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Abstract 

 
Evidence suggests that individual differences in cognition can influence cortical 

processing of language violations, as differences are associated with neural recruitment. 
Individual differences have been found to affect two ERP components that are commonly 
referenced in studies of language processing. These are the N400, a negative-going deflection 
with a central parietal distribution, which is sensitive to violations of semantic expectation, and 
the P600, a positive response seen to violations of phrase structure. Despite the fact that 
measurable individual differences might influence the latency and topography of these 
responses, individual differences in cognition are rarely considered, and the ideal method to 
account for them in ERP studies has not been explored.  

This research investigates limitations in statistical approaches for investigating the 
relationship between ERPs and individual differences. These analyses use three techniques. First, 
model selection processes are evaluated in order to circumvent problems associated with 
multicollinearity among numerous individual difference measures. This includes selection of the 
measures evaluated, depiction of interactions, and specification of random effects. Outcomes of 
user-specified parameters in each area are characterized to identify an ideal model selection 
process for a typical EEG data set. Second, by relaxing the assumption of linearity in interactions 
we aimed to characterize important details that may be lost when only identifying linear effects. 
The question of sample size required to sustain nonlinear interactions was addressed by using 
simulated manipulations of sample size to evaluate the propensity for over-fitting with 
polynomial functions. Third, a non-parametric approach was used to characterize both response 
topographies and individual difference measure effects through data-driven means, avoiding the 
requirement to specify a priori regions of interest or proficiency bins for significance testing. 

Appropriate use cases and limitations for each technique are discussed alongside 
recommendations for implementing them into future investigations of individual differences in 
language processing. Considerations made during model specification, both in terms of effect 
inclusion and the complexity of nonlinear interactions, may improve sensitivity to subtle effects. 
Moreover, combined with data-driven selection of scalp regions or proficiency bins, the reader is 
presented with a means to overcome a number of limitations in hypothesis testing. 
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Chapter 1:  Introduction 

1.1.  Electroencephalography as a Method of Inquiry 

Traditionally, our understanding of cognition has been limited by the fact that inferences 

must be drawn using outwardly visible behavioral metrics, such as reaction time, or self-

reported assessments from participants. Until relatively recently, this has presented a 

considerable limitation for developing frameworks to describe cognitive processes, as an 

unknown and potentially infinite number of combinations of internal processes might result in 

the same outwardly measurable behavior. However, recent decades have seen improvements in 

non-invasive neuroimaging techniques, which allow for a specific account of neural activity 

across distributed systems in the brain at a temporal resolution on the order of milliseconds. 

One such technology, electroencephalography (EEG) has been used to record the summation of 

electrical potentials at the scalp, which arise from coordinated neural activity at the cortical 

surface. Characterizing this activity in response to carefully-controlled stimuli has allowed for a 

thorough description of the brain’s reaction to, and processing of, sensory input. It has also 

allowed for inference into higher-order cognitive processing of this information. Combining the 

two approaches, it has allowed for delineation of divergent processing streams, which otherwise 

might not produce any discernable behavioral difference. These benefits have been invaluable 

to our development of conceptual frameworks in information processing. 

A commonly-used technique in EEG is the averaging of event-related potentials (ERPs), 

which are recorded at the scalp, and are time-locked to the presentation of a stimulus. ERPs are 

one of the primary methods of inquiry into mental representations of information in the brain. 

ERPs are recorded in response to repeated encounters with a stimulus, with the intent that 
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averaging these recordings together will result in a reduction of any signal that is unrelated to 

the time-locked stimulus (e.g., unrelated cognitive and physiological processes that result in 

electrical potential at the scalp). Reducing these signals is critical to uncovering those of interest 

in an experiment. Conversely, characteristics of the response which are systematically related to 

presentation of the stimulus should be present in each recording and will remain through the 

averaging process. Higher-amplitude responses should be relatively more pronounced among 

unrelated “noise” in the signal, requiring fewer presentations of the stimulus, while lower-

amplitude responses require additional averaging to mitigate unrelated signals. 

Through this type of characterization, responses to two or more stimuli which differ in 

some definable way (e.g., in some visual or auditory characteristic) can be contrasted with one 

another to identify aspects of the response which are associated with the unique traits of a 

stimulus. This allows for inferences to be drawn regarding the cognitive or physiological 

mechanisms that are associated with processing these specific characteristics, including 

association with specific neural anatomical substrates, or on a larger scale with identifying 

processing streams through a series of distinct brain regions. While this can result in a wealth of 

information when compared with behavioral reactions to a stimulus, the interpretation of ERP 

responses is rarely straightforward. For example, while one type of stimulus may result in more 

neural recruitment than another, as might be hypothesized due to a higher-amplitude response, 

its effect on a downstream system may be inhibitory. Therefore, a larger-amplitude response 

may ultimately be associated with reduced output, or an effect on some system which is 

opposite to what was predicted. Moreover, ERPs comprises both base computation of direct 

sensory neural input and higher-order cognitive processing. The two rarely occur in isolation and 

can be difficult to discern from one another. However, strictly-controlled experimental design 
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has allowed for a degree of delineation of the two and has benefited our understanding of 

information processing in the brain. 

As a practical example of how ERPs can be characterized to understand underlying 

mechanisms of processing, consider the brain’s response to a visual stimulus. Time-locking a 

recorded average scalp potential to the onset of a stimulus reveals a consistent positive voltage, 

which peaks in amplitude between 80 and 130 ms following presentation of the stimulus 

(Mangun, 1995). This positive deflection, which is only visible through averaging the response 

over many presentations of the same stimulus, is termed a component. This component is 

named the P1 (or alternatively P100), for its positive electrical potential and the timing of its 

peak amplitude following the onset of a stimulus. Interestingly, the amplitude of the P1 can be 

manipulated through changing the intensity or brightness of a color being presented, suggesting 

it reflects processing of basic sensory input (Cobb & Dawson, 1960; Hillyard & Munte, 1984). 

However, the P1 also appears to reflect higher-order cognition as well, as its amplitude is largest 

when a stimulus is presented in a region of the visual field to which a participant was paying 

attention (Van Voorhis & Hillyard, 1977). This component demonstrates that careful 

manipulations of the characteristics of a stimulus can be used to understand how it’s processed 

and conceptualized, but also that this processing is further mediated by internal cognitive 

processes. The two occur in a way that, once understood, can be separated through 

experimental control which attempts to change only one dimension at a time (either visual 

characteristics or participant attention). Changes in a component’s presentation can occur in 

time (i.e., latency), space (scalp distribution), or in its amplitude. 
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1.2.  Functional Associations of the N400 & P600 

Isolating experimental manipulations that induce changes in the latency, amplitude or 

topography of a component can be critical to identifying the cognitive functions with which it is 

associated. In particular, where the changes in these measures are dependent on the degree of a 

systematic change in the stimulus, such manipulations can provide insight into mental 

representations of information or cognitive frameworks. The analysis of the P1 described above 

represents a general framework which can be used to investigate a variety of components and 

can help us to understand a variety of cognitive functions. In such cases, the components may 

not be the focal point of research specifically, but rather they can allow us to understand the 

processes that they are associated with. The relationship between ERP components and these 

processes will be the focus of this dissertation, specifically in identifying the most suitable 

techniques to characterize the link between the two. 

One component on which intense focused has been placed to identify its associated 

neural substrates and functional significance is the N400. This component is identified as a 

negative-going deflection that occurs approximately 300-500 ms following the perception of a 

word or image that is semantically incongruent with (i.e., unrelated to) its context (Juottonen, 

Revonsuo, & Lang, 1996; M Kutas & Hillyard, 1980; Marta Kutas & Federmeier, 2011; Newman, 

Tremblay, Nichols, Neville, & Ullman, 2012; Nobre & McCarthy, 1994). While the N400 appears 

to reflect the processing of relationships between objects in general, it has primarily been used 

to understand language processing. Specifically, it has been used to understand how networks of 

associations between words and objects are formed. Characteristics of the N400 have been 

found to be impacted by a wide array of experimental manipulations, each narrowing our 

understanding of what this component represents. For example, considering the two sentences 
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(1) a robin is a bird and (2) a robin is not a vehicle, both are true statements which follow a 

suitable grammatical structure. However, an N400 is elicited by the second noun in each (either 

the word bird or vehicle), and its amplitude is largest in response to the word vehicle. This is due 

entirely to the more distant semantic associations between the two nouns in this sentence, as 

the more unrelated nature of the words robin and vehicle is responsible for a larger-amplitude 

N400 (Fischler, Bloom, Childers, Roucos, & Perry, 1983). 

Similarly, when presented with a list of words that follows no rules other than a 

categorical similarity between these words (i.e., there is no sentence structure), an N400 is 

elicited in response to the last item, and this response is largest in amplitude when it is 

categorically unrelated to the items before it (Kutas & Van Petten, 1994). Therefore, while the 

N400 has frequently been studied in the context of language, these findings suggest that it does 

not specifically operate in the language domain. Instead it appears to reflect a broader network 

of semantic association. Furthermore, these effects are not limited to written stimuli, as an N400 

has been found in response to spoken language, American Sign Language, line drawings, 

pictures, faces and even language-like pseudo-words which have no inherent meaning (Kutas & 

Van Petten, 1994). Given the suite of cognitive functions that have been related to the N400, it 

does not appear to arise from a single, definable operation, but instead represents a generalized 

accessing and integration of semantic information across input modalities. Nonetheless, the 

ubiquitous need to identify the relationships between words during reading and conversation 

makes it a powerful tool to understand language processing. 

The N400 has frequently been studied in tandem with another related component, the 

P600. Similarly to the N400, the P600 is named for its positive electrical potential, and the timing 

of its peak amplitude, which occurs approximately 600 ms following the onset of a word which 

introduces a morphosyntactic violation into a sentence. While the two components are sensitive 
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to different linguistic rulesets, they can both be elicited through experimental design which 

contrasts violations of different aspects of sentence structure. That is, while the N400 is thought 

to index the semantic relationship between items (i.e., words or images), the P600 is instead 

thought to reflect processing of high-level grammatical structure (Kuperberg, Kreher, Sitnikova, 

Caplan, & Holcomb, 2007; Nakano, Saron, & Swaab, 2010; Pakulak & Neville, 2010). For example, 

when compared with the sentence (1) the child threw the toy, the sentence (2) the child throw 

the toy should elicit a P600 in response to the word throw (Kaan & Swaab, 2003). The result is 

that sentences can be designed with gradations of violations to either expected semantic 

associations, grammatical rules, or even both in a single sentence, to elicit either type of 

response. Moreover, this means that in cases where it’s unclear whether damage to a sentence’s 

structure is semantic or morphosyntactic in nature, the type of response elicited can offer 

insight into how this information was processed. This type of experimental design can reveal 

divergent processing streams where they might not otherwise be obvious. 

As in the example above, holding some aspects of sentence structure constant while 

carefully manipulating others can help to understand the boundaries of information processing 

between semantic and morphosyntactic domains. For example, while the relationship between 

the gender of a pronoun and the noun it describes might be considered a semantic association 

(e.g., he and Jim), the fact that violations of this agreement elicit a P600 rather than an N400 

suggest that the brain processes this as a violation of a structural more so than a semantic rule (L 

Osterhout & Mobley, 1995). Similarly, damaging the plausibility of a sentence by reversing the 

direction of action between two nouns (e.g., by changing the boy rode the bike to the bike rode 

the boy) does not alter N400 amplitude, but instead elicits a P600 in response to the final word 

of the sentence. This is because while the semantic association between the nouns is preserved, 

violating the structure of the preceding sentence by using an implausible terminal word forces 
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an attempt at reassessment of the sentence’s meaning (Kuperberg, 2007). In this way, modifying 

the structure of a sentence, or the relationship between words in a sentence, can inform 

conceptual frameworks of information processing. 

1.3.  The Influence of Individual Differences 

When discussing the N400 and P600 in the context of language, these processes reflect 

not only computation of systemic input, but also rely on semantic associations and 

understanding of a language’s rules and limitations that have been previously learned. Individual 

differences in disparate aspects of language proficiency (e.g., vocabulary, grammatical 

understanding), or other aspects of cognition which might dictate methods of information 

processing (executive processing), could therefore be expected to influence the degree to which 

either of these components are depicted in response to different types of violations. It is 

important to note that while we are focusing here on language, the components discussed 

appear to represent processing of associations and rulesets that span multiple domains. As 

described above, the N400 is not only sensitive to linguistic stimuli, but to mental 

representations of objects and even pseudo-words with no inherent meaning (Marta Kutas & 

Van Petten, 1994). Even beyond the scope of the N400 and P600, individual differences are 

known to affect ERP responses in varied domains. For example, in an investigation of cognitive 

demand, assessments of individuals’ working memory capacity has been related to P300 

amplitude in an n-back task (Dong, Reder, Yao, Liu, & Chen, 2015), and this relationship has been 

associated with meaningful differences in task performance. In another area entirely, differences 

between individuals in the ability to recognize previously-seen faces has been related both to 

early differences in the topography of the P100, and differences in the subsequent N170 

amplitude (Turano, Marzi, & Viggiano, 2016). This pattern is thought to reflect a difference in the 
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initial perception and following recognition of faces between individuals. Furthermore, Meyer et 

al. ( 2017) have found that the well-established link between anxiety and error related negativity 

may be better predicted using individual P300 amplitude, which mediates the two. The 

increasing association of abstract individual difference measures with ERPs in domains outside 

language processing highlights the need for a well-defined link between the two. 

In some cases, ERPs themselves may be considered as indicators of individual 

differences, as an alternative to the functions that they have traditionally been associated with 

(Meyer et al., 2017). That is, at present we propose to characterize individual difference 

measures such as facets of language proficiency, which have been operationalized through some 

testing procedure, but which are not inherently tied to any specific anatomy of physiological 

process. These psychological constructs are then related to a quantifiable physiological reaction 

(electrical potential recorded at the scalp). However, the associated physiological processes are 

not necessarily more representative of any internal language processing framework than the 

individual difference measures themselves. Indeed, ERPs can be a powerful tool to gain insight 

into those frameworks, and so understanding the relationship between all three (scalp 

recordings, individual difference measures, and processing frameworks) is necessary. Put 

another way, ERP component characteristics can themselves be a revealing marker of 

differences between individuals. The two must be used in conjunction to understand cognition. 

This dissertation simply focuses on establishing a link between the individual difference 

measures and ERPs. While this was done in the context of language specifically, it is hoped that 

findings may be valuable in numerous domains. 

With this in mind, the question of relating the latency or topography of ERP components 

to individual differences is more general than the question of relating the N400 and P600 

specifically to measures of language proficiency. However, language makes for an interesting 
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avenue of investigation into the processing streams indexed by these components. First, 

language violations can be strictly controlled, and understanding of a language’s rules can be 

evaluated in relatively standardized ways. It is therefore possible that the influence of individual 

differences discussed here could apply to processing semantic associations and grammatical 

structure outside of language domains entirely. Second, understanding of a language’s rules 

does not occur on a single dimension of low- to high-proficiency. Instead, individuals can be 

more adept in certain areas of linguistic rulesets (e.g., grammar, phonology, or sentence 

comprehension) and vocabulary than others. This makes language a multi-faceted area in which 

different types of individual proficiencies or even seemingly-unrelated cognitive characteristics 

might interact with cognitive processing of language-related information in complex ways that 

reveal more domain-general processing characteristics. Indeed, the question of whether 

language processing relies on cognitive systems which are specific to language, or whether they 

are intertwined with more general cognitive faculties, has been long-standing (Christiansen & 

Chater, 2008; Fedorenko, 2014; Fodor, 1983). Therefore, language is perhaps not the simplest 

area in which the link between individual differences and measures of cortical processing can be 

evaluated. However, it is one which can be characterized on multiple dimensions within a single 

experiment, and which can potentially inform experimental design in numerous areas.  

1.4.  Individual Differences in Language Processing 

Mounting evidence suggests that native language proficiency, as measured through 

grammatical ability and vocabulary size, can impact the latency, amplitude, and topographical 

distribution of ERP responses during sentence processing (Liang and Chen, 2014; Moreno and 

Kutas, 2005; Newman et al., 2012; Pakulak and Neville, 2010; Tanner, 2013; Tanner et al., 2014; 

Tanner and Van Hell, 2014; Weber-Fox et al., 2003). This evidence suggests differential 
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recruitment of brain regions based on proficiency or other cognitive factors (Bryll, Binder, & 

Urbanik, 2013). Specifically, EEG has revealed that the cortical response to words that are 

semantically congruent with a sentence’s context are larger in amplitude (more positive) for 

individuals with a stronger understanding of English grammar and vocabulary size (Newman et 

al., 2012). Interestingly, however, these measures of proficiency were not related to the 

response to semantically incongruent words, suggesting that low- and high-proficiency 

individuals processed the two similarly. As the N400 is typically calculated as the difference in 

amplitude between the two conditions, this pattern could be described as a larger-amplitude 

N400 response in individuals with higher proficiency. This pattern was seen both in Native 

speakers of English, and in participants who learned English later in life. 

The N400 is not the only component which has been tied with individual differences in 

proficiency. Using the same measures of grammar understanding and vocabulary size as a 

measure of proficiency, participants were shown either well-formed sentences, or sentences 

which contained an error in the phrase structure (a phrase structure violation). This violation 

was associated with a larger, and more widely-distributed P600 response (Pakulak & Neville, 

2010). As described above, the P600 amplitude is understood to be mostly sensitive to 

grammatical cues in a sentence, and as such it is not surprising that it should be influenced by 

proficiency with grammatical structure. However, this pattern is often not clear-cut, and 

individuals can show a preference toward either showing an N400 or P600 response to the same 

stimuli (Lee Osterhout, 1997). Even when presented with a violation of grammatical structure in 

the form of subject-verb disagreement within a sentence, a condition which is typically expected 

to result in a P600 response to reflect attempts at syntactic reassessment and repair, a subset of 

individuals show an N400 response (Tanner, 2013). Interestingly, a small proportion of 

individuals even showed both an N400 and P600 in response to violations, with variation in their 
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amplitude. Largely, however, there was a negative correlation between the amplitudes of the 

two responses, suggesting that participants preferentially showed one or the other (2013). 

These results suggested a spectrum of processing, which Tanner et al. (2013) posit suggest 

preferential attention to either semantic associative information (resulting in an N400), 

following a rule-based framework, or grammatical cues (resulting in a P600). 

It has been suggested that an N400 might reflect rule-based, semantic processing in 

lower-proficiency individuals, which instead becomes a P600 to reflect a deeper understanding 

of grammatical structure in higher-proficiency individuals (Pakulak & Neville, 2010). However, 

subsequent findings complicate this interpretation (Tanner, 2013; Tanner et al., 2014). First, the 

preferential demonstration of either the N400 or P600 response has been seen both in native 

English speakers, and in individuals who learned English as a second language (Tanner, 2013; 

Tanner et al., 2014). Second, the preference toward showing one response or the other was not 

related to proficiency (Tanner et al., 2014). Instead, proficiency was related to the overall 

amplitude of the response shown, regardless of which component was evident. These findings 

illustrate a complex relationship between language proficiency and the role of the N400 and 

P600 in violation processing, and even language violations which are classically understood to be 

grammatical in nature can be processed in a semantic associative form in some individuals. 

Despite that proficiency alone may not predict whether participants will exhibit an N400 

or P600 response to specific types of language violations, it has been associated with 

characteristics of these components such as their latency and amplitude. For example, 

proficiency has also been related to processing of the grammatical content of a sentence, as the 

P600 shows a broader distribution, earlier onset, and larger peak amplitude for higher-

proficiency individuals (Pakulak & Neville, 2010). Moreover, individuals with overall higher 

measures of proficiency have shown both an earlier onset, and reduced peak amplitude, in the 
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N400 response to violations of semantic relationships (Moreno & Kutas, 2005; Weber-Fox et al., 

2003). Notably, these findings are in contradiction to those of Newman et al. (2012). At this 

time, the reason for this discrepancy is unclear. However, such inconsistencies highlight the 

need for further research in this area. 

It has been suggested that differences in N400 amplitude reflects the degree to which 

individuals rely on the context of a sentence to predict its final word (those categorized as low-

proficiency, resulting in a larger-amplitude N400), or instead focus on grammatical structure 

(Moreno & Kutas, 2005). However, both strategies may be used by individuals of high 

proficiency, and so a one-dimensional scale of proficiency may not be an appropriate 

interpretation of these findings. Instead, these findings present further evidence that individual 

variability in the use of divergent processing streams should be considered more deeply, and 

that both might be used simultaneously. 

In addition to language proficiency, working memory appears similarly connected to 

processing strategy; Indeed, it has long been established that working memory capacity varies 

between individuals and may have implications for processing of linguistic content (Just & 

Carpenter, 1992). Specifically, increased working memory capacity has been related to elicitation 

of a P600 response, instead of an N400, when presented with grammatical violations (Nakano et 

al., 2010). This change is thought to contrast semantic reassessment of individual words (lower 

capacity) to higher-level phrase structure repair (higher capacity; Nakano et al., 2010). Similarly, 

Vos et al. (Vos, Gunter, Kolk, & Mulder, 2001) report that when presented with morphosyntactic 

violations, individuals with lower working memory span show stronger early anterior negativity 

and delayed central-parietal positivity, when compared with high-span individuals. Additional 

evidence suggests that individuals with faster working memory updating (measured using an n-

back task) showed stronger central-parietal positivity (interpreted as a larger-amplitude P600) 
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when assessing syntactic and semantic information in sentences (Li, Peng, Liu, Booth, & Ding, 

2014). fMRI evidence further shows differential recruitment of neuroanatomical structures for 

sentence processing depending on the working memory capacity of individuals (S. D. Newman, 

Malaia, Seo, & Cheng, 2013). This evidence demonstrates a link between aspects of language 

proficiency and cognition with presentation of ERP components that are commonly used to 

study language processing. Furthermore, they highlight the need to additionally consider 

cognitive attributes such as working memory that lie outside the obvious language processing 

domains when examining the effects of individual differences in cognition on language 

processing. Despite this, language proficiency and other aspects of cognition, are rarely 

accounted for in investigations of the N400 and P600. As such, a deeper investigation of the 

relationships between proficiency and cognition on these components will be necessary to 

understand their roles. 

1.5.  Modeling Individual Differences in ERP Research 

Research investigating individual differences and their impact on ERP characteristics has 

begun to ask increasingly complex questions. For example, while at one time it was considered 

sufficient to investigate ERP responses to morphosyntactic violations across participants through 

a grand-averaged waveform. Contrasting conditions in this manner is a suitable use for the 

Analysis of Variance technique (ANOVA), which has been used to gauge the significance of 

differences between the mean amplitude of responses to grammatical and ungrammatical 

sentences (Moreno & Kutas, 2005; Pakulak & Neville, 2010). When evaluating a group of 

participants as a whole, or even a small number of subgroups, this approach can be used to 

characterize responses to each condition. However, it has since become apparent that not all 

participants show the biphasic N400-P600 response that has traditionally been expected (Tanner 
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et al., 2014). Instead, as discussed above, this biphasic response likely results from averaging of 

participants who preferentially show one response or the other together, resulting in an 

averaged waveform which shows the characteristics of both groups. Indeed, the majority of 

individuals show one response or the other (Tanner, 2013; Tanner & Van Hell, 2014). However, 

while the reason for this difference between individuals is not yet clear, it appears to be rooted 

in differences in cognition between individuals, as they selectively process linguistic information 

using either semantic associations or high-level grammatical rules. Other studies have 

categorized individuals as either low- or high-proficiency to investigate differences in responses 

between these two groups (Weber-Fox et al., 2003). However, whether participants are split into 

groups to test for the significance of differences separately, or whether a two-way ANOVA is 

used to account for differences on two dimensions (proficiency bins and sentence condition 

simultaneously), this approach precludes any description of graded changes between the two 

groups. Instead, distinct groupings must be made. 

A more fine-grained characterization of the impact of individual differences in cognition 

or proficiency on ERP responses requires multivariate regression. This approach allows the user 

to investigate multiple individual differences simultaneously (e.g., several different axes of 

proficiency, and other cognitive factors, on continuous scales if desired). Indeed, multivariate 

regression has successfully been used to describe the impact of proficiency, familial handedness, 

and other factors both on the type of response a participant shows to grammatical violations, as 

well as the amplitude of responses (Tanner et al., 2014; Tanner & Van Hell, 2014). Not only does 

this approach allow the user to characterize multiple dimensions in terms of their effect on 

responses simultaneously, but it also allows for the use of continuous scales, and can describe 

interactions between dimensions (e.g., characteristics that are specific to, for example, left-

handed males of low proficiency). This technique can be further refined through the use of 
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mixed models, which allow the user to specify both fixed effects (the types of factors described 

above, which are assumed to have a consistent effect) as well as random effects. The latter can 

improve the sensitivity of models by accounting for random variability in responses, either 

between individuals, or resulting from other factors that contribute to the response 

unpredictably (Barr, Levy, Scheepers, & Tily, 2013). To our knowledge, however, at present this 

technique has only been used in one study (Newman et al., 2012). 

1.6.  Limitations in Current Modeling Practices 

The above studies have made important steps toward creating a framework which can 

be used to identify individual differences that impact the N400 and P600, as well as characterize 

this impact, in terms of latency, scalp topography, or the degree to which effects are seen at 

specific proficiency levels. However, several potential limitations of the techniques that have 

been used may be constraining the questions which can be asked. This dissertation will attempt 

to address each of these limitations using statistical modeling techniques which operate in 

fundamentally different ways to either the ANOVA or multivariate regression techniques that 

have been used. As a preface to a discussion of these limitations, it is critical to note that their 

existence may not necessitate a change in approach. That is, while the approaches previously 

used to investigate individual differences face constraints, these constraints may not limit 

interpretation of results in a meaningful way. However, developments in modeling approaches 

have resulted in a means for improving sensitivity to effects and complexity of interactions, 

among other added functionality, and so the potential for improvement of practices must be 

investigated. We will therefore be replicating and expanding on previous findings using a series 

of approaches, which are each intended to supplement the capabilities of current investigations. 
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The move toward multivariate regression models in recent years represents a step that 

will be required in subsequent research to properly account for the impact of all individual 

differences of interest, as well as how they interact to affect cortical responses (Tanner et al., 

2014; Tanner & Van Hell, 2014). This is especially true given that, increasingly, individual metrics 

of grammatical ability vocabulary and other aspects of proficiency are incorporated into models, 

rather than one-dimensional metrics of overall proficiency (Newman et al., 2012; Pakulak & 

Neville, 2010). Given the benefits this framework provides, we see no clear advantages to relying 

on simpler approaches such as ANOVA. However, the move to mixed modeling techniques that 

incorporate both fixed and random effects further addresses the concern of random participant-

specific variability, which is otherwise deemed to be noise when using fixed-effect models. 

Failure to properly designate this type of variability can make it difficult to identify subtle effects, 

and even result in errors in estimating the significance and size of effects which are found (Barr 

et al., 2013). This does not necessarily limit the types of research questions which can be asked, 

but instead the effects which can be uncovered in ERP data, especially where effects might be 

small. Despite this, the advantages of incorporating random effects into a regression model of 

individual differences’ effects on ERP data have not yet been quantified. Therefore, we propose 

to investigate both approaches (fixed effect models and mixed models) to characterize the 

impact of including random effects of varying types on metrics of model quality. The manner in 

which the analytical techniques incorporate random effects will be discussed below. 

We have discussed the need for a move from a single overall proficiency metric to a set 

of measures which account for the varied and dynamic nature of language-processing faculties. 

Indeed, this has been the approach taken in recent research (e.g., Newman et al., 2012; Pakulak 

& Neville, 2010). However, the way in which modeling techniques establish relationships 

between these measures and ERPs must be considered as well. In particular, moving from 
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analysis using ANOVA to linear regression has provided the means to describe a continuous, 

linear impact of individual differences on ERP responses. The result can be improved model fit, 

resulting in a reduced error term, and more reliable estimation of results under ideal 

circumstances. However, there is still a limitation in that this relationship must be linear, and to 

the extent that it is not, the model is inaccurate. That is, a linear model describes that any per-

point proficiency score increase is associated with a specific voltage change in response 

amplitude, or millisecond change in timing, regardless of whether the largest changes in 

response may occur in specific portions of the proficiency spectrum. At present, it is unknown 

whether this is the case, and so whether this is a meaningful limitation and/or introduces error 

cannot be determined. However, given that the means to model nonlinear relationships exists, 

we propose to investigate the capabilities of two nonlinear modeling techniques in ERP data. 

With the transition to the use of models which can include numerous aspects of 

language proficiency or any other measures of interest, the concern of multicollinearity arises. 

Multicollinearity occurs when the two or more predictor variables in a multivariate regression 

model are correlated in their ability to predict a response (in this case, multiple similar measures 

of proficiency attempting to predict ERP amplitude) (Bollinger, Belsley, Kuh, & Welsch, 1981). 

While this does not harm the fit of the model, it can introduce erratic changes in a predicted 

response given minimal changes in a predictor (Bollinger et al., 1981). The first of two solutions 

is to unify the related measures into a single predictor, either through averaging or some other 

means. However, as this defeats the purpose of looking at specific aspects of language 

proficiency instead of a general score, the only remaining option when using regression models 

is to include only those predictors which are most interesting and/or beneficial to the model. 

This process of model selection is not straightforward and many considerations must be made to 

arrive at the ideal set of predictors, which can be subjective given the specific research question. 
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However, future studies of individual differences will require some framework for addressing 

this problem, or otherwise a means to overcome it. The following chapters will attempt to do 

both through fundamentally different statistical approaches. 

A related issue of data quality and distribution pertains to heteroscedasticity, which 

negatively affects all regression models as well as ANOVA (Davidson & MacKinnon, 1993). 

Briefly, heteroscedasticity refers to an inconsistency in variability either within groups of a 

categorical variable (e.g., there is more variability in the relationship between ERP response 

amplitude and low- than high-proficiency individuals), or along the scale of a continuous 

variable. Heteroscedasticity can be difficult to overcome, as options include either removal of 

problematic participants, portions of a predictor variable spectrum, or predictor variables 

altogether. However, some techniques are more susceptible than others to problems associated 

with heteroscedasticity, which will be explored in each of the techniques used in this 

dissertation. 

The last issue to be discussed surrounding current statistical practices in the area of 

individual differences in ERPs surrounds the scalp topography of responses. Frequently, 

electrodes are considered on an individual basis in order to assess the significance of a 

difference between response amplitudes in two conditions. This is commonly done to evaluate 

the differences between responses to words that either follow or disrupt a sentence’s 

grammatical structure. This has been done to clearly demonstrate an N400 response to semantic 

violations at individual electrodes (Moreno & Kutas, 2005). In addition, the topography of a 

response can also be visualized using response amplitude across numerous electrodes for any 

given time point, a series of time points, or averaged over a time window. This process has been 

used to identify characteristic differences of the P600 topography in low- and high-proficiency 

individuals (Pakulak & Neville, 2010). This has the advantage of presenting a full view of the 
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scalp, but with less information regarding the latency and time course of a response. Another 

approach is to average electrodes in a close proximity together into a region of interest (ROI), 

with the assumption that any characteristics of the response that are similar across electrodes 

will remain through the averaging process, and those which are not will be reduced (Newman et 

al., 2012). Establishing regions of interest can produce a more consistent waveform, and aid 

interpretability. However, divisions must be made without specific knowledge of the response’s 

topography, and thus are not likely to perfectly capture the effect. Ideally, divisions could be 

made which are data-driven and representative of the full scalp, benefiting from the advantages 

of each of these methods.  

The above points outline a variety of constraints that currently-used statistical methods 

place on framing of research questions and interpretation of findings. It is possible that some of 

them cannot be overcome using available techniques, but the capacity to do so will be 

investigated from several different analytical approaches. The following sections will outline the 

three techniques that will be used in this dissertation, in order to discuss how they will address 

the known issues, specifically in the context of modeling ERP data. 

1.7.  Linear Mixed Modeling 

The first modeling technique we used was intended to closely follow the methods in 

related research discussed above. First, we attempted to replicate findings which relied on 

multivariate regression (Tanner et al., 2014; Tanner & Van Hell, 2014), with the exception that 

we implemented random effects similarly to Newman et al. (2012) to account for unpredictable 

variability from two sources: Random variability in response amplitude between participants, 

and in the scalp distribution of the response between participants. For this analysis, we used 

linear mixed effects (LME) modeling. As discussed above, this technique models the relationship 
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between fixed effects and a response, as traditional multivariate regression models, but can also 

estimate the influence of random effects (Jiang, 2007). As a rule of thumb, Green and Tukey 

(1960) suggest that effects should be modeled as fixed if the sample exhausts a known 

population, but random if it includes only a subset (i.e., individual participants). Perhaps less 

specifically, LaMotte and Roy (LaMotte, 2014) describe a random effect as any that is assumed 

to be a realized value of a random variable. Mechanically speaking, however, random effects are 

simply estimated using a different process – linear unbiased prediction, rather than maximum 

likelihood – which allows for differences in variability across a predictor variable (Robinson, 

1991). In terms relating individual differences to ERP responses, we must use this definition to 

assume that differences in language proficiency or other measures of cognition should be 

modeled as fixed effects, given that the degree of variability should be relatively constrained 

across participants. Indeed, this has been the case in all prior research in this area. 

Conversely, it could be argued that individuals should likely vary in the degree of 

variability in response amplitude for any ERP study. This variability may arise for numerous 

reasons, including – but not limited to – differences in scalp conductivity, biochemistry, 

neuroanatomy, or any other physiological traits unique to an individual which cannot be 

modeled. Indeed, this assumption has been made in the past, and modeling random variability 

at the individual level is an accepted means of improving model quality (Barr et al., 2013). Just as 

random variability might be expected at the individual level, one might expect a degree of 

random variability in the scalp distribution of responses between individuals. This should not be 

confused with the assumption that variability in scalp distribution is inherently random, which 

would invalidate findings of proficiency effects on distribution. Instead, a random effect of scalp 

distribution across individuals would allow for variance in distribution between trials that is 

specific to participants. A standard instantiation of the general linear model (GLM), such as the 



21 
 

multivariate regression approaches used by Tanner et al. (2014; 2014) is well-suited to 

investigating fixed effects, but is not capable of estimating random variability from either of 

these two possible sources. The result is that all participants are predicted to have an equivalent 

variability (both overall and in terms of scalp distribution), and any variability that is observed 

around that assumption is considered noise, which is added to the error term. Moreover, 

heteroscedasticity may result. Both of these outcomes may render a model insensitive to effects 

and/or invalidate its findings (Jiang, 2007). 

Regression models calculate the significance of fixed effects in relation to the magnitude 

of the error term, and so categorizing unpredictable variability as error occurs at the detriment 

of sensitivity to potentially subtle effects. That is, when the magnitude of explainable variability 

(e.g., proficiency-related effects) is outweighed by that of unexplainable variability (e.g., random 

variance in response amplitude due to physiology which cannot be modeled as a fixed effect), 

model sensitivity decreases, and underlying effects may not be detected. While subsequent 

chapters will address this concern in more detail, it is important to realize that adding random 

effects to a model can help to attenuate unpredictable variability that arises from known 

sources.  The primary benefit of adding random effects through LME then is improved model 

accuracy and sensitivity, as well as reduced error rates (both false positive and false negative). 

In addition to modeling random effects, LME was used to determine the ideal model 

selection process in a way that may generalize to other ERP studies of individual differences. As 

described above, this primarily consisted of determining which individual differences should be 

included as predictor variables in our regression model, both in terms of their significance to the 

research and the relatedness of the measures. Specifying the ideal model is not specific to LME, 

and investigations that only use fixed effects can still benefit from determining which language 

proficiency or other cognition measures are appropriate for inclusion in a model. Moreover, the 
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metrics which are commonly used to evaluate model quality and interrelatedness of variables 

are applicable to all linear modeling techniques, and so these findings may result in a framework 

that can benefit ERP studies more generally. These metrics will be discussed in greater detail in 

following chapters. The process of model selection was explored with the aim to reduce 

multicollinearity among predictors, further reducing error rates and improving model accuracy, 

while focusing on predictors that should yield the clearest results. Determining the ideal set of 

predictors (and the complexity of their interactions) also provided a foundation for subsequent 

analyses, as each approached incremental improvements on the same base model in different 

ways. 

1.8.  Generalized Additive Mixed Modeling 

The sensitivity of a model to an effect primarily depends on the ability of a model to fit 

to the association between two variables. To the extent that this association is not a linear one, 

nonlinear modeling techniques may produce a more accurate fit, and a model which more 

ideally generalizes to a population. As the name suggests, all extensions of the general linear 

model are limited in their capacity to conform to nonlinear effects. For example, if differences in 

the amplitude of an N400 response exist primarily between individuals at the lower end of a 

proficiency spectrum (that is, higher-scoring individuals produce more homogeneous responses), 

then we can determine that the relationship between proficiency and N400 amplitude is 

nonlinear. However, fitting this relationship with a linear best-fit slope both fails to capture the 

nuance of this dependence, and over- or underestimates the predicted N400 amplitude to some 

degree at nearly any proficiency level. This concept is illustrated in Figure 1.1, which shows a 

simulated set of observations fit to two such functions. The result is increased error (residual 
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variance), and a linear function which only accurately estimates observations at mid-range 

scores. 

 

Figure 1.1 Fit of a linear function (red) and a nonlinear function (blue) to simulated data which 

follow a nonlinear curve Y = X 0.3. While both achieve an overall fit to the data points, the linear 

function produces estimates that are consistently lower than observations at lower predictor 

values, while exceeding observations at higher predictor values. 

A combination of related problems arise from the scenario depicted in Figure 1.1. For 

example, as deviance from the predicted slope is necessarily considered error variance, this 

results in both increased error variance (again at the detriment of significance of effects), and 

non-normally distributed residuals (i.e., heteroscedasticity). Again, while we will examine each of 

these concerns in more detail in subsequent chapters, each represents unexplored bias 

introduced into findings which can potentially reduce sensitivity to effects or invalidate a 

model’s findings altogether, depending on the degree to which a nonlinear dependence truly 

exists. 
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In order to evaluate whether the relationship between ERP response amplitude and 

language proficiency and other cognitive measures is better-modeled using nonlinear functions, 

we used Generalized Additive Mixed (GAM) modeling. This is a technique which linearly 

combines estimates for separate predictor variables, similarly to LME. However, functions need 

not be linear – Instead, smooth polynomial functions are fit to observations to describe 

nonlinear associations (Hastie & Tibshirani, 1990). While maintaining the benefit of random 

effect specification described when using LME, this approach uses an entirely different approach 

to model fit, which will be explored in greater detail in subsequent chapters. Moreover, the 

computational differences between LME and GAMM have implications for which model quality 

metrics are appropriate to use, and how heteroscedasticity is handled (Simon N. Wood, Pya, & 

Säfken, 2016). Both of these topics will be discussed in greater detail in the chapters pertaining 

to these two techniques. 

