
Digital Communications Combined Frame
Detector and Carrier Frequency Offset

Estimator

by

Stephen Chandler

Submitted in partial fulfillment of the requirements
for the degree of Master of Science

at

Dalhousie University
Halifax, Nova Scotia
September 2017

c⃝Copyright by Stephen Chandler, 2017

Table of Contents

List of Tables . iv

List of Figures . v

Abstract . viii

List of Abbreviations Used . ix

Acknowledgments . x

Chapter 1 Introduction . 1

1.1 Context . 1

1.1.1 Approaching Channel Capacity 2

1.1.2 Channel Effects . 3

1.1.3 Available Information . 4

1.2 Problem and Significance . 4

1.3 Approach . 5

1.4 Scope . 6

Chapter 2 System Overview . 7

2.1 OFDM Design . 7

2.1.1 Samples Per Frame . 7

2.1.2 Pilot Information . 7

2.1.3 Cyclic Prefix . 8

2.1.4 Other Required Features . 9

2.2 Testbed Hardware . 10

2.2.1 Digital and Analogue . 10

2.2.2 Number Formats . 12

2.2.3 Calibration . 13

2.2.4 Implementing the Reference Design 15

2.3 Software Tools . 16

2.4 Golden Model . 17

Chapter 3 Frame Detector . 18

3.1 Correlator . 19

3.2 Peak Detector . 20
ii

3.2.1 Peak Timing Calculation Strategies 20

3.2.2 Alternating Peak Finder . 20

3.2.3 Receiver Behaviour in Different Situations 23

3.3 Frame Detect Controller . 31

3.3.1 Frame Detect Controller Core 33

3.3.2 Frame Detect Controller FSM 36

3.3.3 Check Pulse Received Within Variance 37

3.3.4 Frame Detect Variance FSM 38

3.3.5 Frame Detect Countdown Timer 41

3.4 Markov Analysis of Peak Detector and Frame Detect Controller . . . 42

Chapter 4 Carrier Frequency Offset Estimator 52

4.0.1 Classic Phase Estimation . 52

4.0.2 Differential Detection . 53

4.0.3 Limits of Phase Offset Estimation 57

4.0.4 Example Phase Offset Estimates 58

4.1 Arctangent . 63

4.2 Division . 67

4.3 Internal Arctangent . 71

4.4 Smoothing Filter . 72

Chapter 5 Conclusion . 75

References . 76

iii

List of Tables

Table 1 The project cores are broken down by hierarchy and software
environment used to work with it. 19

Table 2 Example LUT with n = 2. 70

iv

List of Figures

Figure 1 Representation of how the OFDM pilot is arranged within a
frame of OFDM data in the time-domain. 7

Figure 2 Overview of the radio testbed connections and structure left side. 10

Figure 3 Overview of the radio testbed connections and structure right
side. 11

Figure 4 A visual mapping of the OFDM pilot tones to their indexes. . 13

Figure 5 Constellation errors caused by different circuit effects [17]. . . 14

Figure 6 The System Generator logo 16

Figure 7 The Vivado logo . 17

Figure 8 The Frame Detector design in System Generator. 18

Figure 9 The Carrier Frequency Offset Estimator design in System Gen-
erator. 18

Figure 10 The maximum value within each frame timing is represented
by a pulse in time. 21

Figure 11 A peak detector which finds the peak balanced around the cen-
ter point of the simulated correlation. 22

Figure 12 The probability that a peak will be calculated at a particular
array index by the alternating peak finder for Gaussian white
noise. 24

Figure 13 The probability densities of delay between correlation peaks at
different SNRs. 26

Figure 14 The peak timing distribution caused by noise behaves the same
independent of when the most recent pulse has been received. 27

Figure 15 The probability densities of delay between correlation peaks at
different SNRs near the acceptance window. 28

Figure 16 The probability measured before, during, and after the accep-
tance window, along with some fits to the data. 28

Figure 17 One sequential peak finder component which forms part of an
alternating peak finder. 29

Figure 18 The logic which ensures only the detected peaks close to the
center of the first sequential peak finder are produced as outputs. 30

Figure 19 An overall picture of the Golden Model simulation with the
peak finder detecting correlation peaks. 31

Figure 20 The frame detect controller is implemented as a System Gen-
erator black box. 32

Figure 21 The results of the FIRST PULSE TIMING test. 35
v

Figure 22 THIRD MISS TIMING test for the −w side. 35

Figure 23 GOLDEN MODEL 5 DATA uses simulation data from Golden
Model 5. 36

Figure 24 An illustration of Frame Detect Controller FSM advancing from
the state of no detection to being locked-on. 37

Figure 25 First pulse being received by Frame Detect Variance FSM. . . 39

Figure 26 Second pulse being received and counting as within the accept-
able time window by Frame Detect Variance FSM. 39

Figure 27 Second pulse being missed within the acceptable time window
by Frame Detect Variance FSM. 40

Figure 28 Test of Frame Detect Countdown Timer. 41

Figure 29 A basic graphical description of a Markov chain. 42

Figure 30 As the number of fall-out states increases, lock-on occurs more
at lower SNRs. 48

Figure 31 The minimum values are shown approximately at -15 dB SNR,
which represent the portion of state transitions spent locked-on
to a noise signal when there is no signal being received. 49

Figure 32 Derivatives of the transition functions. 50

Figure 33 System Generator implementation of Carrier Frequency Offset
Estimator top level. 52

Figure 34 A local picture of the peak finder locating the maximum value. 59

Figure 35 The sum of magnitudes of the real and imaginary components of
the correlation is shown in red, and the estimated phase offset
using the Full Arctangent function at the time given by the
peak detector is shown in blue. 60

Figure 36 The decrease in the variance of phase offsets detected at differ-
ent SNRs is shown. 60

Figure 37 OFDM example affected by AWGN where we plot the received
correlation’s peaks, real value, imaginary value, and phase offset. 61

Figure 38 Real and imaginary autocorrelation values. 61

Figure 39 Real and imaginary autocorrelation peaks. 62

Figure 40 A high level description of the Phase Offset Estimator. 63

Figure 41 Output type selection logic and pipelining. 65

Figure 42 Division type selection, division circuit, arctangent circuit with
constant and negation selection, and pipelining. 66

Figure 43 The appropriate output is selected using a multiplexer. 66
vi

Figure 44 This diagram contains the first part of division where the ab-
solute value is taken, the bits of the representation are shifted
so the denominator lies on the range [0.5,1), and the index of
a LUT step is acquired and used to obtain the stored value to
send d close to 1. 67

Figure 45 This diagram shows the multiplication of D’ and N’ with the
LUT factor, followed by the 2-D” calculation, and then multi-
plication of N” with the GS factor. 70

Figure 46 The arctangent index is obtained from the incoming number
representation, and then applied to a LUT to get the result. . 72

Figure 47 Overview of the AR filter in System Generator. 73

Figure 48 The System Generator block diagram of the AR filter datapath. 74

vii

Abstract

This thesis describes a flexible digital logic design which allows a communications
receiver to synchronize with a data frame and estimate its frequency offset using only
its cyclic prefix and tail data. The design is implemented as digital logic running on
a field-programmable gate array which controls a software defined radio as a testbed.
Synchronization reliability is improved using a finite state machine which locks-on
to a received signal and falls-out-of-lock in noise. The state machine reliability is
calculated using Markov chain analysis. The frequency offset is estimated using a
custom complex argument function which does not use a small angle approximation.
When run on the testbed, the design successfully provides synchronization and a
frequency offset estimate using only the received data’s cyclic prefix and tail data.

viii

List of Abbreviations Used

ADI Analog Devices Inc. LDPC low-density parity check

AR autoregressive LO linear oscillator

ARMA autoregressive-moving-average LUT lookup table

AWGN additive Gaussian white noise MA moving average

CDF cumulative distribution function MIMO multiple-input multiple-output

CP cyclic prefix ML maximum likelihood

CPU central processing unit MSE mean squared error

CRC cyclic redundancy check OFDM orthogonal frequency division

multiplexing

DAC digital-to-analogue converter PAPR peak-to-average power ratio

DFT discrete Fourier transform PLL phase-locked loop

FFT fast Fourier transform PSK phase-shift keying

FPGA field programmable gate array QAM quadrature amplitude modulation

FSM finite-state machine SISO single-input single-output

FSMD finite-state machine with

datapath

SDK Xilinx Software Development Kit

GPU graphical processing unit SDR software defined radio

GS Goldschmidt SNR signal-to-noise ratio

HDL hardware description language SSB single side-band

IIC inter-integrated circuit SysGen System Generator

ILA Integrated Logic Analyzer UART universal asynchronous

receiver/transmitter

IP intellectual property UMDCC Ultra Maritime Digital

Communications Centre

ISI inter-symbol interference XSDK Xilinx Software Development Kit

ix

Acknowledgments

I would like to thank my internal supervisors Christian Schlegel and Kamal Sankary,

external supervisor Marcel Jar, as well as Robert Hang who has provided FPGA

hardware design experience and guidance. Thanks to the co-op students Guanxiong

Gong and Muhamud/Abdi Naka for their assistance in helping set up the test envi-

ronment, and to other lab members, friends, and family for their support. I would

also like to thank NSRC who have provided funding through a research grant.

x

1

Chapter 1 Introduction

Digital communications has become one of the most useful technologies in the world.

It allows cellphones and computers to download or upload text, data, audio, and

video within milliseconds using wired connections and wirelessly from Wi-Fi routers,

cell towers, satellites, and more. However, digital communications are less developed

underwater. Most radio waves are attenuated too quickly to be useful at a range. The

underwater acoustic channel uses sound instead of light to transmit information, and

is promising because sound can travel much further than radio for the same amount

of energy underwater. For example, a 1 kW projector could transmit a useful signal

100s of kilometers [1].

The problem is that the underwater acoustic channel has more ways to corrupt

a message than radio. These effects in underwater acoustic are made worse than

similar effects using light because the speed of sound through water is much slower

than the speed of light through air. The underwater environment also contains com-

plicating factors such as surface waves, salinity gradients, temperature gradients, and

more. Although each effect can be studied and accounted for on its own, the vari-

ety of effects means the underwater acoustic channel is perhaps the most challenging

communications channel which exists. Despite this, it remains the most promising

way to communicate through the ocean. Developing digital communications designs,

such as for a cellular network, is already an incredible feat which uses vast amounts

of knowledge, time, and resources. Designing for the underwater acoustic channel is

even harder.

To create a working system for the underwater acoustic channel requires a system

which can at least work over a radio channel. The system needs a design framework

which is flexible enough to handle most different underwater situations, and an imple-

mentation which is flexible enough to test various new components over radio before

being used underwater.

1.1 Context

My research has been performed within the Underwater Maritime Digital Commu-

nications Centre (UMDCC), whose goal is to perform research which supports un-

derwater acoustic digital communications. The approach has been to develop a big

picture view of the underwater acoustic channel, and to approach its capacity using

successful theory and practice from digital communications.

2

1.1.1 Approaching Channel Capacity

The framework employed is intended to create designs with the flexibility to transmit

information from a source to a receiver near channel capacity. The channel capacity

describes the limits of a channel, and is the maximum rate of information which can be

reliably transmitted across a communications channel measured in units of spectral

efficiency bits\s
Hz

versus signal power-to-noise power ratio Eb

N0
. At channel capacity

the spectral efficiency is increased at the cost of more energy per bit transmitted.

A practical expense is the complexity of developing a system which can approach

capacity for a particular situation.

The channel capacity for a noiseless single-input single-output (SISO) channel

was originally described by Shannon in [2]. The SISO limits have been approached

in recent years using coding techniques such as well-designed low-density parity

check (LDPC) codes and turbo codes. Multiple-input multiple-output (MIMO) chan-

nels have also been developed which take advantage of multiple antennas to create

spatially-separated channels which reach a higher overall capacity than the SISO case.

Recent developments attempt to use a large number of antennas for massive MIMO

to approach the limits of the MIMO channel capacity. An example of the channel

capacity achievable by underwater communications is given in [1].

Flexibility is important to the field of digital communications. Increasing the

possible designs which could be created increases the chance the designers can find

an appropriate design for a particular situation. Also, if generic design parameters

can be found across different communication situations and mapped into effective

design choices, then fewer resources are needed to approach capacity.

One of the ideas underlying this flexibility is to separate the hardware which must

be specialized for a particular communications system, such a radio transmitter or

an acoustic hydrophone, from the computations which are generic to any particular

communications system such as frame detection or channel estimation. The analogue

hardware which interfaces with the channel is almost necessarily fixed, while the

generic calculations can be performed by digital hardware. SDRs can alleviate some

of the analogue restrictions by, for example, providing an adjustable carrier frequency.

Practical constraints still exist for SDR such as interface types, required clock rates,

required clock precision, cost, and more.

3

1.1.2 Channel Effects

There are several effects on a transmitted signal which contribute to reduce how

much information it can transmit. Some of these channel effects can be predicted and

partially or completely compensated for. Some common channel effects are outlined

in this section, and more effects may exist depending on the channel medium.

A carrier frequency offset occurs when a signal arrives at a receiver with a

different carrier frequency from the receiver’s demodulation frequency. This can oc-

cur when there is an offset between the transmitter’s modulation frequency and the

receiver’s demodulation frequency, when there is Doppler in the system caused by the

motion between the transmitter and receiver, or by motion in the channel medium.

