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Abstract

Strong Placement (SP-) games are a class of combinatorial games in which pieces are
placed on a board such that the order in which previously placed pieces have been
played does not matter.

It is known that to each such game one can assign two square-free monomial
ideals (the legal and illegal ideal) and two simplicial complexes (the legal and illegal
complex). In this work we will show that reverse constructions also exist, in particular
when restricting to invariant SP-games.

We then use this one-to-one correspondence between games, ideals, and simplicial
complexes to study several properties of SP-games. This includes the structure of the
game tree of an SP-game, and the set of possible game values.

The temperatures of SP-games are also considered. We prove a first general upper
bound on the boiling point of a game, and will show through several games that this
bound is particularly applicable for SP-games.

Motivated by the connection to commutative algebra, we then explore what it
could mean for an SP-game to be Cohen-Macaulay, as well as several related proper-

ties.

vii
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Chapter 1

Introduction

Combinatorial games are two-player games of pure strategy such as CHESS or GoO.
Combinatorial game theory is an area of study in mathematics and computer science

that develops new tools for determining who wins such a game and how.

Combinatorial commutative algebra is an area in which combinatorial concepts
are used to study objects in commutative algebra and vice versa. One of the main
roots of combinatorial algebra lies in the relationship between square-free monomial
ideals and simplicial complexes.

Our main goal in this thesis is to give a one-to-one correspondence between a class
of combinatorial games and simplicial complexes, making these games objects that
can be studied using commutative algebra.

The majority of work in combinatorial game theory is to dissect one game at a
time, whereas in this work we often look at an entire class together. This approach
allows us to develop new tools applicable to all games in the class.

The combinatorial games SNORT, COL, DOMINEERING, and KAYLES have been
studied for several decades. They are all examples of strong placement games, a class
of combinatorial games in which the players place pieces on a finite graph. This class
of games is the main focus of this thesis.

Faridi, Huntemann, and Nowakowski [26] showed that to each strong placement
game one can assign two simplicial complexes, one representing legal positions called
the legal complex, and the other minimal illegal positions called the illegal complex,
and corresponding square-free monomial ideals. The main open question at the time
was whether or not every simplicial complex in turn corresponds to a strong placement
game. We will answer this question positively and will use the resulting one-to-one
correspondence to study strong placement games further.

The remainder of this chapter is devoted to giving a background to the problems

studied. We will introduce all required concepts from combinatorial game theory and
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commutative algebra, some graph theory concepts used, as well as demonstrate how
to construct the legal and illegal complexes from a given strong placement game.
We further show that two strong placement games with isomorphic legal complexes
are literally equal, a very strong condition as they will be equal under any winning

condition (see Proposition 1.52).

In Chapter 2, we will demonstrate the constructions which map a simplicial com-
plex, considered as a legal complex or illegal complex, to a strong placement game (see
Proposition 2.1). These constructions have the undesirable property that the ruleset
highly depends on the board. We will thus look at invariant strong placement games,
in which rulesets are independent of the board. In Theorems 2.16 and 2.17 we show
that every simplicial complex is the legal complex of some invariant strong placement
game, and a simplicial complex without isolated vertices is an illegal complex. As a
consequence, we further show that any strong placement game is literally equal to an

invariant strong placement game (see Theorem 2.20).

We then restrict to independence games, those strong placement games for which
the illegal complex always, independent of the board, is a graph, or equivalently, the
legal complex always is a flag complex. The invariant strong placement game we have
constructed given a simplicial complex turns out to be an independence game when
the simplicial complex is a graph. As a consequence, in Proposition 2.24 we show
that given any graph, respectively flag complex, there exists an independence game

for which this is the illegal complex, respectively legal complex.

Continuing, in Chapter 3, we will consider the structure of the game tree of a
strong placement game. The game tree of a combinatorial game encodes a game
completely, and is commonly used in computer game playing programs to direct
the search for good positions, and is of interest in misére theory. We introduce
the game graph, a simplified version of the game tree, and show in Proposition 3.4
that the two are equivalent if labellings of the positions are given. We then give a
complete description of which game graphs come from strong placement games (see
Proposition 3.11). Finally, we show in Proposition 3.18 that the game graph and
legal complex are in one-to-one correspondence, thus can be used interchangeably as

characterizations of a strong placement game.
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With the one-to-one correspondence between strong placement games and simpli-
cial complexes established, in Chapter 4 we will study the possible game values of
strong placement games under normal play. Given a game or class of games, it is an
important question as to what values occur, or more interestingly, which values do
not occur, as this reflects the structure of the class. For the vast majority of games it
is an open question what values they achieve. There is only one class, namely impar-
tial games, for which the values are known. Despite ongoing research, very little is
known for the class of strong placement games. We will show that many interesting
values can be found in strong placement games, such as all numbers (Theorem 4.27),
all nimbers (Proposition 4.32), up (Section 4.2), and several tinies (Proposition 4.31).

In Chapter 5, we then consider the temperature of strong placement games. The
temperature of a game is a characteristic that can be used to choose a good move,
but is difficult to calculate. Being able to bound temperature depending on features
such as board size will make simpler algorithms choosing good positions possible, but
apart from a few specific games very little is known. In Theorem 5.25 we prove an
upper bound on the maximum temperature of a set of games, not necessarily strong
placement games, based on the maximum length of the confusion intervals. This is
the first known result which holds for all short games. Although this bound is still far
from some conjectured bounds (see page 86) and computational evidence, it is optimal
in the sense that there are examples of classes in which it is tight. We then apply this
new bound to specific strong placement games, which seem particularly suitable for

this approach. We further give a conjecture for the maximum temperature of SNORT.

For a general strong placement game, the associated simplicial complexes have a
natural bipartition of the vertices depending on moves by the two players. Impartial
games are combinatorial games in which both players have the same moves avail-
able. For impartial strong placement games, the simplicial complexes can be defined

similarly without a bipartition. We will study this case further in Chapter 6.

Square-free monomial ideals that are Cohen-Macaulay usually have nice properties
from the point of view of algebra or combinatorics. In Chapter 7 we will present
some preliminary results on when the game ideal of the games SNORT and COL are
Cohen-Macaulay and when they satisfy necessary or sufficient conditions for Cohen-

Macaulayness. We also consider how a strong placement game changes if its legal
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complex is grafted, or what it means for the legal complex to be shellable. We then
restrict to impartial games. This chapter can be considered a first step towards
identifying what a Cohen-Macaulay strong placement game is.

As the approach of using simplicial complexes to study strong placement games
is new, the work in this thesis opens up many new avenues of research. At the end
of each chapter we will list some relevant problems and conclude the thesis with an
overview of several overarching questions in Chapter 8.

The appendix has a summary of the rulesets used throughout the thesis for an

easy reference, as well as the code used for various calculations.

All previously known results not proven by the author are stated as facts, and
indicated as such. Unless otherwise stated, the results in this thesis are the author’s

work under guidance of their supervisors.

1.1 Combinatorial Game Theory

We will begin by introducing concepts from Combinatorial Game Theory required
throughout. Good references for more information are the classic “Winning Ways” by
Berlekamp, Conway, and Guy [6], the undergraduate text “Lessons in Play” by Albert,
Nowakowski, and Wolfe [1], and the graduate text “Combinatorial Game Theory” by

Siegel [57]. Most combinatorial game theory facts can be found in the latter.

1.1.1 Combinatorial Games

Definition 1.1. A combinatorial game is a 2-player game with perfect information
and no chance devices, where the two players are Left and Right (denoted by L and
R respectively) and they do not move simultaneously. A game is a set of positions.
Rules determine which position the game starts with and from which position to
which position the players are allowed to move. A legal position is a position that
can be reached by playing the game according to the rules. A move from a position to
another position is called a legal move if it is allowed according to the rules, and it
is called an illegal move if it is not allowed. A Left option PL (or similarly Right
option P®) of a position P is a second position that Left (Right) can reach from P

in one legal move. The set of Left options from a position P is denoted as P*, the



5

Right options as P®. A game is called short if it has finitely many positions, and
no position can be reached from itself through a sequence of legal moves. A game G

is often represented by its starting position P, and the game G = P is denoted as

{G* |G}

In this thesis, we only consider short games.

We denote the ruleset of a combinatorial game by its name in SMALL CAPS.
Further, when the specific ruleset and board are of importance, we will denote the
game consisting of the ruleset R played on the board B by (R, B). Note that we will
use R to indicate a ruleset or in the context of options a single Right option (and

later on pieces by Right as well). Which is intended will be clear from context.

Definition 1.2. A game G for which P* = P® for all positions P, so both players
have the same options at all times, is called impartial. A game G for which the set

of Left options is unrelated to the set of Right options is called partizan.

1.1.2 Strong Placement Games

From now on, unless otherwise specified, a board will be a finite graph, and pieces
can be thought of as tokens being placed on subgraphs of the board.

If a game is defined to be played on a board other than a graph, for example
a checkerboard, we can represent this board by a graph: we assign to each space
a vertex and two vertices are adjacent if and only if the two corresponding spaces
are horizontally or vertically adjacent. For example the board on the left below is

represented by the graph on the right.

We do not only consider graphs of this type for boards though, but any graph as

long as the ruleset allows for it.
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Brown et al. [12] introduced a subclass of combinatorial games, which they called
“placement games”, for which the question of counting the number of legal positions is
particularly interesting. In their work, they used the concept of an “auxiliary board”
for some specific games, which later on in Faridi et al. [26] was generalized to the
“illegal complex” of a large class of games, which we call “strong placement games”.

In this thesis we will call the games played by placing pieces on a board “placement
games”. We distinguish three different classes of placement games. The first is the

broadest class, containing a large variety of combinatorial games.

Definition 1.3. A weak placement game is a combinatorial game which satisfies

the following conditions:
(i) The board is empty at the beginning of the game.
(i) Players place pieces on empty vertices of the board according to the rules.
(iii) Pieces are not moved or removed once placed.

In particular, note that pieces cannot overlap.
Well-known examples of (commercially published) weak placement games are

BLOKUS and KULAMI.

Definition 1.4 (Brown et al. [12]). A medium placement game is a weak place-

ment game which furthermore satisfies the following condition:

(iv) The rules are such that if it is legal to place piece X on subgraph Y on move i,

then it was legal to place piece X on subgraph Y on move j for all j <.

Note that condition (iv) implies that any subset of pieces placed forming a legal
position also form a legal position. Further note that what we call medium placement
games is the class of games called “placement games” by Brown et al. [12].

Both BLOKUS and KULAMI are not medium placement games as they fail condi-
tion (iv). In BLOKUS pieces need to be adjacent to previously placed pieces, while in
Kurawmi, which is played on subdivided grids, the piece has to be placed in the same
row or column as the last piece placed and may not be in the same subgrid as the

last and second-to-last piece. Other examples of weak placement games which are
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not medium include CHILLED DOMINEERING (see Kao, Wu, Shan, and Lin 2010 [36])
and the conjoin of two placement games (see Huggan and Nowakowski 2018 [32]).
An example of a medium placement game is TICTACTOE. Note though that there
exist positions P which end the game that also have subpositions P’ that would end
the game, i.e. moving from P’ to P is illegal. Placement games which also satisfy
that a legal position can be reached in any order of moves are called strong placement

games.

Definition 1.5 (Faridi, Huntemann, Nowakowski [26]). A strong placement game
(or SP-game) is a weak placement game which furthermore satisfies the following

condition:

(iv’) The rules are such that if it is possible to reach a position through a sequence
of legal moves, then any sequence of moves leading to this position consists of

legal moves.

Note that condition (iv’) in the above definition implies that the order of moves
does not matter, and that the last piece played could have been played at any previous
point. Thus the class of SP-games is contained in the class of medium placement
games. But the converse is not true, with TICTACTOE being one example.

The property that positions are independent of the order of moves gives us com-
mutativity, which will allow us to represent positions by monomials and faces of
simplicial complexes (see Section 1.4).

The following rulesets together with a board are examples of SP-games and will

be used throughout the document. For an easy reference, their rules are repeated in
Appendix A.

Definition 1.6. In SNORT (see [6]), players place a piece on a single vertex which
is not adjacent to a vertex containing a piece from their opponent.

In CoL (see [6]), players place a piece on a single vertex which is not adjacent to
a vertex containing one of their own pieces.

In NoGoO (see Chou, Teytaud, Yen 2011 [16]), players place a piece on a single
vertex. At every point in the game, for each maximal group of connected vertices of
the board that contain pieces placed by the same player, at least one of these needs

to be adjacent to an empty vertex.
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In DOMINEERING (see Berlekamp 1988 [4] or Lachmann, Moore, Rapaport 2002
[39]), which is played on grids, both players place dominoes. Left may only place
vertically, and Right only horizontally. The vertices of the board are the squares of

the grid, and each piece occupies two vertices.

Example 1.7. Examples of legal alternating sequences of play for each of the first

three of these games are the following:

SNORT:
LI I&2l [ JR[L] [R]
CoL:
LAl [ JB[LIR] |4 [L]R]L]
NoGo:
L | L r | LR . | LIR r | LR
= — =7 =1l R

Note that other sequences of play are possible for each of these games, and we do

not claim that the sequences given are optimal under any circumstances.

Example 1.8. Let G be DOMINEERING played on an L-shaped board. The Left and

Right options are listed in game notation below:

ﬂﬂ .

Other examples of SP-games are NODE-KAYLES and ARC-KAYLES (see for ex-
ample Schaefer 1978 [53], Bodlaender 1993 [9], Fleischer and Trippen 2006 [27|, or
Huggan and Stevens 2016 [33]) and some of the PARTIZAN OCTALS (see Fraenkel

and Kotzig 1987 28] or Mesdal 2009 [43]). Their rules and how to interpret them as
SP-games can be found in Appendix A.
For SP-games, since the order of moves taken does not matter, the positions with

a single piece played become very important. We thus define a basic position:
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Definition 1.9. A position with a single piece played, whether this is legal or not,

is called a basic position.

Any position in an SP-game is the union of a finite number of basic positions. For

example, positions in SNORT played on a path of three vertices break up as follows:

-0 = 00 v OO0 v O-O®
OO = &0-0O-0 v OO

The following game is crucial to the study of impartial games. One of the earliest
results in combinatorial game theory is that any position in an impartial game is

equal to a NIM position and thus has as its value a nimber, see Section 6.1.

Definition 1.10 (Bouton 1902 [11]). The game of NIM is played using piles of
tokens. On a turn, the player chooses a pile and removes any number of tokens from

it. The game ends once no tokens remain.

Remark 1.11. Although it may not seem this way immediately, N1M is equivalent to
an SP-game. Suppose the piles we are playing NIM on have sizes aq,...,ag. Then let
the board for the SP-game be the disjoint union of the complete graphs K,,, ..., K,,.
Both players have as their possible pieces K1, ..., K,, where a is the maximum of the

a;, and may place anywhere on the board.

1.1.3 Tools from Combinatorial Game Theory

This subsection introduces several commonly used tools from combinatorial game
theory. These concepts are mentioned throughout Chapter 2, and are used heavily in
Chapters 4 and 5.

Many combinatorial games, especially SP-games, have a natural tendency to break
up into smaller, independent components as play progresses. For example, after
several moves the empty spaces could be split into many disconnected components
and a player, on their move, then has to choose a component to move in. From this,

we define a sum on games as follows:
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Definition 1.12. The disjunctive sum G; + G5 of two games G; and G is the
game in which at each step the current player can decide to move in either game, but

not both. Formally,
Gi+ Gy ={G* + Gy, Gy + G5 | GR 4+ Gy, G + G%}.

Example 1.13. This property is especially apparent in DOMINEERING. Consider for
example a 6 X 6 board. The position on the left below could occur during play. It is
equal to the disjunctive sum of several smaller positions (empty boards) given on the

right.

L

I | T

| — = [+ ]+ ] +
_D%3D4

We will implicitly assume that all games we consider are a summand in a dis-

junctive sum. Due to this, the two players do not necessarily alternate their turns in
any one component (in a disjunctive sum, the players can use different components).
Only for some concepts will we consider playing in a single component, thus having
alternating play (for example for Left and Right stops, see Definition 5.1).

Unless otherwise specified, the winning condition of a game does not matter to us.
When considering game values (see Chapter 4) and temperature (see Chapter 5) we
do require a fixed winning condition. The two most commonly considered winning
conditions are normal play, in which the first player unable to move loses, and
misére play, in which the first player unable to move wins.

Given a fixed winning condition, we can partition games into four outcome classes.

Definition 1.14 (Outcome classes). The outcome class o(G) of a combinatorial
game G indicates who will win the game when playing optimally. The outcome classes

are:
e /' the first (next) player can force a win;

e : the second (previous) player can force a win;
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o Z: Left can force a win, no matter who plays first;
e Z%: Right can force a win, no matter who plays first.

A game whose outcome is in .4, that is one in which the first player always has a
good move, is also called a first-player win. Similarly, games whose outcomes are in
the other classes are called second-player win, Left win, or Right win, respectively.

Convention in combinatorial game theory is to order games by how favourable
they are to Left. Games in .Z are the most favourable as she can always force a
win. There is no differentiation between games in .4 and & since in both cases she
in some sense wins half the time, while games in & are the least favourable as she

always loses. Thus we have the partial order on the outcome classes as in Figure 1.1.

Figure 1.1: Partial Order of Outcome Classes

Example 1.15. As examples for the outcome classes, consider the DOMINEERING

positions in Figure 1.2, assuming normal play.

[ ] L] ]
P

N 4 Z

Figure 1.2: DOMINEERING Positions with their Outcome Classes under Normal Play

In the first position from the left, once either player has placed a domino, the
other cannot place theirs, thus the first player to go wins. In the second position,
Right going first can play in the two bottom left spaces, which leaves no moves for
Left, while if Left goes first, she only has one move, leaving another move for Right.

Thus Right wins this game, no matter if going first or second. The third position is
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similarly a Left win. In the fourth position, neither player can move. Thus no matter

who goes first, they will lose, implying that the second player to go wins.

Given a fixed winning condition, we say two games G and G5 are equal and
write Gy = Ga if o(G1 + H) = o(Gy + H) for all games H. This equivalence is an
equivalence relation. The equivalence class of a game G under “="is called its game
value. The disjunctive sum of two game values is found by taking the disjunctive
sum of any of the games in the two equivalence classes. The group of all possible
game values of short games under normal play with disjunctive sum as operation is
denoted as G.

For a game G, we say that the negative —G is the game recursively defined as
G = {-G" | -G},

i.e. the game in which the roles of Left and Right are reversed. For example, in

DOMINEERING this is equivalent to rotating the board by 90°.

Example 1.16. For example, let G be DOMINEERING played on a 1 x 4 board. For

this game we have

] IIIT
_ II7TIJJ
TIIJ H
& [] L

Now —G consists of swapping the Left and Right options and taking the negative of

=

- H’D+D 0

them, i.e.
—G=¢ 0 | 1] L]+

which is DOMINEERING played on a 4 x 1 board.

We use G — H as shorthand for G + (—H).
Similar to equality, we can also define inequalities: We say that G; > Gy if
o(Gh + H) > o(Gy + H) for all games H, with the partial order on the outcome

classes as in Figure 1.1. Two games are incomparable, denoted G Z Ga, if their
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outcome classes are incomparable, i.e. if one is a first-player win and the other a
second-player win. Similarly defined are G; > G5 and G < Go.
Under normal play, we are able to determine the relationship between two games

using the following fact by simply determining the outcome class of their difference.
Fact 1.17 (|57, Section I1.1]). Under normal play, for two games G and H, we have:
1. G=H if and only if o(G — H) = &;
2. G < H if and only if oG — H) = %Z;
3. G > H if and only if oG — H) = Z; and
4. G2 H if and only if oG — H) = N .

Example 1.18. We will show that the game G, which is DOMINEERING played on
a 3 x 1 board, is equal under normal play to the game G5, which is DOMINEERING

played on a 2 x 1 board. We have

g

Now both players, no matter who starts, can make one move each, after which
no moves remain. Thus under normal play, the second player wins this difference,

showing that G; = Gs.

In combinatorial game theory, the game tree of a game is often used to study

properties.

Definition 1.19. The game tree T of a combinatorial game G is a diagram con-

structed inductively as follows:
Step 0: Place a vertex representing the starting position of G.

Step k: For each vertex v representing a position P constructed in step £ — 1 do the
following: For each Left option of P place a vertex vp below and to the left of
v and connect v and vp with an edge (thus with positive slope, or oriented to

the left), and similarly for all Right options.
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Note that we can think of the game tree also as an oriented, directed graph tree
where the edges are labelled as L and R rather than being oriented to the left and
right, respectively. Also note that many different vertices can represent the same legal
position. Furthermore, since we only consider short games, in our case the game tree

is finite.

Example 1.20. Consider SNORT played on P3. The game tree is given in Figure 1.3.

(19X

Empty spaces are indicated by

In combinatorial game theory, two game trees 77 and 75 are called isomorphic if
their structure is the same, that is if there exists a bijection ¢ of the vertices preserving
the edges, i.e. if there is an edge from v, to vy pointing to the left, respectively to the
right, in 7 then there is an edge from ¢(v;) to ¢(vy) pointing to the left, respectively
to the right, in 75. Two games G; and (5 with isomorphic game trees are called
literally equal, written as G1 = G5. Note that two games that are literally equal

will be equal under any winning condition.

The games in Example 1.18 are equal under normal play (and also under misére
play), but they are not literally equal as in G Left has two basic positions and in
(G5 she only has one. One can similarly show that DOMINEERING played on a 2 x 2
board under normal play is equal to DOMINEERING played on a 2 x 2 board with
an extra space attached, but that they are not literally equal as the latter has an
additional basic position for one of the players. In this case the games are further
not equal under misére play as the former is a second-player win, while the latter is

a first-player win.

Note that it is common when constructing the game tree of a game to only create
a branch once for all symmetric options. Under normal play or misére play this does
not change the game for calculating its game value. There are winning conditions
though for which ignoring options does make a difference, thus when constructing the
game tree we insist on all options being listed. When we calculate game values, we

will often only list repeated options once.

Several other concepts will be introduced in the relevant chapters and sections.
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Figure 1.3: The Game Tree of SNORT Played on P;

1.2 Combinatorial Commutative Algebra

The goal of this thesis is to translate strong placement games into combinatorial

commutative algebra objects and vice versa. Commutative algebra is used to study
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properties of ideals, and properties of monomial ideals are the easiest to understand
combinatorially. A major topic in combinatorial commutative algebra is the inter-
play between the algebra of monomial ideals and the combinatorics and topology of

simplicial complexes. In this section we give the basic definitions.

We introduce two objects: simplicial complexes and square-free monomial ideals,
and some of their properties. Good references are “Cohen-Macaulay Rings” by Bruns

and Herzog [13] and “Monomial Ideals” by Herzog and Hibi [31].

Simplicial complexes are one of the main constructions we use to study SP-games.

Definition 1.21. An (abstract) simplicial complex A on a finite vertex set V' is
a set of subsets of V, called faces, with the condition that if A € A and B C A,
then B € A. The facets of a simplicial complex A are the maximal faces of A with
respect to inclusion. A non-face of A is a subset of its vertices that is not a face.
The dimension of a face is one less than the number of vertices of that face. The
dimension dim(A) of a simplicial complex A is the maximum dimension of any of

its faces.

Note that a simplicial complex with a fixed vertex set is uniquely determined
by its facets. Thus a simplicial complex A with facets Fi,..., F} is denoted by
A = (Fy,..., Fy). If we list all faces, the simplicial complex will be in set notation.

The vertex set of A is also denoted as V(A).

We will often represent a simplicial complex by its “geometric realization”. Faces
with single elements are drawn as vertices, with two elements as edges, with three
elements as filled triangles and so on. These will overlap if the faces have non-
empty intersection. Note that the geometric realization of a simplicial complex is a
topological space (see for example [47]), but for our purposes diagrams such as in the

next example are sufficient.

Example 1.22. Let A = ({1,2},{1,6},{2,3,4},{3,5},{4,5,6}). Then the below is

a geometric realization of A.
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2 6
3 )
If a simplicial complex is of the form A = ({x1, 29, ..., x,}), where {1, x9,..., 2, }

is the vertex set of A, we call it a simplex.

The following properties and operations will be useful throughout.

Definition 1.23. A simplicial complex is called pure if all its facets are of the same

size.

Definition 1.24. The k-skeleton Al of a simplicial complex A is the simplicial

complex whose facets are the k-dimensional faces of A.

Definition 1.25. A minimal vertex cover A of a simplicial complex A is a subset
of the vertex set such that for every facet F' € A we have F'N A # () and no subset
of A satisfies this. A simplicial complex is called unmixed if all its minimal vertex

covers are of the same size.

Definition 1.26. Given a simplicial complex A, the cover complex or cover dual
Ay is the simplicial complex whose facets are the minimal vertex covers of A, and
the Alexander dual AV is defined as {FF CV |V \ F' ¢ A} where V is the vertex
set of A. The complement A€ is defined as (V' \ F'| F is a facet of A).

Faridi showed in 2004 [24] that (Ax/)y = A, while a proof that (AY)Y = A can
be found in [31]. It can be easily checked that (A€)° = A as well.

Definition 1.27. Given a simplicial complex A and a face F' of A, the link of F' in
A, denoted linka F', is defined as the subcomplex of A given by

linkn F={GeA|FNG=0,FUG € A}.
In particular, if F' = {v} is a single vertex, then

linkanv={G €A |vgG {v}UG € A}.
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Next we consider monomial ideals of polynomial rings associated to a simplicial

complex.

Definition 1.28. Let k be a field and S the polynomial ring k[z1, ..., z,]. A product
it ...z € S, where the a; are non-negative integers, is called a monomial. Such

a monomial is called square-free if each a; is either 0 or 1.

Definition 1.29. Let k be a field and S the polynomial ring k[xy, ..., z,]. A mono-
mial ideal of S is an ideal generated by monomials in S. A monomial ideal is called

a square-free monomial ideal if it is generated by square-free monomials.

Note that every monomial ideal has a unique minimal monomial generating set
(see for example [31, Proposition 1.1.6]).

Let k be a field and S = k[z1,...,2,] a polynomial ring. Given a simplicial
complex A on n vertices, we can label each vertex with an integer from 1 to n. Each

subset {iy,...,7.} of {1,...,n} corresponds to a monomial z;, ---x; in S.

Definition 1.30. The facet ideal of a simplicial complex A, denoted by F(A), is
the ideal
F(A) = (@, - i,

{i1,...,1,} is a facet of A).
The Stanley-Reisner ideal of A, denoted by A(A), is the ideal
N(A) = (x;, -+, | {i1,...,i,} is a minimal nonface of A).

Definition 1.31. The facet complex of a square-free monomial ideal I, denoted by

F(I), is the simplicial complex
F(I) = {i1,- -, i} | x4y -+ x;, is a minimal generator of I).
The Stanley-Reisner complex of I, denoted by N (I), is the simplicial complex

N ={{ir, ... iy} | @y - --xy, &1}

Note that the Stanley-Reisner and facet operators respectively are inverses of each
other, thus give one-to-one correspondences between square-free monomial ideals and
simplicial complexes.

Since these concepts are heavily used in the remainder of this thesis, we now

present some examples.
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Example 1.32. Consider the simplicial complex A below with the labelling of the

vertices as given.

