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Abstract 

This thesis explores NAT detection and host identification. The NAT detection approach is 

processed by supervised machine learning algorithms on HTTP attributes. Three classifiers are 

employed on training datasets labelled by artificial NAT generation method in NAT detection. 

This research demonstrates that AD Tree performs best in NAT detection and selects five 

effective attributes for it. AD Tree can detect NAT devices with an accuracy approximately of 

100% on five datasets. The impact of difference in sizes of datasets in NAT detection is also 

observed in this thesis. Host identification is based on TCP timestamp values and system 

uptime values of TCP packets. This research identifies end hosts behind a detected NAT device 

using an improved artificial line generation method and an improved line distance calculation 

method. It also provides a new evaluation method for host identification. These two tasks are 

combined in this research for forensic analysis in order to analyze cybersecurity incidents that 

could occur from unknown NAT devices in the incoming traffic to an organization.  
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Chapter 1 Introduction 

Network address translation (NAT) is a method that allows multiple end hosts of an entire 

private network to share one Internet-routable IP address of a NAT gateway [1]. Network 

address information in the IP header field of end hosts’ packets is modified by a NAT device 

into the IP address of the NAT gateway.  

 

Figure 1.1: NAT device receives packets from external network 

 

The illustration above shows how a NAT device works when a packet is sent from the Internet 

to a host in the internal network. When one NAT device receives a packet from hosts in the 

internal network, it alters the source IP address of the packet into its registered IP address before 

forwarding the packet on. NAT devices create NAT tables to help track all the connections 

through NAT devices and determine how to modify IP addresses of packets and whom to 

forward them to. Users from the Internet receive packets with the same source IP address sent 

from different hosts behind the NAT device and send back packets to that IP address.  

 

 
Figure 1.2:  NAT device sent back packets to external network 

 



When a NAT device receives a packet sent back from the Internet to hosts behind it, as is shown 

in the illustration above, it looks up the NAT table to modify the destination IP address (NAT 

device’s IP address) into the IP address of certain host from the internal network and then 

forwards it to that host. 

 

NAT plays an essential role in managing the IPv4 address exhaustion problem. It can get the 

most out of a single registered IP address. The size of the network behind a NAT gateway 

varies, and according to CISCO technology support, typical routing hardware can support at 

least thousands of NAT translations simultaneously [2]. Hence it is popular for both private 

home networks with several hosts and local area networks (LAN) of large institutions with 

multiple hosts.  

 

However, the wide deployment of NAT implementation brings a great security threat to 

Internet. NAT modifies the IP address information of packets, thus uncareful implementation 

can have serious consequences for networks. Unauthorized NAT devices which do not meet 

requirements of careful implementation on the Internet can be easily targeted by attackers. NAT 

gateways with multiple end hosts can result in more loss than normal hosts if controlled by 

hackers. The size and topology of end hosts behind a NAT gateway are unknown to users 

outside the private network. This also brings difficulty in the management of networks 

containing NAT gateways. Other users do not know whether unauthorized NAT gateways are 

end hosts or NAT devices.  

 

Even assuming that NAT devices have been distinguished from end hosts, aberrant behavior 

of a NAT device can be caused by one of the end hosts behind it. Simply blocking that IP 

address will impact others hosts in the internal network. To manage network traffic precisely, 

we need to distinguish the hosts behind one NAT gateway from packets with the same source 

IP address. 

 

Host identification behind a NAT device is certainly necessary for the sake of Internet security. 

NAT detection is also a requisite step of host identification. These two stages allow us to 

understand if a host on the Internet is a NAT device or not and identify hosts from its internal 

network if it is. In Toma ́s Komˇarek’s work, the NAT detection problem is addressed by 

behavior modeling [3]. A supervised machine learning approach is used to build the behavior 

model of NAT devices from HTTP access logs, or concretely speaking, the Support Vector 



Machine (SVM) algorithm is used in his experiment. The difficulty in NAT detection lies in a 

lack of a labeled dataset as the training dataset for we have no idea how many unregistered 

NAT devices are in datasets or which of the hosts are NAT devices. As for host identification, 

regular IP address identity is impracticable due to the same source IP address modified by a 

NAT device. Elie Bursztein proposes a method to count the number of hosts behind one NAT 

device based on the TCP timestamp option [4]. Based on Elie Bursztein’s research, Georg 

Wicherski has developed a method of host identification using TCP timestamp values [5]. 

 

Based on previous research, I perform the research in two stages, NAT detection and host 

identification. I first configure a local area network (LAN) connected to the Internet with a 

NAT device in our lab. End hosts on the internal network send out packets and receive packets 

through the NAT device, and I collect data on both interfaces of the NAT device. I collect a 

large amount of data and filter HTTP packets for NAT detection. Packets are then preprocessed 

by extracting features to build the behavior model. To create labeled data for supervised 

machine learning, artificial NATs are built according to Toma ́s Komˇarek’s work. Three 

machine learning algorithms are used in this stage: Support vector machine (SVM), C4.5 and 

Alternating decision tree (AD Tree). I use an improved the feature merge method when 

generating artificial NATs instead of merely adding them up as in Toma ́s Komˇarek’s work. 

In addition, I maintain the same proportion of different sizes of artificial NATs (the number of 

hosts of artificial NATs ranges from 5 to 15). NAT detection accuracy varies across different 

machine learning algorithms. Overall, the accuracy of NAT detection turns out to be quite high 

when I run the validation dataset.  

 

 Once the NAT device have been detected, the second stage is host identification. In this stage, 

I apply two different datasets and compare the results, one is the dataset I used in step one 

(HTTP dataset), the other is the TCP dataset filtered from original datasets I collected. Host 

identification is based on TCP timestamps, according to RFC 1323. TCP timestamp values 

must be at least approximately proportional to real time [6]. That is, the sets of TCP timestamp 

values and real time values (uptime of host) of packets from a host should display a linear line 

on a coordinate axis system. As different lines represent different hosts, we are able to know if 

packets are sent from the same host or not even their source IP addresses are the same.  

 

Different from Georg Wicherski’s real time work, our research is offline which then enables 

my proposed system to be used as a forensic analysis tool to analyze cybersecurity or other 



incidents that could occur on an organization’s network. I group packets by connection and 

build the lines by least-squares linear regression instead of calculating packet by packet. I 

managed to improve several aspects of the existing host identification methodology, including 

approaching host uptime instead of using system time, improving connection division, 

determining the boundary of number of packets in a connection to build the linear lines, 

correcting the computation method of distance of lines, and testing the threshold which is used 

to determine if two lines are close enough to belong to the same host. Apart from improving 

on methodology, I evaluate the experimental results in two ways to provide an overall 

evaluation (see Chapter 4). The experimental result of host identification is improved compared 

to that in Georg Wicherski’s work. These two stages allow us to detect a NAT device from the 

Internet and then identify the hosts behind it. 

 

In summary, the new contributions of this thesis research on NAT detection and host 

identification are listed as the following: 

i. Evaluates different machine learning algorithms and demonstrates that AD Tree 

performs best in classification of NAT detection among the three classifiers; 

ii. Identifies five effective attributes for NAT detection through experimental results  

iii. Improves on the artificial NAT generation method in building artificial NAT attribute 

vectors and handling inactive artificial NATs; 

iv. Discovers that to achieve a high accuracy on NAT detection, a training dataset with the 

similar size to the target dataset is required; 

v. Discovers the limit of the number of packets in one connection for host identification; 

vi. Improves on the artificial line generation and distance calculation methods for host 

identification; 

vii. Proposes and benchmarks a different evaluation method for host identification; 

viii. Demonstrates that processing NAT detection and host identification separately can 

achieve a better performance than combining these two stages. 

 

The rest of this thesis is structured as follows: chapter 2 summarizes related work on NAT 

counting, NAT detection, TCP timestamp option and host identification behind NAT devices.  

Chapter 3 discusses how I configure a NAT device and connect the internal network to Internet 

through it, it also shows how to generate traffic automatically, and discusses the methodology 

of how NAT detection and host identification work. Chapter 4 displays the experiments I 



performed and analyzes the results. The last chapter draws the conclusions and discusses the 

future work. 



Chapter 2  Related work 
 

The previous chapter introduces the NAT, the threat it brings about, and difficulties in NAT 

detection and host identification. However, these are not the only problems with the NAT, for 

example, Nevena Vratonjic’s research talks about threats of using NAT to users such as service 

providers learning about a user’s location when the user is connected to public access points 

and generates location-based service (LBS) queries [7].  

 

This chapter introduces previous work on NAT detection and host identification. Section 2.1 

surveys different techniques of NAT device detection, including NAT behavior identification 

through traffic flows and NAT detection using HTTP access logs. Section 2.2 introduces 

approaches to count or identify hosts behind a NAT device. Finally, section 2.3 summarizes 

this chapter. 

 

2.1 NAT detection literature review 

 

Current NAT detection research is mainly based on NAT behavior modeling. Machine learning 

algorithms are generally adopted to build NAT behavior models from end hosts. Yasemin 

Gokcen’ work focuses on exploring specific patterns in the network traffic that can identify 

NAT like behaviors [8]. His research uses machine learning approaches to automatically find 

patterns indicating NAT usage without using IP addresses, port numbers or payload 

information. The two machine learning methods in his research are C4.5 and Naive Bayes. He 

also uses a passive fingerprinting method that analyzes specific parameters without using 

features like IP addresses, port numbers and payload information in a given network traffic 

trace. An open source flow generator NetMate is used to generate flows. Features for passive 

fingerprinting like Time to Live (TTL) and HTTP User Agent String are then extracted from 

these flows. These features are employed by two classifiers: C4.5 and Naive Bayes. The 

research compares results of the two machine learning methods. It turns out that C4.5 learning 

classifier performs better than Naive Bayes, with a detection rate (DR) for both classes (class 

NAT and class others) of more than 95%, while the detection rate of class NAT using the Naive 



Bayes classifier is less than 35%. So, in our research, C4.5 is also used in the NAT detection 

stage. 

 

Toma ́sˇ Koma ŕek’s research is also aimed at detecting NAT devices in the network via 

behavior. The behavior model in this research is built from IP-based features in HTTP access 

logs: number of unique contacted IP addresses, number of unique user-agents, number of 

unique OSs and versions, number of unique browsers and versions, number of persistent 

connections, number of upload bytes, number of download bytes, and number of sent HTTP 

requests [3]. In his work, artificial NATs are generated to label the training dataset for the 

supervised machine learning approach in order to deal with the problem of an insufficient 

number of labeled datasets. All the hosts are first labeled as end hosts and then artificial NATs 

are generated. Artificial NAT generation method is based on the fact that NAT gateways join 

traffic of multiple hosts into one without altering the eight features listed above. Hence the 

feature vector of one artificial NAT is the combination of feature vectors of all the end hosts it 

uses to generate the artificial NAT. In his work, all the feature vectors are simply added up to 

generate the artificial NAT feature vector. This method is improved on in our research in 

Section 3.2.2. As for machine learning algorithms, the support vector machine (SVM) is 

employed in Koma ŕek’s research due to its resistance to contaminated training datasets. As a 

result, those NATs mislabeled as end hosts have less impact on classification. 

 

In Vojtech Krmicek’s research, he proposed new approaches to NAT detection in three new 

fields based on Netflow: Time to Live (TTL), IP ID and TCP SYN packet size [9]. NetFlow is 

a Cisco network protocol to collect IP traffic information as well as monitor network traffic 

[10]. He managed to design a prototype NAT detection system, using multiple NAT detection 

techniques. Sebastian Abt’s work is similar to that of Krmicek. It is also based on Netflow, and 

it is a passive remote NAT detection method based on behavior statistics from Netflow records 

[11]. In addition, there are some existing tools to detect NAT devices, such as NAT 

Classification/Detection Tool1 using PJNATH (PJSIP NAT Helper Library), and Nat Probe2 

developed in Python. 

 



Our NAT detection stage is mainly based on the artificial NAT generation theory from 

Koma ́rek’s research. We improve on his artificial NAT feature vector generation method and 

perform research with different machine learning algorithms, including the SVM used in 

Koma ́rek’s research and the C4.5 used in Yasemin Gokcen’ work, as well as Alternating 

decision tree (AD Tree). 

 

2.2 Host identification literature review 

 

In Napoleon Paxton’s research, identifying network packets across translational boundaries, a 

packets identification approach based on payloads is proposed [12]. This approach relies on 

the fact that translational boundaries like NAT devices work by altering packet headers instead 

of packet payloads. In this research, the term “payload” is used as a unique identifier. This 

research applies cryptographic hashing techniques (MD5) to payloads of packets from both 

sides of the boundary, and then matches a packet before and after it is modified by a 

translational boundary. The first-in-first-out approach is used to match the encrypted payloads. 

Paxton’s research allows us to match packets across NAT devices. However, it works on both 

sides of a NAT device and it is unable to identify end hosts behind a NAT device from the 

interface connected to the Internet. 

 

In contrast, Sophon Mongkolluksamee proposes an approach to count end hosts behind a NAT 

device, which implements a per-flow IPID sequence; a random IPID; or a global IPID based 

on the sequence of IPID, a TCP sequence number, and a TCP source port in different manners 

[13]. IPID is a 16-bit counter that identifies unique packets when fragmentation occurs. Table 

2.1 shows the different ways that different operating systems implement the three elements. 

Global IPID describes when all connections within the same host following a single sequence; 

per-flow IPID describes using a separate counter for each outgoing flow of packets; and random 

IPID uses a random number. The other two elements are described in table 2.1. The research 

processes a packet trace file to collect IPIDs, TCP sequence numbers, and TCP source ports of 

all packets, and then constructs sequences of them. The relationship among IPIDs, TCP 

sequence numbers and TCP source ports are classified to distinguish single hosts. Unlike 

Paxton’s research, this research manages to count end hosts behind a NAT device, but it is 

unable to detect OpenBSD hosts which implement all the three elements randomly. In addition, 



Mongkolluksamee’s research can only count the number of hosts but cannot identify them from 

packets. 

 

Table 2.1 Different ways of implementation on three elements by different operating systems 

OS IPID TCP sequence number TCP source port

Windows XP, Visa 
and 7

Global counter

Random number as 
starting sequence 

number for each TCP 
connection

Increase linearly 
proportionally to 

connection starting 
time

Linux 2.6 Per-flow counter Counter Counter

FreeBSD 8.1 Global counter Random Random

MAC OS 10.6 Random counter Random Increase linearly

OpenBSD 4.8 Random counter Random Random

 

In addition, Elie Bursztein’s research, Time has something to tell us about network address 

translation, provides another approach to count end hosts behind a NAT device. Bursztein’s 

research does similar things as Mongkolluksamee’s; however, the method is totally different. 

Bursztein’s approach is based on TCP timestamp options. According to RFC 1323, TCP 

timestamp value (TSval) must be at least approximately proportional to real time, in order to 

measure actual Round-Trip Time (RTT). The TSval can be described in equation 2.1, where 

 is the timestamp value,  is the system uptime,  is the increment 

rate, and is related to OSs, and  is an initial value.  

  Eq (2.1) 

The host counting approach relies on the fact that two hosts can’t have the exact same system 

uptime unless they have been booted within the same millisecond and have the same OS. And 

the timestamp can rarely be the same within one short period. The linear functions of known 

hosts are stored in the form of two points of each function to verify each new TCP timestamp 

packet. If the new packet’s TSval and uptime don’t match all the known functions, it belongs 

to a new host. Because this is a theoretical research, it does not mention how a new function is 

calculated. Also, it can only count the number of end hosts behind a NAT device but cannot 

identify hosts.  

