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Abstract. We study analytic properties of the higher-order Tornheim zeta

function, defined by a certain n-fold series (n ≥ 2) in n+1 complex variables. In
particular, we consider the function ωn+1(s), obtained by setting all variables

equal to s. Using a free-parameter method due to Crandall, we first give an

alternative proof of the trivial zeros of ωn+1(s) and evaluate ωn+1(0). Our
main result, however, is the evaluation of ω′

n+1(0) for any n ≥ 2. This is again

achieved by using Crandall’s method, and it generalizes recent results in the

cases n = 2, 3. Properties of Bernoulli numbers and of higher-order Bernoulli
numbers and polynomials play an important role throughout this paper.

1. Introduction

One of the best-known multiple zeta functions is the double series

(1.1) W(r, s, t) :=
∑
m,n≥1

1

mr

1

ns
1

(m+ n)t
,

which converges for all complex r, s, t with Re(r + t) > 1, Re(s + t) > 1, and
Re(r + s + t) > 2. This series was first investigated for positive integers r, s, t by
Tornheim [22] in 1950, and independently by Mordell [13] in 1958 for the special
case r = s = t. It is therefore often called a Tornheim (double) sum or Mordell-
Tornheim (double) sum or series. Furthermore, Witten [23] studied a wider class of
such series, which Zagier [24] called Witten zeta functions, a name sometimes also
attached to (1.1).

Inspired by a preprint of Romik’s paper [21], J. M. Borwein and the first author
[3] studied the analytic properties of the function ω3(s) :=W(s, s, s), with emphasis
on the values ω3(0) and ω′3(0). Some of these results were earlier and independently
obtained by Onodera [17, 18].

It is the purpose of this paper to extend these results to a multi-dimensional
analogue of the Tornheim zeta function (1.1) which can be defined, for n ≥ 2, by

(1.2) W(r1, . . . , rn, t) :=
∑

m1,...,mn≥1

1

mr1
1 · · ·m

rn
n (m1 + · · ·+mn)t

,

where r1, . . . , rn and t are complex variables with (initially) Re(rj) > 1 for j =
1, . . . , n and Re(t) > 0. This class of multiple series was studied by several authors;
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see, e.g., [1], [10], or [17]. In analogy to ω3(s) we also define

(1.3) ωn+1(s) :=W(s, . . . , s, s).

Onodera [17] showed that

(1.4) ωn+1(0) =
(−1)n

n+ 1
(n ≥ 1).

In this paper we provide a different proof of this identity, while our main result is
an evaluation of ω′n+1(0) for all n ≥ 2, generalizing

(1.5) ω′3(0) = log(2π),

which was obtained in [3] and [18]. In fact, we are going to prove the following
result, which involves derivatives of the Riemann zeta function ζ(z) which, as is
well know, can be analytically continued to the whole complex plane, with the
exception of a simple pole at z = 1.

Theorem 1.1. For any integer n ≥ 2 we have

(1.6) ω′n+1(0) = (−1)n log(2π) +
2

(n− 1)!

bn−1
2 c∑
j=1

s(n, 2j + 1)ζ ′(−2j),

where s(n, k) are the Stirling numbers of the first kind.

We recall that the (signed) Stirling numbers of the first kind can be defined by
the relation

(1.7) (x− n+ 1)n =

n∑
j=0

s(n, j)xj ,

where (a)n = a(a + 1) · · · (a + n − 1) is the Pochhammer symbol; see, e.g., [16,
Sect. 26.8].

Theorem 1.1 is not new. Independently of the prsesent paper, Onodera in an-
other, more recent, publication [19] obtained generalizations of (1.4) and (1.6); for
details, se the final Section 8 below. However, our method is quite different from
Onodera’s, and a second purpose of the present paper is to give another application
of Crandall’s free-parameter method.

Returning to the identity (1.6), we see that for n = 2 it reduces to (1.5). Fur-
thermore, since s(n, n) = 1 and s(n, n− 1) = −n(n− 1)/2 for all n ≥ 0, as well as
s(5, 3) = 35 and s(6, 3) = −225 (see again [16, Sect. 26.8]), the next four cases are

ω′4(0) = − log(2π) + ζ ′(−2),

ω′5(0) = log(2π)− 2ζ ′(−2),

ω′6(0) = − log(2π) + 35
12ζ
′(−2) + 1

12ζ
′(−4),

ω′7(0) = log(2π)− 15
4 ζ
′(−2)− 1

4ζ
′(−4).

All these identities can be slightly rewritten if we use the known evaluations

(1.8) ζ ′(0) = −1

2
log(2π) and ζ ′(−2) = −ζ(3)

4π2
;

see, e.g., [16, Sect. 25.6(ii)]. It should also be mentioned that Bailey and Borwein
[2] obtained experimentally the evaluations of ω′n+1(0) for all n ≤ 18. Their values
are in agreement with Theorem 1.1, which was obtained later.
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This paper is structured as follows. We begin with a section on some impor-
tant special functions that will be required, and derive some general results based
on Crandall’s free parameter method. In Section 3, Crandall’s method is used to
evaluate ω′n+1(s) at all nonpositive integers. The remainder of the paper is then
devoted to the proof of Theorem 1.1, beginning with the basic set-up in Section 4.
The following two sections then contain a sequence of technical lemmas, and every-
thing is put together in the short Section 7. Finally, Onodera’s recent results will
be given in Section 8.

2. Some preliminaries

As in the paper [3], which dealt with the case n = 2, our main tool will be an
expansion of W(r1, . . . , rn, t), applying a free parameter method due to Crandall.
For this purpose we use two important special functions, namely polylogarithms
and the incomplete gamma function.

The polylogarithm of order s is defined by

(2.1) Lis(z) :=

∞∑
n=1

zn

ns
.

For each fixed s ∈ C, the series (2.1) defines an analytic function of z for |z| < 1; in
particular, Li0(z) = z/(1− z) and Li1(z) = − log(1− z). The series also converges
when |z| = 1, provided that Re(s) > 1; for instance, Lis(1) = ζ(s), the Riemann
zeta function. While the polylogarithm satisfies numerous other properties (see,
e.g., [16, Sect. 25.12]), we mainly require the following representation.

Lemma 2.1. For any s ∈ C not a positive integer, and for | log z| < 2π, we have

(2.2) Lis(z) =

∞∑
m=0

ζ(s−m)
logm z

m!
+ Γ(1− s)(− log z)s−1.

This identity can be found in [7, pp. 27–30], in a slightly more general form.
The multiple Tornheim zeta function now enters through the following integral
representation.

