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Abstract

Knowledge of the compact open sets in the dual space of a locally compact group

can be used to study projections in the L1-algebra of the group. The wallpaper

groups are a class of almost abelian groups which arise as the symmetry groups of

wallpaper patterns. We characterize the compact open subsets in the dual space of

a wallpaper group G. This is achieved by associating to G a graph that captures the

stratified nature of the dual space. We show how this can by applied to the problem

of finding projections in L1(G) by constructing a novel projection in the L1-algebra

of the wallpaper group, p2.
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Chapter 1

Introduction

A projection is a self-adjoint idempotent. That is, it is an element in a ∗-algebra over

C that is equal to both its adjoint and its square. The study of projections, or more

generally, idempotents, in algebras has been a fruitful area of research in both pure and

applied mathematics. Projections can reveal structural information about an algebra.

For instance, the central minimal projections in a finite-dimensional C∗-algebra allow

a decomposition of the algebra into a direct sum of full matrix algebras. This is both

elegant and useful. As as example, a version of this decomposition is used in coding

theory for the construction of error-correcting codes [3]. More recently, projections

in L1(G), for certain locally compact groups G acting as affine transformations of Rn,

were found to be closely connected to functions in L2(Rn) that generate tight frames

[21]. A tight frame in L2(Rn) is a countable set of functions T ⊆ L2(Rn) such that

for f ∈ L2(Rn), f =
∑

w∈T 〈f, w〉f . To form such a group, fix A a n× n matrix over

R and let GA be the group of affine transformations GA = {[k, x] : k ∈ Z, x ∈ Rn}

defined by, for z ∈ Rn, [k, x]z = Ak(x + z). If all of the eigenvalues of A have abso-

lute value greater than 1 then there exists a “projection generating function” which

gives rise to both a projection in L1(G) and to a tight frame in L2(Rn). Specifically,

there is a function ξ ∈ L2(R̂n) ∩ A(R̂n) such that defining w as the inverse Fourier

transform of ξ, the set {ρ[k, x]w : k ∈ Z, x ∈ Rn} is a tight frame. Here, ρ is the

natural representation of the group GA on L2(Rn). The space L2(Rn) is important in

applications as it corresponds to signals (functions on Rn) with finite energy. These

include acoustic and electric signals whose domain is continuous time or magnetic
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signals whose domain is 3-space. Tight frames in L2(Rn) are useful for encoding such

signals and are often employed in analysis, compression and other signal processing

[17].

In finite-dimensional C∗-algebras, projections can be explicitly calculated using the

decomposition theorem (discussed in Chapter 3). For the L1 algebra of a finite group,

the form of projections has also been completely described. This is usually not the

case for the L1 algebra of a general group. Here, finding projections is a non-trivial

problem. In a slightly more general setting, the group ring over the complex field,

Kaplansky conjectured that if the group is torsion-free then there are no non-trivial

projections 4 [16]. While numerous supporting examples have been identified, the

conjecture remains an open problem. Projections may be difficult to characterize in

general, but one indicator of their presence or absence in the L1 or C∗ algebra of

a group G is the collection of compact open sets in the dual space of G. The dual

space of a locally compact group G is a, not-necessarily Hausdorff, topological space

denoted by Ĝ. Dixmier [9] showed that every projection has an associated compact

open set in Ĝ. For some groups, every compact open set in Ĝ has an associated

projection. For this reason, understanding the compact open sets in Ĝ is a useful tool

in understanding projections in L1(G).

We also will focus on algebras that come from a group. The �1-algebra of a dis-

crete group G consists of complex-valued functions on the group that are absolutely

summable. If G is countable, one can think of these functions as sequences indexed by

the group. Projections in �1(G) have been characterized both when G is abelian and

when G is finite. It leads one to wonder what projections look like in �1(G) when G is

almost abelian. Consider the case where G is a group that has a normal abelian sub-

group whose index in G is finite. Such a group decomposes into finitely many cosets of

an abelian group. We will narrow in on a certain collection of almost abelian groups:

the wallpaper groups. These are the 2-dimensional crystallographic groups, or, the

symmetry groups of wallpaper patterns on the plane. Wallpaper groups are simple to
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describe and yet have diverse, topologically interesting dual spaces. They also have

the advantage of possessing visual representations, both the groups themselves and

their dual spaces.

This paper aims to describe the compact open subsets in the dual space of a wallpaper

group G as a preliminary step to characterizing projections in �1(G). We will describe

the topology of Ĝ using explicit calculations of the group C∗-algebra and applying the

representation theory of C∗-bundles. Finally, we obtain a complete characterization

of the compact open subsets of Ĝ by associating Ĝ with a certain kind of graph. As an

application of our description of the compact open subsets of the dual, we construct

a novel projection in �1(p2), where p2 is one of the simplest wallpaper groups.

1.1 Background and Notation

This section provides background on projections in �1(G), including known results

about the form of projections in certain algebras. We define the L1 algebra and

group C∗-algebras of a topological group, dual spaces, the hull-kernel topology on

dual spaces, and revisit the definition of a projection.

1.1.1 Basic Definitions

Definition 1. A *-algebra is an algebra A over C equipped with an operation * which

satisfies the following conditions. For a, b ∈ A and λ ∈ C:

(i) A∗∗ = A

(ii) (λA+B)∗ = λA∗ +B∗

(iii) (AB)∗ = B∗A∗

The adjoint of an element A ∈ A is defined to be its image under the ∗ operation,

that is, A∗. A Banach *-algebra is a normed *-algebra A that is complete and satisfies

‖AB‖ ≤ ‖A‖‖B‖ for all A, B ∈ A.

3



Definition 2. A C∗-algebra is a Banach *-algebra with the additional property that

for any A ∈ A, ‖A∗A‖ = ‖A‖2. This is called the C∗ condition.

Definition 3. A projection in a Banach *-algebra A is a self-adjoint idempotent.

That is, A ∈ A is a projection if and only if A = A∗ = A2.

We will be dealing with the L1-algebras of locally compact topological groups. To

begin, a topological group is a group equipped with a topology such that the group op-

eration and inversion are continuous. A topological group G is locally compact if every

point in G has an open neighbourhood contained in a compact set. The L1-algebra

of a locally compact group, denoted by L1(G), is the set of functions f : G → C such

that ‖f‖1 :=
∫
G
|f | < ∞. The integral here is the Lebesgue integral with respect to

the left Haar measure μ. This is the unique (up to a scalar multiple) regular Borel

measure on a locally compact group that is non-zero, left invariant, and finite on

compact sets [18].

A locally compact group with the discrete topology is called discrete. Recall that

the discrete topology is the topology where singleton subsets (and thus all the sub-

sets of G) are open. When G is discrete L1(G) is denoted by �1(G). It is evident

that the counting measure μ, defined by μ(S) = |S| when S has finitely many

elements and μ(S) = ∞ when S has infinitely many elements, is left invariant.

This measure is clearly finite on compact sets, which are the finite sets in a dis-

crete group. Thus the counting measure is the Haar measure for a discrete group.

With the counting measure, Lebesgue integration becomes summation. For instance,

‖f‖1 =
∫
G
|f(x)|μ(x) =

∑
x∈G |f(x)|. From here on, we assume that G is discrete.

On �1(G), ‖ · ‖1 defines a norm which is referred to as the �1-norm. Addition and

scalar multiplication can be defined pointwise on �1(G). Further structure is given to

�1(G) by defining two additional operators:

(1) Convolution: (f ∗ g)(x) =
∑

y∈G f(y)g(y−1x)
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(2) The *-operation: f ∗(x) = f(x−1)

Note that ‖f ∗ g‖1 < ∞. In fact, ‖f ∗ g‖1 ≤ ‖f‖1‖g‖1. This shows that con-

volution is well defined on �1(G) and is submultiplicative with respect to the �1-

norm. The ∗-operation is skew-linear and involutive. For f, g ∈ �1(G) and λ ∈ C,

(λf + g)∗ = λf ∗ + g∗. One can also check that (f ∗ g)∗ = g∗ ∗ f ∗. These operations,

together with pointwise addition and scalar multiplication, make �1(G) a *-algebra.

Being complete with respect to the �1-norm, it is even a Banach algebra.

Consider projections in �1(G). Restating Definition 3, f is a projection if and only if,

for all x ∈ G:

f(x) = f(x−1) =
∑
y∈G

f(y)f(y−1x)

There are a couple of functions in �1(G) that are clearly projections. First is the

function that is zero everywhere: f(x) = 0 for all x ∈ G. Second is the point mass at

the identity of G, denoted by δ1G . This is defined on G by δ1G(x) = 0 unless x = 1G.

Since these are projections in every discrete group, we consider them trivial.

Another important kind of topological space is a Hilbert space. This is not an algebra

but a vector space with a strict geometric structure imposed by an inner product.

Definition 4. A Hilbert space is a complete inner product space.

Any locally compact topological group has an associated Hilbert space. Let L2(G)

be the set of complex-valued functions on G such that ‖f‖2 =
∫
G
|f |2 < ∞. Then

‖ · ‖2 is a norm on L2(G) and comes from the inner product 〈f, g〉 =
∫
G
fg. When

G is discrete L2(G) is denoted by �2(G) and the inner product becomes 〈h1, h2〉 =∑
x∈G h1(x)h2(x). Note that �2(G) is indeed complete with respect to the resulting

norm,

‖h‖2 =
∑
x∈G

|h(x)|2
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Let B(H) denote the set of bounded linear operators on the Hilbert space H. An

operator on H is a linear function A : H → H and is called bounded if sup{‖Aξ‖ :

ξ ∈ H, ‖ξ‖ < ∞}. Letting multiplication be composition of operators, B(H) forms

an algebra. When H is finite-dimensional, H is isomorphic to Cn for some n ∈ N and

B(H) is isomorphic to the set of n × n matrices over C. The adjoint of an operator

A ∈ B(H) is the unique operator A∗ satisfying, for all ξ, η ∈ H:

〈Aξ, η〉 = 〈ξ, A∗η〉

Taking adjoints defines a ∗-operation for B(H), that is, a skew linear involution. There

is a norm on B(H) called the operator norm. The operator norm of an operator

A ∈ B(H) is the supremum of the norm of A on the unit ball of H. For A ∈ A,

‖A‖op = sup{‖Aξ‖ : ξ ∈ H, ‖ξ‖ ≤ 1}. With this norm and *-operation, B(H) is a

C∗-algebra.

1.1.2 Representations of G and �1(G)

A unitary representation of a group G is a homomorphism π : G → U(Hπ), where

U(Hπ) denotes the group of unitary operators on a Hilbert space Hπ. Recall that a

bounded linear operator U : H → H on a Hilbert space H is unitary if it is surjective

and preserves the inner product. Equivalently, U is unitary if U∗U = UU∗ = I,

where U∗ is the adjoint of U and I is the identity operator on H. Similarly, a *-

representation of a *-algebra A is a homomorphism π : A → B(H) that preserves the

*-operation: π(a∗) = π(a)∗. Usually, we will write H instead of Hπ, the Hilbert space

of a representation π, when the context is clear. The dimension of a representation

is the dimension of the Hilbert space on which it operates: dim π = dim(Hπ).

Two unitary representations, π1 : G → U(H1) and π2 : G → U(H2), are equivalent

if there exists a linear unitary map U : H1 → H2 such that Uπ1(x) = π2(x)U for

each x ∈ G. This does in fact form an equivalence relation on the collection of uni-

tary representations of G. Similarly, two *-representations π1 : �1(G) → B(H1) and

π2 : �1(G) → B(H2) are equivalent if there is a linear unitary map U : H1 → H2
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such that Uπ1(x) = π2(x)U for all x ∈ �1(G). A unitary representation (or *-

representation) π on Hπ is irreducible if there are no non-trivial G-invariant (�1(G)-

invariant) closed subspaces in H. That is, there is no closed subspace W ⊂ H (other

than {0} and H) such that π(x)w ∈ W for all x ∈ G (or x ∈ �1(G) in the case of a

*-representation) and w ∈ W . For a *-representation π, the kernel of π is the set of

algebra elements that are mapped by π to zero in B(H). Any unitary representation

π of G can be considered as a ∗-representation of �1(G), as discussed below.

The algebra �1(G) acts on �2(G) via convolution. One can show that for f ∈ �1(G)

and g ∈ �2(G), f ∗ g is in �2(G). Consider the map λ : �1(G) → B(�2(G)) defined

by λ(f)g = f ∗ g. For f ∈ �1(G), λ(f) is linear since convolution is distributive

and is bounded since ‖f ∗ g‖2 ≤ ‖f‖1‖g‖2. So λ(f) is indeed a bounded linear

operator on �2(G). We can thus view �1(G) as an algebra of bounded linear op-

erators on a Hilbert space. In fact, λ also preserves the ∗ operation and convolu-

tion. Note that λ(f ∗) = λ(f)∗, where λ(f)∗ is adjoint of λ(f) in B(�2(G)), and that

λ(f ∗g) = λ(f)λ(g). We conclude that λ is a *-representation of �1(G). It is a special

representation called the left regular representation.

Each group G also has an associated C∗-algebra. It is formed by completing �1(G)

with respect to a new norm. For f ∈ �1(G), the C∗-norm of f is defined as the supre-

mum of the operator norms of the non-degenerate *-representations of �1(G) evaluated

at f : ‖f‖C∗ = sup{‖π(f)‖op : π a non-degenerate *-representation of �1(G)}. A *-

representation π is non-degenerate if the set {π(f)ξ : f ∈ �1(G), ξ ∈ Hπ} is dense in

Hπ. The reduced group C∗-algebra of G is the completion of �1(G) with respect to

another norm. Consider the operator norm on λ(�1(G)): ‖λ(f)‖op = sup{‖λ(f)g‖ =

‖f ∗ g‖ : g ∈ �2(G), ‖g‖ ≤ 1}. We identify �1(G) with the space of operators λ(�1(G))

and write ‖f‖op = ‖λ(f)‖op. The reduced group C∗-algebra of G is then defined as:

C∗
r (G) = λ(�1(G))

‖·‖

Lemma 5. C∗(G) and C∗
r (G) are C*-algebras.
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When G is amenable, C∗
r (G) = C∗(G) [1]. A locally compact Hausdorff group is

amenable if it has a left or right invariant mean. We will not discuss amenability

further as what is important is this equivalence of group C∗-algebras in the case of

amenability.

A *-representation of a C∗-algebra is defined in the same way as a *-representation of

a *-algebra except that its domain is, of course, a C∗-algebra. So a *-representation

of a C∗-algebra A is a homomorphism of A with B(H) for some Hilbert space H

that preserves the *-operation. The concepts of equivalence and irreducibility of

representations is also the same for *-representations of a C∗(G) as they are for *-

representations of a *-algebra.

The dual space of a locally compact group G is the collection of equivalence classes

of irreducible unitary representations of G, denoted by Ĝ. Likewise, the dual space

of C∗(G) is the collection of equivalence classes of irreducible *-representations of

C∗(G) and is denoted by Ĉ∗(G). The dual space of a group and the dual space of the

group’s C∗-algebra are closely related. Given an irreducible unitary representation π

of G, consider the map L(π) defined by, for f ∈ �1(G),

L(π)(f) =
∑
x∈G

π(x)f(x)

Note that L(π) is well-defined on �1(G) since ‖
∑

x∈G π(x)f(x)‖ ≤
∑

x∈G ‖π(x)‖|f(x)|1 =

‖f‖1 < ∞, noting that π(x) is unitary and so is an isometry. One can check that

L(π) is an irreducible *-representation of �1(G) ⊆ C∗(G). Furthermore, L(π) may be

uniquely extended to all of C∗(G). If π ∼ σ ∈ Ĝ then L(π) ∼ L(σ) (the same unitary

operator can be used to show both equivalences). At the same time, if L(π) ∼ L(σ)

then π ∼ σ. Thus L is a one-to-one map from Ĝ to the collection of equivalence

classes of *-representations of �1(G). Suppose Π ∈ Ĉ∗(G). Then L−1(Π)(x) := Π(δx)

for x ∈ G defines an irreducible unitary representation of G, where δx the point mass

at x ∈ G, the function in �1(G) which takes the value 1 at x and 0 elsewhere. One can

check that L−1 is indeed the inverse of L. Thus there is a bijection between the dual
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spaces of G and C∗(G). Throughout we suppress explicit reference to the bijection,

instead viewing a representation π ∈ Ĝ as both a representation of G and of C∗(G).

For this reason, when we say Ĝ, we are referring to both the dual space of the group

G and its C∗-algebra.

1.1.3 Topology on the Dual Space

The dual spaces of groups and of C∗-algebras are topological spaces. The most

common topology on Ĝ is the hull-kernel (or Jacobson) topology. It is given by first

defining a topology on a certain space of ideals of C∗(G). From here one can define a

topology on Ĉ∗(G). Using the bijection between Ĝ and Ĉ∗(G) discussed above, this

gives a topology on Ĝ. To summarize, the hull-kernel topology is defined on three

spaces in the following order:

Prim(C∗(G)) → Ĉ∗(G) → Ĝ

Definition 6. A primitive ideal is the kernel of an irreducible *-representation of

C∗(G). The space of primitive ideals of C∗(G) is denoted by Prim(C∗(G))

A primitive ideal is the preimage of the 0 ideal in B(H) under a *-homomorphism.

Thus it is a closed two-sided *-ideal in C∗(G). In fact, primitive ideals are prime [8].

A closed two-sided *-ideal is prime if whenever there are ideals J1, J2 ∈ C∗(G) such

that J1J2 ⊆ J then J1 ⊆ J or J2 ⊆ J . Note that if π and σ are equivalent irreducible

representations of C∗(G) then ker π = ker σ. For π ∼ σ implies that there exists a

unitary operator U such that Uπ(F ) = σ(F )U for all F ∈ C∗(G). If π(F ) = 0 then

0 = Uπ(F ) = σ(F )U =⇒ σ(F ) = 0 since U is invertible. Thus for each equivalence

class of irreducible representations there is a single associated kernel in C∗(G). So

there is a surjective map from Ĉ∗(G) to Prim(C∗(G)).

The kernel of a subset J ⊆ Prim(C∗(G)) is defined to be the intersection of its

elements: ker(J ) = ∩J∈J J . Note that ker(J ) is an ideal. The hull of an ideal
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J ∈ Prim(C∗(G)) is the set of ideals that contain J , that is, hull(J) = {A ∈

Prim(C∗(G)) : J ⊆ A}. The hull kernel topology on Prim(C∗(G)) is defined by,

for a set J ⊆ Prim(C∗(G)), J = hull(ker(J )). Since each primitive ideal is the

kernel of an irreducible *-representation of C∗(G), this defines a topology on Ĉ∗(G).

The closure of a set S ⊆ Ĉ∗(G) is:

S = hull(ker({ker(π) : π ∈ S})) = {σ ∈ Ĉ∗(G) : ker(σ) ⊇
⋂
π∈S

ker(π)} (1.1)

Lemma 7. The closure operation in Equation 1.1 satisfies the Kuratowski axioms

and so defines a topology on Ĉ∗(G).

A proof may be found in Davidson’s book [8] on page 191. Recall that the Kuratowski

closure axioms are a way to define a topology through a closure operation rather than

a collection of open sets. We denote the closure operation by an overline (not to be

confused with the complex conjugate of a number in C). Let X be a topological space

and S �→ S be the closure operation. The Kuratowski axioms are as follows:

(i) ∅ = ∅.

(ii) For A ⊆ X, A is a subset of A.

(iii) For A,B ⊆ X, A ∪ B = A ∪ B.

(iv) A = A.

For the topology on Ĝ, we say that a set S ⊆ Ĝ is closed if the corresponding set in

Ĉ∗(G) is closed. Next is a well known result about the topology of the dual space of

a locally compact group. A proof may be found in [9].

Theorem 8. Let G be a locally compact topological group. If G is compact then Ĝ

is discrete. If G is discrete then Ĝ is compact.
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1.2 Known Results

For a discrete finite abelian group G, the projections in �1(G) have been completely

characterized. The irreducible unitary representations of an abelian group are called

characters and are all one-dimensional. The Hilbert space of character is C. In fact,

the dual space of an abelian group is a group. It is not hard to show that each

character χ ∈ Ĝ is a projection in �1(G). Furthermore, χ ∗ χ0 = 0 if χ �= χ0 in Ĝ.

Rudin and Schneider [20] then showed that idempotents in �1(G) are exactly those

functions of the form:

f(x) =
1

n

∑
χ∈ ̂G

χ(x)eχ

where χ ∈ Ĝ and eχ ∈ {0, 1}.

If a group is abelian but not necessarily finite, every idempotent has a finite support

group [20]. The support group of a function f on G is the smallest group that contains

the support of f . Rudin and Schneider also describe the idempotents in �1(G) of norm

1.

Theorem 9. Let G be any group and f ∈ �1(G) with f ∗ f = f and ‖f‖1 = 1. Then

the support of f is a finite subgroup K of G. Furthermore,

|f(x)| = 1
|K| for all x ∈ K, and

f(xy) = |K|f(x)f(y) for all x, y ∈ G

This implies that idempotents of norm 1 are scaled characters on a finite subgroup.

Being a scalar multiple of a homomorphism, such an idempotent automatically sat-

isfies the * condition. So the theorem actually gives a complete description of the

projections of norm 1. Conversely, every character on a finite subgroup K of G gives

rise to a projection of norm 1 by scaling. Rudin and Schneider note that idempotents

in �1(G) must have a norm that is at least 1. So this theorem, in a sense, describes

the “smallest” idempotents in �1(G).
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Functions in �1(G) have a kind of support in the dual space Ĝ. Consider the set of

equivalence classes of unitary representations of G, evaluated at a fixed f ∈ �1(G).

The support set of f is then the subset of representations in Ĝ that are non-zero at

f . We will either refer to this as the support set or as the support of f in Ĝ, to avoid

confusion with the support of f in �1(G).

Definition 10. Let f ∈ �1(G) be a projection. The support set of f is defined as:

supp(f) = {π ∈ Ĝ : π(f) �= 0}

Next is a key result that will strongly direct our analysis of projections in �1(G).

Lemma 11. Suppose f ∈ �1(G) is a projection. Then supp(f) is compact and open

in Ĝ in the hull kernel topology.

This follows directly from 3.3.2 and 3.3.7 in [9]. The first lemma (3.3.2) actually shows

that the map π �→ ‖π(f)‖ is lower semi-continuous, that is, {π ∈ Ĝ : ‖π(f)‖ > α}

is open in Ĝ for each α > 0. That supp(f) = {π ∈ Ĝ : π(f) �= 0} = {π ∈ Ĝ :

‖π(f)‖ > 0} is open is an immediate consequence. The second lemma (3.3.7) shows

compactness. There are always two compact open sets in Ĝ: the empty set and Ĝ.

We consider these trivial. Lemma 11 tells us that if there are no non-trivial compact

opens in Ĝ then there are no non-trivial projections in �1(G).

It would be nice if the compact open subsets of Ĝ were in perfect correspondence

with the projections in �1(G). We will see that this is not the case. There are usually

many compact open subsets that are not the support set of a projection and also

many projections which share the same support set. The abelian case, however, is

special [15]:

Theorem 12. If G is abelian then there is a bijection between the projections in

�1(G) and the compact open sets in Ĝ.
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Furthermore, when G is compact, Taylor and Kaniuth showed how to construct a

projection whose support set is any chosen singleton set in Ĝ, as a simple consequence

of the orthogonality relations for irreducible representations of a compact group.

Recall that the dual space of a compact group is discrete [9] and so all singletons are

both compact and open.

Theorem 13. Let G be compact and π ∈ Ĝ. Let ξ ∈ Hπ such that ‖ξ‖ =
√
dπ.

