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ABSTRACT 

This work provides, switched-capacitor (SC) realizations of the constant phase element 

(CPE) using the TSMC 65 nm CMOS technology that could potentially be used in circuits 

for measuring fractional impedances. Two versions of the SC realizations are developed; 

using the bilinear discrete integrator (BDI) and composite discrete integrator (CDI)-based 

SC biquads. The realized CPE exhibits a constant phase in the frequency range 200 Hz to 

3 KHz in its 2nd order approximation, 80 Hz to 10 KHz in its 4th order approximation using 

BDI and over the frequency range 200Hz to 3 KHz for 2nd order approximation when 

realized using CDI. The total power consumption of the designed 2nd, 4th order 

approximated CPE using BDI are 5.95mW, 10.11mW and for 2nd order approximation of 

CPE using CDI is 7.12mW, which are very low in discrete circuit design. The normalized 

transfer functions obtained through continued fraction expansion (CFE) is further 

optimized through steepest descent technique for minimum phase errors. These SC 

realizations also have exhibited high linearity, high dynamic range and are also much 

tunable compared with traditional RC ladder realizations. These SC realizations are 

simulated with low supply voltage of 0.7 V, the proposed realizations can be implemented 

for bio-medical applications that demand low voltage inputs and low power consumption 

(LVLP).  
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CHAPTER 1 INTRODUCTION 

1.1 Motivation 

Several physical characteristics and properties of many biological materials such as tissues 

and cancer cells can be estimated through the measurement of their impedances. There are 

two common methods to analyze bio-impedances, direct method and indirect method. The 

direct method is to simply compare changes in impedance at certain frequencies, while 

indirect method compares changes in the circuit parameters that represent wide-band 

frequency measurements using an equivalent electrical circuit. Several studies have proved 

that fractional order (FO) models can characterize real-world physical systems more 

effectively using differential operators of an arbitrary order. Therefore, components with 

FO impedances have been widely used through indirect methods [1]. A fractional model 

called Cole-Cole model is the most successful model in describing the measured 

impedance of a biological material. Although simple integrator based circuit designs exist 

to realize this Cole-Cole model, these circuits rely on the design of a constant phase element 

(CPE) of FO. All the existing realizations of the CPE use Passive elements such as RC 

ladders and this research thereby aims towards providing alternative realization using 

tunable and scalable active elements that can be fabricated in integrated circuits form. 

1.2 Fractional Order Systems and Circuits  

Fractional calculus, is a branch of mathematics that has been introduced more than 200 

years ago. It considers differentiations and integrations at non-integer orders, which has 

become a popular tool for modeling and characterizing complex behaviors of physical 

systems during the past decades and has found many applications in different fields of 

science and engineering. A fractional derivative (FD) of order α is given by Riemann-

Liouville as [2] 

 

(1.1) 
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where Γ(.) is the gamma function, a denotes the lower terminal and n-1 ≤ a ≤ n. 

Although, this definition plays an important role in the development of the theory of 

fractional derivatives and integrals as well as their applications in pure mathematics, but 

the demands of modern technology require definitions of FD which allows for the 

utilization of physically interpretable initial conditions. Therefore, another definition of FD 

is given by the Caputo fractional derivative as [2] 

 

The Caputo definition benefits from the initial conditions in a similar form as the integer 

order differential equations.  

Although, fractional calculus and mathematical model of FO systems have been presented 

for more than 200 years, it was only treated  as an interesting abstract mathematical concept 

[2]. Therefore, the FO dynamical systems were limited in the theory and margin practice 

of control systems [4]. The ambition to implement a dynamical system of FO whose 

mathematical model has been in use for many years provided the motivation for an 

electronic realization of FO dynamical systems. Hence, the concepts of fractional calculus 

and FO systems have been slowly migrating into circuit theory and design [2].  

1.2.1 Fractional order systems 

Applying the Laplace transform to the Caputo definition of fractional derivatives (FD) with 

a = 0 gives 

 
Although, the Laplace transform has been traditionally applied to integer order systems, 

but it has been proved to be mathematically valid for non-integer order of sα where n-1 < 

α < n [5]. This can effectively represent a fractional order (FO) system. Hence, general 

(1.2) 

(1.3) 
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fractional order elements with impedances proportional to sα can be defined. The traditional 

integer order circuit elements such as resistors, capacitors and inductors are special cases 

of the general fractional order elements where the order α is equal to 0, -1, and 1, 

respectively. 

Constant Phase Element (CPE) is another special case of the general fractional order 

elements which has the impedance of ZCPE = 1/ sαC, where C is the capacitance and 0 < α 

< 1 denotes its order.  These elements are also called fractional order capacitors as the 

value of their order is between the corresponding value of the traditional circuit 

components of a resistor and capacitor.  

FO systems can be realized using fractional order elements and have many applications in 

different fields including control systems [2, 4], electronic circuits [7-12], electromagnetic 

[6], stability analysis [13], mechanics [6] and bioengineering [14] to name a few. 

1.2.2 Fractional order circuits 

Analog and discrete electronic circuits realized using FO elements such as constant phase 

element (CPE) can simplify the solution of many practical problems. Common application 

of the analog models mainly covers the FO dynamical systems [4, 6], FO controllers [7,16], 

FO filters [16-20] as well as FO oscillators [6,20]. FO element as the basic element of 

analog circuit is theoretically realized based on the combination of RC components in the 

form of infinite cross RC ladder network or domino ladder, where the latter demonstrates 

more flexibility in providing different values of fractional exponent [14].  

Utilizing FO elements to realize FO systems is steadily increasing in various fields of 

electrical engineering. Constant phase element (CPE) have been broadly used in the field 

of bio-impedance to measure the passive electrical properties of biological materials. These 

measurements provide useful information about the electrochemical processes in tissues in 

order to characterize the tissue or monitor for physiological changes [21-26]. Several 

fractional impedance models currently exist in literature. Cole-Cole impedance model [27-

30], fractional plant model [28], electrode tissue interface model [33], fractional respiratory 

model [7,33] and fractional supercapacitor model [33] are among the most famous ones. 
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These fractional impedance models can be used to model biological tissues, electrode tissue 

interfaces, respiratory impedance and supercapacitors for several different applications. 

