VARIATION

by

Ann-Alberta Louise Miller
B. Sc. (Hons. Geol. Sci.) (Queen's)

Copyright (C) Ann A. L. Miller
submitted in partial fulfillment of the requirements for the degree of Master of Science at Dalhousie University, Halifax, Nova Scotia, September, 1983.

DALHOUSIE UNIVERSITY

DEPARTMENT OF GEOLOGY
The undersigned hereby certify that they have read and recommended to the Faculty of Graduate Studies for acceptance a thesis entitled " Elphidium excavatum (Terquem): Paleobiological and statistical investigations of infraspecific variation.
by Ann-Alberta Louise Miller
in partial fulfillment of the requirements for the degree of Master of Science.
Dated September 14, 1983.

External Examiner

Research Supervisors
Examining Committee

DAIHOUSIE UNIVERSITY

Title "Elphidium excavatum (Terquem): Paleobiological and statistical
investigations of infraspecific variation."

Department or School Graduate Studies
Degree M. Sc. Convocation_ Fall_ Year_1983

Permission is herewith granted to Dalhousie University to circulate and to have copied for non-commercial purposes, at its discretion, the above title upon the request of individuals or institutions.

```
                                    Signature of Author
                                    THE AUTHOR RESERVES OTHER PUBLICATION RIGHTS, AND NEITHER THE
                                    THESIS NOR EXTENSIVE EXTRACTS FROM IT MAY BE PRINTED OR OTHERWISE REPRCDUCED
                                    WITHOUT THE AUTHOR'S WRITTEN PERMISSION.
```


TABLE OF CONTENTS

Page
TABLE OF CONTENTS i
LIST OF FIGURES iv
LIST OF TABLES v
ABSTRACT viii
ACKNOWLEDGEMENTS ix
INTRODUCTION 1
AN IDENTIFICATION PROBLEM 1
AIMS OF THIS WORK 3
ELPHIDIUM EXCAVATUM (TERQUEM): ECOPHENOTYPIC VERSUS SUBSPECIFIC VARIATION 4
METHODS OF STUDY 4
HISTORIC REVIEW 8
OBSERVATIONS 18
Morphotypic variation 18
Ecophenotypic variation 21
DISCUSSION 29
CONCLUSIONS 36
STATISTICAL INVESTIGATION OF INFRASPECIFIC VARIATION 39
PREVIOUS WORK 39
DISCRIMINANT ANALYSIS 41
What is it? 41
Geometric Representation 42
Procedure 43
Derivation 45
Validation 48
Interpretation 50
ANALYSIS OF FORAMINIFERAL DATA 51
Computer programs 51
Data Collection 52
Variable Selection and measurement 54
Variable Transformations 62
Analytic features of subprogram 'DISCRIMINANT' 63
Illustrative example - TEST 70
TEST Calculations 70
Analysis of Elphidium excavatum population 72
Methods 72
Analyses Completed 74
Analyses Results 78
Discussion 104
Conclusions 108
SUMMARY OF RESULTS 110
SYSTEMATIC PALAEONTOLOGY 113
REFERENCES 168
PLATES 1-29 188
APPENDIX A: TEST and Foraminiferal (raw) data 260
APPENDIX B: DERIVATION OF FUNCTIONS 274
Derivation of the Discriminant Function 275
Derivation of Classification Function 280
APPENDIX C: ILLUSTRATIVE EXAMPLE - TEST 284
TEST One 285
TEST Four 297
APPENDIX D: SPSS OUTPUT OF ANALYSIS A-1 322
APPENDIX E: SPECIMEN DEPOSITORIES 371

LIST OF EIGURES

Page
Figure 1: Schematic outline: history and faunal synonymies of Elphidium excavatum back (Terquem). pocket
Figure 2: Graphical representation of a two group scatter diagram and the projection resulting irom computation of a discriminant function. 44
Figure 3: Teritorial map, analysis A-2. 81
Figure 4: Teritorial map, analysis E-1. 103
Figure C1: Group one Z values. 288
Figure C2: Group three Z values. 288
Figure C3: TEST One discriminant scores histogram. 298
Figure C4: Scatter plot, TEST Four. 319
Figure C5: Territorial map, TEST Four. 320

LIST OE TABLES

Page
Table 1 : List of sample locations studied. 6
Table 2 : Morphotype (or group) codes used in in the analyses. 55
Table 3 : Location codes used in the analyses. 57
Table 4 : Summary of variables used in the analyses. 58
Table 5 : List of specimens illustrating possible ranks/scores of the independent qualitative variables. 59
Table 6 : Statistics and Options calculated/ performed in the analyses. 64
Table 7 : Summary of TEST analyses. 71
Table 8 : Number of specimens of each forma from each location used in the analyses. 73
Table 9 : Summary of analyses. 75
Table 10: Classification results, analysis A-2. 82
Table 11: Wilks' lambda and univariate F-ratios for the indepedent variables, analysis A-3. 84
Table 12: Classification results, analysis $B-1$. 85
Table 13: Statistics for the nine discriminant functions calculated, analysis $\mathrm{C}-1$. 87
Table 14: Univariate F-ratios and Wilks' lambda for the independent variables, analysis C-1. 88
Table 15: Summary table for the independent variables, analysis C-1. 88
Table 16: Univariate F-ratios and Wilks' lambda for the independent variables, analysis C-2. 90
Table 17: Summary table for the independent variables, analysis C-3. 91
Table 18: Classification results, analysis C-3. 92
Table 19: Classification results of the holdout sample, sample, analysis $D-1$.
94
Table 20: Classification results of the holdout sample, analysis D-2. 95
Table 21: Classification results of the holdout sample, analysis D-3. 96
Table 22: Classification results of the holdout sample, analysis D-4. 97
Table 23: Summary table for the independent variables, analysis D-4. 98
Table 24: Statistics for the 12 discriminant functions calculated, analysis E-1. 100
Table 25: Wilks' lambda and univariate F-ratios for the independent variables, analysis E-1. 101
Table 26: Classification results analysis $\mathrm{E}-1$. 102
Table 27: Summary table for the independent variables, analysis E-3. 101
Table A1: TEST data. 261
Table A2: Elphidium excavatum data. 264
Table A3: Elphidium bartletti, E. subarcticum and Haynesina orbiculare data. 272
Table C1: SFSS discriminant scores for TEST one. 292
Table C2: MINITAB (unstandardized) discriminant scores for TEST One. 295
Table C3: Classification results, TEST One. 297
Table C4: MINITAB classification scores, group one, TEST Four. 308
Table C5: MINITAB classification scores, group three, TEST Four. 312
Table C6: MINITAB classification scores, group four,
TEST Four. 313
Table C7: SPSS discriminant scores, for TEST Four. 314
Table C8: Classification results, TEST Four. 318

Abstract

Detailed study of large sympatric populations and fossil assemblages of the highly variable species Elphidium excavatum (Terquem) collected from 20 widely spaced locations indicates that a variety of morphotypes of Elphidium can be linked to one another in a number of interlocking intergradational series. Ten morphotypes are recognized and grouped as formae (ecophenotypes) of Elphidium excavatum (Terquem); these morphotypes were previously considered as 22 independent taxa by various authors.

To test the hypothesis that these ecophenotypes are distinct morphologically, the ten ecophenotypes were separated into groups based on differences in external morphology; 15 of the characters by which the groups are distinguished were measured and or scored on 721 individuals (11-163 per forma). Discriminant and classification functions were calculated from these character measurements using the SPSS computer program DISCRIMINANT. To illustrate the derivation of these functions, two examples (2 groups and 2 variables; 3 groups and variables), were calculated and explained step by step using the MINITAB interactive statistical package.

Fifteen analyses, using either one sample or split sample approaches, and simultaneous or stepwise analytic methods, classify 84-90\% of the specimens into the subjectively defined formae to which they were assigned. Either morphotype (forma) or location was treated as the dependent variable. The analyses showed that there is no strong relationship between formae and geographic location, thus strengthening the subjective conclusion that these are ecophenotypes and not subspecies.

Although all of these formae belong to the same species, it is suggested that the distinction among them should be retained because of their potential as a valuable inter pretive tool in paleo-ecological and biostratigraphic studies of Holocene and Pleistocene sediments.

ACKNOWLEDGEMENTS

A thesis is not completed without scientific, technical and logistical assistance from many individuals. To all of the these people I extend my sincere appreciation and thanks. If I have inadvertently omitted someone, I do apologize.

I thank my supervisor, Prof. F. S. Medioli for his help and interest over the past three years. I especially thank my co-supervisor, Prof. D. C. Hamilton, who had no idea what he was getting into when I started this work. Dr. P. J. Mudie of the supervisory committee was instrumental in the completion of this work, and it would not have been finished without her advice and encouragement. Dr. C. T. Schafer, Prof. P. Schenk, and Prof. H. B. S. Cooke all served on the supervisory committee. Prof. Cooke deserves a special commendation for his interest in the project after his official duties had ended. Prof. J. M. Hall served as departmental reader.

I thank Dr. M. A. Buzas for suggesting and encouraging the project, and serving as external examiner. His comments and criticisms were a big help.

Many individuals supplied the material making this work possible: Prof. D. B. Scott, Dr. C. Schafer, Mrs. F. Cole, Dr. G. Vilks, Mr. B. Deonarine, Dr. M. Buzas, Prof. S. Culver, Prof. R. Feyling-Hanssen, Dr. K. Knudsen, Dr. G. Lutze, Prof. J. Haynes, Prof. J. Murray, Prof. D. Sloan, Dr. F. Pettruci, Dr. A. Aksu, Dr. J.-P. Guilbault, Dr. G. Bartlett, Miss R. Todd, Dr. M. Williamson, Dr. A. Fortuin, and Dr. L. Osterman.

Ideas, comments, opinions, and suggestions from Dr. Culver, Dr.

Buzas, Prof. Murray, Prof. Haynes, Prof. Sloan, Mrs. Cole, and Miss Todd were a great help.

I thank the staff of the Paleobiology Department of the Smithsonian Institution (under Dr. Buzas and Prof. Culver), Dr. C. Adams and Dr. R. Hogkinson of the British Museum, and Dr. F. B Phleger of Scripps Institute of Oceanography for the opportunity to examine the pertinant foraminiferal collections and assistance in doing so.

Technical and logistical support was excellant, and included: SEM operation by Mr. B. Deonarine, Mr. F. Thomas (Bedford Institute of Oceanography) and Miss C. Mason (Biology Dept., Dalhousie), outstanding photographic services from Mr.F. Stefani and Mr. C. Cacola (always delivered with a smile), drafting services from Mr. D. Meggison, typing by the Misters J. and M. Robinson, computing assistance by the many programming assistants and in particular duty programmer Mr. J. McDougall, and miscellaneous services supplied by Ms J. Barrett, Mrs. C. Younger, Ms. A. Mitchell, Ms M. Duplisea, Ms L. Dobbin, and Ms K. MacKinnon.

Fellow graduate students (both past and present) have provided a pleasant working atmosphere, in particular Dr. A. Aksu, Dr. P. Hill, Dr. M. Williamson, Mr. J. Letson, Ms M.-C. Blanchard-Williamson, Miss A. DeIure, Ms. I. Wolfson, Mr. P. Doucet, Mrs. O Phillips, Dr. J. Helgason, Miss C. Schröeder, Ms L. Ham, and Miss K. Gillis.

The seeds of thought from which this study grew were planted by Dr. G. Bartlett, for which I will always be grateful.

At this point I thank David and Helen for being so patient and understanding (99% of the time) and testing my fortitude (the other

1\%). From this situation a remarkable relationship has grown between
David and Helen, for which they just might thank me someday.

INTRODUCTION

AN IDENTIFICATION PROBLEM

Applied micropaleontology often views purely taxonomic studies as being of academic interest only. Without a uniform and clearly defined taxonomy, however, it becomes very difficult to compare data from different sources. At the same time, the indicator value of the species is diminished if several different names are applied to the same taxonomic unit (Medioli and Scott 1978). This problem becomes most acute in areas where infraspecific variability is highest (i.e., nearshore and shelf environments).

The species Elphidium excavatum (Terquem), which is extremely important for the interpretation of post-glacial events, has been plagued by a myriad of synonyms. The first to recognize the real nature of the problem was Feyling-Hanssen (1972), who grouped several common species as ecophenotypes of E. excavatum. The variations within this species have been interpreted either as ecophenotypic (Bartlett 1965b, Feyling-Hanssen 1972, Cronin 1979 , Poag 1978) or as a subspecific (Wilkinson 1979). It has been noted, but not illustrated, that E. excavatum ($=$ E. clavatum of many workers) appears to grade into a number of different species (e.g. Parker 1952b, Weiss 1954, Brodniewicz 1965, Bartlett 1965b, Buzas 1965b, Cronin 1979).

During a geochemical study of E. excavatum tests from a Labrador Shelf sediment core (Miller 1979), it became apparent that specimens of two different Elphidium species could be arranged into an intergradational series covering their spectrum of morphological
variability. Miller et al. (1982) continued this investigation and arranged five distinct "species" in three similar intergradational series. Thus, the biologic principle of conspecificity of specimens arranged in an intergradational series, as enunciated by Mayr et al. (1953) and applied to foraminifera by Medioli and Scott (1978), was used in an attempt to solve the taxonomic problems of the E. excavatum group.

Demonstration of an intergradational series between taxonomic units previously defined as species is a useful tool for illustrating the range of variation that may be encompassed by different samples of a taxon which is probably a single biological species in the sense of Mayr et al. (1953). When morphological variants of the species appear to convey important information about the environment, however, it becomes necessary to delimit the range of morphology encompassed by the different environmental indicators, and to assign infraspecific names to these morphotypes.

When two or more morphotypes are linked through an intergradational series, there are no set limits to each morphotype and the "morphological boundaries" are arbitrary and artificial. As pointed out by Scott (1974), subjective assessment of variation is alone inadequate, in principle and practice, for scientific communication. The problem becomes that of where to draw boundaries along the morphological gradient in order to produce workable, identifiable, taxonomic units, and how to classify these units within the species.

AIMS OF THIS WORK

1) The overall aims of this work are to investigate the polytypic nature of the foraminiferal species Elphidium excavatum (Terquem) using both conventional biological criteria and multivariate statistical methods; and to compare the results of the two methods of analysing variation within a species. 2) Within the Linnean hierarchy (as best as possible) the species is first "split" into morphotypes and the intergradation between morphotypes is investigated and documented. The taxonomic (and apparent biological) relationships among the morphotypes are also investigated and their corresponding ecological and geographical ranges noted.
2) Once the patterns of infraspecific variation have been noted and the presence or absence of intermediate forms documented, the kind of biological variation present can be determined and an appropriate classification adopted.
3) These same morphotypes are then analysed statistically using the multivariate technique of discriminant analysis. This is to determine if the morphotypes are statistically distinct and to determine, using the classification phase of the analyses, how well these morphotypes are delineated based on the information (morphological characteristics) included in the analysis. How well these morphotypes are delineated is also a test on the placement of the arbitrary boundaries between morphotypes, which split the morphologic range of the species into more rigid discrete units.
4) Finally, three other species are included in the statistical analysis to determine how well this E. excavatum group is delineated
within a larger framework.
. In general, then, the purpose of this work is to develop a classification scheme for the species E. excavatum (Terquem) which meets the following criteria: (1) fits into both the biologic and paleontologic frameworks (the Linnean hierarchy) and consequently is acceptable to workers in both fields; (2) is statistically valid; (3) is repeatable by other workers; and consequently objectively solves the taxonomic problems of the group.

Only when there are standard taxonomic units can an accurate description of patterns of infraspecific variation be formulated. Clear definition of taxonomic variants in turn is a prerequisite for the explanation of the species variation in terms of geographical and ecologic isolation.

VARIATION

METHODS OF STUDY
Different standard methods of preparation and preservation were employed, due to the various types of samples under study. None of them is sufficiently unusual to warrant description.

Samples from various localities (Table 1) were made available by numerous colleagues. Most of these samples were dry residues, except those collected by Scott and Medioli, which had been stained with Rose Bengal and stored in a mixture of denatured ethanol and water.

All samples studied contained large assemblages or populations of E. excavatum. In this study, a distinction is made between populations of stained individuals (i.e., individuals stained by Rose Bengal, hence alive at the moment of collection) and assemblages of empty tests. Stained individuals of the same species in the same sample clearly represent a "population", i.e., potentially interbreeding individuals. An assemblage of empty tests could contain reworked individuals and does not contain anything that could be potentially interbreeding; as such it does not constitute a "population".

The principle of intergradation is normally affixed to "populations", but that is mainly for lack of consideration of fossil assemblages. Thus, the individuals of populations are potentially interbreeding but, in the vast majority of cases, no one has bothered to check if, in fact, they do interbreed. Usually, a visual appraisal

Location	Latitude	Longitude	${\underset{B y}{c o l l e d e d}}^{C}$	Age	$\begin{aligned} & \text { Formae } \\ & \text { Identified } \end{aligned}$	Sampie No. Reference	Type of Environment
$\begin{gathered} \text { Beaufort } \\ \text { Sear } \\ \text { Canada } \\ \hline \end{gathered}$	$60^{\circ} 56 \cdot 50^{\circ} \mathrm{N}$	$134^{\circ} 33^{\circ} 00^{\prime \prime} \mathrm{W}$	Vilks, 1970	$\begin{aligned} & \text { rocent } \\ & \text { assemblage } \end{aligned}$	elayata, excayata manna sedievensis	$\begin{aligned} & 853.11 \mathrm{ks} \text { et } \\ & \text { al. } 1979 \end{aligned}$	arctie nearshore with estuarine influence. salinity: 28-318 water depth: 10m
$\begin{aligned} & \text { Beaurord } \\ & \text { Sea } \\ & \text { Canada } \end{aligned}$?	?	?	$\begin{aligned} & \text { Holocene } \\ & \text { assemblage } \end{aligned}$	chayata, sxcesyata	F2255, made avallable by Barllett; no reference	arctic nearshore
Hirtshals Denmark	$57^{\circ} 361 \mathrm{~N}$	905 ${ }^{\circ} \mathrm{H}$	V11ks, 1979	Late Plefstocene assemblage 14,000- $35,000 \text { Y.В.Р. }$	clayata, excayeta	zone c or the older Yoldia clay, Andersen 1971	arctic shallow water
Labrador Sea * *	$54^{\circ} 36^{\prime} 30^{\prime \prime} \mathrm{N}$	56\% 5^{\prime} '00'6	Vilks, 1977	Late Plelatocene (Hisconsinlan) assemblage $>22,000$ צ.B.P.	s.axata, excayata	Core 12 826-831cm Vilks and Mudie 1978; Miller 1979; Vilks 1980; Miller et al. 1982	molting fice margin (?) basin environment; no modern analogue
Champlain Sea, Quebee (St. Alioe Guiliaume Quebec)	$45^{\circ} 53^{\prime N}$	$72^{\circ} 55^{\prime \prime}$	Guilbault. 1980 (Sarvice de Geotechniquee hesouroes. Quebeo)	$\begin{aligned} & \text { Late } \\ & \text { Pleistocene } \\ & \text { assemblage } \\ & 11,500 \\ & \text { y.B.P. } \end{aligned}$	magua, slayata exciryata, Lideensia	YAM-F13-80A>106A 24.5 m in boring. Guilbault 1980	Facies B cold bottom water Salinity 25-35s Guilbault suggests the deeper part of the Baltic Sea as modern analogue (1.e. Lutze, 1974.)
Bay of Chaleur Gult of St. Lawrence Canada	1) $47^{\circ} 54 \cdot 29^{\prime} \mathrm{N}$ 2) $48^{\circ} 00 \cdot 12^{\prime} \mathrm{N}$ 3) $48^{\circ} 04^{\prime}$	$\begin{aligned} & 65^{\circ} 50^{\prime} 20^{\prime \prime W} \\ & 65^{\circ} 21^{\prime \prime} 1^{\prime \prime} \\ & 66^{\circ} 19^{\prime} \end{aligned}$	Shafer and cole, May 1971	recent population	excavata, clayata H111ameont, magna Hdefnsis. cukiliter	```1) SRA-52 2) SQA-52 3) SRQ-53 Schafer and Cole 1978```	Shallow water, nearshore, estuarine.
Mirautch1 Estuary, N.B., Canada	47007.05' N	$65^{\circ} 06.05^{\prime \prime W}$	Scott, 1976	recent population	eleyata, Lideenshs excayata, magna	station 6 ; Scott, Schafer and Medioli 1977, 1980	open bay zone of estuary Salinity: 20-25s; water depth 5-10m.
```Bafe verte, Norta- umberland Stralt, Canada```	$46^{\circ} 02^{\prime 2} 20^{\prime \prime}$	$63^{\circ} 42 \cdot 80^{\prime \prime} \mathrm{W}$	Medioll, 1979	$\begin{aligned} & \text { Holocene } \\ & \text { assemblage } \\ & \text { 4, 000-5,000 } \\ & \text { Y.B.P. } \end{aligned}$	selegyentis, slayata 1ideensis, gunteci magna, excavata sexiliferi, gaxestonesis	Navicula core 2.   $60-62 \mathrm{~cm} \mathrm{Prime} 1980$	mid-Holocene hypsithermal (?) warm, temperate to sub-tropical, water depth < 5m, this fauna does not exist there today.
$\begin{aligned} & \text { Annapulis } \\ & \text { Basin, N.S. } \\ & \text { Canada } \end{aligned}$	1) $45^{\circ} 40^{\prime} 19^{\prime \prime} \mathrm{N}$   2) $44^{\circ} 38^{\prime 09} 1 \mathrm{~N}$	$\begin{aligned} & 65^{\circ} 38 \cdot 53 \cdots 1 \\ & 65^{\circ} 45^{\prime} 0 \text { B' }^{\prime \prime} \end{aligned}$	$\begin{aligned} & \text { Bartlett, } \\ & 1968 \end{aligned}$	recent   population	selocyensis, magna lideensis, chayata excayata	1) $B Q-6 B-A B-B$   2) $B Q-6 \mathrm{~B}-\mathrm{AB}-16$   no reference	shallow, partially restricted estuary. Tidal range > 12 m sallnity probably 25-328
Chezzeteook Inlet, N.S.	$44^{\circ} 41^{\prime N}$	$63^{\circ} 14^{\prime} \mathrm{W}$	Scott and Medioli, d	recent   population	magua, selsexensis slavata, Lideensis excavata, rilliamsend cuvillder	stations 49-55;   Scott 1977, Scott   Medioli 1980,   scott, Sohafer and   Medioli, 1980	nearshore turbulent zone subtidal; salinity: 25-32\% water depth: 3-5m

Table 1: Listing of samples studied. The listing under "Formae Identified" is given in order of abundance, at the time of collection. **Illustrated in Miller et al. (1982).

```Malne-New (44045'N Brumbulck (approx.) (near East- pori, Maine)```	$\begin{aligned} & 67^{\circ} \mathrm{W} \\ & \text { (approx.) } \end{aligned}$	no reference	recent   population	hillamoonl, glayata Lideensis	$\begin{aligned} & \text { B-I-71 } \\ & \text { Schafor } 1971 \end{aligned}$	shallow water, nearshore estuarine
Scotian $43^{\circ} 59^{\prime} N$ Shelf (off liverpool, N.S.) Calada	$64^{\circ} 39^{\prime \prime}$	Medioll and Scott, 1978	recent population	masna, elayata	Station 134 Miller, Scott and Medioli, unpub. data	nearshore turbuient zone $40 a$ deep normal marine conditions
$\begin{aligned} & \text { Long Istand } 400^{5} 7 \mathrm{~N} \\ & \text { Souna, N.Y. } \\ & \text { U.S.A. } \end{aligned}$	$73^{\circ} 30^{\prime} \mathrm{W}$	Scharer, 1965	recent population	selaevensia. Lidoensis excayata, slayata	Field No. 722 Schafor 1968. 1970.	outer estuary, temperate salinity 17-20s water depth: 10-20m.
$\begin{aligned} & \text { San } \\ & \text { Franciseo } \\ & \text { Bay, } 37^{\circ} 36^{\prime N} \mathrm{~N} \\ & \text { U.S.A. } \end{aligned}$	$122^{\circ} 21 / \mathrm{W}$	1969 (borehole transect across San Franciseo Bay)	pre- Wisconsinian, ? Sangamonian assemblage 80,000-100,000 צ.B.P. oxegen isotope stage 5	1-deensig, excayeta gunteri, selseyensia. slavata	230-11 43m Delow present sea level	Unit B . subtidal mudflat and channel environsenta. salinity: 20-32s temporature: 8-20 ${ }^{\circ}$ annually
$\begin{aligned} & \text { San liego } 33^{\circ} 34 \cdot \mathrm{~N} \\ & \text { Bay, CA, } \\ & \text { U.S.A. } \end{aligned}$	$117^{\circ} 11 \mathrm{~W}$	Bradshaw, 1972	recent population	Lidoenols, tumidum cheyeta, selseyensis eunteri	$\begin{aligned} & \text { Ix-1, } \quad \text { Ix-2 Scott } \\ & \text { et ai. } 1976 \end{aligned}$	tinner bay assemblage. salinity: 31-35x water depth: 3-5m
$\begin{aligned} & \text { San Antonio 28026'N } \\ & \text { Bay, Guif of } \\ & \text { Mexico, fX } \\ & \text { V.S.A. } \end{aligned}$	$96^{\circ} 53^{\prime} \mathrm{W}$	Poag, 1972	recent population	guntori, Lldeensis. gadyestenensis, suyillieri, elayata	$\begin{aligned} & \text { sample } 13 \\ & \text { Poag } 1976,1978 \end{aligned}$	mudflat; salinity 5-158 (over sampling period) water temperature: $12-23^{\circ} \mathrm{C}$
```Wadden Sea, ? The Netnerlanos```	?	$\begin{aligned} & \text { Horker, } \\ & 1976 \end{aligned}$	recent or Holocene assemblage	H111日msent, gunter	no sample number; made avallable by   A. Fortuin. Hofker 1977	probably tidal flat.
Ventce   Lagoon,   Llaly	$12^{\circ} 26 \cdot \mathrm{E}$	$\begin{aligned} & \text { Petruced. } \\ & 1981 \end{aligned}$	recent population	suntert, curdiliert. 11deonsis.	Sample 1	Albani and Serandrei Barbero 1982, water temperature: $6-25^{\circ} \mathrm{C}$ salinity: 32-35t in lagoon itself
```Bay of. Izmir 38044.06%'N Turkey```	26 ${ }^{\circ} 33^{\prime} 00^{\prime \prime}$ E	$\begin{aligned} & \text { P1per and } \\ & \text { Aksu, } 1979 \end{aligned}$	late   pleistocene   (wurm)   assomblage   oxygen isotope   upper stage 2	guyblitect, Hdoensis. excavata, 2 williamsent	$\begin{aligned} & \text { core } 79-1 \mathrm{z-2} \\ & \text { sample } 40-32 \mathrm{~cm} \\ & \text { sample 10 } 92-94 \mathrm{~cm} \\ & \text { Piper and Aksu } \\ & 1981 \end{aligned}$	current water depth: 110 m Pleistocene pro-delta slope sea level louered 110 m .

Table 1: continued.
of morphological similarities is considered more than adequate to make the assumption that two individuals do or do not interbreed. Similarily, a visual appraisal of a fossil assemblage should be more than adequate and equally valid to decide whether or not two individuals would have been capable of interbreeding had they existed at the same time. However, to be prudent, the assemblages studied in this thesis were carefully chosen from those lacking evidence of reworking.

Representative specimens covering all aspects of morphological variation of the species were selected from each sample and prepared for standard scanning electron microscope (SEM) observation. A total of 1057 SEM photos of 810 E. excavatum specimens were taken either at Dalhousie University (Bausch and Lomb Nanolab 2000) or the Bedford Institute (Cambridge 180) using both Polaroid NP/52 and NP/55 film.

Samples were collected from a wide variety of environments as well as geographical range (Table 1): Beaufort Sea, Labrador Shelf, Champlain Sea, Bay of Chaleur, Miramichi Estuary, Baie Verte, Annapolis Basin, Chezzetcook Inlet, and the Scotian Shelf, Canada; a Maine-New Brunswick Estuary, Long Island Sound, San Francisco Bay, San Diego Bay, and San Antonio Bay, U.S.A.; Hirtshals, Denmark; Wadden Sea, Netherlands; Venice, Italy; and Bay of Izmir, Turkey. The age range of the samples is late Pleistocene to recent.

HISTORICAL REVIEW
Before proceeding with the observations of this study, it is necessary to examine the complex history of Elphidium excavatum
(Terquem) in some detail, in order to place this study in proper perspective. A schematic outline of the history is illustrated in Figure 1 (back pocket). As far as possible, the following review is presented in chronological order. The letters in parenthesis indicate the position of the information on the schematic diagram (Figure 1).

D'Orbigny described three species relevant to this study: Polystomella oceanensis (1826, p. 285) (A on Figure 1) a recent species from the French coast; (C) P. poeyana (1839a, p. 55, Pl. 6:25-26) from Cuba; and (B) P. articulata (1839b, p. 30, Pl. 3:9,10) from recent material from the Falkland Islands. It appears that d'Orbigny did not figure or choose a holotype of P. oceanensis, so it remained a nomen nudum until figured by Fornasini (1904, p. 13, Pl. $3: 10)$. The remaining two species were figured; but the type of p. articulata is lost (if it was ever designated) and a lectotype of P. poeyana was designated by Loeblich and Tappan in 1964 (CC).

In England in 1858, Williamson described a species (D)
Polystomella umbilicatula (Walker and Jacob), (1858, p. 42-44, Pl. 3:81-82), a species later shown to be quite distinct from Walker and Jacob's. In the same publication, Williamson also described a variety of this species. Williamson called this species P. umbilicatula var. incerta, and it has become known as Elphidium incertum (Williamson).

Terquem (1876) described Polystomella excavata (E) from the shore of Dunkerque, French south coast.

Heron-Allen and Earland (1909) identified a species as
Polystomella striatopunctata (Fichtel and Moll) variety (p. 695, PI.

21:2); in 1911 the same authors designated this species as P. striatopunctata var. selseyensis (p. 488), from the shore sands of southeast England (F).

Cushman (1930, p. 18, P1. 7:8-9) described and figured a large white opaque Elphidium, which he referred to as E. incertum (Williamson) (G). In the same paper, he described and figured a variety, E. incertum var. clavatum (p. 20, P1. 7:10) which was smaller, translucent orange-brown and often, but not always, with a knobby boss or bosses occupying the umbilicus (H). Unfortunately, in the writer's opinion, Cushman (1930, p. 21, Pl. 8:4-7) also appears to have mistaken Williamson's species (P . umbilicatula - D) for E. excavatum, even while displaying Terquem's original figures (I) of E. excavatum (Cushman, 1930, p. 21, Pl. 8:1-3). This apparent error has persisted and may have confused workers in Europe, the eastern U.S., and Canada up until the 1970's (e.g. Todd and Low 1961, Richter 1961, 1964a, 1967, Haake 1962, 1967, Feyling-Hanssen 1964, Murray 1965a, 1968, Scott et al. 1977).

Compounding this, Heron-Allen and Earland (1932) described E. (Polystomella) excavatum (Terquem) (p. 439, P1. 16:22-23) from the Falkland Islands (J) and placed it in synonymy (K) with the E. excavatum (Terquem) of Cushman, 1930 (P1. 8:4-7) i.e. Williamson's species. Heron-Allen and Earland (1932) clearly did not place these specimens in synonymy with their P. striatopunctata var. selseyensis.

In the next 10 years (1930-1940) five species were described by North American workers which have become widely reported in the literature. These were: (L) Elphidium gunteri Cole, 1931 (p. 34, Pl.

4:9-10) from Pliocene (later shown to be Pleistocene by Poag 1978) deposits in Florida; (M) a variety of this, E. gunteri var. galvestonense ($=$ E. galvestonensis) Kornfeld 1931 (p. 87, Pl. 15:1a-b) from Texas and Louisiana; (N) E. Lidoense Cushman, 1936 (p. 86, P1. 15:6a-b) from beach sands in Venice, Italy, and two species described by Natland (1938) from the California coast: (0) E. transluscens (p. 144, P1. 5:3,4) and (P) E. tumidum (p. 144, Pl. 5:5,6).

In addition, nine other species were described from 1930 to 1951. Two were described by Shupack (1934): (Q) E. brooklynense (p. 10, opp. p. 9, Figs. 7a-b) and (R) E. florentinae (p. 9, opp. p. 9, Figs. 5a-b) from Long Island Sound and New York Harbour. Five were described by Cushman and Brönnimann (1948) from Trinidad: (S) Cribroelphidium trinitatense (p. 20, Pl. 4:8), (T) C. limnosum (p. 19, P1. 4:7), (U) C. vadescens (p. 18, P1. 4:5), (V) C. salsum (p. 19, PI. 4:6) and (W) C. kugleri (p. 18-19, P1. 4:4). The remaining two were (X) E. Iittorale Le Calvez and Le Calvez, 1951 (p. 251, Fig. 5:a-b) and (Y) E. guntheri (sic) var. waddense van Voorthuysen 1951 (p. 25, P1. 2:16a-b).

In 1966, Levy described a common shallow water Mediterranean form he called (Z) E. cuvillieri (p. 5-6, Pl. 1:6a-c, Pl. 2:2).

Thus, from 1930-1970, 11 different species which the writer assigns to the E. excavatum group were described and figured in North American literature. 1) Elphidium excavatum of Cushman's concept (i.e. the species of Williamson)(I), was reported by Cushman (1930, 1939, 1949), Todd and Low, (1961), and Adams and Frampton (1965); 2) E. incertum of Cushman (not Williamson's taxon) (G) was described by

Cushman (1930, 1939, 1944, 1949), Parker (1948, 1952a, 1952b), Todd and Low (1961), and Bartlett (1965b); 3) E. clavatum Cushman (AA), and E. incertum var. clavatum (H) were described by Cushman (1930, 1939, 1948), Loeblich and Tappan (1953), Todd and Low (1961), Cooper (1964), and Buzas (1965b, 1966). 4) E. poeyana (d'Orbigny) (CC) was described by Cushman (1930), Parker et al. (1953), Todd and Brönninann (1957), Todd and Low (1961), and Loeblich and Tappan (1964); 5) E. gunteri Cole (DD) was described by Cushman (1939), Parker et al. (1953), Phleger (1954, 1960a, 1960b), Bandy (1956), Lehmann (1957), and Lankford (1959); 6) E. galvestonense Kornfeld (EE) was described by Parker et al. (1953), Phleger (1954, 1960a), Lehmann, (1957), Parker and Athearn (1959), and Todd and Low, (1961); 7) E. oceanense (d'Orbigny) (FF) was reported by Cushman (1939); 8) E. selsevense (Heron-Allen and Earland) (GG) was described by Cushman (1939) and Parker (1952b); 9) E. lidoense was described by Cushman (1936, 1939) (N); 10) E. transluscens Natland (HH) was reported by Bandy (1953), Parker et al. (1953), Phleger (1954, 1964), Todd and Bronnimann (1957), Todd and Low (1961); and 11) E. tumidum Natland (II) was reported by Parker et al. (1953), Todd and Bronnimann (1957), Lehmann (1957), and Phleger (1960b).

In addition, seven of the nine other species mentioned previously were also reported in the literature. Shupack's two species were referred to by Weiss (1954) and Cushman and Bronnimann's five species were referred to by Todd and Brönnimann (1957). Loeblich and Tappan (1953) elevated E. incertum var. clavatum Cushman to the specific rank E. clavatum Cushman (AA); and showed that
the E. incertum of Cushman was quite distinct from that of Williamson's taxon, Polystomella umabilicatula variety incerta Williamson (1858). Buzas (1966) proved, through statistical analysis and wall structure investigation, that E. clavatum Cushman, and E. incertum of Cushman could not be separated into distinct species (JJ); a view shared by Parker (1952b) and Bartlett (1965b) based solely on external morphology. Buzas (1966) initiated the investigation because he had observed morphological gradation from one species to the other (Buzas 1965b, 1966). In addition to other differences, Buzas (1966) showed that Williamson's E. incertum had an optically granular wall structure, instead of the optically radial wall structure of Cushman's specimens. Thus, Buzas (1966) concluded that both of Cushman's forms did belong to E. clavatum Cushman (AA).

At the same time, European workers were describing and figuring seven species under six names: 1) E. excavatum (Terquem) of Cushman's concept (i.e. Williamson's species) (I) was recorded by Rottgardt (1952), van Voorthuysen (1957, 1960), Jarke (1961) Richter (1961, 1964a, 1967), Haake (1962, 1967), Feyling-Hanssen (1964), Brodniewicz (1965) and Murray, (1965a, 1968, 1970); 2) E. excavatum (Terquem) (sensu stricto) (KK) was discussed by Lutze (1965, 1968), Lévy (1966), Haake (1967), Lévy et al. (1969, 1975), Murray (1971) and Knudsen (1973b) ; 3) E. articulatum (d'Orbigny) (BB) was recorded by Lutze (1968), Murray (1971), Rosset-Moulinier (1972) and Knudsen (1973a, 1973b); 4) E. gunteri Cole (DD) was discussed by van Voorthuysen (1957, 1960), Haake (1962), Richter (1964a), Lévy (1966) and Lévy et al. (1969) ; 5) E. selseyense (Heron-Allen and Earland) (LL) was
discussed by Brand (1941), van Voorthuysen (1957, 1960), Richter (1961, 1964a) and Haake (1962); 6) E. clavatum Cushman (NN) was discussed by Hansen (1965) and Knudsen (1971a, 1971b); and 7) E. Iidoense Cushman (MM) by Accordi and Socin (1951), Lévy (1966), Cita and Premoli-Silva (1967) and Lévy et al. (1969).

During the 1960^{\prime} s, a few workers started grouping some of these species. Haake (1962) was one of the first to place E. selseyense (Heron-Allen and Earland) (LL) and E. clayatum (AA) Cushman in synonymy (00); Haake used the name E. selseyense because he considered E. clavatum to be a junior synonym. Both Hansen (1965) and Knudsen (1971b) could not separate E. clavatum and E. selseyense (PP). In 1965 Lutze studied topotype material of E. excavatum and concluded that E. excatavum (Terquem) and E. clavatum Cushman were the same species (QQ). However, Lutze (1965) did differentiate the two at a subspecific level (E. excavatum excavatum, E. excavatum clavatum).

By 1970 then, various workers had combined E. selseyense and E. clavatum (PP) (Hansen 1965, Knudsen 1971); or E. clavatum and E. excavatum (QQ) (Lutze 1965), or E. excavatum and E. selseyense (RR) (Haake 1967, Lévy et al. 1969, 1975, and [later] Feyling-Hanssen 1972 and Banner and Culver 1978). Lévy et al. (1975) reported that Terquem's holotype had been lost; they redescribed E. excavatum (Terquem) and erected a neotype. Haake (1967), and von Daniels (1970) had also placed E. (Cribrononion) lidoense in synonymy with E. excavatum (SS).

In addition, van Voorthuysen (1957) placed his E. gunteri var. waddense back into E. gunteri (TT); Lévy (1966), and later Hansen and

Lykke-Andersen (1976) and Poag (1978) put En oceanense and E. littorale into E. gunteri (UU) because they considered the former to be a nomen nudum, and Murray placed E. gunteri into E. oceanense (VV).

In 1972 Feyling-Hanssen completed a comprehensive study of these species and concluded that there was only one highly variable species: E. excavatum (Terquem) (WW). Feyling-Hanssen's species is comprised of E. excavatum (Terquem), E. clavatum Cushman, E. incertum var. clavatum Cushman (not Williamson), E. selsevense (Heron-Allen and Earland) and E. lidoense Cushman. Feyling-Hanssen (1972) noted a pattern to the variablility and concluded that there are four ecophenotypes of this one species. He differentiated these ecophenotypes on a "forma" level, so that earlier specific names were retained as formae names of E. excavatum. He suggested that the distribution of these ecophenotypes was environmentally controlled but also implied some geographical restrictions. The four formae designated by Feyling-Hanssen (1972) are: (1) E. excavatum forma clavata Cushman, for the small translucent orange-brown form with (or without) the knobby bosses, which he observed dominating assemblages in arctic environments; (2) E. excavatum (Terquem) and E. selseyense (Heron-Allen and Earland) which he placed in synonymy as E. excavatum forma selseyensis (Heron-Allen and Earland) and defined as a larger, orange-brown to white form found in boreal environments (North Sea region and western Baltic); (3) E. excavatum forma lidoensis Cushman which was described as a strongly ornamented, knobby form found in the Lusitanian regions (the west coasts of France and Portugal); and (4) for the white form, which he believed Cushman identified as \underline{E}.
incertum (Williamson), he suggested the name E. excavatum forma alba. The same author found E. excavatum forma alba in foraminiferal zone E of early Holocene sediments in the Oslo Fjord area.

In 1969, Lévy et al. reported on Cushman's error (in mistaking Williamson's species for E. excayatum) and they returned to Terquem's original definition of the species. For the form that Cushman and subsequent workers had identified as E. excavatum, Lévy et al. returned to Williamson's specific epithet umbilicatula (XX). However, Haynes (1973) pointed out that this name is invalid because it is occupied by Walker and Jacob's species, so Haynes suggested the name E. Williamsoni (YY) for Williamson's species.

Haynes (1973) also commented on the differences between specimens of E. Selseyense (Heron-Allen and Earland) in the British Museum and E. excavatum (Terquem's type figure). He stated that E. selseyense (ZZ) can be distinguished, and should remain distinct from E. excayatum (Terquem) (KK) as redefined by Lévy et al. (1969, 1975). Both Haynes (1973) and Lévy et al. $(1969,1975)$ state that the sutures are non-granular, but the topotype illustrated (Lévy et al. 1975, p. 176, Pl. 3:5-6) shows granular material in the sutures. This discrepancy was pointed out by Wilkinson (1979) who placed the neotype of Lévy et al. (1975, p. 176, Pl. 3:1-2) in E. excavatum (Terquem), and referred their topotype to E. clavatum selseyense (Wilkinson, 1979). Wilkinson (1979) studied E. excavatum (Terquem) and E. clayatum Cushman; and his results differ markedly from those of Feyling-Hanssen (1972). Wilkinson (1979) concluded that he was dealing with Cushman's E. clavatum, a species distinct from E.
excavatum. He also defined eight subspecies of E. clavatum (AAA) which, Wilkinson states, form a gradational sequence based on umbilical characteristics. One of these subspecies is E. clavatum selseyense, which is an invalid name (as pointed out by Haynes, 1982 pers. comm., as selseyense takes priority).

Other workers were beginning to recognize ecophenotypy within the genus Elphidium. Poag (1978) recognized four ecophenotypes of two species, E. gunteri (BBB and CCC) and E. galvestonense (DDD). In 1981 Haynes recognized the polymorphic nature of E. excavatum (EEE). He pointed out that the species could be regarded as a "superspecies", including E. clavatum and E. selseyense and related forms which he referred to as "siblings" of Elphidium. ex gr. excavatum. Haynes (1981) also states that E, excavatum (Terquem) can be regarded as one polytypic species (sensu Beckner 1959) which he called the E. excavatum subso. gr. Haynes includes E. incertum (Williamson), E. clayatum Cushman, E. selseyense (Heron-Allen and Earland), E. williamsoni Haynes and E. cf. advenum sensu Todd and Low in the group, but he did not include Cushman's E. lidoense.

In 1982 Rodrigues and Hooper voiced the opinion that Terquem's original concept of E. excavatum included E. williamsoni Haynes. They also followed Wilkinson's (1979) lead in distinguishing among the species E. excavatum, E. selseyense, E. lidoense and E. clavatum. Rodrigues and Hooper based this decision on the fact that since (1982, p. 415) "...no morphological series relating modern specimens of \underline{E}. clavatum to either E. Selsevense or E. Iidoense has been adequately documented in the literature, we choose to regard E. clavatum as

distinct from E. selseyense and E. lidoense.". A month later, intergradation of these four species in material from eight locations was reported and illustrated by Miller et al. (1982) (FFF). Miller et al. (1982) designated five ecophenotypes of E. excavatum. Two of these formae are the same as Feyling-Hanssen's (E. excavatum f. clavata and f. lidoensis), two formae (E. excavatum f. excavata and f. selseyensis) result from the splitting of Feyling-Hanssen's E. excavatum forma selseyensis; and one is a new ecophenotype previously undescribed (E. excavatum forma magna).

OBSERVATIONS

MORPHOTYPIC VARIATION

The study of this material has allowed delineation of ten morphotypes, nine of which are interpreted as being conspecific with E. excavatum as documented by the intergradational series illustrated in the plates.

These morphotypes, which are considered here as "formae", are easily recognised under low power microscopy. Photoplates 20-28 illustrate these formae. For the sake of clarity the formae are designated such that they correspond to conventional species previously described in the literature as much as possible and take their names from the "species" they represent. The salient characteristics of the formae are outlined below.
E. excavatum forma excavata (1.20) has lobate chambers, and straight sutures extending unconstricted into the umbilicus. The pore
density is greater in this forma than in forma clayata, giving the test a hazy appearance. Ponticuli are typically strongly developed.
E. excavatum forma williamsoni (pl. 21) is an inflated, rotund form, with smooth peripheral outline and rounded periphery. It has a flat umbilicus, with the chambers extending completely into the umbilicus. The ponticuli are very regular and well developed, covering up to half the chamber width. The test walls are finely and densely perforate.
E. excavatum forma selseyensis. (pl. 22) is recognised by its large size; smooth to lobate peripheral outline; sub-acute periphery; and greatly convex walls, giving the umbilicus a raised appearance. The sutures are slightly backwards curved to straight, with irregular, indistinct to strongly developed ponticuli, and often with papillae filling the sutures. The umbilicus contains granular material, or bosses, or both.
E. excavatum forma clavata (pl. 23) is small, disc-shaped, orange-brown, translucent, often with an umbilical boss; and always with an imperforate (complete or incomplete) collar surrounding the umbilicus. The sutures are generally backwards curved, with a few narrow, often incomplete ponticuli.
E. excavatum forma gunteri (pl. 24) is a small to medium sized form, rather rotund, with a coarsely perforate wall. The sutures are straight, not depressed, and marked by many regular, raised rectangular shaped ponticuli, often longer than the chambers are wide. The umbilicus contains papillae/irregular bosses (irregular lateral extensions of the ponticuli and chambers).
E. excavatum forma galvestonensis (pl. 25) is a large, many chambered (13-18) form with a large, very raised umbo (boss or bosses) in the umbilicus and many regular distinct ponticuli. There may be a ring of papillae surrounding the boss or in the sutures. The wall is heavily calcified and very finely perforate giving the test a porcelanous appearance. The periphery is sub-acute.
E. excavatum forma lidoensis (pl. 26) is a small form, with a large open umbilicus filled with papillae/bosses. The sutures are backwards curved, distinctly broadening towards the umbilicus, and also filled with papillae; ponticuli are not generally well developed. Within this forma, two "subforma" are observed, a phenomenon that will be detailed in both the Discussion (p. 30) and Systematic Paleontology (p. 155).
E. excavatum forma tumidum (pl .27), is a large, ornamented form resembling forma selseyensis. However, the ornamentation and ponticuli are much more regular on forma tumidum. The umbilicus is large, circular, depressed and filled with papillae/bosses. The chamber extensions into the umbilicus are truncated sharply. The periphery is usually rounded and the chambers inflated.
E. excavatum forma cuvillieri (pl. 28), is a smooth, round disc shaped Elphidium about the same size as forma clayata. The peripheral outline can range from smooth to very lobate. The sutures are straight or gently backwards curved, and characterized by very regular rows of sutural pores.
E. excavatum forma magna (pl. 27) is recognised by its larger size, smooth peripheral outline, sub-acute periphery; and strongly
convex walls, which give the umbilicus a raised appearance. The umbilicus is usually large and filled with one knobby boss. The sutures are backwards curved, and some (or all) may be constricted before reaching the umbilicus.

ECOPHENOTYPIC VARIATION

Having delineated the ten distinct morphotypes, analysis of their distribution in the study areas is necessary to ascertain if they are ecophenotypes or subspecies. This information is also important for the study of paleo-ecology and biostratigraphy of Pleistocene and Holocene deposits.

Beaufort Sea: Two series of morphotypes are illustrated, one from a Holocene surface sample (pl. 2:1-8) and one from a Holocene core sample (pl. 3:1-12). Both samples are assemblages of empty non-living tests. The first assemblage is almost entirely E. excavatum forma clavata. However, the second contains four formae: clavata, excavata, magna and selseyensis.

Hirtshals Denmark: Two formae were recognized in this late Pleistocene assemblage: E. excavatum forma clavata (pl. 2:9-17, pl. 23:1) and forma excavata (pl. 2:18-20). E. excavatum forma clavata comprised greater than 95% of the E. excavatum population.

Champlain Sea: Four formae are recognized from this late Pleistocene assemblage: f. clavata (pl. 4:1,6-9; pl. 23:2-3), f. excavata (pl. 4:10-11), f. magna (pl. 4:2-5, pl. 27:9-10) and f. lidoensis (pl. 4:12). Specimens of three of the formae (magna, clayata, and excavata) can be assembled into an intergradational
series. Forma lidoensis appears to be rare and no link was observed joining this forma to the series. This sample exhibits more variability and contains more formae than any other post-glacial/arctic sample studied.

Scotian Shelf: Two formae, E. excavatum forma clavata (pl. 4:13-16) and magna (pl. 4:17-20; pl. 27:5-8,11) were observed and assembled into an intergradational series from this recent sample of live specimens (a population). Forma magna exhibits more variability here than observed elsewhere. Intermediate specimens, linking the two formae (i.e. pl. 4:15-17) were also observed.

Miramichi Estuary: Three formae have been recognised and assembled into an intergradational series from a live population from Miramichi Estuary: E. excavatum forma clavata (pl. 5:1-7; pl. 23:4-7), forma lidoensis (pl. 5:8-12; pl. 26:7-9) and forma excavata (pl. 5:13-16). The specimens from Miramichi exhibited a wider ranged of variability than seen in the previous post-glacial/arctic samples and a larger number of the specimens could be considered to be morphologically intermediate between formae. Specimens of E. excavatum forma excavata from Miramichi were more irregular than those seen previously. These specimens greatly resemble the neotype illustrated by Lévy et al. (1975, Pl. 3:5-6).

Bay of Chaleur: An intergradational series was assembled from three live populations. Six formae are present, and this sample exhibits, on the whole, more ornamentation than any other sample studied, especially specimens of E. excavatum forma excavata ($p l$. 6:8-16,19). These specimens have many regular ponticuli and granular
material in the sutures and umbilici. E. excavatum forma excavata is linked through intermediate specimens to forma lidoensis (pl. 6:7), forma williamsoni (pl. 6:17-18; pl. 21:10-11) and forma cuvillieri (pl. 6:20). E. excavatum forma clavata (pl. 6:3-6; pl. 23:13) and forma magna (pl. 6:1-2) are also present, grading into one another, and forma clavata is linked to forma lidoensis (pl. 6:6-7).

