

EXPLORING NAT DETECTION AND HOST IDENTIFICATION

by

Lan Zhang

Submitted in partial fulfilment of the requirements
for the degree of Master of Computer Science

at

Dalhousie University
Halifax, Nova Scotia

August 2018

© Copyright by Lan Zhang, 2018

Table of Contents

List of Tables... iv

List of Figures ... viii

Abstract ... ix

List of Abbreviations Used ... x

Acknowledgements ... xi

Chapter 1 Introduction .. 1

Chapter 2 Related work .. 6

2.1 NAT detection literature review .. 6
2.2 Host identification literature review .. 8
2.3 Summary .. 11

Chapter 3 Methodology... 12

3.1 Data sets ... 12
3.1.1 LAN architecture .. 12
3.1.2 Data collection .. 14
3.1.3 Data sets ... 18

3.2 NAT detection .. 20
3.2.1 Host behavior vector ... 20
3.2.2 Artificial NAT .. 21
3.2.3 Machine Learning and Classification .. 22

3.3 Host identification .. 28
3.3.1 TCP timestamp function ... 28
3.3.2 Host identification algorithm... 30

3.4 NAT detection and Host identification.. 34
3.5 Summary .. 35

Chapter 4 Experiments and Evaluation .. 36

4.1 Dataset selection ... 36
4.2 NAT detection experiment .. 36

4.2.1 Training and test ... 37
4.2.2 Training and validation ... 41
4.2.3 NAT detection on more datasets using AD Tree .. 48

4.3 Host identification experiments .. 61
4.3.1 Evaluation criteria... 61
4.3.2 Host identification experiments and results ... 62
4.3.3 Host identification experiments using datasets from NAT detection 67

4.4 Host identification on datasets from NAT detection 71
4.5 Summary .. 77

Chapter 5 Conclusion ... 79

Bibliography ... 82

List of Tables

Table 2.1 Different ways of implementation on three elements by different operating systems
 ... 9

Table 3.1 Hosts and server information on LAN ..13

Table 3.2 Hosts running status by date ...17

Table 3.3 Data size by date ..18

Table 3.4: HTTP features and tshark options ..18

Table 3.5 TCP features and tshark options ...19

Table 4.1 SVM results using 20% as test dataset ..37

Table 4.10 J48 results using validation dataset ...43

Table 4.11 J48 validation confusion matrix ..43

Table 4.12 AD Tree results using validation dataset ...44

Table 4.13 AD Tree validation confusion matrix ..44

Table 4.14 SVM results using validation dataset and improved training dataset45

Table 4.15 SVM confusion matrix using validation dataset and improved training dataset ...45

Table 4.16 J48 results using validation dataset and improved training dataset46

Table 4.17 J48 confusion matrix using validation dataset and improved training dataset46

Table 4.18 AD Tree results using validation dataset and improved training dataset47

Table 4.19 AD Tree confusion matrix using validation dataset and improved training dataset
 ..47

Table 4.2 SVM confusion matrix ...38

Table 4.20 AD Tree results using training dataset and validation dataset on Aug 0449

Table 4.21 AD Tree confusion matrix using training dataset and validation dataset on Aug 04
 ..49

Table 4.22 AD Tree results using training dataset and validation dataset on Aug14 (Kali hosts
only) ..50

Table 4.23 AD Tree confusion matrix using training dataset and validation dataset on Aug14
(Kali hosts only)...50

Table 4.24 AD Tree results using training dataset and validation dataset on Aug 15 (Windows
hosts only) ...51

Table 4.25 AD Tree confusion matrix using training dataset and validation dataset on Aug 15
(Windows hosts only) ..51

Table 4.26 AD Tree results using training dataset and validation dataset on Aug 17 (half of
the Kali hosts and half of the Windows hosts running) ...52

Table 4.27 AD Tree confusion matrix using training dataset and validation dataset on Aug 17
(half of the Kali hosts and half of the Windows hosts running) ...52

Table 4.28 AD Tree results using training dataset on Aug 02 and validation dataset on Aug
04...53

Table 4.29 AD Tree confusion matrix using training dataset on Aug 02 and validation dataset
on Aug 04 ..54

Table 4.3 J48 results using 20% as test dataset ...39

Table 4.30 AD Tree results using training dataset on Aug 04 and validation dataset on Aug
02...54

Table 4.31 AD Tree confusion matrix using training dataset on Aug 04 and validation dataset
on Aug 02 ..55

Table 4.32 AD Tree results using training dataset on Aug 14 (Kali hosts only) and validation
dataset on Aug 15 (Windows hosts only) ..55

Table 4.33 AD Tree confusion matrix using training dataset on Aug 14 (Kali hosts only) and
validation dataset on Aug 15 (Windows hosts only) ...56

Table 4.34 AD Tree results using training dataset on Aug 15 (Windows hosts only) and
validation dataset on Aug 14 (Kali hosts only) ...56

Table 4.35 AD Tree confusion matrix using training dataset on Aug 15 (Windows hosts only)
and validation dataset on Aug14 (Kali hosts only) ..57

Table 4.36 AD Tree results using training dataset on Aug 17 (half of the Kali hosts and half
of the Windows hosts running) and validation dataset on Aug 02 (all the hosts running) ..57

Table 4.37 AD Tree confusion matrix using training dataset on Aug 17 (half of the Kali hosts
and half of the Windows hosts running) and validation dataset on Aug 02 (all the hosts
running) ...58

Table 4.38 AD Tree results using training dataset on Aug 02 (all the hosts running)59

Table 4.39 AD Tree confusion matrix using training dataset on Aug 02 (all the hosts running)
 ..59

Table 4.4 J48 confusion matrix ..39

Table 4.40 NAT detection accuracies and decision tree attributes on different training
datasets and validation datasets ..60

Table 4.41 Data size of datasets used in NAT detection experiments61

Table 4.42 AD Tree results using training dataset on Aug 02 (all hosts running) and
validation dataset on Aug 14 (Kali hosts only) ...62

Table 4.43 AD Tree results using training dataset on Aug 14 (Kali hosts only) and validation
dataset on Aug 02 (all hosts running) ...62

Table 4.44 Number of packets in one connection (threshold = 2ms)64

Table 4.45 Results on original method ...65

Table 4.46 Results on improved distance between two lines calculation method65

Table 4.47 Results on improved flow separation method and improved distance calculation
method ...66

Table 4.48 Results on improved flow separation method and improved distance calculation
method and new evaluation method ...66

Table 4.49 Host identification accuracy comparison with different parameters67

Table 4.5 Attributes used to build AD Tree decision tree..40

Table 4.50 Host identification results using evaluation method A on dataset from Aug 02 ...69

Table 4.51 Host identification results using evaluation method B on dataset from Aug 02....70

Table 4.53 Host identification results using evaluation method B on dataset from Aug 14....71

Table 4.54 Host identification results using evaluation method A on dataset from Aug 15 ...71

Table 4.55 Host identification results using evaluation method B on dataset from Aug 15....72

Table 4.56 Host identification results using evaluation method A on dataset from Aug 17 ...72

Table 4.57 Host identification results using evaluation method B on dataset from Aug 17....73

Table 4.58 Host identification results using evaluation method A on Aug 02 dataset from the
NAT detection ...74

Table 4.59 Host identification results using evaluation method B on Aug 02 dataset from the
NAT detection ...74

Table 4.6 AD Tree results using 20% as test dataset ...41

Table 4.60 Host identification results using evaluation method A on Aug 04 dataset from the
NAT detection ...75

Table 4.61 Host identification results using evaluation method B on Aug 04 dataset from the
NAT detection ...76

Table 4.62 Host identification results using evaluation method A on Aug 14 dataset from the
NAT detection ...76

Table 4.63 Host identification results using evaluation method B on Aug 14 dataset from the
NAT detection ...77

Table 4.64 Host identification results using evaluation method A on Aug 15 dataset from the
NAT detection ...77

Table 4.65 Host identification results using evaluation method B on Aug 15 dataset from the
NAT detection ...78

Table 4.66 Host identification results using evaluation method A on Aug 17 dataset from the
NAT detection ...78

Table 4.67 Host identification results using evaluation method B on Aug 17 dataset from the
NAT detection ...79

Table 4.7 AD Tree confusion matrix ..41

Table 4.8 SVM results using validation dataset ..42

Table 4.9 SVM validation confusion matrix ...42

Table 5.1 Comparison of three classifiers ...82

List of Figures

Figure 1.1: NAT device receives packets from external network ... 1

Figure 1.2: NAT device sent back packets to external network ... 1

Figure 3.1 LAN with NAT device configuration ..12

Figure 3.2 Imacros program flow chart ..15

Figure 3.3 Linear SVM example ..23

Figure 3.4 SVM classify example ..24

Figure 3.5 NAT detection flow chart ..28

Figure 3.6 Host identification flow chart ..33

Figure 3.7 NAT detection and Host Identification ..35

Figure 4.1 Classification accuracy ..47

Figure 4.2 Host identification accuracy ..67

Abstract

This thesis explores NAT detection and host identification. The NAT detection approach is

processed by supervised machine learning algorithms on HTTP attributes. Three classifiers are

employed on training datasets labelled by artificial NAT generation method in NAT detection.

This research demonstrates that AD Tree performs best in NAT detection and selects five

effective attributes for it. AD Tree can detect NAT devices with an accuracy approximately of

100% on five datasets. The impact of difference in sizes of datasets in NAT detection is also

observed in this thesis. Host identification is based on TCP timestamp values and system

uptime values of TCP packets. This research identifies end hosts behind a detected NAT device

using an improved artificial line generation method and an improved line distance calculation

method. It also provides a new evaluation method for host identification. These two tasks are

combined in this research for forensic analysis in order to analyze cybersecurity incidents that

could occur from unknown NAT devices in the incoming traffic to an organization.

List of Abbreviations Used

NAT Network Address Translation

LAN Local Area Network

IP Internet Protocol

HTTP HyperText Transfer Protocol

SVM Support Vector Machine

TCP Transmission Control Protocol

AD Tree Alternating decision tree

ID3 Iterative Dichotomiser 3

LBS Location-Based Service

RFC Request for Comments

TTL Time to Live

DR Detection Rate

OS Operating System

ML Machine Learning

Weka Waikato Environment for Knowledge Analysis

TSval TCP Timestamp Value

UTC Universal Time Coordinated

GB Giga Byte

TPR true positive rate

Acknowledgements

First and foremost, I would like to express my deepest gratitude to my supervisors, Dr. Nur

Zincir-Heywood and Dr. Khurram Aziz, for their support, guidance, encouragement and

valuable ideas that have helped me complete the research and the thesis. I would also like to

thank Dalhousie University, and Faculty of Computer Science for their supports toward this

thesis research. I would also like to thank 2Keys Corporation for the opportunities created by

the NSERC program. I am particularly grateful for the assistance given by CS help desk on

technique support. I would like to offer my special thanks to Yilong Zhu and Yu Bai who

have given me confidence and motivation during this summer. Last but not least, I would like

to thank my parents and all my friends for their love and support throughout my life and

study.

Chapter 1 Introduction

Network address translation (NAT) is a method that allows multiple end hosts of an entire

private network to share one Internet-routable IP address of a NAT gateway [1]. Network

address information in the IP header field of end hosts’ packets is modified by a NAT device

into the IP address of the NAT gateway.

Figure 1.1: NAT device receives packets from external network

The illustration above shows how a NAT device works when a packet is sent from the Internet

to a host in the internal network. When one NAT device receives a packet from hosts in the

internal network, it alters the source IP address of the packet into its registered IP address before

forwarding the packet on. NAT devices create NAT tables to help track all the connections

through NAT devices and determine how to modify IP addresses of packets and whom to

forward them to. Users from the Internet receive packets with the same source IP address sent

from different hosts behind the NAT device and send back packets to that IP address.

Figure 1.2: NAT device sent back packets to external network

When a NAT device receives a packet sent back from the Internet to hosts behind it, as is shown

in the illustration above, it looks up the NAT table to modify the destination IP address (NAT

device’s IP address) into the IP address of certain host from the internal network and then

forwards it to that host.

NAT plays an essential role in managing the IPv4 address exhaustion problem. It can get the

most out of a single registered IP address. The size of the network behind a NAT gateway

varies, and according to CISCO technology support, typical routing hardware can support at

least thousands of NAT translations simultaneously [2]. Hence it is popular for both private

home networks with several hosts and local area networks (LAN) of large institutions with

multiple hosts.

However, the wide deployment of NAT implementation brings a great security threat to

Internet. NAT modifies the IP address information of packets, thus uncareful implementation

can have serious consequences for networks. Unauthorized NAT devices which do not meet

requirements of careful implementation on the Internet can be easily targeted by attackers. NAT

gateways with multiple end hosts can result in more loss than normal hosts if controlled by

hackers. The size and topology of end hosts behind a NAT gateway are unknown to users

outside the private network. This also brings difficulty in the management of networks

containing NAT gateways. Other users do not know whether unauthorized NAT gateways are

end hosts or NAT devices.

Even assuming that NAT devices have been distinguished from end hosts, aberrant behavior

of a NAT device can be caused by one of the end hosts behind it. Simply blocking that IP

address will impact others hosts in the internal network. To manage network traffic precisely,

we need to distinguish the hosts behind one NAT gateway from packets with the same source

IP address.

Host identification behind a NAT device is certainly necessary for the sake of Internet security.

NAT detection is also a requisite step of host identification. These two stages allow us to

understand if a host on the Internet is a NAT device or not and identify hosts from its internal

network if it is. In Toma ́s Komˇarek’s work, the NAT detection problem is addressed by

behavior modeling [3]. A supervised machine learning approach is used to build the behavior

model of NAT devices from HTTP access logs, or concretely speaking, the Support Vector

Machine (SVM) algorithm is used in his experiment. The difficulty in NAT detection lies in a

lack of a labeled dataset as the training dataset for we have no idea how many unregistered

NAT devices are in datasets or which of the hosts are NAT devices. As for host identification,

regular IP address identity is impracticable due to the same source IP address modified by a

NAT device. Elie Bursztein proposes a method to count the number of hosts behind one NAT

device based on the TCP timestamp option [4]. Based on Elie Bursztein’s research, Georg

Wicherski has developed a method of host identification using TCP timestamp values [5].

Based on previous research, I perform the research in two stages, NAT detection and host

identification. I first configure a local area network (LAN) connected to the Internet with a

NAT device in our lab. End hosts on the internal network send out packets and receive packets

through the NAT device, and I collect data on both interfaces of the NAT device. I collect a

large amount of data and filter HTTP packets for NAT detection. Packets are then preprocessed

by extracting features to build the behavior model. To create labeled data for supervised

machine learning, artificial NATs are built according to Toma ́s Komˇarek’s work. Three

machine learning algorithms are used in this stage: Support vector machine (SVM), C4.5 and

Alternating decision tree (AD Tree). I use an improved the feature merge method when

generating artificial NATs instead of merely adding them up as in Toma ́s Komˇarek’s work.

In addition, I maintain the same proportion of different sizes of artificial NATs (the number of

hosts of artificial NATs ranges from 5 to 15). NAT detection accuracy varies across different

machine learning algorithms. Overall, the accuracy of NAT detection turns out to be quite high

when I run the validation dataset.

 Once the NAT device have been detected, the second stage is host identification. In this stage,

I apply two different datasets and compare the results, one is the dataset I used in step one

(HTTP dataset), the other is the TCP dataset filtered from original datasets I collected. Host

identification is based on TCP timestamps, according to RFC 1323. TCP timestamp values

must be at least approximately proportional to real time [6]. That is, the sets of TCP timestamp

values and real time values (uptime of host) of packets from a host should display a linear line

on a coordinate axis system. As different lines represent different hosts, we are able to know if

packets are sent from the same host or not even their source IP addresses are the same.

Different from Georg Wicherski’s real time work, our research is offline which then enables

my proposed system to be used as a forensic analysis tool to analyze cybersecurity or other

incidents that could occur on an organization’s network. I group packets by connection and

build the lines by least-squares linear regression instead of calculating packet by packet. I

managed to improve several aspects of the existing host identification methodology, including

approaching host uptime instead of using system time, improving connection division,

determining the boundary of number of packets in a connection to build the linear lines,

correcting the computation method of distance of lines, and testing the threshold which is used

to determine if two lines are close enough to belong to the same host. Apart from improving

on methodology, I evaluate the experimental results in two ways to provide an overall

evaluation (see Chapter 4). The experimental result of host identification is improved compared

to that in Georg Wicherski’s work. These two stages allow us to detect a NAT device from the

Internet and then identify the hosts behind it.