The facet ideal of A then is
F(A) = (w129, x176, ToX3Ty, T3Ts, TyT5Te),
and the Stanley-Reisner ideal of A is
N(A) = (v123, 1124, 1175, ToTs, Tol, T3T4Ts, T3T6).

Example 1.33. Consider the square-free monomial ideal I = (xyx3, xox324). The

facet complex F(I) is

and the Stanley-Reisner complex N () is

1 2 3

Note that in this thesis, we will occasionally see that not all variables of the
underlying ring are vertices of a simplicial complex. These so-called “loops” will be
excluded from the geometric realization of the simplicial complex (see Example 1.47).

Other concepts will again be introduced in the relevant chapters.
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1.3 Graph Theory

To be able to discuss structures of the board, and for a few other concepts, we will
need a few definitions from graph theory. See for example “Graph Theory” by Bondy
and Murty [10].

Definition 1.34. A graph is a pair (V, E) where V is a set of objects called vertices
and E a list of sets {v;,v,}, v;,v; € V called edges. A simple graph is a graph
with no loops (an edge that has identical ends) and no parallel edges (two or more
edges that share the same two ends). The degree of a vertex in a simple graph is
the number of edges incident with it. The size of a graph is the size of its vertex set.

Two vertices v and w are called adjacent if {v,w} € E.
Note that all graphs we consider are simple graphs, even if not specified as such.

Definition 1.35. A walk between two vertices v and w in a graph G is a sequence
of vertices v = vy, vy, ..., v = w of GG such that v; and v;,; are connected by an edge
and no edge is repeated. A path between v and w is a walk in which no vertex is
repeated. A graph G is called connected if there exists at least one path between

any pair of vertices.

For many games we consider, sets of vertices which are not adjacent will be im-

portant.

Definition 1.36. Given a graph G = (V| F), a subset of the vertices A C V is called
an independent set if no pair v,w € A is adjacent. The simplicial complex A
with vertex set V and faces the independent sets of G is called the independence

complex of G.

We will often consider playing a ruleset on specific classes of graphs. Four such

classes are the following ones.

Definition 1.37. A path P, is a connected simple graph on n > 2 vertices such
that two vertices have degree 1 and n — 2 vertices have degree 2. A cycle C,, is a
connected simple graph on n > 3 vertices such that all vertices have degree 2. A
complete graph K, is a simple graph on n vertices such that any two vertices are

adjacent. A bipartite graph G is a simple graph whose vertices can be partitioned
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into two sets V; and V5 such that every edge of G has one vertex in V} and the other
in V5; the sets V] and V5, are the parts of G. A tree is a connected simple graph

which does not contain any cycles.

Definition 1.38. The line graph of a graph B is the graph whose vertices are the
edges of B, and two vertices are adjacent if the corresponding edges in E are incident

(have an element in common).

We will occasionally also be talking about all vertices adjacent to a fixed one, and

this set is called the neighbourhood.

Definition 1.39. Given a graph G = (V, E') and a vertex v € V, the neighbourhood

of v, denoted Ng(v), is the set of vertices in V' which are adjacent to v.

1.4 Game Complexes and Ideals

Brown et al. showed in [12] that when playing SNORT or COL on a fixed board, one can
assign a second graph, which they called the “auxiliary board”, whose independence
sets are exactly the legal positions of the game. A similar assignment works for
all SP-games, with the auxiliary board generalized to the “illegal complex”, and the
independence complex of the auxiliary board generalized to the “legal complex”. Both
of these simplicial complexes, and two associated ideals, are complete representations
of the game. This allows us to translate problems from combinatorial game theory
into commutative algebra.

In this section, we introduce the construction of simplicial complexes and square-
free monomial ideals which are related to SP-games. Unless otherwise specified, let
the underlying ring be S = k[x1,...,Zm,¥1,...,Yn], where k is a field, m is the
number of basic positions with a Left piece, and n is the number of basic positions
with a Right piece. Note that since we only consider finite games, both n and m are
finite as well.

A square-free monomial z of S represents a position P in the game if it is the
product over those z; and y; such that Left has played in the basic position 7 and
Right has played in the basic position j in order to reach P. By condition (iv)
in Definition 1.5, the order of moves to reach P does not matter, thus we have

commutativity.
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We begin with a few example of how to determine the underlying ring and assign
the monomials to positions. The first demonstrates that the number of Left basic

positions is not necessarily equal to the number of Right basic positions.

Example 1.40. Consider the game in which Left claims a single vertex, and Right
two adjacent vertices, played on P;. We number the vertices consecutively from one
end as 1, 2, 3, 4. The Left basic position i is the position in which Left has played on
vertex i, and the Right basic position j is the position in which Right has played on
vertices 7 and j+ 1. Since Left has 4 basic positions, and Right has 3, the underlying

ring is S = k[z1, ¥, T3, T4, Y1, Y2, y3]. The position
1 2 3 4
is represented by the monomial x,ys.

In DOMINEERING we face the issue that the pieces have an orientation. We get
around this by letting the basic positions be in which either player places a domino,
regardless of orientation, and then making some of them illegal, as demonstrated in

the next example.

Example 1.41. Consider DOMINEERING played on the board B given in Figure 1.4.

Figure 1.4: Example Board B for DOMINEERING with Squares Labelled

Since Left and Right both play dominoes, the basic positions are to place a domino
on vertices a, b (basic position 1), on b, ¢ (basic position 2), or on ¢, d (basic position
3). Thus the underlying ring in this case is S = k[z1, x2, 3, Y1, Y2, Y3)-

Since Left may only place a domino vertically, the basic position represented by
x1 and w9 are legal, while x3 is illegal. Similarly, for Right vy, and ys are illegal, while

y3 is legal.
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The monomial zy3 represents the position in which Left has placed a domino on
vertices a and b, and Right has played on ¢ and d, which is a legal position. Similarly,
Toys represents the position where Left has played on vertices b and ¢, while Right

has played on ¢ and d, which is illegal since the two dominoes overlap.

A legal position is called a maximal legal position if placing any further piece
is illegal, i.e. it is not properly contained in any other legal position.

If we sort the monomials representing illegal positions by divisibility, the posi-
tions corresponding to the minimal elements are called minimal illegal positions.
Equivalently, an illegal position is a minimal illegal position if any proper subset of
the pieces placed forms a legal position.

With this terminology, the generalization of the “auxiliary board” in [12] is the

illegal complex.

Definition 1.42 ([26]). The illegal complex I'r g of an SP-game (R, B) is the
simplicial complex whose facets consist of those vertices labelled z; and y; such that
Left has played in the basic position ¢ and Right has played in the basic position j of
the minimal illegal positions of (R, B).

The legal complex, the generalization of the independence complex of the auxiliary

board, represents the legal positions.

Definition 1.43 ([26]). The legal complex Ag p of an SP-game (R, B) is the
simplicial complex whose faces consist of those vertices labelled z; and y; such that
Left has played in the basic position ¢ and Right has played in the basic position j of
the legal positions of (R, B).

Some of the results we discuss in this thesis hold for both the legal and illegal
complex of some game and board. For brevity, we will use the term game complex
when discussing a simplicial complex which is a legal or illegal complex of some SP-
game.

We can also assign two square-free monomial ideals to each game, which are the

facet ideals of the game complexes (see Fact 1.46).

Definition 1.44 (|26]). The legal ideal Lg g of an SP-game (R, B) is the ideal

generated by the monomials representing maximal legal positions of (R, B).
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Definition 1.45 (|26]). The illegal ideal ZLL g g of an SP-game (R, B) is the ideal

generated by the monomials representing minimal illegal positions of (R, B).

For the construction of these simplicial complexes and ideals to work, we necessar-
ily need strong placement games instead of just medium placement games. Since for
medium placement games which are not strong placement games (such as T1CTAC-
TOE) the order of the moves might matter, the underlying ring is non-commutative
and the geometric structure would be a directed hypergraph instead of a simplicial
complex. Since square-free monomial ideals of a commutative ring and simplicial
complexes have more structure and are better understood, we prefer to work in this
setting rather than the more general one.

Note that condition (iv) in Definition 1.5 implies that the order of moves does
not matter, which gives us commutativity when representing positions by monomials.
Thus the legal and illegal ideal are indeed commutative ideals. The condition also
implies that given any legal position, any subset of the pieces played gives a legal
position as well, and thus the hypergraphs representing the game are indeed simplicial
complexes.

The following proposition is clear from the careful examination of the definitions
of the facet and Stanley-Reisner operators and the game complexes and ideals. Tt
is very useful for the study of placement games, and its consequences will be used

throughout the thesis.
Fact 1.46 (|26, Proposition 3.4]). For an SP-game (R, B) we have the following
(1) Lrp = F(Arp),
(2) ILLp g = F(Trp) = N(Agrp),
or equivalently
(1) App=F(Lrp) =N(ZILLRrg),
(2) Tpp=F(ILLRE).

We will continue Example 1.41 to demonstrate these concepts. This also illustrates
again that the vertices of the complexes are the basic positions, not the vertices of

the graph/board.
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Example 1.47. Consider DOMINEERING played on the board B given in Figure 1.4.
Our underlying ring is S = k[z1, 22, 3, Y1, Y2, y3].
The maximal legal positions are represented by the monomials x,y3 and x5. Thus

we have the legal ideal

/CDOMINERRING,B = (3513/3»552)

and the legal complex below

Note that although x3, y1, and yy are variables of R, they do not appear as vertices
in the legal complex, and are thus not included in the above geometric realization.
The minimal illegal positions are represented by the monomials xqxs, x2y3, x3, Y1,

and y,. Thus we have the illegal ideal

IﬁLDOMINEERING,B — <x1x27 T2Y3, T3, Y1, y2)
and the illegal complex below

Ty T2 Y3 1;3 y.l y.2

It is important to note that the legal and illegal complexes and corresponding ide-
als have an extra layer of structure. The monomials have elements {1, xs,..., 2}
and {y1,v2,...,yn} and the complexes have their vertices partitioned into those cor-
responding to the Left and Right basic positions. In general, we call a simplicial
complex whose vertex set is bipartioned into sets £ and R an (£, 9R)-labelled sim-
plicial complex.

We now define homomorphisms between game complexes and ideals, which must
preserve these partitions. We thus extend the definitions of homomorphisms of sim-

plicial complexes and homomorphisms of ideals as follows.

Definition 1.48. Let A and I' be two (£, 9R)-labelled simplicial complexes. A map

¢ : A — T is a simplicial complex (£,93)-homomorphism if

1. For all faces ' € A we have ¢(F) =, cp 0({2i});
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2. Forall F,G € A, if FF C G, then ¢(F) C ¢(G); and
3. If z € £ then ¢({z}) € £ and if z € R then ¢({z}) € R.

Definition 1.49. Let S = k[x1,..., Zm, Y1, - - - Yn] be a polynomial ring with variables
partitioned into sets £ = {z1,..., 2, and R = {y1,...,y,}, and let I and J be ideals
of R. Amap ¢: [ — Jis an ideal (£,9R)-homomorphism if

L. ¢(rx+ sy) =ro(x) + so(y) for all x,y € I and r,s € S; and
2. For all z € £ we have ¢(z) € £ and for all y € R we have ¢(y) € R.

If we say that two game complexes are isomorphic, we mean that there exists a
simplicial complex (£, 9R)-homomorphism which is a bijection (and similarly for the
ideals).

We occasionally also talk about isomorphic boards, with which we mean the boards
are isomorphic as graphs and contain the same pieces. For SP-games we formally

define a board isomorphism as follows.

Definition 1.50. Let B; and B, be two boards, potentially not empty. A map

¢ : By — By is a board isomorphism if

1. ¢ is a graph isomorphism, that is a bijection of the vertex sets of B; and B,

such that {vy, v} is an edge of By if and only if {¢(v1), @(ve)} is an edge of By;

2. The vertex v of B; contains a Left piece if and only if the vertex ¢(v) of By

contains a Left piece; and

3. The vertex w of B; contains a Right piece if and only if the vertex ¢(w) of By

contains a Right piece.

We have the following relation between the Stanley-Reisner and facet operators

together with the cover dual, Alexander dual, and complement.

Fact 1.51 (Faridi 2004 [24]). Given two simplicial complezes A and T, if we have
N(A) = F(), then N(AY) = F(Ty). Alternatively, given a simplicial complex A,

we have

o N(F(A) = (An)*
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o N(F(A)Y = N(F(Au)) = A

By Fact 1.51 we have the diagram in Figure 1.5 for the simplicial complexes and

ideals related to the SP-game (R, B).

IELR,B ﬁR’B
- %
I'r B Arp —— ARrpB (TrB)M]
_ LN -7 — LN ¥
g S~ s & g Sl -7 z
—; complements g g —; complements g; ;E
2 - I g - ~o %
© L ~A o © k- \) o
(I'r,B) (Ar,B) Lrp)um
ILLY,

Figure 1.5: Relationship between Game Complexes, Ideals, and their Duals

The following proposition shows that two games with isomorphic legal complexes
have isomorphic game trees, and as a consequence the same game value under most
winning conditions (such as normal play and misére). Thus using simplicial complexes

helps us to easily identify when two games are literally equal.

Proposition 1.52. If two SP-games (Ry, By) and (Rg, By) have isomorphic legal

complexes, then their game trees are isomorphic, i.e. they are literally equal.

Proof. We prove that isomorphic legal complexes imply isomorphic game trees by
induction on the size of the faces (i.e. the number of pieces in a position). Let
(£1,1) be the labelling of Ag, 5, and (£, R3) be the labelling of Ag, p,. Since the
two legal complexes are isomorphic, the labelling are the same and we will thus write
£ for £; and £, and similarly R for 93; and R.,.

The empty face (i.e. empty board) corresponds to the root of the game tree, thus
the latter is trivially the same for both games.

Now assume that the game trees are isomorphic up to positions with &k pieces

played.
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Consider a position P; in the game (R;, B;) with k pieces played. Let F| be the
face of Ag, g, (of dimension k — 1) corresponding to P;. Since Ag, g, and Apg, s,
are isomorphic, there exists a face Fy € Ag, p, (of dimension k& — 1) to which F} is
mapped, corresponding to a position P, of (Rs, By), which also has k pieces placed.

Now let P| be any option of P, and F] be the corresponding face in Apg, p,.
Then there exists a vertex v such that F| = F; U {v}. Let F} be the face of Ag, s,
corresponding to Fj. Then there exists a vertex w (corresponding to v) such that
Fj = Fy U{w}. Thus the position P} corresponding to F} is an option of Ps.

Further, since the legal complexes have the same bipartition, we have that the

following are equivalent:
1. The position P/ is a Left, respectively Right, option of P;.
2. The vertex v belongs to £, respectively fR.
3. The vertex w belongs to £, respectively fR.
4. The position P} is a Left, respectively Right, option of P.

Thus for any option of P, there exists an option of P, and vice-versa, which shows
that the game trees of (Ry, By) and (R, Bs) are isomorphic up to positions of & + 1

pieces, and by induction they are entirely isomorphic. O

This is a very strong statement since isomorphic game trees imply that two games
are in the same equivalence class, independent of the winning condition considered.
Further, games in the same equivalence class can have different game trees.

Note though that the converse is not true, as the following example demonstrates.

We are grateful to Alex Fink for providing this example.

Example 1.53 (Alex Fink). Consider a ruleset R in which all pieces occupy a single
vertex, have to be adjacent to all previously placed ones, at most two pieces may be
placed, and only Left may play. Then Agrp = B for all boards B. In particular,
consider B being a disjoint union of two 3-cycles, and By being a 6-cycle with labels

for basic positions as below.
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a b d e d
Bl B2

The game trees for (R, B) and (R, By) (shown below on the left and right respec-

tively) are isomorphic even though the legal complexes are not.

ab ac ab bc ac bc de df de ef df ef ab af ab bc bc cd cd de de ef ef fa

Note that in the above example the game trees have isomorphic structure, but the
labelling of positions is not isomorphic in the sense that the isomorphic structures of
the trees do not preserve the labelling. We will show in Chapter 3 that if the labelling
of the game tree is given, we are able to recover a unique SP-game corresponding to
it.

This also gives an indication that the legal complex of an SP-game is a better
representative for the SP-game than the tree as it conveys more structure.

On the other hand, if the illegal complexes are isomorphic, it is not always true
that the game trees are isomorphic. For example, consider the ruleset R in which

neither player can place on a vertex of degree 1. We then have

FR,P2 = <$1,$2,y1,yz) = FR,Pg = <$1,55379173/3>-

The legal complexes Ag p, = ) and Ag p, = (22,y2) are not isomorphic. And since
there are no legal moves in (R, P,), but there are in (R, P3), their game trees are not
isomorphic either.

Another occurrence of isomorphic illegal complexes but non-isomorphic legal com-
plexes is if there are moves that are always playable in one game, but these moves
do not occur at all in the second game. This situation occurs in the proof of Theo-

rem 2.17, where we construct a game with isomorphic illegal complex, but potentially
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a different underlying ring, and an adjustment has to be made to the game accord-
ingly.

We are able to characterize what the legal and illegal complex of the disjunctive
sum of two games looks like. For this, we require the join and disjoint union of two

simplicial complexes.

Definition 1.54. Given two simplicial complexes A = (Fy, Fy,..., F;) and A’ =
(FY, Fy, ..., F) their join is defined as

AxAN =(FMUF,FRUF,,.... UF;, ... FFUF,F,UF, ... FUF).

If the vertex set of Ais V' = {1, ..., x,} and the vertex set of A'is V' = {a, ..., 2/ },

then their disjoint union is the simplicial complex with vertex set V UV’ given by
AUAN =(F\,F, ..., F, F{,F,,..., F)).

Theorem 1.55. Let (R, B) and (R, B') be two SP-games with legal complexes AR g

and A g, and with illegal complezes I'p g and I'r pr. Then
A(R,B)—‘,—(R’,B’) = AR,B * AR’,B’
1s the legal complex and

Urpyrr oy =TrsUlr
is the illegal complex of the disjunctive sum (R, B) + (R, B').

Proof. A maximal legal position in the game (R, B) + (R, B’) is one where both the
pieces placed in (R, B) and the ones placed in (R’, B’) form maximal legal positions.
Thus a facet in the legal complex of (R, B) + (R, B’) is a union of a facet of A p
and a facet of Ap p.

A minimal illegal position in the game (R, B) + (R, B') is one where either the
pieces placed in (R, B) or the ones placed in (R, B’) form a minimal illegal position.
Thus a facet in the illegal complex of (R, B) + (R', B’) is a facet of I'g g or a facet of
T s 0



Chapter 2

Simplicial Complexes are Games Complexes

In this chapter, we show that each simplicial complex is the legal complex of some in-
variant strong placement game (iSP-game). One implication is that in most situations

when studying SP-games it is enough to consider those with invariance.

In Section 1.4, we demonstrated how to assign two simplicial complexes to each
SP-game. One of the main questions is what complexes appear as game complexes.
In Proposition 2.1 we show that every simplicial complex is both a legal and an
illegal complex of some SP-game and board. The rulesets of these games can be quite

complex, though, and depend highly on the board on which the game is being played.

Thus we introduce the concept of invariance for SP-games, which, in a sense,
forces rulesets to be uniform and thus independent of the board. An example of a
non-invariant SP-game is the game played on a complete graph in which the vertices
of the board are partitioned and pieces on vertices in one part cannot be adjacent
to other pieces, while there are no restrictions for the other vertices. Invariance is
a concept that was introduced for subtraction games (see for example Dichene and
Rigo 2010 [21], Larsson, Hegarty, and Fraenkel 2011 [41], and Larsson 2012 [40]),
where it is defined slightly differently due to the different class of games, but has
the same intent, namely that the ruleset does not depend on the board. Similar to
the previous question, we are interested in which simplicial complexes come from
invariant SP-games (iSP games). We show that every simplicial complex without an
isolated vertex is the illegal complex of some iSP-game, and also that every simplicial
complex is a legal complex of an iSP-game. The constructions given in all cases prove
the stronger result that such SP-games exist given any bipartition of the vertices of
the simplicial complex (see Theorems 2.13 and 2.17) into Left and Right positions.
This construction then allows us to show that for every SP-game there exists an
iSP-game such that their game trees are isomorphic. This in turn implies that their

game values are the same under both normal and misére winning conditions. Thus
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it is enough to only consider iSP-games in most situations, such as when calculating
values.

Finally, we restrict to independence games, those games for which the ruleset
played on any board gives an illegal complex which is a graph. This class includes
many games actually played, such as SNORT, COL, and DOMINEERING, but not
NoGo. We show that any SP-game whose illegal complex is a graph is literally equal

to an invariant independence game.

2.1 Games from Simplicial Complexes

A natural and important question is whether any given simplicial complex A is the
legal or illegal complex of some game. We will answer this question positively in both
cases. This will allow us to view properties of SP-games as properties of simplicial
complexes and vice-versa. We are able to show this for any bipartition of the vertices

into Left £ and Right R, where £ or R could even be the empty set.

Proposition 2.1 (Games from Simplicial Complexes). Given an (£,R)-labelled

simplicial complex A, there exist SP-games (Ry, B) and (Ry, B) such that
(a) A =Apg, 5 and

(b) A=Thr,»5
and the sets of Left (respectively Right) positions is £ (respectively R).

Proof. Let m = |£| and n = |R|. Let B be the board consisting of m disjoint 3-
cycles and n disjoint 4-cycles. In the games (R, B) and (Rs, B), Left will be playing
3-cycles, while Right will be playing 4-cycles.

In A, label the vertices belonging to £ as 1,...,m, and the vertices in R as
m+1,...,n 4+ m. Similarly, label the 3-cycles of B as 1,...,m, and the 4-cycles as
m+1,...,n+m.

(a) In Ry, playing on a set of cycles of B is legal if and only if the corresponding
set of vertices in A forms a face.

(b) In Rs, playing on a set of cycles of B is legal if and only if the corresponding
set of vertices in A does not contain a facet.

It is now easy to see that A = Ag, p and A =Ty, . O
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Note that we chose 3-cycles and 4-cycles for the pieces as these are the smallest

graphs which allow us to guarantee that players can only place on “their” spaces.

Remark 2.2. There is a second construction that works for the legal complex, which
can be thought of as playing on the simplicial complex:

Given an (£,9R)-labelled simplicial complex A, let the board be the 1-skeleton
Al of the given simplicial complex, i.e. the underlying graph. Left and Right will be
claiming a single vertex, with Left only being allowed to place on vertices of B which
belong to £ in A, and Right only on vertices in PR. Playing on a set of vertices is

legal if and only if they form a face in A.

As seen in the proof of Proposition 2.1, it is rather simple to construct games
on fixed boards from simplicial complexes by restricting the legal moves to certain
parts of the board. We now move on to look at games where such restrictions can be

relaxed. We call these invariant games.

2.2 Invariant Games

As we have shown in Proposition 2.1, every (£,9)-labelled simplicial complex is the
legal or illegal complex of some SP-game and board. The rules created as part of this
construction, however, depend heavily on the board. We now define the concept of

invariance for SP-games, which in a sense forces the ruleset to be “uniform” across

the board.

Definition 2.3. The ruleset of an SP-game is invariant if the following conditions

hold:

(1) Every basic position is legal.

(2) The ruleset does not depend on the board, i.e. if B; and By are isomorphic
boards, then a move in Bj is legal if and only if its isomorphic image in B, is

legal.

If the ruleset of an SP-game is invariant, we also say that the game is an invariant
strong placement game (iSP-game).
CoL and SNORT are examples of rulesets that are invariant, while DOMINEERING

and NOGO are not. In DOMINEERING half of the basic positions are illegal (Right
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cannot play vertically, while Left cannot play horizontally). That NOGO is not
invariant is not as obvious. Indeed on most boards both conditions hold, but whenever
the board has an isolated vertex, playing on it is illegal (thus the basic position
corresponding to that vertex is illegal). An example of an SP-game which fails the

second condition is the following.

Example 2.4. Consider playing on B; and Bs, both 4-cycles with labels as helow, a

game in which a Left piece on vertex 1 cannot be adjacent to another piece.

2 3 1 2

By By

Now B; and By are isomorphic graphs and, since neither contains pieces, also
isomorphic boards. The position in which there is a Left piece in the top left corner
and a Right piece in the top right corner is legal on B; but not on B;. Thus this

game is not invariant.

Similar to the question of the previous section, we are interested in which simplicial
complexes appear as the legal or illegal complex of an iSP-game.
We will show below that the illegal complex of an iSP-game cannot contain an

isolated vertex.

Proposition 2.5. Let I' be a simplicial complex. If T is the illegal complex of some

1SP-game then I' has no facets of dimension 0.

Proof. Assume that I' has a facet that has dimension 0, i.e. an isolated vertex, and
label this vertex a. If I is the illegal complex of some SP-game (R, B), then since {a}
is a facet of ', there exists a basic position (corresponding to the vertex a) which is

illegal. Thus G does not satisfy the first condition of invariance. O

Other than the isolated vertex situation, there is no obstruction for a simplicial
complex I" being an illegal complex. We set out to prove this (see Theorem 2.13) by

constructing a I'-board and a I'-ruleset from I.
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Construction 2.6 (I'-board). Given an (£, R)-labelled simplicial complex I" with
no isolated vertices we can construct a graph Br (called the I'-board) as follows:

If I' is empty, then let Br be empty.

If T is non-empty, then let H = 'l i.e. the underlying graph of T'. Let n be the
number of vertices in the graph H and (re)label the vertices of H as 1,...,n. Begin
constructing the board Br by using n cycles of sizes n? +4 and n* + 5 and label these
1,...,n so that cycle i will have size n* + 4 if the vertex i in H belongs to £, and
size n* 4+ 5 if the vertex i belongs to 3. For each cycle, designate n — 1 consecutive

vertices for joining, called connection vertices (see Figure 2.1).

n*—n+5orn*—n+6
outer vertices

3

vertices)

. b
i1 inner cycles (n

4,0 — 1

n — 1 connection vertices

Figure 2.1: Cycle ¢ in the Board Br

Call the remaining vertices outer vertices. To each connection vertex, join a
cycle of length n® (called inner cycles). In cycle i label the connection vertices as
1,j where j=1,...,n and j # i.

Label the edges in H as 1,..., k. If the endpoints of the edge [ are the vertices ¢
and j, then add a path of 24 [ vertices to Br, whose end vertices are i, j and j,i (see

Figure 2.2). The [ vertices between 4, j and j,i are called centre vertices.
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Figure 2.2: Effect of an Edge in H on the Board Br

As an example for this construction, consider the following:

Example 2.7. Let I' be a path of three vertices so that H = I'. Let the two end
vertices belong to £, and the centre vertex to 3. Since I' consists of three vertices,
i.e. n = 3, the cycle i (where i € £) is of length 3* +4 = 85 with two cycles of length
33 = 27 joined to two adjacent vertices, and the cycle j (where j € R) is of length 86

with two cycles of length 27 joined to two adjacent vertices.

Label the edge between vertex 1 (an end vertex) and vertex 2 (the centre vertex)

as 1, and the edge between vertex 2 and vertex 3 (the other end vertex) as 2.

The board Br is given below. Dashed, blue cycles consist of 85 vertices, and
dotted, red cycles of 86 vertices, with the two labelled vertices adjacent in both cases.

The smaller solid cycles consist of 27 vertices.
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1 2 3

For the next construction, we will have to specify what is meant by distance

between pieces.