Using this technique we examined first whether models are improved through specifying 

nonlinear effects/interactions, and second the ideal complexity of this relationship (i.e., the 

degree of nonlinearity allowed). This second goal was to strike a balance between describing the 

overall trend in as much detail as possible while avoiding fitting to characteristics of the data set 

which may be specific to the present sample (i.e., over fitting). There is no gold standard in this 

process, as it cannot be known beforehand whether variance is (or should be) generalizable to a 

population. Together, these analyses aimed to answer not only the question of whether 

nonlinear relationships exist between language proficiency and response amplitude, but also 

whether it is important or viable to model them as such. 
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1.9.  Conditional Inference Random Forest Modeling 

The final modeling technique which will be used in this dissertation is conditional 

inference random forest modeling (CForest). LME and GAMM are both approaches which arose 

from the GLM, and as such they both linearly combine estimates for predictors, and interactions 

between predictors, with an error term to fit to a set of observations. It is for this reason that 

both are considered additive modeling solutions. Conversely, CForest begins with the observed 

data and through a series of permutation tests identifies where predictors are associated with 

systematic variations (Strasser & Weber, 1999; Strobl, Malley, & Tutz, 2009). Therefore, 

predictors are not assigned estimates, and there is no error term. Instead, data are recursively 

subdivided into increasingly small subsets, provided that doing so will result in a significant 

difference between the means of the response variable in each, and that this difference is 

associated with a predictor. This approach makes far fewer assumptions of a data set. For 

example, as there is no error (residual) term, normality of residuals is not a concern (Strobl et al., 

2009). Computation of CForest models will be explained in greater detail in subsequent 

chapters. 

One notable strength of CForest is that it does not require a priori definition of regions 

of interest, but can instead deduce which electrodes show an effect – and which do not – 

through recursive partitioning. Ideally, this should result in data-driven groupings of electrodes 

which more closely capture the distribution of a response. Conversely, each of LME and GAMM 

relies on a priori specification of the region in which the presence of an effect will be evaluated. 

This is commonly done through division of the scalp into groupings of electrodes, or regions of 

interest (ROIs) that are evaluated as a whole. This can be done either through averaging the 

response over the electrodes in an ROI, or through including ROI (but not electrode) as a term in 
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a model. Grouping electrodes reduces electrode-specific signals, but it cannot be known 

whether a priori groupings will ideally capture a component’s distribution. For example, the 

peak amplitude of a component may be at the division of two ROIs, meaning that it will appear 

somewhat mitigated in each averaged group of electrodes. This may also result in failure to 

detect an effect altogether, or mischaracterizing a response’s topography to appear more 

widespread than it truly is. Ideally, this effect could be better-captured with an ROI that centers 

on its peak amplitude, and exceeds more specifically to the boundaries of the response’s spatial 

distribution. 

As an alternative to pre-selected ROIs, clustering algorithms can be used to group 

electrodes that show similar ERP waveforms (Pernet, Latinus, Nichols, & Rousselet, 2015a). This 

approach has proven capable of grouping ERP responses in a data-driven way that can reduce 

user bias. One limitation, however, is that clustering may not reflect differences in scalp 

topography between subgroups of respondents (i.e., low- and high-proficiency individuals) 

unless those groups are identified beforehand. Therefore, when the influence of some predictor 

is on the spatial distribution of a response, this type of clustering approach may not be ideal. In 

addition, GAMM is able to circumvent this limitation by modeling the topography as a smooth 

term (or set of terms) over a spherical model of the head, using electrode coordinates as a 

predictor. However, the present analysis used the electrode groupings that were used in our 

LME analysis and in previous research to aid comparison of findings (A. J. Newman et al., 2012). 

In practice, the effects of interest in the present study (the N400 and P600) frequently 

have a central-parietal distribution which is captured relatively well using an equal grouping of 

electrodes into regions, as has been done by Newman et al. (2012). However, differences in the 

extent of an effect can be difficult to evaluate. Moreover, square groupings of electrodes 

obviously fail to perfectly encapsulate components which are circular in their topography, where 
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the square is either so large as to include corners which do not show the response, or so small as 

to ignore its edges. We propose that CForest can be used to define ROIs by deducing the 

distributions of responses. The data-driven nature of CForest’s hypothesis testing framework 

was leveraged to derive ROIs which conform to the circular shape of the N400 and P600, and 

reach a distribution of electrodes that appropriately describe its topography (Strasser & Weber, 

1999). 

In addition to these advantages, CForest has proven capable of detecting nonlinear 

relationships in neuroimaging data previously (McWhinney, Tremblay, Chevalier, Lim, & 

Newman, 2016). Indeed, the recursive partitioning framework does not require any assumption 

of linearity between predictor variables. While this approach has numerous advantages, 

limitations and considerations to its use which will be described in later chapters, it represents a 

step forward in data-driven descriptive analytics. 

1.10.  Preface to Investigations 

The investigations in the following chapters each take a different approach to analysis of 

ERP data acquired during a sentence judgment task, which was designed to elicit cortical 

responses to violations of either expected semantic associations, or morphosyntactic phrase 

structure. Sentences were either well-formed or contained a single type of violation. Semantic 

violations replaced the final word of a sentence with one that is semantically implausible in the 

context of the sentence. Conversely, sentences containing grammatical violations contained 

nouns that followed expectations of semantic associations, but disrupted the grammatical 

structure of a sentence. Participants were each evaluated in several areas of language 

proficiency and working memory capacity to determine whether these were related to 

differences in the characteristics of the elicited components that were elicited by the two types 
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of violations.  This task and all evaluations will be described in greater detail in the following 

chapter, which outlines procedural details, data acquisition and pre-processing. 

Chapters addressing the limitations and concerns that have been outlined above will be 

presented, each focusing on separate statistical techniques. These chapters aim to expand on 

the data set through different means of analysis, each with strengths in unique areas. Each 

chapter will consider the appropriate use cases and potential limitations of the approaches 

being discussed, assessing and possible improvements in how these techniques can aid with the 

interpretation of ERP data analysis. Lastly, we will look critically at any benefits that these 

techniques can provide to researchers, and most importantly any evidence that they should be 

considered for future use in ERP research. 

The goal of these investigations was to first apply best-practices to develop a framework 

in which relationships between individual differences and ERP characteristics could be assessed, 

and second to evaluate the ability of alternative modeling techniques to overcome some of the 

limitations associated with currently-used approaches. While our aims were methodological in 

focus, the nature of the data used led to specific predictions about the outcomes. First, in line 

with previous research, sentences that contained semantic violations, when contrasted with 

well-formed sentences, were hypothesized to elicit an N400 response at the onset of the 

semantically incongruent word. This response was predicted to show the highest amplitude in 

participants with lower measures of proficiency, given that N400 amplitude is thought to index 

the mental effort required to draw semantic associations (Marta Kutas & Federmeier, 2011; 

Moreno & Kutas, 2005; Weber-Fox et al., 2003). In particular, participants’ vocabulary scores 

were hypothesized to be most strongly related to N400 response amplitude (Newman et al., 

2012). 
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Second, it was hypothesized that sentences that contained phrase structure violations, 

when contrasted with well-formed sentences, would elicit a P600 response. This response was 

predicted to be strongest in participants with higher scores in proficiency-related ID measures, 

as has been demonstrated in previous studies (Pakulak & Neville, 2010). In particular, measures 

of grammatical ability were expected to be most strongly associated with P600 amplitude 

(Pakulak & Neville, 2010). 

Concerning the topography of responses, to the extent that ID measures influenced the 

amplitude of responses, it was expected that their influence would be strongest where the peak 

of responses was maximal (e.g., over the central parietal scalp region). Conversely, to the extent 

that differences in ID measures were associated with differences in the spatial extent of a 

response rather than amplitude, the influence of ID measures was expected to be strongest at 

the boundaries of the response topography. Beyond these predictions, hypotheses that were 

specifically related to any of the three analysis techniques will be addressed in the chapters 

devoted to those methods. 
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Chapter 2:  Data Collection and Pre-Processing 

As a number of details regarding the collecting, cleaning and preparation of data pertain 

to each of the analyses described in the previous chapter, all such details are outlined here. 

These include a description of the participants included in the analyses, the questionnaires and 

assessments used to evaluate language proficiency and working memory capacity, and a 

description of the sentence judgment task that participants completed. In addition, basic pre-

processing procedures that applied to all later statistical analyses are described here. 

2.1.  Participants 

The experiment collected data from 40 native English-speaking individuals, of which 33 

were included in analyses (8 male, mean age = 28.72 ± 9.49 years, range = 20 - 57). Two 

participants were excluded due to excessive noise in EEG data, and five due to errors in data 

acquisition. Three of the seven excluded participants were male. All participants were right-

handed, as indicated by the Edinburgh Handedness Inventory (Oldfield, 1971). Participants had 

normal or corrected-to-normal vision, and no self-reported history of neurological disorders. 

This research was approved by the Dalhousie Health Sciences Research Ethics Board. All 

Participants provided informed consent ethics board guidelines. Each participant was paid $30 

upon completion of their participation. 

2.2.  Questionnaires 

Due to the range of ID measures investigated, participants were required to complete a 

number of questionnaires and tasks. An outline of all assessments is provided in Table 2.1, with 

a brief description of the domain or metric addressed in each. The assessments are additionally 

described in greater detail below. Notably, several measures were not included in our modeling 
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procedure. The Edinburgh Handedness Inventory was used, but not included, to ensure that all 

participants were right-handed. Only minimal variation in handedness was therefore expected 

and was not predicted to significantly influence our model. The Language Experience and 

Proficiency questionnaire was used to evaluate first and second language background, but more 

specific measures of proficiency (e.g., TOAL-3) were expected to be more related to variability in 

cortical responses, particularly on the dimensions the task was designed to evaluate. Lastly, the 

Index of Learning Styles questionnaire and the Flanker-Simon executive attention task were 

available but were peripheral to our literature review and so no specific hypotheses could be 

drawn regarding these assessments. 

Table 2.1 Questionnaires and tasks completed by participants. Those in bold were included in models. 

Questionnaire or task name Assessment content 

Edinburgh Handedness Inventory Left vs. right handedness 

Language Experience and Proficiency Questionnaire (LEAP-Q) First and second language background 

Index of Learning Styles Questionnaire Learning preferences on four dimensions 

Test of Adolescent Language-3 (TOAL-3) Grammar comprehension and vocabulary 

Test of Word Reading Efficiency (TOWRE-2) Test of word reading efficiency 

AzBio Sentence Task Test of speech comprehension 

Operation Span (OSpan) Working memory capacity (visual) 

Listening Span (LSpan) Working memory capacity (auditory) 

Flanker-Simon Task Executive attention 

Sentence violation identification English semantic and phrase structure 

violation processing  

Participants completed a set of questionnaires using the online LimeSurvey software 

(LimeSurvey Development Team, 2012), which included the Edinburg Handedness Inventory 

(Oldfield, 1971), the Language Experience and Proficiency Questionnaire (LEAP-Q; Marian et al., 

2007), the Index of Learning Styles (Felder & Soloman, n.d.) and the Adult Reading History 
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Questionnaire (Lefly & Pennington, 2000). Questions were primarily multiple choice, with some 

short answer, and were intended to evaluate a wide range of individual differences in 

handedness, first and second language background, learning style preferences, and demographic 

information. 

2.3.  Language Assessments 

Two facets of native language proficiency were evaluated using three assessments. First 

was the Test of Adolescent and Adult Language-3 (TOAL-3; Hammill et al., 1994), of which we 

used three subtests: the Listening/Vocabulary subtest had participants match an auditory 

stimulus (word) to one of four pictures to measure receptive semantic abilities; the 

Listening/Grammar subtest had participants determine which of three spoken sentences 

presented together has a different meaning, to assess receptive morphology and syntactic 

abilities; the Speaking/Grammar subtest had participants listen to and repeat increasingly 

complex sentences to assess expressive morphology and syntactic abilities. The scores on each 

subtest were retained as individual predictor variables, but were scaled from 0-100 rather than 

their native scales to aid interpretability. This scale was used to keep consistency among scores 

associated with high- and low-scoring participants across measures, and to mitigate convergence 

errors that were encountered when using LME which were caused by differing predictor scales. 

Moreover, while mean-centering predictors has been advocated as a means of reducing 

multicollinearity in regression models, it has been shown to have no impact on model term 

estimates or significance (Dalal & Zickar, 2012; Kromrey & Foster-Johnson, 1998). Moreover, this 

transformation has been shown only to render multicollinearity undetectable (Belsley, 1984). 

Therefore, no such transformation was applied to our ID measures scores. 
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The second proficiency assessment was the Test of Word Reading Efficiency, 2nd Edition 

(TOWRE-2; Torgesen et al., 1999). This assessment used two separate tests to measure the 

number of real words or non-words in a list that participants can read out loud within 45 

seconds, yielding, respectively, sight word efficiency and phonemic decoding efficiency scores. A 

composite measure of the two known as the Total Word Reading Efficiency was used as an 

indicator of overall reading efficiency. The last proficiency assessment was the AzBio Sentence 

List (Spahr et al., 2014), which evaluated speech perception when masked by noise. Participants 

were asked to repeat any complete sentences that were heard amongst ‘cocktail-party’ (multi-

talker babble) environmental noise. Participants’ verbal responses to both the TOWRE and AzBio 

tasks were audio recorded for later scoring. 

2.4.  Cognitive Assessments 

Participants completed several other computer-based cognitive tests using custom-

written software. The Operation Span task is a measure of working memory capacity (OSpan; 

Unsworth et al., 2005). Participants were presented with basic math equations of three single-

digit terms (e.g., 2 × 6 = 3), and were then asked to judge whether a provided answer was 

correct or incorrect. Each judgement was followed by a single letter, and over the course of 

several trials participants were instructed to remember these letters in order. Following a 

number of equations (one to seven, with one letter for each equation), participants were asked 

to repeat the letter sequence from memory. Sequences of equation/letter pairs began short (3) 

and continued until the maximum length was reached (7). 

A second measure of working memory capacity was a listening span task (LSpan; 

Daneman and Carpenter, 1980). In this task participants were presented with a series of auditory 

sentences. After each sentence, a comprehension question was asked, and participants were 



34 
 

instructed to remember the final word of each sentence. Recall of the word list was evaluated 

verbally after the final sentence in a series. The structure of this task closely followed that of the 

OSpan task, with the length of the series of sentences (and the number of words to be 

remembered) gradually increasing until the maximum length was reached (3) or participants 

failed 7 consecutive trials. For both tasks, the length of the longest accurately-recalled 

sequences was used as working memory span. 

The Flanker-Simon task was used to measure executive attention; it combines aspects of 

the Flanker (Eriksen & Eriksen, 1974) and Simon (Simon & Barbaum, 1990) executive functioning 

tasks. The Flanker-Simon task measures both independent executive function systems 

associated with each task as well as conflict adaptation. However, as described above, this task 

was peripheral to our investigation and was not included in our final analysis. 

Participants received both verbal and written instructions on how to complete the task; 

they were informed to indicate the colour of the centre pinwheel as quickly as possible without 

sacrificing accuracy. They were instructed to direct their gaze toward the fixation point in the 

centre of the computer screen. After 1 s of fixation, stimuli were randomly presented. 

Participants used the trigger buttons to indicate the colour of the centre pinwheel. Participants 

were given 1 s to make a response, otherwise they received a warning message (“Too slow!”) 

and the next trial proceeded. If a response was made, participants were given visual feedback 

regarding their reaction time (in ms) and the colour of the text indicated the trigger they 

pressed. The Flanker-Simon task was composed of six blocks: One practice block and five 

experimental blocks. The task lasted approximately 15 minutes.  
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2.5.  Sentence Task 

The main outcome measure was ERP responses to a sentence reading task. A total of 

640 sentences were developed, each of which fell into one of three categories. This 

categorization mirrored that used by Newman et al. (2007): 

1. Morphosyntactic condition: Sentences containing past-tense violations (80) were 

contrasted with matched well-formed sentences (80). For example, Last week she asked 

to watch the concert / Last week she ask to watch the concert 1*. Data from these 

sentences was not included in the analyses presented here. 

2. Semantic condition: Sentences in which the final word was replaced with one that is 

semantically implausible (80) were contrasted with matched semantically plausible 

sentences (80). For example, The farmer spends the morning milking his cows / The 

farmer spends the morning milking his book *. 

3. Phrase structure condition: Sentences that violated acceptable phrase structure (160) 

were contrasted with matched well-formed sentences (160). This condition contained 

twice the number of sentences when compared with the others to accommodate 

Steinhauer, White & Drury’s (2009) suggested counterbalancing of the words preceding 

the violating word. The result was two control and two violation variants for each 

sentence. For example, Bob likes to tell some stories at night OR Bob likes some stories 

to tell at night / Bob likes to stories some tell at night * OR Bob likes some tell to stories 

at night *.  

                                                           

1 Astrisks (*) indicate a sentence with a violation 
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Sentences from the above categories were randomly divided into groups as follows: 1) 

Sentences in the morphosyntactic category were divided into two groups, each containing 40 

sentences with violations and their well-formed matches. 2) Sentences in the ‘semantic’ 

category were divided into two groups in the same manner. 3) Sentences in the ‘phrase 

structure’ category were divided into four groups in the same manner, rather than two groups, 

due to having twice the number of sentences to begin with. These subsets of sentences were 

combined into four sentence lists, where each list contained sentences from each category by 

using all four permutations of the groups from the first two categories (two ‘morphosyntactic’ 

groups by two ‘semantic’ groups), with one of the four ‘phrase structure’ groups appended to 

each. Each sentence list therefore contained 240 sentences.  

2.6.  Procedure 

Participants attended two sessions, approximately 2.5 hours each. In the first, they 

provided informed consent, competed all questionnaires, the TOWRE-2, the TOAL-3, the LSpan, 

and OSpan tasks. During the second session, participants completed the AzBio and Flanker-

Simon tasks, and then the sentence reading task while EEG data were recorded. 

When completing the sentence task, each participant was only exposed to one of the 

four sentence lists described above. Participants were shown sentences one word at a time 

using rapid serial visual presentation; each word was visible for a random period of time 

selected from a uniform distribution, which ranged from 325 to 425 ms, with no delay between 

words. Stimuli were presented within a square of constant size, which was provided as a cue to 

participants, during which time they were instructed not to blink. At sentence completion, a 

blank screen was presented for 1000 ms, after which time participants were shown a 5-point 

Likert scale on the screen and asked to rate the “quality” of each sentence using a numeric 
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keypad (1 = very bad, 5 = very good). Beyond being instructed to rate sentence quality, 

participants were not given specific instructions about how to assign ratings. An additional blank 

screen was shown for 1000 ms before the next sentence was presented. Responses and reaction 

times were recorded for each trial, and breaks were provided every 15 sentences, which lasted 

until the participant pressed a button to continue. There were four additional experimenter-

mediated breaks for any necessary adjustment of equipment, such as checking and lowering EEG 

electrode impedances. 

2.7.  EEG Acquisition and Pre-Processing 

EEG data were collected using a 128 channel HydroCel Geodesic Sensor Net connected 

to a NetAmps 100 amplifier (Electrical Geodesics, Inc., Eugene, OR). Data were acquired using 

NetStation software (version 4.3, Electrical Geodesics Inc., Eugene, OR) at a 500 Hz sampling 

rate, using a 0.01-100 Hz online band pass filter, and referenced to electrode Cz. 

All EEG electrode impedances were lowered below 100 kΩ prior to recording, which is 

an appropriate level according to the input impedance of the NetAmps amplifier. After data 

recording was completed, a 0.1-30 Hz band pass filter was applied in the NetStation software, 

and then data were exported from the NetStation to binary format and all further pre-

processing was completed using EEGLAB (v12; Delorme and Makeig, 2004). Data were re-

referenced to the average of the two mastoid electrodes. Epochs were generated beginning 200 

ms prior to, and 1000 ms following, the onset of target words. Channels or individual trials 

showing excessive noise were removed, and independent component analysis (ICA; Jung et al., 

2000) was used to remove well-defined ocular or muscular artifacts, on the basis of topography, 

power spectra, and distribution over time and across trials (Makeig, Bell, Jung, & Sejnowski, 

1996). After ICA correction was applied, data for channels that had been removed prior to ICA 
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were interpolated using a spherical spline algorithm, and all channels were baseline-corrected 

by subtracting the mean amplitude of the 200 ms prior to stimulus onset from each electrode. 

As an alternative to baseline correction, the baseline amplitude for each electrode or ROI in each 

participant might be modeled as a random effect. However, the present analyses instead used 

baseline correction to account for inter-trial variability, which was not included as a model term.  

ERP epochs were time-locked to either the onset of the violating word (violation 

sentences) or the word in its place in the well-formed matching sentences (control condition). 

For visualization of the ERP waveforms, violation effects were computed by subtracting control 

from violation sentence epochs. 

2.8.  Statistical Analyses 

For statistical analysis, mean amplitude across a priori specified time windows was 

computed for each electrode on every trial, and then exported in text format for subsequent 

statistical analysis. Electrodes were grouped into nine regions of interest (ROIs) for statistical 

analysis; electrodes not falling within these ROIs were not analyzed. These groupings were done 

on a 3x3 grid, including an anterior-posterior axis (anterior, central, posterior) and a left-right 

axis (left, midline, right). The electrodes included in each ROI, and their positions, are depicted in 

Figure 2.1.  

All further statistical analyses were specific to the three approaches outlined in the 

previous chapter. Therefore, detailed descriptions of these analyses will be provided when 

describing the methodology of each approach in subsequent chapters. 
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Figure 2.1 Electrodes in each region of interest (ROI). ROIs are arranged on the y axis (anterior, central, 

posterior) and the x axis (left, midline, right) to produce each of nine (e.g., anterior midline).  
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Chapter 3:  Characterizing the Data - Violation Effects and Individual 

Difference Measures 

3.1.  Violation Effect Time Course and Topography 

General findings surrounding the effect of semantic and phrase structure violations 

which pertain to all of the statistical approaches used will be described briefly. In addition, we 

will outline the results of the individual difference measure assessments and overall 

relationships between these scores and response amplitude, independent of any specific 

modeling technique. The following chapters will each investigate these findings in more detail 

using the modeling techniques which have been described. 

Given that the effects of interest for each sentence type are expected to be maximal in 

central-parietal scalp regions, violation effects are shown for channel 55, as seen immediately 

posterior to the reference channel in Figure 2.1.  The violation effects for each sentence type are 

shown in Figure 3.1. The electrode used for demonstration of violation effects was selected due 

to being central in the topography of the response. Following a 200 ms baseline, semantic 

violations showed a notable (approximately -4 μV) negative deflection, which was maximal at 

between 300 and 500 ms, as predicted. This was immediately followed by a positive deflection 

of almost equivalent magnitude (3.5 μV), which was prominent from approximately 500 ms until 

the end of the epoch. Our later time window (600-800 ms) coincides with the peak of this 

deflection. 

Responses to phrase structure violations did not include the early negative response 

seen to semantic violations, but showed similar positivity (approximately 3 μV in amplitude) 

peaking at between 500 and 900 ms following the onset of the violating word. Notably, peak 
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amplitude of this deflection occurred slightly later than in response to semantic violations. In 

addition, the peak of the waveform is somewhat weaker. 

 

Figure 3.1 Violation effects (averaged violation sentences – averaged control sentences) for each of 

semantic and phrase structure violations, at channel 55. Time 0 ms indicates onset of the word 

which violates the semantic or grammatical structure of the sentence. 

The scalp topographies of these violation effects are shown in Figure 3.2, averaged over 

each of the time windows of interest (300-500 and 600-800 ms) for each sentence type. 

Mirroring the time course of the electrode in Figure 3.1, for the semantic condition the earlier 

time window showed a negativity predominantly over central and posterior scalp regions, 

consistent with the predicted N400; notable positivity was seen in anterior electrodes. The 

subsequent (600-800 ms) response was positive, with a more central distribution. Phrase 

structure violations showed little violation-control difference in the earlier (300-500 ms) time 

window, in keeping with the time course shown in Figure 3.1. The later time window showed 

positivity with a similar scalp distribution as for semantic violations, but of somewhat weaker 

amplitude. 
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Figure 3.2 Scalp topography of violation effects (averaged violation sentences – averaged control 

sentences) for each of semantic and phrase structure violations, averaged over the time windows 

of interest (300-500 ms and 600-800 ms). 

3.2.  Individual Difference Measures 

Prior to evaluating the relationships between each of the ID measures and the amplitude of 

responses to violations of either sentence type, we investigated the distribution of scores on 

each of the ID measures to ensure that there were no outliers and address any skew in their 

distribution. These results are shown in Figure 3.3. The scores of two participants on the AzBio 

task met our criteria for outliers (any scores more than 3 standard deviations above or below the 

mean), and so those scores were removed from all tables, figures and analyses below, as well as 

from all subsequent analyses in the following chapters. 
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Figure 3.3 Histograms of participants scores on each of the ID measures evaluated in the present study. 

While the sample size (n=33) was unlikely to produce strongly normal distributions of ID 

measure scores, many of the measures still provided a reasonable separation of low- and high-

scoring participants. Concerning the LSpan and particularly the AzBio tasks, participants were 

skewed toward higher score ranges more so than for other tasks, suggesting that finding 

differences in response amplitudes for lower- vs. higher-scoring participants on these measures 

may be less likely. Descriptions of the distributions of these ID measure scores are additionally 

outlined in Table 3.1. 

Table 3.1 Distribution of ID measure scores, including the number of unique values where multiple participants 

may have scores identically, the range of scores, the mean and standard deviation. 

 
UNIQUE 
VALUES 

MINIMUM 
SCORE 

MEAN 
SCORE 

MAXIMUM 
SCORE 

STD. 
DEVIATION 

LISTENING/VOCABULARY 12 66 82 100 11 

SPEAKING/GRAMMAR 11 50 71 90 13 

LISTENING/GRAMMAR 12 57 78 94 12 

TOWRE-2 22 6 67 99 25 

LSPAN 18 71 98 112 12 

OSPAN 22 15 45 75 16 

AZBIO 23 59 80 91 9 
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Participants’ scores on each of the individual difference measures were compared with their 

epoched condition contrast (violation – control) for each of the two time windows (300-500 ms 

and 600-800 ms) in each of the two sentence types (semantic violations and phrase structure 

violations), averaged over trials and electrodes. This step was performed on pre-processed scalp 

voltage recordings, rather than any model estimate, to provide a frame of reference for each of 

the modeling techniques that was used in the following chapters. The results of these 

comparisons are shown for semantic violations in Figure 3.4, and for phrase structure violations 

in Figure 3.5.  
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Figure 3.4 Participants’ scores on ID measures in relation to the violation effect (violation – control) for semantic 

violations in each of the two time windows. Observations were limited to the central midline ROI. Error bars 

indicate the standard error of observations for each participant. 

The overall amplitude of responses to semantic violations during the 300-500 ms time 

window was found to be negative across the majority of participants, in accordance with the 

negative deflection in the time course during this time period seen in Figure 3.1, and the central 

parietal negativity during this time window seen in Figure 3.2. However, while the mean 



46 
 

amplitude across participants appeared negative, not all participants demonstrated an overall 

negative response. A minority of participants showed an overall positive response during this 

time window. Importantly, the results for individuals across ID measures have been averaged 

across electrodes, and so variation in the topography of responses cannot be ascertained from 

Figure 3.4 and Figure 3.5. Therefore, an overall mean amplitude of zero µV might arise from an 

equal distribution of electrodes showing a positive and negative response, and moreover an 

overall positive response might still be found in participants who showed a negative response at 

some scalp regions. Rather than providing a detailed description of the effects of ID measures on 

scalp topography, these figures served primarily to provide a general overview of the impact 

that ID measures may demonstrate on response amplitude. 

Again, in accordance with the time course shown in Figure 3.1 and the topography in Figure 

3.2, the majority of participants showed an overall positive response to semantic violations in 

the 600-800 ms time window. Similarly to the earlier time window, a minority of participants 

either showed an overall violation effect that opposed this trend, but again, differences in scalp 

topography which will play a role in understanding these differences likely contributed to these 

averages in nuanced ways, which will be investigated more deeply in the following chapters. 

In general, a number of ID measures appeared to be associated with response amplitude, 

even without considering variations in scalp topography. For example, the amplitude of 

responses during the 300-500 ms time window appeared to be strongest in participants with 

lower scores in the OSpan, Listening/Grammar, Listening/Vocabulary, and Speaking/Grammar 

tasks. In particular, while participants with higher Speaking/Grammar scores showed little 

variability in response amplitude, the largest differences appeared to be between participants 

with lower scores, suggesting that this relationship may be best-modeled using nonlinear 

functions. Conversely, participants with higher TOWRE scores appeared to demonstrate a 
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stronger positive response during the 600-800 ms time window. These effects will be 

investigated in more detail later using the analytical approaches which have been outlined 

above. 

 

Figure 3.5 Participants’ scores on ID measures in relation to the violation effect (violation – control) for phrase 

structure violations in each of the two time windows. Observations were limited to the central midline ROI. Error 

bars indicate the standard error of observations for each participant. 
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The overall responses to phrase structure violations during the 300-500 ms time window 

appeared much lower in amplitude, largely centering on zero µV, as seen in Figure 3.5. These 

findings were consistent with the time course of the violation effect during this time window 

shown in Figure 3.1, and the topography shown in Figure 3.2, which suggested only a modest 

effect size which was positive in some regions and negative in others. Moreover, this response 

amplitude did not appear to be strongly related to any of the ID measures, with the possible 

exception that negative responses were limited to participants with higher LSpan and 

Listening/Grammar scores. 

Responses to phrase structure violations during the 600-800 ms time window generally 

suggested an overall positive response across participants, with a minority showing weak 

negative responses. Again, where these responses are averaged across electrodes, responses 

with an overall negative amplitude may have arisen from a combination of electrodes showing 

positive and negative responses across different scalp regions, as Figure 3.2 suggested may be 

the case. Interestingly, response amplitude was highest for participants with higher OSpan and 

TOWRE scores, while those with lower scores showed a weaker violation effect or none at all. 

Response amplitude appeared to vary most strongly in participants with higher TOWRE scores, 

while those with lower scores showed little variation. Similarly to responses to semantic 

violations in the 300-500 ms time window, this pattern suggested that nonlinear modeling 

techniques may be best-suited to describe this type of relationship. 

These findings provided compelling evidence that the ID measures which have been used in 

the present study were likely related to differences in response amplitude, and potentially to 

differences in scalp topography as well. The following chapter will evaluate these effects using 

an approach which is similar to the multivariate regression technique used in past studies in 

order to describe the relationships between these ID measures and response amplitude in 
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greater detail, while providing a baseline analysis against which less common techniques will be 

compared in later chapters (Tanner et al., 2014; Tanner & Van Hell, 2014).  
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Chapter 4:  Linear mixed modeling of language proficiency 

and cognition in language violation processing 

4.1.  Introduction 

In moving toward an understanding of the link between language proficiency/cognition 

and language processing, we must consider improvements that can be made in approaches to 

defining these relationships. Much of the research that has begun to characterize the influence 

of IDs on language-related ERP components has relied on either ANOVA (Moreno & Kutas, 2005; 

Pakulak & Neville, 2010) or linear regression models which include only fixed effects (Tanner et 

al., 2014; Tanner & Van Hell, 2014). In accordance with this research, this chapter has two aims. 

First, we aim to produce an analysis that can be used as a baseline against which subsequent 

investigations can be compared. This baseline was predominantly modeled after the best 

practices that have been outlined in the studies addressed above. However, a second aim was to 

incorporate a number of analytical developments, which have seldom been used in this area but 

might yield improved results. This includes testing the impact of moving to mixed modeling 

procedures, which have been successfully used to describe the influence of ID measures on 

language-related ERP component characteristics in the past (Newman et al., 2012). 

All of the studies discussed in Chapter 1 have described the influences of IDs using the 

general linear model (GLM), and its various implementations. GLM is a widespread tool in ERP 

research due to its powerful but easy-to-use implementations, which are native to popular 

analysis software including SPSS and R. At its core, a Gaussian GLM (such as those used in the 

present analyses) operates by estimating mean differences in a predicted response (dependent 

variable) such as scalp voltage, based on independent variables described by the user. These can 
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include categorical variables (or factors) such as sex or treatment condition, or continuous ones 

such as working memory capacity. An estimate is considered reliable if the variance in the 

dependent variable that it explains (i.e., the magnitude of the estimate) significantly exceeds the 

residual, or unexplained, variance (Sánchez, 1982). 

Notably, however, this simplicity comes with several assumptions, and if these 

assumptions are not met then the predictions of the model may be invalid. Therefore, these 

assumptions can also be considered limitations in the generalizability of GLM under non-ideal 

circumstances. First, by default GLM assumes that a linear relationship exists between changes 

in a continuous independent variable and the dependent variable. Problems with this 

assumption typically become evident through non-normally distributed residuals. Notably, non-

normally distributed residuals can also arise from inconsistent variance across an independent 

variable. In either case, the result can be invalid estimates of effect size, and therefore an 

incorrect evaluation of significance, depending on the degree to which a nonlinear relationship 

exists in the data. Such findings can also be problematic for interpretation as it may suggest the 

presence of an effect where one does not exist, or conversely that no effect exists when the 

opposite might be true. Some instantiations of GLM allow the user to define nonlinear (e.g., 

exponential functions), and provided these accurately depict observations, these concerns can 

be mitigated (Jiang, 2007). These approaches will be considered in greater depth in Chapter 4. 

An additional characteristic of a Gaussian GLM, which was the GLM family used in the 

present analyses, is that it assumes homoscedasticity. This requires that the degree of residual 

variance is equal between factor groupings, or along the spectrum of a continuous dependent 

variable. This results from the assumption that sources of error are not correlated with one 

another and are uniformly distributed. If this assumption is not satisfied, it can invalidate 

hypothesis testing. No real-world data satisfies this assumption completely, but a degree of 
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deviance is tolerable for GLM. Therefore any violations of this assumption should be tested prior 

to interpretation of a model’s findings. Lastly, the influence of observations on an estimate 

should be equal. That is, no observation should have considerably more ‘push’ or ‘pull’ on the 

direction of an effect than others. This can happen if extreme values of the dependent variable 

occur (i.e., outliers). Again, while real-world data rarely adheres completely, the degree to which 

this assumption is satisfied can be assessed by calculating leverage (Cardinali, 2013) and Cook’s 

distance (Cook, 1977). 

While violations of the above assumptions can be problematic for GLM, several 

measures exist to alleviate their ramifications. As discussed in Chapter 1, one way of improving 

model accuracy and generalizability is through the inclusion of complex random effects 

structures to adjust for sources of variance that are known (explainable), but nonetheless not of 

direct relevance to the research question. For example, while a predicted outcome may follow 

administration of a drug, individuals can be expected to vary in the response to the drug. If only 

variance associated with the experimental variables is accounted for in the model, this between-

participant variance will increase unexplained variance of the model, at the expense of 

significance of the treatment effect. On the other hand, if the variance associated with the 

random sampling of participants from the population is accounted for in the model, the 

proportion of unexplained variance is reduced, increasing sensitivity to the experimental effects. 

In this sense, reporting a ‘maximal’ random effect structure can be one approach to developing 

an exhaustively-descriptive model with the aim to improve generalizability and sensitivity (Barr 

et al., 2013). 

Allowing for random variation to be deemed ‘explained variance’ is also likely to result in 

reduced residuals with improved normality, and so it is important to do so only where its source 

is justifiable and cannot be predicted as a fixed effect. Otherwise, reckless inclusion of random 
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effects can improve apparent fit of the model to any data set by describing variance that may 

not generalize beyond the sample, bolstering significance and diminishing applicability to future 

random samples. In addition, models which include random effect structures that are 

inordinately complex may be uninterpretable, or fail to converge altogether if the underlying 

data set is not large or diverse enough to support the complexity of the effects (D Bates, Kliegl, 

Vasishth, & Baayen, 2015). Nonetheless, when used properly, random effects can alleviate 

violations of GLM’s assumptions, improve detection of subtle effects, and benefit validity and 

reliability. 

The specification of random effects as described above, as well as identifying which fixed 

effects should be included in a model, together comprise the model selection process. A number 

of issues surrounding the model selection process were outlined in Chapter 1. Most notably, this 

includes specifying a random effect structure that is appropriate for the experimental design and 

hypotheses, and avoiding multicollinearity among fixed effects. Regarding fixed effects 

specifically, the steps to arrive at the ideal model are not always clear, given that a variety of ID 

measures may be available and only a fraction of those may be useful in predicting response 

amplitude. Moreover, including predictors which are correlated with one another in a model can 

be harmful to estimation of their individual effects, which will be an important consideration in 

the present study. Therefore, it will be important to develop a framework whereby collinear 

predictor variables are identified and eliminated. In terms of identifying collinear predictors, 

correlations among all pairs of predictors were evaluated to reveal those which were most 

associated with one another. Following this, their individual contributions to a model of ERP 

response amplitude across regions were evaluated to identify those which maximized the 

model’s likelihood in isolation of all other predictors. This assessment relied on the Akaike 

Information Criterion, which optimizes for a minimum number of model terms and maximal log-
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likelihood (Akaike, 1974). In our case, where these comparisons between predictor variables 

hold the number of observations and terms constant, likelihood was optimized purely by the 

quality of the predictor. 

It should be noted that alternative approaches to addressing multicollinearity exist, such 

as using principal component analysis to create a single predictor which represents a 

combination of predictors which had been correlated (Hotelling, 1933; Pearson, 1901). While 

this approach avoids problems associated with numerous related predictors, interpretation of 

effects that are specific to individual predictors is made considerably more complex and requires 

additional analysis (e.g., partial least squares analysis). While the above discussions only touch 

on the potential impact these decisions can have on results, the present investigation will 

explore their outcomes in fuller detail. The validity of common techniques in language ERP 

analysis will be tested to determine ideal methodology, and established effects of individual 

differences will be validated and expanded upon where possible. In accordance with the 

concerns addressed above, we examined and attempted to optimize the model-building process 

as it relates to language violation processing, and its interaction with ID measures across several 

domains. To achieve this, we used ERP and ID measure data as described in Chapter 2 to identify 

domains which may predict cortical processing of language violations. 

This analysis was intended in part to provide a baseline modeling procedure against 

which less common techniques could be compared in subsequent chapters. Methodologically, 

the current investigation included two areas of focus. The first was to quantify the 

improvements that resulted from including random effects, both in terms of participant-specific 

baseline responses and topographical distributions. A bare-bones linear model which included 

only fixed effects was compared with several variations of linear mixed models, which differed 

only in their specification of random effects, to characterize the impact of their inclusion. We 
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then evaluated the likelihood that each model could have produced the experimental data (log-

likelihood) in order to quantify any improvement that specific random effect structures could 

provide to the models. 

Our second focus was to develop a framework for selecting an ideal set of ID measures, 

as it was unknown which ones may prove interesting/meaningful, but nonetheless a deliberate 

and relatively small set must be selected in order to avoid multicollinearity. Given the number of 

ID measures that were chosen for investigation, the model selection process was optimized 

through consideration of correlations between measures and the validity of their inclusion as 

model terms, where the goal was to arrive at the most descriptive but parsimonious model 

possible. This selection process again used the log-likelihood of the model as a measure of 

improvement, but with penalties for inclusion of additional model terms, where a balance 

between the two should yield the ideal model (Akaike, 1974). 

It was hypothesized that the expense of including random effects (both participant-

specific baseline responses and topographies) would be outweighed by the benefit of their 

inclusion (in terms of model likelihood). This was expected to result in a significant improvement 

in model likelihood that was associated with including random mean response amplitudes for 

each participant, as well as allowing random variance in response topography between 

participants. Furthermore, it was hypothesized that the ideal model would not include all ID 

measures as predictors due to either multicollinearity or minimal predictive power from some, 

resulting in a focus on only the most salient ID measures. It should be noted that the present 

study includes more unique ID measures than any previous work in this area to our knowledge, 

and so it was not known which would serve as the strongest predictors. Rather, these findings 

served as an exploratory introduction to gauge the efficacy of these ID measures, and to provide 

a framework for comparison with subsequent chapters. 
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4.2.  Methods 

All details pertaining to the collection and pre-processing of data are as described in 

Chapter 2, Data Collection and Pre-Processing. The following methods were specific to the 

present investigation. 

