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Abstract 

 

This thesis investigates the development and implementation of a novel patient specific 

pixel-based weighting factor algorithm for dual-energy x-ray imaging. The first chapter 

of this thesis is an introduction on the components of an x-ray imaging system, 

generation of spectra, imaging components, dual-energy, and radiotherapy. The second 

chapter is a manuscript submitted to the Medical Physics journal outlining the 

development of the algorithm and the generation of its dual-energy images. This chapter 

presents and discusses the improvements of dual-energy images generated by the novel 

algorithm in comparison to the conventional technique. This chapter also derives and 

validates the theoretical underlying analytical expressions by which various imaging 

parameters such as polyenergetic spectra, scatter, and detector response affect the 

weighting factor. The third and final chapter summarizes the accomplishments of the 

thesis goals and discusses various future avenues for further research.   
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Chapter 1: Introduction 

 

Many medical diagnostic imaging systems are based off the production of 

different kinds of electromagnetic radiation (EM). Forms of EM radiation include radio 

waves, visible light, x-rays, and gamma rays. EM radiation exhibit characteristics similar 

to both a wave and a discrete particle. Different EM radiation have different wavelengths 

and frequencies, which are inversely proportional to one another since the speed of EM 

radiation is uniform in a medium. The particle-like behaviour comes from discrete 

packets (quanta) of energy called photons. The energy of a photon is given in eV, which 

is the energy of an electron as it accelerates through a potential difference of one volt in a 

vacuum.  

X-rays are probably the most common form of EM radiation used in diagnostic 

imaging. It is classified as ionizing radiation, meaning that the photon’s energy may be 

sufficient enough to remove electrons from an atom. Most x-rays are produced when an 

electron with high kinetic energy interacts with a material and transfers its energy into the 

form of EM radiation. 

In this chapter, the components on an x-ray imaging system are described, 

followed by interactions of x-rays with matter. Next, imaging concepts, dual-energy (DE) 

imaging techniques and their role in radiotherapy applications are discussed. Lastly, the 

research goals of this thesis are outlined.  
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1.1. X-ray Imaging System 

 

 X-ray imaging systems are comprised of both the x-ray tube which produces x-

rays, and the detector which creates an image from the flux of photons incident on it after 

passing through the patient. Several parameters and phenomena affect the output of x-

rays from the tube as well as the detection of photons when they reach the detector. 

 

1.1.1. X-ray Tube 

 

The typical x-ray tube is comprised of a cathode, an anode, glass window, and a 

vacuum tube, in which a large electric potential difference is applied between the 

electrodes to accelerate the electrons as per Figure 1.1.  
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Figure 1.1: Schematic of a general x-ray tube. 

 

An x-ray generator allows for the selection of various parameters such as tube 

current, tube voltage, and exposure time. The tube voltage governs the range of energies 

for the x-rays, where the peak kilovoltage (kVp) is the maximum voltage. Varying the 

tube current (mA) has an effect on the number of electrons that travel across the x-ray 

tube from the cathode to the anode.  The exposure time controls how long the tube is 

producing electrons. The product of the tube current and exposure time is commonly used 

as a single quantity known as the mAs.  

The cathode is a negatively charged electrode, which typically includes a tungsten 

filament. The cathode produces electrons through thermionic emission when a voltage is 

applied. The anode is positively charged, and therefore attracts the electrons from the 

cathode when a voltage is applied between them. Embedded inside the anode is usually a 

tungsten target, on to which the electrons impinge on. Upon collision, the majority of 
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kinetic energy from the electrons produces heat, but a small fraction (~1%) is converted 

to bremsstrahlung radiation.  

 

1.1.2. Bremsstrahlung Radiation 

 

When accelerated electrons travel in close proximity to the positively charged 

nucleus of an atom, coulombic forces decelerate the electron. As the electron slows 

down, the kinetic energy is lost and converted into x-ray photons. The production of 

bremsstrahlung x-rays per atom is proportional to 
𝑍2

𝑚2, where Z is the atomic number of 

the material and m is the mass of the incident particle.1  

The bremsstrahlung spectrum is a plot of the relative x-ray intensity as a function 

of photon energy. An unfiltered bremsstrahlung spectrum demonstrates an inverse linear 

relation, where the relative intensity decreases as the photon energy increases. When the 

bremsstrahlung spectrum is filtered, there is an increase in relative intensity up to about 

one third of the maximum energy (the effective energy), and then a gradual decrease in 

relative intensity after.  

 

1.1.3. Simulation of Spectra 

 

Simulations can be used to generate x-ray spectra. The Spektr toolkit was 

developed for research purposes in diagnostic imaging.2,3 Early versions of this software 

could compute x-ray spectra based on a method called TASMIPS (tungsten anode 

spectral model using interpolating polynomials). TASMIPS simulates x-ray spectra 
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(photons/mm2/mAs at 100 cm from the source) in 1 keV energy bins in a diagnostic 

range of 30 to 140 kVp.3 The spectra produced are based off measured constant potential 

x-ray spectra published by Fewell et al.4,5 The software was developed to not only 

generate and plot x-ray spectra, but also calculate various characteristics of the x-ray 

beam such as exposure, half value layer (HVL defined below), mean energy, etc. Spektr 

is capable of producing x-ray spectra while varying different input parameters such as 

choice of tube voltage, total Aluminum (Al) filtration, and % kV ripple. Additionally, the 

software is able to take a generated spectrum and filter it further by a specific thickness of 

a compound or element. Information regarding the mass attenuation coefficients and 

densities of available compounds and elements are supplied from the National Institute of 

Standards and Technology (NIST) which are then bicubic-interpolated to 1 keV bins.6 

 Improvements in the Spektr toolkit were implemented by Punnoose et al.2 They 

developed a newer method of producing x-ray spectra with a better energy resolution 

than TASMIPS. The newer version calculates x-ray spectra based on the tungsten anode 

spectral model using interpolating cubic splines (TASMICS). In addition to an 

improvement on energy resolution, TASMICS also avoids systematic measurement errors 

that could be caused from charge pile up and electronic noise.2 The updated Spektr 

toolkit also allows for a greater range of beam energies from 20 to 150 kVp. The 

TASMICS model has a default inherent filtration of 1.6 mm Al, which matches the 

inherent filtration of TASMIP. A comparison between an x-ray spectrum at 140 kVp with 

3.4 mm Al of total filtration is provided in Figure 1.2. 
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Figure 1.2: X-ray spectra from Spektr3.0 using both the TASMIC and TASMIP 

method for calculation. 

 

 The TASMIP spectrum is less smooth and fluctuates greatly in the higher energy 

range compared to the TASMIC spectrum. Additionally, the fluence of the characteristic 

peaks in the TASMIP spectrum are somewhat higher than the TASMIC peaks and 

slightly shifted to a higher energy.  

There are some limitations to the Spektr software. Both TASMIP and TASMICS 

generate spectra using a tungsten anode, meaning that simulations for mammography 

may not be correct since those systems may have molybdenum or rhodium anodes. 

Moreover, simulations of realistic patient geometry and scatter cannot be generated in 

Spektr. This can be problematic because the realistic spectrum producing the image when 
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incident on the detector includes scatter from the various components on the beam path 

including the patient. 

Monte Carlo (MC) software is another simulation technique which could be used 

to generate x-ray spectra. One of the most common MC codes used is EGSnrc (electron 

gamma shower).7 EGSnrc is capable of modeling the exact source and detector geometry 

as well as patient anatomy, to give more realistic results. Part of this code includes the 

BEAMnrc package which allows modeling of the radiation source (e.g. the x-ray tube) 

and photon and electron transportation through matter. Additionally, BEAMnrc is able to 

estimate radiation delivered to a patient via the DOSXYZnrc component. EGSnrc is able 

to incorporate realistic imaging effects that Spektr is unable to model such as patient 

scatter. Although not trivial to implement, in principle MC could also be used to model 

the image formation by the x-ray detector.  

Although MC is a powerful tool for simulation, it also has drawbacks. Results 

from MC simulation can be accurate, but the quality of its outputs depends heavily on the 

quality of its inputs. In order to produce the best results, the geometry and detailed 

material specifications of the x-ray imaging system need to be used as input. Due to 

proprietary reasons, information on the exact geometry of the x-ray tube, detector, and 

other parts of the system may not be available to the researcher. Another problem with 

MC simulation is that it can run very slowly depending on the task. For some research 

purposes, the MC simulation time can range from hours to days and sometime even more. 

Additionally, the efficiency of MC depends on the specifications of the available 

computation power. MC simulations may require a cluster of computers with substantial 

memory storing capabilities. The cost of implementing a cluster of computers can 
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become very high, whereas other simulation tools such as Spektr can be downloaded on a 

single computer with a quick simulation time. 

 

1.1.4. Half Value Layer 

 

The output of an x-ray tube is not mono-energetic to quantify its energy with a 

single value. HVL is a simple practical method to quantify the quality of the beam in 

terms of its energy. The HVL is defined as the amount of filter material required (often 

measured in mm Al) to reduce the intensity of the beam to half of its initial amount. 

When x-ray spectra have higher energies, a thicker HVL is required to reduce the output 

by half.  

For diagnostic imaging the HVL of a spectrum is measured under the conditions 

of narrow-beam geometry which means that scattered photons are excluded from 

measurement by collimating the beam. The HVL is related to material attenuation and 

thus can be expressed as:1 

𝐻𝑉𝐿 =  
ln (2)

𝜇
                    (1.1) 

where  is the linear attenuation coefficient of the filter material.  

 Spektr is capable of estimating the HVL of a given spectrum. The software takes 

input parameters such as the x-ray energy spectrum, number of HVLs to calculate, and 

the atomic number of the filter material. The spectrum is simulated, then quanta per 

exposure is calculated as follows:8 

Φ

𝑋
(𝐸) =

5.43×105

(
𝜇(𝐸)

𝜌
)

𝑒𝑛 
𝐸

 
𝑝ℎ𝑜𝑡𝑜𝑛𝑠

𝑚𝑚2𝑚𝑅
         (1.2)                                                       
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where Φ is the photon fluence (
𝑝ℎ𝑜𝑡𝑜𝑛𝑠

𝑚𝑚2 ), 𝑋 is the exposure (mR) , (
𝜇(𝐸)

𝜌
)

𝑒𝑛
 is the mass 

energy absorption coefficient for air, and E is the energy. To calculate the total exposure, 

Eq.(1.2) is inverted and integrated over the entire energy range:3 

   𝑇𝑜𝑡𝑎𝑙 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 (𝑚𝑅) =  ∫
𝑋

Φ

𝐸𝑚𝑎𝑥

0
(𝐸)Φ(𝐸)𝑑𝐸       (1.3)             

Once the total exposure is calculated, the Spektr code calculates the HVL of the material 

needed to reduce the exposure by 2-n in mm. By matching the measured HVL vs Spektr 

calculated HVL from simulated spectra, x-ray tubes can be modeled in Spektr. A 

comparison of matching Spektr simulated HVLs to the measured values for an ExacTrac 

(Brainlab AG, Germany) x-ray tube is demonstrated in Figure 1.3. To obtain this match, 

the total Al filtration in Spektr was set to 3.3 mm. 
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Figure 1.3: Comparison of Spektr simulated HVLs with measured HVLs (without 

couch) from ExacTrac for the energy range 60 to 135 kVp. 

 

Results from Figure 1.3 clearly show an excellent agreement in matching Spektr 

simulated HVLs to realistic HVLs measured with a real imaging system.  

 

1.1.5. X-ray Detector 

 

Aside from the x-ray tube, which is the main source of the x-ray photons, the 

other important component of the imaging system is the detector which creates an image 

after photons pass through a patient. Most former x-ray imaging systems used a screen-
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film technique to create the radiographic images. Today, most commonly a digital 

approach to x-ray imaging has been developed and implemented, and a handful of the 

imaging detectors used are flat panel detectors with thin-film transistor (TFT) arrays. Flat 

panel TFT detectors consist of arrays of numerous individual detector elements called 

dexels.1 Inside each dexel both a light sensitive (where signal is collected) and light 

insensitive (where electronic components exist) region exist. The TFT array has three 

different connections called the gate, source and drain. Also, within the electronics is a 

charge collecting electrode which stores the charge generated by the deposition of 

incident photon energies across the dexel. After the detector is exposed to radiation, the 

TFT is activated and one by one, each gate line to every dexel opens allowing charge to 

flow to the drain line which is followed by a charge amplifier. These amplifiers convert 

the charge to a voltage which is digitized to produce a gray scale value for each dexel. 

The TFTs can be either of two kinds; direct or indirect as illustrated in Figure 1.4. 

An indirect TFT uses a scintillator (Figure 1.4a) to convert the x-rays to light. The 

scintillator is placed on the front surface of the flat panel array so that x-rays interact first 

with the scintillator. Common scintillator materials used in radiography are CsI and 

Gd2O2S. Some scintillating material can be grown in columns forming a light guide for 

the light photons to reduce the lateral spread. Once the x-ray photons interact with the 

scintillator, light photons are produced and interact with a photodiode. The photodiode 

(not shown in Figure 1.4a) converts the light photons into a charge which is stored in the 

charge collecting electrode. Although the crystal structure of the scintillator helps 

facilitate the flow of light photons, the lateral light spread causes a reduction in spatial 

resolution. 
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A direct TFT generally uses amorphous selenium (a-Se) as a semiconductor 

(Figure 1.4b) which when irradiated, produces electron ion pairs proportional to the 

exposure. The ion pairs follow electric field lines, thus minimizing the amount of lateral 

spread. This means that the electronic signal that is detected from one x-ray photon is 

almost fully collected in a single detector element.  This focus of collection in one 

detector element results in an improved spatial resolution compared to the indirect TFT. 

 

 

Figure 1.4: Indirect TFT detection via a scintillator (a). Direct TFT detection using a 

semiconductor (b). 1 

 

 

1.2. X-ray Interactions with Matter 

 

After the x-rays in the tube are produced via bremsstrahlung in the target, most of 

them leave the tube and may interact with matter. There are three outcomes when a 

photon is going through matter: it may be absorbed, scattered, or penetrate without any 
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interaction. The most useful result in diagnostic imaging are absorption and transmission 

of x-rays, while scatter is undesirable.  

The photon interaction process could be Rayleigh scattering, Compton scattering, 

photoelectric absorption, or pair production. Rayleigh scattering occurs for very low 

energy x-rays which are generally attenuated by the tube window and housing. Pair 

production interactions take place only when the x-rays have an energy greater than 1.02 

MeV which is outside diagnostic range and thus not relevant for imaging. Therefore, the 

two most important photon interactions in diagnostic imaging is photoelectric absorption 

and Compton scattering. Table 1.1 illustrates the schematics of these events.  

 The photoelectric effect happens when an incident photon interacts directly with a 

bounded electron in an atom, transferring all of its energy to the electron and ejecting it 

from its orbital shell. This could only happen when the incident photon’s energy is equal 

to or greater than the binding energy of the orbital electron. When the electron is ejected 

from its shell, the atom becomes unstable with a vacancy and an outer shell electron can 

drop down to fill the vacancy. During this process, a characteristic x-ray photon is 

produced with an energy equivalent to the difference between the two shells involved. 

The photoelectric interaction highly depends on the atomic number of the material (varies 

with Z3) thus bones (Zeff ~ 12.3) have high contrast compared to soft-tissue (Zeff ~ 7.5).9 

The Compton scattering interaction occurs between an incident photon and a free 

electron. Unlike the photoelectric effect, there is not an atomic number dependence. 

However, the probability of a Compton interaction depends on the electron density of the 

material, which is also proportional to the physical density. In soft-tissues, Compton 

scattering events take dominance over photoelectric interactions for energies greater than 



14 
 

~25 keV. However, due to the high atomic number of bone, Compton interactions in 

bone do not overtake photoelectric events until energies greater than ~40 keV.9 

 

Table 1.1: x-ray interaction schematics and interaction probabilities for photoelectric 

effect and Compton scatter.1 
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1.3. Components of Image Quality 

 

1.3.1. Noise 

 

In diagnostic imaging, noise degrades the image quality limiting the ability to 

visualize anatomy. There are various kinds of noise which arise from different sources 

and are unwanted in the image. Fortunately, there have been algorithms and techniques 

developed to reduce the noise as much as possible in an image.  

 Quantum noise is directly related to the x-ray tube output of an imaging system. 

Finite number of photons interact in the detector, thus the severity of quantum noise in an 

image is dependent on the number of these photons that form the image. The distribution 

of quanta follows Poisson statistics where the number of incident x-rays per unit (or 

pixel) area can be reported. For N incident quanta on a pixel, the noise per pixel 𝜎 is 

given by:1 

𝜎 =  √𝑁            (1.4) 

The amount of noise relative to the actual incident quanta is: 

                 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑛𝑜𝑖𝑠𝑒 =  
𝜎

𝑁
       (1.5) 

Another important metric used to quantify the strength of the signal relative to the noise 

is the signal-to-noise ratio (SNR). The SNR is often used as an indicator of how much 

useful information is in an image. The SNR is also the reciprocal of the relative noise, 

and therefore can be calculated using the following:1 

𝑆𝑁𝑅 =  
𝑁

𝜎
                   (1.6) 
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The quantum noise in an image can be reduced by increasing the number of quanta, e.g 

by higher mAs or kVp values .  

Another form of noise stems from the actual patient anatomy, known as 

anatomical noise. This is the anatomy that is not of interest but is present in the image. 

For example, diagnosing a lung nodule which has overlaps of rib and other bony 

obscuring structures can be an example of anatomical noise. 

 

1.3.2. Contrast 

 

 An important quantity used to measure the image quality of a radiograph is the 

contrast. The subject contrast is defined as the difference in x-ray intensity that passes 

through a lesion compared to the adjacent tissues. The subject contrast involves x-ray 

interactions with the patient, but not the detector. Due to the differential attenuation 

between different types of tissues in the human body, there will be more x-rays that 

penetrate through some tissues than others. The subject contrast is higher at lower 

energies. This is due to a dominance in the photoelectric effect at lower energies 

especially for tissues with a higher atomic number. 

 A common measure of image quality is contrast-to-noise ratio (CNR) which 

describes contrast in the presence of noise. CNR is calculated by taking the average 

signal in a region of interest (ROI) 𝑥𝑠̅ and comparing it to the average signal in an ROI in 

the background 𝑥̅𝑏𝑔. Additionally, the noise of the background is calculated 𝜎𝑏𝑔 which is 

the standard deviation of the signal in the background ROI. The CNR is calculated as:1 

𝐶𝑁𝑅 =  
|𝑥̅𝑠−𝑥̅𝑏𝑔|

𝜎𝑏𝑔
         (1.7) 
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The CNR is used to make a relative comparison between the signal in an image and the 

noise, which is useful for tasks such as the optimization of tumor contrast for various 

imaging parameters. 

 

1.3.3. Scattered Radiation 

 

 In diagnostic imaging, x-rays may interact and scatter in the patient. However, 

scattered radiation degrades the image quality by reducing the contrast in the 

radiographic image, thus is undesirable. The main contributor of scattered radiation is 

from Compton scatter interactions with soft-tissue. The amount of scattered radiation that 

reaches the image receptors depend on various parameters such as the field size and 

patient thickness.  

 The amount of scatter signal detected in an image can be quantified by comparing 

it to the amount of primary radiation. This is described by the scatter-to-primary ratio 

SPR:1 

𝑆𝑃𝑅 =  
𝑆

𝑃
         (1.8) 

where S is the scatter signal and P is the primary signal. The scatter fraction F is defined 

by:1 

𝐹 =  
𝑆

𝑆+𝑃
         (1.9) 

which indicates how much scatter contributes to the total signal detected. 

 The inclusion of x-ray scatter is inevitable when imaging a patient. However, 

there have been techniques and equipment developed in order to reduce the amount of 

scatter contribution to the primary signal. Collimators may be used to reduce scatter from 
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an x-ray beam by reducing the area of exposure. Collimators are made of high atomic 

number materials such as lead to block x-rays outside the field of view (FOV). Another 

technique used is the implementation of a large air gap between the patient and the image 

receptor. Due to the divergence of the scattered photons, the detection of scattered 

radiation with the image receptor decreases due to photons missing the detector area.  

 The most common method for reducing scatter is the use of anti-scatter grids. An 

anti-scatter grid is an array of narrow parallel bars of a material that can readily attenuate 

x-rays such as lead. They are designed to allow the primary photons to pass through the 

slits and absorb scattered radiation that travel in a different direction from the primary 

beam.  