Lemma 2.2. For r1, . . . , rn > 1 and t > 0 we have

(2.3) Γ(t)W(r1, . . . , rn, t) =

∫ ∞
0

xt−1
n∏
j=1

Lirj (e−x)dx

For n = 2, this identity was first given, without proof, in [4] as identity (6.2),
and a proof was later provided in [3]. The proof of (2.3) is similar to that of the
special case in [3]; we give it here for the sake of completeness.

Proof of Lemma 2.2. We use Euler’s integral for Γ(s), namely

(2.4) Γ(s) =

∫ ∞
0

e−tts−1dt (Re(s) > 0)

and substitute t = mx, so that

Γ(s) = ms

∫ ∞
0

e−mxxs−1dx.
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Replacing s with t and m with m1 + · · ·+mn, we get for Re(t) > 0,

(2.5)
1

(m1 + · · ·+mn)t
=

1

Γ(t)

∫ ∞
0

e−(m1+···+mn)xxt−1dx.

If we substitute (2.5) into (1.2) and change the order of summation and integration,
we get

W(r1, . . . , rn, t) =
1

Γ(t)

∫ ∞
0

xt−1
( ∞∑
m1=1

e−m1x

mr1
1

)
· · ·
( ∞∑
mn=1

e−mnx

mrn
n

)
dx.

Finally, with (2.1) this gives (2.3). �

The main result of this section has its origin in a method of Crandall in the case
n = 2, which provided an expansion ofW(r1, r2, t) with a free parameter θ > 0; see
[3] for further details. Here we extend this to arbitrary n ≥ 2. In what follows, we
require the incomplete Gamma function, defined by

(2.6) Γ(a, z) :=

∫ ∞
z

ya−1e−ydy.

Theorem 2.3. Let n ≥ 2 be an integer and r1, . . . , rn, t complex variables with
rj /∈ N for 1 ≤ j ≤ n. Then for any real θ with 0 < θ < 2π we have

Γ(t)W(r1, . . . , rn, t) =
∑

m1,...,mn≥1

Γ(t, (m1 + · · ·+mn)θ)

mr1
1 · · ·m

rn
n (m1 + · · ·+mn)t

(2.7)

+
∑

{a1,...,ak}
⊆{1,...,n}

( ∑
ua1

,...,uak
≥0

θw

w

n∏
i=1

Γ(1− ri)
k∏
j=1

(−1)uaj ζ(raj − uaj )

(uaj )!Γ(1− raj )

)

+
θw

w

n∏
i=1

Γ(1− ri),

where the final term is considered to be the case k = 0, and

w = t− (n− k) +

k∑
j=1

(uaj − raj ) +

n∑
i=1

ri.

Proof. From the definition (2.6) we have, for any θ > 0,

Γ(t, (m1 + · · ·+mn)θ) =

∫ ∞
(m1+···+mn)θ

yt−1e−ydy.

The substitution y = (m1 + · · ·+mn)x then yields

(2.8)

∫ ∞
θ

xt−1e−(m1+···+mn)xdx =
Γ(t, (m1 + · · ·+mn)θ)

(m1 + · · ·+mn)t
.

Using (2.5) and the definition (1.2), we get

Γ(t)W(r1, . . . , rn, t) =
∑

m1,...,mn≥1

1

mr1
1 · · ·m

rn
n

∫ ∞
0

xt−1e−(m1+···+mn)xdx,
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and splitting the integral into two parts,

Γ(t)W(r1, . . . , rn, t)(2.9)

=
∑

m1,...,mn≥1

1

mr1
1 · · ·m

rn
n

(∫ ∞
θ

+

∫ θ

0

)
xt−1e−(m1+···+mn)xdx

=
∑

m1,...,mn≥1

Γ(t, (m1 + · · ·+mn)θ)

nr11 · · ·m
rn
n (m1 + · · ·+mn)t

+

∫ θ

0

xt−1
n∏
j=1

Lirj (e−x)dx,

where we have used (2.8) and (2.1), respectively. Now we apply the representation
(2.2) to obtain

xt−1
n∏
j=1

Lirj (e−x) = xt−1
n∏
j=1

( ∞∑
uj=0

ζ(rj − uj)
(−x)uj

uj !
+ Γ(1− rj)xrj−1

)

=
∑

{a1,...,ak}
⊆{1,...,n}

( ∑
ua1 ,...,uak

≥0

xw−1
n∏
i=1

Γ(1− ri)
k∏
j=1

(−1)uaj ζ(raj − uaj )

(uaj )!Γ(1− raj )

)

+ xw−1
n∏
i=1

Γ(1− ri),

with w as in the statement of the theorem, and where the final term on the right is
considered to be the case k = 0. Finally, integrating this last identity over x from
0 to θ and substituting into (2.9) leads to the desired identity (2.7). �

3. Special values of ωn+1(s)

As a first application of Theorem 2.3 we provide an alternative proof of (1.4).
In fact, we are going to prove the following more general result of Onodera [17].

Theorem 3.1 (Onodera). For any integer n ≥ 2 we have

(3.1) ωn+1(0) =
(−1)n

n+ 1
, ωn+1(−ν) = 0, ν = 1, 2, 3, . . .

For the proof of this result, and also for later in this paper, we require the
Bernoulli numbers, which can be defined by the generating function

(3.2)
t

et − 1
=

∞∑
n=0

Bn
tn

n!
(|t| < 2π).

The first few Bernoulli numbers are B0 = 1, B1 = − 1
2 , B2 = 1

6 , and B2k+1 = 0 for
k ≥ 1. The Bernoulli polynomials can be defined by the generating function

(3.3)
text

et − 1
=

∞∑
n=0

Bn(x)
tn

n!
(|t| < 2π).

Clearly, Bn(0) = Bn for all n ≥ 1. For properties of Bernoulli numbers and
polynomials see, e.g., [16, Ch. 24].
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Proof of Theorem 3.1. We set r1 = · · · = rn = t and replace this common variable
by s− ν, where ν ≥ 0 is an arbitrary integer. Then (2.7) simplifies to

Γ(s− ν)ωn+1(s− ν) =
∑

m1,...,mn≥1

Γ(s− ν, (m1 + · · ·+mn)θ)

(m1 · · ·mn(m1 + · · ·+mn))s−ν
(3.4)

+

n∑
k=1

(
n

k

)
Γ(1− s+ ν)n−k

∑
u1,...,uk≥0

 k∏
j=1

(−1)ujζ(s− ν − uj)
uj !

 θw

w

+ Γ(1− s+ ν)n
θw

w
,

where w = u1 + · · ·+ uk + (n− k + 1)(s− ν)− (n− k), and the final term on the
right is once again considered to be the case k = 0.