Define fξ(x) = 〈ξ, π(x)ξ〉 for x ∈ G. Then the following hold:

(i) fξ is a projection in L1(G)

(ii) The support set of fξ is {π}

(iii) π(fξ) is the rank one projection of Hπ onto Cξ.

As mentioned earlier, Kaniuth and Taylor also gave a method of constructing projec-

tions in the case that G = A � H where A is abelian, H is σ-compact and there is

an open free H orbit in Â. With this set-up, H acts on Â through conjugation. They

showed that there is an open point in Ĝ and constructed a projection in L1(G) whose

support set is the singleton set consisting of this point [15].

In this paper, we study projections in �1(G) when G is a wallpaper group. Roughly,

a wallpaper group is the symmetry group of a wallpaper pattern (imagining that

the pattern covers the entire plane). The wallpaper groups will be discussed in de-

tail in Chapter 4. The known results just presented do not apply to the wallpaper

groups. The wallpaper groups are not abelian (except for the trivial wallpaper p1,

which consists purely of translations), they are not finite, they do not always split as

a semi-direct product of an abelian group with a σ-compact group, and even if they

do split in such a way, H does not have an open free orbit in Â. Nonetheless, the

wallpaper groups are very close to each of these types of groups. They have a normal

abelian subgroup whose quotient in G is finite. Many wallpaper groups do split as

the semi-direct product Z2 �D where D is a finite point group. We thus expect to

obtain somewhat analogous results on projections in �1(G) for the wallpaper groups.
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One immediate result is that projections can be constructed from finite subgroups.

1.2.1 Projections from Finite Subgroups

In this section we present a simple method of constructing projections in �1(G) using

finite subgroups of G.

Lemma 14. Let K be a finite subgroup of G. Then fK = 1
|K|

∑
g∈K δg is a projection

in �1(G), where δg is the function on G that takes the value 1 at g and 0 elsewhere.

Proof. We must check that fK is an idempotent, is self-adjoint and is an element of

�1(G).

1. fK is an idempotent.

For any g, k ∈ G we have that δg ∗ δk = δgk. Then,

fK ∗ fK =

(
1

|K|
∑
g∈K

δg

)
∗
(

1

|K|
∑
g∈K

δg

)

=
1

|K|2
∑
g∈K

∑
k∈K

δg ∗ δk

=
1

|K|2
∑
g∈K

∑
k∈K

δgk

=
1

|K|
∑
g∈K

δg

with the last equality occuring because for any h ∈ K there are |K| pairs (g, k) such

that gk = h. If h /∈ K then gk �= h for all g, k ∈ K.

2. fK is self-adjoint.
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For any g ∈ G, (δg)
∗ = δg−1 . Then,

(fK)
∗ =

(
1

|K|
∑
g∈K

δg

)∗

=
1

|K|
∑
g∈K

(δg)
∗

=
1

|K|
∑
g∈K

δg−1

=
1

|K|
∑
g∈K

δg

(1.2)

with the last equality occurring because K is a group.

3. fK ∈ �1(G).

‖fK‖1 =
∑
g∈G

|fK(g)|

=
∑
g∈G

1

|K|
∑
k∈K

δk(g)

=
1

|K|
∑
k∈K

∑
h∈K

δk(h)

=
1

|K|
∑
k∈K

1

= 1

We next show that one can multiply fK by a matrix coefficient of a representation of

K to obtain another projection. We will need the Schur orthogonality relations for

matrix coefficients of representations of finite groups.

Lemma 15. (Schur orthogonality relations) Let G be a finite group and π, η ∈ Ĝ.

Let u, v ∈ Hπ and u0, v0 ∈ Hη. Then

∫
G

〈π(x)u, v〉〈η(x)u0, v0〉dμ(x) =

⎧⎪⎨⎪⎩
1
dπ
〈u, u0〉〈v, v0〉 if π ∼= η

0 else

where μ is the normalized Haar measure of G (i.e. μ(G) = 1).
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Lemma 16. Let K be a finite subgroup of a locally compact group G. Let π ∈ K̂

and ξ ∈ Hπ with ‖ξ‖2 = 1/
√
dπ. Define cπξ : G → C by cπξ (x) = 〈π(x)ξ, ξ〉 when

x ∈ K and 0 otherwise. Then cπξ fK is a projection in �1(G).

Proof. To simplify the notation, let c = cπξ . Note that:

(cδx ∗ cδy)(z) =
∑
w∈G

c(w)δx(w)c(w
−1z)δy(w

−1z)

= c(x)c(y)δxy

Then using this and linearity, we get that

cfK ∗ cfK =
1

|K|2 (
∑
k∈K

cδk) ∗ (
∑
h∈K

cδh)

=
1

|K|2
∑
k∈K

∑
h∈K

cδk ∗ cδh

=
1

|K|2
∑
k∈K

∑
h∈K

c(k)c(h)δkh

=
1

|K|2
∑
k∈K

∑
h∈K

c(k)c(k−1h)δh

=
1

|K|
∑
h∈K

δh
∑
k∈K

c(k)c(k−1h)

Consider

1

|K|2
∑
k∈K

c(k)c(k−1h) =
1

|K|2
∑
k∈K

〈π(k)ξ, ξ〉〈π(k−1h)ξ, ξ〉

=
1

|K|2
∑
k∈K

〈π(k)ξ, ξ〉〈π(k)ξ, π(h)ξ〉

Applying the Schur orthogonality relations (recalling that they require that the Haar

measure of the finite group be normalized),

1

|K|2
∑
k∈K

〈π(k)ξ, ξ〉〈π(k)ξ, π(h)ξ〉 = 1

|K| 〈π(h)ξ, ξ〉

=
1

|K|c(h)

Thus cfK ∗ cfK = 1
|K|

∑
h∈K c(h)δh = cfK .
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Note that when K is abelian, irreducible representations are one-dimensional and are

thus homomorphisms χ : K → T (as T is the set of unitary operators on C through

multiplication). Then for any ξ ∈ C with |ξ| = 1, we have cξχ(k) = 〈χ(k)ξ, ξ〉 =

χ(k)〈ξ, ξ〉 = χ(k). So cξχfK = χfK . In this case, calculating χfK ∗ χfK does not

actually require the Schur orthogonality relations, since χ jumps out of the inner

product and is multiplicative:

χfK ∗ χfK =
1

|K|2 (
∑
k∈K

χ(k)δk) ∗ (
∑
h∈K

χ(h)δ)

=
1

|K|2
∑
k∈K

∑
h∈K

χ(k)χ(h)δk ∗ δh

=
1

|K|2
∑
k∈K

∑
h∈K

χ(kh)δkh

=
1

|K|2
∑
k∈K

∑
h∈K

χ(h)δh

=
1

|K|
∑
h∈K

χ(h)δh

= χfK

Now check that cfK is self-adjoint:

(cfK)
∗(x) = c(x−1fK(x−1)

= c(x−1fK(x)

= 〈π(x−1)ξ, ξ〉fK(x)

= 〈π(x)∗ξ, ξ〉fK(x)

= 〈ξ, π(x)〉fK(x)

= 〈π(x)ξ, ξ〉fK(x)

= c(x)fK(x)

(where we’ve used the fact that f ∗
K = fK .)
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Again, if K is abelian and χ is a character of K the calculation is simpler:

(χfK) ∗ (x) = χ(x−1)fK(x−1)

= χ(x−1)fK(x)

= χ(x)fK(x)

Finally, it’s clear that fK , cfK and χfK are absolutely summable since their support

in G is finite. Thus, each of these is a projection in �1(G).

We call a projection whose support in G is a finite subgroup a finite subgroup projec-

tion. Usually, these are not the only kind of non-trivial projections in �1(G) (if any).

We will show this for the wallpaper group p2 in Chapter 5. In fact, we will construct

a projection whose support set is not the support set of a projection of the form cfK .

This summarizes known results on projections in �1(G) that apply to the wallpaper

groups. To our knowledge, compact open sets in the dual space of a group have not

been extensively studied, besides in [14] where E. Kaniuth and K.F Taylor charac-

terized the compact open subsets in the dual space of an [FC]− group. These are

groups whose conjugacy classes are finite. They include the abelian groups and fi-

nite groups, but again, not the non-trivial wallpaper groups. You can see this even

with the very uncomplicated wallpaper group, p2. In the next chapter we define the

wallpaper groups and present some relevant results and examples.
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Chapter 2

The Wallpaper Groups

“Symmetry, as wide or narrow as you may define its meaning, is one idea

by which man through the ages has tried to comprehend and create order,

beauty, and perfection.”

–Hermann Weyl

2.1 Basic Concepts and Definitions

We begin with a quick overview of isometries of Rn. In general, an isometry is a

distance-preserving map between metric spaces. For Rn (and actually, any finite-

dimensional inner product space) an isometry is a bijection. To see this, first note

that an isometry T that fixes the origin preserves the inner product (expand 〈Tx −

Ty, Tx−Ty〉 = 〈x−y, x−y〉 on both sides and simplify). Using linearity of the inner

product one can show that T is linear. Furthermore, since T preserves distance, it

must be injective. Therefore T will map an orthonormal basis of Rn to an orthonor-

mal basis. Being linear, this shows that T is bijective. Now any isometry can be

translated so that it fixes the origin - and we’re done. Because isometries map Rn

onto itself without changing distances they are also called “rigid motions”.

Denote the collection of isometries of Rn by Iso(n). This space has an associative

product, namely, composition. With respect to this product, the identity map is an
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identity. It is then easy to check that the inverse of an isometry in Iso(n) is also in

Iso(n) and that the same goes for the composition of two isometries. Thus Iso(n) is

a group. As noted above, an isometry may be composed with a translation (also an

isometry) such that the composition fixes the origin and is consequently linear. By

definition, this distance-preserving, origin-fixing map is in the n-dimensional orthog-

onal group, O(n). The matrix form of a member of the orthogonal group is an n× n

orthogonal matrix. That is, each U ∈ O(n) satisfies UUT = UTU = I, where UT

denotes the transpose of U . So every T ∈ Iso(n) has the form T = τv ◦U where τv is

translation by v ∈ Rn and U ∈ O(n). We could switch the order of the composition

by writing T = U ◦ (U−1 ◦ τv ◦ U), noting that U−1 ◦ τv ◦ U is a translation. We will

use the following notation for elements of Iso(n):

Definition 17. For M ∈ O(n) and v ∈ Rn, let [M, v] denoted the map defined by:

[M, v]x = M ◦ τv(x) = M(x+ v)

Lemma 18. Each [M, v] is an isometry. Thus Iso(n) = {[M, v] : M ∈ O(n), v ∈ Rn}.

We say M is the orthogonal part and v is the translational part of [M, v].

The previous lemma shows that as a set, Iso(n) is just O(n) × Rn. As a group, it

is not the same, however. One can calculate that [M, v][A, u] = [MA, u + A−1v]. So

addition involves a twist in the translational part. Despite these differences, Iso(n) is

conventionally given the topology of O(n)× Rn. Recall that the topology on O(n) is

inherited by viewing it as a subset of Rn2
(simply reshape n×n matrices into vectors

of length n2).

A left group action of a group G on a set X is a map φ : G × X → X (we always

write g · x = φ(g, x)) which satisfies:

(i) (Identity) e · x = x for all x ∈ X, where e is the identity of G.

(ii) (Compatibility) g · (h · x) = (gh) · x.

The group Iso(n) acts on Rn via point evaluation: [M, v] · x = [M, v]x = M(x + v).

To check, note that [I, 0] is the identity of Iso(n) and [I, 0]x = I(x + 0) = x. For
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compatibility:

[M, v] · ([A, u] · x) = [M, v](A(x+ u))

= M(Ax+ Au+ v)

= MAu+MAx+MAA−1v

= MA(x+ u+ A−1v)

= [M, v][A, u]x

A group action gives rise to an equivalence relation. For each x ∈ X, the orbit of x in

G is the setOG(x) = {g·x : g ∈ G}. Then define x ∼ y if y ∈ OG(x). To show that this

is an equivalence relation, use the following facts: x = e ·x, y = g ·x =⇒ x = g−1 ·y,

y = g ·x∧ z = h · y =⇒ z = hg ·x. Clearly the equivalence classes are the G−orbits,

i.e. [x] = OG(x). For Iso(n) acting on Rn the orbit of x ∈ Rn is the image of x under

the isometries of Rn: OG(x) = {[M, v]x : M ∈ O(n), v ∈ Rn}. Since the group of

translations is in Iso(n), each OIso(n)(x) is all of Rn. Note however that the orbits of

a subgroup of Iso(n) may not be trivial. Take, for instance the subgroup of transla-

tions in R2 defined by L = {[I, (a, b)] : (a, b) ∈ Z2}. The orbit of a point x ∈ R2 is

OL(x) = {x+(a, b) : (a, b) ∈ Z2}, which is a discrete subset of R2. The quotient space

corresponding to a group G acting on X is the set X/G = {OG(x) : x ∈ X}, the set

of orbits. The associated quotient map is q : x �→ OG(x). When X is a topological

space, the quotient space carries the quotient topology. This is the topology on X/G

where the open sets are exactly those sets whose preimage under the quotient map is

open in X.

We are now ready to define the main item of interest, the crystallographic groups.

Definition 19. A crystallographic group of dimension n is a discrete subgroup of

Iso(n) with the property that Rn/G is compact.

We immediately restrict ourselves to the case that n = 2. The crystallographic groups

of dimension 2 are called the wallpaper groups. The name comes from the fact that

each such group is the symmetry group of a wallpaper pattern. That is, the group of
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isometries of R2 that each leave a wallpaper pattern on R2 looking the same. As an

example, consider a pattern with only translational symmetry. A portion of such a

pattern on R2 is shown in Figure 2.1.

Figure 2.1: Portion of a wallpaper pattern with purely translational symmetry.

Recall that a discrete topological space is a space in which every subset is both open

and closed. The discreteness condition for the wallpapers is actually very strong. For

instance, a wallpaper group G being discrete forces each G-orbit in R2 to be discrete

[10]:

Lemma 20. Let G be a crystallographic group. Then for each a ∈ Rn, the orbit

OG(a) = G · a = {x(a) : x ∈ G} is discrete in Rn.

This implies, for instance, that there must be a translation in G of minimal length,

otherwise orbits would contain a cluster point. The collection of pure translations in

G (elements of the form [I, x] where x ∈ R2) forms a normal abelian subgroup. We

call this the lattice L and think of it as a discrete subgroup of R2. Consider R2/Rx,
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where y ∼ z ⇐⇒ y = z+αx for some α ∈ R. This is isomorphic to R. It’s not hard

to show that L/Rx ∩ R2/Rx must also be discrete [10](p.16) and so is isomorphic to

a discrete subgroup of R. This leads to the following lemma:

Theorem 21. (Bieberbach) The lattice of a wallpaper group is isomorphic to Z2.

This is the first part of Bieberbach’s theorem restricted to the case of the 2-dimensional

crystallographic groups. A pair of vectors in R2 which generate the lattice is called

a lattice basis. From now on we assume that group elements [M,x] are written

in terms of a lattice basis. The lattice is not only the largest abelian [10] sub-

group of G but is also normal. To see this, first note that inverses are calculated as

[M,x]−1 = [M−1,−Mx]. Then [M,x][I, a][M−1,−Mx] = [M,a + x][M−1,−Mx] =

[I,M(a+x)−Mx] = [I,Ma]. So in conjugating a translation by an affine transforma-

tion [M,x], it is only the matrix part M that comes into play. Now [M,x] and [A, y]

are in the same L-coset if and only if M = A. The product of two equivalence classes

in G/L corresponds to multiplication of their (unique) matrix parts. Representatives

for the equivalence classes of G/L may be chosen as the matrix parts of the elements

of G. This is called the point group for G, as each matrix part is in O(2) and so fixes

the origin. The second part of Bieberbach’s theorem (in the case of the wallpaper

groups) is the following:

Theorem 22. (Bieberbach) The point group D = G/L of a wallpaper group is finite.

The point group acts on L by conjugation. For M ∈ D and [I, x] ∈ L choose a ∈ Z2

such that [M,a] ∈ G and define M · [I, x] = [M,a][I, x][M−1,−Ma] = [I,Mx]. As

noted above, it does not matter which a ∈ Z2 is used. Often we will view the lattice

as Z2 via the map [I, x] �→ x. Then the action of the point group on Z2 becomes

M · x = Mx for M ∈ D and x ∈ Z2.

What is the point group of a wallpaper group like? Again, the discreteness of G

forces strong conditions. One is the famous crystallographic restriction theorem: the

rotations in D can only be of order 1, 2, 3, 4 or 6. In fact there are only two kinds
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of finite groups of isometries of R2. This was known by Leonardo da Vinci, a while

back.

Theorem 23. (Leonardo’s Theorem) Let D be a finite group of isometries of the

plane. Then D is either a cyclic group Cn of order n ∈ Z or a dihedral group D2n of

order 2n, n ∈ Z. No two of the groups C1, C2, . . . , D1, D2, . . . are conjugate under an

isometry.

Contrast groups being conjugate under an isometry with group equivalence. These

are not the same. For instance, the groups C2 and D1 are isomorphic as groups

but not conjugate under an isometry. The first consists of identity and rotation by

180◦ while the latter contains a reflection. A proof of Leonardo’s theorem may be

found in [2]. Recall that Cn is the cyclic abelian group of order n, Zn. As a group

of isometries, one can think of Cn as the group generated by a rotation by 360◦/n.

The dihedral group D2n is generated by Cn and a reflection. It has a crossed product

structure Cn � {I,−I} with the action of {I,−I} defined by −I · Rm = R−m. The

dihedral group D2n is the symmetry group of a regular n-gon. Combining Leonardo’s

theorem with the crystallographic restriction, we see that the possible point groups

of a wallpaper group are C1, C2, C3, C4, C6, D2, D4, D6, D8, D12. Each of these is the

point group of at least one wallpaper group (see the wallpaper group descriptions in

[19]). Note that it is possible for two wallpaper groups to have the same point group

and yet be distinct groups. This happens because, in general, there are multiple ways

a point group can act on the lattice.

The maximal normal abelian subgroup (the lattice) and the quotient of the group

by this lattice (the point group) are actually defining features of a wallpaper group.

Zassenhaus showed that the wallpaper groups are exactly the discrete groups that

contain a finite index, normal, free abelian subgroup of rank 2, that is also maximal

abelian [25]. In other words, a discrete group G is a wallpaper group if and only if

there is a short exact sequence 0 → Z2 → G → D → 1 where Z2 is maximal abelian

and [G : Z2] is finite.
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Up to group isomorphism, there are exactly 17 distinct wallpaper groups. In fact,

the number of n-dimensional crystallographic groups is finite for any n. This is the

solution to part of Hilbert’s 18th problem, which was proved by Bieberbach in 1912.

A proof that there are exactly 17 wallpaper groups may be found in [22]. Below is a

table listing the wallpaper groups along with their point groups.

Wallpaper group Point group

p1 C1

p2 C2

p3 C3

p4 C4

p6 C6

cm, pm, pg D2

cmm, pmm, pmg, pgg D4

p31m, p3m1 D6

p4mm, p4mg D8

p6mm D12

To get a sense of the connection between Definition 19 and the symmetry groups of

crystal structures, consider the pattern in Figure 2.2 and imagine that it covers the

entire plane. One can see that its symmetry group G is generated by a horizontal

translation, a vertical translation, and a rotation by 180◦. This wallpaper group is

called p2 and will be revisited in Chapter 5.

Consider the square in Figure 2.3. Removing the top and right sides of the square

gives a set of representatives for the equivalence classes in R2/G. For the topology of

R2/G, note that the left side of the square is mapped to the right side by a horizontal

translation. Thus, these two edges are identified. The rotation maps the left half side

to the right half side of both the top and bottom edges. These identifications are

shown in Figure 2.3. The vertical dotted line shows where one would fold in order to
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Figure 2.2: A wallpaper pattern with p2 symmetry.

glue the identified edges. Arrows mark these edges. Gluing these identified edges, we

see that R2/G is topologically isomorphic to a sphere. So R2/G is indeed compact,

as required in the definition of wallpaper group. You can also see in Figure 2.2 that

each of the G-orbits in R2 is a discrete set.

Figure 2.3: A picture of R2/G with edge identifications.

A cross section of D in G is a map γ : D → G such that q ◦ γ = idD where q is

the quotient map q : G → D. This allows us both to represent G by its Z2-coset

decomposition and to express the action of D on Z2. With a cross section γ fixed,
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for any x ∈ G there is a unique d ∈ D and translation a ∈ Z2 such that x = γ(d)a.

D acts on Z2 by conjugation:

d · x = γ(d)xγ(d)−1

Since γ is a cross section and the quotient map is a homomorphism, we know that

γ(c)γ(d) and γ(cd) lie in the same Z2 coset. Thus there is some α(c, d) ∈ Z2 such

that γ(c)γ(d) = γ(cd)α(c, d). Doing this for each pair c, d ∈ D we obtain a map

α : D × D → Z2. Using the identity α(b, c) = γ(bc)−1γ(b)γ(c), one can see that α

satisfies the following:

α(b, cd)α(c, d) = α(bc, d)(d−1 · α(b, c))

This is called the 2-cocycle identity and α, a 2-cocycle.

Using the coset decomposition, we can express elements of G as (d, x) = γ(d)x where

d ∈ D and x ∈ Z2. In this notation the group product becomes:

(c, x)(d, y) = γ(c)xγ(d)y

= γ(c)γ(d)(d−1 · x)y

= γ(cd)α(c, d)(d−1 · x)y

= (cd, α(c, d)(d−1 · x)y)

In order to work with explicit wallpaper groups we need to express the elements of

G in terms of x ∈ L and γ(d) ∈ G. Explicit descriptions of the 17 wallpaper groups

(along with their C∗-algebras and irreducible *-representations) were worked out in

[19]. We will use these descriptions in our examples throughout.

A character of an abelian group is a homomorphism into the circle group T. The

characters of an abelian group form its dual space, which in this case is actually a

group. Recall that the lattice of a wallpaper group is isomorphic to Z2. A character

χ : Z2 → T is of the form χz,w where (z, w) ∈ T2 and:

χz,w(x, y) = zxwy
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Because of this, we will refer to Ẑ2 as simply T2 and let (z, w)(x,y) = χz,w(x, y) = zxwy.

The point group D also acts on Ẑ2 ∼= T2. This action is defined by:

(d · χz,w)(a, b) = χz,w(d
−1 · (a, b))

We apply the discussion in this chapter thus far to two example wallpaper groups, p2

and pg.

Example 24. First consider p2, the symmetry group of the wallpaper pattern shown

in Figure 2.2. Two linearly independent translations and a rotation by 180◦ generate

this wallpaper group. Viewing p2 as a group of affine transformations, each element

is of the form [I, x] or [−I, x] where x ∈ Z2. The point group D is isomorphic to

Z2 = {1,−1}. One cross section is γ(1) = [I, (0, 0)], γ(−1) = [−I, (0, 0)] (in the

future, we will always assume that γ(idD) = [I, (0, 0)]). The D action on Z2 is then

−1 · x = −x. Note that the action of the identity of D is always trivial. For the

chosen cross section γ, the 2-cocycle α is trivial (i.e. α takes the value 1 on all pairs

of elements of D). This is because γ is a homomorphism: γ(c)γ(d) = γ(cd) for all

c, d ∈ D. In general, when γ is a homomorphism, D is isomorphic to a subgroup of

G. When this occurs, G can be expressed as a semi-direct product G = Z2�D. Note

that the action of D on Z2 must also be defined in order for Z2 �D to make sense as

a group.