 

1.3.4. Detective Quantum Efficiency Vs. Absorption Efficiency 

 

 The detective quantum efficiency (DQE(f)) is another imaging metric which is 

used to describe the overall frequency-dependent SNR performance of the imaging 

system, where f is the frequency.  At zero frequency, DQE is reduced to quantum 

detection efficiency (QDE), i.e. 𝛼, which describes the efficiency of the detector in the 

detection of incident x-rays. For a monoenergetic beam:1 

𝐷𝑄𝐸(0) = 𝛼 = 1 −  𝑒−𝜇𝑑𝑡𝑑       (1.10) 

where 𝜇𝑑 and 𝑡𝑑are the linear attenuation coefficient and the thickness of the detector 

material. In general, 𝛼 is a function of energy as it depends on the energy dependant 𝜇𝑑. 
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1.3.5. Detector Modeling 

 

Using the concepts described above the pixel value read by the detector may be 

modeled. The average x-ray spectral distribution 𝑞(𝐸) incident on the detector (units 

photons/mm2/mAs at 100 cm in Spektr) after passing through some material (e.g. a 

patient) is given as:10 

     𝑞(𝐸) =  𝑞0(𝐸)𝑇(𝐸)(1 + 𝑠(𝐸))      (1.11) 

where, 𝑞0(𝐸) is the initial x-ray beam before attenuation, 𝑇(𝐸) is the transmission of 

𝑞0(𝐸) spectrum after interaction with the material, and 𝑠(E) is the scatter-to-primary ratio 

of the rays reaching the detector. In the case, where almost all scattered radiation is 

corrected, the scatter-to-primary can be ≈ 0, thus the previous equation is simplified to: 

𝑞(𝐸) =  𝑞0(𝐸)𝑇(𝐸)       (1.12) 

When the spectrum interacts with an energy-integrating detector, the average binned-

pixel value 𝑑 read by the detector is recorded as:10 

                   𝑑 = 𝑘𝐴 ∫ 𝑞(𝐸)𝛼(𝐸)𝐸𝑎(𝐸)𝑑𝐸
𝑘𝑉

0
      (1.13) 

where 𝑘 is a proportionality constant, 𝐴 is the area of the binned-pixel, 𝛼(𝐸) is the 

detector quantum efficiency, and 𝐸𝑎(𝐸) is the average energy absorbed in the binned-

pixel per interacting photon. The average energy absorbed is calculated based on the 

assumption that there is a partial reabsorption of characteristic photons which causes half 

of the energy to escape area 𝐴 while the other half is reabsorbed. Therefore, the average 

energy absorbed in the binned-pixel per interacting photon is:10 

   𝐸𝑎(𝐸) = 𝐸𝑎𝑏(𝐸) + (𝐸 − 𝐸𝑎𝑏(𝐸))/2 = (𝐸𝑎𝑏(𝐸) + 𝐸)/2                (1.14) 
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where, 𝐸𝑎𝑏(𝐸) is the energy absorbed in the detector at the interaction site, and 𝐸 is the 

incident photon energy. The energy absorbed 𝐸𝑎𝑏(𝐸) at the interaction site per incident 

photon with energy E can be described as:11 

𝐸𝑎𝑏(𝐸) = 𝐸
𝜇𝑒𝑛(𝐸)

𝜇(𝐸)
       (1.15) 

where 𝜇𝑒𝑛(𝐸) and 𝜇(𝐸) are the energy absorption and linear attenuation coefficients 

respectively. The product of 𝛼(𝐸) and 𝐸𝑎(𝐸) is given by: 

          𝛼(𝐸)  × 𝐸𝑎(𝐸)          (1.16)  

The detector quantum efficiency 𝛼(𝐸), and average absorbed energy per 

interacting photon 𝐸𝑎(𝐸) for a CsI detector of thickness 0.021 cm, and their product are 

plotted in Figure 1.5. 
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Figure 1.5: Detective quantum efficiency and average energy absorbed within the 

pixel per interaction for CsI. The product of both terms is also displayed in the 

magenta. 

 

At low energies, the detector quantum efficiency is close to unity, indicating that 

essentially all lower energy photons interact with the detector and absorbed within the 

pixel. At higher energies photons are more likely to transmit through the detector. The 

large fluctuation is due to the Cs K-edge (at 36 keV) and I K-edge (at 33 keV), indicating 

that there is a large increase in photon interactions above the binding energy of Cs and I. 

The average energy absorbed per interaction is small for photons with lower energies, but 

increases with energy since higher energy photons will release more energetic electrons 
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depositing more energy. Except for the K-edge, 𝛼(𝐸) decreases while 𝐸𝑎(𝐸) increases as 

the energy increases. The product of the two variables gives a curve that is relatively 

constant with energy. This described the coarse approximation that the majority of energy 

absorbed is around the average energy of the spectrum. 

 Modeling pixel value for an energy integrating detector requires a knowledge of 

polyenergetic x-ray spectra incident on the detector and the energy dependant 𝛼 and 𝐸𝑎 

terms. However, an approximation may be used in simple cases. This approximation 

involves finding a single energy averaged 𝛼 and 𝐸𝑎. Assuming the 𝛼 and 𝐸𝑎 terms are 

constant over the energy range, the pixel value is: 

𝑑 ≈ 𝑘𝐴𝛼̅𝐸𝑎
̅̅ ̅ ∫ 𝑞(𝐸)𝑑𝐸

𝑘𝑉

0
      (1.17) 

A comparison between the original integral equation and the approximated version is 

illustrated in Figure 1.6. 

 



23 
 

 

Figure 1.6: A comparison between the value read by the detector using the 

approximation and integral forms for an energy range up to 140 keV. 

 

For the first half of energy values, below ~70 keV the detector values for the 

approximation and integral are nearly identical. However, at the higher energies > 70 

keV, the approximation method overestimated the detector reading. This may be because 

the 𝛼 values become very small at higher energies which would make the detector 

reading lower for the integral.  

 

1.3.6. Flat Field Correction Algorithm 

 

 In flat panel detectors, a number of parallel channels are used for reading out 

detector array elements. Each of these channels use amplifier circuits which may not be 



24 
 

perfectly tuned to neighbouring channels. These variations in channel amplifications can 

cause the detector elements to be read with a different offset noise and gain characteristic, 

causing detector dependant structure noise in the image. However, structure noise is 

spatially constant for a period of time, which allows for easy corrections in the images.  

Detector correction is based on using flood and dark images. For example, a 

typical uncorrected 60 kVp image of a chest phantom is illustrated in Figure 1.7a. Dark 

images (also known as offset images) are acquired by acquiring an image with no x-rays 

(or by completely blocking all incident x-rays from reaching the detector with a thick 

lead block). Figure 1.7b displays a sample dark image. Flood images (also known as 

gain images) are acquired by ensuring that there is no object in the path of the x-ray beam 

(Figure 1.7c). The flat field correction algorithm uses dark and flood images to correct 

for detector structured noise. The corrected image 𝐼𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 is calculated by:1 

𝐼𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = 𝑔
𝐼𝑟𝑎𝑤−𝐼𝑜𝑓𝑓𝑠𝑒𝑡

𝐼𝑔𝑎𝑖𝑛−𝐼𝑜𝑓𝑓𝑠𝑒𝑡
        (1.18) 

where, 𝐼𝑟𝑎𝑤 is the uncorrected x-ray image, 𝐼𝑜𝑓𝑓𝑠𝑒𝑡 is the dark image, 𝐼𝑔𝑎𝑖𝑛 is the flood 

image, and 𝑔 is the mean gray scale of the denominator. An example of the corrected 

image is in Figure 1.7d. Although it is difficult to realize the difference with the 

uncorrected image in this case, the impact of this correction is important for DE imaging. 

This is because DE logarithmic subtraction plays a large effect on the signal acquired 

from DE imaging, and can amplify the structure noise in the image further. 
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Figure 1.7: An x-ray image acquired at 60 kVp before corrections (a). A dark image 

acquired at 40 kVp with the x-rays blocked with lead (b). A flood image acquired at 60 

kVp (c). A corrected image (d) after flood and dark corrections. 

 

 

1.4. Dual-energy X-ray Imaging 

 

 DE imaging techniques have been developed to improve diagnostic imaging by 

enhancing the image quality of radiographs. Its advantage over single energy (SE) 

radiography is the removal of anatomical noise thus enhancing tumor visualizations.12,13 

DE images are produced by acquiring a low energy (LE) and high energy (HE) image 

and combining the two in order to cancel a specific tissue type. A variety of different 

methodologies for DE imaging have been established such as simple logarithmic 
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subtraction, decomposition of basis materials, single exposure, double exposure, single 

source, and double source. 

 

1.4.1. Simple Logarithmic Subtraction 

 

 The simple logarithmic subtraction (SLS) technique is based on the x-ray 

attenuation passing through bone and soft-tissue using Beer’s Law for both LE and HE 

beams as in Figure A.1 in the Appendix. Given a patient with soft-tissue thickness (t) 

and bone thickness (b), the equation for Beer’s Law with an initial x-ray intensity 𝐼𝐿0 and 

𝐼𝐻0 for both LE and HE beams is given by Eq.(A.1) and Eq.(A.2). The Beer’s Law 

equations are then manipulated by taking the logarithm of both sides. The last step in the 

technique is the subtraction of the LE and HE image while introducing a weighting factor 

ω for tissue cancellation. A soft-tissue only DE image 𝐼𝐷𝐸 (with bone suppression) is 

created from Eq(A.24) in the Appendix. Similarly, if a bone only DE image is desired, 

the HE image is subtracted from the LE image, and a soft-tissue cancelling weighting 

factor 𝜔𝑏 given by Eq(A.37) in the Appendix. 

One of the most important parameters in the SLS method is the selection of 

weighting factor value. Theoretically, the weighting factor to cancel bone can be derived 

by setting the terms with bone to 0 as follows: 

ln(𝐼𝐷𝐸) = ln(𝐼𝐻0) − 𝜇𝐻
𝑡 𝑡 − 𝜇𝐻

𝑏 𝑏 − 𝜔(ln(𝐼𝐿0) − 𝜇𝐿
𝑡 𝑡 − 𝜇𝐿

𝑏𝑏)    (1.19) 

0 =  −𝜇𝐻
𝑏 𝑏 + 𝜔𝜇𝐿

𝑏𝑏       (1.20) 

solving for 𝜔 gives the same result as Eq(A.7) in the Appendix. Likewise, the same can 

be applied to calculate the theoretical weighting factor to cancel soft-tissue: 
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ln(𝐼𝐷𝐸) = −ln(𝐼𝐻0) + 𝜇𝐻
𝑡 𝑡 + 𝜇𝐻

𝑏 𝑏 + 𝜔𝑏(ln(𝐼𝐿0) − 𝜇𝐿
𝑡 𝑡 − 𝜇𝐿

𝑏𝑏)    (1.21) 

0 =  𝜇𝐻
𝑡 𝑡 − 𝜔𝑏𝜇𝐿

𝑡 𝑡       (1.22) 

Which gives the same expression for 𝜔𝑏 as Eq(A.40) in the Appendix. 

Although this technique is very simple and straight-forward, there are some 

drawbacks. The weighting factors used in the subtraction are constant across the entire 

image. This may lead to an incomplete suppression of the specific tissue for different 

thicknesses across the image. This is largely caused by beam hardening effects, where the 

LE and HE beams experience different attenuation in regions of non-uniform tissue 

thicknesses. This means that one weighting factor value that can fully cancel the tissue of 

a specific thickness in one pixel, will not be able to cancel the tissue of a different 

thickness in another pixel. It is important to note that the derivation of weighting factor 

here is different than those in the Appendix. 

 

1.4.2. Decomposition of Basis Materials 

 

 The idea of image decomposition was first proposed by Alvarez et al in 1976, 

where attenuation coefficients were decomposed into Compton scatter and photoelectric 

constituents.14 This technique has been used to identify the density and atomic make up 

of several different compounds. This is achieved via a basis material decomposition in 

the projection domain (before CT reconstruction) while also generating a linear 

combination of density maps of these materials in the image domain (after CT 

reconstruction). When decomposing into Compton scatter and photoelectric components, 

two basis materials are used where one has a low Z to approximate the Compton scatter, 
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and the other has a high Z for the photoelectric part. A study by Li et al used acrylic and 

aluminum as their low Z and high Z materials to replicate what would be a similar 

response from soft-tissue and bone.15  Due to differences in attenuation between basis 

materials A and B, Beer’s Law for LE and HE monoenergetic projections (as per Figure 

A.1 from the Appendix) are manipulated and written as linear combinations:15 

ln (
𝐼𝐿

𝐼𝐿0
) =  −𝜇𝐿

𝐴𝑡𝐴 − 𝜇𝐿
𝐵𝑡𝐵       (1.23) 

ln (
𝐼𝐻

𝐼𝐻0
) =  −𝜇𝐻

𝐴𝑡𝐴 − 𝜇𝐻
𝐵𝑡𝐵          (1.24) 

where the thicknesses 𝑡𝐴 and 𝑡𝐵 can be calculated via a matrix inversion:15 

[
𝑡𝐴

𝑡𝐵
] = [

𝜇𝐿
𝐴 𝜇𝐿

𝐵

𝜇𝐻
𝐴 𝜇𝐻

𝐵]

−1

[
ln (

𝐼𝐿

𝐼𝐿0
)

ln (
𝐼𝐻

𝐼𝐻0
)

]      (1.25) 

However, x-ray measurements are acquired from polyenergetic spectra. For realistic LE 

and HE polyenergetic case 𝑆𝐿(𝐸) and 𝑆𝐻(𝐸), Beer’s Law is now written as:15 

ln (
𝐼𝐿

𝐼𝐿0
) =  ∫ 𝑆𝐿(𝐸)[ − 𝜇𝐴𝑡𝐴 − 𝜇𝐵𝑡𝐵]𝑑𝐸      (1.26) 

ln (
𝐼𝐻

𝐼𝐻0
) =  ∫ 𝑆𝐻(𝐸)[ − 𝜇𝐴𝑡𝐴 − 𝜇𝐵𝑡𝐵]𝑑𝐸      (1.27) 

Unfortunately, this makes it more difficult to isolate and solve for 𝑡𝐴 and 𝑡𝐵 analytically. 

An approximate solution was developed by Cardinal et al which involves a calibration of 

experimentally determined decomposition parameters.16 Calibration is carried out using a 

step phantom with known thicknesses of the two basis materials overlapped orthogonally. 

Decomposition parameters are acquired on a pixel-by-pixel basis, therefore the 

thicknesses 𝑡𝐴 and 𝑡𝐵 are calculated for each pixel, producing a pair of basis material 

decomposed projections. Once the equivalent thickness of basis materials A and B are 
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calculated, they can be used as pixel-based weighting factors to generate virtual 

monoenergetic projections as follows: 

∫ 𝜇(𝐸)𝑑𝑠 = 𝜇𝐴𝑡𝐴 + 𝜇𝐵𝑡𝐵       (1.28) 

which represents the radiological path length for a monoenergetic energy E of a given 

pixel.  

 In principle, the benefits of applying the decomposition technique are the removal 

of beam hardening artifacts caused by metal implants, photon starvation, and other 

spectral effects.15,17 A drawback of this technique is the need to determine numerous 

decomposition parameters for realistic polyenergetic LE and HE beams in order to 

calculate equivalent thicknesses. 

 

1.4.3. Single Exposure DE 

 

 Single Exposure DE imaging is achieved by irradiating two detector plates at the 

same time with a single energy.12,18 The x-ray beam interacts with the first detector plate, 

producing an LE image. Between the two phosphor plates is a copper filter, which 

hardens the beam by filtering low energy photons. Therefore, the hardened beam interacts 

with the second detector plate, producing the HE image as in Figure 1.8.  
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Figure 1.8: A single exposure DE acquires both LE and HE images via a copper filter. 

 

This technique may then employ the SLS algorithm to generate the actual DE 

image. The advantage of the single exposure technique is the acquisition of both LE and 

HE images simultaneously thus effectively removing patient motion artifacts between 

two acquisitions. The major drawback of this technique is that the images generally have 

a low SNR.19 The reduction in SNR is caused by the HE image, where the first phosphor 

plate and copper plate attenuated some of the photons, thus causing a reduction in signal 

and an increase in noise. Another drawback is the limited energy spectra separation. 

Unlike the double exposure technique (below), the spectral separation between LE and 

HE is achieved only by the copper filter and not by using two low and high kVps. Single 

exposure DE images may be improved via a noise reduction algorithm, or signal 
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amplification of the HE image. In general, single exposure DE images are used as 

complementary information with the SE images for diagnostic purposes. 

 

1.4.4. Double Exposure DE 

 

 Double exposure techniques are those which involve the sequential acquisition of 

LE and HE images at low and high energies, e.g. 60 kVp and 120 kVp.19 While, two 

separate kVps causes good spectral separation, filters for HE (and sometimes even for 

LE) may be used to further separate the energy spectra.  Double exposure techniques 

have been reported to have an improved SNR compared to single exposure techniques. 

One of the main drawbacks to this technique is the possibility of misregistration artifacts 

in the DE images due to patient motion. Generally, there is a very short acquisition time 

between LE and HE images (~150 − 200 ms). However, in some cases such as cardiac 

motion, this is still enough time for variations in patient motion to cause misalignments.20 

These motion artifacts are commonly seen as black and white streaks caused by 

anatomical structure misalignment. The degree of patient motion can be crucial and may 

lead to an improper detection of calcified nodules.21 

 

1.4.5. Single Source DE 

 

 The single source DE technique is used in DE applications of both radiography 

and computed tomography (CT). A single x-ray source quickly alternates kVps between a 

LE and HE setting. For DE-CT this is achieved during a single gantry rotation. However, 
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this means that the mAs has to remain constant throughout the scans.22 Due to differences 

in exposure output between the LE and HE, more exposure time is given to the LE in 

order to enhance CNR. Single source DE imaging with CT has been reported to have 

good temporal registration between the LE and HE images. The limitation of this 

technique are potential spectral overlaps as well as the inability to modify the tube 

parameters of the LE and HE beams separately.22 Compared to the double source DE 

method (below), the single source tends to have a reduced temporal coherence and lower 

dose efficiency.23 

 

1.4.6. Double Source DE 

 

 Double source DE has been implemented in DE-CT imaging. The double source 

scanner has two detector arrays that interact with the two x-ray sources which are offset 

from each other by 90o as in Figure 1.9. These detectors acquire sets of LE and HE 

images at the same time. The benefit of having more than one x-ray source is more mAs 

and beam filtration optimization to achieve a better quality image.22 
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Figure 1.9: A double source DE system in CT acquires LE and HE images that are 

orthogonal to each other. 

 

A limitation to this technique is that the projection data acquired is in a double-helix 

geometry, where the two source trajectories are out of phase by 90o. This means that the 

projections for the LE image and HE image do not coincide, thus causing difficulties in 

DE generation in the image domain.24 Additionally there can be cross-scatter radiation 

between the two detectors which needs to be corrected for.25 

 

 

 



34 
 

1.4.7. Noise Reduction Algorithms 

 

 Although DE is an excellent technique in removing anatomical noise and 

improving lesion visualization, it has a drawback in terms of noise amplification. The 

common SLS technique tends to amplify quantum noise in the generated DE image.26 

This is caused by noise propagation in the logarithmic subtraction, which makes the noise 

more exaggerated. To reduce the noise in the resultant DE image, different noise 

reduction algorithms have been developed to improve image quality.  

 The simple smoothing of the high energy image (SSH) is a linear algorithm which 

applies a low-pass filter (LPF) to the HE image since it is the main contributor of 

quantum noise.27  The HE image contributes more quantum noise because it requires 

fewer quanta to interact with the detector to produce a sufficient signal. Therefore, based 

on Poisson statistics for noise, there are less photons interacting in the HE image, and 

thus more noise. This is supported by Figure 1.5, where for higher energies, less x-rays 

interact with the detector, but a sufficient amount of energy is still able to be absorbed 

and converted into signal. The application of the LPF to the HE image modifies the SLS 

equation to:26  

ln(𝐼𝑆𝑆𝐻) = ℎ𝐿𝑃𝐹 ∗ ln(𝐼𝐻) − 𝜔𝑡ln (𝐼𝐿)     (1.29) 

where ℎ𝐿𝑃𝐹 is the low-pass filter which is convolved with the logarithm of the HE image. 

 Another technique used to minimize the amount of noise in the DE image is the 

use of an anti-correlated noise reduction (ACNR) algorithm.28-30 Figure 1.10 is a flow 

chart of the ACNR algorithm. 
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Figure 1.10: Flowchart for the ACNR algorithm. 
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This technique exploits the fact that the quantum noise in the soft-tissue-only and bone-

only images are anti-correlated.26 The ACNR algorithm applies a high-pass filter (HPF) 

to the complementary DE image. The complementary image to the soft-tissue-only image 

would be the bone-only image and vice versa. The HPF suppresses all of the low 

frequency information (i.e. anatomical structures) in the complementary image, leaving 

only quantum noise and some residual edge artifacts. This filtered complementary noise 

image is added to the DE image by applying a separate weighting factor 𝜔𝑛:26 

𝐼𝐴𝐶𝑁𝑅 = 𝜔𝑛[ℎ𝐻𝑃𝐹 ∗ 𝐼𝐷𝐸
𝐶 ] + 𝐼𝐷𝐸      (1.30) 

where ℎ𝐻𝑃𝐹 is the high-pass filter, and 𝐼𝐷𝐸
𝐶  is the complementary DE image. Adding noise 

of the complimentary image to the DE image effectively reduces noise since noise is anti-

correlated. A comparison between a DE image without noise correction and with 

correction is illustrated in Figure 1.11. 

 

 

Figure 1.11: A DE image without any noise reduction applied (a). The same DE image 

after an ACNR algorithm has been applied (b). 

 



37 
 

1.5. Radiotherapy  

 

  Radiation therapy (RT) uses MV photons produced by a linear accelerator (linac) 

to treat malignancies by killing cancer cells. The goal when treating cancers with 

radiation is to achieve a uniform dose within the target volume, but minimize irradiating 

other healthy tissues. In particular, stereotactic body radiation therapy (SBRT) aims to 

deliver a hypofractionated high radiation dose precisely to the tumor volume while 

sparing adjacent organs at risk. A typical lung SBRT fractionation scheme is 12 Gy in 4 

fractions, giving a total dose of 48 Gy. SBRT has shown to have good success in 

controlling metastatic lung and spinal tumors.31,32 The success of SBRT critically 

depends on precise delivery by relying heavily on accurate image guided radiation 

therapy (IGRT). IGRT is essential to position the patient as accurately as possible such 

that radiation can be aimed exactly to the tumor. Using the in-room imaging systems, 

images are acquired and planning CT images are used as a reference for patient 

alignment. Cone-beam CT (CBCT) is often used as it provides volumetric images. 

