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Abstract

Immune cells can be labelled with superparamagnetic iron oxide (SPIO) nanopar-

ticles and detected in vivo. Tracking the migration of immune cells is valuable for

understanding the immunogenic response to both cancer and cancer therapies in lon-

gitudinal studies. While many sequences are sensitive to SPIO contrast, they have

limited specificity and the analysis is solely semi-quantitative.

Quantitative cell tracking is better for analyzing immune recruitment, but reports

of validated quantification of SPIO labelled cells are rare. This work uses TurboSPI,

a multi-echo single point imaging technique that can provide quantification through

R2* mapping at high temporal resolution. Since R2* varies linearly with SPIO con-

centration, R2* maps can be translated into maps of cell density.

TurboSPI was initially tested in vivo to assess cytotoxic T lymphocyte (CTL)

tracking in response to immunotherapeutics. Analysis revealed that current mono-

exponential R2* fitting techniques performed poorly in the presence of fat. Off-

resonance signal from fat creates modulations in the signal time course that are detri-

mental to fitting an accurate R2* decay.

In silico methods were used to better understand and account for these fat con-

tributions. We performed Monte Carlo simulations to investigate how the signal time

course changes with varying fractions of fat signal. We fit the simulated data using

a hybrid Dixon-R2* signal decay model for simultaneous estimation of R2* and fat

fraction (ff ). The proposed hybrid fitting technique gives accurate and stable esti-

mates of both ff and R2* across a variety of simulated conditions.

Finally, we translated the hybrid technique to real data using in vitro samples of

SPIO labelled cells and oil. The data were fit using both the simple mono-exponential

decay model and the proposed hybrid technique. The proposed technique gives more

stable R2* estimates for SPIO labelled cells when fat is present at fractions greater

than 15%.

This work represents the first instance of simultaneous R2* and fat estimation

using TurboSPI. Improved R2* estimates will lead to more accurate quantitative cell

tracking in future in vivo studies.
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Chapter 1

Introduction

1.1 Cell Tracking

The idea of cell voyeurism [1] is central to understanding various biological mech-

anisms such as migration of therapeutic cellular agents or the immune response.

Studying singular cellular processes in vitro is an effective first step to understanding

the various roles and activities of immune cells. However studying these processes in

vivo offers a further benefit: context.

A common first step in tackling a scientific problem is to first isolate the system of

interest, e.g. the well known “Spherical Cow” in physics (or the single voxel simula-

tions encountered later in this thesis). The basic process must be understood before

complicating the problem. The similarity between this concept and that of studying

immune migrations in vitro is the lack of context. While the basic mechanisms must

be first understood in an isolated environment, eventually the context is necessary

to understand the full scope of the system. Studying cellular processes in vivo offers

the ability to study immune cell recruitment and migration patterns in their native

environment.

Immune cell migration is an important aspect to launching an immune response

[2]. Analyzing the migrations of different subtypes of immune cells in longitudinal

studies is helpful in understanding the underlying biological processes of the immune

system that occur in response to disease and treatments.

This chapter begins with a motivation for cell tracking, an introduction to la-

belling cells with contrast agent for MRI, the history, and the associated limitations.

The following section will present early work of this project that further illustrates

cell tracking challenges. In particular, the two sequences used in this thesis will be

introduced: bSSFP and the more novel TurboSPI. Early analysis of TurboSPI data

revealed specificity and accuracy issues in the presence of fat. The bulk of this thesis

involves investigating methods to account for fat related signal.

1
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1.2 Cell Tracking Motivation

Tracking immune cells in response to immunotherapy is of particular interest for a

number of reasons. While the immune system exists to protect the body from sickness

and disease, it has a history of failure as a complete defence against cancer, which can

overwhelm the immune system often by masking its tumour antigens. Stimulating

the immune system to recognize and eliminate cancer is a method that has been long

sought after, though only recently brought to the clinical stage [3].

Immunotherapies are a promising addition to the conventional repertoire of cancer-

fighting treatments (chemotherapy, radiotherapy, and surgery). These immunother-

apy treatments act indirectly in that they do not target the tumours themselves,

but manipulate the immune system such that the natural disease eliminating cells

can target the tumours directly [4]. Such treatments can either aid effector cells in

recognizing tumour antigens or inhibit suppressive activities of regulatory cells (as

described in Section 3.1). In North America alone, over 700 treatments are being de-

veloped which fall into the immunotherapy category [3]. However, since immunother-

apies that have been tested clinically to date have low response rates [5], there is

work to do. Understanding response mechanisms is vital in learning how to boost the

immunogenic retaliation against cancer [6].

Determining which immune cell population to track primarily depends on the re-

search question, e.g. “are we interested in imaging killer immune cells or suppressor

immune cells?”. Secondly, it can depend on whether or not the cells have an inter-

esting interaction with the chosen cancer model and treatments. In this work we

study cytotoxic CD8+ cytotoxic T lymphocytes (CTLs) in a C3 cancer model with

two immunotherapies: a checkpoint inhibitor and peptide-based vaccine (discussed

in Section 3.1). Quantifying the recruitment of antigen-specific CTLs is particularly

interesting because they are one of the key cell types involved in the immunogenic

response to cancer, specifically with cell death. [7, 8].

1.3 Contrast Agents

The use of contrast agents is a common theme in many forms of imaging. Dif-

ferent agents are used for unique clinical indications to enhance contrast in regions
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associated with certain pathologies [9]. In MRI these agents are usually indirect, that

is they are not imaged themselves, but create contrast by affecting the relaxation of

nearby protons.

Contrast agents used for cellular imaging include paramagnetic agents, compounds

that contain fluorine-19 (19F), and superparamagnetic iron oxide (SPIO) [10]. Para-

magnetic agents, such as Gd3+, operate as primarily T1 agents, reducing the T1 re-

laxation time and resulting in hyper-intense signal, or positive contrast [10]. 19F-MRI

cell tracking measures the contrast agent (19F nuclei) directly rather than measuring

its effect on surrounding protons using traditional 1H-MRI.

This work focuses on techniques that image cells labelled with SPIO, the most

common contrast agent for use in cell tracking in MRI [1].

1.3.1 Superparamagnetic Iron Oxide

The active part of an SPIO nanoparticle is its iron oxide crystal core (magnetite

or maghemite). The crystal core is surrounded by a biopolymer coating to prolong

their time in the body and obstruct, or slow, opsonization [1].

These contrast agents are typically used for enhanced T2 and T2*-weighted imag-

ing. They have large magnetic susceptibilities, χ, a material-specific proportionality

constant that describes a materials magnetization in an applied field [11].

M⃗ = χB⃗ (1.1)

The SPIOs induce field inhomogeneities [12, 13] that locally alter the main mag-

netic field and consequently affects the relaxation rate (R2* = 1/ T2*) of protons in

their neighbourhood [14, 15]. This rate is described in further detail in Section 2.2.

By shortening the T2* time of nearby protons they provide negative contrast (i.e. it

is associated with hypo-intense signal) [1].

SPIOs come in a variety of sizes and are loosely categorized according to diame-

ter into micron-sized SPIO (≈ 1 µm), SPIO (50-150 nm), and ultrasmall SPIO (<50

nm) [1,16,17]. USPIOs will be used in this project as they are appropriate for the size

and nuclear-to-cytoplasmic ratio of T cells (lymphocytes that mature in the thymus).

Phagocytic cells are labelled with large diameter SPIO since this ratio is smaller and

because they preferentially phagocytose larger particles [18,19].



4

As mentioned above, the act of cell-labelling is an interesting application of SPIOs

to track the movements of cell populations, thereby gleaning valuable information on

cellular recruitment in vivo [1]. This is very useful for understanding various biolog-

ical processes involved in disease and recovery.

In this work, we study SPIO labelled CTLs in a syngeneic, non-orthotopic mouse

model of cervical cancer. After labelling with SPIO through in vitro incubation [1],

the cells are injected into mice and can be detected as regions of hypo-intensity or

high R2* values, depending on the MRI sequence used. Most SPIO cell labelling

techniques should not drastically affect the viability [20] or normal activity of the

cells [21]. Therefore, the presence of cell related signal (negative contrast on a bSSFP

image or high R2* on a map from TurboSPI) may be interpreted as an accumulation

of labelled lymphocytes through regular recruitment in an immune response.

1.3.2 SPIO Cell Tracking History

In its simplest implementation, imaging SPIO is not novel itself. Some of the first

publications that report using MR to image the effects of SPIO agents date to the

1980’s [22–31] and early 1990’s [32–38]. The earlier studies characterized the prop-

erties of SPIO nanoparticles, their effect on proton relaxivity, and imaging methods.

The later studies proposed applications in liver and spleen imaging. Labelling cells

with SPIO became a burgeoning field by the late 1990s [39–43] and early 2000s [44–49].

More recent advances in the field of MRI cell tracking are marked by new MR ac-

quisition sequences and analysis techniques. The goal of these techniques is to enable

accurate cell quantification and detect SPIO labelled cells with less ambiguity.

1.4 Challenges of Cell Tracking

Cell tracking is not without limitations that must be addressed or, at the very

least, acknowledged. Wang et al [50] categorized four major cell tracking challenges,

defined in Table 1.1.

Wang suggests that basis of each limitation is either physiologic-pathologic or

technical (relating to the imaging physics and methods). However, a more thorough

interpretation is that the true challenge arises from the combination of physiologic

and technical effects.



5

Table 1.1: Cell Tracking Limitations

Live vs. Dead Inability to distinguish dead cells from live cells
False Positives Misinterpretation of MR Signal
Cell Division Dilution of contrast agent
Quantification Accurately quantifying cells in an ROI using MR signal

Dying and dead cells can retain SPIO nanoparticles and release them into the

vicinity. MR cell tracking cannot distinguish healthy from sick cells. However, if the

dead cells release their SPIO, some MR methods, namely R2* and R2 mapping, can

distinguish this free (extracellular) SPIO from that contained in live cells. This is

because the R2* and R2 relaxation rates (to be discussed further in Section 2.2) differ

for free SPIO versus compartmentalized SPIO (within the cell) [12,51,52]. The ratio

R2∗
R2

is large for compartmentalized SPIO but small for free SPIO, and as such the

effect of SPIO bound in cells can be differentiated from loose SPIO [51–53].

Various other false positives can arise from a combination of physiology-pathology

and technique based effects. For example, phagocytic cells such as monocytes [54],

macrophages [55], dendritic cells (DCs) and neutrophils [10] can phagocytose free

SPIO that has been discarded by dead cells. In fact, this is the mechanism of action

for certain types of cellular MRI [50]. However, this behaviour is not intended when

cell labelling occurs in vitro. An obvious repercussion of free SPIO phagocytosis is

that the detected SPIO labelled cells will be a combination of the cells of interest

(those that were originally labelled in vitro) and these phagocytic cells.

Cell division can also cause misinterpretation in cellular MRI due to dilution of

the SPIO, sometimes occuring asymmetrically [50, 56]. The lower concentration of

SPIO carried by daughter cells may be under the threshold of detection [57]. Cell

division is particularly detrimental when quantification is attempted via R2* map-

ping [58]. Quantification based on R2 [20] or R2* [59] mapping uses linear calibration

curves to convert R2* values to cell concentration per voxel. The phantoms used for

calibration have varying cell concentrations (number of cells/ml within the tube) but

the iron concentration (SPIO per cell) is constant. If the iron concentration changes

in vivo then the original calibration curve is no longer an accurate representation of

the system and can lead to errors converting R2* to cell number.
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This work focuses on tracking immune cells a mere 24 hours after cell injection,

allowing enough time for biological uptake but not long enough for the above pro-

cesses to significantly affect analysis. However, it is important to note that certain

physiologic limitations have more serious ramifications for long-term studies in which

the subject is scanned multiple days (or longer) after the SPIO cells have been ad-

ministered [60].

Some false positives are not derived from the original SPIO particles themselves

but from endogenous sources of the desired contrast. For example, MR cell tracking

methods that detect SPIO labelled cells as signal voids or hypo-intense regions can

give erroneous results in the presence of necrotic tissue which can present similarly

hypo-intense, as illustrated in Section 1.5.1. Decreased specificity is a drawback of

many superparamagnetic or paramagnetic cell tracking methods [61] and accounting

for false positives often requires integration with biological techniques for validation.

One option to counter these specificity problems is to measure labelled cells directly

by using non-proton imaging, most popularly 19F. In this method cells are labelled

with 19F compounds and imaged by 19F-MRI [61–63]. 19F offers positive contrast with

improved specificity due to the lack of background 19F signal [63,64]. Unfortunately,

the increased specificity of 19F cell tracking is countered by a significant decrease in

sensitivity compared to proton-MRI based methods [62]. Some groups suggest track-

ing hyperpolarized silicon nanoparticles [65, 66] which can address specificity with

improved sensitivity (as noted in Section 2.1.3), albeit with unique disadvantages

such as the rapid loss of hyperpolarization.

Lastly, quantifying labelled cells in vivo is advantageous for cell tracking studies

since it offers further power in analyzing biological processes such as cellular re-

cruitment. Rather than merely noting a qualitative change in image contrast that

indicates where cells have gone, quantitative cell tracking can tell you how many. A

degree of quantification is necessary when performing any study that requires intra-

group and(/or) inter-group comparisons. For example, longitudinal studies tracking

different cell-types or responses to different treatment methods.

Frustratingly, quantitative cell tracking is just as challenging as it is desirable [50].

Some issues with quantitation are physiological-pathological, as mentioned above, but

quantifying cells in vivo is technically challenging as well. Qualitative cell tracking



7

analysis can become semi-quantitative when baseline images are taken prior to intro-

ducing the SPIO-labelled cells and signal intensity histograms in the before and after

images are compared [67], as is shown in Section 1.5.1. Other semi-quantitative meth-

ods estimate relative iron mass by comparing signal intensity with SPIO to a matched

control without SPIO and use an MRI signal decay model [68]. Unfortunately, these

semi-quantitative techniques offer only relative SPIO quantification, require baseline

scans, and are susceptible to false positives. Quantitative imaging can be performed

with 19F, however sensitivity remains an issue for this technique.

Relaxation mapping is popular for quantifying cells labelled with SPIO. Since the

relaxation rate, R2* (discussed in Section 2.2), increases as a function of cell concen-

tration [52, 59], this relationship can be utilized to convert R2* maps to cell density

maps. R2* mapping generally requires acquiring multiple images at different echo

times and fitting the exponential signal decay at each voxel in an image. Since the

R2* maps are used to estimate cell concentration, the fidelity of the mapping tech-

nique is key to accurate and successful quantification. This work investigates R2*

mapping by TurboSPI, a technique which is first described in Section 1.5.2.

1.5 Rationale

1.5.1 Previous Work: bSSFP

A number of groups have performed SPIO labelled cell tracking using the balanced

steady steady free precession (bSSFP) sequence that is discussed further in Section

2.6.1 [48,67–73]. bSSFP type sequences are noted for being sensitive to superparam-

agnetic iron oxide contrast and have also been used to image effects of SPIO [28].

While bSSFP is ideal for its sensitivity to iron loaded cells and high signal-to-

noise ratio (SNR), it suffers from some of the limitations discussed in Section 1.4,

specifically false positives results and a lack of quantitative capabilities.

False Positives

Studies of immune cell recruitment include monitoring cell migration in response

to cancer, in response to therapeutic agents [67, 74, 75], or even as the therapeu-

tic agents themselves [10, 76–78]. In the late stages of growth tumours can have
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heterogeneous environments with regions of edema, necrosis, apoptosis, and hemor-

rhage [71, 79]. As stated in Section 1.4, endogenous sources of contrast can create

ambiguities in cell tracking. This uncertainty necessitates additional testing not only

to confirm the presence of SPIO loaded cells, but also to rule out other sources.

Specific understanding of the tumour structure in the model of interest is helpful,

e.g. solid tumours that exhibit central necrosis (also known as a necrotic core) [80–83].

Background knowledge can provide intuition when analyzing MRIs for labelled cells,

but this intuition must be validated with data. One method to corroborate a suspi-

cion of a necrotic core is positron emission tomography (PET).

PET is a form of nuclear medicine that uses a well designed radio-pharmaceutical

tracer. A radionuclide is carried through the body via a chemical tracer, thus trav-

elling the normal route of the chosen pharmaceutical [84]. Along this route the ra-

dioisotope emits radiation in the form of charged particles which undergo a secondary

interaction in the sample, emitting high energy electromagnetic (EM) radiation, that

signals where the pharmaceutical has travelled and accumulated [85]. The most com-

monly used radio-pharmaceutical in oncology is 18F fluorodeoxyglucose (FDG) [84,86].

The tracer to which the 18F radionuclide is attached is a glucose analog and it is not

cancer-specific, but rather indicates areas in the body with high rates of metabolic

activity. The utility of 18F FDG PET in oncology arises from the high metabolic rate

of tumour cells, which require large amounts of fuel (glucose) for fast growth [86].

Previous literature has illustrated central necrosis using PET, noting a central

region of low metabolic activity in an otherwise active tumour [87,88].

Complimentary PET data were obtained in a cell-tracking study (Chapter 3) us-

ing an MR-compatible PET insert for simultaneous PET/MRI. Figure 1.1 shows an

example data set from this study. In the bSSFP images (subfigures a-c), the negative

contrast in the tumour centre is ambiguous: it could suggest SPIO labelled cells or

necrotic tissue. We cannot confidently know the source without further information

from necropsy or other imaging methods. In this case, low activity in the PET overlay

(subfigures d-f) confirms a necrotic core, illustrating a case of false positive detection

by bSSFP.
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Figure 1.1: Upper row: MRI obtained using bSSFP. Bottom row: 18F-FDG
PET/MRI overlay in matched planes using PET data obtained simultaneously.

Previous Analysis Methods

Additionally, the analysis techniques available with a sequence like bSSFP are not

quantitative. The most basic analysis of these images is qualitative, simply noting

regions of negative contrasts in unexpected (i.e. without SPIO) areas, for example

the tumour site or the lymph nodes.

As mentioned in Section 1.4, analysis can become semi-quantitative by using meth-

ods of comparison, to a baseline scan (before SPIO) or control region. Figure 1.2

illustrates an example of semi-quantitative analysis of cell recruitment using bSSFP

with a baseline scan. The orange (24 hours post cell injection) histogram is skewed

and the peak is shifted toward darker contrast values. Unfortunately, these techniques

offer only relative, not absolute, quantification and are subject to ambiguities.

Figure 1.2: Normalized bSSFP signal intensity histograms of the a C3 flank tumour
ROI before (blue) and 24 hours after (orange) injection of SPIO labeled cells.
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1.5.2 TurboSPI

For the reasons listed above, we took a two-sequence approach to cell-tracking.

While bSSFP images are useful for anatomical context and for their qualitative and

semi-quantitative approach, a new sequence, TurboSPI, adds further quantitative

capability. TurboSPI will be discussed in more detail in Section 2.6.2, but a brief

introduction to the benefits and challenges of this sequence will be given here.

TurboSPI is a multi-echo single point imaging (SPI) technique that was first de-

veloped for porous media [89] after it was shown that SPI is capable of quantitative

relaxation mapping for materials with short T2* [90]. TurboSPI was then adapted for

quantification of SPIO [91] and more recently for in vivo cell tracking applications [92].

SPI type sequences are capable of imaging broad line-width samples with less artifact

and thus higher quality than traditional techniques [89]. Multi-echo TurboSPI can

achieve R2∗ mapping with high temporal resolution. These factors make TurboSPI

a good candidate for the high fidelity R2* mapping needed for SPIO labelled cells,

as discussed in Section 1.4. While single point imaging is very slow, the acquisition

time can be significantly accelerated by employing compressed sensing processing

techniques [92]. Since compressed sensing involves reconstructing undersampled data

we can acquire fewer k-space data points, which makes TurboSPI feasible for in vivo

imaging.

TurboSPI had been tested in vivo before the start of this thesis, but Chapter

3 presents the first example of this sequence being used for a large in vivo study.

This study uncovered limitations - nay challenges, of TurboSPI, particularly when

performing R2* mapping in the presence of fat. While fat suppression is performed

in the TurboSPI sequence, there are limits to its efficacy due to line-broadening in

the samples (Section 5.2.1).

Figure 1.3 illustrates that specificity of the R2* map can deteriorate in the pres-

ence of fat. Incorrect fits occurred largely in the fat pads adjacent the tumour and

lymph nodes. Interestingly, in this mouse there appears to be greater cell migration

to the periphery of the tumour. Therefore, the erroneous voxels are especially prob-

lematic since they are near areas of potential cellular detection. Figure 1.3 indicates

a voxel with SPIO labelled cells near fat (region 1 ), a signal from pure fat (region 2 ),

and another possible combination of SPIO labelled cells and fat (region 3 ).
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Figure 1.3: Upper row: a) bSSFP MRI b) R2* map (intensity: 0 - 600 s−1) overlaid
on the axial bSSFP slice. The tumour is highlighted by the red circle. Bottom row:
the MR signal time course for region 1 (c), region 2 (d), and region 3 (e)

Preliminary analysis of these TurboSPI data may therefore drastically inflate cel-

lular recruitment estimates, likely due to the presence of fat. Although TurboSPI can

distinguish between necrosis and SPIO labelled cells, the current mapping technique

can not reliably separate the fat signal from that of the cells. False positives from

fat are easily recognized when visually analyzing individual signal time courses, but

automating this analysis and fitting the effect is difficult. Therefore, we must better

understand and characterize fat contributions in the TurboSPI signal.

1.6 This Thesis

We use three studies to investigate fat contributions in the TurboSPI signal and

develop tools to account for their effect. These studies use in vivo, in silico, and in

vitro methods, respectively. First, we illustrate the problem further with the in vivo

data and show initial attempts at fat correction.