In summary, the new contributions of this thesis research on NAT detection and host

identification are listed as the following:

i. Evaluates different machine learning algorithms and demonstrates that AD Tree

performs best in classification of NAT detection among the three classifiers;

ii. Identifies five effective attributes for NAT detection through experimental results

iii. Improves on the artificial NAT generation method in building artificial NAT attribute

vectors and handling inactive artificial NATs;

iv. Discovers that to achieve a high accuracy on NAT detection, a training dataset with the

similar size to the target dataset is required;

v. Discovers the limit of the number of packets in one connection for host identification;

vi. Improves on the artificial line generation and distance calculation methods for host

identification;

vii. Proposes and benchmarks a different evaluation method for host identification;

viii. Demonstrates that processing NAT detection and host identification separately can

achieve a better performance than combining these two stages.

The rest of this thesis is structured as follows: chapter 2 summarizes related work on NAT

counting, NAT detection, TCP timestamp option and host identification behind NAT devices.

Chapter 3 discusses how I configure a NAT device and connect the internal network to Internet

through it, it also shows how to generate traffic automatically, and discusses the methodology

of how NAT detection and host identification work. Chapter 4 displays the experiments I

performed and analyzes the results. The last chapter draws the conclusions and discusses the

future work.

Chapter 2 Related work

The previous chapter introduces the NAT, the threat it brings about, and difficulties in NAT

detection and host identification. However, these are not the only problems with the NAT, for

example, Nevena Vratonjic’s research talks about threats of using NAT to users such as service

providers learning about a user’s location when the user is connected to public access points

and generates location-based service (LBS) queries [7].

This chapter introduces previous work on NAT detection and host identification. Section 2.1

surveys different techniques of NAT device detection, including NAT behavior identification

through traffic flows and NAT detection using HTTP access logs. Section 2.2 introduces

approaches to count or identify hosts behind a NAT device. Finally, section 2.3 summarizes

this chapter.

2.1 NAT detection literature review

Current NAT detection research is mainly based on NAT behavior modeling. Machine learning

algorithms are generally adopted to build NAT behavior models from end hosts. Yasemin

Gokcen’ work focuses on exploring specific patterns in the network traffic that can identify

NAT like behaviors [8]. His research uses machine learning approaches to automatically find

patterns indicating NAT usage without using IP addresses, port numbers or payload

information. The two machine learning methods in his research are C4.5 and Naive Bayes. He

also uses a passive fingerprinting method that analyzes specific parameters without using

features like IP addresses, port numbers and payload information in a given network traffic

trace. An open source flow generator NetMate is used to generate flows. Features for passive

fingerprinting like Time to Live (TTL) and HTTP User Agent String are then extracted from

these flows. These features are employed by two classifiers: C4.5 and Naive Bayes. The

research compares results of the two machine learning methods. It turns out that C4.5 learning

classifier performs better than Naive Bayes, with a detection rate (DR) for both classes (class

NAT and class others) of more than 95%, while the detection rate of class NAT using the Naive

Bayes classifier is less than 35%. So, in our research, C4.5 is also used in the NAT detection

stage.

Toma ́sˇ Koma ŕek’s research is also aimed at detecting NAT devices in the network via

behavior. The behavior model in this research is built from IP-based features in HTTP access

logs: number of unique contacted IP addresses, number of unique user-agents, number of

unique OSs and versions, number of unique browsers and versions, number of persistent

connections, number of upload bytes, number of download bytes, and number of sent HTTP

requests [3]. In his work, artificial NATs are generated to label the training dataset for the

supervised machine learning approach in order to deal with the problem of an insufficient

number of labeled datasets. All the hosts are first labeled as end hosts and then artificial NATs

are generated. Artificial NAT generation method is based on the fact that NAT gateways join

traffic of multiple hosts into one without altering the eight features listed above. Hence the

feature vector of one artificial NAT is the combination of feature vectors of all the end hosts it

uses to generate the artificial NAT. In his work, all the feature vectors are simply added up to

generate the artificial NAT feature vector. This method is improved on in our research in

Section 3.2.2. As for machine learning algorithms, the support vector machine (SVM) is

employed in Koma ŕek’s research due to its resistance to contaminated training datasets. As a

result, those NATs mislabeled as end hosts have less impact on classification.

In Vojtech Krmicek’s research, he proposed new approaches to NAT detection in three new

fields based on Netflow: Time to Live (TTL), IP ID and TCP SYN packet size [9]. NetFlow is

a Cisco network protocol to collect IP traffic information as well as monitor network traffic

[10]. He managed to design a prototype NAT detection system, using multiple NAT detection

techniques. Sebastian Abt’s work is similar to that of Krmicek. It is also based on Netflow, and

it is a passive remote NAT detection method based on behavior statistics from Netflow records

[11]. In addition, there are some existing tools to detect NAT devices, such as NAT

Classification/Detection Tool1 using PJNATH (PJSIP NAT Helper Library), and Nat Probe2

developed in Python.

Our NAT detection stage is mainly based on the artificial NAT generation theory from

Koma ́rek’s research. We improve on his artificial NAT feature vector generation method and

perform research with different machine learning algorithms, including the SVM used in

Koma ́rek’s research and the C4.5 used in Yasemin Gokcen’ work, as well as Alternating

decision tree (AD Tree).

2.2 Host identification literature review

In Napoleon Paxton’s research, identifying network packets across translational boundaries, a

packets identification approach based on payloads is proposed [12]. This approach relies on

the fact that translational boundaries like NAT devices work by altering packet headers instead

of packet payloads. In this research, the term “payload” is used as a unique identifier. This

research applies cryptographic hashing techniques (MD5) to payloads of packets from both

sides of the boundary, and then matches a packet before and after it is modified by a

translational boundary. The first-in-first-out approach is used to match the encrypted payloads.

Paxton’s research allows us to match packets across NAT devices. However, it works on both

sides of a NAT device and it is unable to identify end hosts behind a NAT device from the

interface connected to the Internet.

In contrast, Sophon Mongkolluksamee proposes an approach to count end hosts behind a NAT

device, which implements a per-flow IPID sequence; a random IPID; or a global IPID based

on the sequence of IPID, a TCP sequence number, and a TCP source port in different manners

[13]. IPID is a 16-bit counter that identifies unique packets when fragmentation occurs. Table

2.1 shows the different ways that different operating systems implement the three elements.

Global IPID describes when all connections within the same host following a single sequence;

per-flow IPID describes using a separate counter for each outgoing flow of packets; and random

IPID uses a random number. The other two elements are described in table 2.1. The research

processes a packet trace file to collect IPIDs, TCP sequence numbers, and TCP source ports of

all packets, and then constructs sequences of them. The relationship among IPIDs, TCP

sequence numbers and TCP source ports are classified to distinguish single hosts. Unlike

Paxton’s research, this research manages to count end hosts behind a NAT device, but it is

unable to detect OpenBSD hosts which implement all the three elements randomly. In addition,

Mongkolluksamee’s research can only count the number of hosts but cannot identify them from

packets.

Table 2.1 Different ways of implementation on three elements by different operating systems

OS IPID TCP sequence number TCP source port

Windows XP, Visa
and 7

Global counter

Random number as
starting sequence

number for each TCP
connection

Increase linearly
proportionally to

connection starting
time

Linux 2.6 Per-flow counter Counter Counter

FreeBSD 8.1 Global counter Random Random

MAC OS 10.6 Random counter Random Increase linearly

OpenBSD 4.8 Random counter Random Random

In addition, Elie Bursztein’s research, Time has something to tell us about network address

translation, provides another approach to count end hosts behind a NAT device. Bursztein’s

research does similar things as Mongkolluksamee’s; however, the method is totally different.

Bursztein’s approach is based on TCP timestamp options. According to RFC 1323, TCP

timestamp value (TSval) must be at least approximately proportional to real time, in order to

measure actual Round-Trip Time (RTT). The TSval can be described in equation 2.1, where

 is the timestamp value, is the system uptime, is the increment

rate, and is related to OSs, and is an initial value.

 Eq (2.1)

The host counting approach relies on the fact that two hosts can’t have the exact same system

uptime unless they have been booted within the same millisecond and have the same OS. And

the timestamp can rarely be the same within one short period. The linear functions of known

hosts are stored in the form of two points of each function to verify each new TCP timestamp

packet. If the new packet’s TSval and uptime don’t match all the known functions, it belongs

to a new host. Because this is a theoretical research, it does not mention how a new function is

calculated. Also, it can only count the number of end hosts behind a NAT device but cannot

identify hosts.

Based on Bursztein’s counting NATed hosts mechanism, Georg Wicherski introduces a

technique of IP agnostic real-time traffic filtering and host identification using TCP timestamps

in his research. This research uses a variant function of equation 2.1, which is described in

equation 2.2.

 Eq (2.2)

In this equation, is the TCP timestamp value, is the Unix system time, is the increment

rate, and is some initial value. Operating systems, with the exception of Windows, usually

reset the value of TSval to zero at boot time, thus effectively setting to 0, 0 is the

time of booting the system.

Artificial lines are generated to identify hosts. For every incoming TCP packet observed, the

pair � of current system time � and TCP timestamp � is added to a list for that particular

TCP connection. And when the connection terminates, a least-squares linear regression

function is computed for the points � collected for this particular connection. The

computed 0 represents for a new host and is stored in the database. Whenever a new TCP

packet is received, first, it is matched against existing hosts. Hosts are mapped into classes

(different ′s) to increase matching efficiency. The new packet is computed with each existing

s for 0, if it is close enough to a known function, it is considered to belong to the host. If it

doesn't belong to any existing host, a new host is detected and the new 0 is stored in the

database. Wicherski’s work proposes a possible approach to identifying hosts behind a NAT

device using TCP timestamp. The host identification stage of my research is based on his idea.

Other methods for host identification behind a NAT device are described as follows: Aniello

Castiglione’s research, Device tracking in private networks via NAPT Log analysis, determines

a host profile or fingerprint to track down the device’s movement and learn about the specific

host behind one private network without its IP address [14]. In addition, Nino Vincenzo Verde

proposes an approach to build a fingerprinting framework to identify users behind a NAT

device using NetFlow records alone [15]. Hidden Markov Models (HMM) classifier is used in

Verde’s research to fingerprint users inside a network connected to the Internet through a NAT

device. Different from the research introduced above, Rhiannon Weaver proposed an approach

to visualize and model the scanning behavior of the conficker botnet in the presence of user

and network activity in his work [16]. Weaver’s work manages to count devices in an IP

address space.

Therefore, host identification stage of my research is mainly based on Bursztein and

Wicherski’s research. It improves on Wicherski’s methodology of host identification, including

changes on the calculation method of host uptime values, the connection division method, the

boundary of number of packets in a connection, the computation method of the distance of

lines, the threshold which is used to determine if two lines are close enough to belong to the

same host, and the evaluation methods of experimental results. In addition, the combination of

the NAT detection stage and the host identification stage on the datasets in my research allows

us to identify end hosts behind the NAT device detected on the Internet without knowing their

private IP addresses.

2.3 Summary

In this chapter, both literature reviews of NAT detection and host identification are introduced.

Koma ́rek’ NAT detection work, Bursztein’s counting hosts behind a NAT device research and

Wicherski’s host identification behind a NAT device research all play important roles in my

research. The next chapter will describe the methodology of the research in detail and how the

three works are extended in my research.

Chapter 3 Methodology

This research is focused on TCP timestamp option based host identification behind a NAT

gateway detected by supervised machine learning method from the network. In this chapter,

first data generation details including network configuration and data collection are presented

in Section 3.1. Then Section 3.2 introduces how I create artificial NATs to label the training

dataset for supervised learning approach to detect NAT device from end hosts. The following

Section 3.3 describes how I identify end hosts with the same source IP address behind a NAT

gateway based on TCP timestamp option, as well as how I combine the two stages of the

research in Section 3.4. The last Section 3.5 summarizes this chapter.

3.1 Data sets

3.1.1 LAN architecture

Data sets used in this research are collected from a local area network (LAN) connected to the

Internet through a network address translation (NAT) device. The NAT device also works as a

Dynamic Host Configuration Protocol (DHCP) server, which assigns IP addresses to 16 hosts

on the LAN. Different operating systems and different browsers are installed to learn how the

research works in different environments. The experimental configuration is shown in Figure

3.1.

Figure 3.1 LAN with NAT device configuration

The host works as both a DHCP server and a NAT device; which is installed with Kali Rolling

system. To configure the DHCP server and the IPv4 NAT gateway on the Kali host, we can

follow the guide below3. The server host has two interfaces, one connected to Internet and the

other connected to the hosts on the LAN. The DHCP server automatically assigns IP addresses

to hosts on the LAN and allows them to connect to the Internet through the NAT gateway. The

16 hosts are grouped into four groups, and there are four hosts in each group connected to a

group switch. In each group, hosts are installed with the same operating systems. Four group

switches are connected to one switch which is connected to the server. The hosts system, IP

address, interface and browser information are shown in table 3.1. The server has two

interfaces, Eth0 connected to LAN, and Eth1 connected to Internet. Other hosts with two

interfaces only have one interface working at the same time.

Table 3.1 Hosts and server information on LAN

Scen. OS Browser Eth 0 Eth 1 Eth 2 Host name

0

Kali Rolling
(NAT

device +
DHCP
server)

Firefox
172.22.22.1

LAN
10.11.12.75

Internet
- Yeti

1 Kali Rolling Firefox -
172.22.22.4

8
- crocodile

2 Kali Rolling Firefox -
172.22.22.5

4
172.22.22.5

3
squirrel

3 Kali Rolling Firefox -
172.22.22.5

8
172.22.22.5

7
leopard

4 Kali Rolling Firefox -
172.22.22.5

6
172.22.22.5

5
pipingplove

r

5 Kali Rolling Firefox - -
172.22.22.4

4
chipmunk

6 Kali Rolling Firefox - -
172.22.22.4

5
alligator

7 Kali Rolling Firefox -
172.22.22.4

3
- elephant

8 Kali Rolling
Google-
chrome

-
172.22.22.5

1
172.22.22.4

2
panda

9 Windows 7
Professional

Google-
chrome

172.22.22.2
8

172.22.22.3
2 - orangutan

10 Windows 7
Professional Firefox 172.22.22.3

3
172.22.22.2

6 - gazelle

11 Windows 7
Professional Firefox 172.22.22.2

9
172.22.22.2

5 - giraffe

12 Windows 7
Professional

Google-
chrome

172.22.22.3
1

172.22.22.3
0 - polar bear

13 Windows 7
Professional Firefox 172.22.22.9

9
172.22.22.4

0 - ferret

14 Windows 7
Professional

Google-
chrome - 172.22.22.5

2 - otter

15 Windows 7
Professional Firefox 172.22.22.3

4
172.22.22.3

7 - beaver

16 Windows 7
Professional

Google-
chrome

172.22.22.3
5

172.22.22.3
8 - groundhog

3.1.2 Data collection

Imacros [17], an extension for web browsers (both Google-Chrome and Firefox), is installed

so hosts can automatically generate URLs and randomly download files. Imacros can be

combined and controlled by JavaScript. I wrote a small program and ran it on Imacros. Figure

3.2 shows the flow chart of the Imacros program.