However, projection x-ray images have the advantage of fast acquisition and lower 

imaging dose. Typical CBCT doses are around 20 mGy, whereas ExacTrac doses are 

closer to 0.52 mGy.33,34 To align the patient, the projection images are aligned with 

digitally reconstructed radiographs (DRR) obtained from planning CT data sets. As DRR 

generation is an important part of this thesis, in the next section I describe the details of a 

DRR algorithm.  
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1.5.1 Digitally Reconstructed Radiograph 

 

A CT data set is 3 dimensional (3D) with no fixed source position, while 

projection x-ray images are 2D with an imaging source at a fixed position in the space. A 

DRR algorithm takes the CT 3D data and synthetically calculates the beam’s eye view 

(BEV) image which is a representation of the 2D radiograph.  DRRs are generated via ray 

tracing techniques from a source to a position on the detector, while passing through the 

patient CT data. The ray tracing sums the attenuation coefficients along the ray lines to 

create the BEV images.35 In this thesis, the DRR algorithm is slightly modified to 

calculate the amount of thickness of a specific tissue type in the CT volume based on 

Hounsfield units (HU). Each tissue has a different HU due to differences in attenuation in 

the material. In order to calculate the thickness of a material, the tissues of interest can be 

separated into different volumetric masks based on segmenting their HU range.  

Siddon’s method offers a fast DRR algorithm and takes into account the exact 

length of the ray line within each CT voxel.36  Rays are calculated based on the 

intersection with a voxel location (i,j,k) in a volume. For the CT array of voxels in the x-

direction equally spaced by 𝑑𝑥, the ith parallel plane can be expressed as: 

𝑋𝑝𝑙𝑎𝑛𝑒(𝑖) =  𝑋𝑝𝑙𝑎𝑛𝑒(1) + (𝑖 − 1)𝑑𝑥          (𝑖 = 1, … . , 𝑁𝑥)   (1.31) 

where 𝑁𝑥 is the total number of voxels in the x-direction. Similar equations can be 

written for the y and z axes. The ray from the starting point (x-ray source) to the end 

point (detector) may be represented as: 

𝑋(𝛼𝑥) =  𝑋1 + 𝛼𝑥(𝑋2 − 𝑋1)       (1.32) 
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where 𝛼𝑥 is a parametric variable which describes the position along the ray line, where 

𝛼𝑚𝑖𝑛  is equal to 0 at the starting point and 𝛼𝑚𝑎𝑥 is 1 at the end point. The parametric 

intersection of the ray line between two adjacent planes can be calculated as: 

𝛼𝑥(𝑖) =   
𝑋𝑝𝑙𝑎𝑛𝑒(𝑖)−𝑋1

𝑋2−𝑋1
        (1.33) 

Once all 𝛼𝑥 (and y and z) are calculated, the 𝛼𝑚𝑖𝑛 and 𝛼𝑚𝑎𝑥 terms are given their 

parametric values with: 

     𝛼𝑚𝑖𝑛 = 𝑚𝑎𝑥{0, min[𝛼𝑥(1), 𝛼𝑥(𝑁𝑥)] , min[𝛼𝑦(1), 𝛼𝑦(𝑁𝑦)] , min[𝛼𝑧(1), 𝛼𝑧(𝑁𝑧)]}  

  (1.34) 

𝛼𝑚𝑎𝑥 = 𝑚𝑖𝑛{0, max[𝛼𝑥(1), 𝛼𝑥(𝑁𝑥)] , max[𝛼𝑦(1), 𝛼𝑦(𝑁𝑦)] , max[𝛼𝑧(1), 𝛼𝑧(𝑁𝑧)]} 

  (1.35) 

In the case where 𝛼𝑚𝑎𝑥 is less than 𝛼𝑚𝑖𝑛, there is no intersection of the ray line with the 

CT volume. However, when 𝛼𝑚𝑖𝑛 is less than 𝛼𝑚𝑎𝑥, the number of the first intersected 

plane after the ray has entered the pixel and the number of the last intersected plane is 

calculated. For the case when 𝑋1 <  𝑋2, the indices of the first and last intersected planes 

𝑖𝑚𝑖𝑛 and 𝑖𝑚𝑎𝑥 are calculated under the following conditions:37 

𝛼𝑚𝑖𝑛 = 𝛼𝑥(1) →  𝑖𝑚𝑖𝑛 = 1       (1.36) 

𝛼𝑚𝑖𝑛 ≠ 𝛼𝑥(1) → 𝑖𝑚𝑖𝑛 = ⌈
𝑋(𝛼𝑚𝑖𝑛)− 𝑋𝑝𝑙𝑎𝑛𝑒(1) 

𝑑𝑥
⌉     (1.37) 

𝛼𝑚𝑎𝑥 = 𝛼𝑥(𝑁𝑥) → 𝑖𝑚𝑎𝑥 = 𝑁𝑥 − 1      (1.38) 

𝛼𝑚𝑎𝑥 ≠ 𝛼𝑥(𝑁𝑥) → 𝑖𝑚𝑎𝑥 = ⌊
𝑋(𝛼𝑚𝑎𝑥)− 𝑋𝑝𝑙𝑎𝑛𝑒(𝑁𝑥) 

𝑑𝑥
⌋    (1.39) 

When 𝑋1 >  𝑋2, the following are used instead:37 

𝛼𝑚𝑖𝑛 = 𝛼𝑥(1) →  𝑖𝑚𝑎𝑥 = 𝑁𝑥 − 2      (1.40) 

𝛼𝑚𝑖𝑛 ≠ 𝛼𝑥(1) → 𝑖𝑚𝑎𝑥 = ⌊
𝑋(𝛼𝑚𝑖𝑛)− 𝑋𝑝𝑙𝑎𝑛𝑒(1) 

𝑑𝑥
⌋    (1.41) 
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𝛼𝑚𝑎𝑥 = 𝛼𝑥(𝑁𝑥) → 𝑖𝑚𝑖𝑛 = 0       (1.42) 

𝛼𝑚𝑎𝑥 ≠ 𝛼𝑥(𝑁𝑥) → 𝑖𝑚𝑖𝑛 =  ⌈
𝑋(𝛼𝑚𝑎𝑥)− 𝑋𝑝𝑙𝑎𝑛𝑒(𝑁𝑥) 

𝑑𝑥
⌉     (1.43) 

For the range of indices (𝑖𝑚𝑖𝑛, 𝑖𝑚𝑎𝑥) the set of parametric values {𝛼𝑥} is calculated when 

𝑋1 <  𝑋2: 

{𝛼𝑥} = {𝛼𝑥(𝑖𝑚𝑖𝑛), … , 𝛼𝑥(𝑖𝑚𝑎𝑥)}      (1.44) 

When 𝑋1 >  𝑋2, the following is used: 

{𝛼𝑥} = {𝛼𝑥(𝑖𝑚𝑎𝑥), … , 𝛼𝑥(𝑖𝑚𝑖𝑛)}                 (1.45) 

Every term in this set of parametric values represents an intersection of the ray with a 

plane in the CT volume. The complete merged parametric sets for the x,y, and z planes is 

given as: 

{𝛼} = {𝛼𝑚𝑖𝑛, 𝑚𝑒𝑟𝑔𝑒[{𝛼𝑥}, {𝛼𝑦}, {𝛼𝑧}], 𝛼𝑚𝑎𝑥}                        (1.46) 

Adjacent terms in {𝛼} indicate intersections in a voxel, denoted by m and m-1. Therefore, 

the entire length of the intersection through a given voxel is: 

𝑙(𝑚) =  𝑑1,2[𝛼(𝑚) −  𝛼(𝑚 − 1)]          (𝑚 = 1, … . , 𝑛)    (1.47)         

where 𝑑1,2 is the Euclidian distance from the source to the detector. The CT voxel index 

[𝑖(𝑚), 𝑗(𝑚), 𝑘(𝑚)] which contains the midpoint of the intersections is found with: 

𝑖(𝑚) = 1 + [𝑋1 + 𝛼𝑚𝑖𝑑(𝑋2 − 𝑋1) − 𝑋𝑝𝑙𝑎𝑛𝑒(1)]/𝑑𝑥    (1.48) 

𝑗(𝑚) = 1 + [𝑌1 + 𝛼𝑚𝑖𝑑(𝑌2 − 𝑌1) − 𝑌𝑝𝑙𝑎𝑛𝑒(1)]/𝑑𝑦     (1.49) 

𝑘(𝑚) = 1 + [𝑍1 + 𝛼𝑚𝑖𝑑(𝑍2 − 𝑍1) − 𝑍𝑝𝑙𝑎𝑛𝑒(1)]/𝑑𝑧    (1.50) 

where  

𝛼𝑚𝑖𝑑 = [𝛼(𝑚) + 𝛼(𝑚 − 1)]/2      (1.51) 

Therefore, the total radiological pathlength through the 3D CT volume is calculated as: 
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𝑑 =  ∑ 𝑙(𝑚)𝜌(𝑖(𝑚), 𝑗(𝑚), 𝑘(𝑚))𝑚=𝑛
𝑚=1      (1.52) 

where 𝜌(𝑖(𝑚), 𝑗(𝑚), 𝑘(𝑚)) is the specific voxel value. The Siddon’s method for DRRs is 

typically used to calculate the total radiological pathlength by summing up a CT volume 

that has been converted into linear attenuation values for 𝜌. However, in this thesis the 

actual thickness of the CT volume itself is calculated by dividing the pathlength by 𝜌. 

This is used to determine the total thickness of a specific tissue type along the ray line 

within the CT volume.  

The CT pixels are in HU values which are different for different tissue types 

allowing HU based segmentation before calculating total thickness in the DRR. Some 

tissue types such as soft-tissue and lung have a similar atomic number and mass 

attenuation coefficient, thus density scaling can be used to convert total radiological 

thickness for those tissues.  The linear attenuation coefficient for Compton interactions 

depends on density, while the photoelectric interaction depends on both density and 

atomic number. This means that density scaling can be used on tissues that only differ in 

density given that their effective atomic numbers are very similar.  For different bones 

however, density scaling may not be sufficiently accurate to yield a particular equivalent 

bone thickness. Table 1.2 lists some physical parameters for different tissue types in the 

body 38,39 
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Table 1.2: Effective atomic number, density, and Hounsfield Units for different  

tissue types. 

 

Tissue Effective 

atomic number 

Density 

(g/cm3) 

Hounsfield 

Unit (HU) 

Cortical bone 13.63 1.780 1094.6 

Rib bone 12.32 1.441 610.6 

Trabecular bone 10.23 1.150 207.6 

Lung (inhaled) 7.60 0.258 -741.8 

Soft-tissue 7.40 1.06 100 

Water 7.42 1.00 0 

 

 

 

1.6. Applications of Dual-energy Imaging in Radiotherapy 

 

Dual energy has grown in popularity for diagnostic imaging purposes but have 

also recently applied to enhance imaging for IGRT applications. Dual-energy CT (DECT) 

is namely used to enhance the quality of images used for RT patients. This was 

performed by improving tumor delineation and characterization, normal tissue 

characterization, and improved target tracking.40 For tumor delineation and 

characterization, virtually monoenergetic CT reconstructions can be created and used to 

improve the subjective image quality. Additionally, the use of monoenergetic CT 
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reconstructions can be used to create spectral Hounsfield Unit curves to show the 

differentiation between malignant and benign tumors.41,42  

Normal tissue characterization is investigated by imaging the perfusion of lung 

parenchyma. The material decomposition imaging of a contrast agent such as iodine, 

administered to the lungs can provide information on the pathology. Additionally, other 

contrast media such as xenon and krypton may be used to investigate the ventilated 

regions of the lungs.43,44 The benefits of using DECT for these purposes could allow for 

an improved quantitative evaluation of normal tissue for predictions on the treatment 

outcomes and tissue toxicity.45 Improved target tracking can be made possible by 

acquiring sequential DE planar x-ray images to enhance tumor visualization.46 

Markerless tumor tracking via DE fluoroscopy has been investigated and demonstrated 

improved results in tracking compared to using SE imaging.47  

Besides diagnostic improvements for RT patients, studies were performed on 

updating dose calculations using DECT for brachytherapy and photon therapy. Dose 

calculations for low energy brachytherapy require both Compton scatter and photoelectric 

information which can be used to estimate the electron density and atomic number of 

specific tissues. Monte Carlo simulations require photon attenuation coefficients which 

can be obtained using a decomposition technique.48 Using DECT to extract electron 

densities and effective atomic numbers from attenuation coefficients has shown an 

improvement in tissue characterization compared to using single-energy CT (SECT). 

Monte Carlo dose calculations using virtual phantoms with DECT were within 4% of the 

ground truth for 103Pd.49 A study by Malusek et al was able to estimate accurate mass 
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attenuation and mass energy absorption coefficients by decomposing abdominal soft-

tissue into lipid, protein, and water.50 

DE applications involving photon therapies stem from improving the HU to 

electron density calibrations. Using a linear combination of LE and HE images gives a 

better estimate of the electron density since Compton scattering and photoelectric 

information is available. Using DECT over SECT improved electron density estimation 

for treatment planning, reducing the dose uncertainty from 11% to 1%.51  

 

1.7. Thesis Outline 

 

 DE imaging has shown to be a versatile technique in both diagnostic imaging and 

RT. The common method used is the SLS technique, however it often suffers from 

incomplete bone cancellation due to beam hardening effects. The decomposition method 

inherently calibrates for beam hardening effects but requires many calibration parameters 

to be calculated. In addition, the theoretical expressions for the tissue cancelling 

weighting factor has been explored for simplistic monoenergetic LE and HE beams. 

Other imaging factors such as scatter, polyenergetic spectra, and detector response have 

not been considered.  

This thesis has two objectives. The first is to develop a novel DE algorithm which 

is able to overcome the limitations of the conventional DE method by determining pixel 

specific weighting factors based on soft-tissue and bone thickness. The second objective 

is to incorporate imaging parameters into the DE theory and theoretically derive 
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analytical expressions of the weighting factors describing the effects of various imaging 

parameters and validating these expressions by measurement.  

The next chapter in this thesis is the manuscript submitted to the Medical Physics 

journal which describes the development of the novel algorithm and the experimental 

verification of the modified weighting factors. The third chapter concludes the 

achievements of the thesis and discusses multiple future research avenues which may be 

incorporated into improving the algorithm. The Appendix at the end of the thesis 

discusses step by step analytic derivations of the modified weighting factor incorporating 

various imaging parameters. 
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Chapter 2: “Patient specific pixel-based weighting factor dual-energy x-ray imaging 

system” 

 

The content of this chapter is based on the following manuscript submitted to the journal 

of Medical Physics: “Patient specific pixel-based weighting factor dual-energy x-ray 

imaging system”, Michael C. Reno, Sahar Darvish-Molla, Mike Sattarivand. 

 

2.1. Abstract 

 

Purpose: To develop a novel patient specific pixel-based weighting factor dual-energy 

(PP-DE) algorithm to effectively suppress bone throughout the image and overcome the 

limitation of the conventional DE algorithm with constant weighting factor which is 

restricted to regions with uniform patient thickness. Additionally, to derive theoretical 

expressions to describe the dependence of the weighting factors on several imaging 

parameters and validate them with measurement. 

 

Methods: A step phantom was constructed consisting of slabs of solid water and bone 

materials. Thicknesses of bone ranged [0-6] cm in one direction, and solid water [5-30] 

cm in the other direction. Projection images at 60 and 140 kVp were acquired using a 

clinical imaging system. Optimal weighting factors were found in the range [0.6-1.4], 

where bone and soft-tissue contrast-to-noise ratio (CNR) reached zero. Bone and soft-

tissue digitally reconstructed radiographs (DRRs) were created using computed 

tomography images of a Rando phantom and ray tracing techniques. A weighting factor 
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image was calculated using DRRs and pre-calculated weighting factors from the step 

phantom. The weighting factor image was used to generate a PP-DE image. The PP-DE 

image was compared to the conventional DE image which uses a constant weighting 

factor throughout the image. The signal-to-noise ratios (SNR) were calculated in the step 

phantom for the PP-DE image and compared to that of conventional DE technique. 

Analytical expressions for theoretical weighting factors were derived which included 

various effects such as beam hardening, scatter, and detector response. The analytical 

expressions were simulated in Spektr3.0 for the same bone and solid water thicknesses as 

the step phantom. A tray of steel pins was constructed and used with the step phantom to 

remove the scattered radiation. The simulated theoretical weighting factors were 

compared to those from the step phantom measurement.  

 

Results: Optimal weighting factor values for the step phantom varied from 0.633 to 

1.355 depending on region thickness. Thicker regions required larger weighting factors 

for bone cancellation. The PP-DE image of the Rando phantom favorably cancelled both 

ribs and spine, whereas in the conventional DE image, only one could be cancelled at a 

time. The SNRs for the PP-DE image was larger than those of the conventional DE 

images for regions which required smaller weighting factors for bone suppression. 

Comparisons of measured and simulated weighting factors demonstrated a 3% agreement 

for all bone overlapped regions except for the thickest region with 30 cm of solid water 

overlapped with 6 cm bone where the signal was lost due to excess attenuation. 
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Conclusions: A novel PP-DE algorithm was developed which can create higher quality 

DE images with enhanced bone cancellation and improved noise characteristics 

compared to conventional DE technique. In addition, theoretical weighting factor 

expressions were derived and validated against measurement. 

 

2.2. Introduction 

 

 The significance of medical x-ray imaging has surpassed diagnostic applications, and 

today is in widespread use in radiation therapy treatments. Image guided radiation 

therapy (IGRT) utilizes a linac mounted kV imaging system (to create planar or 

volumetric images) or in-room mounted x-ray imaging (to create planar images) which 

may be incorporated in proper patient alignment.52 Cone-beam computed tomography 

(CBCT) is often used as it provides volumetric images.53-55 Nevertheless, planar 

projection imaging may be more suitable in some applications due to its faster acquisition 

and processing time with lower imaging dose.56,57 However, one major drawback of 

planar imaging is the presence of anatomical noise due to projection overlap. For 

instance, for lung stereotactic body radiation therapy (SBRT) patients, the overlap of 

bony anatomy such as ribs may obscure the detection of lung tumors, making the impact 

of tumor localization more complicated. Dual-energy (DE) imaging can overcome this 

limitation by producing soft-tissue-only (or bone-only) images. DE has been an 

established technique in diagnostic imaging.13,21,58,59 However, its applications in IGRT 

has only recently been evaluated for different imaging systems.33,46,60,61  
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DE technique requires acquisition of low energy (LE) and high energy (HE) 

images. Two different conventional DE algorithms have been used in combining the LE 

and HE images to suppress a specific tissue type. The first algorithm category is the 

decomposition method, where the HE and LE are decomposed into equivalent 

thicknesses of two basic materials mimicking bone and soft-tissue (e.g. aluminum and 

Lucite).14,15,17,24 The attenuation coefficient is presented as a weighted sum of non-linear 

basic functions, where weighting factors are pixel-based (i.e. vary across the image) and 

represent equivalent thickness of basic materials. This method requires calibration of the 

imaging system with the LE and HE beams using step phantoms with known thicknesses 

of both basic materials. Since clinical polyenergetic LE and HE beams are used for 

calibration, in principle the calibration process corrects for beam hardening effects on a 

pixel-by-pixel basis.15 

The second DE algorithm category is the logarithmic subtraction method.  In this 

technique, the LE and HE images are log-subtracted after applying a weighting factor 

across the LE image.47,62,63 The soft-tissue-only image, 𝐼𝐷𝐸, is created using: 

𝑙𝑛(𝐼𝐷𝐸) = 𝑙𝑛(𝐼𝐻𝐸) − 𝜔𝑙𝑛 (𝐼𝐿𝐸) (2.1) 

where 𝐼𝐿𝐸 and 𝐼𝐻𝐸 are the corresponding images of the LE and HE beams respectively. 

The weighting factor 𝜔 is typically constant across the image for given LE and HE 

beams. However, using a uniform weighting factor does not lead to a complete bone 

cancellation in all regions of the image. This is caused mainly by beam hardening effects 

which varies in different regions with various patient thicknesses.63 Due to the 

polyenergetic nature of the beams, beam hardening changes the effective attenuation 
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coefficient of a material depending on the thickness, where thicker materials have a lower 

attenuation, while the opposite is true for thinner materials.64 A study by Ho et al 

reported that beam hardening effects influenced their DE images, but did not provide any 

means of quantification.65 

The development of a DE algorithm that can incorporate the simplicity of the 

conventional subtraction technique while using calibration to correct for beam hardening 

effects as per the equivalent thickness method is desirable. This approach could generate 

soft-tissue selective images with enhanced bone suppression throughout the image by 

assigning patient specific pixel-based (PP) weighting factors depending on the thickness 

of bone and soft-tissue. Applying this hybrid technique may offer benefits in particular 

for radiation therapy applications, where the patient’s previous computed tomography 

(CT) images are acquired for treatment planning purposes in the same patient geometry 

as the x-ray acquisitions. These CT images can be used as a-priori information to 

calculate patient’s bone and soft-tissue thickness along the ray lines of each pixel in the 

projection image. The a-priori information may then be used to assign the optimal 

weighting factor to fully suppress bone or soft-tissue in that specific pixel location. In the 

case of a soft-tissue selective image, this would mean the full cancellation of both ribs 

and spine in a chest radiograph.  

The weighting factor in the subtraction method plays a critical role in determining 

the success of DE imaging in terms of both tissue cancelation and noise propagation. 