Fading occurs when a signal produced by a transmitter is projected into the

environment of a channel, it may be reflected, scattered, or diffracted by several

surfaces. The multiple paths which the energy takes may possess a different delay,

amplitude, and phase offset, and the received signal will be affected in a way known

as multipath fading [3]. Some paths may also be grouped into bundles with similar

amplitude or phase effects which can be analyzed separately. Shadowing is the effect

of an obstacle blocking the signal or changing its wave propagation so that its energy

is directed away from the receiver [4].

Rayleigh and Rician fading are the main theoretical models which describe the

phase and amplitude distribution of a received signal. Rayleigh fading occurs where

there are many paths and reflections which act to create an independent and normally

distributed real and imaginary signal. Where there is a single approximately clear

path and some side reflections with smaller energy, the signal may fade according to a

Rician distribution. In the Rician case, the signal contains a real and imaginary part

which each vary as independent and normal random variables, and also a nonzero

average real and imaginary value [5].

Interference occurs where there is signal energy from the environment which is

not produced by the intended transmitter but which is received at the receiver. There

are national and international guidelines intended to reduce radio interference over

certain radio frequencies in order to protect important applications such as GPS, and

to ensure only those who’ve purchased access to a particular set of frequencies can

use them effectively. The underwater acoustic channel may receive interference from

non-communication sources such as ocean life or ships.

Attenuation is loss of received signal power. Two types of attenuation include

absorption and free-space path loss. Absorption occurs where objects in a channel

environment convert a transmitted signal into non-receivable forms of energy, such as

4

radio energy into heat. There are certain radio frequencies which are strongly affected

by absorption in the atmosphere, such as at the attenuation of radio frequencies by

oxygen at around 60 GHz. Free-space path loss is attenuation over distance from

the transmitter due to the signal energy spreading across space as it propagates [6].

This can occur for light in free space, and other environments such as an underwater

acoustic channel where the energy can travel away from the receiver and become

attenuated below the ambient noise.

Signal clipping is the effect that occurs when a signal to be transmitted is larger

than the amplifier can produce, or lies in the non-linear operating range of the am-

plifier [7]. Signal clipping can occur for information dense signals with a large peak-

to-average-power-ratio (PAPR), such as an OFDM signal. Some modulation schemes

with lower-entropy signals such as phase-shift keying (PSK) have low PAPR. Signal

clipping is an issue where an amplifier has a non-linear high power operation such

as those used in satellite communications. One method to reduce signal clipping by

the transmitter is to operate the transmit amplifier below its maximum power range,

which requires using a more expensive transmitter for a given power. Another method

is to choose a modulation scheme with a low PAPR at the sacrifice of some channel

capacity. Finally, a transmitter-side feedback loop can be used to adjust the produced

signal in a way that allows the amplifier to remain linear across its entire operating

range.

1.1.3 Available Information

In order to estimate the channel frequency response or other effects, the receiver

needs to know something about the transmitted information. This knowledge can be

an assumption of a linear channel, prior distributions or other statistical information

about the transmitted data, or training data/pilot information known at the receiver.

Non-blind methods use training data, and blind methods use none [8].

It is desirable to transmit as little pilot information as possible in order to increase

the spectral efficiency of the transmitted signal. The cost of reduced pilot information

may be loss of reliability or increased computational effort by the receiver.

1.2 Problem and Significance

The very first thing a receiver needs to do is to find when a frame of data has been

received. It cannot rely on any other circuit because it is the starting point for every

other algorithm which can be used on the data. Whatever method chosen must be

5

robust against noise, and it is desirable that it not take up channel capacity which

could otherwise be used for transmitting data.

Another problem which can affect a testbed is the difference in clock frequency

between the transmitter and the receiver. This appears as a frequency offset in the

carrier frequency at the receiver, and is a similar effect as the coarse Doppler offset

caused by motion between the transmitter and receiver or by motion in the channel

medium. This frequency offset causes the received data, visualized as a constellation,

to rotate over time.

These problems are some of the first which must be tackled for a successful testbed.

They also can both be tackled by taking advantage of the same information.

1.3 Approach

This thesis is part of a project to design a flexible framework for creating digital

communications systems operating in different scenarios. The focus is on identifying

when a frame of data has been received and then estimating its average Doppler

offset in a combined way using only the received data. The framework is based on an

orthogonal-frequency division multiplexing (OFDM) design, and is implemented using

a field-programmable gate array (FPGA)-controlled software-defined radio (SDR)

testbed.

OFDM is a modulation scheme which provides control over the time and frequency

behaviour of a transmitted signal in a computationally efficient way. An FPGA is a

circuit which can implement concurrent digital logic. An FPGA can be compared to

a central processing unit (CPU) which performs calculations in series, and a graphics

processing unit (GPU) which performs calculations in parallel. A SDR is a radio

which can be adjusted to different applications based on the digital logic used to

control it.

Designs or components can be developed within the Ultra Maritime Digital Com-

munications Centre (UMDCC) lab and verified using the radio testbed. Having a

platform on which a design can be tested in real time is invaluable because it pro-

vides:

Confidence that a system or component has been implemented correctly

Diagnostic information to help identify design issues where they are easier to

fix

Evidence of the system working in ”real world” scenarios

6

The frame synchronization and carrier frequency offset estimation are both per-

formed using the cyclic prefix, which is already included as part of the OFDM system.

1.4 Scope

The purpose of this thesis is to communicate how my work contributes towards a flex-

ible design of digital communication systems. The scope of my contribution includes

the development and implementation of:

An interface between the FMCOMMS1 reference design and a custom design

A frame detection algorithm

A phase offset estimation algorithm

The system overview describes the OFDM design, the testbed hardware, the soft-

ware tools used, and the simulation environment. The frame detection algorithm

consists of a correlation calculation, determining when this correlation is at its peak

value, and using this timing information in Frame Detect Controller to obtain a better

estimate. A Markov chain is used to analyze the performance of the Frame Detector

system. Finally, the timing of the correlation peak is used along with the correlation

samples to estimate the carrier frequency offset. Different aspects of this calculation

are considered including a way to retain a simple but accurate number representa-

tion throughout the calculation and a novel way to perform division. The result is

smoothed using a simple autoregressive filter and produced as an output.

7

Chapter 2 System Overview

2.1 OFDM Design

The design described in this document is tailored to a specific OFDM scheme devel-

oped by the UMDCC. In particular, there are three main design components selected

for this system which help make it flexible. The detailed structure of the OFDM

signal is described in [9], and shown in Figure 1.

Figure 1: Representation of how the OFDM pilot is arranged within a frame of
OFDM data in the time-domain.

2.1.1 Samples Per Frame

The first design choice is the number of samples N which compose the OFDM frame

to be transmitted. In the example design, N = 1024 in order to account for a large

variance in a channel frequency amplitude response. A larger N represents more

frequency bands across the same bandwidth, and so each band will be narrower. The

narrower the bands, the closer each one appears to be frequency flat, and the better

approximation each band is to the Nyquist criterion. The main expense of using a

larger value of N is the computational complexity of using a larger discrete Fourier

transform (DFT) calculator, and the latency of the calculation requiring N samples.

The DFT is performed using a fast Fourier transform (FFT) algorithm.

2.1.2 Pilot Information

Another decision is the use of pilot data. Pilot data can be used to estimate the

channel frequency response [10] and to correct for fine delay or phase offsets within

8

the received signal. The pilot data or recovered channel information can be averaged

over time to provide a better estimation of the channel.

The pilot data is selected to be frequency-flat when recovered at the receiver by a

pilot-data-sized DFT. These frequency-flat sequences will produce tones at discrete

frequencies across the entire spectrum of the received OFDM frame when acted on

by the N -input DFT. At each frequency these tones will possess the amplitude which

corresponds to the channel frequency response at that frequency. The remaining

channel frequency response can be estimated by interpolating between the pilot tones.

This interpolation is performed using a DFT calculation described in [9].

A trade-off must be made between the amount of pilot data in the frame versus

the amount of transmitted information. In the example design, the pilot data is an

M = 64 sample sequence. An image of the pilot frequency amplitude response is

shown in Figure 4.

2.1.3 Cyclic Prefix

A common OFDM design choice also used in the generic design is to include a cyclic

prefix (CP) [11]. The cyclic prefix is a tool used to approximate the effect of a

circular convolution of the transmitted signal with the channel in the time domain.

It also helps correct for inter-symbol interference (ISI). The cyclic prefix samples are

copied from the tail data of the OFDM frame and placed at the beginning of the

frame as a prefix. As the channel convolves the data, the tail data repeats the cyclic

prefix and fills in elements of the convolution matrix so that the convolution matrix

approximates a circular convolution. This works as long as the cyclic prefix is longer

than the channel’s delay spread. By the circular convolution theorem,

C−→ x−→ = c−→~ x−→
= F−1{F{ c−→}F{ x−→}},

(1)

where c−→ is the vector used to create the circulant matrix C−→ acting on the transmitted

data x−→, and ~ represents circular convolution. The receiver performs a FFT on the

received time-domain OFDM frame which has been affected by the channel response

H−→, plus noise which is ignored here, to obtain

F{H−→ x−→} = F{ h−→}F{ x−→}. (2)

9

We can recover the sent information using the estimated channel frequency amplitude

response F{ ĥ−→} as in

F{ ĥ−→}
−1
F{ h−→}F{ x−→} = F{ x̂−→}. (3)

Channel estimation using this methodology is described in [12]. This vector-vector

multiplication is a low-cost operation versus a vector matrix multiplication.

This generic OFDM design provides a platform which has adjustable parameters

to ensure:

Timing estimation

A close approximation to Nyquist sampling

Channel frequency response estimation

Channel equalization

The cost of these features are small, and trade-offs can be made in the number of

frequency bins or the number of pilots to account for the variance of the frequency

response and the channel order.

2.1.4 Other Required Features

The required features for a minimum-working OFDM system which are currently

missing include frame synchronization and coarse carrier frequency offset estimation

and compensation. In most system designs a phase-locked loop (PLL) is synchro-

nized with the transmitted signal’s modulation frequency [13]. To provide flexibility

for underwater acoustic communication, we do not assume that this high-speed clock

is available and all frequency modulation effects are handled using the received sam-

ples digitally. We would like to perform the carrier frequency offset estimation using

only the received data sampled at the Nyquist sampling rate of the transmitted in-

formation.

The main idea is to take advantage of the CP for both synchronization and carrier

frequency offset estimation using the knowledge that the CP data is repeated in the

structure of the frame. While the generic OFDM design is the desired application,

the frame synchronization and coarse carrier frequency offset estimation described

in this thesis can be performed for any complex signal whose discrete samples are

replicated at the beginning and end of a frame.

Consider a frame of N +M samples where the cyclic prefix is composed of the M

tail data samples. Frame start detection is performed by correlating M samples with

10

the corresponding samples located at N discrete time steps in the past. When the

M repeated samples are multiplied by the complex conjugate of the original samples

and added, a correlation of the data in the two windows is performed as in Equation

29. The correlation peak at each different signal-to-noise ratio (SNR) is simulated

and shown in Figure 15.

This sliding correlator technique is a powerful and commonly used tool to detect

the start time of a data frame using a known pseudorandom signal as mentioned in

[14]. The main difference is that here the CP is used. Although the cyclic prefix is not

a pseudorandom sequence, it has high entropy because it is formed using the data and

pseudorandom pilot information being transmitted. Note that the maximum entropy

signal for a given average power is Gaussian distributed [15]. A high-entropy signal

will almost certainly correlate with only itself, and the correlation will be apparent

even at low SNR.

2.2 Testbed Hardware

Figure 2: Overview of the radio testbed connections and structure left side.

2.2.1 Digital and Analogue

The hardware used for the testbed is separated into the digital side and analogue

side. The FPGA development board implements the digital logic and:

11

Figure 3: Overview of the radio testbed connections and structure right side.

Performs the OFDM design

Interfaces between the OFDM design and the FMCOMMS1 reference design

Operates the reference design

Implements a MicroBlaze softcore processor

Provides a universal asynchronous receiver/transmitter (UART) connection be-

tween the host PC and the MicroBlaze processor

Provides Integrated Logic Analyzer (ILA) access to the FPGA logic to measure

the circuit as it operates in real time

The analogue side performs radio-specific functions such as:

Providing a stable clock between the FPGA and the FMCOMMS1

Digital to analogue conversion

Combining the real and imaginary signals into a single time-domain signal

Frequency modulation

Providing a transmit antenna/cable

Providing a receive antenna/cable

Frequency demodulation

Analogue to digital conversion

12

The digital hardware is a Xilinx VC707 FPGA used to control an AD-FMCOMMS1-

EBZ software-defined radio by Analog Devices Inc (ADI). An overview of the con-

nections between the systems is shown in Figure 2 and 3.

ADI is an electronics manufacturer which produces software-defined radio boards

and the reference design software required to operate them on FPGA platforms. ADI’s

SDRs can be controlled electronically to operate over a range of carrier frequencies

and bandwidths.

The ADI reference design consists of a set of files provided by ADI used to set

up an initial design. By default it produces a real and imaginary sinusoid waveform

under the control of software which runs on a MicroBlaze softcore processor on the

host FPGA. This reference design was used as a basis to interface with the lab’s

generic OFDM design.

2.2.2 Number Formats

One way to describe the number formats of a binary representation is <number

representation type>(<number of bits in the representation>, <number of fractional

bits>). For example, ”unsigned binary (2,1)” describes the number representation

consisting of (0.0)2 = (0.0)10, (0.1)2 = (0.5)10, (1.0)2 = (1.0)10, and (1.1)2 = (1.5)10.