Now w is a multiple of s exactly when

(3.5) u1 + · · ·+ uk = (ν + 1)(n− k) + ν,

in which case w = (n− k + 1)s. We also use the well-known evaluation

(3.6) ζ(−µ) = (−1)µ
Bµ+1

µ+ 1
(µ = 0, 1, 2, . . .),

where Bk is the kth Bernoulli number defined in (3.2). Therefore, if we multiply
both sides of (3.4) by s and let s → 0, then all terms on the right of (3.4) vanish,
with the exception of

Rn(ν) :=

n∑
k=1

(
n

k

)
ν!n−k

∗∑
u1,...,uk≥0

(−1)ν

n− k + 1

k∏
j=1

Bν+1+uj

uj !(ν + 1 + uj)
,

where
∑∗

indicates that the sum is taken over all u1, . . . , uk ≥ 0 that satisfy (3.5).
Next, it is easy to verify that(

n

k

)
1

n− k + 1
=

1

n+ 1

(
n+ 1

k

)
,

so that

(3.7) Rn(ν) =
(−1)ν

n+ 1

n∑
k=1

(
n+ 1

k

)
ν!n−k

∗∑
u1,...,uk≥0

k∏
j=1

Bν+1+uj

uj !(ν + 1 + uj)
.

On the other hand, it is a well-known property of the gamma function that for
integers ν ≥ 0,

lim
s→0

sΓ(s− ν) =
(−1)ν

ν!
,

so that the left-hand side of (3.4) becomes

(3.8) lim
s→0

sΓ(s− ν)ωn+1(s− ν) =
(−1)ν

ν!
ωn+1(−ν).

Returning to (3.7), we first consider the case ν = 0 and note that the condition
(3.5) simplifies to u1 + · · ·+ uk = n− k. Shifting summation in the k-fold sum on
the right of (3.7) gives

(3.9) Rn(0) =
1

n+ 1

n∑
k=1

(
n+ 1

k

) ∑
u1,...,uk≥1
u1+···+uk=n

k∏
j=1

Buj

uj !
.
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The sum on the right of (3.9) has been evaluated in [5] as (−1)n; this and (3.8)
lead to the first identity in (3.1).

When ν ≥ 1, the situation is somewhat different, and as a consequence of another
result on Bernoulli polynomials [6], we obtain from (3.7) that Rn(ν) = 0. This,
together with (3.8), proves the second identity in (3.1). �

Remark. When ν is odd, then by (3.5) at least one uj must be odd, so at least
one subscript ν + 1 + uj is odd and is at least 3. This means that all products on
the right of (3.7) vanish, and thus Rn(ν) = 0. Therefore the results in [6] are only
needed where ν is even.

4. Proof of Theorem 1.1

1. The main tool for proving Theorem 1.1 is Theorem 2.3, in the special case

Γ(s)ωn+1(s) =
∑

m1,...,mn≥1

Γ(s, (m1 + · · ·+mn)θ)

(m1 · · ·mn(m1 + · · ·+mn))s
(4.1)

+

n∑
k=1

(
n

k

)
Γ(1− s)n−k

∑
u1,...,uk≥0

 k∏
j=1

(−1)ujζ(s− uj)
uj !

 θw

w

+ Γ(1− s)n θ(n+1)s−n

(n+ 1)s− n
,

where w = u1 + · · ·+ uk + (n− k + 1)s− (n− k); this identity is the same as (3.4)
with ν = 0.

We follow the same strategy as in [3], namely multiplying both sides of (4.1) by
s, followed by taking the derivative of both sides with respect to s, at s = 0. For
greater transparency of the proof, we introduce the following notation:

A(s): the left-hand side of (4.1);
B(s): the first term on the right of (4.1);
C(s): the sum of all those terms in the second line of (4.1) that have a pole at

s = 0;
D(s): the sum of all other terms in the second and third lines of (4.1).

2. We begin with A(s), the easiest term to deal with. We require the first few
terms of the Laurent expansion of the Gamma function about the origin, which can
be written as

(4.2) sΓ(s) = 1− γs+O(s2),

where γ is the Euler-Mascheroni constant. We then have

d

ds
[sA(s)]s=0 =

d

ds
[sΓ(s)ωn+1(s)]s=0

= ω′n+1(0) · lim
s→0

(sΓ(s)) +
d

ds
[sΓ(s)]s=0 · ωn+1(0),

and using (4.2) twice, as well as (3.1), we get

(4.3)
d

ds
[sA(s)]s=0 = ω′n+1(0) + (−1)n+1 γ

n+ 1
.
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3. To deal with the term B(s), we first note that

(4.4)
d

ds
[sB(s)]s=0 = sB′(s)|s=0 + B(s)|s=0 = B(0).

With this in mind, we state and prove the following lemma.

Lemma 4.1. For any θ > 0 we have

(4.5)
∑

m1,...,mn≥1

Γ(0, (m1 + · · ·+mn)θ) =

∫ ∞
1

du

(eθu − 1)nu
.

Proof. We use the identity

(4.6) Γ(0, x) = E1(x) =

∫ ∞
x

e−t

t
dt (x > 0),

where E1(x) is the exponential integral; see, e.g., (6.2.1) and (6.11.1) in [16]. Setting
x = (m1 + · · ·+mn)θ and then making the substitution t = (m1 + · · ·+mn)θu in
the integral on the right of (4.6), we get

Γ(0, (m1 + · · ·+mn)θ) =

∫ ∞
1

e−(m1+···+mn)θu
du

u
,

which after interchanging summation and integration yields

(4.7)
∑

m1,...,mn≥1

Γ(0, (m1 + · · ·+mn)θ) =

∫ ∞
1

 ∑
m1,...,mn≥1

e−(m1+···+mn)θu

 du

u
.

Now, since ∑
m1,...,mn≥1

e−(m1+···+mn)θu =

n∏
j=1

∑
mj≥1

e−mjθu

=

(
e−θu

1− e−θu

)n
=

1

(eθu − 1)n
,

the identity (4.7) now gives (4.5). �

With (4.4) and (4.5) we therefore get

(4.8)
d

ds
[sB(s)]s=0 =

∫ ∞
1

du

(eθu − 1)nu
.

4. To determine the summands that make up C(s), we consider

w = u1 + · · ·+ uk + (n− k + 1)s− (n− k)

(see (4.1)) and note that w is a multiple of s if and only if

(4.9) u1 + · · ·+ uk = n− k (1 ≤ k ≤ n);

in this case w = (n − k + 1)s, thus giving the desired pole at s = 0. We then get
from the second row of (4.1),

(4.10) sC(s) =

n∑
k=1

(
n

k

)
Γ(1− s)n−k (−1)n−k

n− k + 1
θ(n−k+1)s

∑∗ k∏
j=1

ζ(s− uj)
uj !