Some previous studies used 𝜔 = 𝜇𝐻
𝑏 𝜇𝐿

𝑏⁄  to create soft-tissue-only image, where 𝜇𝐻
𝑏  and 

𝜇𝐿
𝑏 are bone linear attenuation coefficients for HE and LE respectively.10,27,47,62 However, 

this equation is only valid for monoenergetic beams and does not include polyenergetic 
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beam hardening effects and thus effective 𝜇 values may be used as an approximation. 

Some other studies empirically determined the weighting factors which may only apply 

to a particular patient thickness for given LE and HE beams.26,33,46,60,61 Deriving analytic 

expressions for weighting factors could be challenging when considering realistic 

parameters such as polyenergetic spectra, beam hardening, scatter, and detector response. 

Hoggarth et al 60  reported a linear trend weighting factor change with mAs but did not 

describe the underlying theory. Xu et al 47 discussed the practical need to use effective 𝜇 

values for polyenergetic beams and stated that it’s nearly impossible to calculate the 

exact effective attenuation coefficient and weighting factor analytically, therefore no 

theoretical results were reported. Additionally, there have been no previous studies that 

have considered the effects of patient scatter, detector gain, and detector response. To our 

best knowledge, no previous study quantitatively evaluated various parameters that affect 

weighting factors nor established theoretical expressions describing these effects.  

The objective of this study is twofold. The first aim is to develop a PP-DE 

algorithm that can effectively suppress a specific tissue type throughout the image with 

non-uniform patient thickness and overcome the limitation of the conventional DE 

algorithm with a constant weighting factor. Second, this work seeks to derive and 

validate theoretical expressions for weighting factors which include various imaging 

parameters such as beam hardening, scatter, and detector response. 
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2.3. Materials and Methods 

 

2.3.A. Theoretical Simulations 

 

Simulation was performed to investigate how weighting factor changes due to the 

inclusion of different imaging parameters based on the expressions derived in the 

Appendix. Spektr Ver 3.0 toolkit was used to generate the spectra and simulate its 

changes when passing through different materials used in the step phantom experiment 

(see section 2.3.B1).2 Spektr has been reported to be in excellent agreement with 

measured spectra for tube potentials in the range 30 to 140 kVp.66 The LE and HE tube 

potentials used in the simulation (and experiments) were 60 and 140 kVp respectively, 

which were based on previously published optimized values for the ExacTrac system 

(Brainlab AG, Germany).33 All simulations were performed by developing in-house 

codes in Matlab (MathWorks, Natick, MA). 

 

2.3.A1. Monoenergetic Case 

 

The theoretical weighting factor to cancel bone for a monoenergetic beam was 

calculated using Eq.(A.7) in the Appendix. Both LE and HE peak voltages (60, 140 kVp) 

were divided by 1.5 to get an effective monoenergetic energy of 40 and 93 keV 

respectively. For these energies, the corresponding bone linear attenuation coefficients 

are 0.79 cm-1 and 0.29 cm-1 receptively. These values are obtained by interpolating (to 
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bin sizes of 1 keV) the vendor provided linear attenuation values (CIRS Inc, Norfolk, 

VA) for the average bone.   

 

2.3.A2. Beam Hardening Effects 

 

X-ray spectra for both the LE and HE tube voltages (60, 140 kVp) were simulated 

using the tungsten anode spectral model using interpolating cubic splines (TASMICS) 

algorithm. TASMICS has been reported to provide a better energy resolution than its 

previous algorithm based on spectral model using interpolating polynomials 

(TASMIPS).2 The ExacTrac tube inherent and added aluminum (Al) filtrations and 

treatment couch were simulated. The Spektr added Al filter was adjusted such that the 

Spektr calculated first half value layers (HVL) matched the narrow beam geometry 

measured HVLs for the full range of 60-140 kVp.33 The total added filtration was 3.3 mm 

Al.  

Once the LE and HE spectra were generated, first they passed through the 

ExacTrac treatment couch with 1.033 mm of equivalent Al.33,67 . The spectra then passed 

through various bone and solid water (soft-tissue) thicknesses in the ranges of [0-6 cm] 

and [0-30 cm] respectively to mimic different regions in the step phantom. This was 

implemented using the average bone linear attenuations for the spectrum from section 

2.3.A1 and generating a solid water compound based on the material composition 

provided by the vendor (GAMMEX, Middleton, WI). Vendor provided densities of 1.6 

and 1.055 cm3/g for the bone and solid water respectively, were used to calculate linear 

attenuations in the Spektr code. The simulated thickness ranges are wider than the actual 
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step phantom geometry as they also extend to zero bone and soft-tissue thickness (soft-

tissue thickness is from [0-30 cm] and bone is from [0-6 cm]). This effectively simulates 

beam hardening by changing the spectra that are needed in Eq.(A.9) in the Appendix 

since the spectra pass through various bone and soft-tissue thickness pairs. The hardened 

LE and HE spectra simulate incident spectra on the detector and were used to calculate 

spectrum weighted bone linear attenuation coefficients and theoretical weighting factors 

as per Eq.(A.9) and Eq.(A.11) in the Appendix.  

 

2.3.A3. Scatter Effects 

 

 In principle, scatter effects can be simulated using Eq.(A.16) in the Appendix. 

This requires a knowledge of scatter to primary ratio terms which depend on phantom (or 

patient) geometry. Spektr outputs only primary and does not simulate scatter. Thus, 

scatter was not simulated and instead it was measured and subtracted from the signal in 

the step phantom (see section 2.3.B2) before comparing simulation results to 

experimental data. 

 

2.3.A4. Detector Effects 

 

 The detector response was simulated to determine its effect on theoretical 

weighting factor as per Eq.(A.22) in the Appendix. ExacTrac uses an 8-inch PerkinElmer 

XRD flat panel detector (PerkinElmer Inc, Waltham, MA) which has a CsI scintillator 

with the vendor stated detective quantum efficiency (DQE) of 75% at 0 cycles/mm for 
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RQA5 beam. RQA5 is an IEC standard for the radiation quality of an x-ray beam with an 

added Al filter.68 The IEC standard for RQA5 requires a tube voltage of 70 kVp and an 

HVL of 7.1 mm Al.69 To estimate the thickness of CsI, first the RQA5 spectrum was 

simulated in Spektr. The added filtration was adjusted in Spektr to produce a spectrum 

with 7.1 mm Al HVL for 70 kVp tube voltage. With the simulated RQA5 spectrum, the 

quantum efficiency was calculated using:  

𝐷𝑄𝐸(0) = 𝛼(𝐸) = 1 − 𝑒−𝜇𝑑(𝐸)𝑡𝑑  (2.2) 

where 𝜇𝑑(𝐸) and 𝑡𝑑 are linear attenuation coefficient and thickness of CsI respectively. 

The parameter 𝑡𝑑 varied between 0 and 1 mm to obtain 𝛼(𝐸)̅̅ ̅̅ ̅̅ ̅ =0.75 and thus the CsI 

thickness was estimated to be 0.21 mm.  

Using this CsI thickness, Eq.(2.2) was used again to calculate 𝛼(𝑡, 𝑏) for a 

thickness t of soft-tissue and b of bone in Eq.(A.22) for both LE and HE (60, 140 kVp) 

but with hardened beams for different bone and soft-tissue thickness pairs as per section 

2.3.A2 above. The spectrum weighted linear attenuations for CsI were used as per 

Eq.(A.11). Similarly, the 𝐸(𝑡, 𝑏) terms were calculated for LE and HE hardened beams 

using values from previous studies and matching to the spectrum effective energies.10,70 

Both 𝛼(𝑡, 𝑏) and 𝐸(𝑡, 𝑏) were inserted into Eq.(A.22), and similar to section 2.3.A2, a 

theoretical weighting factor was calculated for each bone and soft-tissue thickness pairs 

in the range [0-6 cm] and [0-30 cm] respectively.  
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2.3.A5. Combination of Effects 

 

 The combined effects of beam hardening and detector response were simulated 

using Eq.(A.35) in the Appendix. The scatter to primary ratio terms in this equation were 

set to zero for simulation as per section 2.3.A3 above.  

 

2.3.B. Experimental Phantom Studies 

 

2.3.B1. Weighting Factor Calibration Using Step Phantom 

 

A step phantom (Figure 2.1a) was constructed consisting of slabs of solid water 

Model 557-450 (GAMMEX, Middleton, WI) and average bone Model BN30-20-AB 

(CIRS Inc, Norfolk, VA) materials. Thicknesses of bone ranged from 0 to 6 cm in one 

direction, and solid water from 5 to 30 cm in the other direction. The slabs were stacked 

perpendicular to each other, creating a step-like pattern. The phantom was also designed 

to match the ExacTrac field of view (FOV) of 13 cm at isocenter. The step phantom was 

placed on the treatment couch, which was rotated 45o to face one of the ExacTrac x-ray 

tubes. Additionally, the step phantom was placed on a plastic stand angled at 42o, such 

that the central axis of the x-ray beam was perpendicular to the phantom surface (Figures 

2.1a, 2.1b).  
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Figure 2.1: Step phantom with varying solid water and bone slabs placed on plastic 

stand (a). The phantom is placed on the treatment couch with the indicated geometries 

(b). The addition of a thin plastic plate with steel pins to the step phantom for scatter 

correction (c). 

 

X-ray images were acquired for low and high tube voltages of 60 and 140 kVp. 

To avoid detector saturation, 4 low energy images (each with 9.9 mAs) and 12 high 

energy images (each with 0.99 mAs) were acquired and the images were summed up.  

The total mAs values (39.6 mAs for LE and 11.9 mAs for HE) were determined such that 

the surface dose from the dual energy image (combining LE and HE)  does not exceed 

that of a clinical conventional single energy technique (525 µGy) acquired with a clinical 
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thorax protocol using 120 kVp and 25 mAs.33 The dose allocation from the HE and LE x-

ray images were 70% and 30% respectively.58,62 Dark images were acquired by blocking 

the x-ray tube with lead and using a tube voltage of 40 kVp with 2.52 mAs. Flood images 

were also acquired by moving the treatment couch away from the beam path while using 

a tube voltage of 60 kVp with 12.68 mAs and 120 kVp with 0.63 mAs. The LE and HE 

images were corrected for dark and flood signals before calculating DE images.  

The LE and HE images were exported from a clinical ExacTrac Ver. 6.0 

workstation and read using an in-house Matlab program to create a DE image. X-ray 

images were analyzed by creating 16 regions of interests (ROIs) as per Figure 2.2a, to 

determine the best weighting factor for bone suppression.  

 

 

Figure 2.2: X-ray image of the step phantom at 60 kVp. ROIs are indicated by the red 

rectangles (a). Small circular ROIs in blue were made to estimate scatter under steel 

pins (b). ROI of only one region is illustrated for simplicity while similar ROIs utilized 

for other regions.  
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The optimal weighting factors for each ROI with bone overlap was determined by 

calculating the contrast-to-noise ratio (CNR) between a region with bone and soft-tissue 

and its corresponding soft-tissue only region. The CNR was calculated using:  

𝐶𝑁𝑅𝑏𝑠𝑡,𝑠𝑡 =  
𝐼𝑏𝑠𝑡−𝐼𝑠𝑡

√
1

2
(𝜎𝑏𝑠𝑡

2 +𝜎𝑠𝑡
2 )

 (2.3) 

where 𝐼𝑏𝑠𝑡 and 𝐼𝑠𝑡 are the average intensities of the ROIs with bone and soft-tissue 

overlap and soft-tissue alone while 𝜎𝑏𝑠𝑡 and 𝜎𝑠𝑡 are the corresponding standard 

deviations. DE subtraction was applied to the LE and HE images by iteratively varying 

the weighting factor values from 0.6 to 1.4 in steps of 0.001. The optimal weighting 

factor was determined for each bone overlapped ROI such that the CNR yielded a value 

as close to zero as possible. A value close to zero indicates that there is a very small 

difference in signal between the two ROIs, indicating bone cancellation. To reduce the 

noise in all DE images, an anti-correlated noise reduction (ACNR) algorithm was applied 

using parameters from Richard et al.26,28-30,60 The experiment was repeated four times to 

calculate statistical uncertainties on measured weighting factors. The weighting factors 

for each bone overlapped ROI constitute pre-calibrated values for given bone and soft-

tissue thickness pairs.  

 

2.3.B2. Scatter Removal Experiment  

 

A scatter removal technique was implemented similar to a previous study.15 A 

thin plastic tray with steel pins was added to the step phantom (Figure 2.1c), with pins 

centered in each of the 16 ROIs. The length of each pin was 7 mm which is equivalent to 
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10 HVLs (at 140 keV) and is sufficient enough to effectively block all primary photons. 

ExacTrac images were acquired using the same parameters (kVp and mAs) as the 

previous experiment (section 2.3.B1). The images were analyzed to determine the scatter 

signal contribution to the overall signal for each 16 regions with a given bone and soft-

tissue thickness pair. Small circular ROIs were created under each pin to calculate the 

average scatter signal as per Figure 2.2b. The 16 scatter values were then 2D interpolated 

via cubic spline into an image for both LE and HE images to calculate a scatter image 

across the phantom. To quantify the amount of scatter contribution to each ROI, scatter 

fractions (ratio of scatter to scatter plus primary) were calculated. This was performed by 

dividing the LE and HE scatter interpolated images by their corresponding x-ray images. 

The ROIs were then used to calculate the mean ratio of scatter to scatter plus primary in 

each region. To correct the x-ray images, the scatter image was then subtracted from the 

x-ray images to produce primary-only LE and HE images.  Using primary-only LE and 

HE images, DE weighting factors were calculated for each bone overlap region similar to 

section 2.3.B1. Thus, the calculated weighting factors represent values for scatter 

corrected DE images. The experiment was repeated four times to obtain statistical 

uncertainty on measured weighting factors.  

 

2.3.B3. Rando Phantom Experiments 

 

An adult female Rando ATOM phantom (CIRS Inc, Norfolk, VA) was used with 

a cylindrical solid-water plug (14 mm diameter, 25 mm long) inserted in her lung tissue 

to mimic a lung tumor (Figure 2.3). Plastic radiopaque markers (BB) were placed on the 
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phantom surface to indicate the location of the tumor and guide the alignment with the 

CT and ExacTrac in-room lasers. The phantom was imaged both with a clinical CT 

simulator scanner and the ExacTrac imaging system. The CT images of the Rando 

phantom were acquired using the clinical chest imaging protocol of 120 kVp and 250 

mA. The ExacTrac images of the Rando were acquired using the same techniques (kVp 

and mAs) as per the step phantom experiment (section 2.3.B1).  

 

 

Figure 2.3: Rando phantom with a cylindrical solid water plug (red arrow) to simulate 

a lung tumor. 

 

 

2.3.B4. PP-DE Algorithm Development 

 

The steps of the PP-DE algorithm are outlined in the flowchart in Figure 2.4. 

Note that the first part in finding the pre-calculated weighting factors is implemented as 

per section 2.3.B1. 
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Figure 2.4: Flowchart illustrating the steps of PP-DE algorithm. 

 

The pre-calculated weighting factors were used to generate a ω image using a-

priori CT data. The CT images of the Rando phantom were exported in Digital Imaging 

and Communications in Medicine (DICOM) format and read into an in-house Matlab 

program. The images were segmented into air, lung, soft-tissue, and bone using 

Hounsfield Unit (HU) values for each voxel. The segmentation threshold ranges were 
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pixels less than -840 HU for air, [-840 to -650] HU for lung, [-650 to 250] HU for soft-

tissue, and pixels greater than 250 HU for bone. The segmented volumes were used to 

create separate mask images for each tissue type. For each tissue type, digitally 

reconstructed radiographs (DRRs) were calculated to create beam’s eye view (BEV) 

images seen from each ExacTrac x-ray source. The ExacTrac x-ray source and flat panel 

detector geometry were modeled to account for the azimuth (45o) and elevation (42o) x-

ray tube angles (Figure 2.1b). The source to isocenter distance (≈ 217 cm) and source to 

detector distance (≈ 340 cm) were modeled to ensure the correct FOV at isocenter (≈13 

cm) and at detector surface (≈20.3 cm). Virtual rays were modeled as 3D vectors to 

connect the source point on the x-ray tube to each (512x512) pixel on the ExacTrac 

detector plane. DRRs were created by ray tracing through each tissue type volume using 

Siddon’s method that accounts for ray length within each CT voxel 36. The total length of 

each ray is the overall tissue thickness; thus the DRR image is a map of tissue thickness 

for a given tissue type. The lung thickness DRR was scaled by a density ratio between 

lung and soft-tissue to convert lung thickness to its equivalent soft-tissue thickness. Thus, 

two separate DRRs were generated, one for total soft-tissue thickness and one for total 

bone thickness. Additionally, a DRR for the overall radiological path was created by 

calculating the total attenuation through the ray for both bone and soft-tissue. Note that in 

this paper, the DRR’s refer to BEV images of ExacTrac which indicate tissue thicknesses 

rather than the summation of attenuation coefficients to calculate radiological path length. 

PP-DE algorithm was implemented that calculates an energy subtracted DE image 

but assigns a weighting factor value to each pixel-based on the pixel location on the bone 

and soft-tissue DRRs. Each pixel location has a known bone and soft-tissue thickness pair 
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owing to a-priori CT dataset for the given patient. The assigned DE weighting factor 

values are determined from the pre-calculated weighting factors from the step phantom 

experiment (section 2.3.B1). As the bone and soft-tissue thicknesses of the step phantom 

are discrete, the weighting factors for different pixel locations on the DRRs were 

generated by interpolation (or extrapolation if needed) to produce a weighting factor 

image. The weighting factor image was then applied to the DE subtraction Eq.(2.1) on a 

pixel-by-pixel basis to produce a new DE image. The signal-to-noise ratio (SNR) was 

calculated for each ROI in Figure 2.2a using the mean and standard deviation values for 

the PP-DE and two conventional DE images. The two conventional DE images used were 

those that required a constant weighting factor to remove 2cm bone (rib) and 6 cm bone 

(spine) separately. The PP-DE image uses the optimal weighting factor for each bone 

overlapped ROI and generates an image, therefore 12 weighting factors were used unlike 

the two conventional DE images.  

 

2.4. Results 

 

2.4.A. PP-DE Algorithm 

 

Figure 2.5a illustrates the change of CNR as a function of weighting factor for 

the 2 cm and 6 cm bone region overlapped with 20 cm soft-tissue for the step phantom 

from one of the four experiments. Similar results were obtained for other regions (data 

not presented). The optimal weighting factor to eliminate 2 cm bone (via CNR≈0) is 

0.780. Likewise, the optimal weighting factor to eliminate 6 cm of bone is 0.927. Figure 
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2.5b demonstrates the conventional DE image when applying a constant weighting factor 

of 0.780 to the entire image. The intensity between the soft-tissue only region (0 cm 

bone) and the overlap region (2cm bone) is nearly identical indicating bone cancellation. 

However, the 6 cm bone region presents with a distinct positive contrast indicating 

incomplete bone suppression; i.e. positive CNR in Figure 2.5a and brighter intensity in 

Figure 2.5b.  Increasing the weighting factor to 0.927 in Figure 2.5c eliminates the 

contrast between the 6 cm bone overlap and the 20 cm soft-tissue. However, the 2 cm 

bone has now over-suppressed presenting with a negative contrast; i.e. negative CNR in 

Figure 2.5a and darker intensity in Figure 2.5c. In addition, Figure 2.5c (with ω =0.927) 

appears noisier than Figure 2.5b (with ω=0.780) in all corresponding regions.  

 

 

Figure 2.5: CNR graphs (a) with the corresponding DE images for 20 cm soft-tissue 

when overlapped with either 2 cm or 6 cm bone overlap (b, c respectively). The 

optimal weighting factor is 0.780 for the 2 cm bone (e.g. representing rib) and 0.927 

for the 6 cm bone (e.g. representing spine). 

 

Figures 2.6a, 2.6b, and 2.6c depict the DRR images of the Rando phantom for 

soft-tissue, bone and total radiological pathlength respectively. Due to ExacTrac 

geometry with oblique beam angles, these images are not simple anterior-posterior or 
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lateral views. However, the spine and ribs can be readily identified. The range of soft-

tissue and bone thicknesses were [5 - 26 cm] and [0 - 7 cm] respectively which was 

similar to the step phantom thickness ranges. In general, the soft-tissue thicknesses were 

relatively uniform spanning largely over [20 - 25 cm] range. Regarding the bones, the 

ribs varied in thickness between [1 - 2 cm], whereas the spine was much thicker with a [4 

- 7 cm] range. 

  

 

Figure 2.6: Soft-tissue (a) and bone (b) DRRs created by ray tracing through CT data from the 

Rando phantom. The total radiological DRR (c) includes both soft-tissue and bone. Weighting 

factor image (d) produced by using the a-priori information from the DRRs. 

 

Figure 2.6d illustrates the weighting factor image for the Rando phantom 

generated using the PP-DE algorithm. As the Rando phantom thickness ranges were 
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comparable to those of the step phantom, most weighting factors only needed 

interpolation. However, occasional extrapolations were used especially for those pixels 

with exceeding 6 cm bone thickness. 

The range of weighting factors in Figure 2.6d was [0.632 – 0.986] and the general trend 

was that regions with thicker bone or soft-tissue required greater weighting factors to 

cancel bone. The bright yellow regions with large weighting factors indicate the spine 

with [4 - 7 cm] and/or >25 cm soft-tissue.  