Next, we will study the system using in silico methods, mainly Monte Carlo
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simulations. These methods allow us to study the signal contributions with a greater

degree of control. We can add varying amounts of off-resonance fat signal to simulated

data and observe changes in the resulting signal time course. Likewise, we can change

the volume fraction of labelled cells to simulate different R2* decay factors. With these

data we can test different strategies for fat correction. By combining Dixon water-fat

separation with R2* decay fitting we hope to develop a novel analysis scheme for more

robust R2* estimates.

Lastly, we will test the methods developed in silico on in vitro data consisting of

gelled solutions with varying amounts of oil, water, and labelled cells. In vitro data

provide a compromise with respect to data complexity - less control and precision

than simulations but more than an animal model. We will fit the data using both

the original mono-exponential decay model and the novel technique to compare their

performance for different fat fractions. The overall goal is to refine TurboSPI analysis

methods so that future cell tracking studies will benefit from improved accuracy in

the presence of fat.



Chapter 2

Theory

2.1 NMR

A discussion of magnetic resonance imaging (MRI) is incomplete without first

introducing the concept of nuclear magnetic resonance (NMR). NMR describes the

behaviour of MR active nuclei in a magnetic field. The I in MRI refers to spatially

resolving the NMR signal.

2.1.1 The Quantum Framework

The process exploits the quantum mechanical (QM) manifestation of spin (intrin-

sic angular momentum). Nucleons are spin-1
2
particles described by their eigenstate:

spin-up |1
2
⟩ or spin-down |−1

2
⟩. The (MR active) nuclei used in NMR have an odd

number of nucleons and in MRI the spin-1
2

1H nucleus is primarily studied. Nuclear

spin, mI = ± 1
2
, is described as the eigenvalue of the Iz QM operator [93] [94].

Iz |ψ⟩ = mIℏ |ψ⟩ (2.1)

A semi classical interpretation considers a “spinning” charged particle (proton),

whose circulating current creates a small magnetic field, or magnetic moment, µ⃗. The

proton spins are often likened to tiny classical bar magnets. The magnetic moment

µ⃗ is associated with the spin by the gyromagnetic ratio γ a proportionality constant

specific to the nucleus of study. For the nuclei studied in typical (1H) NMR γ
2π

=

42.58 MHz
T

[95].

µ⃗ = γI⃗. (2.2)

In the absence of an external magnetic field, B⃗, the two spin-states are of equal

energy and randomly aligned. However, if an external field is imposed, Bo, states align

13
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in parallel (low energy) or antiparallel (high energy) with a slight majority aligned

in parallel for its lower energy.

Figure 2.1: A schematic of proton spins randomly aligned in the absence of a magnetic
field (left) and their response to an imposed field (Bo) aligning either in parallel or
antiparallel to the direction of (Bo) (right).

The energy difference between these two states arises from the splitting of energy

levels in a magnetic field, known as the Zeeman Effect [94]. The energies (H |ψ⟩ =
E |ψ⟩) are calculated using the Hamiltonian responsible for this effect HB, where ℏ
= 6.626×10−34

2π
Js is a form of Planck’s constant.

HB = −µ⃗ · B⃗ (2.3)

HB = −γIzB0 (2.4)

HB |ψ⟩ = −γℏmIB0 |ψ⟩ (2.5)

E = ∓γℏ1
2
B0 → ∆E = γℏB0 (2.6)

A simple calculation equating ∆E to the equation for transition energy uncovers

ωL, which is equal to the Larmor frequency, the characteristic frequency of resonance

described in the next section.

∆E = hf = ℏγBo (2.7)

∴ f =
γ

2π
Bo (2.8)

ωL = γBo (2.9)

The field strength of the pre-clinical MR scanner at the BMRL is Bo=3 T, therefore

the ωL = 127.74 MHz.
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2.1.2 The Classical Framework

If the magnetic moment µ⃗ is considered classically as a “bar magnet” then the

applied magnetic field Bo produces a torque on the moment, which causes µ⃗ to precess

in alignment with the magnetic field [96,97]. The alignment is imperfect and there is

an angle θ between the vectors as in Figure 2.2.

τ⃗ = µ⃗× B⃗ (2.10)

Continuing to think classically and now geometrically, the torque is used to un-

cover the Larmor frequency. The torque describes how the angular momentum (L for

consistency with classical notation) changes with time [98].

τ⃗ =
dL⃗

dt
= γL⃗× B⃗ (2.11)

Figure 2.2: A schematic of the precessional motion of the classical angular momentum
vector, L, and its radius of motion used to calculate the Larmor frequency.

The precessional motion occurs with the frequency of repetition described in Eq.

2.12 by thinking of torque as the speed of the precession (Eq. 2.11) and distance as

2πr → 2πLxsinθ [96] [98]:

f =
τ

2πLsinθ
(2.12)

This frequency can be related back to the same Larmor frequency described above

using 2.10 (and the cross product rule):

f =
µB0 ���sinθ

2πL ���sinθ
(2.13)
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Finally, substitute Equation 2.2 for µ, while using the classical L for classical

angular momentum. The resulting angular frequency is the equal to that found

above for the transition energy.

ωL = γB0 (2.14)

2.1.3 Net Magnetization

Of course one is not detecting single protons when performing NMR experiments

but rather a group of many protons. The work in this thesis focuses on the macro-

scopic behaviour of relaxation. Therefore, a more thorough explanation considers an

ensemble of protons which can each occupy one of the two (Zeeman) energy levels.

The probability of occupation and populations of these spin-states and are determined

by Boltzmann thermal equilibrium statistics [95].

N↓

N↑
= e−γℏBo/kBT = e−∆E/kBT (2.15)

Here, kB and T are the Boltzmann constant (1.38×10−23 J
K
) and temperature,

respectively. For our experimental conditions of T=293 K and Bo = 3T, this ratio

of anti-aligned to aligned states is approximately 0.99998. The excess of N↑ states is

only slight: e.g. for 1000000 N↓ states, there are approximately 1000020 N↑ states.

The population difference can be enhanced through hyperpolarized MRI, which is

especially useful to increase sensitivity when imaging nuclei with lower γ and/or

abundance.

Since the effective magnetization comes from an excess of aligned spin-states, the

net magnetization vector (M⃗) is aligned “up” with Bo and the magnetization at

equilibrium can be derived from Equation 2.15 [95].

Mo =
1

V

γ2ℏ2Bo

4kBT
Ntot (2.16)

Which shows how magnetization magnitude is proportional to the applied Bo field

and inversely proportional to temperature.
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2.1.4 B1 Application and Evolution of M⃗

M⃗ can be broken into longitudinal and transverse components, labelled M⃗z and

M⃗xy respectively [98] [99].

M⃗z =Mz z⃗ and M⃗xy =Mxx⃗+Myy⃗ (2.17)

At equilibrium M⃗ is aligned with B⃗ and therefore all magnetization is in the

longitudinal direction. That is:

Mz =Mo and Mxy = 0 (2.18)

To measure magnetization M⃗ the NMR signal is obtained by perturbing the mag-

netization vector out of Bo alignment using an orthogonal radiofrequency (RF) pulse,

as was first introduced by both Bloch [100] and Purcell [101].

Energy shifts between the two spin-states occur by absorption of EM radiation at

the given Larmor frequency, ωL. This input energy is absorbed by the lower energy

(aligned) states to move them into the higher energy state. Consequently, the mag-

netization M⃗ changes since the relative population of ↑ and ↓ states have changed.

When considered in the “rotating frame”, i.e. a frame of reference that rotates at

ωL, the effect of the RF pulse (called B1) is a “tipping” of the vector M⃗ towards the

transverse plane [95] [99]. The degree to which M⃗ tips into the transverse plane is

called the flip (or tip) angle α.

Figure 2.3: Left: a schematic that shows the magnetization vector aligned with Bo

before applying B1. Right: a schematic that shows the tipping of the magnetization
vector (α = 90◦) after applying B1. Both schematics are shown in the rotating-frame.
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After the perturbation by B1 the magnetization vector M⃗ precesses back to align-

ment with the main field in a spiral motion (as viewed in the “lab frame”), regaining

longitudinal magnetization and losing transverse magnetization. The time-evolution

of M⃗ is dictated by the famous Bloch equation [100] [102], where T1 and T2 are time

constants that describe the return (or relaxation) to equilibrium.

dM⃗

dt
= γM⃗ × B⃗ − Mxx̂+Myŷ

T2
− (M0 −Mz)ẑ

T1
(2.19)

2.2 Relaxation

As described above, after the B1 field has been applied the system tends back

towards equilibrium such that Mz = Mo and this behaviour is studied using Equation

2.19. These time constants vary for different molecular species and image contrast

is created by exploiting this variation. Depending on the formalism these are also

discussed in terms of relaxation rate such that:

R1 =
1

T1
and R2 =

1

T2
(2.20)

R1 and R2 describe regaining longitudinal magnetization and losing transverse

magnetization, respectively. These processes are also referred to as spin-lattice relax-

ation (T1) and spin-spin relaxation (T2) and are named for the nuclear interactions

that drive them [98].

It is useful to separate Equation 2.19 into its longitudinal and transverse compo-

nents to study the two relaxation rates individually [100]:

dMx

dt
= −Mx

T2
and

dMy

dt
= −My

T2
(2.21)

→ dMxy

dt
= −Mxy

T2

dMz

dt
= −(Mz −Mo)

T1
(2.22)

The behaviour that governs spin-lattice relaxation is the transfer of energy to the

system of surrounding molecules (the lattice) by thermal motion and as such it is also

historically referred to as thermal relaxation [100] [103].
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Mz(t) =Mo(1− e
− t

T1 ) (2.23)

The behaviour that results in transverse decay of spin-spin relaxation is dephasing

of the nuclear spins in the magnetization vector [99] [103]. T2 relaxation is domi-

nated by inter-nuclear (spin with spin) interactions [100]. Nuclear spins are affected

by the minute magnetic fields produced by their neighbours and as such exhibit dif-

ferent ωL [98] i.e. a line-broadening in the frequency domain. These changes in the

precession frequency lead to a loss of coherence and a reduction to the net magne-

tization vector. Intuitively, R2 relaxation is always faster than R1 relaxation, since

transverse relaxation is lost to the spin-lattice interactions as well as the spin-spin

interactions [98].

Mxy(t) =Moe
− t

T2 (2.24)

Figure 2.4: Left: Longitudinal relaxation for a species with long T1 (pink) and short
T1 (green). Right: Transverse relaxation for a species with long T2 (red) and short
T2 (blue)

Nuclear spin-spin interactions are not the only cause of dephasing; there is an-

other mechanism that is very important to this thesis. Local field inhomogeneities

similarly lead to changes in ωL and consequent phase incoherence [98]. These local

field inhomogeneities can be system based imperfections or deliberate manipulations

from, for example, injected superparamagnetic iron oxide nanoparticles.

A new relaxation rate, R2*, is defined to account for the combined effect of spin-

spin related dephasing (R2) and inhomogeneity related dephasing (R′
2). It follows that
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T2* is always less than or equal to T2. It is equal only in an ideal/perfect magnet

and in the absence of tissue induced inhomogeneities.

R2∗ = R2 +R′
2 (2.25)

1

T2∗
=

1

T2
+

1

T ′
2

Figure 2.5: T2 (solid) versus T2* (dashed) relaxation: local field inhomogeneities
increase the transverse relaxation rate

2.2.1 Relaxometry

Most clinical pulse sequences are designed to provide weighted images whose con-

trast is dominated by a given parameter [104]. This may be sufficient for many clinical

indications, but contrast changes can be ambiguous (as discussed in 1.5.1) and, in

research especially, it is useful to estimate the parameters directly. Parameter esti-

mation is performed by taking multiple signal measurements while varying an aspect

of the pulse sequence. A relevant example is fitting a time constant (T1, T2, or T2*)

by taking measurements at multiple time points throughout the decay [98]. The sig-

nal (magnetization) decay curve is then fit to these measurements to estimate the

parameter of interest.

M(t) =Moe
− t

T2 (2.26)

Naturally, taking more measurements at various time points secures a more accu-

rate fit. This speaks to a benefit of TurboSPI that was mentioned in Section 1.5.2:

high temporal resolution for R2* mapping.
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2.3 NMR Signal

The MR signal is detected from the Mxy time-varying magnetic field. The signal

equation is commonly written in its simplest form as [105]:

S(t) =

∫
Mxy(r, 0)e

−iω(r)tdr (2.27)

This is re-written in terms of spin density ρ(r) which is proportional to the initial

magnetization, omitting T2 relaxation at this point.

S(t) =

∫
ρ(r)e−iω(r)tdr (2.28)

2.3.1 Free Induction Decay

The free induction decay (FID) is the simplest form of the MR signal [105]. It is

the decay of transverse magnetization after administering and RF pulse [106].

After an RF pulse, the transverse magnetization decays according to Equation

2.24 and the signal evolves as:

S(t) = sinα

∫
e
− t

T2(r)ρ(r)e−iω(r)tdr (2.29)

Where α is the tip-angle introduced in Section 2.1.4. The magnetization is com-

pletely tipped into the transverse plane when α = 90◦.

S(t) =

∫
e
− t

T2(r)ρ(r)e−iω(r)tdr (2.30)

Therefore if the system is simplified to a single spatial component with ω = ωL

[105]:

S(t) =Moe
− t

t2 e−iωLt (2.31)

2.4 Spatial Information: Magnetic Resonance Imaging

MRI uses the above foundation of NMR, but obtains further information by spa-

tially resolving the signal to form an image. Spatial information is obtained using
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gradient coils Gxyz. The gradients superimpose a linearly varying magnetic field on

to the main magnetic field.

B(r)′ = (B0 +G · r) (2.32)

Applying gradient fields changes the magnetic field that a proton experiences due

to their position and thus the frequency ωL changes as a function of position ωL(r).

This is referred to as frequency encoding and this gradient is commonly formalized as

being the x-direction [105] [106].

S(t) =

∫
ρ(r)e−i(ωLo+γG·r)tdr (2.33)

The ωLo term is not spatially dependent and can be removed from the integral, and

this “carrier signal” can be removed from the equation [105].

The equation can be parametrized in terms of spatial frequency, k⃗ [105]

S(k) =

∫
ρ(r)e−i2πk·rdr (2.34)

Where k⃗ is connected to t by the frequency encoding gradient:

k =
γ

2π
Gt (2.35)

This way, the spin density ρ(r) is found by inverse Fourier transform of Equation

2.34:

FT−1(S(k)) = ρ(r) =

∫
S(k)ei2πk·rdk (2.36)

Frequency encoding resolves one direction of a two-dimensional slice of k-space,

but the other (typically formalized as the y-direction) is described by phase encoding.

The phase encoded signal is also described in k-space by Equation 2.34, however in

this case the gradient has a defined brief temporal duration (∆t =Tpe) and k is a

fixed value that defines the starting point in k-space [105].

k =
γ

2π
GTpe (2.37)

Its application for Tpe also causes a change in ωL as a function of position, but

once the gradient is turned off the frequencies will return to normal. However, the
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phase difference that was caused by differing ωL will remain and thus k-space has a

position dependent phase ϕ(r) before frequency encoding is performed [106].

An image is obtained by traversing k-space in specific trajectories that are defined

by controlled sequences of RF and gradient pulses at different strengths for different

lengths of time. Data are acquired in k-space and inverse Fourier transformed to the

more visually intuitive image space that shows ρ(r).

2.5 Sequences

2.5.1 Spin Echo vs Gradient Echo vs Stimulated Echo

An echo is another type of NMR signal that is used more often than measuring the

FID itself. The two most common forms, spin-echo (SE) and gradient-(recalled)-echo

(GRE), with different mechanisms of production [105]. A third form, the stimulated-

echo (STE), will also be discussed briefly, as STEs are seen in both the bSSFP and

TurboSPI sequences. The SE arises from an additional (second) RF pulse while the

STE is caused by three (or more) RF pulses in succession and the GRE arises from

a gradient reversal. In this work, TurboSPI depends on mainly on SEs and bSSFP

depends on GREs (as demonstrated by their sequence diagrams in Figures 2.8 and )

however STEs appear in both sequences as well.

Spin Echo

The SE technique was first introduced by Hahn [107] [108] and adapted by Carr

and Purcell [109]. Their procedure uses the original 90◦ RF pulse with an additional

180◦ refocusing pulse. The utility of the SE is to create a measurement that is more

reflective of T2 than T2* and this is done by reversing the effect of inhomogeneity

related dephasing (T2’). The 180
◦ pulse is called a refocusing pulse since it is designed

to refocus the magnetization vector by regaining the phase coherence that was lost

due to inhomogeneity [106].

As mentioned earlier, T2’ dephasing arises from changes in ωL caused by inhomo-

geneities in Bo: some spins precess slower or faster than ωLo. When the refocusing

pulse is applied, the magnetization is flipped to the other side of the transverse plane

and the faster spins will begin to catch up with the slower spins, thereby regaining
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coherence [105]. If the echo is to be formed at an echo time TE then the 180◦ pulse

should be set at TE
2
. Additionally, the inhomogeneities should not change with time.

The amplitude of the echo is still damped according to T2, since this effect cannot be

recovered.

Figure 2.6: The spin echo sequence with paired 90◦ and 180◦ RF pulses. The echo is
weighted by T2 since the T2* effect is refocused at TE. Inspired by [105]

Gradient Echo

The GRE sequence obtains an refocused echo by using so-called dephasing and

rephasing gradients instead of a second RF pulse [110]. While the GRE was first

discovered and formalised not long (<10y) after the SE, GRE sequences were not

popular in clinical practice until the 1980s-1990s [111]. While SEs and GREs have

unique strengths that benefit various research problems (as is seen in this thesis), a

particular advantage of the GRE-type sequence is speed. This is because the TE can

be controlled by gradient pulse design in addition to the smaller flip angles that are

typically used (rather than α = 90◦) which allow shorter relaxation times (TRs) [105]

[112].

In figure 2.7 the first negative gradient causes deliberate accelerated dephasing

after the RF pulse. The spins are refocused to coherence by applying subsequent

positive gradient that is at least equal in strength and thus, an echo is formed. In

this framework, the only phase effect that is counteracted is the deliberate incoherence

caused by the dephasing gradient. Since the natural T2’ effects are not refocused, the
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amplitude of the echo will be weighted by T2* rather than T2 [105]. The enhanced

T2* sensitivity is advantageous when detecting iron labelled cells.

Figure 2.7: The gradient recalled echo sequence with an α RF pulse and paired
dephasing-rephasing gradients. The echo is weighted by T2∗ since only the deliberate
dephasing is refocused at TE. Inspired by [105]

Stimulated Echo

STEs result from application of multiple (three, or more) RF pulses and (like other

echoes) their contribution to the signal largely depends on pulse sequence parameters,

such as RF and acquisition timing [113]. For example, in the simplest case of three

90◦ RF pulses applied x-direction [113]: 1. the first pulse (with which we are familiar

from above) tips magnetization (in z-direction to start) toward the y-direction and

the magnetization vector begins to lose coherence in the transverse plane; 2. the next

pulse tips magnetization in the y-direction towards the ± z-direction; 3. the last (in

this simplified example) pulse tips magnetization in the ±z-direction to ± y-direction

and the magnetization rephases to form an STE in the -y-direction.

These echoes can be the dedicated echo (as in the stimulated echo acquisition

mode (STEAM) sequence [114]), an intended source of signal contribution, as in the

bSSFP sequence, or an unwanted side effect that must be addressed. STEs can be

addressed by either removing the STE or optimizing it through alignment with SE,

as in the TurboSPI sequence.
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2.6 Sequences of Interest: bSSFP and TurboSPI

2.6.1 bSSFP

The first sequence used in this work is in the fast GRE family: balanced steady-

state free precession, also often referred to as TrueFISP, FIESTA, or balanced-FFE.

As mentioned above, GRE-type sequences typically benefit from the speed availed by

short TR, TE, and low α [115], however the overall acquisition time is increased for

bSSFP by the multiple acquisitions needed to counter the banding artifact charac-

teristic to bSSFP. This sequence is ideal for imaging SPIOs [28] [1] since GRE-type

sequences are sensitive to susceptibility effects [116]. As discussed in Section 1.5.1,

this sequence has been shown to be successful in imaging contrast enhanced cells.

Figure 2.8 shows an example of a 2D slice-selective bSSFP pulse sequence dia-

gram. The balance is intuitive when looking at the lobes of the gradients in the pulse

sequence: the net gradient area over a full TR is equal to zero.

∫ TR

0

Gidt = 0 (2.38)

All gradients are rewound between RF pulses [116], and the rewinding gradients are

equal and opposite to those applied at the beginning of the sequence.

Figure 2.8: An example pulse sequence diagram for a 2D bSSFP sequence showing
the balanced gradient lobes in all three directions (Gx, Gy, Gz). The balance is given
by the net gradient area = 0 for each of the three gradients over the TR
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bSSFP is a steady state form of a gradient echo sequence. In a completely steady-

state sequence, the spins in the sample are not given enough time to relax fully to

Mz = Mo equilibrium. If the TR is sufficiently short compared to the T1 and T2 time

constants, the next RF and gradient pulses will arrive before the spins have recovered

from the last pulse (the magnetization will not have fully recovered to the longitu-

dinal axis or decayed from the transverse plane) [117]. Therefore, at the next RF

pulse some transverse magnetization (Mxy) will be pushed longitudinally, while the

longitudinal magnetization (Mz) that did recover will be tipped toward the transverse

plane as usual. If this process is repeated a number of times then the magnitudes

of Mz and Mxy become constant from one TR to the next and the system is said to

have reached a steady state [117]. The number of RF pulses to obtain steady state

magnetization depends on the time constants of the tissues, the flip angle, and the

relaxation time [115].

bSSFP has inherently mixed contrast weighting and in standard execution of

the sequence, SPIO provides effective negative contrast through locally enhanced T2

weighting. A simplified version of the steady-state magnetization (MSS) equation for

the bSSFP sequence is given below in Equation 2.39 [118]. The simplification occurs

because TR<<T1,2 [118] which is a highly biologically relevant assumption for T1

(TR = 8ms in this thesis) and is valid to a lesser degree for T2. This equation shows

that the sequence has both T1 and T2 dependance, resulting in unique mixed T2/T1

contrast weighting [119].

