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Abstract

Picomole is a New Brunswick based company developing a lung cancer diagnosis

system based on a person’s breath sample. Picomole conducted two different studies

in an effort to ascertain whether their breath analysis system utilizing cavity ring-

down laser spectroscopy is capable of determining whether or not a subject has lung

cancer. One of the resulting datasets had a very large percentage of non-random

missing data which is explored in detail.

Most breath analysis systems operate by trying to determine the makeup of

volatile organic compounds and see if any are known signs of cancer. By contrast, the

work done here is based entirely on statistical learning methods. Spectroscopy data

is naturally a curve, as the concentrations of compounds are measured over a series

of infrared wavelengths. This kind of data is referred to as functional data for which

there exist unique techniques for dealing with problems specific to it. This motivated

the consideration of techniques including Functional Principal Component Analysis,

Functional Linear Discriminant Analysis and DDG plots. Classification trees and

random forests which have previously shown success on spectroscopy data were also

explored.

Classification trees, DDG plots and Functional Linear Discriminant Analysis were

found to be able to correctly classify subjects with accuracy greater than random

guessing.
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Chapter 1

Introduction

Lung cancer screening plays an important part role in increasing survival rates. The

gold standard method for lung cancer screening at the moment is to use a low dose

Computed Tomography(CT) scan[28]. CT scans can be very costly and may involve

long wait times due to limited access to expensive CT scanners and radiologists.

CT scans have also been found to have a 96.4% false postive rate for lung cancer

screening[25]. Picomole Inc. has developed a lung cancer screening method that could

potentially be cheaper and faster and more accurate for patients. Picomole’s system

involves taking breath samples of subjects and then measuring the concentration of

Volatile Organic Compounds (VOCs) in those samples. It has been previously shown

that there is a difference in the VOCs emitted in the breath of subjects with lung

cancer versus those without [28][21].

VOCs are gaseous chemicals and emissions found not only in human breath but

also in skin, urine and feces. Over 1800 VOCs have been found to be emitted by the

human body and can be impacted by environmental factors like cigarette smoking,

alcohol consumption, medications and overall diet [1].

VOC concentration levels can be measured by a variety of different methods.

Methods that have, or are currently being used include Gas Chromatography Mass

Spectrometry (GCMS), Proton-transfer-reaction Mass Spectrometry (PTR-MS), se-

lected ion flow tube mass spectrometry (SIFT-MS), ion mobility spectrometry (IMS),

[1] and electronic noses [10]. Some of these methods are referred to as direct or real

time analysis systems since they do not require storage of breath data. These in-

clude PTR-MS, SIFT-MS,IMS, laser spectrometry and electronic noses. There are

also off-line analysis systems that require storage of the breath sample to be analyzed

later, GCMS being one example. Several of these systems can actually do both real

time and offline analysis, PTR-MS is an example. Picomole’s system uses a form of

laser spectrometry called cavity ring-down spectroscopy (CRDS) and requires stored

1
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breath samples.

CRDS can be more cost effective and accurate than mass spectrometry but has

not been used before in breath sample analysis.

For a preliminary screening test the ideal situation is to not miss any patients who

actually do have lung cancer. That means avoiding false negatives (FN). In medical

tests there are two commonly used measures; sensitivity and specificity. Sensitivity,

is also known as the true positive (TP) rate and is defined as

100%× TP

TP + FN
. (1.1)

So when a test has 100% sensitivity it has zero false negatives. Ideally we would want

all preliminary tests to have 100% sensitivity. However having 100% sensitivity is not

the only thing that matters. Otherwise having a screening test that just sent every

patient to the next stage of testing would be acceptable. Diagnostic tests can often

be costly, time consuming or invasive which is why preliminary tests are needed in

the first place.

The other measure commonly used to evaluate medical tests is specificity. Speci-

ficity is also known as the true negative(TN) rate and is defined as

100%× TN

TN + FP
(1.2)

where FP is the number of false positives[12]. A good screening test would have a high

sensitivity while still maintaining an acceptable specificity rate. This would ensure

patients that actually have the disease are not missed from receiving treatment while

minimizing the number of patients who do not have the disease from undergoing a

more invasive next round of testing.

A common and simple metric used to measure the performance of machine learning

classifiers is the error rate. The error rate refers to how often the classifier mis-classifies

and can be more formally written as

Error Rate =
FN + FP

FN + FP + TN + TP
. (1.3)

Related to the error rate is accuracy of a classifier. The accuracy can be defined as

Accuracy =
TN + TP

FN + FP + TN + TP
= 1− Error Rate[12]. (1.4)
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Current classification methods based on analyzing a subject’s breath sample us-

ing VOCs require a list of known VOCs found in subjects with lung cancer and try

to determine whether or not those VOCs can be found in that subject’s breath sam-

ple[2][10][21][13]. This requires studying what (or in what concentrations) VOCs may

be emitted in a breath sample for the type of cancer of interest (e.g. lung cancer). By

using classification techniques based on machine learning methods it may be possible

to build classification rules to identify lung cancer patients using only breath sample

data from healthy subjects and subjects known to have the disease. Once shown

in lung cancer machine learning methods could be easily applied to other diseases.

This could potentially reduce development time, research time, costs and increase the

number of diagnostic tests that Picomole could offer.

Machine learning or statistical learning involves learning from data, such as using a

dataset of handwritten characters in order to develop a system capable of recognizing

handwriting through some sort of algorithm. Machine learning can be broadly split

into two groups. The first group, supervised learning is the case when the data upon

which all the machine learning algorithm is trained, called the training data, has the

values of the response variable known for each observation[12]. The other group of

machine learning is unsupervised learning where the training data does not contain

the values of the response variable and instead it tries to determine differences between

classes based solely off the predictor variables[12].

Related to and a common use of machine learning is statistical classification or

simply classification. It is when the data contain a finite number of classes and once

trained, is able to identify what class a new set of data belongs to. Picomole’s desire

to determine whether a subject has lung cancer or not based on their breath sample

is an example of a classification task. The method for deciding to what class a new

observation belongs to is known as a classification rule.

Developing a classification rule for determining which subjects have or do not

have lung cancer that has good overall accuracy and high sensitivity using Picomole’s

breath sample based system would lead to improved lung cancer screenings for pa-

tients.



Chapter 2

Review of Methodologies

2.1 Decision Trees

Decision trees refer to a collection of related machine learning methods based on the

idea of building trees using tests on predictor variables. Decision tree methods are all

based on recursively partitioning the data set into a number of regions. The regions

are split based on rules derived from tests performed on the predictive variables. Since

the resulting rules can be easily visualized in a tree-like structure the methods have

come to be known as decision trees. The tree-like structure gives decision trees an easy

to interpret rule system[18]. Over the years several different decision tree algorithms

have been developed with differences in the criteria used to grow the tree, the number

of trees grown, the number of children each parent node is allowed to have, etc. The

main decision tree algorithms are also all invariant to monotone transformations[12].

2.1.1 Classification And Regression Trees

One of the first developed and popularized decision tree algorithms is referred to as

Classification And Regression Trees (CART). CART was developed by Breiman et.

al [6]. The CART algorithm as the name implies is capable of both classification

and regression trees, however only classification trees will be examined here. CART,

unlike some of the other alternative decision tree algorithms, only uses binary trees

in it’s construction, that is all nodes can have at most two children[6].

Like all decision tree algorithms CART begins by building the tree outwards using

a splitting criterion to pick the optimal split. CART uses the Gini index as it’s

splitting criterion for classification trees. In a dataset with K classes the Gini index

is defined as

G(m) =
K∑
k=1

pm̂k(1− pm̂k) (2.1)

where m is the current partition in the data set and pm̂k is the sample proportion

4
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of observations in the mth partition that are in class k for i = 1, ...,K. The CART

algorithm splits a node when there is a maximal impurity reduction. The impurity

of a split at a given node A is

∆I = p(A)G(A)− p(AL)G(AL)− p(AR)G(AR) (2.2)

where p(m) = pm̂k and L and R refer to the left and right nodes of the split respec-

tively. The tree stops growing when there is either no change in the impurity reduc-

tion, or the change in the impurity reduction is below a threshold deemed insignificant

or if it reaches another stopping threshold such that the node under consideration for

splitting does not have the minimum number of observations required[6].

The original tree constructed by CART is typically going to overfit the data for

which it was built. To account for this some nodes are removed via a process called

pruning. Pruning is done by calculating the cost and risks of adding a new variable to

the tree and then using k-fold cross validation (CV) to get estimates of the costs and

risks for subtrees with or without that variable. In k-fold cross validation the original

dataset is randomly partitioned into k different equally sized subsamples. One of the

“folds” is withheld for use as a testing set and the remaining k-1 folds are used as the

training dataset. This is repeated k times for each fold and the average of results over

all k times is used as the result. The subtree that has the smallest risk is selected to

be the final tree[6].

2.1.2 Random Forests

Random forests were developed by Breiman as an extension to CART in an effort to

overcome some shortcomings such as having high variance and making decision trees

applicable to more data sets. Random Forests are built on the idea of bagged trees.

Bagging involves taking the average of a group of bootstrapped training samples.

Each bootstrapped training sample is created by pulling N observations from the

original sample with replacement, this process is called bootstrapping [18].

In bagged trees, a tree is grown for each of the bootstrapped training samples. By

using bagged trees the variance of the statistical learning method can be reduced. If

the number of bootstrapped classification trees is B, the bagged estimate f̂bag(x) is

found by taking the majority vote of what class an observation belongs to among the
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B trees [18]. Bagged models have an alternative approach for calculating the error

rate.

Bagged models can use what is known as the Out-of-Bag (OOB) error rate. For

each of the B bootstrapped trees there are observations that are not included in the

construction of the tree. These observations are outside of the “bag” and are used

as a testing set for their corresponding tree. Predictions for the testing set on the

B trees are made and in the case of classification the majority vote among all the

predictions for a given observation is used to determine that observation’s predicted

class. Then the error rate is calculated using those predictions[18].

Random forests are more than just bagged trees. Random forests also limit the

number of predictor variables that can be chosen each time a tree splits. If there are p

predictor variables the random forest algorithm takes a sample of m of them at each

split and is only allowed to build the split from those m predictors. Restricting the

choice of predictor variables has the benefit of decorrelating the trees. In ordinary

bagged trees if there is one very strong predictor variable for a split each tree grown

is likely to pick that predictor each time. Random Forests, by limiting the choice of

what predictor variables can be used, improve the performance of the classifier on

advanced data[18]. Breiman, one of the creators of Random Forests, recommends

trying several values of m predictors, growing small forests of 20 to 30 trees with

those values of m and picking the ones with the smallest OOB error rate[5].

2.2 Functional Data Analysis

Functional Data Analysis (FDA) is at the heart of many of the methods discussed

here. FDA is a field that has seen significant growth and development over the last

two decades since the publication of Ramsay and Silverman’s 1997 book on Functional

Data Analysis of the same name [23]. A functional random variable χ takes values

in an infinite dimensional or functional space. That is, χ = {χ(t); t ∈ T}, where T

is some infinite dimensional space. If T is one-dimensional, then χ refers to curve

data like growth curves or spectrometry data. FDA can be applied to far more than

one-dimensional curve data such as images, handwriting data, etc. [11].

Data that takes values in an infinite dimensional space can pose a different range

of issues than that of non-functional data. Functional data problems will often have
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sample sizes smaller than the number of predictor variables and in addition the predic-

tor variables can also be very highly correlated. These problems can cause traditional

multivariate methods to fail[11]. FDA methods are tailored to be used with data from

an infinite dimensional space and can thus be used with data sets where traditional

methods would fail. In practice it is not possible for us to observe the data over

the entire infinite dimensional space, instead only a finite measure can be captured.

The usual first step in using FDA is to represent the finite data in such a way that

they can be treated as smooth curves[23]. However if the data is considered “dense”

enough then sometimes smoothing is not used[14]. The types of curve representation

systems range from the B-splines basis system for very smooth curves, Fourier basis

system for periodic and cyclical data[23], wavelets, and to kernel smoothing using

various types of different kernels (typically for use with non-parametric functional

models)[11].The choice of curve representation should be motivated by the type of

data being examined.

2.2.1 Functional Principal Component Analysis

Functional Principal Component Analysis (FPCA) is the functional analogue of the

traditional dimension reduction technique known as Principal Component Analysis

(PCA). FPCA like PCA is widely used for dimension reduction on functional data

sets. In a review of 84 articles applying FDA techniques, FPCA was found to be

used in over 60% of them and was the main data reduction technique applied [27].

FPCA has been applied to a number of real-world applications such as modeling the

curvature of the human eye and fMRI (functional magnetic resonance imaging) scans

of the brain[27]. FPCA is also the backbone of a number of FDA clustering techniques.

This is because the principal component scores generated by the application of FPCA

are capable of being used with traditional clustering techniques. It can also be used

to visualize otherwise hard to perceive data sets[11]. FPCA has also been used as a

method for imputing missing data on functional datasets[8].