Figure 2.7a is the clinical single energy image of the Rando phantom at 120 kVp, 

illustrating the presence of bone and soft-tissue overlap. The visibility of the solid water 

tumor insert is reduced due to the presence of rib overlap. Figures 2.7b and 2.7c 

demonstrate the conventional DE image of the Rando phantom which uses a constant 

weighting factor across the image to eliminate either rib or spine respectively. A constant 

weighting factor to cancel the ribs presents a positive spine contrast (Figure 2.7b). 

Increasing the weighting factor to cancel the spine causes a negative contrast on the ribs 

while increasing the noise level across the image (Figure 2.7c). These effects are similar 

to the step phantom results in Figure 2.5. Figure 2.7d demonstrates the novel PP-DE 

image, which uses the weighting factor image in Figure 2.6d for each individual pixel. It 

is evident from the new DE image that both rib and spine cancellation occur 

simultaneously. The tumor visualization has been improved with the conventional DE 

image in Figure 2.7b in comparison to the single energy in Figure 2.7a. However, the 

tumor contrast appears to be improved further in Figure 2.7d indicating better tumor 

visualization. The new DE image (Figure 2.7d) appears less noisy than both 

conventional DE images (Figures 2.7b, 2.7c). 
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Figure 2.7: Clinical single energy x-ray image (a). Conventional DE image with a 

constant weighting factor across the image to cancel either the ribs (b) or spine (c). The 

PP-DE image (d) provides both rib and spine cancellation. Note the higher tumor 

contrast in the DE images compared to the single energy (red arrow). The pixel passed 

DE image provides both better tumor contrast and lower noise compared to the 

conventional DE images.  
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Figure 2.8: Signal-to-noise (SNR) comparison between the PP-DE algorithm and 

conventional DE techniques demonstrating improved SNR at lower weighting factors. 

 

Figure 2.8 demonstrates the relationship between the SNR and weighting factor 

for conventional DE and the PP-DE algorithms obtained from the step phantom. The 

SNRs for the conventional DE rib and spine (orange and grey curves) correspond to 

different bone overlapped regions in Figure 2.5b and 2.5c respectively. For both 

conventional and PP-DE algorithms, SNRs monotonically decrease with increasing 

weighting factor. At lower weighting factors, the SNR in the PP-DE image is greater than 

both conventional DE techniques. However, at larger weighting factors (when ω > 

0.927), the opposite is true. These results are obtained using the step phantom, however, 

note that the ω range in the Rando phantom does not exceed 1.0 (Figure 2.6d). The two 
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red arrows indicate points when the PP-DE curve (blue) crosses the conventional DE 

curves (orange and grey) at weighting factors of 0.780 and 0.927 as indicated by the red 

arrows. This is because the PP-DE image also used weighting factors of 0.780 and 0.927 

in the formation of the new DE image for those specific ROIs, therefore they will have 

the same SNRs. 

 

2.4.B. Parameters Affecting Weighting Factor 

 

Figure 2.9 illustrates the results of the scatter removal experiment using the step 

phantom for LE (60 kVp). Similar results were obtained for HE (140 kVp) (data not 

presented). Figure 2.9a is the acquired LE x-ray image (has both primary and scatter) 

where the steel beam stopper points are visible in each ROI. Figure 2.9b is the scatter 

image obtained by interpolating the scatter signals under each steal pin. The scatter 

fraction image in Figure 2.9c indicates how much scatter contributes to total signal in 

each ROI. As expected, regions with thicker bone or soft-tissue have larger scatter 

fraction due to greater scatter contribution. The opposite trend is observed for the scatter 

image (Figure 2.9b) as the absolute signal values are affected by the attenuation. The 

ROIs with 30 cm soft-tissue contribute extremely large amounts of scatter, where the 

scatter fractions are up to 0.85 for LE (and 0.70 for HE), indicating the majority of signal 

in this region is from the scatter radiation. Once the scatter image in Figure 2.9b was 

subtracted from the LE image (Figure 2.9a), a scatter corrected x-ray image was 

generated as per Figure 2.9d.  



71 
 

 

Figure 2.9: The LE x-ray image with the steel pins (a). The LE scatter interpolated 

image (b) where most of the absolute scatter signal appears at thinner areas. The 

scatter fraction image (c) demonstrates that the majority of signal in thicker regions 

is from scatter. The scatter corrected LE image (d). 

 

Table 2.1 summarizes the measured and theoretical weighting factors at different 

bone and soft-tissue thickness pairs. Tables 2.1a and 2.1b outlines the results of the 

measured weighting factors using the step phantom before and after scatter removal 

respectively. Similarly, the theoretical weighting factors using the Spektr simulation are 

summarized. The theoretical weighting factors for an ideal detector with monoenergetic 

and polyenergetic beams are presented in Table 2.1c and 2.1d respectively. Table 2.1e 

are the theoretical weighting factors for polyenergetic beams when non-ideal detector 

effects are included.   
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Figure 2.10 demonstrates the plots of the ratios of mean measured to theoretical 

weighting factors for corresponding thickness pairs and illustrates the effects of various 

parameter. These parameters include scatter, beam hardening (using polyenergetic 

beams), and detector effects (quantum efficiency and energy absorption). When all 

parameters are included, the theoretical weighting factors match those of the measured 

weighting factors within 3% for all thickness pairs. The only discrepancy was for the 

region with 30 cm soft-tissue and 6 cm bone which is caused by the loss of measured 

signal due to excess attenuation leaving only noise after scatter removal.  
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Table 2.1: Measured ((a) and (b)) and theoretical ((c) to (e)) weighting factors 

demonstrating the effects of different imaging parameters. In (a) and (b) values are mean 

± standard deviation. 

 
Soft-tissue 

(cm) 

(a) Measured 

30 1.285 

±0.002 

1.311 

±0.013 

1.372 

±0.013 

20 0.784 

±0.002 

0.852 

±0.002 

0.937 

±0.004 

10 0.651 

±0.000 

0.673 

±0.001 

0.708 

±0.001 

5 0.633 

±0.000 

0.648 

±0.001 

0.664 

±0.000 

Bone (cm) 2 4 6 

 

 

 

 

Soft-tissue 

(cm) 

(b) Measured (scatter 

corrected) 

30 0.656 

±0.022 

0.654 

±0.034 

0.843 

±0.056 

20 0.643 

±0.006 

0.637 

±0.006 

0.638 

±0.016 

10 0.646 

±0.005 

0.650 

±0.003 

0.654 

±0.007 

5 0.636 

±0.002 

0.646 

±0.001 

0.654 

±0.002 

Bone (cm) 2 4 6 

Soft-tissue 

(cm) 

(c) Theoretical (monoenergetic & 

ideal detector) 

30 0.371 0.371 0.371 0.371 

20 0.371 0.371 0.371 0.371 

10 0.371 0.371 0.371 0.371 

5 0.371 0.371 0.371 0.371 

0 0.371 0.371 0.371 0.371 

Bone (cm) 0 2 4 6 

 

Soft-tissue 

(cm) 

(d) Theoretical (polyenergetic & 

ideal detector) 

30 0.582 0.588 0.593 0.597 

20 0.582 0.590 0.596 0.600 

10 0.579 0.591 0.598 0.602 

5 0.571 0.592 0.599 0.604 

0 0.549 0.591 0.600 0.605 

Bone (cm) 0 2 4 6 

 

Soft-tissue 

(cm) 

(e) Theoretical (polyenergetic & 

detector effects) 

30 0.582 0.645 0.640 0.645 

20 0.582 0.644 0.650 0.655 

10 0.579 0.637 0.642 0.675 

5 0.571 0.622 0.638 0.649 

0 0.549 0.625 0.644 0.648 

Bone (cm) 0 2 4 6 
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Figure 2.10: Ratios of weighting factors (measured/ simulated) for various soft-tissue 

and bone thicknesses. 

 

2.5. Discussion 

 

In this study, a novel PP-DE algorithm was developed and implemented in a 

clinical x-ray imaging system.  This algorithm overcomes the limitation of the 

conventional DE algorithm in removing given tissue type throughout the image with 

improved noise and contrast. Although this technique was demonstrated on one imaging 

system, the algorithm is general and can be applied to other imaging systems provided 

that step phantom calibration is performed to acquire pre-calculated weighting factors. 

Since calibration uses clinical LE and HE beams, beam hardening effects are inherently 

included. In order to assign the weighting factors, the algorithm takes the advantage of a-

priori CT images which is typically already available for radiotherapy (RT) patients. In 

principle, it could also be applied to non-RT patients if a pre-CT is available. However, 

this requirement may not always be met, or the pre-CT may not be in the same patient 

position.   
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The novel DE algorithm in this study produced soft-tissue-only images by 

removing bone overlap using Eq.(2.1) which could be used in clinical applications such 

as daily IGRT of lung SBRT patients. Similar results would be expected if PP-DE 

algorithm was developed to produce bone-only images which could be useful for 

different clinical applications such as spine SBRT. In this case, Eq.(A.37) from the 

Appendix should be used and the step phantom should be modified to include a slab with 

zero soft-tissue thickness.  

The calibration step phantom (Figure 2.1a) had only two tissue types: solid water 

(representing soft-tissue) and an average bone mimicking material. Other tissue types 

may exist in the patient such as lung or different kinds of bones (cortical or trabecular). 

Fortunately, the a-priori CT images contain information on all these different tissue types 

since each type has a distinct HU value. The linear attenuation coefficients for Compton 

interactions depend on density, while the photoelectric interactions depend on both 

density and atomic number. Therefore, density scaling is valid for tissues that are 

different only in density while their effective atomic numbers are similar (e.g. lung and 

soft-tissue). Density scaling may also be applied to different types of bones with similar 

effective atomic numbers but different densities. However, if the variation in atomic 

number is high a modification of the step phantom may be required.  

In general, the new DE algorithm had better noise properties than the 

conventional DE algorithm. This is confirmed for the Rando phantom (Figure 2.7), the 

step phantom (Figure 2.5), and the SNR plot (Figure 2.9). The noise level in Figure 

2.7d visually appears to be lower than both Figure 2.7b and 2.7c due to lower weighing 

factors for most pixels. Similarly, the visually lower noise content in Figure 2.5b of the 
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step phantom compared to the corresponding regions in Figure 2.5c is due to lower 

weighting factor. Figure 2.9 demonstrates that SNR of DE image monotonically 

decreases with increasing weighing factor ω. This can be explained by two different 

causes. The first is the noise propagation in the log-subtraction technique, in which the 

DE noise 𝜎𝐷𝐸 can be obtained using 63,64,71,72:  

𝜎𝐷𝐸
2 = 𝜎𝐻𝐸

2 + 𝜔2𝜎𝐿𝐸
2            (2.4)                                                          

where 𝜎𝐿𝐸 and 𝜎𝐻𝐸 are the signal noise of the LE and HE images respectively. Note that 

this equation is strictly correct for simple log subtraction while in this study noise is 

suppressed using the ACNR technique.26,29,30 However, since ACNR was applied to both 

PP-DE and the conventional DE algorithms, the improved noise in the PP-DE algorithm 

is expected.  

The second reason of reduced SNR for higher ω pertains to the fact that thicker 

regions (with larger ω) attenuate more x-rays reducing the relative signal in these regions 

and thus will have more relative quantum noise due to less number of photons.  This is 

observed in the step phantom images in Figure 2.5b (or 2.5c), where thicker regions 

within each image appear noisier.   

 This study also established theoretical basis of various parameters that affect 

weighting factors in log-subtraction DE algorithm. Analytic expressions for weighting 

factors are derived in the Appendix, simulated in Spektr, and validated by matching to 

experimental results. The parameters that affect weighing factors are beam hardening (for 

polyenergetic beams), scatter, and detector response as summarized in Table 2.1. Note 

that although the range of weighting factors in this table is small, they have large effects 

on the final DE image since the effect of ω is logarithmic as per Eq.(2.1). In the simple 
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monoenergetic case, all weighting factors are constant at different regions (Eq.(A.7), 

Table 2.1c). Figure 2.10 suggests that scatter and beam hardening are two major 

parameters affecting ω. As expected, the effect of scatter depends on the patient 

thickness; i.e. larger effects on ω for thicker regions. This is due to larger scatter fraction 

in thicker regions (Figure 2.9c). The pre-calculated ω values using the step-phantom 

(Table 2.1a) includes scatter effects which may be different than patient scatter due to 

different geometry. Although the scatter fraction image (Figure 2.9c) suggests that most 

scatters are small angle scattering, it is best to minimize the scatter using established 

methods such as anti-scatter grids.  

Table 2.1d indicates that when beam hardening effects are taken into account for 

polyenergetic beams, weighting factors are no longer constant but increase in thicker 

regions. This can be explained by Eq.(A.9) as beam hardening increases the effective 

beam energy for both LE and HE hence reducing 𝜇
𝑏
. However, 𝜇̅ 𝐿

𝑏  decreases more than 

𝜇̅ 𝐻
𝑏  thus increasing ω for thicker regions. Note also that beam hardening effects on ω is 

more pronounced when only a few cm of (soft-tissue or bone) material is added to zero 

thickness. At large thicknesses when the beams are hardened enough, this effect quickly 

diminishes.    

 Figure 2.10 and Table 2.1e indicates that the effects of detector response on ω is 

relatively small (compared to scatter and beam hardening effects) while not negligible.  

The weighting factors in the bone overlapping regions increased from values in Table 

2.1d except for the ROIs with no bone. This is explained by Eq.(A.22), where the effect 

of no bone reduces the equation for weighting factor into Eq.(A.9). Once all the 

parameters affecting ω are incorporated, the measured and theoretical weighting factors 
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are in close agreement as observed in Figure 2.10. A 3% agreement between 

measurement and simulation ω was obtained for all regions except for the thickest region 

(30 cm soft-tissue overlapped with 6 cm bone). At this region, the majority of signal was 

attenuated, leaving only noise signal. 

The novel PP-DE algorithm relies on correct alignment between DRRs and 

projection LE and HE images to assign a suitable weighting factor for each pixel. In 

practice, patients may be mis-aligned especially at first initial setup. The mis-alignment 

problem may be overcome or reduced by first using one of the acquired (LE or HE) 

images to register to the DRR before determining the weighting factors. Alternatively, 

bone-only conventional DE images may be first produced and then registered to the 

bone-only DRR to obtain registration parameters. Since the registration is performed on 

2D projection images, this extra step should not require excessive computational time.  

 

2.6. Conclusion 

 A novel patient specific pixel-based DE algorithm was developed which uses a-

priori CT information to assign pre-calibrated weighting factors for different pixels 

depending on bone and soft-tissue thickness. In comparison to the conventional DE 

algorithm, it provides complete selective tissue suppression throughout the image at 

various patient thicknesses with improved noise properties. Additionally, analytic 

expressions were derived to describe the dependence of DE weighting factors on various 

parameters such as beam hardening, scatter, and detector response. The expressions were 

simulated, and the results were validated with experiment.  
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Chapter 3: Conclusion 

 

Diagnostic and RT applications of DE could serve as a beneficial technique for 

improving patient care. Generating soft-tissue-only images are particularly useful in 

enhancing the tumor visualizations valuable for IGRT in lung SBRT patients.73,74 In 

terms of lung SBRT, soft-tissue only DE images are useful in cases where the tumor is 

overlapped with bony structures such as rib or spine. This thesis described the 

development of the novel PP-DE algorithm and its implementation on a clinical kV IGRT 

system. The PP-DE algorithm offers several advantages for lung SBRT. The PP-DE 

algorithm incorporates patient specific information to overcome the drawback of 

incomplete bone suppression in conventional DE. Using a step phantom of known tissue 

thicknesses allows for the inherent correction of beam hardening effects when acquiring 

the pre-calculated weighting factors. By exploiting the pre-existing CT information, 

DRRs in the BEV of the kV imaging system can be developed, where each pixel has a 

unique bone and soft-tissue thickness. The PP-DE technique provides complete bone 

cancellation, reduces noise, and enhances tumor visualization.  

In addition to developing and implementing the novel PP-DE algorithm, this 

thesis also investigated theoretical effects of various imaging parameters on the 

weighting factor used in DE imaging. Using Spektr simulation tool, realistic imaging 

effects such as polyenergetic spectra and flat panel detector response were modeled. 

Since Spektr only simulates primary spectra, effects of scatter was corrected by 

measurements. Theoretical expressions describing the effects of these parameters were 

derived analytically, simulated in Spektr, and validated by measurements. There was a 
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3% agreement between measured weighting factor and Spektr simulated weighting 

factor.  

This thesis provided a promising direction for the use of the PP-DE technique. 

However, there are some other areas in this work that can be further improved or 

investigated to expand the effectiveness of this technique. This chapter focuses on future 

work directions related to improving the PP-DE algorithm and DE in general. 

 

3.1. Modification of Step Phantom 

 

As noted in chapter 2, the range of pre-calculated weighting factors extend from 

0.6 to 1.4. The thicker tissue regions have most distinctive attenuation and scatter effects 

and thus experience the most noise in the image. As per Table 2.1a, there is a large jump 

in weighting factors as the soft-tissue increases in thickness. The addition of 10 cm of 

soft- tissue causes large jumps in weighting factors when increasing from 10 cm to 20 cm 

and especially from 20 cm to 30 cm. The PP-DE algorithm calculates the optimal patient 

specific weighting factor via interpolation from pre-calculated weighting factors. Since 

there is a large difference in weighting factor values with the addition of 10 cm of soft-

tissue, the interpolation may not necessarily be completely accurate.  

To obtain a finer resolution in pre-calculated weighting factors, the step phantom 

would have to be modified to include additional thicknesses of soft-tissue and bone. As 

per Table 2.1a, it appears the effects of adding 5 cm of soft-tissue on weighting factor are 

less dramatic compared to adding 10 cm. Therefore, the addition of 15 and 25 cm of soft-
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tissue could be useful to improve the resolution of pre-calculated weighting factors. In 

addition, 1, 3, and 5 cm of bone can be added to acquire finer pre-calculated weighting 

factors. This modification would allow for the collection of 36 pre-calculated weighting 

factors as in Figure 3.1, which is an improvement from the current version with 12 

weighting factors. Note that a slab of zero thickness soft-tissue is also included to also 

allow bone-only PP-DE algorithm implementation (see section 3.6). 

 

Figure 3.1: The proposed modification of the step phantom of soft-tissue and bone slabs 

to allow storing 36 pre-calculated weighting factors outlined in the red square. 

 

The addition of these regions would allow for a more accurate interpolation of 

weighting factor during the generation of the PP-DE image. In addition, this could also 

allow more investigation into the effects of scatter with an increase in region thickness, to 

improve scatter correction. Creating more overlap regions in the step phantom can also be 

used to determine the thicknesses at which the noise starts to dominate the signal. This 

can be useful in determining the limiting thickness such that the measured weighting 

factors becomes invalid. 
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3.2. Scatter Correction on ExacTrac 

 

 As demonstrated in this thesis, the effects of scatter played a significant role in the 

determination of optimal weighting factor. To allow comparison between measured and 

simulated weighting factor, scatter was removed from the measured data using a tray of 

steel pins. The scatter under the steel pins was interpolated to determine the scatter across 

both the LE and HE image, as well as the scatter to primary ratio and scatter fraction. As 

illustrated by the LE scatter fraction image in Figure 2.9c, for the thinner regions scatter 

plays a minimal role in the overall signal. However, the thicker regions (30 cm soft-

tissue) are heavily influenced by scatter, such that it dominates the useful primary signal. 

This indicates a major problem which requires a pressing need for scatter removal on the 

ExacTrac system.  

One technique for scatter removal is to include a large air gap between the patient 

and the detector. An air gap degrades spatial resolution due to focal spot finite size, while 

additional magnification causing improvements in spatial resolution. Common distances 

for effective air gaps in chest radiography are between 20 and 30 cm.75 The air gap 

between the ExacTrac isocentre and flat panel detector is approximately 123 cm. 

However, even with such a large gap, our results indicate that there is substantially large 

scatter signal. To verify the efficiency of scatter reduction via air gap, the step phantom 

was moved away from the detector in steps of 10 cm from an initial distance of 113 cm 

away from the detector. The intensity in each of the 16 ROIs was calculated when 

varying the gap distance to investigate whether scatter reduces with increasing air gap 
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and diminishes to negligible amounts at large air gaps, as described in literature.10 The 

results of the air gap experiment for both LE and HE are illustrated in Figure 3.2.  

 

Figure 3.2: Mean ROI intensity in a region with 30 cm soft-tissue and 6 cm bone 

overlap as a function of air gap for both LE (a) and HE (b). 

 

For the LE results, the mean intensity in the ROI decreases with gap size until the 

143 cm distance where it increases. The HE results are similar for the first two distances, 

however the mean ROI intensity increases at a gap size of 133 cm, and then dramatically 

decreases. Although the underlying reason is not exactly clear, both these plots indicate 

inconsistent support of the expected scatter trends with increasing air gap. Due to these 

discrepancies, a different method using the steel pin tray was implemented for a complete 

and successful scatter removal.   

As described in the introduction chapter, one of the most effective tools for scatter 

removal is the use of anti-scatter grids. Anti-scatter grids reduce scatter thus improve the 

contrast at the expense of increasing patient dose. While limited technical specs on 
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ExacTrac detector are available, the results of the scatter fraction above indicates the 

absence of such device. Therefore, designing and implementing a focused anti-scatter 

grid would be a direct method and useful in reducing overall scattered radiation. 