 

Based on Bursztein’s counting NATed hosts mechanism, Georg Wicherski introduces a 

technique of IP agnostic real-time traffic filtering and host identification using TCP timestamps 



in his research. This research uses a variant function of equation 2.1, which is described in 

equation 2.2. 

  Eq (2.2) 

In this equation,  is the TCP timestamp value,  is the Unix system time, is the increment 

rate, and  is some initial value. Operating systems, with the exception of Windows, usually 

reset the value of TSval to zero at boot time, thus effectively setting  to  0, 0 is the 

time of booting the system. 

 

Artificial lines are generated to identify hosts. For every incoming TCP packet observed, the 

pair � of current system time � and TCP timestamp � is added to a list for that particular 

TCP connection. And when the connection terminates, a least-squares linear regression 

function is computed for the points �  collected for this particular connection. The 

computed 0  represents for a new host and is stored in the database. Whenever a new TCP 

packet is received, first, it is matched against existing hosts. Hosts are mapped into classes 

(different ′s) to increase matching efficiency. The new packet is computed with each existing 

s for 0, if it is close enough to a known function, it is considered to belong to the host. If it 

doesn't belong to any existing host, a new host is detected and the new 0  is stored in the 

database. Wicherski’s work proposes a possible approach to identifying hosts behind a NAT 

device using TCP timestamp. The host identification stage of my research is based on his idea. 

 

Other methods for host identification behind a NAT device are described as follows: Aniello 

Castiglione’s research, Device tracking in private networks via NAPT Log analysis, determines 

a host profile or fingerprint to track down the device’s movement and learn about the specific 

host behind one private network without its IP address [14]. In addition, Nino Vincenzo Verde 

proposes an approach to build a fingerprinting framework to identify users behind a NAT 

device using NetFlow records alone [15]. Hidden Markov Models (HMM) classifier is used in 

Verde’s research to fingerprint users inside a network connected to the Internet through a NAT 

device. Different from the research introduced above, Rhiannon Weaver proposed an approach 

to visualize and model the scanning behavior of the conficker botnet in the presence of user 

and network activity in his work [16]. Weaver’s work manages to count devices in an IP 

address space.  

 



Therefore, host identification stage of my research is mainly based on Bursztein and 

Wicherski’s research. It improves on Wicherski’s methodology of host identification, including 

changes on the calculation method of host uptime values, the connection division method, the 

boundary of number of packets in a connection, the computation method of the distance of 

lines, the threshold which is used to determine if two lines are close enough to belong to the 

same host, and the evaluation methods of experimental results. In addition, the combination of 

the NAT detection stage and the host identification stage on the datasets in my research allows 

us to identify end hosts behind the NAT device detected on the Internet without knowing their 

private IP addresses. 

 

2.3 Summary 

 

In this chapter, both literature reviews of NAT detection and host identification are introduced. 

Koma ́rek’ NAT detection work, Bursztein’s counting hosts behind a NAT device research and 

Wicherski’s host identification behind a NAT device research all play important roles in my 

research. The next chapter will describe the methodology of the research in detail and how the 

three works are extended in my research. 



Chapter 3  Methodology 
 

This research is focused on TCP timestamp option based host identification behind a NAT 

gateway detected by supervised machine learning method from the network. In this chapter, 

first data generation details including network configuration and data collection are presented 

in Section 3.1. Then Section 3.2 introduces how I create artificial NATs to label the training 

dataset for supervised learning approach to detect NAT device from end hosts. The following 

Section 3.3 describes how I identify end hosts with the same source IP address behind a NAT 

gateway based on TCP timestamp option, as well as how I combine the two stages of the 

research in Section 3.4. The last Section 3.5 summarizes this chapter. 

 

3.1 Data sets 

3.1.1 LAN architecture 

 

Data sets used in this research are collected from a local area network (LAN) connected to the 

Internet through a network address translation (NAT) device. The NAT device also works as a 

Dynamic Host Configuration Protocol (DHCP) server, which assigns IP addresses to 16 hosts 

on the LAN. Different operating systems and different browsers are installed to learn how the 

research works in different environments. The experimental configuration is shown in Figure 

3.1. 

 

Figure 3.1 LAN with NAT device configuration 



  

The host works as both a DHCP server and a NAT device; which is installed with Kali Rolling 

system. To configure the DHCP server and the IPv4 NAT gateway on the Kali host, we can 

follow the guide below3. The server host has two interfaces, one connected to Internet and the 

other connected to the hosts on the LAN. The DHCP server automatically assigns IP addresses 

to hosts on the LAN and allows them to connect to the Internet through the NAT gateway. The 

16 hosts are grouped into four groups, and there are four hosts in each group connected to a 

group switch. In each group, hosts are installed with the same operating systems. Four group 

switches are connected to one switch which is connected to the server. The hosts system, IP 

address, interface and browser information are shown in table 3.1. The server has two 

interfaces, Eth0 connected to LAN, and Eth1 connected to Internet. Other hosts with two 

interfaces only have one interface working at the same time. 

 

Table 3.1 Hosts and server information on LAN  

Scen. OS Browser Eth 0 Eth 1 Eth 2 Host name 

0 

Kali Rolling 
(NAT 

device + 
DHCP 
server) 

Firefox 
172.22.22.1 

LAN 
10.11.12.75 

Internet 
- Yeti 

1 Kali Rolling Firefox - 
172.22.22.4

8 
- crocodile 

2 Kali Rolling Firefox - 
172.22.22.5

4 
172.22.22.5

3 
squirrel 

3 Kali Rolling Firefox - 
172.22.22.5

8 
172.22.22.5

7 
leopard 

4 Kali Rolling Firefox - 
172.22.22.5

6 
172.22.22.5

5 
pipingplove

r 

5 Kali Rolling Firefox - - 
172.22.22.4

4 
chipmunk 

6 Kali Rolling Firefox - - 
172.22.22.4

5 
alligator 

7 Kali Rolling Firefox - 
172.22.22.4

3 
- elephant 

8 Kali Rolling 
Google-
chrome 

- 
172.22.22.5

1 
172.22.22.4

2 
panda 



9 Windows 7 
Professional 

Google-
chrome 

172.22.22.2
8 

172.22.22.3
2 - orangutan 

10 Windows 7 
Professional Firefox 172.22.22.3

3 
172.22.22.2

6 - gazelle 

11 Windows 7 
Professional Firefox 172.22.22.2

9 
172.22.22.2

5 - giraffe 

12 Windows 7 
Professional 

Google-
chrome 

172.22.22.3
1 

172.22.22.3
0 - polar bear 

13 Windows 7 
Professional Firefox 172.22.22.9

9 
172.22.22.4

0 - ferret 

14 Windows 7 
Professional 

Google-
chrome - 172.22.22.5

2 - otter 

15 Windows 7 
Professional Firefox 172.22.22.3

4 
172.22.22.3

7 - beaver 

16 Windows 7 
Professional 

Google-
chrome 

172.22.22.3
5 

172.22.22.3
8 - groundhog 

 
 

3.1.2 Data collection 
 
Imacros [17], an extension for web browsers (both Google-Chrome and Firefox), is installed 

so hosts can automatically generate URLs and randomly download files. Imacros can be 

combined and controlled by JavaScript. I wrote a small program and ran it on Imacros. Figure 

3.2 shows the flow chart of the Imacros program.  



 
 

Figure 3.2 Imacros program flow chart 
 

This program automatically searches random keywords on Google; it then randomly goes to 

one of the URLs, searches the URL for other URLs, randomly chooses one, goes to that URL 

and repeats the process several times. After this step, it closes the webpage and opens a new 

one to start the process again by searching for a random keyword on Google. The program 

circulates the above steps, and when it encounters files that can be downloaded, it downloads 

them. It will not stop until I terminate the program, or it is interrupted by system errors. Part of 

the program is shown below: 

 

SET !ERRORIGNORE YES
SET !LOOP 2
SET !DATASOURCE_LINE {{!LOOP}}

4. TAB T=1 



URL GOTO=https://www.google.com/?gws_rd=ssl
SET !VAR3 EVAL("var letters = 
['a','b','c','d','e','f','g','h','i','j','k','l','m','n','o','p','q','r','s','t','u','w','x','y','z']; var string = ''; 
for(var i = 0; i < 4; i++){string += letters[parseInt(Math.random() * 25)]}; string")
TAG POS=1 TYPE=INPUT:TEXT FORM=NAME:f ATTR=NAME:q
CONTENT={{!var3}}
TAG POS=1 TYPE=BUTTON:SUBMIT FORM=NAME:f ATTR=NAME:btnG

WAIT SECONDS=3
TAG POS=1 TYPE=A ATTR=TXT:*w*b*
WAIT SECONDS=3
ONDOWNLOAD FOLDER=* FILE=* WAIT=YES
TAG POS=2 TYPE=A ATTR=TXT:*Download* 
TAG POS=1 TYPE=A ATTR=TXT:*q*
WAIT SECONDS=3
ONDOWNLOAD FOLDER=* FILE=* WAIT=YES
TAG POS=2 TYPE=A ATTR=TXT:*Download* 
TAG POS=1 TYPE=A ATTR=TXT:*y*
WAIT SECONDS=3
ONDOWNLOAD FOLDER=* FILE=* WAIT=YES
TAG POS=2 TYPE=A ATTR=TXT:*Download* 
TAG POS=1 TYPE=A ATTR=TXT:*a*
WAIT SECONDS=3
ONDOWNLOAD FOLDER=* FILE=* WAIT=YES
TAG POS=2 TYPE=A ATTR=TXT:*Download*   
WAIT SECONDS=3

TAB CLOSE

 

This program starts by opening a web page and going to google.com. In line 6, the program 

generates a random four-letter word, and it searches the word on Google in line 7 and line 8. 

Line 10 through line 26 go to URLs five times, it is determined to go to URLs to make sure it 

doesn't end at a browser setting page or other pages that have no other URLs to go to. Every 

time it goes to a new URL, it downloads any available files. This program works a little 

differently on different operating systems: it creates more URLs on Kali hosts than on Windows 

hosts.  

 

Hosts are grouped according to their operating systems in order to learn the differences of how 

Imacros runs on different systems and the impact on NAT detection and host identification. 

Also, different data from different systems can provide test datasets that are different from 

training datasets. Different combinations of groups run in 17 days. Data collected are stored by 



different combinations. Hosts running schedule is shown in Table 3.2. Hosts with marks are 

running and generating data on the marked date, and hosts without marks are powered off on 

that date. 

 

Table 3.2 Hosts running status by date 

OS Browser Running status by date 

Kali Rolling 
(NAT device) 

Firefox Aug01 
Aug02-
Aug13 

Aug14 Aug15 Aug16 Aug17 

Kali Rolling Firefox ˅ ˅ ˅  ˅  

Kali Rolling Firefox ˅ ˅ ˅  ˅  

Kali Rolling Firefox ˅ ˅ ˅  ˅  

Kali Rolling Firefox ˅ ˅ ˅  ˅  

Kali Rolling Firefox ˅ ˅ ˅   ˅ 

Kali Rolling Firefox ˅ ˅ ˅   ˅ 

Kali Rolling Firefox ˅ ˅ ˅   ˅ 

Kali Rolling 
Google-
chrome 

˅ ˅ ˅   ˅ 

Windows 7 
Professional 

Google-
chrome 

˅ ˅  ˅  ˅ 

Windows 7 
Professional 

Firefox ˅ ˅  ˅  ˅ 

Windows 7 
Professional 

Firefox ˅ ˅  ˅  ˅ 

Windows 7 
Professional 

Google-
chrome 

˅ ˅  ˅  ˅ 

Windows 7 
Professional 

Firefox  ˅  ˅ ˅  

Windows 7 
Professional 

Google-
chrome 

 ˅  ˅ ˅  

Windows 7 
Professional 

Firefox  ˅  ˅ ˅  

Windows 7 
Professional 

Google-
chrome 

 ˅  ˅ ˅  

 

Data is collected on NAT device’s both interfaces, LAN and Internet interfaces, for two phases 

of research. In total, I collected 521 GB of data. The data size by date is shown in Table 3.3. 

Tcpdump is employed to capture packets and build pcap files. 

 



Table 3.3 Data size by date 

 Data size (GB) 

Date eth0 - LAN interface 
eth1 - Internet 

interface 
total 

Aug 01 12 11 23 

Aug 02 23 21 44 

Aug 04 56 54 110 

Aug 08 28 27 55 

Aug 09 19 18 37 

Aug 10 30 28 58 

Aug 11 46 42 88 

Aug 14 22 20 42 

Aug 15 7 6 13 

Aug 16 10 9 19 

Aug 17 17 15 32 

Total 270 251 521 

 

3.1.3 Data sets 
Tshark [18] is exploited to extract information packet by packet from raw data in both phases 

of the research. Csv files are generated for further processing. Tshark is a network protocol 

analyzer; it is a terminal oriented version of Wireshark designed for capturing and displaying 

packets. It can deal with large size pcap files by running terminal commands without displaying 

all the packets as Wireshark does. I can select relevant packet features and save them into csv 

files. 

 

In the first stage, data is from NAT device’s Internet interface. Packets are captured from LAN 

through the NAT device, whose source IP addresses are translated into the same one (NAT 

device’s IP address). Packets from Internet are also captured. This stage is aimed to distinguish 

NAT devices from end hosts on the Internet. Packet information is extracted from HTTP 

headers. Necessary packet features and corresponding tshark options are shown in Table 3.4. 

 

Table 3.4: HTTP features and tshark options 

Packet features Tshark option 



Packet number frame.number 

Host's IP address ip.src 

Server’s IP address ip.dst 

HTTP status http.connection 

URL of request http.request.uri 

User-agent information http.user_agent 

Sum of download/upload bytes http.content_length 

Ending time of communication and its 
duration 

http.time 

HTTP method http.request.method 

 

The second stage is aimed to distinguish different end hosts through packets translated by a 

NAT device, although their source IP addresses are the same. In this stage, data from the NAT 

device’s Internet interface is used as a training set and data from the LAN interface is used as 

a validation set. Packets from the LAN interface are directly sent from end hosts inside the 

LAN (before network address translation), whose source IP addresses are original. Matching 

packets from both interfaces provides validation sets for this phase’s research. Packets 

information is extracted from TCP headers. Necessary packet features and corresponding 

tshark options are shown in Table 3.5. 

 

Table 3.5 TCP features and tshark options 

Packet features Tshark option 

Packet number frame.number 

System time frame.time 

Source IP address ip.src 

Destination IP address ip.dst 

Source port number tcp.srcport 

Destination port number tcp.dstport 

TCP Timestamp value tcp.options.timestamp.tsval 

TCP FIN flag tcp.flags.fin 

TCP reset flag tcp.flags.reset 

 



3.2 NAT detection 

 

The NAT detection mechanism is based on NAT device behavior analysis; this uses supervised 

machine learning for binary classification. It aims to differentiate NAT devices from end hosts 

in the network, followed by next stage host identification. These two steps allow us to identify 

different hosts even behind a detected NAT device in the network.  