1.3 The Cole-Cole Impedance Model 

While several fractional models to characterize biological tissues and biochemical 

materials have been addressed in literature, Cole-Cole impedance model, introduced by 

Kenneth Cole [29], is the most famous one. The equivalent circuit of this model is given 

in Figure 1. This model consists of three hypothetical circuit components including 1) 

resistor R1, 2) high-frequency resistor R∞, and 3) a CPE C1. Knowing that CPE has the 

equivalent impedance of ZCPE = 1/ sαC, the impedance of Cole-Cole impedance model is 

given by 

 

As sα = (jω)α can be rephrased as ω α[cos(απ/2) + j sin(απ/2)], the above equation can be 

simplified as Z(s) = Zʹ + j Zʺ. 

 

Figure 1 Theoretical representation of single dispersion Cole-Cole impedance model [29] 

The resistances in Cole-Cole impedance model physiologically represent various 

intracellular, extracellular and cellular membrane resistances within the tissue. The 

membrane capacitances of different tissues can be characterized by a capacitance. The 

parameter α can be also considered as a distribution of relaxation times due to heterogeneity 

R  

R1 

1/sα1C1 

(1.4) 



 

 5 

of sizes and shapes of different cells. This may denote a measure of deviation from an ideal 

capacitor in the equivalent circuit.  

Simplicity, being a good fit with measured data as well as demonstrating the impedance 

behavior as a function of frequency are among features, which have made the Cole-Cole 

impedance model quite popular in efficiently characterizing experimentally collected bio-

impedance data. However, this model does not provide an explanation of the underlying 

mechanisms.  

The application of Cole-Cole impedance model in several fields of biology and 

biomedicine has been broadly investigated. Several studies explored various applications 

in biomedicine for single dispersion representation of this model (Figure 1) and its 

parameters [22-33]. Furthermore, broad research on the relation of parameters of this 

model to cancer cells have resulted in many applications [22-33]. 

An expanded version of Cole-Cole impedance model is depicted in Figure 2. This model 

consists of a single dispersion Cole-Cole impedance model in series with an additional 

parallel combination of a resistor with a CPE. The equivalent impedance of this double 

dispersion representation of Cole model can be obtained by 

 

The double dispersion representation of Cole model is mostly used to precisely characterize 

the impedance either within a larger frequency range or more complex materials. 

Monitoring necrosis of human tumor [29] and investigating age-related changes of human 

dentine [29-33] are examples of its applications. 

(1.5) 
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Figure 2 Theoretical representation of double dispersion Cole-Cole impedance model 

[29] 

A tissue or biomaterial can be characterized by the fractional impedance parameters which 

can describe the impedance behavior as a function of frequency. There are either four (R∞, 

R1, C1, α1) or seven (R∞, R1, R2, C1, C2, α1, α2) parameters to be determined in single and 

double dispersion Cole-Cole impedance models; respectively. These parameters can be 

extracted graphically from an impedance plot, which relates imaginary part of impedance, 

Zʺ, to the real part of impedance, Zʹ. Figure 3 demonstrates an impedance plot which can 

be used to extract parameters of single dispersion Cole model. The theoretical low 

frequency resistance, R0, and high frequency resistance, R∞, can be measured through the 

circular arc. R1 can be simply calculated from R1 = R0 - R∞. The measured angle, as depicted 

in Figure 3, denotes ϕCPE through which the order, α1, can be calculated from ϕCPE = α1π/2. 

The capacitor, C1, can be finally obtained using the previously calculated parameters 

considering the fact that the dispersion time constant, τ, is given as τ = (R1 C1)1/α and the 

frequency at which | Zʺ| has its maximum is equal to 1/ τ. However, parameters are now 

mostly estimated using non-linear least squares routines which fits the experimental data 

to the desired model using powerful numerical fitting software such as LEVM/ LEVMW 

and MATLAB. 

To obtain the impedance plot (Figure 3), the impedance of the desired tissue is required to 

be measured using an impedance analyzer. A circular arc can be obtained by applying least 

square regression to the acquired data points. A similar impedance plot with two circular 

arcs can be used to extract parameters of double dispersion Cole model. It has been clear 

so far that acquiring Zʹ and Zʺ requires expensive impedance analyzers and post processing 

R  

R1 

1/sα1C1 

R2 

1/sα2C2 
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of the data to draw the circular arc. Although using data acquisition cards and custom 

software modules to implement the required signal processing can be considered as cheap 

alternatives [33], it is desired to extract parameters without requiring measurement of 

impedance.  

 

Figure 3 Impedance loci to extract parameters of single dispersion Cole-Cole model [29] 

1.3.1 Integrator based Setup of Cole-Cole Impedance Model 

A simple integrator setup of Cole impedance model using an inverting op amp integrator 

is demonstrated in Figure 4 [34]. As the Cole impedance model is in the feedback path, 

the transfer function of the given filter can be obtained by 

 

where G1= (R1 + R∞)/Rin, G2= R∞/Rin and s = jω. 

It should be noted that the DC gain of the transfer function can be measured at ω=0 

which yields |T(jω)| = G1 and hence Rin = (R1 + R∞) = R0. The high frequency gain can 

be measured in a similar way when ω=∞. This results in |T(jω)| = G2 and Rin = R∞.  

The -3dB point where |T(jω3dB)| = G1/√2 is given by 

(1.6) 
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where a = G1(G1 – 2G2) / (G1
2 – 2G2

2) and b = G1(3G1 – 4G2) / (G1 – 2G2)2. 

The frequency at which the phase angle T(jω) obtains its minimum value and the 

magnitude, |T(jωϕmin)| is equal to √(G1G2) is also given by 

 

Hence, it is possible to find the ωϕmin from the magnitude response without even plotting 

the phase of the transfer function. It is also notable that the ratio of ω-3dB/ ωϕmin = 

f1(α)/f2(α) is only a function of α and independent of τ. Therefore, assuming ω-3dB/ ωϕmin 

=k, α can be found by solving the following equation: 

 

After finding α, the value of τ can be found from equation 1-8. This integrator setup can 

extract all parameters of Cole-Cole impedance model without any need for an impedance 

analyzer and by plotting only the magnitude response. However, it calls for a high 

computational cost due to numerically solving equation 1-9 to find α. 

(1.7) 

(1.8) 

(1.9) 
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Figure 4 Integrator setup for extracting Cole-Cole impedance model parameters [34] 

1.4 Thesis Contribution 

1.4.1 Implementation of CPE using low voltage SC-BDI 

Realization of the proposed CPE using the bilinear discrete integrator (BDI) based SC 

circuit operates at a low supply voltage of 0.7 V and thus resulting in lower power 

consumption with more linearity and dynamic range compared to the existing designs. 