Figure 3.2 Imacros program flow chart

This program automatically searches random keywords on Google; it then randomly goes to

one of the URLs, searches the URL for other URLs, randomly chooses one, goes to that URL

and repeats the process several times. After this step, it closes the webpage and opens a new

one to start the process again by searching for a random keyword on Google. The program

circulates the above steps, and when it encounters files that can be downloaded, it downloads

them. It will not stop until I terminate the program, or it is interrupted by system errors. Part of

the program is shown below:

SET !ERRORIGNORE YES
SET !LOOP 2
SET !DATASOURCE_LINE {{!LOOP}}

4. TAB T=1

URL GOTO=https://www.google.com/?gws_rd=ssl
SET !VAR3 EVAL("var letters =
['a','b','c','d','e','f','g','h','i','j','k','l','m','n','o','p','q','r','s','t','u','w','x','y','z']; var string = '';
for(var i = 0; i < 4; i++){string += letters[parseInt(Math.random() * 25)]}; string")
TAG POS=1 TYPE=INPUT:TEXT FORM=NAME:f ATTR=NAME:q
CONTENT={{!var3}}
TAG POS=1 TYPE=BUTTON:SUBMIT FORM=NAME:f ATTR=NAME:btnG

WAIT SECONDS=3
TAG POS=1 TYPE=A ATTR=TXT:*w*b*
WAIT SECONDS=3
ONDOWNLOAD FOLDER=* FILE=* WAIT=YES
TAG POS=2 TYPE=A ATTR=TXT:*Download*
TAG POS=1 TYPE=A ATTR=TXT:*q*
WAIT SECONDS=3
ONDOWNLOAD FOLDER=* FILE=* WAIT=YES
TAG POS=2 TYPE=A ATTR=TXT:*Download*
TAG POS=1 TYPE=A ATTR=TXT:*y*
WAIT SECONDS=3
ONDOWNLOAD FOLDER=* FILE=* WAIT=YES
TAG POS=2 TYPE=A ATTR=TXT:*Download*
TAG POS=1 TYPE=A ATTR=TXT:*a*
WAIT SECONDS=3
ONDOWNLOAD FOLDER=* FILE=* WAIT=YES
TAG POS=2 TYPE=A ATTR=TXT:*Download*
WAIT SECONDS=3

TAB CLOSE

This program starts by opening a web page and going to google.com. In line 6, the program

generates a random four-letter word, and it searches the word on Google in line 7 and line 8.

Line 10 through line 26 go to URLs five times, it is determined to go to URLs to make sure it

doesn't end at a browser setting page or other pages that have no other URLs to go to. Every

time it goes to a new URL, it downloads any available files. This program works a little

differently on different operating systems: it creates more URLs on Kali hosts than on Windows

hosts.

Hosts are grouped according to their operating systems in order to learn the differences of how

Imacros runs on different systems and the impact on NAT detection and host identification.

Also, different data from different systems can provide test datasets that are different from

training datasets. Different combinations of groups run in 17 days. Data collected are stored by

different combinations. Hosts running schedule is shown in Table 3.2. Hosts with marks are

running and generating data on the marked date, and hosts without marks are powered off on

that date.

Table 3.2 Hosts running status by date

OS Browser Running status by date

Kali Rolling
(NAT device)

Firefox Aug01
Aug02-
Aug13

Aug14 Aug15 Aug16 Aug17

Kali Rolling Firefox ˅ ˅ ˅ ˅

Kali Rolling Firefox ˅ ˅ ˅ ˅

Kali Rolling Firefox ˅ ˅ ˅ ˅

Kali Rolling Firefox ˅ ˅ ˅ ˅

Kali Rolling Firefox ˅ ˅ ˅ ˅

Kali Rolling Firefox ˅ ˅ ˅ ˅

Kali Rolling Firefox ˅ ˅ ˅ ˅

Kali Rolling
Google-
chrome

˅ ˅ ˅ ˅

Windows 7
Professional

Google-
chrome

˅ ˅ ˅ ˅

Windows 7
Professional

Firefox ˅ ˅ ˅ ˅

Windows 7
Professional

Firefox ˅ ˅ ˅ ˅

Windows 7
Professional

Google-
chrome

˅ ˅ ˅ ˅

Windows 7
Professional

Firefox ˅ ˅ ˅

Windows 7
Professional

Google-
chrome

 ˅ ˅ ˅

Windows 7
Professional

Firefox ˅ ˅ ˅

Windows 7
Professional

Google-
chrome

 ˅ ˅ ˅

Data is collected on NAT device’s both interfaces, LAN and Internet interfaces, for two phases

of research. In total, I collected 521 GB of data. The data size by date is shown in Table 3.3.

Tcpdump is employed to capture packets and build pcap files.

Table 3.3 Data size by date

 Data size (GB)

Date eth0 - LAN interface
eth1 - Internet

interface
total

Aug 01 12 11 23

Aug 02 23 21 44

Aug 04 56 54 110

Aug 08 28 27 55

Aug 09 19 18 37

Aug 10 30 28 58

Aug 11 46 42 88

Aug 14 22 20 42

Aug 15 7 6 13

Aug 16 10 9 19

Aug 17 17 15 32

Total 270 251 521

3.1.3 Data sets
Tshark [18] is exploited to extract information packet by packet from raw data in both phases

of the research. Csv files are generated for further processing. Tshark is a network protocol

analyzer; it is a terminal oriented version of Wireshark designed for capturing and displaying

packets. It can deal with large size pcap files by running terminal commands without displaying

all the packets as Wireshark does. I can select relevant packet features and save them into csv

files.

In the first stage, data is from NAT device’s Internet interface. Packets are captured from LAN

through the NAT device, whose source IP addresses are translated into the same one (NAT

device’s IP address). Packets from Internet are also captured. This stage is aimed to distinguish

NAT devices from end hosts on the Internet. Packet information is extracted from HTTP

headers. Necessary packet features and corresponding tshark options are shown in Table 3.4.

Table 3.4: HTTP features and tshark options

Packet features Tshark option

Packet number frame.number

Host's IP address ip.src

Server’s IP address ip.dst

HTTP status http.connection

URL of request http.request.uri

User-agent information http.user_agent

Sum of download/upload bytes http.content_length

Ending time of communication and its
duration

http.time

HTTP method http.request.method

The second stage is aimed to distinguish different end hosts through packets translated by a

NAT device, although their source IP addresses are the same. In this stage, data from the NAT

device’s Internet interface is used as a training set and data from the LAN interface is used as

a validation set. Packets from the LAN interface are directly sent from end hosts inside the

LAN (before network address translation), whose source IP addresses are original. Matching

packets from both interfaces provides validation sets for this phase’s research. Packets

information is extracted from TCP headers. Necessary packet features and corresponding

tshark options are shown in Table 3.5.

Table 3.5 TCP features and tshark options

Packet features Tshark option

Packet number frame.number

System time frame.time

Source IP address ip.src

Destination IP address ip.dst

Source port number tcp.srcport

Destination port number tcp.dstport

TCP Timestamp value tcp.options.timestamp.tsval

TCP FIN flag tcp.flags.fin

TCP reset flag tcp.flags.reset

3.2 NAT detection

The NAT detection mechanism is based on NAT device behavior analysis; this uses supervised

machine learning for binary classification. It aims to differentiate NAT devices from end hosts

in the network, followed by next stage host identification. These two steps allow us to identify

different hosts even behind a detected NAT device in the network.

3.2.1 Host behavior vector

The behavioral features differentiate a NAT device from end hosts. A NAT device contains

multiple end hosts and modifies host IP address as well as server IP address in IP headers and

then transits modified packets to or from end hosts. Hence the communication volume of a

NAT device is several times that of an end host depending on the number of end hosts behind

a NAT device. Packets from all hosts are captured in one day as mentioned in the dataset section

to fairly measure the volume. To learn NAT device behavior, I first extract host information

from HTTP packets. Packet features I extract include IP source address, IP destination address,

HTTP connection status, URL of HTTP request, user-agent information, sum of download

bytes and upload bytes, communication duration and HTTP method. Those features are

obtained with tshark from packets headers; corresponding tshark options are listed above.

 Packets are represented by features, and next I count those features for each host. Here I take

unique IP addresses as hosts, which can be a NAT device or an end host. Features extracted

from each packet are counted as follows [3]:

1) number of unique contacted IP addresses

2) number of unique user-agents

3) number of unique OSs and versions

4) number of unique browsers and versions

5) number of persistent connections

6) number of upload bytes

7) number of download bytes

8) number of sent HTTP requests

Operating system information and browser information are included in user-agent strings from

HTTP request headers. While HTTP request methods indicate the packet download or upload

data. Persistent connections are connections with keep-alive headers. These features reflect the

communication volume of hosts and vary from NAT devices to end hosts. Another element

that affects the features is how long the host is active, or how often is the host active, including

both end hosts and NAT devices. Theoretically, a NAT device transports much more packets

than an end host does, but if the NAT device is not active, its traffic volume can be less than

an end host’s. This requires that the machine learning algorithm should be resistant to

contaminated training datasets. I record each host with a vector of the eight features above and

then apply it to machine learning to build behavior models for NAT devices and end hosts, so

that it can be applied to classify NAT devices and end hosts later.

3.2.2 Artificial NAT

To prepare training datasets for machine learning, a labelled dataset is required. But I have no

idea how many and which of the hosts detected on the Internet are NAT devices or end hosts.

Considering the fact that the proportion of NAT devices in all the hosts is negligibly small, I

employ the artificial NAT generation method in Koma ́rek’s research [3]. That is to label all

the hosts as end hosts and create artificial NAT devices from those end hosts. Labelled

artificial NATs are then added to the training dataset so that it has both class NAT and class

end host. There is no doubt that this will causes deviation to experiment results, albeit to a

small degree. This also requires the machine learning algorithm I use being immune to

contaminated datasets. Machine learning algorithms will be introduced in the next section.

Artificial NAT device generation is based on the fact that a NAT device will not change the

eight features mentioned above when modifying IP addresses. Hence a NAT device’s

features are the combinations of features of end hosts behind it respectively. In Toma ́sˇ

Koma ́rek’s work, a feature vector of a NAT device is calculated as the sum of its end hosts’

feature vectors [3]. It works for most of the features, but for features like number of unique

user-agents, number of unique OSs and versions and number of unique browsers and

versions, it makes no sense. Those three features cannot be simply added up. For example, a

NAT device has three end hosts with 1, 1, 2 unique operating systems respectively, and each

end host is installed with the same version of Windows system, the last one is installed with

the same Windows system as well as a Linux system. This NAT device’s number of unique

OSs should be two instead of four, which is the sum of end hosts’ unique OSs. Similarly, the

other two features of a NAT device are not the sum of its end hosts’ features. In our work, an

artificial NAT device’s number of unique user-agents, number of unique OSs and versions

and number of unique browsers and versions are calculated as the maximum numbers of its

end hosts’ corresponding features. It is more reasonable than simply adding up all the hosts’

features.

The number of end hosts behind an artificial NAT ranges between 5 and 15. To balance

different sizes of NAT devices, I create artificial NATs with a number of hosts from 5 to 15

as a unit. The number of NAT units depends on the number of detected hosts. Each end host

is used once in composition of artificial NATs, and the number of NAT units is the maximum

number all the hosts can generate. Our artificial NAT device generation method generates the

same number of NATs with 5 to 15 end hosts. And the total amount of NATs is decided by

the number of hosts; the more hosts detected, the more artificial NATs are generated.

Training dataset then can be more reasonable than building a united number of artificial NAT

devices under all circumstances.

3.2.3 Machine Learning and Classification

As mentioned above, it is vital for the NAT device detection algorithm to be resistant to

contaminated datasets. In addition, host classification is based on linear combination of

features. Based on the above limitations, I apply the training dataset to three kinds of machine

learning (ML) classifiers to compare the results. The following three ML algorithms are applied

in Waikato Environment for Knowledge Analysis (Weka), a suite of multiple machine learning

software providing easy access to both classification and analysis.

a) Support vector machine

Support vector machine (SVM) is a supervised machine learning model, a non-probabilistic

binary classifier [19]. It performs both linear classification and non-linear classification. It

performs efficient classification and evaluation. Also, SVM tends to be resistant to

contaminated training datasets, and our manually labelled training dataset contains some

wrongly labelled records. It is one of the most appropriate machine learning algorithms for our

work.

SVM is about looking for the "maximum-margin hyperplane" to divide points (our samples)

into two classes, when the distance of hyperplane and nearest point of each class is maximized.

Here is how linear SVM works. Data items in the training dataset to be processed are in the

form of

1 1

where a point , in the form of � is a -dimensional vector, � is a value 1 or -1 and represents

two classes of all data points. If our data items have features, I plot a p-dimensional space

using all the records, and the points are represented by vectors with feature values. Then I try

to find out the best 1 -dimensional hyperplane to separate the points. A hyperplane can

be written in the form of equation 3.1:

� 0, Eq (3.1)

where � is the normal vector of the hyperplane. The distances of hyperplane and nearest point

from each class are calculated, they are called Margin. If the dataset is linear separable, the

distance of two parallel hyperplanes that separate each class can be largest, as is shown in

Figure 3.3. Then the best hyperplane is the hyperplane right in the middle of them.

Figure 3.3 Linear SVM example

These two classes separated by the two hyperplanes can be described as equation 3.2 and

equation 3.3:

� � 1, if � 1, Eq (3.2)

any points on or above this hyperplane is classified as class 1;

1, if � 1, Eq (3.3)

any points on or below this hyperplane is classified as class -1. The distance of two hyperplanes

is:
2

�
, to maximum the distance is to minimize � . Then the two inequalities above can be

written as equation 3.4.

� � 1, for all 1 . Eq (3.4)

Then to find out the best hyperplane with maximum Margin is an optimization problem as

equation 3.5.

Minimize �subject to � � 1, for 1 . Eq (3.5)

SVM selects the hyperplane with maximum Margin on condition that it classifies the classes

accurately.

As is shown in Figure 3.4, this algorithm has a feature of ignoring outliers. Triangles and circles

are two different classes here. The hyperplane in the figure classifies most points into correct

classes and the distance of it to nearest points from each class is maximized. Although there is

one triangle point classified wrongly into another class, it still selects the best hyperplane to

classify other data points. This feature is important to our experiment for there are unknown

NATs labelled as end hosts in our training datasets.

Figure 3.4 SVM classify example

b) C4.5

Another algorithm I used in our experiment is C4.5, a commonly used machine learning

algorithm that builds decision trees from classified training dataset [20]. It chooses the

attributes that most effectively split samples into different classes as the nodes to build the tree.

C4.5 is an improved version of ID3 algorithm; it handles missing attribute values in training

dataset. It generates a more effective and accurate decision tree for our experiment.

ID3 is a well-known machine learning algorithm to generate a decision tree to classify data

items [21]. It first calculates the information gain from entropy of each attribute from the target

dataset. Entropy is shown in equation 3.6 and is a measure of how much uncertainty the

dataset has.

 Eq (3.6)

where is the target dataset, is set of classes in dataset , is a class in , and is the

proportion of the number of data items in class to the number of all items in dataset .

Information gain is shown in equation 3.7 and is calculated from the entropy.

 Eq (3.7)

where is the subsets split from dataset by attribute , , is the proportion

of number of data items in subset to the number of items in target dataset and is the

entropy of subset . And then the dataset is split into subsets according to the attribute which

makes the resulting entropy minimum. This attribute is one node of our decision tree, the rest

of the attributes are selected in subsets recursively.

C4.5 algorithm is different from ID3 in that it can handle continuous attribute values as well;

it creates a threshold and splits the values by comparing them with the threshold. C4.5 is also

robust to missing attribute values and ignores missing values in gain and entropy calculations.

The most important improvement of C4.5 is that it prunes trees after creation, which effectively

reduce the useless leaf nodes, leading to an efficient decision tree. C4.5 helps us to focus on

the attributes that play a vital role in NAT detection.

c) Alternating decision tree

The last ML algorithm in our experiment is Alternating decision tree (AD Tree) [22]. It also

generates decision trees as C4.5. But its nodes generation method is entirely different from the

C4.5 algorithm. AD tree considers all the features when classifying instances, and it also works

well in our experiment.

An AD tree consists of two types of nodes, decision nodes and prediction nodes. Two classes

are coded into 1 and -1 respectively. Data items in the training dataset to be processes are in

the form of

1 1

where � is a vector of attributes, � is the class of data items, and it is either 1 or -1. Decision

nodes of AD Tree contain a prediction condition of attributes from the target dataset, and

prediction nodes contain a positive or negative number, indicating how the condition impacts

final classification. The number in prediction nodes is weight � . A data item should go

through every path of the decision tree and compare its attribute values with each decision

condition to get value from prediction node. All the prediction values are then added up, it is

the final score of this data item as shown in equation 3.8.

� Eq (3.8)

where is prediction condition from decision node and � is the wieght of data item � on

prediction condition . Whether the final score � is a positive number or negative one

decides this instance’s class. If the final score is a positive number, then its class is the class

coded as 1 and vice versa.

AD tree is different from all the other decision trees in that each instance should go through

every path of the decision tree, and all the values from the prediction nodes it passes are

calculated as the final score. This algorithm takes every possible condition into consideration,

and this gives us a precise classification of NAT detection.

These three machine learning algorithms I apply to our datasets study different aspects of the

NAT detection. SVM is the algorithm used in Toma ́sˇ Koma ́rek’s work, C4.5 reveals the vital

attributes that influence the classification, and AD Tree provides a precise classification from

every possible effective attribute. Different experiment results on these three algorithms are

shown in the next chapter.