 

3.2.1 Host behavior vector 
 

The behavioral features differentiate a NAT device from end hosts. A NAT device contains 

multiple end hosts and modifies host IP address as well as server IP address in IP headers and 

then transits modified packets to or from end hosts. Hence the communication volume of a 

NAT device is several times that of an end host depending on the number of end hosts behind 

a NAT device. Packets from all hosts are captured in one day as mentioned in the dataset section 

to fairly measure the volume. To learn NAT device behavior, I first extract host information 

from HTTP packets. Packet features I extract include IP source address, IP destination address, 

HTTP connection status, URL of HTTP request, user-agent information, sum of download 

bytes and upload bytes, communication duration and HTTP method. Those features are 

obtained with tshark from packets headers; corresponding tshark options are listed above. 

 

 Packets are represented by features, and next I count those features for each host. Here I take 

unique IP addresses as hosts, which can be a NAT device or an end host. Features extracted 

from each packet are counted as follows [3]:  

1) number of unique contacted IP addresses 

2) number of unique user-agents 

3) number of unique OSs and versions 

4) number of unique browsers and versions 

5) number of persistent connections 

6) number of upload bytes 

7) number of download bytes 

8) number of sent HTTP requests 

 



Operating system information and browser information are included in user-agent strings from 

HTTP request headers. While HTTP request methods indicate the packet download or upload 

data. Persistent connections are connections with keep-alive headers. These features reflect the 

communication volume of hosts and vary from NAT devices to end hosts. Another element 

that affects the features is how long the host is active, or how often is the host active, including 

both end hosts and NAT devices. Theoretically, a NAT device transports much more packets 

than an end host does, but if the NAT device is not active, its traffic volume can be less than 

an end host’s. This requires that the machine learning algorithm should be resistant to 

contaminated training datasets. I record each host with a vector of the eight features above and 

then apply it to machine learning to build behavior models for NAT devices and end hosts, so 

that it can be applied to classify NAT devices and end hosts later. 

 

3.2.2 Artificial NAT  

 

To prepare training datasets for machine learning, a labelled dataset is required. But I have no 

idea how many and which of the hosts detected on the Internet are NAT devices or end hosts. 

Considering the fact that the proportion of NAT devices in all the hosts is negligibly small, I 

employ the artificial NAT generation method in Koma ́rek’s research [3]. That is to label all 

the hosts as end hosts and create artificial NAT devices from those end hosts. Labelled 

artificial NATs are then added to the training dataset so that it has both class NAT and class 

end host. There is no doubt that this will causes deviation to experiment results, albeit to a 

small degree. This also requires the machine learning algorithm I use being immune to 

contaminated datasets. Machine learning algorithms will be introduced in the next section. 

 

Artificial NAT device generation is based on the fact that a NAT device will not change the 

eight features mentioned above when modifying IP addresses. Hence a NAT device’s 

features are the combinations of features of end hosts behind it respectively. In Toma ́sˇ 

Koma ́rek’s work, a feature vector of a NAT device is calculated as the sum of its end hosts’ 

feature vectors [3]. It works for most of the features, but for features like number of unique 

user-agents, number of unique OSs and versions and number of unique browsers and 

versions, it makes no sense. Those three features cannot be simply added up. For example, a 

NAT device has three end hosts with 1, 1, 2 unique operating systems respectively, and each 



end host is installed with the same version of Windows system, the last one is installed with 

the same Windows system as well as a Linux system. This NAT device’s number of unique 

OSs should be two instead of four, which is the sum of end hosts’ unique OSs. Similarly, the 

other two features of a NAT device are not the sum of its end hosts’ features. In our work, an 

artificial NAT device’s number of unique user-agents, number of unique OSs and versions 

and number of unique browsers and versions are calculated as the maximum numbers of its 

end hosts’ corresponding features. It is more reasonable than simply adding up all the hosts’ 

features.  

 

The number of end hosts behind an artificial NAT ranges between 5 and 15. To balance 

different sizes of NAT devices, I create artificial NATs with a number of hosts from 5 to 15 

as a unit. The number of NAT units depends on the number of detected hosts. Each end host 

is used once in composition of artificial NATs, and the number of NAT units is the maximum 

number all the hosts can generate. Our artificial NAT device generation method generates the 

same number of NATs with 5 to 15 end hosts. And the total amount of NATs is decided by 

the number of hosts; the more hosts detected, the more artificial NATs are generated. 

Training dataset then can be more reasonable than building a united number of artificial NAT 

devices under all circumstances. 

 

3.2.3 Machine Learning and Classification 

 

As mentioned above, it is vital for the NAT device detection algorithm to be resistant to 

contaminated datasets. In addition, host classification is based on linear combination of 

features. Based on the above limitations, I apply the training dataset to three kinds of machine 

learning (ML) classifiers to compare the results. The following three ML algorithms are applied 

in Waikato Environment for Knowledge Analysis (Weka), a suite of multiple machine learning 

software providing easy access to both classification and analysis. 

 

a) Support vector machine 

Support vector machine (SVM) is a supervised machine learning model, a non-probabilistic 

binary classifier [19]. It performs both linear classification and non-linear classification. It 

performs efficient classification and evaluation. Also, SVM tends to be resistant to 



contaminated training datasets, and our manually labelled training dataset contains some 

wrongly labelled records. It is one of the most appropriate machine learning algorithms for our 

work. 

 

SVM is about looking for the "maximum-margin hyperplane" to divide points (our samples) 

into two classes, when the distance of hyperplane and nearest point of each class is maximized. 

Here is how linear SVM works. Data items in the training dataset to be processed are in the 

form of  

1 1  

where a point , in the form of � is a -dimensional vector, � is a value 1 or -1 and represents 

two classes of all data points. If our data items have  features, I plot a p-dimensional space 

using all the records, and the points are represented by vectors with feature values. Then I try 

to find out the best  1 -dimensional hyperplane to separate the points. A hyperplane can 

be written in the form of equation 3.1: 

� 0,  Eq (3.1) 

where � is the normal vector of the hyperplane. The distances of hyperplane and nearest point 

from each class are calculated, they are called Margin. If the dataset is linear separable, the 

distance of two parallel hyperplanes that separate each class can be largest, as is shown in 

Figure 3.3. Then the best hyperplane is the hyperplane right in the middle of them.  

Figure 3.3 Linear SVM example 
 

These two classes separated by the two hyperplanes can be described as equation 3.2 and 

equation 3.3: 

� � 1, if � 1,  Eq (3.2) 



any points on or above this hyperplane is classified as class 1; 

1, if � 1,  Eq (3.3) 

any points on or below this hyperplane is classified as class -1. The distance of two hyperplanes 

is: 
2

�
, to maximum the distance is to minimize � . Then the two inequalities above can be 

written as equation 3.4. 

� � 1, for all 1 .   Eq (3.4) 

Then to find out the best hyperplane with maximum Margin is an optimization problem as 

equation 3.5. 

Minimize �subject to � � 1, for 1 .  Eq (3.5) 

SVM selects the hyperplane with maximum Margin on condition that it classifies the classes 

accurately.  

 

As is shown in Figure 3.4, this algorithm has a feature of ignoring outliers. Triangles and circles 

are two different classes here. The hyperplane in the figure classifies most points into correct 

classes and the distance of it to nearest points from each class is maximized. Although there is 

one triangle point classified wrongly into another class, it still selects the best hyperplane to 

classify other data points. This feature is important to our experiment for there are unknown 

NATs labelled as end hosts in our training datasets. 

 

 
Figure 3.4 SVM classify example 

 

b)  C4.5 

Another algorithm I used in our experiment is C4.5, a commonly used machine learning 

algorithm that builds decision trees from classified training dataset [20]. It chooses the 

attributes that most effectively split samples into different classes as the nodes to build the tree. 



C4.5 is an improved version of ID3 algorithm; it handles missing attribute values in training 

dataset. It generates a more effective and accurate decision tree for our experiment. 

 

ID3 is a well-known machine learning algorithm to generate a decision tree to classify data 

items [21]. It first calculates the information gain from entropy of each attribute from the target 

dataset. Entropy  is shown in equation 3.6 and is a measure of how much uncertainty the 

dataset has. 

  Eq (3.6) 

where  is the target dataset,  is set of classes in dataset ,  is a class in  ,  and  is the 

proportion of the number of data items in class  to the number of all items in dataset . 

Information gain is shown in equation 3.7 and is calculated from the entropy. 

  Eq (3.7) 

where  is the subsets split from dataset  by attribute , ,  is the proportion 

of number of data items in subset  to the number of items in target dataset  and  is the 

entropy of subset . And then the dataset   is split into subsets according to the attribute which 

makes the resulting entropy minimum. This attribute is one node of our decision tree, the rest 

of the attributes are selected in subsets recursively. 

 

C4.5 algorithm is different from ID3 in that it can handle continuous attribute values as well; 

it creates a threshold and splits the values by comparing them with the threshold. C4.5 is also 

robust to missing attribute values and ignores missing values in gain and entropy calculations. 

The most important improvement of C4.5 is that it prunes trees after creation, which effectively 

reduce the useless leaf nodes, leading to an efficient decision tree. C4.5 helps us to focus on 

the attributes that play a vital role in NAT detection. 

 

c)  Alternating decision tree 

The last ML algorithm in our experiment is Alternating decision tree (AD Tree) [22]. It also 

generates decision trees as C4.5. But its nodes generation method is entirely different from the 

C4.5 algorithm. AD tree considers all the features when classifying instances, and it also works 

well in our experiment. 

 



An AD tree consists of two types of nodes, decision nodes and prediction nodes. Two classes 

are coded into 1 and -1 respectively. Data items in the training dataset to be processes are in 

the form of  

1 1  

where � is a vector of attributes, � is the class of data items, and it is either 1 or -1. Decision 

nodes of AD Tree contain a prediction condition of attributes from the target dataset, and 

prediction nodes contain a positive or negative number, indicating how the condition impacts 

final classification. The number in prediction nodes is weight � .  A data item should go 

through every path of the decision tree and compare its attribute values with each decision 

condition to get value from prediction node. All the prediction values are then added up, it is 

the final score of this data item as shown in equation 3.8. 

�   Eq (3.8) 

where  is prediction condition from decision node and �  is the wieght of data item � on 

prediction condition . Whether the final score �  is a positive number or negative one 

decides this instance’s class. If the final score is a positive number, then its class is the class 

coded as 1 and vice versa. 

 

AD tree is different from all the other decision trees in that each instance should go through 

every path of the decision tree, and all the values from the prediction nodes it passes are 

calculated as the final score. This algorithm takes every possible condition into consideration, 

and this gives us a precise classification of NAT detection.  

 

These three machine learning algorithms I apply to our datasets study different aspects of the 

NAT detection. SVM is the algorithm used in Toma ́sˇ Koma ́rek’s work, C4.5 reveals the vital 

attributes that influence the classification, and AD Tree provides a precise classification from 

every possible effective attribute. Different experiment results on these three algorithms are 

shown in the next chapter. 

 

Training datasets for machine learning are generated by creating artificial NATs as mentioned 

above. I use a certain percentage of training datasets as test datasets, as well as new validation 

datasets as test datasets. The new validation datasets or test datasets I use are also captured 

from our lab, on both Internet interface and LAN interface. But those datasets exclude unknown 

hosts from the Internet, that is, it contains the real NAT device and other end hosts in our lab. 



According to our artificial NAT generation method, this real NAT device in the training dataset 

is labelled as end host. If the real NAT device is then classified as NAT device in validation 

step, it supports the idea that instances that wrongly labelled as end hosts in training datasets 

do not affect experiment results. 

 

Our algorithm improves Toma ́sˇ Koma ́rek’s work in generating artificial NATs, does research 

in NAT detection in different aspects with different machine learning algorithms, and provides 

a more convincing validation process. Steps of NAT detection can be summarized in Figure 

3.5. 

 



Figure 3.5 NAT detection flow chart 

 

3.3 Host identification  

3.3.1 TCP timestamp function 

 



Host identification behind a NAT device is based on features of TCP timestamp. TCP 

timestamp option is inside TCP header’s option field. In RFC 1323 [6], TCP timestamp value 

(TSval) is defined as follows. 

 

The timestamp value to be sent in TSval is to be obtained from a(virtual) clock that I call the 

"timestamp clock".  Its values must be at least approximately proportional to real time, in order 

to measure actual RTT. 

 

Timestamp is an affine-linear function as shown in equation 3.9 [5]. 

   Eq(3.9) 

where  is the increment rate of “timestamp clock”,  is initial timestamp value, 

 is the system uptime. The initial number  is zero for all operating systems except 

Windows, it is random for Windows. RFC also mentions that the increment rate  

should between 0.001 (1 tick per millisecond) and 1 (1 tick per second).  

 

The assumption of the pair of ( , ) can uniquely identify an end host is based 

on the idea that any two hosts behind a NAT device can not have the same uptime unless they 

Ire booted at the same time in milliseconds. 

 

In Georg Wicherski’s work, this function is mentioned as equation 3.10 [5]. 

     Eq (3.10) 

where  is the tick scale of the timestamp clock and  is some initial value,  is a UNIX 

timestamp (the number of milliseconds elapsed since midnight of January 1, 1970(UTC)). For 

this function, the pair of ( , ) uniquely identifies an end host until rebooted.  

 

Comparing the two functions above, I found that equation 3.10 is a variant of equation 3.9. 

Tick scale  in equation 3.10 and increment rate  in equation 3.9 are the same, 

while independent variable  in equation 3.10 is system time (UNIX timestamp), but  in 

equation 3.9 is system uptime. From packets information collected, system time is available, 

but system uptime is unknowable. The relationship between these two variables is shown in 

equation 3.11. 

  Eq (3.11) 



where  is the number of milliseconds elapsed since midnight of January 

1,1970(UTC) until the host were booted. Equation 3.10 can be converted as equation 3.12. 

   Eq (3.12) 

 

Wicherski’s function approximates equation 3.9, but they are not equivalent, which might be 

one of the reasons why there are errors in their experiment results. So, in our work, I subtract 

a uniform value from system time to make it near to actual system uptime . And I replace 

system time  in equation 3.10 with simulated system uptime . The calculation of this 

uniform value is based on the fact that increment rate of timestamp value should between 0.001 

and 1 mentioned in RFC1323. 

 

3.3.2 Host identification algorithm 
 

The basic idea of identifying hosts behind a NAT device using timestamp values is as follows. 

For each active connection, each pair of ( � , � ) of simulated system uptime , and 

timestamp value  of packet  is added to a particular list. Then a least-squares linear 

regression function is computed for the list. This algorithm computes ( , ) for each TCP 

connection, which makes the sum of squares 1  of the error �  

is minimized. This pair of ( , ), or the line that is defined by function , 

uniquely identifies a host. All the pairs are saved in our database, and everytime a new pair of 

( , ) is computed, I first try to match it against existing pairs in the database. Matching pairs 

here means to find out if distance between the two lines is small enough. If a match is found, 

it can be concluded that this connection is from the detected host in our database. If this pair 

has no match, then it comes from a new host, and I’ll add this pair to the database.  

 

The algorithm matches connections, which provides more information than matching single 

packets. It can be more reliable and efficient. In Wicherski’s work, a 4-tuple ( ���� , ���� , 

����, ����) is referred to as one connection until a packet with RST flag or FIN flag 

is detected. This method works for normal circumstances. But only packets with TCP 

timestamp values are supported for this experiment, and as mentioned above, TCP timestamp 

values are optional. The deficiency of packets without TCP timestamp values causes errors in 

connection recognition and then affects final results. In our work, I use tshark to separate 



packets by connection and then deal with connections by connection sequence. Also, due to 

the deficiency of packets without TCP timestamp values, the number of packets in one 

connection is not enough to compute an accurate line for the connection. I set up experiments 

to test how different numbers of packets in connections impact the accuracy of identifying end 

hosts. The accuracy is enhanced with the increase of number of packets in one connection. I 

adopt 55 as the minimum number of packets in one connection in our experiment according to 

our test (see next section). 