1.4.2 Implementation of CPE using low voltage SC-CDI 

The proposed CPE design using CDI based SC circuit operates at lower supply voltage of 

0.7 V and lower power consumption with more linearity, dynamic range and showed 

reduction several errors compared to the existing designs. 

1.4.3 Minimizing the CPE errors using optimizing technique 

The approximated S-domain transfer functions obtained through CFE with one of the 

traditional optimization technique, steepest descent method, is optimized for minimum 

total error in the frequency range of 1 Hz to 107 Hz by comparing it to an ideal response. 

R  

R1 

1/sα1C1 

Rin 

+

-

Vin 

Vout 
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1.5 Thesis Organization 

This thesis is organized as follows: 

Chapter 2 Briefly describes FO systems, circuits and their importance in various 

applications. Detail operation of different integration schemes for implementing SC 

circuits. This section also describes the existing realizations of constant phase element that 

could be used in the design of FO circuits. 

Chapter 3 Presents the detail operation and implementation of circuit elements used for SC 

realization such as op amp, switches, clock generator and sample and hold circuit. The 

simulation results obtained from Cadence TSMC 65nm CMOS technology and their 

performance parameters are tabulated. 

Chapter 4 Presents the second and fourth-order approximated CPE designs using BDI-

based SC circuit through cascade topology. Provides the detail operation and 

implementation of second-order approximated CPE design using CDI-based SC circuit 

along with their simulation results including performance comparison table. 

Chapter 5 Provides the details of various simulation analyses required for SC circuits. The 

sensitivity results for different techniques presented in chapter 4 using Monte Carlo 

analysis are also presented. Discusses, the optimization technique used to minimize errors 

of the obtained s-domain approximation of CPE presented in chapter 4. 

Chapter 6 Presents conclusions about the realized CPE using BDI and CDI-based SC 

circuits in this thesis and comparison with other existing CPE realizations. Few suggestions 

for future work are also discussed. 
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CHAPTER 2 LITERATURE REVIEW 

2.1 Constant Phase Element (CPE) 

There has been growing research interest in the development of FO circuits mainly due to 

the interdisciplinary nature of fractional calculus which make them a powerful tool for 

biological [1], biomedicine [21] and electrical engineering applications [6,40,41]. FO 

capacitors or constant phase element (CPE) is one of the most important element in 

realizing FO circuits.  

Constant phase element (CPE) have been broadly used in the field of bio-impedance to 

measure the passive electrical properties of biological materials. These measurements 

provide useful information about the electrochemical processes in tissues in order to 

characterize the tissue or monitor for physiological changes [24,25]. 

CPE can be defined as a lossy capacitor with dispersion coefficient of less than unity which 

results in a current-voltage phase angle less than π/2. Current, voltage and charge in this 

FO element are related by 

 

where 𝐶̂ denotes the pseudo-capacitance with unit Farad/Sec (1-α) and α is the dispersion 

coefficient or order of the CPE (0 < α < 1) [34]. The impedance of a CPE is then given as 

Z(s) = 1/𝐶̂ sα and the value of the frequency dependent capacitance (in Farad) of FO 

element is calculated as C = 𝐶̂ / ω(1-α). The latter equation indicates that the capacitance of 

a CPE depends on both frequency and order [34-39].  

CPEs can be realized by cross RC ladder network to obtain different values of order α. 

However, the circuit suffers from being bulky and impractical. Domino ladder of different 

structures is another alternative solution which offers more flexibility in designing different 

order values comparing to an RC ladder network. It is worth mentioning that a Fractional 

Inductor (FI) can also be realized based on CPEs and the utilization of a Generalized 

(2.1) 
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Impedance Converter (GCI). A simple FO band-pass filters can be achieved through 

connecting a resistance, an FC and FI in series [39], this is a more generalized approach in 

realizing a FO band-pass filter. Much complicated band-pass filters for specific 

applications can also be developed through different combinations of these elements. 

2.2 Existing Realizations of Constant Phase Element 

There have been many attempts for realizing the CPEs as standalone two-terminal devices. 

However, there are no commercially available devices due to several obstacles such as 

stability due to component variations and unstable approximations during realization [39, 

41]. Therefore, several techniques for realizing CPEs through proper integer order 

approximation have been developed.  

2.2.1 CPE realization using passive elements 

Existing techniques for emulating a CPE is mainly based on approximation of its behavior 

through passive RC networks of integer order. Previous works mostly expanded sα into 

infinite series to lead to a chain fraction which will then be converted into an RC ladder 

[33, 36-39]. This procedure, however, is usually difficult and simple models with correct 

phase angles more than −45° cannot be easily achieved. Another model using low number 

of standard resistors and capacitors have been proposed in [39] with which any phase angle 

in the range between −π/2° and 0° can be obtained. This model, shown in Figure 5, 

composed of parallel connections of m series RC branches where 

 

The value of parameters a and b directly determine the phase angle ϕav in the following 

equation: 

 

(2.2) 

(2.3) 
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Figure 5 Basic RC network for realizing a CPE [39] 

The input impedance of the network is given by 

 

Although this model can demonstrate any phase angle between −90° and zero, this result 

cannot be achieved by m < 20. The model has been later modified by adding two parallel 

branches of a resistor and a capacitor: 

 

Satisfactory results can be obtained using the modified model given in Figure 6 with m 

having value as small as  4 [39]. Several voltage-mode filter topologies employed similar 

concept models to approximate a CPE [33,37, 39]. 

 

Figure 6 Modified RC network for realizing a CPE [39] 
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These CPE emulation techniques lack flexibility and tunability as all the values of the 

passive components of RC ladder should be changed in case of any alteration of 

characteristics of the realized CPE.  

2.2.2 CPE realizations using operational transconductance 

amplifiers 

Active realization of a CPE based on operational transconductance amplifiers (OTAs) and 

grounded capacitors have been recently proposed by [35]. This technique offered 

independent tuning of the magnitude, order and bandwidth of the emulated CPE over a 

certain frequency range through changing the bias currents of the OTA units in contrast to 

its passive counterparts.  