The expected inputs for the FMCOMMS1’s digital-to-analogue converter (DAC)

interface are two 14-bit STD LOGIC VECTOR signals in VHDL, or standard signals

in Verilog. Each of these signals is in the fixed-point two’s complement (14,13) number

format. Using {}2 to represent binary numbers and {}10 to represent decimal numbers:

{
∑0

i=−13 bi2
i}10 = {b0.b−1b−2b−3b−4b−5b−6b−7b−8b−9b−10b−11b−12b−13}2

where bi are binary values and the subscript i ∈ Z, −13 ≤ i ≤ 0 corresponds to

the power of two multiplied by the bit value. A similar interface was created for

the FMCOMMS1’s ADC. Note that the in-phase signal corresponds to the real por-

tion of a complex-valued sample, and the quadrature-phase signal corresponds to the

imaginary portion.

It is desirable to be able to handle any input signal on the 14-bit analogue-to-

digital converter (ADC) range. One design choice could be to ensure the incoming

signal is always balanced using feedback so that it lies within a certain range of the

two’s complement (14,13) representation. Another method could be to use a floating

point number representation, but floating point numbers require a large amount of

13

design time and circuit complexity [16]. Assuming the use of fixed-point arithmetic

throughout most of the circuit, the design described in this thesis retains full precision

arithmetic for the correlation. The aspects of the circuit which do not use full preci-

sion are the circuits which no longer need the correlation values, such as the timing

pulses from the Frame Detect Controller, and the approximations made within the

arctangent calculation. The desire for this 14-bit input to retain full precision has

driven several design choices.

Several test signals are built into the transmit side calculations. These include a

sinusoidal test signal, a square test signal, a triangle test signal, and a test signal

using the OFDM pilots. The power spectrum of the transmitted OFDM pilots are

shown in Figure 4 along with the index of the individual pilots.

Figure 4: A visual mapping of the OFDM pilot tones to their indexes.

2.2.3 Calibration

There exist some parameters of the FMCOMMS1 which can be calibrated for im-

proved operation versus the shipped device behaviour. The main effects which can

be handled using calibration are linear oscillator (LO) leakage, quadrature phase

14

mismatch, and I/Q gain imbalance [17].

I/Q gain imbalance in QAM results in a scaling of the constellation as shown

in Figure 5(B)

Quadrature phase mismatch occurs where there is not exactly 90 degrees phase

difference between the in-phase and quadrature-phase signals and its effect on

the example QAM constellation is shown in Figure 5(C)

LO leakage results in a constellation which is offset from the origin as shown for

the example case of quadrature amplitude modulation (QAM) in Figure 5(D)

Each of these effects can be caused by multiple different factors within the FM-

COMMS1. Correcting for each also improves sideband or spurious frequency sup-

pression.

Figure 5: Constellation errors caused by different circuit effects [17].

Calibration can be performed using closed-loop feedback or open-loop control.

Analog Devices suggests that an open-loop control, also known as factory calibration,

15

can allow effective suppression of the issues presented. This is typically done by

producing a test single side-band (SSB) signal and adjusting the parameters of DC

offset, full-scale adjustment, and phase adjustment to maximize carrier suppression

and sideband suppression. Carrier suppression results when the carrier frequency/DC

offset error/LO leakage is as close to 0 as possible. Sideband suppression represents

when the image of the SSB signal around the modulation frequency is as close as

possible to 0.

2.2.4 Implementing the Reference Design

The process required to set up the reference design includes:

Downloading and installing the hardware files

Connecting them together appropriately

Performing Vivado synthesis

Inserting the correct integrated logic analyzer (ILA) cores

Performing Vivado implementation

Generating the bitstream file in Vivado

Generating the hardware files for Xilinx Software Development Kit (SDK) in

Vivado

Reading these files into SDK

Generating the board support package in SDK

Importing the software into SDK

Generating the software files for the built-in MicroBlaze softcore processor in

the hardware design

Running the FPGA hardware design while installing software on the MicroBlaze

processor

The reference design software is composed of C files which can be modified and

compiled. These files are installed on the MicroBlaze while it is emulated by the

FPGA. These software changes can be used to change different parameters on the

FMCOMMS1. The MicroBlaze can communicate to a microprocessor on the FM-

COMMS1 using an Inter-Integrated Circuit (IIC) connection through a pin in the

FMC connector.

16

Modifications were made to the Verilog code of the reference design in order to form

an interface with the OFDM design. The changes include making the signals being

sent to the DAC and being received from the ADC available outside the reference

design. These signals are connected to the ADC and DAC interfaces which account

for the number format and offer reliable connections for the transmitter chain and

receive chain.

The UART provides some control while the software is running on the MicroBlaze.

Logic signals on the FPGA can be measured during operation using ILA cores.

2.3 Software Tools

Several software tools are used in this project to work at different levels of hardware

design. Theory and simulation have been performed using MATLAB and also Xilinx

System Generator (SysGen). The OFDM design interfaces with the FPGA design

using Xilinx’s Vivado suite. Xilinx Software Design Kit (XSDK or SDK) is used to

interface with the softcore MicroBlaze processor. The project is constrained to specific

versions of each software which include Windows 7 Professional 64-bit, MATLAB

2013b, and Vivado 2014.2. System Generator and XSDK are installed as part of the

Vivado suite.

MATLAB is a common software package for performing mathematical simulation.

System Generator is a plugin designed by Xilinx which interfaces with MATLAB

so that FPGA hardware blocks can be placed in MATLAB’s Simulink environment.

It is operated similarly to Simulink where diagrams and dialogue boxes are used to

create computational representations of systems. Some examples of SysGen designs

are shown in Figures 17 and 20. It provides a simulation environment suited for

hardware logic testing using clocked logic, and Simulink calculations can be combined

with SysGen calculations to help with simulation. An appropriately created design

in SysGen can be imported to Vivado as a hardware intellectual property (IP) core.

Figure 6: The System Generator logo

Vivado is a software suite developed by Xilinx which is used to interface with

their FPGAs and development boards such as the VC707. It was created from their

previous software suite Project Navigator, and ties together several different software

tools used to create FPGA designs in a more consistent way than its predecessor.

17

Vivado can receive digital logic designs in various different forms such as VHDL or

Vivado hardware description language (HDL), IP cores, and more. It can take digital

logic through synthesis, implementation, and installing onto an FPGA. Vivado also

includes Xilinx Software Development Kit (XSDK or SDK) which can be used to

create operating systems and software to place into a processor implemented on an

FPGA.

Figure 7: The Vivado logo

2.4 Golden Model

The Golden Model simulation is a System Generator model developed by the UMDCC

to simulate and implement the OFDM calculation. The transmit chain:

Generates the data to be transmitted

Calculates and attaches a cyclic redundancy check (CRC)

Computes the inverse DFT to produce the time domain signal of the data

Prepends the time domain signal with the cyclic prefix

Adds the pilot information in the time domain

At this point the OFDM frame is complete. Golden Model simulates the effect of an

additive Gaussian white nose (AWGN) channel acting on the transmitted data before

sending it to the receive chain. The SNR can be adjusted for the simulation. The

receive chain

Performs frame detection and carrier frequency offset estimation

Performs timing correction using the pilot information

Performs a DFT to obtain the received OFDM frame in the frequency domain

Estimates the channel using the pilot information

Compensates for the action of the channel on the data and recovers the data

Compares the transmitted and received data

Golden Model 6 is the version used for tests performed throughout this thesis,

unless otherwise specified.

18

Chapter 3 Frame Detector

Frame detection and carrier phase offset estimation are calculated using the CP corre-

lation. Given the correlation’s real and imaginary components, its magnitude squared

is calculated. Peak Detector locates the peak correlation values in time. Frame De-

tect Controller locks-on to the received signal if the correlation peaks arrive with

appropriate timing. Once locked-on to the signal, Phase Offset Estimator is started

and estimates the phase offset. This estimate is provided to a smoothing filter which

produces a smoothed estimate as its output. The IP cores which compose the design

are shown in their hierarchy in the table below, and the top level is shown in Figures

8 and 9.

Figure 8: The Frame Detector design in System Generator.

Figure 9: The Carrier Frequency Offset Estimator design in System Generator.

19

Table 1: The project cores are broken down by hierarchy and software environment
used to work with it.

IP Name Design Environment

RefD pilot CP CRC FDCFOE Vivado Project

Reference design Analog Devices

Tx Core System Generator Design

Rx Core System Generator Design

Frame Detector and Carrier Frequency Offset Estimator System Generator Design

Peak Finder System Generator Design

Test Setup System Generator Design

Frame Detect Controller System Generator Design

frame detect controller VHDL Design

Test Bench Simulation using GHDL VHDL Design

arctan System Generator Design

Full Arctangent System Generator Design

Division using LUT and Goldschmidt Binomial System Generator Design

Factor Inputs System Generator Design

35 x 35 Multiplier System Generator Design

Test Setup System Generator Design

sub arctan System Generator Design

Test Setup System Generator Design

AR filter half/Smoothing Filter System Generator Design

AR Filter Controller System Generator Design

AR filter controller FSM VHDL Design

AR Filter System Generator Design

Test Setup System Generator Design

3.1 Correlator

The autocorrelation of a random process produces a maximum value [18]. This is

calculated by performing

un =
M−1∑
m=0

rn−mr∗n−N−m (4)

where rn is a sample received at time n. This calculation runs continuously over

time.

20

3.2 Peak Detector

Peak Detector is a module used to estimate the location of the maximum value

given an array of values. The maximum correlation between the CP and tail data

identifies the beginning of an OFDM frame. At the same time, knowing when the

correlation peak values occur provides the best time to sample the correlation’s real

and imaginary components to estimate the phase offset as described in Section 4.

3.2.1 Peak Timing Calculation Strategies

Given an array of real numbers greater than or equal to 0, find the maximum value

within the array. How do we know which maximum values correspond to the correla-

tion peaks? There are two main solutions which approach the problem in a different

way.

The simplest solution is to search the array sequentially. To do this:

Begin with the largest value being the first array value

Compare the last sample with the current sample

Choose which sample is the largest

Store its index

Repeat until the array ends

This method implicitly creates a threshold which increases until the maximum value,

and then stays at the maximum value until the end of the array.

The second way is to estimate the correlation noise power using a method such

as an auto-regressive moving-average (ARMA) filter, multiply it by a threshold, and

then say that every sample above the threshold is ”close enough” to the start of the

frame.

The sequential peak finding method was chosen because it is simpler and provides

better results. For example, it uses inexpensive hardware, and can be used with full

precision even with large binary representations without causing timing failure.

3.2.2 Alternating Peak Finder

There is basic issue with the sequential peak finder. If the sequential peak finder

algorithm is performed and the correlation peaks lie close to the ends of the array,

then two peaks can both lie within the same array and the smaller one is dropped.

21

This can prevent the receiver from locking-on for several OFDM frames in a row as

shown in Figure 10.

The array length is chosen to be N + M samples long. The correlation peaks

occur where the delays between the M samples from the tail data and the M samples

from the cyclic prefix are precisely N clock cycles apart in time. This expected time

between correlation peaks is N +M clock cycles, though in practice the timing will

vary. The DAC and ADC clocks operate at the same clock rate.

Each time the array computation is completed, it will produce the location of the

peak value within the array. If an array size smaller than N +M is used, then the

peak detector will find a maximum more frequently than an expected maximum is

being produced by the transmitter. If an array size larger than N +M is used, then

more than one correlation peak will be captured on average within the array. This

larger case causes the receiver to miss a peak in the situations where two peaks lie

within the array. Larger arrays also require more memory resources, and so are more

expensive than smaller arrays. Taking these constraints into consideration, the most

appropriate choice of array size seems to be N +M . In the example OFDM design,

this is an array size of 1088 samples.

Figure 10: The maximum value within each frame timing is represented by a pulse
in time. If the correlation peaks are well within the frame, then the pulse timing is
accurate.

The alternating peak finder is a simple way to get past the issue without needing

feedback. The idea is to run two peak finding arrays in parallel. One array is offset

from the other by half the period of the frame. If a peak is found ”close to the

center” of one array, then it is accepted as the location of a peak and a flag is raised

22

corresponding to that point in time. If a peak is not found close to the center of the

array, then the decision is that no detection is made and no flag is raised. This same

rule applies to the other array. The flags obtained from both searches are combined

using OR for the final output.

The term ”close to the center” of an array means a peak detection on the range

[N+M
4

, 3(N+M)
4

), or halfway between the 0th index and the center value to halfway

between the maximum index and the center value. The arrays are even-valued and

the endpoints are chosen so that only one array covers every point. With no loss of

generality, the left endpoint is selected while the right endpoint is ignored. The two

array peak finder’s parallel arrays are shown in Figure 11.

Figure 11: A peak detector which finds the peak balanced around the center point
of the simulated correlation. The colored area represents close to the center of each
array. The thick grey line represents the closed endpoint, and the dashed grey line
represents the open endpoint. Two example signals and their corresponding peak
finder outputs are also given.

23

A comparison was made between using the sum of the absolute values of the real

and imaginary components of the correlation signal versus computing its squared

magnitude. The result is that the sum of squared magnitudes loses at worst about

1.5 dB of peak height to correlation noise ratio versus the sum of squared magnitudes.

In lab experiments on the FMCOMMS1, the performance using the sum of the real

and imaginary components was too unreliable to lock onto the signal, while the sum

of squared magnitudes is reliable.

3.2.3 Receiver Behaviour in Different Situations

When has an OFDM frame been detected? The correlation calculation must always

run to wait for correlations, and Peak Detector must always calculate when the cor-

relation peaks are received. There is necessarily a situation where the receiver can

lock-on to noise. If a signal is being received, then the receiver is more likely to

lock-on to it correctly the larger the SNR. It is important to know the probability

of incorrectly locking-on to a noise signal and of successfully locking-on to a received

signal based on the SNR.