Definition 2.8. Let two pieces P, and P, be placed on a board B and let V; and V;
be the set of vertices on which P;, respectively P, was placed. We then define the
distance d(P;, P;) between P; and P, by

d(Py, Py) = min{d(vy,vs) : v1 € V1,09 € Va},

where d(vy,vy) is the graph theoretic distance between vy and wvs, i.e. the minimum

number of edges of a path in B with endpoints v; and v,.

Construction 2.9 (I'-ruleset). Given an (£, 9)-labelled simplicial complex I' with
no isolated vertices we construct a ruleset Rp for an SP-game (called the I'-ruleset).

If " is empty, then let Rpr be the ruleset in which Left and Right place pieces on
a single vertex with no restrictions.

If " is non-empty, then construct Rr as follows:

1. Let n be the number of vertices of I'. Label the edges (the 1-dimensional faces)
of I'as {1,...,k}.
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2. Left plays cycles of length n* + 4 with cycles of length n? joined to n — 1

consecutive vertices,

3. Right plays cycles of length n* + 5 with cycles of length n?® joined to n — 1
consecutive vertices (i.e. the pieces are as the structure given in Figure 2.1),

and

4. Let F be a facet of I' of dimension f — 1, whose 1-dimensional faces are labelled
ki,...,k (from 1.), where [ = (’;) We call the set {k; + 1,...,k + 1} the
id-set of F'. Then no sets of f pieces are allowed such that the set of distances

between any two pieces is exactly the id-set of F.

Example 2.10. Let I' be a path of three vertices so that n = 3. Left’s pieces are
cycles of length 3* 4+ 4 = 85 with two cycles of length 3% = 27 joined to two adjacent
vertices, and Rights pieces are cycles of length 86 with two cycles of length 27 joined
to two adjacent vertices.

Since the facets of I' are the two edges (thus of size 2), the edge in one facet are
labelled as 1, and in the other as 2. Thus the id-sets are {2} and {3}, implying that

in Rr no two pieces are allowed to have distance 2 or distance 3.

Example 2.11. Consider I' = ({a,b,c}, {a,d}). Label the edge between a and b as
1, between b and ¢ as 2, between ¢ and a as 3, and between a and d as 4.

For the facet abc we have the id-set {1 + 1,2+ 1,3 + 1} = {2,3,4}. Thus in
the I'-ruleset Rr we cannot have three pieces where the distances between pairs are
{2,3,4}, while two with any one of these distance are allowed.

For the facet ad we have the id-set {4 + 1} = {5}. Thus in Rp we cannot have

any two pieces with distance 5.

Lemma 2.12. Given an (£,R)-labelled simplicial complex T with no isolated vertices,

the I'-ruleset Rr s tnvariant.

Proof. 1f T" is empty, then Rr played on any board has no illegal positions, thus is
trivially invariant.
If I' is non-empty, then since I' has no isolated vertices, all facets have at least

one edge and therefore all id-sets are non-empty. In particular, this means that every
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illegal position of Rr played on any board has at least two pieces, so there are no
illegal basic positions.

Now suppose that we are playing Rr on isomorphic boards By and Bs. A position
P is legal on By if and only if there is no id-set which is contained in the set of
distances between pieces of P, which holds if and only if P is legal on Bs.

Thus Rr is invariant. O

The following statement will prove that every simplicial complex without isolated

vertices can appear as the illegal complex of (many!) iSP-games.

Theorem 2.13 (Invariant Game from Illegal Complex). Given an (£,9R)-
labelled simplicial complex T' with no isolated vertices, fix labellings of the wvertices
and of the edges. Then " is the illegal complex of the I'-ruleset Rr played on the
I'-board Br, i.e. 'p. . =1

Proof. Let G = (R, B) where B = Br and R = Rr are the I'-board and I'-ruleset
respectively, with the same labelling of the edges of I' if [' is nonempty.

If I' is empty, then G has no illegal positions, thus I'g 5 is also empty.

To show that indeed I'p 5 = I' for I' nonempty, we will begin by showing that
their vertex sets have the same size.

Let H = I'll. Clearly Left can place one of her pieces on the cycle labelled i in
B if the vertex ¢ of H belongs to £. Similarly Right can place on cycles labelled j
where 5 € R. Thus each vertex in H corresponds to a position in G.

We now need to show that there are no other ways for Left or Right to place pieces
than what was previously mentioned, i.e. that the positions of G correspond exactly
to the vertices of H.

Let n be the number of vertices of H and k be the number of edges. The cycles in

k(k+1)

B which only use connection and centre vertices have size at most n(n — 1) + =5~

(there are n(n — 1) connection vertices and 1 + ...+ k centre vertices). Since there

n

2) edges in H, we have

n(n+1) [ n(n+1)
k(k+1) 2 ( 2 +1>

are at most (

n(n+1)+
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which is less than n* + 4 for all whole numbers.

Thus such cycles are shorter than n* + 4, and Left and Right will not be able to
play on those.

Furthermore, any cycle of length n* +4 or n* + 5 in B needs to include the outer
vertices of some cycle i (since as above cycles using only connection and centre vertices
are shorter, and the inner cycles are shorter). To then construct a cycle of that length
without using all connection vertices of cycle ¢, the cycle would have to include at
least one centre vertex. Since centre vertices do not have cycles of length n® added,

this implies that neither Left or Right could play there.
Thus Left and Right are only able to play on the labelled cycles.

Further, since the pieces consist of cycles with a differing number of vertices, either
player will only be able to play on the cycles of B that are designated to them. Thus
there are n positions, in each of which only one player can play, all corresponding to
vertices of I'. The vertices of I'g p are thus a subset of the vertices of I' and I'g 5 has
less vertices than I' if and only if there exists at least one position in which it is never

illegal to play, which we will show cannot happen as part of the rest of the proof.
We next need to show that the facets of I'g 5 and I" correspond.

Consider a facet consisting of the vertices i1, ..., % in [', thus any two vertices have
an edge between them in H, and let these edges be ji,..., 7. Then the positions i,
and iy, a,b € {1,...,k}, in B have distance j. + 1, where j. is the edge between i,
and i, in H, (since we joined a path of length j.+ 2 to their connection vertices).
Thus it is illegal to play in all £ positions (and this is a minimal illegal position), and

thus there is a facet consisting of the vertices i,...,7; in I'g 5.

Now let the vertices 1,...,17; form a facet in I'p p. Assume that 7y,...,7; do not
form a facet in I'. If some subset S of these vertices forms a facet, then by construction
of R it would be illegal to play pieces on all of the cycles in B corresponding to vertices
in S. Thus iy, ..., 1 is not a minimal illegal position, a contradiction to those vertices
forming a facet in ' p. If on the other hand ¢,,..., 7 is strictly contained in some
facet I’ of I', then by construction of R it is legal to play on cycles iq,...,i; in B.
Thus iy, ...,% is not an llegal position, a contradiction to those vertices forming a

facet in I'p . Therefore 7y, ..., 1% is a facet of I.

Finally, since H has no isolated vertices (by I' not having such), the vertex set of
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I'r B is a subset of the vertex set of H, i.e. the vertex set of I'. Since furthermore the
facets of I'p p and I" correspond, we have that the vertex set of I'g 5 is equal to that
of I.

Consequently, the simplicial complexes I" and I'g 5 have the same vertex and facet

sets, which proves I' = I'g p. ]

Example 2.14. Let I" be a path of three vertices. Let B = Br (see Example 2.7)
and R = Rr (see Example 2.10).
Then FR,B =T.

Note: Simpler constructions with smaller cycles and pieces are often possible (as

shown in the next example), but the above construction is guaranteed to work.

Example 2.15. Let I' be as in Example 2.14. Let Left play cycles of length 3, and
Right cycles of length 4. For the board B’ given below, it is easy to check that

I'r g =T, where R’ is the ruleset which forbids overlap between pieces.

The following theorem summarizes our results about illegal complexes of iSP-

games.

Theorem 2.16. A given simplicial complex I is the illegal complex of some iSP-game

(R, B) if and only if I' has no isolated vertices.

Proof. By Proposition 2.5 we have that if ' is the illegal complex of an iSP-game,
then I' has no isolated vertices.
Conversely, if I has no isolated vertices, then by Theorem 2.13, we have that I is

the illegal complex of some iSP-game and hoard. m

We will now consider legal complexes. The first result shows that every simplicial

complex is the legal complex of some iSP-game and board:
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Theorem 2.17 (Invariant Game from Legal Complex). Given any (£,R)-
labelled simplicial complex A, we can construct an iSP-game (R, B) such that A =

Apr p and the sets of Left, respectively Right, positions is £, respectively R.

Proof. Given A, let the underlying ring be S = klz1,...,Zm, 1, .., Yn|, where the
x;5 are the 0-dimensional faces of A in £ and the y;s in 2R, With this ring, let
I' = F(N(A)), i.e. the simplicial complex whose facets correspond to the minimal
non-faces of A.

We will prove the statement separately for the case in which the simplicial complex
A is not a simplex, i.e. when I' has at least one 1-dimensional face, and when it is a
simplex, i.e. when I' is empty.

Case 1: If A is not a simplex, the construction is as follows:

Let ¢ be a vertex in A. If A has at least one facet that does not contain ¢, then ¢
will also be a vertex of I'. Otherwise it is not a vertex of I

Let the vertex set of I" be bipartitioned into £ and fR the same way that the vertex
set of A is. Let n be the number of vertices in I and let R be the I'-ruleset and B,
be the I'-board, so that I'g g, = I'. If A has a vertex v that is contained in every
facet, then it is not a vertex of I', and there is no move in (R, By) corresponding to
the vertex v. Thus the underlying rings of I'g p, and I' are not the same, and we have
to adjust the board as follows:

Without loss of generality, let 1,...,k be the vertices of A that are contained in
every facet. Then for [ = 1,...,k let B, = B;_; U C! where C! is a cycle of length
n* + 4 (if the vertex [ belongs to £) or length n* + 5 (if it belongs to R) with n — 1
cycles of length n? joined to n — 1 consecutive vertices. Let B = B;,. When playing
the ruleset R on B, it is always legal to play on the disjoint C! for either Left or
Right, thus these positions are never part of a minimal illegal position, which shows
that I'g g, = ' . Furthermore, the underlying rings of I' and I'g 5 are the same.

It immediately follows that
App=N(F(Trp)) = N(F(I)) = A.

Case 2: If A is a simplex, we can construct R and B as follows:
Let n be the number of vertices in A and (re)label the vertices 1,...,n. Let the

board B be a disjoint union of n cycles of size 3 and 4 and label these 1,...,n so
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that cycle 7 will have size 3 if the vertex ¢ in A belongs to £, and size 4 if the vertex
1 belongs to ‘R.

Let R be the SP-ruleset in which Left plays cycles of length 3, and Right plays
cycles of length 4. Note that R is invariant.

It is easy to see that A = Ag p. O

The following two examples demonstrate this construction in both the case where

A is not a simplex and when it is.

3

Example 2.18. Consider the complex A = ({a,b}, {b,c}), where the vertices are
partitioned as £ = {a,b} and R = {c}. Since A is not a simplex, we will follow the
construction given in the first case of the proof of Theorem 2.17.

The only minimal nonface of A is ac, thus the graph H is P,. Since n = 2, in
the SP-ruleset R Left will play cycles of length n* + 4 = 20 with one cycle of length
n? = 8 added to a vertex, while Right plays cycles of length n* 4+ 5 = 21 with a cycle
of length 8 added to a vertex.

The board B is given below. Dashed, blue cycles consist of 20 vertices, and dotted,

red cycles of 21 vertices. The smaller solid cycles consist of 8 vertices.
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It is now easy to check that Az p = A.

Example 2.19. Consider the simplex A = ({a, b, c}), where the vertices are parti-

tioned as £ = {a} and R = {b,c}. Since A is a simplex, we will follow the second
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construction given in the proof of Theorem 2.17. Since n = 3, in the SP-ruleset R
Left will play cycles of length 3, while Right plays cycles of length 4.
The board B is

It is now easy to check that Ar p = A and that I'g p is empty.
Concluding our discussion of iSP-games, we have the following result.

Theorem 2.20 (Every SP-Game Tree Belongs To An iSP-Game). Given
an SP-game (R, B), there exists an iSP-game (R', B') so that their game trees are

1somorphic, i.e. they are literally equal.

Proof. Let A = Ag p with £ the vertices corresponding to Left basic positions, and
similarly 98. Then by Theorem 2.17 we know that there exists an iSP-game R’ and a
board B’ such that A = Ap g with the same bipartition. Since Arp = Ap g/, we
have by Proposition 1.52 that the game trees of R played on B and R’ played on B’

are isomorphic. O

This in particular implies that under most winning conditions (such as normal
play or misére play) the game values of R played on B and R’ played on B’ are the

same, implying that we can replace one by the other.

2.3 Independence Games

Many of the games we have previously considered have illegal complexes that are
graphs. This special class of SP-games is of further interest to us. This is also the
class of SP-games whose legal complexes are flag complexes (see below for more).
When the illegal complex of an SP-game is a graph without isolated vertices, then
its independence complex is the legal complex. Motivated by this we define the class

of independence games.

Definition 2.21. An SP-ruleset R is called an independence ruleset if for any
board B the illegal complex I'g g is a graph without isolated vertices (i.e. a pure one-
dimensional simplicial complex). An SP-game (R, B) is called an independence

game if R is an independence ruleset.



45

Many SP-games, such as COL and SNORT, are independence games. NOGO is an
example of an SP-game that is not an independence game. Even though I'nogo,s is @
graph for some boards (for example when B is P,), there are many others for which
this is not the case. For example, I'nogo,py, given in Figure 2.3, has two-dimensional

faces.

X

n

€3

Y3

Figure 2.3: The Illegal Complex I'noco,p,

Independence complexes are also called flag complexes in combinatorial commu-

tative algebra (see for example Herzog and Hibi |31, p. 155]).

Definition 2.22. A simplicial complex is called flag if all the minimal non-faces are

two element sets.

In the case of independence games, since I'g 5 is a graph without isolated vertices,

we have that Ap p is flag.

Lemma 2.23. For an SP-game (R, B), Agp is flag if and only if T'r g is a graph

without isolated vertices.

Proof. Since N (Agp) = F(I'rp) we have that the minimal non-faces of Agp are
the facets of I'g . Thus if I'g p is a graph without isolated vertices, then Ap p is

flag, and conversely. n

Consider the illegal complex I'p p of an independence ruleset R on a board B.
Let I'; p be the graph on the vertex set 1,2y, ..., %m, Y1,¥2,- -, Yn (corresponding
to the basic positions of R played on B) with edges those of I'g 5. Thus the difference
between I'g g and I'; 5 are isolated vertices corresponding to basic positions that are
always legal. For many independence games we have I'p p = I'g p.

Recall that the independence complex of a graph H is a simplicial complex with

vertex set that of the graph and faces those sets of vertices that are independent in H,
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i.e. no two vertices are adjacent. The term ‘independence game’ was chosen for this
class of games since the independent sets of I'p 5 correspond to the legal positions of
R played on B, i.e. the faces of Ap . Thus in this case Agp is the independence
complex of the graph T'; 5.

One nice property of independence games is that playing an independence ruleset
R on a board B is equivalent to forming independent sets of the graph F’R,B while
Left picks vertices in £ and Right in fA.

Further note that the I'-ruleset in the case of I" being a graph is always an inde-
pendence ruleset (since minimal illegal positions are always pairs of pieces played).

Using Theorem 2.17 this implies the following.

Proposition 2.24 (iSP-Games of Flag Complexes). Given any SP-game (R, B)
such that I'r g 1s a non-empty graph, there exists an invariant independence game
(R, B") such that Agp = Ap pr. In the case that I'p g has no isolated vertices, we

also have 'p p = '/ pr.

Proof. By Theorem 2.17 there exists an iSP-ruleset R’ and board B’ such that A p =
Ap p. In the case that Ag p is not a simplex (if I'g p has at least one edge), the
ruleset R’ is the I'-ruleset Rry, ;- As mentioned above, this is an independence ruleset.
In the case that Ag p is a simplex, the ruleset R’ has no illegal positions, and thus is
an independence ruleset trivially.

If I'r p has no isolated vertices, then the underlying rings of Ap p and Ap p are

the same, thus
FR’,B’ — I(N(AR’,B’)) — F(N(AR,B)) — FR7B. D

Equivalently, this proposition states that given an SP-ruleset R and board B such
that the minimal non-faces of Ag p are all 1- and 2-element sets, there exists an
SP-ruleset R’ for which the legal complex is always flag and a board B’ such that
Aprp = Ap p.

As a direct consequence of Proposition 2.24, applying Proposition 1.52, we have

that these games also have isomorphic game trees.

Corollary 2.25. Given any SP-game (R, B) such that U'r g is a non-empty graph,
there exists an invariant independence game (R', B") such the game trees of (R, B)

and (R', B") are isomorphic, i.e. they are literally equal.
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2.4 Further Work

The I'-board and pieces of the I'-ruleset have many more vertices than I' itself. Thus
we are interested in whether given any simplicial complex I' simpler constructions of
a ruleset R and board B are possible such that I' = I'p p. Ideally, we would like the
pieces that Left and Right play to occupy only a single vertex. This seems unlikely
though, thus an interesting question is for which class of simplicial complexes such a
construction is possible.

Simplicial trees and forests, which are generalizations of graph trees and forests,
are flag complexes (see Herzog and Hibi [31, Lemma 9.2.7]). Since many properties
of simplicial trees are known (see for example Faridi 2004 [24] and Faridi 2005 [25])
it seems that this class of flag complexes provides a good start to studying whether

simpler constructions are possible.



Chapter 3

Game Tree, Game Graph, and Game Poset of an SP-game

One step towards understanding properties of SP-games is to know the structure of
the corresponding game trees. As the game tree for an SP-game has many repeated
positions, we will introduce a simplified version called the game graph, and show
that the game tree and game graph (both with positions labelled) are in one-to-one
correspondence. We can thus equivalently ask what the structure of the game graph
of an SP-game is, and we will answer this question in Proposition 3.11.

We then introduce the game poset and show that it is in one-to-one correspondence
with the game graph. Due to the game poset’s relationship with the legal complex
it is the face poset — we can then show that the legal complex and game graph are

equivalent representations of an SP-game.

3.1 The Game Graph

Before introducing the game graph and for our later proof, we will have to fix some

terminology regarding directed graphs.

Definition 3.1. A directed graph D = (V| E) is a set of vertices V' together with
a set E of ordered pairs of vertices, called edges. Given an edge (v,w), v is called a
predecessor of w and w is called a successor of v. The in-degree of a vertex v is
the cardinality of the set {x € V' | (z,v) € E}, and its out-degree the cardinality
of {r € V| (v,2) € E}. A directed graph is called an oriented graph if whenever
(v,w) € E, then (w,v) ¢ E. Two directed graphs are called isomorphic if there

exists a bijection of the vertex sets preserving edges.

Recall from Definition 1.19 that the game tree of G can be thought of as an oriented
directed graph with edges from each position to its options, and edges to Left options
labelled L and similarly for Right options. As one can tell from Figure 1.3, even with

a simple game, game trees tend to become very large even after a few moves, and the

48
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same position may be repeated many times. Motivated by this, we define the game

graph below, in which each position corresponds to exactly one vertex.

Definition 3.2. The game graph Gg of a combinatorial game G is a labelled,

oriented graph where
(a) each legal position in G is represented by exactly one vertex; and

(b) if there is a Left move from position P to position @, then there is an edge

labelled L from vp to vg, and correspondingly for Right moves.

Although the game tree is the most common representation of a game in combi-
natorial game theory, versions of the game graph are often used to model impartial
or infinite games (see for example Nau 1983 [48], Cachat, Duparc, and Thomas 2002
[14]), or Berwanger and Serre 2012 [7]). For impartial games the labelling of the edges
is removed (see Proposition 6.19) and for infinite games often the vertices, rather than
the edges, represent moves and are labelled as L or R. We introduce the above version
of a game tree for short, partizan games.

Note that the (unique) root of the game graph corresponds to the starting position,

which in the case of SP-games is the empty position.

Example 3.3. The game graph of SNORT on Pj is given in Figure 3.1, with vertices
labelled with their corresponding legal positions. Compare this with the game tree

in Figure 1.3.

We will show that game trees with positions labelled and game graphs with posi-
tions labelled of short combinatorial games are in a one-to-one correspondence. Note

in particular that this is true for all games, not just SP-games.

Proposition 3.4. Given a combinatorial game G, the game graph Gg and the game

tree T (both with positions labelled) are in a one-to-one correspondence.

Proof. Let A be the set of game trees with positions labelled and B the set of game
graphs with positions labelled. We will describe maps f : A — Band g: B — A
which preserve the game and are inverses of each other.

First, consider a game tree T with positions labelled of some game . The map

f sends this game tree to a game graph G by identifying vertices corresponding to
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Figure 3.1: The Game Graph of SNORT on P

the same position and merge them into one. Edges that previously pointed to the left
are labelled with an L, and similarly edges pointing to the right labelled with an R.
This game graph is also the game graph of G.

On the other hand, consider the game graph G of some game G with positions
labelled. This is mapped by ¢ to a game tree T" inductively by essentially splitting a
vertex in the graph every time the in-degree is higher than 1. Formally the process

is:
Step 1: Place a vertex in 7" for the starting position (the source of Gg).

Step n: For every vertex v created in step n — 1 do the following: Identify the vertex v’
of Gg of which v is a copy. For each successor w' of v' place a vertex w in T
such that if the edge from v’ to w' is labelled with an L, the edge from v to w
points to the left and similarly if the edge is labelled R.

This game tree is the game tree of G.
Since every game GG has a unique game tree and game graph we have that f and
g are inverses of each other. Thus the game graph and game tree are in one-to-one

correspondence. O

As in the above proof, the labelling of the game tree is needed to be able to

identify the same positions when constructing the game graph from it. Given an
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unlabelled game graph, the structure of the game tree can be reconstructed using the
same technique as in the proof, but the labelling cannot be reconstructed. Consider
the two labelled game trees in Example 1.53. The two game graphs are given below,

on the left for (R, By) and on the right for (R, By), and all edges will be labelled L.

Notice in particular that the game graphs are not isomorphic due to the labellings
of the trees being different, even though the trees are isomorphic. As with the legal
complex, this indicates that the game graph is a better representative of a game than
the (unlabelled) game tree.

For an SP-game, we can take advantage of its structure, namely that any order of
moves is possible, and recover a (unique) labelling of its game graph. Before proving

this result in general, we will demonstrate it using an example.

Example 3.5. Consider the game graph below whose positions are unlabelled and
which we claim is the game graph of some SP-game (we show this is indeed the case

in Proposition 3.11).
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We begin by identifying the unique source, and label it 1 (representing the starting
position). We then give a label to every basic positions (the successors of the source).
Ones with the edge from the starting position labelled L will be labelled with an x;,
and ones with the edge labelled R with a y;.

YRV,

We then inductively label the rest of the vertices with the least common multiples
of the monomials of the predecessors since every position is the union of previous

positions. This gives us the labelled game graph.

1
T T 1 T3 Y2
X172 1l Ty T3Y2

T1T2Y1

Note that this labelling is not the only possible one  we labelled with monomials
representing positions, not specific positions of a game — but any other labelling of
this game graph, if coming from an SP-game, is equivalent. Thus such a labelling is

unique.
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This construction works for all game graphs of SP-games, so that we get the

following general result:

Lemma 3.6. Given the game graph of an SP-game with positions unlabelled, we can

reconstruct the (unique) labelling and thus construct the game tree.

Proof. To recover the labelling, we will take advantage of the order of moves not
mattering in an SP-game.

Given the game graph, begin by identifying the unique root, which will be labelled
as the starting position. Then label the basic positions which can be identified as
being the followers of the root /starting position. For the positions at the end of edges
labelled L, use variables x1,...,z,,, and of edges labelled R the variables yi, ..., y,.

Now inductively label every other vertex v with the monomial which is the least
common multiple of the monomial labels of all predecessors of v.

Given the labelled game graph, we then get the unique game tree from Proposi-

tion 3.4. [l

To be able to use Lemma 3.6, we first need to be able to identify when a game
graph comes from an SP-game. To this end, we will investigate the structure of the

game graph of an SP-game next.

3.1.1 Structure of the Game Graph

Consider the game graph Gg of an SP-game G. Consider positions P and P’ of G
where P’ can be reached with a sequence of moves My, M, ..., M, from P, with each
M; in £ or R. Further, let v be the vertex in G for position P, and w the vertex for
P'.

Since the order of moves in an SP-game does not matter, we have that each
permutation of M, ..., M, is also a sequence of moves from P to P’. This gives
exactly k! sequences of moves from P to P’, i.e. k! paths between v and w in the
game graph.

Further, in the game graph moves are only identified by whether they are Left
moves or Right moves. Without loss of generality, assume that M,..., M, are Left

moves and M1, ..., My are Right moves (of which there are b = k — a). There are
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(’;) ways to order the Ls and Rs. And for each of these, permuting M, ..., M, and
Myyq, ..., My, we have a! - b! different paths.

Example 3.7. The game graph given in Example 3.5, and repeated below, is known

to be one of an SP-game.

Notice for example that between the starting position labelled 1 and the position
labelled 11 there are a total of 3! = 6 paths. There are two Ls and one R, and of
each of the (3) ways to order them there are 2! - 1! = 2 paths.

We can similarly observe the above properties between any two other positions

between which there exists at least one path.

A directed graph is called graded if the vertex set can be partitioned into sets
Vo, ..., Vi such that every edge points from a vertex in V; to a vertex in V;,, for some
1.

Observe that the game graph of an SP-game is graded, with the set V; being those
vertices whose corresponding positions break into ¢ basic positions, i.e. can be reached

in ¢ moves, or equivalently the degree of the monomial representing the position is i.

Example 3.8. Consider again the game graph in Example 3.7. This graph is graded
with vertex partitions Vo = {1} (the starting position), V; = {2,3,4,5,6} (the basic
positions), Vo = {7,8,9,10} (positions reached in 2 moves), and V3 = {11} (the

position reached in 3 moves).
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Note that the above two properties about the number of paths between vertices
and being graded are necessary conditions for a game graph to be of an SP-game, but

not sufficient. The next example, due to Alex Fink, demonstrates this.

Example 3.9 (Alex Fink). Consider the following game graph:

Although this game graph satisfies the properties described above for the number of
paths between any two vertices and being graded, it is not the game graph of an
SP-game. The vertices labelled 2 and 3 have two common successors (namely 4 and
5). In an SP-game this is not possible since a common successor of two positions

would consist of the union of the basic positions, which is unique.

Thus for the game graph of an SP-game we additionally have that given any two
vertices v and w in the same graded part V, there exists at most one successor in
common, which corresponds to the unique position which is the union of the basic
positions making up v and w.

Based on this discussion, we define the SP-property of a game graph as follows.

Definition 3.10. A game graph is said to satisfy the SP-property if it is graded
and if, whenever there exists a path from a vertex v to a vertex w consisting of a
edges belonging to £ and b belonging to R, there exist exactly a! - b! paths between

a+b)

v and w of each of the ( .”) orderings of edges labelled L and R. Furthermore, any

two vertices have at most one common successor.

Proposition 3.11. Let G be the game graph of the combinatorial game G. Then G
is an SP-game if and only if Go satisfies the SP-property.