The classical technique PCA is the process of computing and analyzing the prin-

cipal components (PC). PCA is used to create a low dimensional representation of a

dataset while maximizing the amount of variation it contains. The PCs try to explain

as much of the variance as they can while being uncorrelated with each other. In any
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one dataset there are min(n − 1, p) possible principal components, where n is the

number of observations and p is the number of predictor variables. The first PC, or

score vector is the linear combination of predictor variables

Z1 = φ11X1 + φ21X2 + ...+ φp1Xp (2.3)

with the constraint
∑p

j=1 φ
2
j1 = 1 and that maximizes the variance. Each element of

the PC, is known as the principal component score and is written as

zij = φ1jxi1 + φ2jxi2 + ...+ φpjxip. (2.4)

The φi1s are the loadings or weights of the first PC and they make up the first PC

loading vector, φ1 = (φ11, φ21, ..., φp1)
T . The first PC loading vector solves

max
φ11,...,φp1

⎧⎨⎩ 1

n

n∑
i=1

(
p∑

j=1

φj1xij

)2
⎫⎬⎭ . (2.5)

The
(∑p

j=1 φj1xij

)2
from above can be rewritten as z2i1. PCA is done under the

assumption that the predictor variables have been centered to have mean zero. This

implies that the zijs also have mean zero. This means that Equation 2.5 is just

maximizing the sample variance of z1i. The second PC can be obtained by finding the

next vector that maximizes the variance with the extra constraint of being orthogonal

to the first principal component. Being orthogonal to each other is equivalent to being

uncorrelated to each other. The PCs for the remaining dimensions are found in the

same way, maximizing the variation explained by the vector while ensuring they are

orthogonal to the previous PCs[18]. Since the predictor variables are assumed to have

mean zero the total variation present in the dataset can be calculated by

p∑
j=1

Var(Xj) =

p∑
j=1

1

n

n∑
i=1

x2
ij, (2.6)

and the variation explained by the mth PC is

1

n

n∑
i=1

z2im (2.7)

and the proportion of variance explained(PVE) by that component is their ratio

between them
1
n

∑n
i=1 z

2
im∑p

j=1
1
n

∑n
i=1 x

2
ij

. (2.8)
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The sum of all the PVE of the principal components is equal to one. The total

variation explained by the first m principal components is simply the sum of the first

m principal components ordered by descending PVE[18].

The goal of FPCA is similar to that of PCA with some differences to account for

the data’s functional nature. FPCA involves finding the orthogonal basis of eigenfunc-

tions that explain the maximum amount of variation in the first functional principal

component. For a random function X defined on [0, T ] that has an unknown smooth

mean function E[X(t)] = µ(t) and covariance function Cov(X(s), X(t)) = G(s, t),

s, t ∈ [0, T ] one can write the orthogonal expansion

G(s, t) =
∞∑
k=1

λkφk(s)φk(t) (2.9)

where λk are the eigenvalues and φk are eigenfunctions that form an orthonormal

basis with a unit norm. This expansion enables each functional observation to be

written as

Xi(t) = µ(t) +
∞∑
k=1

ξikφk(t) (2.10)

where ξik =
∫
(Xi(t) − µ(t))φk(t)dt are Functional Principal Components. This is

known as the Karhunen-Loève representation. The estimated eigenfunctions φ̂k and

eigenvalues λ̂k are obtained by applying eigen-decomposition on the estimated co-

variance function[8]. If the grid is fine enough and there are no missing values it is

possible to get the estimated FPC ξ̂ik by numerical integral approximation[23]. In

the cases where the functional data is not dense or there is a significant amount of

missing data the approximation of the integral fails. In those cases FPCA can still

be accomplished using what is called Principal Analysis by Conditional Expectation

(PACE)[30].

When FPCA is computed typically only the first k FPCs are calculated. These are

either selected beforehand or because they explain a given threshold of the variance.

When using a threshold of the total variance explained, the PVE for each FPC is

calculated and when the sum of PVEs for the currently calculated FPC exceeds the

threshold the calculation of more FPCs is stopped. The estimated FPC can be used

to help interpret the data like principal components can be for multivariate data.

They have also been used in two-sample hypothesis testing[7][15].
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2.2.2 Functional Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) is a classical technique used for classification of

data into two or more classes. In LDA we find the class conditional probabilities for

each of the predictor variables and then use Bayes Theorem to get the probabilities

of an observation falling into a class given the predictor variable. More formally if we

define fk(x) as the density function for x given a class k, when there are K classes

and πk is the prior probability of each class where
∑K

i=1 πk = 1, then we obtain

P (G = k|X = x) =
fk(x)πk∑K
i=1 fi(x)πi

. (2.11)

We can then classify x according to the class with the highest resulting probability.

LDA is a very simple technique that provides good results with many data sets[12].

However LDA is not designed to be used on functional datasets[17].

Functional Linear Discriminant Analysis (FLDA) is an extension of Linear Dis-

criminant Analysis with the capability to handle functional data and in addition deal

with data that might only be measured in segments of curves. FLDA was developed

by Gareth James & Trevor Hastie for classifying sparse growth curve data and bone

density data[17]. They define their functional model as

Yij = gij + εij, i = 1, ...K j = 1, ...,mi (2.12)

with K classes, where j refers to the curve, mi is the number of curves in the ith class,

gij is the curve itself with each measurement point at position t being gij(t) and ε is

the random error. In their paper they use natural cubic functions to represent curves.

Each gij(t) can be represented as

gij(t) = s(t)Tηij (2.13)

where s(t) is the natural cubic spline basis with dimension q and ηij is the qth

dimensional vector of spline coefficients. This enables Yij to be rewritten in a more

restricted form since

gij = Sijηij where Sij = (s(tij1), ..., s(tijnij
))T . (2.14)

Substituting this expression into Equation 2.12 gives us a reduced model version

where the only thing that needs to be estimated is the value of ηij. James et. al
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assume ηij and the error terms are normally distributed as

ηij = µi + γij, γij ∼ N(0,Γ) (2.15)

Where µi is the mean function for the ith class. The functional model can then again

be rewritten as

Yij = Sij(µi + γij) + εij, i = 1, ...K, j = 1, ...,mi, ε ∼ N(0, σ2I), γij ∼ N(0,Γ).

(2.16)

FLDA uses the constraints

µi = λ0 +Λαi, ΛTSTΣ−1SΛ = I,
∑
i

αi = 0, (2.17)

where λ0 is a q dimensional vector, αi is an h-dimensional vector, Λ is a a q×hmatrix,

h < min(q,K), Σ = σ2I+SΓST and S is the basis matrix which has been evaluated

over a grid of points.The grid used in S should contain all the measurement points

that were actually observed. These constraints are necessary to prevent confounding

of λ0,Λ and αi. Using these constraints gives the final version of the FLDA model

as

Yij = Sij(λ0 +Λαi + γij) + εij, i = 1, ...K, j = 1, ...,mi,

ε ∼ N(0, σ2I), γij ∼ N(0,Γ),
(2.18)

FLDA fits model 2.18 estimating λ0,Λ,αi,Γ and σ2. It uses a version of the EM

algorithm to perform the model fit. The way it is used in FLDA is to treat the

γij as missing data and then maximize the joint likelihood. It assumes that all the

observations from different individuals are independent. The E step is done using the

equation

E(γij|Yi, γ0,Λ, αi,Γ, σ
2) = (σ2Γ−1 + ST

ijSij)
−1ST

ij(Yij − Sijλ0 − SijΛαi) (2.19)

Then the M-step for maximizing the joint likelihood requires maximizing

Q = −1

2

K∑
i=1

mi∑
j=1

E
{(Yij − Sij[λ0 − Λαi − γij])

T (Yij − Sij[λ0 − Λαi − γij])

σ2
+

+ nij log(σ
2) + γT

ijΓ
−1γij + log |Γ|

} (2.20)

[17]. The choice of q is important to the model selection process. James et al.

recommends either calculating the cross-validated likelihoods for the choices of q under
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consideration and choosing the model which maximizes the likelihood, or alternatively

to use another model selection technique like Akaike Information Criterion (AIC) or

Bayesian Information Criterion (BIC) [17].

It can be seen that classifying an observation X using reduced-rank LDA is the

same as classifying

argmin
i
(||α̂x − αi||2 − 2 log πi) (2.21)

where α̂x and αi are equal to the linear discriminants of X and µi up to an additive

constant. A similar result can be found with FLDA. The FLDA classification reduces

to

argmin
i

(
||α̂Y − αi||2Cov(α̂Y )−1 − 2 log πi

)
(2.22)

where Cov(α̂Y ) = (ΛTST
Y Σ

−1
Y SY Λ)

−1 and once again α̂Y and αi are again similar

to the linear discriminants of Y and µi with the only difference being an additive

constant. If Cov(α̂Y ) = I such as when Y has been measured over all grid points

then Equation 2.22 reduces further to

argmin
i

(
||α̂Y − αi||2 − 2 log πi

)
. (2.23)

[17]

FLDA, like traditional LDA, can be used as a data dimension reduction tech-

nique enabling high dimensional curves to be reduced to a simpler lower dimensional

space and make classification possible. FLDA can also be extended to Functional

Quadratic Discriminant Analysis in a similar way to how LDA can be extended to

Quadratic Discriminant Analysis and can also be extended to Functional Regularized

Discriminant Analysis.[17]

2.2.3 Two-Sample Tests for Functional Data

Dealing with data that takes on values in an infinite space with possibly very corre-

lated predictor variables can cause traditional multivariate hypothesis testing meth-

ods to fail or lead to invalid results. This has led to techniques being extended from

existing multivariate methods or created with functional data in mind[15].
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Schilling’s Statistic Permutation Test

Cabaña et al. extended the multivariate Schilling procedure to deal with functional

data.

In the multivariate Schilling procedure suppose we have two samples X1, ..., Xm

i.i.d from a distribution F and Y1, ..., Yn from a distribution G. In order to test H0 :

F = G vs. HA : F ̸= G the Schilling Procedure begins by concatenating the two

samples together into Z1, ..., ZN where N = m + n. Then for some fixed non-zero

integer k for each i ≤ N it finds the k-nearest neighbors based on the Euclidean

distance of each Zi to each other Zj. Let NNi(r) represent the rth nearest neighbor

to Zi where r ≤ k. If there are any ties for distance they are broken at random. Then

for each NNi(r) it computes the indicator variable Ii(r) where Ii(r) = 1 if NNi(r)

belongs to the same original sample as Zi and Ii(r) = 0 otherwise. The test statistic

is the computed,

TN,k =
1

Nk

N∑
i=1

k∑
r=1

Ii(r). (2.24)

TN,k is the proportion of all neighbor pairs in which the point and it’s neighbor both

belong to the same sample. So whenH0 does not hold TN,k will be high as observations

from the same sample will be grouped together. It can be shown that under the null

hypothesis that

E[TN,k] = E[Ii(r)] =
m(m− 1) + n(n− 1)

N(N − 1)
. (2.25)

[7]

Cabaña et al. extended the Schilling procedure to handle functional data by

replacing the Euclidean distance measure used in the multivariate case by a distance

measure approximation designed for functional data. Cabaña et al. suggest for data

measured on a common grid to use

di,j =
L∑
l=1

δl(Zi(tl)− Zj(tl))
2 (2.26)

where δl = tl − tl−1 and l = 1, 2, ..., L is each point of grid. Cabaña et al. used this

functional version of the Schilling procedure in a permutation test. They found it was

sufficient to simply permute the table containing the NNi(r)s instead. This makes

performing the permutation test much faster than permuting the data itself. Among
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the functional hypothesis tests compared by Cabaña et al. it was among the best for

statistical power.[7]

Functional Anderson-Darling Test

The Functional Anderson-Darling two-sample test for functional data was developed

by Pomann et al. based on FPCA using an appropriate mixture process that they

called marginal FPCA. This test, unlike other two-sample tests for functional data,

is capable of handling data measured on sparse grids, dense grids. It can compare

samples of different sample sizes and samples based on different sampling designs.[22]

Given two sets of curves X1 = {X11(·), ..., X1n(·)} and X2 = {X22(·), ..., X2n(·)}
defined on [0,1] it is of interest to test

H0 : X1 =
d X2 vs. HA : X1 ̸=d X2 (2.27)

where =d indicates that the two samples are equal in distribution. Let X1(·) and

X2(·) have a mixture process X(·) where X1(·) has mixture probability p and X2(·)
has mixture probability 1 − p. If a binary variable Z is defined with P (Z = 1) = p

and P (Z = 2) = 1 − p then it can be said that X1(·) is the conditional process of

X(·) given Z = 1 and X2(·) is the conditional process of X(·) given Z = 2. Let

X(·) have marginal mean function µ(t) = E[X(t)] and marginal covariance function

Σ(t, s) = Cov{X(t), X(s)}. Recall from section 2.2.1 that it is possible to represent

a functional process in terms of the Karhunen-Loève expansion. Thus X(·) can be

written as

X(t) = µ(t) +
∞∑
k=1

ξkφk(t) (2.28)

The Karhunen-Loève expansion is often truncated for practical or theoretical rea-

sons with a choice of some integer K that can reasonably approximate X(·). The

approximation can be written as

XK(t) = µ(t) +
K∑
k=1

ξkφk(t). (2.29)

K can be chosen by setting a threshold for how much variance is explained by the

FPCs. Pomann et al. recommend using 95% of variance explained. Then for each

z one can write the approximation for X1(t) = XK
1 (t) = µ(t) +

∑K
k=1 ξ1kφk(t) and
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X2(t) = XK
2 (t) = µ(t) +

∑K
k=1 ξ2kφk(t). It can be shown that the test in equation

(2.27) is equivalent to the test

HK
0 : {ξ1k}Kk=1 =

d {ξ2k}Kk=1 vs. HK
A : {ξ1k}Kk=1 ̸=d {ξ2k}Kk=1. (2.30)

As the name implies the Functional Anderson-Darling test is an extension of the

Anderson-Darling test for functional data. As the test given in Equation 2.30 hints at,

Anderson-Darling tests are performed for each of the K FPCs. Since K comparisons

are performed the Bonferroni correction is used to ensure the test maintains it’s

nominal size. The test is rejected if min1≤k≤K pk ≤ α
K
[22].