4.2.1.  Random Effect Selection 

Selecting the appropriate random effect structure for an experimental design can have a 

considerable impact on the estimates (coefficients) of fixed effects. When used appropriately, 

the result can be reduced error in the model and improved predictive accuracy (R2), and by 

extension results that generalize beyond the experimental setting more accurately than those 

obtained using fixed effects only. This is due to allowing flexibility in the calculation of terms 

where unknowable variability is expected. For example, where language proficiency might be 

predicted to have an overall effect on cortical response amplitude, two unknowable factors may 

confound the results: 1) individual participants will likely have different baseline responses, 

against which changes must be considered, and 2) the topographical distribution of effects may 

differ between individuals. In the above example, a model containing no random effects is 

derived using the following formula: 

Amplitude ~ Proficiency 

In this formula, Amplitude is cortical response (μV), and Proficiency is a continuous 

predictor indicating some aspect of language proficiency for a participant. Any variability in the 

base response between participants, and any variability in the topography of responses, is not 

modeled, and becomes a part of the error term. This can be improved upon as following: 

Amplitude ~ Proficiency + (1|Participant) 
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In this formula, Participant represents a factor with a unique mean for each participant. 

The result is a random base response for each participant, allowing flexibility in the intercept for 

each participant. This effect will be referred to as a random by-participant intercept, referring to 

the mean response amplitude across trials, conditions and electrodes for each participant. 

However, there is still no accounting of variability in the scalp topography across participants. 

The following achieves this: 

Amplitude ~ Proficiency + (1 + ROI | Participant) 

In this formula, a random effect of scalp region, ROI, has been nested within the random 

by-participant intercept. It therefore predicts that a degree of unknowable variance in the 

topography will exist within each participant. This effect will be referred to as a random ROI-by-

participant slope. Note this formula allows for a degree of correlation between the random ROI-

by-participant slope and by-participant intercept. That is, there are no constraints placed on the 

estimates, and correlation between the two is expected to reflect the observed data. If there is a 

requirement to force zero correlation between the two, which might produce more orthogonal 

random effect estimates but make achieving a better fit more difficult, then the formula can be 

amended as follows: 

Amplitude ~ Proficiency + (1 | Participant) + (0 + ROI | Participant) 

This type of random effect structure was not expected to result in any benefit to the 

present study, though it was investigated as an exploratory measure. However, an experimental 

design that must model two potentially related terms as random effects should consider the 

degree of relationship between those two variables when deciding on a random effect structure, 

as non-unique dependency of a response on multiple predictors (multicollinearity) is detrimental 

to model viability in fixed and random effects alike. Either of the previous two models will be a 
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candidate for depicting random variability between participants, both in base response 

amplitude and scalp distribution. Therefore, we investigated the capacity for each of the above 

random effect structures to maximize the descriptive ability of the resulting model. 

4.2.2.  Linear Modeling 

The effects of language proficiency and cognition were evaluated using linear mixed 

effects modeling, using the lme4 package (Bates et al., 2011) with R version 3.4.1 (R 

Development Core Team, 2013). As described in Chapter 2, predictor variables of interest 

included Listening/Vocabulary, Speaking/Grammar, Listening/Grammar (Hammill et al., 1994), 

word reading efficiency (TOWRE-2), two measures of working memory capacity (OSpan and 

LSpan), and speech comprehension (AzBio). Scalp voltage was averaged across each time 

window of interest, including 300-500 ms and 600-800 ms following the onset of the violating 

word, for each electrode.  

Multicollinearity is known to be problematic for the general linear model. In extreme 

cases, two strongly correlated predictors are nearly equally capable of explaining variance in the 

dependent variable, but are incapable being assigned coefficients which predict that same 

variance. Their effect size is necessarily reduced, in proportion to the strength of their 

correlation, and distinctions between the predictors cannot be made. This is true of any additive 

modeling solution (e.g., GLM), as model terms (along with residuals) sum to a predicted 

response, and depicting separate correlated predictors as equally capable of predicting a 

response would overestimate its magnitude of the prediction. Therefore, perfectly orthogonal 

(uncorrelated) predictors are ideal, but this is rarely possible. Instead, measures must be taken 

to ensure that collinearity between predictors is minimized where possible. 
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Collinearity of our cognitive and language proficiency measures was assessed using 

Spearman’s ρ2, where only one predictor was selected from any group of related measures for 

potential contribution to the final model. This determination was made using the Akaike 

Information Criterion (AIC; Akaike, 1974), a measure which applies penalties for addition of 

terms against the log-likelihood of a model. The AIC is calculated as shown below in Formula 1, 

where k is the number of model terms, and L is the log-likelihood of the resulting model. The 

outcomes of this analysis will be discussed in more detail in the results below. 

𝐴𝐼𝐶 = 2𝑘 − 2ln⁡(𝐿)    (1) 

As each collinear predictor was evaluated independently, the number of terms in the 

models being compared was unchanged. Therefore, use of the AIC in this instance was 

equivalent to evaluating changes in the log-likelihood of models through inclusion of individual 

predictors. This resulted in removal of predictors which were highly correlated, but less likely to 

have produced the observed data.  

The modelling process was completed in four separate instances, one for each of the 

two time windows (300-500 ms and 600-800 ms) and two sentence types (semantic and phrase 

structure) being investigated. Potential predictors in each model were determined using the 

same process, but since each outcome measure was associated with different eliciting 

conditions (violation type) and underlying cognitive processes, it was possible for different 

predictors to be included across models. 

For each model, we first created a linear model that included scalp voltage as a function 

of fixed effects for sentence condition (control or violation), ROI, and their interaction. This was 

compared with a model that included these same fixed effects as well as a random intercept for 

each participant, and a random ROI effect for each participant. As above, the model with the 
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lower AIC value was taken as that which best predicted our observations. Next, the inclusion of 

model terms for participant age and sex was tested in the same manner. All models were 

improved by the addition of the described random effects, but none benefited from the 

inclusion of age or sex. This resulted in our base model (Formula 2): 

 Amplitude ~ condition × ROI + (1 + ROI|participant) (2) 

It was expected that participants would vary in their overall voltage output at the scalp, 

and that depiction of effects across the scalp would differ between participants based on 

unknowable differences in scalp tissue, head shape, and electrophysiology. An investigation into 

the optimal random effect structure is detailed below. While random inconsistencies between 

the violation effects of different sentence types may also be expected between participants, and 

the distribution of those differences may vary unknowably across the scalp as well, any given 

model predicted responses for only a single sentence type. This precludes the requirement for 

random sentence type effects across participants. Each sentence type and time window were 

modeled separately to aid interpretability by limiting the violation effect to only a three-way 

interaction (i.e., condition × ROI × score) rather than four- or five-way interactions (i.e., sentence 

× time × condition × ROI × score), despite that modeling subsets of the full data set was likely 

related to a reduction in statistical power. 

As described above, only a subset of predictors could be included in a model, where 

those included were based on the probability that a predictor would have yielded the observed 

scalp effects (model likelihood). Consequently, allowing for each model to include potentially 

non-overlapping predictors from correlated sets avoided the assumption that there was one 

‘best’ set of predictors for all sentence types and time windows. Pairwise correlations were used 

to address collinearity among predictors, and no model included any two or more collinear pairs 

of ID measures (Spearman’s ρ2 > 0.1). While these results are described in greater detail in the 
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results, the ID measure groupings are pertinent to the model building process and so they are 

briefly described here. Collinear pairs of variables included: 1) TOAL-3 Listening/Vocabulary and 

AzBio, 2) TOWRE-2 and OSpan, and 3) TOAL-3 Speaking/Grammar and LSpan. TOAL-3 

Listening/Grammar was not strongly correlated with any other predictors and was investigated 

in every model. 

4.2.3.  Model Selection 

In each of the four models, an ideal model was created in a stepwise fashion as follows: 

Each potential predictor, as determined above, was included in a new variant of the base model, 

which allowed for interactions between condition (violation or control), ROI, and the predictor. 

This resulted in as many models as there were predictors, and the model that produced the 

lowest AIC became the new base model against which the addition of each remaining potential 

predictors was evaluated. The model continued to be built using this procedure until either 

inclusion of any remaining predictors did not represent a substantial improvement in the model, 

or all predictors were included. The determination of a “substantial” improvement in this case 

was based on an AIC improvement of five or greater, as an improvement of less than five is 

generally considered not to provide meaningful support for a model (K P Burnham & Anderson, 

2004).  

Importantly, the AIC does not allow for determination of significance, but is intended to 

suggest favorability when presented with two or more models. AIC values are strongly related to 

sample size, which can make comparisons ambiguous in models that consider differing numbers 

of observations. Attempts have been made to improve interpretability of raw AIC values, for 

example through transformation into Akaike weights (Wagenmakers & Farrell, 2004). While 

Akaike weights do allow for comparison of likelihood between models that include different 
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sample sizes, the determination of a likelihood threshold is still required and is no less 

ambiguous than comparisons using raw AIC values alone. However, because the sample sizes 

were identical in all comparisons here, raw AIC values were considered to be a direct indicator of 

model likelihood. 

ID measures were included such that up to three-way interactions between the 

measure, condition, and ROI were allowed, but that ID measures did not interact with one 

another. This level of interaction was chosen to aid interpretability; changes in violation effect 

size as a function of an ID measure for an ROI were central to our investigation, but interactions 

between ID measures were not. In addition, higher-order interactions (e.g., effects that are only 

applicable to specific combinations of numerous ID measure scores) have limited generalizability 

and are cumbersome to interpret. Once measures were chosen, the final model was determined 

through iteratively removing individual fixed effects—starting with highest-order effects (in this 

case, three-way interactions)—that had F statistics that corresponded with p values above alpha. 

Non-significant lower-order terms were kept if they were part of a higher-order interaction. This 

step redefines variance explained by non-significant terms as model residuals, further reducing 

Type I error. This method of iterative back-fitting was performed using the 

LMERConvenienceFunctions package (Tremblay & Ransijn, 2013) in R (R Development Core Team, 

2013). 

The significance of interactions between an ID measure and the violation vs. control 

sentence difference term was evaluated at each ROI using the three-way interaction between 

condition, ROI, and an ID measure, with a Bonferroni adjustment made for the 9 ROIs being 

investigated. In many cases, interactions were significant (suggesting that the violation effect 

changes as a function of the ID measure), but effect sizes were small. Therefore, there was an 

additional requirement that the 95% confidence interval of the violation - control difference did 



63 
 

not contain zero for some portion of the ID measure spectrum. This ensured that the ERP 

amplitudes for violation and control sentences diverged to a considerable degree (i.e., responses 

to each of the two conditions differed in amplitude) for the individuals in that portion of the ID 

measure spectrum. If both requirements were met, such that the ID measure significantly 

influenced the conditional contrast (as indicated by the significance of the interaction term), and 

the conditional contrast was significantly greater than 0 µV, the relationship between an ID 

measure and the violation effect was considered significant at an ROI.  

Investigations of any ID measure only included individuals with scores that fell within the 

range of the mean ± 3 standard deviations for that measure. This resulted in removal of one 

individual from investigations that included the AzBio speech comprehension measure. 

4.3.  Results 

4.3.1.  Data Quality and Random Effects 

Prior to evaluating the results of any models, the quality of the data and the impact of 

including random effects in a model was evaluated. Figure 4.1 shows the distribution of scalp 

voltage observed for each time range of interest (300-500 ms and 600-800 ms). Responses 

demonstrated a relatively normal distribution in each time range. 
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Figure 4.1 Scalp voltage frequency each time range of interest: 300-500 ms (left), and 600-800 ms (right), 

including both semantic and phrase structure violation responses. 

These responses were fit to two models: 1) a simple GLM using only fixed effects to 

evaluate scalp voltage following onset of the violating word as a function of condition (violation 

vs. control), sentence type (semantic or phrase structure), and ROI, and 2) a similar model, fit 

using LME, which was identical except for the addition of a random intercept for each ROI in 

each participant. These models were fit in order to assess the improvements afforded through 

inclusion of random effects.  Model residuals for the two approaches are shown in Figure 4.2, 

qualitatively suggesting an improvement in model sensitivity (i.e., reduced noise) for LME. The 

scales of values predicted by each model (x-axis) differed slightly, as inclusion of random effects 

resulted in predicting stronger signals at times. However, the magnitude of residuals (y-axis) was 

ostensibly similar between the two models, with a maximum of approximately 50 µV for any 

given predicted value in each. 
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Figure 4.2 Residuals vs model-predicted values using the fixed-effects only general linear model (left), and 

linear mixed effects model (middle). Normality of residuals is demonstrated for the linear mixed effects 

model (right). 

Addition of this random effect improved the AIC significantly (by 16,241, where 5 is 

considered significant; Akaike, 1974), reflecting greater model likelihood in the mixed model.  

Notably, including random effects was associated with decreasing variance as predicted values 

increased. Residuals were also normally distributed as seen in the right-most pane of Figure 4.2. 

To further evaluate normality, a Q-Q plot for the above linear mixed model is shown in Figure 

4.3. While there was some deviation of observed quantiles from the theoretical normal 

distribution at either end (i.e., heavy tails), this was not so strong as to consider the model 

invalid. Nonetheless, this suggests that non-parametric hypothesis testing methods may improve 

model accuracy above the parametric GLM approaches used in this research. 
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Figure 4.3 Q-Q plot for a linear mixed model including fixed terms for sentence type, condition, ROI, and 

random terms for participant and ROI within participants. Deviation of quantiles from the theoretical normal 

distribution on either end suggests a degree of non-normality in the distribution. 

Regarding homogeneity of variance in model terms, formal tests (e.g., Bartlett’s or 

Levene’s test for heteroscedasticity) are heavily dependent on sample size, and given that the 

depicted models were built on more than 770,000 observations, even marginal differences in 

residual variance between factor levels could be considered significant violations. One possible 

solution might be to downsample the data set by testing only a randomized subset of 

observations, arriving at a data set size that is appropriate for testing. However, this risks 

excluding problematic observations which may exist. Therefore, these tests cannot be relied on 

in the present sample. However, in all cases, residuals for each factor level demonstrated a 

mean of ostensibly zero with similar variance (e.g., 2.3 x 10-15 ± SD = 5.55 µV for control 

sentences, and -1.7 x 10-14 ± SD = 5.54 µV for violation sentences), and so heterogeneity of 

variance was not considered a concern. 

4.3.2.  Predictor Collinearity 

As discussed, correlation between observations in distinct predictor variables (i.e., 

collinearity) is problematic for the general linear model. Correlation of predictors in a model can 
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result errors in effect size estimation (Barr et al., 2013). Therefore, it was necessary to address 

collinearity, and for any set of correlated variables include only those that most improved a 

model. Spearman’s ρ2 was calculated between all sets of predictors, and any two or more of 

sufficient similarity were never included in the same model. Here, sufficient similarity was 

defined as ρ2 > 0.1, a conservative estimate which was intended to select for only the most 

orthogonal ID measures. Figure 4.4 describes the collinearity of all predictors. Those found to be 

similar were (1) Listening/Vocabulary and AzBio, (2) TOWRE and OSpan, and (3) 

Speaking/Grammar and LSpan. For each set, only the predictor that most improved the model’s 

description of the variance was used. Because a separate model was created for each sentence 

type and time window of interest, these models frequently included different predictors, as 

described below. 

Notably, there are alternatives to such iterative solutions for predictor selection. For 

example, the elastic net method has proven capable in data sets where the number of predictors 

outnumber the number of observations (Zou & Hastie, 2005). While this method is also 

applicable for use with fewer predictors, it is known to characteristically include or exclude 

correlated predictors as a group, and is not suitable for the purpose of eliminating one of a pair 

of correlated predictors (Zou & Hastie, 2005). Similarly, partial least squares analysis can be used 

to identify these relationships without the need to fit numerous models, selecting predictors (or 

groups of predictors) which explain variance in a response variable (Bry, Trottier, Mortier, Cornu, 

& Verron, 2016). However, this method has similarly failed to select between correlated 

predictors (Bry et al., 2016), and neither is therefore well-suited to address multicollinearity. 
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Figure 4.4 Dendrogram of Spearman’s ρ2 indicating collinearity of predictor variables. Predictors with a 

correlation beyond the threshold (ρ2 > 0.1), shown as a red line, were not included in the same model 

together.     

4.3.3.  Random Effect Structure 

For this investigation, we evaluated the candidacy of random effects structures primarily 

using AIC and the related Akaike weights (Wagenmakers & Farrell, 2004). In addition, we 

considered conditional R2. We used conditional R2 as a measure of predictive accuracy (as 

opposed to marginal R2, which will be of use during later comparisons of time windows and 

sentence types) because this measure includes random effects when predicting responses, and 

the impact of random effect inclusion was central to this investigation. Table 4.1 shows an 

example of the results of this investigation for phrase structure violations in the 600-800 ms 

time window. 
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Table 4.1 Degrees of freedom (DOF), AIC, ΔAIC, Akaike Weight, and conditional R2 for each of four potential 

random effect structures: 1) None 2) By-participant intercepts, 3) ROI-by- participant slopes with by- 

participant intercepts, and 4) ROI-by- participant slopes with by- participant intercepts at forced zero 

correlation.  Models were created for phrase structure violations in the 600-800 ms time window.  

RANDOM EFFECTS DOF AIC AKAIKE 
WEIGHT 

CONDITIONAL 
R2 

NONE 91 1,323,814 < 0.001 2.41% 

(1|PARTICIPANT) 92 1,321,852 < 0.001 3.77% 

(1+ROI| PARTICIPANT) 136 1,320,468 0.874 4.58% 

(1| PARTICIPANT) + (0+ROI| PARTICIPANT) 137 1,320,472 0.126 4.58% 

 

In this investigation, using region-by-participant slopes with by-participant intercepts 

represented the optimal random effect structure. This model produces the most favorable AIC 

to a considerable degree when compared with the previous two (simpler) models, which was 

our primary metric of model parsimony and quality. The added constraint of forcing zero 

correlation between the two effects resulted in a more complex but not substantially-improved 

model. This was also reflected in the Akaike weights, which favored this model to a considerable 

degree. In addition, the predictive accuracy (conditional R2) is strongest for either model that 

included ROI as a random effect. Again, opting for the simpler model encourages use of the 

former. Therefore, inclusion of random region-by-participant slopes and by-participant 

intercepts produces the most parsimonious and accurate model. This random effect structure 

was therefore used in each time window and for each sentence type. 
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4.3.4.  Semantic Violations, 300-500 ms 

The result of AIC-driven model for semantic violations in 300-500 ms is shown in Table 

4.2. Post-hoc testing of those terms in bold is shown in Table 4.3. 

Table 4.2 Model terms for responses 300-500 ms following the onset of semantic violations. Significance of a 

term is denoted using * (p < .05), ** (p < .01), or *** (p < .001). 

 
F DOF p 

 

Condition 762.26 1, 201205 0.000 *** 

ROI 7.42 8, 201205 0.000 *** 

OSpan 1.07 1, 201205 0.301 
 

Speaking/Grammar 0.04 1, 201205 0.835 
 

Listening/Grammar 0.04 1, 201205 0.850 
 

Condition:ROI 351.40 8, 201205 0.000 *** 

Condition:OSpan 20.07 1, 201205 0.000 *** 

Condition:Speaking/Grammar 642.26 1, 201205 0.000 *** 

ROI:Speaking/Grammar 1.23 8, 201205 0.279 
 

Condition:Listening/Grammar 21.12 1, 201205 0.000 *** 

ROI:Listening/Grammar 0.91 8, 201205 0.506 
 

Condition:ROI:Speaking/Grammar 7.48 8, 201205 0.000 *** 

Condition:ROI:Listening/Grammar 20.53 8, 201205 0.000 *** 

 

Post-hoc comparisons of the two-way condition by ROI interaction revealed that, across 

participants, the condition contrast was significant at each ROI. Significance in this contrast was 

corrected for 9 comparisons using a Bonferroni adjustment. ID measures that were included in 

three-way interactions with condition and ROI indicate those that were likely to affect violation 

processing. These measures are denoted in bold and will be discussed below.  

The latency and distribution of the negative violation effect seen in the 300-500 ms time 

window was consistent with the predicted N400 component. As seen in Table 4.3, the three-way 

interaction between Listening/Grammar score, condition, and ROI reflected that the effect of 

Listening/Grammar score on N400 amplitude was strongest at the anterior midline ROI, where 
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participants with lower scores showed a larger N400 effect. Listening/Grammar also influenced 

N400 amplitude at a number of posterior and central ROIs, as outlined in Table 4.3. However, for 

brevity, only ROIs at which the strongest effect of an ID measure are outlined in this text.  

Similarly, participants with lower Speaking/Grammar scores showed a higher-amplitude N400 

across frontal and midline ROIs, with this effect being strongest in the right anterior and right 

midline ROIs. While the influence of Speaking/Grammar on N400 amplitude was strongest in the 

left posterior ROI, as seen in the slope for this region in Table 4.3, response amplitude at this ROI 

was lower. Rather, it was the anterior midline ROI which was associated with the highest-

amplitude N400. These effects are outlined in Figure 4.5. 

To elucidate whether the effect of steeper Listening/Grammar slopes at anterior than 

central ROIs might relate to differences in the topography of the response between lower- and 

higher-scoring individuals, the response topography was calculated for these two groups, as 

depicted in Figure 4.6. Participants were separated using a median division of 

Listening/Grammar scores into two quantiles. Lower-scoring participants demonstrated farther-

reaching central parietal negativity during this time window than did higher-scoring participants, 

who instead showed stronger anterior positivity. 

It is important to note that, as described above, effects are only depicted as significant if 

two criteria are met. First, the confidence interval for an estimate (violation vs. control contrast) 

must not contain zero for some value of an ID measure. Second, the slope of the estimate must 

be statistically significant. In some cases, ID measures are shown to have a significant effect on 

response amplitude for a region despite that the confidence interval only exceeds zero at one 

extreme value (e.g., the effect of Speaking/Grammar score at the central midline ROI, Figure 

4.5), and while these effects meet our criteria for significance, they may not be replicable and 

are not reported. 
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Figure 4.5 Semantic violation effects across each ROI in the 300-500 ms time window. The 95% confidence 

intervals are shown, indicating violation effects, with a significant slope of the predictor shown (* p < .05, ** 

p < .01, *** p < .001) where the CI of that effect exceeds zero. 

 

Figure 4.6 Averaged topography of responses to semantic violations 300-500 ms following onset of the 

violation word for participants below (left) and above (right) the median split for Listening/Grammar scores. 
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Table 4.3 Post-hoc comparison of condition (violation vs. well-formed) contrast at each ROI, and three-way 

interactions (modulation of the condition contrast slope by an ID measure at each ROI) in the 300-500 ms 

time window for semantic violations. Rows show any ROI where the 95% CI of the condition contrasts 

exceeded zero, alongside significance of the interaction at that region. 

Interaction ROI Corrected Significance Model Estimate 

Condition x 

ROI 

(DOF = 201205) 

Anterior Left 

 

t = -4.41, p < .001, *** -3.58 

Anterior Midline t = -10.14, p < .001, *** -7.13 

Anterior Right t = -6.63, p < .001, *** -5.38 

Central Left t = -6.29, p < .001, *** -4.61 

Central Midline t = -10.53, p < .001, *** -6.41 

Central Right t = -7.19, p < .001, *** -5.27 

Posterior Left t = -5.71, p < .001, *** -5.71 

Posterior Midline t = -4.85, p < .001, *** -3.56 

Posterior Right t = -5.14, p < .001, *** -3.77 

Condition x 

ROI x 

Speaking/Grammar 

(DOF = 201388) 

Anterior Midline t = 10.22, p < .001, *** 0.196 

Anterior Right t = 3.37, p = .007, ** 0.075 

Central Midline t = 13.51, p < .001, *** 0.224 

Central Right t = 3.49, p = .004, ** 0.069 

Posterior Left t = 11.19, p < .001, *** 0.226 

Posterior Midline t = 10.62, p < .001, *** 0.216 

Condition x 

ROI x 

Listening/Grammar 

(DOF = 201405) 

Anterior Midline t = 6.45, p < .001, *** 0.128 

Central Left t = 1.33, p = 1.00 0.028 

Central Midline t = -0.01, p = 1.00 0.000 

Central Right t = 5.08, p < .001, *** 0.106 

Posterior Left t = 3.50, p = .004, ** 0.073 

Posterior Midline t = -5.37, p < .001, *** 0.112 

  



74 
 

4.3.5.  Semantic Violations, 600-800 ms 

The result of AIC-driven model for semantic violations in 600-800 ms is shown in Table 

4.4. Post-hoc testing of those terms in bold is shown in Table 4.5. 

Table 4.4  Model terms for responses 600-800 ms following the onset of semantic violations. Significance of 

a term is denoted using * (p < .05), ** (p < .01), or *** (p < .001). 

 
F DOF p 

 

Condition 362.97 1, 201188 0.000 *** 

ROI 4.26 8, 201188 0.000 *** 

OSpan 4.74 1, 201188 0.030 * 

Speaking/Grammar 0.00 1, 201188 0.977 
 

Listening/Grammar 8.42 1, 201188 0.004 ** 

AzBio 0.01 1, 201188 0.929 
 

Condition:ROI 132.91 8, 201188 0.000 *** 

Condition:Speaking/Grammar 420.07 1, 201188 0.000 *** 

ROI:Speaking/Grammar 0.74 8, 201188 0.656 
 

Condition:Listening/Grammar 7.25 1, 201188 0.007 ** 

ROI:Listening/Grammar 0.97 8, 201188 0.455 
 

Condition:AzBio 146.64 1, 201188 0.000 *** 

ROI:AzBio 2.12 8, 201188 0.030 * 

Condition:ROI:Speaking/Grammar 13.73 8, 201188 0.000 *** 

Condition:ROI:Listening/Grammar 8.21 8, 201188 0.000 *** 

Condition:ROI:AzBio 6.55 8, 201188 0.000 *** 

 

Post-hoc comparisons of the two-way condition by ROI interaction revealed that, across 

participants, the condition contrast was significant at all ROIs except for central left and central 

right. Significance of this contrast across ROIs was corrected for 9 comparisons using a 

Bonferroni adjustment. This two-way interaction depicted significant positivity at all posterior 

ROIs, as well as the central midline ROI, and a negative violation effect at all anterior ROIs.  This 

pattern was reflected in the three-way interactions between Condition, ROI, and each of three 

ID measures: Speaking/Grammar, Listening/Grammar, and AzBio. These effects are outlined in 
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Figure 4.7. In these interactions, participants with lower Listening/Grammar and 

Speaking/Grammar scores showed a higher-amplitude positive response at the posterior central 

and posterior right ROIs than did higher-scoring participants. AzBio did not modulate the 

response amplitude at posterior ROIs in this time window. Conversely, the negative response 

seen at anterior ROIs was modulated by each of the three ID measures, but this influence was 

weak. The significance of these effects is described in Table 4.5. 
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Figure 4.7 Semantic violation effects across each ROI in the 600-800 ms time window. The 95% confidence 

intervals are shown, indicating violation effects, with a significant slope of the predictor shown (* p < .05, ** 

p < .01, *** p < .001) where the CI of that effect exceeds zero. 

  



77 
 

Table 4.5 Post-hoc comparison of condition (violation vs. well-formed) contrast at each ROI, and three-way 

interactions (modulation of the condition contrast slope by an ID measure at each ROI) in the 600-800 ms 

time window for semantic violations. Rows show any ROI where the 95% CI of the condition contrasts 

exceeded zero, alongside significance of the interaction at that region. 

Interaction ROI Corrected Significance Model Estimate 

Condition x 

ROI 

(DOF = 201171) 

Anterior Left 

 

t = -6.74, p < .001, *** -6.96 

Anterior Midline t = -7.29, p < .001, *** -6.52 

Anterior Right t = -5.2, p < .001, *** -5.37 

Central Left t = -0.72, p = 1.00 -0.67 

Central Midline t = 3.14, p = 0.015, * 2.43 

Central Right t = 0.47, p = 1.00 0.43 

Posterior Left t = 5.62, p < .001, *** 5.25 

Posterior Midline t = 9.84, p < .001, *** 9.19 

Posterior Right t = 6.58, p < .001, *** 6.15 

Condition x 

ROI x 

Speaking/Grammar 

(DOF = 201171) 

Anterior Left t = 7.01, p < .001, *** 0.101 

Posterior Left t = -1.08, p = 1.00 -0.140 

Posterior Midline t = -6.14, p < .001, *** -0.080 

Posterior Right t = -7.36, p < .001, *** -0.096 

Condition x 

ROI x 

Listening/Grammar 

(DOF = 201171) 

Anterior Left t = 1.47, p = 1.00 0.021 

Anterior Midline t = -1.17, p = 1.00 -0.015 

Anterior Right t = -3.03, p = .022, * -0.044 

Posterior Midline t = -7.43, p < .001, *** -0.099 

Posterior Right t = -3.74, p = .002, ** -0.050 

Condition x 

ROI x 

AzBio 

(DOF = 201171) 

Anterior Left t = 0.16, p = 1.00 0.003 

Anterior Midline t = 1.42, p = 1.00 0.026 

Anterior Right t = 3.71, p = .002, ** 0.080 

Central Midline t = 2.36, p = .160 0.038 

Posterior Left t = -0.38, p = 1.00 -0.007 

Posterior Midline t = 1.65, p = .877 0.032 

Posterior Right t = 2.63, p = .075 0.051 
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4.3.6.  Phrase Structure Violations, 300-500 ms 

The result of AIC-driven model for phrase structure violations in 300-500 ms is shown in 

Table 4.6. Post-hoc testing of those terms in bold is shown in Table 4.7. 

Table 4.6 Model terms for responses 300-500 ms following the onset of phrase structure violations. 

Significance of a term is denoted using * (p < .05), ** (p < .01), or *** (p < .001). 

 
F DOF p 

 

Condition 6.39 1, 205126 0.012 * 

ROI 9.05 8, 205126 0.000 *** 

OSpan 0.01 1, 205126 0.920 
 

Speaking/Grammar 0.55 1, 205126 0.457 
 

Listening/Grammar 1.57 1, 205126 0.210 
 

Listening/Vocabulary 1.93 1, 205126 0.164 
 

Condition:ROI 21.75 8, 205126 0.000 *** 

Condition:OSpan 19.18 1, 205126 0.000 *** 

Condition:Speaking/Grammar 3.89 1, 205126 0.049 * 

ROI:Speaking/Grammar 0.45 8, 205126 0.894 
 

Condition:Listening/Grammar 307.10 1, 205126 0.000 *** 

ROI:Listening/Grammar 0.91 8, 205126 0.504 
 

Condition:Listening/Vocabulary 48.42 1, 205126 0.000 *** 

ROI:Listening/Vocabulary 3.55 8, 205126 0.000 *** 

Condition:ROI:Speaking/Grammar 1.95 8, 205126 0.049 * 

Condition:ROI:Listening/Grammar 11.82 8, 205126 0.000 *** 

Condition:ROI:Listening/Vocabulary 3.27 8, 205126 0.001 ** 

 

Post-hoc comparisons of the two-way condition by ROI interaction revealed that, across 

participants, the condition contrast was significant at all ROIs except for posterior left. 

Significance of this contrast across ROIs was corrected for 9 comparisons using a Bonferroni 

adjustment. While the time course of the response to phrase structure violations shown in 

Figure 3.1 shows only a weak response during this time frame (300-500 ms), the violation effect 

was consistently positive – even if only weakly – throughout that range. Moreover, the 

significance of this positivity at all except for the posterior left ROI was in accordance with the 
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topography of this effect shown in Figure 3.2, as this represents the scalp region at which the 

peak of a (weak) negative response was shown. Overall, evidence for these effects in the grand 

averaged time course and topography of the response were weak. Nonetheless, the effect was 

statistically significant. 

During the 300-500 ms time window, participants with lower Listening/Vocabulary 

scores showed a stronger positive violation effect at anterior and central midline ROIs, and those 

with lower Listening/Grammar scores showed a similar positive violation effect at the central 

midline ROI. However, the influence of the ID measures at these regions, as well as amplitude of 

the response, were relatively weak. Conversely, participants with higher Speaking/Grammar 

scores showed a stronger positive violation effect than did those with lower scores. The 

influence of Speaking/Grammar on response amplitude was significant at anterior left and 

midline, central midline, and posterior left ROIs. These effects are outlined in Figure 4.8. 
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Figure 4.8 Phrase structure violation effects across each ROI in the 300-500 ms time window. The 95% 

confidence intervals are shown, indicating violation effects, with a significant slope of the predictor shown (* 

p < .05, ** p < .01, *** p < .001) where the CI of that effect exceeds zero. 
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Table 4.7 Post-hoc comparison of condition (violation vs. well-formed) contrast at each ROI, and three-way 

interactions (modulation of the condition contrast slope by an ID measure at each ROI) in the 300-500 ms 

time window for phrase structure violations. Rows show any ROI where the 95% CI of the condition contrasts 

exceeded zero, alongside significance of the interaction at that region. 

Interaction ROI Corrected Significance Model Estimate 

Condition x 

ROI 

(DOF = 205126) 

Anterior Left 

 

t = 6.63, p < .001, *** 6.14 

Anterior Midline t = 7.59, p < .001, *** 6.09 

Anterior Right t = 5.31, p < .001, *** 4.91 

Central Left t = 5.17, p < .001, *** 4.33 

Central Midline t = 7.04, p < .001, *** 4.89 

Central Right t = 2.94, p = 0.029, * 2.47 

Posterior Left t = 2.57, p = 0.091 2.16 

Posterior Midline t = 3.55, p = 0.003, ** 2.98 

Posterior Right t = 2.99, p = 0.025, * 2.51 

Condition x 

ROI x 

Listening/Grammar 

(DOF = 205326) 

Central Midline t = -7.18, p < .001, *** 

 

-0.174 

Condition x 

ROI x 

Speaking/Grammar 

(DOF = 205326) 

Anterior Left t = 3.52, p = .004, ** 0.131 

 
Anterior Midline t = 6.06, p < .001, *** 0.195 

Anterior Right t = 1.27, p = 1.00 0.047 

Central Left t = 2.55, p = .097 0.086 

Central Midline t = 3.43, p = .005, ** 0.096 

Posterior Left t = 3.62, p = .003, ** 0.122 

Posterior Midline t = 1.75, p = .708 0.059 

Condition x 

ROI x 

Listening/Vocabulary 

(DOF = 205326) 

Anterior Left t = -1.64, p = .894 -0.088 

Anterior Midline t = -3.60, p = .003, ** -0.167 

Anterior Right t = -0.93, p = 1.00 -0.050 

Central Left t = -2.36, p = .165 -0.114 

Central Midline t = -4.44, p < .001, *** -0.178 

Central Right t = 1.42, p = 1.00 0.068 
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4.3.7.  Phrase Structure Violations, 600-800 ms 

The result of AIC-driven model for phrase structure violations in 600-800 ms is shown in 

Table 4.8. Post-hoc testing of those terms in bold is shown in Table 4.9. 

Table 4.8 Model terms for responses 600-800 ms following the onset of phrase structure violations. 

Significance of a term is denoted using * (p < .05), ** (p < .01), or *** (p < .001). 

 
F DOF p 

 

Condition 1301.49 1, 205110 0 *** 

ROI 4.11 8, 205110 0.0001 *** 

OSpan 0.39 1, 205110 0.5305 
 

Speaking/Grammar 7.15 1, 205110 0.0075 ** 

Listening/Grammar 0.11 1, 205110 0.7425 
 

Listening/Vocabulary 0.23 1, 205110 0.6322 
 

Condition:ROI 64.70 8, 205110 0 *** 

Condition:OSpan 45.96 1, 205110 0 *** 

ROI:OSpan 0.82 8, 205110 0.585 
 

Condition:Speaking/Grammar 1.84 1, 205110 0.1747 
 

ROI:Speaking/Grammar 0.67 8, 205110 0.7193 
 

Condition:Listening/Grammar 956.50 1, 205110 0 *** 

ROI:Listening/Grammar 0.56 8, 205110 0.8143 
 

Condition:Listening/Vocabulary 135.09 1, 205110 0 *** 

ROI:Listening/Vocabulary 1.43 8, 205110 0.1772 
 

Condition:ROI:OSpan 6.04 8, 205110 0 *** 

Condition:ROI:Speaking/Grammar 9.01 8, 205110 0 *** 

Condition:ROI:Listening/Grammar 8.63 8, 205110 0 *** 

Condition:ROI:Listening/Vocabulary 7.97 8, 205110 0 *** 

 

Post-hoc comparisons of the two-way condition by ROI interaction revealed that, across 

participants, the condition contrast was significant at all ROIs. Significance in this contrast was 

corrected for 9 comparisons using a Bonferroni adjustment. Phrase structure violations, in 

comparison with well-formed sentences, elicited considerable positivity across participants that 

was maximal at the central midline ROI, as outlined in Table 4.9. The timing (600-800 ms) and 

distribution of this effect were consistent with that of the expected P600, which phrase 
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structure violations were hypothesized to elicit. Three-way interactions between condition, ROI, 

and each of Speaking/Grammar and OSpan suggested that the amplitude of the P600 was 

strongest in higher-scoring participants, when compared with those with lower scores. The 

dependence of P600 amplitude on Speaking/Grammar score was found to be significant at all 

anterior ROIs as well as the central midline ROI. Similarly, the dependence of P600 amplitude on 

OSpan score was significant at all anterior and central ROIs. 

Three-way interactions between condition, ROI, and each of Listening/Grammar and 

Listening/Vocabulary similarly suggested that these ID measures influenced the P600 amplitude. 

However, the effect of proficiency appeared to be reversed in these measures, as P600 

amplitude was found instead to be largest in participants with lower Listening/Grammar and 

Listening/Vocabulary scores. The influence of Listening/Grammar score on P600 amplitude was 

found to be significant at all posterior ROIs, as well as the central midline, anterior left, and 

anterior midline ROIs. While the slopes of the anterior left and midline ROIs were significant, the 

confidence interval of the violation effect at these regions included zero at all but the most 

extreme Listening/Grammar scores, and this effect may not be replicable. Similarly, the 

influence of Listening/Vocabulary score on P600 amplitude was found to be significant at all 

midline ROIs and at the left posterior ROI. These effects are outlined in Figure 4.9. 
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Figure 4.9 Phrase structure violation effects across each ROI in the 600-800 ms time window. The 95% 

confidence intervals are shown, indicating violation effects, with a significant slope of the predictor shown (* 

p < .05, ** p < .01, *** p < .001) where the CI of that effect exceeds zero.  
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Table 4.9 Phrase structure contrast by ROI for each ID measure (600-800 ms). Rows depict contrasts where 

the 95% CI of the difference exceeds zero, with the significance of the interaction at this region. 