Annapolis Basin: An intergradational series was assembled with specimens from two recent assemblages collected in the Annapolis Basin. The E. excavatum population exhibits a wide range of morphological variation in these samples, with many intermediate specimens.

Elphidium excavatum forma excavata (pl. 7:13-16; pl. 20:3) in these samples closely resembles the neotype described by lévy et al. (1975, Pl. 3:5-6). E. excavatum forma selseyensis (pl. 7:1), forma magna (pl. 7:2-3), forma clavata (pl. 7:4-9; pl. 23:12) and forma lidoensis (pl. 7:10-12; pl. 26:1-2) were also observed.

Chezzetcook Inlet: An intergradational series was assembled from seven live populations collected from the mouth of Chezzetcook Inlet. Seven formae were recognized, five displaying a wide range of variability. Elphidium excavatum forma clavata (pl. 8:4-8), was present throughout the estuary in very low numbers. E. excavatum forma selseyensis (pl. 8:10-13) was also present throughout in low numbers, but became more prominent in the outer estuary. These specimens were the most irregular of the group; each with a large umbilicus, filled with bosses and papillae. The representative specimen bears a marked resemblance to specimens of E. selseyense
collected by Heron-Allen and Earland and illustrated by Banner and Culver (1978, Pl. 9:12-14).
E. excavatum forma magna (pl. 8:1-3; pl. 27:1-4) was first observed at this location (=Cribrononion excavatum incertum (Cushman, [not Williamson]) of Scott 1977, Scott et al. 1980) and is dominant in the nearshore turbulent zone. This forma best exhibits its characteristics in this area which is hereby designated the type area for E. excavatum f. magna.

Elphidium excavatum forma excavata (p1. 8:14-16; pl. 20:12) became more prominent in the intertidal zone; and E. excavatum forma lidoensis (pl. 8:9; pl. 26:3) was also present in low numbers throughout the area.

Isolated specimens of E. excavatum forma cuvillieri (pl. 28:23) were also observed. E. excavatum forma williamsoni (pl. 21:5-6) is rare in these particular samples but it is the dominant form in intertidal areas of the marsh (=Cribrononion umbilicatula (Williamson) of Scott 1977, and C. williamsoni (Haynes) of Scott and Medioli 1980).

A Maine-New Brunswick Estuary: Three formae were observed from a live population at this location and no intermediate specimens were observed. E. excavatum forma williamsoni was the dominant form (pl. 9:1-16; pl. 21:1-3) and some specimens with fewer chambers may be juveniles of this forma. Isolated specimens of E. excavatum forma lidoensis (pl. 9:17) and E. excavatum forma clavata (pl. 9:18) were also observed.

Long Island Sound: This live population contained an abundant (greater than 75\%) E. excavatum with four intergradational formae
present, the dominant one being E. excavatum forma selsevensis (pl . 6,10:9-13; pl. 22:1-13). These specimens were large and irregular, and closely resemble specimens of E. Selseyense from the Dovey Marshes illustrated by Haynes (1973, Pl. 22:3-4; Pl. 24:11; P1. 26:4,7,9).

Elphidium excavatum forma excavata (pl. 10:6-8,14; pl. 20:4-7), forma lidoensis (pl. 10:15-16; pl. 26:3-5,10-11) and forma clayata (pl. 6:1-2) are present as minor constituents of the population.

San Diego Bay: Six formae were observed from a live population at this location. One of the dominant forms was E. excavatum forma tumidum (pl. 11:1-4, 15-16; pl. 27:13-19). Forma tumidum was linked by intermediate specimens to E. excavatum forma selseyensis (pl. 11:5), forma lidoensis (pl. 11:9-13, pl. 26:20-22,27) and forma clavata (pl. 11:6-8; pl. 23:20-21). The specimens of forma clavata are more irregular and ornamented than those found in colder environments.

Two other formae were also observed. E. excavatum forma gunteri (pl. 11:17-18; pl. 24:13) was present but no intermediate specimens linking them to the remainder of the group were found. Three other specimens, tentatively identified as E. excavatum forma galvestonensis (pl. 11:19-21; pl. 25:15-16) (identifications based on enlargements, pl. 25:15-16) were also observed. No intermediate specimens linking these to the remainder of the group were found.

San Francisco Bay: Seven formae were recognized from a Pleistocene core assemblage from San Francisco Bay. The dominant forms were E. excavatum forma excavata (pl. 12:1-3,12; pl. 20:8-10) and forma lidoensis (pl. 12:4-5,7-10; pl. 26: 21-24) which were linked
to forma clavata (pl. 12:11) and forma selseyensis (pl. 12:14-15). One specimen was tentatively identified as E. excavatum forma tumidum (pl. 12:6), and another as E. excavatum forma williamsoni (pl. 12:19). E. excavatum forma gunteri was also observed in this sample (pl. 12:16-18; pl. 24:21). As with the San Diego Bay sample, no intermediate specimens were observed here linking this forma to other members of the E. excavatum group.

Baie Verte, Northumberland Strait: This assemblage was the most unusual and interesting studied in terms of the E. excavatum fauna. Eight formae were observed and all could be assembled into an intergradational series (two series were assembled and illustrated here). Many intermediate specimens were observed; this coupled with the fact that some specimens were badly etched made identifying many of them to the forma level difficult and very subjective.

Elphidium excayatum forma gunteri (pl. 13:1-2; pl. 14:1-3; pl. 24:14-20) and E. excavatum forma galvestonensis (pl. 13:17-20; pl. 14:19-20; pl. 25: 11-14) were observed, with intermediate specimens (pl.14:3 and pl. 13:17) linking these two formae to the remainder of the group.
E. excavatum forma clavata (p1. 13:3-5,8-9,16; pl. 14:4-5,13-14) was the most dominant form present, and exhibited considerable variability. Specimens of forma selseyensis (pl. 13:12-15; pl. 14:8-9,18) were similar to those seen in Long Island Sound. E. excavatum forma excavata (pl. 13:10; pl. 14:11-12), forma lidoensis (pl. 13:11; pl. 14:10; pl. 26:12-13) forma magna (pl. 14:15-17) and forma cuvillieri (pl. 13:6-7; pl. 14:6-7) were also observed.

San Antonio Bay: Four formae were identified from this live population and the two dominant formae were assembled into an intergradational series. E. excavatum forma gunteri (pl. 15:8-15; pl. 24:1-12) and forma lidoensis (pl. 15:1-7,16-20; pl. 26:14-19) were linked through numerous intermediate specimens. Both formae exhibit more variability than observed in specimens (of the same formae) from other locations. Some specimens of forma gunteri exhibit extreme variability in the development of the ponticuli (i.e. pl. 15:9; pl. 24:1-3); some ponticuli are not really as well developed on the ultimate and penultimate sutures. The specimens of forma lidoensis exhibit the key characteristics of the forma, but they resemble more those specimens found along the west coast of North America and the Mediterranean. The wall perforations are coarser, the peripheral outline more lobate, the sutures more depressed, and the papillae/bosses in the sutures and umbilicus are larger and more variable in these "Lusitanian" specimens versus the "boreal" environment specimens from maritime Canada and New England.

Two other formae were observed from this location, but they are morphologically isolated from the remainder of the group. E. excavatum forma galvestonensis (pl. 16:1-8; pl. 25:1-10) was observed to be more common from this location than from any other, and these specimens best exhibited the characteristics of the forma. E. excavatum forma cuvillieri was also observed, (pl. 16:9-14; pl. 28:22) more common at this location than at any other North American location. These specimens resemble those observed in the European samples. An unidentified species of Elphidium (pl. 16:15) was also

observed.

Wadden Sea: Two formae of E. excavatum were observed from this Wadden Sea Holocene assemblage. E. excavatum forma williamsoni (pl.17:1-12; pl. 21:7-9,12-24) comprised over 95\% of the E. excavatum population and was very variable. E. excavatum forma gunteri (pl. 17:13-15) was also observed. No intermediate specimens were observed.

Venice Lagoon: Four formae were identified (and one other tentatively identified) from a Venice Lagoon live population; two formae were assembled into an intergradational series. This sample contained E. excavatum forma gunteri (pl. 18:1-4, pl. 24:22-24) and forma lidoensis (pl. 18:5-7, pl. 26:23-25) which are similar morphologically to those specimens observed from San Antonio Bay, particularily the specimens of forma lidoensis, and the intermediate forms present (i.e. pl. 18:4). E. excaytum forma cuyillieri (pl. 18:8-15; pl. 28:11,13-14,16-21) and forma williamsoni (pl. 18:17) were also identified. The specimens of forma cuvillieri are extremely variable, particularily the sutures, ponticuli, and umbilical regions. Two specimens were observed that may be E. excavatum forma galvestonensis (pl. 18:16,18). These were identified by comparison with specimens from San Diego Bay.

Bay of Izmir, Turkey: Three formae were observed from a late Pleistocene assemblage from this location. All three are mophologically isolated and no intermediate specimens were observed. E. excavatum forma lidoensis (pl. 19:1-7; pl. 26:28-32), forma cuvillieri (pl. 19:8-15; pl. 28:1-10,12,15) and forma williamsoni (pl. 19:16-17) were found. The specimens of forma lidoensis are the

Abstract

"Lusitanian" form; and specimens of forma cuyillieri are similar to those found living in Venice Lagoon.

DISCUSSION

The observations presented above suggest patterns in the degree of variablity within the range of the E. excavatum group. Samples from colder waters display less variablility than their counterparts from more temperate environments. Samples from nearshore estuarine locations display a wider range of variability and contain a larger number of intermediate forms than samples from more stable environments.

The range of variability observed in the three samples from Europe is much narrower. The formae are quite isolated and distinct at two of the locations (Wadden Sea and Bay of Izmir), no intermediate specimens linking any of the formae have been observed. At the third European location, Venice Lagoon, only E. excavatum forma gunteri and forma lidoensis can be linked, all other formae are isolated, as is the case with the sample from San Antonio Bay. These four samples come from locations where the annual climatic ranges are not extreme. The specimens displaying the widest range of variation are those from eastern North American temperate estuaries which are subject to extremes in climate and environmental conditions. It is only in this particular region that E. excavatum forma gunteri, galvestonensis, williamsoni and cuvillieri can be linked to the core formae (i.e. formae clavata and excavata) of the group. This apparent lack of intermediate forms may be one reason why some European workers (i.e.

Haynes 1973, 1982 pers. comm.; Murray 1979, 1982 pers. comm.) have not grouped some of these morphotypes (i.e. forma gunteri, williamsoni, or cuvillieri) with the remainder of the group. Another reason for not grouping may be the variation within the forma. For example E. excavatum forma lidoensis can be split into two "subforma": a "boreal" environment form from areas with extremes in climatic variation, i.e. Miramichi Estuary, Annapolis Basin and Long Island Sound; and a "Lusitanian" environment form, from areas with a narrower climatic range, i.e. San Diego Bay, San Antonio Bay, Venice Lagoon and Bay of Izmir. Both forms exhibit the key characteristic of the forma: sutures filled with papillae, broadening towards the umbilicus, giving the umbilicus a star shaped appearance. The "boreal" form found along the North Atlantic seaboard resembles, and can be linked to E. excavatum forma excevata; the wall perforations are fine and the papillae small. The ponticuli are more strongly developed on this form. The "Lusitanian" form resembles, and can be linked to E. excavatum forma gunteri; the periphery is rounded, wall perforations coarse, papillae more variable in size and a larger number of bosses present in the umbilicus. This "Lusitanian" form is the one most of ten seen by European workers, and in the European samples examined, the link to the core of the E. excavatum group is not apparent. It is difficult to draw definite conclusions about the environmental preferences of some of the morphotypes. As Myers (1943) pointed out, there are many ecological parameters acting simultaneously upon several phases of the life cycle of foraminifera, making it difficult to estimate the possible effect of a single
variable while comparable changes in magnitude are taking place in other conditions. As noted by Raup and Stanley (1971), the same morphological variables may be under genetic control, or under control of the environment, making separation of genetic and non-genetic factors especially difficult. Separation of such factors is impossible in a situation suggested by Jardine and Sibson (1971), when the extent to which variables are environmentally modifiable is in itself under genetic control.

In very general terms, however, the following useful observations can be emphasized: 1) Elphidium excayatum forma clayata, the dominant member of the group and cosmopolitan form, is found in cold, normal marine waters or slightly reduced salinities; 2) forma excavata (a cosmopolitan form) is found as a minor constituent of the population in the intertidal zone; 3) forma williamsoni a very cosmopolitan form, is the dominant intertidal/marsh form where there is little wave action; 4) forma selseyensis is a temperate to polar water (1-160C) estuarine form on both sides of the Atlantic; 5) forma lidoensis, also present on both Atlantic seaboards and the Pacific coast, is a warm to temperate water estuarine and lagoon form; 6) forma gunteri a cosmopolitan form, appears to replace forma clavata in temperate to tropcial waters; 7) forma galvestonensis, a tropical, nearshore, lagoon form preferring normal to hyper-salinities, appears to be geographically isolated, being present mainly along eastern North America; a tropical, nearshore, lagoon form preferring normal to hyper-salinities; 8) forma cuvillieri appears to be a subtidal temperate to tropical normal marine form, common in the Mediterranean
and along the European (Atlantic) coast but occurring in the Gulf of Mexico too; 9) forma tumidum is observed only along the western North American coastline and 10) forma magna appears to be an arctic to temperate water nearshore turbulent zone form.

Feyling-Hanssen (1972) reported the following occurrences: 1) Elphidium excavatum forma clavata in arctic and subarctic waters from moderate depths; 2) forma selseyensis (= forma excavata) in the boreal environment; and 3) forma lidoensis in the Lusitanian regions. He noted that (1972 p. 339): "In all environments, variation in shape and sculpture of this species occur, but a certain pattern in the distribution of different forms is recognizable..... This pattern must also be of paleo-ecological significance, and for these reasons it must be considered of some importance to maintain a taxonomic separation between the major variations within the species".

Similar observations were made earlier by Bartlett (1963, 1964, 1965a, 1965b). Bartlett studied the occurrence of Elphidium incertum "complex" (=E. excavatum) of Tracadie Bay, Prince Edward Island (1965a) and the Scotian Shelf (1963, 1964); observing that differences in external morphology were apparently related to environmental parameters (Bartlett, 1965b). Bartlett found large opaque forms (forma magna) associated with turbulent nearshore environments (as did Scott 1977, Scott et al. 1980) or the outer shelf. In normal marine environments, such as inner shelves and open bays, Bartlett (1965b) observed translucent biumbonate forms with one or more umbilical bosses and translucent biumbilicate specimens (=forma clavata?). Back-bay and lagoonal specimens appeared to be smaller, extremely
variable in external morphology and often the umbilicus had a depressed, slit-like appearance (=forma excavata).

Wilkinson (1979) was of the opinion that he was dealing with two distinct species when he pointed out that the type descriptions of Elphidium excavatum and E. clavatum differ markedly. He compared the type figure of Polystomella excavata Terquem (1876), and the neotype described by Lévy et al. (1975) with Cushman's E. clavatum, and concluded that the morphological differences between the two were taxonomic and sufficient to justify specific separation.

Wilkinson (1979) reported the geographical distribution of the different morphological variants as having very little or no overlap and consequently designated them as subspecies. According to Mayr et al. (1953, p. 30): "Subspecies are geographically defined aggregates of local populations which differ taxonomically from other such subdivisions of a species. Not more than one subspecies of any one polytypic species can exist in breeding condition in any one area". In the populations studied, seven morphological variants of $E_{\text {en }}$ excavatum, including those that Wilkinson would regard as subspecies, are found concurrently living in Bay of Chaleur; six are present in San Diego Bay; five were observed in the Annapolis Basin, Chezzetcook Inlet, and San Antonio Bay; four were present in Long Island Sound and Miramichi Estuary; three were observed in the Maine-New Brunswick Estuary and Venice Lagoon; two were observed in the Beaufort Sea and off Liverpool, Nova Scotia. In addition, of the assemblages studied eight morphotypes were noted in the Baie Verte core sample; seven were present in San Francisco Bay core; four were observed in the Champlain

Sea sample; three were present in the Bay of Izmir core sample; and two formae were present in the Labrador Shelf core, and in the Hirtshals, Denmark and Wadden Sea samples.

Hence these distributions provide strong evidence that the morphotypes examined in this study do not fulfill Mayr's definition of subspecies . These morphotypes appear to be ecophenotypes, which are the result of non-genetic modification of the phenotype to specific ecologic conditions (Mayr et al. 1953). A similar interpretation was proposed by Feyling-Hanssen in 1972.

Wilkinson (1979) noted that E. excavatum (Terquem) and E. clavatum Cushman were morphologically distinct. Rodrigues and Hooper (1982, p. 415) also stated: "because no morphological series relating modern specimens of E. clavatum to either E. selseyensis or E. lidoense have been adequately documented in the literature, we choose to regard E. clavatum as distinct from E. selseyense and E. lidoense". As shown in this thesis however, these four "species" and six other often reported taxonomic units (E. williamsoni, E. gunteri, E. galvestonense, E. cuvillieri, E. tumidum and E. excavatum forma magna) as well as numerous other "species", can be accommodated into various intergradational series, which indicates only one highly variable species is present, E. excavatum (Terquem), which includes at least 10 ecophenotypes. Since the ecophenotypes of E. excavatum have paleo-ecological rather than taxonomic significance, it is suggested that Feyling-Hanssen's (1972) trinomial terminology, inclusive of an epithet for the forma, be retained.

Poag (1978) has studied ecophenotypy in the genera Ammonia,

Elphidium, Palmerinella, and Ammotium from San Antonio Bay, Texas. (The San Antonio Bay samples studied here are some of the same samples, kindly made available by Dr. Poag). Poag's conclusions about ecophenotypy in Elphidium are different than those drawn here, probably for two reasons. One is the subjectivity of the methods used to delimit the ecophenotypes. When two or more morphotypes can be linked through an intergradational series, there is no set limits to each morphotype and the "morphological boundary" between two morphotypes is up to the author's discretion. The other reason may be the limited range of variability present in Poag's sample relative to the scope of the variability observed in the twenty samples described in this work. No one sample contains the whole spectrum of the species (indeed, neither does twenty samples) but the range of variability in twenty is usually greater than that observed in one. Consequently, the boundaries between morphotypes fall in different places. Arnold (1968) has emphasized that large natural populations must be studied throughout as much of the geographic range as possible to determine the incidence of each suspect variant.

Haynes (1981, p. 61-62) states that E. excavatum can be regarded as a "superspecies" comprising E. clavatum and E. selseyense and their allies as siblings of E. ex gr. excavatum. Alternatively, this group may be viewed as one polytypic species, E. excayatum subsp. gr. Haynes states that intermediates do exist and that the distribution patterns he has observed suggest (p. 62): "a morphological continuum with distinctive 'end members' in different geographical areas that are conveniently regarded as separate species.". Haynes (1981)
continues: "... it is difficult, if not impossible to distinguish between 'subspecies' and 'ecophenotypes' which in any case are potential if not actual subspecies."

The observations made in this study contradict those of Haynes; they indicate that eight of the formae studied are not geographically isolated (a hypothesis that will be further investigated in the statistical study). Only two formae, tumidum and galvestonensis do not have a widespread occurence throughout both Europe and North America. As stated previously, the presence of intergradational series makes it highly unlikely that these morphotypes are subspecies. It has been suggested (see Haynes 1981) that live cultures are the only definite method of solving genetic vs. non-genetic variation problems. For some groups, this method has been successful (e.g. Ammonia beccarii, Schnitker 1974). However, the intergradational series technique applied to live populations is also effective because, in a sense, an "in situ" culture is being investigated. This technique has the advantage of examining a population from a natural environment rather than the artificial environment provided by laboratory cultures. It is difficult to duplicate all the conditions of the natural environment, and with so many variables, Myers (1943) considers it is virtually impossible to determine which one or combination of influences determines morphological variation. Hence, it is felt that the intergradational series techniques for this kind of taxonomic study is a useful and valid tool.

1) Information from the literature and observations here indicate that Elphidium excavatum (Terquem) is a highly variable species comprising at least nine (possibly ten) distinct ecophenotypes (formae). No definite conclusions are drawn at this time about the tumidum form; though it is treated as a forma of E excavatum, no definite conclusions can be based on 11 specimens from two locations. 2) Distribution patterns of the formae suggest association with environmental variables rather than simple geographic locality (many formae can live in one area at times). These observations lead to the rejection of the subspecies ranks proposed by Wilkinson (1979) and Haynes (1981).
2) The designation of "forma" has been retained from Feyling-Hanssen (1972) and ten formae can be recognised with the binocular microscope:
3) E. excayatum forma excavata (= forma selseyensis of

Feyling-Hanssen) found as a constituent of populations in intertidal zones; 2) forma williamsoni is the dominant intertidal/marsh form where there is little wave action; 3) forma clavata, the dominant member of the group found in cold normal marine waters or slightly reduced salinities; 4) forma selseyensis (not sensu Feyling-Hanssen), a temperate to polar water estuarine morphotype; 5) forma gunteri, which appears to replace forma clavata in temperate to tropical waters; 6) forma galvestonensis, possibly geographically isolated along the eastern North American coast, a tropical, nearshore lagoon form, preferring normal to hyper-salinities; 7) forma lidoensis, a warm to temperate water estuarine and lagoon form; 8) forma cuvillieri appears to be a subtidal temperate to tropical normal marine form; 9)

Variability in the E. excavatum group (number of formae and the percentage of intermediate forms present) appears to increase when each, or a combination of, the following variables is increased: water temperature, proximity to shore, estuarine influence and the range of annual climatic variation.

STATISTICAL INVESTIGATION OF INERASPECIFIC VARIATION

PREVIOUS WORK

The earliest attempts to apply numerical methods to taxonomy date from the rise of biometrics in the last century (Sokal and Sneath 1963). As early as 1898 Heinke used a measure of phenetic distance to distinguish between races of herring. It was realized early on that biometrics could be applied to systematics (Sokal and Sneath 1963).

Foraminiferal taxonomy is based almost exclusively on characters of the shell, and foraminiferal shell structures have been most commonly analysed by univariate methods. These include linear measurements, enumerator data, ratios, and relative variability, all of which are explained by Scott (1974). Bivariate analysis, usually pairs of shell measurements analysed by linear regression, have also been used. Scott (1974) cites many examples of both univariate and bivariate methods (as applied to foraminifera); a good example is described by Gradstein (1974).

However, a form as complex as the foraminiferal shell requires many variates for its quantitative representation. The shell is an integrated structure and variates need to be considered simultaneously rather than in pairs. Multivariate methods are capable of doing this, and the development of electronic computational methods and equipment, makes multivariate analysis possible.

The many variates quantitatively representing the foraminiferal test can often be envisaged as a cluster of points in a multidimensional space. New variables "canonical variates" (plotted on canonical axes), are computed which are linear combinations of the
original variables, and are so oriented that the sample means are now at maximum distances apart (Scott 1974). Buzas (1966) computed three canonical variates based on invariant characters of four species of Elphidium; these canonical variates graphically represent a large proportion of intersample variance. Buzas (1966) proved that these four species were only three species statistically; two species, Elphidium clavatum Cushman and E. incertum Cushman (not Williamson) were not statistically separable.

To differentiate infraspecific populations exhibiting ecologic or geographic patterns to their distribution, various techniques of discriminant analysis (Fisher 1936) may be used to test the hypothesis that they can be differentiated (Jardine and Sibson 1971). Discriminant analysis constructs canonical variates from multivariate normal populations with common variances and covariances and allocates individuals among known populations. These new variates are linear and the populations are at maximum distances apart. Discriminant analysis is particularily applicable if the specimens to be allocated belong to one of the populations represented in the computation of the function; there is no provision for a specimen not belonging to one of the populations in question (Scott 1974).

Another advantage of discriminant analysis is that it has been successfully used previously in similar cases, where there is no convenient breaks in the sequence to allow the delineation of distinct morphotypes. Ashton et al. (1957) and Pritchard (1960) have applied discriminant analysis to infraspecific variation in anthropology and botany respectively; and Reyment (1973) in paleontology.

WHAT IS IT?

Discriminant analysis is a statistical method for deriving one or more discriminant functions, each of which is a linear combination of two or more independent variables that will discriminate best between the a priori defined groups. This derivation is achieved by using a statistical decision rule to determine the maximum between-group variance relative to the within-group variance, i.e. to obtain the largest ratio of the between-group to within-group variance (Hair et al. 1979).

The general equation of a discriminant function is:

$$
Z=w_{1} x_{1}+w 2 x_{2}+w 3 x_{3}+\ldots \text { wpxp (equation } 1 \text {) }
$$

or

```
Z = X'W
    (equation 2)
```

where:
Z is the value of the discriminant function or discriminant score, for a defined group
W_{p} is the coefficient for the pth variable, x_{p}
$\underline{x}=\left(x_{1}, x_{2}, x_{3}, \ldots \ldots, x_{p}\right)^{\prime}$ is the independent variables vector, and $W=\left(w_{1}, w_{2}, w_{3}, \ldots . ., w_{p}\right)$ is the coefficients vector.

To obtain the discriminant function, each independent variable is multiplied by its corresponding weight and these products are added together. If there are more than two groups, more than one discriminant function is needed to separate the groups. In general, there are a maximum of $g-1$ functions (where g is the number of groups). The result is a single composite discriminant score for each function for each individual in the analysis. The discriminant
function tests the hypothesis that the means of the two (or more) groups are equal. By averaging the discriminant scores for all the individuals within a particular group, the group mean, called the group centroid, is obtained. The test for statistical significance of the discriminant function is a generalized measure of the distance between the group centroids, and is computed by comparing the statistical distribution of the discriminant scores in each group. If the overlap in the distributions is small, the discriminant function separates the groups well. If the overlap is large, the function is a poor discriminator between the groups (Hair et al. 1979).

A good mathematical description of discriminant analysis is given in Sneath and Sokal (1973).

There are a few assumptions made in the application of discriminant analysis. One is that there is multivariate normality of the distributions and equal dispersion and covariance structures for the groups. Scott (1974) says that the assumption of equal covariance matrices seldom holds for foraminiferal data; causes and reasons for non-homogeneity are discussed by Reyment (1962, 1969). Another assumption is that there are equal a priori group probabilities. However, discriminant analysis is not overly sensitive to violations of these assumptions unless the violations are extreme (Hair et al. 1979). The assumption that there is equal probability of an unknown sample belonging to any group is the most difficult to justify when taxonomic data are used (Davis 1973), but tests for this probability are beyond the scope of this work.

A graphical illustration of a two-group analysis may help elucidate the procedure just described. Figure 2 represents a scatter diagram and the projection resulting from computation of a discriminant function.

There are two groups, a and b, and two variables, x_{1} and x_{2}, measured for each specimen of the two groups. The x_{1}, x_{2} values are plotted for each specimen. By finding a linear combination of the original variables X_{1} and x_{2}, the result can be projected onto a new axis, representing the discriminant function, Z, drawing a straight line through the two points where the ellipses encircling the data for each group interesect. When the data points for groups and b are projected onto the new Z axis, they condense the information about group differences into a set of points on a single axis (Hair et al. 1979). The overlap between the univariate distribution a^{\prime} and b^{\prime} is smaller than that obtained by any other line drawn through the scatter plots (Green and Tull 1975).

PROCEDURE

The application of discriminant analysis can be divided into three major stages: (1) derivation, (2) validation and (3) interpretation (Hair et al. 1979). The derivation stage involves determining whether or not a discriminant function which is statistically significant can be derived to separate the groups. The validation stage involves developing a classification matrix to further evaluate the predictive accuracy of the discriminant function. The interpretation stage involves determining which of the independent variables contribute the most toward discriminating between the groups

$$
\begin{array}{ll}
\text { Figure } 2: & \text { A two group analysis. A scatter diagram } \\
& \text { for characters x and x } \text {, obtained for all } \\
& \text { the individuals in groups a and b; and the } \\
& \text { projection resulting from the computation } \\
& \text { of a discriminant function (from Hair et } \\
& \text { al. } 1979 \text {). }
\end{array}
$$

(Hair et al. 1979).

DERIVATION

This stage consists of several steps: a) variable selection, b) sample division, c) computational methods, and d) statistical significance (Hair et al. 1979).

Variable selection: To apply discriminant analysis, the analyst must first specify which variables are to be independent variables and which is to be the dependent variable. The dependent variable should be chosen first. There can be two or more categories or groups of the dependent variable but these groups must be mutually exclusive and exhaustive. The independent variables must then be chosen. These variables can be selected in two ways. Variables identified from previous research or from a theoretical model (which is the underlying basis of the research question) can be employed. The second method of choosing variables is intuitive, based on trying to extend the researcher's knowledge. In both methods, those variables are selected which logically might be related to predicting the groups for the dependent variable (Hair et al. 1979).

Sample division: The discriminant function (or functions) must be tested for statistical validity. One procedure (the split sample method) involves developing the discriminant function(s) on one data set and then testing it (them) on another (Frank et al. 1965). The first data set, the analysis sample, is used to develop the discriminant function. The second set, the holdout sample, is used to test the discriminant function.

Frank et al. (1965) point out that an upward bias will occur in
the prediction accuracy of the discriminant function if the same individuals are used in developing the classification matrix as were employed in computing the discriminant function. If the split sample method is not used, then the classification accuracy will be higher than is valid for the discriminant function.

There are no definite rules for dividing the data into analysis and holdout samples. One can employ a 50-50, 60-40, or 75-25 split between the two groups, respectively. However, when selecting individuals for the two samples, a proportionally stratified sampling procedure is usually followed. If the categorical groups of the dependent variable are not equally represented in the total sample, then the size of the groups within the holdout sample should be proportional to that group's representation within the total sample (Hair et al. 1979).

The most frequent procedure utilized in validating the discriminant function is to divide the groups randomly and run the analysis only once. Frank et al. (1965) suggest that greater confidence could be placed on the validity of the function(s) if the above procedure were followed several times.

There are other more sophisticated methods for validating discriminant functions, a summary of these methods can be found in Crask and Perreault (1977).

Computational method: There are two computational methods that can be utilized in deriving the discriminant functions: the simultaneous (direct) method, and the stepwise method (Hair et al. 1979).

The simultaneous method involves computing the discriminant function so that all of the independent variables are considered
concurrently. The discrimanant function(s) is computed using the entire set of independent variables, regardless of the discriminating power of each. The simultaneous method is appropiate for the initial analysis, when the function(s) is derived. Once the discriminating power of the function(s) is ascertained, the stepwise method might be employed to see the intermediate results based on only the most discriminating variables (Nie et al. 1975).

The stepwise method involves entering the independent variables into the discriminant function(s) one at a time, based on their discriminant power. The first step is for the computer to determine the single best discriminating variable. This initial variable is then paired with each remaining variable until a second variable is chosen that best improves the discriminating power of the function in combination with the first variable. The third and subsequent variables are selected in a similar manner. As additional variables are included, some previously selected variables may be removed if the information they contain about group differences is available in some combination of other included variables. Eventually, all variables will have been included in the function(s), or excluded if they do not contribute significantly to the discriminating power of the function(s) (Nie et al. 1975).

The mathematical derivation of the discriminant function(s) (as derived from first principles) is given in Appendix B.

Statistical significance: After the discriminant function has been derived, its level of significance must be assessed. If the function is not significant at or beyond the 0.05 level, there is little justification for continuing to the validation and interpretation
stages because there is little likelihood that the function will classify accurately (Hair et al. 1979).

VALIDATION

Once the discriminant function(s) have been developed, the statistical significance of the function(s) must be determined. In the SPSS program, the statistic used is a chi-square, \mathcal{X}^{2} (Nie et al. 1975). However, the level of significance of this statistic is a poor indication of the function's ability to discriminate between the groups (Hair et al. 1979). With large sample sizes, the group means (centroids) could be almost identical and there would still be a statistically significant difference with the χ^{2} test. With sufficiently large sample size, there could be a significant (χ^{2}) difference between two (or more) groups and yet, for example, only 53 percent would be correctly classified (when chance is 50 percent for two equal sized groups) (Morrison 1969). For reliable classification the classification matrices should be developed to provide a more accurate assessment of the discriminating power of the function (Hair et al. 1979).

The validation stage involves several steps. These include: a) construction of classification matrices, b) using chance models to determine the expected percent of correctly classified specimens and c) assessing the classification accuracy relative to the chance of random group assignment (Hair et al. 1979). Construction of classification matrices: To validate the discriminant functions, classification functions are developed and evaluated. As mentioned earlier the analysis sample was used to compute the
discriminant function(s). The holdout or validation sample was retained for use in developing the classification matrix. The general equation for a classification function is:

$$
\left.\ln \frac{1}{g}+\left(x-\frac{\bar{x}_{i}}{2}\right)^{\prime} W-1 \bar{x}_{i} \quad \text { (equation } 3\right)
$$

where:
g is the number of groups
\mathbf{x} is the independent variable vector (for the specimen being tested)
\bar{X}_{i} is the mean vector for the independent variables of the i th group, and
W is the within groups variance-covariance matrix. Derivation of the general equation is given in Appendix B. The classification rule is to evaluate these g functions for each specimen, and classify the specimen with independent variables x into the group which gives the largest function value. The $g \times g$ classification matrix tabulates for each group the number of specimens classified into each group (correctly classified when assigned to its own group and incorrectly classified when assigned to another group). The hit ratio, which is the proportion correctly classified, is the sum of the diagonal entries on this matrix divided by the sample size, For a two group case, it can be shown that the classification functions and discriminant functions are essentially the same (Appendix B).

Chance models: Another factor that must be considered is the percentage of specimens that would be correctly classified by chance. When the sample sizes of the groups are equal, the determination of the chance classification statistic (c) is simply obtained by dividing
1.0 by the number of groups (ie: $c=1 / g$). For the case where the group sizes are unequal, c can be based on the sample size of the largest group, referred to as the maximum chance criterion (Hair et al. 1979). When the sample sizes are unequal and all specimens are to be classified, the discriminant function defies the odds when classifying a specimen into a smaller group; a factor which should be taken into account (Morrison 1969).

If the percentage of correct classifications is significantly larger than would be expected by chance, an attempt can be made to interpret the discriminant functions. Hair et al. (1979) suggest that as a rough estimate, the classification accuracy should be at least 25 percent greater than by chance; this criterion is easy to apply to equal sized groups (Hair et al. 1979).

INTERPRETATION

If the discriminant function is statistically significant and the classification accuracy acceptable, then the results can be interpreted. The discriminant functions should be examined to determine the relative importance of each of the independent variables in discriminating between groups. Three methods have been suggested for determining the relative importance of these variables: a) standardized discriminant weights, b) discriminant structure correlations, and c) partial F-values (Hair et al. 1979). Discriminant weights: The traditional approach to interpreting discriminant functions involves examining the sign and magnitude of the standardized discriminant weights (or function coefficients), calculated for each variable in computing the discriminant functions.

Independent variables with relatively larger weights contribute more to the discriminating power of the function than do variables with smaller weights regardess of the sign (+ or -) Hair et al. 1979). There are two drawbacks associated with emphasizing discriminant weights. A small weight may either mean that its corresponding variable is irrelevant in determining a relationship; or that the variable has been partialled out of the relationship because of a high degree of multicolinearity (Hair et al. 1979).

Discriminant loadings: Discriminant loadings (or structure correlations) measure the simple linear correlation between each independent variable and the discriminant function(s). The discriminant loadings reflect the variance the independent variables share with the discriminant function, and can be interpreted like factor loadings in assessing the relative contribution of each independent variable to the discriminant function (Hair et al. 1979). Partial F-values: As discussed earlier, there are two computational approaches that can be utilized in deriving the discriminant function(s) - simultaneous and stepwise. When the stepwise method is selected, the relative discriminating power of the independent variables is measured through the use of partial F-values. Large F-values would indicate greater discriminating power.

ANALYSIS OF FORAMINIFERA DATA

COMPUTER PROGRAMS

computer program from SPSS - "Statistical Package for the Social Sciences". It is a prepared program that performs a specified set of operations, under the control of a simplified set of instructions (Klecka et al. 1975). The major features of SPSS: data collection, control cards, data and system files, etc., are explained in the SPSS Primer (Klecka et al. 1975). A complete description of the SPSS system including the subprogram DISCRIMINANT is given in "the SPSS manual", "SPSS: Statistical Package for the Social Sciences" (Nie et al. 1975).

To aid in understanding the SPSS output, an illustrative example Was devised (see Illustrative Example - TEST) and most of the SPSS computations for this TEST example were duplicated using another statistical package, MINITAB. MINITAB is a step-by-step interactive package (Ryan et al. 1981). The computations reproduced from the SPSS output using MINITAB will be outlined in detail later (see Appendix C : TEST Calculations).

The computing was done on the CDC Cyber 170 computer at Dalhousie University.

DATA COLLECTION

There are many comprehensive textbooks on numerical taxonomy (among them Sokal and Sneath 1963, Jardine and Sibson 1971, and Sneath and Sokal 1973). These all discuss the philosophy behind numerical taxonomy and the theoretical considerations of data collection, and character selection, measurements, coding and ranking, etc. which will not be discussed here. Scott (1974) discusses character selection and measurement in detail for foraminiferal biometric studies and the
reader wishing to pursue the matter is referred to these works or those of his choice.

The first step was to choose the dependent variable and it was decided, based on the observations and subjective taxonomy to make "morphotype" the dependent variable (group) for most of the analyses. However, morphotype was treated as an independent variable in two of the analyses, and for these two analyses, location was the dependent variable (otherwise location was treated as an independent variable). Selection and measurement of the independent variables will be described in detail in the following section.

There were two alternatives available for the actual measurement of the independent variables. One was to take the measurements directly from the specimens observed under a microscope, a method employed by Buzas and Culver (Buzas 1966, Buzas and Culver 1981 pers. comm.). The other method was to obtain scanning electron microscope (SEM) photographs of each specimen and make the measurements from those photographs. Scott (1974) discusses the advantages of this method and lists authors who have had success completing biometric studies with the aid of the SEM. This second method was chosen because it is easier to return to a photograph to verify measurements than to relocate a specimen under a microscope. However, the disadvantage of photographs is that photos are often distorted, because the specimen was not centered, or because the specimen was damaged during the preparation for or during photographing. (In this study, phots of 89 specimens were rejected for these reasons.) If the first method had been employed, the measurements may have been more accurate, but also more difficult to make and reproduce.

VARIABLE SELECTION and MEASUREMENT

In this study, the dependent variable is usually the "morphotype" or group, to which specimen belongs. As described in the first part of the thesis, ten morphotypes (ecophenotypes) of Elphdium excavatum were recognized using a subjective method. Even without exact knowledge of the degree of overlap between the typological units and those to be generated in the analysis, the practice of Gradstein (1974) was followed, that of retaining the ten epithets, of the "subjectively" defined morphotypes and using these names for the "statistically" defined morphotypes. This has the advantage that a set of labels is already available (Gradstein 1974).

Each specimen was assigned to one of these ten morphotypes (1-10) as outlined on Table 2. In addition, for three of the analyses, three other species were added (11-13, Table 2). These were Elphidium bartletti, E. subarcticum and Haynesina orbiculare. The group codes for these species are also given on Table 2.

Throughout the remainder of the statistical investigation, the morphotypes will be referred to as groups, and the groups will usually be referred to by code number only. The Fortran code for group is FORM (from 'forma'). All other variables were also assigned a code name. Sixteen independent variables were chosen, in consultation with Dr. S.J. Culver, Dr. M.A. Buzas (Culver and Buzas 1981 pers. comm.), and Dr. C.T. Schafer (Schafer 1982 pers. comm.). In addition, variables were chosen with reference to previous work by Buzas (Buzas 1966). The data were measured (ranked/scored) so they could be utilized directly in the SPSS system .

Number (FORM)	Morphotvpe or Group
1	clavata 2
3	excavata
4	$\underline{\text { selseyensis }}$
5	lidoensis
6	magna
7	gunteri
8	galvestonensis
10	cuvillieri
11	williamsoni
12	tumidum
13	H. orbiculare

Table 2: Code numbers used for each of the ten morphotypes (or groups) of Elphidium excavatum and three other Elphidiidae species in the analysis.

Ten of the independent variables are qualitative, six are quantitative. Kendall and Stuart (1966) state that a set of mixed variables (some qualitative, some quantitative) can't be processed satisfactorily by discriminant functions, but Nie et al. (1975) make no mention of these restrictions; in fact, their examples contain both.

The first qualitative variable is the location (LOC) the specimen was collected from. Specimens were from 20 samples from 19 different locations (see Table 1) and were assigned code numbers for the purpose of the analyses, as outlined on Table 3.

The remainder of the qualitative variables were observations made from the SEM photographs, and were given arbitrary scores or ranks, as explained below. Table 4 lists all the variables, their codes, and possible ranks or scores. Table 5 refers to illustrations of the variables.

PAP denotes the presence (scored as 1) or absence (scored as 0) of papillae anywhere on the test surface other than directly within the suture. UMCO denotes the presence (1) or absence (0) of an imperforate collar of test material surrounding the umbilicus.

Seven variables were given arbitrary rankings. The depression of the umbilicus (DEUM), was measured as depressed (1), flush with the test wall (2), or raised (3). The density of the wall pores (POR) was ranked as very fine (4-barely seen in photo), fine (3), medium (2), and coarse (1). The angle of the margin (AOMA) was ranked as acute (1) or subacute (2). The peripheral outline (PERO) was ranked as completely smooth (1); slightly lobate or the last few chambers lobate (2); or markedly lobate or more than one half the chambers in the

Number (LOC)	Location
1	Beaufort Sea - Vilks
2	Beaufort Sea - Bartlett
3	Hirtshals, Denmark
4	Labrador Shelf
5	Labrador Shelf
6	Miramichi Estuary
7	Northumberland Strait
8	Annapolis Basin
9	Chezzetcook Inlet
10	Long Island Sound
11	Bay of Chaleur
12	San Diego Bay
13	Bay of Izmir (Turkey)
14	Champlain Sea
15	Wadden Sea
16	Venice Lagoon
17	Maine-New Brunswick Estuary
18	San Antonio Bay (Texas)
19	Liverpool, Nova Scotia
20	San Francisco Bay

Table 3: Code numbers for the variable locations. Location 4 refers to a gradational sequence from a Labrador Shelf core, Location 5 is an intergradational series from the same core. Both of these are discussed and illustrated elsewhere (Miller 1979, Miller et al. 1982).

dependent or independent	discrete or continuous	qualitative or quantitative	code	possible scores or rankings
dependent	discrete	qualitative	FORM	1-10
independent	discrete	qualitative	LOC PAP UMCO AOMA SUT DEUM PERO DEPO REPO POR	$\begin{aligned} & 1,-20 \\ & 0,1 \\ & 0,1 \\ & 1,2 \\ & 1,2 \\ & 1,2,3 \\ & 1,2,3 \\ & 0,1,2,3 \\ & 0,1,2,3,4 \\ & 1,2,3,4 \end{aligned}$
		quantitative	CHAM PONT NOBO	count count count, then classed $0,1,2,3,4$
			POSU	ratio, then classed
	continuous	quantitative	$\begin{aligned} & \text { GSD } \\ & \text { GS90 } \end{aligned}$	$0,1,2,3,4$ measurement measurement

Table 4: Summary of variables used in the analysis.

Table 5: Listing of specimens illustrating possible independent variable ranks or scores. Plate and figure listings refer to this work.