An alternative method for scatter removal is to simulate scatter using MC with the 

same patient and x-ray geometries. For IGRT applications, this method exploits pre-

existing planning CT images and was studied for other imaging systems such as linac 

mounted CBCT imaging. A study by Watson et al developed a scatter artifact correction 

strategy using raw CBCT projections.76 Their method involved converting reconstructed 

voxel attenuation coefficients to densities and importing them into the MC simulation to 

create primary and scatter distributions for each projection angle. A scatter correction 

formula was applied to the data and then 3D reconstructed. A similar scatter correction 

method could be applied to the ExacTrac planar imaging system, where a MC simulation 

can performed with latch bits to create a scatter-only image to subtract from the raw 

image.  

Another method for scatter removal is to make use of a priori CT which has been 

studied to suppress scatter in CBCT.77 In this method the raw projection image is 

subtracted from forward projected CT data to estimate the scatter image. The scatter 

image is then subtracted from the raw image to obtain scatter corrected image.  Scatter 

removal is expected to improve the tumor contrast which is in addition to the contrast 

improvement of the PP-DE technique discussed in the next section.  
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3.3. PP-DE Contrast Improvement 

 

 When comparing the PP-DE image to the conventional DE images, it was evident 

that there were improvements in bone cancellation, noise reduction, and tumor contrast. 

Below, analytic expressions are derived to investigate theoretical contrast improvement. 

In the case where there is a tumor, Figure A.1 from the Appendix can be modified to 

include interactions with a tumor of thickness t2 as per Figure 3.3. 

 
Figure 3.3: X-rays interacting with soft-tissue and bone with the addition of a tumor 

with thickness t2. 

 

 

The conventional DE image contrast between the ray that passes through tumor, soft-

tissue, and bone compared to the background of soft-tissue and bone is expressed as: 

𝐶 =  𝐼𝐷𝐸1−𝐼𝐷𝐸2
         (3.1) 
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where, 𝐼𝐷𝐸1
 is the intensity of the DE image passing through tumor, soft-tissue and bone, 

and 𝐼𝐷𝐸2
 is the intensity of the DE image passing through soft-tissue and bone only. The 

intensity of the LE and HE beam passing through soft-tissue and bone is given by 

Eq.(A.1) and Eq.(A.2) in the Appendix. The intensity of the LE and HE beams with the 

addition of a tumor is given as: 

𝐼𝐻 =  𝐼𝐻0𝑒−𝜇𝐻
𝑡 𝑡− 𝜇𝐻

𝑏 𝑏−𝜇𝐻
𝑡𝑢𝑡2        (3.2) 

𝐼𝐿 =  𝐼𝐿0𝑒−𝜇𝐿
𝑡 𝑡− 𝜇𝐿

𝑏𝑏−𝜇𝐿
𝑡𝑢𝑡2        (3.3) 

where 𝜇𝐿
𝑡𝑢 and 𝜇𝐻

𝑡𝑢 are the linear attenuations of the tumor for LE and HE beams 

respectively. Applying Eq.(2.1) for a soft-tissue only image for Eq.(3.2) and Eq.(3.3) 

gives: 

𝐼𝐷𝐸1
=  −𝜇𝐻

𝑡 𝑡 − 𝜇𝐻
𝑏 𝑏 − 𝜇𝐻

𝑡𝑢𝑚𝑡2 − 𝜔(−𝜇𝐿
𝑡 𝑡 − 𝜇𝐿

𝑏𝑏 − 𝜇𝐿
𝑡𝑢𝑚𝑡2)        (3.4) 

Likewise, for 𝐼𝐷𝐸2
: 

𝐼𝐷𝐸2
=  −𝜇𝐻

𝑡 𝑡 − 𝜇𝐻
𝑏 𝑏 − 𝜔(−𝜇𝐿

𝑡 𝑡 − 𝜇𝐿
𝑏𝑏)        (3.5) 

By applying Eq.(3.1), the contrast between the tumor and the background is calculated as: 

𝐶 = 𝑡2(−𝜇𝐻
𝑡𝑢𝑚 + 𝜔𝜇𝐿

𝑡𝑢𝑚)        (3.6) 

Unlike the conventional DE method which uses a single weighting factor across the 

image, the PP-DE algorithm uses patient specific pixel-based weighting factors which 

depend on the thickness of tissue. This means that the weighting factor ω1 for the ray 

passing through the tumor, soft-tissue, and bone will be different than the weighting 
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factor ω2 for the ray passing through only soft-tissue and bone. Therefore, Eq.(3.4) and 

Eq.(3.5) can be modified as: 

𝐼𝐷𝐸1
=  −𝜇𝐻

𝑡 𝑡 − 𝜇𝐻
𝑏 𝑏 − 𝜇𝐻

𝑡𝑢𝑚𝑡2 − 𝜔1(−𝜇𝐿
𝑡 𝑡 − 𝜇𝐿

𝑏𝑏 − 𝜇𝐿
𝑡𝑢𝑚𝑡2)    (3.7) 

𝐼𝐷𝐸2
=  −𝜇𝐻

𝑡 𝑡 − 𝜇𝐻
𝑏 𝑏 − 𝜔2(−𝜇𝐿

𝑡 𝑡 − 𝜇𝐿
𝑏𝑏)        (3.8) 

where 𝜔1 is the weighting factor to cancel bone in the presence of tumor and soft-tissue 

and 𝜔2 is the weighting factor to cancel bone in the presence of soft-tissue only. When 

applying Eq.(3.1), the contrast for the PP-DE algorithm is: 

𝐶 =  𝑡2(−𝜇𝐻
𝑡𝑢𝑚 + 𝜔1𝜇𝐿

𝑡𝑢𝑚) + (𝜔2 − 𝜔1)(−𝜇𝐿
𝑡 𝑡 − 𝜇𝐿

𝑏𝑏)       (3.9) 

In the case where 𝜔2 and 𝜔1 are the same, Eq.(3.9) reduces back to the 

conventional version in Eq.(3.6). What Eq.(3.9) suggests is that when the (𝜔2 −

𝜔1)(−𝜇𝐿
𝑡 𝑡 − 𝜇𝐿

𝑏𝑏) term is positive, the contrast in the PP-DE image is better than the 

conventional case given that the 𝑡2(−𝜇𝐻
𝑡𝑢𝑚 + 𝜔1𝜇𝐿

𝑡𝑢𝑚) term is also positive. In this case, 

the (𝜔2 − 𝜔1)(−𝜇𝐿
𝑡 𝑡 − 𝜇𝐿

𝑏𝑏) term is always positive since  𝜔1 is larger than 𝜔2 . This is 

because the tumor adds more soft-tissue thickness, thus more weight as per chapter 2. 

Therefore, (𝜔2 − 𝜔1) and  (−𝜇𝐿
𝑡 𝑡 − 𝜇𝐿

𝑏𝑏) will both be negative, resulting in a positive 

product. However, there may be certain cases where the contrast in the PP-DE image may 

be worse than the conventional DE image. This is due to the term 𝑡2(−𝜇𝐻
𝑡𝑢𝑚 + 𝜔1𝜇𝐿

𝑡𝑢𝑚), 

where depending on the value of 𝜔1, it could give a negative result. To determine when 

this is the case, LE and HE spectrum weighted linear attenuation coefficients for soft-

tissue for the 20 cm soft-tissue and 2 cm bone region was calculated and the (−𝜇𝐻
𝑡𝑢𝑚 +

𝜔1𝜇𝐿
𝑡𝑢𝑚) contrast term was plotted as a function of 𝜔1. The results are illustrated in 
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Figure 3.4, which indicates at which 𝜔1 values the contrast term is positive. The 

additional contrast term takes on a positive value for 𝜔1 values larger than 0.56. The 

weighting factors in Table 2.1b are all larger than 0.56 suggesting the expected tumor 

contrast improvement.  Note that the contrast terms above are based on the primary signal 

without the effect of scatter.  

 

 

Figure 3.4: The additional contrast term as a function of weighting factor. The range at 

which the additional contrast term is negative is from 0 to 0.56. 

 



89 
 

In order to verify the contrast improvement via measurement, a tumor plate was 

constructed (Figure 3.5a) with 12 cylindrical tumors (1 cm diameter, 3 cm height) and 

mounted on the step phantom to overlap with the 12 regions of soft-tissue with bone as 

per Figure 3.5b. Conventional DE and PP-DE images were created and the contrast 

between the tumor overlapped regions and the background was calculated and the results 

are presented in Figure 3.6. In this experiment, all 𝜔1 values are larger than 0.56, 

meaning that the additional term is always positive for these results.  

 

 

Figure 3.5: The tumor plate with 12 cylindrical tumors (a) and after mounting it to the 

step phantom (b). 

 

Referring to Figure 3.4, the PP-DE contrast should theoretically always be 

improved for ω>0.56. The weighting factors (𝜔2) in Figure 3.6 to cancel the rib region 
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(red rectangle) and the spine region (blue rectangle) for this experiment was 0.74 and 

0.82 respectively. However, when there is the addition of a tumor, the weighting factors 

within the tumor regions (𝜔1) increased to 0.79 and 0.88 respectively, while the previous 

background weighing factors remained the same. 

 

 

Figure 3.6: Conventional DE images with constant weighting factors to cancel either 2 

cm rib (a) or 6 cm spine (b) both on 20 cm soft-tissue. The PP-DE image (c) uses 

optimal weighting factors unique for each pixel. The contrast between the tumor and 

the background are displayed for bone overlap regions where (d) to (f) correspond to 

(a) to (c) respectively.  

 

The contrast in the PP-DE image Figure 3.6c for the tumors is more enhanced than the 

contrast in the conventional images Figure 3.6a and Figure 3.6b. This is also supported 

by Figure 3.6f, where the range of contrast values are significantly higher. For more in 
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depth analysis of contrast, it is best to scatter correct since the theoretical equations above 

were derived without the effect of scatter. 

 

3.4. Weighting Factor Image Alignment 

 

 The success of DE imaging depends greatly on the selection of weighting factor 

for the removal of specific tissue. Using an incorrect weighting factor leads to an 

incomplete cancellation of the tissue of interest. The PP-DE algorithm creates its image 

based on soft-tissue and bone DRRs as well as planar x-ray images. It is important that 

the BEV from the DRRs is matched with the x-rays to assure accurate alignment for 

tissue suppression. If the DRRs and x-ray images are not in the same geometry or 

misaligned, then there will also be a misalignment between the weighting factor image 

and the x-ray image. This means that improper weighting factors will be applied to every 

pixel in the x-ray image. Therefore, it is crucial that there is a pre-registered alignment 

between the DRRs and the x-ray images before the generation of the PP-DE image. The 

ExacTrac imaging system registers planar images to DRRs for patient alignment. The 

system pre-calculates a set of DRRs for a range of different patient shifts and rotations. 

The system then finds the DRR that is the most similar to the planar images and reports 

the shift and rotation values. To test how misalignment affects the PP-DE image, the 

weighting factor image (which are made from the DRRs) was shifted 0, 5, and 10 mm in 

the y-direction and the resulting PP-DE images are presented in Figure 3.7. These 

images clearly indicate misalignment between the BB in the x-ray and weighting factor 
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image. It appears that shifting the weighting factor image also shifts the overall PP-DE 

image. This could be because the weighting factor image plays such a pivotal role in 

Eq.(2.1) as it is logarithmic. 

  

 

Figure 3.7: PP-DE images formed by a misaligned weighting factor image and x-ray 

image where (a) is a 0 mm, (b) is a 5 mm shift, and (c) is a 10 mm. 

 

 While it is not investigated in this thesis, the misalignment problem can be solved 

or mitigated if one of the LE or HE x-ray images is registered to the DRRs before 

creating the weighting factor image to ensure alignment with important structures. 

Another strategy could be to generate a conventional bone-only DE image and register it 

with the bone DRR to determine the shifting parameters which can then be applied to the 

soft-tissue DRR to create the soft-tissue-only PP-DE image. Alternatively, a new 

algorithm may be developed such that the ω image may not be obtained from the a priori 

CT images but rather directly from the LE and HE images. In this approach, 

decomposition DE algorithm may be first applied to created equivalent bone and soft-
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tissue thickness images (see section 1.4.2). The decomposed images may then be used to 

create the ω image using pre-calculated weighing factors.       

 

3.5 Density Scaling of Different Tissues 

 

 In order to make an accurate usage of the pre-calculated weighting factors for the 

soft-tissue and bone, it was necessary that all tissues within the Rando phantom were 

converted to their equivalent thicknesses. Tissue materials included within the torso of 

the Rando phantom were soft-tissue, average bone, and lung mimicking material. 

Because the step-phantom did not include slabs of lung tissue, a conversion of lung 

thickness to soft-tissue thickness was calculated via density scaling. The density scaling 

between lung and soft-tissue was valid since both tissue types are very similar in atomic 

number and mass attenuation coefficient but only different in density. However, in a 

realistic clinical setting, a patient would be composed of several tissue types with 

different physical parameters as per Table 1.2. In particular, density scaling between 

different types of bone needs further investigation.  

 Tissue types in the human body may include cortical bone (dense compact bone) 

and trabecular bone (spongey bone). The densities of these bones are different as 

expected, however there is also a difference in atomic number between these two bones, 

which suggests a dissimilarity in mass attenuation coefficients. To verify the 

effectiveness of density scaling using different kinds of bone, small inserts of cortical and 

trabecular bone were placed inside the Rando phantom. Both bone types were density 
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scaled to convert to equivalent thicknesses of average bone which was used in the step 

phantom and then a PP-DE image of the Rando phantom was created. DRRs for cortical 

and trabecular bone were created and density scaled into average bone as per Figure 3.8 

 

 

Figure 3.8:  Non-density scaled bone DRR (a). Density scaled cortical bone (b) and 

density scaled trabecular bone (c) DRRs. Density corrected bone DRR (d). Weighting 

factor images corresponding to the non-density scaled bone DRR (e) and the density 

corrected bone DRR (f). 

 

Figure 3.8a is the bone DRR without the density scale corrections for the bone inserts. 

Density scale corrections for both the cortical and trabecular bone DRRs are 

demonstrated in Figure 3.8b and Figure 3.8c. A complete density scaled bone DRR is 

illustrated in Figure 3.8d, where the density scaled cortical bone is brighter indicating an 

increased average bone thickness and the opposite for trabecular. The weighting factor 

images for the non-scaled and scaled bone DRRs are displayed in Figure 3.8e and 

Figure 3.8f respectively. The scaled weighting factor image in Figure 3.8f is different 
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from the non-scaled image in terms of less weight to the trabecular bone insert, and more 

weight to the cortical bone insert. 

 

Figure 3.9: An HE image of the Rando phantom with the trabecular and cortical bone 

inserts (a). The PP-DE images created using the non-density scaled bone DRR (b) and 

the density scaled bone DRR (c). 

 

In Figure 3.9a, the presence of the trabecular and cortical bone inserts are present, where 

the cortical bone appears brighter due to its higher density and atomic number. The PP-

DE image in Figure 3.9b appears to be successful in cancelling some of the cortical 

insert, however the trabecular bone insert appears to still be visible. However, the 

opposite is seen in Figure 3.9c, where density scaling caused cancellation of the 

trabecular bone but not the cortical bone. This suggests that density scaling may not be 

valid for all bone types. The average bone used in this study is comprised of a mixture 

between the trabecular and cortical bone. Therefore, a possible reason for successfully 

suppressing the trabecular bone in Figure 3.9c could be that the majority of the average 

bone is composed of trabecular bone. To improve the PP-DE algorithm’s capability of 

tissue suppression for different bone types, modifications should be made to the step 

phantom to also include slabs of those specific tissues of interest (i.e. add slabs of cortical 
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bone to the step phantom and calculate weighting factor). Another simpler approach 

without modifying the step phantom is to multiply an atomic number correction factor to 

the density scaling factor, such that it scales different bone types correctly. This would be 

an empirical correction factor which depends on the energy and could be determined by 

try and error.  

 

3.6. Bone-only PP-DE Algorithm 

 

 The work in this thesis focused on developing the PP-DE algorithm and testing its 

efficacy for soft-tissue-only images. However, the PP-DE algorithm can also work for 

generating bone-only DE images. A bone-only PP-DE image can be used for patients 

with spinal metastases that have been obscured by the overlap of soft-tissue in the 

stereoscopic projection images. Thus it could have clinical applications for image 

guidance for spine SBRT patients. Creating a bone-only PP-DE image would be carried 

out in a similar manner as a soft-tissue-only PP-DE image. The major difference in terms 

of image formation is the modification of a step phantom. For soft-tissue-only, the step 

phantom was constructed such that there were overlaps with both bone and soft-tissue, 

but also regions of soft-tissue thickness alone. This was created such that when 

empirically finding pre-calculated weighting factors, the CNR in a bone overlapped 

regions could be directly compared to a soft-tissue only region. To determine the bone-

only pre-calculated weighting factors the same method can be used, however the step 

phantom needs to be modified such that there are regions of bone alone (i.e. having a slab 
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of zero thickness soft-tissue). The proposed step phantom design in section 3.1 (Figure 

3.1) includes this update.  

 With the updated step phantom design, the pre-calculated weighting factors can 

be calculated empirically similar to those of the soft-tissue. However, rather than 

applying Eq.(A.3) by means of finding CNR close to zero, the following equation needs 

to be applied: 

𝑙𝑛(𝐼𝐷𝐸(𝑡, 𝑏)) = 𝑙𝑛(𝐼𝐷𝐸(0, 𝑏 + 𝑡0)) (3.10) 

 Note that in this case t0 is always zero. This is because the soft-tissue thickness 

range is always larger than bone thickness range (see bone and soft-tissue DRRs in 

Figures 2.6a and 2.6b), thus adding large thicknesses of bone is not practical. To find the 

bone-only pre-calculated weighting factors, a CNR of region with bone and soft-tissue 

overlap now has to be compared to a region of bone alone. Generation of the DRRs will 

remain the same since this was based on CT information on soft-tissue and bone. The 

bone-only weighting factor image will be created similar to the soft-tissue-only, except it 

will use the bone-only pre-calculated weighting factors. Once the bone-only weighting 

factor image is generated, it will create the bone-only PP-DE image using Eq.(A.37) from 

the Appendix. It is important to note that when generating a bone-only PP-DE image, the 

weighting factor parameters in the ACNR algorithm should be modified accordingly for 

optimal noise suppression. 

 Much like the soft-tissue-only weighting factor, there will be effects of scatter, 

beam hardening, and detector response which will all influence the bone-only weighting 

factor. The weighting factor for soft-tissue suppression is reported as 𝜇𝐻
𝑡 /𝜇𝐿

𝑡  where 𝜇𝐿
𝑡  is 



98 
 

the LE linear attenuation for soft-tissue and 𝜇𝐻
𝑡  is the HE.10,26 The derivations of 

theoretical weighting factor expressions for bone-only weighting factor can be carried out 

the same way as the soft-tissue-only, but using LE and HE soft-tissue linear attenuations 

in place of bone. After considering all of the imaging effects, the modified formula for 

soft-tissue suppressing weighting factor is given by Eq.(A.39) in the Appendix. 

 

3.7. PP-DE with Bone Replaced by Soft-tissue 

 

 In this study, pre-calculated weighting factors for the step phantom were found by 

using Eq(A.3) with  𝑏0 = 0, where a CNR close to zero indicated the optimal bone 

suppressing weighting factor. However, for this case the bone is not replaced by soft-

tissue, but rather by air. This explains why the PP-DE image in Figure 2.7d has dark 

streaks where rib was replaced by air. If soft-tissue PP-DE images were to be generated 

by replacing the bone with soft-tissue rather than air, Eq.(A.3) would be written such that 

𝑏0 = 𝑏 rather than 𝑏0 = 0. Theoretically this should make the darker streaks in Figure 

2.7d appear more uniform since soft-tissue has been filled in those empty regions.  

 In order to create a PP-DE image where bone is replaced by soft-tissue, one can 

simply add the bone DRR to the soft-tissue DRR such that all of the pixels with bone 

overlap typically replaced by air is now substituted for soft-tissue. The soft-tissue and 

bone DRRs are displayed in Figure 3.10a and Figure 3.10b, however the new soft-tissue 

DRR with the bone thickness added is given in Figure 3.10c. The weighting factor image 

(Figure 3.10d) for the old soft-tissue and bone DRR is exactly the same as the one in 
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Figure 2.6d. When using the new soft-tissue DRR, the new weighting factor image 

(Figure 3.10e) has higher weighting factor values than the previous image since the 

thickness of soft-tissue has increased.  

 

 

Figure 3.10: Soft-tissue (a) and bone (b) DRRs. The new soft-tissue DRR (c) has 

added bone thickness to replace regions that had air. Weighting factor images for the 

old-soft tissue and bone DRR (d) and the new soft-tissue DRR (e). 

  

 Using the weighting factor images in Figure 3.10d and Figure 3.10e, PP-DE 

images were generated. Again, the single energy image in Figure 3.11a demonstrates the 

presence of bone and poor tumor visualization. The PP-DE image displayed in Figure 

3.11b demonstrates bone cancellation, where the bone has been replaced with air. 

However, the PP-DE image in Figure 3.11c appears to be enhancing the bone rather than 

suppressing it. It was theorized that the darker regions where rib was cancelled in Figure 
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3.11b would become more uniform with the replacement of air by soft-tissue, however 

that is not what is visualized in Figure 3.11c. A possible reason for this is that the 

weighting factors interpolated between 20 and 30 cm of soft-tissue are very high (due to 

scatter), therefore the overlap regions are more highlighted. With an efficient scatter 

reduction technique, a PP-DE image may be formed where bones are replaced by soft 

tissue correctly. The proposed updated step phantom in section 3.1 with finer step sizes 

could also help to prevent overestimating the weighting factors.  