The starting point of the design is to characterize the CPE using a low-pass fractional order 

filter with the following transfer function: 

 

The order of the CPE can be determined through a phase measurement at the half-power 

frequency. Hence, the pseudo-capacitance can be calculated using 

 

 

A functional block diagram of the topology of CPE emulation using OTA is shown in 

Figure 7. This topology is constructed through a fractional order differentiator with unity-

gain frequency and a voltage-to-current converter implemented by an OTA with small-

signal transconductance, gm. The equivalent impedance is given by: 

 

(2.7) 

(2.8) 

(2.9) 

(2.10) 
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Comparing the equivalent impedance with the impedance of a CPE, the pseudo-

capacitance can be calculated as: 

 

The capacitance can be also obtained by de-normalizing the calculated pseudo-capacitance: 

 

 

Figure 7 Functional block diagram for CPE using OTA’s [35] 

Since the FO differentiator should be approximated by an integer order topology, the unity-

gain or time constant of the differentiator is required to be chosen such that the 

differentiator demonstrates phase and magnitude responses with acceptable errors within 

the operating frequency range. The designed CPE using OTAs is shown in figure 8. 

(2.11) 

(2.12) 
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Figure 8 CPE emulation using OTAs [35] 

2.2.3 CPE realizations using current feedback operational amplifier 

CPE can be realized using a FO differentiator and/or integrator configurations and a V/I 

converter. The FO differentiator and integrator can be realized using active elements such 

as current feedback op-amps (CFOAs), which benefit from flexible and versatile design. A 

key advantage of emulating a CPE using CFOA, as proposed in [36], is the design 

flexibility it offers as the same circuit can be used for realizing both CPE and FI through 

an appropriate selection of the values of passive components. The functional block diagram 

for emulating a CPE is depicted in Figure 8. 
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Figure 8 Functional block diagram for CPE emulation [36] 

The emulated impedance can be easily obtained by algebraic analysis as: 

 

where ω0 denotes the unity-gain frequency of the differentiator and integrator and RVI 

represents the equivalent resistance of the V/I converter. 

The values of the pseudo-capacitance and conventional capacitance are given by: 

 

 

The functional block diagram illustrated in Figure 8 can be realized by CFOAs as active 

elements. A design based on CFOAs proposed in [36] is shown in Figure 9. As CFOAs can 

be directly cascaded, this leads to reducing the number of active components. The need of 

only grounded capacitors is also another advantage of this design due to minimizing the 

effect of parasitics in high frequencies of operation. 

(τs )α 

V/I

v

i

(2.13) 

(2.14) 

(2.15) 
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Figure 9 CPE emulation using CFOAs [36] 

2.3 Rational Approximations  

Several recursive structures for a CPE emulation were presented in [37-39, 41], all of which 

suffer from hardware complexity. An alternative solution for realizing a CPE is to 

approximate it from the rational approximation to accurately describe its fractional 

behavior. Therefore, finding the rational approximation of a CPE is the principal step in 

realizing it.  

While irrationality of fractional transfer functions considers the complex s-plane, a rational 

approximation of the transfer function is described only by poles. Hence, rational functions 

often demonstrate better results during interpolation compared to polynomials. There are 

various rational approximation methods based on continued fraction expansion which can 

be considered equivalent to a certain finite continued fraction, as a ratio of two polynomials 
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can be given in the form of a finite continued fraction [41].  There are several methods 

listed in the literature to approximate irrational expansions such as Matsuda’s method [41], 

Carlson’s method [41], Charef’s method [41], and continued fraction expansion (CFE). 

This work uses CFE due to its faster convergence and stability when compared to other 

methods.     

2.3.1 Continued Fraction Expansion (CFE)  

Continued fraction expansion, on the other hand, is a method for the evaluation of functions 

and benefits from both faster convergence, larger domain of convergence in complex s-

plane and also offers stable approximation [37, 39]. This approximation of an irrational 

function can be described by [38]: 

 

Where aʹi(s) and bʹi(s) are rational functions of variable s, or are constant. Applying the 

CFE method creates a rational function,𝐺̂(𝑠), that approximates the irrational function 

G(s).  

Basically, a rational approximation of a CPE with transfer function G(s) = s-α 0 <α< 1 can 

be achieved by applying the CFE of functions [39]: 

 

Where Gh(s) and Gl(s) each denotes the approximation for high frequencies (ωT >> 1) 

and low frequencies (ω << 1), respectively. 

(2.16) 

(2.17) 

(2.18) 
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2.4 Various schemes of Switched-capacitor (SC) based integrators 

There are several numerical integration schemes for realizing SC circuits among which 

Lossless Discrete Integrator (LDI), Bilinear Discrete Integrator (BDI) and Composite 

Discrete Integrator (CDI) are the most popular ones. A brief description of each of these 

integration schemes is presented in the following sections: 

2.4.1 Lossless Discrete Integrator (LDI) 

The changes of Vin(t) versus time is illustrated in Figure 10 where the area of the shaded 

region can be calculated as 

 
Therefore, 

 

Taking z-transform from the above equation, we can obtain the transfer function by [45] 

 

 
 

 

Figure 10 LDI 

(2.19) 

(2.20) 

(2.21) 

(2.22) 
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The corresponding s-to-z transform is further obtained as 

 

Although ideal integrators have zero magnitude and phase errors, attaining zero errors is 

not possible   in non-ideal integrators due to physical constrains. Assuming a magnitude 

error of ε and phase error of θ, the ideal integrator will become 

 

For the LDI, 

  

Equating equations (2.35) and (2.36) gives the following magnitude and phase errors: 

 

2.4.2 Bilinear Discrete Integrator (BDI) 

The changes of Vin(t) versus time is illustrated in Figure 11 where the area of the shaded 

region can be calculated as  

 
Therefore, 

 

(2.23) 

(2.24) 

(2.25) 

(2.26) 

(2.27) 

(2.28) 
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Taking z-transform from the above equation, we can obtain the transfer function by [44] 

 

 

Figure 11 BDI 

The corresponding s-to-z transform is further obtained as 

 

Following the same process as for LDI, magnitude and phase errors can be found by: 

 

2.4.3 Composite Discrete Integrator (CDI) 

LDI and BDI are two most popular discrete integrators, which demonstrate zero phase 

error. However, both integrators suffer from magnitude errors in comparison to their analog 

counterparts. Composite discrete integrator (CDI) is formed by the linear combination of 

LDI and BDI in order to reduce the magnitude error [46]. These integrators are ideal 

candidates for high frequency applications as they minimize discrete integrator errors at 

higher frequencies and doubles the normal folding frequency.  