Variable and code Ran	Rank/Score	Illustration
Forma (FORM)	1-10	See Table 2
Location (LOC)	1-20	See Table 3
Papillae (PAP)	0	p1. 24: 11,13; p1. 29: 1,8,22;
	1	pl. 24: 12,15; pl. 27: 3,13,32
Imperforate (UMCO)	0	pl. 21: 2,4,6; 01. 27: 5,17
Collar	1	p1. 24: 2,6,13,16,19
Depression of (DEUN) Uubilicus	1	pl. 21: 1,4; pl. 24: 1,3
	2	P1. 24: 6,14; pl. 29: 6,9,20
	3	pl. 25: 9,1i; pl. 28: 3,7,11
Wall Pore (FOR) density	1	p1. 25: 5,13; pl. 27: 14,17
	2	p1. 24: 2,21; pl. 29: 6,9,22
	3	p1. 24: 1i, 14; pl. 28: 14,15
	4	pl. 22: 3,6,14,20
Angle of (AOMA) Margin	1	pl. 21: 5,9; 01. 24: 2,13,15
	2	pl. 25: 9,11; pl. 28: 3,4,7
Peripheral (PERO) Outiine	1	p1. 24: 2,11; pl. 28: 1,10
	2	p1. 27: 5,23; pl. 29: 8,15
	3	pi. 23: 1,3; pl. 29: 16
Curvature of (SUT) Sutures	1	p1. 24: 4,8,19; pl. 28: 2,5
	2	p1. 27: 12,13; 01. 29: 16,22
Development of (DEPO) poariculi	0	p1. 27: 21,23,26
	1	pl. 23: 14; p1. 27: 5,7,13
	2	p1. 2:: 1,2; pl. 24: 12,13
	3	p1. 24: 8,15; pl. 29: 8,10,20
negularity of (REPO) ponticuli	0	pl. 24: 2; pl. 27: 21,23
	1	p1. 21: 12; pl. 24: 3; pl. 27: 19
	2	pl. 25: 13,22; pl. 28: 5,7,14
	3	p1. 25: 23; pl. 28: 12,17
	4	pl. 22: 5,8,16; pl. 29: 12
```Number of (IOEO) bosses (classec)```	0	p1. 27: 3,8; p1. 29: 8,10,22
	1	pl. 24: 2,4, \&; pl. 26: 4, 13
	2	p1. 24: 11; pl. 27: 19, 32 $23.12,16$
	3	$\begin{aligned} & \text { pl. 25: 11; pl. 27: 14; pl. 28: 12,16 } \\ & \text { p1. 27: 24,28; p1. 28:14 } \end{aligned}$
Hucber of ponticuli/ (POSU) suture	$) 0$	P1. 24: 2; pl. 27: 26
	1	p1. 21: 12; pl. 24: 3; pl. 27: 21
	2	p1. 23: 2,13; pl, 27:19
	3	pl. 25: 11,14; p1. 28: 7,17

final whorl lobate (3). The sutures (SUT) were ranked as straight or with more than one half the sutures straight (1) or more than one half the sutures curved (2). The ponticuli (DEPO) were ranked as absent (0), poorly developed or indistinct (1), distinct but not completely spanning the suture (2) or more completely developed and extending all the way across the suture (3). The regularity of the ponticuli (REPO) were ranked as absent (0), very irregular (with some sutures having ponticuli absent, others having many ponticuli) (1), medium regular (2), very regular (3), and extremely regular (4).

Four of the quantitative variables were actual counts or measurements taken from the photographs. Two were discrete counts: the number of chambers (CHAM) and the number of ponticuli observed on the final whorl (PONT). Two variables were size measurement readings, the greatest spiral diameter (GSD - the largest diameter measured through the umbilicus and usually through the final chamber), and the diameter measured 900 to the greatest spiral diameter (GS90).

Finally, there were two measurements used that were highly variable, and in some cases difficult to measure. For these two variables, classes were erected. One variable was the number of bosses (NOBO). It was often difficult to distinguish between an umbilical boss and papillae in the umbilicus. Consequently the number of bosses per specimen was counted and classed accordingly: 0 bosses $=$ $0 ; 0-2$ bosses $=1 ; 2-4$ bosses $=2 ; 4-8$ bosses $=3$; and $8-16$ bosses $=$ 4. This same class system was applied to the ratio POSU (= number ponticuli / suture). In effect, this is a measurement of REPO, and might make REPO redundant. If the ratio was less than 1 , the class is 0,1 to $2=1 ; 2-4=2 ; 4-8=3$; and $8-16=4$.

This system of classing variables, and of classing these variables in particular has been employed by Buzas (1966).

For five of the analyses indicator or dummy variables were created; dummies were created for location in four analyses and for forma in one analysis. In this instance each location (or forma) was represented by a new independent variable with value one if the specimen was from that particular location (or of that forma), and with value zero otherwise. When location was coded as dummy variables (DUM1 to DUM20) each with score one, LOC was not included in the analysis. Similarily when forma was treated as dummy variables, there were 10 additional independent variables (DUM21 to DUM30) in the analysis and FORM was not included.

## VARIABLE TRANSFORMATIONS

The quantitative independent variables were tested for constant variance by plotting each group mean (for each variable) against its standard deviation. PONT, did not have a constant variance. However, the square root transformation of PONT, POSQ did have a constant variance and was used in place of PONT in all analyses.

There is a general tendency in biological populations for variance to be a function of the mean (Scott 1974).

Some of the quantitative variables are related to ontogenetic development, or the growth stage of the organism. These include CHAM, GSD and GS90. The measurements of the continous variables depend on the ultimate growth stage which the individual attained (Gradstein 1974). CHAM, GSD, and GS90 become greater with increasing test size, preventing general conclusions from being drawn from the comparison of
means based on the raw data. If possible, the effects of ontogenetic development should be removed (Gould 1970). Because only adult specimens were chosen for this study (based on Buzas's [1966] criteria for designating a specimen "adult"), the effects of age were minimized in this work. The two variables measuring size, GSD and GS90 were highly correlated so a new variable GSR, the ratio GS90/GSD was computed and used in all analyses, in place of GSD and GS90. None of the other variables (qualitative or quantitative) correlated highly with one another.

ANALYTICAL EEATURES OF SUBPROGRAM 'DISCRIMINANT'

For each analysis a set of basic or core operations were performed. Some of these operations are referred to as "statistics", others are referred to as "options". The statistics and options calculated are given on Table 6.

Subrogram DISCRIMINANT always prints the standardized discriminant function coefficents. They are used to compute the discriminant score for a case in which the original discriminating variables are in standard form ( $Z$ scores). The coefficents have been derived in such a way that the discriminant scores produced are in standard form (Nie et al. 1975). For each function the overall mean is zero and the standard deviation is one. Discriminating variables are not coded in standard form, and standardized function coefficents may not be very useful for computational purposes. Option 11 prints unstandardized function coefficients, which when multiplied by the raw values of the independent variables give the unstandardized

Table 6: Statistics and options calculated/performed in the analyses (from Nie et al. 1975).

Statistic/option	Operation/cadculation performed.
Statistic 1	Group weans - weans of all vaiues of the dependent variable and for the total set of cases.
Statistic 2	Standard deviations for each group and the total set of cases.
Statistic 3	Fooled vitain - groups covariance matrix.
Statistic 6	Univariace Fratio3. Oneway analysis of variance test for equality of group means on a singie discrimitating variable. Anfis printedfor each variable.
Option 1	All missing value declarations are ignored. All cases included during the stepwise anc analysis phases, provided they satisfy the GKoups specification. All cases are classified regardless of their group assignment.
Option 5	Print classification results table indicating for each group the number of cases classifted into each of the groups and the percert correct chassifications for the known groups.
Option 6	Print discriainant scores and classification information for cach case. This includes uase icentification (subfile name and sequenee number); group number of the group the case actually telongs to; group number ( 0 ) of the closesi group; the probability of a case in group $G$ being that far from the group centroic dencted by $P(x / \sigma)$; the frobability of the case bettaitin group $P(G / X)$; if the probability of meaberchip In the aesond closest ercup is greater than . 0005 , that probability and the number of the second closest eroup is provided; and the discriminant scores.
Option 7	Print a aingle plot of eases. For one function, this Dlot is a histogram of the distribution of cases along the runction. For two or more functions, a scatter piot of the firgt two discrimsant functions $1 s$ printec.
Option 8	Print a separate plot for each group
Option 10	Print territorial wap. Again for more than two functions, a plot for the first two discriminant functions is printed.
Option 11	Print unstandardized discriminant function coefficients. These are the coefficients to be used in computicg the diseriminant scores from rau data. The constant to be added as an adjustment for the variable means is also printed.
Option 12	Print elassification functions. These produce classification scores when used with raw data from the discriainating variables. The constant to be added as an adjusiment for the variable mears is also printed.
Option 17	Output discriminant scores.
Option 18	Output merbership probabilities for all groups.
Statistics and options used in some of the analyses	
Statistic 7	Test for equality of group covariance matricas. This is Box's M and its associated f lest This etatistio is computed for the covariance matrices based on the discriminatine variables. If Option 14 is if effect this statistic is also cocputed for the orvarience watrices based on the discriminant functions.
ODtion 14	Use incividual eroup covariance matrices for   classirisaticr. instead of the pooled within ercups covertance atirix in coriputing the probabilities of group qeaverstip.

discriminant score. When the overall mean is adjusted to zero (by addition of a constant) the standardized score is obtained.

It is not necessary that all variables be included in all analyses. Those variables included are given on the the VARIABLES LIST. All the independent variables were included in the analyses except where specified.

Using the DIRECT method all the variables specified are entered concurrently into the analysis.

In the STEPWISE procedure, the independent variables are selected for entry into the analysis on the basis of their discriminating power, either by the subprogram itself, or by specifying the order (by inclusion levels) with the ANALYSIS card.

For most of the STEPWISE analyses the ANALYSIS card was not used. The analyses where the entry order was specified will be discussed later.

There are five stepwise selection criteria. Only one method, the Wilks' lambda was used for stepwise analysis, because this method was the most similar to the DIRECT method. When METHOD = WILKS, the criterion is the overall multivariate $F$ ratio for the test of differences among the group centroids. The variable which maximized the $F$ ratio also minimized Wilks' lambda, a measure of group discrimination (Nie et al. 1975).

When a STEPWISE analysis is perfomed it is necessary to specify six other parameters or allow them to default. For all of the STEPWISE analyses four of the parameters were allowed to default. These were: TOLERANCE (tolerance level for stepwise selection, default value .001); MAXSTERS (maximum steps for the stepwise procedure
(default is twice the number of variables in the analysis); FIN (minimum $F$ to enter, default value 1.0); and FOUT (minimum $F$ to avoid removal, default is 1.0 ). Two other parameters, PIN (maximum significance level of $F$-to-enter, default value 1.0 ) and POUT (maximum significance level of $F$-to-remove to avoid removal, default is 1.0 ) were allowed to default on some analyses, and specified on others (which will be discussed later). All of these parameters are explained fully in Nie et al. 1975.

There are additional controls which can be imposed on the analysis. Two parameters which must be specified are the number of discriminant functions to be derived and the percentage of variation that these functions must account for. These are specified under FUNCTIONS.

The maximum number of discriminant functions to be derived is either one less than the number of groups (i.e. $g-1$ ) or equal to the number of variables, whichever is smaller. The dependence on the number of original variables is due to the mathematical impossibility of creating more new variables. The importance of the number of groups stems from geometric principles, that the maximum number of dimensions needed to completely describe a set of points is one less than the number of points (Nie et al. 1975). In all the analyses, the maximum number of functions were allowed.

The subprogram DISCRIMINANT provides two measures for judging the importance of the discriminant functions. One is through the eigenvalue computed in the process of deriving the discriminant functions. The sum of the eigenvalues is a measure of the total variance existing in the discriminating variables. A single
eigenvalue expressed as a percentage of the total sum of the eigenvalues is a measure of the relative importance of the associated function. Discriminant functions are derived in order of importance, and the process can be stopped when the relative importance is judged too small (Nie et al. 1975). In these analyses the program was instructed to account for all the variance, i.e. no function was judged too small.

A second criterion for eliminating discriminant functions is to test for the significance of discriminating information not yet accounted for in the derived functions. As each function is derived, starting with zero functions, Wilks' lambda is an inverse measure of the discriminating power in the original variables which has not yet been removed by the discriminant functions - the larger lambda is, the less information remaining. Lambda can be transformed into a chi-square statistic for an easy test of statistical significance. Functions that are not statistically significant can be removed. However, if the number of functions are specified, that number of functions is computed regardless of the values for the relative percentage and the significance level (Nie et al. 1975).

In the classification phase of the analysis, there is one parameter to be specified, and this is the PRIORS specification. This refers to the a priori estimate of group membership. There are three ways of inputting the a prior probabilities. When PRIORS = EQUAL (or PRIORS not included) the a priori probabilities are considered equal and no adjustments made. When FRIORS $=$ SIZE, adjustments are made on the basis of prior probabilities being proportional to the number of cases in each group, i.e. more cases will be assigned to a larger
group. Alternatively, a set of prior probabilities can be provided. PRIORS was allowed to default (to EQUAL) for all of the analyses.

## ILLUSTRATIVE EXAMPLE - TEST

It was realized fairly early on that a massive data set, consisting of 15 independent variables (plus the two dependent/independent variables, location and forma) for each specimen, and specimens representing 10 different morphotypes (groups) would produce very complicated calculations that may be difficult to validate and interpret. Validation and interpretation of the results would not be complete without understanding the derivation and calculation of the discriminant and classification function(s). However, understanding and duplicating the calculation of up to nine functions each containing up to 15 independent variables is a major undertaking in itself. Instead, an illustrative example was designed, one that was representative of the population data set, but was simple enough so that the discriminant and classification functions could be derived, understood, and the calculations duplicated. This illustrative example is called TEST. The objectives of TEST were to concentrate on the first stage, the derivation stage of the discriminant analysis, and to explain and duplicate the calculation of the various discriminant and classification functions on the SPSS output, using MINITAB.

## TEST CALCULATIONS

A sample population (TEST) was set up consisting of 190 specimens (114 of group one [Elphidium excayatum forma clavata], 29 of group
three [forma selseyensis], and 47 of group four [forma lidoensis]). The selection of these three groups was arbitrary. Three independent variables were chosen, two qualitative (NOBO and POSQ) and one quantitative (GSD). There were four TEST analyses, which are outlined in Table 7. All TEST data are given in Appendix A, Table A1.

Test Case	Groups	Variables
TEST 1	1,3	NOBO, GSD
TEST 2	1,3	NOBO, GSD, POSQ
TEST 3	$1,3,4$	NOBO, GSD
TEST 4	$1,3,4$	NOBO, GSD, POSQ

Table 7: Summary of TEST analyses.

One of the objectives was to understand and duplicate, using MINITAB, the calculation of the various functions and matrices given on the SPSS output. These included: the pooled within groups variance-covariance matrix (W); the two sets of discriminant functions referred to as unstandardized ( $Z$ standardized only) and standardized ( $Z$ and independent variable standardized); the $Z$ values for the group centroids ( $\bar{Z}$ for a group), the critical $Z$ values; the classification functions; the discriminant scores for the two group analyses); and the classification scores (for the three group analyses).

The analyses were carried out using the simultaneous rather than
the stepwise method because at this stage the relative importance of each variable in the analysis was not relevant. The split sample approach was not taken because it was not necessary to test the validity of the functions at this stage but merely to determine how the functions were calculated. The statistical significance of the functions was calculated and observed to be significant in all TEST analyses; therefore, this aspect was pursued no further at this time. The classification due to chance and classification accuracy were not examined at this time because most of these aspects fall under stage two, validation of the analysis. The emphasis of the TEST section is on stage one, derivation. In the analysis of the Elphidium data stages two and three are also discussed.

All four TEST analyses were completed, but for the sake of brevity only TEST One and TEST Four are described in Appendix C. TEST Two and TEST Three contained no information not illustrated in TEST One and TEST Four.

ANALYSIS OF ELPHIDIUM EXCAVATUM POPULATION METHODS

Of the 810 Elphidium excavatum specimens photographed, 721 were used in the analysis. The number of specimens of each forma from each location used in the analyses is given in Table 8 . The complete data set is given in Appendix A, in Table A2. There are only a few specimens of forma galvestonensis (7) and forma tumidum (11) for the analyses but no more specimens of these two formae were available. The data for the three additional species is given in Appendix $A$, in

FORMA	1	2	3	4	5	6	7	8	9	10	TOTAL
LOCATION											
1	9	-	-	-	-	-	-	-	-	-	9
2	10	2	-	-	-	-	-	-	-	-	12
3	10	3	-	-	-	-	-	-	-	-	13
4	10	2	-	-	-	-	-	-	-	-	12
5	14	1	-	-	-	-	-	-	-	-	15
6	12	4	-	12	1	-	-	-	-	-	29
7	39	5	15	9	10	11	9	6	-	-	104
8	9	3	2	8	2	-	-	-	-	-	24
9	8	3	5	6	8	-	-	1	3	-	34
10	8	20	20	10	-	-	-	-	-	-	58
11	8	10	1	2	2	-	-	1	4	-	28
12	7	1	6	15	-	2	-	-	-	10	41
13	-	1	-	25	-	-	-	39	-	-	65
14	14	1	-	1	16	-	-	-	-	-	32
15	-	-	-	-	-	3	-	-	44	-	47
16	-	-	-	8	-	16	-	12	-	-	36
17	1	-	-	1	-	-	-	-	48	-	50
18	1	-	-	24	-	34	11	8	-	-	79
19	2	-	-	-	7	-	-	-	-	-	9
20	1	5	2	12	-	3	-	-	1	1	25
	163	61	51	134	46	69	20	67	100	11	721

Table 8: Number of specimens of each forma from each location used in the analyses.

Table A3.
Thirty-two analyses were completed. Twelve were preliminary analyses on a data set of approximately 300 specimens and these cases were classified to see how effective the discriminating variables are and to decide the value of continuing the work. Based on these preliminary results 20 other analyses were completed. Some of these analyses proved redundant or did not produce information relevant to the study. Consequently, only the results of 15 analyses will be discussed. One 'core' or 'basic' analysis will be discussed in detail. Then the options/statistics/features of the other analysis will be listed and explained as needed.

ANALYSES COMPLETED
The 15 analyses can be divided into five groups as outlined on Table 9. Group A analyses: Four analyses were completed in this group. FORM was the dependent variable and the data contained in one data set; this one data set was both analysed and classified. The DIRECT (or simultaneous) method was used. The main purposes of this group of analyses were to determine the importance or effect of location, and to compare the subjective classification results to those generated by the computer. In analysis A-1 LOC was not included and in A-3 it was included as dummy variables.

Statistic 7 was added to analysis A-1, and indicated that four of the group covariance matrices were not equal.

Consequently, in analysis A-2 option 14 was exercised, and the classifications were based on the separate group covariance matrices,

Table 9: Summary of analyses, and overall percent correctly

Group of Analyses	Analyses   Name	Description	Percent correctly classified
A		- FORM as dependent variable   - one (complete) data set - 721 specimens   -DIRECT (simul taneous) methods	
	A-1	LOC not included addition of statistic 7	B4.88\%
	A-2	addition of option 14	$89.99 \%$
	A-3	loc coded as duminy variables and included as independent variables	85.66\%
B		-LOC as dependent variable   -one (complete) data set   -DIRECT (simul taneous) method	
	B-1	FORM not included	$55.05 \%$
	B-2	FORM coded as dumy variables and included as independent variables	54.798
C		-FORM as dependent variable   -one (complete) data set   -STEPUISE method-HILKS   LAMBDA	
	C-1	LOC not included	85.168
	C-2	LOC included	85.308
	C-3	LOC coded as dummy variables and included as independent variables.   ANALYSIS feature exercised DUM1 to DOM20 out at step 7	87.66\%
D		-FORM as dependent variable   -SPLIT-SAMPLE approach (two data sets, ANALISIS and HOLDOUT	
	D-1	LOC not included DIRECT method	$\begin{aligned} & \mathrm{A}-83.76 \\ & \mathrm{H}-83.80 \end{aligned}$
	D-2	LOC not inoluded   DIRECT method   addition of Option 14	$\begin{aligned} & \text { R-89.43 } \\ & \mathrm{H}-86.19 \end{aligned}$
	D-3	LOC coded as dumay   variables, and included as independent variables.   DIRECT method	$\begin{aligned} & A-87.288 \\ & B-88.09 \% \end{aligned}$
	D-4	LOC coded as dumay variables and included as independent variables. Addition of Option 14. STEPWISE method UILSS LAMBDA: PIN, POUT specified at . 05.	$\begin{aligned} & \text { A-87.28\$ } \\ & H-89.04 \$ \end{aligned}$
E		-FORM as dependent varlable -one data set with addition of three Elphidildae species ( 90 specimens, total 811 )	
	E-1	DIRECT method	$85.70 \%$
	$\mathrm{E}-2$	DIRECT wothod addition of Option 14	90.60\%
	E-3	STEPUISE method-WILKS LAMBDA addition of Option 14.	$90.60 \%$

rather than the pooled matrix. The importance of the assumption that these matrices are equal can be determined by comparing the classification results with and without exercising option 14, as well as exercising statistic 7.

Group B analvses: To further test the influence or effect of location, LOC was treated as the dependent variable. The data was contained in one set which was both analysed and classified. In analysis $\mathrm{B}-1, \mathrm{FORM}$ was not included and in $\mathrm{B}-2$ it was included as dummy variables.

Group $C$ analyses: FORM was the dependent variable and the one data set analysed and classified. The main feature of these three analyses was that the STEPWISE method of Wilks' lambda was used to determine the order of importance of the independent variables. Analysis C-1 did not include LOC. Another analysis, C-2, was completed with LOC, to determine the relative importance of location (i.e. at what step LOC was removed). Then analysis $C-3$ was completed with location coded as dummy variables; these dummies were removed simultaneously (using the ANALYSIS feature) at step 7 (the step where LOC was removed in analysis $\mathrm{C}-2$ ).

Group D analyses: In this group FORM was again the dependent variable but the split-sample approach was taken. The one data set was randomly split into the analysis sample (511 specimens) and holdout sample (210 specimens) to test the classification accuracy of the functions. (No specimens of groups 7 and 10 were placed in the hold out sample because of their low numbers in the analysis sample).

The DIRECT method was used for three of the analyses. Analyses $D-1$ and $D-2$ did not include LOC. Option 14 was added to $D-2$. In
analyses $D-3$ and $D-4$ location was included as dummy variables. In $D-4$ a STEPWISE analysis was completed, option 14 added, and PIN and POUT specified at .05.

Group E analyses: Three analyses were completed on a larger data set, which contained 90 specimens of three other species in addition to the other 721 E. excavatum specimens. The main objectives here were to see the changes in the classification results when three other species were added. The DIRECT method was used without (E-1) and with (E-2) option 14. A stepwise analysis was computed (E-3) to deterimine if the relative importance of the variables changed when three other species were introduced.

## ANALYSIS RESULTS

Group A analyses: Analysis A-1 is treated as a core or basic analysis and the complete results in the form of the computer printout (output) are given in Appendix D. Statistics 1, 2, and 3 are straight forward and do not warrant discussion. Calculation of statistic 3 and option 11, are demonstrated in Appendix C.

Five of the nine discriminant functions account for $95 \%$ of the variance (see p. 326). All of the functions are highly significant, though the last four functions don't each account for more than $2 \%$ of the variance. The magnitude of the standardized discriminant function coefficients indicate the importance of each independent variable within each function, and those with greatest magnitude are circled on the printout (p. 326). Of the coefficients for the first five functions, AOMA is the most important variable in function 1 ; UMCO and

POR in function 2; PAP, UMCO and NOBO in function 3; UMCO, POR, CHAM and POS in function 4; and PAP, UNCO, AOMA and DEPO in function 5. Because function 1 accounts for almost $37 \%$ of the variance AOMA is the single most discriminating variable. The univariate F-ratios (p. 325) show that AOMA, POR, POSQ, REPO, POSU, and UMCO have large F-values, and are the major group discriminators.

Scatter plots (p. 332-341) of the discriminant scores of the first two functions are given for each group (option 8) and for all cases (option 7) (p. 331 ); from these plots a territorial map (p. 330) is constructed (option 10). The territorial map is a visual representation of group membership probability based on the two discriminant function scores. The distance (or difference in function scores) between any two group centroids on the map is a measure of the overall difference in morphology between these two groups. The map shows that groups 1, 4, and 8 are closely related (or poorly discriminated by these variables). Group 2 is close to these three groups. Groups 10 and 7 are the next two most closely related groups, followed by groups 10 and 6, and 2 and 3. Group 9 is the most morphologically distinct. All nine discriminant scores, group membership probabilities, and actual group memberships for each case are given (options 6, 17, and 18) on p. 342-367.

The discriminant scores for the group centroids are given on a separate table (p. 327).

The remainder of the output pertains to the classification phase of the analysis. All cases are classified regardless of their group assignment (option 1). As there are 10 groups, there are 10 classification functions (see Appendix B) and these functions (p. 328)
are given on the output (option 12). Statistic 7 tests for the equality of the group covariance matrices. Usually the pooled within-groups covariance matrix is used in calculating the classification scores from the classification functions. When option 14 is exercised, the individual group covariance matrices are used for each group, respectively. In this analysis groups 7, 8 and 9 did not have equal matrices and group 10 did not have enough cases to be accurately tested (p. 329).

The analysis does not discriminate group 4 well, it classifies $16.4 \%$ of the group 4 cases in group 1, and $15.7 \%$ of the cases in group 2. It also places a few specimens of group 5 in groups 3 and 7 (and vice versa). The overall percent of group cases correctly classified is $84.88 \%$. Of the $15.12 \%$ incorrectly classified, at least half are group 4 specimens.

In analysis A-2 option 14 was exercised; this uses the individual group covariance matrices for classification, instead of the pooled within group covariance matrix and is employed when the individual matrices are inhomogenous. The overall classfication results are given in Table 10. The overall percent correctly classified has improved to $89.99 \%$. Most of the improvement is from the group 4 cases, $76 \%$ of the group 4 cases have been correctly classified, instead of $62 \%$ as in analysis $\mathrm{A}-1$.

The A-2 territorial map (Figure 3) is markedly different from the A-1 map; the centroids for groups 1, 2, 4, and 8 are very close together. Group 9 now falls within group 2, group 7 within group 3, group 1 within group 4, and group 8 within groups 2 and 1.

In analysis A-3 location, coded as 20 dummy variables, was


Figure 3: Territorial map, analysis A-2. It is assumed that all functions
but the first two are zero. * Indicates a group centroid.

group		1	2	3	4	5	6	7	8	9	10
	no. of specimens										
1	163	153	3	0	5	1	0	0	1	0	0
		93.9	1.8	0	3.1	. 6	0	0	. 6	0	0
2	61	3	51	0	5	0	1	0	1	0	0
		4.9	83.6	0	8.2	0	1.6	0	1.6	0	0
3	51	1	3	42	2	1	0	1	0	0	1
		2.0	5.9	82.4	3.9	2.0	0	2.0	0	0	2.0
4	134	8	17	6	103	0	0	0	0	0	0
		6.0	12.7	4.5	76.9	0	0	0	0	0	0
5	46	1	0	1	0	43	0	1	0	0	0
		2.2	0	2.2	0	93.5	0	2.2	0	0	0
6	69	0	0	1	0	0	68	0	0	0	0
		0	0	1.4	0	0	98.6	0	0	0	0
7	20	0	0	0	0	0	0	20	0	0	0
		0	0	0	0	0	0	100	0	0	0
8	67	3	0	0	0	0	0	0	64	0	0
		4.5	0	0	0	0	0	0	95.6	0	0
9	100	1	2	1	0	0	0	0	2	94	0
		1.0	2.0	1.0	0	0	0	0	2.0	94.0	0
10	10	0	0	0	0	0	0	0	0	0	10
		0	0	0	0	0	0	0	0	0	100.0

Table 10: Classification results, analysis A-2. The top number in each square is the actual number of specimens classified in that group, bottom number the percent the above number represents. Overall percent correctly classified-89.88\%
included as an independent variable. Looking at the univariate $F$ ratios (Table 11) some of these dummy variables (i.e., DUM10, DUM12 to DUM15, DUM17 and 18) have significant F-values. However, at some of these locations one group comprises over $80 \%$ of the cases and the analysis is in fact discriminating on form. The overall classification results have improved only slightly, to $85.66 \%$.

Group B analyses: To further test the influence of location two analyses were completed with LOC as the dependent variable. FORM was treated as an independent variable. The classification results are quite poor only 55.05\% (Table 12). Comparing Tables 8 and 12, it can be seen that the number correctly classified at each location corresponds closely to the dominant group present at each location. Coding FORM as dummy variables (analysis B-2) changes the results only slightly to $54.79 \%$. (In an earlier analysis on LOC, FORM was not included and the results were essentially the same - 54.79\%).

Group C analyses: To further determine the relative importance of each independent variable, three analyses were completed on one data set with FORM as the dependent variable but using the STEPWISE method. LOC was not included in analysis C-1. Nine functions were calculated (see Table 13) but the last function was close to not being significant. The univariate F-ratios and Wilks' lambda for each independent variable are given on Table 14. Note that these values are the same as on the bottom of Tables 11 and 16 . GSR is the only variable that is not significant at the . 01 level. The summary table (Table 15) lists the variables in order in which they were removed. The variables are not removed in order of descending F-values. This is because some of the differences among groups in a variable are


Table ll: Wilks lambda and univariate F-ratios for the independent variables, analysis A-3.

[^0]


Table 13: Statistics for the nine discriminant functions calculated for analysis C-1.


Table 14: Univariate F-ratios and Wilks' lambda for the independent variables, analysis C-1.


Table 15: Summary table for the stepwise analysis C-I.
explained by variables already included in the analysis. GSR was not removed after step 13 (and hence not included in the analysis) because F-to-enter fell below the default value. The classification results have improved only slightly (compared to analysis $A-1$ ) and have increased to $85.16 \%$ due to the omission of GSR.

In analysis $C-2$, the relative importance of $L O C$ was examined. Of the 14 variables LOC's F-ratio is twelfth in magnitude (52.16-see Table 16) but as the variables are removed, the relative values of the F-ratio and Wilks' lambda change; at step 7 LOC had the smallest Wilks' lambda and was removed at this step. At the end of the analysis, after step 14, GSR was the only variable not included (because F-to-enter fell below the default value). Note again that the last variables are exactly the same as on the bottom of Tables 11 and 14. The classification results - $85.30 \%$ - improved by only one specimen, (compared to the previous [C-2] analysis).

LOC was coded as dummy variables in analysis C-3 and using the ANALYSIS feature, the dummies were removed simultaneously at step 7 . The variables removed in steps $1-6$ remained the same as in the previous two analyses. The dummy variables were then removed in steps 7 through 26 (DUM1 to DUM19 respectively). DUM20 was not removed, and due to PIN and POUT specifications, DUM20, POSU and GSR were not included in the analyses. A summary is given on Table 17. Coding LOC as dummy variables did improve the classification results by 17 specimens, to $87.66 \%$ (see Table 18). Group 4 classification improved the most ( $16 \%$ within that group, followed by group $2-9.9 \%$ and group 3-9.8\% within those groups, respectfully).

Group D analysis: The three previous groups of analyses have
$\left.\begin{array}{|l|l|l|l|}\hline \begin{array}{l}\text { WILKS } \\ \text { WITH }\end{array} & \begin{array}{c}\text { LAMBDA } \\ 9\end{array} \text { AND }\end{array} \begin{array}{c}\text { (U-STATISTIC) AND UNIVARIATE F-RATIO } \\ \text { 711 DEGREES } \\ \text { OF FREEDOM }\end{array}\right]$.

Table 16: Univarite F-ratio and Wilks' lambda for the independent variables, analysis $\mathrm{C}-2$.


Table 17: Summary table for the stepwise analysis C-3.

group		1	2	3	4	5	6	7	8	9	10
	no. of specimens										
1	163	153	1	1	5	1	0	0	1	1	0
		93.9	. 6	. 6	3.1	. 6	0	0	. 6	. 6	0
2	61	4	50	3	3	0	1	0	0	0	0
		6.6	82.0	4.9	4.9	0	1.6	0	0	0	0
3	51	1	2	41	1	3	0	0	0	0	3
		2.0	3.9	80.4	2.0	5.9	0	0	0	0	5.9
4	134	16	15	1	99	1	1	0	0	1	0
		11.9	11.2	. 7	73.9	. 7	. 7	0	0	. 7	0
5	46	1		0		43	1	1	0	0	0
		2.2	0	0	0	93.5	2.2	2.2	0	0	0
6	69	0	0	1	0	0	64	0	1		2
		0	0	1.4	0	0	92.8	0	1.4	1.4	2.9
7	20	0	0	0	0	1	1	18	0	0	0
		0	0	0	0	5.0	5.0	90.0	0	0	0
8	67	5	0	0	0	0	0	0	62	0	0
		7.5	0	0	0	0	0	0	92.5	0	0
9	100	1	3	2	0	0	0	0	2		0
		1.0	3.0	2.0	0	0	0	0	2.0	92.0	0
10	10	0 0	0	0	0 0	0	0	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	0	$\left\lvert\, \begin{aligned} & 0 \\ & 0 \end{aligned}\right.$	$\begin{aligned} & 10 \\ & 100.0 \end{aligned}$

Table 18: Classification results, analysis C-3. Top number in each square is the actual number of specimens classified in that group, bottom number the percent the above number represents. Overall percent correctly classified, $87.66 \%$.
been performed on only one data set. To test the classification accuracy of the functions the split sample approach was taken. Analysis D-1 was performed to compare the classification results of the two samples. The results of the analysis sample were $83.76 \%$ correctly classified. The results of the holdout sample are given on Table 19-83.80\%. The consistency of the classification results for the two samples indicates that the functions are good discriminators. When option 14 is added (analysis D-2) the percent correctly classified jumps to $89.43 \%$ for the analysis sample (comparable to analysis $\mathrm{A}-2$ ), and to $86.19 \%$ for the holdout sample (Table 20 ). When LOC (as dummy variables) is included as independent variables the results for the analysis sample are $87.28 \%$ and for the holdout sample 88.09\% (Table 21). Taking this analysis further, using the STEPWISE method, and specifying PIN and POUT at .05 (analysis D-4), the results are $87.28 \%$ correctly classified (analysis sample) and $89.04 \%$ correctly classified (Table 22 -holdout sample). On Table 23 , the first 6 variables removed are the same as for analysis $\mathrm{C}-3$. In this instance, DUM20 was not removed from the analysis (unlike analysis C-3) but DUM1 to DUM5 were removed in addition to PERO, POSQ, and GSR (Table 23). Comparing Tables 19 and 22, the improvements in the correctly classified are largest for groups 3, 4 and 6.

Group E analyses: The last three analyses were completed on one data set, containing the 721 Elphidium excavatum specimens plus 90 other specimens, comprising of 30 specimens each of Elphidium subarcticum, E. bartletti, and Haynesina orbiculare. Analysis E-1 was completed using the DIRECT method. There are now 12 (i.e. 13-1) discriminant functions, of which the first five account for $95 \%$ of the

group		1	2	3	4	5	6	7	8	9	10
	$\begin{aligned} & \text { no of } \\ & \text { specimens } \end{aligned}$										
1	48	47	0	0	0	0	0	0	1	0	0
		97.9	0	0	0	0	0	0	2.1	0	0
2	19	2	16	5.3	0	0	0	0	0	0	0
		10.5	84.2	5.3	0	0	0	0	0	0	0
3	16	0	3	8	2	2	0	1	0	0	0
		0	18.8	50	12.5	12.5	0	6.2	0	0	0
4	41	7	7	2	24	0	0	0	0	0	1
		17.1	17.1	4.8	58.5	0	0	0	0	0	2.4
5	13	0	0	0	0	13	0	0	0	0	0
		0	0	0	0	100	0	0	0	0	0
6	22	0	0	0	0	0	19	0	0	0	3
		0	0	0	0	0	86.4	0	0	0	13.6
8	21	1	0	0	0	0	0	0	19	1	0
		5	0	0	0	0	0	0	90	5	0
9	70	0	0	0	0	0	0	0	0	70	0
		0	0	0	0	0	0	0	0	100	0

Table 19: Classification results of the holdout sample, analysis D-1. Top number in each square is the actual number of specimens classified in that group, bottom number the percent the above number represents. Overall percent correctly classified: $83.80 \%$.

group		1	2	3	4	5	6	7	8	9	10
	no. of specimens										
1	48	45	2	0	1	0	0	0	0	0	0
		93.8	4.2	0	2.0	0	0	0	0	0	0
2	19	1	18	0	0	0	0	0	0	0	0
		5.3	94.7	0	0	0	0	0	0	0	0
3	16	0	4	8		1	0	0	0	0	0
		0	25.0	60.0	18.8	6.2	0	0	0	0	0
4	41	1				0	0	0	0	0	0
		2.4	12.2	7.4	78.0	0	0	0	0	0	0
5	13	0	0	0	0	11		0	0	0	0
		0	0	0	0	84.6	15.4	0	0	0	0
6	22	0	0	2	0	0	20	0	0	0	0
		0	0	9.1	0	0	90.9	0	0	0	0
8	21	3	0	0	0	0	0	0	18	0	0
		14.3	0	0	0	0	0	0	85.7	0	0
9	70	0	0	1	0	0	0	0	0	69	0
		0	0	1.4	0	0	0	0	0	98.6	0

Table 20: Classification results of the holdout sample, analysis D-2. The top number in each square is the actual number of specimens classified in that group, bottom number the percent the above number represents. Overall percent correctly classified: $181 / 210=86.19 \%$.

group		1	2	3	4	5	6	7	8	9	10
	no. or specimens										
1	48	46	0	0	$1{ }^{\prime}$	1	0	0	0	0	0
		95.8	0	0	2.1	2.1	0	0	0	0	0
2	19	1	16	1	1	0	0	0	0	0	0
		5.3	84.1	5.3	5.3	0	0	0	0	0	0
3	16	0	2	12	1	1	0	0	0	0	0
		0	12.5	75	6.2	6.2	0	0	0	0	0
4	41	5	6	1			0	0	0	0	0
		12.3	14.6	2.4	70.7	0	0	0	0	0	0
5	13	0	0	0	0	13	0	0	0	0	0
		0	0	0	0	100	0	0	0	0	0
6	22	0	0	0	0	0	21	0	0	1	0
		0	0	0	0	0	95.5	0	0	4.5	0
8	21	2	0	0	0	0	0	0	19	0	0
		10	0	0	0	0	0	0	90	0	0
9	70	0	1	1	0	0	0	0	0	68	0
		0	1.4	1.4	0	0	0	0	0	97.2	-

Table 21: Classification results of the holdout sample, analysis D-3. The top number in each square is the actual number of specimens classified in that group, bottom number the percent the above number represents. Overall percent correctly classified: 185/210 $=88.09 \%$.

group		1	2	3	4	5	6	7	8	9	10
	no. of   specimens										
1	48	46	0	0	1	1	0	0	0	0	0
2	19	95.8	0	0	2.2	2.2	0	0	0	0	0
		1	16	1	1	0	0	0	0	0	0
3	16	0	84.2	5.2	5.2	0	0	0	0	0	0
4	41	0	12.5	75.0	6.2	1	0	0	0	0	0
	41	6	3	1	31	0	0	0	0	0	0
5	13	14.6	7.3	2.5	75.6	0	0	0	0	0	0
		0	0	0	0	13	0	0	0	0	0
6	22	0	0	0	0	100	0	0	0	0	0
		0	0	0	0	0	22	0	0	0	0
8	21	2	0	0	0	0	100	0	0	0	0
		9.5	0	0	0	0	0	0	19	0	0
	70	0	1	1	0	0	0	0	90.5	0	0
		0	1.4	1.4	0	0	0	0	0	68	0
							0	0	97.1	0	

Table 22: Classification results of the holdout sample, analysis D-4. Top number in each square is the actual number of specimens classified in that group, bottom number the percent the above number represents. Overall percent correctly classified, 193/210 $=89.04 \%$.


Table 23: Summary table for the stepwise analysis $D-4$.
variance (Table 24). The last function is not significant. The univariate F-ratios and Wilks' lambda are given for each independent variable (Table 25); comparing Table 25 with the same table for analysis A-1 (in Appendix D p. 329) the relative importance of each variable has not changed.

The territorial map for this analysis (Figure 4) is quite different than that for analysis $A-1$ (see p. 330). The group centroids for $B$ (E. subarcticum) and C (E. bartletti) appear to be superimposed. The centroids for the formae of E. excayatum are spatially, closer together. The maximum distance between any two morphotype centroids is less than from any morphotype centroid to that for the two other Elphidiidae species. The farthest distance is from the Haynesina orbiculare (A) centroid to any morphotype centroid.

The overall classification results (percent correctly classified) are $85.70 \%$ (Table 26). The functions have placed one group 2 ( $E_{\text {e }}$ excavatum f. excavata) and two group 4 (E excavatum f. Iidoensis) specimens into E. Subarcticum and one group 4 specimen into E. bartletti. One E. subarcticum specimen has been classed as E. bartletti and three specimens vice versa. All Haynesina specimens have been correctly classified and no specimens incorrectly classed as Haynesina.

Exercising option 14 improved the classification results (analysis E-2, $90.60 \%$ ).

A STEPWISE analysis was completed to further determine the importance of each independent variable. The variables were removed in the same order (Table 27) as in analysis C-1 (Table 15) except that the importance of REPO decreased, (it came out at step 12 instead of


Table 24: Statistics for the 12 discriminant functions calculated for analysis E-1.


Table 25: Wilks lambda and univariate $\quad$-ratios for the independent variables, analysis $E-1$.


Table 27: Summary table for the stepwise analysis E-3.

group		1	2	3	4	5	6	7	8	9	10	11	12	13
	no. of specimens													
1	163	156	1	0	1	1	0	0	4	0	0	0	0	0
		95.7	. 6	0	. 6	. 6	0	0	2.5	0	0	0	0	0
2	61	7	43	3	3	0	1	0	1	1	0	0	1	0
		11.5	70.5	4.9	$4.9$	0	1.6	0	1.6	1.6	0	0	1.6	0
3	51	1	3	36	1	4	0	4	0	0	2	0	0	0
		2.0	5.9	70.6	2.0	7.8	0	7.8	0	0	3.9	0	0	0
4	134	22	20	5.	80	1	0	0	0	0	2	0	3	1
		16.4	14.9	3.7	59.7	. 7	0	0	0	0	1.5	0	2.2	. 7
5	46	1	0	0	0	43	0	2	0	0	0	0	0	0
		2.2	0	0	0	93.5	0	4.3	0	0	0	0	0	0
6	69	0	$2$	1	0	0	63	0	1	0	2	0	0	0
		0	2.9	1.4	0	0	91.3	0	1.4	0	2.9	0	0	0
7	20	0	0	0	0	2	0	18	0	0	0	0	0	0
		0	0	0	0	10.0	0	90.0	0	0	0	0	0	0
8	67	2	0	0	0	0	0	0	64	0	1	0	0	0
		3.0	0	0	0	0	0	0	95.5	0	1.5	0	0	0
9	100	0	0	1	0	0	0	0	3	96	0	0	0	0
		0	0	1.0	0	0	0	0	3.0	96.0	0	0	0	0
10	10	0	0	0	0	0	0	0	0	0	10	0	0	0
		0	0	0	0	0	0	0	0	0	100	0	0	0
11	30	0	0	0	0	0	0	0	0	0	0	27	3	0
		0	0	0	0	0	0	0	0	0	0	90.0	10.0	0
12	30	0	0	0	0	0	0	0	0	0	0	1	29	0
		0	0	0	0	0	0	0	0	0	0	3.3	96.7	0
13	30	0	0	0	0	0	0	0	0	0	0	0	0	30
		0	0	0	0	0	0	0	0	0	0	0	0	100

Table 26: Classification results, analysis $E-1$. The top number in each square is the actual number of specimens classified in that group, bottom number the percent the above number represents. Overall percent correctly classified: 85.70\%.



#### Abstract

step 3). Reciprocally, POSQ came out at step 3 instead of step 12. GSR was included in the analysis, at the final step, step 14. The classification results (overall percent correctly) remained at $90.60 \%$.


## DISCUSSION OF ANALYSIS RESULTS

The overall percent of correctly classified specimens, that is: specimens classified into the group to which they were subjectively assigned, is a measure of how well the functions discriminate the groups based on the information (morphological characteristics, independent variables) supplied. The consistency of these results plus the high percentage of correctly classified specimens for all analysis (84-91\%) indicates that the functions are good discriminators, and the independent variables included are good group discriminators.

Group 4, forma lidoensis, is not as well defined as the other formae. Many group 4 specimens are incorrectly classified as belonging to groups 1 or 2 in particular. Only $62 \%$ of the group 4 specimens are correctly classified in analysis $A-1$. Of the variables measured, there is no unique combination that exclusively defines group 4. Subsequent observation shows that the feature of the sutures broadening towards the umbilicus is exclusively present in this form and not included in the analysis. Including this feature would probably increase the discriminating power of the functions in relation to group 4.

There are also other patterns to group misclassification. The functions do not discriminate well between groups 1 and 2 , groups 3 and 5, and groups 5 and 7. Groups 1 and 2, forma clavata and forma
excavata are the two most similar formae. The only variable generally present in clavata and absent in excavata is UMCO. The formae are also similar in size and shape. Groups 3 and 5, forma selsevensis and forma magna both have a subacute periphery and a raised umbilicus, as well as similar shape and sizes. They are discriminated on development and regularity of the ponticuli and the umbilical ornamentation. There are similar problems with groups 5 and 7, forma magna and forma galvestonensis. In terms of size and shape they are very similar, only POR and PAP are consistently different, the pores being much denser and finer on galvestonensis and papillae being present more of ten on this form.

Option 14 was exercised due to non-homogeneity of the individual variance-covariance matrices. The SPSS program test for homogeneity is calculating statistic 7; a test is outlined by Reyment (1962) and some examples given there. The main reason for non-homogeneous variance-covariance matrices in this case is that many of the independent variables are binary or categorical. For a binary variable the mean and standard deviation are directly related. The mean is the proportion of specimens in one of the two categories and the standard deviation is a direct function of this proportion. Unfortunately it is not possible to correct this problem using a simple transformation, but using individual variance-covariance matrices in the classification functions effectively compensates for this. Non-homogeneity is not uncommon for biologic data (Reyment 1962, Scott 1974). Reyment (1962) does point out that non-homogeneity of these matrices, calculated from a sample of microfossils from a single layer of sediment may represent a homogeneous fraction in the
development of the species, or it may be a mixture of thousands of generations, depending on the rate of sedimentation incidence of reworking or whether or not the species burrows into the sediment. These causes are unlikely in this case as only samples carefully examined and found lacking evidence of reworking were chosen for inclusion; and all the populations studied were from surface samples and would not represent a large time span paleontologically. The assemblages studied possibly representing a longer time span contained very few specimens from those groups with non-homogeneous matrices.

Another cause of non-homogeneity may be growth invariance (Burnaby 1966, Reyment 1969). Growth invariance is a major factor to be dealt with in multivariate analysis of paleontologic data, particularily for analysis of organisms which do not have a terminal growth size (Burnaby 1966). Though an effort was made to minimize the influence of growth stages by not including variables dependent. on growth stage and by choosing only adult specimens. As best as could be ascertained only two variables related to growth, CHAM and GSR, were included in the analysis and these two variables are not solely dependent on growth. Neither CHAM or GSR had significant F values GSR was not included in the STEPWISE analysis.

The importance of LOC (location) as an independent variable was investigated in the group $A$ and $B$ analyses; and the results indicate that LOC is not a factor in correctly classifying specimens. The results improve only very slightly from $84.88 \%$ ( $A-1$ ) to $85.66 \%$ (A-3) when LOC, as dummy variables, is included. When LOC is treated as the dependent variable ( $\mathrm{B}-1, \mathrm{~B}-3$ ) the results are very poor, only $55 \%$ correctly classified. There are no patterns between formae present
and location, which further strengthens the conclusion drawn from the subjective investigation, that these are not subspecies.

The variables with large partial f-values are the variables which are almost exclusively present or absent within each forma (as determined using the STEPWISE method, group C analyses). These included AOMA (angle of margin), UMCO (presence of an imperforate umbilical collar), POR (density of the porosity) and NOBO (number of bosses). Generally, at least five functions are required to account for $95 \%$ of the variance. This indicates that no one variable (or variables) alone discriminate the groups, but various unique combinations of these variables are the best discriminators.

When the split sample approach was used, (group D analyses) the classification results were very consistent, varying no more than $3.5 \%$ for the two samples (analysis and holdout) for the four split-sample analyses. This further indicates that the functions are good discriminators.

The Group E analyses investigated the changes in the functions when the taxonomic framework was enlarged by including three other species of Elphidiidae. The results are represented graphically by the territorial map (Figure 4). The group centroids of the E. excavatum morphotypes are spatially closer together than the distance from any morphotype centroid to that for the two other Elphidium species. The farthest distance is from the Haynesina orbicuiare centroid to any morphotype centroid. The group centroids for E. subarcticum and E. bartletti appear to be superimposed. These results graphically represent the classification hierarchy derived from subjective taxonomy. Infraspecific distances are smaller than
specific ones, which in turn are smaller than generic ones. However the spatially close relationship between E. bartletti and E. Subarcticum is probably due to the variables the discrimination is based on; the variables were chosen within the context of $E$. excavatum and are not good discriminators for these two species. These results do indicate that distances in terms of discriminant function scores may represent distances within the conventional classification hierarchy.

## CONCLUSIONS

1) The consistent high value of the overall percent correctly classified indicates the functions calculated are good discriminators; which in turn indicates that the morphological characters observed and included in the analysis are those characteristic of each morphotype and those necessary for defining each form. This is strengthened by the consistency of the split-sample analyses results.
2) Location is not a factor in determining morphotype and there is no pattern between morphotype occurances and geographical location. This strengthens the conclusion from the subjective investigation that these morphotypes are not subspecies but are ecophenotypes (formae). 3) Adding three species to the analysis indicates that the spatial distance (represented graphically) between the group mean scores (centroids) of the first two discriminant functions for any two groups is related to their taxonomic relationship. The infraspecific distance is less than an ecophenotype - species (to E. bartletti or E. subarcticum) distance which is less than an ecophenotype - genera distance (to $\mathcal{H}$. orbiculare). Refinement of the system may make it
possible to determine taxonomic relationships from mean function scoredifferences and graphical distances. This would be a helpparticularily in determining if variants are species or infraspecificvariants; or in determining if variants are local (isolated andunique) versus cosmopolitan.

## SUMMARY OF RESULTS

The biological and statistical investigations indicate that Elohidium excavatum (Terquem) is a polytypic species comprising at least nine (possibly ten) distinct ecophenotypes (formae). These formae are first subjectively defined and then statistically tested using discriminant analysis. The results show that $84-91 \%$ of the specimens are classified into the groups to which they were subjectively assigned. The functions and the morphological characteristics on which the functions are based are good discriminators.

The presence of intergradation, and the lack of a pattern between morphotype occurrences and geographical location indicates that these are ecophenotypes rather than subspecies. The distribution patterns of the formae, however, suggest association with environmental variables rather than simple geographic locality (many formae can live in one area at times). These observations lead to the rejection of the subspecies ranks proposed by Wilkinson (1979) and Haynes (1981). The designation of "forma" has been retained from Feyling-Hanssen (1972) and ten formae can be recognized with the binocular microscope: 1) E. excavatum forma excavata (= forma selseyensis of Feyling-Hanssen) found as a constituent of populations in intertidal zones; 2) forma williamsoni is the dominant intertidal/marsh form where there is little wave action; 3) forma selseyensis (not sensu Feyling-Hanssen) a temperate to polar water estuarine morphotype; 4) forma clavata, the dominant member of the group found in cold normal marine waters or slightly reduced salinities; 5) forma gunteri, which appears to replace forma clayata
in temperate to tropical waters; 6) forma galvestonensis, appearing to be geographically isolated along eastern North America, a tropical, nearshore lagoon form, preferring normal to hyper-salinities; 7) forma lidoensis, $a$ warm to temperate water estuarine and lagoon form; 8) forma cuvillieri appears to be a subtidal temperate to tropical normal marine form; 9) forma tumidum which has been observed only along the western North American coast and 10) forma magna a nearshore, turbulent zone morphotype.

Variablity in the E. excavatum group (number of formae and the percentage of intermediate forms present) appears to increase when each, or a combination of, the following variables is increased: water temperature, proximity to shore, estuarine influence, and the range of annual climatic variation.

The classification results indicate that it is possible to recognize, objectively and consistently, morphotypes within species, and to draw artificial but practical morphological boundaries between morphotypes, in order to identify and classify them, and create workable taxonomic units. With a clearly objectively defined taxonomy, it is possible to compare data from different sources and to draw more concise conclusions about the paleo-ecological implications and significance of the ecophenotypes.

The statistical analysis completed here is a simple procedure with the aid of computational facilities, but the data collection techniques time consuming, elementary, crude, and they introduce operator error. These methods will become obsolete as more sophisticated equipment is developed capable of more complex analyses. Biometry on foraminifera is heavily constrained by inadequate data on
shape, particularily chamber shape (Scott 1974). The solution to these problems may be micro-analysers - microcomputer based image analysis systems such as the one described by Granlund and Hermelin (1983). These systems eliminate operator error, minimize the time required for data collection and provide a vastly superior system for collection, storage, and retrieval of morphological data (Granlund and Hermelin 1983).

## SYSTEMATIC PALAEONTOLOGY

Identified material was supplied to the author by Prof. G. Lutze, Prof. R. Feyling-Hanssen, Prof. J. R. Haynes, Prof. J. W. Murray, Prof. D. Sloan, Dr. M. A. Buzas, Dr. S. W. Snyder, and Miss R. Todd. Dr. G. Vilks, Dr. C. Schafer, Dr. G. Bartlett and Dr. C. W. Poag assisted the authors with some of the identifications. The primary and secondary specimens of a new forma have been deposited at the Smithsonian Institution together with representative specimens of other formae. In addition, representative collections have been deposited with various persons/departments; a listing is given in Appendix E.

The following collections were examined: primary and secondary types of Elphidium and related genera housed at the Smithsonian Institution (including identified material from Dr. A. Lévy and Dr. F. W. Haake); specimens of Natland's at Scripps Institute of Oceanography; and Heron-Allen and Earland's specimens from the shores of Selsey Bill, Sussex, at the British Museum of Natural History.

Listed below, for each forma, is a synonymic list, selected from available references with clear illustrations. Original references are cited, regardless of the clarity of the illustrations.

It must be emphasized that the formae are here described using the conventional format for species, although they all belong to the same species.

In two instances the term "ab" is used (i.e. Elphidium excavatum forma williamsoni Haynes ab Williamson and E. excavatum forma oceanensis Fornasini ab d'Orbigny). The term was first used in this
sense by Medioli and Scott (in press) and designates a binomen that was first published in a way that did not make it available (e.g. a nomen nudum) and only a later work made it available. The author preceeding "ab" is the legal author of the species, but the author following "ab" published the binomen first.
In the synonymies below, figured specimens of one species, recorded in the reference cited may be placed in more than one forma. This has been designated as such: E. excavatum forma clavata: E. clavatum Cushman. BUZAS, 1966, (part), p. 591, pl. 71:1-2; E. excavatum forma selseyensis: E. clavatum Cushman. BUZAS, 1966, (part), p. 591, pl. 71:3-4.
Order FORAMINIFERA ..... Eichwald, 1830
Suborder ROTALINA Delage and Herouard, 1896
Superfamily ROTALIACEA Ehrenburg, 1839
Family ELPHIDIIDAE ..... Galloway, 1933
Genus ELPHIDIUM ..... de Montfort, 1808
Type species Elphidium
macellum Fichtel and Moll, 1798
Genus Elphidium
de Montfort, 1808

Tappan (1964) does not warrent repeating (see also Hansen and Lykke-Andersen [1976], and Rosset-Moulinier [1976]).

However, some debate has arisen as to which genus (Elphidium, Cribroelphidium, Cribrononion) the species Elphidium excavatum (Terquem) belongs. The majority of workers have retained it in the genus Elphidium (Feyling-Hanssen 1972, Lévy et al. 1975, Hansen and Lykke-Andersen 1976, Rosset-Moulinier 1976). Elphidium and Cribroelphidium have an areal aperture (which is absent in Cribrononion); all three genera have a row of pores at the base of the apertural face. Loeblich and Tappan (1964) differentiate the genera on the presence (in Elphidium) or absence (in Cribroelphidium and Cribrononion) of retral processes; Lévy et al. (1975), Hansen and Lykke-Andersen (1976) and Rosset-Moulinier (1976) report finding retral processes and consequently retain the species in the genus Elphidium. There is also the genus Elphidiononion described by Hofker (1951) based on Polystomella poevana d'Orbigny, in which this author has also placed Heron-Allen and Earlands' species P. selseyense (Hofker 1977). Hansen and Lykke-Andersen (1976) consider the three genera Cellanthus, Cribroelphidium and Cribrononion synonymous with Elphidium.

Scott and Medioli (1980) have discussed the validity of using the apertures for generic differentiation; they have placed Cribroelphidium in synonymy with Cribrononion, and have retained the species E. excavatum as part of the genus Cribrononion, based on differences with the type species of Elphidium (also Haman 1973). As Hansen and Lykke-Andersen (1976) point out, in the past the
term "retral process" has had varied definitions. Hansen and Lykke-Andersen (1976) follow Wade's (1957) terminology: returning to Carpenter's (1862, p. 278-279) definition of a retral process as an extention of the chamber lumen found on the inside of the chambers. Often, the term retral process has been applied to include the surrounding wall that spans the suture. Hansen and Lykke-Andersen (1976, p. 4) suggest the term "ponticulus" (Latin: small bridge) to characterize the "sutural bridge" or prolongation of the wall that spans the suture. Thus, a ponticulus may be hollow (if it delineates a retral process), or it may be solid.

Carpenter's (1862) definition of a retral process, and Hansen and Lykke-Andersen's (1976) definition of a ponticulus apply in this work.

## Elphidium excavatum (Terquem) forma excavata Terquem, 1876