Proof. Given G being an SP-game, we will show that the game graph satisfies the
SP-property using that the order of the moves does not matter. Consider a vertex

v and a vertex w in G such that there is a path from v to w. If we consider the a
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Ls and b Rs as all different in this path (since they all represent different moves),
then any order of these moves (i.e. edges) gives a path between v and w. Then
considering these moves to be the same again there are (ajb) different orders, and
of each there are a! - bl. Furthermore, as discussed above the game graph is graded
with the grading coming from the number of basic positions, and two vertices have
at most one common successor. Thus G statisfies the SP-property.

For the reverse, we show that there exists an SP-game G’ with G5 as a game graph.
Any other game with Gs as a game graph is then literally G’ since the unlabelled
game graph of an SP-game maps to exactly one game tree (Lemma 3.6) and thus G
and G’ are literally equal.

Begin by labelling the vertices adjacent to the root (that is its direct successors)
as {x1},...,{zn} (if the edge is labelled with L) and {y:},...,{y.} (if the edge is
labelled with R). Inductively, now label all other vertices with the union of the lahel
of their direct predecessors. Due to the SP-property, each vertex at distance k to the
root has in-degree k and its label has size k, and each label appears at most once.
Let the labels of the vertices with out-degree 0 (those representing maximal/final
positions) give the facets of a simplicial complex A and let G’ be an SP-game such
that the legal complex of G’ is A. This definition implies that the vertices with
out-degree 0 have the same distance to the root in both G5 and Ggr. Since G also
satisfies the SP-property as we have shown above, it is isomorphic to Gg as a directed
graph. Furthermore, the labelling of the edges will be identical as well since having
the same labels for the vertices with out-degree 0 implies having the same number of

Left and Right moves. O]

3.2 The Game Poset

The positions in an SP-game can be given a partial order through sequences of moves
between them. For more background on partially ordered sets (posets) and their
correspondence to simplicial complexes see “Ordered Sets” by Schroder [54]. Recall
in particular that for an element x we say that y is a cover of x if x < y and for all z
such that x < z <y we have z = x or z = y, and two posets are called isomorphic

if there exists a bijection of the elements preserving the ordering.
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Given the partial order of positions in an SP-game, we define the game poset.

Note that this is a new structure not previously studied.
Definition 3.12. The game poset Pg of an SP-game G is the poset where
e the elements are the legal positions of G;

e for two elements P, and P, we have P, < P; if there exists a sequence of legal

moves starting at P; and ending at P»; and

e given a cover P, of Py we say that P, is an L-cover (R-cover) of P; if the move

from P; to P, is a Left (Right) move.

Note that the game poset is a poset where we additionally specify that each
element is either an L-cover or R-cover of elements directly below. We will call such
a poset an (£, R)-labelled poset.

We define the game poset for SP-games only. For non-SP-games, when ordering
positions by sequences of moves, some options might not be covers, which implies
that a poset is not a good representation of such a game. For SP-games though this
cannot happen, and the game poset is a useful tool which allows us to move from the
game graph to the legal complex (see Propositions 3.14 and 3.18).

On the other hand, for each finite (£,9R)-labelled poset there exists a short game
for which we can define the game poset without losing information about the game.
Such a game for example is the following one: start at any minimal element. At any
point, the Left options are the L-covers of the element and the Right options the
R-covers. The game ends when a maximal element is reached.

In the Hasse diagram of an (£, 9R)-labelled poset we will indicate L- and R-covers

by labelling the edges between an element and its cover(s).

Example 3.13. The Hasse diagram of the game poset of SNORT on P; is given in

Figure 3.2.
We can quite easily move between the game poset and the game graph:

Proposition 3.14. Given an SP-game G, its game poset Pg and game graph Gg are

in a one-to-one correspondence.
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Figure 3.2: The Game Poset of SNORT on Pj

Proof. Let A be the set of game posets of SP-games and B the set of game graphs of
SP-games. We will give a map f : A — B which is a bijection preserving the game.

The map f will take the game poset Pg of a game G to the game graph G as
follows: create a vertex for each element in the poset. Whenever = covers y in the
poset, create an edge from the vertex representing y to the one for x. If z is an
L-cover of y, then label the edge with L and similarly if it is an R-cover.

The function f is surjective. Given a game graph of an SP-game, the game poset
mapping to it can be found by doing the above construction in reverse.

Furthermore, f is injective. Suppose that two game posets map to the same game
graph. Then by construction their elements are the same, as are the covers of each

element, and thus the two posets are isomorphic. O

We can further move between the legal complex and the game poset. One direction

uses the face poset.

Definition 3.15. Given a simplicial complex A, the face poset P(A) is the poset

whose elements are the faces of A with F; < F, whenever F; C F5.

The definition of a face poset can be generalized to (£,9R)-labelled simplicial
complexes with the labelling preserved and giving an (£, 9)-labelled poset:

Definition 3.16. Given an (£,fR)-labelled simplicial complex A, the face poset
P(A) is the (£,9)-labelled poset whose elements are the faces of A with F; < Fy
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whenever F; C Fy. Furthermore, a cover Fy of Fj is an L-cover if the vertex in F; \ F}

is in £, and correspondingly for R-covers.

Since the game poset has positions ordered by containment, the following result

can be easily seen.

Lemma 3.17. Given an SP-game (R, B), the game poset Pg g is the face poset of

the legal compler Ag p.

As a consequence, we are able to move from the legal complex to the game graph
and vice versa, which demonstrates that they are equivalent characterizations of a

game:

Proposition 3.18. Given an SP-game (R, B), the legal complex Ar g and the game

graph Gr p are in a one-to-one correspondence.

Proof. By Proposition 3.14 we have that the game graph Gr p and the game poset
Pr.p are in a one-to-one correspondence. Thus it remains to show that there is a
bijective map from the game poset to the legal complex which preserves the game.
By Lemma 3.17 the legal complex Ag p can be mapped onto the game poset using
the face poset construction.

The inverse, mapping the game poset Pg p onto a simplicial complex A which is
the legal complex, is as follows: Let the vertices of A be the covers of the bottom
element in Pgp, i.e. those corresponding to the basic positions, with an (£, 0R)-
labelling depending on if the cover is an L-cover or an R-cover. Now inductively add
faces to A by taking the union of faces corresponding to elements in the poset with

the same cover. The simplicial complex A is then the legal complex of (R, B). O]

In this thesis, we will not be using game posets beyond this chapter. Due to
the easy correspondence between the game graph and the game poset in the case of
SP-games, the structure of the poset is interesting in itself though. In the remainder
of this section we will make some further observation about the game poset given the
below concepts from poset theory. Since the game poset is the face poset of the legal
complex, results independent of the (£, 9R)-labelling are likely known. We will give

proofs from a game theoretic point of view.
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Definition 3.19. A bottom element of a poset P is an element b such that b < x
for all z € P. A lower bound of two elements a,b € P is an element ¢ such that
¢ < aand ¢ < b. The greatest lower bound (or meet) a A b of two elements
a,b € P is a lower bound ¢ of a, b such that for every other lower bound d of a,b we

have d < ¢. A meet semilattice is a poset in which any two elements have a meet.

A top element and the join (least upper bound) a V b are similarly defined.
In the game poset, the bottom element is the starting position, which for SP-games
is the empty position.

Ignoring the (£, 9R)-labelling of a game poset, we have the following.
Lemma 3.20. Fuvery game poset of an SP-game is a meet semilattice.

Proof. The meet of two elements P, and P, is the largest position contained in both
P; and P, (in the worst case scenario, this is the empty position). Equivalently, it
is the position which is the greatest common divisor of the monomials representing
P, and P, or the intersection of the sets of basic positions making up each of the

positions. ]

Definition 3.21. A poset is called a lattice if any two elements have a meet and a
join. A distributive lattice is a lattice in which a A (bV ¢) = (a AD) V (a A ¢) and
aV(bAc)=(aVb)A(aVc). A lattice is called complemented if it has a bottom
and top element and for any element a there exists an element b such that a Vb is the
top element and a A b is the bottom element. A Boolean lattice is a complemented,

distributive lattice.

Note that the join of two positions, if it exists, is the smallest position containing
both. Equivalently, it is the position which is the least common multiple of the
monomials representing the positions or the union of the sets of basic positions making
up the positions. A game poset of an SP-game has a top element if and only if it has
a unique maximal legal position, or equivalently the legal complex is a simplex. We

then have the following:

Lemma 3.22. If an SP-game G has a unique maximal legal position, then its game

poset is a Boolean lattice.
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Proof. Since GG has a maximal legal position, the join of any two elements in the game
poset exists. Thus Pg is a lattice. Further, since the meet and join correspond to
intersection and union of sets in this case, it also is a distributive lattice.

Finally, we will show that Pg is complemented. Let V' be the set of basic positions
in GG. Now let a be some element of Pg, and let V; be the set of basic positions which
make up a. Let b be the element of P; whose basic positions are V'\ V;. Then the join
of a and b is the position with basic positions V; U (V' \ V1) =V, i.e. the top element.
And the meet of a and b is the position with basic positions V3 N (V' \ Vi) = 0, i.e.

the bottom element. Thus Pg is also complemented, and thus a Boolean lattice. [

In general, the subposet between any two points in the game poset of an SP-game

forms a Boolean lattice.

3.3 Further Work

Describing the structure of the game tree might be useful in learning more about
the class of SP-games, especially which values are possible. Although we are able to
describe this through the structure of the game graph and the one-to-one correspon-
dence between the two when labelled, it would be useful to have a more direct and
succinct description.

Although in this thesis we have only used the game poset to show the corre-
spondence between game tree and legal complex, the poset gives another complete
characterization of the game beyond the game tree, game graph, and legal complex.
Another avenue of research would be to study the connection between combinatorial
games and poset theory via SP-games, or a larger class of games for which the game

poset is well-defined, for example weak placement games.



Chapter 4

Game Values under Normal Play

Recall that the value of a game G is the equivalence class it belongs to.

A problem of interest in combinatorial game theory is the range of values that
occur in a game. One of the most celebrated results in combinatorial game theory is
the Sprague-Grundy Theorem (Fact 6.1) which in essence states that the impartial
game NIM takes on all game values possible for impartial games (see Section 6.1 for
more information). Motivated by this is the search for a nontrivial short game which

takes on all games values possible, even for partizan games.

A game taking on all possible values is called universal, and Carvalho and Santos
[15] recently constructed the first known nontrivial universal game. This is not an
SP-game though, so our question is what values SP-games can take on under normal
play.

This problem has received attention for some specific SP-games. The only com-
plete result for partizan SP-games is that COL only takes on numbers and numbers
plus star as shown by Berlekamp, Conway, and Guy in 1982 [5] (also found in [6,
p.47]). Some partial results are known for DOMINEERING (see for example Kim 1996
|38] or Uiterwijk and Barton 2015 [61]) and for SNORT (see Berlekamp et al. |6,
pp.181-183)).

Since SP-games are much easier to understand than many other combinatorial
games, if we are able to show that SP-games take on all possible game values, the
class of SP-games would provide an excellent new tool for studying combinatorial
games. But even if SP-games are not universal, being able to restrict the possible
values would simplify game value calculations.

Knowing that each simplicial complex is the legal complex of some SP-game will
be extremely useful in the exploration of the universality of SP-games. Although we
are not able to determine their universality either way, we are able to show that many

interesting values are possible.

62
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In the remainder of this chapter, we will assume normal play winning condition.

4.1 Introduction to Game Values

In this section, we will introduce a few more concepts from combinatorial game theory
needed specifically for the study of values, as well as give useful results. We will also

discuss some specifics regarding SP-games.

Remark 4.1. In SP-games, each move corresponds to a basic position, thus making
a move is essentially the same as claiming a vertex in the legal complex. Furthermore,
since a position is only legal if all corresponding vertices form a face, only those faces
containing it are relevant from now on. This means that if we consider a game with
legal complex A = ({v} U Fy, {v}UF,, ..., {v} UF, Fyi1,..., Fj) where Fjiq, ..., F}
do not contain v, then making the move corresponding to the vertex v is to a position
equivalent to the game with legal complex A" = (F, F5, ..., F}), which is the link of
vin A. From here on, we will often say that a move is to A’ when we mean the move

equivalent to claiming the vertex v.

Remark 4.2. Since the negative of a game switches Left and Right options, the legal
complex of the negative of an SP-game is obtained by switching the vertices belonging
to £ and R. Due to this, we will in this chapter not demonstrate the existence of
negative games, but rather assume their existence once the existence of their positive

counterpart has been shown.

Remark 4.3. As shown in Theorem 1.55, given any two SP-games their disjunctive
sum has as its legal complex the join of the legal complexes of the individual games.
Thus if we show that two game values are taken on by SP-games, their disjunctive

sum is also taken on.

We define 0 to be the game {0 | @}, so the game in which neither player has any
available moves. Adding 0 to any other games does not change it. Thus the following
result is a consequence of Fact 1.17, and we will use it throughout the thesis to

demonstrate when a game is 0.

Fact 4.4 (|57, Theorem 11.1.12]). For all games G, o(G) = & if and only if G = 0.
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When either of the set of options is empty, we will often leave that side of the
braces empty. Thus we can also write 0 = {| }.

There are two simplifications we can use on games while still remaining in the
same equivalence class. The first is to remove so-called dominated options, i.e. the

ones where another option is clearly preferred.

Definition 4.5. Given a game G, a Left option G** is dominated by the Left option
G2 if G2 > G, Similarly, a Right option G is dominated by the Right option
Gfe it G < G,

Fact 4.6 ([57, Theorem 11.2.4]). If for a given game G the Left option G is domi-
nated by some other Left option, then

G ={G* | G*} = {G~\ G" | GF}.
Similarly for Right dominated options.

For example, when playing DOMINEERING on an L-shaped board, the game is

H L ]
| | ==

The Left option in the upper two squares is a Right win (only Right has a move),

while the Left option in the lower two squares, having no remaining moves, is a
second-player win. Thus the latter option is greater than the former, and the option
in the upper two squares is dominated and can thus be removed without changing the
game value. This is also apparent as Left would never make this move which gives
her opponent an advantage.

The second simplification is to replace reversible options, which are in some sense

those options which have a guaranteed response.

Definition 4.7. Given a game G, a Left option G is reversible through G'1+#1 if
G < @, Similarly, a Right option G is reversible through Gl if Gl > @,

Fact 4.8 (|57, Theorem 11.2.5]). If for a given game G the Left option G is reversible
through G*1 | then

G ={G* | GR} = {G*\ G, GIIut | GR},

Similarly for Right options that are reversible.
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Note, this is still true if GL171£ is empty.

Reversibility is unfortunately not as easy to see as domination as it requires com-
paring options of an option with the game itself. There will be a few cases later
on where reversibility is used as a simplification. In those cases, we have used the
combinatorial game theory program CGSuite [56| to find the reversible options.

We say that a game is in canonical form if it has no dominated or reversible
options. A game in canonical form in some sense is the simplest game in its equivalence
class. Even more, there is only one game in canonical form in each equivalence class,

so that we can talk about the canonical form of a game:

Fact 4.9 (|57, Theorems I1.2.7 and I1.2.9|). For each game G there exists exactly one

game H in canonical form such that G = H.

For example, the game of DOMINEERING on the L-shaped board above, after
removing the dominated option, has the canonical form {0 | {0 | }}. There are no
reversible options in this case.

Note that the canonical form of an SP-game is not necessarily an SP-game itself.
We give an example demonstrating this in Section 4.8.

When talking about game values, we will often represent a game value by its
unique representative that is in canonical form.

As before, the game value with canonical form {|} is called 0 as neither player
has a move. The game {0 | } is called 1 as Left has a guaranteed move, while {| 0} is
called —1. The game {1 |} is then called 2 (two guaranteed moves for Left), and we
can continue to recursively define integers.

The game {0 | 1} is a slight advantage to Left, but not quite as much as 1 since
Right actually does have a move. It turns out though that {0 | 1} + {0 | 1} = 1.

1
Thus we call this game 5 Recursively, we then set {0 | 2n71} = on
Addition of the integers and fractions as above turn out to work as in the rationals.

For example 1 +2={0|}+{1|}={2]|}=3.

Remark 4.10. Although all fractions can be found in combinatorial games, a short
game can only take on a fraction whose denominator is a power of 2 (a dyadic rational)

(see |57, Corollary 11.3.11]). The set of dyadic rationals is indicated by D.
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We will formally define the integers and dyadic rationals below, as well as several
other game values that often appear in combinatorial game theory and are therefore

given shorthand notation.

Definition 4.11. We define the following values by their canonical forms:

Integers: For zero we have 0 = {|} and the other integers are recursively
definedasn={n—1|}forn>0and n={|n+ 1} for n <0.

1

e Fractions: Unit fractions are recursively defined as on = {0 ‘ o1

}. Other

fractions are sums of these games.

e Numbers: A game whose value is either an integer or a fraction is called a

number.

e Switches: A game with canonical form {a | b}, where a > b are numbers, is

a+bia—b.
2

called a switch and is written

e Nimbers: Nimbers are recursively defined as *1 = {0 | 0} (shorthand %) and
s«n = {0,%,%2, ..., %x(n — 1) | 0,%,%2,...,%(n — 1)}. Note that for recursive

purposes we often also set *0 = 0.
e Up and down: We have up as 7= {0 | *x} and down as | = — 1.

e Tiny and miny: For G > 0 a game, we have tiny-G as +¢ = {0 | {0 | —=G}}
and miny-G as —¢ = —(+¢)-

Finally, note that disjunctive sums of numbers, nimbers, ups, and tinies are often
shortened and the ‘+’ omitted. To avoid confusion between the sum 2 4 % and the
nimber %2 for example, we will observe the order number, then up (or down), then
nimbers and tinies. For example 2 +  + £ + | will be written as 2% | . If we are

writing a product, such as 1+ 1 + 1, we will use a centre dot, i.e. 3- 1.

We will use the following fact at times when showing that a game is a number.
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Fact 4.12 (|57, Proposition 11.3.12]). If G = {a | b} where a and b are numbers and

a < b, then G is a number, and we have

n ifa—b>1 and n is the integer closest to zero such that a < n < b;
G = 27 ifa—0b <1 and q is the smallest positive integer such that

there exists a p such that a < 33 < b.

Example 4.13. As examples for several of these values, we will consider DOMINEER-

ING positions under normal play, including the ones in Figure 1.2.

(a)
(] ={I1}=0

- —en-t

and to get the negative we rotate the board:

T - {10} =1

| ={0]0} =«

(| (I y-al-n-=

L ={[L].0lHt=A{0]1} =3
\ 5

Note that the Left option to —1 is dominated by the option to 0, so can be ignored.
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= o e = o g = o =

Note that we have only listed one of each of Left and Right’s options to *, and
that Left’s option to * is reversible, thus gets replaced with the Left options of 0, the
empty set.

Definition 4.14. The value set V of SP-games is the set of all possible values
SP-games can exhibit under normal play, i.e. all equivalence classes that contain an

SP-game. It is the set G restricted to SP-games only.

The question of interest is what the set V looks like. In the remainder, smaller
examples have been calculated by hand. For larger examples, we have used the
computer algebra program Macaulay2 [29] to construct the game in bracket and slash
notation from its legal complex (for the code, see Appendix B), which has then been
put into the combinatorial game theory program CGSuite [56] to obtain the canonical
form.

We will show that all numbers, all nimbers, many switches, and many tinies are
possible game values of SP-games, as well as that all games with small game tree are
equal to some SP-game. The universality of SP-games still remains open though.

We will begin by looking at small dimensional legal complexes.

4.2 Small Birthdays

In this section we will consider game values whose canonical forms have small game

trees. For this, we will take advantage of the recursive construction of games:

Definition 4.15. The set of all short games G can be defined as

&=JG.

n>0

where G = {0} and for n >0

Gpir ={{A|B}: A, BCG,}.



69

If we let G, be the set of values of elements of G,, then the birthday b(G) of a
game G is the least n such that the game value of G is in G,,. Similarly, the formal

birthday b(G) is the least n such that the literal form of G is in G,

Note in particular that the birthday of a game is related to its game value, while
the formal birthday relates to the first appearance of its literal form in the recursive
construction of games.

The height of a game tree is the maximum number of moves from the starting
position to an ending position. The elements in @n are precisely those games whose

game trees have height n. We thus have the following fact.

Fact 4.16 (|57, p.61]). Given a game G, its formal birthday is equal to the height of

its game tree.

Given this and that the height of the game tree of an SP-game (R, B) is equal to

the size of the largest facet in the legal complex, we have the following proposition.

Proposition 4.17. Given an SP-game (R, B) we have

b(R, B) = diHl(ARJg) + 1.

To illustrate the difference between the birthday and formal birthday, we will give

a short example.

Example 4.18. Consider DOMINEERING played on a 2 x 5 grid. The maximal legal
positions contain up to 5 pieces. Thus the legal complex has dimension 4, giving that
the formal birthday is 5. This game has canonical form % though, which is contained

in Go, giving a birthday of 2.

Motivated by the relationship between the formal birthday of an SP-game and

the dimension of its legal complex we define the following sets for SP-games:

Definition 4.19. We set V,, to be the set of game values of SP-games whose legal

complexes have dimension n — 1.

Thus if

V.. = {(R, B) | (R, B) is an SP-game and dim(Ag ) =n — 1},
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where the elements of “771 again are in literal forms, then V,, is the set of values in “771

Note that with the above notation we have

V=[]V,

n>0

as well as V,, C G,,.
When studying the structure of V, a natural start is to consider whether VNG,, =
G,, for small n. We will do so for n = 0, 1,2. We will in addition also consider G,,\V,,.

Fact 4.20 (|57, Section I11.1]). The sets G,, for n =0,1,2 are
Go = {0}
G ={0,%,1,—1}
1 1
G2 - {07*7 *27:l:17/l\7\l/7T *7\1/ *, {1 | 07*}7 {07* ’ _1}7 57 _57 {1 | *}7 {* ‘ _1}7

11 1 1
s =11 1% =12, —2}
272 279

4.2.1 Formal Birthday 0

Consider an SP-game (R, B) with b(R, B) = 0. Then the legal complex has dimension
—1, i.e. Agp = 0. Thus in (R, B) neither Left nor Right have moves, so that
(R,B) ={|} =0, which gives Vj = {0}. Thus VNG, =V, NGy = Gy.

4.2.2 Formal Birthday 1

Now consider an SP-game (R, B) with formal birthday 1, so that the legal complex

Ap p has dimension 0, i.e. only consists of isolated vertices.

e If all vertices belong to £, then Right has no moves while Left can move to the

empty game. Thus (R,B) ={0|}=1.
e Similarly, if all vertices belong to R, then (R,B) = {| 0} = —1.

e If both £ and ‘R are non-empty, then both Left and Right have moves to the
empty game. Thus (R, B) = {0 | 0} = *.

Thus V; = {*,1, -1}, giving G, \ V; = {0}, but VNG, = G;.
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4.2.3 Formal Birthday 2

Now consider an SP-game (R, B) whose legal complex has dimension 1, i.e. it is a
graph. Thus (R, B) is born by day 2. We will show below that G \ V, = {1, —1}.
Note that as previously mentioned as soon as we have shown a positive value exists,
we assume to have shown the existence of the negative as well (through switching the

bipartition).

o If all vertices belong to £, then Left can move to a single vertex belonging to

£, i.e. to the game 1. Thus (R,B) ={1|} = 2.

o If App = ({z1,1}), then Left can move to ({y1}), i.e. —1. Similarly for Right,
thus (R,B) ={—1]|1} =0.

o If App = ({z1,22},{z1,y1}), then (R, B) = {1, | 1}. The Left option to * is
reversible and gets replaced with the empty set, thus (R, B) = {1 | 1} = 1x.

o If AR,B = <{331,5L’2}, {Z/1>?J2}>a then (R> B) = {1 | _1} ==+l

o If App = ({z1, 2o}, {x2, 1}, {1, 2}, {y2, 23}), then (R, B) = {1,*,—1 | x} =
{1]=}.

o If Apy = ({22}, {31}, then (R, B) = {1 0} = % +

N[ —

o If App = {1,y }, {x2}), then (R, B) = {~1,0] 1} = {0 |1} = %
o If App = ({21, y1}, {22}, {2}). then (R, B) = {-1,0[ 1,0} = {0 ] 0} = =.

° IfAR,B = <{$17y1}7 {yl,y2}, {92@2}, {$2,5E3}, {903,93}7 {5154}a {y4}>7 then we have
(R,B) ={-1,%,0|*,1,0} = {0,* | 0,*} = %2.

o If AR,B = ({xl,yl},{yl,yg},{yg,xg},{:1:2,:1:3},{:1:3,3/3},{@})7 then (R7 B) =
{=1,%,0| %1} ={0 | %} =1

o If ARB = <{x17x2}’{x2ay1}7{yvaQ}a{y27$3}7{y3}>7 then (Rv B) - {1’*7_1 |
x,0} = {1]0,x*}.

o If AR,B = <{x17y1}7{xth}?{$27y1}7{y2}7{x3}>7 then (R7 B) = {*70 ’ 170} =
{0,% | 0} =1 .
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The values 1 and —1 are not possible if the legal complex has dimension 1 (see
Proposition 4.23). Thus we get all values born by day 2, except 1 and —1 (which
appeared in dimension 0 already though), implying VN Gy = Gs.

Although it seems reasonable to next look at whether all values of other birthdays
are possible, the size of Gy alone is 1474 [57|. We will thus turn to more general

existence results independent of the birthday.

4.3 Integers

We will begin by showing that all positive integers (and thus also the negatives) are

possible values of SP-games.

Proposition 4.21. Let (R, B) be an SP-game with legal complex the simplex Ap p =
({x1,...,xp}) withn > 0. Then (R, B) = n.

Proof. We will prove this by induction on n.

If n =0, then Agp = (#). We have shown previously that (R, B) = 0 in this
case.

Now assume without loss of generality that the SP-game with legal complex
({1,...,x,_1}) has value n — 1.

If App = ({1,...,2,}), then Right has no moves, while Left, without loss of
generality, can move to ({xy,...,2,_1}). By the induction hypothesis, we then have
(R,B)={n—1]}=n. O

From this and our knowledge about disjunctive sums, we get an immediate corol-

lary on the value of a game whose legal complex is a simplex.

Corollary 4.22. Let (R, B) be an SP-game such that Ag g is the simplex

<{[E1, s Ty Yt - 7yn}>
Then (R, B) has value m — n.

Proof. We can write Ag p as a join:

App={x1,  Tmy Y1y Un})
= <{:L’1, ce 7$m}> * <{y1> ce ayn}>
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If we let (R, B’) and (R", B") be SP-games such that Ap p = ({z1,...,2,,}) and
Apgrgr = {y1,...,yn}), then by Theorem 1.55 we have (R, B) = (R, B') + (R", B").
By our previous result we further have (R, B’) = m and (R",B") = —n, so that
(R, B) = m — n as desired. O

With these two results on the existence of integers, we now turn to looking at the
existence of integers in specific dimensions, thus checking if n € V; where we let k
vary.

Note that since b(R, B) = dim Ag g + 1, and the integer n has birthday |n|, we

cannot get n as a value at dimension less than |n| — 1.

4.3.1 Integer m in Dimension n — 1

We have already shown that if A g = ({z1,29,...,2,}), then (R, B) = n.

4.3.2 Integer m in Dimension n

In dimension n the integer n is not possible.

Proposition 4.23. An SP-game (R, B) with dim Ag 5 = n cannot take on the value

n (or —n) under normal play.