,
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where
∑∗

indicates summation over all nonnegative u1, . . . , uk satisfying the con-
dition (4.9). We now consider the terms

(4.11) Ck(s) := Γ(1− s)n−kθ(n−k+1)s
k∏
j=1

ζ(s− uj),

so that

(4.12) sC(s) =

n∑
k=1

(
n

k

)
(−1)n−k

n− k + 1

∑∗

 k∏
j=1

1

uj !

Ck(s).

Our goal now is to find the derivative of sC(s) at s = 0, which means evaluating
C ′k(0) for k = 1, 2, . . . , n. We begin with k = n. In this case we have uj = 0 for all
j = 1, . . . , n, by (4.9). Then by (4.11) we get

C ′n(0) =
d

ds
[θsζ(s)n]s=0

=
[
θsnζ(s)n−1ζ ′(s) + θs log(θ)ζ(s)n

]
s=0

= ζ(0)n−1 [nζ ′(0) + log(θ)ζ(0)] ,

and with (1.8) and the well-known evaluation ζ(0) = −1/2 we get

(4.13) C ′n(0) = (− 1
2 )n(n · log(2π) + log(θ)).

When 1 ≤ k ≤ n− 1, then by (4.11) we get

C ′k(0) =

(n− k)Γ(1− s)n−k−1(−Γ′(1− s))θ(n−k+1)s
k∏
j=1

ζ(s− uj)


s=0

+

Γ(1− s)n−kθ(n−k+1)s(n− k + 1) log θ

k∏
j=1

ζ(s− uj)


s=0

+

Γ(1− s)n−kθ(n−k+1)s
k∑
`=1

 k∏
j=1

ζ(s− uj)
ζ ′(s− u`)
ζ(s− u`)


s=0

,

and thus, using Γ′(1) = −γ (see, e.g., (5.4.11) in [16]), we have

C ′k(0) =
(
(n− k)γ + (n− k + 1) log θ

) k∏
j=1

ζ(−uj)(4.14)

+

k∑
j=1

ζ(−u1) · · · ζ ′(−uj) · · · ζ(−uk),

recalling that u1, . . . , uk are subject to (4.9). If in (4.14) we set k = n, then
u1 = · · · = un = 0, and the right-hand side of (4.14) reduces to

(log θ)ζ(0)n + nζ ′(0)ζ(0)n−1 = (− 1
2 )n(log θ + n log(2π)),

where we have used the fact that ζ(0) = −1/2 and also the first identity in (1.8).
But this means that (4.14) holds for all k, 1 ≤ k ≤ n. Before we substitute this
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into (4.12), we apply (3.6) to get

(4.15)

( k∏
j=1

1

uj !

)( k∏
j=1

ζ(−uj)
)

= (−1)n−k
k∏
j=1

Buj+1

(uj + 1)!
,

where we have used (4.9) to obtain the power of −1. Similarly,( k∏
j=1

1

uj !

)( k∑
j=1

ζ(−u1) · · · ζ ′(−uj) · · · ζ(−uk)

)
(4.16)

= (−1)n−k
k∑
j=1

Bu1+1

(u1 + 1)!
· · · (−1)ujζ ′(−uj)

uj !
· · · Buk+1

(uk + 1)!
.

Combining (4.15) and (4.16) with (4.14) and (4.12), we then get

d

ds
[sC(s)]s=0 =

n∑
k=1

(
n
k

)
n− k + 1

∑∗
{(

(n− k)γ + (n− k + 1) log θ
) k∏
j=1

Buj+1

(uj + 1)!

(4.17)

+

k∑
j=1

Bu1+1

(u1 + 1)!
· · · (−1)ujζ ′(−uj)

uj !
· · · Buk+1

(uk + 1)!

}
,

where
∑∗

indicates the same summation as in (4.10). We’ll return to (4.17) later.

5. Finally, to deal with the derivative of sD(s) at s = 0, we note that, just as
in (4.4), we only need to evaluate D(0). With (4.1) and (3.6) we get

(4.18) D(0) =

n∑
k=1

(
n

k

) ∑
u1,...,uk≥0

( k∏
j=1

Buj+1

(uj + 1)!

)
θλ−n

λ− n
+
θ−n

−n
,

where λ := u1 + · · · + uk + k. Keeping in mind that eventually we wish to take
the limit as θ → 0, we disregard the cases where λ ≥ n and denote the remaining
sum by D(0); also note that λ = n is equivalent to (4.9), so this case has already
been dealt with. Now, collecting the terms in (4.18) that belong to a fixed λ,
1 ≤ λ ≤ n− 1, we get

D(0) =

n−1∑
λ=1

( λ∑
k=1

(
n

k

) ∑
u1,...,uk≥0

u1+···+uk=λ−k

k∏
j=1

Buj+1

(uj + 1)!

)
θλ−n

λ− n
+
θ−n

−n
(4.19)

=

n−1∑
λ=1

( λ∑
k=1

(
n

k

) ∑
u1,...,uk≥1
u1+···+uk=λ

k∏
j=1

Buj

uj !

)
θλ−n

λ− n
+
θ−n

−n
.

In order to simplify this expression, we define for positive integer n and λ,

(4.20) S1(n, λ) :=

λ∑
k=1

(
n

k

) ∑
u1,...,uk≥1
u1+···+uk=λ

k∏
j=1

Buj

uj !
;
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this expression will also occur elsewhere in the proof of Theorem 1.1. The identity
(4.18), along with the fact that D(0) = D(0) +O(θ), can now be written as

(4.21)
d

ds
[sD(s)]s=0 = D(0) =

n−1∑
λ=1

S1(n, λ)
θλ−n

λ− n
+
θ−n

−n
+O(θ).

5. Evaluating the integral in Lemma 4.1

After the outline of the proof of Theorem 1.1 in the previous section, we now
need to further evaluate the expressions in (4.8), (4.17), and (4.21), and combine
them with the expression in (4.3). This will be done in this and the following
sections, beginning with the evaluation of the integral on the right of (4.8).

For the next lemma, and indeed for much of the remainder of this paper, we
require the Bernoulli polynomials of order n, defined by the generating function

(5.1)

(
t

et − 1

)n
etx =

∞∑
j=0

B
(n)
j (x)

tj

j!
(|t| < 2π).

Although this definition makes sense for a wider class of n, here we will restrict n
to positive integers. For n = 1, the identity (5.1) is the generating function of the

ordinary Bernoulli polynomials, and thus B
(1)
j (x) = B(x); see (3.3). The Bernoulli

numbers of order n are defined by B
(n)
j = B

(n)
j (0). Later in this section we also

require the harmonic numbers

(5.2) Hn :=

n∑
j=1

1

j
(n ≥ 1).