(2.29) 

(2.30) 

(2.31) 
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Comparing the magnitude errors of LDI and BDI, two errors are opposite in sign. Hence, 

linear combination of two errors can minimize the magnitude error, yielding an optimal 

discrete integrator. The transfer function of CDI is obtained by: 

 

Where 0 < σ < δ < 1 are constants and define the CDI transformation in a way that σ + δ = 

1. The magnitude error of the integrated is calculated as: 

 

This error can be minimized by using appropriate values for CDI transformation, σ and δ. 

Magnitude error for LDI, BDI, CDI is shown in Figure 12, comparison of the magnitude 

error for different integrator schemes is shown in table 1 

 

Figure 12 Magnitude errors for LDI, BDI and CDI 

(2.32) 

(2.33) 
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   Table 1. Comparison of errors for various integration schemes 
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CHAPTER 3 IMPLEMENTATION OF LOW VOLTAGE SC INTEGRATOR  

3.1 Introduction 

SC circuits have widely been used in the design of integrated circuits due to their high 

precision, good linearity and dynamic range. Unlike, RC circuits which often requires 

tuning for proper operation. The frequency response of a SC circuit is dependent on clock 

frequency and capacitance-ratios, which can be set quiet precisely in an integrated circuit 

with 0.1% accuracy [48] and [50]. Due to its high precision, linearity, dynamic range SC 

circuits can be used to realize filters and wide variety of signal processing blocks such as 

gain stages, voltage controlled oscillators and modulators [48,49,50]. This chapter discuss 

basic building blocks used in SC circuits such as opamp, switches, clock signal generator, 

sample and hold circuit, which are implemented with low supply voltage of 0.7v and 

frequency ranges from dc to 1GHz in Cadence TSMC 65nm technology. 

3.2 The operational-amplifier (Opamp) 

Opamp is an integral part of many analog and mixed signal systems. Opamp’s are voltage 

amplifiers being used to achieve high gain by applying differential input. Typically, the 

gain of opamp ranges from 50 to 60 decibels [50]. There are different kind of opamp 

topologies that exist in literature.  The performance of these topologies is compared in the 

table [2] 
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Table 2. Comparison of various topologies of operational amplifiers 

 Gain Output swing Speed Power 

consumption 

Noise 

Two-stage High Highest Low Medium Low 

Telescopic Medium Medium Highest Low Low 

Folded-

cascode 

Medium Medium High  Medium Medium 

Gain boosted High Medium Medium High Medium 

 

3.2.1 Two-stage operational-amplifier 

In this work, two-stage opamp was designed with low supply voltage 0.7 V with good 

performance parameters for a SC circuit. The two-stage opamp can provide high gain and 

high output swing, the two-stage opamp is constructed using two gain stages the first gain 

stage is a differential input single ended output stage which is a symmetrical structure, 

second stage is normally a common source gain stage these two stages include eight MOS 

transistors and a capacitor Cc, for an amplifier all the MOSFET’s should be in saturation 

region. The first stage has p-channel differential input pair M1, M2 with an n-channel diode 

connected current mirror active load M3, M4. The second stage is common source gain 

stage constructed using p-channel with active load M6, M7 for good output swing. The 

first stage and second stage is combined with a feedback capacitor of second stage serves 

as compensating capacitor (Cc) also called miller capacitor included for stability. The 

biasing for the two-stage opamp is provided using transistors M5, M8 and a current source 

(𝐼0). General structure for two stage opamp is given in Figure 13. 
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Figure 13 Two-stage Operational amplifier 

 

The small signal model for above two stage opamp is given below Figure 14 

 

Figure 14 Small signal model of two-stage operational amplifier 

 
 

𝑉1 =
𝑉0𝑆𝐶𝑐𝑅1 − 𝑔𝑚1𝑅1𝑉𝑖𝑛

 1 + 𝑆𝑅1(𝐶1 + 𝐶𝑐) 
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𝑉0 (𝑆(𝐶2 + 𝐶𝑐) +
1

𝑅2
 ) = 𝑉1(𝑆𝐶𝑐 − 𝑔𝑚2) 

 
By combining above equations (3.1), (3.2) the transfer function of the circuit is 
approximated to  
 
 

𝑉𝑜𝑢𝑡

𝑉𝑖𝑛
=

𝑔𝑚1𝑅1𝑔𝑚2𝑅2 (1 −
𝑆𝐶𝑐
𝑔𝑚2

)

𝑆2 (𝑅1𝑅2(𝐶1𝐶2 + 𝐶1𝐶𝑐 + 𝐶2𝐶𝑐) + 𝑆(𝑅2(𝐶2 + 𝐶𝑐) + 𝑅1(𝐶1 + 𝐶𝑐) + 𝐶𝑐𝑅1𝑅2𝑔𝑚2) + 1  
  

 
 
The above equation is compared with traditional two poles and a zero-system given as 
 
 

𝑉𝑜𝑢𝑡

𝑉𝑖𝑛
=

𝐴𝐷𝐶 (1 −
𝑆
𝑍)

(1 −
𝑆
𝑃1

) (1 −
𝑆
𝑃2

)  
         

 
From above equations (3.3), (3.4) the poles (𝑃1, 𝑃2), zeros (𝑍) and DC gain (𝐴𝐷𝐶) is 
approximated as  
 

𝑃1~
1

𝑔𝑚2𝑅2𝑅1𝐶𝑐
        

𝑃2~
𝑔𝑚2

𝐶2
              

𝑍~
𝑔𝑚2

𝐶𝑐
           

𝐴𝐷𝐶 = 𝑔𝑚1𝑅1𝑔𝑚2𝑅2     

The gain band width product (GBP), slew rate (SR), phase margin (PM) are derived from 

above equations are given as 

𝐺𝑎𝑖𝑛 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ 𝑝𝑟𝑜𝑑𝑢𝑐𝑡(𝐺𝐵𝑃) = 𝐷. 𝐶𝑔𝑎𝑖𝑛 ∗ 𝑃1   

(3.1)     

(3.2) 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

(3.8) 
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𝐺𝐵𝑃 =
𝑔𝑚1

𝐶𝑐
                     

  𝑆𝑅 =
𝐼0

𝐶𝑐
             

𝑃𝑀 = −𝑡𝑎𝑛−1 (
𝐺𝐵𝑃

10 ∗ 𝐺𝐵𝑃
) − 𝑡𝑎𝑛−1(𝐴𝐷𝐶) − 𝑡𝑎𝑛−1 (

𝐺𝐵𝑃

𝑃2
)  

After deriving all parameters of a two stage opamp, we derive (
𝑊

𝐿
)

𝑁
 ratios for all the 

transistors depending on the specifications given for a switched capacitor circuit the DC 

gain should be higher than 40 dB, GBP should be greater than five times sampling or clock 

(switching) frequency (1MHz) and phase margin should be higher than 45 degrees more 

the phase margin the circuit is more stable [93, 94], Input common mode range ICMR 

(ICMR+, ICMR-) are 1.2v, 0.6v; load capacitor (𝐶𝐿) is 5pf, power less than 3μW, supply 

voltage 0.7v. 