Proof. We will show by induction that the value n is not possible. That —n is not
possible follows immediately since it is the negative, i.e. could be achieved by switching
the bipartition of vertices.

Base case: As shown in Section 4.2, we cannot get (0 with dimension 0.

Induction hypothesis: Assume that an SP-game with legal complex of dimension
n — 1 cannot take on value n — 1.

Induction step: Assume that (R, B) has the value n, i.e. (R, B) = {n—1| }. Since
(R, B) is born by day n+1 (since dim A = n), we have that all Left options of (R, B)
have to be born by day n. Thus the Left option to n — 1 in the canonical form of
(R, B) cannot have come through reversing (reversing an option born by day k results
in options born by day k& — 2). Thus in A there exists a facet F' of dimension n such
that F' = {z;} U F" where the game equivalent to (F”) has value n — 1. But (F”) has

dimension n — 1, a contradiction to the induction hypothesis. O
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4.3.3 Integer m in Dimension n + 1

From Corollary 4.22, we immediately have the following.

Proposition 4.24. If Ap g = ({z1,22,...,Tpi1,U1}), then (R, B) under normal play

has the value n.

4.3.4 Integer m in Dimension > n + 1

Proposition 4.25. Let

U= {{1’1,$2>---,1’k+1}}U{{$i0>$i1,--~,$in>y} |1 <iig, ..., 0 < /f—i-l}

where k > n + 1 and let the facets of Arp be the elements of U. Then Arp has

dimension k and (R, B) has value n.

Proof. Since k > n+ 1, we have that k+1 > n+ 141, i.e. there are at least as many
elements in {x1,..., 251} as in {z;, 25, .., 2, y}. Thus {z1,..., 21} is a facet
of maximal dimension, which shows that dim(Ag ) = k.

In (R, B), Right’s only move is to ({x;,, xiy, ...,z } | 1 <ig,..., 4, < k+1), which
has value n + 1. Left’s moves are symmetric, so assume without loss of generality
she moves in xj,1. This is then to A’ which has the facets {xi,2z5,..., 2} and
{Zig, Tiyy - 2, y} where 1 < ig,..., 7, < k. By induction, it can now be easily

seen that (R, B) has value
(R,B)={...{{k —1—=n|0}|1}...|n+ 1}.

To prove that (R, B) has value n, we will use induction on n.

Base case: If n = 0, then App = ({z1,..., 2641}, {z1,9}, ..., {&rs1,y}). Thus
(R, B) = {{k — 1|0}|1} which is 0 for all k£ > 1 since it is a second player win.

Induction hypothesis: Assume that for a fixed j and for all £ > j + 1, we have
{..{{k—1—7[0}1}... |+ 1} =j.

Induction step: Suppose that (R, B) ={{...{{k—1—(+1)|0}1}...|i+1}(F+
1)+ 1} for k > j + 2. By the induction hypothesis we have that {...{{(k—1)—1—
FI0M1Y...[j+ 1} = jsince k—1 > j + 1. Thus (R, B) = {j|j + 2} = j + L. O
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Example 4.26. We will construct a simplicial complex A of dimension 2 that is the
legal complex of an SP-game (R, B) with value 1. In this case U = {{z1, 29, 23}} U
{{x1, 22, y}, {21, 23,9}, {22, 23,y}} and the facets of A are the sets of U.

Right’s only move is on y, after which Left has two remaining moves, i.e. this
option has value 2.

All of Left’s options are symmetric, so we will assume without loss of generality

that she moves on z;.

e After Right moved on y, Left still has one move, thus this Right option has

value 1.

o After Left moved on s, both Left and Right have options to 0. Thus this Left
option has value {0 | 0} = .

Thus the Left option of x; has value {x | 1}.
In total, (R, B) has value {{x | 1} | 2} = 1.

To summarize, the integer n is a possible value of an SP-game if the legal complex
has dimension n — 1 or greater than n, but not dimensions n or less than n — 1. In
particular, this also shows that n —1 € G,, \ V,, while all other integers are contained

in V,, as we have previously seen for small n.

4.4 Fractions

1

The following construction shows that all fractions of the form o

are possible values
of SP-games. This construction is also minimal in the sense that the dimension of
the legal complex is one lower than the birthday of the fraction. All other fractions

can be obtained through disjunctive sums.

Theorem 4.27. Let S1,5, ..., S be the subsets of {y1,vz2,...,yn}. Let
AR,B = <{.731} U Sl, {332} U 52, ey {$2n} U Sgn>.
1
Then (R, B) has value o

Proof. We will prove this by induction on n.
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Base case: For n = 0 we have Arp = ({x1}). We have shown in the previous
section that (R, B) = 1 in that case.

Induction hypothesis: Let S7,55,...,55,_1 be the subsets of {yi,vy2,...,yn-1}.
Assume that the game with legal complex A" = ({2} U S],..., {21} USS.—1) has

value

anl'
Induction step: Without loss of generality, assume that Sy, .55, ..., Son are ordered

such that Sy» = () and the sets Sy, Sy, ..., Son-1 are those containing y,,.

Left has the options to move to the games with legal complexes (S57), (S2), ...,
(San). All of those options, except for the one corresponding to (Sayn) = (@), will be
negative. The option corresponding to (f)) is 0, and thus dominates all other options.

All of Right’s moves are symmetric. We will assume without loss of generality

that he moves in y,,. This option leaves us with the game with legal complex ({z1} U

S\ Avn}s {2} USo \{yn}, ..., {xon-1} US9u-1\ {yn}). This game has value S by
the induction hypothesis.
1 1
Thus (f%,l?):: {()‘QZ:E-} = 55. ]

The following is then an immediate consequence using disjunctive sums.

Corollary 4.28. Given any dyadic rational ;in there ezists an SP-game (R, B) such
that (R, B) = ;in

4.5 Switches

We will show that all switches {a | b} with a > b being integers are possible as game

values of SP-games. We will begin with a non-negative and b non-positive.

Proposition 4.29. If a,b > 0 are integers, then the SP-game (R, B) with App =
{xo, .., zat, {Y0,- -, up}) has value {a | —b}.

Proof. Left’s moves are all to a simplex consisting of a Left vertices, thus has value
a. Similarly Right going first will move to —b. Thus (R, B) has value {a | —b} =

a—b a+b
ab 4 b, 0

If a connected legal complex is desired and a,b > 1, then we can also add in the

face {xo, 40}, and a move in this face will be dominated, thus giving the same value.
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Next we consider the case in which a is positive and b non-negative. The case of

0 > a > b is the negative of this.

Proposition 4.30. If a > b > 0 are integers, then the SP-game (R, B) with App =
<{Z’1, s ,l’a+1}, {xla s ,.Tb,y}> has value {CL | b}

Proof. We will prove this by induction on a.

If @ = 1, then necessarily b = 0, so that Agrp = ({x1,22},{y}), which we have
shown in the previous result has value {1 | 0}

Now assume that if a > k> 0,5 > 0and Ap g = {z1,..., 261}, {21, ..., 25, 9})
then (R, B") ={k | j}.

If Left moves in any of xy,...,x;, say without loss of generality in z, this is to
({xe,...,zq}, {22, ..., 2, y}). By induction, this has value {a — 1| b — 1}.

If Left moves in any of x4, ..., x,, say without loss of generality in x,, then it is
to ({zo,...,24_1}). This has value a.

Right’s only move is to ({z1,...,2}), which has value b. Thus (R, B) has value
{{a—=1]b—1},a|b} ={a|b}. O

Note that the above can also be shown by using that disjunctive sum of games
corresponds to the join of simplicial complexes (see Theorem 1.55). The simplicial

complex can be written as the following join:

{x1, .. war b {xn, 2, y}) = o, s med) * {xpgr, - 2o | {y )

The first gives a game with value b by Proposition 4.21, and the second a game with

value {a — b | 0} by Proposition 4.29. And we indeed have

b+{a—b|0}={a|b}.

4.6 Tiny and Miny

We will show that all 4, where n is a positive integer, are possible game values
of SP-games. Since +¢ =7, we have already shown the existence of this value (see

Subsection 4.2.3).

Proposition 4.31. If n is a positive integer, then the SP-game (R, B) with A p =
yio - yn bz, und, - Az, g b {o}) has value +,,.
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Proof. Left’s move in x7 is to ({y1},...,{¥yns1}), which has value —1. The move in
To is to 0, and this also dominates the move to —1.

Right’s moves are all symmetric, so assume without loss of generality that he
makes the move corresponding to y;. Then this is to ({y2, ..., Yn+1}, {z1}), and it
can be easily seen that this has value {0 | —n}.

Thus (R, B) has value {0 | {0 | —n}} = +,. O

We know from Uiterwijk and Barton 2015 [61] that several other tinies are also
possible values of DOMINEERING, thus are elements of V, for example =+ /5, +1 /4, and

+(1/2)%-

4.7 Nimbers

Contrary to other values, we will show the existence of nimbers as game values of
SP-games by constructing the ruleset and board directly, rather than through the

legal complex.

Proposition 4.32. For every nimber xn there exists an SP-game (R, B) that has

value *n.

Proof. Let R be the ruleset in which both Left and Right have as their pieces
Ky, Ky, ..., K,, played on B = K,,. We will show by induction that this has value
x*n. Note that *0 = 0 and *1 = .

Base case: For n = 0, the board is empty, and Left and Right have no options,
thus (R, B) = 0.

Induction hypothesis: Assume that for all j < n, the game in which Left and
Right can play pieces Ki,..., K; on the board K; has value *j.

Induction step: We now have as our board B = K,, and pieces Ky, ..., K,. Sup-
pose that either player places K; as their first piece. The game from this point is
now equivalent to playing Ki,..., K, on K, ;. Since the pieces K q,..., K, can-
not be placed, this has value %/ by induction hypothesis. Thus we have (R, B) =
{0,%,...,x(n—1) | 0,%,...,%x(n — 1)} = xn. O

Remark 4.33. Note that each game defined above is equivalent to the game NIM on
a single pile. Playing N1M on several piles is equivalent to playing a disjunctive sum of

this game, showing that N1M can be thought of as an SP-game (see also Remark 1.11).
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4.8 Further Work

The study of whether specific game values are elements of V can be continued by
looking at values such as switches {a | b} where a and/or b are not integers, tiny +¢
where (G is a fraction or non-number, or other values we have not yet discussed at all,
for example 1" and 11",

Ideally, we would like to have a recursive construction that works similarly to G,,.
This seems difficult though as simply combining two simplicial complexes, such as
joining at a vertex or a face, often creates unwanted options besides the ones needed.

In case that V is not equal to G, the question of course is which values are not
possible. Tt is generally more difficult to show non-existence of a value though, and
here again the legal complexes, and the structure of the game graph as shown in
Chapter 3 should be of value.

Related to this, we can also ask when the canonical form of an equivalence class
containing an SP-game is itself literally equal to an SP-game. Using that the game
graph has to have the SP-property, we know that this is not always the case. Consider

the following example:

Example 4.34. We have shown that —% is the game value of some SP-game. Now

consider the canonical form of —2, which is {{ | 0} | 0}. The game tree of this

2 )
canonical form is

{{10}]0}
/

N
{10} 0

AN
0

Since there exists a Left move followed by a Right, but no Right followed by a Left
the game graph for this game cannot have the SP-property.

It would also be interesting to further study which elements are in G,, \ V,, besides
the integer n — 1.
In more general terms, one can also ask which values are possible under misére

play, and all related questions above.



Chapter 5

Temperature

The temperature of a combinatorial game in essence indicates how urgent it is for a
player to make a certain move. In practice, it is very hard to calculate, or even bound,
the temperature of a game. In this chapter, we will be looking at the temperature
of partizan SP-games in particular. After a brief introduction to temperature, we
will give an upper bound on the temperatures of a set of games in Theorem 5.25

the first such known bound. We then give several examples of how to apply this
bound to SP-games, which seem particularly suitable for this approach. Next, we
will discuss SNORT in particular, giving a conjecture of a bound on temperature

based on computational results. Finally, we discuss some further work.

5.1 Introduction to Temperature

We will begin by introducing further concepts from combinatorial game theory which
are needed before defining temperature. Examples for all of these and proofs of

statements can be found in “Combinatorial Game Theory” by Siegel [57].

Definition 5.1. The Left stop and Right stop of a combinatorial game G, denoted
by LS(G) and RS(G) respectively, are recursively defined as

/

x if G = x is a number,
LS(G) =
max {RS (GL)} otherwise;
\ GLeG~E
x if G = x is a number,
RS(G) =
min {LS (GR)} otherwise.
\ GEeGR

The Left stop is the first number reached when playing the game with Left go-
ing first and alternating play. Once a game is equal to a number, play becomes
uncompelling as it is clear which player will win and what their advantage is.

We will use the following properties of Left and Right stops:

80
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Fact 5.2 (|57, Section 11.3]). Let G and H be any two games and x any number.
Then

1. LS(G) > RS(G);
2. LS(—G) = —RS(G);

3. RS(G) + LS(H) < LS(G+ H) < LS(G) + LS(H) and RS(G) + LS(H) >
RS(G+ H) > RS(G) + RS(H);

4. RS(G*) < LS(G) for every G* and LS(GT) < RS(G) for every G%;
5. G < x implies LS(G) < x; and
6. LS(G +z) =LS(G) +x.

We know that two games G and H are equal to each other when G — H =
0. There are cases in which games are not equal, but their difference is almost
insignificant, especially when replacing one by another in a sum. Such games are

called infinitesimally close.

Definition 5.3. Two combinatorial games G and H are called infinitesimally close
if LS(G—H)=0and RS(G—H)=0.

Example 5.4. Consider the games G = 1 and H = {1 | 1}. These two games are not
equal since G — H = 1+ {—1| —1} = %, but they are very similar to each other since
after a single move in H by either player they are equal. In fact, LS(x) = RS(0) =0
and RS(x) = LS(0) = 0, so that G and H are infinitesimally close.

The temperature of a game intuitively indicates the advantage one receives by
playing in it. When a game is equal to a number, there is no advantage gained, but
rather lost, and thus the temperature is negative. The largest advantage that can be
lost is 1 when the game is an integer the player reduces their number of moves by
1, while not affecting the other player’s (nonexisting) option — and thus temperature
will be greater or equal to —1. There is no upper bound as an advantage gained can
be arbitrarily large.

We now define formally what it means to cool a combinatorial game, and what

its temperature is.
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Definition 5.5. Fix a combinatorial game G and ¢ > —1. Then G cooled by ¢,
denoted Gy, is defined to be

e n if GG is the integer n,

o G, = {Gf —t| GF +1t} if G is not an integer and there is no ¢’ < ¢ such that

Gy is infinitesimally close to a number x;

e 2 if G is not a number and there exists a ¢ < ¢ such that Gy is infinitesimally

close to the number z and t' is the smallest such.

Note that in the last point, there is indeed a unique smallest ¢ such that Gy is
infinitesimally close to a number, but this is not immediate (see [57, Section IL.5] for

more information).

Definition 5.6. The temperature of a game G played on a board B, denoted by
t(QG) is the smallest ¢ > —1 such that G is infinitesimally close to a number.

A game is called cold if ¢(G) < 0, tepid if ¢(G) = 0, and hot if ¢(G) > 0. The
number to which Gy ) is infinitesimally close to is the mean of G and indicated by

m(G).
Fact 5.7 (|57, Proposition 11.5.20]). Let G be a game.

1. G is cold if and only if G is equal to a number;

2. G s tepid if and only if G is infinitesimally close, but not equal, to a number;

and

3. G is hot if and only if LS(G) > RS(G).

In the case that G is a switch or a number we have formulas for the temperature

and the mean. We demonstrate both in the next example.

Example 5.8. Given a > b integers, the switch G = {a | b} = “t2 + =P has ¢(G) =
b and m(G) = %2, For example if G = {2 | =1} = 1£2 then G, = {2—t | —1+t}

for t < g For t = g we have G; = % + %, which is infinitesimally close to % Thus the

temperature is % and the mean is %

Given a number G = 2 in simplest terms, we have ¢(G) = —5- and m(G) = G.

For example, if G =1 = {0 | 1}, then Gy = {—t |1+ t} for t < -1 Att=—1 we
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have G; = % + %, which is infinitesimally close to % Thus the temperature is —% and

the mean is %

The game G, for t < t(G) can be thought of as playing G but having to pay a
penalty of ¢ when making a move. The temperature ¢(G) is then the point after which
the penalty is too high for either player to be interested in the game. Temperature
thus gives a sense of how valuable a component in a disjunctive sum is to the players,
or which component is the most urgent to move in.! Thus a goal of computer scientists
in combinatorial game theory is finding heuristics to evaluate the temperature |46|,
as it points to a good, hopefully the best, move.

Given a disjunctive sum, we can bound the temperature based on the temperature
of the components as in the next fact. This result will be used frequently in our

calculations later on.

Fact 5.9 (|57, Theorem 11.5.18]). For all games G and H we have
t(G+ H) <max{t(G),t(H)}.

When cooling a game, the Left stop and Right stop become closer, until they are
equal to the mean. The behaviour of the stops can be seen visually by the graphical

representation of the thermograph.

Definition 5.10. Given a game G, the ordered pair (LS(G;), RS(G;)), as a function
of t, is called the thermograph of G.

The graphical representation of a thermograph uses the following conventions:
LS(G;) and RS(G,) are simultaneously plotted along the horizontal axis, with positive
values on the left and negative on the right, while ¢ is plotted along the vertical axis.
Note that LS(G) and RS(G) are the points at which the thermograph crosses the
horizontal axis. The two sides meet at vertical value ¢(G) and horizontal value m(G),
and are then topped by an infinite vertical mast.

By definition of the Left and Right stops we can construct the thermograph of a
game inductively from the thermographs of the options. The left wall is the leftmost

!Temperature can sometimes be misleading though. There are rare examples in which the com-
ponent of highest temperature is not actually the most desirable one to move in, but it is still a
good move.



84

right wall of the thermographs of the options, sheared by subtracting ¢. The right
wall is similarly the rightmost left wall of the options sheared by adding t. The mast

begins where these two intersect.

Example 5.11. Consider the game G = {{5 | 2} | {—2 | —3}}. We will construct
the thermograph of G inductively from its options. The thermograph of a number n
is simply the vertical line at n. Thus the thermograph of {5 | 2} is as below, with the
line at 5 sheared clockwise, the line at 2 counterclockwise, and the mast starting at

their intersection.

/5 4353 2N 1 0

The thermograph of {—2 | —3} is similarly given in the diagram below.

A

0 -1 A2 3 4 ;5

To construct the thermograph of G, we take the right wall of the thermograph of {5 |
2} (as it gives the Right stop of the Left option) and shear it clockwise by subtracting
t, and the left wall of the thermograph of {—2 | —3} and shear it counterclockwise by
adding ¢, until their intersection, which is then topped by the mast. The thermograph

of G is then given below.
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Note that the temperature of a game G, being the vertical value at which the mast
starts, is the length of all vertical segments plus the length of the oblique segments
of either the right wall or the left wall above the horizontal axis and below the mast.
We will use this property to bound the temperature of G. To do so, we will need the

confusion interval of a game.

Definition 5.12. The confusion interval of G is C(G)= {zx € D : G %2 z}. The
endpoints of the confusion interval are the Left stop and Right stop. The measure of

the confusion interval, LS(G) — RS(G), is indicated by £(G).

Similarly to temperature, we can bound the measure of the confusion interval of

a disjunctive sum of games based on those of the components:
Lemma 5.13. For any two games G and H we have
UG+ H) <!UG)+((H).
Proof. We have
(G+H)=LS(G+H)—-RS(G+ H)

< LS(G)+ LS(H)— RS(G) — RS(H)
={(G)+((H). O
Computer game playing programs often use temperature to find potentially good

moves. As temperature is difficult to calculate though, it would be helpful to be able

to bound the temperature of classes of games.
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Definition 5.14. Given a class of games S, the boiling point of S, denoted BP(S),

is the supremum of the temperatures of all games in S, thus

BP(S) = ztég t(@)).

Of particular interest are the boiling points of classes of games which are the same

ruleset played on different boards, often even the entire (infinite) set of boards.

Historically, there has been much interest in temperatures of specific games. For

some SP-games already mentioned the background is as follows:

Any impartial game, including N1M, has a boiling point of 0 as the only possible

values are the nimbers, which are infinitesimally close to 0.

In Winning Ways, Berlekamp, Conway, and Guy show in 1982 [5| (also found
in [6, p.47]) that CoL played on any board is equal n or n + % where n is a
number. This implies that COL is always cold or tepid, giving a boiling point
of 0.

For SNORT values of some positions are known, and thus their temperatures,

but there are no general results. We will further discuss SNORT in Section 5.3.

For DOMINEERING, there have been five papers since 1995 (see Kim 1995 [37]
and 1996 [38], Shankar and Sridharan 2005 [55], and Drummond-Cole 2004
[19] and 2005 [20]) which have demonstrated DOMINEERING positions which in
turn each had new, higher, temperatures. Berlekamp conjectured in the late
1980’s that the boiling point of DOMINEERING is 2 (see [30, 55|). However,
there has been no theorem which states an upper bound for the temperature
of DOMINEERING. The position below, found by Drummond-Cole in 2004 [19]
has a game value of {2% | —2x}, which is infinitesimally close to +2 and thus

has temperature 2.




87

In particular, there has been no bound proven to hold for games in general.

5.2 An Upper Bound on the Boiling Point of a Game

In this section, we will demonstrate an upper bound on the boiling point of a class
of games dependent solely on the maximum difference between Left and Right stops.
This is joint work with Carlos Pereira dos Santos.

Note that in this section we will assume that G is a general short game, not
necessarily an SP-game.

We will being by showing that for any game G there exists a game G which has

a single Left option and a single Right option such that ¢(G) = t(G).

Theorem 5.15. Let G be a hot game. Then, there are options G* and G® such that
t(G) =t({G" | G}).

Proof. Consider Gy(q), i.e. G cooled by its temperature. Since G is hot we know that
Gy is tepid, being equal to m(G) plus some infinitesimal.

We have that LS(Gyq)) = RS(Gya)) = m(G) and those stops are achieved with
Left and Right options of Gy). These options are obtained from some G* and G%,
being Gf(G) — t(G) and Gﬁe) + t(G). Therefore, t({GL | GE}) = t(G). O

Definition 5.16. Let G be a hot game. Then (G¥, G") is called a pair of thermic
options of G if t(G) = t({GL | GB}). We set G = {GF | GF} where GE = GE and

GR = GR are thermic options. We say G is a thermic version of G.

When bounding temperatures, instead of working with G we can work with a
thermic version G. This has the advantage that when we are constructing the ther-
mograph, we only need to consider the thermographs of the unique options, rather
than having to find which option has the leftmost right wall at every point.

In general, it is tedious to find a thermic version of a game G as, in a worst-case
scenario, all temperatures of combinations of Left and Right options would have to be
checked. We will be using the thermic version for theoretical purposes only though,
and for calculations will return to the original game.

Note that a thermic version of a game is not necessarily unique, as demonstrated

in the following example:
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Example 5.17. Consider G = {{{3 ] 1} | 0},{2| 0} | {—1] —2}}. Both G, = {{{3 ]|
130} [ {=1]=2}} and Gy = {{2| 0} | {=1| —2}} are thermic versions of G.

Further, in many cases the thermographs of G and a thermic version G are not

identical, as shown in the following example.

Example 5.18. Let G = {{2| —1},0 | {—2 | —4}}. The thermograph of G is

Tid4
a2

0 -1 -5f 2
A thermic version of G is given by G = {{2 | =1} | {—=2| —4}}. The thermograph

of G is

T4
a2

Although the thermograph of a thermic version might not be identical to the one

of the original game, the following proposition shows that it always lies to the inside:
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Proposition 5.19. Given a hot game G with a thermic version CNJ, we have for all
t > —1 that LS(G,) < LS(G,) and RS(G,) > RS(G,). In particular LS(G) < LS(G)
and RS(G) > RS(G).
Proof. Note first that G; and ét are numbers only if ¢ > ¢(G), at which point the
thermographs are identical.

For t < ¢(G), we then have by definition LS(G;) = maxge (RS(G}) —t) and
LS(G;) = RS(GE) — t and similarly for the Right stops. Now since GZ is also a Left
option of G, we have LS(G,) < LS(G,) and RS(G,) > RS(G,).

The special case of ¢ = 0 then follows immediately. [

Corollary 5.20. Given a hot game G with a thermic version é, we have

UG) < UG).

Proof. From the previous proposition we have

U(G) = LS(G) — RS(G) < LS(G) — RS(G) = ((G). O

In this section, we will often consider segments of the thermograph. By length of
such a segment we mean the change in t.

As we will be bounding the temperature of a game from the length of the vertical

and oblique segments of the left and right walls of its thermograph, the turning points

of the thermograph will be very important. We will be concentrating on the left wall

throughout, but the same definitions and results apply to the right wall.

Definition 5.21. Let G be a hot game and G a thermic version of G. Let t, =
0,t1,ts,...,t, = t(G) be the sequence of the vertical coordinates of the turning points
of the left boundary of the thermograph of G. The Right stops of the sequence of
G (i) = GL —t, define the segments of the boundary. If RS(G(i+1)) = RS(G*(1)),
we have a vertical segment; on the other hand, if RS(G*(i + 1)) < RS(GL(7)), we

have an oblique segment. Define
e #; to be left vertical if RS(G*(i + 1)) = RS(G"(v));

e ¢; to be left oblique if RS(GE(i + 1)) < RS(G*(3)).
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We further define
T = Z (tiv1 —ti)

t; is left
vertical

and

Thi= Y (ti1—t).

t; is left
oblique

Right vertical, right oblique, 7%

B and TF, are defined similarly.

Essentially, T . measures the length of the vertical segments of the left boundary

between 0 and ¢(G), while Tk, measures the oblique segments.

Example 5.22. Consider G = {{{6 |4} | {2 0}} | {{0| =2} | {—4 | —6}}}. Note
that G is its own thermic version as there are only a single Left option and a single

Right option. The thermograph is given below:

4

The turning points of the left boundary are t5 = 0, t; = 1, t = 2, and t3 = 3. We

have
RS(G"(0)) = RS({{6 ] 4} [ {2]0}}) =2
RS(GH(1)) = RS({3x | 1x}) =
RS(G"(2)) =RS({1|1}) =1
RS(G*(3)) = RS(x) =

We have that ¢ty = 0 and ¢y = 2 are left oblique and t; = 1 is left vertical. Thus

TE. =2—1=1 and T4 =(1-0)+(3-2)=2

vert —

Since the thermograph is symmetric, 72 =1 and T, = 2.
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The following is an immediate consequence of the previous definition and that

oblique segments have slope +1.
Lemma 5.23. Given a hot game G and a thermic version G we have
TvLert + Tobl T vert + bel = t(G)

and

E(G) T + T

We will now demonstrate the bound on the temperature of a game from the
measure of its confusion interval and those of its options using the vertical and oblique

segments of the thermograph.

Theorem 5.24. Let GG be a hot game and G a thermic version of G. Then

t(G) <(U(H)+ @

where H = GE if TE, > TR and H = G® otherwise.

vert — ~ver

Proof. We will demonstrate this bound in the case of TL , > T% . The second case

vert”

follows similarly.

First consider T2 .. Since the left boundary of the thermograph of G comes from

vert*
the right boundary of the thermograph of éL, we know that 7L is at most the
length of the oblique segments of the latter. Further, we know that the length of
these oblique segments are at most the distance between the Left and Right stops.
Thus TE, < 0(GE).

