	.357		516	013	881	897	876	.872		.812	021	628	609	623	651		170	03/	4.45	412	455	484		.894	016	831	1.82	1.85	824	-	ppt	66Z
	0.59	0.04	6.785	6.831	6.757	6.767			0.624	0.051	8.174	8.201	8.115	8.205		0.963	0.023	2.387	2.405	2.361	2.395		1.599	0.088	5.498	5.405	5.58	5.509		2.114	2 1 L	4.264	4.163	4.335	4.296		0.102	0.004	3.721	3.724	3.722	3.717		8	n 7
	4.185	0.042	0.998	0.999	1.039	0.956			8.083	0.129	1.596	1.474	1.582	1.731		11.07	0.028	-0.252	-0.26	-0.221	-0.275		25.8	0.027	-0.104	-0.13	-0.104	-0.077		10.42	SCO'D	-0.076	-0.075	-0.018	-0.134		23.04	0.052	-0.227	-0.208	-0.186	-0.286		b	5As
	μ	0	-0.1	-0.2	-0.1	-0.2			28	0.1	-0.0	-0.0	-0.1	0.0		1	0.0	-0.2	-0.2	.0	-0.2		10	0.1	-0.0		-0.1	0.0			5 6	0.1	-0.1	-0.0	-0.1		91	0.1	-0.1	-0.1	-0.0	ė		ppb	82Se
	69 n/a	93	82	.09	.02	33			9.7	27 -(44	-67	- 82	93		5.0	41	52 (93	21 (53		9.4	.01 (92 -(12 -(.77 -(- 60		01		5 25	- 48	-61	29		5	.41	54 -(- 53	- 80	29		ppb	107A
).158	n/	.47% 1	70.11	<u>;9.99</u>	70.21			41.3).002).006).005).008).004			23.47	0).002).002).002).001		13.41).001).007).007).009).007		.0.24	0.002	0.008).007).008	-0.01		15.94	0.001).009	0.007).009	0.01		pp	g 11
0.047		00.63%	75.44	75.51	75.46			52.3	0.001	-0.002	-0.003	-0.001	-0.001			9.324	0.002	-0.018	-0.02	-0.018	-0.017		34.07	0.001	0.003	0.003	0.002	0.004		2.00	200.0	0.001	0	-0.001	0.003		11.29	0	0.003	0.003	0.003	0.003		8	ICd
2.55	0.027	1.0650	1.07	1.0867	1.0345			3.08	0.032	1.0596	1.0791	1.0778	1.0218			2.94	0.0325	1.1054	1.1262	1.1222	1.0679		1.55	0.0165	1.0637	1.0744	1.0720	1.0446		1.21	1. 1. TSTO'O	1.0820	1.0868	1.0921	1.0672		3.42	0.0383	1.1194	1.1543	1.1255	1.0784		dq	115In
4	2 n/a	9 94.5	4 71	1 71	5 66			6 0.	7 0.	3 -0.	6 -0.	7 -0.	8-0.			1	.0	6 -0.	4-0.	1 -0.	-0.		4.	4 0.	-0.	9 -0.	-0.	9 -0.		Ļ	, r	, <u> </u>	6 -0.	-0.	6		4	0.	4-0.	-0.	4	2	:	ddd	121Sb
228	n/a	4% 9	71	.02	.98			536	001	201	199	201	201			818	004	242	239	241	248		001	906	161	153	166	162		007		164	159	163	.17		858	906	223	219).22	1.23	-	ppb	137E
0.422	2	5.94%	72.31	71.76	71.8			51.23	0.002	0.003	0.004	0.001	0.004			0.361	0.035	9.7	9.733	9.704	9.663		0.664	0.059	8.913	8.948	8.845	8.947		0.040		13.57	13.48	13.7	13.53		1.527	0.02	1.296	1.318	1.284	1.284	:	P	3a 1⁄
0.752	a	93.74%	70.66	70.55	69.7			104.8	0.001	0.001	0.001	0.001	0			4.812	0	-0.008	-0.009	-0.008	-0.008		5.134	0.001	0.029	0.028	0.028	0.03		0.000		0.019	0.019	0.019	0.019		0.652	0.002	0.24	0.239	0.241	0.242		8	10Ce
2.6	0.029	1.094	1.103	1.118	1.062			3.0	0.033	1.079	1.093	1.102	1.041			2.4	0.027	1.146	1.166	1.158	1.115		1.6	0.018	1.12	1.135	1.133	1.102		7.7	CT0.0	1.127	1.135	1.136	1.111		3.0	0.035	1.151	1.183	1.156	1.114		ddd	159Tb
55 .	06 n/a	<u>82</u> 96	52 7	747	37 7			54	07 0	38 (79 (81 (-6			00	69	80	3	3	13		22 1	22 (88	28	34	79 (3 22	13	26 1	74 1		12	03	5	0	0	18 0		ppb	208P1
.944	_	70%	3.15	2.63	1.79			46.1	.005	.004	009	1.002	1.001			.497	1.182	6.56	6.52	6.76	6.41		.159	1.002	1.132	0.13	1.133	1.133	\square	1.121	, 19 19	.018	.027	.015	.014).249	.001	1.476	.478	1.476	1.476		ppt) 220
0	0	0	0	0	0			0	0	0	0	0	0			0	0	0	0	0	0		0	0	0	0	0	0			, c	, 0	0	0	0		0	0	0	0	0	0		5	.5Bkg 2
1.012	i/a	98.19%	74.47	73.45	73.01			16.98	0.001	-0.008	-0.007	-0.005	-0.008			0.441		-0.016	-0.016	-0.016	-0.016		1.002	0.04	3.992	4.017	4.012	3.946		1.42	1 11	4.0)	4.03¢	4.041	3.953		1.808		-0.022	-0.023	-0.022	-0.022		dq	380