Each correlation peak identified by the alternating peak finder is received with

a delay between peaks according to a probability distribution. Two situations will

reasonably estimate the receiver’s performance. The first situation is the behaviour

of the peak finder in the case of Gaussian white noise, which means there is no

correlation. This situation can occur where there is no data being transmitted and

received. The second situation is when the receiver receives an OFDM frame at a

given SNR. The second case approaches the first case as the SNR of the received

signal decreases.

The first step is to find the delay probability distributions for both cases. The

purely-noise situation produces a delay probability distribution according to the his-

togram shown in Figure 12. This curve represents the probability distribution of the

timing of a received correlation peak obtained using the alternating peak finder when

the received signal does not correlate with itself. The Frame Detect Controller’s ac-

ceptance window is shown and describes how likely it is to take a lock-on step due

to noise. Frame Detect Controller performs a lock-on step when a correlation peak

is received within the acceptance window. Once locked-on, Frame Detect Controller

will perform a fall-out-of-lock step when a correlation peak is not received within the

acceptance window.

The noise-only simulation is performed within the System Generator model ”Peak

Finder”, and the received OFDM frame simulation is performed using the System

24

Generator model ”Frame Detector and Carrier Frequency Offset Estimator”. The

peak times from the peak detector are captured as a workspace object in MATLAB

and the differences between the peaks represents the number of discrete time steps

between each.

Figure 12: The probability that a peak will be calculated at a particular array index
by the alternating peak finder for Gaussian white noise.

A function is fit to the calculated distribution to account for potential variance be-

tween different simulations. Two common distributions seem to fit the simulation

data; a Rayleigh distribution and a Weibull distribution. The parameters for each

function were selected by search using mean squared error (MSE) between the sim-

ulation data and the cumulative distribution function (CDF) of each model. The

Weibull CDF produces a MSE of 0.298 from

CDFRayleigh =

⎧⎨⎩0 δ < 243

1− exp(− (δ−243)2

2·6632) δ ≥ 243
, (5)

versus the Rayleigh CDF’s MSE of 0.373 from

25

CDFWeibull =

⎧⎨⎩0 δ < 243

1− exp(−((δ−243)
938

)1.927) δ ≥ 243
. (6)

For analysis the Rayleigh distribution is used because it provides a similar level of

fit while using only a single parameter versus the two parameters required by the

Weibull distribution.

When Frame Detect Controller locks-on by one step in Gaussian noise, the next

peak will be received at a delay with a probability as shown in Figure 12. If the peak

is received before the acceptance window, then another peak could be received before

the acceptance window again, within the acceptance window, or after the acceptance

window. This has the effect of shifting the delay probability distribution with respect

to the acceptance window for the next received pulse. This will be discussed in Section

3.4 in the context of the Markov chain analysis.

The probability of detecting a received OFDM frame correctly depends on SNR.

At low SNRs the probability of locking-on is the same as the noise-only situation. As

the SNR increases the probability of locking-on increases to almost certainly. This

is shown in the delay probability distributions in Figure 13 where more probability

lies within the acceptance window at higher SNRs. A peak which occurs in the noise

around a delay of 2000 which fades near the pure noise case. This is probably the

alternating peak finder identifying the second OFDM frame correlation peak around

clock cycle 2176 after missing the first one around 1088.

Figure 15 shows the same simulations located near the acceptance window. The

vertical axes show how the probability peak height decreases and width widens at

each drop in SNR. The probability peak is not modeled effectively by a Gaussian

distribution. Each correlation peak’s expected time is the center of the acceptance

window. This is different from the peak timing distribution which acts independent

of when a pulse is received as described in Figure 14. This detail is used for the

Markov chain analysis.

Only the peak timing probability distribution for the initial received peak is known

from simulation. How much does a received OFDM frame increase the probability of

the receiver correctly locking-on to it? The probability of landing in the acceptance

window due to the OFDM frame’s correlation versus the non-correlation noise must

be estimated.

The amount of probability is measured before, within, and after the acceptance

window using the simulation data over the same ranges. Empirical fits, made for each

26

Figure 13: The probability densities of delay between correlation peaks at different
SNRs.

case, are shown in Figure 16, and are given by the equations

Pbefore = 0.27erfc(0.352(SNR + 6.375)), (7)

Pwithin = 0.5erf(0.3613(SNR + 6.48)) + 0.5, and (8)

Pafter = 0.2erfc(0.3802(SNR + 6.3)). (9)

Notice that the fit to the mass within the window given by Equation 8 is weighted

more towards simulations at higher SNRs. This allows an approximation to the peak

delay probability lying within the acceptance window. The idea is that when the

SNRs are high, the empirical fit will be almost entirely due to the probability peak.

As the SNR decreases the value of the probability peak approaches zero. A curve fit

can be made to the noise before and after the acceptance window. The probability

due to noise within the acceptance window can be estimated, and the probability

due to the noise plus OFDM frame is given by the simulation data. Comparing the

probability peak probability due to the empirical fit versus an approximate noise fit

27

Figure 14: The peak timing distribution caused by noise behaves the same indepen-
dent of when the most recent pulse has been received. The peak timing distribution
caused by a received OFDM frame always lies within the acceptance window. The ac-
ceptance window timing is fixed by Frame Detect Controller based on the last lock-on
step timing.

at 10 dB SNR shows a difference of about 10%.

28

Figure 15: The probability densities of delay between correlation peaks at different
SNRs near the acceptance window.

Figure 16: The probability measured before, during, and after the acceptance win-
dow, along with some fits to the data. Note that the mass within the window fit is
set to fit only the mass due to the peak lying within the acceptance window.

29

Alternating Peak Finder Implementation The peak finder is a simple circuit

consisting of a register which compares the currently stored maximum value for the

duration of 1088 clock cycles. When a larger value is found, its index replaces the

currently stored index. In the alternating peak finder there are two sequential peak

finders. Once the full array of one peak finder has been checked, if the index lies close

to the center of the array, a counter is loaded with the stored index of the peak value

and it begins a countdown. When the countdown completes, the output of ’0’ pulses

to ’1’ for a single clock cycle. This process repeats indefinitely. The only difference

between the first peak finder and the second one is that the second peak finder is

started 544 clock cycles later. The results of the output are combined using a single

OR gate, and then provided as the result. The latency of the circuit is 1089 clock

cycles.

Figure 17: One sequential peak finder component which forms part of an alternating
peak finder. It includes one register holding the maximum found value and another
register holding the count of the maximum found value. Both of these registers are
updated when the current signal value is greater than the previously stored value.
When the array has been searched, a counter loads the index of the largest value
found in the array.

30

Figure 18: The logic which ensures only the detected peaks close to the center of
the first sequential peak finder are produced as outputs. Loading the index of the
largest value in the array, it is compared to the brackets and a pulse is produced if it
lies closer to the center index 544. The same operation is performed for the second
peak finder, and the OR of both results is the alternating peak finder’s output.

Peak Finder Simulation and Performance The following test uses Golden

Model. Peak Finder is placed immediately after the simulated AWGN channel and

produces a pulse of ’1’ with a constant latency after a peak has been found. An

example simulation result is shown in Figure 19. Early in time in Figure 19 there is

a noise signal, but two peaks within the noise are detected by Peak Finder. Once

the OFDM frames are received by the reception chain, Peak Finder identifies the

correlation peaks only.

31

Figure 19: An overall picture of the Golden Model simulation with the peak finder
detecting correlation peaks. The peak finder results are shown in teal, and correlation
peak in red. The rest of the signals align with the peaks and are hard to distinguish
in this image.

3.3 Frame Detect Controller

Frame Detect Controller is a finite state machine (FSM) with datapath (FSMD) which

determines whether or not an OFDM frame of data has been received by entering a

”locked-on” state when the correlation peak has been detected enough times. Each

new detection occurs within a window of time after the previously received detection.

When the correlation peak has not been detected within this window of time for

some number of consecutive time windows, the FSM ”falls out of lock” and there is

considered to be no OFDM frame present. A datapath is a network of registers,

arithmetic, and logic through which a calculation is computed [19]. A FSMD is an

architecture where a FSM controls how the datapath behaves [20].

The top level of Frame Detect Controller is shown in Figure 20. Frame Detect

Controller’s input is a one-bit value of ’0’ when there is no cyclic prefix detected, and

’1’ when there is a detection. It has the three one-bit output signals:

frames detected which is ’0’ when no detection is available and ’1’ when a

detection is available

frames detected pulse which pulses from ’0’ to ’1’ then back to ’0’ for one

clock cycle when a frame has been detected

detection lost which is ’1’ whenever the Frame Detect Controller is in the ”no

detection” state, and ’0’ otherwise

32

Figure 20: The frame detect controller is implemented as a System Generator black
box. Its outputs are initialized to get past a simulation issue causing the first produced
outputs to be not defined.

For the example design, Frame Detect Controller begins in the ”no detection”

state and waits for three locking-on states to complete before entering the ”locked-

on” state, and waits three states of falling-out-of-lock before returning to the ”no

detection” state. The number of locking-on states and falling-out-of-lock states can

be modified to meet the requirements of a particular communications design.

For an OFDM frame consisting of M +N = 1088 samples, a received ”correlation

peak detected” signal begins a countdown timer which triggers the FSMD check

pulse received within variance when the countdown is complete. This second

FSMD begins another countdown time which acts as a detection window. All count-

down times must be an integer number of clock cycles, and are positioned to balance

the window so that an equal number of clock cycles before and after the expected

time will be accepted. This means the acceptance window will have an odd number

of clock cycles. While the cyclic prefix size is M = 64, the window size is chosen to

be 63 in order to ensure that any particular correlation peak will correspond to only

one copy of the embedded pilot per OFDM frame. This is important because each

received correlation peak should align with only a single copy of the embedded pilot.

33

The Frame Detect Controller block is composed of purely VHDL entities, and its

hierarchy is:

frame detect controller

frame detect controller FSM

check pulse received within variance

frame detect variance FSM

frame detect countdown timer

3.3.1 Frame Detect Controller Core

The top level module shown in Figure 20 and is called frame detect controller and

combines the frame detect controller FSM and check pulse received within variance

modules. There are no generics in the entity description of frame detect controller,

but it does require constants to be set within the core in order to set up the correct

timing of N clock cycles between each expected correlation peak. Constants also

need to be set to describe the width of the acceptable correlation offset on the range

[−w,w]. The ”ACCEPTABLE VARIANCE LENGTH” is the number of clock cycles

in the window of acceptable times and is referred to in the VHDL code by M, not to

be confused with the size of the cyclic prefix M . M is a positive odd integer value

greater than or equal to 3. The window size can also be considered as a range of values

[−w,w] of length M, with w = ((M−1)/2). The Golden Model design example uses

M=63 and w = 31. There are several steps to modify the window size and OFDM

frame length throughout the VHDL hierarchy. The modifications performed within

frame detect controller are on the generics:

constant OFDM FRAME LENGTH : POSITIVE := 1088;

constant ACCEPTABLE VARIANCE LENGTH : POSITIVE := 63;

In the example design the detection window is timed so that it is a window begin-

ning 31 clock cycles before the 1088th clock cycle, and ending at 31 clock cycles after

the 1088th clock cycle. If a correlation peak is detected within this window then the

window signals the Frame Detect Controller FSM to move to the next lock-on state.

The size and timing of the detection window can be modified depending on the design

requirements.

Frame Detect Controller is tested in the following ways to ensure correct operation.

34

TIMING Tests The same idea lies behind each of the PULSE TIMING and MISS

TIMING tests for Frame Detect Controller. In each of these cases, a series of pulses

from ’0’ to ’1’ are provided at the input to Frame Detect Controller at a partic-

ular timing. The purpose is to ensure that when the Frame Detect Controller’s

frame detect controller FSM has reached an appropriate state. The FSM will fall-

out-of-lock when pulses are not received within the window, and it will say in lock

when pulses are received within the window. When a pulse has been received at the

expected timing minus an integer number of clock cycles −wtest the state is checked.

This is repeated for each possible input pulse timing until wtest. The state can be

checked by measuring the width of the frames detected signal, or by counting the

number of times cyclic prefix is synchronized pulses from ’0’ to ’1’. Choose wtest > w

so that the test window times [−wtest, wtest] contain the accepted timing window

[−w,w] plus extra time to ensure that only pulses received within the correct window

are accepted. Examples of this are shown in Figures 21 and 22.

Figure 21 shows the results of the FIRST PULSE TIMING test.

Figure 22 shows the results of the THIRD MISS TIMING test.

Figure 23 uses data from a System Generator simulation of Golden Model 5,

which provides ”flag” data, as input to frame detect controller in VHDL. This

image shows the results for GOLDEN MODEL 5 DATA, and the output

”frames detected” is expected to remain ’1’ once locked on. This test effectively

shows the delay required to determine three correlations received within the correct

timing.

BASIC OPERATION BASIC OPERATION tests simple timing using single

pulses at the input. This test is to see the basic operation of the FSM, and only

looks into whether or not the FSM makes the correct decision given an ideal input.

SHIFTING TIMING SHIFTING TIMING TEST tests to see if there is a shift

in the timing of the detection based on how the FSM operates. There was a bug

where the timing of the next expected detection shifts based on the FSM, and it has

been dealt with using this test.

INPUT COMBINATIONS INPUT COMBINATIONS tests different possible

input shapes by serializing a binary number into the input signal to frame detect controller.