Example 25. Not all of the wallpaper groups split as a semi-direct product. Consider

pg, the wallpaper generated by the lattice and one glide reflection. A portion of a

pg wallpaper is shown in Figure 2.4. We can choose the glide reflection to be along

the x-axis. A cross section for the action of D on pg is γ(σ) = [σ, (1
2
, 0)] where σ =⎛⎝ 1 0

0 −1

⎞⎠. The D action is then σ ·x = σx. Since γ(σ)γ(σ) = [I, (1, 0)] �= [I, (0, 0)],

pg does not split as a semi-direct product Z2 �D. In fact, a wallpaper group splits if

and only if it does not contain a glide reflection. Only four out of the 17 wallpapers

do not split.
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Figure 2.4: A wallpaper pattern with pg symmetry.
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Chapter 3

Representation Theory

In the next section we discuss representation theory in greater depth and use this to

work out an explicit description of the dual space of a wallpaper group. We begin by

reviewing the representation theory of finite-dimensional C∗-algebras and introducing

C∗-bundles and their representation theory. Next we present an explicit description

of the C∗-algebra of a wallpaper group. Finally, we describe in detail the dual space

of the C∗-algebra of a wallpaper group and its topology.

3.1 The Dual Space of a Finite-Dimensional C∗-algebra

A finite-dimensional C∗-algebra is a C∗-algebra which has a finite basis, when viewed

as a normed vector space (i.e., when ignoring the product and * operations). Specif-

ically, we will consider finite-dimensional C∗-subalgebras of Mn(C), the algebra of

n× n matrices with entries from C and we assume that the subalgebras contain the

identity matrix. Note that Mn(C) is itself a C∗-algebra. The ∗-operation here is de-

fined by defining the adjoint of a matrix to be its conjugate transpose. Multiplication

is the usual matrix multiplication. The norm is the operator norm, viewing matrices

in Mn(C) as linear operators on Cn. Since Mn(C) is finite-dimensional, so are all of

its subalgebras.

Let A be a C∗-subalgebra of Mn(C). Consider projections P,Q in A. We say that

P ≤ Q if PQ = P . With this relation, the projections in A form a lattice. That

is, every pair of projections has a least upper bound and a greatest lower bound.
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A projection P is called minimal if P ≥ Q implies Q = 0 or Q = P . Using the

*-subalgebra generated by a non-zero operator T ∈ A and the spectral theorem of

normal operators, one can show that A has at least one non-trivial projection, except

in the degenerate case that A = {0}. Furthermore, every projection dominates a

minimal projection. Recall that the commutant of the sub-algebra A of Mn(C) is the

set of matrices of Mn(C) that commute with every element of A. The commutant

of A is denoted by A′. The centre of A is defined as the intersection of A and its

commutant: Z(A) = A ∩ A′. These are the elements within A that commute with

A.

The first step is to characterize A when A is a factor, that is, if the centre of A

is trivially CI = {αI : α ∈ C}, where I is the identity of A. This is accom-

plished by finding a set of minimal projections P1, . . . , Pk in A that sum to I. These

give a system of matrix units Vij (Vij is a partial isometry with the property that

VijV
∗
ij = Pi and V ∗

ijVij = Pj) such that PiAPj = αijVij for some αij ∈ C. The map

A �→ {αij}1≤i,j≤k defines an isomorphism of A with Mk(C). Using a set of minimal

projections Q1, . . . , Qm in the centre of A, one can block diagonalize A. Doing this,

one finds that each element of A diagonalizes to a matrix consisting of a smaller

matrix in Mk(C) repeated m times along the diagonal and zeros elsewhere.

When A is not a factor, take a set of central minimal projections C1, . . . , C� that sum

to I. Then each CiA is a factor. We thus obtain a decomposition of A. This will

be especially useful in working out the dual space of C∗(G), when we view it as the

sections of a fibre bundle as the fibres are finite-dimensional matrix algebras. There

are � ∈ N, ki ∈ N for i = 1, . . . , � such that for each element A ∈ A, there are matrices

Aki ∈ Mki(C) for i = 1...� such that:
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A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M1 0 . . . . . . 0

0 M2
...

...
. . .

...
...

. . . 0

0 . . . . . . 0 M�

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
where Mi =

⎡⎢⎢⎢⎢⎢⎢⎣
Aki 0 . . . 0

0
. . .

...
...

. . . 0

0 . . . 0 Aki

⎤⎥⎥⎥⎥⎥⎥⎦ ∈ Maiki(C)

(3.1)

Specifically, ki the number of minimal projections in the factor CiA, ai the number

of central minimal projections in A′, and � the number of minimal central projections

in A. For further details, see [8].

This decomposition determines the structure of the dual space of A. The key insight

is that the dual space of a full matrix algebra, i.e. Mn(C) for some n ∈ N, is trivial.

There is only one equivalence class of irreducible representations: the class containing

the representation I(M) = M . Note that this is indeed a representation of M . The

Hilbert space of I is Cn and M is the operator M(x) = Mx (multiplication of x

by M). For A, fix ki and consider the map πi : A �→ Aki . Since Aki is a block on

the diagonal of A (assume A has been block diagonalized), πi is linear and preserves

multiplication and the *-operation. Furthermore, Aki is an operator on the Hilbert

space Cki . Thus πi is a representation of A. Since the set {πi(A) : A ∈ A} is Mki ,

there are no πi-invariant subspaces of Cki . So πi is irreducible. In fact, the represen-

tations πi, i = 1, . . . , � are a set of representatives for the elements of Â. Thus the

dual space of A can be formed by restricting A to each (different) matrix block in its

block diagonalization. This implies that Â is a finite set with no more than n elements.

The topology of Â is the discrete topology. The kernel of πi is the set of elements

in A for which the block in A corresponding to πi is zero (assume A has been block

diagonalized). Fix i and consider the subset Si = {πj : j = 1, . . . , i− 1, i+ 1, . . . , �}.

Then ∩πj∈Si
ker πj is the set of elements of A that are zero except for the block

corresponding to πi. Since the kernel of π is the set of elements of A that are zero at
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this block, clearly πi is not in the closure of Si and so Si is closed and πi = Â \ Si is

open. Thus each singleton subset of Â is open and so Â is discrete.

3.2 C∗-bundle Theory

In working out the dual space of the C∗-algebra of a wallpaper group, it is convenient

to view C∗(G) as the sectional algebra of a C∗-bundle. A bundle is essentially a space

consisting of fibres (each a C∗-algebra) which vary continuous over an underlying

Hausdorff space. The isomorphism identifying C∗(G) with a sectional algebra of a

C∗-bundle is fairly involved and we will not go into too much depth. We already have

an explicit description of the elements of C∗(G) and are mainly interested in the dual

space. This section is largely based on Fell and Doran’s book [11].

Definition 26. A bundle over X is a triple (p,B,X) where B,X are Hausdorff spaces

and p : B → X is an open and continuous surjection. X is referred to as the base

space, B the bundle, and p the bundle projection. For each x ∈ X the set p−1(x) is

called the fibre over x and is denoted by Bx. Note that the fibres form a partition of

B.

Definition 27. A C∗-bundle is a bundle (p,B,X) such that each fibre is a C∗-algebra

with the “zero-limit” property: if x ∈ X and {bi}i∈I is a net in B such that ‖bi‖ → 0

and p(bi) → x in X then bi → 0x, the zero element in the fibre Bx. Here, ‖bi‖ is the

norm of bi in the fibre Bbi . This condition is equivalent to defining a neighbourhood

basis for 0x in B, for each x ∈ X, to be:

N(x : U, ε) := {b ∈ B : p(B) ∈ U, ‖b‖ < ε} (3.2)

where U is a neighbourhood of x in X and ε > 0.

Addition, multiplication, and involution may be defined on B fibre-wise. Each of

these operations is clearly continuous. It seems that B consists of seemingly very

independent fibres. However, 3.2 shows that the fibres do fit together topologically.

A neighbourhood of the zero element of a fibre Bx consists of elements in p−1(U)
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whose norm is less than some fixed ε, where U is a neighbourhood of x in X. So a

neighbourhood of 0x in B very well might contain elements from fibres other than Bx.

A basis for the topology of B may be obtained by translating each neighbourhood

N(x : U, ε) along the fibre Bx, for each x ∈ X. So points b1, b2 in B whose projec-

tions in X are close and for which ‖b1‖ and ‖b2‖ are close (note: these are potentially

different norms) are close in B. Thus the fibres of B vary continuously, in a sense.

Definition 28. A section of a C∗-bundle (p,B,X) is a continuous function F : X →

B such that p ◦ F = idX , the identity on X. Thus F maps each x ∈ X to something

in the fibre Bx. Let Γ(B) denote the space of sections on B.

If X is compact then Γ(B) can be given the supremum norm:

‖F‖∞ = sup
x∈X

‖F (x)‖

This is finite because F is a continuous and X is compact. We can define addition,

multiplication and the involution * pointwise. With respect to these, the sup norm

is a C∗-norm, for it satisfies the C∗ property: ‖F ∗F‖ = ‖F ∗‖‖F‖ [11]. Indeed, Γ(B)

is a C∗-algebra. It is called the sectional C∗-algebra of B, or for short, the sectional

algebra of B.

Let C = (Γ(B), ‖ · ‖∞) be a sectional C∗-algebra of a C∗-bundle (p,B,X) with X

compact. The dual space of such a C∗-algebra is particularly easy to describe. This

was worked out by Fell and Doran [11]. For each x ∈ X let B̂x be the dual space of

the fibre Bx.

Lemma 29. If π ∈ B̂x and F ∈ C then Π(F ) = π(F (x)) defines an irreducible

*-representation of C.

Fell and Doran also showed that if Π is an irreducible *-representation of C then

there is a unique x ∈ X such that Π(F ) = π(F (x)). The action of forming Π from a

representation π ∈ Bx is called “lifting”, as it extends a representation of a fibre to

the sectional algebra of the entire bundle. This describes the dual space of C as the
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union of the dual spaces of its fibres. As for the topology on the dual of a C∗-bundle,

Fell gave two very useful results.

Theorem 30. Let q be projection of Ĉ onto X, i.e., q : (π, x) �→ x. Then q is

continuous and open.

Theorem 31. For each fixed η ∈ Bx, the map π �→ Πx,π is a homeomorphism of B̂x

into Ĝ.

Since q is continuous and open as well as surjective, it is a quotient map on Ĉ. Thus

much of the topology of the dual space of the sectional algebra of a bundle is captured

in the base space. The second result shows that dual space of each fibre is injected

into Ĝ with its topology completely preserved. As we will see, for the wallpaper

groups this leads to a splitting up of Ĝ into sheet-like pieces.

3.3 Representation Theory of the Wallpaper Groups

We defined the convolution algebra �1(G) for a discrete group G in Chapter 1. We

review it quickly here as a refresher as well as the C∗-algebra, C∗(G). After this we

move to describing C∗(G) for a wallpaper group G. This is a corollary of K.F. Tay-

lor’s description of the C∗-algebras of the crystallographic groups. For the wallpaper

groups, C∗(G) can be expressed as an algebra of matrices whose entries are continu-

ous functions on the torus. Explicit calculations of the C∗-algebras of the wallpaper

groups were done by E. Pohorecky in his Master’s thesis [19]. We will use these in

examples.

First is a quick review of the definitions of the algebras �1(G) and C∗(G) from Chapter

1. For a wallpaper group G, �1(G) is the set of functions f : G → C such that

‖f‖1 =
∑
x∈G

|f(x)|

Equipped with pointwise addition, scalar multiplication, convolution and the ∗ opera-

tion defined by f ∗(x) = f(x−1), and the norm ‖·‖1, �1(G) is a Banach *-algebra over C.
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Next, �2(G) is the space of square summable functions f : G → C. There is an inner

product on �2(G) defined by 〈f, g〉 =
∑

x∈G f(x)g(x). With this inner product and

pointwise addition and scalar multiplication, �2(G) forms a Hilbert space, that is, it

is a complete inner product space. It’s not hard to see that �1(G) sits inside of �2(G).

This comes from the fact that if a sequence is absolutely summable then it is also

square summable.

Recall that a C∗-algebra is a Banach *-algebra with the additional norm condition

[8]:

‖f ∗ ∗ f‖ = ‖f‖2

Now �1(G) is not a C∗-algebra. Nonetheless, we can extend it to a C∗-algebra by pro-

viding it with a new norm. This is the operator norm, for f ∈ �1(G) is an operator

on �2(G) via convolution. That is, �1(G) ∼= λ(G) where λ(f) is the operator on �2(G)

defined by λ(f)g = f ∗g. The norm of λ(f) is then sup{‖f ∗g‖ : g ∈ �2(G), ‖g‖2 ≤ 1}.

The wallpaper groups are amenable. This comes from the fact that locally compact

abelian groups are amenable, as well as groups that have an amenable subgroup of

finite index. For the wallpaper groups, Z2 is the locally compact abelian group of

finite index. Thus the group C∗-algebra of a wallpaper group is the same as its re-

duced group C∗-algebra. This is denoted by C∗(G) and can be defined to be the

completion of �1(G) with respect to the operator norm. Note that �1(G) is a dense

subset of C∗(G) and that the C∗-norm of a function is never greater than its �1-norm

for ‖f ∗ g‖ ≤ ‖f‖1‖g‖2.

3.3.1 Description of C∗(G)

K.F Taylor showed that the group C∗-algebra of a crystallographic group G is iso-

morphic to a subalgebra of matrices whose entries are continuous functions on the

dual of the translational subgroup of the crystal [23]. We work out this identification

in the specific case that G is a wallpaper group.
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Since the lattice subgroup Z2 is abelian it carries a Fourier transform. This is defined

by, for f ∈ �2(Z2),

F(f)(χ) =
∑

(x,y)∈Z2

f(x, y)χ(x, y)

where χ is a character in the dual group of Z2. As we’ve seen, the characters of Z2

are parametrized by T2 via χz,w(a, b) = zawb. Replacing χz,w with (z, w), the above

equation may then be written as F(f)(z, w) =
∑

x,y∈Z2 f(x, y)zxwy. This is the usual

Fourier series in two dimensions. Let L2(T2) be the set of square-integrable functions

from T2 to C. Given the inner product, 〈f, g〉 =
∫
T2 f(z, w)g(z, w)d(z, w), L

2(T2) is a

Hilbert space. It is well know that F extends to a unitary map of �2(Z2) onto L(T2),

called the Plancherel transform. We denote this by P .

Let C(T2) be the set of continuous complex-valued functions on the torus. Equipped

with the supremum norm, pointwise product and addition, and an involution defined

by f ∗(z, w) = f(z, w), C(T2) is a C∗-algebra. Also let B(L2(T2)) denote the algebra

of bounded linear operators on L2(T2), that is, linear functions B : L2(T2) → L2(T2)

such that sup{‖Bη‖2 : η ∈ L2(T2), ‖η‖2 ≤ 1} < ∞. This space carries pointwise

additiion and scalar multiplication and composition defines a product. The operator

norm is a natural norm on B(L2(T2)). It is well known that every bounded operator

B on a Hilbert space has a unique operator, B∗, called the adjoint. This is the unique

operator satisfying 〈Bξ, η〉 = 〈ξ, B∗η〉 for every function ξ in the Hilbert space. The

map that takes an operator to its adjoint is an involution. In fact, B(L2(T2)) forms

a C∗-algebra.

As explained in Chapter 2, by choosing a cross section γ : D → G one can decompose

G into cosets of the form γ(d)Z2. This also leads to a decomposition of �2(G). To

see this, note that the set of functions in �2(G) whose support is in the coset γ(d)Z2

is a subspace of �2(G). This subspace is isometric with �2(Z2) via fd(x) = f(γ(d)x).

As a set, �2(G) can then be written as ⊕�2(Z2) by mapping f to (fd)d∈D. Taking the

Plancherel transform of each fd we obtain an isometry Φ : �2(G) → ⊕L2(T2) defined
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by Φ : f �→ (P(fd)).

For f ∈ �1(G), consider Φλ(f)Φ−1. This is a bounded operator on ⊕L2(T2). In a

sense Φλ(F )Φ−1 is a multiplication operator. Let Mn(C(T2)) denote the space of

n × n matrices with entries in C(T2). Define M : Mn(C(T2)) → B(⊕L2(T2)) by

(M(F )(h))d =
∑

c∈D Fd,chc for h ∈ L2(T2). It is not hard to show that M is a C∗-

isomorphism of Mn(C(T2)) into B(⊕L2(T2)). Then Φλ(F )Φ−1 can be represented by

a matrix in Mn(C(T2)) in the sense that Φλ(F )Φ−1 is in the range of M. The main

result of [23] is the following:

Theorem 32. Let G be a wallpaper group with point group D. For f ∈ �1(G),

let F(f) = M−1Φλ(f)Φ−1. Then F extends to a C∗-isomorphism of C∗(G) onto a

C∗-subalgebra of Mn(C(T2)), where n = |D|.

Taylor used this to obtain a concrete description of the transform F : �1(G) →

Mn(C(T2)) and the form of the elements of C∗(G):

Lemma 33. Let G be a wallpaper group with point group D, 2-cocycle α, and

n = |D|. Let f ∈ �1(G). For each pair (b, c) ∈ D ×D,

(F(f))b,c(z, w) = (z, w)α(bc
−1, c)(f̂bc−1)(c · (z, w))

Furthermore, F(C∗(G)) can be characterized in the following way. For b, c ∈ D, the

(b, c)-entry of an element F ∈ F(C∗(G)) has the form:

Fb,c(z, w) = (c · (z, w))α(b,c−1)α(c,c−1)Fbc−1,1(c · (z, w)) (3.3)

where (z, w) ∈ T2 and Fbc−1,1 ∈ C(T2). Thus the elements of F(C∗(G)) are deter-

mined by a set of n continuous functions on T2.

As an example, consider the wallpaper group G = p2. We’ve seen that α is trivial.

The action of D = Z2 on T2 can be worked out using our knowledge of the action of

D on G:

−1·χz,w(a, b) = χz,w(−1−1 ·(a, b)) = χz,w(−1·(a, b)) = χz,w(−a,−b) = z−aw−b = zawb
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This shows that −1 · (z, w) = (z, w).

Thus we have that, for f ∈ �1(p2),

F(f) =

⎡⎣ f̂1(z, w) f̂−1(z, w)

f̂−1(z, w) f̂1(z, w)

⎤⎦.
Similarly, an element F of C∗(p2) is of the form:

F =

⎡⎣ F1(z, w) F−1(z, w)

F−1(z, w) F1(z, w)

⎤⎦
where F1, F−1 ∈ C(T2).

3.4 Description of Ĉ∗(G)

To describe the dual space of Ĝ it is helpful to view C∗(G) as the sectional algebra

of a C∗-bundle. The base space of C∗(G) is T2/D. This is the quotient of T2 by the

action of D. Note that T2/D is a Hausdorff space. Let the D-orbit of an element

(z, w) in T2 be denoted by [z, w]. This allows us a notation for the elements of T2/D.

We define the C∗-bundle associated with C∗(G) by defining its fibers. For (z, w) ∈ T2,

let A[z,w] = {F (z, w) : F ∈ C∗(G)}. Since C∗(G) is a C∗-algbra, it is not difficult to

show that A[z,w] is also a C∗-algebra. Let B = ∪z,w∈T2/DA[z,w] and p map elements of

the fibre A[z,w] to [z, w] ∈ T2/D. Then (somewhat trivially), (B,X, p) is a C∗-bundle.

E. Pohorecky showed that the sectional algebra of this is isomorphic to C∗(G) [19].

Consider the dual space of this sectional algebra. Recall that this is the union of

the dual spaces of the fibres, lifted to the sectional algebra. Now A[z,w] is finite-

dimensional since it is a subalgebra of Mn(C). Thus A[z,w] may be decomposed into

blocks, as shown in the first section of this chapter. The dual space of A[z,w] is then

finite and discrete, with one point for each central minimal projection in Â[z,w] in a

list that sums to the identity of A[z,w]. Specifically, there is a change of basis matrix
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U such that UA[z,w]U
−1 is block diagonal. For Ci, the projection corresponding to the

ith block of UA[z,w]U
−1, the map M �→ CiUA[z,w]U

−1 is an irreducible representation

of Â[z,w]. Doing this for each block gives a complete set of representatives of the

classes of irreducible representations of A[z,w].

We now restate Theorems 30 and 31 for the case when G is a wallpaper group.

Theorem 34. Let q be the map that projects Ĝ onto T2/D via (π, [z, w]) �→ [z, w].

Then q is continuous and open.

Theorem 35. For each [z, w] ∈ T2/D, the map π �→ Π[z,w],π is a homeomorphism of

Â[z,w] into Ĝ.

Thus at each point of the underlying space T2/D, the dual space of the fibre embeds

into Ĝ. Since the dual space of a fibre is discrete and finite this implies that points

in Ĝ are closed. So Ĝ is T1. It is not Hausdorff, however.

Continuity of q leads to the following consequence. Let xn be a sequence in T2/D.

If (πn, xn) → (π, x) in Ĝ then q(πn, xn) → q(π, x) ⇐⇒ πn → π. Thus a sequence

converges in Ĝ only if the underlying sequence in T2/D converges. Next we will

see that Ĝ, when G is a wallpaper group, is first countable - and so closure in Ĝ is

equivalent to sequential closure.

Lemma 36. Let G be a wallpaper group. Then Ĝ is first countable.

This is clear as G is first countable as a set, being generated by a finite set (the point

group) over Z2. As G is discrete, each singleton set in G is a neighbourhood basis for

itself. Thus G is first countable. In a first countable space, a set is closed if and only

if it is sequentially closed. That is, if E ⊆ Ĝ, a point x ∈ Ĝ is in the closure of E if

and only if there exists a sequence {xn}n∈N in E that converges to x. This allows us

to describe the topology of Ĝ in terms of convergence of sequences.
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Let Ω be the set of elements of T2/D that come from points that have a trivial

D-stabilizer. From the formula for elements of C∗(G) 3.3, it’s clear that A[z,w] =

{F (z, w) : F ∈ C∗(G)} is the full matrix algebra Mn(C) when [z, w] ∈ Ω. Thus Â[z,w]

consists of the identity representation of MN(C). The corresponding representation

in Ĝ is the evaluation of C∗(G) at [z, w]:

Π[z,w](F ) = π(F (z, w)) = F (z, w) (3.4)

The kernel of Π[z,w] consists of all elements of C∗(G) that are 0 at [z, w]. Suppose

[zn, wn] → [z, w] in T2/D. For F ∈ C∗(G), since F is continuous, F (zn, wn) →

F (z, w). In particular, if F (zn, wn) = 0 for all n ∈ N then F (z, w) = 0. Re-

call the definition of closure in the hull-kernel topology. A point Π is in the clo-

sure of a set E if and only if kerΠ ⊇ ∩σ∈E ker σ. But this means that Equation

3.4 implies that Π[zn,wn] = (πn, zn) → Π[z,w] = (π, z). Thus we have that on Ω,

Π[zn,wn] → Π[z,w] ⇐⇒ [zn, wn] → [z, w]. This implies that q−1(Ω) is homeomorphic

to Ω (More succinctly, q is a homeomorphism of Ω and q−1(Ω) since q is open, con-

tinuous, 1-1 and onto q−1(Ω) = {(Π, [z, w]) : [z, w] ∈ Ω}) . In [19], you can see that Ω

is a dense, connected subset of T2/D. In fact, Ω is second countable, Hausdorff and

locally homeomorphic to 2-dimensional Euclidean space and so is a 2-manifold.

It remains then to describe the topology of Ĝ\ q−1(Ω) and its boundary with q−1(Ω).