 

All the end hosts are saved in our database. Whenever a new connection is processed, the pair 

of ( , ) computed for it will be compared with all pairs of ( , ) in the database, which is not 

efficient. To improve the efficiency of matching the lines computed for connections, or pairs 

of ( , ), I first match . As mentioned above,  is the increment rate of timestamp values, and 

it is related to OS implementation. As for the line,  is the slope, that is, same ’s means 

parallel lines. If the difference between two ’s is smaller than a certain threshold ����, they 

are identified as one slope, that is to say, the two lines are parallel. In Wicherski’s work, he 

uses a default value of 2  as the threshold without explaining why. I test different values of 

threshold to see its influence in our work. Different hosts are classified by slopes, and they are 

saved in lists, so that for each new line, it is not necessary to compare every host in the database. 

If the new connection’s  is related to an existing slope, I compute the distances of all the hosts’ 

lines of this slope with the new line. If distance is below threshold ���� , this connection is 

associated to the existing host. If all the hosts of this slope do not meet the criteria, the new line 

is added to this slope’s list, it belongs to a new host. If the connection’s slope is not found, it 

also belongs to a new host. In that case, I create a list for the new slope, and add the line to the 

list. 

 

The lines I store in the database are in the form ( , 0), where 0 is the solution of function 

 when 0. As stated above, , the increment rate of timestamp value, is 

between 0.001 and 1 ( 0). When 0, 0 . The solution 0 is the system uptime 

when timestamp value is zero, which can be predicted by least-squares linear regression 

algorithm. In Wicherski’s work, when a slope’s match is found in the database (the distance 

between �  and one � in database is below threshold ����), he tried to find the closest 

0(corresponding to 0 in our work) to match the line. Nevertheless, the distance between 

two 0’s or two 0’s is different from the distance between two lines. The distance between 



two parallel lines 1 0  and 2 0 , is 1 2
2 1 2

. The 

distance between two parallel lines is 1 2
2 1

, while the distance between two 0’s or 

0’s is �
1 2 . When  is smaller than 1,  and � can differ by orders of magnitude. 

Under this circumstance, threshold ����  cannot measure distance. Since the distance between 

lines and the distance between two 0’s or 0’s � are interralated, I can calculate from 

� : �
2 1

. Then is compared with threshold ����  to determine whether this 

connection is close enough to the line of one known host or not as stated above. The steps to 

identify hosts behind a NAT device are summarized in the flowchart shown in Figure 3.6. 



Figure 3.6 Host identification flow chart 



This approach improves host identification through TCP timestamp in practice. I managed to 

approach host uptime from system time, improve connection division and find the boundary of 

number of packets in one connection when building the artificial lines to identify end hosts, 

learn the impact of different values of threshold to identify if two lines are close enough or if 

one connection is associated to a known host, and correct the computation method of the 

distance between lines. This leads to significant improvement of our experiment results in 

identifying end hosts with TCP timestamp values. 

 

3.4 NAT detection and Host identification 

 

The above two sections introduce two stages of our experiment separately: NAT detection and 

host identification. As is shown in Figure 3.7, I perform the two steps in order. 

 

First, HTTP packets are filtered from the original dataset, then I extract HTTP attributes from 

the filtered dataset for NAT detection. Once the NAT device is detected through the machine 

learning method, packets from the NAT device are then filtered out for further processing. Only 

packets with a TCP timestamp option are selected for host identification as mentioned above. 

Apart from improvements on both of the steps mentioned in previous sections, processing host 

identification phase immediately following NAT detection phase allows us to identify end 

hosts behind a detected NAT device even though packets are from the same IP addresses.  

 



  
Figure 3.7 NAT detection and Host Identification  

 

3.5 Summary 

 

In summary, the research begins at data collection step. Collected datasets are preprocessed to 

extract HTTP features for NAT behavior model building in NAT detection supervised learning 

step, and then datasets are processed to extract TCP features for host identification by creating 

artificial lines of TCP timestamp value and system uptime. These stages in our research are 

used in experiments in the following chapter. 



Chapter 4  Experiments and Evaluation 
 

In this chapter, dataset selection from all the data collected is explained in Section 4.1.  

Supervised machine learning experiments and results of NAT detection are described in 

Section 4.2. Section 4.3 introduces the host identification experiments and evaluation on the 

experiment results using a Python program. Experiments of host identification using datasets 

of NAT detection stage and their results are displayed in Section 4.4. Section 4.5 summarizes 

this chapter. 

 

4.1 Dataset selection 

 

Datasets for both NAT detection stage and host identification stage were captured from the 

internal interface and the Internet interface of the LAN introduced in Section 3.1.1. All the 

datasets collected in 17 days are too large to be completely processed, at a size of 521 GB.  

Hence five days’ datasets were selected as target datasets: 

a) Aug 02: all the hosts on the LAN running 

b) Aug 04: all the hosts on the LAN running 

c) Aug 14: only Kali hosts on the LAN running 

d) Aug 15: only Windows hosts on the LAN running 

e) Aug17: half of the Kali hosts and half of the Windows hosts on the LAN running 

 

Datasets from these five days were collected with different combinations of hosts running. 

Performing experiments on datasets with different operating systems examines the 

generalization of the methodology and provides comparison of the impacts of different systems 

on the NAT detection and the host identification. 

 

4.2 NAT detection experiment 
 

In this section, experiments and results of three machine learning classifications on both test 

datasets and validation datasets are described. Each test dataset is 20 percent of the training 



dataset; this training dataset is labelled using the method introduced in Section 3.2.2. Since 

training datasets were labelled manually, I also apply the three classifiers on each validation 

dataset. The validation datasets include the real NAT device in the lab. 

 

4.2.1 Training and test 

 

After preprocess as mentioned in the last section, I applied machine learning algorithms in 

Weka to training datasets with labels. The first algorithm I used was Support Vector Machine 

(SVM). I used 80 percent of the preprocessed Aug 02 dataset as the training dataset and used 

the remaining 20 percent as the test dataset. Results of the experiment are shown in Table 4.1. 

In total, 1534 instances out of 1568 were classified correctly, a high accuracy of 97.83%. There 

are 1437 end host instances and 131 NAT device instances in the test dataset. Table 4.2 shows 

the confusion matrix of the SVM results. There were 31 actual NAT devices incorrectly 

classified as end hosts, and 3 actual end hosts classified as NAT devices. So, the true positive 

rate (TPR) of class end host was 1434/1437, 99.79%, and the TPR of class NAT device was 

100/131, 76.34%, which was lower than that of class end host.  

 

Table 4.1 SVM results using 20% as test dataset 

  Proportion 

Correctly Classified 
Instances 

1534 97.83% 

Incorrectly Classified 
Instances 

34 2.17% 

Kappa statistic 0.8432  

Total Cost 34  

Average Cost 0.0217  

Mean absolute error 0.0217  

Root mean squared error 0.1473  

Relative absolute error 13.62%  

Root relative squared error 53.20%  

Total Number of Instances 1568  

 

Table 4.2 SVM confusion matrix 



Confusion Matrix 

a b 
<-- classifies 

as 

1434 3 a = Host 

31 100 b = NAT 

 

After that, I applied J48 in Weka to the same dataset, which is also known as C4.5. J48 produces 

a pruned decision tree: 

number of unique contacted IP addresses <= 6: Host (6997.0/80.0) 
number of unique contacted IP addresses > 6 
|   number of unique contacted IP <= 11 
|   |   number of unique contacted IP <= 9: Host (282.0/108.0) 
|   |   number of unique contacted IP > 9: NAT (119.0/37.0) 
|   number of unique contacted IP > 11 
|   |   number of unique contacted IP <= 35: NAT (418.0/1.0) 
|   |   number of unique contacted IP > 35 
|   |   |   number of unique user-agents <= 0: NAT (6.0) 
|   |   |   number of unique user-agents > 0: Host (18.0/7.0) 

 

The size of the decision tree is 11, and there were 6 leaves in the tree. Only 2 out of 8 attributes 

in the dataset were used to build the decision tree: number of unique contacted IP addresses, 

and number of unique user-agents. The marked attributes were used when building the tree, 

unmarked attributes were not used. The selected attributes are the number of unique contacted 

IP addresses and the number of unique user-agents. Other attributes are considered to have less 

impact on classification results. In Koma ́rek’s work, all the eight attributes were used in the 

SVM classifier, although he didn't mention how the attributes affect the results or if they affect 

the results or not. If only some attributes make a difference in classifying NAT devices and end 

hosts, I can use the minimum number of attributes to detect NAT devices. 

 

Classification results of J48(C4.5) are shown in Table 4.3. In total, 1533 out of 1568 instances 

were classified correctly, and the accuracy is almost the same with that of SVM, which is 

97.77% compared with 97.83% of SVM. J48 correctly classifies only one instance fewer than 

SVM does. Table 4.4 shows the confusion matrix of J48 results. This confusion matrix is also 

quite similar to that of SVM, only one more class end host is classified falsely as class NAT 

device. The TPR of class end host was 1433/1437, 99.72%, and the TPR of class NAT device 

was 100/131, 76.34%. Similar to SVM results, the TPR of class NAT device was about 20% 

lower than that of class end host. 



 

Table 4.3 J48 results using 20% as test dataset 

  Proportion 

Correctly Classified Instances 1533 97.77% 

Incorrectly Classified 
Instances 

35 2.23% 

Kappa statistic 0.8392  

Total Cost 35  

Average Cost 0.0223  

Mean absolute error 0.0392  

Root mean squared error 0.1351  

Relative absolute error 24.63%  

Root relative squared error 48.79%  

Total Number of Instances 1568  

 

Table 4.4 J48 confusion matrix 

Confusion Matrix 

a b 
<-- classifies 

as 

1433 4 a = Host 

31 100 b = NAT 

 

The last machine learning algorithm I applied on the datasets from Aug 02 was the Alternating 

decision tree (AD Tree). Weka produces the decision tree below: 

|  (1)number of unique contacted IP addresses < 4.5: -1.454 
|  |  (2)number of unique contacted IP addresses < 2.5: -3.002 
|  |  (2)number of unique contacted IP addresses >= 2.5: 0.902 
|  |  (8)number of unique contacted IP addresses < 3.5: -0.219 
|  |  (8)number of unique contacted IP addresses >= 3.5: 0.206 
|  (1)number of unique contacted IP addresses >= 4.5: 1.252 
|  |  (3)number of unique contacted IP addresses < 10.5: -0.599 
|  |  |  (4)number of unique contacted IP addresses < 6.5: -0.481 
|  |  |  (4)number of unique contacted IP addresses >= 6.5: 0.352 
|  |  |  |  (9)number of unique contacted IP addresses < 7.5: -0.262 
|  |  |  |  (9)number of unique contacted IP addresses >= 7.5: 0.142 
|  |  (3)number of unique contacted IP addresses >= 10.5: 1.328 
|  |  |  (5)number of persistent connections < 11: 0.298 
|  |  |  |  (6)number of unique contacted IP addresses < 11.5: -1.159 
|  |  |  |  (6)number of unique contacted IP addresses >= 11.5: 3.304 



|  |  |  (5)number of persistent connections >= 11: -1.467 
|  (7)number of unique contacted IP addresses < 2.5: -1.524 
|  (7)number of unique contacted IP addresses >= 2.5: 0.003 
Legend: -ve = Host, +ve = NAT 

 

The total number of nodes in the decision tree was 28, and the number of leaves was 19. Still, 

only two attributes were used to build the decision tree, as is shown in Table 4.4. Different 

from J48, the AD Tree uses the attribute number of persistent connections instead of the 

attribute number of unique user-agents to build the tree. The attribute number of unique 

contacted IP addresses was used in both decision trees. That is, the other five attributes: number 

of unique OS and versions, number of unique browser and versions, number of upload bytes, 

number of download bytes and number of sent HTTP requests are considered to have no 

influence on classification for both algorithms. The attribute number of persistent connections 

reflects the amount of traffic, while the attribute number of unique user-agents might reflect 

the number of systems in one host, it can be a NAT device contains several end hosts or simply 

be multiple systems on one host. These two attributes affect NAT detection from different 

aspects. From the point of accuracy, the AD Tree classifier performs better than the J48 

classifier.  

 

Table 4.5 Attributes used to build AD Tree decision tree 

Attributes in dataset Used in decision tree 

number of unique contacted IP 
addresses 

v 

number of unique user-agents  

number of unique OS and versions  

number of unique browser and versions  

number of persistent connections v 

number of upload bytes  

number of download bytes  

number of sent HTTP requests  

 

Classification results of AD Tree are shown in Table 4.6. In total, 1533 out of 1568 instances 

were classified correctly. And the accuracy was exactly the same with that of J48, 97.77%. 

Only 2.23% (35 instances) were incorrectly classified. Apart from the accuracy, the experiment 



on the AD Tree had the same confusion matrix as J48, as is shown in Table 4.7. These two 

decision trees used different algorithms with one common attribute and one different attribute 

but produced the same accuracy and the same TPR for both classes. Compared with SVM 

algorithm, decision trees used fewer attributes, but had almost exactly the same accuracy. From 

these three experiments, either decision tree algorithm can be used for quick NAT detection. 

When extracting attributes from packets, only a quarter of the eight attributes used in 

Koma ́rek’s work are necessary. But either the training dataset or the test dataset was labelled 

by generating artificial NATs mentioned in section 3.2.2. To validate the NAT detection 

methodology, experiments on datasets with real NATs are required.  

 

Table 4.6 AD Tree results using 20% as test dataset 

  Proportion 

Correctly Classified 
Instances 

1533 97.77% 

Incorrectly Classified 
Instances 

35 2.23% 

Kappa statistic 0.8392  

Total Cost 35  

Average Cost 0.0223  

Mean absolute error 0.0612  

Root mean squared error 0.1468  

Relative absolute error 38.44%  

Root relative squared error 53.02%  

Total Number of Instances 1568  

 

Table 4.7 AD Tree confusion matrix 

Confusion Matrix 

a b 
<-- classifies 

as 

1433 4 a = Host 

31 100 b = NAT 

 

4.2.2 Training and validation 

 



Apart from using 20% of the dataset as the test dataset, I also experimented on a validation 

dataset on Aug 02 as mentioned in section 3.2.3.2. This validation dataset included packets 

from one real NAT device and 13 end hosts from the lab. Table 4.8 shows SVM results using 

this validation dataset. In total 13 instances out of 14 were classified correctly, and the accuracy 

was 92.86%. One instance was classified incorrectly. This accuracy was a little bit lower than 

that of experiments on the test dataset. Table 4.9 shows the confusion matrix of SVM algorithm 

using the validation dataset. All the 14 instances are classified as class end host, that is, 

although all the instances of class end host were classified correctly, the real NAT device was 

not detected. 