Training datasets for machine learning are generated by creating artificial NATs as mentioned

above. I use a certain percentage of training datasets as test datasets, as well as new validation

datasets as test datasets. The new validation datasets or test datasets I use are also captured

from our lab, on both Internet interface and LAN interface. But those datasets exclude unknown

hosts from the Internet, that is, it contains the real NAT device and other end hosts in our lab.

According to our artificial NAT generation method, this real NAT device in the training dataset

is labelled as end host. If the real NAT device is then classified as NAT device in validation

step, it supports the idea that instances that wrongly labelled as end hosts in training datasets

do not affect experiment results.

Our algorithm improves Toma ́sˇ Koma ́rek’s work in generating artificial NATs, does research

in NAT detection in different aspects with different machine learning algorithms, and provides

a more convincing validation process. Steps of NAT detection can be summarized in Figure

3.5.

Figure 3.5 NAT detection flow chart

3.3 Host identification

3.3.1 TCP timestamp function

Host identification behind a NAT device is based on features of TCP timestamp. TCP

timestamp option is inside TCP header’s option field. In RFC 1323 [6], TCP timestamp value

(TSval) is defined as follows.

The timestamp value to be sent in TSval is to be obtained from a(virtual) clock that I call the

"timestamp clock". Its values must be at least approximately proportional to real time, in order

to measure actual RTT.

Timestamp is an affine-linear function as shown in equation 3.9 [5].

 Eq(3.9)

where is the increment rate of “timestamp clock”, is initial timestamp value,

 is the system uptime. The initial number is zero for all operating systems except

Windows, it is random for Windows. RFC also mentions that the increment rate

should between 0.001 (1 tick per millisecond) and 1 (1 tick per second).

The assumption of the pair of (,) can uniquely identify an end host is based

on the idea that any two hosts behind a NAT device can not have the same uptime unless they

Ire booted at the same time in milliseconds.

In Georg Wicherski’s work, this function is mentioned as equation 3.10 [5].

 Eq (3.10)

where is the tick scale of the timestamp clock and is some initial value, is a UNIX

timestamp (the number of milliseconds elapsed since midnight of January 1, 1970(UTC)). For

this function, the pair of (,) uniquely identifies an end host until rebooted.

Comparing the two functions above, I found that equation 3.10 is a variant of equation 3.9.

Tick scale in equation 3.10 and increment rate in equation 3.9 are the same,

while independent variable in equation 3.10 is system time (UNIX timestamp), but in

equation 3.9 is system uptime. From packets information collected, system time is available,

but system uptime is unknowable. The relationship between these two variables is shown in

equation 3.11.

 Eq (3.11)

where is the number of milliseconds elapsed since midnight of January

1,1970(UTC) until the host were booted. Equation 3.10 can be converted as equation 3.12.

 Eq (3.12)

Wicherski’s function approximates equation 3.9, but they are not equivalent, which might be

one of the reasons why there are errors in their experiment results. So, in our work, I subtract

a uniform value from system time to make it near to actual system uptime . And I replace

system time in equation 3.10 with simulated system uptime . The calculation of this

uniform value is based on the fact that increment rate of timestamp value should between 0.001

and 1 mentioned in RFC1323.

3.3.2 Host identification algorithm

The basic idea of identifying hosts behind a NAT device using timestamp values is as follows.

For each active connection, each pair of (� , �) of simulated system uptime , and

timestamp value of packet is added to a particular list. Then a least-squares linear

regression function is computed for the list. This algorithm computes (,) for each TCP

connection, which makes the sum of squares 1 of the error �

is minimized. This pair of (,), or the line that is defined by function ,

uniquely identifies a host. All the pairs are saved in our database, and everytime a new pair of

(,) is computed, I first try to match it against existing pairs in the database. Matching pairs

here means to find out if distance between the two lines is small enough. If a match is found,

it can be concluded that this connection is from the detected host in our database. If this pair

has no match, then it comes from a new host, and I’ll add this pair to the database.

The algorithm matches connections, which provides more information than matching single

packets. It can be more reliable and efficient. In Wicherski’s work, a 4-tuple (���� , ���� ,

����, ����) is referred to as one connection until a packet with RST flag or FIN flag

is detected. This method works for normal circumstances. But only packets with TCP

timestamp values are supported for this experiment, and as mentioned above, TCP timestamp

values are optional. The deficiency of packets without TCP timestamp values causes errors in

connection recognition and then affects final results. In our work, I use tshark to separate

packets by connection and then deal with connections by connection sequence. Also, due to

the deficiency of packets without TCP timestamp values, the number of packets in one

connection is not enough to compute an accurate line for the connection. I set up experiments

to test how different numbers of packets in connections impact the accuracy of identifying end

hosts. The accuracy is enhanced with the increase of number of packets in one connection. I

adopt 55 as the minimum number of packets in one connection in our experiment according to

our test (see next section).

All the end hosts are saved in our database. Whenever a new connection is processed, the pair

of (,) computed for it will be compared with all pairs of (,) in the database, which is not

efficient. To improve the efficiency of matching the lines computed for connections, or pairs

of (,), I first match . As mentioned above, is the increment rate of timestamp values, and

it is related to OS implementation. As for the line, is the slope, that is, same ’s means

parallel lines. If the difference between two ’s is smaller than a certain threshold ����, they

are identified as one slope, that is to say, the two lines are parallel. In Wicherski’s work, he

uses a default value of 2 as the threshold without explaining why. I test different values of

threshold to see its influence in our work. Different hosts are classified by slopes, and they are

saved in lists, so that for each new line, it is not necessary to compare every host in the database.

If the new connection’s is related to an existing slope, I compute the distances of all the hosts’

lines of this slope with the new line. If distance is below threshold ���� , this connection is

associated to the existing host. If all the hosts of this slope do not meet the criteria, the new line

is added to this slope’s list, it belongs to a new host. If the connection’s slope is not found, it

also belongs to a new host. In that case, I create a list for the new slope, and add the line to the

list.

The lines I store in the database are in the form (, 0), where 0 is the solution of function

 when 0. As stated above, , the increment rate of timestamp value, is

between 0.001 and 1 (0). When 0, 0 . The solution 0 is the system uptime

when timestamp value is zero, which can be predicted by least-squares linear regression

algorithm. In Wicherski’s work, when a slope’s match is found in the database (the distance

between � and one � in database is below threshold ����), he tried to find the closest

0(corresponding to 0 in our work) to match the line. Nevertheless, the distance between

two 0’s or two 0’s is different from the distance between two lines. The distance between

two parallel lines 1 0 and 2 0 , is 1 2
2 1 2

. The

distance between two parallel lines is 1 2
2 1

, while the distance between two 0’s or

0’s is �
1 2 . When is smaller than 1, and � can differ by orders of magnitude.

Under this circumstance, threshold ���� cannot measure distance. Since the distance between

lines and the distance between two 0’s or 0’s � are interralated, I can calculate from

� : �
2 1

. Then is compared with threshold ���� to determine whether this

connection is close enough to the line of one known host or not as stated above. The steps to

identify hosts behind a NAT device are summarized in the flowchart shown in Figure 3.6.

Figure 3.6 Host identification flow chart

This approach improves host identification through TCP timestamp in practice. I managed to

approach host uptime from system time, improve connection division and find the boundary of

number of packets in one connection when building the artificial lines to identify end hosts,

learn the impact of different values of threshold to identify if two lines are close enough or if

one connection is associated to a known host, and correct the computation method of the

distance between lines. This leads to significant improvement of our experiment results in

identifying end hosts with TCP timestamp values.

3.4 NAT detection and Host identification

The above two sections introduce two stages of our experiment separately: NAT detection and

host identification. As is shown in Figure 3.7, I perform the two steps in order.

First, HTTP packets are filtered from the original dataset, then I extract HTTP attributes from

the filtered dataset for NAT detection. Once the NAT device is detected through the machine

learning method, packets from the NAT device are then filtered out for further processing. Only

packets with a TCP timestamp option are selected for host identification as mentioned above.

Apart from improvements on both of the steps mentioned in previous sections, processing host

identification phase immediately following NAT detection phase allows us to identify end

hosts behind a detected NAT device even though packets are from the same IP addresses.

Figure 3.7 NAT detection and Host Identification

3.5 Summary

In summary, the research begins at data collection step. Collected datasets are preprocessed to

extract HTTP features for NAT behavior model building in NAT detection supervised learning

step, and then datasets are processed to extract TCP features for host identification by creating

artificial lines of TCP timestamp value and system uptime. These stages in our research are

used in experiments in the following chapter.

Chapter 4 Experiments and Evaluation

In this chapter, dataset selection from all the data collected is explained in Section 4.1.

Supervised machine learning experiments and results of NAT detection are described in

Section 4.2. Section 4.3 introduces the host identification experiments and evaluation on the

experiment results using a Python program. Experiments of host identification using datasets

of NAT detection stage and their results are displayed in Section 4.4. Section 4.5 summarizes

this chapter.

4.1 Dataset selection

Datasets for both NAT detection stage and host identification stage were captured from the

internal interface and the Internet interface of the LAN introduced in Section 3.1.1. All the

datasets collected in 17 days are too large to be completely processed, at a size of 521 GB.

Hence five days’ datasets were selected as target datasets:

a) Aug 02: all the hosts on the LAN running

b) Aug 04: all the hosts on the LAN running

c) Aug 14: only Kali hosts on the LAN running

d) Aug 15: only Windows hosts on the LAN running

e) Aug17: half of the Kali hosts and half of the Windows hosts on the LAN running

Datasets from these five days were collected with different combinations of hosts running.

Performing experiments on datasets with different operating systems examines the

generalization of the methodology and provides comparison of the impacts of different systems

on the NAT detection and the host identification.

4.2 NAT detection experiment

In this section, experiments and results of three machine learning classifications on both test

datasets and validation datasets are described. Each test dataset is 20 percent of the training

dataset; this training dataset is labelled using the method introduced in Section 3.2.2. Since

training datasets were labelled manually, I also apply the three classifiers on each validation

dataset. The validation datasets include the real NAT device in the lab.

4.2.1 Training and test

After preprocess as mentioned in the last section, I applied machine learning algorithms in

Weka to training datasets with labels. The first algorithm I used was Support Vector Machine

(SVM). I used 80 percent of the preprocessed Aug 02 dataset as the training dataset and used

the remaining 20 percent as the test dataset. Results of the experiment are shown in Table 4.1.

In total, 1534 instances out of 1568 were classified correctly, a high accuracy of 97.83%. There

are 1437 end host instances and 131 NAT device instances in the test dataset. Table 4.2 shows

the confusion matrix of the SVM results. There were 31 actual NAT devices incorrectly

classified as end hosts, and 3 actual end hosts classified as NAT devices. So, the true positive

rate (TPR) of class end host was 1434/1437, 99.79%, and the TPR of class NAT device was

100/131, 76.34%, which was lower than that of class end host.

Table 4.1 SVM results using 20% as test dataset

 Proportion

Correctly Classified
Instances

1534 97.83%

Incorrectly Classified
Instances

34 2.17%

Kappa statistic 0.8432

Total Cost 34

Average Cost 0.0217

Mean absolute error 0.0217

Root mean squared error 0.1473

Relative absolute error 13.62%

Root relative squared error 53.20%

Total Number of Instances 1568

Table 4.2 SVM confusion matrix

Confusion Matrix

a b
<-- classifies

as

1434 3 a = Host

31 100 b = NAT

After that, I applied J48 in Weka to the same dataset, which is also known as C4.5. J48 produces

a pruned decision tree:

number of unique contacted IP addresses <= 6: Host (6997.0/80.0)
number of unique contacted IP addresses > 6
| number of unique contacted IP <= 11
| | number of unique contacted IP <= 9: Host (282.0/108.0)
| | number of unique contacted IP > 9: NAT (119.0/37.0)
| number of unique contacted IP > 11
| | number of unique contacted IP <= 35: NAT (418.0/1.0)
| | number of unique contacted IP > 35
| | | number of unique user-agents <= 0: NAT (6.0)
| | | number of unique user-agents > 0: Host (18.0/7.0)

The size of the decision tree is 11, and there were 6 leaves in the tree. Only 2 out of 8 attributes

in the dataset were used to build the decision tree: number of unique contacted IP addresses,

and number of unique user-agents. The marked attributes were used when building the tree,

unmarked attributes were not used. The selected attributes are the number of unique contacted

IP addresses and the number of unique user-agents. Other attributes are considered to have less

impact on classification results. In Koma ́rek’s work, all the eight attributes were used in the

SVM classifier, although he didn't mention how the attributes affect the results or if they affect

the results or not. If only some attributes make a difference in classifying NAT devices and end

hosts, I can use the minimum number of attributes to detect NAT devices.

Classification results of J48(C4.5) are shown in Table 4.3. In total, 1533 out of 1568 instances

were classified correctly, and the accuracy is almost the same with that of SVM, which is

97.77% compared with 97.83% of SVM. J48 correctly classifies only one instance fewer than

SVM does. Table 4.4 shows the confusion matrix of J48 results. This confusion matrix is also

quite similar to that of SVM, only one more class end host is classified falsely as class NAT

device. The TPR of class end host was 1433/1437, 99.72%, and the TPR of class NAT device

was 100/131, 76.34%. Similar to SVM results, the TPR of class NAT device was about 20%

lower than that of class end host.

Table 4.3 J48 results using 20% as test dataset

 Proportion

Correctly Classified Instances 1533 97.77%

Incorrectly Classified
Instances

35 2.23%

Kappa statistic 0.8392

Total Cost 35

Average Cost 0.0223

Mean absolute error 0.0392

Root mean squared error 0.1351

Relative absolute error 24.63%

Root relative squared error 48.79%

Total Number of Instances 1568

Table 4.4 J48 confusion matrix

Confusion Matrix

a b
<-- classifies

as

1433 4 a = Host

31 100 b = NAT

The last machine learning algorithm I applied on the datasets from Aug 02 was the Alternating

decision tree (AD Tree). Weka produces the decision tree below:

| (1)number of unique contacted IP addresses < 4.5: -1.454
| | (2)number of unique contacted IP addresses < 2.5: -3.002
| | (2)number of unique contacted IP addresses >= 2.5: 0.902
| | (8)number of unique contacted IP addresses < 3.5: -0.219
| | (8)number of unique contacted IP addresses >= 3.5: 0.206
| (1)number of unique contacted IP addresses >= 4.5: 1.252
| | (3)number of unique contacted IP addresses < 10.5: -0.599
| | | (4)number of unique contacted IP addresses < 6.5: -0.481
| | | (4)number of unique contacted IP addresses >= 6.5: 0.352
| | | | (9)number of unique contacted IP addresses < 7.5: -0.262
| | | | (9)number of unique contacted IP addresses >= 7.5: 0.142
| | (3)number of unique contacted IP addresses >= 10.5: 1.328
| | | (5)number of persistent connections < 11: 0.298
| | | | (6)number of unique contacted IP addresses < 11.5: -1.159
| | | | (6)number of unique contacted IP addresses >= 11.5: 3.304

| | | (5)number of persistent connections >= 11: -1.467
| (7)number of unique contacted IP addresses < 2.5: -1.524
| (7)number of unique contacted IP addresses >= 2.5: 0.003
Legend: -ve = Host, +ve = NAT

The total number of nodes in the decision tree was 28, and the number of leaves was 19. Still,

only two attributes were used to build the decision tree, as is shown in Table 4.4. Different

from J48, the AD Tree uses the attribute number of persistent connections instead of the

attribute number of unique user-agents to build the tree. The attribute number of unique

contacted IP addresses was used in both decision trees. That is, the other five attributes: number

of unique OS and versions, number of unique browser and versions, number of upload bytes,

number of download bytes and number of sent HTTP requests are considered to have no

influence on classification for both algorithms. The attribute number of persistent connections

reflects the amount of traffic, while the attribute number of unique user-agents might reflect

the number of systems in one host, it can be a NAT device contains several end hosts or simply

be multiple systems on one host. These two attributes affect NAT detection from different

aspects. From the point of accuracy, the AD Tree classifier performs better than the J48

classifier.

Table 4.5 Attributes used to build AD Tree decision tree

Attributes in dataset Used in decision tree

number of unique contacted IP
addresses

v

number of unique user-agents

number of unique OS and versions

number of unique browser and versions

number of persistent connections v

number of upload bytes

number of download bytes

number of sent HTTP requests

Classification results of AD Tree are shown in Table 4.6. In total, 1533 out of 1568 instances

were classified correctly. And the accuracy was exactly the same with that of J48, 97.77%.