We now evaluate the integral on the right of (4.8) through a succession of lemmas.

Lemma 5.1. Let 0 < R < 2π be fixed. Then for 0 < θ ≤ R we have∫ ∞
1

du

(eθu − 1)nu
=

∞∑
j=n+1

B
(n)
j

j!(j − n)
+

∫ ∞
1

dt

t(et − 1)n
(5.3)

+

n−1∑
j=0

B
(n)
j

j!

1− θj−n

j − n
− B

(n)
n

n!
log θ +O(θ).

Proof. We denote the integral on the left by I and begin by making the substitution
t = θu, and then split I into two parts:

(5.4) I =

∫ ∞
θ

dt

t(et − 1)n
=

∫ 1

θ

1

tn+1

(
t

et − 1

)n
dt+

∫ ∞
1

dt

t(et − 1)n
.

We denote the first integral on the right by I1(θ) and use (5.1) with x = 0 to
obtain

I1(θ) =

∫ 1

θ

(
1

tn+1

∞∑
j=0

B
(n)
j

tj

j!

)
dt

(5.5)

=

n−1∑
j=0

B
(n)
j

j!

1− θj−n

j − n
− B

(n)
n

n!
log θ +

∞∑
j=n+1

B
(n)
j

j!(j − n)
−

∞∑
j=n+1

B
(n)
j

j!(j − n)
θj−n,
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where we have interchanged the order of the infinite series and the integral (this is
allowed since the series is absolutely and uniformly convergent for |t| ≤ R < 2π),
and then integrated tj−n−1. Finally we slightly rewrite the last term on the right
of (5.5), and obtain

(5.6) θ

∞∑
j=n+1

B
(n)
j

j!(j − n)
θj−n−1 = O(θ),

since the series in (5.6) is bounded whenever |θ| ≤ R < 2π, by (5.1). The desired
identity (5.3) now follows immediately from (5.4), (5.5), and (5.6). �

Our next goal is to obtain an expression for the first two terms on the right of
(5.3). To do so, we evaluate the integral

(5.7) I
(n)
2 :=

∫ ∞
0

(
et

(et − 1)n
−

n∑
j=0

B
(n)
j (1)

tj−n

j!

)
dt

tet
(n ≥ 1)

in two different ways. But first we need to evaluate an auxiliary integral.

Lemma 5.2. For a positive integer n and for α ∈ C \ {n} with Re(α) > n− 1 we
have

(5.8)

∫ ∞
0

tα−1

(et − 1)n
dt =

Γ(α)

(n− 1)!

n∑
j=1

s(n, j)ζ(α+ 1− j).

Proof. Let I(α) be the integral in (5.8). As a special case of the identity 2.3.12.1
in [20, p. 333] we obtain

I(α) =
Γ(α)

(n− 1)!

∞∑
k=0

(k + 1)n−1
(k + n)α

.

We now multiply numerator and denominator on the right by k + n and note that
(k + 1)n−1(k + n) = (k + 1)n. Shifting the summation by n we then get

I(α) =
Γ(α)

(n− 1)!

∞∑
k=1

(k − n+ 1)n
kα+1

,

noting that the terms for k = 1, 2, . . . , n−1 vanish. Finally we use (1.7) with x = k,
obtaining

I(α) =
Γ(α)

(n− 1)!

∞∑
k=1

n∑
j=1

s(n, j)
kj

kα+1
=

Γ(α)

(n− 1)!

n∑
j=1

s(n, j)

∞∑
k=1

1

kα+1−j ,

where we have used the fact that s(n, 0) = 0 for all n ≥ 1. This completes the proof
of (5.8). �

The first evaluation of the integral I
(n)
2 in (5.7) is now given by the following

lemma.

Lemma 5.3. For any integer n ≥ 1 we have

(5.9) I
(n)
2 =

n∑
j=1

s(n, j)

(n− 1)!
ζ ′(1− j)− 1

n!

n−2∑
j=1

(−1)n−j
(
n

j

)
B

(n)
j (1)Hn−j .
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Proof. Introducing a parameter α in (5.7), we define

(5.10) I
(n)
2 (α) :=

∫ ∞
0

(
et

(et − 1)n
−

n∑
j=0

B
(n)
j (1)

tj−n

j!

)
tα−1

et
dt.

Splitting the integral and using Lemma 5.2 as well as Euler’s integral (2.4), we get

I
(n)
2 (α) =

∫ ∞
0

tα−1

(et − 1)n
dt−

n∑
j=0

B
(n)
j (1)

j!

∫ ∞
0

tα+j−n−1e−tdt

=
Γ(α)

(n− 1)!

n∑
j=1

s(n, j)ζ(α+ 1− j)−
n∑
j=0

B
(n)
j (1)

j!
Γ(α+ j − n).

Since Γ(α) = (α − 1)(α − 2) · · · (α + j − n)Γ(α + j − n), we can rewrite this last
identity as
(5.11)

I
(n)
2 (α) = αΓ(α)

( n∑
j=0

s(n, j)

(n− 1)!

ζ(α+ 1− j)
α

− 1

α

n∑
j=1

B
(n)
j (1)

j!(α− 1) · · · (α+ j − n)

)
.

We denote the two sums in (5.11) by S1 and S2, respectively, and consider them
separately. First, we have

(5.12) S1 =

n∑
j=0

s(n, j)

(n− 1)!
· ζ(α+ 1− j)− ζ(1− j)

α
+

1

α

n∑
j=1

s(n, j)

(n− 1)!
ζ(1− j).

Next, for reasons that will soon become apparent, we write

(5.13)
−1

(α− 1) · · · (α+ j − n)
=

(
(−1)n−j

(n− j)!
− 1

(α− 1) · · · (α+ j − n)

)
− (−1)n−j

(n− j)!
,

so that

−S2

α
=

n∑
j=1

1

α

(
(−1)n−j

(n− j)!
− 1

(α− 1) · · · (α+ j − n)

)
B

(n)
j (1)

j!
(5.14)

− 1

αn!

n∑
j=0

(−1)n−j
(
n

j

)
B

(n)
j (1).

Now we use the known identity

n∑
j=0

(−1)j
(
n

j

)
ajB

(m)
j (x) = (−a)nB(m)

n (x− 1
a )

(see identity (50.8.15) in [9, p. 340]) and set a = 1 and x = 1. Then we get

(5.15)

n∑
j=0

(−1)n−j
(
n

j

)
B

(m)
j (1) = B(m)

n (0) = B(m)
n ,

which is also known as the nth Nörlund number.
To deal with the second term in (5.12), we use the known identity

B(k)
n = k

(
n

k

) k−1∑
r=0

(−1)k−1−rs(k, k − r)Bn−r
n− r

,
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where Bn−r is an ordinary Bernoulli number; see [14, p. 148]. Setting k = n and
changing the order of summation, we get

B(n)
n = n

n∑
j=1

(−1)j−1s(n, j)
Bj
j
.