```
pl. 1:1:1; pl. 2:18-20; pl. 3:7-8; pl. 4:10-11; pl. 5:
13-16; pl. 6:8-16, 19; pl. 7:13-16; pl. 8:15-16; pl.
10:6-8,14; pl.12:12; pl.13 :10; pl.14:11-12; ?pl.16:
 15; pl. 20:1-12
```

Polystomella excavata. TERQUEM, 1875, p. 20, pl.2:20f (Non vide, not available). TERQUEM, 1876, p. 429, pl. 2:2a-f. (fide Cushman 1930, 1939; Lévy et al. 1969, 1975; Feyling-Hanssen 1972). Elphidium excavatum (Terquem). Cushman, 1930, (part), p. 21, pl. 8:i-3. (figures after Terquem). CUSHMAN, 1939, p. 58, pl. 16:7-9 (figures after Terquem). CUSHMAN, 1944, p. 26, pl. 3:40. PARKER, 1952a, p. 412, pl. 5:8. PARKER, 1952b, p. 448, pl. 3:13. LÉVY, 1966, p. 4, pl. 1:8a-b. MURRAY, 1971, p. 159, pl. 66:1, 2, 4, 6, 7. KNUDSEN, 1973b, p. 279, pl. 2:3. LEVY ET AL., 1975, p. 176-178,
text-fig. 9 (figures after Terquem), pl. 3:1, 2, 5,6.
ROSSET-MOULINIER, 1976, (part), p.38, pl. 2:14-15. KNUDSEN, 1979, (part), p. 208-209, pl. 1:15-18; pl. 5:1-2.

Elphidium transluscens. NATLAND, 1938, p. 144, pl. 5:3-4. CUSHMAN, 1939, p. 65, pl. 20:7a-b. BANDY, 1953, p. 176, pl. 22:9a-b. PARKER ET AL., 1953, p. 9, pl. 3:27. PHLEGER, 1954, p. 639, pl. 2:10. TODD and BRONNIMAN, 1957, p. 39, pl. 7:6a-b. TODD and LOW, 1961, p. 20, pl. 2:4. PHLEGER and EWING, 1962, p. 178, pl. 4:7. PHLEGER, 1964, p. 388, pl. 2:1.

Elphidium incertum (Williamson). PHLEGER and WALTON, 1950, (part), p. 277, pl. 2:17, 18.

Elphidium incertum (Williamson) var. clavatum Cushman. PHLEGER, 1952b, p. 83, p1. 14:10.

Elphidium hispidulum Cushman. TODD and BRÖNNIMANN, 1957, p. 39, pl. 2:1.

Elphidium poeyana (d'Orbigny). LANKFORD, 1959, p. 2083, pl. II:5a-b. Elphidium spinatum Cushman and Valentine var. transluscens Natland. UCHIO, 1960, p. 62, pl. 4:23, 24.

Elphidium selseyense (Heron-Allen and Earland). HAAKE, 1962 (part), p. 49, pl. 6:1. JONES and ROSS, 1979, text-fig. 7:A-B. Elphidium clavatum Cushman. LOEBLICH and TAPPAN, 1953, (part), p. 98, pl. 19:9-10. HANSEN, 1965, p. 325, text-figs. 5:6. BRODNIEWICZ, 1965, (part), p. 210-213, pl. 10:3. KNUDSEN, 1971b, p. 273, pl. 20:5-6

Elphidium cf. clavatum Cushman. MICHELSEN, 1967, p. 237-238, pl. 4:7a-b.

Cribrononion excavatum (Terquem). HAAKE, 1967, (part), p. 13-27, pl. 1:4-5. LÉVY ET AL., 1969, p. 93, pl. 1:1-3 (figures after Terquem); pl. 1:4.

Elphidium incertum (Williamson) variant. MURRAY, 1968, p. 83-96, pl. 1:7a-b.

Cribrononion incertum (Williamson). VON DANIELS, 1970, p.88, pl. 7:12.

Elphidium excavatum (Terquem) forma selseyensis (Heron-Allen and Earland). FEYLING-HANSSEN, 1972, p. 341, pl. 5:1-4. KNUDSEN, 1976, p. 431-449. FEYLING-HANSSEN, 1976b, p. 177. FEYLING-HANSSEN, 1976c, p. 355. MILLER, 1979, p. 33, pl. 1:1-2, pl. 2:1-2, pl. 3:1, pl. 4:4-5, pl. 5:4-5. SNYDER and KATROSH, 1979, p. 254, pl. 1:1-2. SLOAN, 1981, p. 275, pl. 1:5. KNUDSEN, 1982, p. 170, fig. 14:14:5-6. Cribroelphidium spinatum var. transluscens (Natland). SCOTT, 1976, p. 170. SCOTT ET AL., 1976, p.74.

Cribroelphidium excavatum selseyensis (Heron-Allen and Earland). SCOTT, 1977, p. 170, pl. 6:3. SCOTT ET AL., 1977, p. 1579, pl. 5:3. Elphidium excavatum forma clavata Cushman. KNUDSEN, 1978, (part) p. 34, pl. 5:4.

Elphidium clavatum nudum. WILKINSON, 1979, p. 638, pl. 1:6, pl. 2:8. Cribrononion excayatum forma selseyensis (Heron-Allen and Earland). SCOTT and MEDIOLI, 1980, p. 35, pl. 5:6. SCOTT ET AL., 1980, p. 228. Elphidium ex gr. excavatum (Terquem). Elphidium excavatum (Terquem) sensu stricto. HAYNES, 1981, p. 61-62, pl. 8:9.

Elphidium sp. group B. CANN and DE DEKKER, 1981, (part), p. 663-664, pl. 1:3-5, 17.

Elphidium excavatum forma excavata (Terquem). MILLER ET AL., 1982, p. 128-130, pl. 1:9-12, pl. 2:1-2, pl. 3:1-2, pl. 4:13-16, pl. 5:15-16, pl. 6:6-8, 14.

Elphidium excavatum (Terquem) forma alba Feyling-Hanssen. KNUDSEN, 1982, p. 170, fig. 14:12:5, fig. 14:14:8-9.

## Types:

Holotype: Polystomella excavata (specimen lost) Terquem, 1875, p. 20, pl. 2:2a-f, ( not available, private publication of the author; fide Ellis and Messina, 1940). Terquem, 1876, p. 429, pl. 2:2a-f (repeat of the 1875 MS ).

Deposited in: Musee de Dunkerque, France.
Neotype: Elphidium excavatum (Terquem). Lévy et al., 1975, p. 176-178, pl.. 3:1-2 No. FG 447.

Neoparatypes: No. FG 448.
Deposited in: l'Institute de Paleotologie du Museum National
d'Historie Naturelle de Paris.
Topotype: Elphidium excavatum (Terquem). Levy et al., 1975, p.
176-178, pl. 3:5-6, also topotypes deposited at the Smithsonian
Institution, USNM No. 343319.
Types of junior synonyms:

## Elphidium transluscens:

Holotype: Natland, 1938, p. 144, pl. 5:3-4, USNM No. 22549.
Paratype: USNM No. 23332.
Deposited in: Smithsonian Institution.

Representative Dlesiotype: Miller, 1979, pl. 4:4, pl. 5:4; Miller et al. 1982, pl. 1:10; USNM No. 312511.

Diagnostic characteristics: Generally small, though larger than forma clavata, and with chambers more lobate and sutures straighter, extending unconstricted into the umbilicus. Elphidium excavatum forma excavata generally has a greater pore density than E. excavatum forma clavata; giving the test a hazy appearance. The pore perforations extend to the umbilicus. It is interesting to note that Terquem used for this species the epithet excavata (excavated umbilicus?).

Description: As described by Feyling-Hanssen in 1972 (E. excavatum forma selseyensis), and Lévy et al. in 1975 (E. excavatum).

Maximum Diameters: $0.35 \mathrm{~mm}-0.55 \mathrm{~mm}$ (Terquem 1876, p. 429); 0.25 mm - 0.65 mm (Lutze, 1965, text-fig. 8); $0.38 \mathrm{~mm}-0.66 \mathrm{~mm}$ (Bartlett, 1965b, p. 17).

Remarks: Elphidium excavatum forma excavata (Terquem) is the name retained for the original specimens described by Terquem (Polystomella excavata) and the neotype of Levy et al., 1975.

Feyling-Hanssen (1972) indicates that many European workers (among them van Voorthuysen 1960, Brodniewicz 1965, Hansen 1965, Lutze
1968) grouped this form E. excavatum forma excavata with E. clavatum
( = E. excavatum forma clavata). Some workers included it in synonomy
with E. selseyense ( $=$ E. excavatum forma selseyensis), among them Brand 1941, Haake 1962, Lévy et al. 1969, Feyling-Hanssen 1972.

Many European workers were following the lead of Cushman's (1930, 1939, 1949) and identifying a form that appears to be the "species" of Williamson, Polystomella umbilicatula 1858 = (E. williamsoni Haynes, 1973) as E. excavatum (i.e. van Voorthuysen 1957, 1960, Richter 1961, 1964a, 1964b, 1967, Jarke 1961, Woszidlo 1962, Haake 1962, 1967, Feyling-Hanssen 1964, Brodniewicz 1965, and Murray 1965a, 1968, 1970). Lutze (1968) Murray (1971) and Haynes (1973) have all commented on the confusion arising from Cushman's work, and they too placed Cushman's E. excavatum in synonymy with Williamson's taxon. As pointed out by Wilkinson (1979), Terquem's original material was lost, and Lévy et al. (1975) , designated a neotype (E. excavatum of Lévy et al. = E. excavatum forma excavata).

Rodrigues and Hooper (1982) suggest that of the three specimens of Polystomella excavata illustrated by Terquem (1875, 1876), one (Pl. $2: 2 c-d$ ) was of Polystomella umbilicatula. Of Lévy et al.'s (1975) specimens of E. excavatum Rodrigues and Hooper (1982) refer the neotype (1975, Pl. 3:1-2) and topotype (1975, Pl. 3:5-6) to P. striatopunctata var. selseyense, thus they do not believe E. excavatum sensu Terquem and E. excavatum sensu Lévy et al. to be conspecific. After examining the Heron-Allen and Earland collection at the British Museum, and topotypic material of Lévy's at the Smithsonian Institution, the conclusion is reached that Lévy's material is not $p$. striatopunctata var. selseyense (sensu Heron-Allen and Earland). Rodrigues and Hooper's (1982) suggestion that Terquem included E.
williamsoni in his species may be correct; but they base this on the observations of an umbilical boss (in one) and ponticuli on the periphery (on both) of Terquem's two illustrations. Some specimens observed here have an umbilical boss and/or ponticuli on the periphery and yet have been attributed to E excavatum forma excavata, not E. excavatum forma williamsoni (i.e. pl.6:12,15, pl. 20: 3,5,6,8; also Miller et al., 1982, Pl. 1:10, Pl.2:2, Pl. 4:14). The other suggestion of Rodrigues and Hooper's (1982), that E. excavatum sensu Terquem and E. williamsoni Haynes are conspecific, is not a new observation (it was made by van Voorthuysen in 1957). It must be remembered, however, that what van Voorthuysen (1957) identified as E. excavatum has been listed in synonymy as E. williamsoni by Lutze 1968, Murray 1971 and Haynes 1973. Because Terquem's material has been lost, it is suggested here that 1) the concept of E. excavatum s.s. (or forma excavata) be based on Lévy et al.'s neotype; 2) the concept of forma williamsoni be based on Williamson's and Haynes! "species", and 3) the concept of forma selseyensis be based on Heron-Allen and Earland's "species".

Here, Elphidium transluscens Natland is considered a junior synonym.

Distribution: The form as described here has often been placed in synonymy with either E. excavatum forma clayata or forma selseyensis, or confused with E. excavatum forma williamsoni ( $=$ E, williamsoni Haynes ab Williamson), and consequently the distribution of this form is difficult to determine. It appears to be a nearshore form becoming
slightly more common in intertidal and shallow subtidal environments.

> Elphidium excavatum forma williamsoni Haynes, 1973, ab Williamson, 1858. pl. 6:17-18; pl. 9:1-16; pl. 12:19; pl. 17:1-12; ?pl. 18:17; pl. 19:16-17; pl. 22:1-24
?Polystomella articulata. d'Orbigny, 1839b, p. 30, pl. 3:9, 10 (fide Murray, 1971).

Polystomella umbilicatula. WILLIAMSON, 1858, p. 42-44, pl. 3:81-82. (non Nautilus umbilicatula Walker and Jacob). TERQUEM, 1875, p. 25, pl. 2 : 3a-b. (fide Lévy et al., 1969; Haynes, 1973). TERQUEM, 1876, p. 429 (fide Lévy et al., 1969; Haynes, 1973).

Polystomella striatopunctata (Fichtel and Moll) variety. HERON-ALLEN and EARLAND, 1909, (part), p. 695, pl. 21:2a-c.

Nonionina depressula Walker and Jacob SD. HERON-ALLEN and EARLAND, 1909, (part), p. 692.

Polystomella striatopunctata (Fichtel and Moll) var. selseyensis. HERON-ALLEN and EARLAND, 1911, (part), p. 448.

Elphidium excavatum (Terquem). CUSHMAN, 1930, (part), p. 21, pl. 8:4-7. HERON-ALLEN and EARLAND, 1932, p. 439, pl.16:21-23. CUSHMAN, 1939, p. 58, pl. 16:10 (figure after Williamson), pl.16:11-12. CUSHMAN, 1949, p. 28, pl. 6:2a-b (fide Haynes, 1973). VAN VOORTHUYSEN, 1957, p. 31, pl. 23:8a-b. VAN VOORTHUYSEN, 1960, p. 255. JARKE, 1961, p. 21-36, pl. 2:2. RICHTER, 1961, p. 163-170, pl. 1. TODD and LOW, 1961, p. 19, pl. 2:5. HAAKE, 1962, (part), p. 47-48, pl. 5:5. WOSZIDLO, 1962, p. 74-75, pl. 3:8. FEYLING-HANSSEN, 1964,
p. 344, pl. 20:7-8. RICHTER, 1964a, p. 343-353, text-fig. 3-4. ADAMS and FRAMPTON, 1965, p. 58, pl. 5:7. BRODNIEWICZ, 1965, p. 214, pl. 7:5, pl. 11:4. MURRAY, 1965a, p. 513, pl. 1:6, 6 (fide Haynes, 1973). MICHELSEN, 1967, p. 238, pl. 5:2. RICHTER, 1967, p. 291-335. MURRAY, 1968, p. 83-96, pl. 1:12a-b. HAMAN, 1969, p. 139-142 (Hamen, 1981, pers. comm.). MURRAY, 1970, p. 484. BOLTOVSKOY and VIDARTE, 1977, (part), p. 38, pl. 2:12.

Elphidium articulatum (d'Orbigny). CUSHMAN, 1930, p. 22, pl. 10:6-8. BANDY, 1953, p. 176, pl. 22:5a-b. MURRAY, 1971, pl. 153, pl. 63:1-7. KNUDSEN, 1973a, p. 188, pl. 3:13. KNUDSEN, 1973b, p. 278, pl. 2:2. KNUDSEN, 1976, p. 431-449. ROSSET-MOULINIER, 1976, p. 89, pl. 1:1-4. APTHORPE, 1980, (part), p. 225, p. 2:6. BOLTOVSKOY ET AL., 1980, p. 29, pl. 13:1-4.

Elphidium alvarezianum (d' Orbigny). HERON-ALLEN and EARLAND, 1932, p. 440, pl. XVI:24-25.

Cribroelphidium cf. koeboense (LeRoy). LEHMANN, 1957, p. 348, pl. 2:21-24.

Elphidium clavatum Cushman. JARKE, 1961, p. 21-36, pl. 2:2.
BRODNIEWICZ, 1965, (part), p. 210-213, pl. 10:2, 4, 7.
Ephidium sp. 1. HAAKE, 1962, pl. 5:9.
Cribrononion ef. alvarezianum (d'Orbigny). LUTZE, 1965, p. 101-102, pl. 15:4-6.
Elphidium oceanicum (Cushman). LÉVY, 1966, p. 5, pl. 1:2a-b.
Elphidium kusiroense Asano. MATOBA, 1967, p. 254, pl. 27:9a-b. Elphidium aff. semistriatum (d'Orbigny). CITA and PREMOLI-SILVA, 1967, (part), p. 35, pl. 2:10.

Elphidium sp. CITA and PREMOLI-SILVA, 1967, (part), p1. 2:14-15. Cribrononion excavatum (Terquem). HAAKE, 1967, (part), p. 13-27, pl. 1:7-8.

Cribrononion articulatum (d'Orbigny). LUTZE, 1968, p. 27, pl. 1:1-2. Elphidium umbilicatulum (Williamson). LEVY ET AL., 1969, p. 96, pl. 1:6, pl. 2:1-2. KNUDSEN, 1971b, p. 281-282, pl. 13:8-11, pl. 23:1-4. Cribroelphidium articulatum (d'Orbigny). ROSSET-MOULINIER, 1972, p. 176, pl. 14:1-5.

Elphidium incertum (Williamson). SHEENAN and BANNER, 1972, p. 31-40, pl. 1 1-5.

Elphidium williamsoni. HAYNES, 1973, p. 207, pl. 24:7, pl. 25:6, 9, pl. 27:1-3. HANSEN and LYKKE-ANDERSEN, 1976, p. 9, pl. 5:1-6. CULVER and BANNER, 1978, p. 53-72. KNUDSEN, 1979, p. 210, pl. 1:19, pl. 5:6-7. MURRAY, 1979, p. 52, fig. 16:C-D. SCOTT and MEDIOLI, 1980, p. 40, pl. 5:4. SCOTT ET AL., 1980, p. 228. KNUDSEN, 1982, p. 170, fig. 14:12:19, fig. 14:14:10-11.

Elphidium hughesi Cushman and Grant. BERGEN and O'NEILL, 1976, p. 1290, pl. 1:1-2.

Cribroelphidium excavatum (Terquem). SCOTT, 1977, p. 169, pl. 6:1. SCOTT ET AL., 1977, p. 1578, pl. 5:4.

Elphidium sp. group A. CANN and DE DEKKER, 1981, p. 663, pl. 1:7-16, 18-23.

Elphidium ex gr, excavatum (Terquem). Elphidium williamsoni Haynes. HAYNES, 1981, p. 61-62, pl. 8:11.

Holotype: Polystomella umbilicatula, (non Nautilus umbilicatulus, Walker and Jacob); Williamson, 1858, p. 42-44, pl. 3.:81-82.

Hypotypes: Elphidium williamsoni Haynes, 1973, p. 207-209, pl. 24:7, pl. 25:6, 9.

Deposited in: British Museum - Natural History, Stub 1970:II:26:597; slide 197 0:II:26:431:432; sections 1970:II:26:507, 1970:II:26:508.

## Types of junior synoynms:

?Polystomella articulata.
Holotype: lost-d'Orbigny, 1839b, p. 30, pl. 3:9, 10.
Deposited in: ? Laboratoire de Paleontologie du Museum de l'Histoire Naturelle, Paris.

Representative plesiotype: pl.21:1-2.

Diagnostic characteristics: An inflated, rotund form, with smooth peripheral outline and rounded periphery. A flat umbilicus on each side, chambers extending completely to the umbilicus; a boss/papillae may be present. Ponticuli very regular and well developed, covering up to half the chamber width. Wall very finely and densely perforate.

Description: As described by: Williamson (Polystomella umbilcatula) in 1858, Haynes (E. williamsoni) in 1973, and Hansen and Lykke-Andersen (E, williamsoni) in 1976.

Maximum diameters: Diameter 0.48 mm , width approx. 0.20 mm (Haynes, 1973, p. 208).

Remarks: The specific name williamsoni was suggested by Haynes, (1973) for the inflated, many chambered marsh and estuarine species first referred to by Williamson (1858, p. 42-44, Pl.3:81-82) as Polystomella umbilicatula (Walker and Jacob) and widely referred to by many European workers as Elphidium excavatum (Terquem) (i.e.: van Voorthuysen 1957, 1960, Jarke 1961, Richter 1961, 1964a, 1964b, 1967, Woszidlo 1962, Haake 1962, 1967, Feyling-Hanssen 1964, Brodriewicz 1965, and Murray 1965a, 1968, and 1970). Lévy et al. (1969) refer to this marsh species as E. umbilicatula (Williamson) but, as pointed out by Haynes (1973) this latter designation contravenes Article 49 of the ICZN (Stoll et al. 1961) because Williamson placed his species in synonymy with Nautilus umbilicatulus Walker and Jacob, a species clearly distinct from his. Consequently, Haynes suggested the designation E. Williamsoni, a nomen novum (ICZN, Appendix E, Paragraph 21; Stoll et al. 1961) for this form because it was clearly Williamson's species. The epithet williamsoni has been followed here. However, Haynes designated his own material as holotype of the new nominal species; thus contravening Article 72D of the ICZN (Stoll et al. 1961) which specifically states that in this case Williamson's specimen should have been designated as holotype. Consequently, Williamson's specimen is designated here as the only valid holotype; and Haynes' specimens (holotype and paratypes) should be demoted to hypotypes. Haynes (1981) included this form in the Ee excavatum

## "polytypic species" group. <br> Rodrigues and Hooper (1982) are of the opinion that Terquem's original concept of E. excavatum included E. williamsoni.

This species has also been referred to as Elphidium articulatum (d'Orbigny). The relationship between E. articulatum and E. williamsoni is very confusing in the literature and there are many contradictory opinions.
E. articulatum was described by d'Orbigny (1839b) from the coast of Patagonia and the Falkland Islands. Williamson (1858, p. 43) remarked on the similarity between his species and d'Orbigny's figure of $P$. articulata, stating that the only difference between the two was that d'Orbigny described his specimens as having numerous septal apertures dispersed irregularly over the entire plane, instead of being confined to a single row as in his specimens.

Cushman (1930) distinguished between E. articulatum and E. excavatum (=E. williamsoni?) and maintained the distinction later.

Heron-Allen and Earland (1932) also reported finding E. articulatum from the Falkland Islands - and distinguished it from E. excavatum. Heron-Allen and Earland reported some confusion about the type when they examined d'Orbigny's collection in Paris. The specimen identified there as P. articulata was sharp edged with 12 chambers and in their opinion (p. 439-440) was possibly P. flexosa.

Parker (1952a) considers E. articulatum closely related to E. bartletti Cushman, and that young specimens of the two are identical. Parker says (1952a, p. 411): "A comparison with specimens from the

Falkland Islands shows the Portsmouth species to be almost identical although slightly less compressed." She further states: "It is possible that E. bartletti represents the Arctic development of $E$. articulatum which is not reported from that area." Loeblich and Tappan (1953, p. 98) report that d'Orbigny's type figure shows a sharp, acutely angled periphery, rather than the broadly rounded periphery of all other specimens referred to his species, and present in E. bartletti.

Haynes (1973), regards the type specimen of E. articulatum as lost but says that the type figure of E. articulatum shows a lobate species with inflated chambers, small septal pits, and areal apertures, which is different from the flat sided E, excavatum with sutural bridges. These observations of the type figure are in agreement with the concept of E. bartletti.

Rosset-Moulinier (1976, p. 89) has examined topotypic material (i.e. from the Falklands and Patagonia) of E. articulatum supplied by Boltovskoy and states E. articulatum is conspecific with E. williamsoni.

Murray (1982 pers. comm.) examined the d'Orbigny collection in Paris in the early 1960 's and said that the state of preservation of the specimen was so poor as to render it useless.

Haynes ( 1982 pers. comm.) has suggested that the name E. articulatum be regarded as a nomen dubium; and due to the conflicting opinions in the literature on the concept of E. articulatum, Haynes suggestion has been taken here. The only unambiguous epithet for this form is williamsoni Haynes ab Williamson.

Distribution: A widely distributed form, extensively documented in the literature. Reported from shallow subtidal and intertidal zones in outer estuaries, lagoons, tidal flats and in particular marshes, where the salinity is near normal and there is no wave action, only tidal flux. It is the dominant Elphidium in intertidal areas of marshes along the European and North American (particularly north of New York) Atlantic seaboards. It is also found in glacio-fluvial and post-glacial late Pleistocene-Holocene sediments (i.e. Knudsen 1979), and has been reported as far back as the Eemian in Europe (van Voorthuysen 1957).

> Elphidium excavatum (Terquem) forma selseyensis Heron-Allen and Earland, 1911 (emended Brand, 1941)

```
pl.1:2:2; pl.7:1; pl. 8: 10-13; pl.10: 9-13; pl.11:15;
```

pl.12:14-15; pl.13: 12-15; pl.14: 8-9, 18; pl. 22: 1-9

Polystomella striatopunctata (Fichtel and Moll) variety. HERON-ALLEN and EARLAND, 1909, (part), p. 695, pl. 21:2a-c.

Nonionina depressula Walker and Jacob SD. HERON-ALLEN and EARLAND, 1909 (part) p. 92.

Polystomella striatopunctata (Fichtel and Moll) var. selseyensis.
HERON-ALLEN and EARLAND, 1911 (part), p. 448.
Elphidium incertum (Wiliiamson). CUSHMAN and COLE, 1930, p. 96, pl. 13:6,7, CUSHMAN, 1930, (part), p. 18, pl. 7:5, 8, 9. CUSHMAN, 1944, p. 25, pl. 3:28-31. PHLEGER and WALTON, 1950, (part), p. 277, pl.

2:17, 18. SCHNITKER, 1971, p. 198, pl.7:4a-b.

Elphidium incertum (Williamson) var. clavatum Cushman. CUSHMAN and COLE, 1930, p. 96, pl. 13:8-9. CUSHMAN, 1944, p. 25, pl.3:32-33. PARKER, 1952a, (part), p. 412, pl. 5:10-11. TODD and BRÖNNIMANN, 1957, (part), p. 39, pl. 6:10.

Elphidium brooklynense. SHUPACK, 1934, p. 10, opp. p. 9, figs. 7a-b. Elphidium discoidale (d'Orbigny). SHUPACK, 1034, p. 11, opp. p. 9, figs. 9a-b.

Elphidium gunteri Cole. SHUPACK, 1934, (part), p. 11, opp. p. 9, figs. 6-b. CUSHMAN, 1944, p. 27, pl. 3:42. TODD and LOW, 1961, p. 19, pl. 2:10.

Elphidium clavatum Cushman. SHUPACK, 1934, p. 11, opp. p. 9, figs. 8a-b. WEISS, 1954, p. 159, pl. 32:14. BUZAS, 1965b, (part), p. 58-59, pl. 2:6-7, pl. 3:1-2. SCHNITKER, 1971, p. 198, pl.7:5a-b. Elphidium selseyense (Heron-Allen and Earland). CUSHMAN, 1939, p. 59-60, pl. 16:26-27 (figures after Heron-Allen and Earland). RICHTER, 1961, p. 163-170, pl. 1. HAAKE, 1962, (part), p. 49, pl. 5:12-15; pl. 6:2-4. RICHTER, 1964a, p. 343-353, text-fig. 5. ATKINSON, 1969, p. 538. MURRAY, 1970, p. 484. HAMAN, 1973, p. 134. HAYNES, 1973, (part), p. 204-205, pl. 22:3-4, pl. 26:4, 7, 9, pl. 29:1-3. CULVER and BANNER, 1978, p. 53-78.

Elphidium incertum selseyensis (Heron-Allen and Earland). BRAND, 1941, p. 65-66. FEYLING-HANSEN, 1954, p. 142, pl. 2:12a-b. Elphidium tumidum Natland. CUSHMAN and TODD, 1947, (part), p. 14, pl. 2:21.

Cribroelphidium limnosum. CUSHMAN and BRÖNNIMANN, 1948, p. 19, pl. 4:7. TODD and BRÖNNIMANN, 1957, p. 39, pl. 16:13.

Elphidium incertum (Williamson) variants. PARKER, 1952b, (part), p. 448, pl. 3:14, 17, pl. 4:1-2.

Elphidium gunteri Cole var. galvestonense Kornfeld. BANDY, 1954, (part), p. 136, pl. 30:2.

Elphidium florentinae Shupack. WEISS, 1954, p. 159, pl. 32:8-11. Elphidium strattoni (Applin) var. joaquinensis. BANDY and ARNAL, 1957, p. 55, pl 7:6.

Elphidium yadescens (Cushman and Bronnimann). TODD and BRONNIMANN, 1957, p. 39, pl. 7:10-11.

Elphidium galvestonense Kornfeld. TODD and LOW, 1961, p. 19, pl. 2:9. Elphidium longipontis Stschedrina. BRODNIEWICZ, 1965, (part), p. 213, text-fig. 33, pl. 7:5, 7, 8.

Cribrononion excavatum (Terquem). HAAKE, 1967, (part), p. 13-27, pl. $1: 6,10-11$.

Elphidium excavatum (Terquem). BOLTOVSKOY and BOLTOVSKOY, 1968, (part), p. 148, pl. 1:16a-b. BANNER and CULVER, 1978, p. 177-207, pl. 9:12-14.

Cribroelphidium selseyense (Heron-Allen and Earland). BACHHUBER and MCCLELLAND, 1977, p. 259, text-fig. 3:B.

Elohidium selseyense (Heron-Allen and Earland). HOFKER, 1977, p. 257, pl. 8:8-9, pl. 9:1.

Elphidium clavatum selseyense (Heron-Allen and Earland). WILKINSON, 1979, p. 638, pl. 1:5.

Elphidium excavatum forma album (Feyling-Hanssen). POAG ET AL., 1980, pl. 1:9.

Elphidium articulatum (d'Orbigny). APTHORPE, 1980, (part), p. 225,
pl.28:7.
Elphidium ex gr. excayatum (Terquem). Elphidium selseyense
(Heron-Allen and Earland). HAYNES, 1981, p. 61-62, pl. 8:13.

Elphidium excavatum forma selseyensis (Heron-Allen and Earland).
MILLER ET AL., 1982, p. 132-133, pl. 1:13-16, pl. 5:10-13, pl. 6:9-13. KNUDSEN, 1982, (part), p. 170, fig.:14:12:11-12, fig.:14:14:7.

## Types:

(?)Syntypic series: Polystomella striatopunctata (Fichtel and Moll) var. Heron-Allen and Earland, 1909, p. 695, pl.21:2a-c. Deposited in: Heron-Allen and Earland collection, (from Selsey Bill, Sussex), British Museum (Natural History), slide nos: 51, 54, 56, 57, 61, 65, 66, 67.

Lectotype: designated by Brand, 1941, p. 66, as: Polystomella striatopunctata variety selseyensis Heron-Allen and Earland, 1909, p. 695, pl. 21:2a, $2 c$; not $2 b$.

Metatype, (possible syntype): designated by Banner and Culver, 1978, as: Elphidium excavatum pl. 9:12-14.

Deposited in: Heron-Allen and Earland collection, British Museum
(Natural History), BM(NH) No. ZF3833.

Types of iunior synonyms:
Elphidium brooklynense.
Holotype: Shupack, 1934, p. 10, opp. p.9:7a-b
Deposited in: American Museum of Natural History (New York) No. 695 Cribroelphidium limnosum.

Holotype: Cushman and Brönnimann, 1948, p. 19, pl. 4:7

Deposited in: Cushman Collection, Smithsonian Institution, USNM No. 56645.

Paratype: USNM No. 56747 (as above).
Elphidium strattoni (Applin) var.joaquinensis.
Holotype: Bandy and Arnal, 1957, p. 55-56; pl. 7:6.
Deposited in: Smithsonian Institution, USNM No. 237448.

Representative plesiotype: pl. 8:13, USNM No. 312512.

Diagnostic characteristics: Test generally larger than E. excavatum forma clavata and forma excavata; the peripheral outline is smooth to lobate, with a subacute periphery. The test thicker is through the umbilicus, consequently the umbilicus appears raised. Sutures slightly backwards curved or straight; with irregular indistinct to strongly developed ponticuli and often papillae filling the sutures. The umbilicus contains papillae, or bosses (irregular lateral extensions of the chambers), or both.

Description: As described by: Heron-Allen and Earland (R. striatopunctata variety) in 1932 and Haynes in 1973 (En selseyense). Maximum Diameters: 0.43 mm (Haynes, 1973, p. 205); $0.25 \mathrm{~mm}-0.64 \mathrm{~mm}$ (Lutze, 1965, text-fig. 8).

Remarks: The name E. excavatum forma selseyensis is retained for the specimens described by Heron-Allen and Earland (1909, 1911), collected from the shores of Selsey Bill. There are two species of particular
interest in their collection: Polvstomella striatopunctata (Fichtel and Moll) variety selsevensis, and Nonionina depressula Walker and Jacob variety selseyensis. Specimens of the former, in the opinion of the author, actually belonged to two formae, most specimens are Elphidium excavatum forma williamsoni, the remainder are forma selseyensis (Heron-Allen and Earland) (this work). Most specimens of the latter species appeared to the author to be formae of Elphidium excavatum, mainly forma selseyensis. The remaining specimens appeared not to belong to the genus Elphidium. It should be noted that Heron-Allen and Earland did not designate any "type" specimens of their new variety of Polystomella striatopunctata; and although there are specimens in the collection labelled Nonionina depressula var. selseyensis, in the 1909 publication Heron-Allen and Earland refer only to "Nonionina deoressula Walker and Jacob sp." (p. 692).

Brand (1941) published an emended description of this species and he designated Heron-Allen and Earland's 1909 figure (Pl. 21:2a, 2c; not $2 b$ ) as lectotype.

The Es excavatum forma selseyensis described here does not include the form described by Feyling-Hanssen (1972) as E. excavatum forma selseyensis.

Haynes (1973) presents SEM photographs of specimens which "closely resemble" (Haynes, 1973, p. 205) those collected by Heron-Allen and Earland and housed in the British Museum (E. selseyense of Haynes, 1973).

Banner and Culver (1978, P1. 9:12-14) illustrate a specimen of E. excavatum which is a metatype (possible syntype) identified by

Heron-Allen and Earland as Polystomella striatopunctata variety selseyensis. This specimen (\# ZF3833) illustrated by Banner and Culver (1978) is considered here to belong to Elphidium excavatum forma selseyensis.

Haynes, (1981) included this form in his E. excavatum "polytypic species" group.

Junior synonyms of this form are: Elphidium brooklynense Shupack (1934), Elphidium strattoni var. joaquinensis Bandy and Arnal, (1957), and Cribroelphidium limnosum Cushman and Bronnimann (1948).

Distribution: Preliminary observations indicate that Ee excayatum forma selseyensis occurs nearshore, especially in shallow, temperate waters (reaching 10-150C) under estuarine influence along European and North American coastlines.

```
 Elphidium excavatum (Terquem) forma clavata
Cushman, 1930 (emended, Loeblich and Tappan, 1953).
pl.1:1:3; pl.2:1-8, 9-17; pl. 3:1-6, 9-12; pl. 4:1,
6-9, 13-14; pl. 5:1-7; pl. 6:3-6; pl. 7:4-9; pl. 8:
4-8, 14; pl. 9:18; pl. 10:1-5; pl. 11:5-8; pl. 12:
11; pl. 13:3-5, 8-9, 16; pl. 14:4-5, 13-14; pl. 23:
 1-21.
```

Elphidium incertum (Williamson) var. clavatum. CUSHMAN 1930, p. 20, pl. 7:10a-b. CUSHMAN, 1939, p. 57, pl. 16:1a-b. CUSHMAN, 1948, p. 57, pl. 6:8. VAN VOORTHUYSEN, 1949, p. 65, pl. 1:4b-c. PHLEGER, 1952a, p. 83, pl. 14:10.

Elphidium incertum (Williamson). CUSHMAN, 1939, p. 57, pl. 15:23-24. TEN DAM and REINHOLD, 1941, p. 52, pl. 3:8a-b. PARKER, 1948, p. 248,
pl. 5:7. PHLEGER, 1952a, p. 83, pl. 14:7. WEISS, 1954, p. 159, pl. 32:7. ADAMS and FRAMPTON, 1965, p. 58, pl. 5:6. SLOAN, 1981, p. 281, pl. 2:1a-b.

Elphidium incertum (Williamson) and variants. PARKER, 1952b, (part), p. 448, pl. 3:16.

Elphidium clavatum Cushman. LOEBLICH and TAPPAN, 1953, (part), p. 98, 101-102, pl. 19:8. WEISS, 1954, (part), p. 159, pl. 32:13. TODD and LOW, 1961, (part), p. 18, pl. 2:1. ANDERSON, 1963, p. 315. COOPER, 1964, p. 95-96, pl. 6:5-7. BRODNIEWICZ, 1965, (part), p. 210-213, pl. $10: 1,6,7,8$. BUZAS, 1965a, p. 23, pl. 3:3a-b. NAGY, 1965, p. 124, pl. 2:21 (fide Feyling-Hanssen, 1972). BUZAS, 1966, (part), p. 591, pl. 7:1-2, 5-8. MATOBA, 1967, p. 254, pl. 27:8a-b. MICHELSEN, 1967, p. 236-237, pl. 4:6a-b. TODD and LOW, 1967, p. A33. MURRAY, 1969, (part), p. 416. MATOBA, 1970, p. 51, pl. 6:11a-b. KNUDSEN, 1971b, p. 273, pl. 11:10-13, pl. 20:7-8. SCHNITKER, 1971, (part), p. 198. SEN GUPTA, 1971, p.89, pl. 2:28-29. BARTLETT and MOLINSKY, 1972, p. 1204-1215, pl. 1:1a-b. CULVER and BANNER, 1978, p. 56. BERGEN and O'NEIL, 1979, p. 1290, pl. 1:5-6. LAGOE, 1979a, p. 260, pl. 1:3, 5, 6. RODRIGUES and HOOPER, 1982, (part), p. 411-416, text-fig. 2:G-P, text-fig. 3:A-P.

Elphidium incertum clavatum Cushman. FEYLING-HANSSEN, 1954, p. 141, pl. 2:11. BOLTOVSKOY, 1954, p. 275, pl. 24:7. PHLEGER, 1960b, pl. 5:11. FEYLING-HANSSEN, 1964, p. 345, pl. 20:11-15. COLE and FERGUSON, 1975, p. 21, pl. 7:9-10.

Elphidium incertum incertum (Williamson). FEYLING-HANSSEN, 1954, p. 141, p1. 2:10. FEYLING-HANSSEN. 1964, p. 344, pl. 19:16-17.

Elphidium Selsevense (Heron-Allen and Earland). HAAKE, 1962, (part), p. 49-50, pl. 6:1. WOSZIDLO, 1962, p. 74-75, pl. 3:10.

Elphidium excavatum (T'erquem). TODD and BRÖNNIMANN, 1957, (part), p. 39, pl. 6:12. MURRAY, 1971, p. 159, pl. 66:3, 5. HANSEN and LYKKE-ANDERSON, 1976, p. 10, pl. 6:1-6. BUZAS ET AL., 1977, p. 95. BOLTOVSKOY and VIDARTE, 1977, p. 38, pl. 2:11-12. SCHAFER and COLE, 1978, p. 27, pl. 9:7. KNUDSEN, 1979, (part), p. 208-209, pl. 1:13-14, pl. 4:6-7, pl. 5:3-6. COLE, 1981, p. 100, pl. 15:1-12.

Elphidium incertum (Williamson) "COMPLEX". BARTLETT, 1965b, p. 14, pl. 1:4-12.

Cribrononion excavatum excavatum (Terquem, 1875). LUTZE, 1965, p. 96, pl. 15:39.

Cribrononion excavatum slavatum (Cushman, 1930). LUTZE, 1965, p. 96, p1. 15:40-41.

Elphidium clavatum Cushman "Complex". GREGORY, 1970, p. 226, pl. 14:1.

Elphidium incertum (Williamson) forma clavatum Cushman. WAGNER, 1970, p. 24, pl. 2:3-5.

Elphidium excavatum (Terquem) forma clavata Cushman. FEYLING-HANSSEN, 1972, p. 339, pl. 1:1-9, pl. 2:1-9. KNUDSEN, 1973a, p. 188, pl. 5:4. FEYLING-HANSSEN, 1976a, p. 92, fig. 8:13-14. FEYLING-HANSSEN, 1976b, p. 177. FEYLING-HANSSEN, 1976c, p. 355. KNUDSEN, 1976, p. 431-449, pl. 2:14-17. KNUDSEN, 1977, text-fig. 7:15-18, text-fig. 8:5-6. KNUDSEN, 1978, (part), p. 34, pl. 3:3-5, pl. 5:1-3. MILLER, 1979, p. 27, pl. 1:3-8, pl. 2:3-8, pl. 3:2-8, pl. 4:1-3, 6-16, pl. 5:1-3, 6-8, pl. 6:9-16. MILLER ET AL., 1982, p. 124-127, pl. 1:5-8, pl. 2:3-8,
pl. 3: 3-8, p1. 4:1-6, pl. 5:4-8, 14, p1. 6:1-5. VILKS ET AL., 1982, pl. 1:18. KNUDSEN, 1982, p. 170, fig. 14:12:6-8, fig. 14:12:1-4. Elphidium excavatum (Terquem) forma alba. FEYLING-HANSSEN, 1972, p. 340, pl. 3:1-9. FEYLING-HANSSEN, 1976c, pl. 4:4. VILKS ET AL., 1982, pl. 1:16-17.

Cribroelphidium sp. cf. C. clavatum (Cushman). LANKFORD and PHELEGER, 1973, p. 117, pl. 3:24.

Cribroelphidium excayatum clavatum Cushman. SCOTT, 1977, p. 169, pl. 6:2.

Elphidium clavatum clavatum Cushman. WILKINSON, 1979, p. 634, pl. 1:1.

Elphidium clavatum subclavatum Gudina. WILKINSON, 1979, p. 639, pl. 1:2.

Elphidium clavatum terminatum. WILKINSON, 1979, p. 639, pl. 1:7, pl. 2:2-4.

Elphidium clavatum lobatalum. WILKINSON, 1979, p. 637, pl. 1:3, pi. 2:7.

Elphidium excavatum (Terquem) forma clavatum Cushman. POAG ET AL., 1980, pl. 1:12.

Cribrononion excavatum (Terquem) forma clavatum Cushman. SCOTT and MEDIOLI, 1980, p. 35, pl. 5:5. SCOTT ET AL., 1980, p. 228.

Elphidium excavatum forma lidoensis Cushman. SLOAN, 1981, p. 277, pl. 1:6.

Elphidium ex gr. excavatum (Terquem). E. clavatum Cushman. HAYNES, 1981, p. 61-62, pl. 8:8.

## Types:

Holotype: Elphidium incertum (Williamson) variety clavatum. Cushman, 1930, p. 20, pl. 7:10a-b.

Deposited in: Cushman Collection, Smithsonian Institution, USNM No. 10403.

Hypotypes: Elphidium clavatum Cushman. Loeblich and Tappan, 1953, p. 98, 101-102, pl. 19:8-10.

Deposited in: Smithsonian Institution, USNM Nos. P2024a-b, P2025.

Representative plesiotype: Miller, 1979, pl. 1:4, pl. 2:4; Miller et al., 1982, pl. 1:5, pl. 2:4, pl. 3:4; USNM No. 36-312510

Diagnostic characteristics: Generally: small, disc-shaped, orange-brown translucent form; often with an umbilical boss, and always with an imperforate (complete or incomplete) collar surrounding the umbilicus. The sutures are generally backwards curved, with few narrow often incomplete, ponticuli. It is interesting to note that Cushman named this form clavatum (clavical, from collar? from imperforate collar?).

Description: As described by: Loeblich and Tappan (E. clavatum) in 1953 and Feyling-Hanssen (E. excavatum forma clavata) in 1972.

Maximum diameters: $0.23-0.77 \mathrm{~mm}$ (Loeblich and Tappan, 1953, p. 98); 0.17 - 0.48 mm (Feyling-Hanssen, 1964, p. 187; 1972, p. 345); 0.340.84 mm (Bartlett, 1965b, p. 16)

Remarks: The name Elphidium excavatum forma clayata is retained for the small disc-shaped, orange-brown translucent form figured by Cushman (1930, p.20, P1. 7:10). However, Cushman's description may cover not only forma clavata, but forma selseyensis and forma magna as well.

Haake (1962) was the first to consider Ee clavatum a junior synonym of E. selseyense.

Brodniewicz (1965) pointed out first that Cushman may have been describing two forms. Cushman's collection at the Smithsonian includes specimens belonging to four formae (clayata, excavata, magna and selseyensis) under the name E. incertum var. clavatum. Forma clavata was elevated to specific rank by Loeblich and Tappan (1953), and first designated an ecophenotype of Elphidium excavatum by Feyling-Hanssen (1972). Four of Wilkinson's (1979) subspecies are considered junior synonyms. Haynes (1981) included it in his E. excavatum "polytypic species" group.

Distribution: Elphidium excayatum forma clavata is the central member of this E. excavatum group; it is reported in recent and Holocene sediments from estuaries, nearshore zones, bays, and continental margins from the high arctic to tropical environments. It is perhaps best known for its occurrence (where it is often dominant) in Weichselian (Wurm-Wisconsin) pro-glacial, interstadial and late glacial deposits (Feyling-Hanssen 1972). However, it did not first appear in the Weichselian; it has been recorded as far back as the
earliest marine Pleistocene on both sides of the Atlantic (e.g. Snyder and Katrosh 1979, van Voorthuysen 1949, 1951)

> Elphidium excavatum (Terquem) forma gunteri Cole, 1931
> pl. $11: 17-18$; pl. $12: 16-18$; p1. 13:1-2; pl. $14: 1-3$; p1.15:8-15; p1. $17: 13-15 ;$ p1. $18: 1-3$; pl. $24: 1-24$.
?Polystomella oceanensis. FORNASINI, 1904, p. 13, pl. 3:10 (ab d'Orbigny, 1826, p. 285; described but not illustrated or figured). Elphidium gunteri. COLE, 1931, p. 34, pl. 4:9, 10 (fide Parker et al., 1953). CUSHMAN, 1939, p. 49-50, pl. 13:10 (figure after Cole). PARKER ET AL., 1953, p. 8, pl. 3:18-19. PARKEF, 1954, (part), p. 508, p1. 6:16. PHLEGER, 1954, p. 639, p1. 2:3-4. BANDY, 1956, (part), p. 194, pl. 30:19a-b. LEHMANN, 1957, p. 348, pl. 3:1-3. VAN VOORTHUYSEN, 1957, p. 32, pl. 23:11a-b. LANKFORD, 1959, p. 2083, pl. II:7 a-b. PARKER and ATHEARN, 1959, p. 342, pl. 50 :36. PHLEGER, 1960a, p. 277, pl. 3:6,22, pl. 4:12. PHLEGER, 1960b, pl. 7:18; pl. 9:1,17. VAN VOORTHUYSEN, 1960, p. 255. HAAKE, 1962, p. 48, pl. 5:3-4. RICHTER, 1964a, p. 343-353, text-fig. 7. LÉVY, 1966, p. 4, p1. 1:1a-b. CITA and PREMOLI-SILVA, 1967, p. 35-46, pl. 2:4-5. BOLTOVSKOY and BOLTOVSKOY, 1968, (part), p. 148, pl. 1:15a-b. LÉVY ET AL., 1969, p. 94. KNUDSEN, 1971b, p. 277, pl. 12:9, 10; pl. 21:4-7. 1973b, p. 279, pl. 2: 5. ROSSET-MOULINIER, 1976, p. 92, p1. 1:10, 11; pl. 2:1-4. BUZAS ET AL., 1977, p. 95. KNUDSEN, 1979, p. 209, pl. 6:4-7. SNYDER and KATROSH, 1979, pl. 2:1-2. BOLTOVSKOY ET AL., 1980, p. 30, pl. 13:1 5-18. SLOAN, 1981, p. 285, pl. 2:4a-b.

BUZAS and SEVERIN, 1982, p. 37, pl. 8:4.
Elphidium gunteri var. galvestonense. KORNFELD, 1931, (part), p. 87, pl. 15:2a-3b. CUSHMAN, 1939, p. 60, pl. 16:25 (figure after Kornfeld). PHLEGER, 1951, p. 46. PHLEGER and PARKER, 1951, p. 10, pl. 5:13-14. BANDY, 1954, (part), p. 136, pl. 30:2a-b.

Elphidium oceanense (d'Orbigny). CUSHMAN, 1939, p. 56, pl. 15:8a-b (figures after Fornasini ab d'Orbigny).

Cribroelphidium trinitatense. CUSHMAN and BRÖNNIMANN, 1948, (part), p. 20, pl. 4:8.

Elphidium littorole. LE CALVEZ and LE CALVEZ, 1951, p. 251, fig. 5:a-b.

Elphidium guntheri (sic) var. waddensis. VAN VOORTHUYSEN, 1951, p. 25, pl. 2:16a-b.

Elphidium rugulosum Cushman and Wickenden. BANDY, 1956, p. 194, p. 30:21a, b.

Elphidium trinitatense (Cushman and Brönnimann). TODD and BRÖNNIMANN, 1957, p. 39, pl. 7:12.

Elphidium tumidum Natland. PHLEGER and EWING, 1962, p. 178, pl. 4:18.
Elphidium oceanensis (d'Orbigny). MURRAY, 1968, p. 83-96, pl.
1:10a-b. MURRAY, 1971, (part), p. 165, pl. 69:3-7. BOLTOVSKOY and VIDARTE, 1977, p. 38, pl. 3:1. MURRAY, 1979, p. 52, fig. $16: A-B$. APTHORPE, 1980, pl. 28:1-2.

Elphidium cf. reticulosum Cushman. MATOBA, 1970, p. 52, pl. 6:12a-b. Elphidium sagra (d'Orbigny). TODD and LOW, 1971, p. C16, pl. 3:7a-b. SYNDER and KATROSF, 1979, pl. 2:3.

Cribroelphidium gunteri (Cole). ROSSET-MOULINIER, 1972, p. 178, pI.

18:1-5.
Elphidium waddense van Voorthuysen. HAYNES, 1973, p. 206-207, pl. 24:4,10, pl. 26:1, pl. 28:10-11. CULVER and BANNER, 1978, p. 53-72. Elphidium guntheri (sic) Cole. HANSEN and LYKKE-ANDERSEN, 1976, p. 12, pl. 8:10-12, pl. 9:1-3.

Elphidium vadescens (Cushman and Brönnimann). HANSEN and LYKKE-ANDERSEN, 1976, p. 12, pl. 7:12, pl. 8:1-9. Elphidium gunteri Cole forma salsum. POAG, 1978, (part), p. 402, pl. 2:11-12.

Elphidium gunteri Cole forma typicum. POAG, 1978, p. 402, pl. 2:13-16. POAG, 1981, p. 61, pl. 37:1, pl. 38:1a-1b. Cribrononion gunteri (Cole). PRIME, 1980, p. 30, pl. 1:13. Cribrononion granulosum (d'Orbigny). ALBANI and SERANDREI BARBERO, 1982, p. 238, p1. 1:3.

## Types:

Holotype: Elphidium gunteri. Cole, 1931, p. 34, pl. 4:9-10. Deposited in: Florida State Geological Museum, S-2103.

Hypotypes: designated by Parker et al., 1953, p. 8, as: Elphidium gunteri variety galvestonense Kornfeld, 1931, (part), p. 87, pl. 15:2a-3b.

Deposited in: Stanford University Paleontological Type Collection, types no. 689 and 692 (microspheric form).

Types of iunior synonyms:
?Polystomella oceanensis:

```
Original designation: Fornasini, 1904, p. 13, pl. 3:10 (ab d'Orbigny, 1826, p. 285; described but not illustrated or figured). Deposited in: ? Laboratoire de Paleontologie du Museum de l'Histoire Naturelle, Paris. (no designated type specimen, Y. Le Calvez, pers. comm. to Hansen and Lykke-Andersen, 1976).
```


## Cribroelphidium trinitatense:

```
Holotype: Cushman and Brönnimann, 1948, p. 20, pl. 4:8, USNM No. 56646.
Paratype: USNM No. 56748.
Deposited in: Cushman Collection, Smithsonian Institution.
```

Elphidium guntheri (sic) var. waddensis:

Holotype: van Voorthuysen, 1951, p. 25, pl. 2:16a-b.
Deposited in: Netherlands Geological Survey, Haarlem, no. F. 1810.

## Elphidium littorole.

Holotype: Le Calvez and Le Calvez, 1951, p. 251, fig. 5a-b. Deposited in: not given.

Representative plesiotype: pl. 15:9, pl. 24:1-3.

Diagnostic characteristics: A small to medium sized Elphidium, rather rotund, with a coarsely perforate wall. The sutures are straight, not depressed, and marked by many regular, raised, rectangular shaped ponticuli, of ten longer than the chambers are wide. The umbilicus contains papillae/irregular bosses (irregular lateral extensions of
the ponticuli and chambers).

Description: As described by Cole in 1931 (E. gunteri).

Maximum diameters: diameter 0.44 mm , thickness 0.26 mm (Cole, 1931, p. 34); 0.35-0.43 (Kornfeld, 1931, p. 87, microspheric form); diameter 0.39 mm , thickness 0.18 mm (van Voorthuysen, 1951, p. 25).

Remarks: E. excavatum forma gunteri is the name retained for the round, thick, coarsely perforate form described from the Pliocene of Florida by Cole (1931). The type locality was later determined to be Pleistocene in age (Poag 1978). Included in this morphotype is the microspheric form of E. gunteri var. galvestonense described by Kornfeld (1931). The holotype of E. gunteri cannot be found at the moment and Buzas and Culver ( 198.1 pers. comm.) suggest that one of Kornfeld's specimens (非692, designated as a hypotype of E. gunteri by Parker et al. 1953) become the neotype of E. gunteri.

Feyling-Hanssen (1972, p. 344) remarked on the similarity between E. gunteri and E. excavatum forma lidoensis; but he pointed out that they could be separated on the basis of the distinct rectangular and numerous sutural bridges (gunteri) and the broading of the sutures towards the umbilicus (lidoensis).

Poag (1978) splits E. gunteri into two ecophenotypes, forma salsum and forma typicum. Those he assigns to forma typicum are specimens with ponticuli having length equal to or greater than the chamber width (perforate wall width between sutures). There is some
confusion here because, of Poag's photos (1978, Pl. 2): he places figures 1 - 12 in forma salsum ( $=$ forma lidoensis of this author) and figures 13-16 in forma typicum, (=forma gunteri of this author) and yet only figures 15 and 16 show ponticuli greater in length than the adjacent chamber wall. Instead, here, the two morphotypes are split on the basis of the sutures broadening towards the umbilicus (= forma lidoensis) and ponticuli spanning the suture completely (= forma gunteri). Consequently, Poag's E. gunteri forma salsum (P1. 2:1-10) is placed in forma lidoensis; his forma salsum (Pl. 2:11-12) and his forma typicum are placed in forma gunteri.

It is probable that P. oceanensis, described by d'Orbigny (1826) is the same morphotype as E. excayatum forma gunteri. However, the validity of both the name $P$. oceanensis and the species itself is in doubt. (When transferred to the masculine genus Elphidium the epithet should have become oceanense, but many workers retained the feminine epithet oceanensis).

D'Orbigny (1826) described, he never figured or illustrated, the species. Hansen and Lykke-Andersen (1976) on a personal communication from Y. Le Calvez, state that there is no (and probably never was a) holotype of the species. Both Hansen and Lykke-Andersen (1976, p. 12), and Poag (1978, p. 402) consider E. oceanensis to be a nomen nudum. However, E. oceanensis (from d'Orbigny's collection) was figured by Fornasini (1904, Pl. 3:10), so that the authorship of the species is "Fornasini 1904 ab d'Orbigny 1826". Fornasini's figure does not show the rounded periphery or coarse perforations of the
gunteri morphotype and could be a figure of either forma selseyensis or forma tumidum.

Murray (1971, 1979) has illustrated specimens he has identified as E. oceanensis (some that would be included here in forma lidoensis); Murray (1982 pers. comm.) does not think that E. oceanensis is conspecific with E. excayatum because besides morphological differences, it has a different environmental preferences.

Haynes ( 1982 pers. comm.) has also remarked that the type of E. oceanensis is unrecognizable based on Fornasini's figure - and that a new figure is required. Haynes suggests (1982 pers. comm.) that the name gunteri could be retained on the basis of usage.

Junior synonyms of this morphotype also include E. trinitatense (Cushman and Brönnimann), and a variety of E. gunteri, E. gunteri var. waddensis described by van Voorthuysen (1951) and later put in synonymy with E. gunteri by the same author (van Voorthuysen 1957). Haynes (1973) has elevated van Voorthuysen's variety to specific rank and illustrates specimens of his E. waddense (1973, p. 206-207, Pl. 24:4, 10, Pl. 26:1, Pl. 28:10-11) that resemble Murray's specimens of E oceanensis (1971, Pl. 69:1-7); Murray's specimens are considered here to be intermediate between forma lidoensis and forma gunteri but based on the broadening sutures and indistinct ponticuli they are placed in forma lidoensis.

Also considered a junior synonym is Elphidium littorale Le Calvez and Le Calvez (1951).

Distribution: A widely distributed form, extensively documented in the literature. A warm to tropical water nearshore form tolerating hypo- to hyper-salinities. Found on both the Atlantic and Mediterranean coasts of Europe along beaches and in lagoons, as well as open bays. Also found throughout the Gulf of Mexico, and along the California coast. Reported from late Pleistocene shallow, brackish, glacio-fluvial deposits on both sides of the Atlantic (Knudsen 1973a, 1973b, 1979, Snyder and Katrosh 1979).

## Elphidium excavatum (Terquem) forma galvestonensis Kornfeld, 1931

?pl. 11:19-21; pl. 13:17-20; pl. 14:19-20; pl. 16:1-8; ?pl. 18:18; pl. 25:1-16

Elphidium discoidale (d'Orbigny). CUSHMAN, 1930, p. 22, pl. 8:9a-b. CUSHMAN and COLE, (1930), p. 97, pl. 13:10a-b. PHLEGER, 1951, p. 46. PHLEGER and PARKER, 1951, (part), p. 10, pl. 5:11. TODD and BRÖNNIMANN, 1957, (part), p. 39, pI. 6:8. Elphidium gunteri Cole var. galvestonense. KORNFELD, 1931, (part), p. 87, pl. 15:1a-b (not 2a-3b).

Elphidium galvestonense Kornfeld. PARKER ET AL., 1953, p. 8, pl.

3:15-16. PHLEGER, 1954, p. 639, pl. 2:1-2. LEHMANN, 1957, p. 348, pl. 2:37-40. PARKER and ATHEARN, 1959, p. 342, pl. 50:33-35.

PHLEGER, 1960a, p. 277, pl. 3:19
Elphidium gunteri Cole. PARKER, 1954, (part), p. 508, pl. 6:16. BANDY, 1956, (part), p. 194, pl. 30:19a-b.

Elphidium excavatum (Terquem). TODD and BRÖNNIMANN, 1957, (part), p.

39, pl. 6:11.
Elphidium morenoi Bermudez. TODD and LOW, 1971, p. 16, pl. 3:6. Cellanthus galvestonense (Kornfeld). SCOTT, 1976, p. 170 Elphidium galvestonense Kornfeld forma typicum. POAG, 1978, p. 404, pl. 3: 12-16, 19-21. POAG, 1981, p. 60, pl. 35:3, pl. 36:3a-3b. Elphidium ex gr. excayatum (Terquem). Elphidium cf. advenum sensu Todd and Low. HAYNES, 1981, p. 61-62, pl. 8:12.

## Types:

Holotype: Elphidium gunteri var. galvestonense. Kornfeld, 1931, (part), p. 87, pl. 15:1a-b (not 2a-3b).

Lectotype: designated by Parker et al., 1953, p. 8, as: Elphidium gunteri var. galvestonense, Kornfeld, 1931, p. 87, pl. 15:1a-b. Deposited in: Stanford University Paleontological Type Collection, Type No. 691 (megalospheric form).

Representative plesiotyoe: pl. 16:3, pl.25:1-3.

Diagnostic characteristics: A large, many chambered (13-18) form with a large very raised boss (or bosses) at the umbilicus and many regular, distinct ponticuli. There may be a ring of papillae surrounding the boss or in the sutures. The wall is heavily calcified and very finely perforate, giving the test a porcelaneous appearance. The periphery is subacute.

Description: As described by: Kornfeld in 1931 (E. gunteri var.

```
galvestonense megalospheric form); Parker et al. in 1953 (E.
galyestonense) and Poag in 1978 (E. galvestonense forma typicum).
Maximum diameters: diameter 0.48 to 0.57 mm , thickness 0.28 mm (Kornfeld, 1931, p. 87, megalospheric form).
```

Remarks: E. excayatum forma galvestonensis is the morphotype originally described by Kornfeld (1931) as the megalospheric form of E. gunteri var. galestonense. One of Kornfeld's specimens (1931, p. 87, P1. 15:1a-b, No. 691) has been designated as lectotype by Parker et al. (1953). Poag (1978) has split E. galvestonense into two formae, forma tyoicum and forma mexicanum. Here, only forma typicum is included in this morphotype. Poag's other forma, forma mexicanum appears to be Kornfeld's E. incertum var. mexicanum a species whose relationship to E. excavatum is uncertain.

Distribution: E. excavatum forma galvestonensis occurs in low frequencies and is most abundent in the Northumberland Strait core sample and the Gulf of Mexico samples. It was not positively identified in any of the European samples, and no occurrences from Europe are documented in the literature. It has not been reported as older than Holocene. It is a nearshore (bay, beach and marsh) form and prefers waters that are warm and saline and that exhibit little fluctuation in these parameters.

## Elphidium excavatum (Terquem) forma lidoensis Cushman, 1936

```
pl.1:2:1; pl.4:12; pl. 5:8-12; pl. 6:7; pl. 7:10-12;
```

pl. 8:9; pl. 9:17; pl. 10:15-16; pl. 11:9-13; pl.
12:4-5, 7-10; 13; pl. 13:11; pl. 14:10; pl. 15:1-7,
9-14; pl. 18:4-7; pl. 19:1-7; pl. 26:1-32
?Polystomella arctica (Parker and Jones). TERQUEM, 1876, p. 428, pl. 2:1 (fide Feyling-Hanssen 1972).

Elphidium florentinae. SHUPACK, p. 1934, p. 9, opp. p.9:5a-b.
Elphidium lidoensis. CUSHMAN, 1936, p. 86, pl. 15:6. CUSHMAN, 1939, p. 62-63, pl. 17:17. ACCORDI and SOCIN, 1950, p. 12, 15, pl. 1: 8. CITA and PREMOLI-SILVA, 1967, p. 35-36, pl. 2:1-2. LEVY, 1966, p. 5, pl. 1:5a-c.

Cribroelphidium salsum. Cushman and Brönnimann, 1948, p. 19, pl. 4:6. TODD and BRÖNNIMANN, 1957, p. 39.

Cribroelphidium vadescens. Cushman and Brönnimann, 1948, p. 18, pl. 4:5. LEHMANN, 1957, p. 348, pl. 2:28-29.

Elphidium clavatum Cushman. WEISS, 1954, (part), p. 159, pl. 32:12. MURRAY, 1969, (part), p. 416, pl. 17:i-4. SCHNITKER, 1971, (part), p. 198, p1. 7:5a-b.

Elphidium gunteri Cole var. galvestonense Kornfeld. BANDY, 1954, (part), p. 136, pl. 30:2.

Eliphidium tumidum Natland. TODD and BRÖNNIMANN, 1957, (part), p. 39, p1. 7:9.

Elphidium oceanicum Cushman. LEHMANN, 1957, p. 348, pl. 3:9-12.
Elphidium sp. A. VAN VOORTHUYSEN, 1957, p. 31, pl. 23:10.
Elphidium of.E. minimum (Segwenza). PARKER, 1958, p. 271, pi. 4:8-9. Elphidium granulosum (d'Orbigny). PARKER, 1958, p. 270, pl. 4:10-11.

Elphidium incertum (Williamson) var. PHLEGER, 1964, p. 383, pl. 2:2. Elphidium kozlowskii. BRODNIEWICZ, 1965, p. 205, text-fig. 29, pl. 7:4, pl. 9:1-6.

Nonion depressulus (Walker and Jacob). MURRAY, 1965b, p. 148-149, pl. 25:6-7; pl. 26:7-8.

Elphidium excayatum (Terquem). CITA and PREMOLI-SILVA, 1967, p.
35-36, pl. 2:3. ROSSET-MOULINIER, 1976, (part), p. 89-92, pl. 1:5-9,
12. MURRAY, 1979, p. 50, figs. 15:C-D. BUZAS and SEVERIN, 1982, p. 37, pl. 8:2.

Cribrononion excavatum (Terquem). HAAKE, 1967, (part), p. 13-27, pl. 1:1-3, 9, 12-14. VON DANIELS, 1970, p. 87, pl. 7:11. Cribrononion lidoense (Cushman). LEVY ET AL., 1969, p. 94, pl. 1:9a-b.

Elphidium oceanensis (d'orbigny). MURRAY, 1971, (part), p. 165, pl. 69:1-2.

Cribroelphidium excavatum (Terquem). ROSSET-MOULINIER, 1972, p. 177, pl. 16:1-4, pl. 17:1-4.

Elphidium excavatum (Terquem) Iorma lidoensis Cushman.
FEYLING-HANSSEN, 1972, p. 344, pl. 6:1-7. SNYDER and KATROSH, 1979, p. 254, pl. 2:4. MILLER ET AL., 1982, p. 134-136, pl. 1:17-20, pl. 4:7-12, pl. 5:9, pl. 6:15-16.

Elphidium selseyense (Heron-Allen and Earland). HAYNES, 1973, (part), p. 204-205, pl. 22:1-2, pl. 24:11, pl. 26:5, 10.

Cribroelphidium excavatum clavatum (Cushman). SCOTT ET AL., 1977, p. 1579, pl. 5:2.

Elphidium gunteri Cole forma salsum. POAG, 1978, (part), p. 402, pl.

2:1-10. POAG, 1981, p. 61, pl. 37:2, pl. 38:2a-2b.
Elphidium clavatum lidoense Cushman. WILKINSON, 1979, p. 637, pl.
1:4.
Elphidium excavatum var. A. SLOAN, 1981, p. 278, pl. 2:2a-b.
Elphidium incertum var. A. SLOAN, 1981, p. 282, pl. 2:3a-b.

## Types:

Holotype: Elphidium lidoense Cushman, 1936, p. 86, pl. 15:6a-b, USNM No. 23201.

Paratypes: USNM Nos. 19176, 23020, 39935.
Deposited in: Cushman Collection, Smithsonian Institution.

Types of junior synonyms:
Elphidium florentinae:
Holotype: Shupack, 1934, p. 9, opp. p. 9: 5a-b.
Deposited in: American Museum of Natural History (New York) No. 696

Cribroelphidium salsum:
Holotype: Cushman and Brönnimann, 1948, p. 19, pl. 4:6, USNM No.
56644.

Paratype: USNM No. 56750.
Deposited in: Cushman Collection, Smithsonian Institution.

Cribroelphidium vadescens:
Holotype: Cushman and Brönnimann, 1948, p. 18, pl. 4:5, USNM No. 56643.

Paratype: USNM No. 56649.
Deposited in: Cushman Collection, Smithsonian Institution.

Elphidium kozlowskii:
Holotype: Brodniewicz, 1965, p. 205, text-fig. 29, pl. 7:4, pl. 9:1-6. (pl.9:5).

Deposited in: Paleozoological Institute of the Polish Academy of Sciences (Warsaw) No. F. VIII / 89-94.

Representative plesiotypes: "boreal" water form, pl. 7:11, USNM No. 312513; "Lusitanian" water form, pl. 25:14-16.

Diagnostic characteristics: Test compressed, sutures backwards curved, distinctly broadening towards the umbilicus, filled with papillae; ponticuli often absent (or not visible); umbilicus open and large, filled with papillae, or irregular bosses, or both.

Description: As described by: Cushman in 1936 (E. lidoense) and by Feyling-Hanssen in 1972 (E. excavatum forma lidoensis).

Maximum Diameters: $0.50-0.60 \mathrm{~mm}$ (Cushman, 1936, p. 86); 0.20-0.40 mm (Brodniewicz, 1965, p. 205).

Remarks: The name E. excayatum forma lidoensis is the name retained for the form described by Cushman (E. lidoense, 1936) and Feyling-Hanssen, (E. excavatum forma lidoensis, 1972). Within this
forma, two "subforma" are observed: a "boreal" environment form from areas of extremes in climatic variation, i.e. Miramichi Estuary, Annapolis Basin, and Long Island Sound; and a "Lusitanian" environment form, from areas with a narrower climatic range, i.e. San Diego Bay, San Antonio Bay, Venice, and Bay of Izmir. Both forms exhibit the key characteristics of the forma. However, the "boreal" form can be linked to E. excavatum forma excavata; the wall perforations are fine and the papillae small. The "Lusitanian" form resembles, and can be linked to, E. excayatum forma gunteri; the periphery is rounded, wall perforations coarse, papillae more variable in size, and a larger number of bosses present in the umbilicus.

Feyling-Hanssen (1972, p. 344) remarked on the similarity of E. gunteri and E. lidoense; but he pointed out that they could be separated on the basis of the distinct rectangular and numerous sutural bridges (gunteri) and the broadening of the sutures towards the umbilicus (lidoensis).

As mentioned earlier, part of Poag's (1978) E. gunteri forma salsum is included in this form.

The placement of E. oceanense (d'Orbigny) is in doubt, but specimens assigned to this form by some workers (i.e. Murray 1971, [part]) either belong to this form or are intermediate between the two formae gunteri and lidoensis.

Junior synonyms include Elphidium florentinae Shupack (1934), Cribroelphidium salsum and $C$. vadescens (both) Cushman and Brönnimann (1948), and E. kozlowskii Brodniewicz, (1965).

Distribution: E. excayatum forma lidoensis was first collected by Cushman, (E. Iidoense, Cushman 1936, 1939) from Venice, Italy; where it was later (again) recorded by Cita and Premoli-Silva (1967) as E.

## lidoense.

The occurrence of E. excavatum forma lidoensis in European and North American waters is difficult to document; it appears that this form has been identified by other species names.

The occurrences of E. excavatum forma lidoensis recorded in the literature suggest a shallow, subtidal estuarine environment with waters attaining a summer temperature of at least $20^{\circ} \mathrm{C}$. It appears to be a marginal marine form; almost all the occurrences are areas under estuarine influence (among them Miramichi Estuary, Chezzetcook Inlet, Annapolis Basin, Long Island Sound, San Antonio Bay, Venice, and Dovey Estuary, [U. K.]) or lagoons and mangrove swamps (southern California and Trinidad).

$$
\begin{aligned}
& \frac{\text { Elphidium excavatum (Terquem) forma tumidum }}{\text { Natland, } 1938 .} \\
& \text { pl. } 11: 1-4,14-15 ; \text { pl. } 12: 6 ; \text { pl. } 27: 12-19 .
\end{aligned}
$$

Elphidium tumidium. NATLAND, 1938, p. 144, pl. 5:5-6. CUSHMAN, 1939, p. 65, pl. 20:8a-b. TODD and BRÖNNIMANN, 1957, (part), p. 39, pl. 6:7a-9b. LEHMANN, 1957, p. 348, pl. 3:15-16.

Elphidium sp. cf. E. tumidum Natland. PARKER ET AL., 1953, p. 9, pl. 3:28-29.

Elphidium incertum var. slavatum Cushman. TODD and BRÖNNIMANN, 1957,
(part), p. 39, pl. 6:10a-b.
Elphidium cf. E. tumidum Natland. PHIEGER, 1960a, p. 277, pl. 3:24. Cellanthus tumidum (Natland). SCOTT, 1976, p. 170. SCOTT ET AL., 1976, p. 74.

## Types:

Holotype: Elphidium tumidum, Natland, 1938, p. 144, pl. 5:5-6. Deposited in: Smithsonian Institution, USNM No. 22550.

Representative plesiotype: pl.11:16, pl. 27:15.

Diagnostic characteristics: A large, ornamented form resembling forma selseyensis. However, the ornamentation and ponticuli are much more regular on forma tumidum. The umbilicus is large, circular, depressed and filled with papillae/bosses. The chamber extensions into the umbilicus are truncated sharply. The periphery is broadly rounded, and the chambers inflated.

Description: As described by Natland (E. tumidum, 1938).

Maximum diameters: diameter 0.50 mm , thickness 0.22 mm (Natland, 1938, p. 144).

Remaris: The name E. excayatum forma tumidum is given to the morphotype described by Natland (E. tumidum, 1938). Natland (1938) reported it to be distinct from, but related to E. articulatum. Scott (1982 pers. comm.) has observed intergradation between this form and
other morphotypes of E. excavatum in California lagoons and marshes, though intergradation is not fully documented here, and this form was not found at any other locations.

Distribution: Natland (1938) reported this form to be common off southern California; but there have been relatively few occurrences documented in the literature under this name. No evidence was found that this form has been widely documented under another name. From the literature, it can be concluded that this form is restricted to the west coast of the United States and the Gulf of Mexico.

## Elphidium excavatum (Terquem) forma cuyillieri <br> Levy, 1966.

pl. 6:20; pl. 13:6-7; pl. 14:6-7; pl. 16:9-14;
pl. 18:8-15; pl. 19:8-15; pl. 28:1-23.
?Polystomella poeyana. D'ORBIGNY, 1839a, p. 55, pl. 6:25-26.
Elphidium poeyanum (d'Orbigny). CUSHMAN, 1930, p. 25, pl. 10:4-5. PARKER ET AL., 1953, p. 9, pl. 3:26. PARKER, 1954, p. 509, pl. 6:17. BANDY, 1954, (part), p. 136, pl. 30:6a-b. PHLEGER, 1954, p. 639, pl. 2:8-9. TODD and BRÖNNIMANN, 1957, p. 39, pl. 7:2-4. PHLEGER, 1960a, p. 277, pl. 3:17, pl. 5:10. TODD and LOW, 1961, p. 20, pl. 2:7. TODD and LOW, 1971, p.C16, pl.3:8. HANSEN and LYKKE-ANDERSEN, 1976, p. 13, pl. 9:9-12; pl. 10:1-5. POAG, 1981, p. 63, pl. 39:3, pl. 40:3a-3b. Elphidium cf. articulatum (d'Orbigny). CUSHMAN, 1944, (part), p. 26, pl. 3:41.

Cribroelphidium kugleri. CUSHMAN and BRÖNNIMANN, 1948, p. 18-19, pl. 4:4a-b. TODD and BRÖNNIMANN, 1957, p. 39. LEHMANN, 1957, p. 348, pl.

2:25-27.
Elphidiononion poeyanum (d'Orbigny). HOFKER, 1951, p. 356 (fide Loeblich and Tappan, 1964, p. C635).

Cribroelphidium poeyana (d'Orbigny). LOEBLICH and TAPPAN, 1964, p. C635, fig. 508:3a-4b.

Elphidium cuvillieri. LEVY, 1966, p. 5-6, pl. 1:6a-c, pl. 2. ROSSET-MOULINIER, 1972, p. 177, pl.15:1-4. HAYNES, 1973, p. 197, pl. 24:17-18, pl. 26:12. ROSSET-MOULINIER, 1976, p. 93, pl. 3:4-8. MURRAY, 1979, p. 50, fig. 14:E-F. Cribrononion cuvillieri (Levy). LÉvY ET AL., 1969, p. 93, pl. 1:10a-11.

Cribrononion transluscens (Natland). VON DANIELS, 1970, p. 88, pl. 7:13. ALBANI and SERANDREI BARBERO, 1982, (part), p. 240, pl.1:7-9 (not 10).

Elphidium transluscens (Natland). HANSEN and LYKKE-ANDERSEN, 1976, p. 11, pl. 7:1-11.

Elphidium kugleri (Cushman and Bronnimann). BUZAS ET AL., 1977, p.
95. BUZAS and SEVERIN, 1982, p. 37, pl. 8:5.

Elphidium discoidale (d'Orbigny) forma transluscens. POAG, 1981, p. 59, pl. 35:2, pl. 36:2a-2b.

Elphidium discoidale (d'Orbigny) forma typicum. POAG, 1981, p. 59, pl. 35:1, pl. 36:1a-1b.

## Types:

Holotype: Elphidium cuvillieri, Lévy, 1966, p. 5-6, p1. 1:6a-c, p1. 2. Deposited in: not given

## Typesof junior synonyms:

## ?Polystomella poeyana:

?Holotype: d'Orbigny, 1839a, p. 55, pl. 6:25-26.
Lectotype: designated by Loeblich and Tappan, 1964, p. C635, Fig. 508:3a-b

Deposited in: Laboratoire de Paleontologie du Museum de l'Histoire Naturelle; Paris.

Cribroelphidium kugleri:
Holotype: Cushman and Brönnimann, 1948, p. 18-19, p. 4:4a-b.

Deposited in: Cushman Collection, Smithsonian Institution, USNM No. 56642.

Paratype: USNM No. 56746 (as above).

Representative plesiotype: pl. 26:8.

Diagnostic characteristics: A smooth, round, disc shaped Elphidium about the same size as forma clavata. The peripheral outline can range from smooth to very lobate. The sutures are straight or gently backwards curved, and characterized by very regular rows of sutural pores. Papillae are completely absent in this form; the umbilicus is slightly depressed (perforate or imperforate) and closed by a glassy plate of fused chamber ends.

Description: As described by: Lévy in 1966 (E. cuvillieri), Lévy et al. in 1969 (Cribrononion cuyillieri) and Haynes in 1973 (E. cuvillieri).

# Meximum diameters: 0.5 mm (Lévy, 1966, p. 6); 0.36-0.47 mm (Rosset-Moulinier, 1976, p. 93). 

Remarks: The name E. excavatum forma cuvillieri is the name retained for the species described by Lévy (1966) as E. cuvillieri. He reported this form to be a common shallow water form in the Mediterranean. This leads to the question as to why it had not been previously recognized or described. One possible explanation is that has been included by other authors with E. poeyana (d'Orbigny). E poeyana was described by d'Orbigny from Cuba (1839a).

Williamson (1858) remarked on the similarity between his $P$. umbilicatula ( $=$ E. excavatum forma williamsoni) and d'Orbigny's P. poeyana, stating the only difference was in the alleged arrangement of septal apertures.

Loeblich and Tappan 1964, designated one of d'Orbigny's specimens as lectotype (Loeblich and Tappan, 1964, p. C365, Figure 508:3a-4b). The material at the Smithsonian Institution identified by Loeblich and Tappan is considered very similar and possibly conspecific with the morphotype cuvillieri.

This form was probably described by Cushman and his co-workers as Cribroelphidium kugleri (Cushman and Brönnimann 1948, Todd and Brönnimann 1957, and Lehmann 1957).

Levy (1966, p. 6) remarks on the similiarity between his species (E. cuvillieri) and d'Orbigny's. Lévy (1966) did not compare his specimens directly with d'Orbigny's, but with specimens from the
"Stampien" supplied by Poignant which are considered equivalent with topotypes from Cuba (Cuvillieri and Szakall 1949). Lévy (1966) also remarked on the similarity of his species to En lidoense Cushman.

The name cuyillieri is retained until d'Orbigny's material can be examined. The name cuyillieri is an unambiguous designation for the form described by Lévy; the uncertainty lies in its relationship to d'Orbigny's species (E Doeyana).

Distribution: The distribution of this form is difficult to document because of the relatively few (and those quite recent) references to E. cuvillieri. It is a warm shallow water form preferring near normal salinities. It has probably been reported from both sides of the Atlantic as E. Doeyana and from North America as E. (or C.) kugleri; from warm, shallow, near normal marine environments.