Only 2.23% (35 instances) were incorrectly classified. Apart from the accuracy, the experiment

on the AD Tree had the same confusion matrix as J48, as is shown in Table 4.7. These two

decision trees used different algorithms with one common attribute and one different attribute

but produced the same accuracy and the same TPR for both classes. Compared with SVM

algorithm, decision trees used fewer attributes, but had almost exactly the same accuracy. From

these three experiments, either decision tree algorithm can be used for quick NAT detection.

When extracting attributes from packets, only a quarter of the eight attributes used in

Koma ́rek’s work are necessary. But either the training dataset or the test dataset was labelled

by generating artificial NATs mentioned in section 3.2.2. To validate the NAT detection

methodology, experiments on datasets with real NATs are required.

Table 4.6 AD Tree results using 20% as test dataset

 Proportion

Correctly Classified
Instances

1533 97.77%

Incorrectly Classified
Instances

35 2.23%

Kappa statistic 0.8392

Total Cost 35

Average Cost 0.0223

Mean absolute error 0.0612

Root mean squared error 0.1468

Relative absolute error 38.44%

Root relative squared error 53.02%

Total Number of Instances 1568

Table 4.7 AD Tree confusion matrix

Confusion Matrix

a b
<-- classifies

as

1433 4 a = Host

31 100 b = NAT

4.2.2 Training and validation

Apart from using 20% of the dataset as the test dataset, I also experimented on a validation

dataset on Aug 02 as mentioned in section 3.2.3.2. This validation dataset included packets

from one real NAT device and 13 end hosts from the lab. Table 4.8 shows SVM results using

this validation dataset. In total 13 instances out of 14 were classified correctly, and the accuracy

was 92.86%. One instance was classified incorrectly. This accuracy was a little bit lower than

that of experiments on the test dataset. Table 4.9 shows the confusion matrix of SVM algorithm

using the validation dataset. All the 14 instances are classified as class end host, that is,

although all the instances of class end host were classified correctly, the real NAT device was

not detected.

Table 4.8 SVM results using validation dataset

 Proportion

Correctly Classified Instances 13 92.86%

Incorrectly Classified
Instances

1 7.14%

Kappa statistic 0

Total Cost 1

Average Cost 0.0714

Mean absolute error 0.0714

Root mean squared error 0.2673

Relative absolute error 48.25%

Root relative squared error 103.52%

Total Number of Instances 14

Table 4.9 SVM validation confusion matrix

Confusion Matrix

a b
<-- classifies

as

13 0 a = Host

1 0 b = NAT

After I processed with the SVM classifier, the validation dataset was processed with the J48

classifier in Weka. The results are shown in Table 4.10. In total, 12 out of 14 instances were

classified correctly. The accuracy was 85.71%, lower than that of SVM, 92.86%. Two instances

were classified incorrectly. Table 4.11 shows the confusion matrix of J48 algorithm using the

validation dataset. Except for one instance of class end host was classified incorrectly, the other

12 instances of this class were classified correctly. But as with the SVM classifier, the real

NAT device is still not detected.

Table 4.10 J48 results using validation dataset

 Proportion

Correctly Classified
Instances

12 85.71%

Incorrectly Classified
Instances

2 14.29%

Kappa statistic -0.0769

Total Cost 2

Average Cost 0.1429

Mean absolute error 0.3988

Root mean squared error 0.4232

Relative absolute error 269.38%

Root relative squared error 163.93%

Total Number of Instances 14

Table 4.11 J48 validation confusion matrix

Confusion Matrix

a b
<-- classifies

as

12 1 a = Host

1 0 b = NAT

I also applied the AD Tree classifier to the validation dataset in Weka. Table 4.12 shows the

results. In total, 13 out of 14 instances were classified correctly, and the accuracy was 92.86%.

The accuracy of the AD Tree was the same as that of SVM, a little bit higher than that of the

J48 classifier. Only one instance was classified incorrectly. Table 4.13 shows the confusion

matrix of AD Tree. It was exactly the same as that of the SVM classifier. All the instances of

class end host were classified correctly, and the real NAT device was not detected.

Table 4.12 AD Tree results using validation dataset

 Proportion

Correctly Classified Instances 13 92.86%

Incorrectly Classified
Instances

1 7.14%

Kappa statistic 0

Total Cost 1

Average Cost 0.0714

Mean absolute error 0.4569

Root mean squared error 0.4741

Relative absolute error 308.61%

Root relative squared error 183.65%

Total Number of Instances 14

Table 4.13 AD Tree validation confusion matrix

Confusion Matrix

a b
<-- classifies

as

13 0 a = Host

1 0 b = NAT

Over all, results on the test dataset are better than that on the validation dataset. Although the

accuracies of experiments on both test dataset and validation dataset were quite high, all of the

three classifiers were unable to detect the real NAT device from the validation dataset. Since

my experiment is about detecting NAT devices, I looked into the training dataset to look for

the reason why the real NAT device was not detected. There were a large number of inactive

end hosts in the dataset, and this led to the generated artificial NAT devices becoming inactive.

Values of most of the attributes in inactive hosts or NAT devices were zero: this blurred the

boundary between end hosts and NAT devices. In addition, an inactive NAT without end hosts

sending packets behind it is meaningless for further host identification experiment. In order to

eliminate the effects of inactive NATs, I excluded inactive ones when generating artificial

NATs. That is, only artificial NAT with at least half nonzero attributes (4 attributes) were kept

for the training dataset. I used this improved artificial NAT generation method and applied the

three classifiers on the new training dataset and the previous validation dataset.

Table 4.14 SVM results using validation dataset and improved training dataset

 Proportion

Correctly Classified Instances 13 92.86%

Incorrectly Classified
Instances

1 7.14%

Kappa statistic 0

Mean absolute error 0.0714

Root mean squared error 0.2673

Relative absolute error 89.27%

Root relative squared error 100.94%

Total Number of Instances 14

Table 4.15 SVM confusion matrix using validation dataset and improved training dataset

Confusion Matrix

a b
<-- classifies

as

13 0 a = Host

1 0 b = NAT

Table 4.14 shows the SVM results using the validation dataset and the improved training

dataset. And Table 4.15 shows the corresponding confusion matrix. This improved training

dataset generated the exact same results as the previous training dataset. That is, the SVM

classifier was resistant to those inactive NAT instances. Then the J48 classifier were applied to

the new training dataset and the validation dataset. Table 4.16 shows the results using the

validation dataset and the improved training dataset on the J48 classifier, and Table 4.17 shows

the corresponding confusion matrix. Compared with results on the previous training dataset,

all the end hosts were classified correctly, accuracy was improved from 85.71% to 92.86%.

But the real NAT device was still undetected.

Table 4.16 J48 results using validation dataset and improved training dataset

 Proportion

Correctly Classified
Instances

13 92.86%

Incorrectly Classified
Instances

1 7.14%

Kappa statistic 0

Mean absolute error 0.0788

Root mean squared error 0.2651

Relative absolute error 98.49%

Root relative squared error 100.12%

Total Number of Instances 14

Table 4.17 J48 confusion matrix using validation dataset and improved training dataset

Confusion Matrix

a b
<-- classifies

as

13 0 a = Host

1 0 b = NAT

At last, the AD Tree classifier was applied on the improved training dataset. The results are

shown in Table 4.18, and the corresponding confusion matrix is shown in Table 4.19. The

accuracy remained the same compared with that in the experiment using the previous training

dataset, but the real NAT was detected. The produced decision tree used the attribute number

of unique contacted IP addresses. This also support for the idea that not all the attributes

provided in Koma ́rek’s work make a difference on NAT detection. According to the

experiments above, the attributes of use are number of unique contacted IP addresses, number

of persistent connections, and number of unique user-agents. As the first classifier of being

able to detect the real NAT device in the validation dataset, AD Tree is sensitive to inactive

NAT instances in the training dataset. Although the three classifiers provided the same

accuracy on classifying end hosts and NAT devices, AD Tree stood out from the other

classifiers in that it successfully detected the real NAT device.

Table 4.18 AD Tree results using validation dataset and improved training dataset

 Proportion

Correctly Classified Instances 13 92.86%

Incorrectly Classified Instances 1 7.14%

Kappa statistic 0.6316

Mean absolute error 0.2559

Root mean squared error 0.315

Relative absolute error 319.87%

Root relative squared error 118.98%

Total Number of Instances 14

Table 4.19 AD Tree confusion matrix using validation dataset and improved training dataset

Confusion Matrix

a b
<-- classifies

as

12 1 a = Host

0 1 b = NAT

Figure 4.1 shows the comparison of NAT detection accuracy in the experiments on the test

dataset, the validation dataset and the validation dataset with improved training dataset using

different machine learning classifiers. Over all, the accuracy was around 90%, and the accuracy

on the test dataset was higher than that on the validation dataset. The accuracy on the validation

dataset in the experiments with the original training dataset or the improved training dataset

was almost the same, except for accuracy in the experiment using J48 improved a little when

it was trained on the improved training dataset. Since the AD Tree classifier detected the real

NAT device successfully with the improved training dataset, I suggest AD Tree as the classifier

for NAT detection instead of the other two classifiers.

Figure 4.1 Classification accuracy

4.2.3 NAT detection on more datasets using AD Tree

Since the AD Tree classifier performed best in the NAT detection experiments above, It was

then applied on the other datasets captured on four different dates. The datasets used were

captured on Aug 04 (with all the hosts running), Aug 14 (with only Kali hosts running), Aug

15 (with only Windows hosts running) and Aug 17 (with half of the Windows hosts and half

of the Kali hosts running). I first performed experiments on a training dataset and a validation

dataset from a single date as in the experiments in Section 4.2.2. Then I conducted experiments

using a training dataset from one date and a validation dataset from another date in order to

study the generalization of the NAT detection approach in the research.

Table 4.20 shows the AD Tree classification results on the training dataset and the validation

dataset from Aug 04, and Table 4.21 shows the corresponding confusion matrix. The AD tree

classifier achieved a good result with 100% accuracy. All the end hosts and the NAT device

were classified correctly. In addition to the attribute number of unique contacted IP addresses

used in the previous NAT detection experiments, the attribute number of download bytes was

also used in building AD Tree for this training dataset. The additional attribute number of

download bytes in this experiment might be the reason for the 100% accuracy compared with

the 92.86% accuracy of AD classification on the dataset captured on Aug 02.

Table 4.20 AD Tree results using training dataset and validation dataset on Aug 04

 Proportion

Correctly Classified Instances 19 100%

Incorrectly Classified Instances 0 0%

Kappa statistic 1

Mean absolute error 0.051

Root mean squared error 0.0678

Relative absolute error 95.82%

Root relative squared error 29.56%

Total Number of Instances 19

Table 4.21 AD Tree confusion matrix using training dataset and validation dataset on Aug 04

Confusion Matrix

a b <-- classifies as

18 0 a = Host

0 1 b = NAT

The next experiment was conducted on the training dataset and the validation dataset captured

on Aug 14 with only Kali hosts running. The decision tree generated by AD classifier on this

training dataset contained one more attribute than the tree generated on dataset captured on

Aug 04 had (number of download bytes, and number of unique contacted IP addresses): number

of persistent connections. Table 4.22 shows the AD Tree classification results, and Table 4.23

shows the corresponding confusion matrix. AD Tree classified all the instances correctly,

including end hosts and the NAT device. The accuracy remained 100% as that in the previous

experiment.

Table 4.22 AD Tree results using training dataset and validation dataset on Aug14 (Kali hosts

only)

 Proportion

Correctly Classified Instances 8 100%

Incorrectly Classified Instances 0 0%

Kappa statistic 1

Mean absolute error 0.0765

Root mean squared error 0.1588

Relative absolute error 60.93%

Root relative squared error 44.94%

Total Number of Instances 8

Table 4.23 AD Tree confusion matrix using training dataset and validation dataset on Aug14

(Kali hosts only)

Confusion Matrix

a b <-- classifies as

7 0 a = Host

0 1 b = NAT

Then datasets from Aug 15 with only Windows hosts running were employed in the AD Tree

classifier. The decision tree generated on this training dataset used three attributes, including:

number of unique contacted IP addresses, number of unique user-agents, and number of upload

bytes. Table 4.24 shows the results, and Table 4.25 shows the corresponding confusion matrix.

Although using two different attributes in the decision tree, the accuracy of the AD Tree

classification experiment on datasets captured on Aug 15 also remained 100%.

Table 4.24 AD Tree results using training dataset and validation dataset on Aug 15 (Windows

hosts only)

 Proportion

Correctly Classified Instances 9 100%

Incorrectly Classified Instances 0 0%

Kappa statistic 1

Mean absolute error 0.1218

Root mean squared error 0.2078

Relative absolute error 108.60%

Root relative squared error 62.42%

Total Number of Instances 9

Table 4.25 AD Tree confusion matrix using training dataset and validation dataset on Aug 15

(Windows hosts only)

Confusion Matrix

a b <-- classifies as

8 0 a = Host

0 1 b = NAT

The results of the last NAT detection experiment on the training dataset and the validation

dataset captured on the same date are shown in Table 4.26. It used datasets from Aug 17 with

half of the Kali hosts and half of the Windows hosts running. The generated decision tree by

the AD Tree classifier generated used three attributes: number of unique contacted IP

addresses, number of upload bytes and number of download bytes. The AD Tree classifier still

classified end hosts and the NAT device correctly, with an accuracy of 100%. The confusion

matrix is shown in Table 4.27.

Table 4.26 AD Tree results using training dataset and validation dataset on Aug 17 (half of

the Kali hosts and half of the Windows hosts running)

 Proportion

Correctly Classified Instances 9 100%

Incorrectly Classified Instances 0 0%

Kappa statistic 1

Mean absolute error 0.1306

Root mean squared error 0.1882

Relative absolute error 116.71%

Root relative squared error 56.52%

Total Number of Instances 9

Table 4.27 AD Tree confusion matrix using training dataset and validation dataset on Aug 17

(half of the Kali hosts and half of the Windows hosts running)

Confusion Matrix

a b
<-- classifies

as

8 0 a = Host

0 1 b = NAT

The above experiments used a training dataset and a validation dataset captured from different

interfaces on the same date. After those experiments, I performed NAT detection experiments

on a training dataset and a validation dataset captured on different dates with different hosts

running in order to study the impact of different operating systems on NAT detection and to

test the generalization of this approach.

Table 4.28 shows the results of AD Tree classification using the training dataset on Aug 02 and

the validation dataset on Aug 04. The decision tree generated contained only one attribute:

number of unique contacted IP addresses. The datasets of both dates were collected with all the

hosts running on the LAN. The NAT detection experiment on the training dataset and the

validation dataset from different dates performed worse than that on the training dataset and

the validation dataset from the same date, with an accuracy of 84%. The confusion matrix of

the classification results is shown in Table 4.29. The real NAT was detected, while three end

hosts were incorrectly classified as NAT devices. Different amounts of traffic in the training

datasets captured on different dates led to different behavioral models of NAT devices. Thus,

the end host instances with a large amount of traffic might be considered to have features of

NAT devices by the decision tree classifier. In addition, only one attribute was used in

generated decision tree might be another reason for the incorrect classification. Over all, this

NAT detection approach provides fairly accurate classification on the training dataset and the

validation dataset captured on different dates.

Table 4.28 AD Tree results using training dataset on Aug 02 and validation dataset on Aug

04

 Proportion

Correctly Classified Instances 16 84%

Incorrectly Classified

Instances
3 16%

Kappa statistic 0.3448

Mean absolute error 0.2766

Root mean squared error 0.3084

Relative absolute error 449.12%

Root relative squared error 135.68%

Total Number of Instances 19

Table 4.29 AD Tree confusion matrix using training dataset on Aug 02 and validation dataset

on Aug 04

Confusion Matrix

a b <-- classifies as

15 3 a = Host

0 1 b = NAT

The previous experiment was performed on the training dataset from Aug 02 and the validation

dataset from Aug 04. Table 4.30 shows the NAT detection results on the training dataset from

Aug 04 and the validation dataset from Aug 02, and Table 4.31 shows the corresponding

confusion matrix. The generated decision tree contained two attributes: number of download

bytes, and number of unique contacted IP addresses. The accuracy was relatively low: 57%.

The NAT device was detected; however, six out of 13 end hosts were incorrectly classified as

NAT devices.