MSS =Mo
sinα

1 + cosα + (1− cosα)(T1

T2
)

(2.39)

While bSSFP belongs to the family of GRE sequences, it is unique in how it

approaches residual Mxy that remains when using short TR [117]. Other fast GRE

sequences (like spoiled GRE (SPGR)) refocus Mz but spoil Mxy, resulting in a signal

that is primarily T1 weighted [117, 120]. As discussed above, bSSFP refocuses both

magnetization components such that the final signal itself is a mix of overlapping

STEs and SEs [117] (even though bSSFP is in the GRE class [120]). By obtaining

steady-state in both Mz and Mxy, bSSFP is not only a truer steady-state sequence,

but also utilizes more of the initial magnetization to earn greater SNR (compared to

SPGR which “wastes” some of the initial magnetization).
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2.6.2 TurboSPI

As was first introduced in Section 1.5.2, TurboSPI performs multi-echo R2* map-

ping with high temporal resolution. R2* mapping can provide quantitative estimates

of cellular recruitment since R2* increases linearly with SPIO concentration and there-

fore with increased cell density in a voxel.

Single Point Imaging

TurboSPI uses single point imaging (SPI) for data acquisition: a single k-space

data point is collected per RF excitation. Spatial encoding for SPI is performed using

only phase encoding gradients, rather than the combination of phase encoding and

frequency encoding [121]. SPI techniques are able to overcome Bo inhomogeneity and

susceptibility artifacts by virtue of their data encoding scheme [92]. Since suscepti-

bility artifacts are expected when imaging SPIO, this is a significant feature of the

sequence.

Recall from equations 2.35 and 2.37 that k⃗ depends on t for the case of frequency

encoding and a constant Tpe for the case of phase encoding. Phase encoding is not

performed dynamically as a function of t, but rather performs a shift to a new lo-

cation for each excitation. For this reason, SPI is also called constant time imaging

(CTI) [121]. Purely phase encoded sequences are therefore immune to artifacts as-

sociated with frequency encoding such as line-broadening from T2* effects (among

others) [89] [121]. Line-broadening from T2* results from changes in ωL and therefore

widening of the frequency spectra [105].

Note that Equation 2.29 describes how signals decay with T2 or T2* by multipli-

cation with the transverse exponential. Section 2.4 showed the Fourier relationship

between k-space and image space with Equations 2.34 and 2.36. A property of the

Fourier transform is that multiplication in one domain becomes a convolution in the

other [122] [123]. Convolutions cause blurring, or a loss in spatial resolution [123] so

it follows that strong T2* effect can degrade resolution.

Functions that modulate the k-space signal are referred to as modulation transfer

functions (MTF) and the Fourier pair is the point spread function (PSF). The shape

of the PSF, particularly its full width at half maximum (FWHM), is often used to
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describe image resolution [121] [122]. Therefore, it follows that an idealized “per-

fect” PSF would have an infinitesimal width, as in the Dirac delta distribution. The

corresponding Fourier pair (i.e. the idealized MTF) is constant unity for all spatial

frequencies [124]. Gravina described the total PSF as multiple convolutions from

different imaging deteriorating effects [121]:

PSFtotal = PSF∆k ∗ PSFt ∗ PSFD (2.40)

Where the PSF∆k term describes k-space sampling, the PSFD term describes

diffusion, and PSFt describes the effects that cause magnetization to vary with time

during readout. Idealized total PSF and total MTF are impossible in the practical

case of real measurements. However, since k⃗ is not time-dependent during a solely

phase encoded acquisition, PSFt becomes a delta function. Therefore, even though

a “perfect” total PSF is impossible, the final image is unaffected by artifacts like

susceptibility [121].

TurboSPI for R2* Mapping

Immunity from frequency encoding artifacts is not the only benefit of TurboSPI

with respect to quantifying SPIO. As a (multi) spin echo sequence, TurboSPI would

traditionally create an R2 weighted image collected at the center of the echo [89,91].

However, in more recent implementations [91, 92] multiple data points are collected

for each voxel during the rephasing-dephasing of the echo such that the SE itself can

be resolved in a signal time course. This is available because the acquisition is not

performed during frequency encoding. Data are acquired with a sampling frequency

of 100 kHz resulting in very fine temporal resolution.

When used for cell quantification TurboSPI data analysis involves fitting the spin-

echo decay (Figure 2.9) for each voxel in an image to obtain a map of R2* values. The

map is then converted to cell/voxel estimates using a calibration from a set of phan-

toms with known cell concentrations. Owing to its “artifact immunity”, TurboSPI

has a large dynamic range meaning that it can detect and quantify labelled cells in

low and high concentrations. This is in contrast to other R2* mapping techniques

that are unable to map voxels with high concentrations of SPIO due to substantial

signal loss [91].
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Figure 2.9: An example of TurboSPI data in a signal time course plot for an in vitro
voxel with SPIO labelled cells with the R2* decay highlighted. The effective TE is
10ms. While the data are plotted as discrete points, they appear as a line due to the
fine temporal resolution. Time course data are fitted for each voxel in an image to
obtain an R2* map.

Accelerated Acquisition

The clear drawback of any SPI technique is time: collecting an image one point at

a time is slow. Even a 2D N×N image requires N2 spin echoes from (traditionally) N2

excitations [89]. The two time-saving mechanisms that combine to make SPI feasible

in vivo are a) using a multi-echo sequence [89] and b) compressed sensing (CS) ac-

quisition [92]. The combined effect allows one to a) collect more points per RF pulse

and b) require fewer points overall.

The multi-echo sequence uses an echo train to acquire multiple k-space points per

excitation. The data acquisition scheme is ordered such that the echo train steps

through k-space in a radial line such that the first echo is acquired near the center

and the last echo in the train (which is more attenuated by T2) is acquired near the

edge [92]. This is ideal since the center of k-space describes contrast in the image.

Even with this scheme, multi-echo TurboSPI is best when the T2 is much larger than

T2*. Conveniently, this is the case with SPIO loaded cells (for which R2* >> R2)

but not for free SPIO particles, as noted in Section 1.4. This divergence is due to the

relative scale of the SPIO induced field inhomogeneity versus the distance of water
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diffusion. When SPIO nanoparticles are compartmentalized in cells, their magnetic

field inhomogeneities will be sufficiently large such that the water cannot diffuse out

of the inhomogeneous region during a typical acquisition time scale [12] and thus R2’

behaviour dominates, causing high R2* but low R2.

Figure 2.10: TurboSPI sequence with 3D phase encoding gradients. Both T2 (grey)
and T2* (black) decays and two of the eight spin echoes are shown. The dashed line
is an optional readout gradient to obtain a template FSE image at t = TEeffective.
From [92]

Advances in CS image processing enable the undersampling of k-space without

significant detriment to image quality. Lustig describes the CS method as requir-

ing a) image data sparsity, b) incoherent artifacts, and c) a nonlinear optimization

reconstruction such that image sparsity and consistency with acquired data are main-

tained [125]. Rioux proved that TurboSPI can conform to these requirements and

described how the sequence is particularly amenable to sampling for incoherent arti-

facts since it can randomly undersample across three dimensions [92]. This is because

it doesn’t use frequency encoding, of which random undersampling is difficult. CS

TurboSPI also uses prior information in the form of a fast spin echo (FSE) pre-scan

with matched parameters at a single time point (TE) [92]. Prior information from

a guide has utility in prescribing a sampling pattern such that sampling density is



32

increased in image regions with higher signal. The prior information is also used as

an initial condition and constraint in the optimization reconstruction.

2.7 Chemical Shift

Section 1.5.2 introduced a challenge of TurboSPI for in vivo applications: the

presence of fat. While protons from water molecules account for the majority of

the 1H MR signal in an in vivo sample, a small portion comes from protons in fat

molecules [126]. The current automatic R2* calculation erroneously fits the signal

from fat which confounds the quantification results.

The term chemical shift refers to a relative shift, or peak separation, in the fre-

quency spectrum caused by the different magnetic environment that protons experi-

ence depending on their chemical structure (shown in Figure 2.11). In fact, the goal

of NMR spectroscopy is to classify chemical species using these spectra. However,

the effect can have frustrating consequences in imaging. Chemical shift phenomenon

arises from the electron cloud that a surrounds a nucleus - electrons from the nucleus

itself and its neighbours [127]. The electron cloud produces small magnetic fields that

oppose B⃗ which in turn shield the nucleus [128]. Of course, this changes the effective

B⃗ felt by the proton and the Larmor frequency from Equation 2.9 can be re-written.

ωeff = γBeff (2.41)

The chemical shift (δ) is commonly referred to in parts per million (ppm) so that

the value can be applied to any field strength.

δ =
ω − ωo

ωo

(2.42)

The strongly electronegative oxygen in water compared to the long hydrocarbon

chain in fats give rise to very different shielding environments for water protons versus

fat protons [126]. The chemical shift for the main peak of the fat spectra is 3.5 ppm

(with respect to water) [127] [126] so the frequency difference is approximately 447

Hz at 3T. This means that the signal from fat protons cycles in phase to out of phase

with the signal from water protons approximately every 1.1 ms (the half of 447−1 s).
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∆fWF = (3.5× 10−6) · (42.58× 106
Hz

T
) · 3T = 447Hz (2.43)

Figure 2.11: A diagram showing water and fat peaks for a simulated in vivo sample.
The peaks are separated by 3.5 ppm in the δ scale, or 447 Hz at 3T.

The traditional chemical shift artifact (also known as chemical shift of the first

kind) is voxel displacement in the reconstructed image [129] [130]. This occurs because

spatial encoding is performed by creating intentional frequency shifts as a function of

position using the gradient field. Since the fat protons resonate at an inherently lower

frequency, their spatial position will be mis-mapped. It follows that the displacements

occur in the frequency encoding direction, but not the phase encoding direction.

TurboSPI is a purely phase encoded sequence and is thus unaffected by the tra-

ditional chemical shift artifact. The fat δ effect on TurboSPI data is one of time

dependent contrast, rather than spatial displacement, and it is observed in the signal

time course. The fat protons precess in and out of phase with a period of 2.2 ms

(Equation 2.43). Signal intensity modulation is seen in time courses as demonstrated

by Rioux [91] and also shown in Figure 1.3 d. This is a similar manifestation of the

same phase cycling effect that causes chemical shift of the second kind or india ink

artifact at tissue boundaries in GRE sequences for certain TEs [97]. For cell quan-

tification purposes the effective artifact is observed in the R2* maps when automatic

fitting misinterprets the signal modulation from TE → (TE + 1.1 ms) as a decay.

This is especially problematic if a voxel contains both fat and labelled cells, as sug-

gested in Section 1.5.2.
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Employing fat saturation (fat sat) is one way to address these off-resonance ef-

fects [131]. TurboSPI uses chemical shift selective (CHESS) pulses. This technique

involves using an RF pulse that is specifically tuned to the shifted frequency of fat

protons (the righthand peak in Figure 2.11). First, the fat saturation RF pulse tips

the fat spins into the transverse plane while sparing the water. Next, a spoiler gra-

dient spoils the transverse magnetization from fat (Mxy−fat), after which the main

imaging sequence is performed on the unsaturated water protons. Understandably,

this technique is quite sensitive to field homogeneity [131] and susceptibility effects. A

CHESS pulse is performed in TurboSPI, but its efficacy is limited by line-broadening

in the sample.

2.8 Fat-Water Separation

Fat-water separation is another fat suppression technique that exploits the chem-

ical shift effect [132]. Rather than utilizing the peak separation in the frequency

spectrum as is done in fat saturation, this method is based on the oscillating relative

phase separation of the two species (described above). The goal is to use multiple

measurements (two or more) with known water-fat phase differences to generate sepa-

rate water and fat images. Clinically, this method has value in creating fat-suppressed

images that are often more effective than fat saturation resulting in enhanced lesion

detection [132] [133].

When using this type of technique it is important to have an appropriate signal

model, such as that described in a comprehensive review by Ma [133]:

S(x, y) = [W (x, y) + F (x, y)eiα]eiϕ(x,y)eiϕ0(x,y) (2.44)

Where S is the complex signal, W and F represent relative signal magnitudes

from water and fat, α is the phase angle between them, ϕ is a time dependent phase

error related to main field inhomogeneities ∆B0. ϕ0 is a time independent, but

spatially varying, phase error from system imperfections, such as phase shifts between

components (e.g. the transmit and receive coils) or RF penetration differences [134]

[133].
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α = ∆ωWF∆t (2.45)

ϕ = γ∆B0∆t (2.46)

α is known since it depends on the established fat-water frequency difference

(Equation 2.43) and ∆t. The other parameters in Equation 2.44 (W, F, ϕ, ϕ0) are

spatially dependent unknowns.

In reality, the signal magnitudes, W and F, depend on relaxation times, but this

effect is neglected in many forms of the model since ∆t is short [133]. Even though

this model ignores the T2* effect, which is relevant to this work and will be discussed

further below, it is a clean description of the fat-water signal.

2.8.1 Dixon Formalism

Water and fat separation by chemical shift was first suggested by Dixon in his

seminal 1984 paper [135].

In SE sequences this method starts with first obtaining a typical SE image. The

typical SE image gives an in phase image since both the water and fat spins have

been rephased. This is why chemical shift of the second kind artifact is not seen in

SE sequences. Next, another image is obtained by adjusting the timing of the refo-

cusing pulse with respect to the readout gradient [133] [135]. This shifted acquisition

generates an image in which the fat and water spins are out of phase. The degree

to which they are out of phase depends on the timing delay used. In the original

two-point Dixon imaging, they are 180◦ out of phase. These in and out of phase time

points are used to calculate the relative signal contribution from water and fat.

The two-point Dixon uses two known α values: 0 and π. These convenient angles

allow Equation 2.44 to by simplified greatly using Euler’s formula.

ei0 = cos(0) + i sin(0) = 1 (2.47)

eiπ = cos(π) + i sin(π) = −1

Such that the signal at 0 and π can be calculated by [133]:
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S0 = (W + F )eiϕ0 (2.48)

Sπ = (W − F )eiϕ0

The two-point implementation neglects the time dependent ϕ term described

above [133] [136]. Dixon showed how water and fat images could be created us-

ing simple arithmetic [135]. The ϕ0 term is excluded by taking the magnitude of S0

and Sπ or W and F.

W =
S0 + Sπ

2
(2.49)

F =
S0 − Sπ

2

It is unreasonable to neglect the ϕ term, that is to assume perfect B0 homogeneity.

That is why the three-point Dixon technique was developed [136]. By adding another

measurement, this implementation can tackle the ∆B0 as well. The original three-

point formulation (Equations 2.50) collected the 0 and π images with an additional

-π image as well [136], but some early methods use a 2π angle [133] [137], and others

use asymmetric non-integer values [138]. TurboSPI gives many options for ∆t (π, 2π,

-π, and more).

S0 = (W + F )eiϕ0 (2.50)

Sπ = (W − F )eiϕeiϕ0

S−π = (W − F )e−iϕeiϕ0

Three measurements for the three unknowns (since ϕ0 is dealt with by taking the

magnitude at the end). Here, the additional measurement is used to calculate the ϕ

term by ϕ =
arg(SπS∗

−π)

2
so that the W and F images can be calculated as before [133].

Obtaining more time points and performing a fit to the signal model can offer

a more accurate estimation of the parameters. However, this is difficult in practice

since it requires taking measurements at multiple echoes and can thus be quite slow.

Therefore, TurboSPI is particularly amenable to the fitting technique by virtue of the
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large number of temporal images that it acquires.

Obtaining more time points also enables the estimation of further parameters. The

above formulae neglect T2* decay. Ignoring decay during the short ∆t between time

points is acceptable for many tissues, but is the assumption breaks down in regions

of high R2*. For this reason, extended Dixon techniques [134] [139] were developed

in which the signal magnitude terms (W and F) are multiplied by the exponential

decay factor. Since this work involves imaging high R2* species, it is important to

consider the extended model. Equation 2.44 becomes:

S(x, y) = [W (x, y)e
−∆t
T∗
2W + F (x, y)e

−∆t
T∗
2F eiα]eiϕ(x,y)eiϕ0(x,y) (2.51)

Glover argues that the T2* time should be taken as an average for the water-fat

mixture of water, so other Dixon-T2* studies use a single common exponential term

e
−∆t
T∗
2 [134, 139]. However, this thesis allows the water and fat components to have

separate decay factors, as shown in Chapters 4 and 5. We will focus on fitting the

unique relaxation time for the water species T ∗
2W which, contrary to an average T2*,

should not change for different fat fractions.



Chapter 3

Pilot Work: Cytotoxic CD8+ T Cell Tracking

A pilot study with four treatment groups was performed using both bSSFP and

TurboSPI sequences. The goal of the study was two-fold:

1. Investigate the immune response of CTLs in a mouse model

Quantify CTL recruitment in a C3 cancer model for multiple mouse groups re-

ceiving different immunotherapy treatments.

2. Pilot TurboSPI in its first large in vivo study

Aim 2 is most relevant to the bulk of this thesis. We include TurboSPI in the

imaging protocol and note the advantages and challenges of using this sequence. Data

from the pilot study largely informed the focus of the fat correction project.

3.1 Background: Cancer Model, Cells, and Treatments

3.1.1 C3 Cancer Model

All mice are implanted with cells from the murine C3 cell line [140, 141]. The

C3 cells have been designed to express HPV type 16 (HPV16) [140–143] making it

a syngeneic flank model for cervical cancer [144, 145] and thus, well matched to the

treatments described below.

Using a flank tumour situated low on the body is ideal for avoiding the lungs,

which are difficult to shim and have a large degree of motion even when a mouse

is sedated. The flank tumour also creates an unambiguous area of interest which is

helpful in a pilot study.

38
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3.1.2 Cytotoxic T Lymphocytes

As mentioned in Section 1.2, we choose the tracking cell population to study

specific functions of the immune response. CTLs are interesting because they are

directly involved with destroying target cells that carry particular antigens (e.g. C3

cancer cells with R9F). First they must be activated by interacting with antigen

presenting cells (APCs) so that they are primed to recognize the antigen.

3.1.3 Immunotherapy Treatments

It is interesting to see how CTL recruitment changes in response to immunother-

apies that are designed to enhance cytotoxicity or diminish suppressive activity. Two

immunotherapies are studied both as unique treatments and in combination: anti-

programmed death-1 (anti-PD-1) checkpoint inhibitor and a DepoVaxTM peptide-

based vaccine [146]. Previously, CTL recruitment has been studied in a C3 model

using MRI with bSSFP (in response to the vaccine) [147] and using biological meth-

ods (in response to combination therapies) [143]. Therefore, tracking CTLs in a C3

model with anti-PD-1 and DepoVax is a logical pilot test for TurboSPI quantification.

anti-PD-1

One of the first clinically approved immunotherapy treatments was a checkpoint

inhibitor (CPI), or checkpoint blocking antibody [148]. Checkpoint molecules serve

a regulatory purpose to control the immune response [149]. Their influence is key

to modulating the initiation and duration of an immune response and preventing

an over-activation which could result in tissue damage [149] or autoimmunity [150].

Unfortunately, cancer cells can take advantage of these checkpoints by expressing a

ligand which can bind to the receptor molecule on an immune cell, initiating inhi-

bition of anti-tumour activity [151]. The CPI studied in this work blocks a popular

checkpoint interaction between the programmed death 1 receptor (PD-1) expressed on

CTLs and the corresponding ligand PD-L1 expressed on C3 cells [148, 152]. As well,

anti-PD-1 is particularly interesting with the CTLs since studies have shown that in-

hibiting PD-L1 expression of dendritic cells (DCs) enhances CTL cytotoxicity [153].

Therefore, anti-PD-1 treatment may enable a stronger response against cancer.
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DepoVaxTM

DepoVax is not a vaccine itself, but a vaccine delivery system [68, 73, 142, 143,

146, 154]. The unique vaccine platform combines peptide-antigens (to prime T cells)

with a proprietary adjuvant (to enhance immune response to the antigen [155]) in a

lipid-based (water free) depot [146]. This lipid-based depot allows for slow antigen

release [68] to sustain CTL activation and stimulate an enhanced immune response.

In this study (and previous work [68, 73, 142, 143, 147]) the vaccine contains R9F, an

HPV16 antigen. It is thus well-matched to stimulate an immunogenic response to C3

tumour cells (which express HPV16) by activating antigen-specific CTLs [143].

3.2 Methods

Animal Groups

The animals were housed at the IWK In Vivo Facility and practices adhered to

approved ethics protocols for animal care. Four groups of mice were imaged: three

treatment groups and one group of untreated controls.

• Untreated n=5

• Treatment 1: Anti-PD-1 Checkpoint inhibitor n=5

• Treatment 2: DPX-R9F Vaccine n=5

• Treatment 3: Anti-PD-1 + DPX-R9F n=5

Each imaging group (C57BL/6 mice, I Group) had disease and treatment matched

transgenic green fluorescent protein (GFP) donors (C57BL/6 UbC-GFP mice) that

were used for harvesting CTLs (C Group) and APCs (A Group). All mice received a

subcutaneous injection of 5×105 C3 cells in 100µL in the left flank.