Design of the transistors M1 and M2:  

The approximate value of the current (ID) is given in equation (3.13). To determine the 

response of the circuit to the ac input we require transconductance parameter (gm) of a 

transistor. The gm equation for a MOS transistor is given in equation (3.14). The (𝑊

𝐿
)

𝑁
 ratio 

for M1, M2 is given in equation (3.17).  

𝐼𝐷 ≈
µ𝑛𝑐𝑜𝑥

2
(

𝑊

𝐿
) (𝑉𝑔𝑠 − 𝑉𝑡ℎ)

2
 

𝑔𝑚 =
𝜕𝐼𝐷

𝜕𝑉𝑔𝑠
= µ𝑛𝑐𝑜𝑥 (

𝑊

𝐿
) (𝑉𝑔𝑠 − 𝑉𝑡ℎ)          

𝑔𝑚
2 = [µ𝑛𝑐𝑜𝑥 (

𝑊

𝐿
)]

2 (𝑉𝑔𝑠 − 𝑉𝑡ℎ)
2

2
∗ 2       

For M1, M2;  2𝐼𝐷 = 𝐼5         

(3.9) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

(3.16) 
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(
𝑊

𝐿
)

1,2
=

𝑔𝑚1
2

µ𝑛𝑐𝑜𝑥 ∗ 𝐼5
      

Design of the transistors M3 and M4:  

 

(
𝑊

𝐿
)

3,4
=

2𝐼𝐷3

µ𝑝𝑐𝑜𝑥{𝑉𝐷𝐷 − (𝐼𝐶𝑀𝑅 +) − 𝑉𝑡3𝑚𝑎𝑥 + 𝑉𝑡1𝑚𝑖𝑛}2
      

 
Design of the transistor M5:  

𝑉𝐷𝑠𝑎𝑡 ≥ (𝐼𝐶𝑀𝑅 −) −
2𝐼𝐷

µ𝑛𝑐𝑜𝑥 (
𝑊
𝐿 )

− 𝑉𝑡1𝑚𝑎𝑥      

 

(
𝑊

𝐿
)

5
=

2𝐼𝐷5

µ𝑛𝑐𝑜𝑥 ∗ (𝑉𝐷𝑠𝑎𝑡)2
         

 
Design of the transistors M6, M7:  

 

(
𝑊

𝐿
)

6
=

𝐼6

𝐼4
(

𝑊

𝐿
)

4
            

 

(
𝑊

𝐿
)

6
=

𝑔𝑚6

𝑔𝑚4
(

𝑊

𝐿
)

4

         

 

(
𝑊

𝐿
)

7
=

𝐼7

𝐼5
(

𝑊

𝐿
)

5

         

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

(3.21) 

(3.22) 

(3.23) 
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Table 3 Parameters for the designed Operational amplifier 
 

Device Value 

M1, M2 3u/500u 

M3, M4 7u/500u 

M5 6u/500u 

M6 87u/500u 

M7 37.5u/500u 

CC 3.3pf 

CL 5pf 

I0 20u 

 

The opamp circuit is designed to operate with a supply voltage of 0.7 V. The circuit in 

Figure 15 is designed to measure the threshold voltage of the NMOS transistor and similar 

procedure is followed for the PMOS transistor as well. The threshold voltages of NMOS 

and PMOS transistors are 0.335 V and |-0.300| V respectively. 
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Figure 15 NMOS Configuration to Obtain Threshold Voltage 

 

 
Figure 16 Ids vs Vth Plot for NMOS Transistor 
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Figure 17 Frequency response of Operational amplifier 
 

From the simulation with AC analysis, we can measure the behavior of the design for 

different frequencies. The frequency response of operational amplifier is shown in Figure 

17 and the parameters are tabulated in Table 4. 
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Table 4 Performance Parameters of designed Operational amplifier 

 

Process 65nm 

Supply Voltage 0.7 V 

Gain 62 dB 

Unity Gain Bandwidth 24MHz 

Power Consumption 2.25μW 

Phase Margin 65 degrees 

Slew rate 3v/µsec 

ICMR+ 1.2v 

ICMR- 0.6v 

 

3.3 MOSFET Switches 

Switches are used to control flow of charge in SC circuit. An ideal switch has zero ON 

resistance which results in lossless charge flow. But, due to non-idealities in MOSFETs 

the occurrence of resistive loads between capacitors in SC is unavoidable that limits the 

charge transfer between the capacitors. Generally, switches are implemented using single 

NMOS or PMOS transistor shown in below Figure 18-a. A single MOSFET operating in 

triode region when used as switch whose drain to source ON resistance is given in Equation 

(3.25), these single transistor switch limits the output swing. It is often good to use a 

transmission gate as switch which is parallel combination of NMOS and PMOS transistors 

for better output swing is shown in Figure 18-b. The ON resistance of transistor gate is 
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parallel combination of NMOS and PMOS drain to source resistance is given Equations 

(3.24, 3.25)   

                             
 

Figure 18-a NMOS Transistor as switch, Figure 18-b Transmission gate as switch [49] 
 
 

𝑅𝑜𝑛 =  𝑅𝐷𝑆1//𝑅𝐷𝑆2     

𝑅𝐷𝑆 =
1

𝐾𝑛
′ (

𝑊
𝐿 )

𝑁
𝑉𝑒𝑓𝑓

        

The transmission gate as switch is designed and simulated in cadence TSMC 65nm CMOS 

technology. The W/L ratios of PMOS and NMOS transistors are 2.6um/130nm and 

2.6um/130nm, respectively upon the assumption that all the transistors are identical as 

shown in below Figure (19). 