Table 4.30 AD Tree results using training dataset on Aug 04 and validation dataset on Aug 02

 Proportion

Correctly Classified

Instances
8 57%

Incorrectly Classified

Instances
6 43%

Kappa statistic 0.1429

Mean absolute error 0.3456

Root mean squared error 0.4878

Relative absolute error 479.67%

Root relative squared error 182.65%

Total Number of Instances 14

Table 4.31 AD Tree confusion matrix using training dataset on Aug 04 and validation dataset

on Aug 02

Confusion Matrix

a b <-- classifies as

7 6 a = Host

0 1 b = NAT

The above two experiments were performed on a training dataset and a validation dataset from

different dates, but both of the datasets were with all the end hosts running. The following

experiment used the training dataset with half of the hosts running on one day and the validation

dataset with the other hosts running on another day. Table 4.32 shows the results on the training

dataset from Aug 14 with only Kali hosts running and on the validation dataset from Aug 15

with only Windows hosts running. The generated decision tree contained three attributes: the

number of download bytes, number of unique contacted IP addresses, and number of persistent

connections. The accuracy was unexpectedly high: 100%. Both the instance of class NAT and

the instances of class end host were classified correctly. The behavioral model built from the

dataset with only Kali hosts running perfectly classified the target dataset with only Windows

hosts running.

Table 4.32 AD Tree results using training dataset on Aug 14 (Kali hosts only) and validation

dataset on Aug 15 (Windows hosts only)

 Proportion

Correctly Classified Instances 9 100%

Incorrectly Classified Instances 0 0%

Kappa statistic 1

Mean absolute error 0.0619

Root mean squared error 0.1342

Relative absolute error 55.49%

Root relative squared error 40.29%

Total Number of Instances 9

Table 4.33 AD Tree confusion matrix using training dataset on Aug 14 (Kali hosts only) and

validation dataset on Aug 15 (Windows hosts only)

Confusion Matrix

a b <-- classifies as

8 0 a = Host

0 1 b = NAT

Then I used the dataset captured on Aug 15 with only Windows hosts running as the training

dataset and the dataset captured on Aug 14 with only Kali hosts running as the validation

dataset. The results are shown in Table 4.34, and corresponding confusion matrix is shown in

Table 4.35. The generated decision tree contained three attributes: number of unique contacted

IP addresses, number of unique user-agents, and number of upload bytes. The accuracy was as

little as 25%, with the NAT device and only one out of the seven end host instances classified

correctly. More than 85% of the instances from class end host were classified incorrectly. This

shows that the behavioral model built from the dataset with only Windows hosts running cannot

correctly classify the dataset with only Kali hosts running. The most probable cause is that

Windows hosts generated less traffic than Kali hosts did in one day due to the different

performance of automatic URL generation program on different operating systems, as is

described in Section 3.1.2.

Table 4.34 AD Tree results using training dataset on Aug 15 (Windows hosts only) and

validation dataset on Aug 14 (Kali hosts only)

 Proportion

Correctly Classified Instances 2 25%

Incorrectly Classified Instances 6 75%

Kappa statistic 0.04

Mean absolute error 0.6528

Root mean squared error 0.7253

Relative absolute error 517.92%

Root relative squared error 205.43%

Total Number of Instances 8

Table 4.35 AD Tree confusion matrix using training dataset on Aug 15 (Windows hosts only)

and validation dataset on Aug14 (Kali hosts only)

Confusion Matrix

a b <-- classifies as

1 6 a = Host

0 1 b = NAT

The next NAT detection experiment used the dataset captured on Aug 17 with half of the Kali

hosts and half of the Windows hosts running as the training dataset and the dataset captured on

Aug 02 with all the hosts running as the validation dataset. The results are shown in Table 4.36,

and corresponding confusion matrix is shown in Table 4.37. The decision tree generated by the

AD Tree classifier used three attributes: number of unique contacted IP addresses, number of

upload bytes, and number of download bytes. The decision tree built on the training dataset

with half of the hosts running correctly classified the NAT device as well as 11 out of 13 end

hosts in the validation dataset with all the hosts running, with an accuracy of 86%. Only two

end hosts in the validation dataset were classified incorrectly as NAT devices.

Table 4.36 AD Tree results using training dataset on Aug 17 (half of the Kali hosts and half of

the Windows hosts running) and validation dataset on Aug 02 (all the hosts running)

 Proportion

Correctly Classified Instances 12 86%

Incorrectly Classified
Instances

2 14%

Kappa statistic 0.44

Mean absolute error 0.157

Root mean squared error 0.2741

Relative absolute error 217.18%

Root relative squared error 102.68%

Total Number of Instances 14

Table 4.37 AD Tree confusion matrix using training dataset on Aug 17 (half of the Kali hosts

and half of the Windows hosts running) and validation dataset on Aug 02 (all the hosts running)

Confusion Matrix

a b
<-- classifies

as

11 2 a = Host

0 1 b = NAT

The following NAT detection experiment used the dataset captured on Aug 02 with all the

hosts running as the training dataset and the dataset captured on Aug 17 with half of the Kali

hosts and half of the Windows hosts running as the validation dataset. The results are shown in

Table 4.38, and corresponding confusion matrix is shown in Table 4.39. The decision tree

generated by the AD Tree classifier used a single attribute: number of unique contacted IP

addresses. It correctly classified the NAT device and all the end hosts in the validation dataset

with half of the hosts running, with an accuracy of 100%.

Table 4.38 AD Tree results using training dataset on Aug 02 (all the hosts running) and

validation dataset on Aug 17 (half of the Kali hosts and half of the Windows hosts running)

 Proportion

Correctly Classified Instances 9 100%

Incorrectly Classified
Instances

0 0%

Kappa statistic 1

Mean absolute error 0.239

Root mean squared error 0.2468

Relative absolute error 201.04%

Root relative squared error 74.75%

Total Number of Instances 9

Table 4.39 AD Tree confusion matrix using training dataset on Aug 02 (all the hosts running)

and validation dataset on Aug 17 (half of the Kali hosts and half of the Windows hosts running)

Confusion Matrix

a b
<-- classifies

as

8 0 a = Host

0 1 b = NAT

As summarized in the above experiments, NAT detection provides fairly good results when the

training dataset and the validation dataset were collected during the same period. However, its

accuracy varies widely from 25% to 100% on datasets captured on different dates. The

accuracy and attributes used in the decision are shown in Table 4.40. Among the eight attributes

provided in the datasets, five of them were used. Of the other three unused attributes, the

number of unique OSs and versions and the number of unique browsers and versions are

actually indicated in the attribute number of unique user-agents; and the number of sent HTTP

requests reveals the amount of traffic sent from a host, which is similar to the attribute number

of persistent connections. It can be concluded from the experimental results that these three

attributes have no or little impact on NAT detection. To effectively detect NAT devices, the

five attributes listed in Table 4.40 are required. The number of unique contacted IP addresses

was adopted by the AD tree classifier in every experiment, and the number of upload bytes and

the number of download bytes were used several times. In addition, it can be analyzed in Table

4.40 that the number of attributes and the kinds of attributes used in the decision tree do not

necessarily have an effect upon NAT detection accuracy.

Table 4.40 NAT detection accuracies and decision tree attributes on different training datasets

and validation datasets

No.
Training
dataset

Validation
dataset

Attributes used in the decision tree

Accur
acy

Number
of

unique
contacte

d IP
addresse

s

Number
of

unique
user-

agents

Number
of

persisten
t

connecti
ons

Number
of

upload
bytes

Number
of

downloa
d bytes

1
Aug 02-all

the host
Aug 04-all
the hosts

v 84%

2
Aug 04-all
the hosts

Aug 02-all
the hosts

v v 57%

3
Aug 14-Kali
hosts only

Aug 15-
Windows
hosts only

v v v 100%

4
Aug 15-

Windows
hosts only

Aug 14-
Kali hosts

only
v v v 25%

5
Aug17-half
of the hosts

Aug 02-all
the hosts

v v v 86%

6
Aug 02-all
the hosts

Aug17-half
of the hosts

v 100%

As is shown in Table 4.40, one of the experiments (No.4) with a low accuracy used the training

dataset with only Windows hosts running and the validation dataset with only Kali hosts

running, but another (No.2) used the training dataset captured on Aug 02 and the validation

dataset captured on Aug 04. Both of the datasets were collected when all the hosts were

running. Hence the hosts’ operating systems of the datasets do not necessarily have an effect

upon the accuracy. The reason for the variation of the accuracy lies in data sizes, as is shown

in Table 4.41. The common ground of the two experiments is that they both used a training

dataset and a validation dataset that were processed from the original datasets with a large

difference in data size. This does not necessarily lead to a low accuracy because the accuracies

of No.1 and No.3 remained high despite using the datasets processed from the datasets with a

large difference in data size. Hence the disparity between datasets’ sizes can lead to uncertain

accuracy. The other two experiments, No.5 and No.6, had a good performance on accuracy

using datasets with similar data sizes to be processed for the training dataset and the validation

dataset. To draw the conclusion that the accuracy of NAT detection is steadily high when it

uses a training dataset and a validation dataset that are processed from datasets of similar sizes,

more experiments are needed.

Table 4.41 Data size of datasets used in NAT detection experiments

Date
Total data size

(GB)

Aug 02-all the host 44

Aug 04-all the hosts 110

Aug 14-Kali hosts only 42

Aug 15-Windows hosts only 13

Aug17-half of the hosts 32

To verify the above theory, I chose datasets captured on Aug 02 (44 GB) and datasets captured

on Aug 14 (42 GB) for NAT detection. The datasets from these two dates had the similar sizes,

and consequently the NAT detection accuracy using one of the datasets as the training dataset

and another as the validation dataset should be steadily high. Results using the training dataset

captured on Aug 02 and the validation dataset captured on Aug 14 are shown in Table 4.42,

with an accuracy of 100%. Results of using the training dataset captured on Aug 14 and the

validation dataset captured on Aug 02 are shown in Table 4.43, with an accuracy of 93%. These

two additional NAT detection experiments along with No.5 and No.6 in Table 4.40 verify the

finding that the accuracy of NAT detection stays high when the training dataset and the

validation dataset are processed from datasets of similar sizes. To detect NAT devices on the

network, selecting a training dataset of the similar size to the target dataset contributes to a high

accuracy.

Table 4.42 AD Tree results using training dataset on Aug 02 (all hosts running) and validation

dataset on Aug 14 (Kali hosts only)

 Proportion

Correctly Classified Instances 8 100%

Incorrectly Classified Instances 0 0%

Kappa statistic 1

Mean absolute error 0.2417

Root mean squared error 0.2502

Relative absolute error 182.43%

Root relative squared error 71.46%

Total Number of Instances 8

Table 4.43 AD Tree results using training dataset on Aug 14 (Kali hosts only) and validation

dataset on Aug 02 (all hosts running)

 Proportion

Correctly Classified Instances 13 93%

Incorrectly Classified Instances 1 7.14%

Kappa statistic 1

Mean absolute error 0.6316

Root mean squared error 0.0929

Relative absolute error 128.95%

Root relative squared error 82.19%

Total Number of Instances 14

4.3 Host identification experiments

Our experiment in this phase was implemented with the Python programming language.

Datasets with packets separated by connection were processed with Tshark as presented in

Section 3.3. This software then processed the dataset through the linear regression algorithm,

and then compared the lines generated to identify hosts as mentioned above. We applied the

linear-model package from Scikit-learn (sklearn) to implement least squares linear regression.

sklearn is a free software ML library provided for the Python language. Its dependencies are

NumPy and SciPy, and they are also Python libraries.

4.3.1 Evaluation criteria

Each connection from the dataset was marked with a pair of (, 0), where is the slope and

0 is the value of the point when the generated line crosses the axis. Connections with

same sets of (, 0), or similar enough sets (method of comparing distance with threshold in

section 3.3) were considered to belong to the same host. From datasets captured on the LAN

interface, packets passed through the NAT device were matched by connection with original

packets directly sent from the end hosts. That is, host identification determines if several

connections are associated with the same end host or not. In this way, evaluation criteria work

in two ways. The first method evaluates whether the connections considered to belong to the

same host by the program are really sent from the same host (evaluation method A). The second

method evaluates whether original connections from the same host are identified to belong to

the same hosts (might be several hosts) by the program (evaluation method B). These two

evaluation methods provide different benchmarks from different angles for my experiment.

They provide very different results. In my experiment, I applied these two evaluation methods

for host identification.

4.3.2 Host identification experiments and results

According to the TCP timestamp definition in RFC 1323 [6], the TCP timestamp value is at

least approximately proportional to real time. Hence the increment rate of timestamp, or the

slope should be positive in the research. No matter what the exact value of the slope is, a

negative slope is an incorrect result.

When re-engineering Georg Wicherski’s experiments, some computed slopes were negative.

To evaluate the parameters impacting the experiment results, I first conducted experiments

with a variable number of packets in one connection. Only connections with more than or equal

to the given number of packets were taken into consideration. Results are shown in Table 4.44.

The proportion of the number of hosts with a positive slope increased at first and then decreased

with the increase of the number of packets in one connection, peaking at 55 packets in one

connection (98.86%). And the proportion of positive slopes of all slopes increased from 50%

(30 packets in one connection) to 72.7% (55 packets in one connection). This trend indicates

that connections not containing enough packets led to calculation errors when generating the

artificial lines of timestamp value and system uptime using least-squares linear regression.

Also, this number should not be as large as 100 or 200, because applying too large a number

will filter out too many connections. As is shown in Table 4.44, using connections with more

than 200 packets, it can only detect 678 hosts in total, compared with 5515 hosts using

connections with more than 30 packets. So, in this research, I adopted 55 as the limit for the

number of packets in one connection.

Table 4.44 Number of packets in one connection (threshold = 2ms)

number of packets
in one connection

number of
slopes

negative
slope

number of
hosts

number of
hosts with
negative

slope

Proportion

30 22 11 5515 20 99.64%

40 18 10 4085 13 99.68%

50 14 5 3210 6 99.81%

55 11 3 2901 4 99.86%

60 9 3 2664 4 99.85%

100 6 3 1547 3 99.81%

200 2 1 678 2 99.71%

The following experiment filtered out connections with fewer than 55 packets and tested on

different threshold values ���� (limit values to decide if two lines are close enough).

Threshold values varied from 2 ms to 600 ms. All the other parameters were settled as in Georg

Wicherski’s experiments [5]. Results are shown in Table 4.45. Accuracy rose from 13% at

threshold value 2 ms to 23% at threshold value 600 ms. In addition, the number of detected

hosts with negative slopes (those with errors) decreased from 4 (threshold value 2 ms to 50 ms)

to 0 (threshold value 100 ms to 600 ms). Although the accuracy increased to a certain degree

with the increase of the threshold value, it was still below expectations. Other experiments were

performed to explore the reasons for this and improve the research.

Table 4.45 Results on original method

Threshold(ms)/Number
of packets in one

connection
2/55 5/55 10/55 20/55 50/55

100/5
5

200/5
5

400/5
5

600/5
5

Number of a 11 10 9 8 6 5 3 2 2

Number of hosts with
negative slopes 4 4 4 4 4 0 0 0 0

Number of hosts 3110 2999 2872 2691 2341 1949 1568 1247 1089

Number of negative
slopes 3 2 2 2 1 0 0 0 0

Accuracy 13% 14% 14% 15% 16% 18% 19% 22% 23%

After experimenting on the number of packets in one connection and different threshold values,

I adopted an improved calculation method for the distance between two lines and kept the other

parameters the same. Experimental results are shown in Table 4.46. The change in the number

of negative slopes and the number of hosts with negative slopes were the same as those of the

previous experiment. Accuracy increased to a greater extend compared with that in the

experiment using the original distance calculation method, from 14% at threshold value 2 ms

to 36% at threshold value 600 ms. The new distance method improved the accuracy more when

the threshold value was larger.

Table 4.46 Results on improved distance between two lines calculation method

Threshold(ms)/Number of
packets in one connection

2/55 5/55 10/55 20/55 50/55
100/5

5
200/5

5
400/5

5
600/5

5

Number of a 11 10 9 8 6 5 3 2 2

Number of hosts with
negative slopes

4 4 4 4 4 0 0 0 0

Number of hosts 2902 2679 2399 2060 1554 1237 965 731 639

Number of negative slopes 3 2 2 2 1 0 0 0 0

Accuracy 14% 15% 16% 16% 19% 22% 29% 34% 36%

The following experiment had the same parameters as the previous one but adopted an

improved method for flow separation. The results are shown in Table 4.47. This method

eliminated negative slopes no matter the threshold value. The accuracy in this experiment also

improved distinctly on the whole, the accuracy varied from 34% at threshold value 2 ms

(compared with the lowest accuracy 14% in Table 4.46) to 42% at threshold value 100 ms

(compared with the highest accuracy 36% in Table 4.46). The accuracy peaked at the threshold

value 100 ms and fluctuated around 40% as the threshold value increased. From both sides, the

new flow separation method contributed significantly to host identification.