It keeps the number entering constant during each run of the test, and is set up to run

35

the test over all numbers from 0 to NUMBER BITS SIMULATING CP COMBINATIONS-

1. A bit of automated checking is performed, so if the frame detect output isn’t ’1’

at the testing time an error is produced by the simulator.

Figure 21: The results of the FIRST PULSE TIMING test. For w = 31, count the
31 pulses of cyclic prefix is synchronized to the right and left of the expected timing.
The expected timing is shown using expected timing indicator.

Figure 22: THIRD MISS TIMING test for the −w side. In this case it is easier to
count the delay offsets where the controller stays locked-on based on frames detected,
rather than the number of pulses in cyclic prefix is synchronized.

36

Figure 23: GOLDEN MODEL 5 DATA uses simulation data from Golden Model 5.
The result in frames detected is expected to always be ”1” after the third pulse is
received, and until the FSM falls out of lock about 3264 clock cycles (about 33 us)
later.

3.3.2 Frame Detect Controller FSM

The Frame Detect Controller FSM uses Check Pulse Received within Variance as a

datapath to measure if a received pulse lies within the expected time with respect to

a previous pulse.

Beginning in the state no detection, the FSM waits until it receives a detection (a

’1’ at the input). Once it has, it waits until it receives a detection within the accep-

tance window determined by check pulse received within variance. If a detection has

been received within the window, then it begins waiting for a detection within a new

window at

n+ (N +M − 1) + [−w,w], (10)

where n is the current time and N+M−1 is the expected time of the next correlation

peak. In this particular design, it does this three times and then enters a steady state

as shown in Figure 24.

Obtaining the correct delay between the expected time and the acceptance win-

dow needs to be balanced within frame detect variance controller FSM to ensure the

expected time always lies in the center of the buffer calculated by check received

within variance. This is explained in the header of frame detect variance controller

FSM.vhd, and is highlighted here. The delay states run from first detection hold 1 to

first detection hold ((M+3)/2), second detection hold 1 to second detection hold ((M-

37

Figure 24: An illustration of Frame Detect Controller FSM advancing from the state
of no detection to being locked-on.

2)/2), third detection hold 1 to third detection hold ((M-2)/2), and new detection

hold 1 to new detection hold ((M-2)/2). For example, if M= 63 and w = 31, the end

states are first detection hold 33, second detection hold 31, third detection hold 31,

and new detection hold 31. The counter itself runs a fixed number of clock cycles.

Since the acceptable variance occurs over M clock cycles, pulses can be received after

these 1088 samples, and so the counter is smaller than 1088. This means the counter

must start its countdown later than the time an initial pulse is received for the tran-

sition out of no detection, second detection, third detection, and new detection.

When a pulse has been received within acceptable timing, the FSM must en-

sure that the counter within check pulse received within variance doesn’t begin a

countdown before the appropriate time. To do this, frame detect controller FSM

resets check pulse received within variance immediately after no detection, second

detection, third detection, and new detection. This is necessary because the sig-

nal used to start the countdown is the same as the one used to determine if a

pulse has been received within the appropriate window. A pulse may be sent into

check pulse received within variance the clock cycle immediately after a clock cycle

received within variance is detected. This is because it takes one clock cycle to decide

if the previous value was indeed within the variance. The reset is a simple solution

found for the issue of timing inconsistencies when an input remains ’1’ for more than

one clock cycle.

3.3.3 Check Pulse Received Within Variance

The FSMD check pulse received within variance combines frame detect variance FSM

with the counter frame detect countdown timer to detect whether or not a ”1” has

been received within a window of [−w,w] clock cycles around the expected time.

38

No changes must be made within check pulse received within variance to adjust the

countdown time or the window size since for a particular design since its length is

adjusted using generics.

In Figure 21 expected timing indicator indicates when the expected time is. The

figure shows different cases where a received pulse in time occurs with a known delay

around the expected time. Each step away from the expected time represents a test

using a delay different by 1 clock cycle. The tests to the left have a delay less than

the expected delay, and the tests to the right have more. The test will be correct

if there are 31 pulses of cyclic prefix within variance on either side of the expected

time. More signals are shown in this figure than are used as the inputs and outputs

of check pulse received within variance for testing purposes.

3.3.4 Frame Detect Variance FSM

The FSM frame detect variance FSM controls a countdown timer and a delay during

which a received input of ’1’ causes the ”cyclic prefix is synchronized out” signal to

pulse ’1’ at the same time as ”synchronized cyclic prefix ready out”. If the count-

down and window complete without receiving an input, then the ”synchronized cyclic

prefix ready out” signal pulses, but ”cyclic prefix is synchronized out” remains ’0’.

To modify the size of the window, change the states of the FSM so that they corre-

spond to countdown complete 1 until countdown complete M. These instructions are

mentioned in the header of frame detect variance FSM.vhd.

The module frame detect variance FSM is tested alongside frame countdown timer

to see the timing of the FSM with respect to the circuit it is intended to work with.

Figure 25 shows the core being reset and a new pulse being received. When a second

pulse is received within the expected time window, the result is similar to that shown

in Figure 26. When a second pulse is not received within the expected time window,

the result is similar to that shown in Figure 27.

39

Figure 25: First pulse being received by Frame Detect Variance FSM.

Figure 26: Second pulse being received and counting as within the acceptable time
window by Frame Detect Variance FSM.

40

Figure 27: Second pulse being missed within the acceptable time window by Frame
Detect Variance FSM.

41

3.3.5 Frame Detect Countdown Timer

The counter frame detect countdown timer outputs a pulse of ’1’ for one clock cycle

when the timer has counted from the reset value down to 0. It begins counting down

when its start input is changed from ’0’ to ’1’. VHDL generics set the number of

clock cycles represented by the counter and the number of bits used to represent the

countdown time. The generics account for different delays or window sizes.

Figure 28 displays a test of the countdown timer which uses a time of 5 and with

a 3-bit counter representing a countdown times of 5 clock cycles. Note that 5 clock

cycles exist between the start in signal pulse and the countdown complete signal

pulse. Also note that the synchronous reset causes the countdown complete pulse to

not fire, and that a second start in pulse shortly after the first doesn’t interfere with

the countdown complete pulse.

Figure 28: Test of Frame Detect Countdown Timer.

42

3.4 Markov Analysis of Peak Detector and Frame Detect

Controller

A Markov chain is used to analyze the steady-state behaviour of the peak detector

combined with Frame Detect Controller. A Markov chain is a discrete-time stochastic

process consisting of a system of values where there is a single selected value that can

transition to another state according to the Markov property [21]. These values can be

conveniently thought of as states. The Markov property, or memorylessness, means

each state has a constant probability of transitioning to each other state. These

constant values can be organized into a structure called the state transition matrix.

Each row in a state transition matrix represents a state, and each element of a row

contains the probability of transitioning to the state number equal to its column

index. The state transition matrix can be clearly represented using a state diagram

such as in Figure 29.

Figure 29: A basic graphical description of a Markov chain.

43

Each step taken by a state in our Markov model occurs when the peak detector

detects a new peak value and sends a ’1’ to Frame Detect Controller. The basic idea of

Frame Detect Controller is a default state of No Detection, and when a ’1’ is received

Frame Detect Controller ”locks-on” by changing its state to 1st Detection. The next

lock-on steps only occur if the received ’1’ lies inside the acceptance window. If a ’1’ is

not received with the correct timing during lock-on, then the system will return to No

Detection. Once enough ’1’s have been received with the desired timing, the Locked-

On state is reached. If ’1’s continue to be received with the correct timing, Frame

Detect Controller will remain in the Locked-On state. If not, then it will progress

through fall-out-of-lock states until it reaches No Detection. If a ’1’ is received with

correct timing while falling out of lock, then Frame Detect Controller will return to

Locked-On. A simple way to modify the design for different situations is to change

the number of lock-on states and fall-out-of-lock states.

How is the state transition matrix created? If the current state is no detection,

then the probability of transitioning to a future state given only a noise signal is

shown in Figure 12. Using the situation where an OFDM frame is received at a

particular SNR, the empirical relations for the probability lying in the acceptance

window from Equation 8 can be applied, as well as the acceptance window probability

from Equation 9, and a factor to the noise-only transition probabilities so that it

approximates the noise distribution before the acceptance window when a frame is

being received at a particular SNR. This noise factor comes from the probability lying

before the acceptance window. This integration is expected to equal Equation 7 at

the SNR under consideration, and so the factor is

normalizing factor =
Pbefore(SNR)

1− exp(− (1088−243−31−1)2

(2·(663)2))
. (11)

The probability lying in each row of the state transition matrix must equal 1, but

due to the approximations from above this may not be precisely the case. Another

normalization step is applied to each row so that the sum of the row is always 1.

This is important to prevent some Markov chain states from having a negative steady

state value. Using these distributions leads to a state transition matrix with about

800 states per lock-on or fall-out-of-lock state. The behaviour of the Markov chain

can be intuitively described using smaller transition probability matrices with only

the probability of locking-on and falling-out-of-lock.

The state transition matrix for zero lock-on states/one lock-on step, and zero fall-

44

out states/one fall-out step, is [
1− p p

1− p p

]
. (12)

The one lock-on state/two lock on steps state transition matrix will look like⎡⎢⎣1− p p 0

1− p 0 p

1− p 0 p

⎤⎥⎦ . (13)

The one lock-on state/two lock on steps and one fall-out state/two fall-out steps state

transition matrix will look like ⎡⎢⎢⎢⎢⎣
1− p p 0 0

1− p 0 p 0

0 0 p 1− p

1− p 0 p 0

⎤⎥⎥⎥⎥⎦ . (14)

Notice the pattern where there is always one more lock-on step compared to the

number of lock-on states, and one more fall-out step than states. The example design

given to Frame Detect Controller has three lock-on steps/two lock-on states and four

fall-out steps/three fall-out states as in⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1− p p 0 0 0 0 0

1− p 0 p 0 0 0 0

1− p 0 0 p 0 0 0

0 0 0 p 1− p 0 0

0 0 0 p 0 1− p 0

0 0 0 p 0 0 1− p

1− p 0 0 p 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (15)

The more states spent locking-on the less likely the system is to lock on. The

more states spent falling-out-of-lock the less likely the system will fall out of lock.

A false-positive situation occurs where the receiver locks-on without receiving an

OFDM frame. A false-negative situation occurs where the receiver fails to lock on to

a received OFDM frame. Ideally there is a lock-on for every received OFDM frame

and never a lock-on to noise. In practice there will be some amount of false-positives

and false-negatives.

There exist a finite number of lock-on steps and fall-out-of-lock steps. If every

45

sample is stored until a lock has been determined or not for it, then more states

increases the latency between receiving each sample at the antenna and sending it to

the channel estimation. In some applications false-positives or false-negatives will be

more important, and so more states can be spent to reduce one or the other. The

steady-state Markov analysis helps the designer choose the number of lock-on and

fall-out states by estimating the system’s performance at different SNRs.

The basic case from Equation 12 represented using the full set of states under

consideration is illustrated by Equation 16 below

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f

a

l

l

o

u

t

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
transitions

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

l

o

c

k

o

n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f

a

l

l

o

u

t

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

l

o

c

k

o

n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
transitions

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (16)

where ”transitions” represents the set of probabilities of transitioning to the inner

states, ”lock on” represents the probability of transitioning to the lock-on state corre-

sponding to the current step, and ”fall out” represents the probability of transitioning

to the fall-out state corresponding to the current step. With one lock-on state and

46

zero fall-out states the probability transition matrix is illustrated in Equation 17 as⎡⎢⎢⎣

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f

a

l

l

o

u

t

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
transitions

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

l

o

c

k

o

n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f

a

l

l

o

u

t

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
transitions

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

l

o

c

k

o

n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f

a

l

l

o

u

t

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

l

o

c

k

o

n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
transitions

⎤⎥⎥⎦

. (17)

In all of these matrix depictions, the matrices and vectors are arranged so the indexes

match along the vertical axis. The final example will be the case for one lock-on step

and one fall-out step in Equation 18 as

47

⎡⎢⎢⎣

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f

a

l

l

o

u

t

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
transitions

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

l

o

c

k

o

n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f

a

l

l

o

u

t

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
transitions

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

l

o

c

k

o

n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

l

o

c

k

o

n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
transitions

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f

a

l

l

o

u

t

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f

a

l

l

o

u

t

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

l

o

c

k

o

n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
transitions

⎤⎥⎥⎦

.

(18)

The steady-state probabilities are computed for each Markov chain. We’re inter-

ested in the the portion of transitions which are locked-on to the signal when the signal

48

is available. This is given by taking the sum of steady-state probabilities over the

falling-out-of-lock steps, because the receiver can’t fall out of lock until it is locked-on.

The rest of the states are locking-on, and the probability of being not locked-on is

given by subtracting the portion of locked-on states from 1.

Example curves representing the steady-state probabilities of being locked-on are

shown in Figure 30 along with the number of lock-on and fall-out states. The inter-

esting design information is contained in the minimum value of the curve, how quickly

the curve transfers from the noise-only probability to near 100% locked-on, and the

50% locked-on SNR.

Figure 30: As the number of fall-out states increases, lock-on occurs more at lower
SNRs. As the number of lock-on states increases, lock-on occurs less at lower SNRs.