Interaction ROI Corrected Significance Model Estimate 

Condition x 

ROI 

(DOF = 205110) 

Anterior Left 

 

t = 4.45, p < .001, *** 4.57 

Anterior Midline t = 9.67, p < .001, *** 8.60 

Anterior Right t = 5.35, p < .001, *** 5.49 

Central Left t = 5.8, p < .001, *** 5.38 

Central Midline t = 14.39, p < .001, *** 11.08 

Central Right t = 7.65, p < .001, *** 7.11 

Posterior Left t = 6.72, p < .001, *** 6.24 

Posterior Midline t = 11.85, p < .001, *** 11.01 

Posterior Right t = 10.29, p < .001, *** 9.56 

Condition x 

ROI x 

Listening/Grammar 

(DOF = 205326) 

Anterior Left t = -9.70, p < .001, *** -0.178 

Central Midline t = -14.54, p < .001, *** -0.202 

Posterior Left t = -5.58, p < .001, *** -0.093 

Posterior Midline t = -7.41, p < .001, *** -0.122 

Posterior Right t = -7.43, p < .001, *** -0.123 

Condition x 

ROI x 

Listening/Vocabulary 

(DOF = 205318) 

Anterior Midline t = -6.99, p < .001, *** -0.123 

Anterior Right t = -1.33, p = 1.00 -0.029 

Central Left t = -1.69, p = .808 -0.032 

Central Midline t = -8.31, p < .001, *** -0.131 

Central Right t = 0.05, p = 1.00 -0.001 

Posterior Left t = -3.73, p = .002, ** -0.070 

Posterior Midline t = -7.24, p < .001, *** -0.134 

Posterior Right t = -2.35, p = .166 -0.044 

Condition x 

ROI x 

OSpan 

(DOF = 205318) 

Anterior Left t = 6.20, p < .001, *** 0.122 

Anterior Midline t = 7.87, p < .001, *** 0.134 

Anterior Right t = 4.94, p < .001, *** 0.098 

Central Left t = 4.24, p < .001, *** 0.075 

Central Midline t = 6.63, p < .001, *** 0.097 

Central Right t = 5.65, p < .001, *** 0.100 

Posterior Left t = 1.41, p = 1.00 0.024 

Posterior Midline t = 1.64, p = .894 0.027 

Posterior Right t = 1.39, p = 1.00 0.023 

Condition x 

ROI x 

Speaking/Grammar 

(DOF = 205318) 

Anterior Left t = 4.11, p < .001, *** 0.058 

Anterior Midline t = 10.13, p < .001, *** 0.122 

Anterior Right t = 3.54, p = .003, ** 0.050 

Central Left t = 2.37, p = .156 0.030 

Central Midline t = 7.21, p < .001, *** 0.074 

Central Right t = 0.05, p = 1.00 0.001 

Posterior Left t = 2.04, p = .371 0.026 

Posterior Midline t = 1.74, p = .736 0.021 

Posterior Right t = -2.09, p = .324 -0.026 
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4.4.  Discussion 

4.4.1.  Overview of Objectives 

The present study expanded on a framework which has been established in recent 

studies to characterize the link between ID measures and ERP component characteristics, with a 

specific focus on language-related components, the N400 and P600. There were two overarching 

goals of this analysis. First, we aimed to use currently-accepted best-practices to establish a 

baseline analysis against which investigations in subsequent chapters could be compared. 

Second, we leveraged developments in analytical procedures which have not been commonly 

used in this field to evaluate their ability to improve model fit, likelihood, and sensitivity to 

effects which have proven elusive or inconsistent across studies. 

Prior to investigations of model improvement, we were required to determine the 

suitability of the commonly-used GLM for this type of experimental paradigm. While it was not 

expected that GLM-based approaches would be overtly inappropriate, characterizing the degree 

to which ERP data adhered to the required assumptions laid the groundwork for further 

investigation and improvements. Beyond this we aimed to explore varying degrees of random 

effect inclusion, up to and including theoretically-ideal random effect structures (Barr et al., 

2013), while being mindful of concerns associated with specifying overly-complex random effect 

structures (D Bates et al., 2015). These steps allowed us to determine the most suited structure 

and the practical benefits of its use. Lastly, we aimed to optimize model-building procedures and 

use any methodological improvements to expand on our knowledge of the role of individual 

differences in language processing. 

Individual differences were indexed in terms of vocabulary, grammatical ability, and 

working memory capacity. Properly modeling the effect of IDs through any technique has 



87 
 

important implications for several domains. These include investigating the role of proficiency in 

language violation processing, as well as the role of first-language proficiency in second-

language processing. Effects were assessed using linear mixed effects modeling, which expands 

on commonly-used GLM techniques (such as ANOVA and multiple linear regression) through 

inclusion of random effects. 

4.4.2.  Optimizing Random Effect Structures 

When determining the ideal random effect structure, we considered two sources of 

unpredictable variability. First, inter-participant variability was predicted, due to individual 

differences in factors not captured in the ID measures recorded. Each participant was expected 

to show variation in their mean scalp voltage for these reasons. Second, individual differences in 

the topography of effects were also expected, again in part due to differences in neuroanatomy 

but also resulting from recruitment of different neuroanatomical regions and networks during 

processing. In addition, individual differences in random noise (e.g., due to faulty electrodes 

skewing topographical distributions for specific participants) can be controlled in part through 

random effects. Individual differences in recruitment may occur for any number of reasons 

including, but not limited to, engagement in the study, system noise or participant fatigue. An 

exhaustive list is not possible to arrive at, and so representation of effects across our subdivision 

of 9 ROIs was investigated as a random effect within participants, where no underlying causes 

were assumed. 

It is interesting to note that our analysis suggested incremental benefits across 

increasingly complex random effect structures, but only to a point. First, including a random by-

participant intercept demonstrated a considerable improvement over a generic model including 

only fixed effects, as seen in the AIC, AIC weight, and model R2. This is not surprising, considering 
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this step redefines inter-participant variability in the fixed effect as explained variance, to a 

degree. Second, including random ROI estimates within participants resulted in an additional 

improvement on all measures described above. However, this addition requires a decision: By 

including the random effect of ROI within the random effect of participant, the two are allowed 

a degree of correlation across the nested effects (i.e., a correlation of differences between 

participants with differences between regions). Alternatively, separating the within-participant 

ROI effect from the by-participant intercept forces computation of the two such that zero 

correlation exists between their estimates. For our purposes, both terms were categorical (i.e., 

the difference between any two participants had no bearing on the difference between any two 

others), and so this was not expected to result in any improvement. In the present data, R2 was 

identical to four decimal places across the two methods, while the AIC (and thus AIC weight) 

suggested preference for allowing correlation. Indeed, doing forcing zero correlation resulted in 

no improvement to the model and produced a more convoluted random effect structure, which 

reduced the Akaike weight for this model. 

4.4.3.  Summary of Violation Effects 

For each sentence type and time window, the condition contrast (violation vs. well-

formed) was significant across participants at nearly all ROIs. This condition contrast was further 

found to be influenced by differences between participants in scores for a number of ID 

measures, where in many instances a violation effect was only detected for specific ranges of 

scores in an ID measure. For example, semantic violations were found to elicit an N400. 

Critically, the amplitude of the N400 response was significantly associated with grammatical 

ability (Listening/Grammar), and showed stronger magnitude for lower proficiency measures, in 

keeping with previous research (Moreno & Kutas, 2005; Weber-Fox et al., 2003). Interestingly, 
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semantic violations were also associated with a degree of late posterior positivity. This finding is 

not uncommon, as late (600-900 ms) posterior positivity in response to semantic violations has 

been reported in the past, particularly in individuals with lower proficiency (Coulson & Van 

Petten, 2002; Juottonen et al., 1996; Kuperberg et al., 2007; Moreno & Kutas, 2005; Newman et 

al., 2012; Ojima, Nakata, & Kakigi, 2005; van de Meerendonk, Kolk, Chwilla, & Vissers, 2009). 

However, the amplitude of this effect was also found to be influenced by both 

Listening/Grammar and Speaking/Grammar scores, particularly in posterior regions, which to 

our knowledge has not been previously reported. Interestingly, a negative response was instead 

seen in anterior regions, and this was significantly influenced by proficiency (both 

Listening/Grammar and Speaking/Grammar). However, while significant, these effects were 

weak, and replication will help to clarify the role of these ID measures in late semantic violation 

effects. 

While we had no specific hypotheses pertaining to responses in the 300-500 ms time 

window for phrase structure violations, a significant condition contrast was identified. This effect 

was strongest in anterior and central midline regions, but was significant in all except for the left 

posterior ROI. Moreover, it was found to be influenced most strongly by scores on the 

Speaking/Grammar and Listening/Vocabulary TOAL-3 tests. While this response was strongest in 

individuals with higher Speaking/Grammar scores, the reverse was true for Listening/Vocabulary 

scores. In both cases, ID measure influence was strongest at anterior and central midline ROIs. 

While significant, this conflicting pattern of proficiency effects on early responses to phrase 

structure violations will be important to replicate, as the interaction with Listening/Vocabulary 

scores in particular was related to lower overall response amplitude and weaker effect of 

proficiency. Considering that these are partial effects (and Listening/Grammar scores are 

therefore not associated with a distinctly lower-amplitude response), these findings suggest that 
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the interaction with Listening/Vocabulary scores is associated with less variance in the response 

amplitude than the interaction with Speaking/Grammar scores. 

Conversely, the Speaking/Grammar interaction was associated with more variability in 

the response amplitude, and its influence on amplitude was larger as well. This positivity, and 

the positive correlation between Speaking/Grammar scores and response amplitude, dovetails 

with the effects of proficiency seen in the 600-800 ms time window. A P600 response was 

identified predominantly at central midline and posterior scalp regions, and its amplitude was 

strongest in individuals with higher working memory (OSpan), as reported by Nakano et al. 

(2010). Given that the P600 has been associated with high-level sentence repair (Nakano et al., 

2010), it is unsurprising that greater working memory capacity may lend itself to this ability. 

Conversely, P600 amplitude in response to phrase structure violations was largest for individuals 

with lower (rather than higher) Listening/Vocabulary proficiency, particularly at the central 

midline ROI. A similar relationship was seen to a lesser degree in Listening/Grammar. 

4.4.4.  Interpreting ID Measure Effects 

It is interesting to note that in many cases, the influence of an ID measure on the 

amplitude of a violation effect was not seen at the central midline ROI, where the violation 

effects were largest, but rather ID effects were greatest in peripheral regions (i.e., more anterior 

or posterior regions). One interpretation of this finding is that differences in the topographical 

distribution (i.e., spatial extent) of a response were present when comparing low- vs. high-

proficiency participants. For example, while an N400 was detected in response to semantic 

violations at the central midline ROI, Listening/Grammar scores did not affect its amplitude. 

Instead, the effect of this ID measure on N400 amplitude was significant at numerous 

surrounding ROIs. This pattern suggested that an N400 response was observable in the anterior 
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midline ROI for low-proficiency, but not high-proficiency, participants. Therefore, the effect of ID 

measures at regions peripheral to the peak response amplitude may represent changes in 

topography rather than unique regions of influence. Indeed, results suggested qualitatively 

different response topography for participants with lower Listening/Grammar, with the N400 

response reaching farther anterior regions, while higher-scoring participants instead showed 

stronger positivity in this region. These results suggested that the influence of ID measures may 

not only be seen through strengthening of the N400 response, but also changes in the spatial 

extent of the response, which appear as a steeper slope in three-way interactions. 

The results of our investigations largely confirmed previous reports of language 

proficiency having a significant effect on the latency and amplitude of the N400 and P600 

(Moreno & Kutas, 2005; Nakano et al., 2010; Newman et al., 2012; Pakulak & Neville, 2010; 

Tanner et al., 2014; Tanner & Van Hell, 2014; Weber-Fox et al., 2003). It is important to note that 

the distribution of responses across Listening/Vocabulary and Listening/Grammar scores 

appears to fit a linear estimate reasonably well. However, some three-way interactions such as 

that between Listening/Grammar, condition and ROI in response to semantic violations (300-500 

ms) demonstrated residuals that systematically skewed above or below the estimate across 

portions of the ID measure spectrum (Figure 4.5). This suggests a potential nonlinearity in the 

interaction, which cannot be captured using the present approach. In addition, considering this 

same interaction, participants with higher Listening/Grammar scores showed a wider range of 

response amplitudes than did lower-scoring participants in the leftmost anterior, central and 

posterior ROIs. While we discussed the potential for heteroscedasticity in these data, this type of 

residual variability can be the result. In these cases, a more accurate estimate may be obtained 

using nonparametric approaches which are more suited to handling of inconsistencies in 
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residuals, or nonlinear functions may be required to better fit these data. Future chapters will 

address each of the above concerns. 

4.4.5.  Criteria for Determining Significance 

Determining significance in three-way interactions between condition, ROI and an ID 

measure was based on two criteria. First, the influence of the ID measure (i.e., the slope) was 

required to be statistically significant in terms of the model estimate, once corrected for having 

performed comparisons across all ROIs (in our case, we used a Bonferroni adjustment for 9 

comparisons). This was intended to ensure that only ID measures which had a considerable 

effect on response amplitude were deemed meaningful. However, it was still possible for 

statistically significant ID measure slopes to center on zero, associating this influence with a 

weak response amplitude. Therefore, we instituted a second requirement, whereby the 95% 

confidence interval of the violation effect for a significant interaction was required not to include 

zero at some point along the ID measure spectrum. This criterion was intended to ensure that, 

while the influence of an ID measure was statistically significant, the effect size of the condition 

contrast was also meaningful (i.e., that response amplitude was reasonably strong). 

The result of these specifications was that a number of three-way interactions were 

deemed significant and meaningful, even in cases where the 95% CI of the violation effect only 

marginally exceeded zero. Furthermore, this marginal effect size was frequently only the case in 

a small number of participants, or even a single (highest- or lowest-scoring) participant. When 

combined with a statistically significant slope (albeit one which centers on zero µV), the result 

can suggest that the influence of an ID measure is significant, even when an effect is barely 

evident. This pattern was evident, for example, in the effect of Listening/Grammar on the 
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response to semantic violations during the 300-500 ms time window, specifically in the right 

midline ROI. 

Qualitatively it is not difficult to see that these effects are weak, or are only visible in a 

minority of participants, and thus they may not replicate in a larger sample. We were therefore 

not concerned that the reader would misinterpret these effects to be unduly strong or 

meaningful. However, it does represent an intuitive inconsistency in identifying significant three-

way interactions for this type of analysis. Therefore, more stringent criteria might be set for 

determining significant effects of this type of conditional contrast in future studies. For example, 

setting a required effect size that is commensurate with some minimum response amplitude of 

interest (rather than zero µV, as in the present study) might result in more meaningful post-hoc 

testing of conditional contrasts in each ROI. 

4.4.6.  Conclusions 

The present study aimed to use currently-established best practices in linear modeling 

procedures to develop a baseline analysis of the influence of several ID measures on N400 and 

P600 amplitude. This analysis was intended to provide a frame of reference for investigations 

using less common techniques in subsequent chapters, but also to explore two aspects of the 

modeling procedure: First, the impact of varied random effect structures on metrics of model 

quality, and second, approaches to avoiding multicollinearity. While random effects are rarely 

included in modeling procedures in this field, all evidence suggested that they can provide 

considerable gains to model quality. Moreover, while no approach to reconciling 

multicollinearity is free of limitations, we have presented a framework which can help to reveal 

those predictors which contribute most strongly to a model. 
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Three-way interactions between condition, ROI and individual ID measures suggested 

that there were inconsistencies in residual variance across scores on several ID measures. This 

residual distribution may have been related to nonlinearities underlying the relationship 

between ID measure scores and response amplitude, calling into question the ability for linear 

modeling techniques to adequately describe these data. However, this may be indicative of 

more than an inaccurate model. The two findings may represent the same problem: that it may 

not be possible to ideally model the present data using linear estimates, and that variance in 

violation effects may be most apparent at more specific ID measure ranges. Further 

investigation will therefore be required in more flexible approaches that are capable of 

describing nonlinear interactions. In the following chapter, we will discuss a robust nonlinear 

modeling approach to identify potential gains that it may provide.  
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Chapter 5:  Modeling nonlinear effects of individual differences in 

ERP data using generalized additive mixed modeling 

5.1.  Introduction 

In our previous analysis of the relationship between several ID measures and the 

amplitude of N400 and P600 responses to language violations, we determined that the 

underlying data may be better-represented using nonlinear modeling techniques. This was 

reflected in scatterplots that depicted the relationship between ID measures and response 

amplitude (See Chapter 3). Indeed, while these relationships have been evaluated in the past, 

this has only been done using linear modeling techniques, despite that the present data suggest 

potential improvements may be found by using nonlinear approaches instead (Liang & Chen, 

2014; Moreno & Kutas, 2005; Newman et al., 2012; Pakulak & Neville, 2010; Tanner, 2013; 

Tanner et al., 2014; Tanner & Van Hell, 2014; Weber-Fox et al., 2003). In light of this, the present 

chapter aims primarily to apply a nonlinear modeling technique to a similar model selection 

framework which was established in Chapter 4, while also investigating the impact of a number 

of user-defined parameters that surround model fit algorithms and approaches. 

GLM-based approaches (including linear mixed effects) rely on the assumption that 

changes in an independent variable correspond with a linear change in the dependent variable. 

To date, all known investigations of ID measures on language violation processing have used 

these approaches (Liang & Chen, 2014; Moreno & Kutas, 2005; Newman et al., 2012; Pakulak & 

Neville, 2010; Tanner, 2013; Tanner et al., 2014; Tanner & Van Hell, 2014; Weber-Fox et al., 

2003). However, it is unlikely that a one-to-one correspondence exists between assessment 

score and scalp-recorded voltage in response to violations. For example, LME suggested that 
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responses to semantic violations during the 300-500 ms time window might benefit from using a 

nonlinear fit, in that residuals were consistently above our linear fit for individuals with higher 

Speaking/Grammar scores, and below for those with lower scores. This very pattern was also 

seen in the response amplitudes outlined in Chapter 3, where only participants with lower 

Speaking/Grammar scores showed a negative violation effect during this time window. This 

information provides compelling evidence to examine the ability of nonlinear modeling 

techniques to improve model fit and more accurately describe the underlying relationships. 

In the case that the assumption of linearity does not hold, as the present data suggest 

may be the case, linear regression may be unable to appropriately characterize relationships 

between language proficiency and violation processing altogether in certain cases. For example, 

Tremblay and Newman (2015) have demonstrated that parabolic effects – in which no overall 

trend exists, but a recognizable nonlinear pattern is evident – can be completely undetectable 

using linear regression. Nonlinear approaches, however, can fit a model to this type of 

relationship and predict scalp voltage accordingly based on dependent variable values (in our 

case, ID measures). 

While this type of function represents a worst-case scenario for linear regression, less-

dramatic nonlinearities can still prove problematic. For example, if an exponential relationship 

exists in the data, then using linear terms inherently cannot be completely accurate, except at 

intersecting points in those functions. The result must be reduced model fit, resulting in 

undefined variance, hindering significance testing (recall that F test significance hinges on a 

comparison of defined with undefined variance). Moreover, fitting linear terms to exponential 

relationships introduces error into effect size estimation at any non-intersecting points, as 

discrepancies between model fit for any given set of predictor coefficients (i.e., model estimate) 

and observed data amount to errors in generalization of findings to a population, to the degree 
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that observed data accurately represent that population. The most likely result of these 

circumstances above is uncertainty in the reported significance of model terms or post-hoc 

contrasts, and the inability to draw well-founded conclusions. 

Critically, the nature of relationships between the investigated ID measures and 

responses to semantic or phrase structure violations investigated in the previous chapter are not 

yet known—a situation which is also the case for virtually any study wishing to relate ERPs to IDs 

given the current state of knowledge. While the above instances represent theoretical problems 

for linear modeling solutions, the presence of nonlinearities in these relationships have not yet 

been shown, and linear solutions may therefore prove adequate. As no systematic evaluation 

into the efficacy of these techniques in comparison with nonlinear approaches currently exists, 

this represents a critical next step in optimizing modeling approaches for individual differences 

in language processing. 

The presence of nonlinearities will be investigated in this chapter using an expansion on 

the GLM which has been described in previous chapters, known as generalized linear modeling. 

This approach expands on our previous analysis by allowing for both linear model terms (such as 

those used in our LME analysis), as well smooth fits to a set of observations in specified 

interactions. For this analysis, we specified that the three-way interaction between sentence 

condition, ROI and each ID measure should be depicted as a smooth fit in order to test for 

nonlinearities in the influence of each ID measure on response amplitude in each region. While 

these fits need not be linear, the name generalized linear model comes from the linear addition 

of terms. Estimated responses therefore do not necessarily follow a normal distribution, or 

normal sources of error, which can allow modeling of data which would be problematic for 

approaches such as LME.  
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The generalized additive mixed model (GAMM; Hastie & Tibshirani, 1990; Lin & Zhang, 

1999; S. Wood, 2006; S N Wood, Goude, & Shaw, 2015; Simon N. Wood, 2011) further expands 

on these mechanics by allowing the linking function (i.e., the function that describes the 

relationship between a predictor and dependent variable) to exhibit nonlinearity, rather than by 

describing this relationship using a linear estimate. Additive smooth terms, each accounting for 

partial variance in the observed data, are constructed of splines, and the method of defining 

nonlinearity is determined by choice of spline type. A popular choice, cubic regression splines, 

attempts to fit the partial variance of a specified effect using a series of cubic polynomials. 

Polynomials are required to be continuous, and each is fit to the dependent variable over the full 

range of the independent variable, but with the peaks of each basis function at different x 

coordinates to result in a smooth fit. The mathematical derivation of cubic regression splines is 

outlined elsewhere (Wood, 2006). An example of model construction using each spline type is 

shown in Figure 5.1, which has been adapted from Baayen et al. (2017). 

Alternatively, thin plate regression splines attempt to fit observed partial variance for a 

specified effect through addition of increasingly-complex terms iteratively until an adequate 

description of the data has been reached, or until some maximum number of functions (i.e., 

maximum degree of complexity) have been reached. The complexity of this term is specified by 

the number of basis functions. Where the first and second basis function specify the intercept 

and slope, respectively, a third will model a parabolic dependence (opening up or down, 

depending on the sign of the coefficient), and increasingly ‘wiggly’ fits can be achieved through 

additional basis functions (S. Wood, 2006). While thin-plate regression splines are considered 

appropriate for modeling univariate smooth terms, the applicability of both to the present data 

was investigated (Simon N. Wood, 2003). 
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Figure 5.1 Examples of model construction using each of cubic regression splines (A) or thin-plate 

regression splines (B) are shown, adapted from Baayen et al. (2017). Thin plate regression splines 

produce increasingly-complex basis functions using higher-order polynomials until their additive 

product adequately describes a set of observations, where the definition of adequate is governed 

by internal upper limitations on function complexity. Cubic regression splines instead subdivide a 

predictor into quantiles (joined by knots), inside which cubic polynomials are fit to fluctuations in 

observations. 

Regardless of the choice of spline type, the flexibility of fit to the data must be specified. 

Restricted cubic regression splines achieve a degree of flexibility proportionate to the number of 

splines desired, where k splines can each apply a cubic polynomial to a portion of a predictor 

equal 1/k of that predictor’s range. This is specified through the number of conjoining knots, j¸ 

where j – 1 splines are permitted. This subdivision of a predictor’s range into quantiles is 

depicted in Figure 5.1. When using thin plate regression splines, the weighted addition of basis 

functions specifies the exact shape and thus the complexity of the function. It should be noted 

that the complexity of a model is upwardly limited by the quantity of data. A minimum of two 
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points are required to produce a fit (linear or nonlinear), and more to fit a set of cubic 

polynomials or a series of increasingly-complex basis functions. Therefore, the density of a data 

set must be appropriate for the desired complexity of a model, and the two are inexorably 

related. In the case of either spline type, too simple a function (e.g., linear) may underrepresent 

the underlying relationship between two variables, and too complex (i.e., too wiggly) may over 

fit to the data and produce estimates which do not generalize. In either case the user-defined 

complexity of the linking function represents a trade-off between accurate description of the 

observed variance and generalizability to a population.  

Given that GAMM requires the user to specify each of these parameters (spline type and 

maximum function complexity), the present chapter aimed not only to evaluate the 

appropriateness of nonlinear modeling techniques for relating ID measures to ERP component 

amplitude, but also to characterize the impact that these decisions can have on resulting fits to 

arrive at a robust modeling framework. Specifically, following up on evidence in previous 

chapters that these underlying relationships may be nonlinear, we aimed to describe whether 

applying nonlinear modeling techniques could provide in a better model fit when compared with 

LME, and provide meaningful insights into the underlying data. Importantly, the degree of 

nonlinearity that was expected (i.e., suggested in our previous findings) would play a role in 

determining the maximum complexity of models. Visual inspection of the relationships between 

ID measure scores and violation effect amplitude as reported in Chapter 3 suggested that while a 

linear estimate may be appropriate to describe the influence of several ID measures, others 

(e.g., Speaking/Grammar) may be best-described using asymptotic, or at most parabolic 

functions. Therefore, a range of complexity thresholds was used to evaluate model fit. 

Following the linear modeling approach taken in the previous chapter, cortical responses 

were evaluated as a function of these same predictors using generalized additive mixed-effects 
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modeling, using the mgcv package (S N Wood et al., 2015)  in R version 3.4.1 (R Development 

Core Team, 2013). The previous procedure was followed as closely as possible to allow 

comparisons where possible, with the key difference being that models were constructed using 

GAMM instead of LME4. The two modeling techniques were compared in terms of model fit (R2), 

likelihood vs. complexity using the Akaike information criterion (AIC; Akaike, 1974), and the 

ability to depict nuances in the violation effect over across topographical regions, latencies and 

ID measures. The previous chapter served as a starting point in terms of the eliminating collinear 

predictors, and beginning with the ideal random effect structure (Barr et al., 2013; D Bates et al., 

2015). This was followed with an investigation of the most appropriate spline type, and 

subsequently the ideal model complexity given the volume of the present data set.  

It was not obvious what impact the choice of spline type may have on model fit, and so 

this step was largely exploratory. However, as the maximum model complexity that a data set 

can support is determined primarily by its size, we expected that our present sample size of 33 

participants should favor a relatively simple model. Moreover, an important consideration is that 

there is often no pre-existing knowledge of what level of complexity should be required to 

model relationships such as these. While our previous findings have suggested that it may be 

important to model nonlinearities, empirically determining the degree of complexity that is 

allowed can be difficult. Evaluating the trade-off between complexity and model parsimony can 

be made more challenging by the fact that models with more knots or basis functions do not 

require more terms to adhere to individual variance, and so approaches such as using the AIC – 

which penalize the numbers of terms – are likely to favor more complex models, even if they 

produce fits that conform so strongly to individual variance as not to be generalizable at all. 

Therefore, while we investigated whether this was indeed the case, we also expected that a 

simpler model may be required to avoid over-fitting to the point of non-generalizability. 
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Given these expectations and our previous findings, it was hypothesized that of the 

range of complexities investigated, as determined through either the number of knots or basis 

functions (depending on spline type), one that uses only third- or fourth-order basis functions, or 

the same number of knots, would be required to ideally capture the variance of the present 

data. It was hypothesized that relaxing the assumption of linearity and optimizing model 

parameters through these procedures would allow for depiction of nonlinearities in the 

relationship between violation effect size and ID measure, which linear modeling solutions 

would be incapable of describing. 

In addition to evaluating the appropriateness of nonlinear modeling techniques to this 

type of research question, we were interested in whether the ability to describe nonlinear 

interactions demanded an increased volume of data, beyond what would be required to 

produce an adequate LME model. In particular, we were concerned that the present sample size 

may result in over-fitting, whereby the direction of smooth terms is guided only by a small 

number of participants and the effects may not replicate. To this end we investigated the impact 

of data set volume on model outcomes through modeling simulated data which adhered to the 

mean and standard deviation of the original data in each sentence condition and ROI, and which 

included the same ID measure scores, but contained no systematic influence of ID measures. 

Therefore, any detected influence of ID measures and/or nonlinearities should only be detected 

due to chance (reflecting error). 

The likelihood of this outcome was investigated in a simulated data set equal in volume 

to the original data, and in a data set which contained double the number of participants across 

the ID measure distribution. In this case, as the simulated data were designed not to include any 

systematic effect of ID measures, this type of error (false positive) was considered over-fitting to 

random variance, and because simulated data were rendered using variance in observed data, 
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this should suggest that the present sample size may be problematic for models built using 

GAMM. Furthermore, a reduction in error rate that was found to be associated with an increase 

in sample size was taken as evidence that additional participants might mitigate problems 

associated with over-fitting. It was expected increasing the sample size in our simulated data 

would improve statistical power, resulting in smoother estimates of violation effect across ID 

measures and narrower confidence intervals. The result would be more consistent estimates of 

violation effect size (i.e., weaker slope), as these data were designed to contain no influence of 

ID measures to begin with. 

5.2.  Methods 

All details pertaining to data acquisition and pre-processing are as described in Chapter 

2, Data Collection and Pre-Processing. All subsequent details were specific to the present 

investigation. 

5.2.1.  Nonlinear Modeling and Visualization 

A limitation of the nonlinear modeling technique used here is that it does not natively 

estimate the significance of two contrasted smooth terms. That is, while the predicted response 

to either sentences containing violations or well-formed ones can be evaluated, the difference 

between them (the violation effect) cannot. However, given that ID measures have been shown 

to selectively influence either control or violation sentences alone (Newman et al., 2012), we felt 

that it was important to include both in the model, rather than use the conditional contrast 

alone as the dependent variable. Moreover, modeling the contrast rather than each condition 

alone would necessitate an aggregate mean across trials and a substantial loss of statistical 

power. However, the decision to keep the two separate resulted in is an obstacle in comparing 

the significance of contrasts between LME and GAMM.  Here, F and p values were therefore 
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evaluated for each sentence type individually while LME models were reported with F and p 

values for the condition contrast. This will remain a consideration in any comparisons between 

the two techniques.  

Recall that declaring significance of a sentence-type contrast at an ROI using LME 

required that the 95% confidence interval of the contrast term not include zero for some level of 

the ID measure being considered. This stipulation was mirrored as closely as possible using 

GAMM through calculating the 95% confidence interval of each sentence type’s smooth term, 

and computing a confidence interval that is the summation of the two for interpretation of the 

linearly subtracted condition contrast. Calculation of this contrast and confidence interval is 

outlined in Figure 5.2. Using this approach, the upper limit of the 95% confidence interval for the 

violation or control sentence terms are UCIviolation or UCIcontrol respectively, and the lower limit is 

LCIviolation or LCIcontrol, the upper limit of the contrasted term’s confidence interval was calculated 

as UCIcontrast = UCIviolation – LCIcontrol. Similarly, the lower limit of the contrasted term’s confidence 

interval was calculated as LCIcontrast = LCIviolation – UCIcontrol. The contrasted term itself was derived 

through a subtraction of estimates at any given x coordinate (Ycontrast = Yviolation – Ycontrol). 

Computing a summation of the two confidence intervals in the manner described above 

provides a valid visualization of how the confidence intervals of each term correspond to one 

another, but it is not equivalent to the confidence interval of a contrasted term, as was 

visualized using LME in the previous chapter. Rather, this calculation provides an approximation, 

which may vary slightly with the degree of correlation between the two terms. Therefore, while 

direct comparisons of the significance of contrasted terms between the two techniques was not 

possible (especially in regard to specific ID measure values at which a violation effect is 

significant), this approach served to highlight confident dissimilarities between the two sentence 

types. 
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Figure 5.2 On the left, two slopes are shown: Y = 2X (blue), and Y = X + 3 (orange). Each is shown 

with simulated 95% confidence interval of 2.0. On the right, the divergence of their confidence 

intervals is shown at X = 7.0 by subtracting the first function from the second, and combining their 

confidence intervals for any given X value. This method was used to visualize deviation of 

responses to violation sentences from that of well-formed sentences. 

5.2.2.  Optimizing Model Parameters 

As discussed, smooth term specification using GAMM requires that the user choose two 

critical parameters. The first parameter choice pertains to spline type, impacting the formulas 

for individual splines, which can therefore influence the shape of the function overall. Our 

investigations included restricted cubic regression splines and thin-plate regression splines 

(Wood, 2000; Wood, 2003). This step was performed as an exploratory measure, to avoid 

making an a priori assumption as to which was preferable in describing the data. Models fit using 

each of the two spline types were fit using a maximum of four knots (cubic regression splines) or 

four basis functions (thin-plate regression splines), and their efficacy was compared using AIC. 
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However, as this measure is influenced by the number of terms and the volume of data (both of 

which were constant between the two models), differences in AIC were directly representative 

of differences in the log-likelihood of the models. This type of comparison followed the logic of 

the same AIC-driven model selection framework outlined in Chapter 4, but here applied to the 

rationale of revealing the ideal mathematical derivation of functions (i.e., spline type), rather 

than the inclusion of any specific ID measures.  

The second parameter choice concerned the highest possible degree of complexity in 

the linking function. In the case of cubic regression splines, this is determined through the 

maximum number of splines, or more specifically, through the maximum number of knots that 

connect splines. Recall that two knots can result in a single spline, and each additional knot can 

result in up to one more. In the case of thin plate regression splines, function complexity is 

instead specified through the maximum number of basis functions fit to the observations. Ideal 

function complexity is related to data set quantity/density, variability, and the nature of the 

predicted effect. Therefore, using whichever spline type resulted in the model with the best log-

likelihood, a series of model fits were produced, each using incremental increases in complexity. 

Wood (2017) notes that while the choice of function complexity should not be considered 

critical, it should be large enough to represent the underlying truth with a reasonable degree of 

accuracy – and also that this criterion is subjective to the research question. Moreover, in cases 

where it is not obvious, Wood (2017) suggests fitting a series of models of increasing complexity. 

This approach was taken here. Fits were computed that used either three, four, five or six knots 

or basis functions. A model cannot be fit with fewer than two knots, which can produce either a 

linear or nonlinear spline between them. The choice of a minimum of three knots or basis 

functions was selected to reflect the expectation of potentially parabolic linking functions 

discussed previously, while still allowing for simpler (linear) functions to arise. Note that the 
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number of knots represents the maximum function complexity, rather than an absolute 

specification of complexity, and so even a specification of six knots might produce a linear fit. 

Our upper bound of six was selected because any fit which required more was unlikely, as no 

evidence suggests that increases in an ID measure scores should coincide fluctuations in ERP 

amplitude that would require more than six knots. As with evaluating the choice of spline type, 

the AIC was used to calculate the log-likelihood for each model. 

For our evaluations of spline type and model complexity, responses to phrase structure 

violations during the 600-800 ms time window were used. These data were selected as this 

sentence type and time window were shown to correspond with the P600 that phrase structure 

violations were intended to elicit, and so their impact on fit to this response was of interest. 

Findings concerning which spline type was most appropriate, or the ideal complexity of the 

linking function, were largely identical whether describing the influence of ID measures on the 

P600 or N400, however, and so only the former was reported. The model building process (i.e., 

selection of ID measures for inclusion in significance testing) followed the same AIC-driven 

framework and random effect structure established in Chapter 4. 

5.2.3.  Defining Violation Effects 

Once the ideal model parameters had been determined, the violation effect (violation – 

control condition contrast) was modeled in each of the two sentence types (semantic and 

phrase structure violations), for each of the time windows (300-500 ms and 600-800 ms). The 

procedure that was used for generation of linear models was closely followed in GAMM, with 

the notable exception of allowing for nonlinearities in model fit. Otherwise, however, the data 

used for each of the four models, and the model building process, was identical to that 

described in the previous chapter. Regarding addressing the collinearity of predictors, the same 
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pairs of predictors that were regarded as collinear in the previous chapter were tested using the 

same AIC selection framework here as well, and just as before only one predictor from each 

collinear pair was included in the model for significance testing. However, the predictors that 

were used in the final models (i.e., those that were not eliminated) differed because their 

nonlinear influence on response amplitude impacted the models’ AIC values. Therefore, any 

predictor which had been eliminated when using LME, but which could provide a better log-

likelihood when fit using a nonlinear function, might still be found significant using GAMM. 

The significance of the violation effect as each ROI was evaluated using the two-way 

condition by ROI interaction, with the significance of post-hoc analyses corrected for 9 ROIs 

using the Bonferroni adjustment. Following this, the three way interactions between condition, 

ROI, and any ID measure (provided that interactions were significant) were similarly evaluated in 

each ROI, and corrected for 9 ROI comparisons. The contrast between the violation and control 

smooth terms was plotted in each ROI, alongside the summation of the 95% confidence intervals 

for these two terms, to depict where the confidence intervals of the two diverge from one 

another (i.e., where their summed confidence interval does not include zero µV). 

Following a description of the violation effects in each time window and sentence type, 

we compared the final four models that were arrived at through our AIC-driven model selection 

process to those which were created using LME in Chapter 4. The two techniques were 

compared in terms of model fit (R2), identifying the ability of either technique to conform to 

individual variance, but also using the AIC, to identify the trade-off between model parsimony 

and log-likelihood in each case. 
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5.2.4.  Data Simulation 

In order to evaluate the propensity for GAMM to over-fit to random fluctuations in 

individual-level variance, resulting significant ID measure influences or nonlinear fits where 

neither should exist, we assessed model fit in simulated data which was designed to contain no 

influence of ID measures, but maintained the condition contrast specific to each ROI that was 

found in our original data. To achieve this, we replaced the recorded scalp voltages in our 

original data set with a random normal distribution of responses which adhered to the mean and 

standard deviation of responses for each condition in each ROI. Data were generated 

indiscriminately of participants’ ID measure scores, meaning that the resulting data set 

contained the ID measure scores which were included in our original data, but that any influence 

of ID measures on response amplitude should be due solely to random chance. In order to 

mirror our investigations of spline type and function complexity, simulated data were based on 

the distribution of responses to phrase structure violations during the 600-800 ms time window. 

Ten unique simulated data sets were produced, and a model corresponding to the ideal model 

structure for this sentence type and time window (as derived through our AIC-driven framework 

established in Chapter 4) was fit to each randomized data set. 

Following this, an identical procedure was followed in producing a second set of ten 

simulated data sets, with the only difference being that this second set contained twice the 

number of participants. These additional participants were similarly assigned randomized 

responses that adhered to the mean and standard deviation of responses seen for each 

condition and ROI. The model structure identified above was similarly applied to these simulated 

data sets in order to investigate what impact a doubling of our present sample size might have 

on false positive identification of ID measure influence, or in over-fitting to random variance. 

Where these simulated data were designed to contain no influence of ID measures, a false 
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positive was identified as any single ROI in which a line with a zero µV slope cannot be drawn 

from the lowest to the highest ID measure score while falling entirely within the 95% confidence 

interval of the condition contrast. In addition, nonlinearities (which similarly should not occur 

due to the randomized nature of these data) were defined as any single ROI in which a parabolic 

influence of an ID measure was found. The mean number of ROIs showing either of these 

qualities across simulations was calculated, as well as a 95% confidence interval surrounding this 

estimate, to identify whether the chance in sample size resulted in a change in error rates. 

5.3.  Results 

5.3.1.  Cubic Regression vs. Thin-Plate Splines 

The choice of spline type (cubic vs. thin-plate regression splines) was investigated in 

phrase structure violations during the 600-800 ms time window. Fits of various ID measures to 

the violation effect for this sentence type and time window represented a range of function 

shapes, showing varying degrees of nonlinearity, making them ideal for an investigation of what 

impact spline type might have across different types of model fits. The final model, which was 

arrived at through the AIC-driven model selection framework established in Chapter 4, was: 

Voltage ~ Condition:ROI:OSpan + Condition:ROI:Speaking/Grammar + 

Condition:ROI:Listening/Grammar + Condition:ROI:Listening/Vocabulary + 

Condition:ROI + Condition + ROI + (1 + ROI | Participant) 

This structure was applied to two models, each identical with the exception that one 

was fit to observations using four cubic regression splines, and the other using four basis 

functions to produce thin-plate regression splines. The fit of each model is depicted in Figure 

5.3, showing the effect of spline choice on model fit for two interactions: Listening/Grammar 

and OSpan. While Speaking/Grammar and Listening/Vocabulary were also associated with 
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statistically significant influence on violation effect amplitude, they are not shown for brevity’s 

sake. The influence of these ID measures will be discussed in detail below, following 

identification of model parameter outcomes. 