Then with (3.6) we get

(5.16)

n∑
j=1

s(n, j)

(n− 1)!
ζ(1− j) =

1

(n− 1)!

n∑
j=1

s(n, j)(−1)j−1
Bj
j

=
1

n!
B(n)
n .

With (5.15) and (5.16) we now see that the second terms in (5.12) and (5.14) cancel,
which means that we may take the limit as α → 0. In doing so, we first note that
αΓ(α) → 1 by (4.2). Next, the first term in (5.12) converges to the first term in
(5.9). Finally, a well-known limit for the harmonic number Hm is given by

lim
α→0

1

α

(
1− m!

(α+ 1)(α+ 2) · · · (α+m)

)
= Hm;

see, e.g., [8, p. 281f.]. Replacing α by −α and then multiplying both sides by
(−1)m+1/m!, we get

lim
α→0

1

α

(
(−1)m

m!
− 1

(α− 1)(α− 2) · · · (α−m)

)
= − (−1)m

m!
Hm.

With this, the first term on the right of (5.14) becomes, as α→ 0,

−
n∑
j=1

(−1)n−j
Hn−j

(n− j)!
B

(n)
j (1)

j!
.

But this is the second term in (5.9) if we note that H0 = 0 and B
(n)
n−1(1) = 0, where

this last identity follows from B
(n)
n−1(x) = (x − 1)(x − 2) · · · (x − n + 1) for n ≥ 2;

see, e.g., [14, Ch. 6]. The proof of Lemma 5.3 is now complete. �

For the second evaluation of the integral I
(n)
2 , we first need to evaluate a certain

integral and an infinite series. It turns out that both can be written in terms of
the exponential integral defined in (4.6). We also require the alternating sum of
consecutive factorials, given by

(5.17) bn :=

n∑
j=0

(−1)j(n− j)! (n ≥ 0),

which satisfies the simple recurrence relation b0 = 1 and for n ≥ 1,

(5.18) bn = n!− bn−1.

The first few terms, starting with b0, are 1, 0, 2, 4, 20, 100, 620, . . .; see A058006
and A153229 in [15]. It will be convenient to also set b−1 = 0, which is consistent
with (5.17) and (5.18).

Lemma 5.4. For any integer k ≥ 1 we have

(5.19)

∫ ∞
1

e−x

xk
dx =

1

(k − 1)!

(
e−1bk−2 − (−1)kE1(1)

)
.
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Proof. We use induction on k. The base case k = 1 is just (4.6). Now we denote
the integral in (5.19) by Jk and use integration by parts, which gives

Jk = lim
t→∞

[
−e
−x

xk

]t
1

− k
∫ ∞
1

e−x

xk+1
dx = e−1 − kJk+1.

Assuming that (5.19) holds for some k ≥ 1, we then have

Jk+1 =
1

ke
− 1

k
Jk

=
1

ke
− 1

k!

(
1

e
bk−2 − (−1)kE1(1)

)
=

1

k!

(
1

e

(
(k − 1)!− bk−2

)
− (−1)k+1E1(1)

)
.

Using (5.18) with n = k − 1, we see that (5.19) holds for k + 1, and the proof is
complete. �

We will now see that the sequence (bk) and the exponential integral E1(1) also
occur in the following evaluation.

Lemma 5.5. For any integer m ≥ 0 we have

∞∑
j=m+1

(−1)j

j!(j −m)
=

(−1)m

m!

(
Hm − γ − E1(1) +

(−1)m−1

e
bm−1

)
(5.20)

+

m−1∑
j=0

(−1)j

j!(m− j)
.

Proof. This identity is related to the incomplete Gamma function. In fact, the
identity (8.4.15) in [16], with z = 1, gives

(5.21)
(−1)m

m!

(
E1(1)− 1

e

m−1∑
j=0

(−1)jj!

)
=

(−1)m

m!
ψ(m+ 1)−

∞∑
j=0
j 6=m

(−1)j

j!(j −m)
,

where ψ(z) = Γ′(z)/Γ(z) (z 6= 0,−1,−2, . . .) is the digamma (or psi) function.
Using the identity

ψ(m+ 1) = Hm − γ
(see, e.g., [16, 5.4.140]) as well as (5.17), the identity (5.21) can easily be rewritten
in the form (5.20). �

For greater ease of notation, we denote the final term on the right of (5.20) by
dm, that is,

(5.22) dm :=

m−1∑
j=0

(−1)j

j!(m− j)
.

The sequence (m!dm) can be found as entry A002741 in [15], where the generating
function is given as

(5.23) − log(1− x)

ex
=

∞∑
k=0

dkx
k (|x| < 1).
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This is in fact easy to see since the Cauchy product of the series for − log(1 − x)
and for e−x immediately gives the sum in (5.22).

We are now ready to state and prove the second evaluation of the integral I
(n)
2

defined in (5.7).

Lemma 5.6. For any integer n ≥ 1 we have

I
(n)
2 =

∞∑
k=n+1

B
(n)
k

k!(k − n)
+

∫ ∞
1

dt

t(et − 1)n
+ γ

B
(n)
n

n!
(5.24)

− 1

n!

n−2∑
j=0

(−1)n−j
(
n

j

)
B

(n)
j (1)Hn−j +

n−1∑
j=0

B
(n)
j

j!(j − n)
.

Proof. We split the defining integral in (5.7) into two parts. The easier second part
is the integral from 1 to ∞, which can be rewritten as∫ ∞

1

dt

t(et − 1)n
−

n∑
j=0

B
(n)
j (1)

j!

∫ ∞
1

e−t

tn+1−j dt(5.25)

=

∫ ∞
1

dt

t(et − 1)n
−

n∑
j=0

B
(n)
j (1)

j!
· 1

(n− j)!

(
1

e
bn−j−1 + (−1)n−jE1(1)

)

=

∫ ∞
1

dt

t(et − 1)n
− e−1

n!

n−1∑
j=0

(
n

j

)
B

(n)
j (1)bn−j−1 − E1(1)

B
(n)
n

n!
,

where we have used Lemma 5.4 and the identity (5.15).
To deal with the first part of the integral in (5.7), i.e., the integral from 0 to 1,

we begin by rewriting the integrand as

(5.26)

((
t

et − 1

)n
− e−t

n∑
j=0

B
(n)
j (1)

tj

j!