The minimum value of the sigmoidal curve represents the portion of state tran-

sitions the system spends locked-on to a noise-only signal, otherwise known as the

false-positive rate. These limits are shown in Figure 31, with the -15 dB SNR case

assumed to be close to the minimum value. Notice that the number of fall-out stages

affects the portion of false-positives less than the number of lock-on stages. Comput-

ing the ratio of lock-on vs out of lock between 1 lock-on stage and 2, and 2 lock-on

stages versus 3, is about 15.9. This can be approximated intuitively by noticing the

portion of time a peak may fall outside the acceptance window is 16 times greater

than within the acceptance window. At the same number of lock-on steps in all

three examples, increasing the number of fall-out stages from 2 to 3 gives a lock-on

to not locked-on ratio of about 1.39, and from 3 to 4 gives a ratio of about 1.26.

49

It seems reasonable to begin designing a Frame Detect Controller situation by esti-

mating the number of lock-on stages required using the minimum allowed portion of

false-positives.

Note that the number of transitions expected when a frame is being received by the

example design will be close to 1 per 1088 clock cycles, but the number of transitions

expected when receiving pure noise is closer to the noise distribution peak around

906 clock cycles. This means that the number of false-positive situations is likely to

be about 1088/906 ≈ 1.2 times the values shown in the Markov chain states.

Figure 31: The minimum values are shown approximately at -15 dB SNR, which
represent the portion of state transitions spent locked-on to a noise signal when there
is no signal being received.

The center of the transition functions is approximately the 50% locked-on SNR.

How quickly the transition occurs represents how quickly the system stops working

at a given cutoff. When operating in a lower SNR range a shallower transition may

be desired to lock-on more frequently. If operating at higher SNRs then a shorter

transition period reduces the number of false-negatives.

Another trade-off to must make when choosing the total number of Markov chain

states is the latency of the system. More states required storing more frames of data

before deciding if they are locked-on or not. This latency may be dropped at the

expense of losing the first few lock-on states worth of OFDM frames, and accept

noise data before the lock has been lost.

Taking the derivative of the transitions provides an alternative way to see the effect

of different numbers and ratios of states as in Figure 32. The functions formed are

Gaussian-like, with their maximum located at the 50% locked-on SNR. Increasing the

50

number of states reduces the variance and represents a faster transition. Increasing

the number of fall-out states shifts the mean to a lower SNR so the system is more

likely to be locked-on. Increasing the number of lock-on states shifts the mean to

a higher SNR so the system is less likely to be locked-on. Notice that for a given

number of lock-on states, increasing the number of fall-out states seems to form a

ridge. Fitting a line to the peaks of these functions closely approximates this ridge,

which may help a designer visualize the behaviour around a certain design value.

Different situations can be simulated to explore the space of design trade-offs.

Figure 32: Derivatives of the transition functions. Notice the ridges for a given
number of lock-on states tend to fall on a linear function.

Some questions to ask when designing the number of lock-on and fall-out states in

Frame Detect Controller are:

What is the maximum allowed latency?

How many frames of data can be dropped before locking-on?

How many frames of noise can be received before falling-out-of-lock?

What is the worst-case expected channel SNR in which the system must per-

form?

What is the maximum allowed false-positive rate?

What is the maximum allowed false-negative rate?

51

According to these steady-state results, the Frame Detect Controller example case

of two lock-on states and three fall-out states is expected to false-positively lock on

to noise about 0.1% of the time, and for the system to be locked-on half of the time

at about -7.3 dB SNR.

See SLWC>2>9>frame received peak timing distribution.m (2 - System Genera-

tor Projects, 9 - Peak Finder) for the MATLAB code and simulation.

52

Chapter 4 Carrier Frequency Offset Estimator

The Carrier Frequency Offset Estimator is a design which estimates the carrier fre-

quency offset using the timing provided for detected signals from the Frame Detect

Controller after a correlation peak detection has been found to lie within the window

of acceptable timing. It uses the real and imaginary components of the correlation

calculation corresponding to the correlation peak timing and accounting for the circuit

latency. The basic idea behind the frequency offset estimator is that the correlation’s

real and imaginary values at the correlation peak correspond to the expected phase

offset between the cyclic prefix and their corresponding tail data samples. This phase

offset can be interpreted as a frequency since the timing between each pair of samples

is known and equal to N ADC clock cycles.

The inputs to the carrier frequency offset estimator include the real and imagi-

nary components of the correlation, which have a two’s complement (35,27) number

representation. The other inputs are one-bit control signals from the Frame Detect

Controller, the frames detected pulse signal and the detection lost signal. The out-

puts are the delayed real and imaginary correlation inputs, as well as the estimated

angle of the complex input.

Figure 33: System Generator implementation of Carrier Frequency Offset Estimator
top level.

4.0.1 Classic Phase Estimation

Given a set of complex values produced from a complex random process, and assuming

a particular number of sinusoids, estimate their assumed parameters of amplitude,

phase, and frequency offset. In our case, we are interested in estimating the single

53

frequency offset for a situation like clock offset between transmitter and receiver, or a

single coarse/average frequency offset for a Doppler spread across multiple frequencies.

A single sinusoid hidden in additive Gaussian white noise has the following maximum

likelihood (ML) ΛML for a given estimated frequency offset ∆f̃ as given by [22]

ΛML(∆f̃) = |
N∑
i=1

rie
−j2π∆f̃Ts|2, (19)

where ri is a received complex sample, Ts is the known sample period, and N in this

case is the number of complex numbers being added, and not to be confused with

the OFDM size. The maximum likelihood model can be viewed as representing the

addition of N complex numbers which sum constructively to a maximum value where

the estimated frequency offset is correct, and which sum with an expected value of 0

where the estimated frequency offset is incorrect.

The maximum likelihood frequency offset estimate is also given by the peak of the

periodogram [23]. One way to find this estimate is to compute the power spectrum of

the received data samples using a DFT and selecting the peak amplitude, since the

sinusoid hidden within AWGN will produce a peak near its frequency. The resolution

of the DFT (which is limited to the number of time samples being provided, and in

our case is M = 64) will be 1
M
, and so the detected frequency will be within 1

2M
of

the actual frequency. The DFT effectively checks all frequencies and the frequencies

which have the greatest amplitude response are the closest to correcting the offset

frequency. The result can be computed closer to the precise frequency offset being

estimated by performing a search step between the coarse DFT samples. Another

way to get around this issue is to perform a larger DFT with zero padding, which

performs interpolation in the time domain result.

This method acts almost as blind estimation and uses knowledge that the OFDM

frame is composed of a set of sinusoids obscured by AWGN and potentially other

effects. Using it may be effective when combined with the structure of the OFDM

frame. Knowing each sample of the cyclic prefix corresponds to each sample of the

tail data, an alternative method can be used which takes advantage of the statistical

structure of the data and knowledge of the difference between the data at the same

time.

4.0.2 Differential Detection

The number of clock cycles between replicated data is constant and known. Instead

of using the samples directly, the difference in phase between the samples can be

54

used to obtain the frequency offset. Comparing data within a communications frame

is known as differential detection. Ways to compare the difference between complex

samples are:

Subtraction A−B = |A|ej∠A − |B|ej∠B

Division A
B
= |A|

|B|e
j(∠A−∠B)

Multiplication by complex conjugate AB∗ = |A||B|ej(∠A−∠B)

A frequency offset represents rotation in the complex plane, so it is convenient to

retain knowledge of the two complex values’ phases in the calculation. The phase dif-

ference between two complex numbers is provided by complex division or multiplying

by the complex conjugate. It is convenient to use simpler operations, and since mul-

tiplying by a complex number is much simpler computationally compared to division

of complex numbers, multiplying by the complex conjugate is the preferred option.

Let there be a complex signal received from a communications channel at discrete

time n where sn is the transmitted signal before being acted on by the channel and

wn is AWGN at time n. Also assume that a phase offset θn has been applied to the

transmitted data at time n. The received signal at time n is given by

rn = sne
jθn + wn. (20)

Note that the transmitted signal sn is unknown at the receiver except for the

repeated data transmitted at N samples after the cyclic prefix using the relation

sn = sn−N . (21)

Since we only wish to compare known data, Equation 21 only applies between cyclic

prefix samples and tail data samples which correspond to the same frame k. By

Equation 21 we also know that |sn| = |sn−N |. Knowing the transmitted signal has its

own phase φn, we can use the polar form of sn and place the phase into the unknown

phase θ′n using

rn = |sn|ejφnθn + wn

= |sn|ejθ
′
n + wn.

(22)

Multiplying two complex numbers results in a number with magnitude equal to the

multiplied magnitude of each number, and a phase equal to the sum of each number’s

phase. The complex conjugate negates the phase of the delayed sample. Since within

55

the same transmitted frame sn = sn−N , the received sample multiplied by its delayed

and complex conjugated copy is

rnr∗n−N = (|sn|ejθ
′
n + wn)(|sn−N |e−jθ′n−N + wn−N)

= (|sn|ejθ
′
n + wn)(|sn|e−jθ′n−N + wn−N),

(23)

and here the difference in phase between the two complex samples is

∆θn = θ′n − θ′n−N . (24)

Ignoring noise, the phase offset between two complex numbers which are known to

be identical before channel effects is given by finding the argument of their complex

conjugate using

rnr∗n−N = |sn|2ej(θ
′
n−θ′n−N)

= |sn|2ej∆θn .
(25)

There are two main ways we can proceed to estimate the phase offset. The first is

to find the arguments of each differential phase, and then find their average as in

∆θ̃
(k)
Arg,ACF =

1

M

M−1∑
m=0

Arg(|sn−m|2ej∆θn−m) =
1

M

M−1∑
m=0

∆θn−m. (26)

The second way is to perform the correlation, and then find the argument of the

sample at its peak as in

∆θ̃
(k)
ACF,Arg = Arg(

M−1∑
m=0

|sn−m|2ej∆θn−m). (27)

The real and imaginary value of the correlation function at the peak is approximately

an average of the complex exponentials with their phase offset, and this phase offset

can be measured to estimate the carrier offset frequency. Both options are available

once a pipelined full arctangent function is available. Perhaps a comparison can made

between the two methods using the arctangent identity

arctan(a) + arctan(b) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
arctan(a+b

1−ab
) ab < 1

arctan(a+b
1−ab

) + π ab > 1, a > 0, b > 0

arctan(a+b
1−ab

)− π ab > 1, a < 0, b < 0

. (28)

The second method will be explored further. In practice it has been found that

56

performing the sum of the correlated values first and then computing its angle has

less variance than computing the phase of each differential complex conjugate and

then taking their average. The second method also avoids issues when it comes to

angles laying close to the branch point. Let

un =
M−1∑
m=0

rn−mr∗n−N−m

= Re{un}+ jIm{un},
(29)

which are computed by the correlation calculator. Using the relation described in

Equation 25 allows

un =
M−1∑
m=0

|sn−m|2ej∆θn−m , (30)

where the M cyclic prefix samples align with their corresponding tail data samples.

An approximation used in [9] assumes that the carrier frequency offset is small be-

tween received samples. Similarly, assuming the phase difference across each pair of

corresponding samples is small allows the approximation

un ≈
M−1∑
m=0

|sn−m|2ej∆θ(k)

= ej∆θ(k)|un|,
(31)

where |un| =
M−1∑
m=0

|sn−m|2 is the amplitude of the autocorrelation, and ∆θ(k) is its

phase.

The amplitude |un| is not calculated directly within the correlation calculator, but

its real and imaginary components are known and its phase can be found using the

complex logarithm ∆θ(k) = arg(un). The correlator calculator uses |un|2 = Re2{un}+
Im2{un} to estimate the frame start timing for the rest of the calculations in the

receiver because it is monotonic to |un|. Alternatively |Re|+|Im| could be used with

some loss in SNR. Note that although different calculations can be used to determine

the timing, the phase offset must be found for un using the real and imaginary values.

Instead of performing the complex logarithm, we can also use the identities

Re{un} = |un|cos(∆θ(k)) ⇐⇒ ∆θ(k) = arccos(
Re{un}√

|un|2
), (32)

and

Im{un} = |un|sin(∆θ(k)) ⇐⇒ ∆θ(k) = arcsin(
Im{un}√

|un|2
). (33)

57

For example, if the offset ∆θ(k) can be assumed small, then the common small

angle approximation for sine and cosine to find and correct the angle is

Re{un}+ jIm{un} = |un|(cos(∆θ(k)) + jsin(∆θ(k)))

≈ |un|(1 + j∆θ(k))

⇐⇒ ∆θ(k) = Im{un}
|un| .

(34)

Using the small angle approximation to estimate the phase offset also means that

correcting the result can be performed using a small angle approximation. If not using

the small angle approximation, the precision of several efficient-to-compute arctangent

approximations is about 0.005 radians and covers the domain from 0 to 1 [24]. The

small angle approximation compares to this error at around 0.005 u 0.31− sin(0.31),

or 0.31 radians. It is desirable to be able to estimate the full range of principle

arguments from -π to π radians because this allows a larger range of frequency offsets

to be accounted for. The decided solution was to perform a full arctangent function

to obtain the phase offset.

4.0.3 Limits of Phase Offset Estimation

The maximum angle which can be predicted by calculating the principal argument of

a complex number is a small angle ϵ away from the branch point on the complex plane,

in other words from −π+ϵ to π−ϵ radians. The value ϵ represents a small error away

from the limit based on the calculator error and the variance of the estimated phase

offsets. When the phase difference is calculated between two complex numbers using

the multiplication by complex conjugate, the furthest angle two complex samples can

have apart is π radians. These samples lie on opposite sides of the complex plane.