Visually, the fit achieved by two spline types were indistinguishable. The more linear 

interaction of violation effect with Listening/Grammar was represented at nearly-identical 

magnitude and with a similar rate of change across the Listening/Grammar scores. Considering 

the more sinusoidal function in the interaction with OSpan scores, the two spline types similarly 

resulted in model fits with no substantial or apparent differences. Quantifying model fit through 

AIC revealed that, while differences were qualitatively negligible, cubic regression splines were 

preferred to thin-plate regression splines, with AIC improved by 14 (where 5 is considered 

significant; Akaike, 1974), and the AIC Weight associated with cubic regression splines equal to 

0.999 out of a possible 1.0. Unsurprisingly, there was no difference in the significance of effects. 

Therefore, while no qualitative differences between the two could be discerned, the model built 

using restricted cubic regression splines resulted in a better log-likelihood. All subsequent 

models, including those used for complexity evaluations, identification of violation effects and 

data simulations were therefore created using cubic regression splines. 
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Figure 5.3 The phrase structure violation effect 600-800 ms following onset of the violating word. 

Interactions with Listening/Grammar (top) and OSpan (bottom) are shown, each fit using cubic 

(left) and thin-plate (right) regression splines. 

5.3.2.  Specifying Function Complexity 

The determination of maximum function complexity, defined through the number of 

knots that connect them, was hindered by a lack of any specific a priori knowledge of function 

shape in the interactions of interest. That is, the nature of the dependence of the violation effect 

on any ID measure in each ROI could not be known beforehand. Therefore, the outcome of this 
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parameter was addressed through creating a series of increasingly-complex models to 

determine their impact on function shape, fit, and model likelihood. As with the choice of spline 

type, we considered phrase structure violations in the 600-800 ms time window. The final 

model, which was arrived at through our AIC-driven model selection process, was identical to 

that used for the above investigation of splice choice outcomes. However, we were primarily 

interested in the impact of the number of knots on the propensity to produce more sinusoidal 

functions than more linear ones, given that our scatterplots in Chapter 3 did not suggest such a 

relationship between any of our ID measures and the violation effect amplitude should be likely. 

We therefore focused on the fit of Speaking/Grammar scores to violation effect amplitude 

during this time frame, as this was the ID measure which showed the most strongly sinusoidal 

effect in the model across the range of complexities that were investigated 

Figure 5.4 depicts the fits of four models, ranging from three to a maximum of six knots. 

It is important to note that this does not necessarily reflect the number of knots that were 

included in the final model fit, but instead the maximum number, as determined by the gam 

function used (from the R package mgcv). The process of determining maximum function 

complexity is known as generalized cross-validation. This procedure attempts to evaluate the 

complexity of the model alongside the fit to the data in an attempt to strike a balance between 

simplicity and accuracy. While additional knots necessarily improve fit, this step was intended to 

penalize overall fit against variance in the fit of individual splines, but its performance may be 

variable in smaller data sets (Wood, 2006; Wood, 2008; Wood, 2011). This function is 

conceptually comparable to the AIC’s penalization of model likelihood against the number of 

model terms, and similarly aims to arrive at the most parsimonious model. Fewer than the 

maximum number of knots in any given model are frequently shown for this reason. 
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Figure 5.4 Phrase structure violations in the 600-800 ms time window, with the interaction 

between violation effect and Speaking/Grammar shown. A separate model was created for each 

of three through a maximum of six potential knots. 

As the number of knots increased, fit of the model to the observations increased to the 

point that nearly every observation fell within the 95% confidence interval and strong 

fluctuations in predicted response appeared. This exemplifies that additional splines necessarily 

decrease residual variance and drive increases in R2. Generalized cross-validation at times 

reduced the number of splines in an interaction, for example resulting in occasionally linear fits 

when three knots were permitted, or a single parabolic fit when four were permitted. However, 

in numerous instances the predicted responses – particularly when a maximum of five or six 
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knots were permitted - appeared to strongly confirm to individual data points, which may reflect 

over-fitting to the data. That is, we suspected that increases in Speaking/Grammar scores were 

likely not truly associated with repeated intermittent increases and decreases in violation effect 

amplitude. Moreover, our findings in Chapter 3 did not suggest this should be the case either, 

which appeared best-suited for fits to asymptotic or parabolic functions. This characteristic of 

strongly conforming to individual data points represents a considerable problem in empirically 

determining the appropriate number of splines in any data set. Moreover, evaluating such 

increasingly-complex models using the AIC (or other measures which apply penalties for the 

number of terms, such as BIC) is not appropriate. While each additional knot describes observed 

variance in increasing detail, the number of terms (i.e., smooths) is unchanged with model 

complexity, and no further penalty is applied during AIC calculation. This relationship is shown in 

Table 5.1. As a result, the AIC will always be strongest in the most complex model, which is 

always preferred at an AIC weight of precisely 1.0 out of a maximum of 1.0. 

Table 5.1 Phrase structure violation effect in the 600-800 ms time window, modeled with the 

maximum number of knots ranging from three to eight. With additional knots, AIC improves 

incrementally and the AIC weight necessarily prefers the most complex model. 

No. Knots DOF AIC AIC Weight 

3 303.38 1319157 0 

4 338.42 1318865 0 

5 357.86 1318477 0 

6 383.8 1318312 100% 
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Reliance on generalized cross-validation to simplify fits was necessary as the AIC could 

not meaningfully distinguish between the adequacy of models of varying complexity. Critically, 

however, generalized cross-validation was unable to adequately simplify models in which five or 

six knots were permitted to produce fits which our previous findings suggested might be 

reasonable. Where other methods to reduce model complexity (e.g., AIC) were not appropriate, 

no empirical means could be established to determine the appropriate trade-off between model 

complexity and generalizability. 

This characteristic over-fitting to observations is a known problem for gam (Wood, 

2008), and while generalized cross-validation can reduce its impact under ideally-distributed 

residuals and given larger sample sizes (what sample size is sufficient is not clear), neither our 

residuals nor our sample size may be sufficient to rely on the procedure to arrive at the ideal 

function complexity. We therefore opted for simpler models, specifying a maximum of four 

knots, given that the relationships identified in Chapter 3 did not suggest that they should 

require more than three splines to be sufficiently described. This number was selected to allow 

for the parabolic linking function which might be required to describe these relationships, but 

with an additional linear (or nearly linear) spline, should any portion of an ID measure spectrum 

not be associated with variance in response amplitude.  

5.3.3.  Semantic Violations, 300-500 ms 

In accordance with our findings regarding spline choice and function complexity, all 

models describing violation effects were created using restricted cubic regression splines with a 

maximum of four knots in any smooth term. The optimal model (as determined by AIC) 

describing responses to semantic violations in the 300-500 ms time window was: 
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Voltage ~ Condition:ROI:OSpan + Condition:ROI:Speaking/Grammar + 

Condition:ROI:Listening/Grammar + Condition:ROI:Listening/Vocabulary + 

Condition:ROI + Condition + ROI + (1 + ROI | Participant) 

ID measures that were included in three-way interactions with condition and ROI 

indicate those that were likely to affect violation processing. These measures are denoted in 

bold and were modeled as smooth terms. Effects and interactions are discussed below. 

The model included a significant effect of condition (F(1, 184 = 396.13, p < .001), ROI 

(F(8, 184 = 17.56, p < .001), and their interaction (F(8, 184) = 351.22, p < .001). Post-hoc 

comparisons of the two-way condition by ROI interaction revealed that, across participants, the 

condition contrast was significant at all ROIs, where significance was corrected for 9 

comparisons using a Bonferroni adjustment. This interaction revealed a positive violation effect 

at all anterior ROIs, and a negative effect at all central and posterior ROIs. The central-parietal 

distribution of this negative effect was consistent with the expected N400. Violation effects were 

seen to have significant interactions with ROI and each of four ID measures: Listening/Grammar, 

Speaking/Grammar, Listening/Vocabulary, and OSpan. These effects are outlined in Figure 5.5 

and Table 5.2. 

The overall positive violation effect at anterior ROIs, and negative effect at central and 

posterior ROIs, was consistently depicted in three-way interactions between condition, ROI and 

each of the ID measures. Overall, participants with higher Listening/Grammar scores showed a 

stronger positive anterior response to semantic violations during this time window, as well as a 

higher-amplitude N400. Conversely, participants with lower Listening/Grammar scores showed 

weaker responses. Participants with higher Speaking/Grammar scores similarly showed a 

stronger positive violation effect in anterior ROIs, though Speaking/Grammar scores did not 

appear to strongly affect N400 amplitude at central or posterior ROIs. 
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Overall, the opposite pattern was seen in the three-way interaction between condition, 

ROI and Listening/Vocabulary, as lower-scoring participants showed both a stronger positive 

response in anterior regions, with no strong influence of Listening/Vocabulary scores on N400 

amplitude depicted. This pattern was also noted in participants with lower OSpan scores, who 

showed a stronger negative response in anterior ROIs, but limited influence of OSpan on N400 

amplitude. 

Each of these three-way interactions to some degree showed sinusoidal fluctuations in 

the relationship between ID measures and the amplitude of the violation effect, whereby 

increases in a score on any of the ID measures was associated with intermittent fluctuations in 

the predicted amplitude of the violation effect. In some interactions, for example the anterior 

midline ROI for the interaction between condition, ROI and Speaking/Grammar scores the strong 

curvature of this fit appeared to be guided by small numbers of individuals. The effect of sample 

size on the shape of smooth term fit will be considered below. However, in some cases such as 

the posterior midline ROI for this same interaction, it should be noted that the 95% CI of the 

contrast could also contain an estimate with zero slope, suggesting that the nonlinear fit 

depicted might not be required to describe the interaction. 
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Figure 5.5 Semantic violation effects in the 300-500 ms time window. The combined 95% 

confidence intervals of the sentence type estimates are shown, indicating where the two 

significantly diverge. 

 

 

 

 



120 
 

Table 5.2 List of condition effects (violation vs. control) at each ROI across participants, and 

significant three-way interactions between condition, ROI, and ID measures. Effects are limited to 

semantic violations in the 300-500 ms time window. 

Interaction ROI Violation – Control Contrast 

Violation sentences 

Condition × 

ROI 

Anterior Left t(201160) = 19.9, p = < .001, *** 

Anterior Midline t(201160) = 14.08, p < .001, *** 

Anterior Right t(201160) = 9.69, p < .001, *** 

Central Left t(201160) = -4.52, p < .001, *** 

Central Midline t(201160) = -25.67, p < .001, *** 

Central Right t(201160) = -13.96, p < .001, *** 

Posterior Left t(201160) = -20.92, p < .001, *** 

Posterior Midline t(201160) = -32.49, p < .001, *** 

Posterior Right t(201160) = -23.03, p < .001, *** 

Interaction ROI Control Sentences Violation Sentences 

Condition × 

ROI × 

Listening/Grammar 

Anterior Left F(2.7, 183.58) = 14.56, p < .001 *** F(1, 183.58) = 0.1, p = 1.00 

Anterior Midline F(2.8, 183.58) = 19.48, p < .001 *** F(1, 183.58) = 0.05, p = 1.00 

Anterior Right F(2.83, 183.58) = 12, p < .001 *** F(1, 183.58) = 0.96, p = 1.00 

Central Left F(2.95, 183.58) = 23.65, p < .001 *** F(1, 183.58) = 0.03, p = 1.00 

Central Midline F(2.86, 183.58) = 11.8, p < .001 *** F(1, 183.58) = 0.48, p = 1.00 

Posterior Left F(2.98, 183.58) = 37.52, p < .001 *** F(1, 183.58) = 2.71, p = 1.00 

Posterior Midline F(1, 183.58) = 0.92, p = 1.00 F(2.96, 183.58) = 19.55, p < .001 *** 

Posterior Right F(1, 183.58) = 0.54, p = 1.00 F(2.83, 183.58) = 4.88, p = 0.034 * 

Condition × 

ROI × 

Listening/Vocabulary 

Central Left F(1.03, 183.58) = 0.04, p = 1.00 F(2.93, 183.58) = 16.16, p < .001 *** 

Central Midline F(1, 183.58) = 0, p = 1.00 F(2.9, 183.58) = 9.23, p < .001 *** 

Posterior Left F(2.88, 183.58) = 21.71, p < .001 *** F(1, 183.58) = 0.01, p = 1.00 

Posterior Midline F(2.82, 183.58) = 9.45, p < .001 *** F(1, 183.58) = 0.07, p = 1.00 

Condition × 

ROI × 

OSpan 

Anterior Left F(2.96, 183.58) = 19, p < .001 *** F(1, 183.58) = 0.95, p = 1.00 

Anterior Midline F(1, 183.58) = 0.5, p = 1.00 F(2.98, 183.58) = 40.49, p < .001 *** 

Anterior Right F(1, 183.58) = 0.07, p = 1.00 F(2.96, 183.58) = 21.73, p < .001 *** 

Central Midline F(2.78, 183.58) = 17.34, p < .001 *** F(1, 183.58) = 0.5, p = 1.00 

Posterior Left F(1, 183.58) = 3.39, p = 1.00 F(2.73, 183.58) = 14.67, p < .001 *** 

Posterior Midline F(2.76, 183.58) = 13.49, p < .001 *** F(1, 183.58) = 0.4, p = 1.00 

Condition × 

ROI × 

Speaking/Grammar 

Anterior Left F(1, 183.58) = 0, p = 1.00 F(2.91, 183.58) = 11.02, p < .001 *** 

Anterior Midline F(1, 183.58) = 0.19, p = 1.00 F(2.99, 183.58) = 60.41, p < .001 *** 

Anterior Right F(1, 183.58) = 0.27, p = 1.00 F(2.98, 183.58) = 34.87, p < .001 *** 

Central Left F(2.83, 183.58) = 17.69, p < .001 *** F(1, 183.58) = 0.37, p = 1.00 

Central Midline F(2.93, 183.58) = 26.51, p < .001 *** F(1.04, 183.58) = 1.3, p = 1.00 

Posterior Left F(2.91, 183.58) = 27.94, p < .001 *** F(1, 183.58) = 0, p = 1.00 

Posterior Midline F(2.58, 183.58) = 5.95, p = 0.013 * F(1.62, 183.58) = 0.48, p = 1.00 

Posterior Right F(2.57, 183.58) = 6.34, p = 0.039 * F(1, 183.58) = 0.02, p = 1.00 
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5.3.4.  Semantic Violations, 600-800 ms 

The model describing responses to semantic violations in the 600-800 ms time window, 

which was arrived at through our AIC-driven term selection, was: 

Voltage ~ Condition:ROI:OSpan + Condition:ROI:Speaking/Grammar + 

Condition:ROI:Listening/Grammar + Condition:ROI:Listening/Vocabulary + 

Condition:ROI + Condition + ROI + (1 + ROI | Participant) 

The model included a significant effect of condition (F(1, 179 = 25.77, p < .001), and an 

interaction between condition and ROI (F(8, 179) = 100.01, p < .001). Post-hoc comparisons of 

the two-way condition by ROI interaction revealed that, across participants, the condition 

contrast was significant at all ROIs except for anterior right. Significance was corrected for 9 

comparisons using a Bonferroni adjustment. Overall, this condition contrast was positive at all 

ROIs, and showed significant negativity only in the anterior left ROI. This pattern was reflected in 

the three-way interactions between condition, ROI and each of the ID measures. Specifically, 

participants with lower Listening/Grammar scores showed a stronger positive response at 

central midline, posterior midline and posterior right ROIs, but no significant influence of 

Listening/Grammar in other ROIs. Participants with lower Speaking/Grammar scores showed a 

negative response at anterior left and anterior midline ROIs, but similarly no influence of 

Speaking/Grammar scores on response amplitude was found in other ROIs. These effects are 

outlined in Figure 5.6 and Table 5.3. 

Listening/Vocabulary scores were not found to influence the amplitude of the violation 

effect at any ROI, as while nonlinearities were seen in the smooth term for each ROI, the 95% CI 

of this contrast either included zero µV at all points, or could contain a zero-slope line at all 

points, suggesting that these nonlinearities may not be required to describe the relationship. 
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However, higher OSpan scores were associated with a stronger amplitude positive response at 

all midline and posterior ROIs. This interaction also demonstrated a degree of sinusoidal 

curvature, conforming to a handful of the lowest- and highest- scoring participants, particularly 

at the posterior left and central midline ROIs.

 

Figure 5.6 Semantic violation effects in the 600-800 ms time window. The combined 95% 

confidence intervals of the sentence type estimates are shown, indicating where the two 

significantly diverge. 
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Table 5.3 List of condition effects (violation vs. control) at each ROI across participants, and 

significant three-way interactions between condition, ROI, and ID measures. Effects are limited to 

semantic violations in the 600-800 ms time window. 

Interaction ROI Violation – Control Contrast 

Condition × 

ROI 

Anterior Left t(201165) = -5.08, p < .001, *** 

Anterior Midline t(201165) = 8.36, p < .001, *** 

Anterior Right t(201165) = -2.16, p = .275 

Central Left t(201165) = 7.29, p < .001, *** 

Central Midline t(201165) = 28.57, p < .001, *** 

Central Right t(201165) = 12.67, p < .001, *** 

Posterior Left t(201165) = 12.72, p < .001, *** 

Posterior Midline t(201165) = 22, p < .001, *** 

Posterior Right t(201165) = 18.18, p < .001, *** 

Interaction ROI Control Sentences Violation Sentences 

Condition × 

ROI × 

Listening/Grammar 

 

Anterior Midline  F(1, 178.82) = 5.83, p = 0.283   F(2.77, 178.82) = 8.34, p < .001 *** 

Anterior Right  F(1, 178.82) = 4.1, p = 0.771   F(2.81, 178.82) = 13.34, p < .001 *** 

Central Right  F(1, 178.82) = 0.85, p = 1.00   F(2.59, 178.82) = 9.36, p < .001 *** 

Posterior Left  F(2.84, 178.82) = 4.91, p = 0.041 *   F(1, 178.82) = 0.86, p = 1.00 

Condition × 

ROI × 

Listening/Vocabulary 

 

Anterior Midline  F(1, 178.82) = 1.55, p = 1.00   F(2.9, 178.82) = 11.34, p < .001 *** 

Central Midline  F(1, 178.82) = 2.43, p = 1.00   F(2.68, 178.82) = 7.51, p = 0.001 *** 

Central Right  F(1, 178.82) = 0.06, p = 1.00   F(2.69, 178.82) = 15.65, p < .001 *** 

Condition × 

ROI × 

OSpan 

 

Central Left  F(1, 178.82) = 0.01, p = 1.00   F(2.96, 178.82) = 16.67, p < .001 *** 

Central Midline  F(2.97, 178.82) = 22.26, p < .001 ***   F(1, 178.82) = 6.84, p = 0.16 

Posterior Left  F(2.95, 178.82) = 14.1, p < .001 ***   F(1, 178.82) = 0.87, p = 1.00 

Posterior Midline  F(2.94, 178.82) = 12.07, p < .001 ***   F(1.04, 178.82) = 3.98, p = 0.749 

Posterior Right  F(1.01, 178.82) = 0.85, p = 1.00   F(2.8, 178.82) = 8.46, p < .001 *** 

Condition × 

ROI × 

Speaking/Grammar 

 

Anterior Left  F(2.86, 178.82) = 11.75, p < .001 ***   F(1, 178.82) = 7.29, p = 0.124 

Anterior Midline  F(2.83, 178.82) = 12.46, p < .001 ***   F(1, 178.82) = 10.91, p = 0.017 * 

Anterior Right  F(2.78, 178.82) = 4.88, p = 0.023 *   F(1, 178.82) = 2.2, p = 1.00 

Central Left  F(1, 178.82) = 0.02, p = 1.00   F(2.93, 178.82) = 12.81, p < .001 *** 

Central Midline  F(1, 178.82) = 2.41, p = 1.00   F(2.49, 178.82) = 6.54, p = 0.004 ** 

Central Right  F(2.95, 178.82) = 19.07, p < .001 ***   F(1.02, 178.82) = 0.09, p = 1.00 

Posterior Left  F(2.94, 178.82) = 15.18, p < .001 ***   F(1, 178.82) = 0.43, p = 1.00 

Posterior Midline  F(2.75, 178.82) = 4.85, p = 0.026 *   F(1, 178.82) = 0.02, p = 1.00 

Posterior Right  F(2.53, 178.82) = 7.43, p = 0.003 **   F(1.02, 178.82) = 1.75, p = 1.00 
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5.3.5.  Phrase Structure Violations, 300-500 ms 

The model describing responses to phrase structure violations at 300-500 ms, which was 

arrived at through our AIC-driven term selection, was: 

Voltage ~ Condition:ROI:OSpan + Condition:ROI:Speaking/Grammar + 

Condition:ROI:Listening/Grammar + Condition:ROI:Listening/Vocabulary + Violation:ROI 

+ Violation + ROI + (1 + ROI | Participant) 

The model included a significant effect of condition (F(1, 181 = 6.57, p = .013), ROI (F(8, 

181=4.41, p < .001), and their interaction (F(8, 181) = 21.98, p < .001). Post-hoc comparisons of 

the two-way condition by ROI interaction revealed that, across participants, the condition 

contrast was significant at all ROIs except for anterior left, central midline, and posterior midline, 

where significance was corrected for 9 comparisons using a Bonferroni adjustment. The violation 

effect showed significant negativity at the central left and posterior left ROIs, but was positive in 

all others. 

The amplitude of phrase structure violation effects were seen to interact with four ID 

measures across condition and ROI: Listening/Grammar, Speaking/Grammar, 

Listening/Vocabulary, and OSpan. Specifically, participants with lower Listening/Grammar scores 

demonstrated a significant positive violation effect in left anterior ROI. No influence of 

Listening/Grammar scores on response amplitude was seen in other ROIs. Concerning each of 

Speaking/Grammar, Listening/Grammar and OSpan scores, none were found to significantly 

influence the phrase structure violation effect amplitude during this time window. While these 

ID measures occasionally showed divergence of the confidence intervals of the two sentence 

types at mid-range scores only, this was primarily due to narrow confidence intervals near the 
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center of the ID measures’ distributions, and otherwise no overall trend was evident. These 

effects are outlined in Figure 5.7 and Table 5.4. 

 

Figure 5.7 Phrase structure violation effects in the 300-500 ms time window. The combined 95% 

confidence intervals of the sentence type estimates are shown, indicating where the two 

significantly diverge. 

 

 

 



126 
 

Table 5.4 List of condition effects (violation vs. control) at each ROI across participants, and 

significant three-way interactions between condition, ROI, and ID measures. Effects are limited to 

phrase structure violations in the 300-500 ms time window. 

Interaction ROI Violation – Control Contrast 

Condition × 

ROI 

Anterior Left t(205115) = -2.56, p = 0.093 

Anterior Midline t(205115) = 3.43, p = 0.005, ** 

Anterior Right t(205115) = 7.32, p < .001, *** 

Central Left t(205115) = -5.39, p < .001, *** 

Central Midline t(205118) = 0.18, p = 1.00 

Central Right t(205115) = 6.3, p < .001, *** 

Posterior Left t(205115) = -4.41, p < .001, *** 

Posterior Midline t(205115) = -1.06, p = 1.00 

Posterior Right t(205115) = 4.69, p < .001, *** 

Interaction ROI Control Sentences Violation Sentences 

Condition × 

ROI × 

Listening/Grammar 

Central Midline F(2.9, 180.91) = 7.99, p < .001 ***     F(1, 180.91) = 0.01, p = 1.00 

Condition × 

ROI × 

Listening/Vocabulary 

 

Anterior Left F(1, 180.91) = 1.82, p = 1.00      F(2.66, 180.91) = 11.56, p < .001 *** 

Anterior Midline F(1.01, 180.91) = 9.32, p = 0.04 *     F(2.73, 180.91) = 19.14, p < .001 *** 

Anterior Right F(1, 180.91) = 6.61, p = 0.182      F(2.74, 180.91) = 6.45, p = 0.003 ** 

Central Midline F(1, 180.91) = 4.18, p = 0.734      F(2.46, 180.91) = 11.13, p < .001 *** 

Condition × 

ROI × 

OSpan 

Central Left F(1, 180.91) = 0.04, p = 1.00      F(2.59, 180.91) = 6.38, p = 0.005 ** 

Condition × 

ROI × 

Speaking/Grammar 

 

Anterior Left F(2.92, 180.91) = 25.14, p < .001 ***     F(1, 180.91) = 0.99, p = 1.00 

Anterior Midline F(2.89, 180.91) = 9.5, p < .001 ***     F(1, 180.91) = 4.64, p = 0.561 

Anterior Right F(2.76, 180.91) = 8.61, p < .001 ***     F(1, 180.91) = 1.76, p = 1.00 
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5.3.6.  Phrase Structure Violations, 600-800 ms 

The model describing responses to phrase structure violations at 600-800 ms, which was 

arrived at through our AIC-driven term selection, was: 

Voltage ~ Violation:ROI:OSpan + Violation:ROI:Speaking/Grammar + 

Violation:ROI:Listening/Grammar + Violation:ROI:Listening/Vocabulary + Violation:ROI 

+ Violation + ROI + (1 + ROI | Participant) 

The model included a significant effect of condition (F(1, 173 = 16.82, p < .001), ROI (F(8, 

173=2.33, p = .017), and their interaction (F(8, 173) = 64.99, p < .001). Post-hoc comparisons of 

the two-way condition by ROI interaction revealed that, across participants, the condition 

contrast was significant at all ROIs, where significance was corrected for 9 comparisons using a 

Bonferroni adjustment. This violation effect showed significant negativity at all ROIs except for 

the anterior left ROI, which showed significant positivity. The distribution of this negative 

response was consistent with that of the P600, which phrase structure violations were expected 

to elicit. 

The three-way interactions between condition, ROI and each of the four included ID 

measures revealed that each influenced P600 amplitude in the present data. P600 amplitude 

was strongest in participants with lower Listening/Grammar scores for all ROIs, with the majority 

of variability in response amplitude being seen in lower-scoring individuals. Similarly, P600 

amplitude was highest for participants with lower Listening/Vocabulary scores at central midline 

and posterior midline ROIs, with no overall trend seen in other ROIs. These effects can be seen in 

Figure 5.8 and Table 5.5. 

Participants with higher Speaking/Grammar scores showed a higher-amplitude P600 at 

the central midline ROI. While this interaction depicted a degree of nonlinearity in posterior ROIs 
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and a strong sinusoidal fluctuation in anterior ROIs, no overall trend was evident, as the 95% CI 

of the contrast at these ROIs contained zero µV at various points on the ID measure spectrum. 

 

Figure 5.8 Phrase structure violation effects in the 600-800 ms time window. The combined 95% 

confidence intervals of the sentence type estimates are shown, indicating where the two 

significantly diverge. 
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Table 5.5 List of condition effects (violation vs. control) at each ROI across participants, and 

significant three-way interactions between condition, ROI, and ID measures. Effects are limited to 

phrase structure violations in the 600-800 ms time window. 

Interaction ROI Violation – Control Contrast 

Condition × 

ROI 

Anterior Left t(205110) = -4.1, p < .001, *** 

Anterior Midline t(205110) = 8.6, p < .001, *** 

Anterior Right t(205110) = 5.55, p < .001, *** 

Central Left t(205110) = 6.79, p < .001, *** 

Central Midline t(205110) = 26.31, p < .001, *** 

Central Right t(205110) = 15.72, p < .001, *** 

Posterior Left t(205110) = 10.75, p < .001, *** 

Posterior Midline t(205110) = 18.48, p < .001, *** 

Posterior Right t(205110) = 17.3, p < .001, *** 

Interaction ROI Control Sentences Violation Sentences 

Condition × 

ROI × 

Listening/Grammar 

Anterior Left F(2.27, 173.46) = 6.77, p = 0.02 * F(1, 173.46) = 9.24, p = 0.042 * 

Anterior Midline F(2.38, 173.46) = 4.07, p = 0.143 F(1.97, 173.46) = 9.69, p = 0.001 *** 

Anterior Right F(2.28, 173.46) = 5.23, p = 0.18 F(1, 173.46) = 9.62, p = 0.035 * 

Central Midline F(1.23, 173.46) = 2.5, p = 1.00 F(2.89, 173.46) = 26.28, p < .001 *** 

Central Right F(1.63, 173.46) = 1.53, p = 1.00 F(2.41, 173.46) = 5.29, p = 0.029 * 

Posterior Left F(1, 173.46) = 1.15, p = 1.00 F(2.89, 173.46) = 11.67, p < .001 *** 

Posterior Midline F(1, 173.46) = 3.53, p = 1.00 F(2.94, 173.46) = 30.84, p < .001 *** 

Posterior Right F(1, 173.46) = 0.69, p = 1.00 F(2.76, 173.46) = 10.57, p < .001 *** 

Condition × 

ROI × 

Listening/Vocabulary 

 

Anterior Midline F(1.24, 173.46) = 4.77, p = 0.298 F(2.79, 173.46) = 10.4, p < .001 *** 

Anterior Right F(1, 173.46) = 3.51, p = 1.00 F(2.7, 173.46) = 10.93, p < .001 *** 

Central Midline F(1, 173.46) = 3.25, p = 1.00 F(2.63, 173.46) = 16.56, p < .001 *** 

Central Right F(1, 173.46) = 2.28, p = 1.00 F(2.58, 173.46) = 9.2, p < .001 *** 

Posterior Midline F(1.42, 173.46) = 1.31, p = 1.00 F(2.58, 173.46) = 6.93, p = 0.003 ** 

Posterior Right F(1, 173.46) = 0.09, p = 1.00 F(2.55, 173.46) = 8.91, p < .001 *** 

Condition × 

ROI × 

OSpan 

Anterior Left F(2.9, 173.46) = 8.52, p < .001 *** F(1, 173.46) = 4.97, p = 0.462 

Central Left F(1, 173.46) = 2.1, p = 1.00 F(2.72, 173.46) = 8.12, p = 0.001 ** 

Central Midline F(1, 173.46) = 4.12, p = 0.76 F(2.65, 173.46) = 10.24, p = 0.003 ** 

Condition × 

ROI × 

Speaking/Grammar 

 

Anterior Left F(1.99, 173.46) = 1.21, p = 1.00 F(2.94, 173.46) = 15.41, p < .001 *** 

Anterior Midline F(1, 173.46) = 0.33, p = 1.00 F(2.97, 173.46) = 32.15, p < .001 *** 

Central Left F(1, 173.46) = 0.02, p = 1.00 F(2.88, 173.46) = 8.91, p = 0.001 *** 

Central Midline F(1.01, 173.46) = 0.27, p = 1.00 F(2.81, 173.46) = 16.16, p < .001 *** 

Posterior Left F(1, 173.46) = 2.3, p = 1.00 F(2.63, 173.46) = 8.05, p = 0.004 ** 

Posterior Midline F(1, 173.46) = 2.48, p = 1.00 F(2.78, 173.46) = 16.95, p < .001 *** 
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5.3.7.  Linear and Nonlinear Model Fit 

The ability of the two modeling techniques (LME and GAMM) to describe observed 

variance was measured using marginal R2, which indicates the proportion of variance accounted 

for by the fixed effects of a model and that is not explained by a trivial model applied to the 

same dataset (i.e., a model with zero predicted response amplitude for each predictor) 

(Nakagawa & Schielzeth, 2013). This measure was calculated for each sentence type and time 

window. In addition to R2, which provided an indication of model fit to the observed data, we 

also used the AIC to evaluate the trade-off between model parsimony and log-likelihood. Given 

that LME and GAMM models were built using the same data set, the AIC associated with each 

model was considered comparable between the two.  

All R2 estimates are depicted in Table 5.6. On average, LME models had an R2 of 2.81% 

(SD = 0.86%). GAMM models described considerably more variance, with a mean R2 of 7.01% (SD 

= 0.19%). In this instance, GAMM explains significantly more variance than LME in comparison 

with their trivial models (t(4.01) = 3.89, p = .017). 

Table 5.6 Marginal R2 for each model, indicating accounted variance that is not explained by a trivial 

model. Fit is shown for each of the four models for each modeling technique (LME and GAMM). 

 

 

300-500 MS 600-800 MS 

 

 

LME GAMM LME GAMM 

R2 
Semantic 3.13% 8.94% 3.83% 8.40% 

Phrase structure 1.84% 5.91% 2.45% 4.80% 

 

The difference in model fit provided by the two techniques was considerable. Overall 

(i.e., across techniques), model fit did not differ significantly between semantic (R2 = 6.07%, SD = 
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3.01%) or phrase structure (R2 = 3.74%, SD = 1.92%) violation effects (t(5.09) = 1.3, p = 0.25). 

Similarly, no significant difference was found between fit of models in the 300-500 ms (R2 = 

4.95%, SD = 3.15%) and 600-800 ms (R2 = 4.86%, SD = 2.54%) time windows (t(5.74) = 0.04, p = 

0.96). There was no significant difference in model fit between time windows, with an overall 

average R2 of 4.91% (SD = 2.65%). These measures are averaged across modeling techniques. 

These differences are noted in Table 5.6. 

A notable difference between the two techniques is that, due to the ability of GAMM to 

account for more variance with each added term than LME in general resulting from the 

flexibility of nonlinear terms in reducing residual variance, the addition of these terms was more 

often considered an improvement for the model despite penalties for their addition (i.e., 

improved AIC). The result was that, while predictors were frequently disregarded when using 

LME due to their improvement not being strong enough to outweigh this penalty, this was rarely 

the case when using GAMM. Each of the GAMM models built included the maximum number of 

four ID measures. Conversely, LME models included an average of 2.89 predictors per model. 

Note that of the seven predictors investigated, only a maximum of four could be included in any 

one model due to their collinearity between three pairs, described in the collinearity reduction 

process of Chapter 2. 

Importantly, predictors were included on the basis of improved log-likelihood. However, 

it is possible that a predictor can improve model likelihood while not contributing significant 

effects or interactions. It is important to note that due to differences in the mechanics of the 

two modeling techniques, a direct comparison of sensitivity to effects at specific regions is not 

possible. As discussed above, LME natively estimates the significance of contrasts, including the 

violation effect of each sentence type. This is true not only in the contrast of condition as a main 

effect of the predictor, but also in interactions with an ID measure at an ROI. Conversely, only 
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the significance of individual smooth terms can be estimated using GAMM. For this reason, the 

closest comparison of significance in violation effects between the two techniques was through 

comparing their 95% CI. Again, while LME represents the 95% CI of the contrast term, this must 

be estimated through GAMM as described above. Therefore, while the frequency of effect 

significance at specific ROIs would not be a meaningful comparison, fewer ROIs showed 

significant differences between control and violation conditions when investigated using GAMM. 

Even so, without knowledge of the true violation effect at each ROI, it is not possible to 

determine whether finding the violation effect to be significant at more ROIs using LME reflects 

improved sensitivity to underlying effects, or false positive findings. 

5.3.8.  Smooth Fits to Random Variance 

While nonlinearity in the interactions between ID measures and violation effect size was 

predicted, the strong and repetitive fluctuations depicted by GAMM in some cases were beyond 

what could reasonably be expected, or what have been suggested in our previous findings in 

Chapter 3 and Chapter 4. For example, in the case of Speaking/Grammar, increasing scores were 

associated with an alternating significant negative and positive violation effect at the front 

midline ROI as scores increased (Figure 5.8). The strong adherence of the smooth interaction 

term fit to the observed data suggested that this pattern may have resulted from overfitting, 

depicting significant effects where a condition contrast was only shown in a few participants. In 

cases such as these, this may have been caused by small sample size relative to the degree of 

variability in violation effect size. This prompted an investigation into the effect of sample size 

on model fit under the present distribution of responses. This was of particular concern in the 

three-way interaction between condition, ROI, and Speaking/Grammar 600-800 ms following the 

presentation of phrase structure violations, where over-fitting was suspected. 
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A random normal distribution of scalp voltages were generated for each condition 

(violation and control sentences) at each ROI, adhering to the mean and standard deviation of 

responses observed for each conditions and ROI across participants. This ensured that the 

violation – control conditional contrast at each ROI reflected that seen in the real data, while 

randomly assigning response amplitudes to observed ID measure scores ensured that there 

should be no systematic influence of any ID measure on the violation effect in these simulated 

data. Rather, any apparent influence of ID measures should have resulted from chance alone. 

The distribution of responses to phrase structure violations during the 600-800 ms time window 

were used as our basis for producing simulated data, and accordingly a model structure identical 

to that which described this condition and time window above was used. 

As the sinusoidal fit seen in several ROIs for the influence of Speaking/Grammar was our 

primary concern, one representative smooth fit of the influence of Speaking/Grammar on 

violation effect amplitude was produced for each of twenty sets of randomly generated data. 

Ten of these sets included 33 participants, mirroring the present data, and ten included 66 

participants to investigate what impact doubling our sample size might have. While results are 

shown for Speaking/Grammar scores alone, as this is the ID measure which was associated with 

sinusoidal fluctuations in violation effect amplitude, as described the model structure was 

identical to that used to depict responses to phrase structure violations in the 600-800 ms time 

window. One representative fit to a simulated data set of each sample size are shown in Figure 

5.9, though ten identical models were fit to randomized data sets of each size. 
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Figure 5.9 Simulated data following the mean and standard deviation response amplitude for each condition 

in each ROI, averaged across participants to ensure that any influence of Speaking/Grammar scores is due to 

chance. Data are shown for 33 simulated participants (left), equivalent to the present data set, and for 66 

simulated participants (right), to represent a doubling of our present sample size. 

Models fit to simulated data sets of each sample size were largely consistent in their 

characteristics across randomized iterations. Overall violation effect amplitude at each ROI was 

typically similar regardless of sample size, while 95% confidence intervals narrowed with 

additional data. However, we were primarily interested in the propensity for producing s-shaped 

curves or sinusoidal fits in each of the two sample sizes, as this type of relationship should reflect 

fitting to random variance in which no systematic effect should exist. To investigate this we 

investigated two measures in each Speaking/Grammar smooth fit. First, we investigated the 

number of ROIs in each of the ten simulations per sample size which showed evidence for a false 

positive influence of Speaking/Grammar. That is, data were designed to contain no systematic 

influence of Speaking/Grammar scores (or any other ID measure) on violation effect amplitude, 

as amplitude was randomized across participants while maintaining the distribution of 

Speaking/Grammar scores seen in the original data. Therefore any influence of 
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Speaking/Grammar could be concluded to be a false positive. To this end, we operationalized a 

false positive as being any single ROI at which a line with zero slope cannot be drawn from the 

lowest to the highest Speaking/Grammar scores while being contained entirely within the 95% 

confidence interval of the smooth fit. 

Second, as any relationship between Speaking/Grammar scores and violation effect 

amplitude resulted from chance alone, nonlinear smooth fits of Speaking/Grammar scores to 

responses were concluded to reflect over-fitting. We therefore investigated the number of 

individual ROIs at which a parabolic smooth fit had been depicted. The number of ROIs showing 

either of these two characteristics across the ten simulations are shown in Table 5.7 for models 

fit to data sets of each size (33 and 66 participants). 

Table 5.7 The number of ROIs (out of a possible 9) showing either a false positive influence of 

Speaking/Grammar score on violation effect amplitude (linear or nonlinear), or a parabolic smooth fit of 

Speaking/Grammar score influence on violation effect amplitude, where simulated data were designed to 

have no systematic influence of Speaking/Grammar. Results are shown for simulated data sets that include 

either 33 participants (reflecting the present sample size), or 66 participants (a doubling of the present 

sample size). 