On the other hand, TL , + T4 = TE

R+ TE and, by assumption, 7%, > TH
Hence, T4, < T'F,. We have

vert — “vert*

2 x Ty < Tiy + Ty = U(G) < U(G)

[¢]

so that

Therefore, t(G) = TZ

vert

+Th < é(G
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Working with the thermic options above had the advantage that we only had to
consider a single option for each player. Note that the thermic version of a game G
is difficult to determine in general though. We will instead bound the measure of the
confusion interval for all options in our applications in the next section.

The following theorem is a direct result of the previous one. It is the first known

theorem giving an upper bound on the boiling point of a class of games.

Theorem 5.25. Let S be a class of short games and J, K be two non-negative num-
bers. If for all G € S, we have ((G) < K and for all G* and G that ((GF), ((GF) <
J, then

BP(S) <

K
—+J
2+

The next example will demonstrate that this bound is tight in some cases.

Example 5.26. Consider S = {G : ((Q),((GF),((GT) < 6} the set of short games
G for which ((G) < 6, closed under options.
By the previous theorem we know that BP(S) < 9. Consider the following se-

quence of games, all of which belong to S:

Gy = +{{15|9} |3} tHGh) = ?
Gy = £{{{21]15} 9} |3} UG2) = ?
69

Gs = £{{{{27|21}| 15} |9} |3} #(Gy) =
(..)

3
For this sequence, we have t(G,) = 9 — o and as n increases the temperature

approaches 9. Therefore, BP(S) = 9.

We will use Theorem 5.25 in the remainder of this section to give upper bounds

on the boiling point for specific SP-games. The following proposition will be used to
bound ((G).

Proposition 5.27. Given a hot game G, if we know that GV — G — K +¢€ < 0 for
all Left options G, a fized number K, and infinitesimal €, then ((G) < K.
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Proof. Since G* — G + ¢ < K, we have LS(GY' — G) < K. Thus (remember that
LS(G) = RS(GF) for some G*):

<K [l

The game G* — G — K + € corresponds, in some sense, to letting Left play twice
in GG, balancing that with K — e. If we can bound the effect of that second move, we
bound the confusion intervals of a class of short games.

Our goal thus is to find the minimal number K and an infinitesimal ¢ for which
Right has a winning strategy going second in G* — G — K +e.

As examples, we will show how to apply this to some PARTIZAN OCTALS, to
PARTIZAN SUBTRACTION, and some DOMINEERING snakes. Note that since ¢(G +
H) < max{t(G),t(H)}, it is sufficient to bound the temperature when playing on a

connected board.

5.2.1 Partizan Octals

We will consider the partizan octal games Oab where both octal codes are of the form
0.00...07, with the 7 in the ath position for the Left code and in the bth position
for the Right code. These games are also called partizan Splittles (see [43]). They
further are equivalent to Left placing dominoes of length a and Right of length b onto
a strip. Thus these are strong placement games.

The games Oaa are impartial. Thus the temperature is either —1 (for example
when the board is empty, thus the value is 0) or 0 (for example when the strip has
length a, thus the value is ), giving a boiling point of 0.

For the remainder of the section we will assume a # b. Also note that Oab =
—Oba, thus Oab and Oba have the same boiling point.

The following result shows that it is sufficient to bound ¢(G) for playing on empty

strips.
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Corollary 5.28. If ((G) < k for all games G which are Oab played on an empty
strip then
0(G5), 0GR < 2.

Proof. Any move, whether by Left or Right, results in a disjunctive sum of two smaller

boards. Thus if we bound ¢(G), we also bound ¢(G) and ¢(G®) by Lemma 5.13. [

As a first non-trivial example, we begin with O12. The strategy we will employ
is slightly different from the general case, but it will illustrate well some properties

we take advantage of.
Proposition 5.29. The boiling point of O12 and O21 is at most 5.

Proof. Let G be the game of O21 played on a strip of length n. If n = 1, then G = —1
and we have t(G) = —1. If n = 2, then G = {0 | =1} and ¢(G) = 1. Forn >3
we will show that G* — G — 2 is a Right win if Left goes first. By Proposition 5.27
we then have ¢(G) < 2, and therefore /(GF), ((GT) < 4. The result then follows by
Theorem 5.25.

Our convention is that the spaces in G* are labelled as 1,...,n, with the move
already made in G* being in spaces k and k£ + 1 and called move 0. The spaces in

—G are labelled 1/,...,n/.

1 2 k—1 k kE+1k+2 n—1 n
er [ | |- C
-G | ]

| E—1 K E+1E+2 n—1 n/

If Left plays her first move so that it is not in space k' or k + 1’, then Right can
mimic the move in the other game. This results in each component breaking into a
disjunctive sum at the same spot, two of which are the negative of each other, the
other two have the difference of the Oth Left move. In the case of Left having made

her move in —G, we then have (see the diagram below)

(-G =-Gfi=-G, -G, and GFE=GE+G..
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This gives

G GR =Gl 4 Gy — Gy — Gy =GF — G,

so that we reduce the game to being played on a smaller board. Left having moved
in G* is similar. We can thus assume by induction that Left’s first move is either in
space k' or k+1'. Similarly, we can assume without loss of generality that any future

Left move overlaps a previously made move by the same argument.

k kE+1 l

GLR | | |:‘:| ,,,,,, ml | -

—GR | | ] D 777777

k kE+1 -1 I+1

GE | | - I:: ****** + | Gy

T e N R R A ~Gy

We will assume without loss of generality that Left’s move is in &’. The game is
now equivalent to the disjunctive sum of the strips 1 through k£ — 1 and 1’ through
k —1’, which add to 0, and the strips k£ to n and &’ to n’ with spaces k, k+ 1, and &k’

all occupied. Let ¢ = n — k. Our game has been reduced to the situation below.

¢ | | —

¢ \m | |-

We let Right respond by playing in k& + 1" and k + 2’. Again, the only Left move
we have to consider is in k£ + 2 and k + 3, which reduces the game to the previous

situation with ¢ decreased by 2. We continue this strategy until ¢ =1 or ¢ = 2.
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¢t | ¢t |

-G & -G &

If ¢ = 1, Right has no responding move in —G, and instead moves —2 to —1. Left
has one more move, to which Right responds by moving —1 to 0, thus wins. If ¢ = 2,

Right moves in —G and wins. O

The group of authors under the pseudonym G.A. Mesdal showed in 2009 [43] the

following:

Fact 5.30 (Mesdal 2009 [43]). The canonical form of O12 on a path of length n is

;

k ifn=4k—3
{k|k—=1} ifn=4k—2
(k+1]k} ifn=4k—1
k if n =4k

\

Thus the boiling points of O12 and O21 are %

Thus our bound given is only a constant away from the actual bound.
Having demonstrated this simplest case, we will turn to Oab in general. The proof

is similar to the case of @ = 2, b = 1, but requires a slightly more involved strategy.

5 -2
Proposition 5.31. The boiling point of Oab with a > b is at most 5 ({a 2 J + 2).

Proof. Let n be the length of the strip. For n < b neither player can move and the
game is 0, thus the temperature trivially satisfies the bound. For b < n < a, only
Right can move, meaning the game is an integer and thus has temperature —1, again
satisfying the bound. For n > a we will show that GI' —G — ( L%J + 2) is a Right win
if Left goes first. By Proposition 5.27 we then have ((G) < \_“—gQJ + 2, and therefore
U(GF), 0(GR) < 2([%2]| +2). The result then follows by Theorem 5.25.

Our convention similarly to O12 is that the spaces in G are labelled as 1,...,n,
with the move already made in G being in spaces k to k +a — 1 and called move 0.

The spaces in —G are labelled 1/,...,n/. See below.
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1 2 k—1 k k+a-—1 n—1 n
¢t | | [—1 | |
-G | e e

12 k-1 Kk k+a-—1 n—1 n'

If Left plays her first move so that it does not cover any of spaces k' through
k 4+ a —1’, then Right can mimic the move in the other game. As in the special case
of 012, this results in the game breaking into a disjunctive sum, and we are able to
reduce to a smaller board. By induction we may thus assume that Left’s move does
overlap one or more of these spaces (or any other previous move in the later game).

For Left’s moves overlapping move 0, there are three cases to consider:

a
1. Neither &k — 1’ nor k + a’ is covered: In this case there are at most bJ <

b
b=1.

-2
V J + 2 moves of this type. Note that this is automatically the case if

2. Exactly one of Kk — 1" and k + a is covered: In this case there are at most

a—1 a— 2 . .

2 < 2 + 1 moves strictly overlapping move 0.
. a— 2

3. Both of k — 1’ and k + o' are covered: In this case there are at most {TJ

moves strictly overlapping move 0.

To each move strictly overlapping move 0, that does not cover either £ — 1’ or
k + o', Right responds by moving in the integer summand, reducing it by 1.

Suppose now that Left’s move also covers one of k—1" and k+ a’. Without loss of
generality we let that be k—1’. Right responds in G, playing in spaces k — b through
k—1 (as close to move 0 as possible). We continue this strategy whenever Left makes
a move in —G overlapping a previous one and not strictly overlapping move 0, in
either direction. If Left ever moves non-overlapping, Right can again mimic, giving a
smaller sum and the result is true by induction. Thus we may assume that all moves
by Left overlap a previous one, and thus are all in —G.

If Left leaves empty spaces, these cannot be played by either player (if more than

b spaces there would be no overlap with a previous piece). Thus at each step we again



98

reduce the game by induction. At the end, Left might make one move to which Right
cannot respond due to insufficient space. This can happen at one end (case 2) or both
ends, with the two ends being a disjunctive sum (case 3). The end is then of the form

seen helow considered just before Left’s move to which Right cannot respond.

o (I

C1 Co

Note that ¢; < b as we assume Right has no response to Left’s move. We may
also assume that ¢y < b. If the occupied spaces on the top right are the end of move
0, then we can simply set ¢y to be the amount that Left’s move overlaps with move 0
without changing the strategy. If these spaces are not part of move 0, then they were
part of a Right responding move and ¢, < b since otherwise there would not have

been an overlap with Left’s previous move.

In the case that ¢;+co < b, then Left has no moves and Right wins. If b < ¢1 4¢3 <
2b, then Left will move in —G such that there are less than b spaces on either end and

neither player can move in G* or —G. Right then responds by reducing the integer

by 1. O

Using the Oab code for CGSuite in Appendix B, we have the following maximum

temperatures on paths up to length 50 for various values of a and b.
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12 3 4 5 6 7 8 9 10
1o 1/2 1 3/2 2 5/23 7/2 4 9/2
2 11/2 0 1 3/4 7/4 3/2 5/2 9/4 13/4 3
311 1 o 1 1 1 7/4 7/4 3/2 5/2
4 13/2 34 1 0 1 1 1 1 7/4 7/4
5012 74 1 1 0 1 1 1 1 1
6 |5/2 32 1 1 1 0 1 1 1 1
713 5/2 741 1 1 0 1 1 1
8 |7/2 9/4 741 1 1 1 0 1 1
9 |4 13/4 3/2 7/4 1 1 1 1 0 1
10 9/2 3 5/2 7/4 1 1 1 1 1 0

Based on this data it appears that given a > b the boiling point would at most be

-1
V 2 J , which is approximately 2/5 of the bound we proved in Proposition 5.31.

5.2.2 Subtraction Games

Partizan subtraction games are, similarly to NiMm, equivalent to SP-games. For the
purposes of this section though, we will think of partizan subtraction games as playing
on strips similarly to Oab, and with all pieces having to be placed adjacent to the
Left end. We let the Left subtraction set be {a} and the Right set {b}. If a = b, the
game is impartial and the temperature is at most 0. We show the bound for a # b

below.

Proposition 5.32. The boiling point of the partizan subtraction game with Left sub-
5/1b—1
traction set {a} and Right subtraction set {b} with b > a is at most 5 ({ J + 1).

a

Proof. Suppose without loss of generality that a < b (@ > b is simply the negative
of this game, thus has the same boiling point). Let n be the length of the strip.
For n < a neither player can move and the game is 0, thus the temperature trivially
satisfies the bound. For n > a we will show that G* — G — (|%=1] 4 1) is a Right win
if Left goes first. By Proposition 5.27 we then have ((G) < |=1] + 1, and therefore
((GE), 0(G®) < ([%=1] +1). The result then follows by Theorem 5.25

The strategy for Right is to copy Left’s move in the other game, so that both
strips get shortened by the same amount (a if Left had moved in GL and b if Left



100

had moved in —G). This continues until either Left has no moves remaining or Right
cannot respond, thus the situation is as below, again considered just before Left’s

move.

oo (-] [

If a 4+ ¢ < b, then Left cannot move in either game and Right wins.

If a+c > b, Left will move in —G. Since we are assuming that Right can no

longer respond in G*, we have ¢ < b. We are now in the situation below:

oo (] | [

If d > a, then Right can move in —G, to which Left responds in G*. Thus we
may assume that d < a. Right has no remaining moves in G* or —G, and thus moves
the number to —| 21|, Left still has [¢/a] moves remaining in G* and no moves in
—G. To each of these moves Right responds by reducing the number. Since b—1 > ¢,
Right has the last move and thus wins. O]

Using CGSuite, we have the following maximum temperatures on paths up to

length 50 for various values of a and b.
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1 2 3 4 5 6 7 8

0 1/2 1 3/2 2 5/2 3 7/2
1/2 0 1/2 1/2 1 1  3/2 3/2
1 1/2 0 1/2 1/2 1/2 1 1 3/2
3/2 1/2 1/2 0 1/2 1/2 1/2 1/2 1

2 1 1/2 1/2 0 1/2 1/2 1/2 1/2 1/2
5/2 1 1/2 1/2 1/2 0 1/2 1/2 1/2 1/2
303/2 1 1/2 1/2 1/2 0 1/2 1/2 1/2
7/2 3/2 1 1/2 1/2 1/2 1/2 0 1/2 1/2
42 1 1 1/2 1/2 1/2 1/2 0 1/2
9/2 2 3/2 1 1/2 1/2 1/2 1/2 1/2 0

10
9/2
2

— = o | ©

© o0 ~ O Ut ks W N =

—_
)

Based on this data it appears that given b > a the boiling point would be

1 b
5 ([—w — 1), which is approximately 1/5 of the bound we have proven above.
a

5.2.3 DOMINEERING Snakes

We will consider DOMINEERING snakes that fit within a 2 x n grid.
A DOMINEERING snake is a DOMINEERING position in which the board in some

sense has ‘width’ 1. They can be inductively constructed as follows:
Step 1: Place a single square.

Step n: Attach a new square at the top, right, or bottom edge of the square placed in
step n — 1. When doing so, no 2 x 2 subgrid may be formed.

An example of a snake is below.

L]

DOMINEERING snakes are interesting as any move, whether by Left or by Right,
results in a disjunctive sum of two smaller snakes. Thus they are amenable to a

recursive study. Further, they often naturally occur during play on larger grids.
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Conway in 1976 [17] (also in [18, pp.114-121]) gives a characterization of snakes
in which a square is added to the right alternating with a square up. His results show
that such snakes have temperature at most 1.

Wolfe in 1993 [64] gives reductions that show it is sufficient to consider snakes in
which at most 4 squares are added in either direction. He proceeds to give values of all
periodic snakes - those snakes in which, after an initial chain, the number of squares
added vertically is always the same, as is the number of squares added horizontally.
And finally, values are given for many repeating snakes fitting within a 3 x n grid, so
snakes in which always two squares are added horizontally.

The snakes we consider fit into a 2 x n grid, thus they are snakes where always at
least two squares are added to the right and exactly one square horizontally, alternat-
ing between up and down. We do not make any assumptions on repeating patterns
though, so that many of the cases considered here are not covered by the results by
Wolfe in 1993 [64].

As an example, the snake below on the left is considered as fitting into a 2 x n
grid as it can be folded by alternating vertical addition up and down into the snake

on the right without changing the game.

On the other hand, the snake below does not fit into a 2 x n grid since folding it

the same way results in a 2 x 2 subgrid, thus changing the game.

We again are in a situation where any move results in a disjunctive sum of two
smaller games, which are still DOMINEERING snakes fitting within a 2 x n grid. Thus

bounding ¢(G) for empty boards is sufficient.
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Proposition 5.33. The boiling point of DOMINEERING played on a snake fitting

within a 2 X n grid is at most 5.

Proof. Let G be DOMINEERING played on a snake fitting within a 2 x n grid. We
will show that G* — G — 2 is a Right win if Left goes first. By Proposition 5.27
we then have ¢(G) < 2, and therefore (GF), ((GT) < 4. The result then follows by
Theorem 5.25.

We will label the columns as 1, ..., n and use the convention that the move already
made in G in column & and called move 0. The rows in G* are labelled 1 and 2 and
those in —G are labelled a and b. We will denote a move occupying the two squares
(z,y) and (u,v) by {(x,vy), (u,v)}. For example move 0 would be {(k,1),(k,2)}.
Without loss of generality we will also assume that the square adjacent to move 0 on

the left is in row 2 as below.

. | 1
¢ ]

If Left plays her first move in G* or in —G without overlapping column k, then
Right can mimic the move in the other game, resulting in a disjunctive sum and reduc-
ing the board to a smaller size. We may thus assume that Left’s move is (a k,ak+1)
orin (bk—1,bk). When Left makes this move, Right will respond by moving in —2,
and then in —1 when Left makes the second of these moves. Note that due to the
form of snakes we have chosen, Left cannot overlap either of these moves again, so

that Right can continue a mimicking strategy until the end of the game and wins. [

Note that for DOMINEERING snakes in general any move results in a disjunctive
sum, but for the above strategy to work we do require the snake fits into a 2 x n grid.
If this were not the case, then Left could potentially overlap a move overlapping move

0 again.
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5.3 SNORT

Winning Ways [6] contains a list of values for various SNORT positions. From this
list, the temperature of SNORT played on a path up to 6 vertices is at most 2. Using
the CGSuite code for SNORT in Appendix B, we have the following temperatures ¢

for SNORT on a path of n vertices:

n\2345678910 11 12 13 14
t\123/2101223/23/2122

For SNORT on a 2 x n grid, the following temperatures were found.

nl2 3 4 5 6 7
tl -1 94 -1 52 1

More generally, we make the following conjecture:

Conjecture 5.34. The temperature of SNORT on a board B is at most the degree of
B.

Intuitively, this conjectures comes from the degree of B being the maximum num-
ber of spaces one can ‘reserve’ for themselves with a single move. There are cases in
which the temperature is equal to the degree of the board. Here we need the idea of
a universal vertex, which is a vertex adjacent to all other vertices in the graph, i.e.

one for which the degree is |V| — 1.

Proposition 5.35. Suppose B is a graph with a universal vertex and |V| = n + 1.

For G = (SNORT, B) we have G = +n, thus t(G) = n.

Proof. Let v be a universal vertex of B. The good move for either player is to play
on v, thus reserving all other vertices for themselves. All other possible moves will be

dominated by this move. Thus G = {n | —n}. O

Using the techniques from the last section, it should be possible to at least bound
the boiling point for SNORT on a path this would require bounding the length of
the confusion interval for all empty paths and paths with one end already having
been played on by Left or Right. The strategy would again mostly involve mirroring
moves, except for some influence zone around move 0 (simply excluding overlap is
not sufficient). Preliminary work indicates that this would result in the boiling point

being bounded by 10.
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5.4 Further Work

In Theorem 5.25 and all our applications we have bounded the confusion interval
for all options. To improve these bounds, we will look at what the thermic version
specifically is, thus only having to bound the length of the confusion interval for the
thermic options. We have also specifically used that each option is a disjunctive sum in
the examples considered and bounded the confusion intervals through this. In reality,
the confusion intervals of the options are much smaller though, and looking at these
measures specifically would improve the bounds on the boiling point significantly.
Further, all bounds on the length of the vertical and oblique segments in the proof
of Theorem 5.24 are tight in certain cases, but are often much larger than the actual
length of these segments. When restricting to specific classes of games it should be
possible to improve these bounds and therefore the bound on the temperature itself.
Another approach is to bound the Left and Right stops, and thus the measure
of the confusion interval, based on the structure of the legal or illegal complex. We
know that moves correspond to the link of the vertex, and that simplices have as
their values integers. If we are further able to identify when they have as their values
a number, we can inductively identify the stops, and through this process hopefully

bound them.



Chapter 6

Impartial Games

Much of the theory in combinatorial game theory, especially during its early days,
is about impartial games. An impartial game is one in which the options for both
players are the same and thus we do not distinguish Left from Right. This chapter

will deal exclusively with impartial SP-games.

Due to the moves for both players being the same in an impartial game, the legal
complex is in some sense symmetric. For example, the legal complex for N1Mm played

on a pile of 2 tokens, or equivalently on K5, is given by
xr1 Y2

x1,2 Y1,2

o Y1

where the variables are indexed by which vertices are occupied by the basic position.

For N1M played on K3, the legal complex becomes

({z1, 22,23}, {y1, y2, 43},

{21, 2, ys}, {yn, vz, wa b {wn, vo, wsd, {yr, w2, w3}, {yn, @2, 23} {21, w2, w5,
{m12, 23}, {w1 3, 22}, {x23, 1}, {y1.2, Ys}s {13, Y2} {ves 1},

{r12,y3) {wis, vo }s {23, vi} v 2, 23}, {y1.3, 22}, {y23, 21},

{1’1,273}, {91,2,3}>

Unfortunately, very quickly it becomes difficult to see how the game progresses just
from the simplicial complex. A natural step forward, due to the symmetry, is to

identify vertices with the same indices. The legal complex of N1M on K5 then becomes

106
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and for K3 it becomes

This is the general idea behind this chapter.

We will give some more background on impartial games, then formally define
the simplified game complexes. With the impartial game complexes introduced, we
will give equivalent statements to our major results on partizan SP-games including
in particular that every simplicial complex is the legal complex of some impartial
iSP-game.

We then study what game values might be possible given certain structures of the
impartial legal complex. We show for example that when the impartial legal complex
is pure, the only possible values are 0 and *. We also consider an impartial version
of the game graph, and its structure when it comes from an impartial SP-game.

If a winning condition is needed, we will again assume normal play.

6.1 Introduction to Impartial Games

For an impartial combinatorial game, since there is no differentiation between Left
and Right, game options are just listed in curly brackets, without a divider. For
example, the value % can be written as {0}. A general option of the position P is

indicated as P’, so P ={P/,P},...,P/}.
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Fact 6.1 (Sprague-Grundy Theorem, [57, Theorem IV.1.3]|). Every short impartial

game under normal play is equal to the nimber xn for some n.

To find which nimber an impartial game G is equal to, we use the minimal
excluded value (mex). The mex(A) of a finite set of non-negative integers A is the

least non-negative integer not contained in A.

Fact 6.2 (|57, Theorem IV.1.2]). If the impartial game G inductively is equal to

{*nq,...,%ny}, then G = xn where n = mex{ny,... ,ng}.

Example 6.3. Consider the impartial game G = {0, %1, *4}. Since mex{0,1,4} =2,

we have G = %2.

The values of short impartial games under normal play with disjunctive sum as

operation form a group (see [57, Section IV.1]). This group is indicated by G'.

6.2 Impartial Game Complexes

For impartial games, since the options for Left and Right are the same, the legal and
illegal complex can be simplified. A basic position is, as before, a position in which
a single piece has been placed. Our underlying ring is R = k[xq,...,x,] where k is

any field and n is the number of basic positions.

Definition 6.4. For an impartial SP-game (R, B) the impartial legal complex
Al p is the simplicial complex with vertex set {z1,...,2,} and whose faces consist
of vertices corresponding to the basic positions forming a legal position. The impar-
tial illegal complex I‘IR’ g is the simplicial complex whose facets correspond to the

minimal illegal positions of (R, B).

Example 6.5. The game ARC-KAYLES (see Schaefer 1978 [53| or Huggan and Stevens
2016 [33]) is an impartial SP-game. The board can be any graph, and play consists
of claiming two adjacent vertices.

We will look at ARC-KAYLES played on the board given below.

2
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We will use the convention that basic position 7 is the move to claim the two endpoints

of edge 7. The impartial legal complex then is

2

T4 Z1 5 z3

And the impartial illegal complex is given by

T xrs3

T2 T4 5

Remark 6.6. The impartial illegal complex of ARC-KAYLES played on a board B is
the line graph of B since the basic positions correspond to the edges, and two moves

are illegal together if the two edges have a vertex in common.

Just as previously, we can again get the impartial legal complex of a disjunctive
sum from the impartial legal complexes of the summands using the join. And the

impartial illegal complex is the disjoint union. The proofs are the same.

Proposition 6.7 (Impartial version of Theorem 1.55). Let (R, B) and (R, B’) be
two impartial SP-games with tmpartial legal complezes A%B and Afg,’B,, and with
impartial illegal complezes T'h p and T, 5. Then

A{R,B)+(R’,B’) = A%,B *x Aé/,B/

15 the impartial legal complex and

I I I
Cirpyrwsy =TrpUTh m
is the impartial illegal complex of the disjunctive sum (R, B) + (R, B').

Many of the results we have discussed in Chapter 2 also hold when we change to
the impartial setting. We will give the equivalent statements here. The proofs are
similar by letting £ be simply the entire vertex set, and thus representing moves by

both players, and R be empty.
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Proposition 6.8 (Impartial version of Proposition 2.1). Given a simplicial complex

A, there exist impartial SP-games (Ry, B) and (Ry, B) such that
(a) A= A% 5 and
(b) A — F{%Q,B'

Theorem 6.9 (Impartial version of Theorem 2.16). A given simplicial complex T is
the impartial illegal complex of some impartial iSP-game (R, B) if and only if I has

no isolated vertices.

Theorem 6.10 (Impartial version of Theorem 2.17). Given any simplicial complex

A, we can construct an impartial iSP-game (R, B) such that A = AL ..

Theorem 6.11 (Impartial version of Theorem 2.20). Given an impartial SP-game
(R, B), there exists an impartial iSP-game (R, B') so that their game graphs are

1somorphic.

With these results established, we will look at possible game values next.

6.3 Game Values and the Game Graph

By the Sprague-Grundy Theorem, impartial games can only take on nimbers as values,
and we know that all nimbers are possible since NIM is equivalent to an impartial
SP-game (see Remark 1.11). Although this answers the question of whether or not all
values of impartial games are possible, it is still interesting to see if certain structures
of the legal or illegal complex allow for only certain nimbers.

Using that a game has value 0 if and only if it is a second-player win, i.e. the

second player always has a good responding move, we have the following two results.

Proposition 6.12. Let (R, B) be an impartial SP-game. If all facets of A}’%,B have

odd dimension, thus even size, then (R, B) has value 0.

Proof. Since all facets of A%B have even size, all maximal legal positions of (R, B)
also have an even number of pieces. Thus whenever the game ends, the second player

will have made the last move, thus wins. O
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Proposition 6.13. If an impartial SP-game (R, B) has value 0, then the impartial

legal complex has at least one facet of odd dimension, thus even size.

Proof. An impartial SP-game can only be a second-player win if there is at least one
maximal legal position with an even number of moves, thus there is a facet of even

size. ]

We are also able to determine the value of (R, B) immediately if its impartial legal

complex is pure.

Proposition 6.14. If A},%,B is a pure (n — 1)-dimensional simplicial complezx, then

the corresponding impartial SP-game (R, B) has value 0 if n is even and * if n is odd.