Treatment Group 1 received an intraperitoneal injection of 200 µg of anti-PD-1

in sterile PBS on days 7, 9, 11, 21, 25 post C3 implantation. Treatment Group 2

received a subcutaneous injection of 50 µL of vaccine to the right flank on day 15.

Treatment Group 3 received both the anti-PD-1 and DPX-R9F treatments. C3 cell

implants and treatments for donor mice were staggered one week early for continuity.
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General Protocol

Figure 3.1 shows the high-level timeline for the protocol and Figure A.1 in the

Appendix shows a more detailed schedule. Mice were imaged twice: at days 21 and

28 post implant. Therefore two cell isolation procedures were performed per imaging

group and mice received two injections.

Cell isolation was performed according to an internal standard operating pro-

cedure (SOP) (Appendix A.2) nine days before labelled cell injection. CTLs were

harvested from the inguinal, mesenteric, brachial, axillary, and submandibular lymph

nodes of the GFP donor mice. The CTLs were cultured in vitro for six days for

proliferation. APCs were isolated from the spleens of GFP donor mice on the fourth

day post CTL isolation and cultured in vitro for 48 hours. On the sixth day post iso-

lation CTLs were primed with APCs (1:10 APC:CTL) and R9F antigen for 48 hours.

On the eighth day post isolation the primed CTLs were loaded with commercially

available 30 nm SPIO nanoparticles (Molday ION Rhodamine B, Biopal) via passive

in vitro incubation for 24 hours. Approximately 8×106 SPIO labelled CTLs were

injected into imaging mice via tail vein injection. Mice were imaged 24 hours after

injection to allow for biological uptake.

Figure 3.1: A simple schematic of the general method showing the steps from tumour
implantation to imaging

3.2.1 Imaging

All MR data were acquired on the 3T pre-clinical Agilent MR scanner at the

BMRL. PET data were acquired for select mice (Figure 1.1) using the MR compati-

ble Cubresa NuPET for simultaneous PET/MR imaging. Mice were sedated with an
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MR compatible isofluorane anesthetic hookup and physiologic monitoring was per-

formed using small animal monitoring equipment (SA Instruments Inc).

Each I group was imaged at day 21 and day 28 post C3 implant. The mice also

receive a baseline scan just before injection of SPIO labelled cells and approximately

24 hours before the “main” scans (for cell detection). The baseline is most important

for bSSFP data since analysis is based on the relative increase of negative contrast

associated with CTL recruitment. However, the baseline scan is also helpful in deter-

mining an average R2* value in C3 flank tumours without SPIO.

Sequences

The proposed two-sequence approach for cell-tracking includes bSSFP (performed

first) and TurboSPI (performed second). The relevant imaging parameters for the

bSSFP and accelerated TurboSPI sequences are given in Tables 3.1 and 3.2. Addi-

tionally, the TurboSPI protocol includes a 3D FSE pre-scan with matched parameters

(at one time point) and an unaccelerated 2D TurboSPI (at all time points).

Table 3.1: bSSFP Pulse Sequence Parameters

TR (ms) TE (ms) α N Matrix FOV (mm3) Time (min)

8 4 30◦ 4 256×170×170 38.4×25.5×25.5 64

Table 3.2: TurboSPI Pulse Sequence Paramters

TR (ms) TE (ms) ETL ESP Matrix FOV (mm3) Accel Time (min) FSat

250 10 8 10 96×96×48 30×30×30 8 28:54 3DTSPI 90◦ sinc

4:53 2DTSPI low

2:29 FSE power

3.2.2 Analysis

bSSFP analysis would typically involve signal histogram analysis for the ROI in

addition to volumetric analysis of tumour growth. However, since the focus of this
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thesis is cell tracking by TurboSPI, the semiquantitative bSSFP contrast analysis will

not be presented. For this project bSSFP data were mainly used for anatomic local-

ization, though qualitative observations about contrast in the tumour were noted.

Figure 3.2 describes the major steps in TurboSPI data analysis. The process be-

gins with the CS reconstruction described by Rioux et al [92] in which the FSE scan is

used as a guide. It is then useful to observe signal time courses for voxels of interest

within the tumour, particularly those with corresponding negative contrast on the

bSSFP scan. A voxel with suspected SPIO content is found and appropriate bound-

aries are chosen to fit the decay. R2* mapping is performed at each voxel by fitting

the linear exponential decay between the set boundaries (after the echo). These first

two steps (CS Reconstruction and R2* mapping) are performed in Relax!, which is a

Matlab graphical user interface (GUI) originally developed by Dr. James Rioux.

Figure 3.2: A flow chart stating the four major steps to analyzing CS-TurboSPI data:
CS Reconstruction, R2* Mapping, Registration and Fusion, and Cell Quantification

Next, the bSSFP and TurboSPI data are registered and fused in VivoQuant (Invi-

cro). This step reveals an ancillary utility of the FSE scan: it serves as an intermediary

for registering the TurboSPI image to the bSSFP image. The data are then fused to

exploit the complementary strengths of each technique.

Cell quantification requires a conversion from R2* to cell concentration (SPIO

labelled cell per voxel). This conversion is based on a R2* calibration with known cell

concentrations. Figure 3.3 gives the calibration curve for CTLs: R2* values for 10
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unique concentrations of labelled CTLs in NMR tubes. The R2* values were obtained

individually for each tube by taking the NMR linewidth, or full width half maximum,

of the main peak in the frequency spectrum.

R2∗ = LWπ (3.1)

The R2* map can be converted to a map of cells/voxel using the linear calibration

and the appropriate voxel size (312.5 µm×312.5µm×625µm for this experiment). R2*

is not a specific SPIO metric, but one that correlates linearly with SPIO. The tumour

itself has “background” R2* that must be considered before the final conversion.

In this study, we subtracted an average baseline tumour R2* that was obtained by

scanning mice before injection of labelled cells.

Figure 3.3: A simple plot showing the R2* calibration for 10 phantoms with different
concentrations of SPIO labelled CTLs. R2 = 0.994

It is important that a unique calibration be performed for each cell tracking ex-

periment. This is because the R2* will vary for different cell types. The effects of

SPIO on surrounding protons (and thus the R2* value) varies with cell loading, as

will be demonstrated in Chapter 4. As well, the amount of SPIO a cell contains is a

function of cell size, cytoplasmic to nuclear ratio, phagocytic properties, and loading

conditions. For example, CTLs contain approximately 5 pg/cell after they are incu-

bated at 4×106 cells/mL with 0.075 mg/mL SPIO-Rhodamine B. Since the R2* effect

depends on the mass of iron per cell, it follows that the calibration curve is only valid

when the experimental conditions are replicated for each cell injection.
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3.3 Results and Discussion

TurboSPI data were not susceptible to the same specificity issues seen in bSSFP

data with respect to necrosis. However, initial estimates of cellular recruitment were

drastically inflated: some tumours appeared to contain nearly all of the injected cells,

which is not realistic. Fortunately, a benefit of TurboSPI is the additional informa-

tion availed by the fourth (temporal) dimension which allowed us to determine the

cause. This is unlike bSSFP data which require auxiliary methods to describe any

irregularities confidently.

After scrutinizing the signal time course data, we determined that the overesti-

mates were due to erroneous fits in fat voxels. We found voxels that could contain

both SPIO labelled cells and fat particularly concerning. In some mice the bSSFP

and TurboSPI data showed increased cellular recruitment to the tumour periphery,

indicating suboptimal infiltration. Unfortunately, in the flank tumour there is high

fat content at the tumour periphery since the tumour cells are implanted near the

fat pad. As well, the inguinal lymph nodes are surrounded by a fat pad which is

equally concerning since they are interesting sites with respect to the immune re-

sponse because they can become enlarged with T cells. In fact, previous studies using

pre-clinical MRI found swelling of the vaccine draining inguinal lymph node in re-

sponse to DPX, which may indicate a more active immunogenic response [68,73].

The data were acquired with a fat saturation pulse, but given that large fat modu-

lations remain in the time course, its efficacy is clearly limited. An initial post hoc fat

suppression was attempted: fat elimination. This method was implemented before

R2* mapping. Complex temporal data at each voxel were analyzed for the charac-

teristic fat modulation with a period of approximately 2.2 ms. Any voxels that were

flagged by this test were exempt from fitting. Figure 3.4 shows R2* overlays with and

without the elimination. While this method was successful at removing fat voxels,

it had the unwanted effect of removing voxels with potential mixed content (of cells

and fat) which can occur with large voxels. As well, in some cases the strict elimina-

tion removed voxels containing no perceptible fat and thus mapping with elimination

introduced suspected underestimates in cell numbers.
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Figure 3.4: Left- bSSFP MRI with R2* map of the ROI (tumour and surrounding
tissue) overlaid with a) no fat corrections and b) simple “fat elimination”. Right:
Signal time course from voxels at c) inner tumour periphery and d) tumour center.
Both techniques recognize d) as labeled cells while c) may suggest a combination
of cells and fat or a poor fidelity fat voxel. The fat elimination (b) simply ignores
voxels like those in c), however the uncorrected technique (a) fits this as only cells.
Additionally, strict elimination removes many non-fat voxels in the tumour center.

Figure 3.5 shows CTL migration from day 21 to 28. First we note that data

were least variable with the combination treatment (Treatment Group 3) and most

variable with the Untreated Group. This indicates differences in consistency of re-

sponse between mice groups. Ideally, all mice (or eventually, all patients) will respond

predictably to a given treatment with little variability. Currently, many individual

immunotherapy treatments suffer from high individual variability. While slight in-

dividual differences are inevitable, the aim is relatively uniform response across a

treatment group, rather than individual subject success or failure. In this work,

combination treatment exhibited the most uniform response with respect to CTL re-

cruitment, indicating a more preferential response.

While there are no significant differences in mean recruitment between groups, we

note that CTL migration appears to increase with the combination treatment while

the others decrease. This could suggest that the DPX-R9F + anti-PD-1 combination

encourages a more sustained response. However, the finding is purely speculative
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as the trend is not supported by a statistically significant difference and further

data would be required to corroborate the observation. Weir et al published sim-

ilar findings using biological methods to evaluate CTL recruitment in response to

combination therapies [143]. They found a statistically significant increase in CTL

recruitment with the combination treatment for R9F-specific CD8+ cells, but not for

CD8+ cells that were not specific to the antigen. While our CTLs should be primed

to be antigen specific, further biological validation will be important in the future to

ensure that cells remain primed in the suppressive tumour microenvironment. As well

we must note that, in Weir’s study, the combination treatment included metronomic

cyclophosphamide (mCPA) in addition to anti-PD-1 and DPX-R9F. Including mCPA

has been shown to limit immune suppression induced by tumours without reducing

R9F-specific CTLs induced by the DPX-R9F vaccine [142]. Therefore, it may be

interesting to include mCPA in the treatment plan for future studies.

Figure 3.5: CTL migration from day 21 to day 28 post-implant for Untreated, anti-
PD-1, DPX-R9F, and anti-PD-1+DPX-R9F. ROI Analysis and Plot by M-L Trem-
blay.

3.4 In Vivo Summary and Conclusions

Aim 1: Investigate the immune response of CTLs in a mouse model

We used TurboSPI to quantify CTL recruitment in four treatment groups: un-

treated, anti-PD-1, DPX-R9F, and combination anti-PD-1–DPX-R9F. The combina-

tion treatment exhibited the smallest intra-group variability, however no significant
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differences in recruitment rate were found between groups. Comparison with a previ-

ous study that used biological methods [143] suggests this finding may indicate that

our CTLs may not be completely antigen-specific. However, fat was detrimental to

fitting accurate R2* and thus to obtaining accurate in vivo cell numbers.

Aim 2: Pilot TurboSPI in its first large in vivo study

Despite the associated challenges, using TurboSPI clearly offers far more informa-

tion than bSSFP alone. TurboSPI has greater specificity for SPIO labelled cells versus

necrosis, but the R2* mapping has poorer specificity with respect to fat. Specificity

for labelled cells versus fat increased when implementing a simple fat elimination

technique, but sensitivity for the labelled cells decreased. Off resonance fat signal

adversely impacts R2* mapping and this effect needs to be addressed to improve

quantification accuracy. The first steps will be isolating the system in silico to in-

vestigate how varying amounts fat affect our signal time courses and then developing

techniques for fat correction.



Chapter 4

In Silico Study

The challenges described in Chapter 3 illustrate the need for better fat correction

methods in TurboSPI analysis. The fat saturation pulse is not fully effective and

post hoc fat elimination was not robust. The remainder of this thesis will focus

on improvements to Step 2 in the TurboSPI analysis flow chart (Figure 3.2): R2*

mapping. Specifically, we aim to to improve fit performance in the presence of fat.

This is done through in silico methods before moving on to in vitro data.

4.1 General Methods

The first aim is to determine the fat contribution to the signal, particularly in

the time course that is used for fitting R2*. The second aim is to account for the

fat contribution, which involves an estimate of relative fat signal through Dixon type

fat-water decomposition.

It is instructive to address these issues in silico due to the experimental flexibility

availed by simply changing parameters such as cell-size, susceptibility, and concentra-

tion. It would be extremely time consuming to run comparable physical experiments

and impossible to do so with the same degree of accuracy and precision afforded by in

silico methods. As alluded to in Section 1.1, it is helpful to begin by simplifying the

problem: start with the ideal experiment in the absence of noise or Bo inhomogeneity.

These methods can then be translated to higher levels of complexity. All calculations

for this study were performed in Matlab.

4.1.1 Specific Acknowledgements

The simulation framework was originally developed for blood vessels (with ap-

plication to fMRI) by Patterson [156] and adapted for spherical perturbers by Ri-

oux [157] [158]. The analytic model was developed by Rioux [157] [158] and was an

49
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extension earlier work by Kiselev [159]. These were invaluable tools with which to

study relaxation near SPIO labelled cells.

4.1.2 Simulation

These calculations use Monte Carlo methods, in that they simulate stochastic

processes using random sampling [160]. The results are therefore associated with

statistical uncertainty that decreases with the number of samples [161]. The stochastic

processes at play in this study include both the random walks [161] diffusion of water

(and thus the signal generating protons) and the geometry of the field of perturbers

(in this case SPIO-loaded cells) [158]. A δ = 3.5 ppm fat signal will be added to an

existing simulation framework and analytic model.

Main Simulation Parameters:

• Perturber Size (R): The perturber is that which alters the magnetic field.

In the simulation framework, this could be a spherical SPIO nanoparticle, a

spherical SPIO-loaded cell, or in previous implementations, a cylindrical blood

vessel. For this study, the effective perturber size is the cell radius since the

SPIO is compartmentalized within the cell.

• Volume Fraction (ζ) This is the fractional volume of the “voxel” that is

occupied by perturbers. This directly correlates to the parameter of interest for

in vitro and in vivo experiments: the number of SPIO labelled cells per voxel.

• Susceptibility (∆χ) Susceptibility difference between the perturber and the

inert medium. ∆χ offers an in silico analog to represent iron loading. It can

be likened to mass of SPIO/cell using in vitro susceptometry data: 1. Obtain a

total ∆χT for a phantom. 2. Obtain the cell volume fraction ζ = VcellNcell/Vtot.

3. Divide ∆χT/ζ to find ∆χ for a single cell. 4. Note mass SPIO/cell for given

∆χ. For example, ∆χ ≈ 0.004 for 3-5 pg/cell.
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In our simulations, ∆χ is used to calculate the field offset [162] [163].

B(r⃗, R, θ) =
4π

3
∆χB0(

R

r
)3(3 cos2 θ − 1) (4.1)

r⃗ is the distance between the perturber and point at which the field is calculated,

R is the perturber size defined above, and θ is the angle between B⃗ and r⃗.

Since ∆χ affects B⃗, it is the active parameter that causes the enhanced R2’

relaxation [12] [163].

R
′

2 = γ
2π

9
√
3
· LMD (4.2)

Where local magnetic dose (LMD) of the contrast agent describes magnetization

from the SPIO [12] [163].

LMD = ζ∆M (4.3)

• Timing parameters (TE and δt) The simulation computes signal time

course (magnetization as a function of time) and thus the TE of the sequence is

relevant. δt is akin to a sampling interval: a time-step between magnetization

measurements along the protons random walk.

• Diffusion Coefficient (D) This is the diffusion coefficient of the sample. It is

used to generate the random walks path taken by the proton through the grid

of perturbers. The expected distance travelled through diffusion during each

time step is by:

step =
√
6Dδt (4.4)

• Number of Protons (N ) The number of protons used in a simulation; i.e.

the number of repeated samples/ simulation iterations.

• Fat Fraction (ff) This is a new addition. The frequency shifted complex

signal from fat (Sf ) is added to the complex water signal from the simulation

(Sw). The ff represents the fraction of signal that arises from fat such that the

total signal is given by Equation 4.5, where Sf is also scaled by N.

S = (1− ff) · Sw + ff · Sf (4.5)
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The simulation does not explicitly consider T1 relaxation and while it does include

T2 relaxation in the framework, the value is set quite large such that the effect is

effectively neglected. Since T2 >> T2* for SPIO compartmentalized in cells, this is

a reasonable simplification.

Simulation Process

The simulation is based on a framework developed by Boxerman [164] for cylin-

drical perturbers (blood vessels) which in turn was based on previous work by Weis-

skoff [162] for spherical perturbers. Weisskoff acknowledges that similar Monte Carlo

simulations were performed by others [165] [166] [167]. While the original implemen-

tation of the simulation tool used in this work was for cylindrical perturbers [156], it

was adapted back to the spherical geometry for cellular imaging [157].

The process involves first generating a randomly distributed grid of spherical per-

turbers (cells) of size R with a defined volume fraction ζ. They exist in a cube

(simulated “voxel”) where length of the cube edge is scaled by perturber size and

the expected distance of proton diffusion during the time course. This distance is

calculated using Equation 4.4 while substituting TR for δt.

Once the grid of perturbers is created, the simulation generates a random diffusion

path for the proton to step around the spheres without ever stepping into a sphere.

Next, the magnetic field is calculated at each ∆t step (and thus each new position)

of the proton’s journey using Equation 4.1 considering ∆χ, R, and sphere - proton

distance r⃗. This B calculation is done for each sphere and summed to give the total

magnetic field experienced by the proton. That is, Equation 4.1 becomes:

BNS =
NS∑
n

4π

3
∆χB0(

R

rn
)3(3 cos2 θn − 1) (4.6)

Where NS is the number of spherical perturbers based on ζ, R, and voxel size.

The calculation is done for each ∆t such that there is a vector BNS(t).

Finally, BNS(t) is used to calculate the dephasing in the magnetization during the

FID (t0 → t = TE/2) and rephasing-dephasing in the SE (t = TE/2 → 3TE/2) of the

TurboSPI sequence using the accumulated phase change throughout the sequence.
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ϕ(t) = 2πγB
′
(t) (4.7)

Where

B
′
(t) =

t∑
k=1

BNS(k)δt (4.8)

T2 decay is added to the output, but the T2 value is kept large such that the

decay is slow, as discussed above.

The deliverable is a complex magnetization time course for the single voxel com-

puted from the initial 90◦ RF pulse to t = 3TE/2. The whole process is repeated N

times and the N complex magnetization time courses are summed together to give

the final result for all protons. An example of the output for N = 3×104 is given in

Figure 4.1.

Figure 4.1: An example of the simulation output showing the FID and SE for t = 0
→ 3TE/2. Input parameters: R = 4 µm, ∆χ = 30×10−3, ζ = 1.5×10−5. Red dashed
lines highlight the typical acquisition window for real (in vitro/in vivo) data

4.1.3 Model

The aim of an analytic model is to describe the above signal behaviour in a de-

terministic fashion without need for experimentation through physical means or time

consuming Monte Carlo simulations.

The model used in this thesis is based on the slow diffusion model (SDM) devel-

oped by Kiselev [159] which describes relaxation from susceptibility related dephasing
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by a microvascular framework. This framework is similar to the blood vessel network

described above with application to fMRI. Rioux extended the SDM to describe spher-

ical perturbers for application to quantitative cell tracking studies by TurboSPI [157].

The slow diffusion model itself is an alternative to the static dephasing regime (SDR)

developed by Yablonsky [163], which neglects the diffusion of water molecules. By

neglecting diffusion, the SDR is consequently incapable of describing the signal be-

haviour during the full SE, even though it can give the signal through the FID and at

t = TE. Therefore, the SDR is not greatly applicable to TurboSPI studies in which

it is the behaviour throughout the SE that is most interesting.

The extended SDM model depends on similar system parameters as those de-

scribed for the Monte Carlo simulation (R, ∆χ, ζ, D, TE). ∆χ, D, and R are substi-

tuted by new variables, δω, λ. δω is the characteristic frequency offset [163] for the

sphere:

δω =
4

3
πγ∆χB0 (4.9)

And λ describes the diffusion as a dimensionless paramter [157]:

λ =
D

R2δω
(4.10)

These are used in an analytic function that describes the signal from excitation

through the spin-echo:

fSE =

∫ π

0

dθ
sin θ

2

∫ 1

0

du

u2
(1− e−iu(3 cos2 θ−1)(τ−τE)−3λτ3F (τE/τ)u8/3(5 cos4 θ−2 cos2 θ+1))

(4.11)

Where the unitless variables (u, τ ,τE) and function, F(τE/τ), are defined as [157]:

u =
R3

r3
(4.12)

τ = tδω

τE = TEδω

F = 1− 3

2
(
τE
τ
)2 +

3

4
(
τE
τ
)3.