(3.24) 

(3.25) 
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Figure 19. Transmission gate as switch in cadence 

 

3.4 Clock Signal Generator 

The clock signals are non-overlapping signals, which will drive the charge in SC circuits, 

these non-overlapping signals are separated with a delay of time period ‘T’ shown in Figure 

21. These clock signals are generated using clock generator that is constructed using 

NAND gates and inverters as shown in Figure 20. 
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Figure 20. Sample clock signal generator 

 

Figure 21. Non-overlapping clock signal  

 

3.5 Sample and Hold (S/H) circuit 

The output of switch capacitor circuit is only valid at end of phase (𝛷1), it is therefore, 

necessary to sample the SC circuit output at phase (𝛷1). This is done by implementing a 

simple open loop S/H circuit shown in Figure 22. Where, the single output op-amp 

designed earlier is used to implement as buffer, the switches are implemented with 

transmission gate for full output swing, the holding capacitor (Cs) is set to 1pf. 
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Figure 22 Sample and Hold circuit 

3.6 SC Integrator 

All the parameters designed earlier are used to implement the SC integrator shown in 

Figure 23 was designed and simulated in Cadence TSMC 65nm CMOS technology. The 

simulation parameters used for the SC integrator are given below, the output sine wave for 

designed SC integrator is shown in Figure 24, the frequency response is shown in Figure 

25 and parameters are tabulated in Table 5. 

VDD = 0.7 V Vin = 600mV Fin = 1MHz Ci=1pF Cs=10pf 

 
Figure 23 SC integrator  
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𝑉𝑜

𝑉𝑖𝑛
=

−𝐶𝑠

𝐶𝑖
(

𝑍
−1

2⁄

1 + 𝑍−1
) 

 
 

 
Figure 24. Output sine wave of SC integrator 

 

 

 
Figure 25. Frequency response of SC integrator 

 

(3.26) 
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3.6.1 Parameters of SC integrator 

3.6.1.1 Supply Voltage 

The SC integrator is designed to provide high slew rate with low power dissipation, which 

is achieved by the low supply voltage Vdd >= Vtn + |Vtp|. The Vtn and Vtp of the gate-driven 

transistors in TSMC 65nm technology are 0.335 V and |-0.300|V respectively. Hence a 

supply voltage of 1 V or 0.7 V can be used to operate all the transistors in their saturation 

region. As the SC circuit is designed in the voltage-mode, a small change in the voltage 

can produce a large output swing. Thus, making the circuit operable efficiently with a small 

supply voltage of 0.7v. 

3.6.1.2 Power Consumption 

In general, the total power consumption of the circuit depends on the static when the input 

is not switching and dynamic power. The static power consumption is the product of 

leakage current and the supply voltage when the input signal is not switching. In this 

design, the static power consumption is due to the leakage current in the transistors along 

with the consumption due to sub-threshold conduction between source to drain and reverse 

bias p-n junction between terminals and substrate. To measure the static power 

consumption, a static supply voltage of 0.7 V is used and is shown in the Figure 26. 

 

 
Figure 26. Static Current Measurement from a Supply Voltage of 0.7 V 
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From the Figure, the current drawn by the integrator circuit is 135nA. So, the power 

consumed for the supply voltage of 0.7 V is 

P = |V * I| = |0.7 V * 135 nA| = 94.5nW.  

Dynamic power is due to the charging and discharging of the load capacitance when a transition 

takes place at the input from high to low or low to high, and is given by 

CL * (Vdd)2 * f = 5pF * (0.7)2 * (1/10µs) =2.45 µW  

Hence the total power consumption is 2.49µW. 

3.6.1.3 Settling Time and Slew Rate 

Slew rate is the rate at which output changes for a step change in the input, which is how 

quickly the systems responds to a large signal change. Settling time is the time taken for 

the output to settle to a final value within the specified error band. It is shown in the Figure 

27 that the time taken to reach its maximum value is 25ns with a load capacitor of 5pF. 

The op-amp based SC integrator has a high slew rate of 3 V/μs and settling time of 25ns. 

 

Figure 27. Slew rate of SC integrator 

 

(3.27) 

(3.28) 
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𝑠𝑙𝑒𝑤𝑟𝑎𝑡𝑒 =
620𝑚𝑣(ℎ𝑖𝑔ℎ) − 20𝑚𝑣(𝑙𝑜𝑤)

200𝑛𝑠 − 10𝑛𝑠
≈ 3𝑣/µ𝑠𝑒𝑐         

The settling time at the output depends on the transistor size and the supply voltage, faster 

settling can be achieved by increasing the size of the transistor and supply voltage.  

3.6.1.4 Power Supply Rejection Ratio (PSRR) 

In general, power supply rejection ratio is an important factor for any circuit to maintain 

its stability at output to eliminate high noise signals. If there is a change in the supply 

voltage (VDD) of a circuit, then the output varies accordingly. In this circuit, all the 

transistors are in the saturation region and the transistor operation region is operated by the 

gate voltage (Vgs) and the supply voltage (VDD). As the NMOS transistor is directly 

connected to the supply voltage, any change in the supply voltage can drive the transistor 

in to the cut-off or active regions. The change in supply voltage tends to change the output 

voltage. This ratio is generally considered as the power supply rejection ratio (PSRR). The 

PSRR of the SC integrator is shown in the Figure 28. 

 

Figure 28. Frequency verses PSRR Plot of SC integrator 

 

(3.29) 
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Here, the PSRR is measured at the negative terminal of the supply voltage. Hence it is 

considered as PSRR-, which is expressed in “-dB”. The “PSRR-” of SC integrator at 1 KHz 

is 79dB, which has better PSRR.  

3.6.1.1 Noise Analysis 

Any MOS transistor consists of two major sources of noise: thermal and flicker noise, the 

thermal noise is also referred as white noise that occurs primarily at higher frequencies 

whereas flicker noise dominates the system at lower frequencies because of the increase in 

spectral density. 

Thermal Noise: The channel thermal noise in the saturation region of MOS transistor is 

given as 

(𝐼2)𝑡ℎ𝑒𝑟𝑚𝑎𝑙 𝑛𝑜𝑖𝑠𝑒 = 4. 𝐾. 𝑇. ∈. 𝑔𝑚 [𝐴2/𝐻𝑧]        
Where K is a Boltzmann constant, 

T is absolute temperature 

gm is trans conductance of the device 

∈ is complex function of the basic parameter of transistor and bias conditions given as ∈ 
=2/3 in strong inversion and 1/2 in weak inversion of MOSFET 

By substituting all the values in equation (3.30), the thermal noise of a MOS transistor 

can be calculated. 