Run	Time	4.5Bkg	23Na	24Mg	39K	44Ca	45Sc	115In	159Tb	220.5Bkg
		bbp	ppb	ppb	ppb	ppb	bbp	ppb	ppb	ppb
		N1 1000x	3/9/2016	7:04:58 PM						
	0.795116	0	100300	3570	8958	84400	0.95797	0.96806	0.961	0
	0.795278	0	88660	3411	6214	78540	1.02295	1.02624	1.02638	0
	3 0.79544	0	86330	3306	4937	76200	1.05973	1.05767	1.04908	0
×		0	91770	3429	6703	79710	1.01355	1.01732	1.01215	0
S		0	7487	132.9	2055	4222	0.05153	0.04546	0.04573	0
%RSD		0	8.159	3.875	30.65	5.297	5.084	4.469	4.518	
		N2 1000x	3/9/2016	7:06:36 PM						
	0.79625	0	100300	3143	6408	67170	0.96924	0.96641	0.97189	
	0.796412	0	90310	3022	3727	62870	1.02496	1.02044	1.01775	0
	3 0.796574	0	90550	2979	2769	61810	1.05369	1.05933	1.05786	
×		0	93730	3048	4302	63950	1.01597	1.01539	1.01583	
s		0	5712	84.98	1886	2839	0.04294	0.04666	0.04302	
%RSD		0	6.094	2.788	43.85	4.44	4.226	4.595	4.235	
		R7 1000x	3/9/2016	7:14:51 PM						
	0.801979	0	266300	1917	6267	23810	0.96903	0.97282	0.97485	
	2 0.802141	0	243100	1761	3609	21420	1.02424	1.02208	1.01752	
	3 0.802303	0	240500	1697	2390	20690	1.06509	1.06307	1.05852	
×		0	250000	1791	4089	21970	1.01945	1.01932	1.01696	
s		0	14210	112.9	1983	1632	0.04821	0.04519	0.04184	0
%RSD		0	5.684	6.3	48.49	7.427	4.729	4.433	4.114	6
		R8 1000x	3/9/2016	7:16:32 PM						
	1 0.803148	0	228200	2115	7683	27330	0.97781	0.98095	0.97393	0
	2 0.80331	0	210800	1927	5038	24800	1.03459	1.0316	1.02473	0
	3 0.803472	0	206800	1891	3575	24220	1.07212	1.07098	1.05992	0
×		0	215300	1978	5432	25450	1.02818	1.02785	1.01953	0
s		0	11360	120.4	2082	1652	0.04748	0.04513	0.04323	0
%RSD		0	5.279	6.086	38.33	6.49	4.618	4.391	4.24	