This method of marginal FPCA can be used with more than the Anderson-Darling

test. It can be used with other two sample tests including other univariate tests such

as the Kolmogorov-Smirnov test using K comparisons or using a multivariate two

sample test such as Schillings[22].

2.3 DDG Plot Classifiers

Data depths are measures that order observations in relation to how deep they are

relative to a probability distribution P . In the univariate case there is an obvious

measure of data depth, the median is the deepest point with the points being fur-

ther out from the median being considered less deep. In multivariate and functional

statistics the choice of the data depth metric is not quite as obvious. Several different

metrics have been developed to handle functional data. Data depth measures have

been used to provide visualization[24], inference[20][7] along with classification and

clustering[19][9].

There has been no consensus on what is the best measure of data depth. Due

to differences between functional and multivariate datasets there have been different

depth measures purposed for each. Due to the dataset under consideration here being

functional in nature only functional data depth measures will be discussed[9].

The first depth measure proposed for functional data is the Fraiman and Muniz

depth(FM depth), it is also sometimes called integrated depth. Given a functional

sample x1, ..., xN defined on [0, T ], let St = {x1(t), x2(t), ..., xN(t)} be the values of

those functions at a given t belonging to T. If FN,t is the empirical distribution of St
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then the univariate depth measure Di(t) for xi(t) is written as

Di(t) = 1|1
2
− FN,t(xi(t))|. (2.31)

As suggested by the alternate name integrated depth, the FM depth for the ith piece

of data is the integration of the univariate depth measure over the entire grid,

FMi =

∫ T

0

Di(t)dt. (2.32)

The FM depth can be generalized to use other univariate depth measures such as the

Half-space depth or Mahalanobis depth[9].

Another measure of depth for functional datasets is the h-mode depth (hM). For

a given random functional sample x1, ..., xN of X the empirical hM depth is defined

as

f̂h(x0) = N−1

N∑
i=1

K(m(x0, xi)/h) (2.33)

whereK(·) is a kernel, h is the bandwidth parameter and m is a metric or semi-metric.

[9]

Depth vs. Depth Classifiers are classifiers constructed on Depth vs. Depth(DD)

plots. DD plots were created for the purpose of graphically comparing two mul-

tivariate distributions or samples. Consider two random samples X and Y from

distributions F and G respectively. Then a DD plot is defined as

DD(F,G) = {(DF (x), DG(x)), x ∈ X ∪ Y } (2.34)

where D(x) is some measure of depth. If the distributions of F and G are unknown

then they can be substituted with their empirical versions. DD plots are capable of

showing differences between two distributions visually since differences in things like

location, scale and kurtosis show up as different patterns[19].

Since DD-plots are constructed to always be two dimensional the standard DD-

classifier uses majority voting among every combination of groups. The original DD-

classifiers use a polynomial function up to some order k that includes the origin as

their classification rule. This means that for g groups in a sample size of N, 2
(
g
2

)(
N
k

)
polynomials must be calculated to determine the classification rule[9]. For some

problems this can lead to very long calculation times. Recently Cuesta-Albertos et.
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al extended the DD-classifier to work with more than two groups along with extending

it to work with more than just polynomial function classifiers and functional data.

Cuesta-Albertos et. al call this the DDG-classifier as it is capable of handling G

groups natively. The DDG-classifier begins by selecting some measure of depth D

such as FM depth and it computes the map

x → d = (D1(x), ..., Dg(x)) ∈ RG. (2.35)

With this mapping to g-dimensional space it is now possible to use any classifier that

can classify G groups such as LDA, logistic regression models, k nearest neighbors,

classification trees, etc.

For DD and DDG classifiers the choice of depth can have an effect on the clas-

sification result. Li et al. recommend finding the best depth using cross validation

for their DD-classifier[19]. Cuesta-Albertos et al. instead recommend computing the

bias-corrected distance correlation between the vector of depths d and the indicator

of the classes,

Y = (1{x∈C1},1{x∈C2}, ...,1{x∈Cg}) (2.36)

and then selecting the depth that maximizes the distance.[9]



Chapter 3

Data Collection Methods

Data were collected by Picomole to study the capacity of their technology to discrim-

inate between healthy subjects and those with lung cancer (or Chronic Obstructive

Pulmonary Disease (COPD)). Picomole created a system wherein they capture the

VOCs from the breath of subjects in a sorbent tube and then analyze the concentra-

tion of the captured compounds. They conjecture that it is possible to differentiate

between healthy individuals and sick individuals based on differing concentrations of

VOCs. This idea has been studied before and a variety of VOCs have been previously

identified as being found in the breath of subjects with lung cancer but either not (or

at a different levels) in that of healthy subjects[21][2].

As previously mentioned, Picomole’s system uses CRDS to determine the concen-

tration of VOCs in a breath sample. Picomole’s CRDS system measures 77 different

wavelengths. The wavelengths range from 9.2295µm to 11.3099µm. The 77 measures

are not evenly spaced and they are separated into six different groups with some

overlap between two of these groups. The wavelengths measured by Picomole and

their spacing are shown in Figure 3.1. These wavelengths were chosen because they

are the ones believed to best be able to capture the concentrations of the VOCs of

interest and because they are captured by Picomole’s CO2 and Carbon isotope 13

lasers. The 77 wavelengths measured by Picomole’s CRDS system are also referred

to by an ID number known as the line ID.

CRDS involves shooting a laser pulse into an optical cavity with mirrors at each

end and measuring the time it takes for the laser pulse to decay. This is called a ring-

down time. Picomole’s system tries to capture 500 ring-down times for each laser

wavelength measurement. Sometimes however a line is unable to achieve the tuning

frequency and it may end up with less or more than 500 measurements recorded. The

system will keep trying to capture 500 ring-down times, but sometimes it cannot get

tuned quickly and will take more than 500 tries and other times it cannot get tuned at

18
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all which results in less than 500 ring-down times. The average of these measurements

for the data based on the breath samples is referred to as τ . Sometimes when a line ID

would only get a handful of raw measurements then the τ value for that observation

is considered missing.

By measuring an empty cavity and one filled with a gas capable of absorbing light

it is possible to get measurements as small as one part in 107[31]. Picomole also takes

measurements of a cavity filled with nitrogen before every breath sample is measured

as a baseline. The average of the ring-down times based on the measurement of

nitrogen tube is known as τ0. Using τ and τ0 along with the speed of light (c) it is

possible to get the absorption coefficient K in parts per million per centimeter where

K is

K =
τ0 − τ

cτ0τ
. (3.1)

In CRDS the temperatures at which a sample is desorbed affects what compounds

or VOC concentrations are measured. However, Picomole is unsure of what tempera-

ture (or temperatures) is best for capturing the VOCs of interest. Therefore Picomole

originally ran each sample through three different desorption temperatures: 80°C,

200°C and 300°C in the case of prototype data. More detail about the data collection

methods used for the prototype data are provided in Section 3.1. The advanced data

has a different sequence of desorptions which are explained in section 3.2.

Picomole’s preliminary tests have shown that certain substances can have a serious

impact on the measurements recorded by their CRDS system. Ethanol, found in

alcoholic drinks, is known to completely overwhelm measurements of other VOCs in

a person’s breath sample. Due to these issues, subjects were asked to refrain from

drinking alcohol 24 hours prior to having their breath sampled. Breath samples also

naturally decay and must be used within a few days if stored at room temperature or

a few weeks if frozen. Meaning that they must be analyzed within these time frames

to be useful.
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Figure 3.1: The spacing of the wavelengths measured by Picomole’s CRDS analyzer.
The overlapping wavelengths in the purple and orange groups are clearly visible. It is
also possible to see the unequal numbers of measurements that occur in each group.

3.1 Prototype Data

Picomole collected data from February 18, 2012 to July 16, 2012 from 47 subjects, 20

of them healthy, 20 with lung cancer and 7 with COPD. There was no age matching

done on this sample and all subjects were non-smokers at time of collection.

Picomole originally planned to have multiple breath samples collected from each
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person and run each of them through the three different temperatures, 80°C, 200°C,

300°C. However for various reasons this was changed part way through the study and

instead each sample was run through a sequence of temperatures. Most of the data

comes from a group of breath samples that went through three desorb cycles using

the sorbent material Tenax TA(Sorbent Type 2) ,one at 80°C, then another cycle

at 80°C and finally one at 300°C. By running the sample at the 80°C temperature

twice, it could be ensured that any VOCs recorded at that temperature would be fully

captured and not have impact on the higher temperatures. Most of the remaining

usable measurements come from samples that only went through one desorb cycle

using the sorbent material Chromosorb 106 (Sorbent Type 1) at 200°C. The choice of

sorbent material depends on the temperature at which the sample is being desorbed.

There are also differences in the compounds favored by each of the sorbent materials.

The Tenax material is better at capturing heavier compounds, while Chromosorb

106 is better at smaller compounds. The remaining conditions were not used in any

analysis due to having only one or two measurements. The full breakdown of what

conditions were used and how many measurements were obtained are shown in Table

3.1.

Total Desorbs Current Desorb Desorb Temp.(°C) Sorbent Type # of Measurements
1 1 1 200 1 41
2 1 1 300 2 1
3 2 1 80 2 2
4 2 2 300 2 2
5 3 1 80 2 43
6 3 2 80 2 43
7 3 3 300 2 43

Table 3.1: The organization of the experiment in Picomole’s pilot study. Picomole
changed plans part way through which is why some sets of conditions only have one
or two measurements.

Picomole did not randomize the order in which breath samples were desorbed.

Nor did they do any sort of pairing between healthy subjects and those with COPD

or Lung Cancer. They instead gave priority to lung cancer or COPD subject breath

samples. This led to an unintentional batching of most of the lung cancer subject

samples being analyzed together around the same period of time. The consequences

of this batching will be shown in depth in section 4.1.
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Measurement Time Health Status
1 2012-02-18 17:12:50 Healthy
3 2012-02-20 16:05:38 Healthy
6 2012-02-23 14:41:32 Healthy
13 2012-02-27 12:45:26 Healthy
17 2012-02-28 10:15:00 Healthy
21 2012-02-28 14:43:58 Healthy
22 2012-03-02 10:35:01 Healthy
26 2012-03-01 07:22:46 COPD
30 2012-03-01 15:42:06 Healthy
34 2012-03-03 14:42:42 Healthy
38 2012-03-09 12:28:10 Lung Cancer
45 2012-03-12 10:08:13 Lung Cancer
46 2012-03-13 14:12:11 Healthy
50 2012-03-14 12:16:48 Lung Cancer
60 2012-03-18 17:28:23 Lung Cancer
61 2012-03-19 13:01:04 COPD
71 2012-03-23 14:34:22 Lung Cancer
75 2012-03-26 14:41:00 Healthy
79 2012-03-26 10:08:15 Lung Cancer
83 2012-03-29 14:22:53 Lung Cancer
87 2012-03-30 13:23:21 Lung Cancer
91 2012-03-30 21:52:45 Lung Cancer
95 2012-04-02 15:21:54 COPD
102 2012-04-03 16:12:53 Lung Cancer
103 2012-04-04 14:52:21 COPD
107 2012-04-05 09:37:00 Lung Cancer
114 2012-04-12 11:12:57 Lung Cancer
118 2012-04-13 13:00:05 COPD
119 2012-04-30 13:12:58 Healthy
123 2012-05-02 14:03:59 Healthy
127 2012-05-03 14:14:01 Healthy
134 2012-05-09 16:01:10 Healthy
138 2012-05-07 14:51:18 Healthy
141 2012-05-08 12:16:43 Healthy
142 2012-05-10 14:01:42 Healthy
146 2012-05-16 14:20:54 Healthy
153 2012-05-17 15:03:46 Lung Cancer
157 2012-05-22 15:38:18 Lung Cancer
161 2012-06-13 16:13:39 COPD
168 2012-06-20 14:58:06 Lung Cancer
172 2012-06-20 14:17:14 Lung Cancer

Table 3.2: The order in which subjects’ samples were processed from the 200°C desorb
temperature measurements. Note the clustering of Lung Cancer subjects between
March 9th and April 12th. This pattern is similar for the other desorb temperatures.
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3.2 Advanced Data

Picomole applied to obtain additional breath sample data from patients with lung

cancer. Using the method of sample size planning for classification models given in

Beleites et. al[4] it was determined that for a 95% confidence interval width of 5%

sensitivity for a classifier then a sample size of 500 is needed to reach the 88.9%

sensitivity of CT scans for detecting lung cancer[26]. Beleites et. al’s method treat

the sensitivity of a binary classifier as a Bernoulli process. They then use a binomial

distribution with a uniform Beta distribution prior to find the minimum sample size

at which the desired confidence interval width occurs[4]. They also outline a way to

find the sample size needed for a given power better than some other classifier at a

specific sensitivity level. It was found that in order to show an improvement over the

CT scan sensitivity of 88.9% at 80% power a sample size of around 300 are needed

for an expected test sensitivity of 93% and for an expected test sensitivity of 95%

around 200 subjects would be needed. Picomole applied for and received approval to

collect breath samples from 200 lung cancer subjects and 200 control samples.