 False Positives Parabolic Functions 

 n=33 n=66 n=33 n=66 

Simulation 1 0 1 2 1 

Simulation 2 0 1 2 1 

Simulation 3 0 0 2 1 

Simulation 4 0 0 3 2 

Simulation 5 1 1 1 2 

Simulation 6 0 0 3 0 

Simulation 7 0 0 3 1 

Simulation 8 0 1 3 1 

Simulation 9 0 0 4 2 

Simulation 10 2 1 5 1 

Mean 0.30 0.50 2.80 1.20 

95% CI 0.42 0.33 0.70 0.39 
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Overall, the number of false positives was similar regardless of sample size, though a 

slight increase in this number was evident for fits to 66 participants (0.50 ROIs per simulation on 

average showing false positive influence of Speaking/Grammar) than 33 participants (0.30 ROIs 

per simulation). This was likely related to the characteristic narrowing of 95% confidence 

intervals that was associated with increasing sample size, which would result in a zero-slope line 

being less likely to cross the Speaking/Grammar score spectrum entirely within the 95% 

confidence intervals of the fit. Conversely, increasing the sample size (provided data contain no 

effect) might also be expected to reduce spurious Speaking/Grammar influence overall, 

offsetting this increase in error. Counterbalancing of these two effects may have resulted in the 

overlap in the 95% confidence intervals surrounding the mean number of ROIs showing false 

positives for each sample size, as noted in Table 5.7, and diminishing any difference overall 

between the two sample sizes. 

Interestingly, there was a considerable decrease in the number of ROIs at which a 

parabolic smooth fit was depicted as the sample size increased, from a mean of 2.80 ROIs per 

simulation when modeling data for 33 participants to 1.20 ROIs for 66 participants. Moreover, as 

noted in Table 5.7, the 95% confidence intervals surrounding these error counts are non-

overlapping, suggesting that doubling of our present sample size might improve over-fitting to 

random individual variance in response amplitudes that may not be related to ID measures. 

Importantly, the assumption that a nonlinear fit directly reflects over-fitting is only valid in the 

context of these simulations, where it is known that nonlinear dependencies should not exist. 

Therefore, these findings can only speak to the propensity for GAMM to over-fit in the presence 

of a truly linear effect (or no effect at all), but cannot validate – or invalidate – fits to 

relationships which may truly be nonlinear in nature. Nonetheless, these results suggest that 
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over-fitting may be taking place at our present sample size of 33 participants, and that these 

concerns may be alleviated somewhat at larger sample sizes. 

5.4.  Discussion 

5.4.1.  Overview of Objectives 

The present study aimed to optimize the current standard practices in statistical 

modeling for individual differences in language processing through relaxing the assumption of 

linearity in the relationship between ID measures and cortical responses to language violations. 

Expanding on our previous investigations of these relationships, which evaluated the 

dependence of responses to semantic or phrase structure violations on various ID measures 

using linear mixed models, the present analyses used generalized additive mixed models in an 

attempt to improve model fit, likelihood, and sensitivity to effects. ID measures of interest 

included aspects of grammatical ability, vocabulary, reading efficiency, speech comprehension 

and working memory capacity. These analyses were performed on the same data set as was 

used for our linear mixed modeling investigations, in order to compare metrics of model 

competence as directly as possible. 

5.4.2.  Choice of Regression Spline Type 

Despite the considerable mechanical differences in the model-building process whether 

using restricted cubic or thin plate regression splines, the impact on model fit was negligible. 

When using the same formula and set of observations, fits achieved using the two methods 

were visually indistinguishable, and resulted in no differentiation between models in terms of 

the amplitude of predicted responses, confidence interval width, residual variance or 

significance of terms. Moreover, AIC differences between the two barely met the criteria of a 
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worthwhile improvement, with a difference of 14 between models using the two spline types (K 

P Burnham & Anderson, 2004). Nonetheless, as a choice was required, all final models used 

cubic regression splines due to their marginal improvement (in terms of AIC) over thin plate 

regression splines. Given these findings, the choice of spline type in the present data was not 

deemed to have an impact on model fit overall. Notably, the two splines types were only 

evaluated using 4 knots (cubic regression splines) and 4 basis functions (thin-plate regression 

splines). The possibility remains that one spline type might emerge as preferable in more 

complex models (i.e., more knots or basis functions), but our preference toward using a 

simplistic model to mirror the possible shapes of functions suggested in Chapter 3 precluded 

investigation of their efficacy in such circumstances, as this would not be applicable to the 

present research question. 

5.4.3.  Fit Complexity 

The more likely parameter to be impacted by data set size was the specification of 

maximum model complexity (i.e., the number of knots in a smooth term). Keep in mind that our 

discussions of complexity refer to the potential for intermittent variability in response amplitude 

across an ID measure’s spectrum — that is, the ‘curviness’ of each spline rather than the overall 

number of smooth terms. While specifying a maximum of ten knots may still result in a linear fit, 

doing so also allows for the possibility to produce an erratically curvy fit for a data set of 

insufficient size to support such complexity. Conversely, this degree of curviness cannot be the 

case when using only two or three knots. As the maximum possible complexity of that a model 

can support is a function of the data set size, the ideal complexity specification for a study, which 

is in part determined by the experimenter (maximum complexity) and in part by gam using 

generalized cross validation, is unique to the sample being investigated and the expected effect 



139 
 

size. Therefore, general guidelines to this specification cannot be established. Instead, 

expectations based on prior research and preliminary results might provide the best guidance 

when selecting the maximum complexity. 

Evaluating the appropriateness of varying degrees of complexity presented a number of 

challenges. GAMM uses generalized cross-validation to apply unique quadratic penalties to 

individual splines, attempting to trade maximum descriptive ability for model parsimony, similar 

to an optimization of model terms using AIC (Wood, 2006; Wood, 2011). While most of the time 

individual observations were not found to unduly influence model fit, this was clearly not the 

case in all interactions. Moreover, in the absence of a functioning limitation on model 

complexity, the AIC was not found to be appropriate for evaluating the number of knots. While 

the AIC has proven effective in limiting the number of terms in a model, a single smooth term 

can be composed of any number of splines, and additional splines are not penalized. The result 

was that the model with more splines invariably achieved a better fit to the observed data and 

was assigned 100% conditional probability when using AIC weights (i.e., AIC weight of 1.0). 

Given these challenges, empirically determining the ideal degree of complexity for a 

model using the present data set was not possible. Qualitatively, allowing for four knots (three 

splines) resulted in intermittent fluctuations in violation effect size that coincided with only 

slight changes in ID measures, and this problem was exacerbated at five or six knots. Again, 

these fluctuations were not supported by the motivating research. Even while some interactions 

demonstrated these fluctuations with only four knots (allowing for three cubic regression 

splines), the results overall did not appear unduly influenced by individual responses. Moreover, 

we felt that allowing for up to four knots could provide a means to model the maximum 

expected degree of complexity based on our previous observations (i.e., parabolic effect, with 

potential for a linear segment, as suggested in Chapter 3),  However, this type of qualitative 
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determinant of an appropriate degree of model complexity was not ideal as fits appeared to 

conform strongly to the responses of a small number of individuals in several interactions, and 

our concern was that findings of this nature may not generalize. 

5.4.4.  Reliability of Nonlinear Interactions 

It was hypothesized that GAMM could be used to describe nonlinearities in the 

dependency of the violation effects on ID measures which linear modeling solutions would be 

incapable of describing. While subtle changes in model fit that improve accuracy and sensitivity 

are an obvious advantage, understanding nonlinear dependencies may be an important part of 

elucidating the relationship between language proficiency and processing. It is important to note 

that, while not always the case, most of the interactions depicted did not suggest that the 

observed nonlinearities were meaningful or replicable. That is, while many interactions between 

violation effects and ID measures were nonlinear, the confidence intervals for these effects 

frequently did not diverge from zero, or could contain a zero-slope line. In addition, violation 

effects that showed a sinusoidal dependency on an ID measure, but no overall trend, may 

similarly reflect that a violation effect is not dependent on an ID measure alongside over-fitting. 

In short, neither type of interaction may be replicable in other samples. 

5.4.5.  Comparison of Findings with LME and GAMM 

When evaluating the overall findings represented through LME and GAMM, in terms of 

the presence and directionality of ID measures’ influence on violation effect size, similarities 

were noted. For example, the time period of 600-800 ms following the onset of phrase structure 

violations was revealed an influence of Listening/Grammar scores on response amplitude that 

was similarly modeled by both LME and GAMM. Notably, both techniques suggested that lower 
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Listening/Grammar scores were associated with a stronger P600 response, as outlined in Figure 

5.10. 

 

Figure 5.10 Violation – control response contrast to phrase structure violations in the 600-800 ms time 

window, modeled using LME (left) and GAMM (right). 

While this relationship was identified as significant at the six of nine ROIs using LME, it 

was significant at all ROIs using GAMM. This is noteworthy as, not only did GAMM depict a 

nonlinear interaction between violation effect size and Listening/Grammar score, this 

relationship suggested that the strongest (and potentially least linear) effects were 

demonstrated at frontal ROIs. This may be a case where the presence of an effect only in those 

participants with the lowest Listening/Grammar scores resulted in LME missing the effect 

altogether at several ROIs. However, due to our concerns regarding potential over-fitting, it 

cannot be known whether this fit resulted from the influence of the small number of lower-

scoring individuals. 

During this same time period, a similar overall trend was seen across other ID measures 

of interest when comparing the two techniques. However, GAMM often estimated the 
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amplitude of responses within three-way interactions (condition, ROI, and ID measures) to be of 

much lower amplitude than did LME. The same could be said for the time window of 300-500 ms 

following the onset of semantic violations, as the same ID measures were seen to affect N400 

amplitude, and a similar overall trend was seen when comparing the two techniques. However, 

in this time window, GAMM did not identify any reliable nonlinear interactions. Interactions 

identified using LME and GAMM therefore appeared to reflect the same overall trends across 

sentence types and time windows, while nonlinearities depicted using GAMM within those 

trends appeared to be strongly influenced by a small number of participants in most cases. 

5.4.6.  Evaluating Model Fit 

It was predicted that the use of GAMM would result in a model fit that more accurately 

depicts the relationship between ID measures and cortical responses than was achieved using 

LME. This was expected due to the ability of GAMM to produce nonlinear fits of dependent to 

independent variables. First, this was evaluated using R2, which can be considered a comparison 

of the model-predicted values with those observed. This is an important metric in the ability of 

the model to depict dependencies between the dependent variable and predictors, but cannot 

be considered an overall measure of ‘accuracy’ for several reasons. Ideally, a model strives to 

perfectly describe the observed variance (i.e., scalp voltage in response to language violations or 

well-formed sentences) using a set of predictors, while also being generalizable to a population. 

However, the two motives are often in opposition. Building a model with enough complexity will 

inevitably account for all participant- or group-specific deviations from the norm in a response, 

but such a model can be overly-specific to the described group, to the point that the added 

complexity may not be reliable in other samples. 
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This pattern of over-fitting can be lessened (but not mitigated entirely) by limiting the 

model to only include variables that were hypothesized a priori to have some influence on a 

dependent variable, as well as limiting the degree of complexity and nuance that is allowed in 

those relationships. However, over-fitting is an ever-present concern. Particularly in an 

exploratory investigation into methods of improving model fit, the limited usefulness of R2 alone 

must be considered, and metrics accounting for model complexity should be used in 

conjunction. 

Assessments of model fit can therefore be improved through consideration of the AIC, 

which optimizes model parsimony – a trade-off between model likelihood and complexity. 

Indeed, hypotheses were confirmed as R2 showed a considerable improvement in models 

generated using GAMM over those built using LME, doubling or even nearly tripling in value. This 

was reflected in a strong improvement in raw AIC value, and in all cases 100% conditional 

probability assigned to models generated using GAMM by AIC weights (i.e., AIC weights of 1.0). 

While the improvement in model fit is unsurprising, given that a transition to nonlinear 

terms should be expected to result in reduced residuals and therefore increased R2 at no extra 

cost to model complexity when compared with LME (Sánchez, 1982), the magnitude of AIC 

improvement is noteworthy as it suggests a considerable and worthwhile improvement over 

LME while using the same guidelines established in our previous chapter. Moreover, recall that 

residual variance is akin to a model’s error term, and so reduced residuals necessarily improve 

the F statistic of any term’s significance test or related post-hoc testing. Therefore, the 

demonstrated improvement in model fit also translates into improved ability to determine 

significance of effects (i.e., improved statistical power). This can be advantageous in 

investigations into small, elusive or inconsistent effects. 
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It should be noted that while using the AIC solves the problem of model complexity that 

R2 alone does not address, it remains unable to predict reliability of the model. That is, whether 

these effects generalize to a population. In this sense replication is the only true measure of 

reliability, through application of the model to novel data, making continued testing of the 

effects presently described imperative. Despite this, the present results support the hypothesis 

that when provided identical input, GAMM produced considerably more descriptive models that 

demonstrated a notable improvement in model fit and likelihood when compared with LME. 

5.4.7.  Sample Size Simulations 

The tendency for nonlinear deviations in an interaction to be guided by small numbers 

(often two or three) of participants suggested that the improvements in model fit afforded using 

GAMM also came at the detriment of over-fitting. For example, increases in Speaking/Grammar 

scores (as well as other ID measures) were associated with sinusoidal fluctuations in phrase 

structure violation amplitude during the 600-800 ms time window. Given that our findings in 

Chapter 3 and Chapter 4 suggested that the influence of these ID measures might be best 

described using linear, asymptotic, or at the most complex parabolic functions, this type of 

sinusoidal fluctuation may have indicated that these smooth terms were conforming too closely 

to individual variance which was not reflected in an overall trend across participants. 

The fit of smooth terms which appeared more complex than our raw data suggested 

should be necessary prompted an investigation into the propensity for the gam function to 

conform to random variability between participants despite no overall influence of an ID 

measure. To establish this, we designed a series of simulated data sets which mirrored our own 

data in all attributes, with the exception that random generation of responses was performed 

with no knowledge of specific ID measure scores, and so no systematic influence of any ID 
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measure should exist. Even under these conditions, fits to every simulated data set (using a 

model structure identical to that which was used in characterizing ID measure influence) 

consistently produced confidence intervals which could not contain zero-slope lines (suggesting 

a false positive ID measure influence) as well as parabolic functions (nonlinearities where no 

association should exist). 

These findings suggested that, given the sample size and degree of variance in our data, 

similar patterns of conforming to random individual-level variance to produce nonlinear fits and 

significant estimates may have occurred. Interestingly, however, the number of ROIs showing 

nonlinear fits was significantly reduced as we doubled the sample size of our simulated data 

sets, suggesting that these problems stemmed in part from the number of participants in our 

data set. It is important to note that the number of participants required to mitigate over-fitting 

in our simulations was specific to the variance and ID measure distribution of the present data 

set. However, results suggest that the present data set was not well-suited to modeling 

nonlinear interactions of this nature using GAMM. 

5.4.8.  Conclusions 

GAMM demonstrated consistently superior model fit when compared with LME, both in 

terms of reduced residuals (higher R2) and producing more parsimonious models (evaluated 

using AIC). Moreover, the general trend of the influence of ID measures mirrored that which was 

described using LME. However, within these trends, nonlinear fits appeared to conform strongly 

to the responses of small numbers of individuals, suggesting over-fitting. While the choice of 

spline type appeared to have negligible impact on model fit, the problem was exacerbated as 

models were permitted to compute additional splines, increasing the complexity of smooth fits. 

Moreover, nonlinear fits to random variability were identified in simulated data which contained 
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no effect of ID measures on response amplitude. These findings raised suspicion that improved 

model fit was achieved at the expense of over-fitting to random individual level variance, which 

may be mitigated at larger sample sizes.  
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Chapter 6:  Data-driven characterization of individual differences in 

language violation processing using CForest 

6.1.  Introduction 

In previous chapters, we have demonstrated evidence to support that individual 

differences in language proficiency and other cognitive factors are related to violation effect 

amplitude and distribution, and potentially the strategies that are used for language processing 

(Liang and Chen, 2014; Moreno and Kutas, 2005; Pakulak and Neville, 2010; Tanner, 2013; Tanner 

and Van Hell, 2014; Weber-Fox et al., 2003). Using electroencephalography (EEG), we have 

demonstrated that differences in the ability to discern a sentence’s grammatical structure as well 

as in vocabulary size may impact two important components of event-related potentials (ERPs) 

that are frequently used to index the learning and processing of various aspects of language. Not 

only do these IDs affect ERPs associated with language processing, but working memory capacity 

has shown a similar dependence, replicating what has been suggested regarding its effect on the 

P600 (Nakano et al., 2010). These findings highlight the need to consider these types of ID 

measures in investigations of language processing, even if only as a covariate where the effects 

are not pertinent to the research question. 

We have shown that allowing for nonlinearities in the relationships between ID measure 

scores and ERP component amplitude may result in improved model fit, but may also require a 

larger sample size than linear modeling solutions. One result was considerable improvement in 

model fit (R2), and therefore reduced residuals. Note that improved fit alone does not speak to 

generalizability of a model, as addition of terms until a term exists for each observation will 

necessarily drive R2 toward 1.00 (i.e., over-fitting). However, terms were added in consideration 
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of the AIC, which applies penalties for the number of terms against the likelihood of the model 

(Akaike, 1974). Penalties are linear in relation to the number of terms in a model. In addition to 

fit, however, allowing for nonlinearities described important nuances in the relationships 

between certain ID measures and violation effects, such as identifying ranges of ID measure 

scores across which changes in the violation effect (violation – control sentence response 

amplitude) were most evident. In many cases, the range of variability in violation effect 

amplitude was restricted to a portion of the ID measure spectrum. It was not surprising that 

these nonlinearities were present, given that it is unlikely for cortical response amplitude to 

change in one-to-one correspondence with testing scores. 

The procedures outlined above have added to the mounting evidence that proficiency-

related effects are likely ubiquitous in sentence-processing tasks, and have provided some means 

of improving sensitivity to those relationships. However, several deficiencies must still be 

considered. Most notably, regression models commonly require adjustment for multiple 

comparisons, and to minimize the number of comparisons, EEG electrodes are frequently 

grouped into regions of interest (ROIs) based on spatial proximity. The work described above 

used a pre-determined 3x3 grid of ROIs, based on a roughly equal division of electrodes into 

scalp regions. This approach assumes that an effect will ideally be visible at all electrodes in the 

ROI, and if the assumption is not met, there is a corresponding loss of sensitivity as the effect is 

diminished by electrodes at which it is not exhibited. Moreover, evaluations of topography based 

on ROIs alone are coarse. While topography plots can be evaluated regarding the shape and 

extent of effects, and qualitative comparisons can be drawn, it can be difficult to know whether 

topographical differences between groups or conditions are reliable. 

As an alternative to evaluating the significance of effect topographies using ROIs, 

clustering solutions can be used to group electrodes based on similarity of response amplitude 
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(Pernet et al., 2015a). One limitation to this approach, however, is that ID measure score bins 

(e.g., low- or high-proficiency) must be determined beforehand, and interactions between 

proficiency and response topography can be difficult to ascertain. The solution to this problem 

should be a form of significance testing that evaluates individual electrodes without requiring a 

correction for contrasts at every permutation of electrode groupings, while allowing for 

interactions between response topography other variables. 

Also worth considering is that heteroscedasticity proved problematic in some 

interactions identified using GAMM, where strong influence by small numbers of individuals 

resulted in effects that were not supported by the motivating literature and were likely not 

replicable (Liang and Chen, 2014; Moreno and Kutas, 2005; Pakulak and Neville, 2010; Tanner, 

2013; Tanner and Van Hell, 2014; Weber-Fox et al., 2003). While potentially important 

nonlinearities were identified (alongside considerable improvements in model fit and 

parsimony), these findings suggested that a nonparametric approach may be required to 

appropriately characterize proficiency effects given the sample size. 

Taking advantage of developments in machine learning may provide steps toward 

solutions for each of the above concerns, resulting in an overall improvement of sensitivity, and a 

more data-driven characterization of effects. Recently, a combination of machine learning 

procedures known as conditional inference random forest analysis (CForest) has been applied for 

nonlinear characterization of white matter integrity using diffusion tensor imaging (DTI) data, 

providing a robust detection of subtle and often-elusive effects related to sex and age 

(McWhinney et al., 2016). CForest belongs to a group of recursive binary partitioning techniques, 

detailed by Hothorn et al. (2006), and refers to a specific implementation of random forest 

analysis, which will be described in greater detail below. 
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Using this technique, a response variable (e.g., cortical response amplitude for either 

violation or control sentences) is modeled as a function of some number of predictor variables. 

Conventionally, regression uses an additive approach, which linearly combines terms multiplied 

by coefficients to produce estimated responses, where each term represents the effect of one 

predictor or interactions between predictors on a response variable. CForest instead iteratively 

subdivides a data set into groupings of two opposing sets of values on a predictor, for example 

separating a data set into one containing only males and another containing only females, or 

similarly one containing younger and another containing older participants. Relationships 

between a predictor and the response variable are determined using a permutation testing 

framework, which maximizes the absolute value of the test statistic to determine the ideal ‘split 

point’ on a variable, which is then used to subdivide the partition into two smaller partitions 

(Strasser & Weber, 1999). This process is recursively performed on increasingly small subsets of 

data until either no further significant associations can be detected, some minimum number of 

observations exists in a partition, or a maximum number of divisions have been created. The 

result is a branching tree-like structure, where each split represents a significant difference 

between the response variables of the two predictor groupings. Predictors can include 

continuous variables (e.g., age, or ID measures), or categorical variables such as sex of scalp 

electrode. In the event that a categorical variable has three or more levels, subdivisions can be 

created using any two arbitrary groupings of levels. 

This recursive partitioning process is used to produce a single ‘tree’, which can be used to 

determine the estimated response variable for a participant. For example, consider a simple 

model of height as a function of sex and age. If this model identifies a difference first and 

foremost by age, and further in gender – but only in the subdivision that includes males – then 

this tree has three terminal branches: Females, young males, and old males. Determining an 
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estimate is therefore as simple as knowing the age and sex of a participant. In this example, we 

consider only a single division on the age predictor, but this is not necessary. Numerous divisions 

are possible within increasingly small subsets of the initial data set. Moreover, using this 

approach, permutation testing in each node (partition) of this tree is controlled for multiple 

comparisons. However, this only represents a single tree. A forest can consist of hundreds, or 

thousands of trees, each of which can produce a unique estimate. The result is a distribution of 

estimates, allowing the user to derive confidence intervals and perform hypothesis testing. 

Using the approach as detailed above, multiple trees would be identical. Thus in random 

forest analysis, there are two ways that a degree of randomness is introduced, which provide 

several advantages. First, a tree is only created using a randomized subset of the data, and so as 

the number of observations increases, the number of possible randomized combinations of data 

samples (i.e., unique trees) increases exponentially. Creating trees using a random sample of the 

full data set allows the model to produce estimates which occasionally exclude outliers. This 

process is therefore similar to bootstrapping. This random exclusion of observations across a 

large number of trees has a similar effect to accounting for random effects when using LME or 

GAMM. That is, through computation of a large number of trees (where each tree corresponds 

to one set of estimated responses in a randomized subset of the data, and the distribution of 

responses can be used to derive confidence intervals), a number of these estimates necessarily 

exclude the influence of specific electrodes, trials, or participants. The distribution of estimates is 

therefore reflective of random variability associated with any of the predictors in the model 

(Grandvalet, 2004). Second, not all predictors are evaluated for subdivision at every branch in a 

tree. By randomly excluding a portion of the predictors at each node, we ensure that 

subdivisions are not dominated by the predictor(s) most related to the response variable. This 



152 
 

allows for detection of smaller, but significant, effects. These processes will be explained in more 

detail below, in the Methods. 

Using this approach seamlessly accounts for interactions through data-driven detection 

of optimal split points. As described in our simple example model above, if age is the predictor 

with the strongest association to response, and a significant age division exists, two new 

subdivisions will result. If one of those subdivisions is significantly associated with (and divided 

by) gender, while the other is not, then we have characterized an interaction between age and 

gender. Importantly, this is done so in a way that does not require post-hoc testing or correction 

for multiple comparisons. Rather than performing a number of contrasts, we have instead 

deductively ascertained the presence of significant differences. We can simply describe the 

difference in the magnitude of the predicted response that was shown between male and female 

adults, where that subdivision was not seen in the younger participants. This branching set of 

permutation tests allows for complex and nuanced characterization of high-level interactions 

without the need for stringent corrections or a priori predictions. While multiple comparison 

correction is intended to control for inflation of Type I error when performing numerous 

hypothesis tests in a single sample, delineating patterns in distinct branches instead performs 

hypothesis testing in distinct samples. Moreover, both effect size and significance can be 

described in any branch. 

The CForest approach offers several advantages over previous characterizations of 

proficiency-related effects that have used regression models. First, response estimates can be 

predicted for individual electrodes wherever significant differences exist, rather than grouping 

electrodes into a priori regions of interest (ROIs). Effect topographies can therefore more 

accurately depict the true scalp distributions of effects, rather than being forced through a 

coarse and a priori defined set of ROIs. The result is that the scalp distribution can be described 
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with statistical probability. This circumvents the need to draw qualitative conclusions regarding 

topographical differences between groups or conditions from more heuristic approaches. 

Second, significance testing in each tree node determines stopping points, which prevents over-

fitting (Hothorn et al., 2006). A division is not made unless it is both statistically significant and 

exceeds a user-defined threshold for subset size. 

Third, subsampling in each tree accounts for outliers (bagging; Strobl et al., 2009). As 

described above, each tree randomly excludes some portion of the data set. If the data set 

contains outliers, this ensures that a proportion of a forest’s trees are created which are less 

influenced, or potentially not influenced at all, by these outliers. Observations are not necessarily 

excluded at the participant level, and so a subsample may include some portion of each 

participants’ data. With enough trees, by random chance entire participants are likely to be 

excluded from some trees. Therefore, participants with average responses or ID measure scores 

that are strongly divergent from the average will be probabilistically represented in the forest 

based on the subsampling proportion and the number of trees. As a distribution of estimates is 

drawn from the ensemble of trees, this results in a distribution with varied degrees of influence 

from outliers. In addition, where regression estimates are strongly leveraged by extreme 

predictor values, these values will only strongly influence branches if they coincide with extreme 

response variable values. 

Lastly, the variability of response estimates produced across trees is improved by 

randomizing the predictor variables that are evaluated at each branch of a tree. As described 

above, only the predictor that is most-strongly associated with response values in a partition is 

considered for guiding further subdivision of that partition. It is highly likely therefore that a 

single strongly-associated predictor will guide many or all subdivisions until a partition is too 

small to support further identification of associations. This could preclude identification of 
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associations and significant subdivisions in more weakly-associated predictor variables, if the 

variables considered were not randomized. Moreover, a large number of trees in the ensemble 

will show divisions dominated by the most strongly-associated predictors, and will therefore 

produce estimates that are more similar to one another. This problem is considerably alleviated 

by randomly excluding a proportion of predictor variables from consideration when identifying 

associations in a partition (Variable pre-selection; Strobl et al., 2009). The result is more sensitive 

detection of subtle effects, and more varied trees. 

Taken together, CForest demonstrates a number of advantages over conventional 

regression approaches. Considering the often-elusive nature of proficiency- and cognition-

related effects, as well as variability between studies, this non-parametric, data-driven approach 

may be better suited to investigations of ID measures in language processing. While CForest has 

frequently been used for classification problems (e.g., Parvinnia et al., 2014; Rashid et al., 2011; 

Zainuddin et al., 2012) in which associations are learned to predict a response variable in a novel 

combination of predictors, they can also be used for characterization of responses in order to 

contrast groups, conditions, times or regions in neuroimaging data (McWhinney et al., 2016).  

This framework was in part designed to address the “small n large p” problem of many 

classification studies (Hothorn et al., 2006) — more predictor variables than observation units — 

which is of immense value in genetics & bioinformatics  (for a review of the rapidly developing 

field, see Libbrecht and Noble, 2015). However, the ability to consider a large number of 

variables without penalty remains beneficial for descriptive models as well. This allows 

conceptualization of investigations with finer detail and larger scope, while avoiding inflation of 

Type I error. 

The present analysis used CForest to delineate relationships between several ID 

measures and the spatial and temporal characteristics of ERPs elicited in response to sentence 
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violations. This included differences in scalp topography, response amplitude, and latency 

associated with the ID measures, as in the previous chapters. Specifically, as in the previous 

LMER and GAMM analyses, we investigated how these factors were modulated by language 

proficiency (vocabulary, grammatical ability), speech comprehension, word reading efficiency, 

and working memory. 

N400 and P600 responses to semantic and phrase structure violations, respectively, were 

first characterized using CForest to align subsequent analyses both with previous chapters and 

the motivating research  (Nakano et al., 2010; Pakulak & Neville, 2010; Tanner, 2013; Tanner et 

al., 2014; Tanner & Van Hell, 2014). Beyond this it was predicted that violation effects would be 

shown with scalp topographies that were irregular in shape and extent. This ability to assign 

statistical significance to topographical features represents a novel advantage provided by 

CForest. These features were predicted to differ between violation types (semantic or phrase 

structure) and time window (300-500 ms vs. 600-800 ms), resulting in quantification of 

previously suggested trends (Moreno & Kutas, 2005; Pakulak & Neville, 2010; Weber-Fox et al., 

2003). These characterizations were formed for any ID measure that was shown to significantly 

and substantially modulate the effect of either type of sentence violation. The qualifier of 

‘substantial effect’ was in place because CForest can detect effects which are highly significant, 

but which may be weak, of little interest, or specific to the data set. Therefore, only ID measures 

associated with a change in violation effect size beyond 0.5 µV across the observed range of ID 

measure scores were investigated further. In addition, the added sensitivity associated with 

bagging and variable pre-selection was expected to reveal relationships that our previous 

investigations may have been insensitive to. For example, word reading efficiency and speech 

perception were not previously found to significantly modulate violation effect size, but 

remained viable candidates for investigation. 
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Lastly, it was important to test the accuracy of model predictions in novel data on which 

the model was not trained. As described above, while a model should ideally depict the 

significance of effects found in data on which it was built, it should also be generalizable to novel 

data as well. Thus in the present study, models using a range of user-defined specifications were 

evaluated both in terms of accuracy in a ‘learning’ data set on which they were built, (randomly 

selected 80% of our data) as well as generalizability in a ‘testing’ set (a withheld 20% portion of 

the data on which it was not built). As discussed, CForest can be sensitive to sample-specific 

variability, and its propensity for over-fitting is not well-documented. This step was performed to 

ensure that the resulting model was not solely applicable to describing the data on which it was 

built. Efficacy in each case was evaluated using the Pearson correlation between the model-

predicted responses and those observed, where the ideal set of model specifications was taken 

as that which performed best under both circumstances. User-defined parameters and their 

theoretical impact are described below. Briefly, they were the number of trees included in the 

forest, and the variable selection guidelines in each tree. In each case, there is no defined 

standard, motivating an exploratory investigation into their impact. It was hypothesized that 

application of model predictions to novel data would result in a reduced, but significant 

correlation between predicted and observed responses, speaking in part to generalizability of 

the model beyond the present data. 

6.2.  Methods 

6.2.1.  Data Acquisition and Pre-Processing 

The majority of methodological details are as described in Chapter 2, as the present 

investigation was a continuation of the prior analysis and therefore used the same data set and 

pre-processing stages. Unchanged details include a description of the participants included in 
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these investigations, an overview of the language proficiency and cognition assessments used, 

the sentence processing task, and EEG acquisition hardware and procedure, and data pre-

processing. Therefore, where procedural or analysis details are not described, please refer to 

Chapter 2. Differences in statistical modeling procedures exist and are outlined in detail below. 

At times, results will be compared with those reported in previous chapters. Recall of prior 

results will be outlined where necessary. 

6.2.2.  Conditional Inference Random Forest Analysis 

As discussed above, CForest is a collection of techniques which are combined to produce 

a model of the relationship between a response variable and some number of predictor 

variables. While the computations for each technique occur in isolation, the results of each form 

an interdependent (and recursively looping) chain that is the CForest analysis. That is, these 

processes act in a series of steps which are iterated on increasingly small subsets of a data set to 

characterize any existing relationships. These processes will be explained in more depth below, 

but by way of introduction include 1) random selection of data to be subjected to hypothesis 

testing, 2) determining the predictor variables that are candidates for hypothesis testing in this 

random selection of data, and 3) recursively partitioning the data into binary subdivisions based 

on the relationship between the response variable and the variable(s) selected in the second 

step, provided a relationship exists. These second and third steps are completed in a repeating 

fashion until no identifiable and significant relationship exists, resulting in a single branching tree 

structure. The entire process is then completed some user-specified number of times to create a 

forest. Where a single tree is a simple model which allows for estimation of a response variable 

using a randomized subset of the full data set, the forest allows for estimation of a distribution of 
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responses, on which confidence intervals can be developed. Each of the above steps will now be 

discussed in further detail. 

(1) Bagging (randomized data selection). A major drawback of recursive partitioning 

models, including the approach introduced above (CTree), is their instability to small variations 

(noise) in the data (Strobl et al., 2009). That is, the hypothesis testing which drives detection of 

relationships between variables in a single tree relies on a permutation testing framework which 

is fundamentally different from, and less conservative than, the F statistic used in regression 

models. This framework permutes levels of a predictor variable (either categorical or continuous) 

to test its association with the response variable, and will be described in more detail below 

(Strasser & Weber, 1999). The result is that individual trees are susceptible to detecting spurious 

effects based on outliers.  One means to circumvent this problem is to combine CTree modeling 

with bagging. Bagging is a method by which many random subsets are drawn from the original 

data set, similar to bootstrapping. These subsets are also known as learning sets. One CTree 

model (tree) is fit to each learning set, resulting in an ensemble of trees (forest), each based on a 

unique and randomized portion of the full data set. Bagging also attenuates random effects such 

as those incurred by repeated measurements and testing site effects (Grandvalet, 2004). For the 

present study, trees were grown on random subsets each comprising 93.2% of the data. This 

portion was selected to align with our previous investigation using CForest analysis (McWhinney 

et al., 2016). Data were sampled without replacement to equalize selection of variables with 

differing numbers of categories (Strobl, Boulesteix, Zeileis, & Hothorn, 2007). 

(2) Variable Pre-selection. The second component of CForest analysis is variable pre-

selection, the process by which not all predictor variables are candidates for guiding the 

subdivision of data at a tree node (i.e., branching point in the tree structure, or division of a data 

partition into two subsets using a predictor’s levels as the split criteria). While the mechanics and 
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theory of the partitioning process will be detailed below, a partition of the data set is subdivided 

into two smaller subdivisions using levels of a predictor variable as the split criteria (e.g., if age is 

selected as the partitioning predictor, participants above and below age 40 may be the 

constituents of the two resulting mutually exclusive partitions). However, the predictor that is 

selected for guiding subdivision is that which shows the strongest association with the response 

variable. Therefore, in the presence of one strongly-associated predictor, if all are considered 

candidates to guide division, then those with weaker (but significant) associations will rarely, if 

ever, be selected. The result is that only relationships with the most strongly-associated 

predictors will be described. To alleviate this problem, not all predictors are tested for 

association. Only a random selection of predictors are evaluated, allowing characterization of the 

relationship between the response variable and more weakly-associated predictors. This 

produces more diverse trees, which necessarily improves the generalizability of predictions made 

at the forest level (Breiman, 2001). The proportion of variables which are randomly selected for 

inclusion is a user-specified parameter, and a range of proportions were investigated to evaluate 

this parameter’s impact on model quality. The result is that potentially informative interactions 

that would otherwise be missed can be detected. 

(3) Conditional Inference Regression Trees: Conditional inference regression trees are 

non-parametric models that recursively partition data into nodes and branches by way of 

hypothesis testing. While a single tree allows for an estimated value of a response variable given 

some number of independent variables, a forest (collection of trees) can be used to generate a 

distribution of estimates. This distribution can then be used to develop confidence intervals 

and/or evaluate the significance of contrasts. The CTree algorithm produces a single tree using 

the following steps (Hothorn et al., 2006): 
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(1) Global Null Hypothesis (Stop Criterion). Determine whether a subset of data 

(partition) at the present node should be split into two further subsets by testing the 

global null hypothesis of independence between observations in that partition and 

predictor variables. On the first iteration of the branching tree structure, this node 

includes the entirety of the data that was selected during bagging. As any subsequent 

nodes only contain the data which has been subdivided through the series of branches 

that reach it, the association is only tested in that subdivision of the data. As subdivisions 

necessarily become smaller with additional branches, detecting significant effects 

becomes less likely in nodes which have been subdivided more times. In addition, the 

user can specify a minimum number of observations required in a node for hypothesis 

testing to take place. 

The permutation testing framework established by Strasser and Weber (1999) is 

used to produce the test statistic C, determining the significance of the association 

between each predictor variable and the response variable. In the event that a 

significant association exists with at least one predictor variable, the global null 

hypothesis (that no association exists) is rejected. If the null hypothesis cannot be 

rejected, subdivision of the data in this branch ceases, resulting in a terminal node. 

(2) Variable Selection. If the null hypothesis is rejected in the step above, the predictor 

with the strongest association to the response variance (i.e., the smallest p-value) is 

selected for evaluation in terms of how that variable will guide further subdivision of the 

data, described below. Recall that due to variable pre-selection, not all predictor 

variables are evaluated. Those which are excluded from consideration in one node may 

still be evaluated in subsequent (lower) nodes, however. 
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(3) Best Split Point. The absolute value of the test statistic C is calculated for every 

possible split point, where this split will be used to subdivide this node’s data into two 

subsequent partitions. For continuous variables, such as age, split points may include any 

observed age in the data set, where the selected split point is that which maximizes the 

significance of the response variable contrast between the resulting groups (e.g., the 

difference in response for participants equal to or above vs. below each observed age). 

For categorical variables, such as region of residence, all possible comparisons of two 

groupings of regions are evaluated. For example, one possible contrast might be New 

York and Boston vs. Halifax, while another might be New York vs. Boston and Halifax. In 

the present experiment, electrodes were treated categorically and were evaluated in this 

manner. The data are partitioned at the split point that results in the most significant 

difference between responses of participants in the two groupings. 

(4) Repeat. Repeat steps 1–3 on the two newly created data partitions until either the 

global null hypothesis cannot be rejected, a user-specified minimum number of 

observations per division has been reached, or a user-specified maximum number of 

divisions has been reached. 

The process described above is depicted in Figure 6.1. The single-tree model results in a 

series of split points which segregate observations and assign a predicted response in each node. 

The predicted response is shared by all combinations of predictor levels present at that node. For 

example, if a tree identifies that participants below age 25 significantly differ in some response 

from those above or equal to age 25, then it will predict identical responses for any participant 

under age 25. It is important to note that while divisions are binary, the fact that numerous 

subdivisions can occur recursively means that several split points can be identified in a single 

variable. As described, this process estimates a response using a single tree, but each tree is built 
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using unique combinations of bagged data and randomly selected variables in each subdivision. 

Therefore a distribution of responses is produced at the forest level. The response variable’s 

value is estimated at every row in the data set using every tree, and then averaged across trees, 

to produce a summary estimate for each row. This can be compared with observed responses to 

estimate an R2 value for the model. Finally, the significance of the relationship between these 

estimates and the predictor variables is determined using the same recursive partitioning 

algorithm described above, but using the summary estimates instead of observed responses. Any 

predictor which is associated with a significant split at this stage can be considered to 

significantly predict the response. 