Table 4.47 Results on improved flow separation method and improved distance calculation

method

Threshold/Number of
packets in one

connection
2/55 5/55 10/55 20/55 50/55 100/55 200/55 400/55 600/55

Number of a 1 1 1 1 1 1 1 1 1

Number of hosts with
minus slopes

0 0 0 0 0 0 0 0 0

Number of hosts 90 88 83 80 72 65 52 43 40

Number of minus
slopes

0 0 0 0 0 0 0 0 0

Accuracy 34% 34% 38% 38% 39% 42% 35% 40% 35%

The last experiment differed from the others in its evaluation criteria. It used the evaluation

method B mentioned in Section 4.3.1 to judge if original connections from the same host were

identified as belonging to the same host. Results are shown in Table 4.48. All the parameters

remained the same as those in the experiment in Table 4.47.

Table 4.48 Results on improved flow separation method and improved distance calculation

method and new evaluation method

Threshold/Number of
packets in one

connection
2/55 5/55 10/55 20/55 50/55 100/55 200/55 400/55 600/55

Number of a 1 1 1 1 1 1 1 1 1

Number of hosts with
minus slopes

0 0 0 0 0 0 0 0 0

Number of hosts 90 88 83 80 72 65 52 43 40

Number of minus
slopes

0 0 0 0 0 0 0 0 0

Accuracy 100% 100% 100% 100% 100% 100% 100% 100% 100%

The most obvious improvement was that the accuracy was 100% regardless of the value of

threshold. That is, even though connections sent from one host were detected as sent from

several different end hosts, as the results of evaluation method A in Table 4.47 reveal, results

under the evaluation method B reflect that connections detected as from the same host were

indeed sent from the same host.

Table 4.49 Host identification accuracy comparison with different parameters

threshold/number of packets in
one connection

2/55 5/55 10/55 20/55 50/55
100/5

5
200/5

5
400/5

5
600/5

5
Distance

Connecti
on

separatio
n

Evaluation

paper paper
host ->

connection
(A)

13% 14% 14% 15% 16% 18% 19% 22% 23%

proporti
onal

paper
host ->

connection
(A)

14% 15% 16% 16% 19% 22% 29% 34% 36%

proporti
onal

flow
host ->

connection
(A)

34% 34% 38% 38% 39% 42% 35% 40% 35%

proporti
onal

flow
connection
-> host (B)

100% 100% 100% 100% 100% 100% 100% 100% 100%

Accuracy comparisons of all the above experiments are shown in Table 4.49, and the

corresponding line chart is shown in Figure 4.2. Parameters labeled as paper are from Georg

Wicherski’s work [5]. The first three rows results were evaluated by criterion host to

connection (Evaluation method A). The accuracy of these three rows were relatively low

compared with that of the last row using the evaluation method from connection to host

(Evaluation method B). But each improved parameter contributes to a higher accuracy. The

improvement of accuracy from the third experiment to the second experiment was greater than

the improvement of the accuracy from the second experiment to the first one. That is, the

improved flow separation method contributes more to the accuracy than the proportional

distance calculation method does. As is shown in Figure 4.2, the accuracy of experiments using

the old connection separation method first increased slowly with the increment of threshold

value, and then it rose rapidly at threshold value 100 ms to threshold value 200 ms, followed

by a mild increase. The accuracy increased first and then fluctuated as the threshold value

raised. While the accuracy of the fourth experiment remained very high regardless of different

threshold values as discussed in the previous paragraph.

Figure 4.2 Host identification accuracy

4.3.3 Host identification experiments using datasets from NAT
detection

The host identification approach was then applied on other datasets captured on different dates:

Aug 02, Aug 14, Aug 15, and Aug 17. Each experiment was evaluated by the two evaluation

methods mentioned above. Table 4.50 shows the results on the dataset captured on Aug 02

using evaluation method A. The value of number of packets in one connection used in this and

the following experiments was 55. Hosts of both operating systems were detected. Since only

one slope was detected regardless of different threshold values, and according to the fact that

’s are determined by operating systems, the difference of the TCP timestamp values’

increment rates ’s between the two operating systems was smaller than any threshold value

used in this research. In other words, the increment rates of TCP timestamp values on Kali

hosts and Windows hosts can be considered as the same in this research. The number of

detected hosts decreased from 41 at the threshold value 2 ms to 26 at the threshold value 600

ms. It was much larger than the number of actual hosts (16) regardless of different threshold

values. The accuracy increased slowly from 65% to 74% as the threshold value increased. The

accuracy of 65% at threshold value 2 ms means that on average 65% connections sent from the

same host were identified to belong to the same host by the program.

Table 4.50 Host identification results using evaluation method A on dataset from Aug 02

Threshold/Number of
packets in one

connection
2/55 5/55 10/55 20/55 50/55 100/55 200/55 400/55 600/55

Number of ’s 1 1 1 1 1 1 1 1 1

Number of hosts with
minus slopes

0 0 0 0 0 0 0 0 0

Number of hosts 41 41 41 39 37 35 31 28 26

Number of minus
slopes

0 0 0 0 0 0 0 0 0

Accuracy 65% 65% 65% 65% 65% 65% 65% 72% 74%

The results on the same dataset using evaluation method B are shown in Table 4.51. The results

of detected hosts and slopes were the same as in the experiment using evaluation method A.

The host identification accuracy maintained 100% regardless of different threshold values. This

reveals that all the original connections sent from the same host were identified to belong to

same hosts (can be more than one host) by the program. Although the program detected more

hosts than the number of actual end hosts behind the NAT device, connections of any detected

host were indeed sent from the same end host according to the dataset collected on the internal

interface on the LAN.

Table 4.51 Host identification results using evaluation method B on dataset from Aug 02

Threshold/Number of
packets in one

connection
2/55 5/55 10/55 20/55 50/55

100/5
5

200/5
5

400/5
5

600/5
5

Number of ’s 1 1 1 1 1 1 1 1 1

Number of hosts with
minus slopes

0 0 0 0 0 0 0 0 0

Number of hosts 41 41 41 39 37 35 31 28 26

Number of minus
slopes

0 0 0 0 0 0 0 0 0

Accuracy 100% 100% 100% 100% 100% 100% 100% 100% 100%

Table 4.52 shows the host identification results on the dataset captured on Aug 14 with only

Kali hosts running using evaluation method A. Only one was detected, which was still

consistent with the principle that ’s are determined by operating systems. The number of

detected hosts decreased from 24 at the threshold value 2 ms to 10 at the threshold value 600

ms. The number of detected hosts at the threshold value 2 ms tripled the actual number of hosts

running on this date (eight). The accuracy increased obviously as the threshold value increased.

Table 4.52 Host identification results using evaluation method A on dataset from Aug 14

Threshold/Nu
mber of

packets in one
connection

2/55 5/55 10/55 20/55 50/55 100/55 200/55 400/55 600/55

Number of ’s 1 1 1 1 1 1 1 1 1

Number of
hosts with

minus slopes
0 0 0 0 0 0 0 0 0

Number of
hosts

24 24 22 21 19 17 14 10 10

Number of
minus slopes

0 0 0 0 0 0 0 0 0

Accuracy 61% 62% 62% 62% 70% 87% 88% 88% 89%

Host identification results on the dataset captured on Aug 14 with only Kali hosts running using

evaluation method B are shown in Table 4.53. The accuracy remained 100% regardless of

different threshold values. This still indicates that connections of any detected host were

actually sent from the same end host.

Table 4.53 Host identification results using evaluation method B on dataset from Aug 14

Threshold/Number
of packets in one

connection
2/55 5/55 10/55 20/55 50/55 100/55 200/55 400/55 600/55

Number of ’s 1 1 1 1 1 1 1 1 1

Number of hosts
with minus slopes

0 0 0 0 0 0 0 0 0

Number of hosts 24 24 22 21 19 17 14 10 10

Number of minus
slopes

0 0 0 0 0 0 0 0 0

Accuracy 100% 100% 100% 100% 100% 100% 100% 100% 100%

Host identification results on another dataset captured on Aug 15 with only Windows hosts

running using evaluation method A are shown in Table 4.54. Only one was detected on this

dataset as in the previous experiment using evaluation method A. The number of detected hosts

decreased from 11 at the threshold value 2 ms to 9 at the threshold value 600 ms. The number

of detected hosts at the threshold value 2 ms was quite similar to the actual number of hosts

running on that date (eight). The accuracy increased more slowly as the threshold value

increased compared with that in the previous experiment, and it maintained 62% while the

threshold value increased from 2 ms to 400 ms.

Table 4.54 Host identification results using evaluation method A on dataset from Aug 15

Threshold/Number
of packets in one

connection
2/55 5/55 10/55 20/55 50/55 100/55 200/55 400/55 600/55

Number of ’s 1 1 1 1 1 1 1 1 1

Number of hosts
with minus slopes

0 0 0 0 0 0 0 0 0

Number of hosts 11 11 11 11 10 10 10 10 9

Number of minus
slopes

0 0 0 0 0 0 0 0 0

Accuracy 62% 62% 62% 62% 62% 62% 62% 62% 65%

Table 4.55 shows results on the dataset captured on Aug 15 using evaluation method B. The

accuracy still maintained 100% regardless of the threshold values. The program detected a few

more hosts than the number of actual end hosts behind the NAT device, but still, connections

of any detected host were actually sent from the same end host in the dataset captured from the

internal interface.

Table 4.55 Host identification results using evaluation method B on dataset from Aug 15

Threshold/Number
of packets in one

connection
2/55 5/55 10/55 20/55 50/55 100/55 200/55 400/55 600/55

Number of ’s 1 1 1 1 1 1 1 1 1

Number of hosts
with minus slopes

0 0 0 0 0 0 0 0 0

Number of hosts 11 11 11 11 10 10 10 10 9

Number of minus
slopes

0 0 0 0 0 0 0 0 0

Accuracy 100% 100% 100% 100% 100% 100% 100% 100% 100%

The results of the next host identification experiment on another dataset captured on Aug 17

with half of the Windows hosts and half of the Kali hosts running using evaluation method A

are shown in Table 4.56. One is detected, and the number of detected hosts decreased from

64 to 36 when the threshold value increased from 2 ms to 600 ms. The program detected much

more hosts than the actual number of end hosts (eight) behind the NAT device. The accuracy

increased obviously from 45% to 74% as the threshold value raised.

Table 4.56 Host identification results using evaluation method A on dataset from Aug 17

Threshold/Number of
packets in one

connection
2/55 5/55 10/55 20/55 50/55

100/5
5

200/5
5

400/5
5

600/5
5

Number of ’s 1 1 1 1 1 1 1 1 1

Number of hosts with
minus slopes

0 0 0 0 0 0 0 0 0

Number of hosts 64 64 62 60 53 50 44 40 36

Number of minus
slopes

0 0 0 0 0 0 0 0 0

Accuracy 45% 45% 53% 68% 69% 73% 73% 74% 74%

Table 4.57 shows results on the dataset captured on Aug 17 using evaluation method B. The

accuracy still maintained 100% regardless of different threshold values. The program detected

much more hosts than the number of actual end hosts behind the NAT device, but the

connections of any detected host were sent from the same end host in the dataset collected on

the internal interface.

Table 4.57 Host identification results using evaluation method B on dataset from Aug 17

Threshold/Number of
packets in one

connection
2/55 5/55 10/55 20/55 50/55 100/55 200/55 400/55 600/55

Number of ’s 1 1 1 1 1 1 1 1 1

Number of hosts with
minus slopes

0 0 0 0 0 0 0 0 0

Number of hosts 64 64 62 60 53 50 44 40 36

Number of minus
slopes

0 0 0 0 0 0 0 0 0

Accuracy 100% 100% 100% 100% 100% 100% 100% 100% 100%

4.4 Host identification on datasets from NAT detection

The previous two sections describe NAT detection and host identification experiments

separately. This section describes host identification experiments using datasets from the NAT

detection stage. Datasets with only HTTP packets were extracted to get TCP attributes like

TCP timestamp values for host identification. HTTP packets only account for a small part of

TCP packets: about 2% to 3% on average in the datasets I collected. Hence the number of

packets in one connection in these datasets were smaller than that of datasets used in Section

4.3. The limit for the number of packets in one connection I used in section was 10 instead of

55 in the previous section.

Table 4.58 shows the host identification results using evaluation method A on dataset from the

NAT detection stage captured on Aug 02. Only one slope was detected as in the experiment

using datasets directly extracted from the original dataset captured on Aug 02. The number of

detected hosts was five at threshold value 2 ms, which was far fewer than that in the experiment

on the previous dataset: 41. It was also smaller than the actual number of hosts running on that

date: 16. The performance on host identification accuracy was unsatisfying. The number of

hosts and the accuracy hardly changed as the threshold value increased.

Table 4.58 Host identification results using evaluation method A on Aug 02 dataset from the

NAT detection

Threshold/Number of
packets in one

connection
2/10 5/10 10/10 20/10 50/10 100/10 200/10 400/10 600/10

Number of ’s 1 1 1 1 1 1 1 1 1

Number of hosts with
minus slopes

0 0 0 0 0 0 0 0 0

Number of hosts 5 5 5 5 5 5 5 5 4

Number of minus
slopes

0 0 0 0 0 0 0 0 0

Accuracy 27% 27% 27% 27% 27% 27% 27% 27% 40%

The host identification results using evaluation method B on Aug 02 dataset from the NAT

detection stage are shown in Table 4.59. Despite of a fewer number of detected hosts and the

lower accuracy using evaluation method A compared with those in the experiment on the

original dataset, connections of any detected host were actually sent from the same end host.

Table 4.59 Host identification results using evaluation method B on Aug 02 dataset from the

NAT detection

Threshold/Number of
packets in one

connection
2/10 5/10 10/10 20/10 50/10 100/10 200/10 400/10 600/10

Number of ’s 1 1 1 1 1 1 1 1 1

Number of hosts with
minus slopes

0 0 0 0 0 0 0 0 0

Number of hosts 5 5 5 5 5 5 5 5 4

Number of minus
slopes

0 0 0 0 0 0 0 0 0

Accuracy 100% 100% 100% 100% 100% 100% 100% 100% 100%

Results of the experiment on the NAT detection dataset from Aug 04 using evaluation method

A are shown in Table 4.60. The number of detected slopes was one. It detected 18 to 21 hosts

at different threshold values. It was lower than the actual number of hosts running and the

number of detected hosts on the dataset directly processed from the original dataset captured

on Aug 04 (40 to 90 hosts). The host identification accuracy (17% to 22%) was lower than that

of the experiment using the original dataset (34% to 42%).

Table 4.60 Host identification results using evaluation method A on Aug 04 dataset from the

NAT detection

Threshold/Number
of packets in one

connection
2/55 5/55 10/55 20/55 50/55 100/55 200/55 400/55 600/55

Number of a 1 1 1 1 1 1 1 1 1

Number of hosts
with minus slopes

0 0 0 0 0 0 0 0 0

Number of hosts 21 21 21 21 21 20 19 19 18

Number of minus
slopes

0 0 0 0 0 0 0 0 0

Accuracy 17% 17% 17% 17% 17% 17% 19% 19% 22%

The host identification results B on the dataset from the NAT detection stage captured on Aug

04 using evaluation method are shown in Table 4.61. The accuracy remained 100%. Still,

connections of any detected host were actually sent from the same end host.

Table 4.61 Host identification results using evaluation method B on Aug 04 dataset from the

NAT detection

Threshold/Number
of packets in one

connection
2/55 5/55 10/55 20/55 50/55 100/55 200/55 400/55 600/55

Number of a 1 1 1 1 1 1 1 1 1

Number of hosts
with minus slopes

0 0 0 0 0 0 0 0 0

Number of hosts 21 21 21 21 21 20 19 19 18

Number of minus
slopes

0 0 0 0 0 0 0 0 0

Accuracy 100% 100% 100% 100% 100% 100% 100% 100% 100%

Results of the experiment on the NAT detection dataset captured on Aug 14 using evaluation

method A are shown in Table 4.62. The number of detected slopes was one. It detected at

most five hosts. It was lower than the actual number of hosts running or the number of detected

hosts on the dataset directly processed from the original dataset captured on Aug 14. The host

identification accuracy (59% to 74%) was lower than that of the experiment using the original

dataset (61% to 89%).