Maxxam ID		BIK079	BIK080	BIKO81	BIKO82	BIK083	BIK084	BIK085	BIK086	BIK087 E	BIKO88 B	SIK089 E	BIK090 E	31K092 E	IKO93 B	IKO94 BI	KO95 BI	K096 BI	.097 BIK	.098 BIK	NB 660)	100 BIK:	101 BIK1	loz Biki	03			
Sampling Date				######	****		***		######	######	#######################################	****	######	######	###	####	####	####	##	###	#	****	##	***	#			
COC Number		N/A	N/A	N/A	N/A	N/A	N/A I	N/A	N/A	N/A N	VA N	I/A I	N/A I	V/A N	ψA Ν	/A N	/A N/	'A N	4 N/	4 N//	A N/	N/A	N/A	N/A				
	UNITS	A1	A2	A4	B5	B7	B8	ß	2	٦ ۵	55	17	80	8	3 E	t E	5 6	EI EI	G1	G3	64	HS	9H	H7	22	Ň	200	Batch
Metals																												
Dissolved Aluminum (Al)	l/gn	ND	120	95	ND	23	21	0.0	170	150 1	.8 1	.000	1100	VD 2	800 2:	800 7.	4 94	68	12	22(23	10 52	330	0 320) 5.1	Ň	A 427	6063
Dissolved Antimony (Sb)	ug/L	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	N O	10	۱ D	ND N	N D	D N	D NI	ON O	ND	ND	ND	ND	ND	ND	1,	Ň	A 427	6063
Dissolved Arsenic (As)	ug/L	ND	ND	ND	ND	3.8	5.3	ND	ND	ND ND	4D 2	8	1 75	ND N	N D	D N	D NI	ON O	ND	ND	ND	ND	ND	ND	1,	N	A 427	6063
Dissolved Barium (Ba)	ug/L	ND	2.2	2.1	13	5.5	6.8	ND	94	92 1	9.1	9 1	10	1.9 2	.00 21	N 00	D 1.8	8 1.4	1.1	150	0 15	1.1	120	130	1,) W	A 427	6063
Dissolved Beryllium (Be)	l/gn	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	N O	1	I DV	Z DV	.5 2	.4 N	D	ON NO	ND	1.7	1.6	ND	1.9	1.9	1.	Ň	A 427	6063
Dissolved Bismuth (Bi)	ug/L	ND	ND	ND	ND	ND	ND	ND	ND	ND N	ND N	10	ND 1	ND N	N D	D N	D NI	O ND	ND	ND	ND	ND	ND	ND	2.1	N	A 427	6063
Dissolved Boron (B)	ug/L	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND N	10	ND N	ND N	N D	D N	D NI	61	ND	ND	ND	ND	ND	ND	50	Ŵ	A 427	6063
Dissolved Cadmium (Cd)	ug/L	ND	ND	ND	ND	0.030	0.035 (0.011	0.094	0.091 N	10	10	ND (0.041 0	.20 0	.20 N	D	O ND	ND	0.1	5 0.1	0.0	14 0.16	0.16	0.4	710 IV	A 427	6063
Dissolved Calcium (Ca)	ug/L	250	310	200	1400	2500	2800	5100	780	920 5	5100 7	700	7700	200000 1	.80000 1:	80000 18	300 12	.00 15	00 120)000 91(86 000	100 190	000 170	000 170)00 10	N G	A 427	6063
Dissolved Chromium (Cr)	ug/L	ND	ND	ND	ND	ND	ND	ND	ND	ND N	10	10		ND N	ID N	D N	D NI	O ND	ND	ND	ND	ND	ND	ND	1.	Ň	A 427	6063
Dissolved Cobalt (Co)	ug/L	ND	ND	ND	ND	ND	ND	ND	2.2	2.3 N	5	10	10	ND 4	.8 4	7 N	DNI	N	ND	4.8	5.1	ND	5.2	5.3	0.	<u>N</u> 0	A 427	6063
Dissolved Copper (Cu)	ug/L	11	ND	ND	2.4	6.4	3.9	2.3	6.6	7.4 N	10	ID 1	VD 2	1.3 2	5 2	N 0	D NI	O ND	4.0	14	14	ND	13	12	2.1	Ň	A 427	6063