We do this in terms of sequences. Note that Ĝ is compact since G is discrete and

so every sequence in Ĝ has a convergent subsequence. Recall that the dimension of

representation is the dimension of its Hilbert space.

Lemma 37. Suppose (πn, [zn, wn]) is a set of representations in Ĝ of constant di-

mension with [zn, wn] → [z, w] in T2/D and (πn, [zn, wn])(F ) → (π, [z, w])(F ) for each

F ∈ C∗(G). Then (πn, [zn, wn]) → (π, [z, w]) in the hull kernel topology of Ĝ.

Proof. We must show that ∩ ker(πn, [zn, wn]) ⊆ ker(π, [z, w]). So let F ∈ C∗(G) be

such that (πn, [zn, wn])(F ) = 0 for all n ∈ N. Then since 0 = (πn, [zn, wn])(F ) →

(π, [z, w])(F ), we have that (π, [z, w])(F ) = 0.
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Let K be a subgroup of D and let ΩK be the set of elements of T2/D with stabilizer

K. We call ΩK a strata of T2/D. Note that Ω1D = Ω and that if K1 �= K2 then

ΩK1 �= ΩK2 . Thus the strata form a partition of T2/D. From 3.3 it’s clear that A[z,w]

block diagonalizes in the same way for each (z, w) ∈ ΩK . Thus over a strata there is

a common number and dimension of representations of A[z,w]. So the previous lemma

applies to sequences that converge within a strata. In practice, this is enough to

efficiently determine the topology of ΩK , as a subspace of Ĝ. If (πn, [zn, wn]) does not

converge to (π, [z, w]) pointwise we can use Appendix C to check that ker(π, [z, w])

does not contain ker(πn, [zn, wn]). The Appendix uses the calculations in [19] of Ĝ as

a set to calculate the kernel of each representation. Note that there is one calculation

for each ΩK .

The strata of T2/D come in only three different forms. There is Ω, which corresponds

to a 2-dimensional subset of T2/D. Then there are strata that come from stabilizer

subgroups that only contain a reflection, i.e., are of the form {1D, ρ} where ρ is a

reflection. In Appendix A, you can see that these are 1-dimensional subsets of T2/D.

Finally, there are strata whose stabilizer contains a rotation (note that if it contains

more than one reflection, then it automatically contains a rotation). These strata

consist of single points in T2/D.

We next show how to find the limits of sequences in Ĝ above a strata that converge

to a point (π, [z, w]), with [z, w] lying in a strata of lower dimension. Note that the

overlying sequence in Ĝ must converge to some representation above (z, w), since Ĝ

is compact.

Lemma 38. Suppose π is a representation of C∗(G) such that π ∼
⊕m

i=1 πi where

each πi is irreducible. Then ker π ⊆ ker πi for i = 1, . . . ,m.

Proof. Since π ∼
⊕m

i=1, there are projections Pi, i = 1, . . . ,m such that π(F ) =

P1π(F ) + . . .+ Pmπ(F ). Thus if π(F ) = 0 then πi(F ) = Piπ(F ) = 0.

Suppose (πn, [zn, wn]) is a sequence in Ĝ with [zn, wn] in a strata of T2/D. Now
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(πn, [zn, wn])(F ) may be written as PUnF (zn, wn)U
−1
n where Un is the change of basis

matrix that block diagonalizes A[z,w] and P is the projection corresponding to some

block. Consider the function F �→ PUF (z, w)U−1 where U is the limit of {Un}.

Claim: this is a (reducible) representation of C∗(G). Call it (π, [z, w]). Note that

ker(π, [z, w]) contains ker(πn, [zn, wn]). Now (π, [z, w]) may be split into a sum of

finitely many irreducible representations of Ĝ. By the previous lemma, (πn, [zn, wn])

converges to each of these. This describes a method of finding limits at the bound-

aries of strata. In fact, it provides a complete set of limits. This can be checked using

Appendix C.

Appendix A contains drawings of the dual spaces of the wallpaper groups which were

made using the calculations of Ĝ as a set in [19] and the results on the topology from

this chapter. In the drawings, Ω is the large 2-dimensional piece in the centre. Small

spheres are points and each point on a line is a representation. White lines and circles

are empty - look nearby for the representations that live above them. Dotted lines

connect 1D strata to the points in their closures.
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Chapter 4

Compact Open Sets in Ĝ

In the last chapter we described the topology of the dual space of a wallpaper group.

Now we delve further to arrive at a characterization of the compact open sets in Ĝ.

This involves recognizing the preimage of a strata in Ĝ as a fibre bundle, describing

T2/D as stratified space and mapping Ĝ to a graph in which the compact open sets

correspond to a certain type of subgraph.

4.1 More on the Topology of Ĝ

One can see from the drawings of the dual spaces (Appendix A) that the preimage

of strata in Ĝ has a fairly rigid structure. Locally, they look like a set of finite

copies of the strata. When the wallpaper group splits, q−1(ΩK) is isomorphic to

ΩK × {1, . . . , �}, for some � ∈ N, where {1, . . . , �} is the discrete topological space

with � elements. When G does not split, this is still true locally: for each x ∈ T2/D

there is a neighbourhood U of x such that q−1(U) is isomorphic to U × {1, . . . , �} for

some � ∈ N. This leads to the notion of fibre bundles [6]. These are very similar

to C∗-bundles. The main difference is that in a fibre bundle, the fibres are all one

particular topological space.

Definition 39. Let E,B, F be topological spaces. A map p : E → B is a fibre bundle

with fibre F if it satisfies the following:

(i) p−1(b) = F for all b ∈ B
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(ii) p : E → B is surjective

(iii) For each x ∈ B there is a neighbourhood U of x and a homeomorphism ψ :

p−1(U) → U ×F such that proj ◦ψ = p where proj is projection of U ×F onto

the first coordinate.

Lemma 40. Let K be a subgroup of D. Let � be the size of Â[z,w] for any [z, w] ∈ ΩK .

Then q restricted to q−1(ΩK) is a fibre bundle with fibre {1, . . . , �}.

This greatly simplifies our view of the topology of Ĝ, as we know what the topology

of U × {1, . . . , �} looks like, where U is a subset of T2/D. Where strata intersect,

again, we can make calculations using the definition of the hull-kernel topology.

Now consider a compact open subset C of Ĝ. We have already seen that q−1(Ω) (where

Ω is the set of elements of T2/D with trivial stabilizer) is a dense 2-dimensional subset

of T2/D. In particular, q−1(Ω) is isomorphic to Ω, so we refer to q−1(Ω) simply as

Ω. From Appendix you can see that Ω is connected. T2/D may be represented on a

subset of square [−1, 1] × [−1, 1] ⊆ R2, where certain edges are identified. Suppose

C intersects Ω. Then C ∩ Ω is an open subset of Ω. But since Ω is a subspace of

R2, which is Hausdorff, compact subsets are closed. So C ∩ Ω is an open and closed

subset of Ω. But since Ω is a connected subset of R2 this means that C ∩ Ω must be

all of Ω or be empty.

Lemma 41. Let f be a non-zero projection in �1(G) with support set C in Ĝ. Then

C contains Ω.

Proof. C is the support set of a projection in �1(G) so it is compact and open. Suppose

C is empty. Now C = supp(f) = {π ∈ Ĝ : π(f) �= 0}. If this is empty then π(f) = 0

for all π ∈ Ĝ. This implies that f = 0. On the other hand, if C \ Ω is non-empty,

then it contains some π from q−1(x) where x is not in Ω. But C is open, so it contains

a neighbourhood of π. But every neighbourhood of π intersects Ω, since Ω is dense

in Ĝ. Thus C ∩ Ω is non-empty. This is a contradiction.
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Thus non-trivial projections in �1(G) have support sets that contain all of Ω. We

will show that a similar result holds for the other strata of T2/D. Recall that a set

is [sequentially] compact if every sequence has a convergent subsequence. Since the

map q : Ĝ → T2/D is continuous, Cauchy sequences in q−1(Ω) converge to each of

the representations above the limit of this sequence in T2/D. Since Ω is dense in Ĝ

this means that, for each point x ∈ T2/D \ Ω, C must contain at least one of the

representations in the fibre q−1(x). In other words, for non-trivial projections, q(C)

is all of T2/D.

Definition 42. Let ΩK be a strata of T2/D. Define a strata piece of ΩK in Ĝ to be

a connected component of q−1(ΩK).

Note that for a wallpaper group that splits, a strata piece is isomorphic to the un-

derlying strata. As we have seen, strata come in the form of line segments, points,

and the 2-dimensional subspace Ω. Thus a strata piece in this case is one of these

and so is a connected subset of R0 (a point), R or is Ω. For a strata piece S that is

a point, it is clear that C ∩ S is all of S. For a strata piece S that is a line segment,

we show that C ∩S is closed in S. Consider a sequence {πn} ⊆ C ∩S that converges

to some π ∈ S. Since C ∩ S is in C and C is compact in Ĝ, there is a limit of this

sequence in C. But since S is Hausdorff and {πn} lies completely in S, the limit of

S is unique. So π ∈ C ∩ S. This shows that C ∩ S is closed in S. Since C is open,

C ∩S is open in the subspace topology on S. But the only closed and open subsets of

a line segment are the empty set and the whole line segment. Since q(C) = T2/D if

C is the support set of a non-trivial projection then C must contain an entire strata

piece, for each strata.

For a non-splitting wallpaper group (of which there are 4), we can check on a case to

case basis that strata are also points, circles, line segments and Ω. Strata pieces here

also take this form, although they may be twisted in unexpected ways. For instance,

pg has a strata that is a circle. The corresponding fibre is the set {1, 2}. However,

instead of two circles as strata pieces, there is just one in the form of a doubly wound
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circle. Nevertheless, this is a Hausdorff space and so its intersection with C is closed

and open and so must be empty or the whole strata piece. We have arrived at the

following lemma.

Theorem 43. Let C be a compact open set in Ĝ and S a strata piece of Ĝ. If C ∩S

is non-empty, then C ∩ S = S.

Thus the problem of finding compact open sets becomes discretized in a sense, for

there are finitely many strata and strata pieces. All that is left to figure out is which

combinations of strata pieces yield compact open sets. What needs to be checked are

the boundaries of strata. Note that at the boundary of Ω, we know that one piece

from each strata must be contained in C. That leaves three other types of bound-

aries: point strata with point strata, point strata with line strata, line strata with

line strata. The first case does not occur as points in T2/D that are fixed by rotations

are isolated. The last case also does not happen because in between strata that are

fixed by two different reflections, there is always a point that is fixed by a rotation.

This is because of the continuity of the D action on T2. A point on the boundary of

these two strata is fixed by both reflections - and the composition of two reflections

is a rotation. Thus the only case to consider is that of the boundary between a point

strata and a line strata.

Suppose C contains a strata piece S that is a line segment and at its ends are pieces

from a point strata. Then if C is compact, it must contain one of the points in

the closure of S. If C contains a piece {π} from a point strata, then openness of C

requires that C contain the strata pieces which contain {π} in their closures. Another

way to express this is to define an order on strata. Say that S1 < S2 if S1 ⊆ S2. If C

contains a strata piece CS from S and S < S1 then C must contain all pieces from S1

whose closure intersects CS. If S0 < S then C must contain at least one piece from

S0 that intersects the closure of CS. This leads to an algorithm for forming compact

open sets in Ĝ:
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(i) Let C contain Ω.

(ii) Choose a 1D strata, if any. Add to C at least one piece from this.

(iii) Move around the perimeter of Ω from here, adding at least one piece from each

strata. If the previous strata was 1D, choose at least one piece from the closures

of the 1D pieces in C. If the previous strata was a point, choose all 1D strata

pieces that contain this point in their closures.

4.2 T2/D as a Stratified Space

The problem of forming the compact open subsets of Ĝ reduces to a sequence of

choices of pieces from each strata. We really only need to know the strata pieces of

G and how they connect to each other. This suggests that we map Ĝ to a graph.

This is what we will do in this section. To do this, we first introduce the concept of

a stratified space and show that T2/D is one of these, with its strata being the strata

we’ve been talking about all along.

Definition 44. A filtered space is a Hausdorff space X endowed with a filtration by

closed subsets:

∅ = X−1 ⊆ X0 ⊆ X1 ⊆ . . . ⊆ Xn−1 ⊂ Xn = X

The formal dimension of X is defined to be n. The connected components of Xi\Xi−1

are called strata and each have dimension i.

Definition 45. A stratified space is a filtered space with the following frontier con-

dition:

For any two strata S, T such that T ∩ S �= ∅, we have that T ⊆ S.

Example 1. Let X = X2 be a square, X1 be the lines that form the perimeter of X,

and X0 the corner points of X. Then X0 ⊆ X1 ⊂ X2 and each Xi is closed. The

strata are S2 = X2 \X1 = the open square, the connected components of X1 \X0 =

the lines formed by removing the corner points from the perimeter, X0 = the corner
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Figure 4.1: The square, decomposed into strata.

points. It’s easy to see that if Si ∩ Sj is non-empty, then Si ⊆ Sj.

As a simple non-example, consider extending one of the sides of the square (just the

line), for instance the set X = [0, 1]× [0, 1]∪{1}× [0, 2] ⊆ R2. Use the same filtration

as before except let X1 include the line that extends past the square and remove the

corner point there from X0. Then this is still a filtration for each set is closed and

X0 ⊆ X1 ⊂ X2 = X. The corresponding strata are shown in Figure 4.2. This space

is not stratified because the strata containing the extended line intersects the closure

of the square without being completely contained in it.

Now consider T2/D. Let X2 = T2/D. Let X1 consist of the points that are stabilized

by a non-trivial element of G. This corresponds to the union of the strata, without

Ω. Finally let X0 consist of the points in T2/D that are stabilized by a rotation. This

is the union of the point strata. Note that the formal dimensions of X2, X1 and X0

are their dimensions as manifolds.

Lemma 46. X2, X1, and X0 are closed subsets of T2/D with X0 ⊆ X1 ⊂ X2 = T2.

Proof. If we show that the set of points stabilized by a subgroup of D is closed then

this implies that X2, X1 and X0 are closed. This is actually immediate from the fact

that the action of a group element on T2 is continuous. For if d ·xn = xn for all n ∈ N

and xn → x, then d · x = x. Thus the set of elements of T2/D fixed by a particular
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Figure 4.2: Square with extended side and decomposition into strata.

subgroup of D is closed. Clearly X0 ⊆ X1 ⊆ X2.

The previous lemma shows that X−1 ⊆ X0 ⊆ X1 ⊂ X2 defines a filtration on T2/D.

The associated strata are the strata we defined earlier. For X2 \ X1 is the set of

points with trivial stabilizer = Ω, X1 \X0 are the points fixed by a reflection but not

a rotation, and X0 \ X−1 is X1, the points fixed by a rotation. You can see in [19]

that T2/D is either a sphere, disc, cylinder, or mobius band. To simplify notation,

we will write S2 = X2 \X1, S1 = X1 \X0 and S0 = X0.

Proposition 47. With the filtration given above, T2/D is a stratified space.

Proof. To prove this, we need to show that whenever a stratum intersects the closure

of another, that stratum is entirely contained in the closure. Firstly, the closure of a

0-dimensional strata is itself since these strata are just isolated points. So it does not

intersect any other stratum. The closure of a 1-dimensional stratum, however, may

pick up a point at the end of the line segment, which is stabilized by a rotation. But

such a point is a strata of its own and so is entirely contained in the closure. The

closure of the 2-dimensional strata is all of T2/D, since the set of stabilized points

in T2/D form a set of measure 0. So all strata are contained in this closure. The

only real case to check then is the case of a 1-dimensional stratum S intersecting the
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closure of another 1D strata T . But as we have seen, this does not happen as there

is always a rotation-fixed point between reflection strata.

4.3 The Graph of Ĝ

We use the notion of a stratified space to define a type of graph that we will associate

to each wallpaper. Recall that a graph is a set of vertices and a set of pairs of vertices

(edges). Two vertices are adjacent if there is an edge between them. A set of vertices

is independent if no two vertices are adjacent. In a directed graph, the edges are

ordered pairs. If (v1, v2) is in the edge set of a directed graph, we say there is an edge

from v1 to v2 and denote this by an arrow in the drawing of the graph. When the

vertices may be grouped into k disjoint sets for which no two vertices are adjacent,

the graph is called k-partite or multipartite [24]:

Definition 48. A graph is multipartite if its vertex set may be partitioned into

independent subsets.

Now construct a graph from Ĝ using the following steps. We will call this the graph

of Ĝ and denote it by G.

(i) Decompose Ĝ into strata.

(ii) Within each strata, take strata pieces.

(iii) Assign each piece a vertex.

(iv) Draw a directed edge from piece A to piece B if B ⊆ A.

Lemma 49. Let G be a wallpaper group. The graph of Ĝ is a directed multipartite

graph.

Proof. First, G is a directed graph by construction. To show that it is multipartite,

we must define a partition of the vertex set and show that each subset in this is

independent. Fix a strata S of T2/D and let SG be the vertices in G that correspond

to strata pieces of S in Ĝ. We call this the set of vertices of the strata S. Since the
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strata pieces of S are the connected components of q−1(S), they are not contained in

each others’ closures as connected components are closed. Thus there are no edges

between vertices in SG, showing that SG is independent. Since the set {q−1(S) :

S, a strata of T2/D} is a partition of Ĝ, {SG : S, a strata of T2/D} is a partition of

G.

Drawings of graphs of the dual spaces of the wallpaper groups are found in Appendix

B. Vertices from the same strata are grouped together. Note that the direction of

an edge is always from a higher dimensional strata to a strata of lower dimension.

The strata of dimension 2 forms a distinguished vertex in the graph for it flows into

every other vertex. Thus it is the source of G. We will leave these edges out in the

more complicated graph pictures in order to make the connectivity visually clear.

The dimension of a strata can actually be gleaned from the graph; it is the length of

the path from the source. The flow and connectivity of the partition are determined

by the strata structure while the finer details are controlled by the dual space topology.

Consider what a non-trivial compact open subset C of Ĝ looks like on the graph G.

Denote the image of C in G by C. We know that C is a collection of strata pieces,

one from each strata. Thus C corresponds to a collection of vertices of G, one from

each strata. Furthermore, C satisfies the property that if CS ⊆ C is a strata piece

from a strata S then all strata pieces which contain CS in their closure must be in C.

On the graph, this means that the predecessors of each vertex of C are also in C. The

second property of C is that it contains at least one piece from each strata S0 < S

that intersects the closure of CS. For C this means for each vertex of C, at least one

of its successors is also in C.

Theorem 50. Let G be a wallpaper group and G the associated graph. A compact

open set in Ĝ corresponds to a subgraph S of G with the property that for each

vertex in S, each of its predecessors is in S and at least one of its successors is in S.

Furthermore S must contain at least one vertex from each strata.

52



Chapter 5

Projections in �1(G): An Example

We have described the compact open subsets of Ĝ. Which of these are the support

set of a projection? In this section we present a further condition for compact open

sets in Ĝ that are the support set of a projection in �1(G). Next do an example using

p2 to show that the support sets of finite group projections are not always the only

possible support sets in Ĝ. We construct a projection onto a compact open subset of

p̂2 that is not the support set of a finite subgroup projection.

5.1 The Rank Condition

Lemma 51. Define a map, trace : Mn(C) → C by trace(M) =
∑n

i=1 Mii. Suppose

Mn(C) is given the topology as bounded operators on Cn. Then trace is continuous.

Proof. For any 1 ≤ i ≤ n,

|Mii| ≤ sup{‖Mx‖ : ‖x‖ ≤ 1} = ‖M‖.

Thus
∑n

i=1 |Mii| ≤ n‖M‖. But | trace(M)| ≤
∑n

i=1 |Mii| so that | trace(M)| ≤ n‖M‖.

Since trace is linear this shows that it is continuous.

Lemma 52. If P ∈ Mn(C) is a projection, then trace(P ) = rank(P ).

Proof. If P is a projection then there is a unitary matrix U and a matrix D with ones

or zeros on the diagonal and zeros everywhere else so tha P = UDU−1 (take U to be

53



a basis of eigenvectors, and D the corresponding matrix of eigenvalues). Then:

trace(P) = trace(UDU−1) = trace(D)

But trace(D) = rank(D) and rank(D) = rank(P ). Thus trace(P ) = rank(P ).

Theorem 53. Let f ∈ �1(G) ⊆ C∗(G) be a non-trivial projection. Then there is

some α ∈ N ∪ {0} such that rank(F(f)(a)) = α for all a ∈ T2. In this case we say

that the rank of f is α.

Proof. Let F = F(f) and F (T2) = {F (a) : a ∈ T2}. Then rank : F (T2) → C is

continuous. But for any a ∈ T2, rank(F (a)) ∈ N ∪ {0}. Since T2 is connected, this

implies rank is constant on F (T2).

Now supp(f) = {π ∈ Ĝ : π(f) �= 0}. From the previous chapter, defining Π[z,w](F ) =

F (z, w), Π is a representation of C∗(G) with each irreducible representation of C∗(G)

corresponding to the projection onto a block of UF (z, w)U−1 where U is the matrix

that block diagonalizes F (z, w).

Lemma 54. Let f ∈ �1(G) be a projection. Then there exists α ∈ N∪{0} such that

for each [z, w] ∈ T2/D, the elements in the set {rank(π(f)) : π ∈ supp(f), q(π) =

[z, w]} sum to α.

This puts a restriction on the number and size of representations at each point [z, w] ∈

T2/D in a compact open set that is the support set of a projection. To reflect this in G,

we can add a weight to each vertex defined to be the dimension of the corresponding

representation in Ĝ. We call a compact open set in Ĝ viable if it satisfies the rank

condition in lemma 54. In G a viable compact open set is a compact open set such

that the sum of the weights in each strata is non-increasing as you move away from

the source.

5.2 The Example: p2

Realize p2 as p2 = {[I, (a, b)] : a, b ∈ Z} ∪ {[−I, (a, b)] : a, b ∈ Z}, a group of affine

transformations.
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The dual of C∗(p2) consists of the representations given by point evaluation of C∗(G)

on T2, except at four special points: (1, 1), (−1, 1), (1,−1), (−1,−1) ∈ T2/D. Here

the point evaluation representation splits into two 1-dimensional irreducible represen-

tations:

π+
z,w(F ) = F1(z, w) + F−1(z, w)

π−
z,w(F ) = F1(z, w)− F−1(z, w).

Figure 7 shows a picture of the dual space in 2D on the parametrized torus and in 3D.

Figure 5.1: The dual space of p2 in 2D and 3D.

ThenD is {I,−I} and the finite subgroups ofG are of the formKa,b = {[−I, (a, b)], [I, (0, 0)]}

where (a, b) ∈ Z2. Let fK = 1
2
(δ[−I,(a,b)] + δ[I,(0,0)]). Each Ka,b has two representations

in its dual space: the identity character and the character which is 1 on [1, (0, 0)] and

-1 on [−I, (a, b)]. Thus subgroup projections in �1(p2) have the following form:

f =
1

2
(δ[1,(0,0)] ± δ[σ,(n,m)])

F(f)(z, w) =
1

2

⎡⎣ 1 ±znwm

±znwm 1

⎤⎦

The support sets of these subgroup projections are determined by the parity of n and

m. This gives rise to 8 different sets. These can be seen in Figure 5.2. White dots
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are empty, while black dots are included in the support set. Of course the centre

sphere is also included in the support set. To obtain the other four, make the white

dots black and the black dots white. A light blue background is included in order to

visually separate the pictures.

Figure 5.2: Support sets of the finite subgroup projections in �1(p2).