Total Desorbs Current Desorb Desorb Temperature Sorbent Type # of Measurements
1 1 1 200 1 16
2 3 1 75 1 16
3 3 2 150 1 16
4 3 3 200 1 16
5 4 1 75 2 16
6 4 2 150 2 16
7 4 3 225 2 16
8 4 4 300 2 16

Table 3.3: The organization of the experiment in Picomole’s real data. Picomole
changed the setup of the experiment from that of the prototype data. The majority
of lung cancer subjects available at this time were also all post-treatment which
resulted in only post treatment subjects being used. These changes make conclusions
drawn from the prototype data not generally relevant to the advanced data.

Picomole started to collect breath samples on the new sample in late 2017 with

collection continuing on into 2018. Picomole made changes to their experimental

design. The new design setup is shown in Table 3.3. Since Picomole is still in the

process of collecting breath samples at the time of this writing, only a fraction of the

planned number of samples have been collected. Unlike the prototype study, Picomole

is also collecting breath samples from lung cancer subjects who are post-treatment. Of
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the eleven lung cancer subjects from which they have collected breath samples, nine

of them are post-treatment and the remaining two are pretreatment. Due to the small

number of pretreatment subjects they were removed from the analysis. One of the

post-treatment lung cancer subjects also did not have breath sample measurements

from every set of conditions and was also removed. This resulted in 8 post-treatment

lung cancer subjects being left, all of whom are male. These 8 subjects were age and

gender matched with the healthy subjects. All of the subjects are over the age of

fifty. The matched pairs are shown in Table 3.4.

Health Age Sex
Healthy 77 Male
Lung Cancer 77 Male
Healthy 71 Male
Lung Cancer 67 Male
Healthy 57 Male
Lung Cancer 60 Male
Healthy 54 Male
Lung Cancer 61 Male
Healthy 61 Male
Lung Cancer 62 Male
Healthy 56 Male
Lung Cancer 59 Male
Healthy 66 Male
Lung Cancer 65 Male
Healthy 80 Male
Lung Cancer 77 Male

Table 3.4: The best optimal age and gendered matched set of subjects from the
advanced data. For this set of subjects all 8 measurements over the various desorption
temperatures exist

Picomole’s advanced data having had the conditions of the experiment changed

from the prototype data makes comparisons between the two datasets not possible.

Even though some of desorption temperatures are the same, such as both datasets

containing a desorption at 300°C on the same Tenax TA sorbent material, the concen-

tration of compounds seen at that temperature depends on the preceding desorption’s

temperatures. The preceding temperatures on the 300°C changed from two 80°C des-

orptions to successive desorptions at 75°C, 150°C, 225°C. Even in the case where a

200°C desorption was performed on a single tube as in the prototype data, the amount
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of sorbent material in each tube was reduced due to a change in supplier. The re-

duction in sorbent material has the effect of reducing the amount of signal captured.

This along with the issue that the majority of lung cancer subjects in the advanced

data are post-treatment poses a problem as it makes direct comparisons between the

two datasets impossible.



Chapter 4

Analysis of Prototype Data

Plots of the τ , τ0 and K concentration data against the measured wavelengths for the

breath sample data that was desorbed at 200°C can be seen in figure 4.1. The curve

like nature of the data motivates using FDA techniques. These plots make evident

that there are missing data.

Figure 4.1: A: The τ data vs. the infrared light wavelengths measured. B: The
τ0 data versus wavelengths measured. C: The K absorption data against the wave-
lengths. These plots refer only to measurements that were desorbed on 200°C. Each
line represents a single breath or nitrogen sample.

26
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4.1 Missing Data

The prototype data contains 12,876 rows with each row representing one measurement

from Picomole’s CRDS system on one laser wavelength. Since there are 77 laser

wavelengths measured by Picomole on 175 total measurements for 47 subjects, there

should have been 77×175 = 13475 rows. There are therefore 599 missing rows of data.

This was confirmed with Picomole who reported that laser wavelength measurements

for which τ and τ0 were missing were not included in the dataset. In addition to these

missing line measurements there is also explicitly missing data in both the τ and τ0

data. Since the K absorption is calculated from both τ and τ0 if either is missing

then K can not be calculated and is therefore missing.

Examining the missing data reveals that some wavelengths have a much greater

number of missing observations than others. In figure 4.2 the percentage of missing

observations per wavelength is reported. Certain wavelengths, particularly those on

the edges of the six bands have a much higher percentage of missing observations

than those in the middle. The wavelengths with the most missing observations are

9.2295µm, 9.2396µm, 9.3294µm, 9.4884µm, 9.6392µm and 10.867µm. These wave-

lengths have over 40% of their measurements missing.

Aggregation plots were used to examine the patterns of missing data. Aggregation

plots involve plotting combinations of missing observations. The left hand plot in

figure 4.3 is a bar chart displaying the counts of the number of missing observations per

line for all the subjects that underwent 200°C desorption. The plot’s right hand side

shows the observed patterns of missing observations. Each row of the plot represents

a combination of missing observations. Red boxes represent a missing observation

and blue those that were observed. On the extreme right hand side is a bar chart

showing the frequency with which each pattern has occurred.

This reveals a trend that when 9.2295µm, 9.2396µm, 9.3294µm, 9.4884µm, 9.6392µm

and 10.867µm(also known as lines 4, 5, 13, 16, 25, 81 and 97) are missing they are

usually all missing together. The same pattern can be seen in the other sets of

measurements at the desorption temperatures.

Aggregation plots were also created to compare the patterns of missing observa-

tions between subjects that were healthy versus unhealthy. These can be seen in

figure 4.4. Interestingly the pattern of having lines 4, 5, 13, 16, 25, 81 and 97 all
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Figure 4.2: The percentage of missing observations per wavelength. Some wavelengths
have a much greater percentage of missing observations than others. Wavelengths on
the edges of each of the 6 wavelength bands tend to have much higher percentages of
missing observations.

missing at once are much more prevalent in breath samples of subjects with lung

cancer or COPD. Initially it was suggested by Picomole staff that unhealthy subjects

may be “blowing out” the measurements of those wavelengths, that is giving a much

higher concentration than the CRDS system can register.
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Figure 4.3: Aggregation Plots of the K absorption data for all of the subjects on the
200°C desorption. The plot on the right side represents the combinations of missing
observations that occurred. There is a clear pattern of missing data involving lines 4
or 5 and 13, 16, 25 and 87 are usually all missing together.

However when looking at only τ0 patterns the same lines are missing. The aggrega-

tion plot for τ0 is shown in figure 4.5. This suggests that the missing line issues likely

stem from problems with Picomole’s CRDS system and not from differences between

healthy and unhealthy subjects. This led to a request to Picomole for information on

what dates the subjects’ samples were processed. When this information was added
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Figure 4.4: Aggregation plots for the K absorption data separated by health status.
A: Healthy subjects. B: Unhealthy subjects.

and the samples were ordered by date it became clear that there was an issue with

Picomole’s system in March and April of 2012. The pattern of missing wavelengths

is only observed within that period. Unfortunately most of the lung cancer subjects
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were also measured during that period giving the impression that the missingness

was somehow related to the subjects’ health status. There is no further K absorption

data available during this period to determine whether there was an impact on the

measurements outside of the missing values. The best we can do is to examine what

affect this period of time had on the τ0 data. To do so, two sample testing for the

period where the pattern of missing observations occurred versus where it did not

occur on the τ0 data as is described in the next section.

Figure 4.5: Aggregation plot for the prototype τ0 measurements desorbed at 200°C.
The combination of lines 4, 5, 13, 16, 25, 81 and 97 all being missing at the same time
is still visible. Since the τ0 measurements are from samples of nitrogen run before each
subject’s measurement they should be independent of any subject’s health status.
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Measurement Time Health Status Pattern of Missing Lines
2012-02-18 17:12:50 Healthy FALSE
2012-02-20 16:05:38 Healthy FALSE
2012-02-23 14:41:32 Healthy FALSE
2012-02-27 12:45:26 Healthy FALSE
2012-02-28 10:15:00 Healthy FALSE
2012-02-28 14:43:58 Healthy FALSE
2012-03-02 10:35:01 Healthy FALSE
2012-03-01 07:22:46 COPD FALSE
2012-03-01 15:42:06 Healthy FALSE
2012-03-03 14:42:42 Healthy FALSE
2012-03-09 12:28:10 Lung cancer FALSE
2012-03-12 10:08:13 Lung cancer TRUE
2012-03-13 14:12:11 Healthy TRUE
2012-03-14 12:16:48 Lung cancer TRUE
2012-03-18 17:28:23 Lung cancer TRUE
2012-03-19 13:01:04 COPD TRUE
2012-03-23 14:34:22 Lung cancer TRUE
2012-03-26 14:41:00 Healthy TRUE
2012-03-26 10:08:15 Lung cancer TRUE
2012-03-29 14:22:53 Lung cancer TRUE
2012-03-30 13:23:21 Lung cancer TRUE
2012-03-30 21:52:45 Lung cancer TRUE
2012-04-02 15:21:54 COPD FALSE
2012-04-03 16:12:53 Lung cancer TRUE
2012-04-04 14:52:21 COPD TRUE
2012-04-05 09:37:00 Lung cancer TRUE
2012-04-12 11:12:57 Lung cancer TRUE
2012-04-13 13:00:05 COPD TRUE
2012-04-30 13:12:58 Healthy FALSE
2012-05-02 14:03:59 Healthy FALSE
2012-05-03 14:14:01 Healthy FALSE
2012-05-09 16:01:10 Healthy FALSE
2012-05-07 14:51:18 Healthy FALSE
2012-05-08 12:16:43 Healthy FALSE
2012-05-10 14:01:42 Healthy FALSE
2012-05-16 14:20:54 Healthy FALSE
2012-05-17 15:03:46 Lung cancer FALSE
2012-05-22 15:38:18 Lung cancer FALSE
2012-06-13 16:13:39 COPD FALSE
2012-06-20 14:58:06 Lung cancer FALSE
2012-06-20 14:17:14 Lung cancer FALSE

Table 4.1: The order in which subjects’ samples were processed from the 200°C desorb
temperature measurements. Note the clustering of Lung Cancer subjects between
March 9th and April 12th. This pattern is similar for the other desorb temperatures.
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4.2 Two Sample Testing for τ0 Data

There is no suitable K absorption data that can be used to determine whether there

was an impact on the distribution of the data between the period of March and

April 2012 when the combination of missing lines occurred. Instead the τ0 data was

examined to see if there was any change in the measurement of the data besides

the missing values during that period. τ0 was used because of the fact that it is

independent of any subjects’ health status. We let X1 be the set of τ0 curves that

were measured between March 9th 2012 and April 12th 2012 and X2 be the set of

remaining τ0 curves that were measured outside of that time period.

First X1 and X2 were compared using the Functional Anderson-Darling test as

described in section 2.2.3. This test is well suited to this dataset due to it’s high

number of missing measurements. It is a test of

H0 : X1 =d X2 versus HA : X1 ̸=d X2. (4.1)

As noted by Equation 2.30 this boils down to a test between the FPCs that explain a

certain percentage of the variance of the two samples using the Anderson-Darling test.

As recommended by Pomann et al. a threshold of 95% of variation explained by the

FPCs was used. The FPCs were calculated using fdapace, an implementation of the

PACE method of FPCA for the open source software package R. Then the Anderson-

Darling test was performed pairwise on the FPC using the ad.test function from

the R package kSamples.

The results of the FAD test on the different sets of τ0 curves can be seen in Table

4.2. All of the tests for each set of desorption were found to be highly significant at

the α = 0.05 level suggesting that we reject H0 and that the two sets of curves come

from two different distributions.

Another two sample hypothesis method was attempted as well: The functional

Schilling procedure described in section 2.2.3. The test was implemented in R. Since

this procedure requires that the data contain no missing values imputation was re-

quired. This was done using FPCA and the Karhunen-Loève representation as dis-

cussed previously to fill in the missing data. Since for any choice of k nearest neighbors

there would be over 40 factorial permutations an exact test was not conducted but

instead a test with 100,000 permutations and k = 4 nearest neighbors.
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Trial FAD p-value
1 200 0.00721
2 80 Desorb 1 0.00228
3 80 Desorb 2 0.00298
4 300 Desorb 3 0.00298

Table 4.2: P-values of the FAD test conducted to compare the distribution of τ0 data
measured between March 9th 2012 and April 12 2012 and those measured outside
that date range. For each set of measurements the FAD test was found to be highly
significant suggesting the two sets of curves come from different distributions

A p-value of 0 was obtained for each of four trials. The expected value was 52%

while the calculated test statistics were all over 90%. The outcome of the Schilling

procedure also suggests that the that the two sets of curves do not come from the

same distribution.

4.3 Limitations

As suggested by the previous sections this prototype data has some serious limitations.

In addition to being a small dataset which makes using both a training and testing

set less than ideal, it has a high percentage of missing values. However the issue

that has the most affect on the analysis is the issue of the bunched lung cancer

subjects that occurred during a period when the CRDS system operated differently.

As there is no other K absorption data from that period it is not possible to conclude

definitively that the differences between healthy and unhealthy subjects is due to

actual differences between the subjects or if it’s just an artifact of the system not

operating correctly. Assuming the mis-calibration affected the τ data in the same

way as the τ0 data then any inference based on the K absorption data which uses τ0

as a baseline measurement should be valid.