Dissolved Iron (Fe)	ug/L	ND	69	ND	ND	ND	ND	ND	900	960 N	4D 7	9 1	110 1	VD 4	100 4	300 N	D 53	56	ND	30(00 34	IO ND	330	0 350) 50	Ň	A 427	6063
Dissolved Lead (Pb)	ug/L	ND	6.1	ND	0.72	ND	N	ND	0.75	0.60 M	5	1	5	5	.0 4	7 N	DN	0.1	1 ND	3.5	3.3	ND	14	4.1	0.	N 0	A 427	6063
Dissolved Magnesium (Mg)	ug/L	ND	ND	ND	ND	140	170	ND	480	500 M	10 7	80	370 1	VD 9	90 93	20 N	D NI	ND	ND	86(0 85	ND	880	910	10	N (A 427	6063
Dissolved Manganese (Mn)	ug/L	3.6	2.0	ND	2.2	11	12	ND	130	140 N	20	55	2.7 1	VD 2	80 2	70 N	D 2.9	9 3.9	ND	27(0 29	ND	280	300	2,	N	A 427	6063
Dissolved Molybdenum (Mo)	ug/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	4	.3	1.3	ND N	N	D N	DN	ND	ND	ND	ND	ND	ND	ND	21	N	A 427	6063
Dissolved Nickel (Ni)	ug/L	ND	ND	ND	ND	ND	N	ND	3.8	3.9 N	5	10	5	۵D 8	.1 8	8 N	DN	N	ND	8.8	7.7	ND	8.1	8.0	21	N	A 427	6063
Dissolved Phosphorus (P)	ug/L	ND	ND	ND	ND	ND	130	ND	ND	ND	5	1	5		N	DN	DN	N	ND	ND	ND	ND	ND	ND	10	N N	A 427	6063
Dissolved Potassium (K)	ug/L	190	1400	1000	ND	740	77000 /	410	8600	9400 1	130 7	900	3500	250 9	900 9	800 15	50 14	00 17	00 10)0 89(00 910	10 210	110	00 930	10	N N	A 427	6063
Dissolved Selenium (Se)	ug/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	5	10	10	ND N	N N	DN	DNI	N	ND	ND	ND	ND	ND	ND	1	N	A 427	6063
Dissolved Silver (Ag)	ug/L	ND	ND	ND	ND	ND	48	ND	0.16	ND	5	1	5	10	N N	DN	D	N	0.2	4 ND	ND	ND	3.8	ND	0.	<u>N</u> 0	A 427	6063
Dissolved Sodium (Na)	ug/L	180000	160000	170000	180000	180000	170000	300000	290000	290000 3	30000 3	30000	330000 6	30 1	.000 9	20 56	50 74	0 79) 62) 90(88	550	930	910	10	N N	A 427	6063
Dissolved Strontium (Sr)	ug/L	ND	ND	ND	ND	9.7	11	ND	7.0	8.3 N	4D 2	.9	28 6	61 6	7 6	7 N	D NI	0 25	63	55	59	94	91	95	21	Ň	A 427	6063
Dissolved Thallium (TI)	ug/L	ND	ND	ND	ND	ND	ND	ND	ND	ND N	ND N	1D 1	ND 1	VD 0	.18 0	.18 N	D NI	O ND	ND	0.1	.6 0.1	6 ND	0.17	0.16	0.	/N 0.	A 427	6063
Dissolved Tin (Sn)	ug/L	ND	ND	ND	ND	ND	ND	ND	ND	ND N	10	1D		ND N	ID N	D N	D NI	O ND	ND	ND	ND	ND	ND	ND	2.1	Ň	A 427	6063
Dissolved Titanium (Ti)	ug/L	ND	8.5	4.2	ND	ND	ND	ND	ND	ND N	4D 7	·4 1	11	ND N	ID N	D N	D 8.1	5 2.6	ND	ND	ND	ND	ND	ND	21	Ň	A 427	6063
Dissolved Uranium (U)	ug/L	ND	0.66	0.46	ND	4.9	6.7	ND	0.15	0.15 N	10 7	5	3.7 1	VD 1	.0 1	.0 N	D 0.:	18 0.1	.6 ND	1.8	1.8	ND	2.4	2.5	0.	Ň 0	A 427	6063
Dissolved Vanadium (V)	ug/L	ND	ND	ND	ND	ND	ND	ND	ND	ND N	4D 33	.8 4	1.2 N	ND N	D N	D N	D NI	O ND	ND	ND	ND	ND	ND	ND	24	N	A 427	6063
Dissolved Zinc (Zn)	1/βn	ND	ND	ND	ND	6.5	ND	6.1	14	10 N	6	1 0.	ND 6	5.8 2	3 1	N 8	D 5.8	8 6.4	ND	14	15	ND	15	14	5.0	Ň	A 427	6063