We will now construct a projection whose support set is not the support set of a

finite subgroup projection. To do this, we derive a complete set of conditions that

characterize projections in �1(p2). First, note that:

C∗(G) =

⎧⎨⎩
⎡⎣ F1(z, w) F−1(z, w)

F−1(z, w) F1(z, w)

⎤⎦ : F1, F−1 ∈ C(T2)}

⎫⎬⎭
�1(p2) =

⎧⎨⎩
⎡⎣ f̂1(z, w) f̂−1(z, w)

f̂−1(zw) f̂1(z, w)

⎤⎦ : f1, f−1 ∈ �1(Z2)

⎫⎬⎭
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Since F is a C*-isomorphism, f is a projection in C∗(p2) if and only if F(f) is a

projection in M2(C(T2))D. So consider F ∈ M2(C(T2))D such that F = F 2 = F ∗.

We can obtain an equivalent set of equations in terms of the functions F1 and F−1:

F 2 = F is equivalent to:

F1(z, w) = F1(z, w)
2 + F−1(z, w)F−1(z, w)

F−1(z, w) = F1(z, w)F−1(z, w) + F−1(z, w)F1(z, w)

F−1(z, w) = F1(z, w)F−1(z, w) + F−1(z, w)F1(z, w)

F1(z, w) = F−1(z, w)F−1(z, w) + F1(z, w)
2

F = F ∗ is equivalent to:

F1(z, w) = F1(z, w)

F−1(z, w) = F−1(z, w)

F−1(z, w) = F−1(z, w)

F1(z, w) = F1(z, w)

Simplifying, these together become:

F1(z, w) ∈ R

F−1(z, w) = F−1(z, w)

F−1(z, w)(1− F1(z, w)− F1(z, w)) = 0

F1(z, w) =
1±

√
1− 4|F−1(z, w)|2

2

If F1 is the positive root over all of T2 or the negative root over all of T2 then in

particular F1(z, w) = F1(z, w) so that the second equation implies that F1(z, w) = 1/2

whenever F−1(z, w) �= 0. But if F−1(z, w) = 0 then F1(z, w) = 0. So since F1 must

be continuous, either F−1 is constantly 0 or F1 is constantly
1
2
. The first case implies

that F is the identity projection. The second gives:

F =

⎡⎣ 1
2

F−1(z, w)

F−1(z, w)
1
2

⎤⎦
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with |F−1(z, w)| = 1
2
, F−1(F−1) ∈ �1(Z) and F−1(z, w) = F−1(z, w) for all (z, w) ∈ T2.

Since F−1 is a continuous function onto the half unit circle, we know there exists a

continuous f : [−1, 1]× [−1, 1] → [−1, 1] such that:

F−1(e
πix, eπiy) =

1

2
eπif(x,y)

f(1, y) = f(−1, y) + 2ky

f(x, 1) = f(x,−1) + 2kx

f(−x,−y) = −f(x, y) + 2kx,y

where kx, ky and kx,y are integers. The last condition shows that on each line through

the origin f is an odd function shifted by an integer.

We could also force F1 to be the positive root on a fundamental domain for the

action of D on T and the negative root on the fundamental domain shifted by the

action of D (i.e., (z, w) �→ (z, w)). We would need F1 to be well-defined on the

boundary of the domain. Note that with this definition of F1, the second equation

is automatically satisfied. An example would be to take the fundamental domain

T2
L = {(z, w) : Im(z) > 0} and define F−1(z, w) = z2 + z. Then z2 + z = z2 + z

and F−1(F−1) ∈ �1(Z). On T2
L, F1(z, w) =

1+
√

1−4|z+1|2
2

and F1(z, w) =
1−
√

1−4|z+1|2
2

on the rest of the torus. Note that regardless of the choice of fundamental domain,

F1(±1,±1) = 1/2 and |F−1(±1,±1)| = 1/2.

Lemma 55. If F1 : [−1, 1] × [−1, 1] → C is twice continuously differentiable with

F (1, x) = F (−1, x) and F (x, 1) = F (x,−1) then F−1(F ) ∈ �1(Z2).

Proof. First suppose f : (−1, 1] → C is differentiable. Then

F−1(
d f

dx
)(a) =

∫ 1

−1

d f

dx
(x)eπiaxdx

= f(x)πiaeπiax|1−1 −
∫ 1

−1

f(x)πiaeπixadx

= −πiaF−1(f)(a)
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so that F−1(f)(a) = i
πa
F−1(d f

dx
)(a).

Now applying this once for each variable to F : (−1, 1]× (−1, 1] → C we get that

F−1(F )(a, b) = −1
π2ab

F−1(Fxy)

where Fxy = ( d2 F
dxdy

)(a, b).

Now since the Plancherel transform P : �2(Z2) → L2(T2) is an isometric isomorphism

and since C(T2) ⊆ L2(T2), we have that F−1(F ) is square summable. The function

h(a, b) = −1
π2ab

is also in �2(Z2). Thus the product F−1(F ) is in �1(Z2).

We will work on a parametrized torus. The conditions in Theorem 2 can be easily

adjusted to reflect this. Parametrize by: (x, y) �→ (eiπx, eiπy). Next, let L = [−1, 0]×

[−1, 1] and R = [0, 1] × [−1, 1], the left and right halves of the parametrized torus,

respectively. Define:

F−1(x, y) =
1

2
(cos(πx) cos(πxy) + ix2 sin(πy))

F1(x, y) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
2
+ 1

2

√
1− cos2(πx) cos2(πxy) + x4 sin2(πy) for (x, y) ∈ L

1
2
− 1

2

√
1− cos2(πx) cos2(πxy) + x4 sin2(πy) for (x, y) ∈ R

Then F1 and F−1 define a projection F in C∗(p2). The support set of F is shown in

Figure 5.3.

It is clear that F−1 has continuous first and second partial derivatives. For F1, one

must check that the partials are continuous at the points along the boundary of L

and R. This is indeed the case. Thus F−1(F ) is an element of �1(p2). We have

constructed a projection in �1(p2) onto a certain viable compact open set that is not

the support set of a finite subgroup projection. This suggests that knowledge of the

form of the compact open subsets of Ĝ can be helpful in finding “unusual” projections.
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Figure 5.3: Support set of the constructed projection
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Chapter 6

Conclusion

The dual space of a wallpaper group G consists of the union of the dual spaces of the

fibres of a C∗-bundle whose underlying space is T2/D. We showed that T2/D is a

stratified space and how the topology of Ĝ is reflected by this. Essentially, Ĝ consists

of a 2-manifold surrounded by “strata pieces” which locally are copies of the strata of

T2/D. There is a graph associated with Ĝ that encodes the topological information

in Ĝ that is relevant to compact open subsets in Ĝ. The compact open subsets of Ĝ

then correspond to a certain kind of subgraph. Using p2 as an example, we showed

that it is possible to construct a projection onto a compact open set in p̂2 that is

not a finite-subgroup projection. This compact open set is also not the support set

of a finite-subgroup projection. Future work might aim to show how to construct a

projection in �1(G) for a given viable compact open set in the dual space of a given

wallpaper group G. A natural question is whether the compact open subsets in the

dual space of a general crystallographic group G may be described in a similar way,

i.e. as subgraphs of a graph associated with Ĝ.
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Appendix A

Pictures of the Dual Spaces

p2

p3
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p4

p6

cm
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pm

pg
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cmm

pmm
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pmg

pgg
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p3m1

p31m
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p4mm

p4mg
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p6mm
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Appendix B

Dual Space Graphs

This sections contains the graphs of the dual spaces of the wallpaper groups. Vertices

in the same strata are grouped together, spatially (along a line radiating from the

centre vertex). There is an edge from the large centre vertex to each of the other

vertices of the graph, but these edges are not shown in order to keep the pictures un-

cluttered. The graph of the dual space of p1 is not included as this group is abelian

and so its graph consists of a single vertex.

p2

p3
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p4

p6

cm
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pm

pg

cmm
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pmm2

pgg

p3m1

p31m
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p4mm

p4mg

p6mm

77



78



Appendix C

*-Representations of the Wallpaper Groups

This appendix gives a set of representatives for the equivalence classes of Ĝ, for each

non-trivial wallpaper group. These calculations were worked out in [19]. For each

wallpaper group, we also include a picture of a set of representatives for the equiv-

alence classes of T2/D. This is shown on a torus which has been parametrized by

(x, y) �→ (eπix, eπiy), (x, y) ∈ [−1, 1) × [−1, 1). Be aware that some edges are iden-

tified (glued), according to the action of the point group D. Representations are

organized by strata. The first strata listed is always Ω, which contains just one ir-

reducible representation above each point. We leave the description of Ω blank, as

it is the complement of the union of the rest of the strata in T2/D. The kernel of a

∗−representation π consists of functions F in C∗(G) such that π(F ) = 0. Note that

π(F ) is a matrix in Mn(C), for some n ≤ |D|. Knowing the kernels of elements of Ĝ

allows us to explicitly check statements about the topology of Ĝ.
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p2

Point group: Z2 = {1, σ}.

Strata

π(F ) =

⎡⎣ F1(z, w) Fσ(z, w)

Fσ(z, w) F1(z, w)

⎤⎦

Strata (1, 1), (1,−1), (−1, 1), (−1,−1)

π1(F ) = [F1(z, w)− Fσ(z, w)]

π2(F ) = [F1(z, w) + Fσ(z, w)]
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p3

Point group: Z3 = {1, σ, σ2}

Strata

π(F ) =

⎡⎢⎢⎢⎣
F1(z, w) Fσ2(zw, z) Fσ(w, zw)

Fσ(z, w) F1(zw, z) Fσ2(w, zw)

Fσ2(z, w) Fσ(zw, z) F1(w, zw)

⎤⎥⎥⎥⎦

Strata (1, 1), (e−iπ/3, e−iπ/3), e−2iπ/3,−2iπ/3

π1(F ) = F1(z, w) + Fσ2(z, w) + Fσ(z, w)

π2(F ) = F1(z, w) +
−1
2
(1−

√
3i)Fσ2 + −1

2
(1 +

√
3i)Fσ(z, w)

π3(F ) = F1(z, w) +
−1
2
(1 +

√
3i)Fσ2(z, w) + −1

2
(1−

√
3i)Fσ(z, w)
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p4

Point group: Z4 = {1, σ, σ2, σ3}

Strata

π(F ) =

⎡⎢⎢⎢⎢⎢⎢⎣
F1(z, w) Fσ3(w, z) Fσ2(z, w) Fσ(w, z)

Fσ(z, w) F1(w, z) Fσ3(z, w) Fσ2(w, z)

Fσ2(z, w) Fσ(w, z) F1(z, w) Fσ3(w, z)

Fσ3(z, w) Fσ2(w, z) Fσ(z, w) F1(w, z)

⎤⎥⎥⎥⎥⎥⎥⎦

Strata (1, 1), (−1, 1), (−1,−1)

π1(F ) = [F1(z, w) + Fσ3(z, w) + Fσ2(z, w) + Fσ(z, w)]

π2(F ) = [F1(z, w)− Fσ3(z, w) + Fσ2(z, w)− Fσ(z, w)]

π3(F ) = [F1(z, w) + iFσ3(z, w)− Fσ2(z, w)− iFσ(z, w)]
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π4(F ) = [F1(z, w)− iFσ3(z, w)− Fσ2(z, w) + iFσ(z, w)]
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p6

Point group: Z6 = {1, σ, σ2, σ3, σ4, σ5}

Strata

π(F ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F1(z, w) Fσ5(zw, z) Fσ4(w, zw) Fσ3(z, w) Fσ2(zw, z) Fσ(w, zw)

Fσ(z, w) F1(zw, z) Fσ5(w, zw) Fσ4(z, w) Fσ3(zw, z) Fσ2(w, zw)

Fσ2(z, w) Fσ(zw, z) F1(w, zw) Fσ5(z, w) Fσ4(zw, z) Fσ3(w, zw)

Fσ3(z, w) Fσ2(zw, z) Fσ(w, zw) F1(z, w) Fσ5(zw, z) Fσ4(w, zw)

Fσ4(z, w) Fσ3(zw, z) Fσ2(w, zw) Fσ(z, w) F1(zw, z) Fσ5(w, zw)

Fσ5(z, w) Fσ4(zw, z) Fσ3(w, zw) Fσ2(z, w) Fσ(zw, z) F1(w, zw)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Strata (1, 1)

π1(F ) = [F1 + Fσ5 + Fσ4 + Fσ3 + Fσ2 + Fσ](1, 1)

π2(F ) = [F1 − Fσ5 + Fσ4 − Fσ3 + Fσ2 − Fσ](1, 1)

π3(F ) = [F1 − Fσ3 + −1
2
(1 −

√
3i)Fσ2 + 1

2
(1 +

√
3i)Fσ + −1

2
(1 +

√
3i)Fσ4 − 1

2
(1 −

√
3i)Fσ5 ](1, 1)
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π4(F ) = [F1 +Fσ3 + −1
2
(1 +

√
3i)Fσ2 + −1

2
(1−

√
3i)Fσ +

−1
2
(1−

√
3i)Fσ4 + −1

2
(1 +

√
3i)Fσ5 ](1, 1)

π5(F ) = [F1 + Fσ3 + −1
2
(1−

√
3i)Fσ2 + 1

2
(1 +

√
3i)Fσ +

−1
2
(1 +

√
3i)Fσ4 + −1

2
(1−

√
3i)Fσ5 ](1, 1)

π6(F ) = [F1 − Fσ3 + −1
2
(1 +

√
3i)Fσ2 + 1

2
(1 −

√
3i)Fσ + −1

2
(1 −

√
3)Fσ4 + 1

2
(1 +

√
3i)Fσ5 ](1, 1)

Strata (−1, 1)

π1(F ) =

⎡⎢⎢⎢⎣
F1 + Fσ3 Fσ2 + Fσ3 Fσ + Fσ4

Fσ4 + Fσ F1 + Fσ3 Fσ5 + Fσ2

Fσ5 + Fσ2 Fσ + Fσ4 F1 + Fσ3

⎤⎥⎥⎥⎦ (−1, 1)

π2(F ) =

⎡⎢⎢⎢⎣
F1 − Fσ3 Fσ2 − Fσ3 Fσ − Fσ4

Fσ4 − Fσ F1 − Fσ3 Fσ5 − Fσ2

Fσ5 − Fσ2 Fσ − Fσ4 F1 − Fσ3

⎤⎥⎥⎥⎦ (−1, 1)

Strata {(−e−π/3i, e−2/3πi)}

π1(F ) =

⎡⎣ F1 −
√
3i+1
2

Fσ4 +
√
3i−1
2

Fσ2 Fσ5 −
√
3i+1
2

Fσ3 +
√
3i−1
2

Fσ

Fσ −
√
3i+1
2

F 5
σ +

√
3i−1
2

Fσ3 F1 −
√
3i+1
2

Fσ4 +
√
3i−1
2

Fσ2

⎤⎦ (−e−π/3i, e−2/3πi)

π2(F ) =

⎡⎣ F1 + Fσ4 + Fσ2 Fσ + Fσ5 + Fσ3

Fσ5 + Fσ3 + Fσ F1 + Fσ4 + Fσ2

⎤⎦ (−e−π/3i, e−2/3πi)
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π3(F ) =

⎡⎣ F1 +
√
3i−1
2

Fσ4 −
√
3i−1
2

Fσ2 Fσ5 +
√
3i−1
2

Fσ3 −
√
3i+1
2

Fσ

Fσ +
√
3i−1
2

Fσ5 −
√
3i+1
2

Fσ3 F1 +
√
3i−1
2

Fσ4 −
√
3i+1
2

Fσ2

⎤⎦ (−e−π/3i, e−2/3πi)
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cm

Point group: Z2 = {1, ρ}

Strata

π(F ) =

⎡⎣ F1(z, w) Fρ(z, zw)

Fρ(z, w) F1(z, zw)

⎤⎦

Strata {(w2, w) : w ∈ T2}

π1(F ) = [F1(w
2, w) + Fρ(w

2, w)]

π2(F ) = [F1(w
2, w)− Fρ(w

2, w)]
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pm

Point group: Z2 = {1, ρ}

Strata

π(F ) =

⎡⎣ F1(z, w) Fρ(z, w)

Fρ(z, w) F1(z, w)

⎤⎦

Strata {(z, 1) : z ∈ T2}

π1(F ) = [F1(z, 1) + Fρ(z, 1)]

π2(F ) = [F1(z, 1)− Fρ(z, 1)]

Strata {(z,−1) : z ∈ T2}
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π1(F ) = [F1(z,−1) + Fρ(z,−1)]

π2(F ) = [F1(z,−1)− Fρ(z,−1)]
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pg

Point group: Z2 = {1, ρ}

Strata

π(f) =

⎡⎣ F1(z, w) zFρ(z, w)

Fρ(z, w) F1(z, w)

⎤⎦

Strata {(z, 1) : z ∈ T2}

π1(F ) = [F1(z, 1)− z1/2Fρ(z, 1)]

π2(F ) = [F1(z, 1) + z1/2Fρ(z, 1)]

Strata {(z,−1) : z ∈ T2}

π1(F ) = [F1(z,−1) + z1/2Fρ(z,−1)]
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π2(F ) = [F1(z,−1)− z1/2Fρ(z,−1)]
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cmm

Point group: D4 = {1, ρ1, ρ2, σ}

Strata

π(F ) =

⎡⎢⎢⎢⎢⎢⎢⎣
F1(z, w) Fσ(z, w) Fρ1(z, zw) Fρ2(z, zw)

Fσ(z, w) F1(z, w) Fρ2(z, zw) Fρ1(z, zw)

Fρ1(z, w) Fρ2(z, w) F1(z, zw) Fσ(z, zw)

Fρ2(z, w) Fρ1(z, w) Fσ(z, zw) F1(z, zw)

⎤⎥⎥⎥⎥⎥⎥⎦

Strata (1, 1)

π1(F ) = [F1 + Fσ − Fρ1 − Fρ2 ](1, 1)

π2(F ) = [F1 − Fσ − Fρ1 + Fρ2 ](1, 1)

π3(F ) = [F1 + Fσ + Fρ1 + Fρ2 ](1, 1)
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π4(F ) = [F1 − Fσ + Fρ1 − Fρ2 ](1, 1)

Strata {(w2, w) : w ∈ T2}

π1(F ) =

⎡⎣ F1(w
2, w)− Fρ1(w

2, w) Fσ(w
2, w)− Fρ2(w

2, w)

Fσ(w
2, w)− Fρ2(w

2, w) F1(w
2, w)− Fρ1(w

2, w)

⎤⎦

π2(F ) =

⎡⎣ F1(w
2, w) + Fρ1(w

2, w) Fσ(w
2, w) + Fρ2(w

2, w)

Fσ(w
2, w) + Fρ2(w

2, w) F1(w
2, w) + Fρ1(w

2, w)

⎤⎦

Strata (−1, 1)

π1(F ) =

⎡⎣ F1(−1, 1)− Fσ(−1, 1) Fρ1(−1,−1)− Fρ2(−1,−1)

Fρ1(−1, 1)− Fρ2(−1, 1) F1(−1,−1)− Fσ(−1,−1)

⎤⎦

π2(F ) =

⎡⎣ F1(−1, 1) + Fσ(−1, 1) Fρ1(−1,−1) + Fρ2(−1,−1)

Fρ1(−1, 1) + Fρ2(−1, 1) F1(−1,−1) + Fσ(−1,−1)

⎤⎦

Strata (1,−1)

π1(F ) = [F1 + Fσ − Fρ1 − Fρ2 ](1,−1)

π2(F ) = [F1 − Fσ + Fρ1 − Fρ2 ](1,−1)

π3(F ) = [F1 − Fσ − Fρ1 + Fρ2 ](1,−1)
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π4(F ) = [F1 + Fσ + Fρ1 + Fρ2 ](1,−1)

Strata {(1, w) : w ∈ T2}

π1(F ) =

⎡⎣ F1(1, w)− Fρ2(1, w) Fσ(1, w)− Fρ1(1, w)

Fσ(1, w)− Fρ1(1, w) F1(1, w)− Fρ2(1, w)

⎤⎦

π2(F ) =

⎡⎣ F1(1, w) + Fρ2(1, w) Fσ(1, w) + Fρ1(1, w)

Fσ(1, w) + Fρ1(1, w) F1(1, w) + Fρ2(1, w)

⎤⎦
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pmm

Point group: D4 = {1, ρ1, ρ2, σ}

Strata

π(F ) =

⎡⎢⎢⎢⎢⎢⎢⎣
F1(z, w) Fσ(z, w) Fρ1(z, w) Fρ2(z, w)

Fσ(z, w) F1(z, w) Fρ2(z, w) Fρ1(z, w)

Fρ1(z, w) Fρ2(z, w) F1(z, w) Fσ(z, w)

Fρ2(z, w) Fρ1(z, w) Fσ(z, w) F1(z, w)

⎤⎥⎥⎥⎥⎥⎥⎦

Strata (1, 1)

π1(F ) = [F1(1, 1) + Fσ(1, 1)− Fρ1(1, 1)− Fρ2(1, 1)]

π2(F ) = [F1(1, 1)− Fσ(1, 1) + Fρ1(1, 1)− Fρ2(1, 1)]

π3(F ) = [F1(1, 1) + Fσ(1, 1) + Fρ1(1, 1) + Fρ2(1, 1)]
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π4(F ) = [F1(1, 1)− Fσ(1, 1)− Fρ1(1, 1) + Fρ2(1, 1)]

Strata {(1, w) : w ∈ T2}

π1(F ) =

⎡⎣ F1(1, w) + Fρ2(1, w) Fσ(1, w) + Fρ1(1, w)

Fσ(1, w) + Fρ1(1, w) F1(1, w) + Fρ2(1, w)

⎤⎦

π2(F ) =

⎡⎣ F1(1, w)− Fρ2(1, w) Fσ(1, w)− Fρ1(1, w)

Fσ(1, w)− Fρ1(1, w) F1(1, w)− Fρ2(1, w)

⎤⎦

Strata (1,−1)

π1(F ) = [F1(1,−1)− Fσ(1,−1) + Fρ1(1,−1)− Fρ2(1,−1)]

π2(F ) = [F1(1,−1) + Fσ(1,−1)− Fρ1(1,−1)− Fρ2(1,−1)]

π3(F ) = [F1(1,−1)− Fσ(1,−1)− Fρ1(1,−1) + Fρ2(1,−1)]

π4(F ) = [F1(1,−1) + Fσ(1,−1) + Fρ1(1,−1) + Fρ2(1,−1)]

Strata {(z,−1) : z ∈ T2}

π1(F ) =

⎡⎣ F1(z,−1)− Fρ1(z,−1) Fσ(z,−1)− Fρ2(z,−1)

Fσ(z,−1)− Fρ2(z,−1) F1(z,−1)− Fρ1(z,−1)

⎤⎦
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π1(F ) =

⎡⎣ F1(z,−1) + Fρ1(z,−1) Fσ(z,−1) + Fρ2(z,−1)

Fσ(z,−1) + Fρ2(z,−1) F1(z,−1) + Fρ1(z,−1)

⎤⎦

Strata (−1,−1)

π1(F ) = [F1(−1,−1)− Fσ(−1,−1) + Fρ1(−1,−1)− Fρ2(−1,−1)]

π2(F ) = [F1(−1,−1) + Fσ(−1,−1)− Fρ1(−1,−1)− Fρ2(−1,−1)]

π3(F ) = [F1(−1,−1) + Fσ(−1,−1) + Fρ1(−1,−1) + Fρ2(−1,−1)]

π4(F ) = [F1(−1,−1)− Fσ(−1,−1)− Fρ1(−1,−1) + Fρ2(−1,−1)]