```
Elphidium excayatum (Terquem) forma magna Miller, Scott and Medioli, 1982.
pl. 1:1:2; pl. 4:2-5; 15-20; pl. 6:1-2; pl. 7:2-3; pl. 14:15-17; pl. 27:1-11.
```

Elphidium discoidale (d'Orbigny). CUSHMAN, 1939, p. 54, pl. 15:7. PHLEGER and PARKER, 1951, (part), p. 10, pl. 5:10. PARKER ET AL., 1953, p. 7, pl. 13:13-14. LEHMANN, 1957, p. 348, pl. 2:18-20. Elphidium incertum (Williamson) var. clavatum Cushman. CUSHMAN, 1948 (part), p. 57, pl. 6:8. PARKER, 1952a, (part), p. 412, pl. 5:11. EIphidium clavatum Cushman. LOEBLICH and TAPPAN, 1953, (part), p. 98. TODD and LOW, 1961, (part), p. 18-19, pl. 2:1. TODD and LOW, 1967, (part), p. A33, pl. 4:16-17. "Complex". GREGORY, 1970, (part), p. 226, pl. 14. RODRIGUES and HOOPER, 1982, (part), p. 411-416, text-fig. 2:A-F.

Cribroelphidium incertum (Cushman, [not Williamson]). SCOTT, 1977, p. 170, p1. 6:4-5.

Elphidium excayatum (Terquem) forma clayata Cushman. KNUDSEN, 1979, (part), p. 208-209, pl. 4:4-5.

Cribrononion excayatum incertum (Cushman, [not Williamson]). SCOTT ET AL., 1980, p. 228, pl. 4:4-5.

Elphidium galvestonense (Kornfeld). BOLTOVSKOY ET AL., 1980, p. 29, pl. 13:12.

Elphidium excavatum (Terquem) forma magna. Milier, Scott and Medioli, 1982, p. 138-139, pl. 1:4-5, pl. 5:1-3.

Primary representative olesiotype: pl. 8:1; USNM No. 312508

# Secondary representative plesiotypes: pl. 7:2, pl. 8:2, pl. 8:3; USNM No. 312509. 

Stratigraphic Age: recent


#### Abstract

Type Locality: Chezzetcook Inlet, N. S., Canada; Station 53a (Scott 1977, Scott and Medioli 1980, Scott et al. 1980).


## Derivation of Specific Name: magnus; Latin, meaning large.

Diagnostic characteristics: Test often large, peripheral outline smooth to slightly lobate, periphery subacute, and walls greatly convex giving the umbilicus a raised appearance. Umbilicus large, usually filled with one large knobby boss; sutures smooth, backwards curved, with ponticuli and some papillae in the sutures. Some (or all) of the sutures constricted before reaching the umbilicus, forming the imperforate collar around the umbilicus. Differs from forma clayata only in size, shape and environment where found.

[^1]
#### Abstract

reaching the umbilicus, as a result of fusing of the chamber ends; forming a complete (or imcomplete) imperforate collar or ring around the umbilical area. Sutures with a single row of apertural pores; and from few to many short, narrow, distinct ponticuli, often not extending entirely across the sutures. Wall usually thick, calcareous, orange-brown to colourless to white; transparent to opaque with progressive chamber overlap; with radiate structure. Wall distinctly perforate; pores round, septa and apetural face with few pores; tendency towards developing fewer or no pores in the central extensions of the chamber walls; aperture a single row of pores at the base of the apertural face.

The subacute periphery is illustrated on Plate 27:4.


Maximum Diameters: $0.30 \mathrm{~mm}-0.60 \mathrm{~mm}$ (perhaps larger).

Remarks: This name is given to the forma found in turbulent nearshore zones.

It may be the form identified by Cushman as the large opaque nearshore form he called Elphidium incertum (Williamson). There are specimens of this forma in the Cushman collection, identified by Cushman as E incertum, E. incertum var. clavatum, and E. discoidale. Feyling-Hanssen (1972) has found opaque specimens of early Holocene age which he has named E. excavatum forma alba; and he placed Cushman's white forms in synonomy with his. However, after examining material supplied by Prof. Feyling-Hanssen; the conclusion was reached that specimens identified as E. excavatum forma alba were etched
specimens of $E$ excayatum forma clayata and forma excayata. This same conclusion had previously been reached by Scott et al. (1977). The processes and possible cause of etching have been discussed by Murray (1967) and other possible cause have been covered by Walker (1971) and Mageau and Walker (1976).

Distribution: E. excavatum forma magna has been found in recent sediments from nearshore turbulent zones, mainly in the Maritime Provinces of Canada. Gregory (1970, E. clavatum "complex") found it in Bedford Basin, Scott (Cribroelphidium incertum, 1977) and Scott et al. (Cribroelphidium excavatum incertum, 1980) found it the dominant form in the turbulent zone of Chezzetcook Inlet, Nova Scotia.

It has also been identified in samples from the Annapolis Basin, Nova Scotia, and the Beaufort Sea.
E. excayatum forma magna has been reported as E. clayatum (Loeblich and Tappan 1953, Todd and Low 1961, 1967) or E. incertum (Parker 1952a) by these and probably other authors as well. Bartlett (E. incertum "COMPLEX", 1965b) reported large opaque forms commonly associated with turbulent, nearshore environments or the outer shelf.

## REEERENCES

ACCORDI, B., and SOCIN, C. 1950. Le formazioni quaternarie del pozzo di correzzola (Padova). Bollentino della Societa Adriatica di Science Naturali in Trieste, v. 45, p. 9-26, pls. 1,2.

ADAMS, T.D., and FRAMPTON, J., 1965. A note on some recent foraminifera from Northwest Iceland. Cushman Foundation for Foraminiferal Research, Contributions, v. 16, pt. 2, p. 55-59, pl. 5.

ALBANI, A.D., and SERANDREI BARBERO, R., 1982. A foraminiferal fauna from the Lagoon of Venice, Italy. Journal of Foraminiferal Research, v. 12, no. 3, p. 234-241, pl. 1.

ANDERSEN, A.-L.L., 1971. Foraminifera of the older Yoldia clay at Hirtshals. In, Feyling-Hanssen, R.W., Jфrgensen, J.A., Knudsen, K.L., and Andersen, A.-L.L. Late Quaternary foraminifera from Vendsyssel, Denmark, and Sandnes, Norway. Meddelelser Fra Dansk Geologisch, Forening, Copenhagen, v. 21, pts. 2, 3, p. 159-184.

ANDERSON, G.J., 1963. Distribution patterns of recent foraminifera of the Bering Sea. Micropaleontology, v. 9, no. 3, p. 305-317, pl. 1.

APTHORPE, M., 1980. Foraminiferal distribution in the estuarine Gippsland Lakes system, Victoria. Royal Society of Victoria, Proceedings, v. 91, pt. 2, p. 207-232.

ARNOLD, Z.M., 1968. The uniparental species concept in the foraminifera. Transactions of the American Microscope Society, v. 87, no. 4, p. 431-442.

ASHTON, E.M., HEALY, M.J.R., and LIPTON, S., 1957. The descriptive use of discriminant functions in physical anthropology. Proceedings of the Royal Society (Series B), v. 146, p.552-572.

ATKINSON, K., 1969. The association of living foraminifera with algae from the littoral zone, south Cardigan Bay, Wales. Journal of Natural History, v. 3, no. 4, p. 517-542.

BACCHUBER, F.W., and MCCLELLAN, W.A., 1977. Paleoecology of marine foraminifera in the pluvial Estancia Valley, central New Mexico. Quaternary Research, v. 7, p. 254-267.

BANDY, O.L., 1953. Ecology and Paleoecology of some California Foraminifera. Part 1. The Frequency Distribution of recent Foraminifera off California. Journal of Paleontology, v. 27, no. 2, p. 161-182, pls. 21-26.
foraminifera in the north-west Gulf of Mexico. U.S. Geological Survey Professional Paper 254-F, p. 123-141, pls. 27-31.
, 1956. Ecology of Foraminifera in the northeastern Gulf of Mexico. U.S. Geological Survey Professional Paper 254-G. p. 179-204, pls. 29-31.
_ and ARNAL, R.E., 1957. Some new tertiary and recent foraminifera from California and the eastern Pacific Ocean. Cushman Foundation for Foraminiferal Research, v. 8, pt. 2, p. 54-58, pls. 6-7.

BANNER, F.T., and CULVER, S.J., 1978. Quaternary Haynesina n. gen. and Paleogene Protelphidium Haynes; their morphology, affinities and distribution. Journal of Foraminiferal Research, v. 8, no. 3, p. 177-207, pls. 1-10.

BARTLETT, G.A., 1963. A preliminary study of foraminifera on the Atlantic continental shelf, southeastern Nova Scotia. Bedford Institute of Oceanography, Dartmouth, N.S., Report B.I.O. 63-3, 22 pp .
1964. Benthonic foraminferal ecology in St. Margaret's Bay and Mahone Bay, southeast Nova Scotia. Bedford Institute of Oceanography, Dartmouth, N.S., Report B.I.O. 64-8, 162 pp .
$\qquad$ 1965a. Preliminary investigation of benthonic foraminiferal ecology in Tracadie Bay, Prince Edward Island. Bedford Institute of Oceanography, Dartmouth, N.S., Report B.I.O. 65-3, 57 pp .
, 1965b. Preliminary notes on recent species of Elphidiidae in shallow waters of the Atlantic Provinces of Canada. Bedford Institute of Oceanography, Dartmouth, N.S., Report B.I.O. 65-13, 27 pp .
thecamoebians, in Miramichi River and Bay. Bedford Institute of
Oceanography, Dartmouth, N.S., Report B.I.O. $66-2,100 \mathrm{pp}$.
history of the Gulf of St. Lawrence. Conadian Journal of Earth
Sciences, v. 9, no. 9, p. 1204-1215, pl. 1.
BECKNER, M., 1959. The biological way of thought. Columbia
University Press, New York, 200 pp. (Non vide).
BERGEN, F.W., and O'NEIL, P., 1979. Distribution of Holocene
Foraminifera in the Gulf of Alaska. Journal of Paleontology, v.
53, no. 6, p. 1267-1292, pls. 1-5.

BOLTOVSKOY, E., 1954. Foraminiferos de la Bahia San Blas (Provincia de Buenos Aires). Revista del Instituto Nacional de Investigacion de las Ciencias Naturales, Ciencias Geologicas, v. 3, no. 4, p. 245-300, pls. 20-29.
and BOLTOVSKOY, A., 1968. Foraminiferos Y Tecamebas de la pare inferior del Rio Quequen Grande. Provincia de Buenos Aires, Argentina (sistematica, distribucion, ecologica). Revista del Museo Argentino de Ciencias Naturales <<Bernardino Rivadvia>> e Instituto Nacional de Investigacion de las Ciences Naturales, Hidrobiologica, v. 2, no. 4, p. 127-164, pls. 1-3.
, GIUSSANI, G., WATANABE, S., and WRIGHT, R., 1980. Atlas of Benthic Shelf Forminifera of the southwest Atlantic. Dr. W. Junk bv Publishers, The Hague, 147 pp.
and VIDARTE, L.M., 1977. Foraminiferos de la zona de manglar de guayaquil (Ecuador). Revista del Museo Argentino de Ciencias Naturales <<Bernardino Rivadvia>> e Instituto Nacional de Investigacion de las Ciencias Naturales, Hidrobiologia, v. 5, no. 3, p. 31-40, pls. 1-4.

BRAND, E., 1941. Die Foraminiferen-Fauna des Jades-Gebietes III. Die Foraminiferen Fauna im Alluvium des Jades-Gebietes. Senckenbergiana, v. 23, p. 56-70.

BRODNIEWICZ, I., 1965. Recent and some Holocene foraminifera of the southern Baltic Sea. Acta Palaeontologica Polonica, v. 10, no. 2, p. 131-248, pls. 1-11.

BURNABY, T.P., 1966. Growth invariant discriminant functions and generalized distances. Biometrics, v. 22, p. 96-110.

BUZAS, M.A., 1965a. Foraminifera from Late Pleistocene clay near Waterville, Maine. Smithsonian Institution Miscellaneous Collections, v. 145, no. 8, 30 pp., pls. 1-5.
: 1965b. The distribution of foraminifera in Long Island Sound. Smithsonian Institution Miscellaneous Collections, v. 149, no. 1, $89 \mathrm{pp}$. pls. 1-4.
1966. Discrimination of morphological groups of Elphidium (foraminifer) in Long Island Sound through canonical analysis and invariant characters. Journal of Paleontology, v. 40, no. 3, p. 585-594, pls. 71-72.
$\qquad$ , and SEVERIN, K.P., 1982. Distribution and Systematics of Foraminifera in the Indian River, Florida. Smithsonian Contributions to the marine sciences, Number 16. Smithsonian Institution Press, Washington D.C. 51 pp., pls. 1-11.

Systematics of Foraminifera in two Thalassia habitats, Jamaica, West Indies. Smithsonian Contributions to Paleobiology, No. 31, 139 pp., pls. 1-8.

CANN J.H., and DE DEKKER, P., 1981. Fossil Quaternary and Living Foraminifera from athalassic (non-marine) saline lakes, southern Australia. Journal of Paleontology, v. 55, no. 3, p. 660-670, pls. 1-3.

CARPENTER, H.B., 1862, assisted by PARKER, W.K., and JONES, T.R. Introduction to the study of Foraminifera. Ray Society, London, 319 pp., pls. 1-22 (Non vide).

CITA, M.B., and PREMOLI-SILVA, I., 1967. Sui foraminiferi incontrati in un pozzo perforato nella laguna di Venezia. Memorie di Biogeographica Adriatica, v. 7, p. 29-51, pls. 1-2.

COLE, F.E., 1981. Taxonomic notes on the bathyal zone benthonic foraminiferal species off northeast Newfoundland. Bedford Institute of Oceanography. Report Series/ BI-R-81-7, 121 pp., pls 1-20.
, and FERGUSON, C., 1975. An iliustrated catalogue of foraminifera and Ostracoda from Canso Strait and Chedabucto Bay, Nova Scotia. Bedford Institute of Oceanography, Dartmouth, N.S., Report B.I.O.-R-75-5, 55 pp .

COLE, W.S., 1931. The Pliocene and Pleistocene foraminifera of Florida. Florida Geological Survey, Bulletin v. 6, 79 pp . (Non vide).

COOPER, S.C., 1964. Benthonic foraminifera of the Chuckchi Sea. Cushman Foundation for Foraminiferal Research, Contributions, v. 15, no. 3, p. 79-104, pls. 1-6.

CRASK, M., and PERREAULT, W., 1977. Validation of discriminant analysis in marketing research. Journal of Marketing Research, v. 14, p. 60-68 (Non vide).

CRONIN, T.M., 1979. Late Pleistocene benthic foraminifers from the St. Lawrence Lowlands. Journal of Paleontology, v. 53, no. 4, p. 781-814, pls. 1-6.

CULVER, S.J., and BANNER, F.T., 1978. Foraminiferal assemblages as Flandrian palaeoenvironmental indicators. Paleogeography, paleoclimatology, paleoecology, v. 24, p. 53-72.

CUSHMAN, J.A., 1930. The foraminifera of the Atlantic Ocean, Pt.7; Nonionidae, Camerinidae, Peneroplidae, and Alveolinellidae. U.S. National Museum, Bulletin No. 104, 79 pp., pls. 1-18.
$\qquad$ , 1936. Some new species of Elphidium and related genera. Cushman Laboratory for Foraminiferal Research,

Contributions, v. 12, pt. 4, p.78-89, pls. 14-15.
, 1939. A monograph of the foraminiferal family Nonionidae. U.S. Geological Survey Professional Paper 191, 100 pp., pls. 1-20.
, 1944. Foraminifera from the shallow water of the New England coast. Cushman Laboratory for Foraminiferal Research, Special Publication no. 12, 37 pp., pls. 1-4.
, 1948. Arctic foraminifera. Cushman Laboratory for Foraminferal Research, Special Publication No. 23, 79 pp., pls. 1-8.
, and COLE, W.S., 1930. Pleistocene foraminifera from Maryland. Cushman Laboratory for Foraminiferal Research, Contributions, v. 6, pt. 4, p. 94-100, pl. 13.
$\qquad$ , and TODD, R., 1947. Foraminifera from the west coast of Washington. Cushman Laboratory for Foraminiferal Research, Special Publication No. 21, 23 pp., pls. 1-4. , and BRÖNNIMANN, P., 1948. Some new genera and species of foraminifera from brackish water off Trinidad. Cushman Laboratory for Foraminiferal Research, Contributions, v. 24, pt. 1, p. 15-21.

CUVILLIER, J., and SZAKALL, V., 1949. Foraminifères d'Aquitaine, prèmiere partie (Reophacidae à Nonionnidae). Société Naturalles Pétroles d'Aquitaine, Toulouse, 112 pp . pls. 1-32 (Non vide).

TEN DAM, A., and REINHOLD, T. 1941. Die Stratigraphische Gliederung des niederländischen Plio-Pleistozans nach Foraminiferen. Nederlands, Geologische Stichting Mededeelingen, series C, sec. 5, no. 1, p. 1-66, pls. 1-6.

DANIELS, C.H. von, 1970. Quantitative ökologische Analyse der Zeitlichen und raumlichen Verteilung rezenter Foraminiferen im Limski Kanal bei Rovinj (nordliche Adria). Gottinger Arbeiten zur Geologie und Paleontologie, v. 8, p. 1-109, pls. 1-8.

DAVIS, J.C., 1973. Statistics and data analysis in geology. With Fortran programs by R.J. Sampson. John Wiley and Sons, Inc., New York, 550 pp .

ELLIS, B.F., and MESSINA, A., 1940 + seq. Catalogue of Foraminifera. American Museum of Natural History (supplements post 1940).

FEYLING-HANSSEN, R.W., 1954. Late Pleistocene foraminifera from the Oslofjord area, southeast Norway. Norsk Geologisk Tisskrift, v. 33, nos. 1,2, p. 109-152, pls. 1-2.
1964. Foraminfera in Late Quaternary deposits from the Oslofjord area. Norges Geologiske Undersoekelse, Bulletin no. 225, p. 1-383, pls. 1-12.
1971. Weischelian Interstadial foraminifera from the Sandnes-Jaeren area. In, Feyling-Hanssen, R.W., Jprgensen, J.A., Knudsen, K.L., and Andersen, A.-L.L., Late Quaternary foraminifera from Vendsyssel Denmark, and Sandnes, Norway. Meddelelser Fra Dansk Geologisch, Forening, Copenhagen, v. 21, pts. 2,3, p. 72-116.
, 1972. The foraminifer Elphidium excavatum (Terquem) and its variant forms. Micropaleontology, v. 18, no. 3, p. 337-354, pls. 1-6.

1976a. The stratigraphy of the Quaternary Clyde Foreland Formation, Baffin Island, illustrated by the distribution of benthic foraminifera. Boreas, v. 5, no. 2, p. 77-94.

1976b. A mid-Wisconsinian Interstadial of Broughton Island, Arctic Canada, and its foraminifera. Arctic and Alpine Research, v. 8, no. 2, p. 161-182.

1976c. The Clyde Foreland Formation: a micropaleontological study of Quaternary stratigrahy. In, Schafer, C.T., and Pelletier, B.R., eds., First International Symposium on Benthonic Foraminifera of Continental Margins, Pt. B., Paleoecology and Biostratigraphy. Maritime Sediments, Special Publication No. 1, p. 315-377, pls. 1-8.

FISHER, R.A., 1936. The use of multiple measurements in taxonomic problems. Annals of Eugenics, v. 7, p. 179-188.

FORD, E.B., 1940. Polymorphism and taxonomy. In, Huxley, J.S., ed., The New Systematics, p. 493-514. Oxford University Press. London, Oxford. 583 pp .

FORNASINI, C., 1904. Illustrazione di specie orbignyane di Foraminiferi istitute nel 1826. Memorie della R. Accademia delle scienze. Dell'Istituto di Bolongna, serie VI, tomo I, p. 1-17, pls. 1-4.

FRANK, R.E., MASSEY, W.F., and MORRISON, D.G., 1965. Bias in multiple discriminant analysis. Jounal of Marketing Research, v. 2, no. 3, p. 250-258 (Non vide).

GNADESIKAN, R., 1977. Methods for statistical data analysis of multivariate observations. John Wiley and Sons Inc. New York, 311 pp . (Non vide).

GRADSTEIN, F.M., 1974. Mediterranean Pliocene Globorotalia - A
biometrical approach. Ph. D. thesis, Utrecht University, Netherlands. (author's edition) 128 pp .

GRANLUND, A., and HERMELIN, J.O.R., (in press). MIAS - A microcomputer based image analysis system for micropaleontology. Stockholm Contributions to Geology, v. 20.

GREGORY, M.J., 1970. Distribution of benthonic foraminifera in Halifax Harbour, Nova Scotia. Ph. D. thesis, Dalhousie University, Halifax, 274 pp., pls. 1-15.

GREEN, P.E., and TULL, D.S., 1975. Research for marketing decisions. Third Edition. Prentice Hall Inc. Englewood Cliffs, N.J., 673 pp.

GUILBAULT, J.-P., 1980. A stratigraphic approach to the study of late-glacial Champlain Sea deposits with the use of Foraminifera. Ph.D. thesis, Aarhus University, 249 pp., pls. 1-17.

HAAKE, F.W., 1962. Untersuchungen an der Foraminiferen-Fauna im Wattgebiet zwischen Langeoog und dem Festland. Meyniana, Veroffentlichungen aus dem Geologischen Institut der Universität Kiel, v. 12, p. 25-64, pls. 1-6.
, 1967. Zum Jahresgang von populationen einer Foraminiferen-Art in der westlichen Ostsee. Meyniana, Veroffentlichungen aus dem Geologischen Institute der Universität Kiel, v. 17, p. 13-27, pls. 1,2.

HAIR, J.F. Jr., ANDERSON, R.E., TATHAM, R.L., and GRABLOWSKY, B.J., 1979. Multivariate data analysis with readings. Petroleum Publishing Company Tulsa, Oklahoma, 360 pp .

HAMAN, D., 1969. Seasonal occurrance of Elphidium excavatum (Terquem) in Llandanwg lagoon (North Wales, U.K.). Cushman Foundation for Foraminiferal Research, v. 20, pt. 4, p. 139-142.
, 1973. Récents Elphidiidae, Elphidiinae Provenant des stations littorales de l'Alaska de l'ouest situées sous une haute latitude. Revue de Micropaleontolgie, v. 16, no. 4, p. 176-183.

HANSEN, H.J., 1965. On the sedimentology and the quantitative distribution of living foraminifera in the northern parts of фresund. Ophelia, v. 2, no. 2, p. 323-331.
, and LYKKE-ANDERSEN, A.-L., 1976. Wall structure and classification of fossil and recent Elphidiid and Nonionid Foraminifera. Fossils and Strata, Universitetsforlaget Oslo, No. 10., 37 pp., pls. 1-22.

HAYNES, J.R., 1973. Cardigan Bay Recent Foraminifera (cruises of the R.V. Antur, 1962-1964). Bulletin of the British Museum of

Natural History (Zoology), Supplement 4, 245 pp.
1981. Foraminifera. John Wiley and Sons Inc. New York, 433 pp.

HEINKE, F., 1898. Naturgischichte des Herings. 1. Die Lokalformen und die wanderlungen des Herings in den europaischen Meeren. Deutscher seefischereiverin, Abhandlungen, v. 2, p. i-cxxxvi, 1-223 (Non vide).

HERON-ALLEN, E., and EARLAND, A., 1909. On the recent and fossil foraminifera of the shore-sands of Selsey Bill, Sussex, IV. Royal Microscopy Society, Journal, p. 677-698, pls. 20-21.
, and $\qquad$ , 1911. On the recent and fossil foraminifera of the shore-sands of Selsey Bill, Sussex, VIII. Royal Microscopy Society, Journal, p. 436-448. and $\qquad$ , 1932. Foraminifera, Pt. 1. The ice free area of the Falkland Islands and adjacent seas. Discovery Reports, v. 4, p. 291-460, pls. 6-17.

HOFKER, J., 1951. The toothplate-Foraminifera. Archives Néerlandaises de zoologie, v. 8, pt. 4, p. 353-372, figs. 1-30 (Non vide).
$\qquad$ , 1977. The Foraminifera of the Dutch Tidal Flats and Salt Marshes. Netherlands Journal of Sea Research, v. 11, nos. 3-4, p. 223-296.

JARDINE, N., and SIBSON, R., 1971. Mathematical Taxonomy. John Wiley and Sons, Inc. London, 286 pp.

JARKE, J., 1961. Die Beziehungen zwischen hydrographischen Verhältnissen, Faziesentwicklung und Foraminiferen verbreitung inder heutigen Nordsee als vorbiltd fur die Verhaltnisse wahrend der miocän-Zeit. Meyniana, Veroffentlichungen aus dem Geologischen Institut der Universität Kiel, v. 10, p. 21-36, pls. 1-4.

JONES, G.D., and ROSS, C.A., 1979. Seasonal distribution of foraminifera in Samish Bay, Washington. Journal of Paleontology, v. 53, no. 2, p. 245-257.

JфRGENSEN, J.A., 1971. The Quaternary of Vendsyssel. In, Feyling-Hanssen, R.W., Jфrgensen, J.A., Knudsen, K.L., and Andersen, A.-L.L., Late Quaternary foraminifera from Vendsyssel, Denmark and Sandnes, Norway. Meddelelser Fra Dansk Geologisch, Forening, Copenhagen. v. 21, pts. 2,3, p. 117-129.

KENDALL, M.G., and STUART, A., 1966. The Advanced Theory of Statistics. v. 3. Design and Analysis, and Time Series.

Griffin London, 484 pp.
KLECKA, W.R., NIE, N.H., aand HULL, C.H., 1975. SPSS Primer. Statistical package for the social sciences, primer. McGraw-Hill Inc. New York 134 pp.

KNUDSEN, K.L., 1971a. Late Quaternary Foraminifera from the Lokken area. In, Feyling-Hanssen, R.W., Jprgensen, J.A., Knudsen, K.L., and Andersen, A.-L.L., Late Quaternary foraminifera from Vendsyssel, Denmark, and Sandnes, Norway. Meddelelser Fra Dansk Geologisch, Forening, Copenhagen, v. 21, pts. 2,3, p. 130-158.
, 1971b. Late Quaternary Foraminifera from Vendsyssel, Denmark, and Sandnes, Norway, Systematic Part. In, Feyling-Hanssen, R.W., Jørgensen, J.A., Knudsen, K.L., and Andersen, A.-L.L., Late Quaternary foraminifera from Vendsyssel, Denmark, and Sandnes, Norway. Meddelelser Fra Dansk Geologisch, Forening, Copenhagen, v. 21, pts. 2,3, p. 185-291, pls. 1-26.
, 1973a. The Lundergärd clay of Vendsyssel, Denmark, and its foraminifera. Meddelelser Fra Dansk Geologisch, Forening, Copenhagen, v. 22, p. 55-192, pls. 1-9.
, 1973b. Foraminifera from postglacial deposits of the Lundergärd area in Vendsyssel, Denmark. Meddelelser Fra Dansk Geologisch, Forening, Copenhagen, v. 22, p. 255-282, pls. 1-4.
, 1976. Foraminifer faunas in Weichselian stadial and interstadial deposits of the Skaerumhede boring, Jutland, Denmark. In, Schafer, C.T., and Pelletier, B.R., eds., First International Symposium on Benthonic Foraminifera of Continental Margins, Pt. B., Paleoecology and Biostratigraphy, p. 431-449, pls. 1-3.
, 1977. Foraminifera faunas of the Quaternary Hostrup clay from northern Jutland, Denmark. Boreas, v. 6, no. 3, p. 229-245.
1978. Middle and Late Weichselian marine deposits at Norre Lyngby, northern Jutland, Denmark and their foraminiferal faunas. Danmarks Geologiske Unders申gelse, II Raekke, no. 112, 44 pp., pls. 1-7.
, 1979. Foraminiferal faunas in marine Holsteinian interglacial deposits of Hamburg-Hunmelsbüttel. Mittelungen aus dem Geologisch-Palaontologischen Institut der Universität Hamburg, v. 49, p. 193-214, pls. 1-7.
, 1982. 14. Foraminifers. In, Olausson, E., ed., The Pleistocene/Holocene Boundary in south-western Sweden. Sveriges Geologiska Under Sokning, serie C, No. 749, p. 148-177 Uppsala.

KORNFELD, M.M., 1931. Recent littoral Foraminifera from Texas and Louisiana. Standford University, Department of Geology, Contributions, v. 1, no. 3, p. 77-101, pls. 13-16 (Non vide).

LACHENBRUCH, P.A., 1975. Discriminant Analysis. Hafner Press, New York, 128 pp .

LAGOE, M.A., 1979a. Modern benthic foraminifera from Prudhoe Bay, Alaska. Journal of Paleontology, v. 53, no. 2, p. 258-262, pl. 1.

1979b. Recent benthonic foraminiferal biofacies in the Arctic Ocean. Micropaleontology, v. 25, p. 214-224.

LANKFORD, R.R., 1959. Distribution and Ecology of Foraminifera from east Mississippi delta margin. American Association of Petroleum Geologists, Bulletin, v. 43, no. 9, p. 2068-2099.
, and PHLEGER, F.B, 1973. Foraminifera from the nearshore turbulent zone, western North America. Journal of Foraminiferal Research, v. 3, no. 3, p. 101-132, pls. 1-6.

LE CALVEZ, J., and LE CALVEZ, Y., 1951. Contribution à l'étude des Foraminifères des eaux saumatres. Etangs de canes et de Salses. Vie et Milieu, v. 2, p. 237-254, figs. 1-5.

LEHMANN, E.P., 1957. Statistical study of Texas Gulf Coast recent Foraminiferal facies. Micropaleontolgy, v. 3, no. 4, p. 325-356, pls. 1-3.

LESLIE, R.J., 1965. Ecology and paleoecology of Hudson Bay foraminifera. Bedford Institute of Oceanography, Dartmouth, N.S., Report B.I.O. 65-6, 192 pp.

LÉVY, A., 1966, Contribution à l'étude ecologique et micropaléontologique de quelques Elphidium (Foraminiféres) du Roussillon. Description d'une nouvelle espece: Elphidium

, MATHIEU, R., MOMENI, I., POIGNANT, A., ROSSET-MOULINIER, M., ROUVILLOIS, A., et UBALDO, M., 1969. Les représentants de la famille des Elphidiidae (Foraminifères) dans les sables des plages des environs de Dunkerque. Remarques sur les espèces de Polystomella signalées par 0. Terquem. Revue de Micropaleontologie, v. 12, no. 2, p. 92-98, pls. 1-2, text-fig. 1.
$\qquad$ , POIGNANT, A., ROSSET-MOULINIER, M., and ROUVILLOIS, A., 1975. Sur quelques foraminifères actuels des plages de Dunkerque et des environs, néotypes et espèces nouvelle. Revue de Micropaleontologie, v. 17, no.4, p. 171-181, pls. 1-3.

LOEBLICH, A.R., and TAPPAN, H., 1953. Studies in Arctic foraminifera. Smithsonian Institution Miscellaneous Collections, v. 121, no. 7, 150 pp., pls. 1-24.
___ and ___ 1964. Sarcodina, chiefly, "Thecamoebians" and Foraminiferida, In, Moore, R.C., ed., Treatiste on Invertebrate Paleontology, Protista, 2, Pt. C. Kansas University Press, Lawrence, Kansas, 900 pp.

LUTZE, G.F., 1965. Zur Foraminiferen fauna der Ostsee. Meyniana, Verofflentlichungen aus dem Geologischen Institute der Universität, Kiel, v. 15, p. 75-142, pls. 1-15, text-figs. 1-32.
, 1968. Jahresgang der Foraminiferen-Fauna in der Bottsand-Lagune (Westliche Ostsee). Meyniana, Veroffentlichungen aus dem Geologischen Institut der Universität Kiel, v. 18, p. 13-30, pl. 1, text-figs. 1-21.
1974. Foraminiferen der Kieler Bucht (Westliche Ostsee): 1. "Hausgartengebiet" des Sonderforschungsbereiches 95 der Univeritat Kiel. Meyniana, Veroffentlichungen aus dem Geologischen Institut der Univerität Kiel, v. 26, p. 9-22 (Non vide).

MAGEAU, N.C., and WALKER, D.A., 1976. Effects of ingestion on foraminifera by larger invertebrates. In, Schafer, C.T., and Pelletier, B.R., eds., First International Symposium on Benthonic Foraminifera of Continental Margins, Pt. A., Ecology and Biology. Maritime Sediments, Special Publication No. 1, p. 89-105.

MATOBA, Y., 1967. Younger Cenozoic Foraminiferal Assemblages from the Choshi district, Chiba Prefecture. Tohoku University Science Reports, series 2 (Geology), v. 38, no. 2, p. 221-263, pls. 25-30.
, 1970. Distribution of Recent shallow water foraminifera of Matsushima Bay, Miyagi Prefecture, northeast Japan. Tohoku University Science Reports, series 2 (Geology) v. 42, no. 1, p. 1-85, pls. 1-8, text-figs. 1-64.

MAYR, E., LINSLEY, E.G., and USINGER, R.L., 1953. Methods and Principles of Systematic Zoology. McGraw-Hill Book Company New York, 328 pp.

MEDIOLI, F.S., and SCOTT, D.B., 1978. Emendation of the genus Discanomalina Asano and its implications on the taxonomy of some of the attached foraminiferal forms. Micropaleontology, v. 24, no. 3, p. 291-302, pls. 1-3.
, and $\qquad$ , (in press). Holocene and recent Arcellacea (Thecamoebians) from eastern Canada. Cushman

Foundation for Foraminiferal Research, Special Publication No. 21.

MICHELSEN, 0., 1967. Foraminifera of the Late-Quaternary deposits of Laes $\phi$. Meddelelser Fra Dansk Geologisch, Forening, Copenhagen, v. 17, no. 2, p. 205-263, pls. 1-8.

MILLER, A.A.L., 1979. Taxonomy, Morphology and Microprobe Analysis of the recent Foraminifer Elphidium excavatum (Terquem), from a Labrador Shelf sediment core. B.Sc. (Hons. Geol. Sci.) thesis, Queen's University, Kingston, Ontario, Canada, 105 pp., pls. 1-7.
, MUDIE, P.J., and SCOTT, D.B., 1982. Holocene History of Bedford Basin, Nova Scotia: foraminifera, dinoflagellate, and pollen records. Canadian Journal of Earth Sciences, v. 19, no. 12, p. 2342-2367, pls. 1-3.
, SCOTT, D.B., and MEDIOLI, F.S., 1982. Elphidium excavatum (Terquem): Ecophenotypic versus subspecific variation. Journal of Foraminiferal Research, v. 12, no. 2, p. 116-144, pls. 1-6.

MORRISON, D.G., 1969. On the Interpretation of Discriminant Analysis. Journal of Marketing Research, v. 6, no. 2, p. 156-163 (Non vide).

MURRAY, J.W., 1965a. On the foraminifera of the Plymouth region. Journal of the Marine Biology Association, U.K., v. 45, p. 481-505, pl. 1, (Non vide).
, 1965b. Two species of Recent Foraminifera. Cushman Foundation for Foraminiferal Research, Contributions, v, 16, p. 148-50.
, 1967. Transparent and opaque foraminiferid tests. Journal of Paleontology, v. 41, no. 3, p. 791.

for the identification of the species. In, Kermack, D.M., and Barnes, R.S.K., eds., Synopsis of the British Fauna, A, new series, No. 16. Academic Press, London, 68 pp.

MYERS, E.H., 1943. Life activities of Foraminifera in relation to marine ecology. Proceedings of the American Philosophical Society, v. 86, no. 3, p. 349-458, pl. 1.

NAGY, J., 1965. Foraminifera in some bottom samples from shallow waters in Vestspitsbergen. Norsk polarinstitutt Åbok, 1963, p. 109-128, pls. 1-2 (Non vide).

NATLAND, M.N., 1938. New species of foraminifera from the west coast of North America and from later Tertiary of the Los Angeles Basin. California University, Bulletin, Scripps Institution of Oceanography, Technical Services, v. 4, no. 5, p. 137-164.

NIE, N.H., HULL, C.H., JENKINS, J.G., STEINBRENNER, K., and BENT, D.H., 1975. Statistical Package for the social sciences. Second Edition. McGraw-Hill Inc., New York, 675 pp.

D'ORBIGNY, A.D., 1826. Tableau métodique de la classe des Céphalopodes. Annales des Sciences Naturelles, Paris, series 1, v. 7, p. 245-314.

[^2], and ATHEARN, W.D., 1959. Ecology of marsh foraminifera in Poponesset Bay, Massachusetts. Journal of Paleontology, v. 33, no. 2, p. 333-343, pl. 50.
, PHLEGER, F.B, and PEIRSON, J.F., 1953. Ecology of Foraminifera from San Antonio Bay and Environs, southwest Texas. Cushman Foundation for Foraminiferal Research, Special Publication No. 2, 71 pp., pls. 1-4.
PHLEGER, F.B: 1951. Ecology of Foraminifera, Northwest Gulf of Mexico. Part I: Foraminifera Distribution. Geological Society of America, Memoir 46, p. 1-88.
, 1952a. Foraminifera Distribution in some sediment samples from the Canadian and Greenland Arctic. Cushman Foundation for Foraminiferal Research, Contributions, v. 3, pt. 2, p. 80-89, pls. 13-14.
, 1952b. Foraminifera ecology off Portsmouth, New Hampshire. Bulletin of the Museum of Comparative Zoology at Harvard College, Cambridge, v. 106, no. 8, p. 318-390.
, 1954. Ecology of Foraminifera and associated micro-organisms from Mississippi sound and environs. American Association of Petrolum Geologists, Bulletin, v. 38, no. 4, p. 584-647, pls. 1-3.
, 1960a. Sedimentary Patterns of Microfaunas in northern Gulf of Mexico. In, Recent Sediments, Northwest Gulf of Mexico, 1951-1958. American Association of Petroleum Geologists, Tulsa, Okla., p. 267-381, pls. 1-6.
, 1960b. Ecology and Distribution of recent Foraminifera. John Hopkins Press, Baltimore, 297 pp.
1964. Patterns of living benthonic Foraminifera, Gulf of California. In, Marine Geology of the Gulf of California - A Symposium. Published by American Association of Petroleum Geologists, Memoir No. 3, p. 377-394, pls. 1-2.
, and EWING, G.C., 1962. Sedimentology and Oceanography of coastal lagoons in Baja California, Mexico. Geological Society of America, Bulletin, v. 73, p. 145-182.
, and PARKER, F.L., 1951. Ecology of Foraminifera, northwest Gulf of Mexico. Part II: Foraminifera Species. Geological Society of America, Memoir 46, p. 1-64, pls. 1-20. , and WALTON, W.R., 1950. Ecology of marsh and bay Foraninifera, Barnstable, Mass. American Journal of Science, $v$. 248, p. 274-294.

PIPER, D.J.W., and AKSU, A.E., 1981, eds. Geological studies in Izmir Bay, Turkey. Final report on NATO Science Research Grant \#1723 "Investigation of Late Pleistocene and Holocene sedimentation and recent environmental changes in Izmir Bay, Turkey" (unpublished MS). 26 pp., pls. I-V.

POAG, C.W., 1976. The foraminifera community of San Antonio Bay. In, Bouma, A.H., ede, Shell dredging and its influence on Gulf Coast environments. Gulf Publications, Houston, p. 304-336.
, 1978. Paired foraminiferal ecophenotypes in Gulf Coast estuaries: ecological and paleoecological implications. Transactions-Gulf Coast Association of Geological Societies, v. 28, p. 395-421, pls. 1-5.
, 1981. Ecologic Atlas of Benthic Foraminifera of the Gulf of Mexico. Marine Science International. Hutchinson Ross Publishing Company, Woods Hole Massachusetts, 174 pp., pls. 1-64.
, KNEBEL, H.J., and TODD, R., 1980. Distribution of modern benthic foraminifers on the New Jersey outer continental shelf. Marine Micropaleontology, v. 5, p. 43-69.

PRIME, G.A., 1980. Post-Pleistocene sea level changes in the Baie Verte Estuary (Northumberland Strait) as revealed by Foraminiferal studies. B.Sc. (Hons.) thesis, Dalhousie University, Halifax, Nova Scotia, 36 pp., pl. 1.

PRITCHARD, N.M., 1960, Gentianella in Britain. 2. Gentianella septendrionalis (Druce) E.F. Warburg. Watsonia, v. 4, p. 218-237 (Non vide).

RAUP, D.M., and STANLEY, S.M., 1971. Principles of Paleontology. W.H. Freiman and Company, San Francisco. 388 pp.

REYMENT, R.A., 1962. Observations on homogeneity of covariance matrices in paleotologic biometry. Biometrics, v. 18, p. 1-18.
1969. A paleontologic growth problem. Biometrics, v. 25, p. 1-8.
1973. The discriminant function in systematic biology. In, Cacoullos, T., ed., Discriminant analysis and applications, p. 311-332. Proceedings of the NATO Advanced Study Institute on discriminant analysis and applications, meeting held in Athens, June, 1972. Accademic Press, New York, 434 pp.

RICHTER, G., 1961. Beobachtungen zur Ökologie einiger Foraminiferen des Jade-Gebietes. Natur und Volk, v. 91, no. 5, p. 163-170, pls. 1-6.
, 1964a. Zur Ökologie der Foraminiferen. 1. Die

Foraminiferen-Gesellschaften des Jadegebietes. 2. Die Foraminiferen Gesellshaften im Jade-Gebiet. Natur und Museum, v. 94, no. 9, p. 343-353, text-figs. 1-14.
, 1964b. Zur Ökologie der Foraminiferen. II. Lebensraum und Lebensweise von Nonion depressulum, Elphidium excavatum, und Elphidium selseyense. Natur und Museum, v. 94, no. 11, p. 421-430.
1965. Zur Ökologie der Foraminiferen. III. Verdriftung und Transport in der Gezeitenzone. Natur und Museum, v. 95, p. 51-62.
$\qquad$ 1967. Faziebereiche rezenter und subrezenter watten sedimente nach ihren Foraminifern - Gemeinschaften. Senckenbergiana, lethaea, v. 48, nos. 3,4, p. 291-335.

RODRIGUES, C.G., and HOOPER, K., 1982. The ecological significance of Elphidium clavatum in the Gulf of St. Lawrence, Canada. Journal of Paleontology, v. 56, no. 2, p. 410-422, 5 text-figs.

ROSSET-MOULINIER, M., 1972. Étude des Foraminifères des côtes nord et Ouest de Bretagne. Travaux du laboratoire de geologie. Ecole normale superieure, no. 6, p. 1-225.
1976. Étude Systematique et écologique des Elphidiidae et des Nonionidae (Foraminiferes) du littoral Breton. II- Les espèces a test radiaire. Revue de Micropaléontologie, v. 19, no. 2, p. 86-100.

ROTTGARDT, D., 1952. Mikropaläontologisch wichtige Bestandlteile recenter brackischer Sedimente an des Küsten Schleswig-Holsteins. Meyniana, Veroffentlichungen aus dem Geologischen Institut der Universität Kiel, v. 1, p. 169-228, text-figs. 1-21, pls. 1-3.

RYAN, T.A., JOINER, B.L., and RYAN, B.F., 1980. Minitab Reference Manual. Minitab Project, Copyright Pennsylvania State University. University Park, Pennsylvania, 138 pp.

SCHAFER, C.T., 1968. Ecology of benthonic foraminifera in western Long Island Sound and adjacent nearshore waters. Atlantic Oceanographic Laboratory, Bedford Institute of Oceanography, Darmouth, N.S., Report A.O.L., 68-8, 14 pp.
1970. Pollution and benthonic foraminifera species diversity in Long Island Sound. FAO Techincal conference on marine pollution and its effects on living resources and fishing, Rome, Italy, 9-18 December, 1970. Report FIR:MP/70/E-36, (unpublished MS), 14 pp .
, and COLE, F.E., 1978. Distribution of foraminifera in Chaleur Bay, Gulf of St. Lawrence. Geological Survey of Canada,

Paper 77-30, 55 pp., pls 1-13.
SCHNITKER, D., 1971. Distribution of foraminifera on the North Carolina continental shelf. Tulane Studies in Geology and Paleontology, v. 8, no. 4, p. 169-215. , 1974. Ecotypic variation in Ammonia beccarii (Linné). Journal of Foraminiferal Research, v. 4, no. 4, p. 217-223, pl. 1, text-figs. 1-5.

SCOTT, D.B., 1976. Quantitative studies of marsh foraminiferal patterns in southern California and their application to Holocene stratigraphic problems. In, Schafer, C.T., and Pelletier, B.R., eds., First International Symposium on Benthonic Foraminifera of Continental Margins, Pt. B., Paleoecology and Biostratigraphy. Maritime Sediments, Special Publication No. 1, p. 153-170.
, 1977. Distribution and population dynamics of marsh-estuarine foraminifera with application to relocating Holocene sea level. Ph.D. dissertation, Dalhousie University, Halifax, N.S. 207 pp., pls. 1-8.
$\qquad$ , and MEDIOLI, F.S., 1980. Quantitative studies of marsh foraminiferal distribution in Nova Scotia: implications for sea-level studies. Cushman Foundation for Foraminiferal Research, Special Publication No. 17, 58 pp., pls. 1-5.
$\qquad$ , $\qquad$ , and SCHAFER, C.T., 1977. Temporal changes in foraminiferal distributions in Miramichi River estuary, New Brunswick. Canadian Jounal of Earth Sciences, v. 14, no. 7, p. 1566-1587, pls. 1-5.
$\qquad$ , MUDIE, P.J., and BRADSHAW, J.S., 1976. Benthonic Foraminifera of three southern Californian lagoons: Ecology and recent stratigraphy. Journal of Foraminiferal Research, v. 6, no. 1, p. 59-75.
, SCHAFER, C.T., and MEDIOLI, F.S., 1980. Eastern Canadian estuarine Foraminifera: a framework for comparison. Journal of Foraminiferal Research, v. 10, no. 3, p. 205-234, pls. 1-4.

SCOTT, G.H., 1974. Biometry of the Foraminiferal Shell. In, Hedley, R.H., and Adams, C.G., eds., Foraminifera, v. 1, p. 55-151. Academic Press, London, 276 pp.

SEN GUPTA, B.K., 1971. The benthonic foraminifera of the tail of the Grand Banks. Micropaleontology, v. 17, no. 1, p. 69-98, pls. 1-2.

SHEEHAN, R., and BANNER, F.T., 1972. The pseudopodia of Elphidium incertum. Revista Española de Micropaleontologica. v. 4, no. 1, p. 31-40.

SHUPACK, B., 1934. Some foraminifera from western Long Island Sound and New York Harbor. American Museum Novitates, no. 737, 12 pp., figs. 1-10.

SLOAN, D., 1981. Ecostratigraphic study of Sangamon deposits beneath central San Fransisco Bay. Ph.D. dissertation, University of California, Berkeley, California, 316 pp., 2 pls.

SNEATH, P.H.A., and SOKAL, R.R., 1973. Numerical Taxonomy. The Principles and Practice of Numerical Classification. W. H. Freeman and Company, San Francisco, 573 pp.

SNYDER, S.W., and KATROSH, M.R., 1979. An exposure of marginal marine Pleistocene sediments, Pitt County, North Carolina. Southeastern Geology, v. 20, no. 4, p. 247-259, pl. 1, text figs. 1-5.

SOKAL, R.R., and SNEATH, P.H.A., 1963. Principles of Numerical Taxonomy. W.H. Freeman and Company, San Francisco, 359 pp.

STOLL, N.R., DOLLFUS, R.Ph., FOREST, J., RILEY, N.D., SABROSKY, C.W., WRIGHT, C.W., and MELVILLE, R.V.,1961. International Code of Zoological Nomenclature. Adopted by the XV International Congress of Zoology. International Trust for Zoological Nomenclature (Publ.), London, 176 pp.

TERQUEM, O., 1875. Essai sur le classement des animaux qui vivant sur la plage et dans les environs de Dunkerque. Pt. 1. Paris, 53 pp. (Non vide).
, 1876. Essai sur le classement des animaux qui vivent sur la plage et dans les environs de Dunkerque, Pt. 1: Mémoires de la Société Dunkerquoise pour l'Encouragement des Sciences des Lettres et des Arts (1874-1875), v. 19, p. 405-457, pls. 1-6 (Non vide).

TODD, R., and BRÖNNIMANN, P., 1957. Recent foraminifera and Thecamoebians from the Eastern Gulf of Paria, Cushman Foundation for Foraminiferal Research, Special Publication, No. 3, 43 pp., pls. 1-12.
, and LOW, D., 1961. Nearshore foraminifera of Martha's Vineyard Island, Massachusetts. Cushman Laboratory for Foraminiferal Research, Contributions, v. 12, pt. 1, p. 5-21, pls. 1-2.
, and $\qquad$ , 1967. Recent foraminifera from the Gulf of Alaska and southeastern Alaska. U.S. Geological Survey Professional Paper 573-A, p. 1-46, pls. 1-5.
$\qquad$ , and $\qquad$ 1971. Foraminifera from the Bahama Bank West of Andros Island. United States Geological Survey Frofessional

Paper 683-C, 19 pp., pls. 1-2.
UCHIO, T., 1960. Ecology of living benthonic foraminifera from the San Diego, California area. Cushman Foundation for Foraminiferal Research, Special Publication No. 5, 72 pp., pls. 1-10.

VILKS, G., 1980. Postglacial basin sedimentation on Labrador Shelf. Geological Survey of Canada Paper 78-28, 28 pp., text-figs. 1-13.
, 1981. Late Glacial-Postglacial boundary in sediments of Eastern Canada, Denmark and Norway. Geoscience Canada, v. 8, no. 2, p. 48-55.
, DEONARINE, B., WAGNER, F.J., and WINTERS, G.V., 1982. Foraminifera and Mollusca in surface sediments of the southeastern Labrador Shelf and Lake Melville, Canada. Geological Society of America, Bulletin, v. 93, no. 3, p. 225-238, pl. 1.
, and MUDIE, P.J., 1978. Early deglaciation of the Labrador Shelf. Science, v. 202, p. 1181-1183, text-figs. 1-2.
_ WAGNER, F.J.E., and PELLETIER, B.R., 1979. The Holocene marine environment of the Beaufort Shelf. Geological Survey of Canada, Bulletin, 303, $43 \mathrm{pp.}, \mathrm{pl} 1.$.

VOORTHUYSEN, J.H. VAN, 1949. Foraminifera of the Icenian (oldest marine Pleistocene) of the Netherlands. Nederlandsch Geologisch-Mijnbouwkundig Genootschap, Verhandelingen, Geologische-serie, v. 15, p. 63-69, pl. 1.
, 1951. Recent (and derived Upper Cretaceous) foraminifera of the Netherlands Wadden Sea (tidal flats). Mededelingen van de Geologisch Stichting, nieuwe serie, no. 5, p. 23-32, pls. 1-2.
, 1957. Foraminiferen aus dem Eemian (Riss-Würm-Interglazial) in der Bohrung Amersfoort I (locus typicus). Mededelingen van de Geologische-Stichting, nieuwe serie, no. 11, p. 27-39, pls. 23-26.
, 1960. Die Foraminiferen des
Dollart-Ems-Estuarium. In, Symposium Ems-Estuarium (Nordsee). Nederlandsch Geologisch-Mijnbouwkundig Genootschap, Verhandelingen, Geologische-serie. v. 19, p. 237-269, pls. 1-2.

WADE, M., 1957. Morphology and Taxonomy of the foraminiferal family Elphidiidae. Journal of the Washington Academy of Sciences, $v$. 47, no. 10, p. 330-339.

WAGNER, F.J.E., 1970. Faunas of the Pleistocene Champlain Sea, Canada. Geological Survey of Canada, Eulletin no. 181, 104 pp.,
pls. 1-7.
WALKER, D.A., 1971. Etching of the test surface of benthonic foraminifers due to ingestion by the gastropod Littorina littorea Linne. Canadian Journal of Earth Sciences, v. 8, no. 6, p. 1481-1491.

WEISS, L., 1954. Foraminifera and origin of the Gardners Clay (Pleistocene) eastern Long Island, New York. U.S. Geological Survey Professional Paper 254-G, p. 143-163, pls. 32-33.

WILKINSON, I.P., 1979. The taxonomy, morphology and distribution of the Quaternary and recent foraminifer Elphidium clayatum Cushman. Journal of Paleontology, v. 53, no. 3, p. 628-641, pls. 1-2.

WILLIAMSON, W.C., 1858. On the recent foraminifera of Great Britain. The Ray Society, London, 107 pp.

WOSZIDLO, H., 1962. Foraminiferen und Ostrakoden aus dem marinen Elster-Saale-Interglazial in Schleswig-Holstein. Meyniana, Veroffeztlichungen aus dem Geologischen Institut der Univeristät Kiel, v. 12, p. 65-96, pls. 1-5.

PLATE 1

Photographs of five formae of Elphidium excavatum (Terquem). Photos taken through a low power dissecting microscope (magnifications unknown, approximently 30-50 x).

1:1. E. excavatum forma excavata (Terquem). Note the depressed umbilicus; straight, depressed sutures and slight to markedly lobate peripheral outline. Specimens from (left to right): Bay of Chaleur SRA-52 (2), and Chezzetcook Inlet station 54a.

1:2. E. excavatum forma magna Miller, Scott and Medioli. This form is larger with a subacute periphery and raised umbo. Note the large boss on the specimen on the right. Specimens from: Chezzetcook Inlet station 54a.

1:3. En excavatum forma slavata Cushman; the small, flat, disc-shaped form. Specimens from: Labrador core $12,825-830 \mathrm{~cm}$.

2:1. E excavatum forma lidoensis Cushman. Note the star shaped pattern of papillae in the umbilicus. Specimens from (left to right): Long Island Sound No. 722, Miramichi Estuary 6a, Bay of Chaleur SRQ-52, and Beaufort Sea F2257.

2:2. En excayatum forma selseyensis (Heron-Allen and Earland). Pink colour denotes living material stained with Rose Bengal. Note the ornamentation in the large umbilicus. All three specimens from Long Island Sound, No. 722.


## PLATES 2-19

These plates illustrate the ten morphotypes of Elphidium excayatum (and the intergradational series) present in the samples studied from the locations listed on Table 1. Magnifications are given in diameters, not in terms of area. Side views of whole specimens. Each specimen is identified by its specimen number (SN).

## PLATE 2

1-8. Specimens of E. excavatum forma clavata Cushman, from a Holocene assemblage from the Beaufort Sea. All specimens have an incomplete or complete imperforate collar or umbilical area; though the boss is incomplete or absent in some cases. 1. SN67 $\times 125.2$. $\operatorname{SN68} \times 145.3 . \operatorname{SN69} \times 149.4 . \operatorname{SN70} \times 118.5 . \operatorname{SN71} \times 104.6 . \operatorname{SN72} \mathrm{x}$ 183. 7. SN73 x 131. 8. SN74 x 104.

9-20. An intergradational series of the two formae clavata and excavata from a late Pleistocene assemblage from Hirtshals Denmark.

9-17. E. excavatum forma clavata Cushman; the umbilical boss may be complete, incomplete, or absent but the imperforate collar or imperforate umbilical area is always present. 9. SN77 x 82. 10. SN78 $x 99$. 11. $\operatorname{SN79} \times 76.12 . \operatorname{SN80} \times 127.13 . \operatorname{SN81} \times 100.14 . \operatorname{SN82} \times$ 97. 15. SN83 $x$ 132. 16. SN84 $x$ 97. 17. SN85 $x$ 129.

18-20. E. excavatum forma excavata (Terquem). 18. An intermediate form, approaching forma excavata SN86 x 89. 19. SN87 x 123. 20. SN88 $\times 84$.


Elphidium excavatum (Terquem), an intergradational series of two formae clavata and excavata from a Holocene assemblage from the Beaufort Sea.

1-6. Typical specimens of E. excavatum forma clayata Cushman. 1. $\operatorname{SN} 186 \times 174.2 . \operatorname{SN} 187 \times$ 133. 3. $\operatorname{SN} 188 \times 166.4 . \operatorname{SN} 189 \times 143.5$. SN190 x 184. 6. SN191 x 230.

7-8. E. excavatum forma excavata (Terquem). 7. SN192 x 104. 8.
SN193 x 92.

9-12. E. excavatum forma clavata, ornamented specimens. 9. SN194 x 102. 10. SN195 x 84. 11. SN196 x 94. 12. SN197 x 103.


PLATE 4

1-12. Elphidium excavatum (Terquem), an intergradational series from a Pleistocene assemblage from the Champlain Sea. Four formae are present.

1. Elphidium excavatum forma elavata Cushman SN596 x 115.

2-5. Elphidium excavatum forma magna Miller, Scott and Medioli. Recognized by its subacute periphery and the raised umbilical area. If a boss is present it is usually large. 2. SN490 x 147. 3. SN501 x 170. 4. SN483x 176. 5. SN491 x 129.

6-9. Elphidium excavatum forma clavata Cushman. 6. SN488 x 123. 7. SN497 x 159. 8. SN502 x 145. 9. SN493 $\times 125$.

10-11. Elphidium excavatum forma excavata (Terquem). Two specimens intermediate between formae clavata and excavata. The umbilicus is quite depressed and (for the most part) the sutures open in the umbilicus (as in forma excavata), but the sutures are curved and there is an incomplete imperforate collar present (as in forma clavata). 10. SN495 x 136. 11. SN500 x 144.
12. Elphidium excavatum forma lidoensis Cushman. The sutures are curved, opening towards the umbilicus, and the ponticuli absent or poorly developed, SN489 x 164.

13-20. Elphidium excavatum (Terquem) an intergradational series from a population from the Scotian Shelf (off Liverpool, N.S.) Canada.

13-14. Elphidium excavatum forma clavata Cushman. Two typical (though broken) specimens. 13. SN901 x 95. 14. SN771 x 108.

15-20. Elphidium excavatum forma magna Miller, Scott and Medioli. 17-20. These specimens have the large, raised boss typical
of this forma. 15. SN908 $\times$ 61. i6. SN906 $\times 72.17 . \operatorname{SN905\times 6.18.}$ SN903 $\times 71.19 . \operatorname{SN909} \times 66$ 20. SN907 $\times 66$.


## PLATE 5

Elphidium excavatum (Terquem), an intergradational series assembled from a population from Miramichi Estuary, New Brunswick, Canada. Collected from the open bay zone (Scott et al. 1980). Note the wider range of variability of the group (three formae present), and the large degree of ornamentation.

1-7. E. excavatum forma clavata Cushman. 1. SN108 x 75. 2. SN109 $x$ 143. 3. SN110 $x$ 117. 4. SN111 $x$ 97. 5. SN112 $x$ 126. 6. SN113 x 127. 7. An intermediate form, approaching $E$ excavatum forma lidoensis Cushman, SN114 x 91.

8-12. E. excavatum forma lidoensis Cushman. 8. SN115 x 96. 9. SN116 x 81. 10. SN117 $x$ 98. 11. SN118 $\times 99.12 . \operatorname{SN119\times 102.}$

13-16. E. excavatum forma excayata (Terquem). In warmer, less saline waters, this forma has a larger umbilicus and the umbilicus and sutures contain granular material and papillae. These specimens greatly resemble the neotype illustrated by Lévy et al. (1975). 13. SN120 x 88. 14. SN121 x 93. 15. SN122 x 83. 16. SN123 x 97.

$$
\begin{aligned}
& 30.0 \\
& 30.0 \\
& 30.00 \\
& 80.80
\end{aligned}
$$

## PLATE 6

Elphidium excavatum (Terquem), an intergradational series assembled from a population from the Bay of Chaleur, Gulf of $S t$. Lawrence. There is wide variability to the group (six formae present) and a large degree of ornamentation and irregularity to many of the specimens.

1-2. Elphidium excavatum forma magna Miller, Scott and Medioli. 1. $\operatorname{SN} 269 \times 70$. 2. $\operatorname{SN} 287 \times 87$.

3-6. Elphidium excavatum forma clavata Cushman. 3. SN294 x 141. 4. SN291 x 95. 5. SN282 x 88. 6. SN283 x 117.
7. Elphidium excavatum forma lidoensis Cushman. An intermediate specimen between forma clavata and forma lidoensis, SN293 x 100.

8-16. Elphidium excayatum forma excayata (Terquem). Notice the regularity, frequency, and development of the ponticuli, the lobate peripheral outline, and the papillae. The wall pores are so fine they are in some cases indistinct. 8. $\operatorname{SN} 286 \times 90.9 . \operatorname{SN278} \times 69.10$. SN266 x 57. 11. SN280 x 77. 12. SN277 x 72. 13. SN267 x 72. 14. SN262 x 77. 15. An intermediate specimen, approaching forma williamsoni, SN274 x 64. 16. SN272 x 73.

17-18. Elphidium excavatum forma williamsoni Haynes ab Williamson. The ponticuli are not quite as well developed as in a "typical" forma williamsoni. 17. SN263 x 69. 18. SN275 x 67.
19. Elphidium excayatum forma excayata (Terquem). An intermediate specimen, approaching forma cuyillieri, SN288 x 80.
20. Elphidium excavatum forma cuvillieri Lévy. Note the imperforate but continuous umbilicus, SN285 x 105.


## PLATE 7

Elphidium excavatum (Terquem), an intergradational series assembled from an assemblage from the Annapolis Basin, Nova Scotia, Canada. Note the wide degree of variability (five formae present).

1. E. excayatum forma selseyensis (Heron-Allen and Earland), from sample 8 SN50 x 90.

2-3. E. excayatum forma magna Miller, Scott and Medioli, from sample 8. 2. Secondary plesiotype, SN51 x 96. 3. SN52 x 103.

4-9. E. excayatum forma elayata Cushman. 4,8. From sample 8. 5-7,9. From sample 16. 4. SN53 x 94. 5. SN54 x 142. 6. SN55 x 92. 7. SN56 x 117. 8. SN57 x 105. 9. SN58 x 141.

10-12. E. excayatum forma lidoensis Cushman, from sample 16. 10. An intermediate specimen between forma clavata and forma lidoensis, SN59 x 112. 11. Representative plesiotype, SN60 x 104. 12. SN61 x 119.

13-16. E. excavatum forma excavata (Terquem). 13-14. These specimens from sample 16 resemble the neotype of Lévy et al. (1975). 13. SN62 x 104. 14. SN63 x 104. 15-16. These specimens resemble the specimens from arctic environments, from sample 8. 15. SN64 x 99. 16. SN65 x 118.


PLATE 8
Elphidium excavatum (Terquem), an intergradational series assembled from a population from the nearshore zone (Scott et al. 1980) of Chezzetcook Inlet, Nova Scotia. Notice the wide variability of the group (five formae present), and the large degree of ornamentation and irregularity of many of the specimens.

1-3. E. excavatum forma magna Miller, Scott and Medioli. 1. "Primary" representative plesiotype from station 51a1, SN28 x 52. 2. "Secondary" representative plesiotype from 51a1, SN29 x 53. 3. "Secondary" representive plesiotype from 53a1, SN30 x 53.

4-8. E. excavatum forma clavata Cushman. 4. From 51a1, SN31 x 84. 5. From 54a2, SN32 x 90. 6. From 54a2, SN33 x 80 . 7. From 51a1, SN34 x 68. 8. From 50a1, SN35 x 86.
9. E. excavatum forma lidoensis Cushman. 9. From 50a2, SN36 x 66.

10-13. E. excayatum forma selseyensis (Heron-Allen and Earland). 10. From 49a1, SN37 x 74. 11. From 52a2, SN38 x 142. 12. From 54a1, SN39 x 70. 13. Representative plesiotype, from 55a2, SN40 x 51.
14. E. excayatum forma clavata Cushman, from $50 a_{2}$, SN41 x 86 .

15-16. E. excavatum forma excavata (Terquem), these specimens resemble the neotype of Lévy et al. (1975). 15. From 50a1, SN42 x 74. From 55a1, SN43 x 78.


## PLATE 9

1-18. Specimens of E. excavatum from a population from a Maine-New Brunswick estuary. Three formae are present, one is very dominant.

1-16. Typical specimens of E. excavatum forma Hilliamsoni Haynes $a b$ Williamson. The ponticuli are very regular and extend across the periphery. The walls are densely perforate; and an umbilical boss may or may not be present. 1. SN438 x 130. 2. SN461 x 124. 3. SN439 x 110. 4. SN453 $x$ 114. 5. SN443 $x$ 112. 6. SN456 $x$ 95. 7. SN441 $x$ 100. 8. SN452 $x$ 94. 9. SN451 $x$ 83. 10. SN449 $x$ 85. 11. SN427 $x 77$. 12. SN428 $\times 76$. 13. $\operatorname{SN} 436 \times 80$. 14. SN442 $\times 72.15 . \operatorname{SN} 458 \times 80$. 16. SN462 $\times 75$.
17. E. excavatum forma 1idoensis Cushman, SN477 x 134.
18. E. excayatum forma clavata Cusman, SN445 $\times 81$.


PLATE 10

1-16. Elphidium excavatum (Terquem) an intergradational series assembled from a population from Long Island Sound. Notice the wide range of variability (four formae present) and the large degree of ornamentation and irregularity of many of the specimens.

1-3. E. excavatum forma clavata Cushman (juveniles?) 1. SN90 x 249. 2. SN91 $x$ 175. 3. An intermediate specimen, SN92 $x 148$.

4-5. E. excavatum forma clavata Cushman. 4. SN93 x 134. 5. SN94 x 90.

6-8. E. excavatum forma excavata (Terquem). 6. SN95 x 99. 7. SN96 x 103. 8. SN97 x 96.

9-13. E. excayatum forma selseyensis (Heron-Allen and Earland). 9. SN98 x 62. 10. SN99 x 65. 11. SN100 x 57. 12. SN101 x 83. 13. SN102 $\times 64$.
14. E. excayatum forma excayata (Terquem). An intermediate specimen between forma excavata and forma selseyensis, SN103 $\times 85$.

15-16. E. excavatum forma lidoensis Cushman. 15. SN104 x 93.
16. SN105 x 94.


Elphidium excavatum (Terquem), an intergradational series of four formae (six present in total) from a population from San Diego Bay, California. This is the only location were the morphotype tumidum was observed as a dominant form.

1-4. E. excavatum forma tumidum Natland. The ponticuli are wide and regularly spaced, the umbilicus is large, circular and filled with papillae/bosses. The chambers end abruptly against the umbilicus. 1. $\operatorname{SN7} 86 \times 160.2 . \operatorname{SN} 784 \times 141.3 . \operatorname{SN} 321 \times 70.4 . \operatorname{SN} 316 \times 89$.
5. E. excavatum forma selseyensis (Heron-Allen and Earland), SN352 x 102.

6-8. E. excavatum forma clavata Cushman. These specimens are irregular and ornamented. 6. SN313 x 84. 7. SN356 x 90. 8. SN323 x 63.

9-13. E. excavatum forma lidoensis Cushman. 9. SN309 x 108. 10. $\operatorname{SN} 310 \times 141.11 . \operatorname{SN789} \mathrm{x}$ 167. 12. $\operatorname{SN791} \times 224.13 . \operatorname{SN306} \mathrm{x} 166$.

15-16. E. excavatum forma tumidum Natland. 15. SN305 x 130. 16. Representative plesiotype, SN359 x 140.

17-18. E. excavatum forma gunteri Cole. No intermediate specimens linking this forma to the other formae were observed. 17. SN304 x 83. 18. $\operatorname{SN360x} 81$.

19-21. Specimen belived to be E. excavatum forma galyestonensis Kornfeld. These are not typical specimens; and were tentatively identified with the aid of enlargements (pl. 25:15-16). No intermediate specimens were observed linking this forma to the other formae from this location. These specimens were not included in the
statistical analysis. 19. SN325 x 84. 20. SN326 x 147. 21. SN324 x 126.


Elphidium excavatum (Terquem) an intergradational series of five formae from a Pleistocene assemblage from San Francisco Bay. There is wide variability to the group (seven formae present) and a large degree of ornamentation and irregularity to many of the specimens.

1-3. E. excavatum forma excavata (Terquem). 1. SN751 x 87. 2. SN765 x 85. 3. SN767 $\times 88$.

4-5. E. excavatum forma lidoensis Cushman. 4. SN756 x 98. 5. SN781 x 170.
6. E.. excavatum forma tumidum Natland. An intermediate specimen between forma lidoensis and forma tumidum, with the circular umbilicus and the ponticuli beginning to develop as for the latter form, SN754 x 90.

7-10. E. excavatum forma lidoensis Cushman. 7-8. Two typical specimens. 7. SN760 x 143. 8. SN764 x 189. 9-10. Two irregular ornamented specimens. 9. SN779 x 96. 10. SN753 x 106.
11. E. excayatum forma clavata Cushman, a specimen with an imperforate umbilical collar and sutures not extending externally to the periphery, SN765 x 108.
12. E. excavatum forma excavata (Terquem), SN752 x 89.
13. E. excavatum forma lidoensis Cushman. An irregular specimen, SN778 x 103.

14-15. E. excavatum forma selseyensis (Heron-Allen and Earland). Two irregular specimens. 14. SN761 x 95. 15. SN776 x 95.

16-18. E. excavatum forma gunteri Cole. Irregular specimens. 16. SN773 x 144. 17. SN763 x 130. 18. SN759 x 108.
19. Specimen tentatively identified as E. excavatum forma williamsoni Haynes ab Williamson, when compared to specimens from a Maine-New Brunswick estuary (pl. 10:1) and from Bay of Izmir, Turkey (pl. 19:16-17). Possibly a juvenile specimen, SN774 x 187.



#### Abstract

PLATES 13-14

Elphidium excavatum (Terquem) two intergradational series (eight formae present) from a mid-Holocene assemblage from Baie Verte, Northumberland Strait, Canada. At no other location has such variability or ornamentation been observed in the E. excavatum group. This location also had the largest percentage of intermediate forms.


PLATE 13
1-2. E. excavatum forma gunteri Cole. 1. SN154 x 107. 2. SN153 x 105.

3-5. E. excayatum forma clavata Cushman, ornamented specimens. 3. SN128 $x$ 62. 4. SN129 $x$ 93. 5. SN130 $\times 93$.

6-7. E. excavatum forma cuvillieri Lévy, specimens lacking the smooth umbilicus typical of the morphotype. 6. SN131 x 68. 7. SN132 x 63 .

8-9. E. excavatum forma clavata Cushman. 8. SN133 x 76.9. SN134 $\times 72$.
10. E. excavatum forma excavata (Terquem), SN135 x 57 .
11. E. excavatum forma lidoensis Cushman, SN136 x 93.

12-15. E. excavatum forma selseyensis (Heron-Allen and Earland). 12. A specimen approaching forma tumidum, SN137 x 81. 13. SN138 x 61. 14. SN139 x 82. 15. An intermediate specimen approaching forma excayata, SN140 x 96.
16. E. excavatum forma clayata Cushman, SN143 $\times 82$.

17-20. E. excavatum forma galvestonensis Kornfeld. 17. An intermediate specimen between forma clavata and forma galyestonensis.

The pores are of intermediate density and the ponticuli not strongly developed. The umbo is not fully raised as typical for forma galvestonensis, SN142 x 94. 18-20. Typical specimens. 18. SN160 x 82. 19-20. Etched and broken specimens. 19. SN163 x 59. 20. SN164 x 69.


1-3. E. excavatum forma gunteri. 1-2. Typical specimens. 1. SN176 x 94. 2. SN184 x 121. 3. Intermediate specimen, between forma gunteri and forma clayata, SN231 x 96.

4-5. E. excavatum forma clavata Cushman. 4. SN252 x 119. 5. SN234 x 88.

6-7. E. excavatum forma cuvillieri Lévy. 6. An intermediate specimen between forma clavata and forma cuvillieri, SN167 x 86. 7. SN245 x 80.

8-9. E. excavatum forma selseyensis (Heron-Allen and Earland). 8. SN170 $\times 70.9 . \operatorname{SN} 239 \times 77$.
10. E. excavatum forma lidoensis Cushman, an ornamented specimen, SN255 x 94.

11-12. E. excavatum forma excavata (Terquem), irregular specimens. 11. SN243 x 87. 12. SN232 x 99.

13-14. E. excavatum forma slavata Cushman. 13. SN246 x 99. 14. SN240 x 63.

15-17. E. excayatum forma masna Miller, Scott and Medioli. 15. SN237 x 81. 16. SN242 x 74. 17. SN230 x 89.
18. E. excavatum forma selseyensis (Heron-Allen and Earland), SN249 x 56.

19-20. E. excavatum forma galvestonensis Kornfeld. 19. SN179 x
83. 20. SN260 x 132.


## PLATES 15 - 16

Elphidium excayatum (Terquem), from a population from San Antonio Bay, Texas.

PLATE 15
An intergradational series of the two dominant formae, E. excal tum forma gunteri and formalidoensis. Note the gradual morphol gical changes from one forma to the other, through the specimens illustrated. This location has the largest number of intermediat forms linking these two formae.

1-7. E. 'xeavatum forma lidoensis Cushman. These warmer water specimens are 4 re coarsely perforate than those specimens seen in maritime Canada, nd the northeastern United States. 1. SN705 x 98. 2. $\operatorname{SN718} \times 126.3 \operatorname{SN680} \times 94.4 . \operatorname{SN728} \times 118.5-7$. Intermediate specimens exhibitin $n_{\ell}$ characteristics of both formae. If not for the coarse perforations, hese three specimens could be identified as forma excayata. 5. $\mathrm{SN}_{1} 70 \times 149.6 . \operatorname{SN727} \mathrm{x}$ 133. 7. SN724 x 107.

8-15. E. excayatum forma gunteri Cole. Typical specimens of the forma. 8. SNT41 x 101. S, Note the variation in the size and shape of the ponticuli from one s ture to another, representative plesiotype $\operatorname{SN7} 44 \mathrm{x}$ 101. 10. $\operatorname{SN7} 48 \mathrm{x} 62$ 11. $\operatorname{SN729x} 66.12 . \operatorname{SN703x} 91.13$. SN723 x 108. 14. $\operatorname{SN733} \mathrm{x}$ 126. 15. $\operatorname{SN719} \mathrm{x} 115$.

16-20. E. excavatum forma .idoensis Cushman. 16. SN697 x 189. 17. SN691 x 157. 18. SN676 x 10 . 19. $\operatorname{SN735\times 118.~20.~SN786\times 117.~}$


The two other formae of E. excavatum identified in San Antonio Bay samples. No intermediate specimens were found linking these two formae to the other forma present or the remainder of the $E$. excavatum group.

1-8. E. excavatum forma galvestonensis Kornfeld. Typical specimens of this forma. 1. SN701 x 77. 2. SN797 x 83. 3. Representative plesiotype, SN795 x 49: 4. SN796 x 54: 5. SN900 x 62. 6. SN700 x 66. 7. SN720 x 65. 8. SN748 x 63.

9-14. E. excayatum forma cuvillieri Lévy. 9. SN690 x 142.10. $\operatorname{SN7} 37 \times 146.11 . \operatorname{SN725} x$ 123. 12. $\operatorname{SN726} \times 115.13 . \operatorname{SN696} \mathrm{x} 144$. 14. SN742 x 127.
15. Elphidium sp., not included in the analysis, SNT10 $\times 134$.


## PLATE 17

Elphidium excavatum (Terquem), two formae observed in a Holocene assemblage from the Wadden Sea, the Netherlands. One forma (E. excavatum forma williamsoni) comprised over $95 \%$ of the population. There were no intermediate specimens observed.

1-12. E. excavatum forma williamsoni Haynes ab Williamson. 1. SN393 x 125. 2. SN392 x 125. 3. SN395 x 101. 4. SN397 x 130. 5. SN417 x 94. 6. SN408 x 86. 7. SN377 x 79. 8. SN396 x 82. 9. SN336 $x$ 97. 10. SN402 x 80. 11. SN420 x 78. 12. SN375 x 93.

13-15. E. excavatum forma gunteri Cole. 13. Typical specimen, SN425 x106. 14-15 Etched specimens. 14. SN424 x 110. 15. Intermediate specimen, approaching forma lidoensis, SN426 x 123.


## PLATE 18

Elohidium excavatum (Terquem), from a population from Venice Lagoon, Italy. Four formae are identified and one other is tentatively identified.

1-4. E. excayatum forma gunteri Cole. 1. Typical specimen, SN629 x 159. 2. SN622 x 131. 3. SN617 x 181. 4. Intermediate specimen approaching forma lidoensis, SN619 x 123.

5-7. E. excavatum forma lidoensis Cushman. 5. SN623 x 137. 6. SN369 $\times 83.7 \cdot \operatorname{SN6} 33 \times 158$.

8-15. E. excavatum forma cuvillieri Lévy. Note the variation in the umbilical regions, sutures, and ponticuli. No intermediate specimens were found linking this forma to other members of the group. 8. SN368 x 87. 9. SN630 x 144. 10. SN384 $\times$ 79. 11. SN627 $\times 116$. 12. SN616 x 75. 13. $\operatorname{SN6} 65 \times 95$. 14. SN385 $\times 71$. 15. SN380 $\times 51$.

16,18. E. excavatum forma galvestonensis Kornfeld. Specimens tentatively identified by comparison with specimens from San Diego Bay and not included in the analysis. No intermediate specimens were found linking this forma to other members of the group. 16. SN387 $x$ 125. 18. SN388 x 120.
17. E. excavatum forma williamsoni Haynes ab Williamson, SN662 x 106.

PLATE ..... 19E. excavatum (Terquem) from a late Pleistocene assemblage, fromthe Bay of Izmir, Turkey. Three formae were observed, but nointermediate specimens linking these three formae to one another or toother members of the group were observed.1-7. E. excavatum forma lidoensis Cushman. 1. SN16 x 212. 2.
SN75 x124. 3. SN204 x 121 4. SN247 x 87. 5. SN259 $\times 76$. 6. SN265
$x$ 102. 7. SN607 x 66 .
8-15. E. excavatum forma cuvillieri Lévy. 8. SN299 x 186. 9.
SN329 x 86. 10. SN330 x 84. 11. SN333 $\times 80.12 . \operatorname{SN} 581 \times 81$. ..... 13.
SN578 $\times 70.14 . \operatorname{SN580\times 79.15.~SN590\times 97.}$
16-17. E. excavatum forma williamsoni Haynes ab Wililamson 16.
SN661 x 96. 17. SN324 x 137.


## PLATES 20-28

The following 9 plates illustrate the morphological features of, and variation within, each morphotype of E. excavatum.

The following code of letters has been used on these plates (plus plate 30 ), to designate these morphological features.
a umbilicus
b suture
c umbilical boss
d imperforate umbilical collar
e papillae
$f$ ponticulus
$g$ retral process pit
h umbilical aperture
i sutural pore
j apertural face
k interiomarginal apertural arches
1 fossette
m foramen
n chamber

PLATE 20
Elphidium excavatum forma excavata Terquem. Note the lobate peripheral outline, straight intercameral sutures which extend to the umbilicus and contain papillae, and the absence of an imperforate umbilical collar.

1-2. Recent specimens from Miramichi estuary, equatorial views. 1. SN123 $\times 77$. 2. SN120 $\times 81$.
3. Recent specimen from Annapolis Basin, equatorial view, SN64 x 78.

4-7. Recent specimens from Long Island Sound. 4-6. Equatorial views. 4. SN537 x 96. 5. SN536 x 82. 6-7. SN540, an intermediate specimen approaching forma selseyensis. 6. x 71. 7. Enlargement showing the wall porosity, chambers, umbilicus, imperforate ponticuli, intercameral sutures, and papillae, x 358.

8-10. Pleistocene specimens from San Francisco Bay. 8-9. Equatorial views. 8. SN757 x 88. 9-10. SN768. 9. x 113. 10. Enlargement of the ultimate intercameral suture, showing ponticuli and sutural papillae, x 454.
11. Enlargment of a specimen (equitorial view illustrated by Miller 1979, Pl. 1:1; Pl. 2:1; Miller et al. 1982, Pl. 2:10, Pl. 3:1, P1. 4:1) from the Labrador Shelf (Late Pleistocene in age). Note the excavated umbilicus, straight intercameral sutures extending to the umbilicus, and lack of imperforate umbilical collar, SN1 x 480.
12. Recent specimen from Chezzetcook Inlet, intermediate specimen approaching forma lidoensis, SN296 x 106.


PLATE 21

Elphidium excayatum forma williamsoni Haynes ab Williamson. This form is characterized by the inflated chambers, smooth peripheral outline, and numerous large, well developed, regular ponticuli. The ponticuli extend across the periphery, the walls are very finely perforate, and an boss may be present.

1-3. Recent specimens from a Maine-New Brunswick estuary. 1-2. Representative plesiotype of the forma. 1. Equatorial view; note partially formed umbilical boss, SN471 x 69. 2. Detail of the ultimate intercameral suture of the same specimen showing finely perforate wall, suture, papillae in the suture and the regularity of the ponticulli, x 347. 3. Juvenile specimen (?) with a umbilical boss, SN438 x 101.
4. Late Pleistocene specimen from San Francisco Bay, juvenile specimen (?) with partially formed umbilical boss, SN774 x 143.

5-6. Recent specimens from Chezzetcook Inlet, Nova Scotia; equatorial views. 5. SN209 x 60. 6. SN297 x 54.

10-11. Recent specimens from Bay of Chaleur. Both have umbilical bosses. 10. SN279 x 83. 11. SN270 x 56.

7-9, 12-24. Holocene specimens from the Wadden Sea, Netherlands. 7, 12-13. SN897. 7. Peripheral view of the apertural face. Note the ponticuli extending across the periphery, x 70. 8-9. SN361. 8. Equatorial view, x 48. 9. Detail of the intercameral suture and regular ponticuli, $x$ 274. 12. Detail of the apertural face showing papillae and the cribrate interiomarginal apertures, x 129. 13. Detail of the interiomarginal apertural arches, $x 261$.

14-15, 19. SN418. 14. Equatorial view, showing broken ultimate chamber and outer wall of the previous chamber underneath, $x 54$. 15,19. Interior of the broken ultimate chamber wall, showing the septal wall structure and previous interiomarginal apertual arches, $x$ 467, and x 354 , respectively.

16-18. SN375. 16. Equatorial view, $x$ 57. 17-18. Detail of the intercameral suture, showing the finely perforate wall, regular ponticuli, and spinose sutural papillae. 17. x $371.18 . \times 530$. 20-21. SN378. 20. Equatorial view, x 61. 21. Enlargement of the umbilicus, and intercameral suture extentions into the umbilicus, $x$ 308.

22-24. SN405. 22. Equatorial view, with broken ultimate chamber, x 50. 23. Interior of the ultimate chamber wall, viewed from the inside, illustrating the perforations extending through the wall, $x$ 121. 24. Retral process pits (inside the hollow ponticuli) which house the cytoplasm of the retral processes, $x 397$.


Elphidium excavatum forma selseyensis (Heron-Allen and Earland).
1-3. Recent specimens from Long Island Sound. Note the development (particularily the thickness) and regularity of the ponticuli, and the fine papillae in the umbilici and intercameral sutures. 1-3. Equatorial views. 1. SN534 x 48. 2. SN560 x 50. 3-4. SN103. 3. $x$ 73. 4. Detail of the umbilicus, umbilical papillae, chamber extentions into the umbilicus, and intercameral sutures extending into the umbilicus, $x$ 427. 5-6. SN567. 7-8. SN98. 5,7. Equatorial views, x 58, and x 52, respectively. 6,8. Enlargements of intercameral sutures filled with thick imperforate ponticuli and papillae, so the suture is only visible in the horizontal slits (8); $x$ 479, and x 261, respectively.

9-13. Equatorial views. 9. SN553 x 77. 10. SN562 x 73. 11. SN557 x 67. 12. SN558 x 69. 13. SN101 $\mathbf{x} 72$.

14-18. Holocene specimens from Baie Verte, Northumberland Strait. 14-15. SN149. 14. Equatorial view, $x$ 88. 15. Detail of the umbilical region, showing umbilical papillae and bosses, and the perforate chamber wall, $x$ 226. 16. Equatorial view, SN647 x 68.

17-18. SN139, oblique-axial view, penultimate septal face (ultimate chamber removed) showing previous interiomarginal apertures, x 54 , and x 128 , respectively.
19. Recent specimen, from Chezzetcook Inlet, SN200 equatorial view, x 59.


Elphidium excavatum forma clavata Cushman. Note the smooth peripheral outline, curved depressed intercameral sutures, complete or incomplete umbilical boss(es) and imperforate umbilical collar. The ponticuli are irregular and often poorly developed.

1. Late Pleistocene specimen from Hirtshals, Denmark, equatorial view, SN89 x 76.

2-3. Late Pleistocene specimens from the Champlain Sea, equatorial views. 2. $\operatorname{SN} 484 \times 110$. 3. $\operatorname{SN} 492 \times 108$.

4-7. Recent specimens from Miramichi Estuary, New Brunswick. 4-5. SN515. 6-7. SN521. 4,6 Equatorial views. Note coarser porosity and large umbos, 108, and x 119, respectively. 5,7. Enlargement of the umbilical regions. 5. Note the pores in the umbilical boss, x 432. 7. Enlargement of the imperforate umbilical collar, showing fusion of the chamber ends and abrupt truncation of the intercameral sutures, $x 475$.

8-11,14-19. Holocene specimens from Baie Verte, Northumberland Stait. 8-10. Specimen beginning to approach forma galyestonensis, SN142. 8. Equatorial view, x 90. 9. Enlargement of the umbilical region, $x$ 276. 10. Detail of the umbilicus, showing the smooth imperforate umbo and intercameral suture ending against the imperforate umbilical collar, $x$ 422. 11. Equatorial view, SN229 x 149. 14. Equatorial view, SN246 x 84. 15-17. SN147. 15. Equatorial view, x 79. 16. Umbilical-apertural equitorial view, x 273. 17. Enlargement of the umbilical region with complete ring of papillae, $x$ 259. 18-19. Equatorial views. 18. SN649 x 82. 19. SN658 x 90.
12. Recent specimen from the Annapolis Basin, equatorial view, SN513 x 104.
13. Recent specimens from the Bay of Chaleur, equatorial view,

## SN281 x 89.

20-21. Recent specimens from San Diego Bay, equatorial views.
20. SN368 x 108. 21. SN301 x 139.


## PLATE 24

Elphidium excavatum forma gunteri Cole.

A rotund, inflated form, small to medium sized, with a coarsely perforate wall. The sutures are straight, not depressed, and marked by many regular, raised, rectangular shaped ponticuli. The umbilicus contains papillae/irregular bosses.

1-12. Recent specimens from San Antonio Bay, Texas. 1-3. SN744. 1. Equatorial view, $x$ 96. 2-3. Detail of the chamber walls, illustrating the coarse porosity and umbilical bosses and papillae. 2. "Pcorly" developed ponticuli on the ultimate intercameral suture, $x$ 251. 3. "Strongly" developed ponticuli on earlier intercameral sutures of the same specimen. The ponticuli are so closely spaced that the suture appears as a horizontal slits between ponticuli, $x$ 274. 4,8. SN696. 4. Equatorial view, $x$ 62. 8. Unusual ponticuli, appearing as bosses in the intercameral suture, $x$ 419. 5-7. Representative plesiotype, SN745. 5. Equitorial view, specimen with raised umbilicus, $x 91$. 6. Oblique-axial view of the apertural face, showing the foramen and the ponticuli extending across the periphery, $x$ 94. 7. Detail of the interiomarginal apertural arches, $\times 350$. 9-10. Equatorial views. Note the width of the ponticuli as a contrast to the width of the chamber wall, 9. SN730 $\times 57.10 . \operatorname{SN7} 43 \times$ 59. 11-12. SN715. 11. Equatorial view, x 82. 12. Peripheral-umbilical view showing detail of the intercameral sutures and umbilicus, x 250.
13. Recent specimen from San Diego Bay, equatorial view, x 131 .

14-20. Holocene specimens from Baie Verte, Northumberland

Strait. 14-16. SN154. 14. Equatorial view, x 106. 15-16. Detail of (15) the chamber wall, $x$ 370; and (16) the umbilicus, $x$ 419. 17-18. SN153. 17. Equatorial view, $x$ 98. 18. Enlargement of umbilical bosses and papillae, x 343. 19-20. Equatorial views. 19. SN670 x 85. 20. An intermediate specimen, providing a morphological link between forma clayata and forma gunteri, SN231 x 83.

21-24. Equatorial views. The ponticuli are not as well developed on these speciments. 21. Late Pleistocene specimen from San Francisco Bay, SN773 x 133.

22-24. Recent specimens from Venice Lagoon. 22. SN634 x 137.
23. SN366 x 97. 24. SN381 x 157.


## Elphidium excavatum forma galvestonensis, Kornfeld.

This is a large, many chambered umbonate form, with many regular, distinct ponticuli. There may be a ring of papillae surrounding the boss or in the sutures. The wall is heavily calcified and very finely perforate.

1-10. Recent specimens from San Antonio Bay. 1-3. Representative plesiotype, SN795. 1. Equatorial view, x 51. 2. Detail of the intercameral suture, chamber wall, and ponticuli, $x 325$. 3. Enlargement of an etched ponticuli, showing fine porosity extending across the ponticuli, $x$ 1298. 4-7. SN699. 4. Equatorial view, x 61. 5. Enlargement of the umbo, $x$ 306. 6. Detail of papillae in a intercameral suture, $x$ 1088. 7. Detail of papillae on the chamber wall, $x$ 374. 8-9. SN731. 8. Equatorial view, x 151. 9. Intercamersuture, papillae, and umbilical aperture. 10. Equatnr'_ view, SN701 x 86.

11-14. Holocene specimens from Baie Verte, Northumberland Strait. 11. Etched specimen, equatorial view, $\operatorname{SN669} \mathbf{x} 225$. 12,14. Detail of fine wall porosity and imperforate ponticuli. 12. SN161 x 364. 14. SN160 x 282. 13. Equatorial view, SN160 x 94.

15-16. Recent specimens, tentatively identified as this forma; from San Diego Bay, equatorial views. 15. SN324 x 151. 16. SN302 $\times 126$.


## PLATE 26

Elphidium excavatum forma lidoensis Cushman. This is a smaller form, with a large open umbilicus filled with papillae/umbilical bosses. The sutures are backwards curved, distinctly broadening towards the umbilicus and also filled with papillae. The ponticuli are not generally well developed. Within this forma there are two "subforma".

1-2. E. excayatum forma lidoensis, "boreal" form. This form grades into forma excavata, the wall perforations are fine, and the papillae are small. The ponticuli are more strongly developed on this form.

1-3. Recent specimen from Annapolis Basin, SN509. 1. Equatorial view, $x$ 68. 2. Detail of the umbilicus showing umbilical apertures, x 229 .

3-5, 10-11. Recent specimens from Long Island Sound. Note the fine porosity, sutures broadening towards the umbilicus, and fine papillae. 3,5. Equatorial views. 3. SN104 x 64. 4. SN545, detail of the umbilical papillae, $x$ 265. 5. SN545, equatorial view, x 71 . 10-11. Oblique-axial view of penultimate septal face (ultimate chamber removed), SN546. 10. x 65. 11. Enlargement of the interiomarginal apertural arches and umbilical aperture, $x 160$.
6. Recent specimen from Chezzetcook Inlet, equatorial view, SN208 x 65.

7-9. Recent specimens from Miramichi Estuary. 7-8. Equatorial views. 7. SN517 x 80. 8. SN117 x 62. 9. Detail of umbilicus, SN117 x 217 .

12-13. Holocene specimens from Baie Verte, equatorial views. 12. SN656 x 78. 13. SN639 x 88.

14-32. E. excavatum forma lidoensis, "Lusitanian" form. This form grades into forma gunteri. The periphery is rounded, porosity coarse, and ponticuli not as well developed as in the "boreal" form.

14-19. Recent specimens from San Antonio Bay. 14-16. Representative plesiotype of the "Lusitanian" form, SN717. 14. Equatorial view, $x$ 87. 15. Detail of sutures broadening towards the umbilicus. Compare to figs. 4 and 9 ; there are less papillae in the sutures of this form, $x$ 271. 16. Enlargement of the umbilicus, note papillae on the edges of the bosses, $x$ 271. 17-18 SN674. 17. Equatorial view, $x$ 155. 18. Umbilical-apertural view, x 421. 19. Equatorial view, x 75 .

20-22, 27. Recent specimens from San Diego Bay. 20-21. Equatorial views. 20. Intermediate specimen, approaching forma tumidum. Note closed intercameral sutures and lack of papillae, SN359 x 97. 21-22, 27. SN306. 21. Note closed intercameral sutures, x 120. 22. Detail of suture, $x$ 622. 27. Umbilical-apertural view, $x 480$. 23-25. Recent specimens from Venice Lagoon. 23-24. Equatorial views. 23. SN620 x 90. 24. SN364, note umbilical bosses, $x 46.25$. Enlargement of same bosses, $x 309$.
26. Late Pleistocene specimen from San Francisco Bay, equatorial view, SN762 x 96.

28-32. Late Pleistocene specimens from Bay of Izmir, Turkey. 28-31. SN579. 28. Equatorial view, x 51. 29. Detail of intercameral - 'ture, lacking papillae and broadening towards the umbilicus, $x 368$.
30. Detail of another suture with papillae, x 275. 31. Umbilical bosses with papillae, x 342. 32. Equatorial view, SN612 x 64.


## PLATE 27

1-11. Elohidium excavatum forma magna. This form is recognized by its larger size, smooth peripheral outline, subacute periphery, and strongly convex walls, which give the umbilicus a raised appearance. The umbilicus is usually large and filled with one knobby boss. The sutures are backwards curved, and some (or all) may be constricted before reaching the umbilicus.

1-4. Recent specimens from Chezzetcook Inlet. 1-3. Equatorial views. 1. SN214 x 95. 2. SN198 x 62. 3. SN899 x 78. 4. Axial view, illustrating the subacute periphery, SN898 x 84.

5-8,11. Recent specimens from the Scotian Shelf. 5,7,11. Equatorial views. 5-6. SN911. 5. x 70. 6. Enlargement of the umbilicus showing ring of papillae inside the imperforate collar, $x$ 58. 7-8. SN906. 7. $x$ 299. 8. Detail of the intercameral sutures ending in the umbilicus, $x$ 198. 11. SN910 x 60.

9-10. Late Pleistocene specimens from the Champlain Sea. 9. Oblique-axial view of the penultimate septal face (ultimate chamber removed) showing an interiomarginal apertural arch, SN603 x 151. 10. Equatorial view, SN486 x 107.

12-19. Elphidium excavatum forma tumidum. This is a large, ornamented form resembling forma selseyensis, but the ornamentation and ponticuli are much more regular on forma tumidum. The umbilicus is large, circular, depressed, and filled with papillae/bosses. The chamber extensions into the umbilicus are truncated sharply. The periphery is broadly rounded and the chambers inflated. Recent specimens from San Diego Bay. 12-13. SN355. 12. Equatorial view, x
79. 13. Enlargment of the umbilicus, $x$ 394. 14. Equatorial view, SN317 x 107. 15. Representative plesiotype of the forma, SN360 x 85. 16. Equatorial view, $\operatorname{SN} 304 \mathrm{x}$ 94. 17. Equatorial view, SN315 x 84. 18-19. Etched specimen, SN351. 18. Equatorial view, x 84. 19.

Detail of etched umbilicus, x 420 .


## PLATE 28

Elphidium excavatum forma cuvillieri Lévy. This is a smooth, round disc shaped Elphidium about the same size as form clayata. The peripheral outline can range from smooth to very lobate. The sutures are straight or gently backwards curved, and characterized by very regular rows of sutural pores.

1-10,12,15. Late Pleistocene specimens from the Bay of Izmir, Turkey. 1,3,5,6,8,10,15 Equatorial views. 1-2. SN548. 1. x 70. 2. Enlargement of the umbilicus, $x$ 220. 3-4. SN576. 3. $x$ 81. 4. Umbilical-axial view (turned sideways); interiomarginal apertural arches visible, $x$ 306. 5. SN577 x 71. 6-7. SN586. 6. x 75. 7 . Enlargement of the intercameral suture, appearing as slits or pores between ponticuli. 8. Representative plesiotype, SN347x74. 9. SN584 x 98. 10. SN591 x 89. 12. SN580, (pl. 19:14), enlargement of the umbilicus showing apertural aperture, $\times 312.15 . \operatorname{SN} 344 \times 62$.

11,13-14,16-21. Recent specimens from Venice Lagoon. 11. Enlargement of a perforate umbilicus, SN368 (pl. 18:8), x . 13-14. SN376. 13. Peripheral (axial) view of the penultimate septal face, (ultimate chamber removed), $x$ 64. 14. Detail showing the interiomarginal apertural arches and retral process pits, x 207 • 16-18. SN380. 16. Equatorial view, x 411. 17. Enlargement of the umbilicus, $x$ 155. 18. Detail of the intercameral suture, $x 218.19$. Equatorial view, SN371 x 62. 20-21. SN379. 20. Equatorial view, x 62. 21. Ponticuli and an intercameral suture appearing as sutural pores, x 339.
22. Recent specimen from San Antonio Bay, equatorial view, SN742
x 89.
23. Recent specimen from Chezzetcook Inlet, equatorial view, SN205 x 80.


Three other species of Elphidiidae tested in the statistical analysis.

1-5. Recent specimens of Elphidium bartletti Cushman from the Scotian Shelf. 1-4. Equatorial views. 1. SN865 x 78. 2. SN878 x 88. 3. $\operatorname{SN8} 83 \times 58.4-5 . \operatorname{SN8} 88.4 . \times 59.5$. Enlargement of the sutural pores, x 294.

6-10. Recent specimens of Elphidium subarcticum Cushman from the Scotian Shelf. 6-7. SN844. 6. Detail of the umbilicus, x 464. 7. Equatorial view, x 69. 8-10. Equatorial views. 8. SN830 x 76.9. SN857 x 113. 10. SN884 x 78.

11-15. Late Pleistocene specimens of Haynesina orbiculare (Brady) from the Champlain Sea. 11-14. Equatorial views. 11. SN811 x 84. 12. $\operatorname{SN801} \times$ 105. 13. $\operatorname{SN8} 12 \times 94.14 . \operatorname{SN818\times 104.~15.~Enlargement~}$ of the umbilicus, x 540.


APPENDIX A: TEST and Foraminiferal (raw) data, as measured from specimen photographs.

## Table Al: TEST foraminiferal data.



Tables A2 and A3: Foraminiferal (raw) data used in the statistical analysis. Columns numbered l-18 represent the follow- ing variables:
Column Variable
1 LOC2
SPNO ..... (SN)
3 FORM
PAP
5 UMCO
6 DEUM
POR
AOMA 8 ..... NOBO
10 ..... PERO
11 ..... DEPO
12 ..... SUT
13 CHAM
14 ..... PONT
15 ..... POSU
16 ..... GSD
17 ..... GS 90
18 ..... REPO
POSU and GSR were computed internally; POSU by taking the square root of PONT and GSR by dividing GS90 by GSD.
Table A2: Elphidium excavatum (Terquem) data used in the analysis.
















 $\qquad$ 17 18 $22_{2}^{2} 2$ ~~


 －1，




 －
 ～ККーロ

 $17 \ldots 13$ 7．－13－































17
18


[^3]
## -个-… i i



## DERIVATION OF THE DISCRIMINANT FUNCTION

The statistical decision rule that forms the basis of discriminant analysis, is that a ratio of the between group to the within group variance, of a linear combination of variables, be formed, and maximized. The ratio is:
$\lambda=W^{\prime} B W$
$\overline{W^{\prime} W_{H}}$
where
$B$ is the between groups variance-covariance matrix and W is the within groups variance-covariance matrix.

The latter can be expressed as:
$W=A_{1}+A_{2}+\ldots+A_{g}$
$n_{1}+n_{2} \ldots n_{g}-g$
where
$g$ is the number of groups
$n_{i}$ is the number of specimens in the $i$ th group and
$A_{i}$ is the sum of squares and cross product matrix for the $i$ th group.
$A_{i}$ can be represented as:
$A_{i}=\left[\begin{array}{llll}a_{11} & a_{21} & \ldots & a_{1 p} \\ a_{21} & a_{22} & \ldots & a_{2 p} \\ a_{p 1} & a_{p 2} & \ldots & a p p\end{array}\right]$
where
$p$ is the number of variables
and
$a_{1 p}=\sum_{j=1}^{n_{i}}\left(x_{1 j}-\bar{x}_{1}\right)\left(x_{p j}-\bar{x}_{p}\right)$
where
$\overline{\mathrm{x}}_{1}$ is the mean for the 1 st variable in the $i$ th group.
$A_{i}$ can also be expressed as:
$A_{i}=X_{i}{ }^{\prime} X_{i}-n_{i} \bar{x}_{i} \bar{x}_{i} \prime$ (equation 6)
where
$\bar{X}_{i}$ is the mean vector for the $i^{\text {th }}$ group
$X_{i}$ is the independent variables matrix $\left(n_{i} X_{i}\right)$ and
$n_{i}$ is the number of specimens in the $i$ th group.
Equation 6 will be used to calculate A for each group and then these values substituted into equation 5 to calculate $W$. W will then be used in equation 4. The between groups variance-covariance matrix B can be calculated as (Gnanadesikan 1977):

$$
\left.B=\frac{1}{g-1} \sum_{i=1}^{g} n_{i}\left(x_{i}-\overline{x_{.}}\right)\left(x_{i}-\bar{x}_{\ldots}\right)^{\prime} \quad \quad \text { (equation } 7\right)
$$

where
X..is the pooled variable means vector.

To maximize $\lambda=W^{\top} B W$
W' WW
$\frac{d \lambda}{d}$ is set to zero and the resulting equations are solved dw
for F .

The derivative is
$\mathrm{d} \lambda=\mathrm{F}^{\prime} \mathrm{WW} 2 \mathrm{BW}-\underline{W}^{\prime} B W 2 W W$
dw $\left(W^{\prime} W W\right)^{2}$

$$
\begin{aligned}
& \quad \frac{2 B W}{W^{\prime} W W}-\frac{W^{\prime} B W}{W^{\prime} W_{H}} \times \frac{2 W W}{W^{\prime} W^{\prime} W} \\
& =2\left(\frac{B W}{W^{\prime} W W}-\frac{W_{W}}{W^{\prime} W_{W}}\right)
\end{aligned}
$$

Equating this to zero gives

$$
B_{W}-\lambda W_{W}=0
$$

$$
\text { or }(B-\lambda W) w=0
$$

$$
(W-1 B-\lambda I) W=0
$$

$$
W-1 B W=\lambda W \quad \text { (equation } 8 \text { ) }
$$

Therefore, $\lambda$ is the largest eigenvalue of the matrix $W-1 B$, and the discriminant function coefficients are contained in the corresponding eigenvector $\mathbb{W}$. Now $W-1 B$ is not necessarily a symmetric matrix, and many programs including MINITAB cannot calculate the eigenvectors and values of a non-symmetric matrix. However, the problem can be re-expressed using two algebraic manipulations so that $\lambda$ and $w$ can be obtained from eigenvectors and eigenvalues of a symmetric matrix. The first manipulation is to find a matrix $R$ such that $W=R^{\prime} R$. But $W$ is symmetric so it can be written as the product:
$W=T D T$
where
$D$ is a diagonal matrix with the eigenvalues of $W$ on the diagonal and $T$ has the eigenvectors of $W$ in its columns.

Therefore $R^{\prime} R=T D 1 / 2 D 1 / 2 T^{\prime}$
where
D1/2 has the square root of the eigenvalues of $W$ on its diagonal and $R$ is chosen to be:

The second is to let $\underline{\gamma}=R \underline{H}$, so that $\underline{w}=R-1 \underline{\gamma}$ and

$$
\lambda=\underline{\gamma} \cdot(R-1)^{\prime} B(R-1) \underline{\gamma}
$$

$$
\underline{X}^{\prime}(R-1)^{\prime} R^{\prime} R(R-1) \underline{\gamma}
$$

$$
=\frac{\gamma^{\prime(R-1) ' B(R-1) \underline{\gamma}}}{\underline{\gamma}^{\prime} \underline{\gamma}}
$$

(equation 10 )

To maximize this ratio, set $\frac{d \lambda}{d \underline{\gamma}}=0$ and solve.
The $\oint$ which maximizes this ratio can be converted to the desired $\mathbb{H}$ using the fact that $\underline{W}=R-1 \underline{\gamma}$.

Now

$$
\begin{aligned}
\frac{d \underline{\gamma}}{d \hat{\gamma}} & =\frac{\underline{\gamma}^{\prime} \underline{\gamma} \times 2(R-1)^{\prime} B(R-1) \underline{\gamma}-2 \underline{\gamma}^{\prime}(R-1)^{\prime} B(R-1) \underline{\gamma}}{\left.(\underline{\gamma})^{\prime}\right)^{2}} \\
& =\frac{2(R-1)^{\prime} B(R-1)-2 \underline{\gamma} \times \underline{\gamma}^{\prime}(R-1)^{\prime} B(R-1)}{\underline{\gamma^{\prime}} \underline{\gamma}} \frac{\underline{\gamma^{\prime} \gamma}}{\underline{\gamma}^{\prime} \underline{\gamma}} \\
& =\frac{2(R-1)^{\prime} B(R-1)-2 \underline{\gamma} \lambda}{\underline{\gamma}^{\prime} \underline{\gamma}} .
\end{aligned}
$$

Equating to zero gives

$$
\begin{array}{ll} 
& {[(R-1) \cdot B(R-1)-I] \underline{\gamma}=0 \quad \text { (equation 11) }} \\
\text { or } \quad(R-1) \cdot B(R-1) \underline{\gamma}=\lambda \underline{\gamma} .
\end{array}
$$

Therefore $\lambda$ is the largest eigenvalue of ( $R-1$ )' $B R-1$ and is the corresponding eigenvector. In general, ( $\mathrm{R}-1$ )' $\mathrm{BR}-1$ has $\mathrm{g}-1$ nonzero eigenvalues and corresponding eigenvectors. The second and subsequent largest eigenvectors gives the second and subsequent discriminant functions. Writing the eigenvectors of ( $\mathrm{R}-1$ )' $\mathrm{BR}-1$ in the columns of a matrix $\Gamma$, the discriminant function coefficients are obtained by
pre-multiplying by $\mathrm{R}-1$.
To summarize:

$$
\begin{aligned}
& \frac{W^{\prime} B \underline{W}}{W^{\prime} W \underline{W}}=\lambda=\frac{\gamma^{\prime}\left(F^{-1}\right) B R^{-1} \underline{\gamma}}{\underline{\gamma}^{\prime} \underline{\gamma}} \\
& W=R^{\prime} R \\
& \underline{W^{\prime} W W}=W^{\prime} R^{\prime} R \underline{W}=\underline{\gamma}^{\prime} \underline{\gamma} \\
& \underline{\gamma}=R W \\
& W=R-1
\end{aligned}
$$

and $Z=X ' W \quad$ (equation 2)
For the two group case there is only one discriminant function, which also can be expressed in terms of the pooled within groups variance-covariance matrix (W) and a difference between the group mean vectors, ie:

$$
Z=X^{\prime} W^{-1}\left(\bar{X}_{i}-\bar{X}_{j}\right) \quad \text { (equation 12) }
$$

where:
$x^{\prime}$ is the transpose of the independent variable vector and
$\bar{X}_{i}$ is the mean vector for the $i$ th group.
The vector of coefficients $W=W-1\left(\bar{X}_{i}-\bar{X}_{j}\right)$ does maximize $\lambda$ as is
shown below. For the two group case, equation 7 simplifies to:

$$
B=\frac{1 / 2 n_{i}^{2}+n_{j} 2\left(\bar{x}_{i}-\bar{x}_{j}\right)\left(\bar{x}_{i}-\bar{x}_{j}\right)}{n_{i}+n_{j}}
$$