Proof. The case in which n is even was already proven in Proposition 6.12.
We will now consider the case in which n is odd. In this case, any move will be to
a pure (n—2)-dimensional simplicial complex A’. We already know that the impartial

SP-game corresponding to A’ has value 0. Thus (R, B) = {0} = *. O

The above result should be particularly useful in applications since proving the
impartial complex is pure immediately results in restricting the possible game values
to 0 and *. For example, we can use it to give an alternative proof to the following
fact shown by Huggan and Stevens in 2016. Note that an equimatchable graph
is a graph in which all maximal matchings (sets of edges, no two incident) have the
same size. Also recall that a simplicial complex is called unmixed if all its minimal

vertex covers have the same size.

Fact 6.15 (Huggan and Stevens 2016 |33, Theorem 1|). The value of a game of
ARC-KAYLES played on an equimatchable graph B, where m is the size of all mazimal

matchings, is 0 if m is even and * if m is odd.

Proof. Let R = ARC-KAYLES. The complements of the maximal matchings of B
correspond to the minimal vertex covers of its line graph FIR p- Since B is equimatch-
able, we then have that F}z, g 1s unmixed, implying that the impartial illegal complex
is pure. Furthermore, the maximal independence sets in any graph are the comple-
ments of its minimal vertex covers. Thus the size of the maximal matchings of B is

equal to the size of the maximal independence sets of I'; p. Thus if m is even, then
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A} p has odd dimension, i.e. (R,B) has value 0, and if m is odd, then (R, B) has

value *. ]
We also have

Corollary 6.16. If A is the disjoint union of pure simplicial complexes Ay, ..., Ay
with dimensions dy, ..., dy, then the corresponding impartial SP-game (R, B) has

value 0 if all d; are odd, x if all d; are even, and %2 otherwise.

Proof. In this case, a move always forces the game into a single component. If all d;
are odd, then any move is in a component with value 0, which is thus the value of
the entire complex. Similarly if all d; are even. If there is a mix though, there are
moves to 0 (moving in an even-dimensional complex to an odd dimensional one, all

pure) and to x (moving in odd dimensional complex), thus the value is *2. [l

These preliminary results on the relationship between the structure of the legal
complex and possible game values can potentially be expanded upon by considering
the structure of the game graph. The game graph is defined similar as in the partizan

case, but without labelling the edges:

Definition 6.17. The game graph gé of an impartial combinatorial game G is a

directed graph where
(a) the vertices represent the legal position in G; and

(b) if there is a move from position P to position @), then there is an edge from vp

to UQ.

Similarly as in the partizan case, the game graph of an impartial SP-game needs
to reflect that all possible orders of moves are legal between two legal positions. We
thus define an equivalent SP-property, which the game graph has to satisfy to come

from an impartial SP-game.

Definition 6.18. A game graph of an impartial game is said to satisfy the impartial
SP-property if it is graded and if, whenever there exists a path from a vertex v to
a vertex w consisting of n edges, there exist exactly n! paths between v and w.

Furthermore, any two vertices have at most one common successor.
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Proposition 6.19 (Impartial version of Proposition 3.11). Let G/, be the game graph
of the impartial combinatorial game G. Then G is an SP-game if and only if GL,
satisfies the impartial SP-property.

Recall that the face poset of a simplicial complex A is the the poset whose elements
are the faces of A ordered by containment. Given an impartial SP-game (R, B) we
will call the face poset of A%’B the impartial game poset, denoted ’P}LB.

Again, the impartial versions of our results regarding the game poset hold:

Proposition 6.20 (Impartial version of Proposition 3.14). Given an impartial SP-
game G, its impartial game poset Pl and impartial game graph G/, are in a one-to-one

correspondence.

Proposition 6.21 (Impartial version of Proposition 3.18). Given an impartial SP-
game (R, B), the impartial legal complex AE,B and the game graph Q{Z’B are in one-

to-one correspondence.

Lemma 6.22 (Impartial version of Lemma 3.20). Every impartial game poset of an

impartial SP-game is a meet semilattice.

6.4 Further Work

Similar to questions in the general case, we are interested in whether we are able
to completely describe how the structure of the impartial legal or illegal complex
determines the normal play value of the corresponding impartial game.

Of course, we are again also interested in considering all these questions under

misére play.



Chapter 7

Experimentation Towards Cohen-Macaulayness

Combinatorial structures, whose equivalent algebraic structures are Cohen-Macaulay,
usually turn out to have best possible behaviour (see [13, Chapter 5| and [31, Chapters
8 and 9]). We are interested in the effects of Cohen-Macaulayness on strong placement
games. This chapter will focus on investigating when the ideals of SP-games are
Cohen-Macaulay and understanding the implications for the games. Some possible
“good behaviour” for SP-games related to Cohen-Macaulayness, for example, could
be that only certain game values are possible or that the game tree needs to have a

specific structure.

Although we are not able to give a good characterization of Cohen-Macaulay
games, this chapter will give some indications of what the possibilities are, in partic-

ular that game value is not a good characterizing measure.

We begin with the definition of Cohen-Macaulay ideals and combinatorial prop-
erties of their facet and Stanley-Reisner complexes. We then look at the Cohen-
Macaulayness of the games SNORT and COL. Some common combinatorial struc-
tures that guarantee Cohen-Macaulayness are shellability and graftedness. We exam-
ine each of these and their implications on the SP-games. We then slightly change
direction and consider the Cohen-Macaulayness of impartial games since no (£, R)-
labellings need to be considered. A result of particular interest is that the Cohen-
Macaulayness of the illegal ideal, whether in the impartial or partizan case, is “hered-
itary”, i.e. if a game has a Cohen-Macaulay illegal ideal, then all its options will also

have a Cohen-Macaulay illegal ideal (see Subsection 7.5.1).

This chapter should be considered as a first step towards studying Cohen-Macaulay

games.
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7.1 Background on Cohen-Macaulay Ideals

We begin by defining when a square-free monomial ideal is Cohen-Macaulay before
going into computational and partial results. Note that the definition of Cohen-
Macaulayness we give below can be generalized to other algebraic structures, but we

can restrict to the polynomial ring and monomial ideal case for our purposes.

Definition 7.1. Given a polynomial ring S = k[z1, ..., x,] and an ideal I, an element
a € S is said to be S/I-regular if for all m € S/I the equality am = 0 implies
m = 0. A sequence ay,...,a, of S is said to be an S/I-regular sequence if (i)
ajis (S/1)/[(ax,...,aj_1)(S/I)]-regular and (ii) (S/1)/[(a1,-...,a;)(S/I)] # 0 for all
j=1,...,n. The depth of S/I is the maximum length of an S/I-regular sequence
with elements from the maximum ideal (z1,...,x,).

The Krull dimension of a commutative ring S is the supremum of the lengths

of chains of prime ideals of S.

Definition 7.2. The quotient S/I is called Cohen-Macaulay if its depth is equal
to its Krull dimension. An ideal I over a polynomial ring S is called Cohen-Macaulay

if S/I is Cohen-Macaulay.

Cohen-Macaulayness is a very algebraic property, which results in nice combina-
torial properties though. We will now consider some useful necessary and sufficient

conditions for an ideal to be Cohen-Macaulay.

Fact 7.3 ([13]). If an ideal I is Cohen-Macaulay, then F(I) is unmized and N (I) is

pUre.

Shellability, usually considered for pure simplicial complexes, was generalized by
Bjorner and Wachs in 1996 [8] for nonpure shellable complexes. We will use their

definition:

Definition 7.4. A simplicial complex is called shellable if its facets can be ordered
as Fi,..., Fy such that (Fy, Fy, ..., Fj_1) N (F;) is pure and (dim F; — 1)-dimensional
forall j =2,... k.

Example 7.5. The simplicial complex below is shellable with facets ordered as

F17F27F3'
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Fy

F1 F3

The following statement, is easy to prove, but does not seem to appear in literature.
We will use that every connected graph contains a spanning tree, thus a subgraph

which is a tree and contains all vertices.
Proposition 7.6. A graph has a shelling if and only if it is connected.

Proof. First, suppose that the graph is not connected. When ordering the facets,
thus the edges, at some point one is forced to list an edge which is not incident with
any of the previously listed ones (when switching from one connected component to
another), thus the intersection of this edge with all previous ones is empty and one
dimension lower than required for a shelling.

On the other hand, assume that the graph G is connected. Fix a spanning tree
T. We will order the vertices and edges as follows: Pick a vertex v; and an edge
Ey = {v1, v} contained in 7. Next, pick an edge Fy = {vq,v3} in T. Continue this
process until a leaf has been reached, at which point one picks an edge of T incident
with a previous vertex. Repeat this procedure until all edges of T" have been ordered.
Then list any remaining edges of GG in any order.

For all j = 2,...,k, the simplicial complex (Ey, Es, ..., E;_1) N (£;) consists of
only one or two vertices, i.e. is O-dimensional and pure, as the process above ensures
that after the first edge every other edge intersects with a previous one. Thus this is

a shelling of the connected graph. O]
Shellability is connected with Cohen-Macaulayness via the following fact.

Fact 7.7 (Stanley 1996 [59]). If a simplicial complex A is pure and shellable, then
N(A) is Cohen-Macaulay.

Recall that the legal complex Ap p is the facet complex of the legal ideal Lr p
and the Stanley-Reisner complex of the illegal ideal ZLL R g, while the illegal complex
I'r p is the facet complex of the illegal ideal (Proposition 2.1). Given Fact 7.3 we

then know that for any placement game (R, B) we have the following corollaries:
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Corollary 7.8. If Lr p is Cohen-Macaulay, then Ag p is unmized.

Corollary 7.9. If ZLLp p is Cohen-Macaulay, then Agrp is pure and I'p p is un-

mized.

Note that Ag p being pure and I'p p being unmixed are equivalent since Ag p is
pure if and only if (Ag ) = (I'r.p),, is pure (by definition of the complement and
Fact 1.51) if and only if I'g p is unmixed (by definition of unmixedness).

As a consequence of Corollaries 7.8 and 7.9 two interesting questions are the

following:
Question 7.10. When is Ap p pure and I'p 5 unmixed?
Question 7.11. When is Ag p unmixed?

In particular, we would like to understand whether there are necessary conditions
for the ruleset R or the board B such that the game complexes are pure/unmixed,
as this would give necessary conditions for an SP-game to be considered Cohen-
Macaulay.

Furthermore, by Fact 7.7 we have

Corollary 7.12. If Ag g is pure and shellable, then ZLLp p is Cohen-Macaulay.
Thus we are interested in

Question 7.13. When is Ag p shellable?

We are hoping that shellability of the legal complex will reveal a good underlying

structure of the game.

7.2 Results for Specific SP-Games

We will begin with computational and partial results exploring Questions 7.10, 7.11,

and 7.13 for specific SP-games, namely SNORT and COL.
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A pure/
Board | A unmixed | I' unmixed | A shellable | ZLL CM
K3 yes yes no no
Ky yes yes no no
K5 yes yes no no
K yes yes no no
Cy yes no no no
Cs yes no no no
Ce no no no no
Cr no no no no
Cy no no no no
P no no no no
P, no no no no
b no no no no

Table 7.1: Properties of the Game Complexes and Ideals of SNORT on Different
Boards

7.2.1 SNORT

Table 7.1 gives some answers to the above questions for SNORT played on a variety
of boards. The calculations for the table have been done using the computer algebra
software Macaulay2 |29|. Here, K, indicates the complete graph on n vertices, C,
the cycle on n vertices, and P, the path on n vertices.

We will now prove some of these results in greater generality.

Proposition 7.14. The legal complex Agworr,p @5 pure if and only if B is a disjoint

union of complete graphs.

Proof. When the board B is a disjoint union of several connected graphs By, ..., B,
playing SNORT on B corresponds to the disjunctive sum of playing SNORT on each of
the boards. Thus the legal complex Agyorr,p Will be the join Agyorr, 5, * -+ - * Agvorr, B,
by Theorem 1.55. Since in addition the join of several simplicial complexes is pure if
and only if each one is pure, it is sufficient for us to show the statement for B being
a connected graph.

When playing SNORT on the complete graph K, since all vertices are connected,
as soon as one player has placed a piece, the other cannot play in any other ver-
tex. Thus the maximal legal positions are {z1,...,z,} and {y1,...,y,}, giving that

ASNORT,B 1S pure.
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Conversely, we will show that if B is not a complete graph, then Agyorr s is not
pure. Assume that B is a connected graph of size n which is not a complete graph.
We know that two facets of Agyorr s arve {x1,...,2,} and {y1,...,y,}, both of size
n. Since B is not complete, there exist two vertices ¢ and 7 which are not connected,
but have a common neighbour k. It is possible for Left to play in position ¢ and for
Right to play in position j, implying that neither player can play in position k. Thus
any face including x; and y; cannot include zj, or y,. We know that there has to be
a facet which does include x; and y;, and therefore has to be of size smaller than n.

This shows that Agyorr,p is not pure. O

Proposition 7.15. The illegal ideal TLLgxorr g s not Cohen-Macaulay for any board
B.

Proof. From Proposition 7.14 and Corollary 7.9, we immediately have that if B is
a graph which is not a disjoint union of complete graphs, then ZLLgyorr,p is not
Cohen-Macaulay.

Now if B is a complete graph or a disjoint union of complete graphs, then the

legal complex Agyorr,p has at least two disconnected components, which implies that
TLLsxorr,B = N (Asxorr,5) is not Cohen-Macaulay. O

This is a first indication that an SP-games whose illegal ideal is Cohen-Macaulay
needs to have a high degree of “connectivity” in some sense. In SNORT there is not

enough intersection between all legal positions.
Proposition 7.16. The legal compler Agyorr K, 5 unmized.

Proof. We know that the facets of Agyonr i, are {z1,...,z,} and {yi1,...,y,}, which
are disjoint simplices. Thus any minimal vertex cover is of the form {z;,y;}, i.e. all

have size 2. n

Given Table 7.1, we speculate the following might be true:

e For n > 6 Agyorr,c, 1S not unmixed. Thus Lsyorr,c, is not Cohen-Macaulay for

n > 6.

e The legal complex Agyopr.p, is not unmixed. Thus Lsyorr,p, is not Cohen-

Macaulay.
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Note that we will show in Corollary 7.30 that Agyorr,s is not shellable if B is
connected and has at least two vertices.
7.2.2 CoL

Similar to SNORT, we also consider Questions 7.10, 7.11, and 7.13 for the SP-game

CoL. Table 7.2 summarizes the calculations done in Macaulay2 [29].

A pure/
Board | A unmixed | I' unmixed | A shellable | ZLL CM
K3 no yes yes yes
Ky no yes yes yes
K5 no yes yes yes
K no yes yes yes
Cy yes no no no
Cs no yes no no
Ce no no no no
Cy no no no no
Cy no no no no
P no no no no
P, no no no no
P no no no no

Table 7.2: Properties of the Game Complexes and Ideals of COL on Different Boards

We have the following more general results when playing COL on a complete graph

or a path.

Proposition 7.17. Forn > 3, Acer k, 1S pure and shellable, but not unmized. Thus

ILLcov K, s Cohen-Macaulay and Lcoy, k, s not Cohen-Macaulay.

Proof. When playing on the complete graph K, at most two pieces can be placed
(one from each player) since all vertices are connected. Thus Acoy g, is a graph and
therefore pure. The edges are all of the form {z;,y;} where i # j.

We will first show that this graph is connected. Given any two vertices, we can

find a path between them as follows:

Case 1: If the vertices are y; and y;, then a path would be (y;, zy, y;), where & is chosen

such that 4, j # k. Similar if the vertices are z; and x;.
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Case 2: If the vertices are x; and y; with ¢ # j, then the two vertices have an edge in

common. If i = j, then a path would be (z;,yx, z;,y;), where k,l are chosen
such that k,[ # i and k # [.

Thus Acor i, 1s connected, implying that ZLLc,. k, is Cohen-Macaulay by Propo-
sition 7.6 and Fact 7.7.

Now consider the sets A = {xy,...,2,} and B = {9, ..., 2n,y2,...,Yn}. We will
show that both A and B are minimal vertex covers of Acoy g, . Clearly, for any facet
F (i.e. edge) of Acork, we have FNA # () and ' B # (), thus both A and B
are vertex covers. Now A is a minimal vertex cover since when removing z; the facet
{x;, yr} with k # j is no longer covered. Similarly, when removing z; from B the edge
{x;,y1} will not be covered anymore, and when removing y; the edge {z1,y,} is no
longer covered. Thus B also is a minimal vertex cover. Since |B| =2n—2 > |A| =n

for n > 3, we have that Aco, kg, is not unmixed. ]

Note that Acorx, = {21}, {y1}) and Acorx, = {21,92}, {x2,y1}) are both pure

and unmixed, but not shellable as they are disconnected.

Proposition 7.18. Forn > 3, I'coy p, s not unmized, thus ZLLcoy p, 15 not Cohen-

Macaulay.

Proof. The illegal complex I'co, p, consists of the edges {z;,zi11}, {vi,vit1} (0 =
1,...,n—1) and {z;,y;} (j = 1,...,n), thus it is the Cartesian product of P, with
Ps.

If n is even, two minimal vertex covers are {x1,y2, T3, ..., Zn_1,Yn} (of size n) and
{21, T2, Y2, Y3, T4y Yss Te, - - -5 Yn—1, T} (of size n + 1).

If n is odd, two minimal vertex covers are {x1, 2,3, ..., Yn_1,Zn} (of size n) and
{21, T2, Y2, Y3, T4y Yss Te, - - - Tn1, Yn ) (of size n + 1). L

Example 7.19. For CoL played on FPs we have the illegal complex

T X2 €3 Xy Ts Te

Y1 Y2 Y3 Ya Ys Ys
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Two minimal vertex covers of differing size then are

{$1,y2,$37y4ax5a%} and {I17$2,y27y3,$4,y57$6}-

In Huntemann’s Masters thesis [34] (Note after Lemma 3.16) it was shown that
Agvorr,p and Acer p are isomorphic for bipartite graphs B when ignoring the (£, R)-
labelling. A bipartite graph, except for a disjoint union of Kjs, is not a disjoint union
of complete graphs. In particular paths are not disjoint unions of complete graphs,
and as a result we can also deduce Proposition 7.18 from Proposition 7.15.

More generally, we have

Corollary 7.20. If B is a bipartite graph which is not a disjoint union of copies of
Ky, then Acoy g s not pure, and thus ZLLco. g s not Cohen-Macaulay.

Note that Proposition 7.18 is also a corollary to this, but an alternative, indepen-
dent proof is given above.

Given Table 7.2, the following might furthermore be true:

e The legal complex Acg, p, is not unmixed and not shellable. Thus Lco, p, is

not Cohen-Macaulay.

e For n > 6, Acor,c, is not pure, not unmixed, and not shellable. Thus neither

Lcovc, nor ZLLco ¢, are Cohen-Macaulay for n > 6.

7.3 Whiskering and Grafting

Whiskering and grafting are two operations that turn any simplicial complex into
one with a Cohen-Macaulay facet ideal (Fact 7.26 below). We will look at these two
operations in this section from a game theoretical point of view.

In 1990, Villarreal [63] showed that the facet ideal of a “whiskered” graph, also
known as a “suspended” graph, is Cohen-Macaulay. Whiskering of a graph can be

generalized to all simplicial complexes as follows:

Definition 7.21 (Faridi 2005 [25]|). Let A be a simplicial complex with vertex set
V ={wv1,...,v,}. The simplicial complex A’ with the vertex set V U {wy,...,w,} is
the whiskering of A if

A'=AU {v,w;} | v; € V).
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Example 7.22. The below simplicial complex is the whiskering of the simplicial

complex in Example 7.5.

d | ™~

A generalization of whiskering is grafting, for which we require the definition of a

leaf.

Definition 7.23 (Faridi 2004 [24]). Given a simplicial complex A = (F, F, ..., Fy),
a facet F' is called a leaf of A if either it is the only facet or there exists another
facet F; such that FNEF; C FNF, for all Fj € (Fy,..., Fy) with i # j. If in addition
FNF; #0, then Fj is called a joint of F.

Definition 7.24 (Faridi 2005 [25]). Let A = (Fy,..., F}) be a simplicial complex
with vertex set V' = {vy,...,v,}. The simplicial complex A" = AU (Gy,...,G;) on
the vertex set V U {wy,...,w;} is a grafting of A if

1. Every vertex of A is contained in some Gj;
2. Gy,...,Gy are exactly the leaves of A’;

3. F;, # G, for any 1, j;

4. G;NG; =0 for any i # j; and

5. If F; is a joint of A’ then (Fy,...,Fi_1, Fitq,..., Fp) U (Gy,...,Gy) is also
grafted.

Example 7.25. The whiskered simplicial complex in Example 7.22 is also a grafted
simplicial complex. Both of the simplicial complexes below are not graftings of the
simplicial complex in Example 7.5. The one on the left fails the last condition since
removing the facet labelled F', which is the joint of the 2-dimensional leaf, results in
a simplicial complex which is not grafted. The simplicial complex on the right is not

a grafting as the tetrahedron is not a leaf.
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Fact 7.26 (Faridi 2005 [25]). If A is a grafted simplicial complex, then F(A) is

Cohen-Macaulay.

Since whiskering and grafting turn any simplicial complex into one whose facet
ideal is Cohen-Macaulay, we are interested in how a game changes if either of its game
complexes are whiskered or grafted. Below we have a partial answer to this in the

case of the legal complex.

Theorem 7.27. Given an (£,R)-labelled simplicial complex A, there ezists a grafting
A" such that the game (R, B) with legal complex A’ has game value 0.

Proof. Let the vertex set of A be V. ={vq,...,v,}. Let A; be any grafting of A with
vertex set V U{wy,...,wy,}. Then fix an (£, R)-labelling for A; such that the labels
for vertices in V' are preserved.

Let the leaves of Ay be Hy, ..., H,. To each H; add sufficiently many new vertices
Ziy, -+, 2, labelled such that |V (H;) N £| = [V(H;) N R| where V(H;) is the vertex
set of H; and such that at least one vertex z;, is labelled £, and at least one labelled
R. Setting G; = H; U{z;,,...,2,}, we then define A" = AU (Gy,...,Gy). It is easy
to see that this still is a grafting of A.

Next, we will show that the SP-game (R, B) with legal complex A’ has value 0 by
showing that it is a second-player win (Fact 4.4).

Assume without loss of generality that Left moves first. Let the vertex corre-
sponding to her first move be z;, and let G; be a leaf of A’ containing xy.

Further, by construction, there exists at least one vertex y; € 2R which is only
contained in G; and no other facet of A’. A good move for Right is to make the one
corresponding to y;. We now have linka ({zg,y;}) = (G; \ {2, y;}), which has an
equal number of vertices belonging to £ and to 3. We have shown in Corollary 4.22

that the game with legal complex linka/({z, y;}) has value 0, thus is a second player
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win. In turn, this also implies that the second player has a good move in (R, B) and

wins. 0

Note though that not every whiskering or grafting turns a game into a second
player win how the game changes depends greatly on how the (£,9R)-labelling is

extended to the new vertices.

Remark 7.28. Consider an SP-game G with legal complex A and a second SP-game
G" with legal complex A" where A is a subcomplex of A’. Theorem 7.27 implies that

the value of G’ does not give us any information about the possible values of G.

Further, not every SP-game with Cohen-Macaulay legal ideal has value 0, and an
SP-game having value 0 does not imply a Cohen-Macaulay legal ideal. For example,
we have shown in Section 4.2 that the game (R, B) with legal complex Arp =
({x1, 22}, {x1,y1}) has game value 1x, but as this is a whiskered graph, its legal ideal
is Cohen-Macaulay. On the other hand, CoL played on the complete graph K, is a
second player win, thus has value 0, but we have shown in Proposition 7.17 that the
legal ideal is not Cohen-Macaulay.

This implies that game value is not a good characteristic to define what a Cohen-

Macaulay game is.

7.4 Shellability

In the case that the illegal complex is a graph, for example for all independence games,
we know that the legal complex is the independence complex of a related graph (see
Section 2.3). There are many known results on the shellability of an independence
complex based on properties of the graph.

For example Van Tuyl and Villarreal 62| show the following:

Fact 7.29 (Van Tuyl and Villarreal 2008 [62]). Let G be a bipartite graph. Then the
independence complex of G is shellable if and only if G has two adjacent vertices x and
y with deg(x) = 1 such that the bipartite graphs G\ ({x}UNg(x)) and G\ ({y}UNg(y))

have shellable independence complezes.

A consequence of this is the following:
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Corollary 7.30. For SNORT, we have Agyorr, g @5 not shellable if B is connected and

has at least two vertices.

Proof. For SNORT, the legal complex is the independence complex of the illegal com-
plex since all basic positions are contained in some minimal illegal position. The
illegal complex is a bipartite, connected graph when B is connected, with the two
parts being £ and R. Furthermore, there are no vertices of degree 1 if B has at least

two vertices. Thus by Fact 7.29 we have that the legal complex is not shellable. [

The following result, first proven by Van Tuyl and Villarreal in [62] for chordal
graphs, then generalized by Woodroofe in 2009 |65 to include graphs with induced
cycles of length 5, will be useful.

Fact 7.31 (Woodroofe 2009 [65]). If G is a graph with no chordless cycles of length

other than 3 or &, then its independence complex is shellable.

We will give an application of this result for the game of NODE-KAYLES in the

next section.

7.5 Impartial Games

A major issue with understanding Cohen-Macaulayness and related properties for
partizan games is that for the games themselves the bipartition of the vertices in the
legal complexes are vital, while from the algebraic side this is not being considered.

We will now change direction and instead consider the same questions for impartial
games, where no bipartition has to be considered. The idea is that understanding im-
plications of Cohen-Macaulayness for impartial games will give a direction for defining
Cohen-Macaulay (£, 2R)-labelled simplicial complexes.

We begin with two results related to possible game values. Unlike for partizan
games, Cohen-Macaulayness, through purity, narrows down the value set to finitely

many possible values.

Proposition 7.32. If the impartial illegal ideal of (R, B) is Cohen-Macaulay, then
(R, B) has value 0 or .

Proof. 1f the impartial illegal ideal is Cohen-Macaulay, then the legal complex has to
be pure, and by Proposition 6.14 we then get the result. O]
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For the partizan case on the other hand, we have infinitely many possible values.
We showed in Corollary 4.22 that all integers are values of simplices alone. In Sec-
tion 4.2 we also showed that many other values come from pure simplicial complexes,
such as 1%, 1, and {1 | *}. Nonetheless, computational evidence seems to indicate
that the possible values given a pure simplicial complex are restricted.

Restricting again to impartial games, the next result implies that a game with

whiskered impartial legal complex has value 0.

Proposition 7.33. For an impartial SP-game (R, B), if the impartial legal complex

is grafted with all leaves having even size, then (R, B) has value 0.

Proof. We will show that (R, B) is a second player win. First, let A’ be the simplicial
complex with vertex set {vy,...,v,} from which we obtain AIR’B by grafting, and let
{v1,... U, w1, ..., w,} be the vertex set of A}, 5.

Suppose the first player chooses the vertex v; as their move, and let F; be a leaf
containing v;. The second player can respond by playing some wj, contained in F}.
Now the game is forced to continue in Fj \ {v;, w;}, which has even size, and is thus
a second player win.