Strata {(−1, w) : w ∈ T2}

π1(F ) =

⎡⎣ F1(−1, w) + Fρ2(−1, w) Fσ(−1, w) + Fρ1(−1, w)

Fσ(−1, w) + Fρ1(−1, w) F1(−1, w) + Fρ2(−1, w)

⎤⎦

π2(F ) =

⎡⎣ F1(−1, w)− Fρ2(−1, w) Fσ(−1, w)− Fρ1(−1, w)

Fσ(−1, w)− Fρ1(−1, w) F1(−1, w)− Fρ2(−1, w)

⎤⎦

Strata (−1, 1)

π1(F ) = [F1(−1, 1)− Fσ(−1, 1) + Fρ1(−1, 1)− Fρ2(−1, 1)]

π2(F ) = [F1(−1, 1) + Fσ(−1, 1)− Fρ1(−1, 1)− Fρ2(−1, 1)]
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π3(F ) = [F1(−1, 1)− Fσ(−1, 1)− Fρ1(−1, 1) + Fρ2(−1, 1)]

π4(F ) = [F1(−1, 1) + Fσ(−1, 1) + Fρ1(−1, 1) + Fρ2(−1, 1)]

Strata {(z, 1) : z ∈ T2}

π1(F ) =

⎡⎣ F1(z, 1)− Fρ1(z, 1) Fσ(z, 1)− Fρ2(z, 1)

Fσ(z, 1)− Fρ2(z, 1) F1(z, 1)− Fρ1(z, 1)

⎤⎦

π2(F ) =

⎡⎣ F1(z, 1) + Fρ1(z, 1) Fσ(z, 1) + Fρ2(z, 1)

Fσ(z, 1) + Fρ2(z, 1) F1(z, 1) + Fρ1(z, 1)

⎤⎦
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pmg

Point group: D4 = {1, ρ1, ρ2, σ}

Strata

π(F ) =

⎡⎢⎢⎢⎢⎢⎢⎣
F1(z, w) Fσ(z, w) zFρ1(z, w) Fρ2(z, w)

Fσ(z, w) F1(z, w) Fρ2(z, w) Fρ1(z, w)

Fρ1(z, w) Fρ2(z, w) F1(z, w) Fσ(z, w)

Fρ2(z, w) Fρ1(z, w) Fσ(z, w) F1(z, w)

⎤⎥⎥⎥⎥⎥⎥⎦

Strata (1, 1)

π1(F ) = [F1(1, 1) + Fσ(1, 1)− Fρ1(1, 1)− Fρ2(1, 1)]

π2(F ) = [F1(1, 1)− Fσ(1, 1) + Fρ1(1, 1)− Fρ2(1, 1)]

π3(F ) = [F1(1, 1)− Fσ(1, 1)− Fρ1(1, 1) + Fρ2(1, 1)]
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π4(F ) = [F1(1, 1) + Fσ(1, 1) + Fρ1(1, 1) + Fρ2(1, 1)]

Strata {(1, w) : w ∈ T2}

π1(F ) =

⎡⎣ F1(1, w)− Fρ2(1, w) Fσ(1, w)− Fρ1(1, w)

Fσ(1, w)− Fρ1(1, w) F1(1, w)− Fρ2(1, w)

⎤⎦

π2(F ) =

⎡⎣ F1(1, w) + Fρ2(1, w) Fσ(1, w) + Fρ1(1, w)

Fσ(1, w) + Fρ1(1, w) F1(1, w) + Fρ2(1, w)

⎤⎦

Strata (1,−1)

π1(F ) = [F1(1,−1)− Fσ(1,−1) + Fρ1(1,−1)− Fρ2(1,−1)]

π2(F ) = [F1(1,−1) + Fσ(1,−1)− Fρ1(1,−1)− Fρ2(1,−1)]

π3(F ) = [F1(1,−1)− Fσ(1,−1)− Fρ1(1,−1) + Fρ2(1,−1)]

π4(F ) = [F1(1,−1) + Fσ(1,−1) + Fρ1(1,−1) + Fρ2(1,−1)]

Strata {(z,−1) : z ∈ T2}

π1(F ) =

⎡⎣ F1(z,−1) + z1/2Fρ1(z,−1) Fσ(z,−1) + z1/2Fρ2(z,−1)

Fσ(z,−1) + z1/2Fρ2(z,−1) F1(z,−1) + z1/2Fρ1(z,−1)

⎤⎦
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π2(F ) =

⎡⎣ F1(z,−1) + z1/2Fρ1(z,−1) Fσ(z,−1) + z1/2Fρ2(z,−1)

Fσ(z,−1) + z1/2Fρ2(z,−1) F1(z,−1) + z1/2Fρ1(z,−1)

⎤⎦

Strata (−1,−1)

π(F ) =

⎡⎣ F1(−1,−1) + Fσ(−1,−1) Fρ1(−1,−1)− Fρ2(−1,−1)

−Fρ1(−1,−1)− Fρ2(−1,−1) F1(−1,−1)− Fσ(−1,−1)

⎤⎦

Strata {(−1, w) : w ∈ T2}

π1(F ) =

⎡⎣ F1(−1, w) + Fρ2(−1, w) Fσ(−1, w) + Fρ1(−1, w)

Fσ(−1, w)− Fρ1(−1, w) F1(−1, w)− Fρ2(−1, w)

⎤⎦

π2(F ) =

⎡⎣ F1(−1, w) + Fρ2(−1, w) Fσ(−1, w) + Fρ1(−1, w)

Fσ(−1, w)− Fρ1(−1, w) F1(−1, w)− Fρ2(−1, w)

⎤⎦

Strata (−1, 1)

π(F ) =

⎡⎣ F1(−1, 1)− Fσ(−1, 1) Fρ2(−1, 1) + Fρ1(−1, 1)

Fρ2(−1, 1)− Fρ1(−1, 1) F1(−1, 1) + Fσ(−1, 1)

⎤⎦

Strata {(z, 1) : z ∈ T2}

π1(F ) =

⎡⎣ F1(z, 1) + z1/2Fρ1(z, 1) Fσ(z, 1) + z1/2Fρ2(z, 1)

Fσ(z, 1) + z1/2Fρ2 F1(z, 1) + z1/2Fρ1(z, 1)

⎤⎦

101



π2(F ) =

⎡⎣ F1(z, 1)− z1/2Fρ1(z, 1) Fσ(z, 1)− z1/2Fρ2(z, 1)

Fσ(z, 1)− z1/2Fρ2 F1(z, 1)− z1/2Fρ1(z, 1)

⎤⎦
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pgg

Point group: D4 = {1, ρ1, ρ2, σ}

Strata

π(F ) =

⎡⎢⎢⎢⎢⎢⎢⎣
F1(z, w) Fσ(z, w) zFρ1(z, w) wFρ2(z, w)

Fσ(z, w) F1(z, w) Fρ2(z, w) zwFρ1(z, w)

Fρ1(z, w) wFρ2(z, w) F1(z, w) zFσ(z, w)

Fρ2(z, w) wFρ1(z, w) zFσ(z, w) F1(z, w)

⎤⎥⎥⎥⎥⎥⎥⎦

Strata (1, 1)

π1(F ) = [F1(1, 1)− Fσ(1, 1) + Fρ1(1, 1)− Fρ2(1, 1)]

π2(F ) = [F1(1, 1) + Fσ(1, 1)− Fρ1(1, 1)− Fρ2(1, 1)]

π3(F ) = [F1(1, 1)− Fσ(1, 1)− Fρ1(1, 1) + Fρ2(1, 1)]
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π4(F ) = [F1(1, 1) + Fσ(1, 1) + Fρ1(1, 1) + Fρ2(1, 1)]

Strata {(1, w) : w ∈ T2}

π1(F ) =

⎡⎣ F1(1, w) + w1/2Fρ2(1, w) Fσ(1, w) + w1/2Fρ1(1, w)

Fσ(1, w) + w1/2Fρ1(1, w) F1(1, w) + w1/2Fρ2(1, w)

⎤⎦

π2(F ) =

⎡⎣ F1(1, w)− w1/2Fρ2(1, w) Fσ(1, w)− w1/2Fρ1(1, w)

Fσ(1, w)− w1/2Fρ1(1, w) F1(1, w)− w1/2Fρ2(1, w)

⎤⎦

Strata (1,−1)

π1(F ) =

⎡⎣ F1(1,−1)− Fσ(1,−1) Fρ1(1,−1)− Fρ2(1,−1)

Fρ1(1,−1) + Fρ2(1,−1) F1(1,−1) + Fσ(1,−1)

⎤⎦

Strata {(z,−1) : z ∈ T2}

π1(F ) =

⎡⎣ F1(z,−1)− z1/2Fρ1(z,−1) Fσ(z,−1) + z1/2Fρ2(z,−1)

Fσ(z,−1)− z1/2Fρ2(z,−1) F1(z,−1) + z1/2Fρ1(z,−1)

⎤⎦

π2(F ) =

⎡⎣ F1(z,−1) + z1/2Fρ1(z,−1) Fσ(z,−1)− z1/2Fρ2(z,−1)

Fσ(z,−1) + z1/2Fρ2(z,−1) F1(z,−1)− z1/2Fρ1(z,−1)

⎤⎦

Strata (−1,−1)

π1(F ) = [F1(−1,−1)− Fσ(−1,−1)− iFρ1(−1,−1)− iFρ2(−1,−1)]
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π2(F ) = [F1(−1,−1) + Fσ(−1,−1) + iFρ1(−1,−1)− iFρ2(−1,−1)]

π3(F ) = [F1(−1,−1)− Fσ(−1,−1) + iFρ1(−1,−1) + iFρ2(−1,−1)]

π4(F ) = [F1(−1,−1) + Fσ(−1,−1)− iFρ1(−1,−1) + iFρ2(−1,−1)]

Strata {(−1, w) : w ∈ T2}

π1(F ) =

⎡⎣ F1(−1, w)− w1/2Fρ2(−1, w) Fσ(−1, w)− w1/2Fρ1(−1, w)

Fσ(−1, w) + w1/2Fρ1(−1, w) F1(−1, w) + w1/2Fρ2(−1, w)

⎤⎦

π2(F ) =

⎡⎣ F1(−1, w) + w1/2Fρ2(−1, w) Fσ(−1, w) + w1/2Fρ1(−1, w)

Fσ(−1, w)− w1/2Fρ1(−1, w) F1(−1, w)− w1/2Fρ2(−1, w)

⎤⎦

Strata (−1, 1)

π(F ) =

⎡⎣ F1(−1, 1) + Fσ(−1, 1) Fρ1(−1, 1)− Fρ2(−1, 1)

−Fρ1(−1, 1)− Fρ2(−1, 1) F1(−1, 1)− Fσ(−1, 1)

⎤⎦

Strata {(z, 1) : z ∈ T2}

π1(F ) =

⎡⎣ F1(z, 1)− z1/2Fρ1(z, 1) Fσ(z, 1)− z1/2Fρ2(z, 1)

Fσ(z, 1)− z1/2Fρ2(z, 1) F1(z, 1)− z1/2Fρ1(z, 1)

⎤⎦

π2(F ) =

⎡⎣ F1(z, 1) + z1/2Fρ1(z, 1) Fσ(z, 1) + z1/2Fρ2(z, 1)

Fσ(z, 1) + z1/2Fρ2(z, 1) F1(z, 1) + z1/2Fρ1(z, 1)

⎤⎦
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p3m1

Point group: D6 = {1, σ, σ2, ρ1, ρ2, ρ3}

Strata

π(F ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F1(z, w) Fσ2(w, zw) Fσ(zw, z) Fρ1(z, zw) Fρ2(zw,w) Fρ3(w, z)

Fσ(z, w) F1(w, zw) Fσ2(zw, z) Fρ2(z, zw) Fρ3(zw,w) Fρ1(w, z)

Fσ2(z, w) Fσ(w, zw) F1(zw, z) Fρ3(z, zw) Fρ1(zw,w) Fρ2(w, z)

Fρ1(z, w) Fρ2(w, zw) Fρ3(zw, z) F1(z, zw) Fσ2(zw,w) Fσ(w, z)

Fρ2(z, w) Fρ3(w, zw) Fρ1(zw, z) Fσ(z, zw) F1(zw,w) Fσ2(w, z)

Fρ3(z, w) Fρ1(w, zw) Fρ2(zw, z) Fσ2(z, zw) Fσ(zw,w) F1(w, z)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Strata {(w2, w) : w ∈ T2}

π1(F ) =

⎡⎢⎢⎢⎣
F1(w,w)− Fρ3(w,w) Fσ2(w,w2)− Fρ1(w,w

2) Fσ(w
2, w)− Fρ2(w

2, w)

Fσ(w,w)− Fρ1(w,w) F1(w,w
2)− Fρ2(w,w

2) Fσ2(w2, w)− Fρ3(w
2, w)

Fσ2(w,w)− Fρ2(w,w) Fσ(w,w
2)− Fρ3(w,w

2) F1(w
2, w)− Fρ1(w

2, w)

⎤⎥⎥⎥⎦
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π2(F ) =

⎡⎢⎢⎢⎣
F1(w,w) + Fρ3(w,w) Fσ2(w,w2) + Fρ1(w,w

2) Fσ(w
2, w) + Fρ2(w

2, w)

Fσ(w,w) + Fρ1(w,w) F1(w,w
2) + Fρ2(w,w

2) Fσ2(w2, w) + Fρ3(w
2, w)

Fσ2(w,w) + Fρ2(w,w) Fσ(w,w
2) + Fρ3(w,w

2) F1(w
2, w) + Fρ1(w

2, w)

⎤⎥⎥⎥⎦

Strata {(z, z2) : z ∈ T2}

π1(F ) =

⎡⎢⎢⎢⎣
F1(z

2, z)− Fρ1(z
2, z) Fσ2(z, z)− Fρ2(z, z) Fσ(z, z

2)− Fρ3(z, z
2)

Fσ(z
2, z)− Fρ2(z

2, z) F1(z, z)− Fρ3(z, z) Fσ2(z, z2)− Fρ1(z, z
2)

Fσ2(z2, z)− Fρ3(z
2, z) Fσ(z, z)− Fρ1(z, z) F1(z, z

2)− Fρ2(z, z
2)

⎤⎥⎥⎥⎦

π2(F ) =

⎡⎢⎢⎢⎣
F1(z

2, z) + Fρ1(z
2, z) Fσ2(z, z2) + Fρ2(z, z

2) Fσ(z, z) + Fρ3(z, z)

Fσ(z
2, z) + Fρ2(z

2, z) F1(z, z
2) + Fρ3(z, z

2) Fσ2(z, z) + Fρ1(z, z)

Fσ2(z2, z) + Fρ3(z
2, z) Fσ(z, z

2) + Fρ1(z, z
2) F1(z, z) + Fρ2(z, z)

⎤⎥⎥⎥⎦

Strata {(z, z) : z ∈ T2}

π1(F ) =

⎡⎢⎢⎢⎣
F1(z, z)− Fρ3(z, z) Fρ2(z, z

2)− Fσ2(z, z2) Fσ(z
2, z)− Fρ2(z

2, z)

Fσ(z, z)− Fρ1(z, z) F1(z, z
2)− Fρ2(z, z

2) Fσ2(z2, z)− Fρ3(z
2, z)

Fσ2(z, z)− Fρ2(z, z) Fσ(z, z
2)− Fρ3(z, z

2) F1(z
2, z)− Fρ1(z

2, z)

⎤⎥⎥⎥⎦

π2(F ) =

⎡⎢⎢⎢⎣
F1(z

2, z) + Fρ3(z
2, z) Fρ2(z, z) + Fσ2(z, z) Fσ(z, z

2) + Fρ2(z, z
2)

Fσ(z
2, z) + Fρ1(z

2, z) F1(z, z) + Fρ2(z, z) Fσ2(z2, z) + Fρ3(z, z
2)

Fσ2(z2, z) + Fρ2(z
2, z) Fσ(z, z) + Fρ3(z, z) F1(z

2, z) + Fρ1(z, z
2)

⎤⎥⎥⎥⎦

Strata (−eπi/3, e−2πi/3)
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π1(F ) =

⎡⎣ F1 − 1
2
Fσ2 + Fρ2 − 1

2
Fρ1 − 1

2
Fσ − 1

2
Fρ3

√
3
2
Fσ −

√
3
2
Fσ2 −

√
3
2
Fρ3 +

√
3
2
Fρ1

√
3
2
Fσ2 −

√
3
2
Fσ +

√
3
2
Fρ1 −

√
3
2
Fρ3 F1 − 1

2
Fσ +

1
2
Fρ1 − Fρ2 +

1
2
Fρ3

⎤⎦

π2(F ) = [F1 + Fσ2 + Fσ − Fρ1 − Fρ2 − Fρ3 ]

π3(F ) = [F1 + Fσ2 + Fσ + Fρ1 + Fρ2 + Fρ3 ]

Strata (e−2πi/3,−eπi/3)

π1(F ) =

⎡⎣ F1 − 1
2
Fσ2 + Fρ2 − 1

2
Fρ1 − 1

2
Fσ − 1

2
Fρ3

√
3
2
Fσ −

√
3
2
Fσ2 −

√
3
2
Fρ3 +

√
3
2
Fρ1

√
3
2
Fσ2 −

√
3
2
Fσ +

√
3
2
Fρ1 −

√
3
2
Fρ3 F1 − 1

2
Fσ +

1
2
Fρ1 − Fρ2 +

1
2
Fρ3

⎤⎦

π2(F ) = [F1 + Fσ2 + Fσ − Fρ1 − Fρ2 − Fρ3 ]

π3(F ) = [F1 + Fσ2 + Fσ + Fρ1 + Fρ2 + Fρ3 ]

Strata (1, 1)

π1(F ) =

⎡⎣ 1
2
(2F1 − Fσ2 − Fρ3 + 2Fρ1 − Fσ − Fρ2)

√
3
2
(Fσ − Fσ2 − Fρ2 + Fρ3)

√
3
2
(Fσ2 − Fσ − Fρ2 + Fρ3)

1
2
(2F1 − Fσ2 − Fσ − 2Fρ1 + Fρ2 + Fρ3)

⎤⎦ (1, 1)
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π2(F ) = [F1(1, 1) + Fσ2(1, 1) + Fσ(1, 1)− Fρ1(1, 1)− Frho2(1, 1)− Fρ3(1, 1)]

π3(F ) = [F1(1, 1) + Fσ2(1, 1) + Fσ(1, 1) + Fρ1(1, 1)− Frho2(1, 1) + Fρ3(1, 1)]
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p31m

Point group: D6 = {1, σ, σ2, ρ1, ρ2, ρ3}

Strata

π(F ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F1(z, w) Fσ2(zw3, zw2) Fσ(z
2w3, zw) Fρ1(z, zw) Fρ2(z

2w3, zw2) Fρ3(zw
3, w)

Fσ(z, w) F1(zw
3, zw2) Fσ2(z2w3, zw) Fρ2(z, zw) Fρ3(z

2w3, zw2) Fρ1(zw
3, w)

Fσ2(z, w) Fσ(zw
3, zw2) F1(z

2w3, zw) Fρ3(z, zw) Fρ1(z
2w3, zw2) Fρ2(zw

3, w)

Fρ1(z, w) Fρ2(zw
3, zw2) Fρ3(z

2w3, zw) F1(z, zw) Fσ2(z2w, zw2) Fσ(zw
3, w)

Fρ2(z, w) Fρ3(zw
3, zø2) Fρ1(z

2w3, zw) Fσ(z, zw) F1(z
2w3, zw2) Fσ2(zw3, w)

Fρ3(z, w) Fρ1(zw
3, zw2) Fρ2(z

2w3, zw) Fσ2(z, zw) Fσ(z
2w3, zw2) F1(zw

3, w)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Strata (1, 1)

π1(F ) = F1(1, 1) + Fσ2(1, 1) + Fσ(1, 1) + Fρ1(1, 1) + Fρ2(1, 1) + Fρ3(1, 1)]
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π2(F ) = [F1(1, 1) + Fσ2(1, 1) + Fσ(1, 1)− Fρ1(1, 1)− Fρ2(1, 1)− Fρ3(1, 1)]

π3(F ) =

⎡⎣ F1 − 1
2
Fσ2 − 1

2
Fσ +

1
2
Fρ1 − Fρ2 +

1
2
Fρ3

√
3
2
Fσ2 −

√
3
2
Fσ +

√
3
2
Fρ1 −

√
3
2
Fρ3

−
√
3
2
Fσ2 +

√
3
2
Fσ +

√
3
2
Fρ1 −

√
3
2
Fρ3 F1 − 1

2
Fσ2 − 1

2
Fσ − 1

2
Fρ1 + Fρ2 − 1

2
Fρ3

⎤⎦ (1, 1)

Strata {(z, 1) : z ∈ T2}

π1(F ) =

⎡⎢⎢⎢⎣
F1(z

2, z)− Fρ1(z
2, z) Fσ2(z, 1)− Fρ2(z, 1) Fσ(z, z)− Fρ3(z, z)

Fσ(z
2, z)− Fρ2(z

2, z) F1(z, 1)− Fρ3(z, 1) Fσ2(z, z)− Fρ1(z, z)

Fσ2(z2, z)− Fρ3(z
2, z) Fσ(z, 1)− Fρ1(z, 1) F1(z, z)− Fρ2(z, z)

⎤⎥⎥⎥⎦

π2(F ) =

⎡⎢⎢⎢⎣
F1(z, 1) + Fρ1(z, 1) Fσ2(z, z) + Fρ2(z, z) Fσ(z

2, z) + Fρ3(z
2, z)

Fσ(z, 1) + Fρ2(z
2, z) F1(z, z) + Fρ3(z, z) Fσ2(z2, z) + Fρ1(z

2, z)

Fσ2(z, 1) + Fρ3(z
2, z) Fσ(z, z) + Fρ1(z, z) F1(z

2, z) + Fρ2(z
2, z)

⎤⎥⎥⎥⎦

Strata (1, e−2/3πi)

π1(F ) =

⎡⎣ F1 +
√
−3−1
2

Fσ2 − 1+
√
−3

2
Fσ Fρ1 − 1+

√
−3

2
Fρ2 +

√
−3−1
2

Fρ3

Fρ1 +
√
−3−1
2

Fρ2 −
√
−3+1
2

Fρ3 F1 −
√
−3+1
2

Fσ2 +
√
−3−1
2

Fσ

⎤⎦ (1, e−2/3πi)

π2(F ) =

⎡⎣ F1 −
√
−3+1
2

Fσ2 + −1+
√
−3

2
Fσ Fρ1 +

−1+
√
−3

2
Fρ2 −

√
−3+1
2

Fρ3

Fρ1 −
√
−3+1
2

Fρ2 +
√
−3−1
2

Fρ3 F1 +
√
−3−1
2

Fσ2 −
√
−3+1
2

Fσ

⎤⎦ (1, e−2/3πi)

π3(F ) =

⎡⎣ F1 + Fσ2 + Fσ Fρ1 + Fρ2 + Fρ3

Fρ1 + Fρ2 + Fρ3 F1 + Fσ2 + Fσ

⎤⎦ (1, e−2/3πi)
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p4mm

Point group: D8 = {1, σ, σ2, σ3, ρ1, ρ2, ρ3, ρ4}

Strata

π(F ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F1(z, w) Fσ3(w, z) Fσ2(z, w) Fσ(w, z) Fρ1(z, w) Fρ2(w, z) Fρ3(z, w) Fρ4(w, z)

Fσ(z, w) F1(w, z) Fσ3(z, w) Fσ2(w, z) Fρ2(z, w) Fρ3(w, z) Fρ4(z, w) Fρ1(w, z)