4.4 CART on Prototype Data

Classification trees using the CART method are described in section 2.1.1. Classifica-

tion trees were tried first due to their speed, ability to handle missing values, and the

potential to highlight any predictor variables that may be important in classifying

healthy and unhealthy subjects. The classification trees were constructed using the
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rpart package. Trees were originally constructed with the goal of being able to clas-

sify all three different health statuses: healthy, lung cancer and COPD. They were

also constructed with each set of conditions having their own classification tree due to

the fact that classification trees are incapable of handling repeated measures designs.

Originally the trees included the subjects’ age as a predictor variable. They were

also constructed on the τ data as that is all that was provided initially. Since the

subjects were not age matched and most of the people with lung cancer and COPD

are over the age of 60 each tree split on age. These trees are provided in figure 4.6.

This is not particularly useful in helping to identity new patients with lung cancer,

especially since the incidence of lung cancer in the subjects tested over sixty is over 40

percent which is much greater than the actual rate. However this did help point out

how skewed the dataset is towards older subjects. These trees were also built using

the default settings of rpart which require 20 observations to be in a node before a

split occurs. Since the number of observations in each of the trials is around 40 the

trees are very limited in how large they could grow. Further trees were grown with

the number of observations required for a split to occur reduced from 20 to 5.

More trees were grown on the τ data but as pointed out in section 4.3 there are

limitations with the τ . When the K absorption data was received new trees were

grown on that data using leave one out cross validation. These trees were also pruned

to help compensate for overfitting. The trees in figure 4.7 are all radically different

from one another. The tree grown on the data that was desorbed at 80°C the first time

resulted in a one node tree that simply classifies all subjects as having lung cancer.

This is of course not very helpful. The other trees all identify line IDs towards the

higher end of spectrum.

Performance with CART trees varies greatly. From an accuracy rate of 44% and

sensitivity of 0% for the healthy and COPD subjects on the first 80°C desorption to

a high of an 87.8% accuracy on the 200°desorption. The tree with the best overall

accuracy the 200°C desorption has not so great lung cancer sensitivity of 75%, the

second best performing tree, the 300°desorption has a much improved but still not

ideal lung cancer sensitivity of 94.74% but at the expense of the the COPD sub-

jects, correctly classifying none of them while also incorrectly labeling them as both

healthy and having lung cancer questioning its value as a preliminary identifier of
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Figure 4.6: The first CART trees constructed with the age variable included. Since
subjects were not age matched and the majority of lung cancer subjects are older it
becomes the best variable to split on. The percentage at the bottom of a node refers
to the percentage of total observations that fall in that node. The three numbers
in the middle of a node refer to proportions of each class in that node in the order,
healthy, lung cancer, COPD.

COPD. Table 4.3 summarizes the performance of the CART trees grown on the K

concentration data. One thing to note is that since the trees grown are so small the

choice in pruning either removes all nodes as in the case of first 80°C desorption or

do not get pruned at all as in the case of the 200°C desorption which raises questions
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Figure 4.7: Pruned and cross validated trees grown on the K absorption data. The
tree grown on the data from temp. 80 tube 1 is not very helpful, classifying all
subjects as having lung cancer. The other trees do better and tend to suggest that
lines higher in the higher band(lines 90 and above).

about the possibility of overfitting.
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Accuracy(95% CI) Sensitivity Specificity
80°C Tube 1 0.44(0.30,0.60) H:0.0,LC:1.0,COPD:0.0 H:1.0,LC:0.0,COPD:1.0
80°C Tube 2 0.72(0.56,0.85) H:0.47,LC:1.0,COPD:0.57 H:1.0,LC:0.5,COPD:1.0
300°C Tube 3 0.79(0.64,0.90) H:0.94,LC:0.95,COPD:0.0 H:0.77,LC:0.88,COPD:1.0
200°C Tube 1 0.88(0.74,0.96) H:0.95,LC:0.75,COPD:1.0 H:0.82,LC:0.96,COPD:1.0

Table 4.3: The accuracy, sensitivity and specificity for each of the second set of pruned
CART trees grown. Note that H refers to healthy subjects and LC to lung cancer
subjects.

4.5 Random Forests

Random Forests were also constructed on the prototype data. The Random Forests

were grown using the randomForest package available in R. Despite the capability of

trees grown using CART to handle missing values, randomForest is unable to deal

with them and requires a dataset with no missing values. The data was imputed

using a method which utilizes FPCA[8]. A grid search was performed in order to

determine the best parameters for the number of trees to grow in each forest and

the number of predictor variables that the random forest algorithm considers at each

split. The number of trees tested was 50, 100 and 200 and the number of variables

tried was 5, 10, 200, 30, 50 and 77(The total number of predictor variables). The

dataset was split into an 80% training set and 20% testing set. This was done using

the createDataPartition from the R package caret.

Ten fold cross-validation was used during the grid search on the training data

to help select the parameters of the best performing random forest for each set of

conditions. This was done to avoid data leakage. The set of parameters with the

lowest mean OOB error rate over the ten fold cross validation were used as the final

parameters to assess the performance of random forests on this data. For the 200°C

desorb, the parameters with the lowest OOB error rate was ntree = 100 trees grown in

the forest with M =77 predictor variables allowed to be selected from at each split, for

the first time the breath sample was desorbed at 80°C ntree = 50 and M = 50, for the

second 80°C desorption ntree = 100 and M = 20 and finally for the 300°C desorption

ntree = 100 and M = 5. Random forests were grown using these parameters on the

training data and tested on the testing set.

Performance using the random forests is poor. Even on the training data the
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Healthy Lung cancer COPD Class Error
Healthy 5 7 2 0.6429
Lung cancer 7 7 2 0.5625
COPD 3 3 0 1.0000

Table 4.4: The confusion matrix for second desorption at 80°C for the random forest’s
performance on training data. Classification performance is very poor, with rates
worse than random guessing and is unable to correctly deal with COPD subjects.

Healthy Lung cancer COPD Class Error
Healthy 1 1 1 0.6666
Lung cancer 0 2 1 0.3333
COPD 0 1 0 1.0000

Table 4.5: Confusion Matrix for the second desorption at 80°C for the random forest
grown on the training data and tested on the testing set. Performance is as poor as
on the training data.

random forests struggle at classifying COPD subjects correctly. Only one of the

random forests grown, the one on the 200°C desorption, classified a single COPD

correctly on the training data. As an example for the random forests performance

on this dataset, confusion matrices for the random forest grown using the second

desorption at 80°C on the training and testing data can be seen in Tables 4.4 and 4.5

respectively. As is shown by the two confusion matrices, the random forest classifier

is unable to classify COPD subjects at all and is not very effective with the remaining

two classes either.

Random forests were tried one more time with the COPD subjects removed. The

small number of COPD subjects likely has an impact and just end up confusing the

classifier on the other two classes. The random forests were grown in the same fashion

as before just with the COPD subjects removed. The data were once again separated

into a testing a training dataset and then the parameters used were determined by

cross validation on the training dataset and then verified on the test dataset using

those parameters. The best parameters for the random forest with no COPD subjects

done on the 200°C desorption was ntree = 50, M = 50, for the first desorption at 80°C

ntree = 200, M = 5, the second desorption at 80°C ntree = 200, M = 77 and the

desorption at 300°C ntree = 50 and M = 77.

An example of the performance of the random forests with COPD subjects con-

fusion matrices for the random forest grown on the second 80°C desorb are shown
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in Tables 4.6 and 4.7. There is no real improvement in performance using random

forests with the COPD subjects removed. Performance on the training data appears

to be the random forest guessing between the two classes. The performance on the

testing dataset appears better but with such a small dataset that result could simply

be pure chance.

Despite good performance of these classifiers on other types of spectrometry

data[6][29] the tree based classifiers are more of a mixed bag on Picomole’s prototype

dataset. The fact that the random forests performed so poorly while the CART trees

performed well raises questions about their performance as well as random forests

were designed to deal with the shortcomings of CART trees, in particular overfitting.

Perhaps with a larger dataset the tree-based methods could be more effective.

Healthy Lung cancer Class error
Healthy 6 8 0.5714
Lung cancer 7 9 0.4375

Table 4.6: The confusion matrix for the second desorption at 80°C with the COPD
subjects removed for the random forest applied to the training data. Removing the
COPD subjects did not have a positive impact on performance.

Healthy Lung cancer Class error
Healthy 2 1 0.3333
Lung cancer 0 3 0.0000

Table 4.7: The confusion matrix for the second desorption at 80°C with the COPD
subjects removed for the random forest applied to the testing data. It initially appears
as though the random forest is capable of correctly classifying lung cancer subjects,
although performance on the training data and the small sample size makes this
unlikely.

4.6 FLDA on Prototype Data

FLDA was one of the first techniques applied to the prototype data because of it’s

ability to handle data that is sparse or has a high percentage of missing values as is

the case here. For the full details on the theory behind FLDA refer to section 2.2.2.

The version of FLDA used here is G. James’ original FLDA implementation in the

S-plus programming language available from his research web-page[16] with a very

minor tweak to enable it to run on R.
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With FLDA all the prototype data was used at the same time. All of the mea-

surements were used on a grid going from 1 to 308. The first 77 points represented

the measurements from the 200°C desorption, 78 to 155 were the measurements from

the first 80°C desorption, 156 to 223 were the measurements from the second 80°C

desorption and 224 to 308 are the measurements from the 300°C desorption. As rec-

ommended by James et al. several dimensions of q were tried and the dimension with

the highest likelihood during cross validation was selected. The dimensions of q tried

were 5 (the default), 10, 25, 50, 100, 150, 200 and 300. Ten fold cross validation was

used. The dimension of q with the highest likelihood over the CV was found to be

300. Next the rank constraint p on the γ’s was selected. This was done by finding

the value of p that minimized classifier error rate over 10 fold cross validation. The

values of p tried were 1 (the default), 5, 10, 20, 30 and 40. The maximum choice of p

is limited by the number of subjects, as otherwise a non-singular matrix occurs. The

value of p that was found to result in the best performance on the CV data was 30.

Originally all the data was used to build the classification rule using FLDA as it

was believed at the time that the advanced data would be comparable to the prototype

data and could be used as a validation set. Performance of FLDA on all the data is

quite good. While it is incapable of separating subjects with COPD or lung cancer

it is able to separate between healthy and sick subjects perfectly. Plots of the α̂ with

points colored to correspond to the predicted and actual classes of subjects are seen

in Figure 4.8. Considering that FLDA is a linear classifier it is no surprise that it is

only able to correctly separate the classes into two groups.

Unfortunately the performance of FLDA when it was applied to the prototype

dataset using 10-fold cross validation isn’t quite as good. The FLDA classifier here

is no longer able to separate between healthy and sick subjects as seen in Figure

4.9. Performance of the FLDA classifier reduced to 70.21% when COPD subjects

are grouped together with the those that have lung cancer. FLDA was also tried

with the COPD subjects removed using the same 10 fold cross-validation as used

previously. In addition the same parameters were used as beforehand with q = 300

and p= 30. With the COPD subjects removed the FLDA total classification is 77.5%.

It incorrectly classfies 5 of the healthy subjects as having lung cancer and 4 of the

lung cancer subjects as being healthy out of 40 total subjects without COPD. This
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Accuracy(95% CI) Sensitivity Specificity
FLDA COPD included 0.49(0.34,0.64) H:0.79,LC:0.22,COPD:0.0 H:0.61,LC:0.93,COPD:0.69
FLDA COPD removed 0.78(0.62,0.8916) 0.80 0.75

Table 4.8: The accuracy (and corresponding 95% confidence interval), sensitivity and
specificity for the FLDA models constructed using 10 fold cross validation. Removing
COPD subjects improves performance. Once again H refers to Healthy and LC to
lung cancer.

leads to a sensitivity rate of 80% and a specificity rate of 75%. The plot showing the

seperation between the two classes is Figure 4.10. When trying to classify all three

groups only 48.94% are correctly classfied and it classifed most lung cancer subject’s

as having COPD. Table 4.8 summarizes the accuracy, sensitivity and specificity of

the FLDA models used.

The FLDA classifier shows performance that suggests it is possible to predict a

subjects health status based on their breath samples but not with the 100% sensitivity

that is desired in a preliminary medical test.
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Figure 4.8: Plots showing the separation between classes on all the data generated by
FLDA. It’s unable to distinguish between COPD and lung cancer patients but can
separate healthy and sick subjects.
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Figure 4.9: The FLDA separation between classes on the prototype data with 10-fold
cross validation. The FLDA classifier is no longer able to reliably separate healthy
and sick subjects suggesting the previous results were likely the result of overfitting.
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Figure 4.10: The FLDA separation after the COPD subjects have been removed.
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4.7 FPCA and Related Techniques on Prototype Data

Effort was also made to try and glean information about the prototype data by

performing a FPCA on the dataset. In addition an FPCA clustering method was

applied. As with the imputation done by FPCA, the FPCA applied to the prototype

data were performed by the PACE method. The prototype data is considered to be

dense functional data with missing values by fdapace.

FPCA was applied to each of the desorbs separately. Diagnostic plots for each

of the FPCA conducted were examined. An example of the diagnostic plots for the

200°C condition are in Figure 4.11. The 200°C and 300°C conditions have over 80%

of their variation explained by the first FPC, the other two 80°C conditions have

over 67% of their variation explained by the first FPC. All of the different sets of

conditions have 95% of their variation explained by the first four FPCs. The FPCs

do not appear to have any obvious interpretation in seperating the three groups of

subjects.