```
or = kdd'
```

where
$\mathrm{d}=\overline{\mathrm{x}}_{\mathrm{i}}-\overline{\mathrm{x}}_{\mathrm{j}}$ and
$\mathrm{k}=$
$\frac{1 n_{i} 2+n_{j} 2}{2 n_{i}+n_{j}}$

To maximize

$$
\lambda=\frac{w^{\prime} B w}{w^{\prime} W w}
$$

it has been shown that $\underline{w}=R-1 \underline{\gamma}$ where $\underline{\gamma}$ is the eigenvector associated with the largest eigenvalue of ( $\mathrm{R}-1$ )'BR-1.

But ( $R-1)^{\prime} \mathrm{BR}^{-1}=k(\mathrm{R}-1)^{\prime} \mathrm{dd}^{\prime} \mathrm{R}-1$
$=\mathrm{khh}{ }^{\prime}$
where
$h=(R-1) \cdot \underline{d}$
so $B$ has the single nonzero eigenvector $\underline{\gamma}=\frac{h}{\| h} \|$

Therefore the discriminant function coefficients are given up to a scale factor by

$$
\underline{w}=R-1 \underline{h}=R-1(R-1) \prime \underline{d}=W-1\left(\overline{X_{i}}-\bar{X} j\right)
$$

For the two group case $Z$ will be calculated from equation $1 ?$
rather than equations $4,7,8,9,10$, and 11.

DERIVATION OF THE CLASSIFICATION FUNCTION

The a priori probability that a specimen with measurements x will belong to group i is usually taken to be $1 / \mathrm{g}$ where g is the number of groups. The probability density for $\mathbf{x}$ in group i is:
$\frac{1}{(2 \pi) p / 2}|V|-1 / 2 \exp \left\{-1 / 2\left[\left(x-u_{i}\right) \cdot v-1\left(x-u_{i}\right)\right]\right\}$
where:
$H_{i}$ is the true mean vector (which is estimated by $\bar{x}_{i}$ )

V is the true within group variance-covariance matrix
(which is estimated by W) and
$p$ is the number of variables.
Using Bayes rule, the posterior probability for group i is the a priori probability times the likelihood (where the likelihood has the same form as the density for $X$ ).

Therefore the estimated $\ln$ posterior probability is

$$
\ln 1 / g-p / 2 \ln 2 \pi-1 / 2 \ln |w|-1 / 2\left(x-\bar{x}_{i}\right)^{\prime} w-1\left(x-\bar{x}_{i}\right) .
$$

Expanding the last term [ $\left.1 / 2\left(x-\bar{X}_{i}\right) \cdot W^{-1}\left(X-\bar{X}_{i}\right)\right]$ gives:
$1 / 2 x^{\prime} W^{-1}\left(x-\bar{x}_{i}\right)-1 / 2 \bar{x}_{i}{ }^{\prime} W^{-1}\left(x-\bar{x}_{i}\right)$

Omitting terms constant for all groups, (the second and third terms of equation 13, the first term of equation 14), leaves:

$$
\left.\ln \frac{1}{g}+1 / 2 x^{\prime} W^{-1} \bar{x}_{i}+1 / 2 \bar{x}_{i} w^{-1} x-1 / 2 \bar{x}_{i}{ }^{\prime} w^{-1} \bar{x}_{i} \quad \text { (equation } 15\right)
$$

In equation 15, terms 2 and 3 are constants and the transpose of one another; they combine to: $\mathrm{x}^{\prime} \mathrm{W}^{-1} \overline{\mathrm{X}}_{\mathrm{i}}$.

The result is the classification function:
$\ln \frac{1}{g}+x^{\prime} W-1 \bar{x}_{i}-\bar{x}_{i}{ }^{\prime} W^{-1} \bar{x}_{i}$
or
$\ln \frac{1}{g}+\left(x-\frac{\bar{x}_{i}}{2}\right) \cdot w-1 \bar{x}_{i} . \quad \quad$ (equation 3 )

The classification rule is to evaluate these $g$ functions for each specimen, and classify the specimen with independent variables $\mathbf{x}$ into
the group which gives the largest function value.
For the two group case this is equivalent to calculating the discriminant score and classifying the specimen according to its proximity to the group centroids. Applying equation 3, the specimen is classified as belonging to group one instead of group three, if:


In $1 / g$ cancels, and expanding the remaining terms gives:

$$
\begin{aligned}
& x^{\prime} W-1 \bar{x}_{1}-\frac{\bar{x}_{1}}{2} W^{-1} \bar{x}_{1}-x^{\prime} W^{-1} \bar{x}_{3}+\frac{\bar{x}_{3}}{2} W^{-1 \bar{x}_{3}>0} \\
& x^{\prime} W^{-1}\left(\bar{x}_{1}-\bar{x}_{3}\right)-\frac{\bar{x}_{1}}{2} W^{-1} \bar{x}_{1}+\frac{\bar{x}_{3}}{2} W^{-1} \bar{x}_{3}>0 \\
& \text { or } x^{\prime} W-1\left(\bar{x}_{1}-\bar{x}_{3}\right)>\frac{\left.1 \bar{x}_{1} 1^{\prime} W^{-1} \bar{x}_{1}-\frac{1 \bar{x}_{3}}{2} W^{-1} \bar{x}_{3} \quad \text { (equation } 17\right) .}{}
\end{aligned}
$$

The left hand side is simply the discriminant score. The right hand side is the average of the two group centroids:

$$
\left.\frac{1 \bar{x}_{1}}{2} w^{-1}\left(\bar{x}_{1}-\bar{x}_{3}\right)+\frac{1 \bar{x}_{3}}{2} w^{-1}\left(\bar{x}_{1}-\bar{x}_{3}\right) . \text { (equation } 18\right)
$$

Therefore it is not necessary to evalute the classification functions but simply use the discriminant scores and the midpoint between the group centroids, the critical $Z$ value, $\left(Z_{1}+Z_{3}\right) / 2$ to determine if a specimen is correctly classified. For two groups of equal size, if $Z>\left(Z_{1}+Z_{3}\right) / 2$ the specimen is classified as belonging to group one, if $\left(Z_{1}+Z_{3}\right) / 2>Z$, then the specimen is classified as belonging to group three. If the groups are not of equal size, then a weighed average of the group centroids provides the optimal cutting score (Hair et al. 1979). If the group size in the analysis is irrelevant, or unrelated to the actual group size, then
the unweighed method is employed.

## TEST ONE

The SPSS output of the options and statistics calculated in subprogram DISCRIMINANT gives the group means, group standard deviations, and the pooled within groups variance-covariance matrix.

GROUP MEANS:

FORM	NOBO	GSD
1	1.00000	. 34148
3	3.24138	. 45893
TOTAL	1.45455	.36530
GROUP STANDARD DEVIATIONS:		
FORM	NOBO	GSD
1	. 56443	. 09522
3	. 73946	. 09229
TOTAL	1.08594	. 10555

```
POOLED WITHIN-GROUPS COVARIANCE MATRIX:
 NOBO GSD
NOBO .3639032
GSD -2731719E-03 .8957548E-02 (matrix 1)
```

The calculation of this covariance matrix can be illustrated with the aid of MINITAB, Recall that:
$A_{i}=X_{i}{ }^{\prime} X_{i}-n_{j} \bar{x}_{i} \bar{X}_{i}{ }^{\prime} \quad$ (equation 6 )
and $W=A_{1}+A_{3}$
(equation 5)

$$
n_{1}+n-2
$$

$X_{i}$ for group one is the $2 \times 114$ matrix, containing the two variables
$\mathrm{x}_{1}$ (NOBO) and $\mathrm{x}_{2}$ (GSD) for the 114 group one specimens used in TEST (Appendix A, Table A1).

Now $\quad X_{1} X_{1}=\left[\begin{array}{ll}150.000 & 39.303 \\ 39.303 & 14.318\end{array}\right]$
and $\quad x_{1}=\left[\begin{array}{c}1.0000 \\ .34148\end{array}\right]$ (mean vector)
so $114 \bar{x}_{1 \bar{x}_{1}}=\left[\begin{array}{rr}114.000 & 38.929 \\ 38.929 & 13.293\end{array}\right]$
and $A_{1}=X 1^{\prime} X_{1}-114 \vec{X}_{1} \bar{X}_{1}{ }^{\prime}=\left[\begin{array}{rr}36.0000 & .3743 \\ .3743 & 1.0247\end{array}\right]$ (matrix 2)

Similarily for group three, $X_{3}$ is a $2 \times 29$ matrix (Appendix A, Table A1). Using the same procedure as above:

$$
X 3^{\prime} X 3=\left[\begin{array}{rr}
320.000 & 42.727 \\
42.727 & 6.346
\end{array}\right]
$$

and $A_{3}=X_{3}{ }^{\prime} \times 3-29 \bar{x}_{3} \bar{x}_{3}{ }^{\prime}=\left[\begin{array}{rr}15.3065 & -.4127 \\ -.4127 & .2385\end{array}\right]($ matrix 3)

The pooled variance - covariance matrix is therefore:

$$
\begin{aligned}
W= & \frac{1}{114+29-2} \mathrm{x}\left[\begin{array}{rr}
51.3065 \\
-.0384 & -.0384 \\
1.2632
\end{array}\right] \\
& =\left[\begin{array}{rr}
.363876 & -.000272 \\
-.000272 & .008959
\end{array}\right] \text { (matrix 4) }
\end{aligned}
$$

which compares quite well to the SPSS output (matrix 1). Based on this pooled variance-covariance matrix the discriminant function can be calculated:

$$
z=x^{\prime} W^{-1}\left(\bar{x}_{1}-\bar{x}_{3}\right) x^{\prime}=\left(x_{1}, x_{2}\right) \quad(\text { from equation } 12)
$$

$z=-6.1698 x_{1}-13.2972 x_{2}$
The group centroid for group one is $\mathbf{- 1 0 . 7 1 1 , ~ f o r ~ g r o u p ~ t h r e e ~ i t ~ i s ~}$ -26.101, and the Z values can be represented on histograms (Figures C1 and C2).

The SPSS output gives the unstandardized discriminant function coefficients:

FUNC
1

NOBO	1.572599	(matrix	5)
GSD	3.390245		
(CONTSTANT)	-3.525875		

which can be calculated from the MINITAB coefficients by standardizing the discriminant scores to have zero mean and unit standard deviation. The mean and standard deviation of the discriminant scores for the two groups are:

$$
\vec{z}_{1}=-10.711 \quad \text { (s.d. }=3.78 \text { ) }
$$

and $\bar{z}_{3}=-26.101$ (s.d. $=4.46$ )
which give the pooled mean:

$$
\frac{\mathrm{n}_{1} \mathrm{Z}_{1}+\mathrm{n}_{3} \mathrm{Z}_{3}}{\mathrm{n}_{1}+\mathrm{n}_{3}}
$$

$$
=[114(-10.711)+29(-26.101)] / 143
$$

$$
=-13.832
$$

The pooled variance is $[113(3.78) 2+28(4.46) 2] / 141$
$=15.4011$
so the standard deviation is 3.9244 .
Standardizing the discriminant scores gives:


Figure CI: Histogram of group one $Z$ values (discriminant scores).


Figure C2: Histogram of group three $Z$ values (discriminant scores).

```
 z
 3.9244
 =-6.1698x
 3.9244
 =-1.5722x
 by substituting }\mp@subsup{\overline{z}}{1}{}\mathrm{ and }\mp@subsup{\overline{z}}{3}{}\mathrm{ in turn into equation 19 the result is the
 standardized group centroids which, apart from the change in sign, is
 equivalent to the SPSS result.
 GROUP FUNC 1
 1 -.79557 (matrix 6)
 3 3.12740
SPSS also gives the standardized function coefficients:
 FUNC 1
NOBO .94866 (matrix 7)
GSD . }3208
which can be calculated from the unstandardized functions (matrix 5)
by standardizing the independent variables as well:
 Z
If }\quad\mp@subsup{x}{1}{}=\mp@subsup{s}{1}{\prime}\mp@subsup{y}{1}{}+\mp@subsup{\overline{x}}{1}{
and}\quad\mp@subsup{x}{2}{}=s2y2+\overline{x}
where:
\overline{x}}\mathrm{ is the pooled variable mean
s is the pooled standard deviation
and
 \mp@subsup{\overline{x}}{1}{}=1.45455
 \mp@subsup{x}{2}{}}=.3653
```

```
si = .5999
```

$s_{2}=.0946$,
the result is:
$Z_{s}=+1.5722\left(.5999 y_{1}+1.45455\right)+3.39024(.0946 y 2+.3653)-3.525875$
$z_{s}=.9431 y_{1}+2.2868+.320716 \mathrm{y}_{2}+1.23845-3.525$
$z_{s}=.9431 \mathrm{y}_{1}+.320716 \mathrm{y}_{2}+3.5213-3.525$
$=.9431 y_{1}+.320716 y_{2}$
which compares well with matrix 7 (above).
The SPSS output gives the classification function coefficients:
(FISHER'S LINEAR DISCRIMINANT FUNCTIONS)

FORM	1		
NOBO	2.776665	8.945923	(matrix 8)
GSD	38.20699	51.50682	
(CONSTANT)	-8.604988	-27.01075	

The calculation of these functions is easily illustrated on
MINITAB. Recall the general equation for the classification function:

$$
\ln \frac{1}{g}+\left(x-\frac{\left.\left.\bar{x}_{i}\right) \cdot W^{-1} \bar{x}_{i} \quad \text { (equation } 3\right) ~}{2}\right. \text { ) }
$$

Then:

$$
\begin{aligned}
& W=\left[\begin{array}{cc}
.3639032 & -.0002731719 \\
-.0002731719 & .00895748
\end{array}\right] \text { (matrices } 1 \text { and 4) } \\
& W-1=\left[\begin{array}{rr}
2.748 & .084 \\
.084 & 111.640
\end{array}\right] \text { (matrix 9) } \\
& W^{-1} \overline{\mathbf{x}}_{1}=\left[\begin{array}{r}
2.7767 \\
38.2067
\end{array}\right] \\
& \text { (matrix 10) }
\end{aligned}
$$

(Classification function coefficients for group one, compare to matrix 8).