 

Figure 3.11: Clinical single energy x-ray image (a). PP-DE image made from the old 

soft-tissue and bone DRR (b) and the PP-DE image made from the new soft-tissue 

DRR (c). 

 

3.8. Final Remarks 

 

 This thesis had two main objectives. The first objective was successfully 

accomplished by developing a novel patient specific pixel-based weighting factor DE x-

ray imaging system that is able to suppress all thicknesses of bone in an x-ray image. 

Compared to the conventional method which uses a uniform weighting factor across the 
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image, this new algorithm uses a unique weighting factor for every pixel based on the 

thickness of soft-tissue and bone in the given pixel location. In addition to bone 

cancellation, the novel DE algorithm demonstrated improved noise characteristics as well 

as enhanced tumor visualization. The images generated by the PP-DE algorithm can be 

used for both diagnostic and RT applications, especially in cases where there may be lung 

tumors obscured by different thicknesses of bone. 

 The second objective of this thesis was also achieved by deriving and validating 

theoretical expressions for weighting factor incorporating realistic imaging parameters 

such as polyenergetic spectra, scatter, and detector response. Most these effects were 

simulated using Spektr, however the scatter was removed from measurement. Once the 

measured data was scatter corrected, it was compared to the theoretical simulated 

weighting factors to validate the   accuracy of the modified equations with measurement. 

A 3% accuracy was achieved which effectively validates the derived theoretical 

expressions.  

 This thesis covered the PP-DE generation of soft-tissue only images which have 

applications in lung SBRT. However, future steps in this work would be to modify the 

step phantom to generate bone-only PP-DE images which may have applications for 

spine SBRT. Other important future research avenues were also highlighted. These 

include modifying the step phantom to achieve finer resolution of the weighting factors, 

implementing more efficient scatter removal strategies on the ExacTrac system, further 

investigations on the theory behind contrast improvement in the PP-DE algorithm, 

implementation of image registration algorithms to avoid misalignment issues, and 

updating the PP-DE algorithm to cancel different types of bones.   



102 
 

Bibliography 

 

1. Bushberg JT, Boone JM. The essential physics of medical imaging. 3rd ed. Lippincott 

Williams & Wilkins; 2011. 

2. Punnoose J, Xu J, Sisniega A, Zbijewski W, Siewerdsen JH. Technical note: Spektr 

3.0-A computational tool for x-ray spectrum modeling and analysis. Med Phys. 

2016;43(8):4711. doi: 10.1118/1.4955438 [doi]. 

3. Boone JM, Seibert JA. An accurate method for computer-generating tungsten anode x-

ray spectra from 30 to 140 kV. Med Phys. 1997;24(11):1661-1670. doi: 

10.1118/1.597953 [doi]. 

4. Fewell TR, Shuping RE. Handbook of mammographic X-ray spectra. HEW 

Publication (FDA); 1978. 

5. Fewell TR, Shuping RE, Healy KE. Handbook of computed tomography X-ray spectra. 

HHS Publication (FDA); 1981. 

6. NIST. X-ray mass attenuation coefficients. 

https://physics.nist.gov/PhysRefData/XrayMassCoef/tab4.html2017. 

7. Kawrakow I, Mainegra-Hing E, Rogers DWO, Tessier F, Walters BRB. The EGSnrc 

code system: Monte carlo simulation of electron and photon transport. . 2018;PIRS-701. 

8. Johns HE, Cunningham JR. The physics of radiology. 4th ed. Springfield, IL: Thomas; 

1974. 

9. Huda W. Review of radiologic physics. 3rd ed. Lippincott Williams & Wilkins; 2010. 

10. Burton CS, Mayo JR, Cunningham IA. Energy subtraction angiography is 

comparable to digital subtraction angiography in terms of iodine rose SNR. Med Phys. 

2016;43(11):5925. doi: 10.1118/1.4962651 [doi]. 

https://physics.nist.gov/PhysRefData/XrayMassCoef/tab4.html


103 
 

11. Beutel J, Kundel HL, Van Metter RL. Handbook of medical imaging. Bellingham, 

Washington: SPIE- The International Society for Optical Engineering; 2000. 

12. Kuhlman JE, Collins J, Brooks GN, Yandow DR, Broderick LS. Dual-energy 

subtraction chest radiography: What to look for beyond calcified nodules. Radiographics. 

2006;26(1):79-92. doi: 26/1/79 [pii]. 

13. Vock P, Szucs-Farkas Z. Dual energy subtraction: Principles and clinical 

applications. Eur J Radiol. 2009;72(2):231-237. doi: 10.1016/j.ejrad.2009.03.046 [doi]. 

14. Alvarez RE, Macovski A. Energy-selective reconstructions in X-ray computerized 

tomography. Phys Med Biol. 1976;21(5):733-744. 

15. Li H, Giles W, Ren L, Bowsher J, Yin FF. Implementation of dual-energy technique 

for virtual monochromatic and linearly mixed CBCTs. Med Phys. 2012;39(10):6056-

6064. doi: 10.1118/1.4752212 [doi]. 

16. Cardinal HN, Fenster A. An accurate method for direct dual-energy calibration and 

decomposition. Med Phys. 1990;17(3):327-341. doi: 10.1118/1.596512 [doi]. 

17. Lehmann L.A., Alvarez R.E., Macovski A., Brody W.R. Generalized image 

combinations in dual KVP digital radiography. Med Phys. 1981;8:659-667. 

18. Kamimura R, Takashima T. Clinical application of single dual-energy subtraction 

technique with digitial storage-phosphor radiography. J Digit Imaging. 1995;8:21-24. 

19. MacMahon H, Li F, Engelmann R, Roberts R, Armato S. Dual energy subtraction and 

temporal subtraction chest radiography. J Thorac Imaging. 2008;23(2):77-85. doi: 

10.1097/RTI.0b013e318173dd38 [doi]. 

20. Johnson TR. Dual-energy CT: General principles. AJR Am J Roentgenol. 2012;199(5 

Suppl):S3-8. doi: 10.2214/AJR.12.9116 [doi]. 



104 
 

21. Fischbach F, Freund T, Rottgen R, Engert U, Felix R, Ricke J. Dual-energy chest 

radiography with a flat-panel digital detector: Revealing calcified chest abnormalities. 

AJR, AM J Roentgenol. 2003;181:1519-1524. 

22. Kaza RK, Platt JF, Cohan RH, Caoili EM, Al-Hawary MM, Wasnik A. Dual-energy 

CT with single- and dual-source scanners: Current applications in evaluating the 

genitourinary tract. Radiographics. 2012;32(2):353-369. doi: 10.1148/rg.322115065 

[doi]. 

23. Euler A, Parakh A, Falkowski AL, et al. Initial results of a single-source dual-energy 

computed tomography technique using a split-filter: Assessment of image quality, 

radiation dose, and accuracy of dual-energy applications in an in vitro and in vivo study. 

Invest Radiol. 2016;51(8):491-498. doi: 10.1097/RLI.0000000000000257 [doi]. 

24. Yu L, Christner JA, Leng S, Wang J, Fletcher JG. Virtual monochromatic imaging in 

dual-source dual-energy CT: Radiation dose and image quality. Med Phys. 2011;38:6371-

6379. 

25. Engel KJ, Herrmann C, Zeitler G. X-ray scattering in single- and dual-source CT. 

Med Phys. 2008;35(1):318-332. doi: 10.1118/1.2820901 [doi]. 

26. Richard S, Siewerdsen JH. Cascaded systems analysis of noise reduction algorithms 

in dual-energy imaging. Med Phys. 2008;35(2):586-601. doi: 10.1118/1.2826556 [doi]. 

27. Richard S, Siewerdsen JH. Optimization of dual-energy imaging systems using 

generalized NEQ and imaging task. Med Phys. 2007;34(1):127-139. doi: 

10.1118/1.2400620 [doi]. 

28. Kalender WA, Klotz E, Kostaridou L. An algorithm for noise suppression in dual 

energy CT material density images. IEEE Trans Med Imaging. 1988;7(3):218-224. doi: 

10.1109/42.7785 [doi]. 



105 
 

29. Ergun DL, Mistretta CA, Brown DE, et al. Single-exposure dual-energy computed 

radiography: Improved detection and processing. Radiology. 1990;174(1):243-249. doi: 

10.1148/radiology.174.1.2294555 [doi]. 

30. McCollough CH, Van Lysel MS, Peppler WW, Mistretta CA. A correlated noise 

reduction algorithm for dual-energy digital subtraction angiography. Med Phys. 

1989;16(6):873-880. doi: 10.1118/1.596436 [doi]. 

31. Okunieff P, Petersen AL, Philip A, et al. Stereotactic body radiation therapy (SBRT) 

for lung metasteses. Acta Oncol. 2006;45(7):808-817. 

32. Ahmed KA, Stauder MC, Miller RC, et al. Stereotactic body radiation therapy in 

spinal metasteses. Int J Radiat Oncol Biol Phys. 2012;82(5):803-809. 

33. Bowman WA, Robar JL, Sattarivand M. Optimizing dual-energy x-ray parameters for 

the ExacTrac clinical stereoscopic imaging system to enhance soft-tissue imaging. Med 

Phys. 2017;44(3):823-831. doi: 10.1002/mp.12093 [doi]. 

34. Bissonnette JP, Balter PA, Dong L, et al. Quality assurance for image-guided 

radiation therapy utilizing CT-based technologies: A report of the AAPM TG-179. Med 

Phys. 2012;39(4):1946-1963. 

35. Podgorsak EB. Radiation physics for medical physicists. 3rd ed. Springer; 2016. 

36. Siddon RL. Fast calculation of the exact radiological path for a three-dimensional CT 

array. Med Phys. 1985;12(2):252-255. doi: 10.1118/1.595715 [doi]. 

37. Jacobs F, Sundermann E, De Sutter B, Christiaens M, Lemahiew I. A fast algorithm 

to calculate the exact radiological pathlength through a pixel or voxel space. Journal of 

Computing and Information Technology. 1998;6(1):89-94. 

38. International commission on radiation units and measurements. ICRU. report 46: 

Photon, electron, proton, and neutron interaction data for body tissues. . 1992. 



106 
 

39. Saito M, Sagara S. A simple formulation for deriving effective atomic numbers via 

electron density calibration from dual-energy CT data in the human body. Medical 

physics. 2017(44):2293-2303. 

40. van Elmpt W, Landry G, Das M, Verhaegen F. Dual energy CT in radiotherapy: 

Current applications and future outlook. Radiother Oncol. 2016;119(1):137-144. doi: 

10.1016/j.radonc.2016.02.026 [doi]. 

41. Srinivasan A, Parker RA, Manjunathan A, Ibrahim M, Shah GV, Mukherji SK. 

Differentiation of benign and malignant neck pathologies: Preliminary experience using 

spectral computed tomography. J Comput Assist Tomogr. 2013;37(5):666-672. doi: 

10.1097/RCT.0b013e3182976365 [doi]. 

42. Forghani R, Levental M, Gupta R, Lam S, Dadfar N, Curtin HD. Different spectral 

hounsfield unit curve and high-energy virtual monochromatic image characteristics of 

squamous cell carcinoma compared with nonossified thyroid cartilage. AJNR Am J 

Neuroradiol. 2015;36(6):1194-1200. doi: 10.3174/ajnr.A4253 [doi]. 

43. Chae EJ, Seo JB, Goo HW, Kim N, Song KS, Lee SD. Xenon ventilation CT with a 

dual-energy technique of dual-source CT: Initial experience. Radiology. 2008;248:615-

624. 

44. Hachulla AL, Pontana F, Wemeau-Stervinou L, et al. Krypton ventilation imaging 

using dual-energy CT in chronic obstructive pulmonary disease patients: Initial 

experience. Radiology. 2012;263(1):253-259. doi: 10.1148/radiol.12111211 [doi]. 

45. Yanagita H, Honda N, Nakayama M, Watanabe W, Shimizu Y, Osada H. Prediction 

of postoperative pulmonary function: Preliminary comparison of single-breath dual-

energy xenon CT with three conventional methods. Jpn J Radiol. 2013;31:377-385. 

46. Dhont J, Verellen D, Poels K, et al. Feasibility of markerless tumor tracking by 

sequential dual-energy fluoroscopy on a clinical tumor tracking system. Radiother Oncol. 

2015;117(3):487-490. doi: 10.1016/j.radonc.2015.08.021 [doi]. 



107 
 

47. Xu T, Ducote JL, Wong JT, Molloi S. Dynamic dual-energy chest radiography: A 

potential tool for lung tissue motion monitoring and kinetic study. Phys Med Biol. 

2011;56(4):1191-1205. doi: 10.1088/0031-9155/56/4/019 [doi]. 

48. Devic S, Monroe JI, Mutic S, Whiting B, Williamson JF. Dual energy CT tissue 

quantitation for monte-carlo based treatment planning for brachytherapy. . 2000. 

49. Landry G, Reniers B, Granton PV, van Rooijen B, Beaulieu L, Wildberger JE. 

Extracting atomic numbers and electron densities from a dual source dual energy CT 

scanner: Experiments and a simulation model. Radiother Oncol. 2011;100:375-379. 

50. Malusek A, Karlsson M, Magnusson M, Carlsson GA. The potential of dual-energy 

computed tomography for quantitative decomposition of soft tissues to water, protein and 

lipid in brachytherapy. Phys Med Biol. 2013;58:771-785. 

51. Tsukihara M, Noto Y, Sasamoto R, Hayakawa T, Saito M. Initial implementation of 

the conversion from the energy-subtracted CT number to electron density in tissue 

inhomogeneity corrections: An anthropomorphic phantom study of radiotherapy 

treatment planning. Med Phys. 2015;42(3):1378-1388. doi: 10.1118/1.4908207 [doi]. 

52. American Association of Physicists in Medicine. The role of in-room kV x-ray 

imaging for patient setup and target localization. report of task group 104 of the therapy 

imaging committee. . 2009. 

53. Wen N, Walls N, Kim J, et al. Clinical use of dual image-guided localization system 

for spine radiosurgery. Technol Cancer Res Treat. 2012;11:123-131. 

54. Linthout N, Verellen D, Tournel K, Reynders T, Duchateau M, Storme G. 

Assessment of secondary patient motion induced by automated couch movement during 

on-line 6 dimensional repositioning in prostate cancer treatment. Radiother Oncol. 

2007;83(2):168-174. doi: S0167-8140(07)00163-6 [pii]. 

55. Chang Z, Wang Z, Ma J, O'Daniel JC, Kirkpatrick J, Yin FF. 6D image guidance for 

spinal non-invasive stereotactic body radiation therapy: Comparison between ExacTrac 



108 
 

X-ray 6D with kilo-voltage cone-beam CT. Radiother Oncol. 2010;95(1):116-121. doi: 

10.1016/j.radonc.2009.12.036 [doi]. 

56. Stevens MT, Parsons DD, Robar JL. Continuous monitoring of prostate position 

using stereoscopic and monoscopic kV image guidance. Med Phys. 2016;43(5):2558. doi: 

10.1118/1.4947295 [doi]. 

57. Cheng CS, Jong WL, Ung NM, Wong JHD. Evaluation of imaging dose from 

different image guided systems during head and neck radiotherapy: A phantom study. 

Radiat Prot Dosimetry. 2017;175(3):357-362. doi: 10.1093/rpd/ncw357 [doi]. 

58. Williams DB, Siewerdsen JH, Tward DJ, et al. Optimal kvp selection for dual-energy 

imaging of the chest: Evaluation by task-specific observer preference tests. Med Phys. 

2007;34(10):3916-3925. doi: 10.1118/1.2776239 [doi]. 

59. Szucs-Farkas Z, Patak MA, Yuksel-Hatz S, Ruder T, Vock P. Single-exposure dual-

energy subtraction chest radiography: Detection of pulmonary nodules and masses in 

clinical practice. Eur Radiol. 2008;18(1):24-31. doi: 10.1007/s00330-007-0758-z [doi]. 

60. Hoggarth MA, Luce J, Syeda F, et al. Dual energy imaging using a clinical on-board 

imaging system. Phys Med Biol. 2013;58(12):4331-4340. doi: 10.1088/0031-

9155/58/12/4331 [doi]. 

61. Menten MJ, Fast MF, Nill S, Oelfke U. Using dual-energy x-ray imaging to enhance 

automated lung tumor tracking during real-time adaptive radiotherapy. Med Phys. 

2015;42(12):6987-6998. doi: 10.1118/1.4935431 [doi]. 

62. Shkumat NA, Siewerdsen JH, Dhanantwari AC, et al. Optimization of image 

acquisition techniques for dual-energy imaging of the chest. Med Phys. 

2007;34(10):3904-3915. doi: 10.1118/1.2777278 [doi]. 

63. Ducote JL, Xu T, Molloi S. Optimization of a flat-panel based real time dual-energy 

system for cardiac imaging. Med Phys. 2006;33(6):1562-1568. doi: 10.1118/1.2174131 

[doi]. 



109 
 

64. Karunamuni R, Maidment AD. Search for novel contrast materials in dual-energy x-

ray breast imaging using theoretical modeling of contrast-to-noise ratio. Phys Med Biol. 

2014;59(15):4311-4324. doi: 10.1088/0031-9155/59/15/4311 [doi]. 

65. Ho JT, Kruger RA, Sorenson JA. Comparison of dual and single exposure techniques 

in dual-energy chest radiography. Med Phys. 1989;16(2):202-208. doi: 10.1118/1.596372 

[doi]. 

66. Ay M.R., Sarkar S., Shahriari M., Sardari D., Zaidi H. Assessment of different 

computational models for generation of x-ray spectra in diagnostic radiology and 

mommography. Med Phys. 2006;32:1660-1675. 

67. BrainLAB. User guide imaging couch top. . 2010. 

68. Leong DL, Rainford L, Zhao W, Brennan PC. IEC 61267: Feasibility of type 1100 

aluminium and a copper/aluminium combination for RQA beam qualities. Phys Med. 

2016;32(1):141-149. doi: 10.1016/j.ejmp.2015.10.092 [doi]. 

69. IEC. Medical electrical equipment - characteristics of digital X-ray imaging devices - 

part 1: Determination of the detective quantum efficiency. . 2003. 

70. Hubbell JS, Seltzer SM. Tables of x-ray mass attenuation coefficients and mass 

energy-absorption coefficients from 1 keV to 20 MeV for elements Z = 1 to 92 and 48 

additional substances of dosimetric interest. Radiat Res. 1993;136:147-170. 

71. Molloi SY, Mistretta CA. Quantification techniques for dual-energy cardiac imaging. 

Med Phys. 1989;16(2):209-217. doi: 10.1118/1.596418 [doi]. 

72. Sabol J, Wheeldon S, Thompson SK. Simulated and experimental technique 

optimization of dual-energy radiography: Abdominal imaging applications. Medical 

Imaging. 2006;6142:545-556. 



110 
 

73. Hoggarth M, Luce J, Bray T, Block A, Roeske J. SU-E-J-44: Dual energy subtraction 

imaging to improve tumor visibility at oblique angles. Med Phys. 2012;39(6Part6):3662. 

doi: 10.1118/1.4734879 [doi]. 

74. Block AM, Patel R, Surucu M, Harkenrider MM, Roeske JC. Evaluation of a 

template-based algorithm for markerless lung tumour localization on single- and dual-

energy kilovoltage images. Br J Radiol. 2016;89(1068):20160648. doi: 

10.1259/bjr.20160648 [doi]. 

75. Newhouse VL. Progress in medical imaging. Springer-Verlag; 1988. 

76. Watson PG, Mainegra-Hing E, Tomic N, Seuntjens J. Implementation of an efficient 

monte carlo calculation for CBCT scatter correction: Phantom study. J Appl Clin Med 

Phys. 2015;16(4):216-227. doi: 10.1120/jacmp.v16i4.5393 [doi]. 

77. Park YK, Sharp GC, Phillips J, Winey BA. Proton dose calculation on scatter-

corrected CBCT image: Feasibility study for adaptive proton therapy. Med Phys. 

2015;42(8):4449-4459. doi: 10.1118/1.4923179 [doi]. 

78. Gang GJ, Zbijewski W, Webster Stayman J, Siewerdsen JH. Cascaded systems 

analysis of noise and detectability in dual-energy cone-beam CT. Med Phys. 

2012;39(8):5145-5156. doi: 10.1118/1.4736420 [doi]. 

79. Schmidt TG. Optimal "image-based" weighting for energy-resolved CT. Med Phys. 

2009;36(7):3018-3027. doi: 10.1118/1.3148535 [doi]. 

80. Roos PG. Multiple gain ranging readout method to extend the dynamic range of 

amorphous silicon flat panel imagers. SPIE Proc Phys Med Imaging. 2004;5368:139-149. 

         

 

 

 



111 
 

Appendix A 

 

In this section, we derive analytical expressions to theoretically demonstrate the 

effect of various parameters on DE weighting factors. These parameters include beam 

hardening, scatter, detector response, tube mAs, and detector gain. We will refer to 

Figure A.1 depicting LE and HE beams incident on the patient and the detector. 

 

A.1. Monoenergetic Case 

 

First, we assume monoenergetic HE and LE beams with no patient scatter and an 

ideal detector.  Using Lambert-Beer law, for beam intensities 𝐼𝐿0 and 𝐼𝐻0 incident on the 

patient, the detector signals 𝐼𝐿 and 𝐼𝐻 after passing through the patient are:  

𝐼𝐻 =  𝐼𝐻0𝑒−𝜇𝐻
𝑡 𝑡− 𝜇𝐻

𝑏 𝑏 (A.1) 

𝐼𝐿 =  𝐼𝐿0𝑒−𝜇𝐿
𝑡 𝑡− 𝜇𝐿

𝑏𝑏 (A.2) 

where 𝜇𝐻
𝑡  and 𝜇𝐿

𝑡  are the linear attenuation coefficients for soft-tissue for high and low 

energies, 𝜇𝐻
𝑏  and 𝜇𝐿

𝑏 are the corresponding values for bone, and 𝑡 and 𝑏 are the soft-tissue 

and bone thicknesses respectively. A linear log subtraction is applied as per Eq.(2.1) to 

calculate the soft-tissue-only DE image.  
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Figure A.1: LE and HE beams are detected after passing through soft-tissue and bone 

with thicknesses t and b respectively. 