Define the measurement period Tm in terms of sample period Ts and sample frequency

fs as

Tm = NTs =
N
fs
. (35)

Without noise and assuming a constant frequency offset, a full rotation of a complex

phasor over the measurement period occurs at the frequency fm = 1
Tm

, and so a half

rotation occurring over the same measurement period gives the maximum limit of

how much frequency offset can be predicted of

∆fmax =
1

2Tm
. (36)

This is an example of the Nyquist sampling rate applied to estimating the frequency

58

offset. An example for the FMCOMMS1 uses a sampling rate of fs = 122.88 MHz

with N = 1024, and the maximum Doppler frequency which can be estimated is less

than 60kHz for a carrier frequency of 2.4 GHz. This limits the allowable clock offset

between transmitter and receiver to 25 ppm for the example design.

Note that the frequency offset ∆f for an estimated phase offset ∆θ̂ is

∆f =
∆θ̂

2πTm

. (37)

4.0.4 Example Phase Offset Estimates

A representative example of the peak finder performance for a single correlation max-

imum is shown in Figure 34. A latency of three clock cycles is required by frame

detect controller to determine when to produce a frame detected pulse. The real and

imaginary parts of the correlation signal are delayed to represent this, however the

peak finder is applied to the signal three clock cycles earlier in time.

The correlation peak amplitude’s calculated timing estimates the actual timing.

Finding the correlation peak timing is important to identify the phase offset estimate

produced by the Phase Offset Estimator. Figure 35 shows the estimated phase offset

for an example where the simulated phase offset is 30◦ and the SNR is 8 dB. The

mean value is estimated to be around 0.524 rad (30.02◦), as expected.

For simulations at different SNR, means are estimated to be 0.5227 rad at 3 dB,

0.5231 rad at 8 dB, 0.5230 rad at 13 dB, and 0.5244 rad at 18 dB. The 30◦ in radians

is 0.5236, and so the means calculated here are all close to the expected phase offset.

A small known bias exists in the division calculator, and this may explain the error

between the estimated and computed coarse phase offsets. The estimated variance

of the phase offset estimation for the 30◦ example is shown at the different SNRs in

Figure 36.

To account for the variance between the estimated and actual phase offset in prac-

tice, an AR filter was created and placed after the output of the phase offset estimator.

This filter type can be freely changed to balance the accuracy and variance of the

estimated value.

The test to understand the effectiveness of this approach is to simulate an OFDM

signal with cyclic prefix being transmitted over an AWGN channel. On the receiver

side of the channel, the autocorrelation is performed between the cyclic prefix and tail

data. The real and imaginary parts are shown in Figure 37, as well as the resulting

estimated phase offset (located at 19 clock cycles of latency after the peaks). The

59

Figure 34: A local picture of the peak finder locating the maximum value. The peak
finder value is teal and the frame detect controller is magenta. The sum of the magni-
tudes of the real and imaginary components is shown in red and the real and imaginary
signals are green and blue respectively. The correlation signals are shown delayed in
time by three clock cycles to match the timing of the frame detect controller pulse.
The value is sampled at this time and sent to the Full Arctangent calculator.

phase offset is 15 degrees, and the result of 0.2487 radians corresponds to an angle

of about 14.2 degrees. Similar tests were performed as a sanity check of the basic

functionality for each special case and octant of 30◦, 60◦, 90◦, 120◦, 165◦, 180◦ -165◦, -

120◦, -90◦, -60◦, and -30◦. The simulation environment used is the System Generator

project ”Golden Model 6”. Similar results are seen in this test for signal-to-noise

ratios on the order of 3 dB to 8 dB, although with more error in the estimation.

More examples are shown below in Figures 38 and 39.

60

Figure 35: The sum of magnitudes of the real and imaginary components of the
correlation is shown in red, and the estimated phase offset using the Full Arctangent
function at the time given by the peak detector is shown in blue.

Figure 36: The decrease in the variance of phase offsets detected at different SNRs
is shown. It appears that the variance decreases exponentially with SNR in dB, and
so it likely varies inversely with signal power.

61

Figure 37: OFDM example affected by AWGN where we plot the received corre-
lation’s peaks, real value, imaginary value, and phase offset. The horizontal axis
represents simulation clock cycle, and the vertical axis represents magnitudes devel-
oped during the autocorrelation. The marker is the sampled phase offset. In this
case, the actual phase offset is 15◦ (0.2618 radians).

Figure 38: Real and imaginary autocorrelation values. Actual error is 60◦ (1.0472
radians).

62

Figure 39: Real and imaginary autocorrelation peaks. Actual error is -165◦ (-2.88
radians).

63

4.1 Arctangent

The phase offset estimation can be broken down into performing the correct delays

on the real and imaginary parts of the correlation signal, and then computing the full

arctangent function. The first step of the full arctangent function is to implement

the piecewise logic which determines the domain of the inputs and selects which

calculations to perform, followed by a division operation, and finally the numerical

arctangent itself is computed. This hierarchy is described in Figure 40.

Figure 40: A high level description of the Phase Offset Estimator.

The full arctangent is a function which calculates the principal argument of a

complex number, and can be decomposed into

Full Arctangent(Re{x}, Im{x}) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

arctangent(|Im{x}|
|Re{x}|) Re{x} > 0 and Im{x} > 0

−arctangent(|Im{x}|
|Re{x}|) Re{x} > 0 and Im{x} < 0

arctangent(|Im{x}|
|Re{x}|)− π Re{x} < 0 and Im{x} < 0

−(arctangent(|Im{x}|
|Re{x}|)− π) Re{x} < 0 and Im{x} > 0

π
2

Re{x} = 0 and Im{x} > 0

−π
2

Re{x} = 0 and Im{x} < 0

0 Im{x} = 0

.

(38)

The piecewise logic determines the appropriate sign, addition, or constant selection

for the output. Typically the branch point Im{x} = 0 and Re{x} < 0 is undefined.

However, whenever Im{x} = 0 we assume the angle is zero. This is acceptable because

if the angle reaches the branch point it cannot be estimated by this estimator and

the system will fail. Detecting this failure is simpler to design separately from the

calculation.

A division circuit was designed and placed in series with an internal arctangent

function. The internal arctangent function is composed of a LUT composed of values

64

from MATLAB’s atan(x) function. The available arctangent approximations have an

important role in deciding the number format to use when computing the division. A

number of approximations are listed in [24] which have typical worst-case accuracy of

0.005 radians (0.29◦) for inputs on the range −1 ≤ x ≤ 1. The RMS error propagated

through an arctangent function is (for σ representing standard deviation of a variable)

σatan u σx√
1+x2 , (39)

and if the input to the arctangent function x ≥ 0, then an upper bound on the RMS

error of the arctangent function’s output is σx for x = 0. For an arctangent function

with a worst-case error 0.005, the incoming division error does not need to be much

less than 0.005 to retain full precision of the arctangent approximation.

Since the division circuit produces a value on the range [0.5, 1), it is best described

by a number representation which is unsigned and has only fractional bits. One step

better, similarly to the IEEE floating point representation, is to use an assumed bit

to represent the value 0.5. Then, the remaining bits represent the fractional number

between 0.5 and 1. Performing Goldschmidt division [25] finds factors which send

the denominator to 1 and the numerator to the result of the division. However,

for numerators which are greater than the divisor the result is greater than 1, and

a number format for the numerator is needed which covers the maximum expected

numerator value. To get around this requirement we can notice that the arctangent

function approximations in [24] operate on the input range [0, 1] and take advantage

of the arctangent identity

Arctangent(1
x
) = π

2
− Arctangent(x) x > 0. (40)

Knowing the input to the arctangent function is positive, noticing that the number

format of the division result is simpler when represented using a purely fractional

number, and that Equation 40 allows the arctangent approximations in the range

[0, 1] to be applicable for (1, x → ∞). This makes a piecewise function for the

division effective. The division performed is

division(Re{x}, Im{x}) =

⎧⎨⎩
Im{x}
Re{x} Im{x} ≤ Re{x}
Re{x}
Im{x} Im{x} > Re{x},

(41)

65

which results in the arctangent function

Arctangent(Im{x}
Re{x}) =

⎧⎨⎩Arctangent(Im{x}
Re{x}) 1 ≥ Im{x}

Re{x}
π
2
− Arctangent(Re{x}

Im{x}) 1 < Re{x}
Im{x} .

(42)

The full arctangent function is composed of several sections. First, it determines

which output case to perform. The possible output cases include the corner cases

of inputs 0, π
2
, and −π

2
. The logic to do this is shown in Figure 41. The output

of this logic is delayed to match the timing of the longest latency in the calculation.

This delay allows the design to be considered pipelined with one input resulting in the

correct output a fixed time period later. The output is selected using a MUX as shown

in Figure 43. The piecewise logic of the full arctangent calculation is shown in Figure

42 and it determines whether to divide real input by imaginary or vice versa, performs

the division, and performs the calculations to apply to the arctangent function. The

arctangent within this design represents the numerical part of the arctangent function

defined for inputs in the range of [0,1).

Figure 41: Output type selection logic and pipelining.

66

Figure 42: Division type selection, division circuit, arctangent circuit with constant
and negation selection, and pipelining.

Figure 43: The appropriate output is selected using a multiplexer.

67

4.2 Division

The division was broken into the following steps:

Division algorithm of ν
d
given a known numerator ν and denominator d

1. Compute |ν| and |d|

2. Factor the same power of 2 from |ν| and |d| to create ν ′ and d′ so d′ lies within

[0.5, 1)

3. Multiply ν ′ and d′ by a LUT factor chosen so that d′ approaches 1, giving ν ′′

and d′′

4. Output ν ′′ × the first factor of Goldschmidt division using the Binomial Theo-

rem

Figure 44: This diagram contains the first part of division where the absolute value
is taken, the bits of the representation are shifted so the denominator lies on the range
[0.5,1), and the index of a LUT step is acquired and used to obtain the stored value
to send d close to 1.

The divider circuit design in System Generator is shown in Figures 44 and 45.

The number format of the autocorrelation function real and imaginary values is

signed (35,27). The first step is to produce the output of the absolute value circuit,

which has a number format of unsigned (34,27). It is important in practice to consider

the number format of the calculator’s components. If the real input is always divided

68

by the imaginary input or vice versa, then dividing a large numerator by a small

denominator may be required for a particular pair of real and imaginary inputs. The

largest possible output number format required for the division calculator is obtained

by shifting a ’1’ in the MSB of the numerator by the largest left-shift performed by the

factoring circuit of << 26, which corresponds to a ’1’ in the LSB of the denominator.

This value results in a MSB value of 28

2−26 = 234, and with a 27 bit fraction the division

output would require a 61 bit representation. This large number format creates several

challenges in implementation, such as there not currently existing a multiplier which

can handle a 61-input-bit multiplication, or timing issues for addition at the clock

rate of 125 MHz. Fortunately, using Equation 42 allows the division’s numerator to

remain less than or equal to the denominator and the output number format can use

the same or fewer bits compared to the input numbers.

The second step is to factor |d| so that it lies on the range [0.5,1), and to provide

the same factorization to |ν|. This is provided by a custom circuit. Approximate

multiplication by powers of 2 using a bit-shift is essentially a free operation on an

FPGA because each bit must be routed to a new location anyway, and what changes is

not the hardware itself but how the following hardware interprets the bits. However,

the overall circuit which performs the factorization isn’t free because it is composed of

a combinational part which determines the most significant ’1’ in the input numerator

and denominator magnitudes, and uses this ”shift code” to select the corresponding

right- or left-shift so that the resulting number lies within [0.5,1). Every possible

shift is allowed by the circuit, and so the result is the input token routed through the

corresponding bit shift. One potential issue with a large combinational circuit such

as this is timing failure due to a long path of logic. In practice, timing is met without

issue at a clock rate of 125MHz.

After d′ is obtained, a LUT value is multiplied by ν ′ and d′ to obtain ν ′′ and d′′,

and then Goldschmidt division is performed. Goldschmidt (GS) division provides the

quotient Q = ν′′

d′′
by multiplying ν and d by values K0K1K2...Kn so that as the value

d′′ → 1, ν ′′K0K1...Kn → Q. The constants Ki can be chosen in several ways, and

using the binomial theorem they can be chosen so that for x = 1 − d′′, K0 = 1 + x,

K1 = 1 + x2, and the process continues with each new multiplier being Ki = 1 + xi.

This has the effect that

69

Q = ν′′

d′′
= ν′′

1−x
= ν′′(1+x)

(1−x)(1+x)
= ν′′(1+x)

1−x2 = ν′′(1+x)(1+x2)
(1−x2)(1+x2)

= ν′′(1+x)(1+x2)
1−x4 . (43)

This process continues, and has quadratic convergence for values of x close to 0

and d′ close to 1, with

errorrelative, worst case ≤ 1
d′K0...Ki

= 1

1−(1+(2−1)2i)
= 2−2i . (44)

The purpose of Goldschmidt division is to obtain a division result after a short

latency. Due to the arctangent approximations and reasoning from before, the division

here only needs to provide an output with a relative error of about 0.005. To achieve

this, the division needs to be accurate to about 2−8. The worst case of error for

Goldschmidt division is where d′ = 0.5 at the beginning of the algorithm, and so we

require 3 stages to reach 2−8.

Looking for a solution which can approach the result in fewer multiplications, I

use the idea that lookup tables (LUTs) provide low latency, and looked at different

constants which can be multiplied by d′ so that it approaches 1 without becoming

larger than 1, but which is effective for bringing the worst-case values close to 1. The

initial estimate d′′ can be obtained by a LUT applied to the range of values within

[0.5,1). The LUT values are formed by discretizing this range into 2n regions, where

the integer index j varies on the range 0 ≤ j ≤ 2n−1 and each region is specified by

[2
n+j
2n+1 ,

2n+(j+1)
2n+1). (45)

Multiplying each range by the reciprocal of the upper value,

2n+1

2n+(j+1)
, (46)

causes the upper value of each range being set to 1, which satisfies the requirement of

a result no greater than 1, and increases the lower value of each range so it approaches

1. Performing the LUT multiplication produces a value in the range

[2n+j
2n+(j+1)

, 1). (47)

70

Table 2: Example LUT with n = 2. For these entries the ability to send each index
range closer to 1 is shown.