 

Table 4.8 SVM results using validation dataset 

  Proportion 

Correctly Classified Instances 13 92.86% 

Incorrectly Classified 
Instances 

1 7.14% 

Kappa statistic 0  

Total Cost 1  

Average Cost 0.0714  

Mean absolute error 0.0714  

Root mean squared error 0.2673  

Relative absolute error 48.25%  

Root relative squared error 103.52%  

Total Number of Instances 14  

 

Table 4.9 SVM validation confusion matrix 

Confusion Matrix 

a b 
<-- classifies 

as 

13 0 a = Host 

1 0 b = NAT 

 

After I processed with the SVM classifier, the validation dataset was processed with the J48 

classifier in Weka. The results are shown in Table 4.10. In total, 12 out of 14 instances were 

classified correctly. The accuracy was 85.71%, lower than that of SVM, 92.86%. Two instances 

were classified incorrectly. Table 4.11 shows the confusion matrix of J48 algorithm using the 



validation dataset. Except for one instance of class end host was classified incorrectly, the other 

12 instances of this class were classified correctly. But as with the SVM classifier, the real 

NAT device is still not detected. 

 

Table 4.10 J48 results using validation dataset 

  Proportion 

Correctly Classified 
Instances 

12 85.71% 

Incorrectly Classified 
Instances 

2 14.29% 

Kappa statistic -0.0769  

Total Cost 2  

Average Cost 0.1429  

Mean absolute error 0.3988  

Root mean squared error 0.4232  

Relative absolute error 269.38%  

Root relative squared error 163.93%  

Total Number of Instances 14  

 

Table 4.11 J48 validation confusion matrix 

Confusion Matrix 

a b 
<-- classifies 

as 

12 1 a = Host 

1 0 b = NAT 

 

I also applied the AD Tree classifier to the validation dataset in Weka. Table 4.12 shows the 

results. In total, 13 out of 14 instances were classified correctly, and the accuracy was 92.86%. 

The accuracy of the AD Tree was the same as that of SVM, a little bit higher than that of the 

J48 classifier. Only one instance was classified incorrectly. Table 4.13 shows the confusion 

matrix of AD Tree. It was exactly the same as that of the SVM classifier. All the instances of 

class end host were classified correctly, and the real NAT device was not detected.  

 

Table 4.12 AD Tree results using validation dataset 

  Proportion 



Correctly Classified Instances 13 92.86% 

Incorrectly Classified 
Instances 

1 7.14% 

Kappa statistic 0  

Total Cost 1  

Average Cost 0.0714  

Mean absolute error 0.4569  

Root mean squared error 0.4741  

Relative absolute error 308.61%  

Root relative squared error 183.65%  

Total Number of Instances 14  

 

Table 4.13 AD Tree validation confusion matrix 

Confusion Matrix 

a b 
<-- classifies 

as 

13 0 a = Host 

1 0 b = NAT 

 

Over all, results on the test dataset are better than that on the validation dataset. Although the 

accuracies of experiments on both test dataset and validation dataset were quite high, all of the 

three classifiers were unable to detect the real NAT device from the validation dataset. Since 

my experiment is about detecting NAT devices, I looked into the training dataset to look for 

the reason why the real NAT device was not detected. There were a large number of inactive 

end hosts in the dataset, and this led to the generated artificial NAT devices becoming inactive. 

Values of most of the attributes in inactive hosts or NAT devices were zero: this blurred the 

boundary between end hosts and NAT devices. In addition, an inactive NAT without end hosts 

sending packets behind it is meaningless for further host identification experiment. In order to 

eliminate the effects of inactive NATs, I excluded inactive ones when generating artificial 

NATs. That is, only artificial NAT with at least half nonzero attributes (4 attributes) were kept 

for the training dataset. I used this improved artificial NAT generation method and applied the 

three classifiers on the new training dataset and the previous validation dataset.   

 

Table 4.14 SVM results using validation dataset and improved training dataset 



  Proportion 

Correctly Classified Instances 13 92.86% 

Incorrectly Classified 
Instances 

1 7.14% 

Kappa statistic 0  

Mean absolute error 0.0714  

Root mean squared error 0.2673  

Relative absolute error 89.27%  

Root relative squared error 100.94%  

Total Number of Instances 14  

 

Table 4.15 SVM confusion matrix using validation dataset and improved training dataset 

Confusion Matrix 

a b 
<-- classifies 

as 

13 0 a = Host 

1 0 b = NAT 

 

Table 4.14 shows the SVM results using the validation dataset and the improved training 

dataset. And Table 4.15 shows the corresponding confusion matrix. This improved training 

dataset generated the exact same results as the previous training dataset. That is, the SVM 

classifier was resistant to those inactive NAT instances. Then the J48 classifier were applied to 

the new training dataset and the validation dataset. Table 4.16 shows the results using the 

validation dataset and the improved training dataset on the J48 classifier, and Table 4.17 shows 

the corresponding confusion matrix. Compared with results on the previous training dataset, 

all the end hosts were classified correctly, accuracy was improved from 85.71% to 92.86%. 

But the real NAT device was still undetected. 

 

Table 4.16 J48 results using validation dataset and improved training dataset 

  Proportion 

Correctly Classified 
Instances 

13 92.86% 

Incorrectly Classified 
Instances 

1 7.14% 

Kappa statistic 0  



Mean absolute error 0.0788  

Root mean squared error 0.2651  

Relative absolute error 98.49%  

Root relative squared error 100.12%  

Total Number of Instances 14  

 

Table 4.17 J48 confusion matrix using validation dataset and improved training dataset 

Confusion Matrix 

a b 
<-- classifies 

as 

13 0 a = Host 

1 0 b = NAT 

 

At last, the AD Tree classifier was applied on the improved training dataset. The results are 

shown in Table 4.18, and the corresponding confusion matrix is shown in Table 4.19. The 

accuracy remained the same compared with that in the experiment using the previous training 

dataset, but the real NAT was detected. The produced decision tree used the attribute number 

of unique contacted IP addresses. This also support for the idea that not all the attributes 

provided in Koma ́rek’s work make a difference on NAT detection. According to the 

experiments above, the attributes of use are number of unique contacted IP addresses, number 

of persistent connections, and number of unique user-agents. As the first classifier of being 

able to detect the real NAT device in the validation dataset, AD Tree is sensitive to inactive 

NAT instances in the training dataset. Although the three classifiers provided the same 

accuracy on classifying end hosts and NAT devices, AD Tree stood out from the other 

classifiers in that it successfully detected the real NAT device. 

 

Table 4.18 AD Tree results using validation dataset and improved training dataset 

  Proportion 

Correctly Classified Instances 13 92.86% 

Incorrectly Classified Instances 1 7.14% 

Kappa statistic 0.6316  

Mean absolute error 0.2559  

Root mean squared error 0.315  

Relative absolute error 319.87%  



Root relative squared error 118.98%  

Total Number of Instances 14  

 

Table 4.19 AD Tree confusion matrix using validation dataset and improved training dataset 

Confusion Matrix 

a b 
<-- classifies 

as 

12 1 a = Host 

0 1 b = NAT 

 

Figure 4.1 shows the comparison of NAT detection accuracy in the experiments on the test 

dataset, the validation dataset and the validation dataset with improved training dataset using 

different machine learning classifiers. Over all, the accuracy was around 90%, and the accuracy 

on the test dataset was higher than that on the validation dataset. The accuracy on the validation 

dataset in the experiments with the original training dataset or the improved training dataset 

was almost the same, except for accuracy in the experiment using J48 improved a little when 

it was trained on the improved training dataset. Since the AD Tree classifier detected the real 

NAT device successfully with the improved training dataset, I suggest AD Tree as the classifier 

for NAT detection instead of the other two classifiers. 

Figure 4.1 Classification accuracy 

 



4.2.3 NAT detection on more datasets using AD Tree 

 

Since the AD Tree classifier performed best in the NAT detection experiments above, It was 

then applied on the other datasets captured on four different dates. The datasets used were 

captured on Aug 04 (with all the hosts running), Aug 14 (with only Kali hosts running), Aug 

15 (with only Windows hosts running) and Aug 17 (with half of the Windows hosts and half 

of the Kali hosts running). I first performed experiments on a training dataset and a validation 

dataset from a single date as in the experiments in Section 4.2.2. Then I conducted experiments 

using a training dataset from one date and a validation dataset from another date in order to 

study the generalization of the NAT detection approach in the research. 

 

Table 4.20 shows the AD Tree classification results on the training dataset and the validation 

dataset from Aug 04, and Table 4.21 shows the corresponding confusion matrix. The AD tree 

classifier achieved a good result with 100% accuracy. All the end hosts and the NAT device 

were classified correctly. In addition to the attribute number of unique contacted IP addresses 

used in the previous NAT detection experiments, the attribute number of download bytes was 

also used in building AD Tree for this training dataset. The additional attribute number of 

download bytes in this experiment might be the reason for the 100% accuracy compared with 

the 92.86% accuracy of AD classification on the dataset captured on Aug 02. 

 

Table 4.20 AD Tree results using training dataset and validation dataset on Aug 04 

  Proportion 

Correctly Classified Instances 19 100% 

Incorrectly Classified Instances 0 0% 

Kappa statistic 1  

Mean absolute error 0.051  

Root mean squared error 0.0678  

Relative absolute error 95.82%  

Root relative squared error 29.56%  

Total Number of Instances 19  

 



Table 4.21 AD Tree confusion matrix using training dataset and validation dataset on Aug 04 

Confusion Matrix 

a b <-- classifies as 

18 0 a = Host 

0 1 b = NAT 

 

The next experiment was conducted on the training dataset and the validation dataset captured 

on Aug 14 with only Kali hosts running. The decision tree generated by AD classifier on this 

training dataset contained one more attribute than the tree generated on dataset captured on 

Aug 04 had (number of download bytes, and number of unique contacted IP addresses): number 

of persistent connections. Table 4.22 shows the AD Tree classification results, and Table 4.23 

shows the corresponding confusion matrix. AD Tree classified all the instances correctly, 

including end hosts and the NAT device. The accuracy remained 100% as that in the previous 

experiment. 

 

Table 4.22 AD Tree results using training dataset and validation dataset on Aug14 (Kali hosts 

only) 

  Proportion 

Correctly Classified Instances 8 100% 

Incorrectly Classified Instances 0 0% 

Kappa statistic 1  

Mean absolute error 0.0765  

Root mean squared error 0.1588  

Relative absolute error 60.93%  

Root relative squared error 44.94%  

Total Number of Instances 8  

 

Table 4.23 AD Tree confusion matrix using training dataset and validation dataset on Aug14 

(Kali hosts only) 



Confusion Matrix 

a b <-- classifies as 

7 0 a = Host 

0 1 b = NAT 

 

Then datasets from Aug 15 with only Windows hosts running were employed in the AD Tree 

classifier. The decision tree generated on this training dataset used three attributes, including: 

number of unique contacted IP addresses, number of unique user-agents, and number of upload 

bytes. Table 4.24 shows the results, and Table 4.25 shows the corresponding confusion matrix. 

Although using two different attributes in the decision tree, the accuracy of the AD Tree 

classification experiment on datasets captured on Aug 15 also remained 100%. 

 

Table 4.24 AD Tree results using training dataset and validation dataset on Aug 15 (Windows 

hosts only) 

  Proportion 

Correctly Classified Instances 9 100% 

Incorrectly Classified Instances 0 0% 

Kappa statistic 1  

Mean absolute error 0.1218  

Root mean squared error 0.2078  

Relative absolute error 108.60%  

Root relative squared error 62.42%  

Total Number of Instances 9  

 

Table 4.25 AD Tree confusion matrix using training dataset and validation dataset on Aug 15 

(Windows hosts only) 

Confusion Matrix 

a b <-- classifies as 



8 0 a = Host 

0 1 b = NAT 

 

The results of the last NAT detection experiment on the training dataset and the validation 

dataset captured on the same date are shown in Table 4.26. It used datasets from Aug 17 with 

half of the Kali hosts and half of the Windows hosts running. The generated decision tree by 

the AD Tree classifier generated used three attributes: number of unique contacted IP 

addresses, number of upload bytes and number of download bytes. The AD Tree classifier still 

classified end hosts and the NAT device correctly, with an accuracy of 100%. The confusion 

matrix is shown in Table 4.27. 

 

Table 4.26 AD Tree results using training dataset and validation dataset on Aug 17 (half of 

the Kali hosts and half of the Windows hosts running) 

  Proportion 

Correctly Classified Instances 9 100% 

Incorrectly Classified Instances 0 0% 

Kappa statistic 1  

Mean absolute error 0.1306  

Root mean squared error 0.1882  

Relative absolute error 116.71%  

Root relative squared error 56.52%  

Total Number of Instances 9  

 

Table 4.27 AD Tree confusion matrix using training dataset and validation dataset on Aug 17 

(half of the Kali hosts and half of the Windows hosts running) 

Confusion Matrix 

a b 
<-- classifies 

as 

8 0 a = Host 

0 1 b = NAT 

 

The above experiments used a training dataset and a validation dataset captured from different 

interfaces on the same date. After those experiments, I performed NAT detection experiments 



on a training dataset and a validation dataset captured on different dates with different hosts 

running in order to study the impact of different operating systems on NAT detection and to 

test the generalization of this approach.  

 

Table 4.28 shows the results of AD Tree classification using the training dataset on Aug 02 and 

the validation dataset on Aug 04. The decision tree generated contained only one attribute: 

number of unique contacted IP addresses. The datasets of both dates were collected with all the 

hosts running on the LAN. The NAT detection experiment on the training dataset and the 

validation dataset from different dates performed worse than that on the training dataset and 

the validation dataset from the same date, with an accuracy of 84%. The confusion matrix of 

the classification results is shown in Table 4.29. The real NAT was detected, while three end 

hosts were incorrectly classified as NAT devices. Different amounts of traffic in the training 

datasets captured on different dates led to different behavioral models of NAT devices. Thus, 

the end host instances with a large amount of traffic might be considered to have features of 

NAT devices by the decision tree classifier. In addition, only one attribute was used in 

generated decision tree might be another reason for the incorrect classification. Over all, this 

NAT detection approach provides fairly accurate classification on the training dataset and the 

validation dataset captured on different dates. 

 

Table 4.28 AD Tree results using training dataset on Aug 02 and validation dataset on Aug 

04 

  Proportion 

Correctly Classified Instances 16 84% 

Incorrectly Classified 

Instances 
3 16% 

Kappa statistic 0.3448  

Mean absolute error 0.2766  

Root mean squared error 0.3084  

Relative absolute error 449.12%  

Root relative squared error 135.68%  

Total Number of Instances 19  



 

Table 4.29 AD Tree confusion matrix using training dataset on Aug 02 and validation dataset 

on Aug 04 

Confusion Matrix 

a b <-- classifies as 

15 3 a = Host 

0 1 b = NAT 

 

The previous experiment was performed on the training dataset from Aug 02 and the validation 

dataset from Aug 04. Table 4.30 shows the NAT detection results on the training dataset from 

Aug 04 and the validation dataset from Aug 02, and Table 4.31 shows the corresponding 

confusion matrix. The generated decision tree contained two attributes: number of download 

bytes, and number of unique contacted IP addresses. The accuracy was relatively low: 57%. 

The NAT device was detected; however, six out of 13 end hosts were incorrectly classified as 

NAT devices. 