If the first player moves on a vertex wy though, play is already forced to continue

in the leaf containing wy, thus is again a second player win. O

In the game of NODE-KAYLES, players place tokens not adjacent to any previously

placed tokens. Thus the impartial illegal complex is equal to the board.

Proposition 7.34. If B is a graph with no chordless cycles of length other than 3 or
5, then A{ops-Kayss,p 8 shellable. If in addition all mazimal independent sets of B

are the same size, then the impartial illegal ideal 1s Cohen-Macaulay.

Proof. If B, and thus I'} has no chordless cycles of length other than 3

Nobe-KayvLes, B

or 5, then by Fact 7.31 we have that A{\IODE_KMLES,B is shellable.

1
Nobe-KayLes, B>

If all maximal independence sets are the same size, then A being the

independence complex of B, is pure. O
7.5.1 Reisner’s Criterion

Reisner’s criterion gives both a necessary and sufficient condition for the Cohen-

Macaulayness of the Stanley-Reisner ideal of a simplicial complex. Before stating
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this criterion, we will define the reduced homology of a simplicial complex.
Given a simplicial complex A with a fixed order on the vertices, and a field k, let
C; be the vector space over k whose basis elements correspond to the faces of A with

1+ 1 vertices. We can then construct a chain complex

"'—>Ci+16i>lciici,1—>...—>Cl540064071%0

where the boundary map &; for i > 0 is defined by &;(0) = 31 _o(=1)* (o \ {;, }) for
a face 0 = {z;,,...,x;,} of A. Then:

Definition 7.35. The 2th reduced homology of a simplicial complex A over a
field k is defined as f[i(A; k) = kerd;/im ;1 where ¢; is the boundary map as given

above.
The special case in which the reduced homologies are all 0 is called acyclicity.
Definition 7.36. A simplicial complex A is called acyclic if I:Ii(A; k) = 0 for all i.
The following theorem is known as Reisner’s Criterion.

Fact 7.37 (Reisner 1976 [52]). Fiz a simplicial complez A. Then N(A) is Cohen-
Macaulay if and only if for all i < dim(linka F') and all faces F' of A (including the
empty face) the following holds:

H;(linka F; k) = 0.
An equivalent statement to Reisner’s Criterion is the following:

Fact 7.38 (Reisner 1976 [52]). Fiz a simplicial complex A. Then N(A) is Cohen-
Macaulay if and only if Hi(A;k) =0 for all i < dim(A) and the links of all vertices
of A are Cohen-Macaulay.

Given A being the (impartial) legal complex of an (impartial) SP-game G, we
know that the links of the vertices correspond to the options of G (see Remark 4.1).
This indicates that if the illegal ideal of G is Cohen-Macaulay, then the illegal ideals
of all its options are as well.

Game properties that are closed under options are particularly nice for inductive
arguments, especially structure of a game tree. Such properties are called hereditarily

closed:
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Definition 7.39. Let A be a set of short games H. Then A is called hereditarily
closed if for all games G € A, whenever H is an option of G, then H € A.

So the set of (impartial) SP-games with Cohen-Macaulay illegal ideal is heredi-
tarily closed.

Given this information, to understand Cohen-Macaulayness for a game, we need
to understand what it means for the legal complex to be acyclic, and acyclicity to be

hereditary.

7.6 Further Work

Building onto the preliminary results in this chapter, the following give some ideas

for future work on the Cohen-Macaulayness of SP-games.

Meaning for Placement Games

The main reason why we study properties of game complexes is that we want to learn
more about their corresponding SP-games. Thus we are very interested in what it
means for an SP-game if its legal or illegal complex is pure, unmixed, or shellable,
and if its legal or illegal ideal is Cohen-Macaulay, amongst others. Except for the
legal complex being pure meaning that all maximal legal positions are of the same

size, there does not seem to be an intuitive answer to this.

The Simplicial Complexes N (Lg p) and A°

Furthermore, since L g being Cohen-Macaulay implies that its Stanley-Reisner com-
plex is pure, we are interested in what the Stanley-Reisner complex of the legal ideal
looks like and how to construct it easily from a given game and board. Related to
this is the question about the complement of the legal complex (which by Figure 1.5
we know to be the Alexander dual of (L p)).

Cohen-Macaulay Bigraded Ideals

When considering a partizan game, or an (£,9R)-labelled simplicial complex, the
underlying ring has a natural bigrading assigned to it via degx; = (1,0) and degy; =
(0,1).



130

As we have previously seen, the (£,9)-labelling influences the SP-game corre-
sponding to this simplicial complex significantly, and understanding Cohen-Macaulay-
ness and related properties is difficult due to not respecting this partition.

Once these concepts and the related games properties are understood in the im-
partial case, a next step would be to define generalizations within the bigraded ring
such that the relationships still exist. In particular we would want an ideal being
Cohen-Macaulay to imply a pure Stanley-Reisner complex and unmixed facet com-
plex, and a shellable and pure (£, 9R)-labelled complex implying a Cohen-Macaulay
Stanley-Reisner ideal.

One example of a generalization, based on our previous results, is that a whiskering
in a bigraded case should be so that the new vertices added belong to the opposite
part from the vertex adjacent to it, as this would preserve a whiskered complex always
being a second player win.

Note that a definition for a Cohen-Macaulay bigraded module already exists in

literature (see for example [51]), but this definition might not be ideal for SP-games.



Chapter 8

Conclusion

8.1 Summary

In this thesis, we have studied strong placement games as a class, demonstrating
several new tools applicable to these games.

The first major result of this thesis is the existence of the two one-to-one corre-
spondences between SP-games and simplicial complexes (Theorems 2.16 and 2.17),
which in particular allows us to use the legal complex as a representation of the
SP-game. This result has the potential to be a powerful new tool for the study of
SP-games. As an example, we apply it in the investigation of which game values are
possible.

We further show that the game graph of an SP-game holds the same amount of
information as its legal complex, and give a full characterization of when a game
graph comes from an SP-game (Proposition 3.11).

The second major result of the thesis is the upper bound on the temperature of
a game using measures of confusion intervals (Theorem 5.24), the first such known
bound to hold in general. We then show that this theorem is particularly useful for
SP-games and give upper bounds on the boiling point of several SP-games (Proposi-
tions 5.31 to 5.33).

Finally, we study how algebraic properties of the game complexes, especially
Cohen-Macaulayness, may be reflected in the game itself. Our preliminary results
indicate that a characterization of the simpler impartial case is required before the

partizan case will be understood.

8.2 Further Questions

In this section, we will conclude this thesis by discussing some potential further ques-

tions and avenues to explore beyond applying the new tools to the research directions
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mentioned at the end of each chapter. This includes looking further at how specific
properties of SP-games translate into the game complexes and vice versa, extending
to scoring SP-games, and even more generally looking at games from other combina-

torial objects.

8.2.1 Properties of Placement Games and the Game Complexes

The one-to-one correspondences between SP-games and simplicial complexes dis-
cussed in this thesis opens many questions about these relationships. We have al-
ready seen how being a disjunctive sum or an impartial game are reflected in the
game complexes, and have begun to study how Cohen-Macaulayness might appear in
the game. There are many more properties of and operations on either object that
will be interesting to study and see how they translate to the other. Here we focus
on restricted universes and sums on the game side and partitionability and forests on

the simplicial complex side.

Restricted Universes

Recall that two games G and G5 are defined as equal if o(Gy + H) = o(Gy + H) for
all games H. In the study of misére games, it has proven very useful to restrict the
universe in the definition of equality by letting H only belong to a smaller class of
games (see Plambeck 2005 [49] and Plambeck and Siegel 2008 [50]). Two examples
of classes that turned out particularly nice are dicotic games (if either player has an
option, then so does the other, and this is also true for all options) and dead-ending
games (if a player at one point has no move in a component, then they will not have
a move later on). Dicotic games have been studied by Allen in 2009 |2] and 2015 |3]
and dead-ending games were introduced and studied by Milley and Renault in 2013
|44].

All SP-games are by definition dead-ending, but we are interested in how an SP-
game belonging to other classes is reflected in the structure of the legal complex.
This in particular includes understanding the structure when fixing a ruleset, such as
taking all DOMINEERING games as a restricted universe.

Although understanding the structure of the legal complex of classes of games

will likely be difficult in general, results have the potential for many applications,
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including understanding value sets and improving our temperature bounds.
In the reverse direction, we can also ask whether SP-games with specific structures

in their legal complex make for nice restricted universes.

Operations on Games

We have seen in Theorem 1.55 how the disjunctive sum is reflected both in the legal
and the illegal complex. Although disjunctive sum is the most commonly considered
sum on games, there are also other operations (see [57, Figure 4.9]), such as the
conjunctive, ordinal, selective, and sequential sums and Norton product, which might
be of interest to SP-games. Not all of these operations will result in an SP-game.
For example the ordinal sum of two SP-games is a weak placement game, but not
strong. It will be of interest to study how these operations are reflected in the game
complexes as long as the resulting game is still an SP-game.

In turn, it will also be interesting to see if known operations on simplicial com-
plexes or ideals, besides join and disjoint union, lead to interesting operations on

games.

Games Corresponding to Partitionable Complexes

Partitionable simplicial complexes are those that can be written as a disjoint union
of intervals, i.e. sets of nested faces.

It is well-known that any shellable simplicial complex is also partitionable. In fact,
Stanley conjectured in 1979 [58| that for a not necessarily pure simplicial complex A
if N(A) is Cohen-Macaulay, then A is partionable. The conjecture was only recently
disproven by Duval, Goeckner, Klivans, and Martin in 2016 [22|, but for many classes
of simplicial complexes the implication holds.

Beyond the relationship to Cohen-Macaulayness, partitionable complexes are very
interesting due to their structure. If the legal complex of an SP-game is partitionable,
the partitioning provides us with a grouping of positions, and it would be interesting
to see if this would aid in calculations of values and temperatures. Thus a natural
consequence for us is to be interested in when Ap p is partitionable.

In addition, we are also interested in when I'g p is partitionable, and what it

means for the underlying SP-game if either of its game complexes is partitionable.
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Game Complexes that are Simplicial Forests

When we considered grafted simplicial complexes, we considered the notion of a leaf
(see Definition 7.23). Faridi introduced leaves in 2004 to generalize the concept of a

tree from graphs to simplicial complexes:

Definition 8.1 (Faridi 2004 [24]). A connected simplicial complex A is called a tree
if every non-empty subcomplex of A which is generated by facets of A has a leaf. If
A is not necessarily connected, but every non-empty subcomplex generated by facets
of A has a leaf, then we call A a forest. Equivalently, a simplicial complex is a forest

if each of its connected components is a tree.

If A is a graph, these definitions are equivalent to the graph theoretic definitions
of trees and forests.

Trees and forests (and their facet and Stanley-Reisner ideals) have many nice
properties. For example, Faridi showed in 2004 [24] that the localization of a tree
is a forest and in 2005 [25] that a tree is unmixed if and only if it is grafted. A
consequence of this, given in the latter paper, is that if F(I) is a forest, then [ is
Cohen-Macaulay if and only if F(7) is unmixed (or equivalently AV (I) is pure). In our
case that means that if Ag p is a forest and unmixed, then L p is Cohen-Macaulay,
and if I'p p is a forest and unmixed, then ZLLR p is Cohen-Macaulay.

Similarly to the partitionability, the additional structure of the legal or illegal
complex being a tree might again make calculations easier as well. Thus we are

interested in when the legal or illegal complex form a tree or forest.

8.2.2 Scoring Variants

Scoring games have recently received renewed attention. A scoring game is one in
which at the end of the game a score is assigned depending on the current position.
A positive score indicates a Left win, while a negative one indicates a Right win, and
zero a tie. The exact assignment of these scores varies from author to author, with the
goal always being though to generalize as much of the normal play theory as possible
without being too restrictive (see for example Milnor 1953 [45]|, Ettinger 2000 [23],
Stewart 2011 [60], and Johnson 2014 [35]). Larsson, Nowakowski, Neto, and Santos

[42] introduced the class of Guaranteed Scoring Games in 2016, which contains most
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of the previously explored classes and has normal-play games embedded, while still
having unique canonical form and negative of every game, thus having the strongest
tools.

We are interested in how SP-games can be generalized to scoring SP-games, ideally
while falling into the class of guaranteed scoring games. A representative simplicial
complex of a scoring variant of an SP-game would then have weights assigned to the
facets. Many questions studied in this thesis are also of interest for scoring SP-games,

especially which values are possible.

8.2.3 Games from Other Objects

Given an SP-game (R, B), the game is equivalent to playing on Ag g by letting Left
only play on vertices belonging to £ and Right belonging to R, and claimed vertices
have to form a face. Similarly, an impartial SP-game is equivalent to playing on the
impartial legal complex.

Motivated by this, we are interested in classes of combinatorial games coming
from other mathematical objects. Two examples would be combinatorial designs and
posets:

Combinatorial Designs: We can think about playing on combinatorial designs,
such as finite projective planes, triple systems, and more generally block designs, by
letting players claim points. Play can then be defined in many different ways, from
claimed points having to be contained in a block, to any three points of a player
forming an independence set.

Posets: Similarly, one can play on a poset by having players alternatingly picking
covers of the previous element until a maximal element has been reached. Effectively,
this means that play is to form a chain. Other methods of play could include pieces
claimed having to form antichains.

For each of these classes of games, we are interested in many of the same questions
as for SP-games:

Game Values: First and foremost we are interested in which game values can
be achieved by each of these classes of games under normal play, and in particular if
a class takes on all possible values, i.e. is universal. It seems likely that the structure

of the design or poset would give an indication of which game values are possible.



136

Misére Play: Under misére play the situation is generally much more complicated
than under normal play. One of the advantages of our approach of representing
positions through other objects is that they are independent of the winning condition,
and likely these tools will be very useful in the harder case as well. Two challenges
often found in misére play are determining the disjunctive sum of two games or the
inverse of a game, both relatively easy under normal play. For the former question at
least we have a representation of the operation in the legal simplicial complexes for
SP-games, and likely also for the other objects. Similarly as under normal play, we
would also like to study the possible game values and how certain structures influence
which values are possible.

Temperature: Similar to our study of temperature of SP-games, for the other
classes of games the related combinatorial structure should also give an indication of

possible temperatures.
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Rulesets

This appendix is a summary of the rulesets of games considered. Unless specified

otherwise, play ends once no more moves are available.

ARC-KAYLES

An impartial SP-game.
The board can be any graph. Play consists of claiming two adjacent vertices.
Note: ARC-KAYLES is usually defined as deleting an edge, its two incident vertices,
and any adjacent edges. The above definition is equivalent and shows it is an SP-

game.

CoL

A partizan SP-game.

The board can be any graph. Players place a piece on a single vertex which is not
adjacent to a vertex containing one of their own pieces.

CoL was introduced by Colin Vout as a map-colouring game in which each player

has a fixed colour and no two adjacent regions may be coloured the same.

DOMINEERING

A partizan SP-game.

The board is a grid. Both players place dominoes Left may only place vertically,
and Right only horizontally.

DOMINEERING is also known as CROSSCRAM or DOMINOES. Traditionally it is

played on a checkerboard.
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HEX

Equivalent to a partizan SP-game.

The board is a hexagonal grid forming a parallelogram. Players take turn claiming
spaces. Play ends once Left has connected the left and right edge or Right has
connected the top and bottom edge with their pieces.

Note: HEX is an SP-game if play continues until all spaces are filled. As only one

set of parallel edges can be connected, the outcome remains the same.

Nim

Equivalent to an impartial SP-game.
The board is a collection of piles of tokens. On a turn, the player chooses a pile

and removes any number of tokens from it.

NoDE-KAYLES

An impartial SP-game.
The board can be any graph. Players place pieces on a single vertex such that no

two pieces are adjacent.

NoGo

A partizan SP-game.

The board can be any graph. Players place a piece on a single vertex. At every
point in the game, for each maximal group of connected vertices of the board that
contain pieces placed by the same player, one of these needs to be adjacent to an

empty vertex.

PARTIZAN OCTAL

PARTIZAN OCTALS are a class of games, some of which are equivalent to SP-games.

The board is a collection of stacks of tokens. Each player has assigned an octal
code .dydads. .., with 0 < d; < 7 for all i. If one writes d; = a-2°+b-2' + ¢ - 22
with a,b,c € {0, 1} then:
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e If a =1, then 7 tokens may be removed to empty the pile.
e If b =1, then 7 tokens may be removed leaving a nonempty pile.

e If ¢ =1, then 7 tokens may be removed and the remaining tokens are split into

two nonempty piles.

For example, N1M is the game .33333 ... and O12 is the game with Left octal
code .7 and Right octal code .07. A PARTIZAN OCTAL with only 3’s in the octal

code is PARTIZAN SUBTRACTION.

SNORT

A partizan SP-game.

The board can be any graph. Players place a piece on a single vertex which is not
adjacent to a vertex containing a piece from their opponent.

SNORT was introduced by Simon Norton. It is also known as CATS AND DOGS,

with one player placing cats, the other dogs, and they may never be adjacent.

PARTIZAN SUBTRACTION

PARTIZAN SUBTRACTION is a class of games equivalent to SP-games.

Left and Right each have a subtraction set specified. The board is a stack of
tokens. A legal move is to remove a number of tokens from the stack that is part of
the subtraction set, leaving a nonnegative number of tokens.

N1M is the special case in which both subtraction sets are the positive integers.



Appendix B

Code

B.1 CGSuite Oab

x Oab.cgs

x Partizan Octals in which both subtraction sets have

* cardinality 1.

x Framples:

x g = 0ab(2,3,Strip (10));

x ¢g.CanonicalForm

x« P :=mn —> 0ab(2,3,Strip(n));

x P(10).CanonicalForm

x tableof ([n,P(n). CanonicalForm/[ for n from 1 to 10)

*/
class Oab extends StripGame

var a; // The element of the Left subtraction set.
var b; // The element of the Right subtraction set.

/%

x constructor QOab

*
x Input: Number a — Left subtraction set
* Number b — Right subtraction set
* grid — Board

*
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*
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Output: None

*/
method Oab(Number a, Number b, grid)

this.StripGame(grid );

end

/*

*

*

method Options

Input: Player player — Player to evaluate for

Output: Set — Options for player

Checks for each location in grid whether player can
place a piece.

If so, the piece 1s placed and the remaining spaces

to left and right are added as a disjunctive sum

to the output Set.

/

override method Options(Player player)

options :— {};

if player = Player. Left then
nDelta := a—1;

else
nDelta := b—1;

end

L := grid.ColumnCount;
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for n from 1 to L-nDelta do

f = 0;
for m from n to n+nDelta do
if grid|m|] — 1 then
f = 1;
break;
end;
end;
if f — 0 then
leftCopy :— Strip(n—1);
for m from 1 to n—1 do
leftCopy [m] := grid |m];
end;
rightCopy := Strip (L-n—nDelta);
for m from 1 to L-n—nDelta do
rightCopy [m] := grid [min+nDelta];
end;
options.Add(Oab(a,b,copyl)+Oab(a,b,copy2));
end;
end;

return options;

end

override property CharMap.get
return ".#";

end

override property Icons.get
return

[
GridIcon . Blank ,
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GridIcon . GraySquare

I;

end

end



B.2 CGSuite SNORT

x Snort.cgs

* In

* P

Snort players place pieces on the wvertices of a graph.

eces by opposing players may not be adjacent.

x This implementation works for any grid.

x Framples:

* g
x g.
* P
x P(

x ta

*/

class

*

*/

:= Snort(Grid(2,3));

CanonicalForm

= n —> Snort(Grid(2,n));

10). CanonicalForm

bleof ([n,P(n). CanonicalForm|] for n from 1 to 10)

Snort extends GridGame

constructor Snort

Input: grid — Board

Output: None

method Snort(grid)
this . GridGame(grid );

end

/%

*

*

method Options

Input: Player player — Player to evaluate for
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x Qutput: Set — Options for player

x Checks for each location in grid whether player can
* place a piece. If so, the piece is placed and the new
x grid 1s added to the output Set.

*

x/

override method Options(Player player)

options := {};
us := player.Ordinal;
them := player.Opponent.Ordinal;

for m from 1 to grid.RowCount do
for n from 1 to grid.ColumnCount do
moveOK:= true;
if grid[m,n] = 0 then
for d in Direction.Orthogonal do
if grid [m+d.RowShift ,n+d. ColumnShift| —— them then
moveOK:=false ;
end
end
if moveOK — true then
copy := grid;
copy [m,n| :— us;
options.Add(Snort (copy));
end
end
end

end

return options;
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end

override property CharMap.get

return ".xo0";

end

override property Icons.get
return
I
Gridlcon . Blank ,
GridIcon . BlackStone ,
GridIcon . WhiteStone
Ik

end

end
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B.3 Macaulay2 Combinatorial Games Package

Copyright 2015: Svenja Huntemann, Guwyn Whieldon

You may redistribute this file under the terms of the GNU
General Public License as published by the Free Software

Foundation , either wversion 2 of the License, or any later

version .

Header

if

version#"VERSION" <— "1.4" then (

needsPackage "SimplicialComplexes", needsPackage "Graphs"

)

newPackage select ((

—

"l e ol o o o el d d N Nl d el d

"CombinatorialGames" ,
Version —> "0.0.1",
Date => "29._May_2015",
Authors => {
{ Name > "Svenja_Huntemann",
Email => "svenja.huntemann@dal.ca",
HomePage —> "http://mathstat.dal.ca/ svenjah/" },
{ Name —> "Gwyn_Whieldon",
Email => "whieldon@hood.edu",
HomePage —> "http://cs.hood.edu/  whieldon" }
I
Headline => "Package_for_computing_combinatorial _game
HHHHHHHHHHHHH representations_of_bipartitioned_simplicial
complexes.",
Configuration = {},

DebuggingMode => true,
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if version#"VERSION" > "1.4" then PackageExports —> {
"SimplicialComplexes", "Graphs"

}

), x — x =!= null)

if version#"VERSION" <— "1.4" then (

needsPackage "SimplicialComplexes", needsPackage "Graphs"

export {

"gameRepresentation"

— Methods

—Internal method to concatenate strings

—from Left/Right move sets.

cgtJoin = method ()

cgtJoin (List ,HashTable) :— String —> (L,dummyH) —> (
if #. —— 0 then ("")
else (
fold (
concatenate ,
apply(#L, i— if i==#L-1 then
concatenate (dummyH#(L i) ," ")

else
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dummyH#(L 1)))

gameRepresentation = method ()

gameRepresentation ( SimplicialComplex , List , List) :=

String -~ (Delta ,L,R) — (

S := ring Delta;

L = apply(L,v— sub(v,S));

R — apply (R,v—> sub(v,S));

V = S x;

if (#L+H#R) — #V) and (all(join(L,R),v—member(v,V))) then (
S -~ QQIL. R,

Degrees => join (apply (L,i—>{1,0}),apply(R,i —>{0,1}))];
L = (S_x*) (toList(0..#L—-1));
R = (S_x) (toList(#L..#V—-1));
Delta = sub(Delta ,S);
d := dim(Delta);
Fvec := apply(toList (0..d+1),

i—flatten entries faces(d—i,Delta));

H :~ hashTable apply(Fvec 0, f— f>"{|}");
E := hashTable {{}=>""};

dummyH := merge(H,E, join );
tempStringl :— {};
tempStringR = {};
Hnew :={};
for F in drop(Fvec,1) do (

tempStringl, =

apply (
apply (F,

m—>select (keys H,
k—>(degree (k)—degree(m) — {1,0}) and
(k %m — 0))),
i—if i=={} then {} else 1i);
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tempStringR —
apply (
apply (F,
m—> select (keys H,
k—>(degree (k)—degree(m) — {0,1}) and
(k % m — 0))),

i— if i——{} then {} else i);
Hnew = hashTable apply(#F, i— F i =>
concatenate("{",
cgtJoin (tempStringl i ,dummyH) ,
kN
cgtJoin (tempStringR i ,dummyH) ,
")
H = merge(H,Hnew, join );
—print H;
dummyH = merge (dummyH, Hnew , join );
);
—print H;
H#(sub(1,ring Delta))
)

else "Variables_of_Delta_not_bi—partitioned."

)

— Documentation

beginDocumentation ()

— Front Page

doc ///

.. Key
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—...CombinatorialGames

__Headline

—.._.A_package_for_outputting_combinatorial _game_suite_formatted
—_.__games

_.Description

oo Text

UUUUUU @SUBSECTION_"Definitions"@

HHHHHHHHHH Let_$\Delta$_be_a_simplicial _complex_with_vertices
uuuuuuuuuu labelled _by_a_partition_of_variables

UUUUUUUUUU $SL_—_\{x 1,x 2,... ,x n\}$_and_$SR_—_\{y 1,y 2,...,y m\}$

coooText

HHHHHH @SUBSECTION_"Other_acknowledgements"@

uuuuuu This_package_started_at_Macaulay2_Workshop_in_Boise ,
HHHHHH supported _by_NSF_grant_and_organized _by_Zach_Teitler ,
HHHHHH Hirotachi_Abo_and_Frank_Moore.

—— Data type & constructor

— gameRepresentation

doc ///

—...Key

uuuuuuuu gameRepresentation

—...(gameRepresentation , SimplicialComplex , List , List )
—._..Headline

uuuuuuuu compute_the_game_representation_to_export_to_cgsuite
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c...Usage
uuuuuuuu G_=_gameRepresentation (Delta ,L ,R)
eeo_Inputs

Delta: SimplicialComplex

el ol A

e el

~...L:List

simplicial _complex_in_bipartitioned_variables

list _of_left —labeled_vertices_in_Delta

o

ol el

et el el

string _to_export_to_cgsuite

el A

wo..Description

el

This_takes_a_simplicial _complex_and_a_partition_of_its

el

vertices_into_two_subsets_and_outputs_the_game

el e el el

representation _of_Delta_in_the_format_understood_by

el

uuuuuuuu open—source_software

uuuuuuuu @QHREF("http:// cgsuite.sourceforge.net /", "cgsuite")@.
_.__Example

HHHHHHHH ——_create_ring_for_simplicial _complex_Delta

uuuuuuuu S=QQ[x_1,x_2,x_3,y_1];

—_create_Delta,_here_input_by_list _of_facet_vertices

e el

ol N

uuuuuuuuuuuuuuuuuuuu apply ({{x_1,x_2,x_3},
uuuuuuuuuuuuuuuuuuuuuuuuuuu {x_2,x_ 3,y _1}},product));

L—_{x 1,x 2,x 3}_—_list_of_left_player_(L)_vertex_labels

Delta_—_simplicial Complex (

uuuuuuuu R.=_{y_ 1}_—_list _of_right_player_(R)_vertex_labels
uuuuuuuuuuuu Here_calling_the_variables_$x 1....,x n$_and
uuuuuuuuuuuu $y 1,... ,y m$_is_for_convenience,_and_is_not_necessary
in_inputting_the_game.

el ol A Al el el e

oo._Example



HHHHHHHH S_—_QQa,b,c,d,e, ]

uuuuuuuu F=_{{a,b,c},{a,c,d},{a,d,f} {c,d,e},
HHHHHHHHHHHHH {b,c,e},{d,e,f} {b,e,f}}

uuuuuuuu Delta_—_simplicialComplex (apply (F, product))
uuuuuuuu L=_{a,b,d,f}

uuuuuuuu R.=_{c,e}

uuuuuuuu gameRepresentation (Delta ,L R)
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