Appendix H - Maxxam Results (ICP/MS)

Maxxam Job #: B612314 Report Date: 2016/01/26

Success Through Science

Dalhousie University Sampler Initials: OB

ELEMENTS BY ICP/MS (DRINKING WATER)

Maxxam ID		BRQ636	BRQ637	BRQ638	BRQ639	BRQ640	BRQ641	BRQ642		
Sampling Date	18 10	2016/01/12	2016/01/12	2016/01/12	2016/01/12	2016/01/12	2016/01/12	2016/01/15		
COC Number		N/A	N/A	N/A	N/A	N/A	N/A	N/A		
	UNITS	L1	L2	L4	M5	M7	M8	11	RDL	QC Batch
Metals		21								
Dissolved Uraniu	m (U) ug/L	ND	0.926	0.946	ND	4.40	4.72	ND	0.100	4354336
RDL = Reportable	Detection Limit		•							
QC Batch = Quali	ty Control Batch									
ND = Not detecte	ed									
Ma	xxam ID		BRQ643	BRQ644	BRQ645	BRQ646	BRQ647		2	
San	npling Date		2016/01/15	2016/01/15	2016/01/15	2016/01/15	2016/01/15			
			Contraction and Contraction of the				and the second sec			

Sampling Date		2016/01/15	2016/01/15	2016/01/15	2016/01/15	2016/01/15		
COC Number		N/A	N/A	N/A	N/A	N/A		
	UNITS	12	13	K5	K6	K8	RDL	QC Batch
Metals	125	38				0-	a	
Dissolved Uranium (U)	ug/L	4.51	4.28	ND	6.70	6.01	0.100	4354336
RDL = Reportable Detectio	n Limit	80 (B	() ()	6 O	\$\$		80 - 148 -	
QC Batch = Quality Contro	l Batch							
ND = Not detected								

Maxam A Bureau Veritas Group Company

Maxxam Job #: B643985 Report Date: 2016/03/08

Dalhousie University Sampler Initials: OB

ELEMENTS BY ICP/MS (WATER)

Maxxam ID		BYQ540	BYQ541	BYQ542	BYQ543	BYQ544	BYQ545	BYQ546		
Sampling Date		2016/03/01	2016/03/01	2016/03/01	2016/03/01	2016/03/01	2016/03/01	2016/03/01		-
COC Number		N/A								
	UNITS	N1	N2	03	04	P5	P6	R7	RDL	QC Batch
Metals										
Dissolved Uranium (U)	ug/L	2.9	3.1	3.4	3.6	3.3	2.5	31	0.10	4407294

Dissolved Uranium (U)	ug/L	2.9	3.1	3.4	3.6	3.3	2.5	31	0.10	440729
RDL = Reportable Detection	Limit								1	2
	2 S 1									

QC Batch = Quality Control Batch

Maxxam ID		BYQ547		
Sampling Date		2016/03/01		
COC Number		N/A		
	UNITS	R8	RDL	QC Batch
Metals				
Dissolved Uranium (U)	ug/L	31	0.10	4407294
RDL = Reportable Detectio	n Limit			
QC Batch = Quality Control	Batch			