A derivation of f SE is beyond the scope of this thesis, but can be found in [158].

The relevance of the function for this work is to show that it is amenable to an added



55

fat oscillation and agreeable with the simulation over a wide range of experimental

conditions. Additionally, the extended slow diffusion model informs certain modifi-

cations to the analysis methods discussed in Sections 4.3.1 and 4.3.2.

Equation 4.11 can be calculated via numerical integration and the analytic func-

tion is modified to the show the familiar signal, now including N and ζ factors for

scaling:

S(t) = Ne−ζfSE

(4.13)

Figure 4.2: An example of the model output showing the f SE function (left) and
corresponding signal (right). Input parameters: R = 4, ∆χ = 30×10−3, ζ = 1.5×10−5.

The model agrees well with the simulation for large magnetized spheres using a

reasonable diffusion value of D = 1.5×10−3 µm2/µs, but the signal curves begin to

diverge for smaller particles (< 2µm) with low to moderate susceptibility values.

Figure 4.3: Signal time course curves for the Monte Carlo simulation (black) and
model (Blue, dashed) for small radii (left) and mid-size radii (right). N = 3×104,
ζ = 1.5×10−5 ∆χ = 0.04. The model deviates from the simulated data for a small
perturber
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4.1.4 Added Fat

An off-resonance fat oscillation can be added to both the simulation and the model

for different fat fractions using Equation 4.5. The fat frequency is obtained using the

frequency shift given in Equation 2.43:

ffat = γB0 −∆fWF (4.14)

And the fat oscillation itself is calculated by:

Sf = e−i2πffatt (4.15)

The fat oscillation is multiplied by a phase factor before it is added to the simulated

or modelled signal curve so that the signal peak aligns with the SE.

Signal curves for the simulation and model continue to agree when fat is added

as shown by the time course plots given in Figure 4.4 for a various fat fractions The

shape of these curves is similar to in vitro data for similar fat fractions.

Figure 4.4: Signal time course plot for the simulation (black) and model (red dashed)
with fat fractions of 5%, 7.5%,10%, 15%. N = 3×104, R = 9µm, ζ = 1.5×10−5 ∆χ
= 0.05. A 2.2 ms period of the fat signal is observed. The “acquisition window” has
been shortened to show the SE in a more conventional window as seen for in vitro/in
vivo data.
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Changing Parameters

We can compare the model to the simulation over the spin echo using a normalized

root mean square error (nRMSE) to examine how well the signal curves agree for a

wide range of parameters as is done in Figure 4.5. This was done using a 2D histogram

for various size and susceptibility values. Error is quite low (nRMSE <0.03) in the

region of interest (reasonable physical parameters) as indicated by the black box on

Figure 4.5. The nRMSE rises above 0.04 only for R ≤ 1.5µm, which is smaller than

any cells we track but larger than individual SPIO nanoparticles. Agreeability appears

to increase slightly for low ∆χ values, but the best agreement (nRMSE ≤0.02) is seen

for unreasonably high ∆χ and would behave similarly for large ζ values.

Figure 4.5: A 2D histogram shows the nRMSE between the simulation and model as a
function of R and ∆χ. Reasonable parameters are highlighted by a black box. The red
box highlights how agreeability increases further for high susceptibilities (or similarly
for high ζ), but these are for example only as they are physically unreasonable. All
data were acquired with N = 3×104, f = 15%, ζ = 1.5×10−5, D = 1.5×10−3.

It is also useful to consider how the time courses change in shape as a function of R,

∆χ, and ζ when fat is added as is done in Figures 4.6, 4.7, and 4.8 respectively. These

comparisons are instructive since the ability to fit T2* decay is highly dependent on

the time course shape. The plots also illustrate how it can be quite difficult to parse

the effects of many changing parameters at once, especially in the presence of fat.

However, for the in vivo experiments we assume that cell size and cell loading are

known, since we are using a known cell type and loading concentration. Therefore,

volume fraction and fat fraction are the two effective unknowns.
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Figure 4.6: How changing R affects signal time course. R = 1.5 µm (left), 8.5 µm
(right); ∆χ = 0.04; ζ = 1.5×10−5; f = 10%.

Figure 4.7: How changing ∆χ affects signal time course. ∆χ = 0.015 (left), 0.06
(right); R = 7 µm; ζ = 1.5×10−5, f = 10%.

Figure 4.8: How changing ζ affects signal time course. ζ = 1.5×10−5 (left), 3.5×10−5

(right); R = 7 µm; ∆χ = 0.04; f = 10%.
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Thus far, the simulated and modelled signal have effectively ignored T2 effects,

which allows us to isolate T2* effects. However, it is not always appropriate to ignore

T2 relaxation completely and it is straightforward to review the effect by adding the

exponential decay factor e
−t
T2 . Note how the amplitude of the SE has decayed in Figure

4.9, since the T2 dephasing cannot be recovered.

Figure 4.9: Introducing T2 effect to the signal time course. Negligible (T2 > 1s) effect
(black) and strong (T2 = 80ms) effect (blue). R = 7 µm; ∆χ = 0.05; ζ = 1.5×10−5;
f = 10%.

We can similarly add a T2* effect to the fat signal. This can either be done to

match the effect on water (such that e
−∆t
T∗
2W = e

−∆t
T∗
2F ) or as a unique relaxation for the

fat isochromat (e
−∆t
T∗
2W ̸= e

−∆t
T∗
2F ), as discussed in Section 2.8.1.

4.1.5 Analysis Goals

The aim of this project is to estimate the number of cells per voxel (or perturbers

per simulated voxel) in the presence of fat. While the analytic model certainly agrees

well with the simulation over a wide range of conditions, it is difficult to fit real (and

simulated) data to extract and decouple the parameters of interest. That is, we are

mainly interested in ζ, but this parameter must be separated from contributions of R,

∆χ, and D (through λ and δω). Adding the fat term introduces a further complication
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and parameter to fit. In particular, notice the similarity in shape for high ∆χ and

ζ (Figures 4.7 and 4.8 right panel). For this reason, we will focus our analysis to

the fat-water model in Equation 4.5 with T2* decay from Equation 2.51 to determine

fat fraction and T2*. For in vivo studies, we can then obtain cell number using the

calibration curve.

4.2 Estimation and Signal Subtraction

Our first analysis goal was to reliably estimate the fat fraction such that ff becomes

a known variable and we could use it to obtain an accurate value for T2*. In silico

data offered an ideal framework for this endeavour: since we input known amounts

of fat signal, it is straightforward to assess the efficacy of the fat fraction recovery.

Likewise, in moving on to the T2* estimate, we can compare to data without added

fat oscillation.

4.2.1 Two-Point Dixon

We started with the simple two-point Dixon method that was described in Section

2.8.1. This was mainly performed as a simple proof of concept to show that TurboSPI

data (in silico and beyond) is amenable to Dixon type analysis. The ancillary objec-

tive was to ascertain the degree to which T2* line-broadening affects the method.

For the two-point method we used the 0 and π versus 0 and -π angles which cor-

respond to t = TE and t = TE ± 1.1 ms time points. Table 4.1 gives an example of

the initial fat estimates using this technique for both sets of phase angles.

Table 4.1: Recovery of Known Fat Fractions: 2pt. Dixon. R = 7µm; ∆χ = 0.05; ζ
= 1.5×10−5

Fat% Input Fat%: Sim. π Fat%: Sim -π Fat%: Model π Fat%: Model -π

0 8.02 7.77 8.15 8.04
10 18.00 17.57 18.07 18.01
30 37.48 37.08 37.57 36.54
70 74.32 74.14 74.40 74.39
100 99.97 99.97 99.97 99.97
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Clearly, this technique is susceptible to overestimating the fat fraction. Further-

more, it appears to overestimate ff as a function of relative perturber content. That

is, the recovered fractions are closer to the known input values for higher relative fat

content. High fat content corresponds to low relative water content and thus dimin-

ished T2* effect since the perturber simulation is performed for the water component.

This is illustrated in Figure 4.10 (right) which demonstrates how the difference

between the estimated and known fat fractions (∆ff ) increases as a function of water

fraction. It also shows the linear relationship between the estimated ff and known ff.

Figure 4.10: Left: a plot of estimated ff versus knwon ff showing linearity and a slope
of 0.92. Right: a plot of the different between estimate and input FF versus water
fraction showing how ∆ff increases with increased water content (and thus simulated
SPIO effect). R = 7µm; ∆χ = 0.05; ζ = 1.5×10−5

These results are not necessarily surprising. Rather than interpreting Figure 4.10

as the ∆ff increasing with increased water content, we can describe ∆ff as increasing

with increased SPIO effect from T2* line-broadening of the water species. After all,

it is the SPIO in the cells that drive the disparity between known and estimated fat

fraction. Therefore, it is not sufficient to investigate the effect for just one set of

parameters, since just as ∆ff increases here for a larger water (and thus “cell”) to fat

ratio, it will change for different experimental conditions.

Figures 4.11, 4.12, and, 4.13 illustrate how these plots change for different suscep-

tibility values, volume fractions, and radii, respectively. In each case, we observe a

decreased slope (farther from unity) for the estimated versus input ff when the SPIO

effect is enhanced from increased ∆χ, R, or ζ.
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Figure 4.11: Comparison of SPIO effect on ff recovery for different susceptibility
values that shows Estimated FF vs. Known FF and how ∆ff changes with relative
water and “cell” fraction. R = 7µm; ∆χ = 0.015 (top), 0.08 (bottom); ζ = 1.5×10−5

Figure 4.12: Comparison of SPIO effect on ff recovery for different volume fractions
that shows Estimated FF vs. Known FF and how ∆ff changes with relative water
and “cell” fraction. R = 7µm; ∆χ = 0.05; ζ = 1.0×10−5 (top), 2.5×10−5 (bottom)
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Figure 4.13: Comparison of SPIO effect on ff recovery for different radii that shows
Estimated FF vs. Known FF and how ∆ff changes with relative water and “cell”
fraction. R = 3µm (top), 10µm (bottom); ∆χ = 0.05; ζ = 1.5×10−5

The technique never overestimates the fat content beyond 100%, as is demon-

strated in these plots of estimated versus input ff in which the maximum value is

always ≈ 1. Therefore, the initial offset (y-intercept) and the slope both change

(offset increases when slope decreases). These plots are consistently linear: the R2

goodness of fit value is greater than 0.997 for all cases. Therefore, it is feasible to use

the linear fit to determine an accurate estimate of input ff.

4.2.2 Scaled Signal Subtraction

After obtaining a value for the fat fraction the next logical step is using that in-

formation to correct the data. Our first trial was to uncover the original (i.e. without

fat) signal time course from the in silico data using a scaled subtraction. This tech-

nique subtracts a fat signal that is multiplied by a scaling factor equal to ff. The

methodology is quite simple: use the recovered ff and the known fat signal (Sf ) to

separate Sw from S in Equation 4.5. If recovered correctly, the isolated water signal

will yield the correct T2* value after fitting.
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Understandably, the scaled subtraction technique is highly dependent on the ac-

curacy of the ff estimation. Figure 4.14 (bottom left) illustrates the consequence

of using the original (overestimated) ff estimate from simple two-point Dixon. The

signal time course is still modulated, but now from subtracting more fat than ever ex-

isted in the signal. For in silico data there exists a stable linear relationship between

known and estimate ff for two-point Dixon, as demonstrated above. We can obtain

“corrected” values of ff using the slope and intercept. Naturally, a more accurate

ff gives rise to a more accurate decomposition of the signal as illustrated in Figure

4.14 (bottom right). The corrected subtraction data are very similar to the original

signal. The RMSE between the curves are 3.7×10−4 and 6.0×10−3 (in normalized

signal intensity) for the simulation and model, respectively.

Figure 4.14: Plots to illustrate the scaled subtraction technique. Simulation time
course is shown as a solid line, and the model is shown as a dashed line. Top left:
original unmodulated signal for both simulation and model. Top right: the modulated
signal from addition of fat oscillation (15%). Bottom left: Initial fat subtraction using
the ff obtained from the initial ff two-point Dixon technique. Bottom right: the
“corrected” subtraction that uses a corrected ff
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This is clearly a very well defined and simple problem in silico since the fat signal

(Sf ) is known and we are able to obtain an accurate estimate of ff. The slope and

intercept used to correct the two-point Dixon fat estimate were obtained by taking

a “rough estimate” from different ζ values to emulate a (small) degree of the un-

certainty found in physical experiment. However, this is a simple demonstration to

illustrate the technique under ideal conditions and ζ was not varied greatly (1.3×10−5

to 1.7×10−5).

Unfortunately, a scaled subtraction is impractical for in vitro and in vivo studies

for a number of reasons. In a typical physical study, R and ∆χ may be considered

fixed parameters, but cell volume fraction is, of course, an unknown that can change

appreciably. While the fat subtraction is robust to small changes in slope and in-

tercept (from changing ζ), as demonstrated above, the fidelity of the technique will

deteriorate for larger ∆ff. Secondly, the ff “correction” accounts for T2* effect on the

fat fraction, but the method neglects T2* decay to fat signal in the subtraction itself,

which may not be a reasonable assumption.

Finally, we must note that the in silico work is simplified greatly by the fact that

Sf is well characterized and known. Indeed it is the same oscillation that was added

initially. For in vitro and in vivo data, the signal may not be a simple composition

of an unknown signal (Sw) and an ideal, known, well characterized synthetic signal

(Sf ).

4.2.3 Three-Point Dixon

Moving to a three-point implementation is normally the first step to improve upon

two-point Dixon. As described in 2.8.1, using a third measurement enables one to

correct for the phase error from Bo inhomogeneity. Typically, this phase correction

is quite important for real data but not for in silico data. For in silico data we can

assume that our magnetic field is ideal and homogenous. This assumption is clearly

valid unless we are simulating or modelling Bo heterogeneity. In this work we con-

sider an “ideal experiment” in that we are not simulating any macroscopic hardware

induced Bo inhomogeneities. However, we are introducing local inhomogeneities to

the voxel from the spherical perturbers. Indeed, the entire purpose of the simulation

is to probe how the system responds to intentional changes.
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Since we are introducing inhomogeneity, it is prudent to check how phase changes

throughout the signal time course before any fat oscillation is added, as is done in

Figure 4.15. A fat oscillation merely adds a periodic modulation whose amplitude

depends on ff.

Figure 4.15: Plots of phase versus time for the Simulation (top), the Model (bottom),
and the Fat signal (bottom). In the simulation, ϕ starts at π/2 from the initial 90◦

pulse and is tipped by π at TE/2 for the refocusing pulse. The model starts with ϕ
= 0 and the refocusing pulse appears to induce ∆ϕ ≈ π/10. However after TE/2 the
model and simulation phases change at approximately the same minimal rate (0.032
rad/ms). The fat signal shows ϕ = 0 at ≈ 10 ms (TE) and exhibits phase wrapping.

The f SE for the model includes a ei(τ−τE) term that depends on both time and δω

(and thus ∆χ) and this explains the small time dependent phase change in Figure 4.15.

While there is a phase effect before the added fat oscillation, it is quite gradual (after

the 180◦ pulse). This small effect cannot account for the errors observed in recovering

known fat fractions. Therefore, we can confirm that the main effect driving ∆ff is
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T2* line-broadening so a phase correction alone will not significantly improve the in

silico data.

4.3 Curve Fitting

The results in Section 4.2 demonstrate the need for combined T2* and fat esti-

mation in our system. Naturally, increasing the number of unknowns necessitates an

increase in the number of measurements, which TurboSPI data (simulated or oth-

erwise) are well equipped to provide. The algebraic calculations performed above

become more tedious and less feasible for more equations. For this reason, curve

fitting may be a superior option since TurboSPI has a high temporal resolution with

many measurements available and thus points to fit.

All curve fitting was performed in Matlab using lsqcurvefit and the work focused

on the Monte Carlo simulation data.

4.3.1 Preliminary Investigation

We start with a modified version of simple fat and water model presented in

Equation 2.44.

S = [We−∆t/T2∗ + Feiα]eiϕ0 (4.16)

The modification removes spatial dependence for application to “single voxel” sim-

ulations. Likewise, we neglect the time dependant phase term ϕ(t) that reflects B0

inhomogeneity, since the simulation is performed under “ideal” conditions. Techni-

cally, the additional time independent, phase term ϕ0 could be similarly removed, but

we found that ff and T2* results were not majorly affected by its inclusion contrary

to the ϕ(t) term.

This simplified equation does not include the T2* decay on fat that was not ini-

tially simulated nor the small phase phase effected noted in Figure 4.15. These effects

will be added in the next section. Additionally, this preliminary exploration simply

fits the complex data that is output from the simulation, which is helpful for visu-

alizing the data in our familiar signal time course. This method is not robust to in

vitro/vivo data, for which the function will need to be split into real and imaginary
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parts that are fit separately.

Figure 4.16 shows an example of the preliminary fit for a time course with 15%

fat from t = 10.5 ms → 12.5 ms. The simulated and function data are very agreeable

over this region with an RMSE of 0.0018 and the success is well demonstrated by

the corresponding ff and T2* estimates which are similar to the input parameters

(Table 4.3). Table 4.2 gives the initial estimates for each parameter. Lsqcurvefit does

not consider bounds when fitting complex functions. However we confirmed that the

parameters never took unreasonable values, in fact, the values naturally fell within

the bounds used for Real/Imaginary fitting in the next section (Table 4.4).

Figure 4.16: Normalized simulated data (solid black) with the corresponding fit
(dashed blue) using Equation 4.16. ff = 0.15; ζ = 1.5×10−5; R = 8µm ; ∆χ =
0.05

Table 4.2: Initial guesses used in the optimization

Relative Water Signal Relative Fat Signal T2* ϕ0

Initial Guess 0.5 0.5 10 0

Note that Figure 4.16 shows how the fit is only performed on a portion of the

decay (t > 10.5 ms). This is done to steer clear of the SE peak at which there exists

a time-dependant deviation from the mono-exponential behaviour that the fat-water-

T2* model (Equation 4.16) assumes.

In his work on the slow diffusion model [159], Kiselev describes how a non-zero
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λ (i.e. the presence of diffusion) gives rise to secondary time dependent attenuation.

This is seen in the extended slow diffusion function (Equation 4.11) by the time

dependent function F( τE
τ
) that is multiplied by λ in second term of the exponential.

When we move away from TE the F( τE
τ
) factor approaches one and the deviation

becomes stable.

The relaxation behaviour is greatly simplified when λ = 0 by not allowing diffusion

during the simulation. This is demonstrated by Figure 4.17 which shows simulated

data with and without diffusion, however we will include diffusion in the simulations

so that the analysis can be more scalable to realistic systems. We note that the left

panel of Figure 4.17 exhibits complete signal refocusing at the echo since T2 is long

and there is no attenuation from diffusion. The right panel shows signal attenuation

and non-linear-exponential behaviour when t ≈ TE, but the at later time points the

decay is similar to that in the left panel.

Figure 4.17: Simulated data without diffusion D = 0 µm2/s (left) showing complete
refocusing. Simulation with diffusion D = 1.5 × 10−3 µm2/s (right) showing incom-
plete refocusing and a curved peak. Other parameters: R = 7 µm; ζ = 1.5 × 10−5;
∆χ = 0.03

Since Equation 4.16 assumes a exponential T2* decay on the water signal, it is

wise to begin fitting at t > TE to limit the effect of F( τE
τ
). We can compare the T2*

estimate to a value obtained from fitting a simulation without diffusion (Table 4.3).

Moving away from TE will ameliorate the fit, but diffusion is still present so it is not

expected that these values agree exactly.

The estimated ff is compared to the input ff as before and, more importantly,
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the T2* can be compared to a gold standard. The gold standard T2* is obtained by

fitting simulated data without added fat with the exponential fit used in previous

TurboSPI analysis methods that don’t consider fat oscillation (Ae−R2∗t).

Table 4.3: Comparison of estimated ff to the ground truth (GT) ff for varied fat
content and estimated T2* to gold standard (GS) T2* taken from the previous method
applied to a simulation without fat.

GT Fat% Fit Fat% T2* FitD=1.5−3 / FitD=0 (ms) T2* GSD=1.5−3 / GSD=0 (ms)

0 0.16 4.38 / 4.32 4.50 / 4.41
5 4.96 4.38 / 4.32 not applicable
15 15.10 4.38 / 4.32 not applicable
45 45.44 4.38 / 4.32 not applicable

The data above suggest that both the ff and T2* estimates are robust to changes

in fat simulated fat versus water content (with SPIO loaded “cells”) . We assess

the ff estimates by stepping through known fat fractions, performing the fit and

plotting the output ff, as we did for the two-point method. Figure 4.18 shows the

linear estimated ff vs input ff relationship with a slope and y-intercept of 1.0026 and

0.0016, respectively. These values are much closer to the identity line (slope = 1,

y-intercept = 0) than those calculated from two-point Dixon (Figures 4.10 to 4.13).

The RMSE between the estimate and identity line is 0.0034 giving estimated ff ±
0.3%. Maximum differences (0.5%) are observed from 57% fat to 65% fat.

Figure 4.18: Fitted fat fraction versus input fat fraction (dashed red) with an identity
line (black) for reference. Other parameters: R = 8 µm; ζ = 1.5 × 10−5; ∆χ = 0.05
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As we learned from the scaled signal subtraction in Section 4.2, accurate ff esti-

mates are not very useful unless they correspond to improvements in T2* fitting as

well. We can assess the T2* estimate as a function of input ff where success is mea-

sured by continuity. When fit properly, the water and fat terms of Equation 4.16 are

separated appropriately and T2* is invariant to ff. This stable behaviour is observed

in most of Figure 4.19, but the fit deteriorates at ff = 1. Standard deviation of the

measurements is 0.34 ms, however this value is heavily biased by the failure to fit T2*

decay when no “W” signal is present. If standard deviation is taken from 0 to 99 %

fat, the value becomes 0.002 ms.