FPCA clustering is an unsupervised learning technique which tries to place the

measurements into groups using the FPC scores. Originally the FPCA clustering was

performed with the Rmixmod algorithm trying to cluster the data into three different

clusters, one for each health status. Then, as with the random forest, COPD subjects

were removed to see if that had a positive impact on correctly determining a subject’s

health status.

Performance of FPCA clustering on this prototype dataset is poor. The best

correct classification rate on the FPCA clustering with three groups is 53.65% on

the desorbtion that was performed at 200°C. Removing the COPD subjects does not

greatly improve things. With the COPD subjects removed the best classification

performance is 63.88%.

FPCA while doing a better job at imputing the data than the other methods that

were attempted, did not reveal anything particularly illuminating on the relationship

between a subject’s health status and their measurement.
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Figure 4.11: Diagnostic plots for the FPCA performed on desorption performed at
200°C. The top left plot show spacing and density of the grid used. This data is
considered dense with missing data. The top right plot is the path of the mean
curve. The lower left plot shows the fraction of variance explained by each FPC, the
first principal component in this case explains over 80% of the variance. 95% of the
variance is explained by the first four FPC. The final plot, the bottom right shows
the path of the first three eigenfuction curves.
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Accuracy(95% CI) Sensitivity Specificity
First 80 C Desorption 0.44(0.30,0.60) H:0.11,LC:0.85,COPD:0.14 H:0.96,LC:0.20,COPD:0.89
Second 80 C Desorption 0.51(0.35,0.67) H:0.41,LC:0.68,COPD:0.29 H:0.69,LC:0.58,COPD:0.92
300 C Desorption 0.49(0.33,0.65) H:0.35,LC:0.79,COPD:0.0 H:0.85,LC:0.42,COPD:0.89
200 C Desorption 0.44(0.28,0.60) H:0.47,LC:0.50,COPD:0.17 H:0.73,LC:0.60,COPD:0.80

Table 4.9: The accuracy, sensitivity and specificity for each of the desorptions for
FPCA clustering with all three classes included. Overall performance is not very
good.

Accuracy(95% CI) Sensitivity Specificity
First 80 C Desorption 0.55(0.38,0.71) 0.11 0.95
Second 80 C Desorption 0.64(0.46,0.79) 0.59 0.68
300 C Desorption 0.53(0.35,0.70) 0.94 0.16
200 C Desorption 0.63(0.45,0.79) 0.47 0.81

Table 4.10: The accuracy, sensitivity and specificity for each of the desorptions for
FPCA clustering with the COPD subjects removed. The best performing class as-
signments were used. Performance is not any better than random guessing.

4.8 DDG Plots on Prototype Data

The final technique applied to the prototype data was the DDG plot classifiers as

outlined in section 2.3. Since current measures of depth available for functional data

requires that there be no missing values the data was imputed using the same FPCA

method used for the random forests (as described in section 4.5).

With the imputed data, DDG plots were generated using the fda.usc R package

which was developed by the creators of the DDG plot. The default FM depth was

used. For the first set of plots the subjects with COPD were binned with the lung

cancer subjects, making G = 2. DDG plots are easier to interpret when the dimension

is two, as it is easier to see the classification rule. Four different classifiers were tried

on the DDG plots, LDA, QDA, k-nearest neighbors (kNN) and a non-parametric

kernel method (NP).

The DDG plots for the prototype data trial conducted at 200°C are displayed in

Figure 4.12. The LDA classifier applied to the plot is able to correctly classify 47%

of healthy subjects and 73% of sick subjects with a total correct classification rate

of 61%. Based on the placement of points in the DDG plot it is pretty clear that a

linear classifier was never going to do a satisfactory job. The majority of the sick
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patients appear to be nestled between two separate groups of healthy subjects. The

plot that used the QDA classifier performed better than LDA as it was able to better

capture the two groups. QDA was able to correctly classify 81.81% of the sick subjects

correctly and 57.89% of the healthy subjects correctly for an overall total of 70.73%.

The next two classifiers applied to the DDG plots are able to have arbitrary deci-

sion boundaries and are not restricted to polynomials. This allows for better classi-

fication. When looking at the the DDG plots with the kNN classifier applied for the

200°C desorption performance is again improved over the LDA and QDA methods.

The kNN classifier finds three different groups, one going from the bottom left to

top right diagonally classifying subjects falling into that group as sick and the other

two flanking it classifying them as healthy. The kNN DDG plot classifier is able to

correctly classify 70.58% of the healthy subjects and 84.62% of the sick subjects. This

gives a a total rate of correct classification of 79.07%, an almost 9% improvement over

the QDA method. The non-parametric kernel method has even better performance

than the kNN classifier, however some of the groups are specific to individual points

which raises the question of whether the non-parametric kernel method is overfitting

the data or not.

The DDG plot classifiers were also tried with the all three classes. Unsurprisingly,

performance of the DDG plot using the LDA classifier is worse. The single line of

separation does not allow for any real way to classify three groups. Figure 4.13 has

the DDG for the 200°C set of conditions with the LDA classifier used. The plots

are harder to interpret with all three classes included as the groups are compared

pairwise with only shaded shapes as indication of correct classification or not unlike

the easy to distinguish two class case. Looking at the plot reveals it is much better

at correctly classifying healthy subjects than those with COPD or lung cancer.

Using QDA as the classifier on the three class DDG plot results in similar perfor-

mance to the two group case using QDA. An example of QDA applied to the 200°C

breath samples is seen in Figure 4.14.

As with the two class case, the best performing classifiers on the DDG plots with all

three classes included are still the kNN and non-parametric kernel method classifiers.

They only see small decreases in performance compared to when COPD subjects

were binned with lung cancer subjects. The plots using the kNN and non-parametric
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Accuracy(95% CI) Sensitivity Specificity
First 80 C Desorption 0.73(0.58,0.85) 0.5 0.89
Second 80 C Desorption 0.72(0.56,0.85) 0.53 0.85
300 C Desorption 0.65(0.49,0.79) 0.41 0.81
200 C Desorption 0.61(0.45,0.76) 0.47 0.73

Table 4.11: The accuracy, sensitivity and specificity for the DD plot using LDA as
the classifier and FM depth with the COPD subjects binned with the lung cancer
subjects.

Accuracy(95% CI) Sensitivity Specificity
First 80 C Desorption 0.76(0.60,0.87) 0.56 0.89
Second 80 C Desorption 0.67(0.51,0.81) 0.41 0.85
300 C Desorption 0.74(0.59,0.86) 0.53 0.88
200 C Desorption 0.71(0.54,0.84) 0.58 0.81

Table 4.12: The accuracy, sensitivity and specificity for the DD plot using QDA as
the classifier and FM depth with the COPD subjects binned with the lung cancer
subjects.

kernel method are in Figures 4.15 and 4.16 respectively.

Tables 4.11 through 4.14 summarize the accuracy, sensitivity and specificity for

the DD plots where the COPD subjects have been grouped with the lung cancer

subjects for the four different classifiers used, LDA, QDA, K-nearest neighbors and

non-parametric kernel method. Similarly Tables 4.15 through 4.18 contain the same

information for the DDG plots where all three classes were used.

Accuracy(95% CI) Sensitivity Specificity
First 80 C Desorption 0.82(0.68,0.92) 0.72 0.89
Second 80 C Desorption 0.79(0.64,0.90) 0.71 0.85
300 C Desorption 0.77(0.61,0.88) 0.65 0.85
200 C Desorption 0.80(0.54,0.84) 0.74 0.86

Table 4.13: The accuracy, sensitivity and specificity for the DD plot using K nearest
neighbors as the classifier and FM depth with the COPD subjects binned with the
lung cancer subjects.
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Accuracy(95% CI) Sensitivity Specificity
First 80 C Desorption 0.96(0.85,0.99) 0.94 0.96
Second 80 C Desorption 0.93(0.81,0.99) 0.94 0.92
300 C Desorption 0.91(0.78,0.97) 0.82 0.96
200 C Desorption 0.95(0.83,0.99) 0.89 1.00

Table 4.14: The accuracy, sensitivity and specificity for the DD plot using the non-
parametric kernel method as the classifier and FM depth with the COPD subjects
binned with lung cancer subjects.

Accuracy(95% CI) Sensitivity Specificity
First 80 C Desorption 0.56(0.40,0.70) H:0.61,LC:0.65,COPD:0.14 H:0.70,LC:0.52,COPD:1.00
Second 80 C Desorption 0.63(0.47,0.77) H:0.71,LC:0.74,COPD:0.14 H:0.73,LC:0.63,COPD:1.00
300 C Desorption 0.58(0.42,0.73) H:0.65,LC:0.74,COPD:0.00 H:0.73,LC:0.54,COPD:1.00
200 C Desorption 0.59(0.42,0.74) H:0.84,LC:0.44,COPD:0.17 H:0.50,LC:0.76,COPD:1.00

Table 4.15: The accuracy,sensitivity and specificity for the DDG plot using the LDA
classifier and FM depth on all three classes.

Accuracy(95% CI) Sensitivity Specificity
First 80 C Desorption 0.80(0.65,0.90) H:0.78,LC:0.75,COPD:1.00 H:0.85,LC:0.84,COPD:0.97
Second 80 C Desorption 0.77(0.61,0.88) H:0.65,LC:0.79,COPD:1.00 H:0.85,LC:0.79,COPD:0.97
300 C Desorption 0.67(0.51,0.81) H:0.76,LC:0.74,COPD:0.29 H:0.81,LC:0.63,COPD:1.00
200 C Desorption 0.76(0.60,0.88) H:0.84,LC:0.63,COPD:0.83 H:0.82,LC:0.84,COPD:0.94

Table 4.16: The accuracy,sensitivity and specificity for the DDG plot using the QDA
classifier and FM depth on all three classes.

Accuracy(95% CI) Sensitivity Specificity
First 80 C Desorption 0.80(0.65,0.90) H:0.89,LC:0.70,COPD:0.86 H:0.78,LC:0.92,COPD:0.97
Second 80 C Desorption 0.79(0.64,0.90) H:0.76,LC:0.84,COPD:0.71 H:0.81,LC:0.83,COPD:1.00
300 C Desorption 0.79(0.64,0.90) H:0.82,LC:0.89,COPD:0.43 H:0.84,LC:0.79,COPD:1.00
200 C Desorption 0.80(0.65,0.91) H:0.94,LC:0.75,COPD:0.50 H:0.73,LC:0.92,COPD:1.00

Table 4.17: The accuracy,sensitivity and specificity for the DDG plot using the K
nearest neighbors classifier with FM depth on all three classes.

Accuracy(95% CI) Sensitivity Specificity
First 80 C Desorption 0.91(0.79,0.98) H:0.94,LC:0.85,COPD:1.00 H:0.93,LC:0.96,COPD:0.97
Second 80 C Desorption 0.91(0.78,0.97) H:0.94,LC:0.89,COPD:0.86 H:0.88,LC:0.96,COPD:1.00
300 C Desorption 0.81(0.67,0.92) H:0.82,LC:1.00,COPD:0.29 H:0.96,LC:0.71,COPD:1.00
200 C Desorption 0.85(0.71,0.94) H:0.89,LC:0.88,COPD:0.67 H:0.91,LC:0.84,COPD:1.00

Table 4.18: The accuracy, sensitivity and specificity for the DDG plot using the non-
parametric kernel method classifier with FM depth on all three classes.
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Figure 4.12: The DDG plots constructed on the 200°C desorb. The COPD subjects
have been grouped with the lung cancer subjects to create the red group of sick
subjects. The red shaded sections correspond to the decision rule for classifying new
subjects as sick, any new points of data that have data depths in a red shaded area
would be classified as sick, whereas new points landing the blue section would be
classified as healthy.
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Figure 4.13: The DDG plot for the 200°C desorb on the prototype data using the LDA
classifier with all three classes. Since there is now more than two groups, the groups
are compared pairwise. This makes interpretation more difficult. Each non-diagonal
panel compares the depths of the observations on two of the groups. Shaded points
represent subjects that have been mis-classified. It is still clear from the plot that the
LDA classified DDG plot is poor at distinguishing COPD and lung cancer subjects.
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Figure 4.14: The DDG plot for the 200°C desorb on the prototype data using the QDA
classifier with all three classes. Performance is better than with the LDA classifier.
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Figure 4.15: The DDG plot for the 200°C desorb on the prototype data using the
kNN classifier with all three classes.
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Figure 4.16: The DDG plot for the 200°C desorb on the prototype data using the
non-parametric kernel method classifier with all three classes.



Chapter 5

Analysis of the Advanced Data

The same methods applied to the prototype dataset were applied to the advanced

data. When taking a look at the advanced data a new issue cropped up. 75 out of

9856 measurements of K had a value of either -33.36 or 33.36. The positive values of

33.36 occur when the value of τ recorded is 1× 10−12. Similarly the values of -33.36

occur when τ0 is recorded as 1 × 10−12. The Picomole engineering team suggested

that these values were anomalous and should be treated as though they were missing.

Taking their recommendation these values of K were set as missing along with the

very small values of τ and τ0.

After the recommended changes were applied, the data were plotted in a similar

fashion to the prototype data. The plot for the data on the 200°C desorption on one

tube is in Figure 5.1. It reveals plots with a similar shape to those seen in the plot

of prototype of Figure 4.1. One immediate difference is that the τ0 they appear more

precisely measured with all of the τ0’s lying closer together than those seen in fig.

4.1. There is still no immediately obvious difference separating the healthy subjects

from those with lung cancer revealed by plotting the data.