 

Figure 6.1 Flowchart of procedures used to create a single tree. While random subsampling is completed 

only once per tree, all subsequent steps occur in each of the recursively partitioned data subsets until no 

significant associations can be detected. This procedure is completed iteratively to for each tree in the 

forest, where the results in each tree are completely independent of one another. 
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Using this method, the model Listening/Grammar × Speaking/Grammar × 

Listening/Vocabulary × TOWRE × AzBio × OSpan × LSpan × Condition (control, violation) × 

Channel was fitted to the EEG signal amplitude averaged over a time window, for each time 

window and sentence type (semantic or phrase structure). The input to this model (i.e., 

dependent variable) was the absolute scalp voltage for each electrode, sentence type (semantic 

or phrase structure), condition (violation or control), trial, participant, and all ID measure scores 

for that participant. This format ensured that the two conditions could subsequently be 

contrasted to characterize the violation effect, and associate its amplitude with any predictors of 

interest. Predicted responses were produced in correspondence with each individual response 

value in each condition, so that the two conditions could be contrasted and the predicted 

responses could be compared with those observed. This model differs from that used in previous 

chapters by allowing for interactions between the ID measures at the highest-possible level (i.e., 

potentially 10-way interactions may arise). Previously, each ID measure could only interact with 

condition and ROI (replaced here by individual channels). This was done to aid in interpretability 

by limiting the scope of interactions. That is, when using regression, summarizing the effect of a 

predictor which is involved in complex interactions becomes increasingly cumbersome. However, 

these potentially high-level interactions were only used to generate the estimated response, and 

any added nuance in the dependence of the response on these variables would ideally produce a 

more accurate model. Interpreting the effect of predictors on the response was instead 

performed only in consideration of that predictor’s effects. Moreover, where the estimates of 

regression models can be invalidated by multicollinearity, CForest is capable of modeling all ID 

measures (including those correlated with one another) simultaneously as it does not rely on 

predictor estimates to account for variance. Accordingly, all ID measures were included in a 

model. This process was completed once in each time window (300-500 ms and 600-800 ms). 
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The criterion to reject the null hypothesis at each node was set to α = 0.05, where probability 

values were Bonferroni corrected for multiple tests. 

6.2.3.  Optimizing Forest Parameters 

Given the multi-faceted nature of the procedures that constitute CForest, a number of 

aspects of the analytical mechanics must be defined by the user. These include the number of 

trees in the forest, and the proportion of predictor variables that are considered during variable 

pre-selection for hypothesis testing in each branch. As this is a novel application of CForest, there 

is no clear rule on these specifications, and their impact was assessed. We evaluated a range of 

specifications in each of the three areas to determine their impact on the model, in terms of 

specificity and generalizability. 

In theory, a forest is improved through addition of trees, as this increases the signal to 

noise ratio and the stability of resulting response estimates for any combination of predictor 

variables. However, computation time increases with the size of a data set and the number of 

predictor variables, and so creating forests with excessive trees can be infeasible. We 

investigated the efficacy of forests built using either 100, 300, or 500 trees. This investigation was 

conducted to assess whether reducing the number of trees resulted in any loss of forest accuracy 

or generalizability (to be described below). 

In addition to the number of trees, the variable preselection process can impact the 

efficacy of resulting forests. The number of predictors chosen to evaluate in any node (or more 

accurately the proportion of total predictors) impacts the likelihood of including predictors with 

stronger associations in any given tree, and therefore the representation of that predictor across 

all trees in the forest. Significant predictors with weaker associations can conversely only be 

described when those stronger predictors are not included for consideration, due to division of 
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the node only in the predictor with the strongest association.  The result is a trade-off between 

nuanced description of weaker effects (lower number of predictors considered during variable 

preselection), and accurate portrayal of stronger ones (higher number), where the accuracy of a 

forest’s predictions is maximized at some unknown midpoint. The ideal proportion is specific to a 

data set, and depends on a predictor’s distribution of values and effect size. Therefore, in 

addition to evaluating the efficacy of forests of varying size, each forest size was also run in 

consideration of 20%, 40%, 60%, 80% or 100% of predictors during variable preselection. 

Both the accuracy of the forest’s predictions in the data on which it was built 

(specificity), and the accuracy in novel data (generalizability), were considerations for each 

forest. Therefore, only a randomly-selected 80% of our full data set (i.e., response amplitudes 

randomly selected from any electrode, trial, participant or condition, where each was tied to the 

ID measures of the associated participant) was used to build the above-described forest. This 

division was created using a random sampling without replacement of epoched electrode-level 

measurements across participants, where each measurement coincided with all ID measures 

associated with a participant. The result is that each of the two data sets very likely contained 

partial data from all participants. The same random selection was used for all forests to ensure 

that any variability in quality between models was not due to random differences in the inclusion 

of outliers in the ‘learning’ sets. The remaining 20% was set aside to assess the ability of each 

forest to predict novel responses (the ‘testing’ set), speaking to the generalizability of the model. 

In the case of each model built using these data, the Pearson correlation between observed and 

model-predicted responses was used as a measure of accuracy, and the forest with the highest 

accuracy in both the learning and testing sets was taken as the best. 

Due to the time required to perform these computations, it was not possible to perform 

these analyses in all four areas of investigation (two time windows by two sentence types). 
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Instead, we limited our investigation of model parameters (i.e., of the impact of user-specified 

parameters on model outcomes) to only the semantic violation contrast in the 300-500 ms time 

window. The ideal parameters were applied to models built for each time window and sentence 

type contrast (four separate models). Creation of four separate models followed the approach 

taken in previous chapters. 

6.2.4.  Summarizing Predictions 

When first evaluating one of the four models produced, the presence of a two-way 

interaction between condition (sentences containing violations or well-formed ones) and region 

(at the individual electrode level) was investigated using a forest that contained only those two 

terms. Any electrode showing a significant division of predicted responses between the two 

conditions was deemed to support the contrast, and the magnitude of the response difference 

(violation – control) was plotted at those electrodes to qualify the presence of any effects of 

interest, including the expected N400 and P600 components. Subsequently, a model that also 

contained terms for ID measures was used to evaluate the influence of these measures on the 

condition contrast regionally. 

The violation effect size was shown in two ways. First, it was investigated as a function of 

each ID measure globally (i.e., averaged over channels) to identify portions of the ID measure 

spectrum (similarly scored participants) in which consistent and considerable positivity or 

negativity was evident at some region of the scalp. These participants were isolated and their 

average topography for the time window and sentence type was plotted. These two depictions 

are described below as the global and local effects, respectively, highlighting that only the latter 

takes regional constraints into consideration. Distinct groups of electrodes were identified, 
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providing a grouping of electrodes where this effect was maximal, provided that there was a 

significant differentiation between electrodes in terms of violation effect size. 

Note that this classification allowed a clustering of spatially distant electrodes if 

similarities existed, owing to the categorical treatment of electrodes. However, this was rarely 

the case, and spatially contiguous clusters were found in nearly all instances. This method 

allowed us to identify topographies that were unique in both shape and extent for each 

predictor, and offered a considerable improvement in sensitivity when defining a region of 

interest over using pre-defined electrode clusters (e.g., arbitrarily grouping spatially similar 

electrodes into an arrangement of ROIs). The results presented below demonstrated that the 

violation effect topography can be irregular in shape or extent, demanding these nuanced 

methods of detection. 

Lastly, the confidence intervals of the forest were shown at the region where the effect 

was maximal, providing a more localized depiction of the relationship between the ID measure 

and violation effect size. Confidence intervals were shown alongside the overall predicted 

response, which showed significant step-wise trends in the underlying variability. Therefore, the 

overlaid stepping function was the determinant of significant ID measure effects. 

6.3.  Results 

6.3.1.  Forest Specificity 

Forests were created using various combinations of two user-defined parameters in 

order to assess their impact on the accuracy of the model-predicted estimates in terms of the 

data on which the model was built, or the forest specificity. A separate analysis of the accuracy of 

the model-predicted estimates in terms of a novel hold-out data set (a random 20% of the initial 
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data set), or the forest’s generalizability, will be described in the following section. As described 

above, this included variations in the proportion of predictors considered during variable 

preselection, and the number of trees in the forest. The results of these investigations are 

described in Table 6.1. Quality of the forest’s specificity was evaluated using a Pearson 

correlation between model-predicted estimates and those observed in the 80% of the data set 

on which these models were built. In all cases, correlations were significant at p < .001, (DOF = 

6659). 

Table 6.1 Forest accuracy (Pearson correlation of predicted vs. observed responses on which the forest was 

built) for gradations of variable preselection proportions and tree numbers.  

    Number of trees   

    100 300 500 Mean 
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20% 0.918 0.919 0.919 0.919 

40% 0.919 0.919 0.919 0.919 

60% 0.918 0.919 0.919 0.919 

80% 0.919 0.919 0.919 0.919 

100% 0.919 0.919 0.919 0.919 

  Mean 0.919 0.919 0.919   

 

While increasing the number of trees was intended to improve stability of the estimates, 

it had no observable effect on the correlation between predicted and observed responses. 

Increases in the number of trees did coincide with changes in the correlation between predicted 

and observed responses, but the degree was negligible. A one-way ANOVA revealed that this 

improvement was not significant (F(2,12) = 1.49, p = .264). Similarly, while marginal fluctuations 

in the correlation were noted with changes in the proportion of variables chosen during 

preselection, these changes were not found to be significant (F(4,10) = 1.42, p = .297). Therefore, 
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neither the number of trees used in the forest (between 100 and 50), no the variable pre-

selection proportion, were found to influence the specificity of the resulting forest. 

6.3.2.  Forest Generalizability 

 The procedure detailed above was additionally used to evaluate the accuracy of the 

model in terms of data on which it was not built, to assess forest generalizability in novel data. 

This novel ‘testing’ set contained a randomly-selected 20% of the full data set in order to assess 

the ability of each forest’s output to generalize beyond data on which it was built. Moreover, 

each forest was built using the same ‘learning’ set, and tested against the same ‘testing’ set, to 

ensure that any variations in generalizability were due to changes in forest parameters. The 

Pearson correlation was used as a measure of similarity between predicted and observed 

responses, as when evaluating model fit above. The results of this investigation are outlined in 

Table 6.2. In all cases, correlations between model-predicted responses and those observed 

were significant at p < .001, (DOF = 6659). 

Table 6.2 Forest generalizability (Pearson correlation of predicted vs. novel observed responses) for 

gradations of variable preselection proportions and tree numbers.  

    Number of trees   

    100 300 500 Mean 
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20% 0.677 0.678 0.678 0.678 

40% 0.678 0.678 0.678 0.678 

60% 0.677 0.678 0.678 0.678 

80% 0.678 0.678 0.678 0.679 

100% 0.678 0.678 0.678 0.678 

  Mean 0.678 0.678 0.678   
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As seen in evaluations of model fit above, increasing the number of trees resulted in a 

modest increase in the mean correlation between predicted and observed responses. However, 

this increase was not significant (F(2,12) = 1.71, p = .222).  Similarly, there were negligible 

fluctuations in this correlation across the range of proportions of predictors included during 

variable preselection, and as above these fluctuations did not show an overall trend, and were 

not significant (F(4,10) = 1.699, p = .226). Therefore, neither of these user-defined parameters 

were found to affect model generalizability. 

Given that neither of the two parameters investigated resulted in any significant change 

to either the model’s accuracy in data on which it was built or generalizability to novel data, their 

specification in the present data was not expected to impact interpretation of results. It is 

interesting to note that the correlation between CForest’s predicted responses in the novel data 

set and the observed responses for this data set (r = .6780), while lower than that for the data 

set on which the model was built (r = .919), was not altogether diminished, and remained 

significant. 

As this evaluation was conducted subsequent to computation of the forests which will be 

described below, it did not constitute evidence to alter either parameter which had been used. 

Therefore, all analyses below were completed using 500 trees, at 90% variable pre-selection 

inclusions. This selection had initially been made to align with our previous use of CForest in 

neuroimaging data sets of similar size, where variable preselection was allowed to include all 

predictors except for any one at random (McWhinney et al., 2016). While our prior research was 

used as a guideline, these parameters were not expected to impact the efficacy of our models. 
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6.3.3.  Semantic Violations, 300-500 ms 

As described above, a model was first fit to each data set which contained only terms for 

the condition (those containing a semantic violation or well-formed sentences), and electrode for 

semantic violations in the 300-500 ms time window. This model revealed that a significant 

condition contrast was seen across large portions of the scalp. This contrast revealed that 

sentences containing violations elicited a significantly more negative scalp voltage than well-

formed ones across central and parietal regions, while conversely eliciting a more positive 

response in widespread frontal regions. The latency and distribution of this central-parietal 

negativity matches that of the expected N400 ERP component, and this interaction is depicted in 

Figure 6.2. It should be noted that for this analysis, region refers to the cluster of electrodes 

which showed a significant violation effect, as individual electrodes were included as predictors 

in CForest models. These regions are therefore data-driven in their depiction and should not be 

confused with ROIs used in previous chapters. 

 

Figure 6.2 Electrodes showing a significant contrast between sentences containing semantic violations and 

well-formed ones during the 300-500 ms time window are plotted as large circles. Effect size is shown by the 

colour scale. Smaller electrodes indicate those with no significant contrast. 



172 
 

Following this, a model was fit which contained terms for condition and electrode as 

above, but also for each of the ten possible ID measures. This second model was used to 

evaluate the influence of ID measures on the size of the violation effect, as well as its scalp 

distribution. Only two of the ten ID measures were found to be related to the size of the violation 

effect: Speaking/Grammar, and Listening/Vocabulary. The remaining predictors had no impact on 

the violation effect size for semantic violations in the 300-500 ms time window. 

Amplitude of the N400 was greatest in participants with lower scores both for 

Speaking/Grammar and Listening/Vocabulary. This effect is described in Figure 6.3 as the global 

violation effect, as it is first presented averaged across electrodes (i.e., globally). The electrodes 

at which a significant N400 was identified are highlighted as the peak effect topography. The 

effect of these ID measures on N400 amplitude specifically (i.e., without interference from the 

anterior positivity shown in Figure 6.2) was investigated by considering only those electrodes 

showing a significant N400. The depiction of the ID measures’ effect on N400 amplitude in these 

electrodes specifically will be referred to as the local violation effect. 

Plotting the local violation effect for Speaking/Grammar and Listening/Vocabulary 

revealed that a linear relationship between N400 amplitude and ID measure scores was not 

evident. However, there was a significant trend toward a larger N400 at lower scores. This was 

depicted as a single division in the stepwise predictions of CForest at approximately the midpoint 

of each ID measure’s scoring spectrum. Note that the global violation effect depicts significant 

divisions (steps) which were not evident in the local violation effect, though their influence can 

be seen in the local violation effect’s underlying distribution of estimates. Importantly, CForest 

did not identify these deviations from the identified trend as significant, resulting in a more 

consistent stepping function with fewer divisions. These fluctuations may have been influenced 

in part by anterior positivity which was less evident in the local violation effect. 
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Figure 6.3 Semantic violations in the 300-500 ms time window, showing the violation – control effect (N400) 

at all electrodes and all participants (left), the scalp topography only for participants who showed the N400 

response, as indicated by blue shading in the left pane (middle), and the violation effect in all participants at 

the electrodes which demonstrated a significant N400 response (right). This series is shown for 

Speaking/Grammar (top) and Listening/Vocabulary (bottom). All scales are shown in negative (blue) or 

positive (red) microvolts, where larger electrodes show a significant condition contrast. 

The process for computing the above four plots, including 1) the response topography 

for all participants, 2) the relationship between an ID measure score and the violation effect 

across all electrodes, 3) the response topography for a subset of individuals (i.e., those with 

higher or lower scores), and 4) the relationship between an ID measure score and the violation 

effect for electrodes showing a significant violation effect as determined in step 1, are outlined 

in the following pseudo-code. Note that this pseudo-code does not detail the specification of 

modeling parameters, but provides a procedural outline of the computation of data for each 
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plot. The structure of this pseudo-code is loosely based on R syntax, with a number of 

simplifications. In this example, data are plotted for semantic violations in the 300-500 ms time 

window, and scores are evaluated for a single ID measure. Note that in this pseudo-code, the 

CForest function refers to the procedure that produces a distribution of estimates equal in 

volume to the number of trees in the forest, as described in section 6.2 Methods above. The 

following CTree function refers to the subsequent significance testing of the forest’s distribution. 

# 1) Plot response topography for everyone at all electrodes 

plot_topography = function(dat) { 

 predicted.raw = CForest(response~electrode*condition, data=dat) 

 predicted.steps = CTree(predicted.raw~electrode*condition) 

 predicted.steps.v = predicted.steps[condition=‘violation’] 

 predicted.steps.c = predicted.steps[condition=‘control’] 

 electrodes.sig = electrodes[predicted.steps.v!=predicted.steps.c] 

 plot_head(add_color=electrodes.significant) 

} 

 

dat = dat.semantic.300_500 

plot_topography(dat) 

 

# 2) Plot global violation effect (relationship across all electrodes) 

plot_effect = function(dat) { 

 predicted = CForest(response~score*condition, data=dat) 

 predicted.v = predicted[condition=‘violation’] 

 predicted.c = predicted[condition=‘control’] 

 predicted.v-c.raw = predicted.v - predicted.c 

 predicted.v-c.steps = CTree(predicted.v-c) 

 plot(score, predicted.v-c.raw) 

plot(score, predicted.v-c.steps) 

} 

 

dat = dat.semantic.300_500 

plot_effect(dat) 
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# 3) Plot response topography for select individuals 

dat = dat.semantic.300_500[score>60] 

plot_topography(dat) 

 

# 4) Plot local violation effect (relationship at sig. electrodes) 

dat = dat.semantic.300_500[electrode=electrodes.sig] 

plot_effect(dat) 

 

6.3.4.  Semantic Violations, 600-800 ms 

A model that contained only terms for the condition contrast and electrode showed that, 

for semantic violations in the 600-800 ms time window, a significant positive condition contrast 

was found to be widespread and primarily central in topography. Anterior left and right scalp 

regions also demonstrated significant negativity in the condition contrast. This effect is outlined 

in Figure 6.4. 

 

Figure 6.4 Electrodes showing a significant contrast between sentences containing semantic violations and 

well-formed ones during the 600-800 ms time window. Smaller electrodes indicate those with no significant 

contrast. 
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Second, a model which contained both of the above terms (condition and electrode) as 

well as each of the ten potential ID measures was fit. However, none were found to influence 

either the amplitude of this response or its topographical distribution. 

6.3.5.  Phrase structure violations, 300-500 ms 

A model that contained only terms for the condition contrast and electrode for phrase 

structure violations in the 300-500 ms time window showed a small number of electrodes at 

which a significant positive or negative violation effect was seen in response to phrase structure 

violations during the 300-500 ms time window. A modestly-sized cluster of electrodes in the left 

parietal region demonstrated a significant negative violation effect, with a more diffuse cluster 

showing a positive violation effect in right temporal and parietal lobe regions. This pattern is 

shown in Figure 6.5. 

 

Figure 6.5 Electrodes showing a significant contrast between sentences containing phrase structure 

violations and well-formed ones during the 300-500 ms time window. Smaller electrodes indicate those with 

no significant contrast. 

Second, a model which contained the terms described above, but also each of the ten ID 

measures was fit. Phrase structure violation effects in the 300-500 ms time window were 
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influenced by Listening/Grammar and Listening/Vocabulary. Other ID measures were not 

associated with changes in the violation effect size. As with semantic violations, these effects 

were considered first in terms of the global violation effect (the interaction between ID measures 

and violation effect size, averaged across electrodes), second in terms of the topography for 

individuals who demonstrated a significant positive violation effect (peak effect topography), and 

third in terms of the relationship between ID measures and violation effect size for all 

participants, specifically in the electrodes which demonstrated a significant positive violation 

effect (local violation effect). These relationships are each detailed in Figure 6.6. 

Regarding the global violation effect, the lower half of Listening/Grammar scores were 

associated with a positive violation effect. Those individuals highlighted as being representative 

of this response demonstrated a violation effect topography covering an arc-like distribution of 

electrodes, sweeping from anterior midline to left parietal regions of the scalp. The local 

violation effect for these electrodes showed a positive violation effect, where the underlying 

distribution of estimates depicted an intermittent peak that was associated with a single 

participant and was not deemed significant.  

A similar pattern to the above was seen in the relationship between Listening/Vocabulary 

and violation effect size, with the exception that this significant positivity was only found in the 

three participants with the lowest Listening/Vocabulary scores, as seen in the global violation 

effect. The topography of this effect for these participants was widespread, with the response 

being strongest in left anterior electrodes. Given that the local violation effect for this ID 

measure contained nearly all electrodes, it closely matches the function depicted in the global 

violation effect. 
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Figure 6.6 Phrase structure violations in the 300-500 ms time window, showing the violation – control effect 

at all electrodes and all participants (left), the scalp topography only for participants who showed the 

response (middle; those shaded in the left pane), and the violation effect in all participants at the electrodes 

which demonstrated a significant response (right). This series is shown for Listening/Grammar (top) and 

Listening/Vocabulary (bottom). All scales are shown in negative (blue) or positive (red) microvolts, where 

larger electrodes show a significant condition contrast. 

6.3.6.  Phrase structure violations, 600-800 ms 

A model was first fit which contained only terms for condition and electrode for phrase 

structure violations in the 600-800 ms time window. In this model, the two-way interaction 

between these terms revealed that phrase structure violations elicited a generally positive 

response in the 600-800 ms time window. The distribution of this response was consistent with 

the expected P600. This effect was widespread and primarily central in topography. In addition, a 
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small cluster of left anterior electrodes showed a significant negative violation effect, along with 

a single electrode in the right central scalp region. This pattern is shown in Figure 6.7. 

 

Figure 6.7 Electrodes showing a significant contrast between sentences containing phrase structure 

violations and well-formed ones during the 600-800 ms time window. Smaller electrodes indicate those with 

no significant contrast. 

Second, a model was fit using the terms described above, in addition to a term for each of 

the ten ID measures. However, TOWRE was the only ID measure that was found to influence 

P600 amplitude, as there was an association between higher TOWRE scores and increasing P600 

amplitude. This can be seen in the global violation effect depicted in Figure 6.8. The topography 

of the violation effect for those individuals who showed a P600 response revealed that there was 

a significant condition contrast, which was strongest at central midline electrodes and far-

reaching to lateral parietal regions. The local violation effect revealed that while there was 

considerable variability in P600 amplitude across participants, the trend toward stronger 

positivity at higher TOWRE scores resulted in a single significant division between lower- and 

higher-scoring participants, the latter of whom showed stronger P600 amplitude. 
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Figure 6.8 Phrase structure violations in the 600-800 ms time window, showing the violation – control effect 

at all electrodes and all participants (left), the scalp topography only for participants who showed the 

response (middle; those shaded in the left pane), and the violation effect in all participants at the electrodes 

which demonstrated a significant response (right). This series is shown for TOWRE, as it was the only ID 

measure found to influence P600 amplitude. All scales are shown in negative (blue) or positive (red) 

microvolts, where larger electrodes show a significant condition contrast. 

6.4.  Discussion 

6.4.1.  Overview of Objectives 

The present study aimed to improve characterization of how ID measures affect ERP 

components associated with various aspects of language processing, in several ways. First, 

through removing user subjectivity when determining proficiency ‘bins’ (i.e., proficiency 

windows in which a sentence violation effect is seen). Second, through data-driven detection of 

ROIs that are potentially irregular in shape and extent, and the shape/extent of which can be 

deemed statistically significant. This step provided quantification of previously-qualitative 

evaluations of the topographical distributions of effects (e.g., Pakulak and Neville, 2010). Third, in 

providing an approach that is more robust to multicollinearity, irregularities in distribution, 

sample size or residuals, all of which are problematic to regression approaches (particularly in 
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over-fitting to sparse sample distributions, as seen using GAMM). We have investigated the 

ability of CForest to accomplish each of the above needs, and will evaluate its strengths as well 

as considerations for, and limitations on, its use. 

6.4.2.  Summary of Semantic Violation Effects 

First, it was necessary to identify two components of interest (N400 and P600) in order 

to investigate CForest’s characterization of their dependence on ID measures. Each type of 

violation (semantic and phrase structure) was assessed in two time windows: 300-500 ms, and 

600-800 ms, following the onset of the violation. While the effect of semantic violations was 

investigated in both time windows, this type of violation was primarily intended to elicit an N400 

response, consisting of a central-parietal negativity during the 300-500 ms time window. 

CForest depicted a significant contrast between sentences containing semantic violations 

and well-formed ones during the 300-500 ms time window, showing a relative negativity 

associated with sentences containing violations. The topography of this effect was consistent 

with the expected N400 response. The amplitude of this response was further found to be 

predicted by Speaking/Grammar and Listening/Vocabulary scores on the TOAL-3 language 

proficiency test, with lower-scoring individuals showing a larger-amplitude response. This finding 

was largely consistent with those suggested using LME, except in the LME analysis the 

directionality of this interaction was reversed (i.e., higher-scoring individuals showed a higher 

amplitude response for each of Speaking/Grammar and Listening/Grammar). The results of our 

GAMM analysis, however, did not suggest a response that was consistent enough across regions 

or ID measures to interpret, likely due to sample size concerns as described in the previous 

chapter. In addition, the present findings were consistent with some previous work (Moreno & 

Kutas, 2005; Weber-Fox et al., 2003). However, findings in this area have been inconsistent, as a 
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stronger N400 response has also been associated with higher-proficiency individuals, rather than 

lower, both in native English speakers and those who learned English as a second language 

(Newman et al., 2012). These inconsistencies highlight the need for further research in this area. 

Similar to the results of our earlier LME analysis, CForest revealed that semantic 

violations were also associated with a significant positive violation effect during the 600-800 ms 

time window. However, the amplitude and distribution of this response were not found to be 

associated with any of the ID measures investigated. While LME found three ID measures to 

significantly influence semantic violation effect amplitude during this time window, 

Speaking/Grammar scores showed the strongest influence. We reported similar findings for our 

GAMM model of these data. In this case, CForest may have been insensitive to the gradual slope 

of the influence of Speaking/Grammar scores on response amplitude. 

6.4.3.  Summary of Phrase Structure Violation Effects 

In addition to the above, the effect of phrase structure violations was investigated in 

both time windows. Although we posed no hypotheses regarding the effect of ID measures on 

the response during the 300-500 ms time window, the amplitude of this response was largest 

(most positive) in participants with lower Listening/Grammar and Listening/Vocabulary TOAL-3 

scores. This finding mirrors our previous GAMM results, which suggested a stronger response in 

individuals with lower Listening/Grammar scores, particularly in left/anterior regions. LME 

suggested a similar finding for individuals with lower Listening/Grammar and 

Listening/Vocabulary scores, but conversely that the response was instead strongest participant 

with higher Speaking/Grammar scores. 

In the 600-800 ms time window, a positive violation effect was obtained, with a 

topography consistent with that of the expected P600 response. The only ID measure that was 
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found to influence P600 amplitude was TOWRE, where the P600 effect was found to have the 

largest amplitude in higher-scoring individuals. This finding was divergent from that of the other 

analysis methods used, which predicted significant influence of several ID measures. While the 

patterns described by LME and GAMM in this instance were remarkably similar to one another, 

neither found TOWRE to be a significant predictor of P600 amplitude. Importantly, due to the 

variable selection process that was used for both approaches, TOWRE had been excluded due to 

high collinearity with OSpan, which was considered the better predictor in terms of model 

likelihood. 

6.4.4.  Optimizing Forest Parameters  

It was important to quantify the effect of any user-defined parameters on the resulting 

forest, in order to avoid subjectivity where possible.  Aside from the model terms, which have 

been rigorously defined and justified both here and in previous chapters, two parameters had 

the potential to impact model fit and generalizability. These were the number of trees included 

in the forest, and the proportion of predictors included during variable preselection. Importantly, 

changing either parameter had no appreciable impact on the model in this case. The effect of the 

number of trees computed is similar to that of the number of samples prepared during a 

bootstrapping procedure, as each represents a randomized subset of the data on which 

estimates are built. Increasing the number of randomized subsets should be expected to improve 

model accuracy, especially in smaller sample sizes where variability between subsamples can be 

expected to be higher. Given the size of the present data set (nearly 1.5 million observations), it 

is perhaps not surprising that varying the number of trees did not significantly impact either the 

accuracy of model fit or generalizability in novel data. These findings suggest that as few as 100 
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trees may be adequate in a typical EEG data set such as the one used in the present study, 

though it is difficult to generalize to smaller datasets. 

A considerably less straight-forward parameter is the variable preselection proportion. 

Depending on the size of the data set, the number of predictors, their distribution, and their 

association with responses, changes in this parameter can impact model outcomes (Breiman, 

2001; Hothorn et al., 2006). Limiting trees to inclusion of only a few predictors ensures that, if a 

small number of predictors are considerably more strongly associated with the response than all 

others, more trees will be generated that do not include those dominant predictors. This allows 

for significant divisions to be identified in predictors that have weaker overall influence on the 

variances of the data. Detection of weaker effects is therefore only possible at a degree of 

expense to accurate portrayal of stronger ones, and the ideal proportion balances the two in a 

way that is specific to a data set. Not only can this impact characterization of results, but also 

accuracy of the model, and by extension generalizability in novel data. Given the nature of this 

trade-off, a range of proportions should ideally be investigated in any analysis using CForest. 

Despite the theoretical importance of selecting the appropriate proportion, a wide range of 

specifications were evaluated and none were found to significantly impact our model’s efficacy. 

Therefore, while no standard exists for this proportion or the number of trees, neither was 

considered salient in the present analysis. 

6.4.5.  Interpreting Significance with CForest  

When using CForest to describe variables such as those used in the present study 

(electrodes, conditions, or continuous variables), it is important to consider that the output 

depicts significant differences in a response based on divisions in a predictor. The result is either 

the significance of a conditional contrast for categorical variables, or piecewise-constant 
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segments in continuous variables. By comparison, additive modeling solutions such as LME or 

GAMM use either a linear slope or a smooth fit formed by a series of polynomial basis functions 

to describe the relationship between a continuous predictor and response variable. Therefore, 

despite variability in the forest estimates in the violation effect which may or may not be 

significant, any changes which are depicted in CForest’s final stepping function across an ID 

measure are considered significant deviations. This provided clear-cut proficiency bins, which 

were used to plot response topography. While this removes a degree of subjectivity that would 

be required to define “high” or “low” proficiency bins, which has been done heuristically or a 

priori in the past (e.g., Pakulak and Neville, 2010), this characteristic of CForest also represents a 

limitation. Underlying nonlinearities in the response amplitude can only be described through 

inconsistencies in the stepping function produced by CForest, as a smooth fit cannot be 

produced. Likewise, even linear trends must be depicted as a series of steps of consistent height. 

While this has been useful in CForest applications aimed toward categorical determinations, and 

here was used to define cut-offs for proficiency bins or ROIs, this approach may be less suitable 

for describing continuous variables. 

Using the present approach, nonlinearities that underlie CForest’s stepping functions 

may be ascertained using the confidence intervals of the forest, which were here plotted for the 

local violation effect in any interaction. However, caution must be taken in interpreting these 

predicted confidence intervals. Notably, the underlying function is strongly influenced by 

individual variability, particularly in samples with only a single observation unit (participant) for 

any given predictor value, and even large fluctuations may not be significant. This was frequently 

the case in the present study, as participants rarely scored identically on proficiency measures, 

resulting in confidence intervals often based on a single participant, which were accordingly 

wide. Therefore, the underlying function may be strongly representative of the sample, but not 
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generalizable. This motivated assessment of the overall trend though the permutation test that is 

depicted alongside the confidence intervals (i.e., the stepping function showed alongside the 

forest’s confidence intervals), which indicates the significance of changes in the underlying 

predicted amplitude. 

6.4.6.  Depicting Topographies 

In addition to data-driven proficiency bin characterization, CForest allowed for depiction 

of effect topographies with finer detail than has been possible in previous analyses. Specifically, 

regions of interest did not need to be defined a priori, and could include any possible 

combination of electrodes, regardless of spatial proximity. Grouping of electrodes was performed 

entirely through similarity of response patterns. Considering the number of possible groupings 

that 128 channels could produce, this level of sensitivity in topographical plotting is simply not 

possible using regression approaches, which would require inordinate corrections of significance 

for multiple comparisons. Even the mass univariate approach of correcting for 128 individually-

assessed electrodes would result in a considerable loss of sensitivity (Groppe, Urbach, & Kutas, 

2011). The result is that the significance of even subtle shifts in shape, extent or laterality of 

effects can be described, where this has not been possible in the past. This advantage would be 

of value, for example, where Pakulak and Neville (2010) described the P600 to be more broadly 

distributed in higher-proficiency individuals, but were only able to describe the effect 

qualitatively, in the absence of a method able to address the question. In the present data, our 

results did not motivate investigation of a low-proficiency P600 topography in response to phrase 

structure violations, as only higher-proficiency individuals demonstrated a violation effect with 

significant positivity. Nonetheless, this remains a compelling advantage of CForest. 
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Concerning ROIs, a fundamental distinction should be drawn between those identified 

using CForest and their common use in ERP research. That is, while a region is typically 

determined a priori to be of interest in, the move to data-driven topography depiction results in 

a model-defined ROI when using CForest. Moreover, there are several important considerations 

in interpretation of ROIs depicted by CForest. First, as described, there is no requirement of 

spatial proximity or distribution of any kind in electrodes that are considered an ROI. Clustering 

of electrodes is performed purely in analysis of correlations in activation magnitude and 

variability, treating individual electrodes as nominal and categorical factor levels. Therefore, it is 

entirely possible that two distant groups of electrodes be grouped, which may indeed be 

expected in some circumstances. However, the fact that violation effects were consistently found 

to cluster in spatial proximity and follow expected distributions is in keeping with expectations 

for the present study. The interaction of Listening/Grammar and phrase structure violation effect 

size during the 300-500 ms time window represents an interesting case, where a positive 

violation effect was seen across the majority of the scalp, with a central and parietal distribution. 

However, when evaluating the topography for lower-scoring participants, only the N400 

response was only found to be significant in the left/anterior electrodes. This grouping is likely 

rooted in lower variability of the response at left/anterior electrodes than elsewhere. This case 

demonstrates another advantage of data-driven ROI selection, in that such a grouping may be 

meaningful, but is unlikely to be selected a priori, or to be obvious when only looking at 

topographical averages. 

6.4.7.  Ideal Use Cases for CForest 

We previously suggested that the sinusoidal functions occasionally depicted using 

GAMM resulted from over-fitting to subject-specific variability. CForest depicted a similarly 
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sinusoidal dependence of violation effect amplitude on some ID measures, but this variability 

was rarely found to be significant. In this regard, CForest may represent a means of overcoming 

problems associated with over-fitting that GAMM is more susceptible to, as the influence of 

individual variability on response estimates is balanced with the requirement of consistency 

when identifying significant subdivisions using a continuous variable. That is, while the 

confidence intervals of the forest showed considerable noise in some effects (i.e., sinusoidal 

functions), CForest did not deem this noise significant, resulting in either a single step following 

the overall trend of the function, or none at all. GAMM, however, was unable to provide such a 

determination. The present approach may therefore be a capable method of non-parametric 

effect characterization in sample sizes that are problematic for GAMM. 

Given these considerations, CForest may be less susceptible to over-fitting than GAMM. 

However, as discussed above, the cost is a more blunt characterization of continuous variables. 

Indeed, while the stepwise and categorical divisions that CForest provides can be invaluable for 

determining cutoffs where detailed post-hoc testing would not be possible using regression (e.g., 

depicting the significance of an effect’s topography at the level of individual electrodes), this very 

characteristic may be a detriment to assessment of continuous variables. Future research may 

therefore use a combination of approaches, defining scalp topography or sentence type 

contrasts using CForest and then further investigating the effect of ID measures using regression 

approaches such as LME or GAMM. The stepwise segmentation of an ID measure’s effect on a 

component’s amplitude may be desirable in some cases, such as defining bins of high or low 

scores on ID measures. However, we feel that the more detailed description of continuous 

variables that regression can provide will likely be better suited to the typical ERP study. 



189 
 

6.4.8.  Sample-Dependent Effects 

A critical consideration during interpretation of CForest results is that, as described, the 

significance of an effect is not determined in relation to zero microvolts, but instead in relative 

differences between observations. When comparing two conditions (control vs. violation), 

detecting a significant difference is comparable to finding a significant condition effect using 

regression. However, this same hypothesis testing mechanic was used to identify which 

electrodes showed the violation effect most strongly, out of a considerably more complex set of 

possible electrode permutations. In both cases, the determination of significance was based on 

unique properties of the variance in the response amplitude, either between conditions or 

between sets of electrodes. In the case of electrodes, results can be misleading if the reader 

interprets the effect’s topography as indicating those electrodes which showed a significant 

violation effect (i.e., a P600 effect with amplitude significantly greater than 0 µV). Rather, this 

topography was used to show where the violation effect was significantly higher than other 

electrodes outside that region, in the same way that the control and violation conditions were 

compared. For this reason, variability in response amplitude across the scalp can influence the 

shape and extent of the effect’s topography, and to the extent that this variability is dissimilar 

between sentence types or time windows, comparisons of topography between the two cannot 

be made. 

While CForest is generally considered robust to heteroscedasticity (Hothorn et al., 2006), 

differences in the variability of a response either between conditions or in high vs. low-scoring 

individuals may still influence the significance of effects for the reasons described above. With 

this in mind, any comparisons should be interpreted with caution. Susceptibility to these issues is 

widespread in statistical modeling techniques, and so regardless of approach, attention must be 

paid to randomization of experimental conditions where possible. 
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6.4.9.  Model Generalizability 

Despite an expected reduction in the correlation between predicted and novel observed 

responses when compared with observed responses from the ‘learning’ set, this correlation 

remained highly significant. This finding lends support to the generalizability of the model, but 

should be interpreted in mind of two important caveats. First, predictions can only be made for 

predictor values (ID measure scores) on which the model was trained, although these can be 

derived from novel combinations. For example, the model could be trained on two participants, 

one of whom performed poorly on two tasks and one of whom performed well on both. Model 

predictions could then be applied to a third participant who scored poorly on one and well on 

the other. However, it is not possible to predict responses for participants with ID measure scores 

that the forest had never encountered. Considering our relatively limited participant pool (and 

generally non-overlapping distribution of ID measure scores), this meant that the ‘testing’ set 

could not include entirely novel participants, but instead was composed of a randomized 

selection of responses from trials and/or electrodes in participants who were also present in the 

‘learning’ set. 

While not every instance of a continuous variable is required to produce a predictive 

model, in this instance, removal of a participant entirely from the ‘learning’ set would have 

resulted in a considerable gap in ID measure scores due to our limited number of participants. 

This was avoided as a wide array of missing values might make the model untenable. 

Importantly, however, there is a distinction between regression and CForest in how previously-

unseen scores would be evaluated when estimating a response. Using LME, a positive linear 

estimate might be extrapolated beyond the highest score that the model had evaluated to 

estimate a stronger response. Conversely, using CForest, an ID measure score beyond the bounds 

of what the ‘learning’ set had been fit to would be assigned an estimated response equal to the 
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highest-seen score. CForest may therefore be entirely inappropriate for extrapolating beyond the 

bounds of the predictors on which it was trained. 

Importantly, despite the fact that data from some participants were divided amongst the 

two data sets, the data sets were entirely distinct in terms of individual observations. Ideally, 

participants would be entirely unique across the two. However, accurate prediction of responses 

in novel trials and scalp regions, even in shared participants, still speaks to generalizability of the 

forest. This issue could only be overcome with a much larger sample size, or through 

considerable down-sampling of ID measure scores (i.e., translation from raw scores into high vs. 

low performers). The reduction in variability that would result from the latter would represent a 

substantial loss of information, however. The second noteworthy caveat is that no clear cut-off 

exists in evaluating the strength of a correlation when deeming a model ‘accurate’. In all cases, 

however, that seen between the predicted and novel observed responses was significant, 

suggesting efficacy of the present model, and promoting future investigation in larger samples. 