Figure 4.19: Fitted T2* versus input fat fraction. Other parameters: R = 8 µm; ζ =
1.5 × 10−5; ∆χ = 0.05

Lastly, we assess how the T2* fit responds to different volume fractions. Does it

change appropriately for different ζ values and thus differing extent of “SPIO” related

dephasing?

Figure 4.20: Fitted T2* versus input fat fraction for ζ = 1.0 × 10−5 (red); 1.5 × 10−5

(blue), 2.0 × 10−5 (green) . Other parameters: R = 8 µm; ∆χ = 0.05
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Table 4.3 shows that the fit returns similar T2* to the gold standard, Figure 4.19

shows that the estimate is stable across most ff, and Figure 4.20 demonstrates how T2*

changes appropriately for different volumes fractions (slower T22* for higher ζ, longer

T2* for lower ζ). Even in this preliminary work we find that, when fat is present,

fitting ff and T2* simultaneously provides better estimates of both parameters.

4.3.2 Advanced Investigation

The above work is sufficient for a proof of concept, but it requires adjustment if

we want the curve fitting to be scalable to real data.

First, we introduce a T2F* effect on the fat term. We allow the relaxation value

to be unique to the fat isochromat, rather than using an average T2* for the mixture

as was done in the model by Glover [134]. Therefore, Equation 4.16 becomes:

S = [We−∆t/T2W ∗ + Feiαe−∆t/T2F ∗]eiϕ0 (4.17)

T2W* arises from the simulation and T2F∗ is added explicitly to the fat term.

To conform to literature that describes a average T2* value for the mixture [134] we

could fit a common T2*. However, the average will clearly change with ff unless the

decay terms are equal. We can design a common T2* = T2F* = T2W*, but it is also

interesting to let these species relax at different rates and analyze them separately.

The in silico framework is well equipped to handle each of these options.

Next, we will add the time dependent phase term, ei(τ−τE) in fSE, to be fit as well.

The value will be small, as illustrated in Figure 4.15, but its inclusion may offer a

more comprehensive description of the behaviour. Equation 4.17 is adapted by the

inclusion of this θτ term:

S = [We−∆t/T2W ∗eiθτ∆t + Feiαe−∆t/T2F ∗]eiϕ0 (4.18)

The last adjustment does not involve adding additional fit parameters, but rather

changing the way the fit is performed. As noted earlier, using bounds is not supported

when fitting complex functions in Matlab. It is beneficial to move towards bounded

optimization since we are both adding new parameters to fit and eventually moving

towards less ideal in vitro/vivo data. Therefore, we have re-parameterized the fit into

real and imaginary components.
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Re = [We−∆t/T2W ∗ cos(θw + θτ∆t) + Fe−∆t/T2F ∗ cos(θf +∆ωWF∆t)] (4.19)

Im = [We−∆t/T2W ∗ sin(θw + θτ∆t) + Fe−∆t/T2F ∗ sin(θf +∆ωWF∆t)]

Where θw,f represent the time-independent phase on water and fat, and α is re-

written as ∆ωWF∆t (by Equation 2.45) to explicitly show its time dependence. For

in vitro and in vivo data, θτ and ωWF are allowed to vary to represent ϕ. To prepare

for fitting, the simulation data are split into real and imaginary components and

concatenated into a long vector to match the function that is split similarly.

Table 4.4: Initial guesses and bounds used in the optimization.

W F T2W* T2F* θw,f θτ

Initial Guess 0.5 0.5 10 10 0 0
Lower Bound 0 0 1 3 -π -π
Upper Bound 1 1 30 50 π π

Figure 4.21 shows an example of a fitted real-imaginary function that matches well

with the simulated data, although it is less visually intuitive as signal time course

than Figure 4.16. Table 4.5 gives the corresponding T2W*, T2F ,* and ff estimates.

Figure 4.21: Normalized simulated data (solid black) with the corresponding fit
(dashed grey) both split as [Real, Imaginary] using Equation 4.19. RMSE = 9.4
×10−4. ff = 0.15; T2F= 15 ms; ζ = 1.5×10−5; R = 8µm ; ∆χ = 0.05
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Table 4.5: Comparison of estimated ff to the GT ff, T2F* to GT, and T2W* to GS
T2*= 4.5 ms. The second row neglects fat T2F*.

GT Fat% Fit Fat% GT T2F* (ms) T2F* (ms) Fit T2W* (ms)

15 14.2 15 34.9 4.31

15 15.07 / / 4.41

While the T2W* is similar to the estimate that we found previously (Table 4.3),

the T2F* value is much larger than the input value. This is not a catastrophic failure

since we are, after all, searching for the T2* on water and thus consistency in T2W*

is most important. We check consistency by plotting the T2W* by input ff in Figure

4.22. This figure also shows the less important, but still interesting ff estimations

and T2F* behaviour.

Figure 4.22: Left: Fitted fat fraction versus input fat fraction (dashed red) with an
identity line (black) for reference. Middle: Fitted T2W* versus input fat fraction. The
fine black line indicates the gold standard T2W*. Right: Fitted T2F* versus input fat
fraction. The fine black line indicates the ground truth T2F*.

The estimated ff agree well with the input ff except for very high or low fat

content. Similarly, the T2W* estimate is stable over the same input ff. The T2W data

are not as consistent as they were for the preliminary fitting technique (Figure 4.19),

but this is not necessarily surprising, since we have added two more parameters to

the fit. The T2F* fit fails for low input ff but trends toward the input value (15 ms)

as the relative fat signal grows stronger. Fitting errors arise when either the water

or fat signal goes to zero, but the estimates improve when there is adequate signal to
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separate.

Letting the exponential decay go to one (i.e. T2F* becomes very large) effectively

neglects the T2F*. The signal model becomes similar to that in the Preliminary

Work section, although it has the time-dependent phase term ei∆tθτ . This improves

the T2W* stability, as demonstrated by Figure 4.23. Removing T2F* effect from the

simulation is simple, but it may not be reasonable to ignore the fat decay in real data.

Figure 4.23: Left: Fitted fat fraction versus input fat fraction (dashed red) with an
identity line (black) for reference. Right: Fitted T2W* versus input fat fraction. The
fine black line indicates the gold standard T2W*. T2F* = 10s to neglect decay.

We can also synthesize a common T2* that should not vary considerably with fat

content by letting T2F* = T2W*. This is done by first fitting T2W* when fat decay

is neglected (as is done above) and then setting T2F* equal to this value. Finally, we

fit with T2 as the shared decay parameter.

Figure 4.24: Left: Fitted fat fraction versus input fat fraction (dashed red) with an
identity line (black) for reference. Right: Fitted “common” T2* versus input fat
fraction. The fine black line indicates the gold standard T2*.
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The common T2* data are reasonably consistent, performing better at the ff ex-

trema than previous fits. However, this is a simplification since it is not realistic to

expect fat and water to have the same T2* decay. If T2F ̸= T2W , the “common” T2*

will be an average that changes with fat content - a feature we are trying to avoid.

4.3.3 Noise Performance

Until now, we have described ideal signal behaviour in the absence of background

noise. To prepare for analyzing real data from in vitro or in vivo samples we must

consider how the fitter performs for non-ideal data with low signal to noise ratio

(SNR), specifically in the temporal domain.

We investigate the viability of curve fitting data with low temporal SNR (tSNR)

data by adding white Gaussian noise to the total signal using the awgn function in

Matlab. We step through low to high tSNR and observe how the estimates of ff and

T2W* respond. For each noise level we perform N fits to yield N estimates of ff and

T2W*. We calculate the mean and standard deviation of these parameters and plot

as a function of tSNR. This is done for a variety of ff values. Figures 4.25 to 4.27

show the results for three fit types.

1. Preliminary Investigation: Complex fit that neglects both θτ and T2F*

Figure 4.25: Preliminary fit. Top Left: Mean ff estimate by tSNR for ff = 0 (blue),
0.05 (orange), 0.1 (yellow), 0.15 (purple), 0.25 (green). Top right: Mean T2 estimate
by tSNR for the same ff. Bottom row shows corresponding standard deviation (STD)
for ff estimate (left) and T2* estimate (right). Means and STDs are from N = 20
estimates (from fitting N = 20 data sets with simulated noise)
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For this fit type the ff and T2W* are very stable for tSNR ≈ 13 and beyond.

However, below tSNR ≈ 13, the errors between the estimate and known values are

much larger than in Figure 4.26 below, perhaps due to the inability to bound complex

data. Consequences of poor tSNR are most drastic for this technique, but as we will

not be using it to fit in vitro/vivo data, this is shown for example only.

2. Advanced Investigation A: Real/Imaginary fit that neglects T2F* but in-

cludes the θτ term

Figure 4.26: Advanced fit A. Top Left: Mean ff estimate by tSNR for ff = 0 (blue),
0.05 (orange), 0.1 (yellow), 0.15 (purple), 0.25 (green). Top right: Mean T2 estimate
by tSNR for the same ff. Bottom row shows corresponding standard deviation (STD)
for ff estimate (left) and T2* estimate (right). Means and STDs are from N = 20
estimates (from fitting N = 20 data sets with simulated noise)

This technique results in less extreme errors for low tSNR than those shown in

Figure 4.25, possibly by virtue of its bounded optimization. However, contrary to the

preliminary fit, the data do not begin to stabilize until tSNR ≈ 20. This technique is

sensitive to lower noise levels, but its failures are not as dramatic.

3. Advanced Investigation B: Real/Imaginary fit that fits separate T2W* and

T2F* and includes the θτ term
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Figure 4.27: Advanced fit B. Top Left: Mean ff estimate by tSNR for ff = 0 (blue),
0.05 (orange), 0.1 (yellow), 0.15 (purple), 0.25 (green). Top right: Mean T2 estimate
by tSNR for the same ff. Bottom row shows corresponding standard deviation (STD)
for ff estimate (left) and T2* estimate (right). Means and STDs are from N = 20
estimates (from fitting N = 20 data sets with simulated noise). The small T2* error
at ff = 0.05 matches the data in Figure 4.22

This is our most comprehensive fit model that includes separate decay factors

for water and fat, includes the small phase change θτ , and fits by splitting the data

into real and imaginary components. As we saw in Figure 4.22, the increase in fit

parameters corresponds to poorer predictive performance, especially at ff extrema.

Nonetheless, this technique has adequate tSNR performance relative to Advanced

Investigation A which includes one less parameter. The mean estimates plateau at

tSNR ≈ 20, as before. However, the standard deviation of the measurements has

increased for low noise data, especially for ff.

These plots indicate that noise performance may be an issue when fitting in vitro

and in vivo data.

4.4 In Silico Summary and Conclusions

We investigated the effect of adding a 3.5 ppm shifted fat oscillation to simulated

and modelled data, in particular how the signal time course changes for different fat

fractions, volume fractions, particle size, and change in susceptibility. The extended
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slow diffusion model agrees well with the simulated data over a wide range of exper-

imental parameters.

We investigated different methods of fat correction, first through Dixon based

arithmetic and a signal subtraction. Two-point Dixon overestimated ff relative to

SPIO content and the signal subtraction was very sensitive to ff. Therefore, this tech-

nique was not feasible for real data. Three-point Dixon will only minimally help in

silico fat estimates to a small degree, since the time-dependent phase term is small.

The main culprit of poor ff estimation is T2* line-broadening, which suggests that a

simultaneous ff and T2* estimation is best.

The extended slow diffusion model was not used to fit the time course since it

would be difficult to decouple the many changing parameters. However, it did inform

us to include the θτ term and to steer clear of fitting near the SE peak. We used an

adapted Dixon signal model to fit the decay of simulated data. While we were suc-

cessful in fitting the complex data, we wanted to include optimization bounds which

required fitting real and imaginary components separately. Including the θτ term and

adding T2* decay to fat yielded a more comprehensive description, even though they

increased the number of fit parameters.

We initially considered ideal data without noise, but then extended our analysis

since in vitro and in vivo data will have lower tSNR. T2* estimates were very affected

by noise until tSNR = 20 after which they plateaued. Noise performance is a factor

to consider as we move towards real data from SPIO-labelled cells. However, we

must continue to discriminate between temporal and and spatial (image) SNR when

analyzing in vitro and in vivo samples.

Simulating the effect of unintended Bo inhomogeneity was beyond the scope of

this thesis, but is another consideration for translating these techniques in vitro or in

vivo. As seen in Chapter 5, we will add the ϕ(t) term that arises from Bo inhomo-

geneity for acquired data. This will make the fitting model more robust to inevitable

data imperfections. The adjustment should prepare the model to fit experimental

data, starting with in vitro phantoms.



Chapter 5

In vitro Data

While the ultimate goal is to translate the curve fitting approach in vivo, that

is quite a large leap in complexity from our ideal simulations. In vitro work offers

a suitable framework to analyze real (non-simulated) data with greater control than

animal studies. The aim of this experiment is to investigate the fit performance for

known data acquired with the TurboSPI sequence, in the presence of Bo inhomogene-

ity and noise. The known data consists of phantoms with equal concentrations of

labelled cells, but varying fat fractions.

This in vitro work serves as a “stepping stone” to future in vivo studies that have

greater data complexity and even more factors to consider.

5.1 Materials and Methods

Solutions of SPIO-labelled cells and peanut oil were made in 5 mm NMR tubes

and held in a “shotgun” case for imaging. The tubes were submerged in a water bath

that was doped with MnCl2 (160 ×10−6 M), a paramagnetic contrast agent.

Figure 5.1: A schematic of the “shotgun” phantom case that was used to image
multiple NMR tubes at once. Two reference tubes were included with air/background
and MnCl2 doped water

80
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5.1.1 Sample Preparation

Nine samples were prepared with varying fat content according to Table 5.1.

CD8+ cells were isolated, cultured, and loaded with SPIO using the SOP from Chap-

ter 3 (Section A.2), however APCs were omitted to create a more homogenous mix-

ture. Labelled cells were suspended in a polyacrylamide gel as per the following recipe.

Added in order of appearance:

• peanut oil (varying amounts - Voil + VH2O = 475 mL)

• distilled water (varying amounts - Voil + VH2O = 475 mL)

• 10% sodium dodecyl sulfate (SDS) 50 µL

• 40% acrylamide 250 µL

• hydroxyethyl piperazineethanesulfonic acid (HEPES) 1M 250 µL

• 10% ammonium persulfate (APS) 10 µL

• SPIO labelled cells (2×106)

• tetramethylethylenediamine (TEMED) (2 µL)

The surfactant (SDS) in the gel recipe enabled the oil to water mixing and we

found that the polyacrylamide gel resulted in stable solutions without separation,

contrary to agar which was also tested. Solutions were prepared one-by-one by first

mixing in an Eppendorf tube and quickly transferring to the NMR tube. The samples

included two “no cell” (NC) controls and one 0 % fat control.

The gelled suspensions were stored a refrigerator between imaging sessions, but

they were stable at room temperature and did not separate during acquisition.

Table 5.1: SPIO-labelled cell and oil phantoms. A,B,C refer to sets of NMR tubes im-
aged together in the “shotgun” holder. A.3 through C.3 had a constant concentration
of 2×106 cells in 1.035 mL. A.1 and A.2 were no cell (NC) controls.

A.1 A.2 A.3 B.1 B.2 B.3 C.1 C.2 C.3

Fat % 20 NC 40 NC 20 40 30 15 10 5 0
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5.1.2 Imaging

The samples were imaged in sets of three (Phantoms A, B, C) using the 2D

TurboSPI sequence (Table 5.2). Since the phantoms are simple homogenous tubes

the 2D data was sufficient and faster to acquire.

Table 5.2: 2D Large FOV TurboSPI Pulse Sequence Parameters

TR (ms) TE (ms) ETL ESP Matrix FOV (mm3) Accel. Time (min)

250 10 8 10 128×128 50×50 none 8:37

An ancillary objective of the in vitro work was to determine the efficacy of fat

saturation and how it affects Dixon estimations. Therefore, the above sequence was

run twice for each phantom: with and without the fat saturation pulse that is used

in vivo (a low power version of the 90◦ sinc RF pulse used for initial excitation).

5.1.3 Analysis

The data were analyzed in Relax! as in Chapter 3. Basic Fourier reconstruction

was used in lieu of the CS reconstruction since the 2D data acquisition was not

accelerated by undersampling. Relax! was modified to include novel fat fraction

estimation and R2* mapping techniques.

Two-Point Dixon

First we tested the two-point Dixon technique as a proof-of-concept and to com-

pare the results to in silico findings. In this case, the term two-point is a misnomer

in that we actually used an average for each in phase (t = TE) and out of phase (t

= TE + 1.1 ms) “point”. These average in phase and out of phase points include

two measurements prior to the time-point of interest and two after with ∆t = 10

µs. While these would be quite difficult for most Dixon acquisition schemes, the high

temporal resolution of TurboSPI makes it feasible.

Curve Fitting

The clear advantage of the curve fitting approach is that it can provide simulta-

neous estimates of fat fraction and R2*.
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While we tested multiple parameterizations of the model, most of our investiga-

tion focused on the signal equation that was developed in Chapter 4 (Equation 4.19).

The main in vitro modification was that we considered Bo inhomogeneity. This was

done through the inclusion of the ϕ term described earlier. Therefore, the in vitro

signal equation becomes:

Re = [We−∆t/T2W ∗ cos(θw + θτ∆t+ ϕ∆t) + Fe−∆t/T2F ∗ cos(θf +∆ωWF∆t+ ϕ∆t)]

(5.1)

Im = [We−∆t/T2W ∗ sin(θw + θτ∆t+ ϕ∆t) + Fe−∆t/T2F ∗ sin(θf +∆ωWF∆t+ ϕ∆t)]

Again, the equation has been split into real and imaginary components to accom-

modate the need for optimization boundaries. To reduce the number of parameters,

we define θwt and θft to describe the time dependent phase terms since separating

these features is not a priority.

θwt = θτ + ϕ (5.2)

θft = α + ϕ

When fitting, θτ and α are used for the initial guesses and allowed to vary by ϕ.

5.2 Results and Discussion

5.2.1 In Vitro Signal Time Courses

Before estimating fat fractions or R2*, we began by investigating the shape of

the signal time courses for each tube. This allowed us to review the efficacy of fat

saturation, specifically how it well it removed the signal modulation.

Example data are plotted for each phantom in Figures 5.2, 5.3, and 5.4. Note that

the y-axis scale is not constant since the fat signal intensity is high and the maximum

amplitude varies drastically with fat content. Each plot shows a time course from

data that were acquired both with and without the fat saturation pulse.

Immediately we note that the tubes without any labelled cells (and therefore,

without any SPIO effect) have higher relative amplitude on the side peaks (i.e. TE

± ≈ 2.2 ms), whereas those with labelled cells fall off faster due to T2* dephasing.

This agrees with theory and the simulated data.
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Figure 5.2: Signal time course data for Phantom A that were acquired with (orange)
and without (blue) a fat saturation pulse. Phantom A has NMR tubes with 40% fat
(no cells) (top left), 20% fat (no cells) (top right), and 20% fat (bottom left).

Figure 5.3: Signal time course data for Phantom B that were acquired with (orange)
and without (blue) a fat saturation pulse. Phantom B has NMR tubes with 40% fat
(top left), 30% fat (top right), and 15% fat (bottom left), all with cells.
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Figure 5.4: Signal time course data for Phantom C that were acquired with (orange)
and without (blue) a fat saturation pulse. Phantom C has NMR tubes with 10% fat
(top left), 5% fat (top right), and 0% fat (bottom left), all with cells.

These data also illustrate how difficult it would be to perform a signal subtraction

similar as was done for the in silico data (Section 4.2). Not only because it may be

difficult to determine an accurate fat fraction, but also because subtracting an appro-

priate fat signal with matched amplitude is not feasible. This confirms the suspicion

that we we require a more elegant correction for real data.

The fat saturation pulse appears to be effective at removing the modulation from

the signal time course up to 20% fat. For higher fat fractions (30% and 40%, slightly

20%) and the “no cell” tubes, the amplitude of the modulation is dampened, but the

effect is still present. The amplitude of the damped signal is still within the range

the water peak (signal intensity = 35 to 50) and therefore will still have deleterious

effects when fitting. It is also worrisome that when the modulation is effectively re-

moved, the amplitude at TE remains larger than that of the no-fat control. As well,

there could be erroneous fits when the modulation is only partially removed, even if

no SPIO labelled cells are present (e.g. 20% no cells). Lastly, the no-fat control in

Figure 5.4 shows that fat saturation slightly dampens the signal from water as well.

These data show that current fat saturation techniques are ineffective and incon-

sistent. Line-broadening restricts the spectrally selective suppression pulses that we
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can use (for fear of hitting the broadened water peak). Other fat suppression tech-

niques do exist, such as short T1 inversion recovery (STIR) which utilizes the short

T1 of fat [131]. While STIR may be an interesting avenue for further investigation,

it is beyond the scope of this thesis which focuses on CHESS and Dixon techniques.

5.2.2 Initial R2* Mapping Challenges

Next, we illustrate the R2* estimation errors for the current technique. Figures 5.5,

5.6, and 5.7 display the R2* maps for each Phantom with and without fat saturation.

Regions of interest were drawn for each NMR tube in Matlab and the average R2*

results are listed in Table 5.3.

Figure 5.5: Phantom A R2* maps (s−1) for data acquired without (left) and with
(right) a fat saturation pulse. R2* maps were calculated using Relax! with the
“Elimination” technique. Tube labels (A.1, A.2, A.3) are shown on the left panel.