 

Table 4.30 AD Tree results using training dataset on Aug 04 and validation dataset on Aug 02 

  Proportion 

Correctly Classified 

Instances 
8 57% 

Incorrectly Classified 

Instances 
6 43% 

Kappa statistic 0.1429  

Mean absolute error 0.3456  

Root mean squared error 0.4878  

Relative absolute error 479.67%  

Root relative squared error 182.65%  

Total Number of Instances 14  

 



Table 4.31 AD Tree confusion matrix using training dataset on Aug 04 and validation dataset 

on Aug 02 

Confusion Matrix 

a b <-- classifies as 

7 6 a = Host 

0 1 b = NAT 

 

The above two experiments were performed on a training dataset and a validation dataset from 

different dates, but both of the datasets were with all the end hosts running. The following 

experiment used the training dataset with half of the hosts running on one day and the validation 

dataset with the other hosts running on another day. Table 4.32 shows the results on the training 

dataset from Aug 14 with only Kali hosts running and on the validation dataset from Aug 15 

with only Windows hosts running. The generated decision tree contained three attributes: the 

number of download bytes, number of unique contacted IP addresses, and number of persistent 

connections. The accuracy was unexpectedly high: 100%. Both the instance of class NAT and 

the instances of class end host were classified correctly. The behavioral model built from the 

dataset with only Kali hosts running perfectly classified the target dataset with only Windows 

hosts running. 

 

Table 4.32 AD Tree results using training dataset on Aug 14 (Kali hosts only) and validation 

dataset on Aug 15 (Windows hosts only) 

  Proportion 

Correctly Classified Instances 9 100% 

Incorrectly Classified Instances 0 0% 

Kappa statistic 1  

Mean absolute error 0.0619  

Root mean squared error 0.1342  

Relative absolute error 55.49%  

Root relative squared error 40.29%  

Total Number of Instances 9  



 

Table 4.33 AD Tree confusion matrix using training dataset on Aug 14 (Kali hosts only) and 

validation dataset on Aug 15 (Windows hosts only) 

Confusion Matrix 

a b <-- classifies as 

8 0 a = Host 

0 1 b = NAT 

 

Then I used the dataset captured on Aug 15 with only Windows hosts running as the training 

dataset and the dataset captured on Aug 14 with only Kali hosts running as the validation 

dataset. The results are shown in Table 4.34, and corresponding confusion matrix is shown in 

Table 4.35. The generated decision tree contained three attributes: number of unique contacted 

IP addresses, number of unique user-agents, and number of upload bytes. The accuracy was as 

little as 25%, with the NAT device and only one out of the seven end host instances classified 

correctly. More than 85% of the instances from class end host were classified incorrectly. This 

shows that the behavioral model built from the dataset with only Windows hosts running cannot 

correctly classify the dataset with only Kali hosts running. The most probable cause is that 

Windows hosts generated less traffic than Kali hosts did in one day due to the different 

performance of automatic URL generation program on different operating systems, as is 

described in Section 3.1.2. 

 

Table 4.34 AD Tree results using training dataset on Aug 15 (Windows hosts only) and 

validation dataset on Aug 14 (Kali hosts only)  

  Proportion 

Correctly Classified Instances 2 25% 

Incorrectly Classified Instances 6 75% 

Kappa statistic 0.04  

Mean absolute error 0.6528  

Root mean squared error 0.7253  

Relative absolute error 517.92%  



Root relative squared error 205.43%  

Total Number of Instances 8  

 

Table 4.35 AD Tree confusion matrix using training dataset on Aug 15 (Windows hosts only) 

and validation dataset on Aug14 (Kali hosts only)  

Confusion Matrix 

a b <-- classifies as 

1 6 a = Host 

0 1 b = NAT 

 

The next NAT detection experiment used the dataset captured on Aug 17 with half of the Kali 

hosts and half of the Windows hosts running as the training dataset and the dataset captured on 

Aug 02 with all the hosts running as the validation dataset. The results are shown in Table 4.36, 

and corresponding confusion matrix is shown in Table 4.37. The decision tree generated by the 

AD Tree classifier used three attributes: number of unique contacted IP addresses, number of 

upload bytes, and number of download bytes. The decision tree built on the training dataset 

with half of the hosts running correctly classified the NAT device as well as 11 out of 13 end 

hosts in the validation dataset with all the hosts running, with an accuracy of 86%. Only two 

end hosts in the validation dataset were classified incorrectly as NAT devices. 

 

Table 4.36 AD Tree results using training dataset on Aug 17 (half of the Kali hosts and half of 

the Windows hosts running) and validation dataset on Aug 02 (all the hosts running)  

  Proportion 

Correctly Classified Instances 12 86% 

Incorrectly Classified 
Instances 

2 14% 

Kappa statistic 0.44  

Mean absolute error 0.157  

Root mean squared error 0.2741  

Relative absolute error 217.18%  

Root relative squared error 102.68%  



Total Number of Instances 14  

 

Table 4.37 AD Tree confusion matrix using training dataset on Aug 17 (half of the Kali hosts 

and half of the Windows hosts running) and validation dataset on Aug 02 (all the hosts running)  

Confusion Matrix 

a b 
<-- classifies 

as 

11 2 a = Host 

0 1 b = NAT 

 

The following NAT detection experiment used the dataset captured on Aug 02 with all the 

hosts running as the training dataset and the dataset captured on Aug 17 with half of the Kali 

hosts and half of the Windows hosts running as the validation dataset. The results are shown in 

Table 4.38, and corresponding confusion matrix is shown in Table 4.39. The decision tree 

generated by the AD Tree classifier used a single attribute: number of unique contacted IP 

addresses. It correctly classified the NAT device and all the end hosts in the validation dataset 

with half of the hosts running, with an accuracy of 100%. 

 

Table 4.38 AD Tree results using training dataset on Aug 02 (all the hosts running) and 

validation dataset on Aug 17 (half of the Kali hosts and half of the Windows hosts running) 

  Proportion 

Correctly Classified Instances 9 100% 

Incorrectly Classified 
Instances 

0 0% 

Kappa statistic 1  

Mean absolute error 0.239  

Root mean squared error 0.2468  

Relative absolute error 201.04%  

Root relative squared error 74.75%  

Total Number of Instances 9  

 

Table 4.39 AD Tree confusion matrix using training dataset on Aug 02 (all the hosts running)  

and validation dataset on Aug 17 (half of the Kali hosts and half of the Windows hosts running) 



Confusion Matrix 

a b 
<-- classifies 

as 

8 0 a = Host 

0 1 b = NAT 

 

As summarized in the above experiments, NAT detection provides fairly good results when the 

training dataset and the validation dataset were collected during the same period. However, its 

accuracy varies widely from 25% to 100% on datasets captured on different dates. The 

accuracy and attributes used in the decision are shown in Table 4.40. Among the eight attributes 

provided in the datasets, five of them were used. Of the other three unused attributes, the 

number of unique OSs and versions and the number of unique browsers and versions are 

actually indicated in the attribute number of unique user-agents; and the number of sent HTTP 

requests reveals the amount of traffic sent from a host, which is similar to the attribute number 

of persistent connections. It can be concluded from the experimental results that these three 

attributes have no or little impact on NAT detection. To effectively detect NAT devices, the 

five attributes listed in Table 4.40 are required. The number of unique contacted IP addresses 

was adopted by the AD tree classifier in every experiment, and the number of upload bytes and 

the number of download bytes were used several times. In addition, it can be analyzed in Table 

4.40 that the number of attributes and the kinds of attributes used in the decision tree do not 

necessarily have an effect upon NAT detection accuracy.  

 

Table 4.40 NAT detection accuracies and decision tree attributes on different training datasets 

and validation datasets 

No. 
Training 
dataset 

Validation 
dataset 

Attributes used in the decision tree 

Accur
acy 

Number 
of 

unique 
contacte

d IP 
addresse

s 

Number 
of 

unique 
user-

agents 

Number 
of 

persisten
t 

connecti
ons 

Number 
of 

upload 
bytes 

Number 
of 

downloa
d bytes 

1 
Aug 02-all 

the host 
Aug 04-all 
the hosts 

v     84% 

2 
Aug 04-all 
the hosts 

Aug 02-all 
the hosts 

v    v 57% 



3 
Aug 14-Kali 
hosts only 

Aug 15-
Windows 
hosts only 

v  v  v 100% 

4 
Aug 15-

Windows 
hosts only 

Aug 14-
Kali hosts 

only 
v v  v  25% 

5 
Aug17-half 
of the hosts 

Aug 02-all 
the hosts 

v   v v 86% 

6 
Aug 02-all 
the hosts 

Aug17-half 
of the hosts 

v     100% 

 

As is shown in Table 4.40, one of the experiments (No.4) with a low accuracy used the training 

dataset with only Windows hosts running and the validation dataset with only Kali hosts 

running, but another (No.2) used the training dataset captured on Aug 02 and the validation 

dataset captured on Aug 04. Both of the datasets were collected when all the hosts were 

running. Hence the hosts’ operating systems of the datasets do not necessarily have an effect 

upon the accuracy. The reason for the variation of the accuracy lies in data sizes, as is shown 

in Table 4.41. The common ground of the two experiments is that they both used a training 

dataset and a validation dataset that were processed from the original datasets with a large 

difference in data size. This does not necessarily lead to a low accuracy because the accuracies 

of No.1 and No.3 remained high despite using the datasets processed from the datasets with a 

large difference in data size. Hence the disparity between datasets’ sizes can lead to uncertain 

accuracy. The other two experiments, No.5 and No.6, had a good performance on accuracy 

using datasets with similar data sizes to be processed for the training dataset and the validation 

dataset. To draw the conclusion that the accuracy of NAT detection is steadily high when it 

uses a training dataset and a validation dataset that are processed from datasets of similar sizes, 

more experiments are needed. 

 

Table 4.41 Data size of datasets used in NAT detection experiments 

Date 
Total data size 

(GB) 

Aug 02-all the host 44 

Aug 04-all the hosts 110 

Aug 14-Kali hosts only 42 

Aug 15-Windows hosts only 13 

Aug17-half of the hosts 32 



 

To verify the above theory, I chose datasets captured on Aug 02 (44 GB) and datasets captured 

on Aug 14 (42 GB) for NAT detection. The datasets from these two dates had the similar sizes, 

and consequently the NAT detection accuracy using one of the datasets as the training dataset 

and another as the validation dataset should be steadily high. Results using the training dataset 

captured on Aug 02 and the validation dataset captured on Aug 14 are shown in Table 4.42, 

with an accuracy of 100%. Results of using the training dataset captured on Aug 14 and the 

validation dataset captured on Aug 02 are shown in Table 4.43, with an accuracy of 93%. These 

two additional NAT detection experiments along with No.5 and No.6 in Table 4.40 verify the 

finding that the accuracy of NAT detection stays high when the training dataset and the 

validation dataset are processed from datasets of similar sizes. To detect NAT devices on the 

network, selecting a training dataset of the similar size to the target dataset contributes to a high 

accuracy. 

 

Table 4.42 AD Tree results using training dataset on Aug 02 (all hosts running) and validation 

dataset on Aug 14 (Kali hosts only)  

  Proportion 

Correctly Classified Instances 8 100% 

Incorrectly Classified Instances 0 0% 

Kappa statistic 1  

Mean absolute error 0.2417  

Root mean squared error 0.2502  

Relative absolute error 182.43%  

Root relative squared error 71.46%  

Total Number of Instances 8  

 

Table 4.43 AD Tree results using training dataset on Aug 14 (Kali hosts only) and validation 

dataset on Aug 02 (all hosts running) 

  Proportion 

Correctly Classified Instances 13 93% 

Incorrectly Classified Instances 1 7.14% 

Kappa statistic 1  



Mean absolute error 0.6316  

Root mean squared error 0.0929  

Relative absolute error 128.95%  

Root relative squared error 82.19%  

Total Number of Instances 14  

 

4.3 Host identification experiments 

 

Our experiment in this phase was implemented with the Python programming language. 

Datasets with packets separated by connection were processed with Tshark as presented in 

Section 3.3. This software then processed the dataset through the linear regression algorithm, 

and then compared the lines generated to identify hosts as mentioned above. We applied the 

linear-model package from Scikit-learn (sklearn) to implement least squares linear regression. 

sklearn is a free software ML library provided for the Python language. Its dependencies are 

NumPy and SciPy, and they are also Python libraries. 

 

4.3.1 Evaluation criteria  

 

Each connection from the dataset was marked with a pair of ( , 0), where  is the slope and 

0 is the  value of the point when the generated line crosses the  axis. Connections with 

same sets of ( , 0), or similar enough sets (method of comparing distance with threshold in 

section 3.3) were considered to belong to the same host. From datasets captured on the LAN 

interface, packets passed through the NAT device were matched by connection with original 

packets directly sent from the end hosts. That is, host identification determines if several 

connections are associated with the same end host or not. In this way, evaluation criteria work 

in two ways. The first method evaluates whether the connections considered to belong to the 

same host by the program are really sent from the same host (evaluation method A). The second 

method evaluates whether original connections from the same host are identified to belong to 

the same hosts (might be several hosts) by the program (evaluation method B). These two 

evaluation methods provide different benchmarks from different angles for my experiment. 



They provide very different results. In my experiment, I applied these two evaluation methods 

for host identification. 

 

4.3.2 Host identification experiments and results 

 

According to the TCP timestamp definition in RFC 1323 [6], the TCP timestamp value is at 

least approximately proportional to real time. Hence the increment rate of timestamp, or the 

slope should be positive in the research. No matter what the exact value of the slope is, a 

negative slope is an incorrect result.  

 

When re-engineering Georg Wicherski’s experiments, some computed slopes were negative. 

To evaluate the parameters impacting the experiment results, I first conducted experiments 

with a variable number of packets in one connection. Only connections with more than or equal 

to the given number of packets were taken into consideration. Results are shown in Table 4.44. 

The proportion of the number of hosts with a positive slope increased at first and then decreased 

with the increase of the number of packets in one connection, peaking at 55 packets in one 

connection (98.86%). And the proportion of positive slopes of all slopes increased from 50% 

(30 packets in one connection) to 72.7% (55 packets in one connection). This trend indicates 

that connections not containing enough packets led to calculation errors when generating the 

artificial lines of timestamp value and system uptime using least-squares linear regression. 

Also, this number should not be as large as 100 or 200, because applying too large a number 

will filter out too many connections. As is shown in Table 4.44, using connections with more 

than 200 packets, it can only detect 678 hosts in total, compared with 5515 hosts using 

connections with more than 30 packets. So, in this research, I adopted 55 as the limit for the 

number of packets in one connection. 

 

Table 4.44 Number of packets in one connection (threshold = 2ms) 

number of packets 
in one connection 

number of 
slopes 

negative 
slope 

number of 
hosts 

number of 
hosts with 
negative 

slope 

Proportion 

30 22 11 5515 20 99.64% 

40 18 10 4085 13 99.68% 



50 14 5 3210 6 99.81% 

55 11 3 2901 4 99.86% 

60 9 3 2664 4 99.85% 

100 6 3 1547 3 99.81% 

200 2 1 678 2 99.71% 

 

The following experiment filtered out connections with fewer than 55 packets and tested on 

different threshold values ����  (limit values to decide if two lines are close enough). 

Threshold values varied from 2 ms to 600 ms. All the other parameters were settled as in Georg 

Wicherski’s experiments [5]. Results are shown in Table 4.45. Accuracy rose from 13% at 

threshold value 2 ms to 23% at threshold value 600 ms. In addition, the number of detected 

hosts with negative slopes (those with errors) decreased from 4 (threshold value 2 ms to 50 ms) 

to 0 (threshold value 100 ms to 600 ms). Although the accuracy increased to a certain degree 

with the increase of the threshold value, it was still below expectations. Other experiments were 

performed to explore the reasons for this and improve the research. 