6.4.10.  Conclusions 

In conclusion, we have demonstrated a number of advantages that can be achieved 

through characterizing proficiency-related language violation processing using CForest. Data-

driven ROI selection has proven capable of detecting the shape and extent of violation effect 

topographies, while largely circumventing concerns surrounding heteroscedasticity. However, in 

many cases the piecewise-constant predictions that CForest provides are not ideal for depicting 

nuanced effects of continuous variables. CForest appeared insensitive to gradual linear slopes of 

the influence of ID measure scores on violation effect amplitude in a number of interactions, 

which both LME and GAMM were able to detect adequately characterize. However, this same 

binary partitioning mechanic which is not strongly suited to describing linear influences can be 
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advantageous in detecting clear-cut effect ranges (i.e., grouping low- or high-scoring individuals) 

without problems associated with over-fitting, which have otherwise proven problematic for 

GAMM.  
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Chapter 7:  Discussion 

7.1.  Overview of Research Objectives 

The present research explored a variety of approaches to characterizing individual 

differences in language processing. At present, while individual differences in language 

proficiency and working memory capacity have been associated with the latency and 

topography of the N400 and P600, results have varied between studies. For example, while it 

has been suggested that individuals with lower scores in language proficiency assessments 

demonstrate a stronger N400 response to violations of semantic expectations during sentence 

reading tasks (Moreno & Kutas, 2005; Weber-Fox et al., 2003), precisely the opposite 

relationship has also been demonstrated, with higher-proficiency individuals showing a stronger 

response (Newman et al., 2012). These studies provide convincing evidence that individual 

differences do play a role in N400 production during sentence reading, but inconsistencies in 

findings have motivated an investigation into methodological considerations surrounding 

modeling approaches. 

The approaches taken in previous research have primarily used either ANOVA (Moreno 

& Kutas, 2005; Pakulak & Neville, 2010) or fixed-effect multivariate regression models (Tanner et 

al., 2014; Tanner & Van Hell, 2014). Only one study to our knowledge has used linear mixed 

modeling (Newman et al., 2012). However, these techniques present a number of constraints in 

terms of modeling capabilities which may impede interpretation of results. The methods used in 

this dissertation were selected to address these limitations in a number of ways, and while none 

are ideal for all purposes, each presented a unique means to overcome some of the concerns in 
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these areas. While the findings of each analysis will be detailed in greater depth below, their 

general aims were as follows. 

First, we tested a method which is mechanically similar to that used in fixed-effect 

multivariate regression (Tanner et al., 2014; Tanner & Van Hell, 2014), but with support for 

modeling sources of random variability – linear mixed effects modeling. This method has been 

used successfully to describe IDs in language processing in the past (Newman et al., 2012), and 

served as a baseline analysis to compare subsequent methods with. Using LME, we investigated 

the model selection process, both in terms of selecting a set of ID measures that are 

comprehensive but maximally orthogonal, and also in terms of specifying a random effect 

structure that is appropriate for the experimental design and analytical requirements. Whether 

the expected N400 and P600 had been elicited, and the influence of ID measures on their 

characteristics, were also explored in relation to the literature which motivated these 

investigations.  

Second, we used a technique which expands on the capabilities of LME by relaxing the 

assumption of linearity in the relationships between these measures and response amplitude. 

For this analysis, we used generalized additive mixed modeling. Rather than fitting linear 

predictors to a set of observations, this method fits series of smooth polynomial functions that 

demonstrate a user-specified degree of flexibility. While it was predicted that allowing for 

nonlinearities in these associations would reveal important details regarding the role of IDs in 

N400 and P600 presentation, findings resulted in concerns that the present sample size was not 

sufficient for such a fine-grained description. This analysis was therefore presented alongside a 

simulation of additional data to characterize the influence of sample size on the amplitude and 

smoothness of nonlinear functions. 
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Lastly, we investigated whether moving to a method of data-driven effect 

characterization would allow for a more nuanced and informative analysis of response 

amplitude or topography in relation to IDs. For this analysis we used conditional inference 

random forest modeling, or CForest. This is a nonparametric permutation testing approach 

which allows for more flexibility in identifying interactions than regression models would allow 

by relying on a unique framework for hypothesis testing. In addition, an assumption of linearity 

in relationships is not required. Appropriate use cases and limitations of this approach are 

discussed, with advice for implementation in future studies. In the following pages we will 

evaluate the results of each approach and their implications in greater detail. Following this, the 

overall findings of the effect of IDs will be discussed in relation to the literature, with 

considerations for future research. 

7.2.  Linear Mixed Modeling 

Using LME, we first explored the model selection process. Notably, this process is not 

specific to LME, and a similar framework might be used with models that do not include random 

effects (i.e., linear fixed-effect only models). As these analyses included a variety of assessments 

of language proficiency and other cognitive functions, it was necessary to address 

multicollinearity between measures and develop a rigorous approach to including a set of 

measures which balances a comprehensive overview of individual characteristics with choosing a 

set that is maximally-orthogonal. As this was a largely exploratory investigation, more measures 

were included than might have been necessary, complicating the model selection process. 

Future research which consistently identifies specific measures as unimportant — or hypothesis-

driven studies that focus on a single or limited range of measures — may help to streamline the 

selection of measures to be included in an analysis. 
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These goals of reducing multicollinearity and maximizing a model’s descriptive ability 

represent a trade-off, as reducing the number of measures improves the former at the 

detriment of the latter. Moreover, there is no standard approach to selecting the ideal set of 

measures. This step is critical in any ERP study, in order to identify measures which may conflict 

in describing variance in the data. While collinear predictor variables do not hurt the predictive 

ability of a model overall, it can result in errors of effect size estimation for individual predictors, 

which was indeed one aim of this dissertation (Bollinger et al., 1981). In the present data, the 

results identified three pairs of related measures, each requiring elimination of one: (1) 

Listening/Vocabulary vs. AzBio (speech comprehension); (2) TOWRE (word reading efficiency) vs. 

OSpan (visual working memory), and (3) Speaking/Grammar vs. LSpan (auditory working 

memory). Note that this pairing is based on a modest sample size, and may differ in future 

studies. Moreover, while the similarity of any two measures may be meaningful, the 

interpretation of such correlations (i.e., mechanisms driving the relatedness of word reading 

efficiency and working memory) is beyond the scope of this research. From a modeling 

perspective, however, elimination of one measure from each pair should aid the accuracy of 

effect estimation for remaining predictors (Bollinger et al., 1981). 

The decision not to allow ID measures to interact with one another in models was made 

primarily to aid interpretability. That is, we were interested in differences in response amplitude 

over the scalp between higher- and lower-scoring individuals on any given ID measure, but not 

necessarily in the interactions between ID measures. Aside from difficulties in interpreting the 

meaning of such four-way (or higher) interactions (e.g., violation × region × OSpan × AzBio), the 

challenges associated with post-hoc testing were considered too great in spite of any additional 

merit these interactions would provide. Specifically, we were concerned that this level of post-

hoc testing would require a degree of multiple comparison correction that would diminish the 
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sensitivity of our analysis to the interactions of interest. While our later investigations using 

CForest would be less hampered by these issues for reasons discussed in Chapter 5.4, the 

decision to disallow any interaction between ID measures in that analysis was made to maximize 

our ability to compare findings between the three approaches. Despite this, research with 

predictive (rather than descriptive) aims, for example predicting response characteristics or ID 

measure scores rather than describing relationships between the two, might benefit from 

modeling such high-level interactions. 

The random effect structure that was identified using LME was chosen with the 

suitability for the experimental and model design in mind. It was decided that creating separate 

models for each time window and sentence violation type was suitable in order to aid with 

interpretability and reduce the degree of post-hoc testing required by removing sentence type 

and time window as dimensions. Therefore, the random effect structure was required to match 

this decision. That is, while individuals might be expected to produce random variance on these 

dimensions, modeling such sources as random effects was neither required nor possible. Future 

research which might incorporate multiple time windows or sentence violation types into a 

single model, however, may find that incorporating random effects related to either of these 

two factors improves the model’s likelihood. Indeed, it might be expected any model which 

includes interactions between all of these effects would likely benefit from a maximally 

descriptive random effect structure (Barr et al., 2013). Such a model would also allow for 

significance testing on these removed dimensions, which was not central to our aims. 

In our analysis, it was demonstrated that model likelihood was considerably improved 

through allowing for a random variation in response amplitude between participants. This 

finding was unsurprising, given that allowing for a degree of flexibility in this regard should move 

some variance from the error term to this random effect, as it could not be accounted for 
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through the fixed effects of the model. Furthermore, allowing predicted response amplitude 

variance across the scalp to differ between participants resulted in an additional improvement 

to model likelihood. This analysis demonstrated that while accounting for random effects 

through the use of mixed models is not currently the standard in ERP research investigating 

individual differences – and indeed no standard may yet exist – doing so may yield improved 

sensitivity to subtle effects. 

7.3.  Generalized Additive Mixed Modeling 

Our analysis using LME was followed with an exploration of the assumption of linearity 

in this area using generalized additive mixed modeling, or GAMM. Specifically, we aimed to 

reveal whether relaxing the assumption of linearity in the association between ID measures and 

response amplitude would yield improved sensitivity to subtle effects, allowing us to identify 

important details regarding the nature of individual differences in violation processing. Notably, 

at the time of processing, we were unable to directly compare the significance of the violation 

effect (the difference between the violation and control smooth terms) as this functionality is 

not native to the package used for modeling. It has since become apparent that this type of 

computation might be achieved using the itsadug R package (van Rij, Wieling, Bayyen, & van 

Rijn, 2017). However, given the concerns surrounding over-fitting in this analysis, assigning p 

values to these difference curves was not expected to aid in interpretation of findings. 

While model fit demonstrated nonlinearities in these relationships, and at times 

appeared to conform to expectations, the influence of several measures on response amplitude 

was depicted as sinusoidal. Importantly, no prior research to our knowledge has demonstrated 

this type of effect of individual differences on the N400 or P600. Therefore, while there was 

evidence that suggested the influence of IDs on response amplitude might be nonlinear, the 
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validity of these findings was called into question by fits which appeared overly-specific to our 

sample. This possibility raised concerns that our sample size was not high enough to support 

GAMM-produced smooth fits. Smooth terms appeared to be strongly influenced by small 

numbers of individuals in numerous interactions. It was therefore unclear whether the nonlinear 

relationships depicted, even when they appeared believable, could generalize to the population. 

This issue was further complicated by the fact that conventional model-pruning 

methods, such as a comparison of models using the Akaike Information Criterion, are not a 

reliable technique to evaluate whether the degree of nonlinearity (i.e., “wiggliness”) of the 

functions was suitable given the underlying data. These types of techniques attempt to arrive at 

the most parsimonious model by limiting the number of terms by the improvements in model 

likelihood that they provide (Akaike, 1974). However, a linear and nonlinear model built using 

GAMM could include an identical number of terms (where even several conjoined polynomial 

functions constitute a single smooth term), and the latter will always result in better likelihood 

as nonlinearities necessarily conform to individual variance (S. Wood, 2006). These methods are 

therefore not suitable for a comparison of the two, or even a comparison of nonlinear fits which 

vary in complexity. 

Simulations of sample size variations suggested that doubling the number of participants 

would considerably alleviate over-fitting, at least in the context of the degree of variance found 

in the present data. In reality, should the within- and between-participant variance found in 

additional participants differ from our sample, this could influence the size of a sample that is 

considered adequate. This simulation can therefore only be used as a proof-of-concept that 

additional participants might help to alleviate concerns surrounding over-fitting. In addition, 

these findings suggest that an adequate sample size is also related to the complexity of the 

nonlinear relationship being modeled. Nonetheless, future research will need to be conducted in 
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this area to fully determine whether nonlinearities in these relationships are reliable, as well as 

meaningful. 

7.4.  Conditional Inference Random Forest Modeling 

Our last investigation relied on a statistical method that represents a considerable 

departure from conventional regression techniques. This analysis used CForest, which combines 

elements of bootstrapping, permutation testing and hypothesis testing to deduce patterns in 

predictor variables which are systematically related to response variance (Breiman, 2001; 

Hothorn et al., 2006; Strasser & Weber, 1999; Strobl et al., 2009). CForest represents an 

amalgamation of techniques which attempt to address the limitations of additive modeling 

solutions in various ways. Most notably, the deductive permutation testing framework 

recursively partitions a series of randomized subsets of data into branching structures of isolated 

subsets. This branching of responses based on predictor variables provides a framework by 

which estimates can be assigned to novel observations, based on the predictor values associated 

with an observation, and repeating this process over hundreds of iterations results in a 

distribution of estimates around which confidence intervals can be computed. Importantly, this 

method does not assign estimates to fit terms to observations, and so all concerns surrounding 

the development of estimates or terms are irrelevant. Importantly, as estimates are calculated 

through averaging responses in individual branches, there is no assumption of linearity. In 

addition, the development of this branching structure is almost entirely data-driven except for a 

small number of user-defined constraints, which allows for definition of proficiency bins or 

electrode clusters. 

A major aim of this analysis concerned the definition of regions in which the effect of IDs 

on response amplitude is depicted. The conventional approach to averaging electrodes over a 
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region involves deciding on a region or set of regions a priori, regardless of whether this 

grouping of electrodes will ideally capture the response’s topography (e.g., Newman et al., 

2012). Alternatively, electrode clustering solutions exist which define regions based on similarity 

of response amplitude, although this approach precludes describing gradual changes in 

topography which are associated with IDs (Pernet, Latinus, Nichols, & Rousselet, 2015b). 

Nonetheless, this type of clustering approach may be suited to certain types of research 

questions. Conversely, the recursive partitioning framework used by CForest allows for a data-

driven delineation of electrode groupings, similarly based on response amplitude, but 

interactions with ID measures can be modeled and visualized. Using this method, the grouping 

of electrodes in which an effect should be depicted is deduced, rather than specified by the user, 

and can naturally follow the topographic distribution of an effect. 

While this approach demonstrated advantages in groupings of categorical variables such 

as individual electrodes, it may not be ideally-suited to characterizing continuous variables (e.g., 

ID measures). The recursive partitioning mechanic is only capable of finding discrete divides in a 

variable in terms of how that variable predicts a response. For example, dividing individuals with 

scores above or below some metric into two subsets of data, based on this division maximizing 

the difference between the responses of those subsets. This type of division is naturally 

reflective of categorical variables, and can be used to define low- and high-proficiency groups of 

participants, but otherwise creates piecewise-constant stepping segments in continuous scales. 

Notably, the response amplitude estimates in interactions which GAMM depicted using 

sinusoidal fits followed a similar fluctuating pattern, but the significance testing of these 

estimates (represented in the piecewise-constant segments overlaid in each figure) was largely 

either flat or included a single step where an overall trend existed. Therefore, this did appear to 

overcome the over-fitting issues that made interpretation of GAMM results difficult, and 
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therefore it may be suited to some research questions. However, we feel that the degree of 

characterization that either LME or GAMM could provide for continuous variables would be 

preferable for the typical ERP study. In particular, either regression approach seems better 

suited to describing the relationship between ID measures and the N400 or P600 amplitude. 

Ideally, the methods may be used in conjunction to define electrode groupings using CForest and 

the influence of ID measures in those regions using LME or GAMM. This combination of 

techniques will be described in greater detail below. 

7.5.  Interpreting Model Estimates and Significance 

While the findings of the three approaches were relatively consistent in identifying the 

components of interest (i.e., the N400 and P600), there was some discrepancy in how each 

technique depicted the influences of ID measures. Where the presence and directionality of 

these effects have been discussed in previous chapters, overarching patterns in their sensitivity 

across the techniques will now be considered. Our initial analysis using LME will be used as a 

reference for models built using GAMM and CForest, as it is mechanically most similar to the 

analyses that are most common in this area (Liang and Chen, 2014; Moreno and Kutas, 2005; 

Newman et al., 2012; Pakulak and Neville, 2010; Tanner, 2013; Tanner et al., 2014; Tanner and 

Van Hell, 2014; Weber-Fox et al., 2003). 

Overall, two characteristics were apparent in models built using GAMM when compared 

with LME. First, the violation effect (i.e., conditional contrast) amplitude was frequently lower in 

interactions between ID measures and the violation effect for any given ROI. Interestingly, 

GAMM resulted in model-predicted responses which fit the observed responses better did LME. 

While this may suggest that these lower-amplitude responses fit observed responses better, the 

improved model fit likely also resulted in part from nonlinearities conforming more closely to 
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individual responses. This pattern of conforming to individual responses is related to the second 

characteristic of interactions that were ubiquitous in these analyses, as response amplitudes for 

small numbers of individuals (often two or three) would dictate what appeared to be a strong 

nonlinear shift in a function which was otherwise unremarkable (i.e., there would otherwise be 

no overall trend aside from those individuals). As discussed, it is this pattern which raised 

concerns surrounding low sample sizes and over-fitting for this analysis. 

Recall that for either LME or GAMM, an ID measure was concluded to have a significant 

effect if the conditional contrast term (LME) or either sentence type term (GAMM) was 

significant for an ROI, and the 95% CI of the contrast did not include 0 µV for at least one ID 

measure score. However, interpreting the significance of these interactions in GAMM models 

was further complicated by irregular confidence intervals, which frequently narrowed at the 

junction points of polynomial interactions (i.e., knots) and widened at extremes of an ID 

measure score. Given our current criteria for establishing significance, an ID measure could be 

concluded to significantly influence violation effect amplitude through weak fluctuations a mid-

range scores, where confidence intervals were narrowest. 

This interpretation can be problematic, as ID measure influences on violation effect 

amplitude that appeared relatively strong across the ID measure spectrum (3-5 μV), and which 

were significant when modeled using LME, were often non-significant in GAMM due to 

variability in confidence interval width. This pattern was evident, for example, in our GAMM 

model for phrase structure violations during 300-500 ms, specifically in the influence of 

Listening/Vocabulary scores on violation effect amplitude for the right anterior ROI. While no 

overall trend was evident, significant nonlinear smooth fits combined with narrow confidence 

intervals might suggest that the influence of this ID measure is significant on violation effect 

amplitude. As an alternative to our criteria selected for concluding significance of an ID 
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measure’s influence on violation effect amplitude, future studies might consider either a higher-

amplitude minimum response, or that the confidence intervals surrounding some proportion of 

participants all exceed 0 µV. 

At times, interactions depicted using either LME or GAMM suggested entirely opposite 

influences of ID measures. For example, LME suggested that higher Speaking/Grammar scores 

were associated with a stronger P600 response to phrase structure violations. Conversely, 

GAMM suggested that Speaking/Grammar only influenced response amplitude in the lowest-

scoring individuals, and that these individuals demonstrated a more negative violation effect 

than higher-scoring individuals.  Our GAMM model depicted this effect was significant at several 

ROIs, but it was particularly strong in the anterior midline region. However, closer inspection 

revealed that this highly significant effect was driven largely by only a few participants, calling 

into question the validity of these findings. Similar patterns of conflicting responses were 

evident elsewhere, and as they were commonly driven by a small number of participants when 

using GAMM, they pattern may not replicate in a larger sample. 

When interpreting three-way interactions between region, violation and an ID measure 

depicted using LME or GAMM, the reader must be mindful that these plots depicted partial 

effects. Partial effects in these 3x3 ROI plots depicted the overall violation effect for each ROI in 

addition to the effect of one ID measure, but do not include the partial effects of other ID 

measures. These interactions, as well as all random effects, summed to the total predicted 

response. That is, these partial effects contributed to the observed responses in a linearly 

additive manner. Therefore, if higher scores for two separate ID measures were each associated 

with higher response amplitude, this effect would have compounded in individuals who scored 

highly in both. However, the response amplitude depicted in each of these ID measure plots was 

only useful in interpreting the response amplitude increase that is associated with scoring highly 
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in one measure. In this way, attempts to interpret partial effects depicted by LME or GAMM 

might be misleading to the uninformed reader. Inclusion of the overall violation effect at each 

ROI ensures that interpreting these partial effects as significant (provided that 0 μV is not 

contained within the 95% CI) is valid, but only in interpretation of each ID measure’s influence in 

isolation. 

In this regard, CForest may be more easily interpretable than LME or GAMM estimates, 

where the response amplitude in an interaction reflects the raw response amplitude as it was 

delineated through permutation testing within subsets of the original data. That is, there are no 

partial effects, and as such effects need not sum to some overall estimate. The predicted 

response in an interaction modeled using CForest should ideally bear a one-to-one 

correspondence with recorded scalp voltage within any single branch of a tree. These responses 

were subsequently subjected to significance testing via CForest’s CTree algorithm, which 

resulted in the characteristic stepping function that was overlaid on the forest estimates. That is, 

while considerable variability was seen in forest estimates, only variability in the stepping 

function was indicative of a significant trend. While there is a loss of information (i.e., variability 

across the ID measure spectrum) in this stepping function when compared with forest estimates, 

it maintains correspondence with observed scalp voltages, as there is no need for summation of 

partial effects in order to relate the two. With this in mind it is not surprising that CForest more 

frequently showed subsets of participants to show a weak violation effect, or none at all, where 

the summed partial effects of LME might also be insubstantial (or less substantial than might be 

implied by any single interaction term). Indeed, weaker response amplitude in interactions was 

frequently a characteristic of CForest’s output when compared with LME or GAMM. This is also 

reflected in the overall violation effect topography of our LME analysis, which suggested that 

overall N400 and P600 response amplitudes were similar to those seen in the individual 
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interactions when using CForest (i.e., in the range of 2-5 μV). Therefore, the amplitudes of 

responses depicted in individual interactions using CForest more closely resembled the overall 

response amplitude, as the effects of each ID measure are not summed to provide an overall 

estimate, but instead reflect the mean response in any given subset of the full data set. 

7.6.  Implications for Future ERP Studies 

These characteristics and patterns of sensitivity suggest that each of the above 

techniques might be best-suited for certain research questions, or that they might be used in 

conjunction to take advantage of the benefits that each technique provides. In particular, there 

are ways in which the characteristics of CForest might be leveraged to improve the sensitivity of 

regression models, and the two might be used in conjunction with relative ease. For example, 

where variables are categorical rather than continuous — such as individual electrodes or 

conditions or, in considering differences between individuals, if there were obvious groups such 

as a clinically-defined population and healthy controls — CForest is well suited to distinguish 

between categorical groupings in terms of how they might predict response amplitude. 

Describing the group of electrodes at which a response is significant represents an area where 

CForest might provide an improvement over traditional approaches (i.e., a priori ROI definition) 

with no apparent disadvantages. Not only are these electrode groupings free of restrictions in 

terms of size or distribution that might be imposed by an a priori definition, but their delineation 

is entirely data driven, resulting in findings that more accurately describe a particular data set. 

Furthermore, the user is still free to place any restrictions on size or distribution that might be 

desired. 

Additional benefits of using CForest to describe differences in a response between levels 

of a categorical variable stem from its capabilities as a nonparametric testing procedure. For 
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example, CForest is less influenced by heteroscedasticity, as detailed in Chapter 5, and so it can 

more-accurately predict responses where the model has non-normally distributed residuals. This 

may occur if variance in response amplitude is inconsistent across ID measure scores, for 

example. As described in Chapter 3, while residuals in our LME models were not distributed such 

that they should render the model’s findings invalid, neither were they perfectly normal. 

Therefore, CForest might be the most suitable approach to defining simpler categorical variables 

such as a violation effect, and in conjunction with electrode groupings might best describe the 

region over which a violation effect was elicited in a group of participants. Moreover, if the aim 

is to categorize participants into proficiency bins in some ID measures, then CForest is likely to 

be well-suited to this task as well. 

Despite these advantages, two-way interactions between continuous variables such as 

ID measures and response amplitude lack the definition of regression models, and thus there is a 

loss of both predictive and descriptive power on these axes. This is because the binary splits that 

CForest performs result in piecewise-constant predictions for continuous variables, rather than a 

linear slope or smooth fit of conjoined polynomial functions that regression techniques can 

provide. Therefore, either LME or GAMM might be better-suited to describing the influence of ID 

measures on violation effect amplitude. However, the two need not be mutually exclusive. 

Indeed, future studies might use a combination of approaches, whereby the two-way interaction 

between violation effect and region is defined using CForest in order to narrow the scope of 

findings to an electrode grouping at which a component is identified. Following this, a regression 

model might be used to describe the influence of ID measures on response amplitude for those 

electrodes at which the violation effect is significant. This type of analysis would benefit from all 

of the advantages of CForest in detecting data-driven regions of interest which better fit the 
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topography of an effect, but also maintain the more precise descriptive power of continuous ID 

measure influence that regression can provide.  

When describing the influence of ID measures, the choice of whether to allow for 

nonlinearities in these effects should be based on sample size and distribution of ID measure 

scores. Our simulations in Chapter 4 have suggested that doubling the present sample size to 

include approximately 60 participants might be appropriate given the distribution of ID 

measures and responses that were observed. It is important to bear in mind that this number 

cannot be used as a general rule and the propensity for GAMM to over-fit to observations will 

depend on specific characteristics of a data set’s distribution. In either case, combining the 

CForest with regression models in this way may provide a powerful framework for describing the 

influence of ID measures in electrode groupings which are specific to the response being 

investigated. 

In cases such as the present data set, with all considerations specific to our sample size, 

ID measures used and distribution of data (both responses and ID measures) the ideal analytical 

procedure would likely be one which combines the data-driven ROI selection of CForest (using a 

model which includes only the two-way condition by electrode interaction) with modeling ID 

measure influence within the resulting electrode grouping using LME. For this approach, our AIC-

driven model selection framework represents an adequate means of circumventing concerns 

surrounding multicollinearity, with the unfortunate disadvantage that some ID measures (in our 

case, typically AzBio, TOWRE, and LSpan) are necessarily excluded from analysis. However, 

should these be measures of interest, they could still be included, provided that their collinear 

counterparts are not. 

Our model specification supporting a maximum of three-way interactions between 

condition, ROI, and each ID measure is likely sufficient to describe the influence of ID measures 
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on violation effect amplitude at each ROI, and we suspect that describing interactions between 

ID measures is not likely to be of interest in many areas. Therefore, higher-level interactions 

should not be necessary. However, limiting this analysis to a single ROI as determined by CForest 

means that these three-way interactions could be reduced to two-way interactions between 

condition and each ID measure of interest, where all electrodes within the ROI are considered. 

The result would be estimates which are specific to the region where a violation effect is 

strongest, and with no need for multiple comparison correction across ROIs. 

Lastly, our investigations into random effect structure suggested that allowing for 

random variability in scalp topography across participants, as well as random variability in mean 

response across participants, produced a considerable improvement in model likelihood over 

simpler random effect structures, or none at all. However, again with topography no longer a 

consideration in model terms, a simplified random effect structure that includes only random 

participant means should suffice. Given that the improvement which resulted from including a 

random effect of scalp topography within participants was found in a model which included the 

full scalp, limiting the scope of data to only the ROI of interest may in part circumvent the issue 

of scalp topography variability between participants. 

7.7.  Suitability of ID Measures 

The ID measures that were selected for investigation in the present analyses were 

chosen in part because they have been associated with N400 and P600 amplitude in the past 

(Newman et al., 2012; Pakulak & Neville, 2010), or because they were theorized to index 

cognitive functions which have been related to these components, in the case of working 

memory (Nakano et al., 2010). In the case of our AzBio speech comprehension task and the 

TOWRE word reading efficiency task, the outcomes of these measures were unknown, and their 
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inclusion was largely exploratory. These analyses have provided additional support for the link 

between ID measures and the amplitude and topography of language-related ERP components. 

However, the tasks that were selected may not have been ideal in terms of maximally 

characterizing differences between individuals. In the case of the TOAL-3, for example, which 

provided many of the ID measures which were found to significantly influence N400 and P600 

amplitude (Speaking/Grammar, Listening/Grammar, and Listening/Vocabulary) this test was 

designed to identify areas of relative strength and weakness, particularly in those who might 

benefit from programs for language intervention (Hammill et al., 1994). These tasks were 

therefore intended to characterize broad strokes of language proficiency across several areas for 

practical learning purposes, but not necessarily to capture nuanced multidimensional 

descriptions of grammatical ability. 

Nonetheless, the TOAL-3 subtests provided the most consistently significant predictors 

of response amplitude across the sentence types and time windows that were investigated, and 

so broad strokes of language proficiency in this case may be suitable to detect associations with 

cortical processing. The possibility remains, however, that more detailed descriptions of 

proficiency could further separate individuals on dimensions that are meaningfully related to 

cortical processing. Other ID measures, such as AzBio, were only very rarely identified as 

significant predictors of response amplitude. Recall that our distribution of AzBio scores was 

strongly skewed toward the high end with low variance, and only included a small number of 

lower-scoring individuals. In this case, the task difficulty may have been too low to reliably 

detect differences between individuals in terms of speech comprehension. The fact that this ID 

measure was found to at least weakly predict response amplitude is encouraging, however, and 

perhaps alternative measures of speech comprehension should be considered and investigated 

in future research. 
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Beyond the question of selecting ID measures which could maximize nuanced 

differences between individuals in terms of language proficiency or other aspects of cognition, 

there is also the question of which cognitive constructs are being indexed by these measures. 

There is a degree of overlap in the measures selected, as made evident by the multicollinearity 

outlined in previous chapters. For example, one might rationally expect the parsing of complex 

sentences into understandable units – as indexed through our assessments of grammatical 

ability – to rely in part on working memory capacity. It is no surprise then that the highest 

degree of multicollinearity seen was between our TOAL-3 Listening/Grammar subtest and our 

Listening Span measure of working memory capacity. However, despite similarities these 

measures may have in predicting task performance, or in their correlations across participants, 

they have demonstrated a high degree of validity and/or reliability in the specific avenues of 

cognitive ability that they are intended to address. Specifically, the TOAL-3 subtests which were 

used in each of our analyses have been demonstrated to have strong content validity in their 

respective domains (Hammill et al., 1994). Similarly, the OSpan task was central to our 

hypotheses regarding working memory capacity, and has demonstrated strong test-retest 

reliability (Unsworth et al., 2005). These tasks were therefore considered appropriate for our 

aims of relating the aspects of cognition which they were designed to index with performance 

on two specific types of violation assessments, and corresponding brain activity. 

7.8.  Limitations of This Research 

While the present work aimed to provide a variety of methodological improvements to 

ERP studies concerned with ID measures, it also made apparent some limitations and 

considerations for which there are no apparent solutions at this time. First, as discussed, 

continuous variables might be best-described through regression approaches. However, by their 
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nature, regression models work best with orthogonal sets of predictors, and so some measure to 

circumvent multicollinearity must be used. This might include removal of ID measures which are 

too similar to others but yield less viable models, which was the approach used here. 

Alternatively, collinear predictors might be combined into a single measure, through averaging 

or some other means. In either case the result is a loss of the ability to assign meaningful 

differences in responses to specific ID measures, either because they have been removed, or 

because they have been combined irreversibly with others. It is therefore very possible that 

predictors which have been excluded might be significantly related to responses, but this cannot 

be known. Using the present approach, they could only be included at the expense of those 

predictors which were shown to contribute more strongly to the model’s log-likelihood. While 

multicollinearity is considerably less harmful to a model’s predictive ability when using CForest, 

as discussed in Chapter 5, the same approach toward predictor exclusion was used in all 

methods to maximize our ability to compare results between the three techniques. 

One additional limitation is that, when presented with evidence from multiple analytical 

approaches that suggest different – sometimes mutually exclusive – findings, it is not clear which 

may be reliable. In some cases, this was the result of our model selection process. For example, 

eliminating collinear predictor variables which contributed less strongly to the model precluded 

finding and association between those predictors and violation effect amplitude. However, as 

this was not required for analysis with CForest, eliminated predictors occasionally surfaced as 

having significant influence on responses. In other cases, however, the directionality of influence 

was entirely reversed between our LME and GAMM models. While we suspect that this may 

have stemmed from smooth fits which conformed strongly to individual variance, critically, 

whether this is indeed the case cannot be known. Further investigation in larger samples will be 

required to elucidate the true nature of these relationships. 
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It is important to be mindful of test-retest reliability in any ERP study. While it has been 

shown that individuals generally perform consistently in EEG studies of cognition, and that ERP 

responses to a working memory task collected seven days apart have shown a strong correlation 

(r=0.90), some degree of variability is still expected (McEvoy, Smith, & Gevins, 2000). In 

particular, ERP responses are sensitive to changes in the cognitive state of individuals, which 

may be related to diet, sleep patterns, or other factors. This highlights the need for replication of 

findings, both within and between populations. Moreover, efforts should be made to test 

individuals who are representative of the populations to which findings are generalized, given 

that these factors may vary systematically with population characteristics (e.g., age). Therefore, 

given the limited representation of individuals in the present research, it cannot be certain that 

our findings will hold in the general population. 

A related issue is that, while individual differences were of central interest to the 

present set of investigations, identifying these differences may have been limited by the number 

of participants included in our models. Beyond filling gaps in the distribution of ID measure 

scores, a number of scores were frequently seen in single participants, which provided 

considerable weight to the fit of estimates in association with specific scores. This likely 

contributed to instances of over-fitting. In this regard, a larger sample of participants would 

likely benefit our findings. 

In addition to sample size, the above concerns surrounding over-fitting may have 

resulted from improper random effect specification. Specifically, while observations were 

modeled for individual trials, a random effect of trial was not included in our models. This may 

have resulted in two outcomes in our results. First, without a random effect accounting for 

individual trials, it is possible that error variance was not equally and independently distributed 

across our model terms, resulting in errors in estimation of p-values. This problem may have 
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impacted our findings for both LME and GAMM, though our inability to report the significance of 

difference curves using GAMM meant that this limitation would not have hindered our 

interpretation of smooth fit significance in this regard. Second, failure to include a random effect 

of trial may have contributed to over-fitting, as trials were otherwise treated as repeated 

measures within participants, placing considerably more weight on predictors associated with 

individual participants (e.g., specific ID measure scores). Modeling a random effect of trial might 

be expected to reduce the tendency for smooth fits to conform to the responses of each 

individual, while simultaneously narrowing confidence intervals, as error variance is reduced. As 

an alternative to including a random effect of trial, averaging responses over trials for each 

condition in each sentence type and time window might also mitigate issues surrounding over-

fitting, but would result in a considerably reduced data set and a corresponding loss of statistical 

power. Failure to account for inter-trial variability may have impacted findings both for LME and 

GAMM, but given the flexibility of smooth fits using GAMM, it is more likely to have affected 

outcomes in the latter. The result in both cases may have been an increase in Type I error. With 

these considerations in mind, the conclusions drawn regarding the use of GAMM in ERP data 

may be specific to the present data set. 

Lastly, due to the concerns surrounding sample size as well as random effect 

specification, it is still unclear whether relaxing the assumption of linearity could elucidate 

meaningful details regarding the relationships between ID measures and the violation effect 

response. Our findings suggested that variance in the N400 or P600 response amplitude might 

be limited to portions of ID measure spectrums, but a number of associations appeared 

erroneous (i.e., primarily those which were depicted as sinusoidal, but potentially even those 

findings which appeared to conform to expectations). These inconsistencies shrouded doubt on 

the efficacy of findings that stemmed from GAMM. However, this may remain a fruitful area for 
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future research, and a more robust description of nonlinearities may inform future attempts to 

model the link between ID measures and ERPs. 

7.9.  Future Developments 

The suggested combination of approaches provides a number of advantages associated 

with each technique, while aiming to minimize the disadvantages that each is limited by. That 

said, some difficulties will still need to be overcome before an ideal modeling process is 

available. First, while CForest is capable of including an entire set of ID measures, despite 

multicollinearity, this characteristic cannot be taken advantage of if ID measures are described 

using regression. While we feel that the model selection process defined in Chapter 3 provides 

an adequate framework for handling multicollinearity, it necessarily excludes some measures. 

Therefore, the ideal analysis might describe ID measures with the nuance of regression while 

avoiding a framework which requires terms to compete for the definition of variance (i.e., 

additive modeling). This might be achieved through variations in how significance of a forest’s 

distribution is determined. At present, the algorithm which produces individual trees is used 

with the forest’s distribution of estimates to determine significance. However, this is what 

produces the stepping functions associated with CForest, and so alternative approaches might 

be explored. While development of new statistical procedures is beyond the scope of this 

dissertation, smooth forest estimates from CForest would represent a powerful advantage in 

descriptive analytics. 

While the present study evaluated response amplitude averaged within two time 

windows of interest, treating time as a continuous variable may yield some benefit. For example, 

this might allow the user to detect whether differences in ID measure scores are related to 

differences in onset latency for a response. Indeed, it has been suggested that higher-proficiency 
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individuals show an earlier P600 onset in response to phrase structure violations (Pakulak & 

Neville, 2010). This finding was achieved through comparing lower- with higher-proficiency 

individuals in two bins, rather than treating proficiency as a continuous variable. Assessing the 

interaction between ID measures and time, where each is continuous, as well as condition and 

region, might yield interesting and meaningful interactions. Indeed, aside from the above 

limitations of CForest’s descriptive abilities, it might present an adequate means to evaluate 

significance in such interactions. 

Lastly, the approaches taken in these analyses are best-suited to an exploratory 

investigation in which little is known about the underlying truth of a relationship between an ID 

measure and response – be it in topography, latency, amplitude, or the shape of the function 

that relates the two. Therefore, at each step numerous models were fitted with the goal of 

uncovering the ideal modeling approach for any effects that become apparent. However, this is 

counter to a confirmatory approach in which parameters should ideally specified at the outset 

and sensitivity to the effects of interest relies on selecting time windows, regions and modeling 

parameters using a priori knowledge. The aspect of our LME and GAMM analyses which would 

be most problematic in this regard was our framework for addressing multicollinearity, as this 

relied on iteratively producing increasingly-complex models until no further predictors could 

justifiably be added. Instead, a confirmatory analysis might opt to restrict predictors of interest 

to those which pertain to the specific research question, or to use alternative approaches to 

model selection such as elastic net regularization (Zou & Hastie, 2005). Moreover, while our 

central hypotheses pertained to the earlier time window (300-500 ms) during presentation of 

semantic violations, and the later time window (600-800 ms) during presentation of phrase 

structure violations, all four combinations of time windows and sentence types were 
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investigated for the sake of completeness. Again, such an exhaustive approach may not be 

required in the context of a confirmatory analysis. 

7.10.  Conclusions 

The present research aimed to evaluate the applicability of several statistical techniques 

to describing the relationships between a number of ID measures and ERP component 

characteristics. This includes attempts to optimize the model building and selection process in 

language violation processing through a number of means. Findings have demonstrated that 

inclusion of random effects can result in considerable improvement to model fit when compared 

with fixed-effects-only methods that have been used in prior research, and have also provided a 

framework for addressing multicollinearity among ID measures. While results suggested that 

model sensitivity might be further improved through relaxing the assumption of linearity in the 

effect of ID measures on response amplitude, these findings will need to be validated in data 

sets with a larger sample size. Moreover, CForest provided a means to perform significance 

testing of a response’s topography, both in terms of size and distribution, even among 

interactions with specific ID measures. Beyond simply optimizing user-specified aspects of a 

model, these latter analytical improvements represent a shift from a priori specification of 

hypotheses to more data-driven effect descriptions. Such a change in analytical approach might 

be used to explore not only an effect’s distribution in space (i.e., across the scalp), as in the 

present research, but future studies might also explore the utility of these techniques in 

evaluating response latency as a continuous variable.  
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