Figure 5.6: Phantom B R2* maps (s−1) for data acquired without (left) and with
(right) a fat saturation pulse. R2* maps were calculated using Relax! with the
“Elimination” technique. Tube labels (B.1, B.2, B.3) are shown on the left panel.
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Figure 5.7: Phantom C R2* maps (s−1) for data acquired without (left) and with
(right) a fat saturation pulse. R2* maps were calculated using Relax! with the
“Elimination” technique. Tube labels (C.1, C.2, C.3) are shown on the left panel.

Table 5.3: Table of mean and standard deviation (SD) of R2* values for the phantoms,
organized by fat content. “FS” refers to data acquired with a fat sat pulse.

A.1 A.2 B.1 B.2 A.3 B.3 C.1 C.2 C.3

Known Fat % 20 NC 40 NC 40 30 20 15 10 5 0

Mean R2* (s−1) 34 3 21 3 74 338 335 329 334
SD R2* (s−1) 116 29 94 27 169 212 34 32 31

Mean R2* (s−1) FS 334 387 14 458 362 321 275 247 273
SD R2* (s−1) FS 31 41 86 30 33 29 25 24 26

These R2* results corroborate the earlier concerns regarding the signal time course

behaviour. There are numerous issues to address for both data sets with and without

fat saturation.

Data without fat saturation

In the absence of a fat saturation pulse, data with a large fat content tend towards

R2 = 0 s−1 when they are mapped using the most recent “Elimination” technique in

Relax!. This is the appropriate and intended result for tubes A.1 and A.2 which have

no SPIO labelled cells. However, the R2* in tubes B.1, B.2, and A.3 also tend towards

zero. Ideally, these tubes would have an R2* value equal to that of the no-fat control

(tube C.3) to reflect their equal concentrations of labelled cells. Unfortunately, the
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fat modulation overwhelms the R2* effect and these voxels are eliminated. C.1, C.2,

C.3 are consistent within their standard deviation sub-groupings, suggesting that fat

content lower than 10% have negligible effects on R2* estimation. However, we note

that Tube C.1 (10%) did not mix as well homogeneously as the other tubes and thus

we are less confident with that specific result.

Technically, the R2* for tube B.3 (15%) is also consistent with the control, however

the standard deviation is quite high (more than 6x that of C.1,C.2, and C.3). This

is illustrated in the left panel of Figure 5.6 which shows that some voxels in the ROI

go to zero, but many have a high R2* value (500 s−1), likely due to mistakenly fitting

the fat modulation.

Data with fat saturation

The data acquired with the fat saturation pulse have a unique set of issues. Again,

tubes C.1 and C.2 agree with the no-fat control, however fat suppression decreased the

R2* value considerably, even for the no-fat control. This indicates that the fat sup-

pression pulse hits the water peak as well as the fat peak (in the frequency spectrum)

and consequently reduces the R2* decay. The reduced R2* values are worrisome,

but we notice that the reduction is, at least, consistent for tubes C.1, C.2, and C.3.

However, since the cell quantification is performed using an R2* calibration, future

work could consider performing the calibration with fat saturation to improve quan-

tification accuracy.

Results for the tubes with higher fat fractions (Phantoms A and B) are even more

concerning. Deceptive errors arise when the modulation is only partially removed

from the time course. This unfortunate effect is even seen when there are no SPIO

labelled cells present (tubes A.1, A.2). In fact, the only tube that is effectively elim-

inated from the map is B.1, a tube with SPIO labelled cells and 40% fat. This is

unsurprising if we consider the corresponding signal time course plot in Figure 5.3

(top left) which shows that the integrity of the fat sat fat modulation is maintained

for B.1. While it is unfortunate that the fit did not uncover a correct R2* for tube

B.1, the deceptively high R2* estimates for tubes A.1, A.2, B.2, and B.3 could lead

to greater errors.

These results demonstrate that current R2* mapping techniques are inadequate
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when fat content rises above 10%, whether a fat saturation pulse is applied or not.

5.2.3 Two-Point Dixon: In Vitro

The simple two-point method serves as a proof-of-concept to show that real Tur-

boSPI data are amenable to the Dixon techniques. Figures 5.8, 5.9, and 5.10 give the

fat fraction (ff ) maps for Phantoms A, B, and C and Table 5.4 lists the mean ff for

each tube. Erroneous voxels in the background can be removed by thresholding the

signal intensity of the TurboSPI data, but are helpful for outlining the phantom.

Figure 5.8: Phantom A ff maps for data acquired without (left) and with (right) a
fat saturation pulse. The ff maps were calculated using Relax! with the two-point
Dixon method. Tube labels (A.1, A.2, A.3) are shown on the left panel.

Figure 5.9: Phantom B ff maps for data acquired without (left) and with (right) a
fat saturation pulse. The ff maps were calculated using Relax! with the two-point
Dixon method. Tube labels (B.1, B.2, B.3) are shown on the left panel.
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Figure 5.10: Phantom C ff maps for data acquired without (left) and with (right) a
fat saturation pulse. The ff maps were calculated using Relax! with the two-point
Dixon method. Tube labels (C.1, C.2, C.3) are shown on the left panel.

Table 5.4: Table of mean and standard deviation (SD) of ff values for the phantoms,
organized by fat content. “FS” refers to data acquired with a fat sat pulse.

A.1 A.2 B.1 B.2 A. 3 B.3 C.1 C.2 C.3

Known Fat % 20 NC 40 NC 40 30 20 15 10 5 0

Mean Fat % 41 61 66 50 39 29 16 18 16
SD Fat % 2 2 1 2 2 2 3 2 1

Mean Fat % FS 19 22 38 22 17 14 11 10 11
SD Fat % FS 2 2 3 4 2 2 3 3 1

Immediately, we notice that the ff data are more consistent (with smaller relative

standard deviations) than the R2* fits presented earlier, suggesting that two-point

Dixon is precise, even if it is not accurate. ff estimates from data with fat saturation

are appropriately lower than the corresponding data without saturation.

As with the in silico data, the two-point Dixon method consistently overestimates

fat content for the in vitro samples without fat saturation. In contrast to the in silico

work, overestimates occur even for tubes without SPIO labelled cells, albeit less so

than for tubes containing the cells.

The fat fraction for the “no cell” tubes (A.1, A.2) are equal within their standard

deviations (19 ± 2 versus. 22 ± 2) for the fat saturated data, but very different for

the data without fat saturation. This illustrates how the fat saturation pulse is not
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fully effective and suggests that 20% could be a common residual signal (after fat

saturation), but this is impossible to determine without more “no cell” data.

The no-fat control has non-zero ff in both data sets. This suggests that some of the

overestimation could arise from the labelled cells, similar to the in silico work which

presents a no-fat ∆ff (estimated ff - known ff ) of the same magnitude. However,

this may be overshadowed by ff inflation from the fat itself since the ∆ff increased

as a function of known fat content, in contrast to the in silico work.

At this point, we must note a slight design difference between the two-point Dixon

in silico and two-point Dixon in vitro studies. Since the in silico study varied the

signal according to S (1-ff )Sw + ff Sf (with ff = 0 → 1), where the Sw comes from the

Monte Carlo simulation and Sf is inserted after. Therefore, when ff was increased,

there was less relative Sw and therefore, less relative estimation error from SPIO. This

did not effect the R2* calculations since the effect is simulated and fit uniquely for

the two species. For the in vitro study, the water content varies similarly (Total =

(1-ff )W + ff F), but the cells are added separately and they are not linked specifically

to the water signal. Therefore, in these data, we should not expect the offset ∆ff to

decrease with increased fat content.

It is still interesting to plot the results as estimated ff versus known ff (Figure

5.11).

Figure 5.11: Estimated ff versus Known ff for the data given in Table 5.4 (Black:
no fat saturation, Blue: fat sat). Linear fits are performed for each data set. R2

goodness of fit values are 0.96 and 0.84 for the black and blue lines, respectively.

The “no fat sat” ff are linear, with an R2 = 0.96. Tube C.1 (10%fat) is much lower

than expected. As mentioned earlier, Tube C.1 had poor oil-water mixing and the
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mixture was less homogenous than the other tubes, perhaps explaining this reduced

estimate.

The fat sat ff are less consistently linear (R2 = 0.85), which could be because the

fat saturation pulse appears to be more effective for lower fat fractions (> 20%).

Table 5.5 shows a brief attempt to recover corrected ff values using the linear fit

of no fat sat data, as was done with in silico data in Section 4.2. Again, this is clearly

very dependent on a fit line which will never be known in vivo and as such, is shown

for example only.

Table 5.5: Rough ff estimates after the no fat sat ff data were scaled using the
calibration with known values (Figure 5.11).

A.1 A.2 B.1 B.2 A. 3 B.3 C.1 C.2 C.3

Known Fat % 20 NC 40 NC 40 30 20 15 10 5 0

“Corrected” Fat % 23 38 42 31 20 14 3 5 3

Even though two-point Dixon gives inaccurate (but precise) measures of fat con-

tent, these data indicate that TurboSPI data respond reasonably well to Dixon ma-

nipulations. As predicted by the in silico work, we should move forward to a more

comprehensive Dixon model.

5.2.4 Simulataneous R2* and ff Estimation

We use the decay model described in Section 5.1.3 for simultaneous estimation of

multiple parameters, most relevantly T2* and ff.

All data are fit twice to investigate different approaches for mapping T2* decay

in the presence of fat:

1. Separating the effects (as in Equation 5.1) to map a unique T2W* on the water

species.

2. Fitting a common T2* to map an average decay constant for the two species.

Table 5.6 lists the initial parameter guesses and lower/upper bounds for the optimiza-

tion. These are common for the two approaches, excluding those for T2* which are

defined separately.
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Table 5.6: Initial guesses and bounds used in the optimization. T2W∗/ T2F∗ and T2*
are used for Methods 1 and 2 above.

W F T2W* T2F* T2∗ θw θf θwt θft

Initial Guess 0.5 0.5 5 20 5 0 0 0 ∆ωWF

Lower Bound 0 0 1 2 1 -π -π -2π ∆ωWF - π
Upper Bound 1 1 30 50 50 π π 2π ∆ωWF + π

To conform to previous in vitro analyses we convert T2* to R2* and will continue

with this convention for the duration of this section.

Method 1: Fitting unique R2w*

Figures 5.12, 5.13, and 5.14 show the R2* and ff maps for Phantoms A, B, C

computed for the data acquired with and without a fat saturation pulse.

Figure 5.12: Phantom A Method 1: R2W* (s−1) (top) and ff (bottom) maps for data
acquired without (left) and with (right) fat sat. Tube labels (A.1, A.2, A.3) are top
left.
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Figure 5.13: Phantom B Method 1: R2W* (s−1) (top) and ff (bottom) maps for data
acquired without (left) and with (right) fat sat. Tube labels (B.1, B.2, B.3) are top
left.

Figure 5.14: Phantom C Method 1: R2W* (s−1) (top) and ff (bottom) maps for data
acquired without (left) and with (right) fat sat. Tube labels (C.1, C.2, C.3) are top
left. The red asterisks denote unreasonable fits due to shimming errors in acquisition.
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Tables 5.7 and 5.8 compare mean values for R2* and ff respectively, but we de-

scribe qualitative observations of the R2* maps first. The maps for Phantom A show

that, for the first time, tubes with only fat (no labelled cells) present with significantly

lower R2* than tubes with labelled cells for data with and without fat sat. Ideally,

these “no cell” tubes would be lower, however these results are an improvement over

the mono-exponential method. The R2* maps for Phantom B also show improvement

in that the R2* values for the three tubes are much more similar (to each other) than

the previous method. Fitting Phantom C (with fat sat) using Method 1 performed

similarly to the mono-exponential method, which is appropriate since these tubes

contained little to no fat. Fitting Phantom C no-fat-sat failed dramatically due to

large phase errors (see Figure B.1), likely to shim issues during acquisition.

Despite improvements, we note a caveat in that both the R2* and ff maps are

less precise than before, with more spurious fits in the water bath. However, these

are still lower the baseline R2* used for in vivo studies (≈ 120 s−1).

Method 2: Fitting average R2*

Figure 5.15: Phantom A Method 2: R2* (s−1) (top) and ff (bottom) maps for data
acquired without (left) and with (right) fat sat. Tube labels (A.1, A.2, A.3) are top
left.



96

Figure 5.16: Phantom B Method 2: R2* (s−1) (top) and ff (bottom) maps for data
acquired without (left) and with (right) fat sat. Tube labels (B.1, B.2, B.3) are top
left.

Figure 5.17: Phantom C Method 2: R2* (s−1) (top) and ff (bottom) maps for data
acquired without (left) and with (right) fat sat. Tube labels (C.1, C.2, C.3) are top
left. The red asterisks denote unreasonable fits due to shimming errors in acquisition.
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Again, we begin with a qualitative discussion of the R2* maps before showing the

mean values from the ROI analysis. The Phantom A R2* estimates have improved

similarly to Method 1 for the data without fat saturation: tubes with no cells have

appropriately lower R2* than tubes with cells. While, this trend continues for the

data with fat saturation we notice that tube A.3 (20% fat with cells) presents inflated

R2* estimates. Furthermore, the R2* values for this data set are much noisier and less

precise, as is seen in Table 5.7. The data for Phantom B show that R2* apparently

increased with decreased fat content, an undesirable effect since the tubes have equal

concentrations of SPIO labelled cells. Again, the no fat sat data for Phantom C are

unusable, but the R2* values for the data with fat saturation are appropriately similar

for the three tubes.

R2* Comparisons

The qualitative discussion above suggests that Method 1 is superior to Method 2,

especially in the case of data acquired with fat saturation. This is verified by Table

5.7 which gives the results from an ROI analysis of each tube.

Table 5.7: Estimated R2* by Methods 1 and 2 for each data set. Method 1 calculates
the unique R2W* decay on the water species and Method 2 calculates the average R2*
for the mixture. Phantom C no fat sat data are excluded due to experimental errors
that led to unrealistic fits.

A.1 A.2 B.1 B.2 A. 3 B.3 C.1 C.2 C.3

Known Fat% 20 NC 40 NC 40 30 20 15 10 5 0

Method 1 Mean R2* (s−1) 186 222 345 270 326 299 — — —
Method 1 SD R2* (s−1) 27 35 52 33 38 38 — — —

Method 1 Mean R2* (s−1) FS 146 163 317 220 278 254 206 192 184
Method 1 SD R2* (s−1) FS 27 23 49 40 42 27 37 74 56

Method 2 Mean R2* (s−1) 175 155 191 249 300 336 — — —
Method 2 SD R2* (s−1) 13 8 15 17 27 54 — — —

Method 2 Mean R2* (s−1) FS 199 227 313 266 530 557 269 263 296
Method 2 SD R2* (s−1) FS 50 69 37 66 239 193 85 101 76

First, we notice that the fat sat R2* estimates provided by Method 2 have much
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larger standard deviation than those from Method 1, which indicates that this tech-

nique does not have a stable response to fat saturation. As well, both the fat sat and

no fat sat estimates vary significantly with fat content, a feature that we are trying

to avoid. Since Method 2 attempts to fit an average R2* for the mixture, these vari-

ations could reflect varying R2* contributions from the different species. In contrast,

Method 1 exhibits superior inter-tube and intra-tube consistency. That is, the R2*

estimates are more similar when they should be similar (Tubes A.3 - C.3) and, in

general, they have lower standard deviations for the fat sat data.

We have established that Method 1 surpasses Method 2 with respect to accurate

R2* fitting in the presence of fat. Next, we want to ascertain if, as suggested in the

qualitative discussion above, Method 1 improves upon the previous method (basic

R2* fit with fat elimination). Figure 5.18 shows R2* estimates by ff for Methods

1, 2, and the original technique. While the old technique is most stable for low fat

content, the fitting begins to fail at 15% fat for the no fat sat data and 20-30% for

the fat sat data. Method 1 estimates are most stable in general, indicating that it

may be reasonable to fit R2* with this more comprehensive signal model.

Figure 5.18: Estimated R2* versus known mixture ff for fat sat and no fat sat data
with fitting by Methods 1, 2, and the “old technique”

We would be remiss not to mention certain drawbacks. The dramatic failures



99

in fitting the no fat sat data from Tube C are quite alarming. Figure 5.4 does not

reveal any suspicious behaviour in the signal time course and R2* estimates from the

previous fitting technique are sound. This is because the failure arises from phase

errors (Figure B.1), probably from a poor shim. Since the time course shows signal

magnitude versus time and the previous technique fits the magnitude decay, these

data are less likely to reflect phase error. Recall that the signal model in Method one

does have a term to describe Bo inhomogeneity, but this may not be able to handle

large changes from an ineffective shim.

Without the no fat sat data for Tube C we cannot compare how Method 1 per-

forms with fat saturation versus without fat saturation. The data behave similarly

from 15% fat to 40% fat, but it would be valuable to compare the data for low fat

content. Another future step involves performing an in vitro study for different cell

concentrations with and without added fat.

FF Comparisons

The main goal of including a ff parameter in the fit is to improve R2* estimates

for voxels with fat. We are not necessarily interested in fat estimates themselves since

they do not have a direct purpose in cell tracking studies. Nonetheless, it is interesting

to investigate the fit performance with respect to ff. These data are reported in Table

5.8 and Figure 5.19.

Table 5.8: Estimated fat content by Methods 1 and 2 for each data set. Phantom C
no fat sat data are excluded due to experimental errors that led to unrealistic fits.

A.1 A.2 B.1 B.2 A. 3 B.3 C.1 C.2 C.3

Known Fat% 20 NC 40 NC 40 30 20 15 10 5 0

Method 1 Fat % 39 60 68 50 33 21 — — —
Method 1 SD Fat % 4 2 2 3 2 3 — — —

Method 1 Fat % FS 17 19 36 21 10 4 4 10 8
Method 1 SD Fat % FS 3 2 4 4 3 2 8 15 12

Method 2 Fat % 39 63 72 52 35 23 — — —
Method 2 SD Fat % 4 2 2 3 2 2 — — —

Method 2 Fat % FS 17 18 38 17 8 4 4 4 6
Method 2 SD Fat % FS 4 2 4 3 6 6 4 5 8
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Methods 1 and 2 perform similarly for ff ≥15% for data with and without fat

saturation. As expected, the estimated fat fractions are lower for the data with fat

sat and these data also show increased intra-tube variability. Both methods exhibit a

loss of linearity and large intra-tube variability for tubes with a ff<15. As suggested

earlier by the two-point Dixon analysis (Figure 5.11) and the signal time plots (Fig-

ures 5.2, 5.3, and 5.4), the fat saturation pulse appears to be completely successful

for these low ff.

Both methods have difficulty fitting an accurate ff when there is little to no fat

content. The in silico noise performance plots (Figure 4.27) show ff overestimates

with large variability for tSNR < 20, particularly for low (0 and 5%) ff data. This

effect may explain poor fit performance for in vitro data with low ff. However, Tur-

boSPI time course data are significantly denoised (as demonstrated in Ref. [158])

which markedly improves tSNR. As well, the overestimates are similar to those from

simple two-point Dixon. These ff inaccuracies are not excessively worrisome since we

are not specifically analyzing ff for in vivo cell tracking studies. However, it is an

unexpected outcome that could be more fully characterized in a future study.

Figure 5.19: Estimated ff (expressed as a percentage) versus known mixture ff for
fat sat and no fat sat data with fitting by Methods 1 and 2.
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5.3 In Vitro Summary and Conclusions

We applied the methods developed in silico to in vitro data. This way, we could

translate a curve fitting approach to real (acquired) data without the added compli-

cations associated with in vivo data. We tested tubes with equal concentrations of

SPIO labelled cells, but varying concentrations of oil to reflect varying fat fractions.

First, we compared signal time course plots to illustrate the fat modulation for

various ff and investigate the efficacy of the fat saturation pulse. Next, we computed

R2* maps using the former fitting technique to demonstrate challenges associated

with these signal modulations. The mean R2* estimates obtained using the former

technique were consistent until 10% - 15% fat.

After the initial in vitro demonstration, we estimated the relevant parameters

using a curve fitting approach for two different signal models. The first model fit

unique R2* decays for the water (R2W*) and fat (R2F*) species and reported the

R2W* for the quantitative map. The second model conformed to techniques found in

the literature [134] [139] that suggest an average R2* for the mixture. We found that

the first model gave the most stable R2* estimates for equal concentrations of SPIO

labelled cells across all tested fat fractions (0-40%). These results suggest that, when

fat is present, we could improve R2* accuracy by using this more comprehensive signal

model. These methods perform similarly to the previous technique in the absence of

fat, although with slightly larger variability and lower estimates. Since the maximum

signal magnitude is lower for the no-fat and low-fat data, low SNR could account for

the diminished R2*, as was seen in silico.

A caveat of this method is that we do not see R2 → 0 for the “no cell” tubes.

Ideally, the R2* would be very low for these tubes. This will present a challenge for

applying the technique in vivo. On a positive note, these “no cell” R2* values are

now closer to the baseline R2* for in vivo studies. However, they should be equal to

or lower than baseline for this technique to reach its full potential of discriminating

SPIO labelled cells from fat in vivo.

The in vitro study allowed us to test the proposed hybrid fit on data of interme-

diate complexity. Fitting a unique R2* decay to the water species showed promise

in removing fat contributions from R2* maps. However, future investigations are

required before we can confidently use this technique in vivo. First, characterizing
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fit performance for various concentrations of SPIO labelled cells without any added

fat. Next, reducing R2* in fat voxels even further such that it falls below in vivo

baseline and, finally refining the fit to adapt to data with lower temporal SNR. To

our knowledge this is the first instance of fitting unique R2W* and R2F* using the

Dixon signal model. Future implementations may consider fitting an average R2* as

long as separate base values (i.e. in the absence of SPIO) are included in the model

for each species.