  

Table 4.45 Results on original method 

Threshold(ms)/Number 
of packets in one 

connection 
2/55 5/55 10/55 20/55 50/55 

100/5
5 

200/5
5 

400/5
5 

600/5
5 

Number of a 11 10 9 8 6 5 3 2 2 

Number of hosts with 
negative slopes 4 4 4 4 4 0 0 0 0 

Number of hosts 3110 2999 2872 2691 2341 1949 1568 1247 1089 

Number of negative 
slopes 3 2 2 2 1 0 0 0 0 

Accuracy 13% 14% 14% 15% 16% 18% 19% 22% 23% 

 

After experimenting on the number of packets in one connection and different threshold values, 

I adopted an improved calculation method for the distance between two lines and kept the other 

parameters the same. Experimental results are shown in Table 4.46. The change in the number 

of negative slopes and the number of hosts with negative slopes were the same as those of the 

previous experiment. Accuracy increased to a greater extend compared with that in the 

experiment using the original distance calculation method, from 14% at threshold value 2 ms 



to 36% at threshold value 600 ms. The new distance method improved the accuracy more when 

the threshold value was larger. 

 

Table 4.46 Results on improved distance between two lines calculation method 

Threshold(ms)/Number of 
packets in one connection 

2/55 5/55 10/55 20/55 50/55 
100/5

5 
200/5

5 
400/5

5 
600/5

5 

Number of a 11 10 9 8 6 5 3 2 2 

Number of hosts with 
negative slopes 

4 4 4 4 4 0 0 0 0 

Number of hosts 2902 2679 2399 2060 1554 1237 965 731 639 

Number of negative slopes 3 2 2 2 1 0 0 0 0 

Accuracy 14% 15% 16% 16% 19% 22% 29% 34% 36% 

 

The following experiment had the same parameters as the previous one but adopted an 

improved method for flow separation. The results are shown in Table 4.47. This method 

eliminated negative slopes no matter the threshold value. The accuracy in this experiment also 

improved distinctly on the whole, the accuracy varied from 34% at threshold value 2 ms 

(compared with the lowest accuracy 14% in Table 4.46) to 42% at threshold value 100 ms 

(compared with the highest accuracy 36% in Table 4.46). The accuracy peaked at the threshold 

value 100 ms and fluctuated around 40% as the threshold value increased. From both sides, the 

new flow separation method contributed significantly to host identification. 

 

Table 4.47 Results on improved flow separation method and improved distance calculation 

method 

Threshold/Number of 
packets in one 

connection
2/55 5/55 10/55 20/55 50/55 100/55 200/55 400/55 600/55

Number of a 1 1 1 1 1 1 1 1 1

Number of hosts with 
minus slopes

0 0 0 0 0 0 0 0 0

Number of hosts 90 88 83 80 72 65 52 43 40

Number of minus 
slopes

0 0 0 0 0 0 0 0 0

Accuracy 34% 34% 38% 38% 39% 42% 35% 40% 35%

 



The last experiment differed from the others in its evaluation criteria. It used the evaluation 

method B mentioned in Section 4.3.1 to judge if original connections from the same host were 

identified as belonging to the same host. Results are shown in Table 4.48. All the parameters 

remained the same as those in the experiment in Table 4.47.  

 

Table 4.48 Results on improved flow separation method and improved distance calculation 

method and new evaluation method 

Threshold/Number of 
packets in one 

connection
2/55 5/55 10/55 20/55 50/55 100/55 200/55 400/55 600/55

Number of a 1 1 1 1 1 1 1 1 1

Number of hosts with 
minus slopes

0 0 0 0 0 0 0 0 0

Number of hosts 90 88 83 80 72 65 52 43 40

Number of minus 
slopes

0 0 0 0 0 0 0 0 0

Accuracy 100% 100% 100% 100% 100% 100% 100% 100% 100%

 

The most obvious improvement was that the accuracy was 100% regardless of the value of 

threshold. That is, even though connections sent from one host were detected as sent from 

several different end hosts, as the results of evaluation method A in Table 4.47 reveal, results 

under the evaluation method B reflect that connections detected as from the same host were 

indeed sent from the same host.  

 

Table 4.49 Host identification accuracy comparison with different parameters 

threshold/number of packets in 
one connection 

2/55 5/55 10/55 20/55 50/55 
100/5

5 
200/5

5 
400/5

5 
600/5

5 
Distance 

Connecti
on 

separatio
n 

Evaluation 

paper paper 
host -> 

connection 
(A) 

13% 14% 14% 15% 16% 18% 19% 22% 23% 

proporti
onal 

paper 
host -> 

connection 
(A) 

14% 15% 16% 16% 19% 22% 29% 34% 36% 



proporti
onal 

flow 
host -> 

connection 
(A) 

34% 34% 38% 38% 39% 42% 35% 40% 35%

proporti
onal 

flow 
connection 
-> host (B) 

100% 100% 100% 100% 100% 100% 100% 100% 100% 

 

Accuracy comparisons of all the above experiments are shown in Table 4.49, and the 

corresponding line chart is shown in Figure 4.2. Parameters labeled as paper are from Georg 

Wicherski’s work [5]. The first three rows results were evaluated by criterion host to 

connection (Evaluation method A). The accuracy of these three rows were relatively low 

compared with that of the last row using the evaluation method from connection to host 

(Evaluation method B). But each improved parameter contributes to a higher accuracy. The 

improvement of accuracy from the third experiment to the second experiment was greater than 

the improvement of the accuracy from the second experiment to the first one. That is, the 

improved flow separation method contributes more to the accuracy than the proportional 

distance calculation method does. As is shown in Figure 4.2, the accuracy of experiments using 

the old connection separation method first increased slowly with the increment of threshold 

value, and then it rose rapidly at threshold value 100 ms to threshold value 200 ms, followed 

by a mild increase. The accuracy increased first and then fluctuated as the threshold value 

raised. While the accuracy of the fourth experiment remained very high regardless of different 

threshold values as discussed in the previous paragraph. 

 



Figure 4.2 Host identification accuracy 

 

4.3.3 Host identification experiments using datasets from NAT 
detection  

 

The host identification approach was then applied on other datasets captured on different dates: 

Aug 02, Aug 14, Aug 15, and Aug 17. Each experiment was evaluated by the two evaluation 

methods mentioned above. Table 4.50 shows the results on the dataset captured on Aug 02 

using evaluation method A. The value of number of packets in one connection used in this and 

the following experiments was 55. Hosts of both operating systems were detected. Since only 

one slope  was detected regardless of different threshold values, and according to the fact that 

’s are determined by operating systems, the difference of the TCP timestamp values’ 

increment rates ’s between the two operating systems was smaller than any threshold value 

used in this research. In other words, the increment rates of TCP timestamp values on Kali 

hosts and Windows hosts can be considered as the same in this research. The number of 

detected hosts decreased from 41 at the threshold value 2 ms to 26 at the threshold value 600 

ms. It was much larger than the number of actual hosts (16) regardless of different threshold 

values. The accuracy increased slowly from 65% to 74% as the threshold value increased. The 

accuracy of 65% at threshold value 2 ms means that on average 65% connections sent from the 

same host were identified to belong to the same host by the program. 

 

Table 4.50 Host identification results using evaluation method A on dataset from Aug 02 

Threshold/Number of 
packets in one 

connection 
2/55 5/55 10/55 20/55 50/55 100/55 200/55 400/55 600/55 

Number of ’s 1 1 1 1 1 1 1 1 1 

Number of hosts with 
minus slopes 

0 0 0 0 0 0 0 0 0 

Number of hosts 41 41 41 39 37 35 31 28 26 

Number of minus 
slopes 

0 0 0 0 0 0 0 0 0 

Accuracy 65% 65% 65% 65% 65% 65% 65% 72% 74% 

 



The results on the same dataset using evaluation method B are shown in Table 4.51. The results 

of detected hosts and slopes were the same as in the experiment using evaluation method A. 

The host identification accuracy maintained 100% regardless of different threshold values. This 

reveals that all the original connections sent from the same host were identified to belong to 

same hosts (can be more than one host) by the program. Although the program detected more 

hosts than the number of actual end hosts behind the NAT device, connections of any detected 

host were indeed sent from the same end host according to the dataset collected on the internal 

interface on the LAN. 

 

Table 4.51 Host identification results using evaluation method B on dataset from Aug 02 

Threshold/Number of 
packets in one 

connection 
2/55 5/55 10/55 20/55 50/55 

100/5
5 

200/5
5 

400/5
5 

600/5
5 

Number of ’s 1 1 1 1 1 1 1 1 1 

Number of hosts with 
minus slopes 

0 0 0 0 0 0 0 0 0 

Number of hosts 41 41 41 39 37 35 31 28 26 

Number of minus 
slopes 

0 0 0 0 0 0 0 0 0 

Accuracy 100% 100% 100% 100% 100% 100% 100% 100% 100% 

 

Table 4.52 shows the host identification results on the dataset captured on Aug 14 with only 

Kali hosts running using evaluation method A. Only one  was detected, which was still 

consistent with the principle that ’s are determined by operating systems. The number of 

detected hosts decreased from 24 at the threshold value 2 ms to 10 at the threshold value 600 

ms. The number of detected hosts at the threshold value 2 ms tripled the actual number of hosts 

running on this date (eight). The accuracy increased obviously as the threshold value increased.  

 

Table 4.52 Host identification results using evaluation method A on dataset from Aug 14  

Threshold/Nu
mber of 

packets in one 
connection 

2/55 5/55 10/55 20/55 50/55 100/55 200/55 400/55 600/55 

Number of ’s 1 1 1 1 1 1 1 1 1 

Number of 
hosts with 

minus slopes 
0 0 0 0 0 0 0 0 0 



Number of 
hosts 

24 24 22 21 19 17 14 10 10 

Number of 
minus slopes 

0 0 0 0 0 0 0 0 0 

Accuracy 61% 62% 62% 62% 70% 87% 88% 88% 89% 

 

Host identification results on the dataset captured on Aug 14 with only Kali hosts running using 

evaluation method B are shown in Table 4.53. The accuracy remained 100% regardless of 

different threshold values. This still indicates that connections of any detected host were 

actually sent from the same end host. 

 

Table 4.53 Host identification results using evaluation method B on dataset from Aug 14  

Threshold/Number 
of packets in one 

connection 
2/55 5/55 10/55 20/55 50/55 100/55 200/55 400/55 600/55 

Number of ’s 1 1 1 1 1 1 1 1 1 

Number of hosts 
with minus slopes 

0 0 0 0 0 0 0 0 0 

Number of hosts 24 24 22 21 19 17 14 10 10 

Number of minus 
slopes 

0 0 0 0 0 0 0 0 0 

Accuracy 100% 100% 100% 100% 100% 100% 100% 100% 100% 

 

Host identification results on another dataset captured on Aug 15 with only Windows hosts 

running using evaluation method A are shown in Table 4.54. Only one  was detected on this 

dataset as in the previous experiment using evaluation method A. The number of detected hosts 

decreased from 11 at the threshold value 2 ms to 9 at the threshold value 600 ms. The number 

of detected hosts at the threshold value 2 ms was quite similar to the actual number of hosts 

running on that date (eight). The accuracy increased more slowly as the threshold value 

increased compared with that in the previous experiment, and it maintained 62% while the 

threshold value increased from 2 ms to 400 ms. 

 

Table 4.54 Host identification results using evaluation method A on dataset from Aug 15 

Threshold/Number 
of packets in one 

connection 
2/55 5/55 10/55 20/55 50/55 100/55 200/55 400/55 600/55 



Number of ’s 1 1 1 1 1 1 1 1 1 

Number of hosts 
with minus slopes 

0 0 0 0 0 0 0 0 0 

Number of hosts 11 11 11 11 10 10 10 10 9 

Number of minus 
slopes 

0 0 0 0 0 0 0 0 0 

Accuracy 62% 62% 62% 62% 62% 62% 62% 62% 65% 

 

Table 4.55 shows results on the dataset captured on Aug 15 using evaluation method B. The 

accuracy still maintained 100% regardless of the threshold values. The program detected a few 

more hosts than the number of actual end hosts behind the NAT device, but still, connections 

of any detected host were actually sent from the same end host in the dataset captured from the 

internal interface. 

 

Table 4.55 Host identification results using evaluation method B on dataset from Aug 15 

Threshold/Number 
of packets in one 

connection 
2/55 5/55 10/55 20/55 50/55 100/55 200/55 400/55 600/55 

Number of ’s 1 1 1 1 1 1 1 1 1 

Number of hosts 
with minus slopes 

0 0 0 0 0 0 0 0 0 

Number of hosts 11 11 11 11 10 10 10 10 9 

Number of minus 
slopes 

0 0 0 0 0 0 0 0 0 

Accuracy 100% 100% 100% 100% 100% 100% 100% 100% 100% 

 

The results of the next host identification experiment on another dataset captured on Aug 17 

with half of the Windows hosts and half of the Kali hosts running using evaluation method A 

are shown in Table 4.56. One  is detected, and the number of detected hosts decreased from 

64 to 36 when the threshold value increased from 2 ms to 600 ms. The program detected much 

more hosts than the actual number of end hosts (eight) behind the NAT device. The accuracy 

increased obviously from 45% to 74% as the threshold value raised. 

 

Table 4.56 Host identification results using evaluation method A on dataset from Aug 17 



Threshold/Number of 
packets in one 

connection 
2/55 5/55 10/55 20/55 50/55 

100/5
5 

200/5
5 

400/5
5 

600/5
5 

Number of ’s 1 1 1 1 1 1 1 1 1 

Number of hosts with 
minus slopes 

0 0 0 0 0 0 0 0 0 

Number of hosts 64 64 62 60 53 50 44 40 36 

Number of minus 
slopes 

0 0 0 0 0 0 0 0 0 

Accuracy 45% 45% 53% 68% 69% 73% 73% 74% 74% 

 

Table 4.57 shows results on the dataset captured on Aug 17 using evaluation method B. The 

accuracy still maintained 100% regardless of different threshold values. The program detected 

much more hosts than the number of actual end hosts behind the NAT device, but the 

connections of any detected host were sent from the same end host in the dataset collected on 

the internal interface. 

 

Table 4.57 Host identification results using evaluation method B on dataset from Aug 17 

Threshold/Number of 
packets in one 

connection 
2/55 5/55 10/55 20/55 50/55 100/55 200/55 400/55 600/55 

Number of ’s 1 1 1 1 1 1 1 1 1 

Number of hosts with 
minus slopes 

0 0 0 0 0 0 0 0 0 

Number of hosts 64 64 62 60 53 50 44 40 36 

Number of minus 
slopes 

0 0 0 0 0 0 0 0 0 

Accuracy 100% 100% 100% 100% 100% 100% 100% 100% 100% 

 

4.4 Host identification on datasets from NAT detection 

 

The previous two sections describe NAT detection and host identification experiments 

separately. This section describes host identification experiments using datasets from the NAT 

detection stage. Datasets with only HTTP packets were extracted to get TCP attributes like 

TCP timestamp values for host identification. HTTP packets only account for a small part of 



TCP packets: about 2% to 3% on average in the datasets I collected. Hence the number of 

packets in one connection in these datasets were smaller than that of datasets used in Section 

4.3. The limit for the number of packets in one connection I used in section was 10 instead of 

55 in the previous section. 

 

Table 4.58 shows the host identification results using evaluation method A on dataset from the 

NAT detection stage captured on Aug 02. Only one slope  was detected as in the experiment 

using datasets directly extracted from the original dataset captured on Aug 02. The number of 

detected hosts was five at threshold value 2 ms, which was far fewer than that in the experiment 

on the previous dataset: 41. It was also smaller than the actual number of hosts running on that 

date: 16. The performance on host identification accuracy was unsatisfying. The number of 

hosts and the accuracy hardly changed as the threshold value increased. 