)
t−n−1.

First we note that by (5.1) we can write

(5.27)

(
t

et − 1

)n
= e−t

(
t

et − 1

)n
et = e−t

∞∑
j=0

B
(n)
j (1)

tj

j!
.

Then, with the convention that
(
k
j

)
= 0 when j > k, we have the Cauchy product

e−t
n∑
j=0

B
(n)
j (1)

tj

j!
=

( ∞∑
j=0

(−1)j
tj

j!

)( n∑
j=0

B
(n)
j (1)

tj

j!

)

=

∞∑
k=0

( n∑
j=0

(−1)k−j
(
k

j

)
B

(n)
j (1)

)
tk

k!
.

This, together with (5.27) and (5.15) means, first of all, that the expression in large
parentheses in (5.26) is e−tO(tn+1), and thus the integral from 0 to 1 converges. It
also means that the first part of the integral in (5.7), i.e., the integral from 0 to 1,
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is ∫ 1

0

((
t

et − 1

)n
− e−t

n∑
j=0

B
(n)
j (1)

tj

j!

)
t−n−1dt(5.28)

=

∫ 1

0

 ∞∑
k=n+1

B(n)
k − (−1)k

n∑
j=0

(−1)j
(
k

j

)
B

(n)
j (1)

 tk−n−1

k!

 dt

=

∞∑
k=n+1

B
(n)
k

k!(k − n)
−

n∑
j=0

(−1)j
B

(n)
j (1)

j!

∞∑
k=n+1

(−1)k

(k − j)!(k − n)
,

where we have interchanged the integral and the infinite series, which is allowed in
this case. Now we rewrite the second series in the last line of (5.28) as

∞∑
k=n+1

(−1)k

(k − j)!(k − n)
= (−1)j

∞∑
k=n+1−j

(−1)k

k!(k + j − n)
= (−1)j

∞∑
k=m+1

(−1)k

k!(k −m)
,

where we have set m = n−j. With (5.20), the second term in the last line of (5.28)
now becomes

−
n∑
j=0

B
(n)
j (1)

j!
· (−1)n−j

(n− j)!

(
Hn−j − γ − E1(1) +

(−1)n−j−1

e
bn−j−1

)
(5.29)

−
n∑
j=0

B
(n)
j (1)

j!
dn−j ,

where bn and dn are defined by (5.17) and (5.22), respectively.
To deal with the final sum in (5.29), we note that by (5.23) and (5.1) with x = 1,

the generating function of this sum, seen as a convolution, is

F (t) := − log(1− t)
et

(
t

et − 1

)n
et.

We can rewrite this as a different convolution, namely

F (t) = − log(1− t)
(

t

et − 1

)n
=

( ∞∑
j=1

tj

j

)( ∞∑
j=0

B
(n)
j

tj

j!

)

=

∞∑
n=1

( n−1∑
j=0

B
(n)
j

(n− j)j!

)
tn.

Equating coefficients of like powers of t, we then get

n∑
j=0

B
(n)
j (1)

j!
dn−j =

n−1∑
j=0

B
(n)
j

j!(n− j)
.
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Substituting this into (5.29), and then (5.29) into (5.28), we see that the first part
of the integral I2(n) of (5.7) is

∞∑
k=n+1

B
(n)
k

k!(k − n)
−

n∑
j=0

B
(n)
j (1)

j!

(−1)n−j

(n− j)!

(
Hn−j − γ − E1(1) +

(−1)n−j−1

e
bn−j−1

)

+

n−1∑
j=0

B
(n)
j

j!(j − n)
.

Using (5.15) with m = n, this expression becomes

∞∑
k=n+1

B
(n)
k

k!(k − n)
− 1

n!

n−2∑
j=0

(−1)n−j
(
n

j

)
B

(n)
j (1)Hn−j(5.30)

+
γ + E1(1)

n!
B(n)
n − e−1

n!

n−1∑
j=0

(
n

j

)
B

(n)
j (1)bn−j−1 +

n−1∑
j=0

B
(n)
j

j!(j − n)
,

The second sum in (5.30) may be taken from 0 to n−2 since H0 = 0 by convention,

and B
(n)
n−1(1) = 0. Similarly, the second-last sum in (5.30) may be taken from 0 to

n− 1 since b−1 = 0 by convention.
If we now add (5.25) and (5.30), we see that a few terms cancel, and the remaining

terms give (5.24). This completes the proof of Lemma 5.6. �

Finally, to obtain the desired evaluation of the integral on the right of (4.8),

we equate I
(n)
2 in (5.9) and (5.24) and note that the sums that contain Hn−j are

the same in both identities, and therefore cancel. We then combine the resulting
identity with (5.3), obtaining the following intermediate result.

Lemma 5.7. Let 0 < R < 2π be fixed. Then for 0 < θ ≤ R and for any integer
n ≥ 1 we have∫ ∞

1

du

(eθu − 1)nu
=

n∑
j=1

s(n, j)

(n− 1)!
ζ ′(1− j)− B

(n)
n

n!
(γ + log θ)(5.31)

−
n−1∑
j=0

B
(n)
j

j!

θj−n

j − n
+O(θ).

6. Evaluating the derivatives of sC(s) and sD(s)

We begin by evaluating the sum S1(n, λ) defined in (4.20). This will be required
a few times in this section.

Lemma 6.1. For all integers 1 ≤ λ < n we have

(6.1) S1(n, λ) =
1

λ!
B

(n)
λ =

(n− 1− λ)!

(n− 1)!
s(n, n− λ).

Proof. In [6] it was shown that

(6.2)

λ∑
k=1

(
n

k

) ∑
u1,...,uk≥1
u1+···+uk=λ

(
λ

u1, . . . , uk

)
Bu1

(x) · · ·Buk
(x) = B

(n)
λ (nx).
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First we set x = 0, obtaining the analogue of (6.2) for Bernoulli numbers. Dividing
both sides of (6.2) by λ! and comparing this with (4.20), we get the first equation
in (6.1). The second equation follows from the identity

(6.3) B
(n)
λ =

s(n, n− λ)(
n−1
λ

) ;

see Theorem 2.2 in [12]. �

Remark. In the case n = λ+ 1, we note that

(6.4) B
(λ+1)
λ = (−1)λλ!

(see, e.g., [11, p. 130]); therefore the right-hand side of (6.1) becomes (−1)λ, while
the left-hand side is the sum in (3.9), with n in place of λ. Thus the evaluation of
Rn(0) in (3.9) is just a special case of Lemma 6.1.

Next we use Lemma 6.1 to evaluate the expression in (4.17).