Chapter 6

Conclusion

6.1 Conclusions

This thesis consists of three interconnected studies: the first exposes a problem,

the second investigates the problem in silico and proposes a solution, and the third

applies the solution to more realistic data. The workflow is analogous to a bedside

to bench approach in medical research, wherein a problem is identified in the clinic

and investigated in the laboratory. Such an approach benefits from studying a highly

specific and necessary problem. This is contrary to a bench to bedside workflow, in

which a research question is hypothesized in the laboratory before translating it to a

clinical setting.

In Chapter 3 we presented results from an in vivo study in which we compared

immunotherapeutics (checkpoint inhibitor anti-PD-1, DPX-R9F vaccine, and a com-

bination) using quantitative cell tracking by TurboSPI. This was the first large cohort,

multiple treatment, in vivo study using TurboSPI (along with the more conventional

bSSFP).

Unfortunately, we saw that signal modulations from off-resonance fat impeded our

ability to perform accurate and specific R2* mapping. These data demonstrated how

fat can negatively affect the accuracy of cell quantification in in vivo studies. While

fat is typically not directly in a region of interest (e.g. a tumour or a lymph node),

these regions are often surrounded by a fat pad, which can confound analysis. There-

fore, we cannot simply use anatomical context to ignore fat. As such, this chapter

served to present a challenge: R2* fitting in the presence of fat.

Chapter 4 began with a thorough investigation of the problem using in silico

methods. We used Monte Carlo simulations and the extended slow diffusion model to

generate signal time course data and added the off-resonance fat signal for different

fat fractions. These data illustrated how the time course shape changes with varying

amounts of added fat.

103
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We studied different methods to estimate the fat fraction and correct for the cor-

responding signal oscillation. The most promising technique used a hybrid Dixon

and R2* signal model to fit the decay. This technique enabled simultaneous esti-

mation of both fat content and R2W*, the unique decay for the water species. Fat

fraction estimates were accurate from 0% to 100% and R2W* were stable across the

same fractions, excluding poor performance at fat fraction extrema. By adding white

Gaussian noise we found that the parameter estimates were stable for SNR > 20, but

lower SNR resulted in fat overestimates and R2* underestimates. Therefore, noise

performance should be considered when fitting non-simulated data.

In the final chapter, we translated the new fitting approach to in vitro data. This

approach gave us data acquired on the 3T magnet with the TurboSPI sequence, but

with a larger degree of control than an in vivo study. Nine solutions of oil, water,

and SPIO labelled cells were prepared in NMR tubes and scanned with three tubes

per acquisition in a shotgun phantom holder.

The final results demonstrated that the simple mapping technique became inade-

quate when the fat fraction rose above 15-20% while the proposed technique provided

more stable R2* estimates for these larger fat fractions. We were successful in creating

a technique that outperformed the simple model in the presence of fat. However, the

hybrid technique appeared to underestimate R2* when fat content was absent or low

and continues to overestimate fat R2*, although far less than the mono-exponential

fit.

6.2 Remaining Limitations and Future Work

We have shown promising initial results for the in vitro samples, but more work

needs to be done to improve performance and make this technique fully translatable

to in vivo data. This includes a second in vitro study to characterize fit performance

for various concentrations of SPIO to ascertain if the R2* estimates vary appropri-

ately, as they did in the in silico study.

While the R2* estimates for “no cell” fat phantoms are approaching the in vivo

baseline, preferably they would be at, or below, baseline. For this reason, the hybrid

technique has not been formally tested on the in vivo data since “no cell” fat voxels

will continue to contribute to the final R2* map. One option is to increase the in
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vivo baseline, however this would increase the detection threshold and thus reduce

sensitivity. Therefore more work to should be done to further reduce R2* estimates

for “no cell” fat voxels.

During the in silico study we emulated the effect of low SNR to study noise perfor-

mance. There are other factors that affect image quality, such as Bo inhomogeneity,

that could also impair fit accuracy. This invites further work simulating these factors

in silico to investigate fit performance.

Despite the challenges mentioned above, the goal is in vivo translation. Figure

C.1 gives a preliminary in vivo demonstration of the hybrid technique and shows how

it compares to earlier methods, but also highlights the current caveats. Earlier we

noted that, when both SPIO labelled cells and fat are present, the hybrid Dixon-R2*

technique performed best for fat > 15% and the simple technique performed best for

fat < 15%. Ideally, we would like to improve the hybrid technique, but an adaptive

approach may be acceptable in the interim. The adaptive technique would use the

estimated fat fraction to indicate voxels with low fat fraction that should be re-fit

with the simple technique. Fat fraction would dictate which fit model to use for each

voxel in the map, thus exploiting the strengths of each technique. The hybrid tech-

nique will likely be most effective near the edges of tumours where immune cells that

have poor infiltration may accumulate.

6.3 Final Summary

The principal objective of this work was to study the effect of fat modulations in

TurboSPI and propose corrective methods. We addressed our goal by illustrating the

problem in vivo, investigating the system in silico to develop a solution, and finally

testing that solution on real data.

We were successful in developing a reliable model in silico that could estimate

fat content and R2* decay across various simulated conditions. Translation to physi-

cally acquired data was moderately successful. Using the proposed hybrid Dixon-R2*

technique, we obtained simultaneous estimates of fat fraction and R2* for in vitro

samples. When both SPIO labelled cells and fat were present, the hybrid technique

performed better than the previous mono-exponential fit. There are challenges to

address before in vivo translation is possible, specifically the fit performance when
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only cells or only fat are present. We have, however, improved fitting for certain

physical conditions. Therefore, this work is a step towards more comprehensive and

robust R2* mapping, which will in turn give more accurate cell quantification.



Appendix A

Experimental Details: Chapter 3

A.1 Schedule for Pilot In Vivo Study

Figure A.1: Experimental timeline showing schedule for implant, cell preparation
procedures, and imaging for the Untreated Group as described in Chapter 3

A.2 SOPs

Standard operating procedures (SOPs) for isolation, culture, SPIO loading, and

tail vein injection of CTLs. These procedures were used for the in vivo cell tracking

pilot study (Chapter 3) and in vitro cell labelling study (Chapter 5).
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1.0 Purpose: This document describes how to isolate and culture lymph node T cells to prepare cytotoxic 
CD8+ T cells culture for imaging.  

3.0 Required Documents and References  
SOP BIO-001: Preparation of trypan blue solution and cell counting  

4.0 Equipment  
 Class II laminar airflow cabinet  
 Electric/rechargeable pipettor  
 10 ml sterile pipets  
 5 ml sterile pipets  
 15ml polypropylene tubes (Falcon, Corning or similar)  
 50ml polypropylene tubes  
 40µm cell strainer  
 100x 15mm petri dishes (such as Fisher, #08-757-12)  
 6 well plates  
 Scissors  
 Forceps  

5.0 Reagents  

● CD8+ cell Medium (see BIO-004):  
○ 1 bottle of RPMI 1640 (Sigma, #R8758)  
○ 50 mL of Fetal Bovine Serum (HyClone, SH30396.03)  
○ 5 mL of Penicillin-Streptomycin solution (Gibco #15140-122)  
○ 500 uL of 1M cell grade B-mercaptoethanol  

● 1X Phosphate Buffered Saline (PBS) (Gibco, #10010)  
● Human IL-2 cytokine  (Stock 3.33x105 U/mL) (Peprotech #315-03)  
● 2% FBS in HBSS++ (+10mM HEPES) 
● 10% FBS in HBSS++ (+10mM HEPES) 
● 0.5% BSA in HBSS++ 
● RPMI 1640 
● R9F peptide in DMSO (5mg/mL) 
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6.0 Protocol  

To ensure that steps 7 – 28 are done under aseptic conditions, basic guidelines are followed: Use of 
gloves when handling materials, autoclaved glassware/sterile plastic ware, autoclaved, filtered or sterile 
solutions used under the laminar flow hood.  

Day -1 

1. Coat a 6-well plate with 1ug/ml of 145-2C11 (hamster anti-mouse CD3) in 1 ml of PBS. Place the 
flask at 4oC overnight or for 4-5h at R.T.; ensure flask is level and well hydrated. → _______ul 

2. Coat a bacteriological petri dish (not tissue culture dish) with Goat anti rat IgG as follows:  
a. Add 8ml of sterile PBS. 
b. Add Goat anti rat IgG to obtain a final concentration of 10ug/ml in sterile PBS (80ug 

– from 2.5mg/ml of stock, use 37ul). 
c. Place the dish at 4oC overnight 

Day 0 - General 
3. # of mice_____ Cage#______  

Mice identification________________________________________________________ 

 
Day 0 (LN only) 

4. Lymph nodes (LNs) are briefly stored in fresh sterile ELISPOT media in a microfuge tube.  1-2 
tube/mouse.  LNs: Inguinal, axillary, brachial, mesenteric, and submandibular. 

5. A 40um cell strainer is placed on top of a 50 mL falcon tube and ~5ml of ELISPOT media is 
poured into it. LNs are then put in the cell strainer and crushed using a 3ml syringe plunger.  Add 
1 mL of media to filter cells through as the LNs are being crushed. 

a. NOTE: All LNs from the same group can be combined in one tube.  Change cell strainer 
each 3 mice. 

6. The cell strainer is rinsed with ~2-3ml of ELISPOT media.  
7. Cells are centrifuged for 5 min @ 300 g (rcf). Wash with RPMI media once, resuspend, 

centrifuge, and add 3mL/mouse of ELISPOT media. 
8. Cells are counted (1:10 in trypan blue- i.e. put 10µl of cells in 90µl of trypan blue).  
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Cells counted ✕104 (cells/mL) D.F. (s) Total # of cells 
    

Discarted                   mL, kept                      cells.  Only keep max of 1.5x108 cells 

9. Cells are resuspended in 1x108 cells/ml in RPMI + 5% FBS for further purification. 
10. Treat cells with: 

a. 25ug/ml rat anti-mouse CD4 (clone GK1.5 eBioscience) → _______µl (from stock 
1.0mg/ml) 

b. 50ug/ml rat anti-mouse IgG1 kappa (clone 187.1) → _______µl  (from stock 0.5mg/ml) 
11. Incubate cells for 40 minutes at 4oC, mixing every 15 minutes. Proceed to next step immediately. 
12. Rinse the anti-rat IgG coated petri dishes 4x using sterile PBS, block for 60min with 5ml of filter 

sterilized HBSS++ with 0.5% BSA. Take a 40min break! 
 

13. After 40min, wash the cells twice using cold HBSS++ + 2% FBS and resuspend in 6ml HBSS++ 
+ 10% FBS (both with 20mM HEPES).  

14. Remove the blocking HBSS++ from the petri dish and add cell suspension (do not exceed 5-7x 
107 cells/dish). Incubate for 40 minutes at 4oC.   # of dishes:__________            

15. Gently collect non-adherent cells and rinse the dish once with 5ml cold RPMI, centrifuge, 
resuspend in ~3mL of ELISPOT, then collect a small cell sample and count the cells 1:10 in 
trypan blue.  

Cells counted (avg)✕104 (cells/mL) D.F. (s) Total # of cells 
    

Discarted                   mL, kept                      cells.  Do not need more than 6x106 cells.   
16. Spin the cells and resuspend them in ELISPOT media at 5x105 cells/ml in 2 ml/well in a 6-well 

plate.   
17. Add to cell suspension: 

a. 0.3 uL/mL of human IL-2 → _______ul (100 U/ml from stock 3.33x105U/mL) 
b. 10 uL/mL of mouse IL-12 → _______ul (1ng/ml from stock 100ng/mL) 
c. 1.0uL/mL of hamster anti-mouse CD28 → _______ul (1ug/ml from stock 0.5mg/ml) 

(clone 37.51 from eBioscience) 
d. .5 uL/mL (5ug/ml) of Gentamicin → _______ul (from stock 10mg/ml) 
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18. Remove unbound 145-2C11 antibody from coated flask by rinsing 3-4X with sterile PBS. Add 
cell suspension to the coated flasks (_________ml). Incubate at 37oC for 72 hours. 

 

Day 3 (CD8) 
 Add 1 mL of warm ELISPOT media to each well. 
 
Day 4 (CD8) 

5. Warm up ELISPOT media to 37˚C 
6. Collect activated CD8 cells from their plate into 15ml centrifuge tube, spin down, resuspend in 

10mL of ELISPOT 0.3uL/mL (100 units/mL) of human IL-2 in one T25 flasks 
 
5 days before injections (APC only) 

5.  Spleens are collected and (1 spleen per 3 mice LN CD8+ isolation) washed briefly in fresh 
ELISPOT media. 

6. A 40um cell strainer is placed on top of a 50 mL falcon tube and ~5ml of 1x RBC lysis buffer 
(10X diluted to 1X in Steril water) is poured into the strainer. Spleens are then put in the cell 
strainer and crushed using a 3ml syringe plunger.  Add ~1 mL of 1x RBC lysis buffer to filter 
cells through. 

7. Wait 5 minutes for red blood cells to lyse then add an equal volume of RPMI media to neutralize 
the buffer.  Centrifuge cells at 300g for 5 min and aspirate supernatant.  If pellet is red, add 5mL 
of 1x RBC lysis buffer, re-suspend cells, and wait another 5 min.  Then add C3 media in equal 
volume. Centrifuge. Pellet should be white/light brown. 

8. The supernatant is aspirated and the pellet is resuspended in 3 ml of C3 media. 
9. Filter cells again through a 40um filter to remove excess cell debris.  
10. Cells were counted (1:100 in trypan blue- i.e. put 10uL of cells in 90uL of trypan blue, then take 

10uL of suspension and put in fresh 90uL of trypan blue).  
Cells counted (avg)✕104 (cells/mL) D.F. (s) Total # of cells 

    

111



 

 

Page: 5 of 7 

Executed by: MLT 

Title: CD8+ activation and culture in the C3 cancer model Reviewed by:  

Document ID: SOP BIO-006 Issue: 01 Date: 161003 

 

5 
 

 
11. Resuspended cells at 5x106 cells/ml cell suspension (in C3 media) and transferred to T75 tissue 

culture flasks (20 ml per flask, 1 flask/spleen). 
12. Incubated at 37oC for 2 hours and collected non-adherent cells, transferred to a 50ml tube. 
13. Centrifuged, discarded supernatant and resuspended cells in 10mL C3 media, performed cell 

count (1:10 trypan blue) and adjusted to 4x106 cells/ml and transferred 10ml to a small flasks. 
14. Add LPS to a final concentration of 10ug/ml (stock 1mg/mL) and mix well. 
15. Cultured cells for 48 hours at 37oC. 

Day 5 (CD8) 

5. If media is orange/discoloured and there is an obvious cell suspension, proceed to next step. 
6. Dilute cells with 5mL of ELISPOT media with 0.3uL/mL added (100 U/ml) of human IL-2 a 

medium flask.  
7. Return to incubator.   

Day 6 or 7 (CD8) 

5. Dilute activated CD8 cells to 30ml (+15mL) with warm ELISPOT media. 
6. Add 0.3uL/mL (100 units/ml) of human IL-2  
7. Return to incubator.   
8. Cells will grow fast.  Check flask everyday to make sure cells don’t overgrow their flask by 

watching the discoloration of the flask. 
3 days before injection 

9. After LPS activation, spleen/APC cells were collected by swirling the flask to collect non-
adherent cells, transferred to a 50mL tube and centrifuged, discarding the supernatant. Flask 
should be rinsed with fresh media to help collect the non-adherent cells. 

10. Pool cells, resuspended in 20mL C3 media, take a sample for cell count (1:10 trypan blue), and 
centrifuged again to remove traces of LPS. 

Cells counted (avg)✕104 (cells/mL) D.F. (s) Total # of cells 
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11. Resuspended cells at 5x107 cells/mL in ELISPOT media in a 50ml tube, wrap tube in aluminum 
foil. Keep away from light. 

12. Added __________ul mitomycin C stock (0.5 mg/mL) to cell suspension at a final concentration 
of 50 ug/mL. 

13. Mixed and incubated for 20 minutes at 37oC, still wrapped in aluminum foil. 
14. Fill tube to 50mL of ELISPOT media and centrifuge. 
15. Discarded the supernatant and repeated washing cycle two more times to remove all traces of 

mitomycin C. (Three washes are crucial with lots of media.) 
16. Resuspended cells at concentration of ______________cells/mL. 
17. Added APC cells to flasks at a ratio of 6:1 (CD8:APC cells). APC cells should therefore be at 

0.5x105 cells/ml concentration (added ________uL cells/flask). 
18. Added 0.3ul/mL of human IL-2 to flask. 
19. C3 tumors only: Add _______ of R9F to flasks (at 10 �g/mL of 5 mg/mL stock solution). 

Return to incubator. 
20. Ovarian tumors only: Add _______ of Survivin to flasks (at 10 �g/mL from stock solution). 

Return to incubator. 
 
16-24h before cell injections 

21. Collect activated cells from the flask into 50ml centrifuge tube, spin down, resuspend and count 
cells. 
 

Cells counted (avg)✕104 (cells/mL) D.F. (s) Total # of cells 
    

 
22. Take a small sample of cells (~0.5-1x106cells) for FACS (3 tubes: no stain, CD8CD3CD4, 

and CD11c) 
23. Dilute cells in fresh ELISPOT media with 100 U/ml of human IL-2 (added _______uL) to 

4.0x106 cells/mL in fresh small flasks. Used ______mL of ELISPOT media.  
24. Add ____________ of SPIO-Rhodamine B (stock solution 2 mg/mL) to flasks at concentration 

of 0.075 mg/mL. Ensure iron is swirled through flask. Return to incubator. 
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25. After four hours, add magnet under flasks (in 37oC incubator).  
 
Injection prep 

21. Collect cells in a 50mL conical tube and spin the cells down at 300g for 5 min.  Place cells on ice. 
22. Wash cells with ~50mL of cold (on ice) 1X PBS 2 times. 
23. Wash cells with ~30mL of cold (on ice) HBSS++ 2times. 
24. Resuspend cells at 40x106 cells/mL (or ~8x106 cells/inj) in HBSS++ with 20mM HEPES. Keep 

cells on ice. 

Document Revision History: 

Issue Change 
Initiated by 

Change(s) made Effective Date 

01 MLT  161003 
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1.0 Purpose: BMRL uses immune cell adoptive transfer to assess the migration of various 
populations of immune cells pre-clinically in various mouse cancer models. To ensure 
consistency and comparability between studies, route of administration procedures must be 
well defined. The purpose of this Standard Operating Procedure (SOP) is to describe 
approved procedures for performing intravenous injection of immune cells into the lateral tail 
vein of mice. 
 

2.0 Scope: Describes the best methods for performing intravenous injections. 
 

3.0 Materials: 
- Gloves and lab coat 
- 27 gauge ½ inch needle 
- 0.3-1 cc syringe 
- Beaker of water heated to 38-40° C 
- gauze 
 

4.0 Procedure: Prior to injections, cells are prepared at an appropriate concentration per 
injection (varies with cell type) in Hank’s balanced salt solution (HBSS; an immunogenically 
inert buffer) with 20 mM HEPES.  The volume of injection should not exceed 200 µL per 
mouse. 
 

4.1 Place the mouse in rodent restraint device.  
4.2 Dip the full tail of the mouse in warm water for 15-20 seconds to encourage 

vasodilation of the tail vein. 
4.3 Dry the tail with gauze and use pressure to occlude the vein at the base of the tail 

while holding the tip of the tail to create tension. 
4.4 With the injection needle in hand, locate the vessel and position the needle parallel to 

the tail with the bevel upwards, starting at the bottom 1/3 of the tail (can move 
proximally if multiple attempts are necessary). 

4.5 Insert needle tip very shallowly.  Release the occlusion of the vein and carefully 
depress the plunger.  The pressure should be smooth with little resistance.  If the 
tissue around the vein blanches, it is likely that the needle is out of position.  
Withdraw the needle and make another attempt at another injection site. 

4.6 Following a successful injection, withdraw the needle and apply pressure to the 
injection site until bleeding has stopped. 

4.7 Return mouse to cage for recovery. 
 

Originally written July 27, 2017 
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Appendix B

Supplementary Data: Chapter 5

B.1 Phantom C No Fat Sat - Phase Error

Comparing phase data for the doped water in Phantom C no fat sat versus other

phantoms reveals the dramatic phase error responsible for poor fitting in Figures 5.14

(left) and 5.17 (left). Magnitude data were unaffected which explains why the simple

mono-exponential fit succeeded (since it does not consider phase).

Figure B.1: Signal time course (phase) for the doped water in Phantoms B and C,
acquired with and without fat saturation. The large phase offset in Phantom C no
fat sat is quite significant. It may have resulted from a bad shim/experimental error.

116



Appendix C

Supplementary Data

C.1 Preliminary In Vivo Demonstration: R2* Comparisons

The hybrid technique exhibits less erroneously fat voxels than the simple mono-

exponential technique, but more than mono-exponential with elimination. However,

it may result in fewer underestimates than fitting with strict mono-exponential with

elimination. As indicated by in vitro data, the hybrid technique likely performs

better for mixed voxels. Rather than fitting data solely with the hybrid technique,

an interesting future direction may include an adaptive approach that uses a metric

(perhaps fat fraction) to prescribe the fit method.

Figure C.1: Preliminary in vivo demonstration of the R2* overlay produced by the
hybrid technique (bottom left) with comparisons to mono-exponential (top left) and
mono-exponential with elimination (top right) fitting.
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