57
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Figure 5.1: A: The τ data vs. the infrared light wavelengths measured. Points near
zero are values of τ at 1 × 10−12 before they were set to be missing. B: The τ0 data
versus wavelengths measured. C: The K absorption data against the wavelengths.
These plots refer only to measurements that were desorbed on 200°C tube 1 desorb
on the advanced data.
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5.1 Missing Data

Even with the problem where K values that were recorded as over 33 or under -33 are

to be treated as missing, the percentage of missing observations are greatly reduced

from the prototype data. In the prototype data 9.86% of the K observations are

missing. By contrast, the advanced data has 0.761% of the K values missing. Not

only has the number of missing values in the advanced data decreased sharply from

the amount seen in the prototype data, there is also no longer any obvious pattern

that can be seen among the missing values. This can be seen in the aggregation plots

created for the new data in Figure 5.2 which has two aggregation plots separated

by health status. It does appear however that missing values occur more likely at

higher wavelengths. There is one measurement from a healthy subject on the 75°C

desorption from the four tube set that is missing 23 wavelengths in a row going from

9.2295µm to 10.1823µm.

Figure 5.2: Aggregation plots for the advanced data grouped by health status. A:
Healthy subjects. One desorb resulted in a string of missing measurements in the
lowest wavelengths. B: Lung Cancer subjects.
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Accuracy(95% CI) Sensitivity Specificity
200°C Tube 1 0.81(0.54,0.96) 1 0.62
75°C Tube 1 Tubes 3 0.94(0.7,1) 0.88 1
150°C Tube 2 Tubes 3 1(0.79,1) 1 1
200°C Tube 3 Tubes 3 0.94(0.7,1) 1 0.88
75°C Tube 1 Tubes 4 0.75(0.48,0.93) 0.62 0.88
150°C Tube 2 Tubes 4 1(0.79,1) 1 1
225°C Tube 3 Tubes 4 0.94(0.7,1) 1 0.88
300°C Tube 4 Tubes 4 0.88(0.62,0.98) 0.75 1

Table 5.1: The accuracy, sensitivity and specificity for each of the pruned trees.
Performance is improved over the prototype trees.

5.2 Decision Trees on Advanced Data

CARTs were grown in the same fashion as for the prototype data. For the CART

trees these were grown with the same reduced requirement that only 5 measurements

are needed in a node for a split to occur. These trees were also pruned in the same

manner as the trees used on the prototype data. The trees for the three tube set of

desorptions(75°C, 150°C, 200°C) along with the solitary 200°C tube desorption are

shown in Figure 5.3. The trees for the remaining four trees from the same set of four

tubes are in Figure 5.4. Like the prototype data the trees for each set of desorption

on the advanced data all look different from one another and select different line IDs

from one another to split on.

The performance of the CART trees on the advanced data is improved over that

of the prototype. Table 5.1 summarizes the performance. The two trees based on

the 150°C desorptions were able to perfectly classify every subject. Most of the other

trees have accuracy above 90%, with the worst performing tree having 75% accuracy.

This performance is quite good and is better than the CART tree performance on

the prototype data.

However the performance of random forests in the next section raises some ques-

tions about the validity of CART performance.



61

Figure 5.3: Pruned and cross validated trees for the K absorption data for the ad-
vanced data. These include the trees from the three tube desorption and the single
tube 200°C desorption.
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Figure 5.4: Pruned and cross validated trees for the K absorption data for the ad-
vanced data on the four tube set of desorptions. These desorptions go from 75°C to
150°C to 225°C finally to 300°C
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Accuracy(95% CI) Sensitivity Specificity
200°C Tube 1 0.5(0.25,0.75) 0.5 0.5
75°C Tube 1 Tubes 3 0.94(0.7,1) 0.88 1
150°C Tube 2 Tubes 3 0.44(0.2,0.7) 0.38 0.5
200°C Tube 3 Tubes 3 0.5(0.25,0.75) 0.38 0.62
75°C Tube 1 Tubes 4 0.56(0.3,0.8) 0.62 0.5
150°C Tube 2 Tubes 4 0.062(0.0016,0.3) 0 0.12
225°C Tube 3 Tubes 4 0.44(0.2,0.7) 0.25 0.62
300°C Tube 4 Tubes 4 0.62(0.35,0.85) 0.5 0.75

Table 5.2: The accuracy, sensitivity and specificity for each of random forests grown.
Performance is similarly poor to that of the random forests grown on the prototype
data.

5.2.1 Random Forests on the Full Set of Advanced Data

Random forests on the advanced data were handled differently to the random forests

grown on the prototype data. The data was once again imputed using FPCA. Since

the advanced dataset only has 16 subjects, a separate testing and training set was

not used, and instead leave one out cross validation was applied. The same values of

M , the number of predictor variables considered at each split were used. 500 trees

were grown in each random forest.

The random forests on the advanced data perform like they did on the prototype

data, which is not well. Table 5.2 summarizes the performance. With the exception

of the random forest grown on the 75°C desorption which managed to have an accu-

racy, sensitivity and specificity of ≥ 88% for each of them, the other random forests

constructed perform quite poorly with second best accuracy rate being 56% and all

the remaining random forests also have their no information rate fall within the 95%

confidence intervals for their accuracy. The sets of conditions that were the best

performing in the case of CART trees, the two 150°C desorptions did not perform

well either. In fact, the 150°C on the four tube set of desorptions only managed to

correctly classify a single subject.
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5.2.2 CART and Random Forests on Smaller Bands of Wavelengths

Due to the discrepancy in performance between CART trees and Random Forests

despite their common methodology it was speculated that the good performance of

CART trees may be caused by the fact that there are more predictor variables than

breath samples measurements for classification trees and random forests grown. In

an attempt to account for this problem the classification trees and random forests

were regrown on a reduced selection of wavelengths. Conversations with Picomole

had previously hinted that the VOCs which only appear in people with lung cancer

are best captured at the edges of the wavelengths. Therefore, for the regrown random

forests and CART trees the wavelengths were restricted to the edges.

The methods used were the same as those used for the full dataset with the

exception of the number of variables that the random forests are allowed to select

during a split that is used in a grid search. The grid search was from two to the

number of predictor variables in the reduced datasets.

They were first regrown on the band of the lowermost wavelengths, those from

9.2295µm-9.3294µm or the band colored “blue” in fig 3.1. The “blue” band contains

10 wavelengths. Since one of the 75°C measurements on the four tube set of desorp-

tions has the entire “blue” band missing it was removed from the dataset. The other

conditions still have all 16 measurements. Tables summarizing the performance of

the CART trees and random forests on the “blue” band are 5.3 and 5.4 respectively.

The best performing CART tree is in Figure 5.5. As with the classification trees

and random forests grown on the full dataset the performance of the trees grown

by CART exceeds that of the random forests. However, three of the CART trees

here have their 95% confidence interval contain the 0.50 accuracy rate that could be

achieved by random guessing.

Next, the band of the highest wavelengths from 11.0447µm-11.3099µm or the band

colored “yellow” in 3.1 had classification trees and random forests grown on it. Since

there was no measurement that had the entire band as missing all 16 measurements

for each set of conditions were used. Table 5.5 has the performance of CART trees

on the “yellow” band and 5.6 has it’s random forest counterpart. The trend of

low random forest performance and good CART tree performance on the 13 highest

wavelengths continues. The CART trees perform as well as they did previously and
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Figure 5.5: Pruned and cross validated trees for the K absorption data with a reduced
number of lines. These trees are all from 75°C desorption from the four tube set.
These are the better performing CART trees of the reduced datasets.
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Accuracy(95% CI) Sensitivity Specificity
200°C Tube 1 0.75(0.48,0.93) 0.62 0.88
75°C Tube 1 Tubes 3 0.88(0.62,0.98) 0.75 1
150°C Tube 2 Tubes 3 0.75(0.48,0.93) 0.5 1
200°C Tube 3 Tubes 3 0.81(0.54,0.96) 0.75 0.88
75°C Tube 1 Tubes 4 0.93(0.68,1) 1 0.88
150°C Tube 2 Tubes 4 0.69(0.41,0.89) 0.38 1
225°C Tube 3 Tubes 4 0.88(0.62,0.98) 0.88 0.88
300°C Tube 4 Tubes 4 0.94(0.7,1) 0.88 1

Table 5.3: The accuracy, sensitivity and specificity for the CART trees grown on the
band of lowest wavelengths.

Accuracy(95% CI) Sensitivity Specificity
200°C Tube 1 0.56(0.3,0.8) 0.62 0.5
75°C Tube 1 Tubes 3 0.69(0.41,0.89) 0.5 0.88
150°C Tube 2 Tubes 3 0.38(0.15,0.65) 0.38 0.38
200°C Tube 3 Tubes 3 0.56(0.3,0.8) 0.5 0.62
75°C Tube 1 Tubes 4 0.27(0.078,0.55) 0.29 0.25
150°C Tube 2 Tubes 4 0.31(0.11,0.59) 0.38 0.25
225°C Tube 3 Tubes 4 0.38(0.15,0.65) 0.38 0.38
300°C Tube 4 Tubes 4 0.5(0.25,0.75) 0.38 0.62

Table 5.4: The accuracy, sensitivity and specificity for the random forests grown on
the band of lowest wavelengths.
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Accuracy(95% CI) Sensitivity Specificity
200°C Tube 1 0.81(0.54,0.96) 1 0.62
75°C Tube 1 Tubes 3 0.94(0.7,1) 0.88 1
150°C Tube 2 Tubes 3 0.88(0.62,0.98) 1 0.75
200°C Tube 3 Tubes 3 0.81(0.54,0.96) 1 0.62
75°C Tube 1 Tubes 4 1(0.79,1) 1 1
150°C Tube 2 Tubes 4 0.81(0.54,0.96) 0.75 0.88
225°C Tube 3 Tubes 4 0.94(0.7,1) 1 0.88
300°C Tube 4 Tubes 4 0.88(0.62,0.98) 0.75 1

Table 5.5: The accuracy, sensitivity and specificity for the CART trees grown on the
band of highest wavelengths.

Accuracy(95% CI) Sensitivity Specificity
200°C Tube 1 0.56(0.3,0.8) 0.62 0.5
75°C Tube 1 Tubes 3 0.88(0.62,0.98) 0.75 1
150°C Tube 2 Tubes 3 0.5(0.25,0.75) 0.62 0.38
200°C Tube 3 Tubes 3 0.5(0.25,0.75) 0.5 0.5
75°C Tube 1 Tubes 4 0.56(0.3,0.8) 0.5 0.62
150°C Tube 2 Tubes 4 0.38(0.15,0.65) 0.5 0.25
225°C Tube 3 Tubes 4 0.56(0.3,0.8) 0.38 0.75
300°C Tube 4 Tubes 4 0.62(0.35,0.85) 0.5 0.75

Table 5.6: The accuracy, sensitivity and specificity for the random forests grown only
on the band of highest wavelengths.

random forests are the same including the 75°C from the three tube set random forest

which has performance similar to the CART trees.

Finally the seven highest wavelengths and the seven lowest wavelengths were used

as a reduced dataset for the random forest and CART classifiers. The wavelengths

included are 9.2295-9.3294µm and 11.1735-11.3099µm. As with the other reduced

datasets Table 5.7 summarizes the performance of the CART trees on these wave-

lengths and Table 5.8 for the random forests with similar results to the previous two

reduced data sets.

In Beleites & Salzer[3] they found that applying aggregation to classifiers on very

small sample sizes of chemometric data improved classifier stability. That is, the

variance of model is reduced and predictive quality improved, poor models perform
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Accuracy(95% CI) Sensitivity Specificity
200°C Tube 1 0.81(0.54,0.96) 1 0.62
75°C Tube 1 Tubes 3 0.94(0.7,1) 1 0.88
150°C Tube 2 Tubes 3 0.88(0.62,0.98) 0.75 1
200°C Tube 3 Tubes 3 0.81(0.54,0.96) 1 0.62
75°C Tube 1 Tubes 4 1(0.79,1) 1 1
150°C Tube 2 Tubes 4 0.94(0.7,1) 1 0.88
225°C Tube 3 Tubes 4 0.94(0.7,1) 1 0.88
300°C Tube 4 Tubes 4 0.81(0.54,0.96) 0.62 1

Table 5.7: The accuracy, sensitivity and specificity for the CART trees grown on the
seven highest and seven lowest wavelengths.

Accuracy(95% CI) Sensitivity Specificity
200°C Tube 1 0.5(0.25,0.75) 0.5 0.5
75°C Tube 1 Tubes 3 0.94(0.7,1) 0.88 1
150°C Tube 2 Tubes 3 0.62(0.35,0.85) 0.62 0.62
200°C Tube 3 Tubes 3 0.5(0.25,0.75) 0.5 0.5
75°C Tube 1 Tubes 4 0.44(0.2,0.7) 0.38 0.5
150°C Tube 2 Tubes 4 0.19(0.04,0.46) 0.25 0.12
225°C Tube 3 Tubes 4 0.5(0.25,0.75) 0.5 0.5
300°C Tube 4 Tubes 4 0.5(0.25,0.75) 0.5 0.5

Table 5.8: The accuracy, sensitivity and specificity for the random forests grown only
on the band of the seven highest and seven lowest wavelengths.
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worse and good models better[3]. As random forests are a form of aggregated CART

trees, this could account for the difference in performance. The CART trees may be

picking up noise in the datasets which is then filtered out by the bagging performed

by the random forests. And the 75°C Tube 3 random forest may actually perform

well.