Fσ2(z, w) Fσ(w, z) F1(z, w) Fσ3(w, z) Fρ3(z, w) Fρ4(w, z) Fρ1(z, w) Fρ2(z, w)

Fσ3(z, w) Fσ2(w, z) Fσ(z, w) F1(w, z) Fρ4(z, w) Fρ1(w, z) Fρ2(z, w) Fρ3(w, z)

Fρ1(z, w) Fρ2(w, z) Fρ3(z, w) Fρ4(w, z) F1(z, w) Fσ3(w, z) Fσ2(z, w) Fσ(w, z)

Fρ2(z, w) Fρ3(w, z) Fρ4(z, w) Fρ1(w, z) Fσ(z, w) F1(w, z) Fσ3(z, w) Fσ2(w, z)

Fρ3(z, w) Fρ4(w, z) Fρ1(z, w) Fρ2(w, z) Fσ2(z, w) Fσ(w, z) F1(z, w) Fσ3(w, z)

Fρ4(z, w) Fρ1(w, z) Fρ2(z, w) Fρ3(w, z) Fσ3(z, w) Fσ2(w, z) Fσ(z, w) F1(w, z)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Strata (1, 1)
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π1(F ) = [F1 + Fσ3 + Fσ2 + Fσ − Fρ1 − Fρ2 − Fρ3 − Fρ4 ](1, 1)

π2(F ) = [F1 − Fσ3 + Fσ2 + Fσ + Fρ1 + Fρ2 + Fρ3 − Fρ4 ](1, 1)

π3(F ) = [F1 + Fσ3 + Fσ2 + Fσ + Fρ1 − Fρ2 + Fρ3 + Fρ4 ](1, 1)

π4(F ) =

⎡⎣ F1 − Fσ2 − Fρ1 + Fρ3 Fσ − Fσ3 + Fρ2 − Fρ4

Fσ3 − Fσ + Fρ2 − Fρ4 F1 − Fσ2 + Fρ1 − Fρ3

⎤⎦ (1, 1)

π5(F ) = [F1 − Fσ3 + Fσ2 − Fσ − Fρ1 + Fρ2 − Fρ3 + Fρ4 ](1, 1)

Strata {(z, z) : z ∈ T2}

π1(F ) =

⎡⎢⎢⎢⎢⎢⎢⎣
F1(z, z) + Fρ4(z, z) Fσ3(z, z) + Fρ1(z, z) Fσ2(z, z) + Fρ2(z, z) Fσ(z, z) + Fρ3(z, z)

Fσ(z, z) + Fρ1(z, z) F1(z, z) + Fρ2(z, z) Fσ3(z, z) + Fρ3(z, z) Fσ2(z, z) + Fρ4(z, z)

Fσ2(z, z) + Fρ2(z, z) Fσ(z, z) + Fρ3(z, z) F1(z, z) + Fρ4(z, z) Fσ3(z, z) + Fρ1(z, z)

Fσ3(z, z) + Fρ3(z, z) Fσ2(z, z) + Fρ4(z, z) Fσ(z, z) + Fρ1(z, z) F1(z, z) + Fρ2(z, z)

⎤⎥⎥⎥⎥⎥⎥⎦

π2(F ) =

⎡⎢⎢⎢⎢⎢⎢⎣
F1(z, z)− Fρ4(z, z) Fσ3(z, z)− Fρ1(z, z) Fσ2(z, z)− Fρ2(z, z) Fσ(z, z)− Fρ3(z, z)

Fσ(z, z)− Fρ1(z, z) F1(z, z)− Fρ2(z, z) Fσ3(z, z)− Fρ3(z, z) Fσ2(z, z)− Fρ4(z, z)

Fσ2(z, z)− Fρ2(z, z) Fσ(z, z)− Fρ3(z, z) F1(z, z)− Fρ4(z, z) Fσ3(z, z)− Fρ1(z, z)

Fσ3(z, z)− Fρ3(z, z) Fσ2(z, z)− Fρ4(z, z) Fσ(z, z)− Fρ1(z, z) F1(z, z)− Fρ2(z, z)

⎤⎥⎥⎥⎥⎥⎥⎦
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Strata (−1,−1)

π1(F ) = [F1 + Fσ3 + Fσ2 + Fσ + Fρ1 + Fρ2 + Fρ3 + Fρ4 ](−1,−1)

π2(F ) =

⎡⎣ F1 − Fσ2 + Fρ2 − Fρ4 Fσ − Fσ3 − Fρ3 + Fρ1

Fσ3 − Fσ + Fρ1 − Fρ3 F1 − Fσ2 − Fρ2 + Fρ4

⎤⎦
π3(F ) = [F1 − Fσ3 + Fσ2 − Fσ − Fρ1 + Fρ2 − Fρ3 + Fρ4 ]

π4(F ) = [F1 + Fσ3 + Fσ2 + Fσ − Fρ1 − Fρ2 − Fρ3 − Fρ4 ]

π5(F ) = [F1 − Fσ3 + Fσ2 − Fσ + Fρ1 − Fρ2 + Fρ3 − Fρ4 ]

Strata {(−1, w) : w ∈ T2}

π1(F ) =
[
A B

]

where

A =

⎡⎢⎢⎢⎢⎢⎢⎣
F1(w,−1)− Fρ1(w,−1) Fσ3(−1, w)− Fρ2(−1, w)

Fσ(w,−1)− Fρ2(w,−1) F1(−1, w)− Fρ3(−1, w)

Fσ2(w,−1)− Fρ3(w,−1) Fσ(−1, w)− Fρ4(−1, w)

Fσ3(w,−1)− Fρ4(w,−1) Fσ2(−1, w)− Fρ1(−1, w)

⎤⎥⎥⎥⎥⎥⎥⎦

B =

⎡⎢⎢⎢⎢⎢⎢⎣
Fσ2(w,−1)− Fρ3(w,−1) Fσ(−1, w)− Fρ4(−1, w)

Fσ3(w,−1)− Fρ4(w,−1) Fσ2(−1, w)− Fρ1(−1, w)

F1(w,−1)− Fρ1(w,−1) Fσ3(−1, w)− Fρ2(−1, w)

Fσ(w,−1)− Fρ2(w,−1) F1(−1, w)− Fρ3(−1, w)

⎤⎥⎥⎥⎥⎥⎥⎦
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π2(F ) =
[
A B

]

where

A =

⎡⎢⎢⎢⎢⎢⎢⎣
F1(w,−1) + Fρ1(w,−1) Fσ3(−1, w) + Fρ2(−1, w)

Fσ(w,−1) + Fρ2(w,−1) F1(−1, w) + Fρ3(−1, w)

Fσ2(w,−1) + Fρ3(w,−1) Fσ(−1, w) + Fρ4(−1, w)

Fσ3(w,−1) + Fρ4(w,−1) Fσ2(−1, w) + Fρ1(−1, w)

⎤⎥⎥⎥⎥⎥⎥⎦

B =

⎡⎢⎢⎢⎢⎢⎢⎣
Fσ2(w,−1) + Fρ3(w,−1) Fσ(−1, w) + Fρ4(−1, w)

Fσ3(w,−1) + Fρ4(w,−1) Fσ2(−1, w) + Fρ1(−1, w)

F1(w,−1) + Fρ1(w,−1) Fσ3(−1, w) + Fρ2(−1, w)

Fσ(w,−1) + Fρ2(w,−1) F1(−1, w) + Fρ3(−1, w)

⎤⎥⎥⎥⎥⎥⎥⎦

Strata (−1, 1)

π1(F ) =

⎡⎣ F1 + Fσ2 − Fρ3 − Fρ1 Fσ + Fσ3 − Fρ2 − Fρ4

Fσ3 + Fσ − Fρ2 − Fρ4 F1 + Fσ2 − Fρ1 − Fρ3

⎤⎦ (−1, 1)

π2(F ) =

⎡⎣ F1 − Fσ2 − Fρ3 + Fρ1 −Fσ + Fσ3 + Fρ2 − Fρ4

−Fσ3 + Fσ + Fρ2 − Fρ4 F1 − Fσ2 − Fρ1 + Fρ3

⎤⎦ (−1, 1)

π1(F ) =

⎡⎣ F1 − Fσ2 − Fρ3 + Fρ1 Fσ + Fσ3 − Fρ2 + Fρ4

Fσ3 − Fσ − Fρ2 + Fρ4 F1 − Fσ2 − Fρ1 + Fρ3

⎤⎦ (−1, 1)

π4(F ) =

⎡⎣ F1 + Fσ2 + Fρ3 + Fρ1 Fσ + Fσ3 − Fρ2 + Fρ4

Fσ3 + Fσ + Fρ2 + Fρ4 F1 + Fσ2 + Fρ1 + Fρ3

⎤⎦ (−1, 1)
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Strata {(z, 1) : z ∈ T2}

π1(F ) =

⎡⎢⎢⎢⎢⎢⎢⎣
F1(1, z) + Fρ3(1, z) Fσ3(z, 1) + Fρ4(z, 1) Fσ2(1, z) + Fρ1(1, z) Fσ(z, 1) + Fρ2(z, 1)

Fσ(1, z) + Fρ4(1, z) F1(z, 1) + Fρ1(z, 1) Fσ3(1, z) + Fρ2(1, z) Fσ2(z, 1) + Fρ3(z, 1)

Fσ2(1, z) + Fρ1(1, z) Fσ(z, 1) + Fρ2(z, 1) F1(1, z) + Fρ3(1, z) Fσ3(z, 1) + Fρ4(z, 1)

Fσ3(1, z) + Fρ2(1, z) Fσ2(z, 1) + Fρ3(z, 1) Fσ(1, z) + Fρ4(1, z) F1(z, 1) + Fρ1(z, 1)

⎤⎥⎥⎥⎥⎥⎥⎦
π2(F ) =

⎡⎢⎢⎢⎢⎢⎢⎣
F1(1, z)− Fρ3(1, z) Fσ3(z, 1)− Fρ4(z, 1) Fσ2(1, z)− Fρ1(1, z) Fσ(z, 1)− Fρ2(z, 1)

Fσ(1, z)− Fρ4(1, z) F1(z, 1)− Fρ1(z, 1) Fσ3(1, z)− Fρ2(1, z) Fσ2(z, 1)− Fρ3(z, 1)

Fσ2(1, z)− Fρ1(1, z) Fσ(z, 1)− Fρ2(z, 1) F1(1, z)− Fρ3(1, z) Fσ3(z, 1)− Fρ4(z, 1)

Fσ3(1, z)− Fρ2(1, z) Fσ2(z, 1)− Fρ3(z, 1) Fσ(1, z)− Fρ4(1, z) F1(z, 1)− Fρ1(z, 1)

⎤⎥⎥⎥⎥⎥⎥⎦
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p4mg

Point group: D8 = {1, σ, σ2, σ3, ρ1, ρ2, ρ3, ρ4}

Strata

π(F ) =
[
A B

]

where

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F1(z, w) zFσ3(w, z) Fσ2(z, w) wFσ(w, z)

Fσ(z, w) F1(w, z) zFσ3(z, w) zFσ2(w, z)

Fσ2(z, w) zwFσ(w, z) F1(z, w) Fσ3(w, z)

Fσ3(z, w) zFσ2(w, z) zFσ(z, w) F1(w, z)

Fρ1(z, w) Fρ2(w, z) zFρ3(z, w) wFρ4(w, z)

Fρ2(z, w) zFρ3(w, z) zwFρ4(z, w) wFρ1(w, z)

Fρ3(z, w) wFρ4(w, z) zFρ1(z, w) Fρ2(w, z)

Fρ4(z, w) Fρ1(w, z) zwFρ2(z, w) zwFρ3(w, z)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

zFρ1(z, w) Fρ2(w, z) wFρ3(z, w) zwFρ4(w, z)

Fρ2(z, w) Fρ3(w, z) zFρ4(z, w) wFρ1(w, z)

zwFρ3(z, w) Fρ4(w, z) Fρ1(z, w) zwFρ2(w, z)

zFρ4(z, w) Fρ1(w, z) Fρ2(z, w) wFρ3(w, z)

F1(z, w) Fσ3(w, z) wFσ2(z, w) wFσ(w, z)

zFσ(z, w) F1(w, z) wFσ3(z, w) Fσ2(w, z)

wFσ2(z, w) Fσ(w, z) F1(z, w) wFσ3(w, z)

Fσ3(z, w) Fσ2(w, z) zwFσ(z, w) F1(w, z)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Strata (1, 1)

π1(F ) = [F1 + Fσ3 + Fσ2 + Fσ − Fρ1 − Fρ2 − Fρ3 − Fρ4 ](1, 1)

π2(F ) = [F1 − Fσ3 + Fσ2 − Fσ + Fρ1 − Fρ2 + Fρ3 − Fρ4 ](1, 1)

π3(F ) = [F1 + Fσ3 + Fσ2 + Fσ + Fρ1 − Fρ2 + Fρ3 + Fρ4 ](1, 1)

π4(F ) =

⎡⎣ F1 − Fσ2 − Fρ1 + Fρ3 Fσ − Fσ3 + Fρ2 − Fρ4

Fσ3 − Fσ + Fρ2 − Fρ4 F1 − Fσ2 + Fρ1 − Fρ3

⎤⎦
π5(F ) = [F1 − Fσ3 + Fσ2 − Fσ − Fρ1 + Fρ2 − Fρ3 + Fρ4 ](1, 1)

Strata {(z, z) : z ∈ T2}

π1(F ) =
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⎡⎢⎢⎢⎢⎢⎢⎣
F1(z, z)− Fρ2(z, z) zFσ3(z, z)− zFρ3(z, z) Fσ2(z, z)− Fρ4(z, z) zFσ(z, z)− zFρ1(z, z)

Fσ(z, z)− Fρ3(z, z) F1(z, z)− zFρ4(z, z) zFσ3(z, z)− zFρ1(z, z) zFσ2(z, z)− Fρ2(z, z)

Fσ2(z, z)− Fρ4(z, z) Fσ(z, z)− Fρ1(z, z) F1(z, z)− Fρ2(z, z) Fσ3(z, z)− Fρ3(z, z)

Fσ3(z, z)− Fρ1(z, z) zFσ2(z, z)− Fρ2(z, z) zFσ(z, z)− zFρ3(z, z) F1(z, z)− zFρ4(z, z)

⎤⎥⎥⎥⎥⎥⎥⎦
π2(F ) =

⎡⎢⎢⎢⎢⎢⎢⎣
F1(z, z) + Fρ2(z, z) zFσ3(z, z) + zFρ3(z, z) Fσ2(z, z) + Fρ4(z, z) zFσ(z, z) + zFρ1(z, z)

Fσ(z, z) + Fρ3(z, z) F1(z, z) + zFρ4(z, z) zFσ3(z, z) + zFρ1(z, z) zFσ2(z, z) + Fρ2(z, z)

Fσ2(z, z) + Fρ4(z, z) Fσ(z, z) + Fρ1(z, z) F1(z, z) + Fρ2(z, z) Fσ3(z, z) + Fρ3(z, z)

Fσ3(z, z) + Fρ1(z, z) zFσ2(z, z) + Fρ2(z, z) zFσ(z, z) + zFρ3(z, z) F1(z, z) + zFρ4(z, z)

⎤⎥⎥⎥⎥⎥⎥⎦

Strata (−1,−1)

π1(F ) = [Fρ4 − Fσ2 + F1 − Fρ2 + i(Fσ3 + Fσ − Fρ1 − Fρ3)](−1,−1)

π2(F ) = [F1 − Fσ2 + Fρ2 − Fρ4 + i(−Fσ3 − Fσ − Fρ1 − Fρ3)](−1,−1)

π3(F ) = [F1 − Fσ2 + Fρ2 − Fρ4 + i(Fσ3 + Fσ + Fρ1 + Fρ3)](−1,−1)

π4(F ) =

⎡⎣ F1 + Fσ2 + i(−Fρ1 + Fρ3) −Fσ3 + Fσ + i(−Fρ2 − Fρ4)

−Fσ3 + Fσ + i(Fρ2 + Fρ4) F1 + Fσ2 + i(Fρ1 − Fρ3)

⎤⎦ (−1,−1)

π5(F ) = [Fρ4 − Fσ2 + F1 − Fρ2 + i(−Fσ3 − Fσ + Fρ1 + Fρ3)](−1,−1)

Strata (−1, w) : w ∈ T2}

π1(F ) =
[
A B

]
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where

A =

⎡⎢⎢⎢⎢⎢⎢⎣
F1(−1, w) + w1/2Fρ3(−1, w) −Fσ3(w,−1) + w1/2Fρ4(z,−1)

Fσ(−1, w)− w1/2Fρ4(−1, w) F1(w,−1)− w1/2Fρ1(w,−1)

Fσ2(−1, w) + w1/2Fρ1(−1, w) −wFσ(w,−1) + w1/2Fρ2(w,−1)

Fσ3(−1, w) + w1/2Fρ2(−1, w) −Fσ2(w,−1)− w1/2Fρ3(w,−1)

⎤⎥⎥⎥⎥⎥⎥⎦

B =

⎡⎢⎢⎢⎢⎢⎢⎣
Fσ2(−1, w)− w1/2Fρ1(−1, w) wFσ(w,−1) + w1/2Fρ2(w,−1)

−Fσ3(−1, w) + w1/2Fρ2(−1, w) −Fσ2(w,−1) + w1/2Fρ3(w,−1)

F1(−1, w)− w1/2Fρ3(−1, w) Fσ3(w,−1) + w1/2Fρ4(w,−1)

−Fσ(−1, w)− w1/2Fρ4(−1, w) F1(w,−1) + w1/2Fρ1(w,−1)

⎤⎥⎥⎥⎥⎥⎥⎦
π2(F ) =

[
A B

]

where

A =

⎡⎢⎢⎢⎢⎢⎢⎣
F1(−1, w)− w1/2Fρ3(−1, w) −Fσ3(w,−1)− w1/2Fρ4(z,−1)

Fσ(−1, w) + w1/2Fρ4(−1, w) F1(w,−1) + w1/2Fρ1(w,−1)

Fσ2(−1, w)− w1/2Fρ1(−1, w) −wFσ(w,−1)− w1/2Fρ2(w,−1)

Fσ3(−1, w)− w1/2Fρ2(−1, w) −Fσ2(w,−1) + w1/2Fρ3(w,−1)

⎤⎥⎥⎥⎥⎥⎥⎦

B =

⎡⎢⎢⎢⎢⎢⎢⎣
Fσ2(−1, w) + w1/2Fρ1(−1, w) wFσ(w,−1)− w1/2Fρ2(w,−1)

−Fσ3(−1, w)− w1/2Fρ2(−1, w) −Fσ2(w,−1)− w1/2Fρ3(w,−1)

F1(−1, w) + w1/2Fρ3(−1, w) Fσ3(w,−1)− w1/2Fρ4(w,−1)

−Fσ(−1, w) + w1/2Fρ4(−1, w) F1(w,−1)− w1/2Fρ1(w,−1)

⎤⎥⎥⎥⎥⎥⎥⎦

Strata (−1, 1)
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π(F ) =

⎡⎢⎢⎢⎢⎢⎢⎣
F1 + Fσ2 Fσ3 + Fσ Fρ2 + Fρ4 Fρ1 + Fρ3

Fσ3 − Fσ F1 + Fσ2 Fρ1 − Fρ3 Fρ2 + Fρ4

Fρ2 − Fρ4 Fρ3 + Fρ1 F1 − Fσ2 Fσ + Fσ3

−Fρ1 + Fρ3 Fρ2 − Fρ4 −Fσ3 + Fσ F1 − Fσ2

⎤⎥⎥⎥⎥⎥⎥⎦

Strata {(z, 1) : z ∈ T2}

π1(F ) =
[
A B

]

where

A =

⎡⎢⎢⎢⎢⎢⎢⎣
F1(z, 1) + z1/2Fρ1(z, 1) zFσ3(1, z) + z1/2Fρ2

Fσ(z, 1) + z1/2Fρ2(z, 1) F1(1, z) + z1/2Fρ3

Fσ2(z, 1) + z1/2Fρ4(z, 1) zFσ2(1, z) + z1/2Fρ1(1, z)

Fσ3(z, 1) + z1/2Fρ4(z, 1) zFσ2(1, z) + z1/2Fρ1(1, z)

⎤⎥⎥⎥⎥⎥⎥⎦

B =

⎡⎢⎢⎢⎢⎢⎢⎣
Fσ2(z, 1) + z1/2Fρ3(z, 1) Fσ(1, z) + z1/2Fρ4(1, z)

zFσ3(z, 1) + z3/2Fρ4(z, 1) zFσ2(1, z) + z1/2Fρ1(1, z)

zFσ(z, 1) + z1/2Fρ2(z, 1) Fσ3(1, z) + z1/2Fρ2(1, z)

zFσ(z, 1) + z1/2Fρ2(z, 1) F1(1, z) + z1/2Fρ3(1, z)

⎤⎥⎥⎥⎥⎥⎥⎦

π2(F ) =
[
A B

]

where

A =

⎡⎢⎢⎢⎢⎢⎢⎣
F1(z, 1)− z1/2Fρ1(z, 1) zFσ3(1, z)− z1/2Fρ2

Fσ(z, 1)− z1/2Fρ2(z, 1) F1(1, z)− z1/2Fρ3

Fσ2(z, 1)− z1/2Fρ4(z, 1) zFσ2(1, z)− z1/2Fρ1(1, z)

Fσ3(z, 1)− z1/2Fρ4(z, 1) zFσ2(1, z)− z1/2Fρ1(1, z)

⎤⎥⎥⎥⎥⎥⎥⎦
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B =

⎡⎢⎢⎢⎢⎢⎢⎣
Fσ2(z, 1)− z1/2Fρ3(z, 1) Fσ(1, z)− z1/2Fρ4(1, z)

zFσ3(z, 1)− z3/2Fρ4(z, 1) zFσ2(1, z)− z1/2Fρ1(1, z)

zFσ(z, 1)− z1/2Fρ2(z, 1) Fσ3(1, z)− z1/2Fρ2(1, z)

zFσ(z, 1)− z1/2Fρ2(z, 1) F1(1, z)− z1/2Fρ3(1, z)

⎤⎥⎥⎥⎥⎥⎥⎦
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p6mm

Point group: D12 = {1, σ, σ2, σ3, σ4, σ5, ρ1, ρ2, ρ3, ρ4, ρ5, ρ6}

Strata

π(F ) =

⎡⎣ A B

C D

⎤⎦
where

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F1(z, w) Fσ5(zw, z) Fσ4(w, zw) Fσ3(z, w) Fσ2(zw, z) Fσ(w, zw)

Fσ(z, w) F1(zw, z) Fσ5(w, zø) Fσ4(z, w) Fσ3(zw, z) Fσ2(w, zw)

Fσ2(z, w) Fσ(zw, z) F1(w, zw) Fσ5(z, w) Fσ4(zw, z) Fσ3(w, zw)

Fσ3(z, w) Fσ2(zw, z) Fσ(w, zw) F1(z, w) Fσ5(zw, z) Fσ4(w, zw)

Fσ4(z, w) Fσ3(zw, z) Fσ2(w, zw) Fσ(z, w) F1(zw, z) F5(w, zw)

Fσ5(z, w) Fσ4(zw, z) Fσ3(w, zw) Fσ2(z, w) Fσ(zw, z) F1(w, zw)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Fρ1(z, w) Fρ2(zw, z) Fρ3(w, zw) Fρ4(z, w) Fρ5(zw, z) Fρ6(w, zw)

Fρ2(z, w) Fρ3(zw, z) Fρ4(w, zw) Fρ5(z, w) Fρ6(zw, z) Fρ1(w, zw)

Fρ3(z, w) Fρ4(zw, z) Fρ5(w, zw) Fρ6(z, w) Fρ1(zw, z) Fρ2(w, zw)