Lemma 6.2. Let C(s) be as defined at the beginning of Section 4. Then

d

ds
[sC(s)]s=0 =

B
(n)
n

n!
(γ + log θ) + (−1)n+1 γ

n+ 1
(6.5)

+
1

(n− 1)!

n−1∑
j=0

(−1)js(n, j + 1)ζ ′(−j).

Proof. It is easy to verify that(
n

k

)
n− k

n− k + 1
=

(
n

k

)
− 1

n+ 1

(
n+ 1

k

)
.

Hence with (4.17), (4.20) and (6.1) we get

d

ds
[sC(s)]s=0 =

(
B

(n)
n

n!
− 1

n+ 1
· B

(n+1)
n

n!

)
γ +

B
(n)
n

n!
log θ(6.6)

+

n∑
k=1

(
n
k

)
n− k + 1

∑∗ k∑
j=1

Bu1+1

(u1 + 1)!
· · · (−1)ujζ ′(−uj)

uj !
· · · Buk+1

(uk + 1)!
,

where
∑∗

indicates the same summation as in (4.10). Using (6.4), we see that the
first term on the right of (6.6) give the first terms on the right of (6.5). It now
remains to evaluate the multiple sum in the second line of (6.6), which we denote
by Sn.

Using symmetry in the indices uj , and using the identity

k

n− k + 1

(
n

k

)
=

(
n

k − 1

)
,
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we rewrite Sn as

Sn =

n∑
k=1

k
(
n
k

)
n− k + 1

∑
u1+···+uk=n−k
u1,...,uk≥0

Bu1+1

(u1 + 1)!
· · ·

Buk−1+1

(uk−1 + 1)!
(−1)uk

ζ ′(−uk)

uk!

=

n∑
k=1

(
n

k − 1

) n−k∑
j=0

(−1)j
ζ ′(−j)
j!

∑
u1+···+uk−1=n−k−j

u1,...,uk−1≥0

Bu1+1

(u1 + 1)!
· · ·

Buk−1+1

(uk−1 + 1)!

=

n−1∑
j=0

(−1)j
ζ ′(−j)
j!

n−j∑
k=1

(
n

k − 1

) ∑
u1+···+uk−1=n−k−j

u1,...,uk−1≥0

k−1∏
i=1

Bui+1

(ui + 1)!
,

where we first renamed j = uk, and then changed the order of summation over j
and k. Next we shift the summations in the multiple sum, obtaining

Sn =

n−1∑
j=0

(−1)j
ζ ′(−j)
j!

n−j∑
k=1

(
n

k − 1

) ∑
u1+···+uk−1=n−1−j

u1,...,uk−1≥1

k−1∏
i=1

Bui

ui!

=

n−1∑
j=0

(−1)j
ζ ′(−j)
j!

n−1−j∑
k=0

(
n

k

) ∑
u1+···+uk=n−1−j

u1,...,uk≥1

k∏
i=1

Bui

ui!
.

Comparing this with (4.20) and noting that there is no contribution from k = 0,
we see that the sum over k is S1(n, n− 1− j). From (6.1) we therefore get

Sn =

n−1∑
j=0

(−1)j
ζ ′(−j)
j!

· j!

(n− 1)!
s(n, j + 1),

which completes the proof of Lemma 6.2. �

Lemma 6.1 can also be used to simplify the identity (4.21). In fact, we have

(6.7)
d

ds
[sD(s)]s=0 =

n−1∑
λ=0

B
(n)
λ

λ!
· θ

λ−n

λ− n
+O(θ).

For λ ≥ 1 this is clear from (6.1), while the term for λ = 0 follows from the fact

that B
(n)
0 = 1 for all n.

7. Completing the Proof of Theorem 1.1

Finally, to complete the proof of Theorem 1.1, it remains to combine the different
elements according to the beginning of Section 4, that is, to equate

(7.1)
d

ds
[sA(s)]s=0 =

d

ds
[sB(s)]s=0 +

d

ds
[sC(s)]s=0 +

d

ds
[sD(s)]s=0,

and then take the limit as θ → 0. These four terms were evaluated in (4.3), (5.31),
(6.5), and (6.7), respectively.

After substantial cancellations, especially of all terms that contain singularities
at θ = 0, the identity (7.1) reduces to

(7.2) ω′n+1(0) =
1

(n− 1)!

( n∑
j=1

s(n, j)ζ ′(1−j)+

n−1∑
j=0

(−1)js(n, j+1)ζ ′(−j)
)

+O(θ).
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As θ → 0, the O-term disappears, and by combining the two sums we obtain

(7.3) ω′n+1(0) =
2

(n− 1)!

bn−1
2 c∑
j=0

s(n, 2j + 1)ζ ′(−2j).

This completes the proof of Theorem 1.1 if we recall that by (1.7) we have ζ ′(0) =
− 1

2 log(2π), and also s(n, 1) = (−1)n−1(n− 1)!; see, e.g., [16, Sect. 26.8].

8. Further Remarks

In this section we briefly discuss K. Onoderas’s very recent and interesting paper
[19] and show that his main result contains our Theorem 1.1 as a special case. For
positive integers a, b, Onodera defined the multiple zeta function

(8.1) ζa,b(s) =
∑

k1,...,ka≥1,l1,...,lb≥1
k1+···+ka=l1+···+lb

1

(k1 · · · kal1 · · · lb)s
.

Note that ωn+1(s) = ζn,1(s). The main result in [19] is as follows.

Theorem 8.1 (Onodera). Let a and b be positive integers, and r = a+b−1. Then

ζa,b(0) =
(−1)r(
r+1
a

) ,(8.2)

ζ ′a,b(0) = (−1)a−1
2ab

r!

r∑
k=1
k odd

(
r

k

)
B

(r+1)
r−k (a)ζ ′(1− k).(8.3)

Here B
(n)
j (x) is the jth Bernoulli polynomial of order n, defined in (5.1). We

now set b = 1 and a = n in (8.3); then r = n. Using the well-known reflection
formula for higher-order Bernoulli polynomials (see, e.g., [11, p. 128]), followed by
another relevant identity (see [11, p. 129, (4)]), we have

(8.4) (−1)a−1B
(r+1)
r−k (a) = (−1)n−1B

(n+1)
n−k (n) = B

(n+1)
n−k (1) =

k

n
B

(n)
n−k.

By (6.3), higher-order Bernoulli numbers can be written in terms of Stirling num-
bers of the first kind. In particular we have, with (8.4) and (6.3),

(−1)a−1
(
r

k

)
B

(r+1)
r−k (a) =

(
n

k

)
k

n
· s(n, k)(

n−1
n−k
) = s(n, k).

With k = 2j + 1, we now see that (8.3) with b = 1 is the same as (1.6).
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