Table 4.62 Host identification results using evaluation method A on Aug 14 dataset from the

NAT detection

Threshold/Number of
packets in one

connection
2/10 5/10 10/10 20/10 50/10

100/1
0

200/1
0

400/1
0

600/1
0

Number of ’s 1 1 1 1 1 1 1 1 1

Number of hosts with
minus slopes

0 0 0 0 0 0 0 0 0

Number of hosts 5 5 5 5 5 5 5 4 4

Number of minus
slopes

0 0 0 0 0 0 0 0 0

Accuracy 59% 59% 59% 59% 59% 59% 59% 74% 74%

 The host identification results using evaluation method B on Aug 14 dataset from the NAT

detection stage are shown in Table 4.63. Similar to the above experiments on the datasets from

NAT identification stage using evaluation method B, the accuracy remained 100%. That is, any

detected host were actually sent from the same end host.

Table 4.63 Host identification results using evaluation method B on Aug 14 dataset from the

NAT detection

Threshold/Number of
packets in one

connection
2/10 5/10 10/10 20/10 50/10 100/10 200/10 400/10 600/10

Number of ’s 1 1 1 1 1 1 1 1 1

Number of hosts with
minus slopes

0 0 0 0 0 0 0 0 0

Number of hosts 5 5 5 5 5 5 5 4 4

Number of minus
slopes

0 0 0 0 0 0 0 0 0

Accuracy 100% 100% 100% 100% 100% 100% 100% 100% 100%

Table 4.64 shows the host identification results on the dataset from NAT detection stage

captured on Aug 15 using evaluation method A. It detected one and five hosts regardless of

different threshold values. The host identification accuracy was 49%, lower than that of the

experiment on the original dataset from Aug 15 (62% or 65%). The number of detected hosts

was five, smaller than the number of actual hosts running: eight.

Table 4.64 Host identification results using evaluation method A on Aug 15 dataset from the

NAT detection

Threshold/Number of
packets in one

connection
2/10 5/10 10/10 20/10 50/10

100/1
0

200/1
0

400/1
0

600/1
0

Number of ’s 1 1 1 1 1 1 1 1 1

Number of hosts with
minus slopes

0 0 0 0 0 0 0 0 0

Number of hosts 5 5 5 5 5 5 5 5 5

Number of minus
slopes

0 0 0 0 0 0 0 0 0

Accuracy 49% 49% 49% 49% 49% 49% 49% 49% 49%

Table 4.65 shows the host identification results on the dataset from NAT detection stage

captured on Aug 15 using evaluation method B. The accuracy was 100% as in the above

experiments using evaluation method B. Any detected host were actually sent from the same

end host.

Table 4.65 Host identification results using evaluation method B on Aug 15 dataset from the

NAT detection

Threshold/Number of
packets in one

connection
2/10 5/10 10/10 20/10 50/10 100/10 200/10 400/10 600/10

Number of ’s 1 1 1 1 1 1 1 1 1

Number of hosts with
minus slopes

0 0 0 0 0 0 0 0 0

Number of hosts 5 5 5 5 5 5 5 5 5

Number of minus
slopes

0 0 0 0 0 0 0 0 0

Accuracy 100% 100% 100% 100% 100% 100% 100% 100% 100%

Table 4.66 shows the host identification results on the dataset from NAT detection stage

captured on Aug 15 using evaluation method A. One was detected as in the experiments on

other datasets. The number of detected hosts was five regardless of different threshold values.

The host identification accuracy was 49%, lower than the accuracy of the experiment on the

original dataset captured on Aug 17 (45% to 74%) at most of the threshold values.

Table 4.66 Host identification results using evaluation method A on Aug 17 dataset from the

NAT detection

Threshold/Number of
packets in one

connection
2/10 5/10 10/10 20/10 50/10 100/10 200/10 400/10 600/10

Number of ’s 1 1 1 1 1 1 1 1 1

Number of hosts with
minus slopes

0 0 0 0 0 0 0 0 0

Number of hosts 5 5 5 5 5 5 5 5 5

Number of minus
slopes

0 0 0 0 0 0 0 0 0

Accuracy 49% 49% 49% 49% 49% 49% 49% 49% 49%

Table 4.67 shows the host identification results on the dataset from NAT detection stage

captured on Aug 17 using evaluation method B. The accuracy was 100% as in the above

experiments using evaluation method B. Any detected host were actually sent from the same

end host.

Table 4.67 Host identification results using evaluation method B on Aug 17 dataset from the

NAT detection

Threshold/Number of
packets in one

connection
2/10 5/10 10/10 20/10 50/10 100/10 200/10 400/10 600/10

Number of ’s 1 1 1 1 1 1 1 1 1

Number of hosts with
minus slopes

0 0 0 0 0 0 0 0 0

Number of hosts 5 5 5 5 5 5 5 5 5

Number of minus
slopes

0 0 0 0 0 0 0 0 0

Accuracy 100% 100% 100% 100% 100% 100% 100% 100% 100%

4.5 Summary

This chapter describes and evaluates three kinds of experiments I did on NAT detection, host

identification, and NAT detection and host identification (host identification using datasets

from NAT detection) on five days’ datasets. In NAT detection experiments, AD Tree classifier

stands out from the other two classifiers: SVM and J48, with an excellent performance on

accuracy and practical detection on the real NAT device. Five attributes out of eight are

suggested for effective NAT detection through experimental results. And an interesting finding

about the NAT detection in the experiments is that the accuracy of NAT detection stayed high

when the training dataset and the validation dataset were processed from datasets of similar

sizes. Hence in order to accurately and effectively detect NAT devices on the network, a

training dataset with the similar size to the target dataset should be selected.

 For the host identification experiments, two evaluation methods were adopted. The host

identification accuracy increased significantly as the change of four parameters. Among the

four parameters, the improved connection separation method contributed the most to the host

identification accuracy. At last, host identification experiments on datasets from the NAT

detection stage are introduced. Host identification on the datasets from NAT detection stage

detected few hosts. And the accuracy of these experiments was generally lower than that in the

experiments using the original datasets in Section 4.3. Except for a fewer number of packets in

the dataset, this also might because that the deficiency of none HTTP packets in one TCP

connection increases the chance of generating an inaccurate artificial line of TCP timestamp

values and the system uptime values. Hence it is suggested to employ the NAT detection and

the host identification separately as described in Section 4.2 and Section 4.3 on the target

datasets to get a good performance.

Chapter 5 Conclusion

The main objectives of this thesis are: a) detecting NAT devices out of end hosts through

supervised machine learning algorithms on HTTP attributes, and b) identifying end hosts

behind the detected NAT device based on TCP timestamp values and system uptime of TCP

packets. The research was performed on the datasets collected in our lab. Specially, this thesis

provides an approach to combine the above two stages and improve their performances. Thus,

this research can be used as a forensic analysis tool to analyze cybersecurity or other incidents

that could occur on an organization’s network from unknown NAT devices. Furthermore, the

proposed framework only employs attributes from Transport layer and Application layer of a

network, it can be employed on any Data Link layer and Network layer protocols.

The NAT detection employs the artificial NAT generation method proposed in Komˇarek’s

research to address the problem of lacking labelled datasets. Among the three different machine

learning classifiers applied for NAT detection, the AD Tree classifier stands out with an

excellent performance on accuracy and practical detection on the real NAT device. Time

complexity and accuracy comparison of these three classifiers are shown in Table 5.1. This

thesis also filters out the attributes with no influence on NAT detection. This left me with the

most effective five attributes for NAT detection. The reduction of attributes improves the

efficiency of preprocessing datasets for the machine learning classification. The NAT detection

approach has been applied on five days’ datasets collected in our lab, and a high performance

was achieved on the experiments performed, where most of the accuracies observed were as

high as 100%. In addition to the experiments where training and validation (test) datasets were

captured on the same day, this NAT detection solution has also been employed in the

experiments where the training dataset and the validation dataset were captured on different

dates with different hosts running. This enabled me to test whether the proposed solution could

generalize well over different hosts and traffic captured at different times / dates. Based on the

difference of the accuracy, I concluded and verified an interesting finding that the NAT

detection accuracy stays high when the training dataset and the validation dataset are processed

from datasets of similar sizes. This discovery helps in selecting an appropriate training dataset

according to the size of the target dataset in order to achieve an accurate classification.

Table 5.1 Comparison of three classifiers

ML Algorithm Time Complexity Best Accuracy on validation datasets Real NAT detection

SVM O() 92.86% no

C4.5 O() 92.86% no

AD Tree O() 100% yes

The host identification in this research is based on the fact that TCP timestamp values must be

at least approximately proportional to real time. Host identification works in the way of

generating artificial lines of TCP timestamp values and system uptime values by each

connection and comparing the distance of the generated lines in a Python program. Connections

are identified as belonging to the same host as long as the distance between two lines is smaller

than a threshold value δboot. Two evaluation methods were adopted in host identification in

terms of a) evaluating whether the connections that are identified to belong to the same host by

the program are really sent from the same host, and b) evaluating whether original connections

from the same host are identified to belong to the same hosts (might be several hosts) by the

program. The host identification experiments were performed on the datasets processed from

the NAT detection stage and the datasets processed directly from the original datasets. A series

of experiments were performed in order to get the appropriate parameters for host

identification, such as the limit for the number of packets in one connection, the distance

calculation method between two lines, the connection separation method, and the different

threshold values. The accuracy of experiments with those parameters improved from the

accuracy of experiments with the settings in Georg’s research on our datasets. The experiments

on the datasets directly processed from the original datasets detected more hosts than the

number of actual hosts in the datasets. The accuracy of these experiments using evaluation

method A varied on different datasets from 34% to 89%. This reveals that a number of

connections from the same host were detected as belonging to more than one host. While

experiments on the datasets processed from the NAT detection stage detected fewer hosts than

the number of actual hosts. The accuracy of them was lower than that of experiments on the

corresponding datasets directly processed from the original datasets. Some of the hosts were

not detected on those datasets. It is suggested to adopt the datasets processed from the original

datasets for host identification, that is, performing the NAT detection process and the host

identification process separately. The accuracy of experiments on both kinds of datasets using

evaluation method B remained 100%, revealing that connections of any detected host were

actually sent from the same end host. Under the two evaluation criteria, the host identification

approach identifies connections sent from the same host as sent from several hosts, but the

connections of any identified host were indeed belonging to the same host. Since host

identification behind a NAT device is aimed at identifying hosts with cybersecurity risks in

order to manage them (such as blocking the malicious end hosts), the problem of identifying

connections sent from the same host as sent from several hosts can result in blocking more than

one detected host for only one actual host. This increases the workload but has no influence on

accurately managing malicious hosts.

There are several lines of research arising from this research that could be pursued in the future:

I. The observation regarding the observation about the effect of dataset sizes on the NAT

detection accuracy can be further verified by experiments on more datasets.

II. More experiments can be performed to find out the solution to improve the accuracy of

host identification under evaluation method A.

III. More values between 100 ms to 600 ms can be tested to learn more about the influence

of threshold values on host identification.

M. Smith and R. Hunt, "Network security using NAT and NAPT," in 10th IEEE
International Conference on Networks (ICON 2002). Towards Network Superiority (Cat.
No.02EX588), Singapore, 2002, pp. 355-360, Singapore.

C. Engineers, "Network Address Translation (NAT) FAQ," 10 November 2014. [Online].
Available: https://www.cisco.com/c/en/us/support/docs/ip/network-address-translation-
nat/26704-nat-faq-00.html#gen-nat. [Accessed 20 June 2018].

T. Komárek, M. Grill and T. Pevný, "Passive NAT detection using HTTP access logs,"
in 2016 IEEE International Workshop on Information Forensics and Security (WIFS),
Abu Dhabi, 2016, pp. 1-6.

E. Bursztein, "Time has something to tell us about network address translation,"
November 2007. [Online]. Available: https://cdn.elie.net/static/files/time-has-something-
to-tell-us-about-network-address-translation/time-has-something-to-tell-us-about-
network-address-translation-paper.pdf. [Accessed May 2017].

G. Wicherski, F. Weingarten and U. Meyer, "IP agnostic real-time traffic filtering and
host identification using TCP timestamps," in 38th Annual IEEE Conference on Local
Computer Networks, Sydney, NSW, 2013, pp. 647-654.

V. Jacobson, R. Braden and D. Borman, "TCP Extensions for High Performance," May
1992. [Online]. Available: https://tools.ietf.org/html/rfc1323. [Accessed September
2017].

N. Vratonjic, K. Huguenin, V. Bindschaedler and J. Hubaux, "A Location-Privacy Threat
Stemming from the Use of Shared Public IP Addresses," in IEEE Transactions on Mobile
Computing, vol. 13, no. 11, pp. 2445-2457, Nov. 2014.

Y. Gokcen, V. A. Foroushani and A. N. Z. Heywood, "Can We Identify NAT Behavior
by Analyzing Traffic Flows?," in 2014 IEEE Security and Privacy Workshops, San Jose,
CA, 2014, pp. 132-139. doi: 10.1109/SPW.2014.28.

V. Krmicek, J. Vykopal and R. Krejci, "Netflow based system for NAT detection," in 5th
International student workshop on Emerging networking experiments and technologies,
2009, pp. 23-24.

SolarWinds, "What is Netflow?," SolarWinds, [Online]. Available:
 https://www.solarwinds.com/what-is-netflow. [Accessed June 2017].

S. AbtChristian, D. Baier and S. Petrović, "Passive Remote Source NAT Detection Using
Behavior Statistics Derived from NetFlow," in Emerging Management Mechanisms for
the Future Internet, 2013, pp 148-159.

N. Paxton and J. Mathews, "Identifying network packets across translational boundaries,"
in 10th IEEE International Conference on Collaborative Computing: Networking,
Applications and Worksharing, Miami, FL, 2014, pp. 523-530.

S. Mongkolluksamee, K. Fukuda and P. Pongpaibool, "Counting NATted hosts by
observing TCP/IP field behaviors," in 2012 IEEE International Conference on
Communications (ICC), Ottawa, ON, 2012, pp. 1265-1270.

A. Castiglione, A. De Santis, U. Fiore and F. Palmieri, "Device Tracking in Private
Networks via NAPT Log Analysis," in 2012 Sixth International Conference on
Innovative Mobile and Internet Services in Ubiquitous Computing, Palermo, 2012, pp.
603-608.

N. Vincenzo Verde, G. Ateniese, E. Gabrielli, Luigi Vincenzo Mancini and Angelo
Spognardi, "No NAT'd User left Behind: Fingerprinting Users behind NAT from
NetFlow Records alone," in 2014 IEEE 34th International Conference on Distributed
Computing Systems, 2014, pp. 218-227.

R. Weaver, "Visualizing and Modeling the Scanning Behavior of the Conficker Botnet
in the Presence of User and Network Activity," in IEEE Transactions on Information
Forensics and Security, vol. 10, no. 5, pp. 1039-1051, May 2015.

Wikipedia, "iMacros," Wikipedia, 2017. [Online]. Available:
 https://en.wikipedia.org/wiki/IMacros. [Accessed May 2017].

Wireshark, "Tshark," [Online]. Available:
https://www.wireshark.org/docs/man-pages/tshark.html. [Accessed June 2017].

M. A. Hearst, S. T. Dumais, E. Osuna, J. Platt and B. Scholkopf, "Support vector
machines," in IEEE Intelligent Systems and their Applications, vol. 13, no. 4, pp. 18-28,
July-Aug. 1998.

S. Ruggieri, "Efficient C4.5 [classification algorithm]," in IEEE Transactions on
Knowledge and Data Engineering, vol. 14, no. 2, pp. 438-444, March-April 2002.

L. Yuxun and X. Niuniu, "Improved ID3 algorithm," in 2010 3rd International
Conference on Computer Science and Information Technology, Chengdu, 2010, pp. 465-
468.

H. Sok, M. Chowdhury, M. Ooi, Y. Kuang and S. Demidenko, "Using the ADTree for
feature reduction through knowledge discovery," in 2013 IEEE International
Instrumentation and Measurement Technology Conference (I2MTC), Minneapolis, MN,
2013, pp. 1040-1044.

M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. Witten, "Weka 3: Data
Mining Software in Java," 2016. [Online]. Available:
 https://www.cs.waikato.ac.nz/ml/weka/. [Accessed October 2017].