Fρ4(z, w) Fρ5(zw, z) Fρ6(w, zw) Fρ1(z, w) Fρ2(zw, z) Fρ3(w, zw)

Fρ5(z, w) Fρ6(zw, z) Fρ1(w, zw) Fρ2(z, w) Fρ3(zw, z) Fρ4(w, zw)

Fρ6(z, w) Fρ1(zw, z) Fρ2(w, zw) Fρ3(z, w) Fρ4(zw, z) Fρ5(w, zw)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Fρ1(z, zw) Fρ2(w, z) Fρ3(zw,w) Fρ4(z, zw) Fρ5(w, z) Fρ6(zw,w)

Fρ2(z, zw) Fρ3(w, z) Fρ4(zw,w) Fρ5(z, zw) Fρ6(w, z) Fρ1(zw,w)

Fρ3(z, zw) Fρ4(w, z) Fρ5(zw,w) Fρ6(z, zw) Fρ1(w, z) Fρ2(zw,w)

Fρ4(z, zw) Fρ5(w, z) Fρ6(zw,w) Fρ1(z, zw) Fρ2(w, z) Fρ3(zw,w)

Fρ5(z, zw) Fρ6(w, z) Fρ1(zw,w) Fρ2(z, zw) Fρ3(w, z) Fρ4(zw,w)

Fρ6(z, zw) Fρ1(w, z) Fρ2(zw,w) Fρ3(z, zw) Fρ4(w, z) Fρ5(zw,w)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F1(z, zw) Fσ5(w, z) Fσ4(zw,w) Fσ3(z, zw) Fσ2(w, z) Fσ(zw,w)

Fσ(z, zw) F1(w, z) Fσ5(zw,w) Fσ4(z, zw) Fσ3(w, z) Fσ2(zw,w)

Fσ2(z, zw) Fσ(w, z) F1(zw,w) Fσ5(z, zw) Fσ4(w, z) Fσ3(zw,w)

Fσ3(z, zw) Fσ2(w, z) Fσ(zw,w) F1(z, zw) Fσ5(w, z) Fσ4(zw,w)

Fσ4(z, zw) Fσ3(w, z) Fσ2(zw,w) Fσ(z, zw) F1(w, z) F5(zw,w)

Fσ5(z, zw) Fσ4(w, z) Fσ3(zw,w) Fσ2(z, zw) Fσ(w, z) F1(zw,w)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Strata {(z, 1) : z ∈ T2}

π1(F ) =
[
A B

]

where

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(F1 + Fρ2)(z, z) (Fσ5 + Fρ3)(1, z) (Fσ4 + Fρ4)(z, 1)

(Fσ + Fρ3)(z, z) (F1 + Fρ4)(1, z) (Fσ5 + Fρ5)(z, 1)

(Fσ2 + Fρ4)(z, z) (Fσ + Fρ5)(1, z) (F1 + Fρ6)(z, 1)

(Fσ3 + Fρ5)(z, z) (Fσ2 + Fρ6)(1, z) (Fσ + Fρ1)(z, 1)

(Fσ4 + Fρ6)(z, z) (Fσ3 + Fρ1)(1, z) (Fσ2 + Fρ2)(z, 1)

(Fσ5 + Fρ1)(z, z) (Fσ4 + Fρ2)(1, z) (Fσ3 + Fρ3)(z, 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(Fσ3 + Fρ5)(z, z) (Fσ2 + Fρ6)(1, z) (Fσ + Fρ1)(z, 1)

(Fσ4 + Fρ6)(z, z) (Fσ3 + Fρ1)(1, z) (Fσ2 + Fρ2)(z, 1)

(Fσ5 + Fρ1)(z, z) (Fσ4 + Fρ2)(1, z) (Fσ3 + Fρ3)(z, 1)

(F1 + Fρ2)(z, z) (Fσ5 + Fρ3)(1, z) (Fσ4 + Fρ4)(z, 1)

(Fσ + Fρ3)(z, z) (F1 + Fρ4)(1, z) (Fσ5 + Fρ5)(z, 1)

(Fσ2 + Fρ4)(z, z) (Fσ + Fρ5)(1, z) (F1 + Fρ6)(z, 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

π2(F ) =
[
A B

]

where

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(F1 + Fρ2)(z, z) (Fσ5 − Fρ3)(1, z) (Fσ4 − Fρ4)(z, z)

(Fσ − Fρ3)(z, z) (F1 − Fρ4)(1, z) (Fσ5 − Fρ5)(z, z)

(Fσ2 − Fρ4)(z, z) (Fσ − Fρ5)(1, z) (F1 − Fρ6)(z, z)

(Fσ3 − Fρ5)(z, z) (Fσ2 − Fρ6)(1, z) (Fσ − Fρ1)(z, z)

(Fσ4 − Fρ6)(z, z) (Fσ3 − Fρ1)(1, z) (Fσ2 − Fρ2)(z, z)

(Fσ5 − Fρ1)(z, z) (Fσ4 − Fρ2)(1, z) (Fσ3 − Fρ3)(z, z)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(Fσ3 − Fρ5)(1, z) (Fσ2 − Fρ6)(z, 1) (Fσ − Fρ1)(z, 1)

(Fσ4 − Fρ6)(1, z) (Fσ3 − Fρ1)(z, 1) (Fσ2 − Fρ2)(z, 1)

(Fσ5 − Fρ1)(1, z) (Fσ4 − Fρ2)(z, 1) (Fσ3 − Fρ3)(z, 1)

(F1 − Fρ2)(1, z) (Fσ5 − Fρ3)(z, 1) (Fσ4 − Fρ4)(z, 1)

(Fσ − Fρ3)(1, z) (F1 − Fρ4)(z, 1) (Fσ5 − Fρ5)(z, 1)

(Fσ2 − Fρ4)(1, z) (Fσ − Fρ5)(z, 1) (F1 − Fρ6)(z, 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Strata {(z, z) : z ∈ T2}

π1(F ) =
[
A B

]
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where

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(F1 + Fρ3)(z, z
2) (Fσ4 + Fρ5)(z

2, z) (Fσ3 + Fρ6)(z
2, z)

(Fσ2 + Fρ5)(z, z
2) (F1 + Fρ1)(z

2, z) (Fσ5 + Fρ2)(z, z
2)

(Fσ3 + Fρ6)(z, z
2) (Fσ + Fρ2)(z

2, z) (F1 + Fρ3)(z, z
2)

(Fσ5 + Fρ2)(z, z
2) (Fσ3 + Fρ4)(z

2, z) (Fσ2 + Fρ5)(z, z
2)

(Fσ4 + Fρ1)(z, z
2) (Fσ2 + Fρ3)(z

2, z) (Fσ + Fρ4)(z, z
2)

(Fσ + Fρ4)(z, z
2) (Fσ5 + Fρ6)(z

2, z) (Fσ4 + Fρ1)(z, z
2)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(Fσ + Fρ2)(z
2, z) (Fσ2 + Fρ1)(z, z) (Fσ5 − Fρ4)(z, z)

(Fσ3 + Fρ4)(z
2, z) (Fσ4 + Fρ3)(z, z) (Fσ + Fρ6)(z, z)

(Fσ4 + Fρ5)(z
2, z) (Fσ5 + Fρ4)(z, z) (Fσ2 + Fρ1)(z, z)

(F1 + Fρ1)(z
2, z) (Fσ + Fρ6)(z, z) (Fσ4 + Fρ3)(z, z)

(Fσ5 + Fρ6)(z
2, z) (F1 + Fρ5)(z, z) (Fσ3 + Fρ2)(z, z)

(Fσ2 + Fρ3)(z
2, z) (Fσ3 + Fρ2)(z, z) (F1 + Fρ3)(z, z)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

π2(F ) =
[
A B

]

where

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(F1 − Fρ3)(z, z
2) (Fσ5 − Fρ4)(z, z) (Fσ4 − Fρ5)(z

2, z)

(Fσ − Fρ4)(z, z
2) (F1 − Fρ5)(z, z) (Fσ5 − Fρ6)(z

2, z)

(Fσ2 − Fρ5)(z, z
2) (Fσ − Fρ6)(z, z) (F1 − Fρ1)(z

2, z)

(Fσ3 − Fρ6)(z, z
2) (Fσ2 − Fρ1)(z, z) (Fσ − Fρ2)(z

2, z)

(Fσ4 − Fρ1)(z, z
2) (Fσ3 − Fρ2)(z, z) (Fσ2 − Fρ3)(z

2, z)

(Fσ5 − Fρ2)(z, z
2) (Fσ4 − Fρ3)(z, z) (Fσ3 − Fρ4)(z

2, z)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

mm
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B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(Fσ3 − Fρ6)(z, z) (Fσ2 − Fρ1)(z, z) (Fσ − Fρ2)(z
2, z)

(Fσ4 − Fρ1)(z, z
2) (Fσ3 − Fρ2)(z, z) (Fσ2 − Fρ3)(z

2, z)

(Fσ5 − Fρ2)(z, z
2) (Fσ4 − Fρ3)(z, z) (Fσ3 − Fρ4)(z

2, z)

(F1 − Fρ3)(z, z
2) (Fσ5 − Fρ4)(z, z) (Fσ4 − Fρ5)(z

2, z)

(Fσ − Fρ4)(z, z
2) (F1 − Fρ3)(z, z) (Fσ5 − Fρ6)(z

2, z)

(Fσ2 − Fρ5)(z, z
2) (Fσ − Fρ6)(z, z) (F1 − Fρ1)(z

2, z)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Strata {(z, z2) : z ∈ T2/D}

π1(F ) =
[
A B

]

where

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(F1 − Fρ5)(z, z) (Fσ5 − Fρ6)(z
2, z) (Fσ2 − Fρ3)(z

2, z)

(Fσ − Fρ6)(z, z) (F1 − Fρ1)(z
2, z) (Fσ3 − Fρ4)(z

2, z)

(Fσ4 − Fρ3)(z, z) (Fσ2 − Fρ4)(z
2, z) (Fσ5 − Fρ6)(z

2, z)

(Fσ3 − Fρ2)(z, z) (Fσ2 − Fρ3)(z
2, z) (Fσ5 − Fρ6)(z

2, z)

(Fσ2 − Fρ1)(z, z) (Fσ − Fρ2)(z
2, z) (Fσ4 − Fρ5)(z

2, z)

(Fσ5 − Fρ4)(z, z) (Fσ4 − Fρ5)(z
2, z) (Fσ − Fρ2)(z

2, z)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(Fσ3 − Fρ2)(z, z) (Fσ4 − Fρ1)(z, z
2) (Fσ − Fρ4)(z, z

2)

(Fσ4 − Fρ3)(z, z) (Fσ5 − Fρ2)(z, z
2) (Fσ2 − Fρ5)(z, z

2)

(Fσ − Fρ6)(z, z) (Fσ2 − Fρ5)(z, z
2) (Fσ5 − Fρ2)(z, z

2)

(F1 − Fρ5)(z, z) (Fσ − Fρ4)(z, z
2) (Fσ4 − Fρ1)(z, z

2)

(Fσ5 − Fρ4)(z, z) (F1 − Fρ3)(z, z
2) (Fσ3 − Fρ6)(z, z

2)

(Fσ2 − Fρ1)(z, z) (Fσ3 − Fρ6)(z, z
2) (F1 − Fρ3)(z, z

2)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

π2(F ) =
[
A B

]

127



where

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(F1 + Fρ3)(z, z
2) (Fσ5 + Fρ4)(z, z) (Fσ4 + Fρ5)(z

2, z)

(Fσ + Fρ4)(z, z
2) (F1 + Fρ5)(z, z) (Fσ5 + Fρ6)(z

2, z)

(Fσ2 + Fρ5)(z, z
2) (Fσ + Fρ6)(z, z) (F1 + Fρ1)(z

2, z)

(Fσ3 + Fρ6)(z, z
2) (Fσ2 + Fρ1)(z, z) (Fσ + Fρ2)(z

2, z)

(Fσ4 + Fρ1)(z, z
2) (Fσ3 + Fρ2)(z, z) (Fσ2 + Fρ3)(z

2, z)

(Fσ5 + Fρ2)(z, z
2) (Fσ4 + Fρ3)(z, z) (Fσ3 + Fρ4)(z

2, z)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(Fσ3 + Fρ6)(z, z
2) (Fσ2 + Fρ1)(z, z) (Fσ + Fρ2)(z

2, z)

(Fσ4 + Fρ1)(z, z
2) (Fσ3 + Fρ2)(z, z) (Fσ2 + Fρ3)(z

2, z)

(Fσ5 + Fρ2)(z, z
2) (Fσ4 + Fρ3)(z, z) (Fσ3 + Fρ4)(z

2, z)

(F1 + Fρ3)(z, z
2) (Fσ5 + Fρ4)(z, z) (Fσ4 + Fρ5)(z

2, z)

(Fσ + Fρ4)(z, z
2) (F1 + Fρ5)(z, z) (Fσ5 + Fρ6)(z

2, z)

(Fσ2 + Fρ5)(z, z
2) (Fσ + Fρ6)(z, z) (F1 + Fρ1)(z

2, z)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Strata (1, 1)

π1(F ) = [F1+Fσ5 +Fσ4 +Fσ3 +Fσ2 +Fσ +Fρ1 +Fρ2 +Fρ3 +Fρ4 +Fρ5 +Fρ6 ](1, 1)

π2(F ) = [F1+Fσ5 +Fσ4 +Fσ3 +Fσ2 +Fσ −Fρ1 −Fρ2 −Fρ3 −Fρ4 −Fρ5 −Fρ6 ](1, 1)

π3(F ) = [F1−Fσ5 +Fσ4 −Fσ3 +Fσ2 −Fσ −Fρ1 +Fρ2 −Fρ3 +Fρ4 −Fρ5 +Fρ6 ](1, 1)

π4(F ) = [F1−Fσ5 +Fσ4 −Fσ3 +Fσ2 −Fσ +Fρ1 −Fρ2 +Fρ3 −Fρ4 +Fρ5 −Fρ6 ](1, 1)

π5(F ) =

⎡⎣ a b

c d

⎤⎦
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where

a = 1
2

(
(1−

√
3i)Fσ + (−1 +

√
3i)Fσ4(1 +

√
3)Fσ5 + (−1−

√
3i)Fσ2 + 2F1 − 2Fσ3

)
b = 1

2

(
(1−

√
3i)Fρ2 + (−1−

√
3i)Fρ3 + (−1 +

√
3i)Fρ5 + (1 +

√
3i)Fρ6 + 2Fρ1 − 2Fρ4

)
c = 1

2

(
(1 +

√
3i)Fρ2 + (−1 +

√
3i)Fρ3 + (−1−

√
3i)Fρ5 + (1−

√
3i)Fρ6 + 2Fρ1 − 2Fρ4

)
d = 1

2

(
(1 +

√
3i)Fσ + (−1

√
3i)Fσ4(1−

√
3)Fσ5 + (−1 +

√
3i)Fσ2 + 2F1 − 2Fσ3

)

π6(F ) =

⎡⎣ a b

c d

⎤⎦
where

a = 1
2

(
(−1 +

√
3i)Fσ + (−1−

√
3i)Fσ4(−1 +

√
3)Fσ5 + (−1 +

√
3i)Fσ2 + 2F1 + 2Fσ3

)
b = 1

2

(
(−1−

√
3i)Fρ2 + (−1 +

√
3i)Fρ3 + (−1−

√
3i)Fρ5 + (−1 +

√
3i)Fρ6 + 2Fρ1 + 2Fρ4

)
c = 1

2

(
(−1 +

√
3i)Fρ2 + (1−

√
3i)Fρ3 + (−1 +

√
3i)Fρ5 + (−1−

√
3i)Fρ6 + 2Fρ1 + 2Fρ4

)
d = 1

2

(
(−1 +

√
3i)Fσ + (−1 +

√
3i)Fσ4(−1−

√
3)Fσ5 + (−1−

√
3i)Fσ2 + 2F1 + 2Fσ3

)

Strata (−1, 1)

π1(F ) =
[
[A B C]

]

where
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A =

⎡⎢⎢⎢⎣
F1 − Fσ3 + Fρ3 − Fρ6

Fσ − Fσ4 + Fρ4 − Fρ1

Fσ2 − Fσ5 + Fρ5 − Fρ2

⎤⎥⎥⎥⎦ (−1, 1)

B =

⎡⎢⎢⎢⎣
Fσ5 − Fσ2 − Fρ1 + Fρ4

F1 − Fσ3 − Fρ2 + Fρ5

Fσ − Fσ4 − Fρ3 + Fρ6

⎤⎥⎥⎥⎦ (−1,−1)

C =

⎡⎢⎢⎢⎣
Fσ4 − Fσ − Fρ2 + Fρ3

Fσ5 − Fσ2 − Fρ3 + Fρ6

F1 − Fσ3 − Fρ4 + Fρ1

⎤⎥⎥⎥⎦ (1,−1)

π2(F ) =
[
A B C

]

where

A =

⎡⎢⎢⎢⎣
F1 − Fσ3 + Fρ2 − Fρ6

Fσ + Fσ4 + Fρ3 + Fρ6

Fσ2 + Fσ5 + Fρ1 + Fρ4

⎤⎥⎥⎥⎦ (−1, 1)

B =

⎡⎢⎢⎢⎣
Fσ5 − Fσ2 + Fρ3 − Fρ6

F1 − Fσ3 + Fρ4 − Fρ1

Fσ4 − Fσ + Fρ2 − Fρ5

⎤⎥⎥⎥⎦ (1,−1)

C =

⎡⎢⎢⎢⎣
Fσ − Fσ4 − Fρ4 + Fρ1

Fσ2 − Fσ5 − Fρ5 + Fρ2

F1 − Fσ3 − Fρ3 + Fρ6

⎤⎥⎥⎥⎦ (−1, 1)

π3(F ) =
[
A B C

]
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where

A =

⎡⎢⎢⎢⎣
F1 − Fσ3 + Fρ2 − Fρ3

Fσ − Fσ4 + Fρ3 − Fρ6

Fσ5 − Fσ2 + Fρ1 − Fρ4

⎤⎥⎥⎥⎦ (−1,−1)

B =

⎡⎢⎢⎢⎣
Fσ5 − Fσ2 + Fρ3 − Fρ6

F1 − Fσ3 + Fρ4 − Fρ1

Fσ4 − Fσ + Fρ2 − Fρ5

⎤⎥⎥⎥⎦ (1,−1)

C =

⎡⎢⎢⎢⎣
Fσ − Fσ4 − Fρ4 + Fρ1

Fσ2 − Fσ5 − Fρ5 + Fρ2

F1 − Fσ3 − Fρ3 + Fρ6

⎤⎥⎥⎥⎦ (−1, 1)

π4(F ) =
[
A B C

]

where

A =

⎡⎣ F1 + Fσ3 − Fρ3 − Fρ6

Fσ + Fσ4 − Fρ4 − Fρ1Fσ2 + Fσ5 − Fρ5 − Fρ2

⎤⎦ (−1, 1)

B =

⎡⎢⎢⎢⎣
Fσ5 + Fσ2 − Fρ1 − Fρ4

F1 + Fσ3 − Fρ2 − Fρ5

Fσ + Fσ4 − Fρ3 − Fρ6

⎤⎥⎥⎥⎦ (−1,−1)

C =

⎡⎢⎢⎢⎣
Fσ4 + Fσ − Fρ2 − Fρ5

Fσ2 + Fσ2 − Fρ3 − Fρ6

F1 + Fσ3 − Fρ4 − Fρ1

⎤⎥⎥⎥⎦ (1,−1)
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Strata (e2/3πi, e−2/3πi)

π1(F ) =

⎡⎢⎢⎢⎢⎢⎢⎣
a11 a12 a12 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

⎤⎥⎥⎥⎥⎥⎥⎦
where

a11 =
1
2
(2F1 − Fσ4 − Fσ2 + Fρ1 − 2Fρ3 + Fρ5)(e

2/3πi, e−2/3πi)

a12 =
1
2
(2Fσ5 − Fσ3 − Fσ + Fρ2 − 2Fρ4 + Fρ6)(e

−2/3πi, e2/3πi)

a13 =
√
3
2
(Fσ4 − Fσ2 + Fρ1 − Fρ5)(e

2/3πi, e−2/3πi)

a14 =
√
3
2
(Fσ3 − Fσ + Fρ2 − Fρ6)(e

−2/3πi, e2/3πi)

a21 =
1
2
(2Fσ − Fσ5 − Fσ3 + Fρ2 − 2Fρ4 + Fρ6)(e

2/3πi, e−2/3πi)

a22 =
1
2
(2F1 − Fσ4 − fσ2 + Fρ3 − 2Fρ5 + Fρ1)(e

−2/3πi, e2/3πi)

a23 =
√
3
2
(Fσ5 − Fσ3 + Fρ2 − Fρ6)(e

2/3πi, e−2/3πi)

a24 =
√
3
2
(Fσ4 − Fσ2 + Fρ3 − Fρ1)(e

−2/3πi, e2/3πi)

a31 =
√
3
2
(Fσ2 − Fσ4 − Fρ5 + Fρ1)(e

2/3πi, e−2/3πi)

a32 =
√
3
2
(Fσ − Fσ3 − Fρ6 + Fρ2)(e

−2/3πi, e2/3πi)

a33 =
1
2
(2F1 − Fσ4 + 2Fρ3 − Fρ1 − Fσ2 − Fρ5)(e

2/3πi, e−2/3πi)(e2/3πi, e−2/3πi)
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a34 =
1
2
(2Fσ5 − Fσ3 + 2Fρ4 − Fρ2 − Fσ − Fρ6)(e

−2/3πi, e2/3πi)

a41 =
√
3
2
(Fσ3 − Fσ5 − Fρ6 + Fρ2)(e

2/3πi, e−2/3πi)

a42 =
√
3
2
(Fσ2 − Fσ4 − Fρ1 + Fρ3)(e

−2/3πi, e2/3πi)(e−2/3πi, e2/3πi)

a43 =
1
2
(2Fσ − Fσ5 + 2Fρ4 − Fρ2 − Fσ3 − Fρ6)(e

2/3πi, e−2/3πi)

a44 =
1
2
(2F1 − Fσ4 + 2Fρ5 − Fρ3 − Fσ2 − Fρ1)(e

−2/3πi, e2/3πi)

π2(F ) =

⎡⎣ a b

c d

⎤⎦
where

a = (F1 + Fσ4 + Fσ2 − Fρ3 − Fρ5 − Fρ1)(e
−2/3πi, e2/3πi)

b = (Fσ + Fσ5 + Fσ3 − Fρ2 − Fρ4 − Fρ6)(e
2/3πi, e−2/3πi)

c = (Fσ + Fσ5 + Fσ3 − Fρ2 − Fρ4 − Fρ6)(e
−2/3πi, e2/3πi)

d = (F1 + Fσ4 + Fσ2 − Fρ3 − Fρ5 − Fρ1)(e
2/3πi, e−2/3πi)

π3(F ) =

⎡⎣ a b

c d

⎤⎦
where

a = (F1 + Fσ4 + Fσ2 + Fρ3 + Fρ5 + Fρ1)(e
2/3πi, e−2/3πi)
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b = (Fσ + Fσ5 + Fσ3 + Fρ2 + Fρ4 − Fρ6)(e
−2/3πi, e2/3πi)

c = (Fσ + Fσ5 + Fσ3 + Fρ2 + Fρ4 − Fρ6)(e
2/3πi, e−2/3πi)

a = (F1 + Fσ4 + Fσ2 + Fρ3 + Fρ5 + Fρ1)(e
−2/3πi, e2/3πi)
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