 

Table 4.58 Host identification results using evaluation method A on Aug 02 dataset from the 

NAT detection 

Threshold/Number of 
packets in one 

connection 
2/10 5/10 10/10 20/10 50/10 100/10 200/10 400/10 600/10 

Number of ’s 1 1 1 1 1 1 1 1 1 

Number of hosts with 
minus slopes 

0 0 0 0 0 0 0 0 0 

Number of hosts 5 5 5 5 5 5 5 5 4 

Number of minus 
slopes 

0 0 0 0 0 0 0 0 0 

Accuracy 27% 27% 27% 27% 27% 27% 27% 27% 40% 

 

The host identification results using evaluation method B on Aug 02 dataset from the NAT 

detection stage are shown in Table 4.59. Despite of a fewer number of detected hosts and the 

lower accuracy using evaluation method A compared with those in the experiment on the 

original dataset, connections of any detected host were actually sent from the same end host. 

 

Table 4.59 Host identification results using evaluation method B on Aug 02 dataset from the 

NAT detection 

Threshold/Number of 
packets in one 

connection   
2/10 5/10 10/10 20/10 50/10 100/10 200/10 400/10 600/10 



Number of ’s 1 1 1 1 1 1 1 1 1 

Number of hosts with 
minus slopes 

0 0 0 0 0 0 0 0 0 

Number of hosts 5 5 5 5 5 5 5 5 4 

Number of minus 
slopes 

0 0 0 0 0 0 0 0 0 

Accuracy 100% 100% 100% 100% 100% 100% 100% 100% 100% 

 

Results of the experiment on the NAT detection dataset from Aug 04 using evaluation method 

A are shown in Table 4.60. The number of detected slopes  was one. It detected 18 to 21 hosts 

at different threshold values. It was lower than the actual number of hosts running and the 

number of detected hosts on the dataset directly processed from the original dataset captured 

on Aug 04 (40 to 90 hosts). The host identification accuracy (17% to 22%) was lower than that 

of the experiment using the original dataset (34% to 42%). 

 

Table 4.60 Host identification results using evaluation method A on Aug 04 dataset from the 

NAT detection 

Threshold/Number 
of packets in one 

connection
2/55 5/55 10/55 20/55 50/55 100/55 200/55 400/55 600/55

Number of a 1 1 1 1 1 1 1 1 1

Number of hosts 
with minus slopes

0 0 0 0 0 0 0 0 0

Number of hosts 21 21 21 21 21 20 19 19 18

Number of minus 
slopes

0 0 0 0 0 0 0 0 0

Accuracy 17% 17% 17% 17% 17% 17% 19% 19% 22%

 

The host identification results B on the dataset from the NAT detection stage captured on Aug 

04 using evaluation method are shown in Table 4.61. The accuracy remained 100%. Still, 

connections of any detected host were actually sent from the same end host. 

 

Table 4.61 Host identification results using evaluation method B on Aug 04 dataset from the 

NAT detection 



Threshold/Number 
of packets in one 

connection
2/55 5/55 10/55 20/55 50/55 100/55 200/55 400/55 600/55

Number of a 1 1 1 1 1 1 1 1 1

Number of hosts 
with minus slopes

0 0 0 0 0 0 0 0 0

Number of hosts 21 21 21 21 21 20 19 19 18

Number of minus 
slopes

0 0 0 0 0 0 0 0 0

Accuracy 100% 100% 100% 100% 100% 100% 100% 100% 100%

 

Results of the experiment on the NAT detection dataset captured on Aug 14 using evaluation 

method A are shown in Table 4.62. The number of detected slopes  was one. It detected at 

most five hosts. It was lower than the actual number of hosts running or the number of detected 

hosts on the dataset directly processed from the original dataset captured on Aug 14. The host 

identification accuracy (59% to 74%) was lower than that of the experiment using the original 

dataset (61% to 89%). 

 

Table 4.62 Host identification results using evaluation method A on Aug 14 dataset from the 

NAT detection 

Threshold/Number of 
packets in one 

connection 
2/10 5/10 10/10 20/10 50/10 

100/1
0 

200/1
0 

400/1
0 

600/1
0 

Number of ’s 1 1 1 1 1 1 1 1 1 

Number of hosts with 
minus slopes 

0 0 0 0 0 0 0 0 0 

Number of hosts 5 5 5 5 5 5 5 4 4 

Number of minus 
slopes 

0 0 0 0 0 0 0 0 0 

Accuracy 59% 59% 59% 59% 59% 59% 59% 74% 74% 

 

 The host identification results using evaluation method B on Aug 14 dataset from the NAT 

detection stage are shown in Table 4.63. Similar to the above experiments on the datasets from 

NAT identification stage using evaluation method B, the accuracy remained 100%. That is, any 

detected host were actually sent from the same end host. 

 



Table 4.63 Host identification results using evaluation method B on Aug 14 dataset from the 

NAT detection 

Threshold/Number of 
packets in one 

connection 
2/10 5/10 10/10 20/10 50/10 100/10 200/10 400/10 600/10 

Number of ’s 1 1 1 1 1 1 1 1 1 

Number of hosts with 
minus slopes 

0 0 0 0 0 0 0 0 0 

Number of hosts 5 5 5 5 5 5 5 4 4 

Number of minus 
slopes 

0 0 0 0 0 0 0 0 0 

Accuracy 100% 100% 100% 100% 100% 100% 100% 100% 100% 

 

Table 4.64 shows the host identification results on the dataset from NAT detection stage 

captured on Aug 15 using evaluation method A. It detected one  and five hosts regardless of 

different threshold values. The host identification accuracy was 49%, lower than that of the 

experiment on the original dataset from Aug 15 (62% or 65%). The number of detected hosts 

was five, smaller than the number of actual hosts running: eight. 

 

Table 4.64 Host identification results using evaluation method A on Aug 15 dataset from the 

NAT detection 

Threshold/Number of 
packets in one 

connection 
2/10 5/10 10/10 20/10 50/10 

100/1
0 

200/1
0 

400/1
0 

600/1
0 

Number of ’s 1 1 1 1 1 1 1 1 1 

Number of hosts with 
minus slopes 

0 0 0 0 0 0 0 0 0 

Number of hosts 5 5 5 5 5 5 5 5 5 

Number of minus 
slopes 

0 0 0 0 0 0 0 0 0 

Accuracy 49% 49% 49% 49% 49% 49% 49% 49% 49% 

 

Table 4.65 shows the host identification results on the dataset from NAT detection stage 

captured on Aug 15 using evaluation method B. The accuracy was 100% as in the above 

experiments using evaluation method B. Any detected host were actually sent from the same 

end host. 

  



Table 4.65 Host identification results using evaluation method B on Aug 15 dataset from the 

NAT detection 

Threshold/Number of 
packets in one 

connection
2/10 5/10 10/10 20/10 50/10 100/10 200/10 400/10 600/10

Number of ’s 1 1 1 1 1 1 1 1 1

Number of hosts with 
minus slopes

0 0 0 0 0 0 0 0 0

Number of hosts 5 5 5 5 5 5 5 5 5

Number of minus 
slopes

0 0 0 0 0 0 0 0 0

Accuracy 100% 100% 100% 100% 100% 100% 100% 100% 100%

 

Table 4.66 shows the host identification results on the dataset from NAT detection stage 

captured on Aug 15 using evaluation method A. One  was detected as in the experiments on 

other datasets. The number of detected hosts was five regardless of different threshold values. 

The host identification accuracy was 49%, lower than the accuracy of the experiment on the 

original dataset captured on Aug 17 (45% to 74%) at most of the threshold values.  

 

Table 4.66 Host identification results using evaluation method A on Aug 17 dataset from the 

NAT detection 

Threshold/Number of 
packets in one 

connection
2/10 5/10 10/10 20/10 50/10 100/10 200/10 400/10 600/10

Number of ’s 1 1 1 1 1 1 1 1 1

Number of hosts with 
minus slopes

0 0 0 0 0 0 0 0 0

Number of hosts 5 5 5 5 5 5 5 5 5

Number of minus 
slopes

0 0 0 0 0 0 0 0 0

Accuracy 49% 49% 49% 49% 49% 49% 49% 49% 49%

 

Table 4.67 shows the host identification results on the dataset from NAT detection stage 

captured on Aug 17 using evaluation method B. The accuracy was 100% as in the above 

experiments using evaluation method B. Any detected host were actually sent from the same 

end host. 



 

Table 4.67 Host identification results using evaluation method B on Aug 17 dataset from the 

NAT detection 

Threshold/Number of 
packets in one 

connection
2/10 5/10 10/10 20/10 50/10 100/10 200/10 400/10 600/10

Number of ’s 1 1 1 1 1 1 1 1 1

Number of hosts with 
minus slopes

0 0 0 0 0 0 0 0 0

Number of hosts 5 5 5 5 5 5 5 5 5

Number of minus 
slopes

0 0 0 0 0 0 0 0 0

Accuracy 100% 100% 100% 100% 100% 100% 100% 100% 100%

 

4.5 Summary 

 

This chapter describes and evaluates three kinds of experiments I did on NAT detection, host 

identification, and NAT detection and host identification (host identification using datasets 

from NAT detection) on five days’ datasets. In NAT detection experiments, AD Tree classifier 

stands out from the other two classifiers: SVM and J48, with an excellent performance on 

accuracy and practical detection on the real NAT device. Five attributes out of eight are 

suggested for effective NAT detection through experimental results. And an interesting finding 

about the NAT detection in the experiments is that the accuracy of NAT detection stayed high 

when the training dataset and the validation dataset were processed from datasets of similar 

sizes. Hence in order to accurately and effectively detect NAT devices on the network, a 

training dataset with the similar size to the target dataset should be selected. 

 

 For the host identification experiments, two evaluation methods were adopted. The host 

identification accuracy increased significantly as the change of four parameters. Among the 

four parameters, the improved connection separation method contributed the most to the host 

identification accuracy. At last, host identification experiments on datasets from the NAT 

detection stage are introduced. Host identification on the datasets from NAT detection stage 

detected few hosts. And the accuracy of these experiments was generally lower than that in the 



experiments using the original datasets in Section 4.3. Except for a fewer number of packets in 

the dataset, this also might because that the deficiency of none HTTP packets in one TCP 

connection increases the chance of generating an inaccurate artificial line of TCP timestamp 

values and the system uptime values. Hence it is suggested to employ the NAT detection and 

the host identification separately as described in Section 4.2 and Section 4.3 on the target 

datasets to get a good performance. 



Chapter 5  Conclusion 
 

The main objectives of this thesis are: a) detecting NAT devices out of end hosts through 

supervised machine learning algorithms on HTTP attributes, and b) identifying end hosts 

behind the detected NAT device based on TCP timestamp values and system uptime of TCP 

packets. The research was performed on the datasets collected in our lab. Specially, this thesis 

provides an approach to combine the above two stages and improve their performances. Thus, 

this research can be used as a forensic analysis tool to analyze cybersecurity or other incidents 

that could occur on an organization’s network from unknown NAT devices. Furthermore, the 

proposed framework only employs attributes from Transport layer and Application layer of a 

network, it can be employed on any Data Link layer and Network layer protocols.  

    

The NAT detection employs the artificial NAT generation method proposed in Komˇarek’s 

research to address the problem of lacking labelled datasets. Among the three different machine 

learning classifiers applied for NAT detection, the AD Tree classifier stands out with an 

excellent performance on accuracy and practical detection on the real NAT device. Time 

complexity and accuracy comparison of these three classifiers are shown in Table 5.1. This 

thesis also filters out the attributes with no influence on NAT detection. This left me with the 

most effective five attributes for NAT detection. The reduction of attributes improves the 

efficiency of preprocessing datasets for the machine learning classification. The NAT detection 

approach has been applied on five days’ datasets collected in our lab, and a high performance 

was achieved on the experiments performed, where most of the accuracies observed were as 

high as 100%. In addition to the experiments where training and validation (test) datasets were 

captured on the same day, this NAT detection solution has also been employed in the 

experiments where the training dataset and the validation dataset were captured on different 

dates with different hosts running. This enabled me to test whether the proposed solution could 

generalize well over different hosts and traffic captured at different times / dates. Based on the 

difference of the accuracy, I concluded and verified an interesting finding that the NAT 

detection accuracy stays high when the training dataset and the validation dataset are processed 

from datasets of similar sizes. This discovery helps in selecting an appropriate training dataset 

according to the size of the target dataset in order to achieve an accurate classification. 

 

Table 5.1 Comparison of three classifiers 



ML Algorithm Time Complexity Best Accuracy on validation datasets Real NAT detection 

SVM O( ) 92.86% no 

C4.5 O( ) 92.86% no 

AD Tree O( ) 100% yes 

 

The host identification in this research is based on the fact that TCP timestamp values must be 

at least approximately proportional to real time. Host identification works in the way of 

generating artificial lines of TCP timestamp values and system uptime values by each 

connection and comparing the distance of the generated lines in a Python program. Connections 

are identified as belonging to the same host as long as the distance between two lines is smaller 

than a threshold value δboot. Two evaluation methods were adopted in host identification in 

terms of a) evaluating whether the connections that are identified to belong to the same host by 

the program are really sent from the same host, and b) evaluating whether original connections 

from the same host are identified to belong to the same hosts (might be several hosts) by the 

program. The host identification experiments were performed on the datasets processed from 

the NAT detection stage and the datasets processed directly from the original datasets. A series 

of experiments were performed in order to get the appropriate parameters for host 

identification, such as the limit for the number of packets in one connection, the distance 

calculation method between two lines, the connection separation method, and the different 

threshold values. The accuracy of experiments with those parameters improved from the 

accuracy of experiments with the settings in Georg’s research on our datasets. The experiments 

on the datasets directly processed from the original datasets detected more hosts than the 

number of actual hosts in the datasets. The accuracy of these experiments using evaluation 

method A varied on different datasets from 34% to 89%. This reveals that a number of 

connections from the same host were detected as belonging to more than one host. While 

experiments on the datasets processed from the NAT detection stage detected fewer hosts than 

the number of actual hosts. The accuracy of them was lower than that of experiments on the 

corresponding datasets directly processed from the original datasets. Some of the hosts were 

not detected on those datasets. It is suggested to adopt the datasets processed from the original 

datasets for host identification, that is, performing the NAT detection process and the host 

identification process separately. The accuracy of experiments on both kinds of datasets using 

evaluation method B remained 100%, revealing that connections of any detected host were 

actually sent from the same end host. Under the two evaluation criteria, the host identification 



approach identifies connections sent from the same host as sent from several hosts, but the 

connections of any identified host were indeed belonging to the same host. Since host 

identification behind a NAT device is aimed at identifying hosts with cybersecurity risks in 

order to manage them (such as blocking the malicious end hosts), the problem of identifying 

connections sent from the same host as sent from several hosts can result in blocking more than 

one detected host for only one actual host. This increases the workload but has no influence on 

accurately managing malicious hosts.  

 

There are several lines of research arising from this research that could be pursued in the future: 

I. The observation regarding the observation about the effect of dataset sizes on the NAT 

detection accuracy can be further verified by experiments on more datasets. 

II. More experiments can be performed to find out the solution to improve the accuracy of 

host identification under evaluation method A.  

III. More values between 100 ms to 600 ms can be tested to learn more about the influence 

of threshold values on host identification.  
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