5.3 FLDA on Advanced Data

FLDA was applied twice to the advanced data, once for the desorption over three

tubes with desorption temperatures 75°C, then 150°C then finally 200°desorption.

Secondly, the other four tube desorption used goes through 75°C, 150°C, 225°C then

finally 300°C.

When FLDA was applied to the advanced data 10 fold cross validation was used

once again to select the best value of q where the dimension of q with the same

dimensions tried with the prototype data, 5, 10, 25, 50, 100, 150, 200 and 300 for the

four tube set and from 5 to 200 for the three tube set. This is because as with the

FLDA performed on the prototype data, the data from desorptions performed on the

three tube set were concatenated together to form a grid. Since there are only three

tubes concatenated here the grid has 77× 3 = 231 grid points. As q is limited by the

number of grid points, a smaller q had to be used. Similarly the same method was

applied for the four tube set of desorbs.

Then, as with the prototype data, the rank constraint p chosen was the one that

minimized the error rate over cross validation. Due to the smaller sample size the

values of p that could be used were limited. The values of p tried were 1,5,10 and 13

which was the largest that could be used successfully.

The optimal dimensions of q were found to be 300 for the four tube set and 200

for the three tube set. The values of the rank constraint p chosen were 10 for the four

tube set and 5 for the three tube set.

Using the selected parameters the FLDA was run using 10 fold cross validation.

Plots of the α̂s for the two times FLDA was run using the set of parameters selected

are in Figures 5.6 and 5.7. The FLDA on the four tube set of desorptions has an

immediately obvious outlier of a healthy subject with an α̂ of over 297. The accuracy

of the FLDA on the four tube desorption set is only 50%, the three tube desorption
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Accuracy(95% CI) Sensitivity Specificity No Information Rate
FLDA on 4 tube set 0.5(0.25,0.75) 0.38 0.62 0.5
FLDA on 3 tube set 0.75(0.48,0.93) 0.62 0.88 0.5

Table 5.9: The accuracy, sensitivity and specificity for the two FLDA trials conducted
along with the no information rate. Performance on the three tube set of conditions
is similar to that of the FLDA on the prototype data.

set does a little better getting 75% of the subjects correctly classified. However the

sensitivity of even three tube set FLDA is not that great at 62%.

The very small sample size here limited the values of p that could be chosen. The

FLDA on the prototype data saw its performance increase greatly with the higher

values of p, while the FLDA on the advanced data did not chose the highest available

option of p, the performances of the p’s available were all very similar.
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Figure 5.6: The α̂ estimates for the FLDA performed on the four tube desorption.
One thing that stands out is the subject whose value of α̂ is several times larger than
that of all the others. The FLDA here correctly classifies only 50% of the subejcts.
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Figure 5.7: The α̂ estimates for the FLDA conducted on the three tube set of des-
orptions. Performance is better than the FLDA on the four tube set, the separation
between the two groups is better and it didn’t run into the same outlier issue with
one subject having an extreme value of α̂.
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5.4 FPCA and Related Techniques on Advanced Data

As with the prototype data, FPCA analysis was conducted on advanced data and

FPCA clustering was used in attempt to see if an unsupervised machine learning

method is capable of finding good separation between the two classes in addition to

being used to impute any missing data which is required to use random forests and

DDG plots on the advanced data.

All of the sets of conditions have over 95% of their variance explained by their

first three FPCs. As with the FPCA performed on the prototype data, the FPCs

have no obvious interpretation.

As with the prototype data, the performance of the FPCA clustering is very poor

and the cluster is essentially guessing. Table 5.10 summarizes the performance of

FPCA clustering. It struggles to achieve accuracy rates better than 50% and all

the 95% confidence intervals for the accuracy rate all contain the no information

rate. This suggests that the FPCA clustering is unable to find any sort of difference

between the two classes.
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Figure 5.8: Diagnostic plots for the FPCA performed on the 300°C desorption of the
advanced data. The top left plot show spacing and density of the grid used, this data
is considered dense with missing data. The top right plot is the path of the mean
curve. The lower left plot shows the fraction of variance explained by each FPC,
the first principal component in this case explains 80% of the variance. 95% of the
variance is explained by the first three FPC. The final plot, the bottom right shows
the path of the first three eigenfuction curves.
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Accuracy(95% CI) Sensitivity Specificity
200°C Tube 1 0.31(0.11,0.59) 0.62 0
75°C Tube 1 Tubes 3 0.44(0.2,0.7) 0.12 0.75
150°C Tube 2 Tubes 3 0.5(0.25,0.75) 0.75 0.25
200°C Tube 3 Tubes 3 0.38(0.15,0.65) 0.62 0.12
75°C Tube 1 Tubes 4 0.5(0.25,0.75) 0.88 0.12
150°C Tube 2 Tubes 4 0.44(0.2,0.7) 0.88 0
225°C Tube 3 Tubes 4 0.44(0.2,0.7) 0.88 0
300°C Tube 4 Tubes 4 0.69(0.41,0.89) 0.38 1

Table 5.10: The accuracy, sensitivity and specificity for the 2 group clustering via.
FPCA on the advanced data. Performance of FPCA clustering is equally poor as
with the prototype data.

5.5 DDG Plots on Advanced Data

The DDG plots were constructed in exactly the same fashion as was done with the

prototype data. The data were imputed using FPCA and FM depths were used for

all plots. Originally the same four classifiers were planned to be used. However, the

k nearest neighbor DDG classifier was unable to run on the smaller advanced dataset.

Instead the DD3 classifier was used. DD3 just tries to fit the best possible third

degree polynomial.

Tables 5.11 through 5.14 have the accuracy, sensitivity and specificity for the four

different DDG plots built for each set of conditions on the advanced data. As with

the prototype data, the more freedom the classifiers have in drawing the classification

rules, the better they perform, with the non-parametric kernel method performing

the best once again. Of course these classifiers may just be overfitting the data.
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Accuracy(95% CI) Sensitivity Specificity
200°C Tube 1 0.69(0.41,0.89) 0.75 0.62
75°C Tube 1 Tubes 3 0.56(0.3,0.8) 0.5 0.62
150°C Tube 2 Tubes 3 0.62(0.35,0.85) 0.62 0.62
200°C Tube 3 Tubes 3 0.81(0.54,0.96) 0.75 0.88
75°C Tube 1 Tubes 4 0.62(0.35,0.85) 0.62 0.62
150°C Tube 2 Tubes 4 0.69(0.41,0.89) 0.75 0.62
225°C Tube 3 Tubes 4 0.69(0.41,0.89) 0.75 0.62
300°C Tube 4 Tubes 4 0.81(0.54,0.96) 0.75 0.88

Table 5.11: The accuracy, sensitivity and specificity for the DDG plot using the LDA
classifier.

Accuracy(95% CI) Sensitivity Specificity
200°C Tube 1 0.81(0.54,0.96) 0.88 0.75
75°C Tube 1 Tubes 3 0.69(0.41,0.89) 0.62 0.75
150°C Tube 2 Tubes 3 0.94(0.7,1) 1 0.88
200°C Tube 3 Tubes 3 0.88(0.62,0.98) 0.75 1
75°C Tube 1 Tubes 4 0.69(0.41,0.89) 0.75 0.62
150°C Tube 2 Tubes 4 0.75(0.48,0.93) 0.88 0.62
225°C Tube 3 Tubes 4 0.88(0.62,0.98) 1 0.75
300°C Tube 4 Tubes 4 0.88(0.62,0.98) 0.88 0.88

Table 5.12: The accuracy, sensitivity and specificity for the DDG plot on the advanced
data with the QDA classifier.

Accuracy(95% CI) Sensitivity Specificity
200°C Tube 1 0.81(0.54,0.96) 1 0.62
75°C Tube 1 Tubes 3 0.81(0.54,0.96) 1 0.62
150°C Tube 2 Tubes 3 0.81(0.54,0.96) 1 0.62
200°C Tube 3 Tubes 3 0.94(0.7,1) 0.88 1
75°C Tube 1 Tubes 4 0.81(0.54,0.96) 1 0.62
150°C Tube 2 Tubes 4 0.81(0.54,0.96) 0.62 1
225°C Tube 3 Tubes 4 0.75(0.48,0.93) 1 0.5
300°C Tube 4 Tubes 4 0.94(0.7,1) 1 0.88

Table 5.13: The accuracy, sensitivity and specificity for the DDG plot on the advanced
data with the DD3 classifier.
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Figure 5.9: The DDG plots for the 300°C condition on the new set of data. This is
Representative of the application of DDG plots on the advanced data.
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Accuracy(95% CI) Sensitivity Specificity
200°C Tube 1 0.94(0.7,1) 1 0.88
75°C Tube 1 Tubes 3 0.94(0.7,1) 0.88 1
150°C Tube 2 Tubes 3 0.88(0.62,0.98) 1 0.75
200°C Tube 3 Tubes 3 0.94(0.7,1) 0.88 1
75°C Tube 1 Tubes 4 0.94(0.7,1) 0.88 1
150°C Tube 2 Tubes 4 1(0.79,1) 1 1
225°C Tube 3 Tubes 4 0.94(0.7,1) 1 0.88
300°C Tube 4 Tubes 4 1(0.79,1) 1 1

Table 5.14: The accuracy, sensitivity and specificity for the DDG plot on the advanced
data with the NP classifier.



Chapter 6

Conclusion

The high rate and unique pattern of missing data visible in the prototype data war-

ranted the further investigation conducted in Section 4.1. While it had appeared at

first as though the missing data was the result of differences between the unhealthy

and healthy subjects, it was actually revealed to be the result of issues with Pico-

mole’s breath analysis system during March and April of 2012. Using the τ0 data and

a couple of two sample tests designed for functional data, the FAD test and functional

Schilling procedure revealed that the distributions of the data during that period and

the data outside that period are not the same. With this caveat in place, several

classification methods were examined on the prototype data in Chapter 4.

The first of the classifiers applied to the prototype were classification trees using

the CART algorithm. Several of the trees were capable of classifying the subjects

better than random guessing as shown in Table 4.3. The random forests grown

on the prototype data are poorly performing along with FPCA clustering. Neither

method was able to do a better job than random guessing. FLDA also achieved good

results when classifying only two of the three groups. DDG plots with four different

classifiers, LDA, QDA, kNN and a non-parametric kernel method were also applied.

These results were good. The results from the prototype data are promising at times

while also being haunted by the specter of large amounts of missing data, and the

fact the majority of lung cancer subjects were processed during the period with which

most of the missing data occurred.

Data from Picomole’s ongoing data collection efforts was looked at with similar

methods to what was done on the prototype data in Chapter 5. Unlike the prototype

data the advanced data was age and sex matched and no samples from COPD subjects

were collected. More crucially, breath samples from lung cancer subjects were from

post-treatment subjects rather than pre-treatment as had been the case with the

prototype data. This change, along with changes in experimental design made using

79
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the advanced dataset as a testing set for classifiers trained on the prototype data

impossible and led to all methods having to be retrained on the advanced data. The

methods that performed well on the prototype data also saw good results on the real

data. Those methods were classification trees, FLDA and DDG plots. Several of the

CART trees such as the two 150°C desorbs seen in Table 5.1, FPCA clustering and

random forests still did poorly on the advanced data.

The two samples here were both quite small and are not perfect datasets yet

both suggest that it is possible to separate lung cancer subjects from those that are

healthy using only breath sample data. The limitations of the small sample sizes

make it difficult to tell how accurate the classifiers would be able to perform in real

world applications. Hopefully with the complete version of the advanced data being

collected it will be possible to get a better picture of how things might perform in

practice.

6.1 Future Directions

The receipt of a NSERC Engage Plus grant has allowed for work on this problem to

continue into the future. More data from the currently ongoing collection will allow

for further validation of the methods outlined here while also hopefully opening new

avenues that could not have been explored before.

Since the datasets provided here were both small and suffer from data quality

issues, one obvious direction would be to retry the same methods especially the better

performers, and see how they fare on a larger better quality dataset such as the one

that Picomole will have when their most recent data collection is complete. Having

the larger sample would allow for using a significantly larger training and testing

dataset which could lead to more accurate classification rules. The larger data set

might also give a better indication of how the models might perform if allowed to run

on data from patients in real world applications.

Another possible direction would be to take the concept of ensemble classifiers

further than the random forests that were grown. For instance classification trees

were all grown on separate sets of conditions. All of those trees could be combined

together into one classifier using a committee method such as stacked generalization.

Other learning methods could also be combined in the same fashion such as combining
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FLDA or DDG.

In addition, methods that could not be considered with the data at hand could be

attempted with a larger dataset of higher quality. For example a common technique

in FDA is to examine the first and second derivative estimates of the data curves[23],

with the high level of missingness found in the prototype data such estimates are

numerically unstable and could not be used. Other machine learning tools that re-

quire a greater number of samples to be practical such as neural networks could be

investigated as well.

With the collection of post-treatment lung cancer subjects in addition to the

pre-treatment subjects on the data collection that is currently ongoing, when more

pre-treatment subjects are available it should be possible to determine whether or not

there are observable differences between the two groups of lung cancer subjects. If it

turns out that there is no difference between the two different groups then it should

be possible to apply analysis from one group to another.

While there appears to a detectable difference between lung cancer subjects and

healthy subjects with breath samples based on some of the classifiers applied, more

work needs to be done in creating a classification system that could be used as a good

preliminary test.
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