```
 \mp@subsup{\overline{x}}{2}{1}}\mp@subsup{}{}{\prime}\mp@subsup{W}{}{-1}\mp@subsup{\overline{x}}{1}{}=7.911
```



```
Similarily, for group three:
 W-1\mp@subsup{\overline{x}}{3}{}= 8.9459 (matrix 11)
 51.5067
 \frac{\mp@subsup{\overline{x}}{3}{\prime}}{2}}\mp@subsup{'W}{}{-1}\mp@subsup{\overline{x}}{3}{}=26.317
ln.5-\frac{\mp@subsup{\overline{x}}{2}{\prime}}{}\mp@subsup{'}{}{\prime}-1\mp@subsup{\overline{x}}{3}{\prime}=-.6931471-26.3176 = -27.010747 (constant 2)
 Combining matrices 10 and 11, and constants 1 and 2 the
classification function coefficients from MINITAB are:
 GROUP 1 GROUP 3
 2.7767 8.9459
 (matrix 12)
CONSTANT -8.60484 -27.010747
 which compare very well with matrix 8.
 As illustrated earlier, for a two group case, the classification
function scores are closely related to the discriminant scores, and
will not be evaluated separately.
 Looking at the discriminant scores from SPSS (Table C1), there are
two group one specimens and one group three specimen misclassified.
 From the MINITAB discriminant (unstandardized) scores (Table C2)
the critical }\overline{\textrm{Z}}\mathrm{ value is:
 -10.711
 -26.101
 -36.812/2 = 18.406
 There are two group one and one group three Z values lying outside
```



Table Cl: SPSS discriminant scores for TEST One.
The symbol *** indicates those specimens misclassified.

'lable C1: continued.


Table Cl: continued.

# Table C2: MINITAB (unstandardized) discriminant scores for TEST One. Group 1 in column C8, group 3 in C9. The scores circled are those specimens misclassified. 


their respective territories, with $Z$ scores $-19.0945, \quad \mathbf{- 2 2 . 6 0 4 8}$ (group one), and -18.3099 (group three), see Table C3 and Figure C3.

Regardless of whether or not the data is standardized, the classification results are the same, the same specimens are misclassified.

The overall classification results are shown in the following classification matrix:

ACTUAL GROUP	CASES	PREDICTED GROUP MEMBERSHIP	
GROUP	1	114	1
			112

Table C3: Classification results, TEST One.

## TEST FOUR

Adding a third group and a third variable to TEST One results in a case where there are two discriminant functions and three classification functions. The SPSS output is:

GROUP MEANS:

FORM	NOBO	GSD	POSQ
1	1.00000	.34148	2.78762
3	3.24137	.45893	4.83609
4	1.38298	.31909	1.94113



Figure C3: All groups stacked histogram.
$\begin{array}{llll}\text { TOTAL } \quad 1.43684 & .35387 & 2.89089\end{array}$
GROUP STANDARD DEVIATIONS:

FORM	NOBO	GSD	POSQ
1	.56443	.09522	1.44555
3	.73946	.09229	.95904
4	1.36020	.06650	1.39022
TOTAL	1.15640	.09923	1.63320

POOLED WITHIN-GROUPS COVARIANCE MATRIX:

	NOBO	GSD	POSQ	
NOBO	.7295012			
GSD	$.2898133 E-02$	$.7841989 E-02$		(matrix 13)
POSQ	-.1217422	$.6908217 \mathrm{E}-01$	1.875848	

$A_{1}$ and $A_{3}$ are calculated as they were for TEST One, except a third variable (POSQ), has been added.

$$
\begin{aligned}
& A_{1}=\left[\begin{array}{rrr}
36.000 & .374 & 7.063 \\
.374 & 1.025 & 9.427 \\
7.063 & 9.427 & 236.164
\end{array}\right] \text { (matrix 14) } \\
& A_{3}=\left[\begin{array}{rrr}
15.3065 & -.4127 & -2.9847 \\
-.427 & .2385 & 1.1850 \\
-2.9847 & 1.1850 & 25.7478
\end{array}\right] \text { (matrix 15) } \\
& A_{4}=X_{4} \mathrm{X}_{4}-47 \overline{\mathrm{X}} 4 \overline{\times} 4^{\prime} \text { (again, } X_{4} \text { is similar to } X_{1}, \text { it is the } 3 \mathrm{x} \\
& 47 \text { matrix, containing the three variables for the } 47 \text { group four } \\
& \text { specimens used in the analysis). }
\end{aligned}
$$

Now

$$
x_{4}=\left[\begin{array}{l}
1.38298 \\
.31909 \\
1.94113
\end{array}\right]
$$

and $A_{4}=\left[\begin{array}{rrr}85.1036 & .5798 & -26.8409 \\ -26.8409 & 2.3033 & 2.3093 \\ \hline 88.9096\end{array}\right]$ (matrix 16)
Using equation 6:

```
\(A_{1}+A_{3}+A_{4}=(\) matrix \(14+\) matrix \(15+\) matrix 16)
```

190190

|  |
| ---: | ---: | ---: | ---: | ---: |
| Therefore |$\quad W=$| .72947 | .00289 | -.12173 |  |
| ---: | ---: | ---: | ---: |
|  | . .12173 | .00784 | .06910 |
|  | .06910 | 1.87605 |  | (matrix 17)

which compares well with matrix 13.
The SPSS unstandardized discriminant function coefficients are:

	$Z_{\text {SZ }}$	$Z_{\text {SZ }}$	
	FUNC 1	FUNC 2	
NOBO	-.9862163	.5983976	
GSD	-.9753932	1.409323	(matrix 18)
FOSQ	-.4136835	-.6320159	
(CONSTANT)	2.958110	.4685691	

There are now 2 discriminant functions, which cannot be calculated from equation 12, but must be calculated from equations $4(\lambda)$, $5(W$, above), and 7(B, below):

$$
B=\frac{1}{g-1} \sum_{i=1}^{g} n_{i}\left(\bar{x}_{i}-\bar{x} . .\right)\left(\bar{x}_{i}-\bar{x} . .\right)^{\prime}
$$

$B$ is calculated on MINITAB to be:
$B=\left[\begin{array}{rrr}58.1627 & 3.1015 & 54.6713 \\ 3.1015 & .1972 & 3.8125 \\ 54.6713 & 3.8125 & 76.6711\end{array}\right] \quad$ (matrix 19)
and $W$ as calculated for matrices 13 and 17.
Employing the two algebraic manipulations, the function coefficients can be calculated:
$D 1 / 2=\left[\begin{array}{ccc}1.37518 & 0 & 0 \\ 0 & .84667 & 0 \\ 0 & 0 & .07221\end{array}\right] \quad$ (matrix 20)
$\left.\mathrm{D} 1 / 2 \mathrm{~T} \quad \begin{array}{rrr}-.14312 & .04992 & 1.36680 \\ .84203 & .01199 & .08773 \\ -.00074 & .07216 & -.00271\end{array}\right]$ (matrix 21)


The eigenvalues (matrix 24) do not compare at all with those from the SPSS output:

| AFTER | PERCENT OF CUMULITIVE | CANONICAL |  |
| :--- | :---: | :---: | ---: | ---: |
| FUNCTION EIGENVALUE | VARIANCE | PERCENT | CORRELATION |


1	1.32120	93.26	93.26	.7544463
2	.09552	6.74	100.00	.2952766

This is due to the fact that SPSS calculates B differently. SPSS uses the equation:
$B=\frac{1}{n_{1}+n_{2}+\ldots n_{g-1}} \sum_{i=1}^{g} n_{i}\left(\bar{x}_{i}-\bar{x}\right)\left(\bar{x}_{i}-\bar{x}\right)^{\prime}$ (equation 20)
rather than equation 7:
$B=\frac{1}{g-1} \sum_{i=1}^{g} n_{i}\left(\bar{x}_{i}-\bar{x}\right)\left(\bar{x}_{i}-\bar{x}\right)^{\prime}$

The $B$ calculated from equation 7 can easily be calculated from $B$ (equation 20) by the following:


The same conversion factor can be applied to $B$ (MINITAB) to result in B (SPSS):

```
[123.533] [< < < 2
```

which agrees reasonably well with those given on the SPSS output (above).

It should be noted that no reference was found to a $B$ matrix calculated from equation 21 ; though two different equations were found: equation 7 (from Gnanadesikan 1977) and also the following:

$$
B=\frac{1}{g} \sum_{i=1}^{g}\left(x_{i}-\bar{x}\right)\left(x_{i}-\bar{x}\right)^{\prime}
$$

from Lachenbruch (1975).

However it should be remembered that $W$ is calculated using equation 5:

$$
\frac{A_{i}+A_{2}+\ldots+A_{g}}{n_{1}+n_{2}+\ldots+n_{g}-1}
$$

so it is not unreasonable that the same scaling factor is applied by SPSS to both the within groups (W) and between groups (B) pooled variance-covariance matrices.

To arrive at the constants for the functions (matrix 18 ), the $(\bar{Z})$ means of each group for each function are calculated (on MINITAB) and the means pooled; arriving at a pooled $(\bar{Z})$ mean for each function. These means are then subtracted from matrix 26 to arrive at matrix 18. For function 1 the group $\left(\bar{Z}_{\mathrm{SZ} 1}\right)$ means are:

```
 group one }\mp@subsup{\overline{Z}}{\mathrm{ SZ11 }}{
 group three }\mp@subsup{\overline{z}}{\textrm{SZ}13}{
 group four }\mp@subsup{\overline{\textrm{Z}}}{\textrm{SZ1}}{
the pooled (}\mp@subsup{\overline{Z}}{SZ1}{})\mathrm{ mean:
 =114(-2.4725)+29(-5.6450)+47(-2.4781)
 190
 =-281.867-163.705-116.4707
 1 9 0
 = -562.0427
 1 9 0
 = -2.9581195
For function 2 the group \(\left(\bar{Z}_{S Z 1}\right)\) means are:
group one \(\overline{\mathrm{Z}}_{\mathrm{SZ} 21}=-.68217\)
group three \(\overline{\mathrm{Z}}_{\mathrm{SZ} 23}=-.47012\)
group four \(\bar{Z}_{\text {SZ2 }}=.050495\)
the pooled \(\left(\bar{Z}_{\mathrm{SZ} 2}\right)\) mean:
```



```
\(=-77.7638-13.63348+2.373265\) 190
\(=-89.024015\)
190
\(=-.4685478\)
```

Therefore the constants are the pooled $\overline{\mathrm{Z}}$ means for the 2 functions, for function 1: -2.9581195
for function 2: -.4685478
which when subtracted from matrix 26 give matrix 18.
If the pooled $\overline{\mathrm{Z}}$ means $\left(\overline{\mathrm{Z}}_{S Z 1}, \overline{\mathrm{Z}}_{S Z 2}\right)$ are each subtracted from the individual group means for the two functions the result is the functions evaluated at the group centroids (from the SPSS output below).

GROUP
1
3
4

FUNC 1
.48562
$-2.68684$
.47995

FUNC 2
$-.21360$
. . 00150 (matrix 27)
.51901

For function 1:
group one $\quad-2.4725+2.958110=0.48561$
group three $-5.6450+2.958110=-2.68689$
group four $\quad-2.4781+2.958110=0.48001$
and for function 2:
group $1-.68217+.4685478=-.2136222$
group $3-.47012+.4685478=-.0015722$
group $4.050495+.4685478=.4180528$
The SPSS output also gives the standardized canonical discriminant function coefficients:

	FUNC 1	FUNC 2	
NOBO	-.84234	.51110	
GSD	-.08638	.12480	(matrix 28)
POSQ	-.56659	-.86562	

which can be calculated from the unstandardized functions (matrix 17)
by standardizing the independent variables as well:
$Z_{1 s z}=-.9862163 x_{1}-.9753932 x_{2}-.4136835 x_{3}+2.958110$
$Z_{2 s z}=.5983976 x_{1}+1.409323 x_{2}-.6320159 x_{3}+.4685691$

```
\mp@subsup{x}{1}{}}=\textrm{s}1\textrm{y}1+\mp@subsup{\overline{x}}{1}{}\quad\mp@subsup{\overline{x}}{1}{}=1.43684\quad\textrm{s}1=.854
x}\mp@subsup{x}{2}{= s2y2 + \overline{x}2 \overline{x}2 = .35387 s2 =.08855
x}\mp@subsup{x}{3}{}=s3\mp@subsup{y}{3}{}+\mp@subsup{\overline{x}}{3}{}\quad\mp@subsup{\overline{x}}{3}{}=2.89089\quads3=1.368
\mp@subsup{z}{1s}{}=-.9862163 (.8541y1 + 1.43684) - .9753932 (.08855y2 + . .35387)-
.4136835 (1.3683y% + 2.89089) + 2.95110
 =-.8423273y1 - 1.417037-.086371068y2 - . 3451623 - .5660431y3
- 1.1959135 + 2.958110
 =-.8423273y
 =-.84233y}1-.08637y2-.56604y3
Z}\mp@subsup{Z}{2s}{}=.5983976(.8541y1 + 1.43684) + 1.409323 (.08855y2 + .35387)--
.6320159 (1.3683y3 + 2.89089) +. .4685691
 =.5110828\mp@subsup{y}{1}{}+.8598016 +. .1247955y2 +.4987171 - . 8647873y3 -
1.8270878 +. .4685691
 =.5110828\mp@subsup{y}{1}{}+.1247955y2 -. .8647873y3 + 1.8270878-1.8270878
 =.5110828\mp@subsup{y}{1}{}+..1247955y2 -. .8647873y3
```

$Z_{1 s}$ and $Z_{2 s}$ compare very well with matrix 28.

The classification function coefficients from SPSS:
(FISHER'S LINEAR DISCRIMINANT FUNCTIONS)
$\begin{array}{llll}\text { FORM }= & 1 & 3\end{array}$

NOBO	1.192389	4.448038	1.636374
GSD	43.41741	46.81071	44.45542
POSQ	$-.3549533 \mathrm{e}-01$	1.142855	-.4961663 (matrix 29)
(CONSTANT)	-9.058475	-21.81242	-8.841117

were calculated on MINITAB. Recall:

so $\quad W-1=\left[\begin{array}{rrr}1.406 & -1.959 & .163 \\ -1.959 & 191.484 & -7.179 \\ .163 & -7.179 & .808\end{array}\right]$ (matrix 30)

For group one:

$$
\begin{aligned}
& W-1 \overline{\mathbf{x}}_{1}=\left[\begin{array}{r}
1.1924 \\
43.4169 \\
-.0355
\end{array}\right] \quad \text { (matrix 31) } \\
& \frac{\bar{X}_{1}}{2}-1 \bar{X}_{1}=7.9598 \\
& \left.\ln .33333-\frac{\bar{x}_{1}}{2} \right\rvert\, W-1 \overline{\mathbf{x}}_{1}=-1.0986124-7.9598=-9.0584 \quad \text { (constant } 3 \text { ) }
\end{aligned}
$$

Similarily for group three:

$$
\begin{aligned}
& W-\bar{X}_{3}=\left[\begin{array}{r}
4.4480 \\
46.8105 \\
1.1429
\end{array}\right] \\
& \text { (matrix 32) } \\
& \frac{\bar{x}_{3} W^{-1} \bar{x}_{3}=20.7138}{} \\
& \ln .33333-\frac{\bar{x}_{3}}{2} W^{-1} \overline{\bar{X}}_{3}=-1.0986124-20.7138=-21.8124 \quad \text { (constant 4) }
\end{aligned}
$$

and for group four:

$$
\begin{aligned}
& W-1 \bar{x}_{4}=\left[\begin{array}{r}
1.6364 \\
44.4563 \\
-.4962
\end{array}\right] \quad \text { (matrix 33) } \\
& \bar{x}_{4 W}-1 \bar{x}_{4}=7.7427 \\
& \ln .33333-\frac{\bar{x}_{4} W-1 \bar{x}_{4}}{2}=-1.0986124-7.7427=-8.8413 \quad \text { (constant } 5 \text { ) }
\end{aligned}
$$

Combining matrices $31,32,33$ and constants 3,4 , and 5 results in the classification functions:

	GROUP 1	GROUP 3	GROUP 4	
NOBO	1.1924	4.4480	1.6364	
GSD	43.4169	46.8105	44.4563	(matrix 34)


POSQ	$\mathbf{- . 0 3 5 5}$	1.1429	$\mathbf{- . 4 9 6 2}$
CONSTANT	$\mathbf{- 9 . 0 5 8 4}$	-21.8124	-8.8413

which compares very well with matrix 29.
Because there are now two discriminant functions and three groups, it is impossible to determine if a specimen is correctly classified solely from the discriminant scores and critical $(\bar{Z})$ values $\left(\bar{Z}_{1}+\right.$ $\left.\bar{z}_{3}\right) / 2,\left(\bar{z}_{3}+\bar{z}_{4}\right) / 2,\left(\bar{z}_{1}+\bar{z}_{4}\right) / 2$.

The discriminant scores will not be calculated on MINITAB; instead, the classification scores for all three groups must be evaluated on MINITAB for each specimen and the highest function score taken as the theoretical classification. The theoretical classification and the actual classification are then compared; if they differ, the specimen is misclassified, if they agree the specimen is correctly classified.

The classification functions have been evaluated for all the groups in turn and the three sets of classfication scores are listed on Table C4 (group one), Table C5 (group three), and Table C6 (group four).

For the group one specimens, 74 specimens were correctly classified, and the 40 remaining specimens misclassified; three into group three and 37 into group four (Table C4). All of the group three specimens were correctly classified (Table C5). Of the group four specimens, 21 were correctly classified and 26 were misclassified; six into group three and 20 into group four (Table C6).

Looking at the discriminant scores from SPSS, (Table C7) there are 40 group one specimens misclassified, zero group three specimens misclassified, and 26 group four specimens misclassified. The data is

# Table C4: MINITAB classification scores, group one, TEST Four. Those specimens circled are specimens misclassified into the group at the head of the column. 

Count	Group 1	Group 3	Group 4
1	3.6628	-8.0969	4.1844
2	8.4587	3.1289	8.3844
3	1.4485	-10.4842	1.9171-1
4	2.8225	-4.6593	3.2796
5	4.9933	-2.3188	5.5024
6	6.8343	. 5307	7,0508
7	-. 0075	-8.8917	, 8417
8	4.0737	-4.4915	5.0206
9	7.4168	-. 8870	8.4437
10	2.6843	-5.9894	3.5980
11	4.4898	-1.9971	4,6503?
12	3.9434.	-4.6319	4.8872
13	4.0465	-4.5580	3.3605
14	7.6705	1.0566	8.0533
15	4.8042	-2.9485	3.8277
16	12.7559.	6.8555	11.4907
17	12.4763	9.5794	11.6731
18	15.1911	17.0177	14.3432
19	12.2289	8.8756	11.5899
20	10.5992	10.2810	10.3366
21	9.5166	3.7392	20.6741
22	7.4247	. 3026	7.9920
23	12.6065	9.7198	11.8065
24	4.2406	-2.6414	4.5412
25	6.2524	-. 9613	6.7916
26	9.0825	3.2711	9,2296
27	4.2039	-4.3510	5.1539
28	7.8590	3.3352	7.4526
29	3.1576	-6. 2793	2.7474
30	8.5637	4.0842	8.1539
31	8.4663	2.8855	8.490D
32	7.2798	. 6353	(7.6532
33	6.2604	. 2284	6.3399
34	8.6691	2.1333	4,0758
35	3.2053	-5.4277	4.1314
36	5.6733	-1.0967	6.0083
37	-1.2308	-9.4552	-2.3517
38	-. 0076	-5.9992	-. 2846
39	. 0958	-10.2726	- +1189
40	. 7559	-6.0228	(8269
41	8.2345	4.5691	7.5000
42	8.3523	3.6650	8.0221
43	4.9784	-. 3908	4.7301
44	4.9145	-1.2227	4.9617
45	4.1170	-1.5522	3.9387
46	4.2907	-4.2574	5.2428
47	6.5722	1.7458	$6+1793$
48	2.3449	-5.1742	2.7906
49	3.1347	-5.5410	2.4269
50	3.6627	-5.2044	3.0581
51	2.0817	-7.7558	1.7690
52	4.9891	-3.1236	4.162 \%
53	3.0189	-4.6998	1.9321


Count	Group 1	Group 3	Group 4
54	7.2865	1.8650	7.1840
55	8.6919	3.3478	6.9890
56	1.5484	-4.0888	1.2181
57	4.0483	-. 7841	3,54Q5
58	9.9046	8.0829	10,1897
59	5.1003	. 9590	6.0274
60	5.4122	2.4764	5.8868)
61	2.5186	-4.9870	3.9684
62	15.0624	14.4428	13.5131
63	6.7150	1.4816	6.5084
64	5.6094	-1.4237	4.3965
65	10.0883	7.0048	9.2280
66	10.7709	8.1423	9.7706
67	7.9568	4.8436	6.9921
68	9.7329	6.8920	8.7587
69	5.9845	4.2746	6.0130
70	8.5384	4.8968	7.8112
71	3.4223	-2.3011	3.2274
72	11.4379.	5.9506	9.9401
73	3.1582	. 4271	1.7838
74	27.7035	26.3984	27.1086
75	17.7756	11.3781	16.9768
76	10.1990	7.7772	9.0870
77	7.7909	9.1814	8.3571
78	4.4665	1.1402	5.0418
79	10.5218	9.8822	10.3802
80	10.0253	7.5900	8.9091
81	7.4531	2.2774	7.2641
82	10.5268	(11.1679	9.8868
83	7.3096	4.0089	6.3828
84	3.4383	-2.8143	(3.4502)
85	10.7294	10.4214	10.4700
86	9.4439	4.6387	9.2188
87	4.7542	2.4928	3.2838
88	12.7933	9.4842	12.1679
89	8.8770	7.9412	8.7613
90	11.2985	10.8803	11.1129
91	10.0627	6.3854	9.4321
92	12.7247	10.2488	11.7711
93	9.3589	5.9313	8.5928
94	11.9077	9.1034	11.0376
95	11.8526	9.4349	10.8289
96	9.4658	9.2091	9.1178
97	6.3439	1.8740	5.8198
98	9.2720	5.8377	8.5039
99	5.9770	. 6858	5.7526
100	8.5820	3.4945	8.4200
101	6.9952	2.5761	6.4866
102	7.6179	6. 5836	7.4721
103	8.4037	4.9015	7.6148
104	3.5890	-1.8887	3.3075
105	3.9509	-1.9828	3.8666
106	5.0362	. 6377	4.4131


Count	Group 1	Group 3	Group 4
107	6.7786	4.7126	
108	1.5854	-3.8340	1.9889
109	.3477	-7.3275	.7422
110	.6078	-5.5872	.4435
111	5.3952	2.0818	4.3691
112	3.7128	-1.5403	3.3506
113	.7815	-5.4000	.6213
114	10.3654	8.1976	9.1636


Count	Group 1	Group 3	Group 4
1	18.6045	23.6371	18.3406
2	10.7542	13.4559	10.9711
3	17.1859	21.6352	17.0721
4	15.5960	23.2051	15.8121
5	11.9564	19.0342	12.1815
6	13.5237	16.7466	13.6882
7	13.7868	14.5564	13.2741
8	8.1447	9.3479	8.8031
9	12.9745	17.0946	12.7598
10	16.3893	19.8361	16.6224
11	18.7515	27.0714	18.8624
12	13.1519	17.1607	12.9902
13	21.7777	30.7653	21.7932
14	15.9191	22.9156	16.3913
15	10.2538	12.2313	10.7254
16	13.2112	14.3090	12.5394
17	5.5247	13.7450	4.9552
18	15.5243	22.6235	15.9351
19	22.0757	28.8973	21.3040
20	14.0563	18.3826	13.8201
21	18.7180	21.9305	17.5222
22	17.0876	20.9699	15.5424
23	18.5713	27.0956	18.5928
24	12.0287	19.5952	12.0675
25	19.0189	25.6838	19.7888
26	11.8966	15.6809	11.7541
27	12.8034	20.6584	12.7719
28	10.3355	16.3216	10.8975
29	12.6295	14.2559	11.7203

Table C5: MINITAB classification scores, group three specimens, TEST Four. All specimens correctly classified.

Ccunt	Group I	Group 3	Group 4
1	11.0247	11.9688	11.9406
2	5.9504	-2.2903	5.2263
3	9.2971	5.9728	10.1342
4	6.0806	-2.1499	5.3506
5	4.1404	-7.5820	4.6734
6	2.5470	2.1459	7.4508
7	2.25.47	. 5002	6.0229
8	8.6687	5.0372	7.9445
9	-9246	-6.0002	2.3024
10	8.3163	-1.8985	8.4895
11	10.6858	11.3246	11.7021
12	10.2866	11.1730	11.1849
13	15.1095	19.1448	15.0438
14	9.4542	10,5270	10.2345
15	12.7670	17.4939	13.9515
16	5.6095	-2.8728	4.9609
17	2.9684	-6366	7.0001.
18	8.7721	(10.8169	9.1370
19	8.6123	+1320	8.1262
20	4,7758	-1.0934	4.7113
21	6.6450	-1.5414	5.9376
22	S.3741	-2.5171	4.4826
23	4.8391	1.2036	3.9083
24	9.5577	-5.7450	1.6733
25	8.2410	-. 5043	6.3942
26	6.112	-1.7214	5.2383
27	4.2654	-. 5501	3.7628
28	6.5811	5.2922	6.4781
29	4.9285	-. 2296	4.5953
30	4.3318	-3.8257	3.4960
31	1.4252	-7.3469	2.3087
32	-. 3983	-9.3129	. 4416
33	1.5374	-5.1802	1.6271
34	1.2394	-9.5286	1.2431
35	2.0638	-7.1798	1.5189
36	$-1.7442$	-10.7641	-. 9366
37	3.8333	-1.5882	5.1899
38	6.5220	7.6356	8.7738
39	9.5845	7.7750	11.4942
40	11.2857	10.7903	12.7762
41	6.0476	. 7992	7.4571
42	7.6741	5.7153	9.5381
43	7.5873	5.6217	9.4492
44	2.2501	-6.4575	3.1534
45	4.0235	-2.8755	4.3189
46	11.0887	(3.7404)	12.9900
47	7.5004	5.5281	9.3602

Table C6. MINITAB classification scores, group four specimens, TEST Four. Those scores circled are specimens misclassified into the group at the head of the column.


Table C7: SPSS discriminant scores for TEST Four. The symbol *** indicates those specimens misclassified.


Table C7: continued.


Table C7: continued.

- panuṭquos : LO alqee

represented graphically on Figure $C 4$ and the territorial map on Figure C5.

Comparing the SPSS and MINITAB outputs it can be seen that not only are the same number of specimens from each group misclassified but in each case the same specimens are misclassified and misclassified into the same (incorrect) groups.

The overall classification results ( $64.74 \%$, Table C8) are not nearly as good as those obtained for TEST One ( $97.90 \%$, Table C3). Though these three variables (NOBO, GSD, POSQ) are good discriminators for two groups, they are poor discriminators for these three groups, particularily for groups one and four.

The overall classification results are given on the classification matrix below:

ACTUAL GROUP		$\begin{aligned} & \text { NO. OF } \\ & \text { CASES } \end{aligned}$	PREDICTED 1	GROUP ME	IP 4
GROUP	1	114	74	3	37
			64.9	2.6	32.5
GROUP	3	29	0	29	0
			0	100.0	0
GROUP	4	47	21	6	20
			44.7	12.8	42.6
PERCENT OF GROUPED CASE			CORRECTLY	CLASSIFI	64.74

Table C8: Classification results, TEST Four.

## SUMMARY OF TEST RESULTS

There are three major stages to discriminant analysis;
derivation, validation, and interpretation. To understand the
derivation stage an illustrative example, TEST, was devised and the


Figure C4: Scatter plot, TEST Four.


Figure C5: Territorial map, TEST Four.
following derivations / calculations are understood / duplicated with the aid of MINITAB.

1. Calculation of the pooled within group variance matrix (W).
2. Calculation of the pooled within groups variance-covariance matrix (B) for the three group case (TEST Four), and the corresponding eigenvalues ( $\lambda$ ).
3. Derivation of the unstandardized ( $Z$ only; $Z_{s z}$ ) discriminant functions.
4. Derivation of the standardized ( $Z$ and variable, $Z_{S}$ ) discriminant functions.
5. Calculation of $\bar{Z}$ values of the group centroids $(=$ group means).
6. Calculation of critical $Z$ values.
7. Calculation of the discriminant (Z) scores, two group case (TEST One).
8. Derivation of the classification functions.
9. Calculation of the classification scores and classification matrices, three group case (TEST Four).

UN GRJUPS DEFINED BY FURA


NUMBER OF CASES BY GRDUP


FGRY	SUT	CHAM	POSU	DEPO	POS2	GSR
10	$\begin{aligned} & 1.95000 \\ & 1.50000 \end{aligned}$	$\begin{array}{r} 12.123000 \\ 9.50000 \end{array}$	$\begin{aligned} & 2.94030 \\ & 1: 40350 \end{aligned}$	$\begin{aligned} & 2.80000 \\ & 2.80000 \end{aligned}$	$3 \cdot 176124$	.85866   .82645
rotal	1.75367	10.113037	1.66574	2.16089	4.27089	.85016

GROUP STANDARD DEVIATIONS

FORM	PAP	UME 0	DEUM	POR	AOMA	1080	PERO	REPO
$\begin{array}{r} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \end{array}$	.34920   .17956   .19604   .17081   .49732   - 16079   .22351   .12217 .17145   5 0	- 13594   .134036   $\cdot 140098$   .139694   .124964   -112039   .160262   .137323   .125643	$: 49154$   .56430   .64470   .36316   $.449+7$   .49077   $.490 ? 1$   - 84904	.33297 .65577   .42380   .69450   .50169   $.2912 j$   .61539   - 46836   .14071 .51640	.07833   .112804   - 146862   . 114850   . 114744   . 12250   0 0 0 0	$\begin{array}{r} .60808 \\ 106175 \\ 1.73808 \\ 153543 \\ .95080 \\ .92661 \\ .6955 \\ .72217 \\ .67838 \\ .73786 \end{array}$	$\begin{array}{r} 555481 \\ : 62985 \\ : 57871 \\ .64871 \\ 55864 \\ .71609 \\ .58714 \\ : 71205 \\ .54855 \\ .63246 \end{array}$	$\begin{array}{r} .86330 \\ : 79376 \\ : 80926 \\ 183551 \\ 1.06517 \\ : 77608 \\ : 74516 \\ : 56508 \\ : 14071 \\ .69721 \end{array}$
TOTAL	. 37520	.150012	. 73848	.92707	.41301	$1: 29707$	. 64161	1.38756
FORM	SUT	CHAM	POSU	DEPO	POSO	GSR		
1   2   3   3   4   5   6   7   7	$.3481 \frac{1}{2}$   .46862   - 38488   . 20618   - 38181   .47016   .40963   - 21904   .52705	$\begin{aligned} & 1.104804 \\ & 1.03465 \\ & 1.23891 \\ & 1.28301 \\ & 1.26888 \\ & 1.147933 \\ & 2.26870 \\ & 1.108086 \\ & 1.48973 \\ & .152705 \end{aligned}$		$\begin{array}{r} .97659 \\ .67503 \\ .70960 \\ 088847 \\ 120165 \\ .39390 \\ .30779 \\ .17408 \\ .14071 \\ .51640 \end{array}$	$\begin{aligned} & 1.49197 \\ & 1.40020 \\ & 1: 13995 \\ & 1.18588 \\ & 1.71839 \\ & 1.138734 \\ & 1.57602 \\ & 1.07627 \\ & 1: 12508 \\ & 09594 \end{aligned}$	.05366 .85434 05322 055378 05104 07880 05372 004220 003891 003159	-	- ...
TOTAL	.42819	1.175900	1.00445	1.02153	2.54039	. 05396		-

## POOLED WITHIN-GRUUPS COVARIANCE MATRIX WITH 711 DEGREES DF FREEDOM


ON GRJUPS DEFINED BY FORM

## ANALYSIS NUMBER 1

DIRECT METHOD- ALL VARIABLES PASSING THI TOLERANLE TESI ARE ENTERED.
MINIMUM TOLERANCE LEVEL..................... . OU10J
CANONICAL DISCRIMINANT FUNETIOVS

CANONICAL DISCRIMINANT FUNCTLINS



UNSTANDARDIZED CANONICAL DISこKIHINANT FUNCTION COEFFEIENTS


PAP   UACD	$\begin{aligned} & 1: 125334 \\ & -9095960 \mathrm{E}-01 \end{aligned}$
DEUM	.8909217
POR	.1012852
ADMA	. 3776765
NO30	-. 3302156
PYRU	. 5659603
REP0	-.6219076
5 UT	. 7982353
CHAM	-. 6594910
POSU	-.7336324
DEPO	-. $1469506 \mathrm{E}-01$
POSQ	-13831649
GSR	1.802171
(CONSTANT)	$-1.173732$



```
PRIUR PROBABILITY FOR EACH \dot{UUUP IS . 1000U}
```

CLASSIFICATIOH FUYCIION CUEFFICIENTS

FORM	1	2	3	4	5	6	7	0
PAP	16．80354	1ヵ．02542	18.7	17．37733	12.87328	21.05864	19.13090	
UMCO	3.415272	－1．714106	－2．803512	$-3.533101$	4.349275	－5．072266	－1．209300	4.342923
Dilum	1.912073 6.52385	$-1.345973$	1.799617	；${ }^{1850668 日 E-01}$	3.524576	1.732824	3.015640	1．006201
POR AOMA	6.523835 25.35379	9.330137 $? 8.10658$	10.42047	7.776915 C0．32213	7.299170	－1721日19	12.39101	5.345884
N030	－1．506989	－1．250458	$\bigcirc 7837305$	－．5221079	53.1559 -2.40562	－3735250E－01	－2．659938	－26．537859
PERD	7．526日53	7.751812	8.040744	7.645329	7.143877	7－913619	－7．574920	7.987877
$\begin{aligned} & \text { REPO } \\ & \text { SUT } \end{aligned}$	$\begin{aligned} & 5.774709 \\ & 17.01322 \end{aligned}$	50520814	7．721449	5．300975	58.112214	14．19436	80.78088	？${ }^{16} 56339$
CHAM	$6.069159$	5.104320	5．929414	$8.113 \pm 3$				
PUSU	$5.460443$	$5: 141631$	$5.672727$	4.772715	$6.763177$	7.691883	7．737360	8.346511
OCPO   080	－ 7.915318	－ 2.099577	－ 5.492834	－ 3.7597268	$\begin{aligned} & 36559 \\ & 0.36499 \end{aligned}$	－ 4.1957258	－9．611931	－1．1713855
GSR	301.1314 -214.9819	297.6939 -204.477	279.2413 -236.2912	－ 310.3213	39564077 -2976787	299.7886 -249.2740	288.6562 -289.632	296.1737 -207985


FARM－ 9

PAP	9．07032	19.73179
UMCO	－4．864065	－0́944951
DEUM	－．7219218	－i．306767
POR	12.75869	3.043713
duisa	27．67767	58.91623
NOBO	$-1.758962$	1.453514
PERT	6． 47804	$300 \leq 0817$
REPU	7.711052	3.17441
SUTM	20.75174 7.13852	15.74750 5.74359
		5.728834
OEPO	2.070630	－705＜29
POSO	－7．150445	－ 3.264653
GSR	301.4712	292．5937
（CONSTANT）	－250．8330	－253．4430

TESI JF EUUALITY JF GRUUP GJVARIAN: E MATRICES USING BJXAS M THF PAMKS AND HATURALGGOGARITHMS UF DETERMINANIS PRINTEV ARE THOSE


SINCE SOME COVARIANCE MATRICES ARE SINGULAR, IHE USUAL PROCEDURE HILL
 IS -23.809609


SYMBULS USED IN TERRITURIAL HAP
SYMBOL GRUUP LABEL



ALL-GROUPS SCAIIGRPLQI - - IVDLGIES A GRUUP CENIROID
: anunacal olsikiminant function 1































		Whit sec - Astught								2.1570	
elphexa	552	$\bigcirc$.	$\bigcirc$	. 4548	1.0900	10	. 0000		, 19		
elphesa	553	\%	¢	. 964	1.0350	1	-6,00		-	- 2.151546	. 3643
elphe	554	6.	6	. 2502	. 5126	10	.19674		-1.1563	. .69698	931
Elp	555	6.	$\bigcirc$	. 156	. 5755	10	.4239	- $614130{ }^{\text {a }}$	${ }^{-1.826517}$		3491
elphexa	556	4.	4	.	.4731	2	. 0239	-0.6123	-1.025 0 ,		1.9264
Elphexa	557	万.	6	.2851	-9799	\%	.0001	1.65722	. 50.96		635
elphexa	558	${ }^{8}$.	$\checkmark$	.8845	1.0000	1	.0000	-			1.0189
elphexa	559	4.	4	. 2306	.9283	2	.0715		- 21.654		2.6327
elphexa	560	4.	9	. 9669	. 9996	2	. 0003		1.19183		347
	561 562	9.	9	. 8959	-9997	2	. 0003		$\begin{aligned} & 1.1975 \\ & \hline 690 \\ & \hline 690 \end{aligned}$	-. -123545	. 0156
elphexa	562	9.	9	. 7884	. 9999	2	. 0001			. 0.086817	-. 34
elphexa	563	9.	9	. 9925	.999	2	:0001		1.00997	$\cdots$	-. 0911
elphexa	504	9.	9	. 4761	. 2797	2	.0003			-. -1.9874	-. 0661
elpiexa	565	9	9	.7877	1 10000	2	.0000			$-.483{ }^{55}$	
elphexa	566	9.	9	. 4694	1.0000	2	.0000			- $-1.1988^{12}$	-. 9669
elphexa	567	9.	9	. 9989	:9798	2	. 0002		. 97.515	${ }^{-.2888^{35}}$	-. 3170
elphexa	${ }^{568}$	9.	9	. 9996	. 9999	2	. 0901				-. 3206
elpmixa	569	9	9	. 996	-977	2	.0002		. $5.91313^{5}$		-. 2412
ELP ${ }_{\text {exexa }}$	570	9.	9	. 94	. 9	3	. 0002		${ }^{-30068}$	-1931352	$-.7399$
elphexa	571	9.	9	.6913	$\cdot$	${ }^{3}$	.1751		-. -9 ¢0 ${ }^{\text {a }}$	. 26.998	-.4022
elphexa	572	9.	9	. 9625	. 9906	2	. 0028	$\cdots$	. $17{ }^{1} 120$		-. 0579
- Elpiexa	573	9.	7	. 9862	$\bigcirc 9779$	2			. 3697	. 3.4636	-.7672
ELP elpexa elata	574 575	4.	9	.8131	-9819	2	. 0011		. $188^{3} 8^{30}$	-. 983 3, 39	-.3603 -.6992
elphex	576	9.	9	. 9211	.9635	${ }_{3}$	. .0276		-088888	1.2619\%97	-.6992 -.9610
elphexa	577	9.	9	. 3230	1.0050	2	. $\quad$ ¢00		- $-3.34^{\text {a }}$	. 6958889	-.7066
elphexa	578	1.	1	. 9911	. 9986	4	. 0010		-0551		-2.0549
elphexa	579	9.	9	. 9953	. 9783	3	.0008	$\bigcirc$	.13996	. $08899^{54}$	-. 5932
Elphexa	580	9.	4	. 9942	. 9991	3	. 0003		- $38.54{ }^{5} 7$	-.835999	-. 1831






SUQFICES	LUNUM	HIS	SEL	$\begin{gathered} A C \operatorname{TUAL} \\ G R J U P \end{gathered}$		$\begin{aligned} & \text { HIGHEST } \\ & \text { GROUPS } \end{aligned}$		Aghlify		$\begin{gathered} \text { HGHEST } \\ \text { PG/G/X } \end{gathered}$	discriminant jedres		
elphexa	697			2.		2	. 2084	.7949	4	.1937	$-2502^{29}-1.533^{62}$	-.036942 2.739319	1.0353
ELP Hex ${ }^{\text {e }}$	698			2.	***	4	. 5214	. 4201	2	. 2180	-. 249154		-1.2056
ELPHEXA	699			4.		4	. 2424	. 9020	1	. 0167	- 0.7000 -173310	- $7223-1.1 .3520$	1.8764
elphexa	700			3.		3	. 4138	. 5<3】	4	-6く34	20210 -1.0075	-6193 --1.3590	-1.12213
elphexa	701			4.	+6	2	. 7556	. 7836	4	. 2177			1.2695
ELPHEXA	702			6.		6	. 0601	1.0050	10	.0000	- 242509 - 96800		-. 2146
ELPHEXA	703			4.		4	. 6596	. 5724	2	. 4190		. 1.6134601 .401579	1.0891
ELPHEXA	704			3.		2	. 6010	. 9753	3	. 0184	-4,400 1.179b	; ${ }^{1115}$	$\cdots$
ELPHEXA	705			4.		4	. 7860	. 6028	2	.3940	- $208711-437{ }^{3}$	. 1.453001 .26362	1.5775
ELPHEXA	706			0.		2	. 0016	. 0217	6	.2810			-. 9922
ELPHEXA	707			4.		4	.7703	. 9737	2	. 0062	- $-1.6314-1.2430$		1.9063
ELPHEXA	708			1.		4	. 0373	. 7167	2	. 1011	- - 64798 - ${ }^{\text {a }}$	21558 -3i718	.13193
ELPHEXA	70.9			2.		2	. 0557	. 9724	4	.0243	- 487245	- 0.61000	1.1479
elpliexa	710			2.		2	. 9491	. 8404	4	. 0391			. 6351
ELPHEXA	711			2.		2	. 8931	-80d3	4	. 0724		. 0330751.63094	. 0444
elphexa	712			4.		4	.0570	. 8189	2	.1175		1.5007 0.62019	1.1819
ELPHEXA	713			6.		6	. 4380	1.0050	10	. 00005			. 1860
elphexa	714			9.		3	. 2311	. 5711	$<$	.3113	- 20.020511 .904	-176421 ${ }^{1}$	. 0103
\| Elphexa	715			4.		4	. 6909	. 7414	2	. 2490	-101332	10555 - ${ }^{3} 984$	. 8329
ELPrexa	710			4.		1	. 1171	. 6270	4	. 2091		- 2.3558 Cr -. 403343	-. 1578
ELPHEXA	717			4.		4	. 6339	. 5145	2	. 4791	-101951 - 0.7513	- 155779 - 140770	1.0598
ELPIILXA	718			4.		$\checkmark$	.8929	. 4768	2	.1003		-131564 -180194	1.0339
ELPHEXA	719			4.		4	. 0520	. 7323	2	.2440	-1.6106 -0.0813	- $10193-4600^{\circ}$	. 6603
elphexa	120			4		2	. 1760	- 5000	4	.4934		5575 1.0.3219	1.1102
ELPHEXA	721			4.		4	. 6198	.6336	2	.19<3		. $5334^{317} 1.8197^{53}$	. 0515


SUBFILES	hum	$\begin{aligned} & \text { HIS } \\ & \text { VAL } \end{aligned}$	SEL	$\begin{gathered} A C T U A L \\ G R J U P \end{gathered}$		HIGHES GROUF		$\text { A9 } 9(6) 15$	$\operatorname{cin}^{2 N D O G P}$	$\begin{aligned} & \text { HGHES} \\ & \text { BIG/X) } \end{aligned}$	discriminanl scores			
elphexa	697			2.		2	-2084	. 7978	4	. 1937		-.046342	2.729319	1.0353
ELPHEXA	698			2.		4	. 5214	. 2201	2	. 2180	--2502 -1.51910	-0.0.0401	2.121093	-1.2050
ELPlitexa	699			4.		4	. 2424	. 9020	1	. 0167	-. 24910000085916	-134523	-1.1771 1.3520	1.8764
elphexa	700			3.		3	. 4138	. 9631	4	.6234	-2.0.0210 -1733	104115	- 147980	-1.2213
- elphirma	701			4.		2	. 7556	-7836	4	. 2179		-519570	.047] 64	1.2685
Elphexa	702			6.		6	. 8601	1.0030	10	. 0000	-963 $600 \cdot 369300$	-. 0.72106	$1.746393$	-. 2341
elphexa	703			4.		4	.6596	. 5724	2	. 4190		-14825 1.8134	1.4233	1.0891
ELPHEXA	704			3.		2	. 6010	. 9155	3	. 0184	1.3.4]00 017190	- 3460115	1.407681 .6291	-. 1390
ELPHEXA	705			4.		4	. 7860	. 6528	2	. 1940	- $0.3711-8805$	-2. 1.153530	- 32632	1.5175
ELPHEXA	706			6.		2	. 0016	.0217	0	. 2918	$1.208310-4571$	.0100	1. 2636	-. 9922
elpmexa	707			4.		4	.7703	. 9737	2	.0062	$-1.6314 \sim 20$	-2,042705	- 734 Bj	1.9063
ELPHEXA	708					4	.0313	. 7167	2	. 1011	- - 44989898	- 2173	-3762	. 3153
ELPhexa	70.			2.		2	.6557	. 9724	5	. 0343		. 639001	1,204416	1.1879
Elphexa	110			.		2	. 9491	. 4.404	4	. 0391		. 0.017800	2.0438 .78043	. 4351
ELPHEXA	711			2.		2	. 8931	- Bod 3	4	. 0724	-126522 0t ${ }^{1} 911$	.0305	$\begin{array}{r} 70407 \\ \hline 39507 \end{array}$	.0444
ELPHEXA	712			4.		4	. 6570	. 8189	2	.177s	-4494, --369300	-0, 1.9007	$1.635419$	1.1819
elpuexa	713			6.		6	. 4380	1.0050	10	.8000		-6029	$=1340$	. 1866
elphexa	114			9.		3	. 2131	. 5711	2	.311)		-00362	$2.3990$	. 0103
y Elphexa	715			4.		4	. 6909	. 7414	2	. 2490	-2.0.0332 1.61453	$-.176875$	-981594	.8329
ELPitexa	710					3	.1111	. 6276	4	. 2691	1:940428-01427	- 30735	$-.485443$	-. 1578
ELPHEXA	717			4.		4	.6338	. 5155	2	. 4791	-1.765 -21010	- 349579	. 025770	1.0598
ELPMEXA	710			4.		4	.0929	.4760	2	.1003	2-19189 0.0735	- 211784	1.1475	1.0339
ELPHEXA	719			4.		4	.0520	.7123	2	.2440	-1.6106 -1.0350	- 1.8193	-1830	. 6609
ELPHEXA	120			4.		2	. 1760	. 2000	4	.4934	-1.2489 -0.08619	49575	6109 1.3219	1.1102
elphexa	$7 \% 1$			,		- 4	.6198	. 6336	$\cdots$	. 1943		-.$^{2} 33173$	$\begin{aligned} & 1.9861 \\ & 1.29953 \end{aligned}$	.0515


-actual grdup											
group	2	${ }^{01}$	11.5	70.5	6.6	4.3	0	1.6	$\bigcirc$	1.6	3.3
$\mathrm{group}^{\text {a }}$	3	${ }^{1}$	2.1	5.9	73.8	2.1	1.8	\%	$7 .{ }^{\text {b }}$	8	8
Group	4	13	16.4	19.1	3.1	01.8	. 7	8	$\bigcirc$	$\bigcirc$	${ }^{8}$
group	5	40	2. ${ }^{\frac{1}{2}}$	0	0	:	93.5	\%	4.3	$\bigcirc$	:
graup	6	69	8	2.6	1.4	0	$\bigcirc$	8.63	8	$1.1{ }^{1}$	$\bigcirc$
group	7	20	8	0		8	10.0	8	90.8	8	8
group	®	67	3.8	8	8	-	8	8	8	25.5	1.5
group			-0	-	-1. ${ }^{1}$	$\bigcirc$	$\bigcirc$			3. ${ }^{3}$	96.0
group	10	10	$\bigcirc$	$\stackrel{0}{0}$	0	$\bigcirc$	$\bigcirc$	:	$\bigcirc$	$\bigcirc$	:



[^4]Representative collections have been deposited with the following persons / departments: Ann Miller, Department of Geology, Dalhousie; Dr. S. W. Snyder, Department of Geology, East Carolina University, Greenville, N. Carolina, 27834; Dr. G. Vilks/Dr. C. Schafer, Atlantic Geoscience Centre, Bedford Institute of Oceanography, Dartmouth, N.S. B2Y 4A2; Dr. M. A. Buzas, Department of Paleobiology, U. S. N. M. Nat. History, Smithsonian Inst., Wash., D. C. 20560; Dr. C. W. Poag, U. S. G. S., Woods Hole, Mass., 02543; Prof. R. Feyling-Hanssen, Department of Micropaleotology, University of Aarhus, Universitesparken, DR-8000, Aarhus C. Denmark; Department Invert. Palaeo., R. O. M., 100 Queen's Park Blvd., Toronto, Ont., M5S 2C6; Dr. L. Osterman, INSTAAR, University of Colorado, R. B. \#1, Boulder, Co., 80302; Miss Ruth Todd, P. O. Box 4687, Vineyard Haven, Mass., 02568; Dr. K. McDougall, U. S. G. S., 345 Middlefield Rd., Menlo Park, Ca., 94025; Dr. D.H. McNeil, Inst. of Sedimentary and Petroleum Geology, Geological Survey of Canada, Calgary, Alberta T2L 2A7; Prof. J.R. Haynes, Dept, of Geology, University College of Wales, Aberysthwyth, Cards., SY23 3DB, U.K.; Prof. J.W. Murray, Dept. of Geology, University of Exeter, Exeter, BX4 4QE, U.K.; and Dept. of Invertebrate Palaeontology, British Museum of Natural History, Cromwell Road, London, SW7 5BD, U.K.



[^0]:    Table 12: Classification results, analysis $B-1$. The number to the left of the slash in each square is the actual number of specimens classified into that group. The number to the right of the slash is the percent the actual number represents. Overall percent correctly classified -55.05\%.

[^1]:    Description: Test free, planispiral, involute, biumbonate cental boss of clear shell material, usually large, sometimes absent, in a few cases subdivided; walls convex, periphery subacute, peripheral outline smooth to slightly lobate in the latest part of the test, chambers 10-13 (usually 11 or 12 ) in the final whorl, gradually increasing in size as added. The sutures are depressed, backwards curved, usually closed (but from one to all may remain open) before

[^2]:    , 1839a. In, Sagra, R. De La, Historia física politica y natural de la isla de Cuba, "Foraminifères", xlviii + 224 pp., atlas, pls. 1-12 (Non vide).
    , 1839b, Voyage dans l'Amerique
    Meridional-Foraminiferes. v. 5, pt. 5, 86 pp. Pitois-Levrault et Ce (Paris), V. Levrault (Strasbourg).

    PARKER, F.L., 1948. Foraminifera of the Continental Shelf from the Gulf of Maine to Maryland. Bulletin of the Museum of Comparative Zoology at Harvard College, Cambridge, v. 100, no. 2, p. 213-241, pls. 1-7.

    1952a. Foraminifera species off Portsmouth, New Hampshire. Bulletin of the Museum of Comparative Zoology at Harvard College, Cambridge, v. 106, no. 9, p. 391-423, pls. 1-6.

    1952b. Foraminifera distribution in the Long Island Sound-Buzzards Bay area. Bulletin of the Museum of Comparative Zoology at Harvard College, Cambridge, v. 106, no. 10, p. 425-473, pls. 1-5.
    , 1958. Eastern Mediterranean Foraminifera. In, Reports of the Swedish deep sea expedition, $1947-48$, v. 8 , no. 4 (Sediment cores from the Meditteranean Sea and Red Sea), p. 219-283.

[^3]:    Table A3: Data of three additional species of Elphidiidae used in the analysis. FORM 11 is Haynesina orbiculare, 12 is Elphidium bartletti and 13 is Elphidium subarcticum.

[^4]:    APPENDIX E: Specimen depositories.