 

 

To find a weighting factor in the soft-tissue-only DE image that replaces the bone with 

soft-tissue with thickness 𝑏0, the detected signal with and without bone thickness should 

be the same. Thus,  

𝑙𝑛(𝐼𝐷𝐸(𝑡, 𝑏)) = 𝑙𝑛(𝐼𝐷𝐸(𝑡 + 𝑏0, 0)) (A.3) 

−𝜇𝐻
𝑡 𝑡 − 𝜇𝐻

𝑏 𝑏 + 𝑙𝑛(𝐼𝐻0) + 𝜔𝜇𝐿
𝑡 𝑡 +  𝜔𝜇𝐿

𝑏𝑏 − 𝜔 𝑙𝑛(𝐼𝐿𝑜) =  −𝜇𝐻
𝑡 (𝑡 + 𝑏0) +

𝑙𝑛(𝐼𝐻0) + 𝜔𝜇𝐿
𝑡 (𝑡 + 𝑏0) − 𝜔 𝑙𝑛(𝐼𝐿0) (A.4) 

−𝜇𝐻
𝑏 𝑏 + 𝜇𝐻

𝑡 𝑏0 =  −𝜔𝜇𝐿
𝑏𝑏 + 𝜔𝜇𝐿

𝑡 𝑏0 (A.5) 

𝜔 =  
𝜇𝐻

𝑏 𝑏−𝜇𝐻
𝑡 𝑏0

𝜇𝐿
𝑏𝑏−𝜇𝐿

𝑡 𝑏0
    (A.6) 

In the case where 𝑏0=0, i.e. when bone is replaced with air, the 𝜔 is reduced to:  

 𝜔 =  
𝜇𝐻

𝑏

𝜇𝐿
𝑏           (A.7)                                                                               
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This is the weighting factor expression commonly referred to in the literature.10,26 In the 

case where 𝑏0 = 𝑏, i.e. when bone is replaced with soft-tissue with the same thickness, 

the 𝜔 is: 

   𝜔 =  
𝜇𝐻

𝑏 −𝜇𝐻
𝑡

𝜇𝐿
𝑏−𝜇𝐿

𝑡            (A.8)                                                                            

which has been reported in other literature.64,78 Seeking a weighting factor by means of 

finding CNR close to zero as per Figure 2.5a, effectively applies Eq.(A.3) when 

𝑏0=0.33,60 
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A.2. Beam Hardening Effects 

 

Next, we include the effect of polyenergetic beams where beam hardening occurs 

in the patient. We still assume no scatter and an ideal detector. When the incident spectra 

pass through various soft-tissue and bone thicknesses, the harden spectra will contribute 

to the detected signal. Thus, Eq.(A.7) and (A.8) have to be modified to represent the 

effective attenuations: 

𝜔 =  
𝜇̅𝐻

𝑏

𝜇̅𝐿
𝑏     (for  𝑏0 = 0 ) (A.9) 

𝜔 =  
𝜇̅𝐻

𝑏 −𝜇̅𝐻
𝑡

𝜇̅𝐿
𝑏−𝜇̅𝐿

𝑡    (for  𝑏0 = 𝑏 )                             (A.10) 

where 𝜇̅ is the spectrum weighted linear attenuation coefficients for either LE or HE 

detected beams, i.e.33,79 

  𝜇̅ =
∫ 𝛷(𝐸)𝜇(𝐸)𝑑𝐸

∫ 𝛷(𝐸)𝑑𝐸
       (A.11) 

          

where Φ(𝐸) is the fluence spectrum after passing through soft-tissue and bone, and 𝜇(𝐸) 

is the bone linear attenuation coefficient at a given energy.  
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A.3. Scatter Effects 

 

Patient scatter effects can be included by noting that both primary and scatter 

photons will be detected. In the presence of scatter, Eq.(A.1) and Eq.(A.2) can be 

modified as  

𝐼𝐻 =  𝐼𝐻0[1 + 𝑠𝐻(𝑡, 𝑏)]𝑒−𝜇̅𝐻
𝑡 𝑡− 𝜇̅𝐻

𝑏 𝑏 (A.12) 

𝐼𝐿 =  𝐼𝐿0[1 + 𝑠𝐿(𝑡, 𝑏)]𝑒−𝜇̅𝐿
𝑡 𝑡− 𝜇̅𝐿

𝑏𝑏 (A.13) 

where 𝑠𝐻(𝑡, 𝑏) and 𝑠𝐿(𝑡, 𝑏) are the scatter to primary ratios for high and low energies for 

a given patient geometry at a fixed location in the image with (t, b) thicknesses of soft-

tissue and bone. By re-applying Eq.(A.3) one can simplify and solve for 𝜔 to account for 

scatter: 

−𝜇̅𝐻
𝑏 𝑏 +  𝜔𝜇̅𝐿

𝑏𝑏 + 𝑙𝑛(1 + 𝑠𝐻(𝑡, 𝑏)) − 𝜔 𝑙𝑛(1 + 𝑠𝐿(𝑡, 𝑏))

=  𝑙𝑛(1 + 𝑠𝐻(𝑡 + 𝑏0, 0)) − 𝜔 𝑙𝑛(1 + 𝑠𝐿(𝑡 + 𝑏0, 0)) − 𝜇̅𝐻
𝑡 𝑏0 + 𝜔𝜇̅𝐿

𝑡 𝑏0 

 (A.14) 

−𝜇̅𝐻
𝑏 𝑏 + 𝜇̅𝐻

𝑡 𝑏0 + 𝑙𝑛(1 + 𝑠𝐻(𝑡, 𝑏)) − 𝑙𝑛(1 + 𝑠𝐻(𝑡 + 𝑏0, 0))

=  − 𝜔𝜇̅𝐿
𝑏𝑏 − 𝜔 𝑙𝑛(1 + 𝑠𝐿(𝑡 + 𝑏0, 0)) + 𝜔 𝑙𝑛(1 + 𝑠𝐿(𝑡, 𝑏)) + 𝜔𝜇̅𝐿

𝑡 𝑏0 

 (A.15) 

𝜔 =  
𝜇̅𝐻

𝑏 𝑏+𝑙𝑛(
1+𝑠𝐻(𝑡,0)

1+𝑠𝐻(𝑡,𝑏)
)

 𝜇̅𝐿
𝑏𝑏+𝑙𝑛(

1+𝑠𝐿(𝑡,0)

1+𝑠𝐿(𝑡,𝑏)
)
  (for  𝑏0 = 0 ) (A.16) 
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𝜔 =  
𝜇̅𝐻

𝑏 𝑏−𝜇̅𝐻
𝑡 𝑏+𝑙𝑛(

1+𝑠𝐻(𝑡+𝑏,0)

1+𝑠𝐻(𝑡,𝑏)
)

 𝜇̅𝐿
𝑏𝑏−𝜇̅𝐿

𝑡 𝑏+𝑙𝑛(
1+𝑠𝐿(𝑡+𝑏,0)

1+𝑠𝐿(𝑡,𝑏)
)
 (for  𝑏0 = 𝑏 ) (A.17) 

In the absence of scatter the scatter to primary ratios are zero, thus this equation 

simplifies to Eq.(A.9) and Eq.(A.10) above. Note that scatter to primary ratio terms are in 

general patient specific and can potentially be obtained for a given patient geometry 

using e.g. Monte Carlo simulation.  
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A.4. Detector Effects 

 

The effect of detector response on ω can be modeled by noting that both detective 

quantum efficiency (𝛼) and average absorbed energy per interaction (𝐸(𝑡, 𝑏)) depend on 

energy.10,70 Due to beam hardening in the patient at various soft-tissue and bone 

thicknesses (𝑡, 𝑏), both 𝛼 and 𝐸(𝑡, 𝑏) will vary. Therefore, beam hardening in the patient 

has an indirect effect on ω due to detector response. Rather than expressing 𝛼 and 𝐸(𝑡, 𝑏) 

as a function of energy, they can be expressed as a function of (𝑡, 𝑏) and thus the detected 

signals can be expressed as:   

𝐼𝐻 ≅  𝐼𝐻0𝛼𝐻(𝑡, 𝑏)𝐸𝐻(𝑡, 𝑏)𝑒−𝜇̅𝐻
𝑡 𝑡− 𝜇̅𝐻

𝑏 𝑏 (A.18) 

𝐼𝐿 ≅  𝐼𝐿0𝛼𝐿(𝑡, 𝑏)𝐸𝐿(𝑡, 𝑏)𝑒−𝜇̅𝐿
𝑡 𝑡− 𝜇̅𝐿

𝑏𝑏 (A.19) 

where 𝛼𝐿(𝑡, 𝑏) and 𝐸𝐿(𝑡, 𝑏) are energy averaged detective quantum efficiency and 

absorbed energy per interaction at a fixed location in the image with (t, b) thicknesses of 

soft-tissue and bone for a low energy. Likewise, 𝛼𝐻(𝑡, 𝑏) and 𝐸𝐻(𝑡, 𝑏) are detective 

quantum efficiency and absorbed energy per interaction at a fixed location in the image 

with (t, b) thicknesses of soft-tissue and bone for a high energy.  These equations may 

then be simplified to solve for 𝜔 in a similar manner as per Eq.(A.3) 

−𝜇̅𝐻
𝑏 𝑏 +  𝜔𝜇̅𝐿

𝑏𝑏 + 𝑙𝑛(𝛼𝐻(𝑡, 𝑏)𝐸𝐻(𝑡, 𝑏)) − 𝜔 𝑙𝑛(𝛼𝐿(𝑡, 𝑏)𝐸𝐿(𝑡, 𝑏)) =  𝑙𝑛(𝛼𝐻(𝑡 +

𝑏0, 0)𝐸𝐻(𝑡 + 𝑏0, 0)) − 𝜔 𝑙𝑛(𝛼𝐿(𝑡 + 𝑏0, 0)𝐸𝐿(𝑡 + 𝑏0, 0)) − 𝜇̅𝐻
𝑡 𝑏0 + 𝜔𝜇̅𝐿

𝑡 𝑏0 (A.20) 

−𝜇̅𝐻
𝑏 𝑏 + 𝜇̅𝐻

𝑡 𝑏0 + 𝑙𝑛(𝛼𝐻(𝑡, 𝑏)𝐸𝐻(𝑡, 𝑏)) − 𝑙𝑛(𝛼𝐻(𝑡 + 𝑏0, 0)𝐸𝐻(𝑡+𝑏0, 0)) =  − 𝜔𝜇̅𝐿
𝑏𝑏 −

𝜔 𝑙𝑛(𝛼𝐿(𝑡 + 𝑏0, 0)𝐸𝐿(𝑡 + 𝑏0, 0)) + 𝜔 𝑙𝑛(𝛼𝐿(𝑡, 𝑏)𝐸𝐿(𝑡, 𝑏)) + 𝜔𝜇̅𝐿
𝑡 𝑏0 (A.21) 
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𝜔 =  
𝜇̅𝐻

𝑏 𝑏+𝑙𝑛(
𝛼𝐻(𝑡,0)𝐸𝐻(𝑡,0)

𝛼𝐻(𝑡,𝑏)𝐸𝐻(𝑡,𝑏)
)

 𝜇̅𝐿
𝑏𝑏+𝑙𝑛(

𝛼𝐿(𝑡,0)𝐸𝐿(𝑡,0)

𝛼𝐿(𝑡,𝑏)𝐸𝐿(𝑡,𝑏)
)
 (for  𝑏0 = 0 ) (A.22) 

𝜔 =  
𝜇̅𝐻

𝑏 𝑏−𝜇̅𝐻
𝑡 𝑏+𝑙𝑛(

𝛼𝐻(𝑡+𝑏,0)𝐸𝐻(𝑡+𝑏,0)

𝛼𝐻(𝑡,𝑏)𝐸𝐻(𝑡,𝑏)
)

 𝜇̅𝐿
𝑏𝑏−𝜇̅𝐿

𝑡 𝑏+𝑙𝑛(
𝛼𝐿(𝑡+𝑏,0)𝐸𝐿(𝑡+𝑏,0)

𝛼𝐿(𝑡,𝑏)𝐸𝐿(𝑡,𝑏)
)

  (for  𝑏0 = 𝑏 ) (A.23) 

In the case where the detector’s response is the same for all bone and soft-tissue 

thicknesses, i.e. 𝛼(𝑡 + 𝑏0, 0) = 𝛼(𝑡, b) and 𝐸(𝑡 + 𝑏0, 0) = 𝐸(𝑡, b), then these 

expressions reduce to Eq.(A.9) and Eq.(A.10).  
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A.5. Tube mAs Effects 

 

The effects of mAs can be realized by noting that a change in mAs will not 

change the spectra. Nonetheless, varying mAs will linearly scale 𝐼𝐻0 and 𝐼𝐿0 in Eq.(A.1) 

and Eq.(A.2) above. Both these terms cancel out when calculating 𝜔 in Eq.(A.4). 

However, the final DE image is then calculated as: 

𝑙𝑛(𝐼𝐷𝐸) = 𝑙𝑛(𝐼𝐻) − 𝜔 𝑙𝑛(𝐼𝐿) (A.24) 

𝑙𝑛(𝐼𝐷𝐸) = −(𝜇𝐻
𝑡 −  𝜔𝜇𝐿

𝑡 )𝑡 + 𝑙𝑛(𝐼𝐻0) − 𝜔 𝑙𝑛(𝐼𝐿0) (A.25) 

By defining 

𝑙𝑛(𝐼𝐷𝐸0
) = 𝑙𝑛(𝐼𝐻0) − 𝜔 𝑙𝑛(𝐼𝐿0) (A.26) 

the final DE image is 

𝐼𝐷𝐸 = 𝐼𝐷𝐸0
𝑒−(𝜇𝐻

𝑡 − 𝜔𝜇𝐿
𝑡 )𝑡 (A.27) 

which is only a function of soft-tissue thickness, 𝑡, as bone, 𝑏, has canceled. This 

equation implies that the final DE image pixel values will depend on mAs while ω itself 

is independent of mAs. 
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A.6. Effect of Detector Gain 

 

To incorporate the effects of gain, Eq.(A.1) and Eq.(A.2) can be written as 

𝐼𝐻 =  𝐼𝐻0𝑔𝐻𝑒−𝜇𝐻
𝑡 𝑡− 𝜇𝐻

𝑏 𝑏 (A.28) 

𝐼𝐿 =  𝐼𝐿0𝑔𝐿𝑒−𝜇𝐿
𝑡 𝑡− 𝜇𝐿

𝑏𝑏 (A.29) 

where 𝑔𝐻 and 𝑔𝐿 are detector gain values for high and low energies respectively. When 

solving for 𝜔 using Eq.(A.3) the result is 

 

−𝜇𝐻
𝑡 𝑡 − 𝜇𝐻

𝑏 𝑏 + 𝑙𝑛(𝐼𝐻0) + 𝑙𝑛(𝑔𝐻) + 𝜔𝜇𝐿
𝑡 𝑡 +  𝜔𝜇𝐿

𝑏𝑏 − 𝜔 𝑙𝑛(𝐼𝐿𝑜) − 𝜔𝑙𝑛(𝑔𝐿) =  −𝜇𝐻
𝑡 (𝑡 +

𝑏0) + 𝑙𝑛(𝐼𝐻0) + 𝑙𝑛(𝑔𝐻) + 𝜔𝜇𝐿
𝑡 (𝑡 + 𝑏0) − 𝜔 𝑙𝑛(𝐼𝐿0) − 𝜔𝑙𝑛(𝑔𝐿) (A.30) 

We assume gain values are constant across the image, i.e. 𝑔𝐻 and 𝑔𝐿 are not functions of 

(𝑡, 𝑏) at a given location in the images. Thus, this simplifies to Eq.(A.4), making 𝜔 

independent of the detector gain. The final DE image will be: 

 

𝐼𝐷𝐸 = 𝐼𝐷𝐸0
𝑔𝐷𝐸𝑒−(𝜇𝐻

𝑡 − 𝜔𝜇𝐿
𝑡 )𝑡 (A.31) 

where  

𝑔𝐷𝐸 = 𝑙𝑛 (
𝑔𝐻

(𝑔𝐿)𝜔
) (A.32) 

Similar to mAs case above, the final DE image pixel values depend on detector gain 

while ω itself does not. Note that this applies only when detector gain does not vary 

across the image for a given acquisition technique. However, this may not be valid for 

some detectors, in which case ω could depend on both detector gain and mAs value.60,80  
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A.7. Combination of Effects 

 

Finally, one can combine all above parameters affecting the weighting factor. The 

intensities of the high and low energy images are:  

 

𝐼𝐻 ≅  𝐼𝐻0𝑔𝐻𝛼𝐻(𝑡, 𝑏)𝐸𝐻(𝑡, 𝑏)[1 + 𝑠𝐻(𝑡, 𝑏)]𝑒−𝜇̅𝐻
𝑡 𝑡− 𝜇̅𝐻

𝑏 𝑏 (A.33) 

𝐼𝐿 ≅  𝐼𝐿0𝑔𝐿𝛼𝐿(𝑡, 𝑏)𝐸𝐿(𝑡, 𝑏)[1 + 𝑠𝐿(𝑡, 𝑏)]𝑒−𝜇̅𝐿
𝑡 𝑡− 𝜇̅𝐿

𝑏𝑏 (A.34) 

By applying Eq.(A.3), the final derivation for 𝜔  cab be obtained as: 

 

𝜔 =  
𝜇̅𝐻

𝑏 𝑏+𝑙𝑛(
𝛼𝐻(𝑡,0)𝐸𝐻(𝑡,0)(1+𝑠𝐻(𝑡,0))

𝛼𝐻(𝑡,𝑏)𝐸𝐻(𝑡,𝑏)(1+𝑠𝐻(𝑡,𝑏)) 
)

 𝜇̅𝐿
𝑏𝑏+𝑙𝑛(

𝛼𝐿(𝑡,0)𝐸𝐿(𝑡,0)(1+𝑠𝐿(𝑡,0))

𝛼𝐿(𝑡,𝑏)𝐸𝐿(𝑡,𝑏)(1+𝑠𝐿(𝑡,𝑏))
)

 (for  𝑏0 = 0 ) (A.35) 

𝜔 =  
𝜇̅𝐻

𝑏 𝑏−𝜇̅𝐻
𝑡 𝑏+𝑙𝑛(

𝛼𝐻(𝑡+𝑏,0)𝐸𝐻(𝑡+𝑏,0)(1+𝑠𝐻(𝑡+𝑏,0))

𝛼𝐻(𝑡,𝑏)𝐸𝐻(𝑡,𝑏)(1+𝑠𝐻(𝑡,𝑏)) 
)

 𝜇̅𝐿
𝑏𝑏−𝜇̅𝐿

𝑡 𝑏+𝑙𝑛(
𝛼𝐿(𝑡+𝑏,0)𝐸𝐿(𝑡+𝑏,0)(1+𝑠𝐿(𝑡+𝑏,0))

𝛼𝐿(𝑡,𝑏)𝐸𝐿(𝑡,𝑏)(1+𝑠𝐿(𝑡,𝑏))
)

  (for  𝑏0 = 𝑏) (A.36) 

 

where all parameters are defined above and  𝜇̅𝐻
𝑏  and 𝜇̅𝐿

𝑏 are calculated as per Eq.(A.11).  

The above derivations were for the weighting factor ω that cancels the bone to obtain 

soft-tissue-only DE image. Similarly, the weighting factor 𝜔𝑏 that cancels the soft-tissue 

to obtain bone-only DE image,  

𝑙𝑛(𝐼𝐷𝐸𝐵
) = −𝑙𝑛(𝐼𝐻𝐸) + 𝜔𝑏𝑙𝑛 (𝐼𝐿𝐸), (A.37) 

 can be derived using: 
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𝑙𝑛(𝐼𝐷𝐸(𝑡, 𝑏)) = 𝑙𝑛(𝐼𝐷𝐸(0, 𝑏)) (A.38) 

This effectively removes the soft-tissue (by replacing it with air) in the final DE image. 

This yields the final derivation for 𝜔𝑏 as: 

𝜔𝑏 =  
𝜇̅𝐻

𝑡 𝑡+𝑙𝑛(
𝛼𝐻(0,𝑏)𝐸𝐻(0,𝑏)(1+𝑠𝐻(0,𝑏))

𝛼𝐻(𝑡,𝑏)𝐸𝐻(𝑡,𝑏)(1+𝑠𝐻(𝑡,𝑏))
)

 𝜇̅𝐿
𝑡 𝑡+𝑙𝑛(

𝛼𝐿(0,𝑏)𝐸𝐿(0,𝑏)(1+𝑠𝐿(0,𝑏))

𝛼𝐿(𝑡,𝑏)𝐸𝐿(𝑡,𝑏)(1+𝑠𝐿(𝑡,𝑏))
)

      (A.39)  

𝜔𝑏 =  
𝜇̅𝐻

𝑡

𝜇̅𝐿
𝑡      (for  𝑡 = 0 )      (A.40)  

 

 