Indexed Range LUT factor Resulting range

[1
2
, 5
8
) 8

5
[4
5
, 1)

[5
8
, 6
8
) 8

6
[5
6
, 1)

[6
8
, 7
8
) 8

7
[6
7
, 1)

[7
8
, 1) 1 [7

8
, 1)

Figure 45: This diagram shows the multiplication of D’ and N’ with the LUT factor,
followed by the 2-D” calculation, and then multiplication of N” with the GS factor.
Note that D in the SysGen diagram is d in the text, and N in the SysGen diagram is
ν in the text.

Using a LUT with a factor of 2n items is convenient because the LUT index can be

read directly from the binary number representation of d′. Having the first step use

a LUT is better than having the first step being a Goldschmidt step. For example

a table with n = 2 causes the worst case error to reach 0.8, versus one step of the

binomial Goldschmidt algorithm’s 0.75. The performance benefit of a larger LUT

for the first step increases for larger n, although its resource requirements double

according to 2n. Each Goldschmidt step approaches the result quadratically, and is

therefore more effective with a closer initial guess. One method of combining these

71

two methods is to perform one LUT step to have the result quickly approach within

a small distance of 1, and then perform one Goldschmidt step to get much closer.

A generic relation for combining a LUT step followed by the binomial Goldschmidt

step is

errorLUT-GS, relative, worst-case ≤ (2n + 1)−2, (48)

and we can approximate the relative error as 2−2n as n grows.

One unfortunate part of combining these two methods is that the Goldschmidt

step’s x must be based off of d′′, which is the result of the LUT step. Using only

Goldschmidt steps, no multiplications need to be done with the denominator. This

means that for the same latency as one LUT step and then a Goldschmidt step, and

the same number of multiplies, we could perform two Goldschmidt steps. However,

the resources required to outperform two Goldschmidt stages are meager. Choosing

n=4, or 16 LUT entries, the worst case error of the division with LUT then GS

is 0.0035, while the worst case error for 2 steps of GS is (2−1)4 = 0.0625. The

implemented multiplications using the LUT values are shown in Figure 45, and then

the GS factor is computed and applied in one more multiplication.

Determining the GS factor is also a bit clever, and uses the fact that 1+x = 2−d′′

is always performed, and that d′′ ≥ 0.5. In binary,

d′′ = 0.1b−2b−3b−4b−5... (49)

The constant level result is always 1, since d′′ ≤ 0.5. When subtracting the fractional

part of d′′, each fractional bit of d′′ is added to 0 from the fractional part of 2. This

means that the fractional bits of d′′ are the fractional bits of 2 − d′′. Also note that

the negative sign can be applied before the multiplication of d′ with the LUT factor.

For example:

010.000... 2

+ 111.b−1b−2... − d′′

= 001.b−1b−2... result.

(50)

After the 2− d′′ is performed, multiplying the numerator by the GS factor gives the

result of the division.

4.3 Internal Arctangent

The internal arctangent design is shown in Figure 46. The results are obtained by

performing a LUT indexed by the values of the incoming result from the division.

72

Any of the approximations described in [9] could also be used. The logic, sign, and

addition performed after the LUT access are used to differentiate between the case

1 ≥ Im{x}
Re{x} and 1 < Im{x}

Re{x} of Equation 42.

Figure 46: The arctangent index is obtained from the incoming number representa-
tion, and then applied to a LUT to get the result. The remaining logic decides how
to handle the data for according to the cases in Equation 42.

4.4 Smoothing Filter

As can be seen from the simulation results in Figure 35, there is variance in the

estimated phase offset. In the simulation, the underlying phase offset remains the

same, and so the variance seen in the estimated phase offset is due purely to the

effect of the data and noise acting as a random process. Depending on the required

phase offset correction precision, there is a need to filter the predicted phase offset

and obtain a more reliable estimate.

A simple auto-regressive (AR) filter of order 1 was created to provide this smooth-

ing to the output of the phase offset estimator. The AR filter is implemented as

a FSMD similarly to Frame Detect Controller. The reason for this implementation

is to initialize the filter with the first phase offset estimation value so that multiple

OFDM frames are not required before an appropriate phase result is provided to the

phase offset compensator. Without initialization, the AR filter would begin with an

assumed state such as 0 and require multiple frames to approach the actual phase

offset parameter.

The AR filter controller FSM is created in VHDL, and the datapath is created

in System Generator. An overview of their connections is shown in Figure 47. The

73

internal components of the datapath are shown in Figure 48. The latency of the AR

Filter is four clock cycles.

Using the 8 dB SNR case as an example, the variance of the recovered phase

estimate was calculated to be about 0.0015 rad2, or a standard deviation of about 0.04

rad. At this level or phase offset estimation error, Equation 37 shows for N = 1024,

∆θ̂ = 0.04 rad, and a sampling rate of 122.88 MHz, the RMS frequency error will

be around 750 Hz. Using an AR filter with coefficient 0.1, the variance is reduced to

about 8×10−5 rad2, or a standard deviation of about 0.008 rad. At this deviation the

result produces a frequency offset around 150Hz after about 15 OFDM frames have

occurred. Since the variance decreases proportionally with the number of samples

used in a moving average (MA), the standard deviation decreases to the same level of

0.008 rad with about 25 OFDM frames if the phase offset is approximately constant

over this time.

The pilot data can be used for finer-tuning the carrier frequency offset and Doppler

spread after the estimated coarse carrier frequency offset has completed. For a par-

ticular system, the maximum Doppler spread-handling capability of the remaining

calculations and the expected channel effects can be taken into account to balance

the available correction at each stage of the receiver.

Figure 47: Overview of the AR filter in System Generator.

74

Figure 48: The System Generator block diagram of the AR filter datapath.

75

Chapter 5 Conclusion

The digital logic designs presented in this thesis synchronize a receiver to an OFDM

frame and estimate a received signal’s carrier frequency offset using only the cyclic

prefix size and position in the frame. The correlation of cyclic prefix samples with their

corresponding tail data samples produces a peak value which provides an effective

synchronization time. The synchronization locks onto the signal as each correlation

peak lies within a known window of time after the previous peak, and falls out-of-lock

when the correlation peaks are not detected during this window. A Markov-chain

model was created to predict the portion of time the receiver will be locked-on to

an incoming OFDM frame at different SNRs. The real and imaginary parts of the

correlation signal at the correlation peak time are used to estimate the phase offset

between the tail data and cyclic prefix. This phase offset provides the coarse carrier

frequency offset using the time difference between the samples. The estimated phase

offset is smoothed by an AR filter and provided to later stages in the receiver. The

design runs on the UMDCC’s radio testbed with expected operation during a loop-

back test and a board-to-board test. This design provides a flexible way to synchronize

to an OFDM frame, estimate its coarse carrier frequency offset using only the cyclic

prefix, and the design runs in practice on a radio testbed.

The next step to work with these ideas is to create the phase offset compensator,

which uses the estimated phase to undo the carrier offset frequency’s effect on the

received signal. This can be done in an open loop or closed loop fashion. With the

compensator completed, the radio design should be able to handle board-to-board

OFDM transmission in a test environment.

76

References

[1] C. Schlegel et al., ”UMDCC Report 2014-2015”, Halifax, Canada, 2015, pp.

10-12.

[2] C. E. Shannon, ”A Mathematical Theory of Communication,” The Bell System

Technical Journal., vol. 27, pp. 37923, 62356, July, October, 1948.

[3] J. G. Proakis, M. Salehi, ”Fading Channels I:Characterization and Signaling,”

Digital Communications., 5th Edition, ch. 13, sec. 13.1-2, pp. 831.

[4] J. G. Proakis, M. Salehi, ”Fading Channels I:Characterization and Signaling,”

Digital Communications., 5th Edition, ch. 13, sec. 13.1-2, pp. 843.

[5] J. G. Proakis, M. Salehi, ”Characterization of Fading Multipath Channels,”

Digital Communications., 5th Edition, pp. 831-833.

[6] J. G. Proakis, M. Salehi, ”Characterization of Fading Multipath Channels,”

Digital Communications., 5th Edition, ch. 4, sec. 4.10-2, pp. 262.

[7] J. G. Proakis, M. Salehi, ”Optimum Receivers for AWGN Channels,” Digital

Communications., 5th Edition, ch. 11, sec. 11.2-8, pp. 757-758.

[8] J. G. Proakis, M. Salehi, ”Adaptive Equalization,” Digital Communications., 5th

Edition, ch. 10, sec. 10.5, pp. 721.

[9] C. Schlegel, ”OFDM Equalization and Channel Tracking,” Halifax, Canada,

2015, rev.1.2, pp. 5.

[10] J. G. Proakis, M. Salehi, ”Multiple-Antenna Systems,” Digital

Communications., 5th Edition, ch. 15, sec. 15.4-3, pp. 1014.

[11] J. G. Proakis, M. Salehi, ”Optimum Receivers for AWGN Channels,” Digital

Communications., 5th Edition, ch. 11, sec. 11.2-5, pp. 751.

[12] M. Jar, ”Frame Synchronization,” Halifax, Canada, 2015, rev.1.0, pp. 3.

77

[13] J. G. Proakis, M. Salehi, ”Carrier and Symbol Synchronization,” Digital

Communications., 5th Edition, ch. 5, sec. 5.2, pp. 295-313.

[14] J. G. Proakis, M. Salehi, ”Spread Spectrum Signals for Digital

Communications,” Digital Communications., 5th Edition, ch. 12, sec. 12.5, pp.

816-817.

[15] C. Marsh, ”Introduction to Continuous Entropy,” Dept. CSC., Princeton Univ.,

Princeton, NJ, U.S.A., 2013.

[16] S. Hauck and A. DeHon. ”Implementing Applications with FPGAs,”

Reconfigurable Computing: The Theory and Practice of FPGA-Based Computation,

1st ed. Burlington, MA, Morgan Kaufmann Publishers, 2008, ch. 21, sec. 21.4.2,

pp. 449-452.

[17] E. Nash, ”Correcting Imperfections in IQ Modulators to Improve RF Signal

Fidelity,” ADI, Norwood, MA, U.S.A., AN-1039, 2009.

[18] J. G. Proakis, M. Salehi, ”Carrier and Symbol Synchronization,” Digital

Communications., 5th Edition, ch. 5, sec. 5.3-1, pp. 318.

[19] L. Null and J. Lobur. The Essentials of Computer Organization and

Architecture, 2nd ed. Sudbury, MA, Jones and Bartlett Publishers, 2006, ch. 4, sec.

4.2.1, pp. 178.

[20] S. Hauck and A. DeHon. ”Compute Models and System Architectures,”

Reconfigurable Computing: The Theory and Practive of FPGA-Based Computation,

1st ed. Burlington, MA, Morgan Kaufmann Publishers, 2008, ch. 5, sec. 5.2.1, pp.

112.

[21] J. G. Proakis, M. Salehi, ”Deterministic and Random Signal Analysis,” Digital

Communications., 5th Edition, ch. 2, sec. 2.7-4, pp. 71-74.

78

[22] J.C.I. Chuang and N.R. Sollenberger, ”Burst coherent demodulation with

combined symbol timing, frequency offset estimation, and diversity selection,” IEEE

Trans. Commun. vol. 39, no. 7, pp. 1157-1164, Jul. 1991.

[23] S.M. Kay, ”Sinusoidal Parameter Estimation,” Modern Spectral Estimation:

Theory and Application, 1st ed. Englewood Cliffs, N.J., Prentice Hall, 1988, ch. 13,

sec. 2, pp. 408-411.

[24] S. Rajan, S. Wang, R. Inkol, and A. Joyal, ”Efficient approximations for the

arctangent function,” IEEE Signal Processing Mag., vol. 23, pp. 108-111, May,

2006.

[25] R.E. Goldschmidt, ”Applications of Division by Convergence,” M.S. Thesis,

Dept. Elec. Engn., MIT, Cambridge, MA, 1964.

	List of Tables
	List of Figures
	Abstract
	List of Abbreviations Used
	Acknowledgments
	Introduction
	Context
	Approaching Channel Capacity
	Channel Effects
	Available Information

	Problem and Significance
	Approach
	Scope

	System Overview
	OFDM Design
	Samples Per Frame
	Pilot Information
	Cyclic Prefix
	Other Required Features

	Testbed Hardware
	Digital and Analogue
	Number Formats
	Calibration
	Implementing the Reference Design

	Software Tools
	Golden Model

	Frame Detector
	Correlator
	Peak Detector
	Peak Timing Calculation Strategies
	Alternating Peak Finder
	Receiver Behaviour in Different Situations

	Frame Detect Controller
	Frame Detect Controller Core
	Frame Detect Controller FSM
	Check Pulse Received Within Variance
	Frame Detect Variance FSM
	Frame Detect Countdown Timer

	Markov Analysis of Peak Detector and Frame Detect Controller

	Carrier Frequency Offset Estimator
	Classic Phase Estimation
	Differential Detection
	Limits of Phase Offset Estimation
	Example Phase Offset Estimates

	Arctangent
	Division
	Internal Arctangent
	Smoothing Filter

	Conclusion
	References