Flicker Noise 

This is the other dominant source of noise in a MOS transistor that occurs due to the 

increase in spectral density (1/f) at lower frequencies, which is given as  

(𝑉2)𝐹𝑙𝑖𝑐𝑘𝑒𝑟 𝑛𝑜𝑖𝑠𝑒 =
𝐾𝑓

𝐶𝑜𝑥
2. 𝑊. 𝐿. 𝑓

  [𝑉2/𝐻𝑧]   

Where Kf is a process dependent parameter of the device, 

W and L are width and length of the transistor 

Cox is the gate-oxide capacitance per unit area 

f is the frequency 

(3.30) 

(3.31) 
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The input referred noise of the SC integrator is shown in the Figure 29 

 

Figure 29 Input referred Noise of SC integrator 

Intrinsic noise in an opamp is given as, equation 

16𝐾𝑇

3𝑔𝑚
+

𝐾

𝐶𝑜𝑥𝑊𝐿𝑓
≈

16𝐾𝑇

3𝑔𝑚
                   

The noise in opamp is inversely proportional to the input trans-conductance. The input 

trans-conductance of an opamp is low since the input drives a NMOS thereby reducing the 

total noise in the opamp 

From all the performance measurements observed, Table 5 shown below is formulated 

giving the details of designed SC integrator: 

 

 
 

(3.32) 
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Table 5 Performance Parameters of SC integrator 

Process 65nm 

Supply Voltage 0.7 V 

Gain 62 dB 

Unity Gain Bandwidth 30MHz 

Power Consumption 2.49μW 

Settling time 25ns 

Slew rate 3v/µsec 

Power Supply Rejection Ratio 79db 

Input Referred noise at 120KHz 54 nV/Sqrt(Hz) @ Vin=100 mV 
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CHAPTER 4 IMPLEMENTATION OF CPE USING SC BIQUADS 

4.1 Approximation of CPE using CFE 

There are different methods to realize approximations of CPEs including Continued 

Fraction Expansions (CFEs) and rational approximation methods such as Matsuda’s 

method, Least square method, Chareff’s method, Carlson’s method. Continued fraction 

expansion (CFE) is a an approximation method which benefits from both faster 

convergence, larger domain of convergence in complex s-plane as well as offering stable 

approximation [38]. Hence, CFE method was selected in this work to model the CPE 

simulations. This approximation begins with the CFE of (1 + x) α given as: 

 

 

After substituting x = s - 1 into the equation (4.1), an approximation of sα with the order 

determined by the number of terms that are truncated could be realized. For example, 

truncating at the 9th term of equation (4.1) with an α of 0.5 yields 

 

 

(4.1) 

(4.2) 

(4.3) 
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The obtained approximation of a CPE from equation 4.3 gives is centered around a 

frequency of 1 rad/s. This can be physically realized by the RC ladder network given in 

Figure 30 using the approximation of the fractional Laplace transform operator. The 

impedance of this RC ladder network can be given as 

 

 

Figure 30 RC ladder structure to realize Nth order integer approximation of CPE with 

pseudo-capacitance Cα [37] 

The resistor and capacitor values for the RC ladder in Figure 30 can be obtained through 

equating terms of equations 4.3 and 4.4. An approximation of CPE with any desired 

capacitance, Cα, centered around any frequency, wc, can be designed by applying 

magnitude and frequency scaling factors to the component values in the ladder realization. 

The resistor and capacitor values become 

 

where Rs and Cs denote the scaled resistor and capacitor values, R and C are the unscaled 

resistor and capacitor values,  𝑘𝑚 =
1

𝐶𝛼𝑤𝑐
𝛼  is the magnitude scaling factor (where 𝐶𝛼 is the 

CPE pseudo-capacitance) and 𝐾𝑓 = 𝑤𝑐 is the frequency scaling factor. 

(4.4) 

(4.5) 
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The component values required for the 4th order approximation of the CPE with using the 

RC ladder network in Figure 30, shifted to a center frequency of 1 kHz with the capacitance 

values of 173.94 µF ,12.6 µF, 0.915095 µF for α = 0.2, 0.5, 0.8, respectively, are given in 

Table 6. 

Table 6 Approximated CPE Component Values 

n 
C = 173.94 µF 

a = 0.2 
C = 12.6 µF 

a = 0.5 
C=0.915095 µF 

a = 0.8 

Rn (Ω) Cn(nF) Rn (Ω) Cn(nF) Rn (Ω) Cn(nF) 

0 431.818181818 - 111.1 - 18.3792815  

1 285.1913524 53.49972187 251.7 83.7 92.76920844 301.340646 

2 241.4157687 375.4884242 378.7 296 236.1807585 585.2199857 

3 337.1779269 1113.835967 888.9 537.16 981.5955911 635.3180544 

4 1020.186243 2804.277173 7369.7 695 53080.16637 272.9744084 

The 2nd order and 4th order transfer functions in S-domain obtained from above table are 

given in following equations 4.6 to 4.11 and their frequency response obtained from 

MATLAB are shown in below Figures 31 and 32, for α = 0.2, 0.5, 0.8, respectively. 

 

𝑉0

𝑉𝑖𝑛
=

545.4545454∗𝑆2+18848999.9∗S+39476088988

𝑆2+18848.99999 ∗S+21532412.16
           

 
 
 

𝑉0

𝑉𝑖𝑛
=

200∗𝑆2+12565996.5∗S+39476038000

𝑆2+12565.98248  ∗S+7895206.177
              

 
 
 

(4.6) 

(4.7) 
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𝑉0

𝑉𝑖𝑛
=

47.6190476 ∗𝑆2+8377333.334∗S+39476089011.0

𝑆2+8377.333333∗S+1879813.761
       

 
 
 

 
 

Figure 31 Frequency response for 2nd order approximation for α = 0.2, 0.5, 0.8 

 

(4.8) 



50 
 

 

 

 
 

 
𝑉0

𝑉𝑖𝑛
=

431.8181818 ∗ 𝑆4 + 56975386.32 ∗ 𝑆3 + 9.546036017 ∗ 1011 ∗ 𝑆2 + 3.141691319 ∗ 1015 ∗ S + 1.558361558 ∗ 10^18

𝑆4 + 79584.66658 ∗ 𝑆3 + 954603599.8 ∗ 𝑆2 + 2.249165357 ∗ 10^12 ∗ S + 6.729288516 ∗ 10^14
 

 
 
 

𝑉0

𝑉𝑖𝑛
=

111.1 ∗ 𝑆4 + 25145371.44 ∗ 𝑆3 + 5.529527451 ∗ 10^11 ∗ 𝑆2 + 2.315741971 ∗ 10^15 ∗ S + 1.55833369 ∗ 10^18

𝑆4 + 58677.49888 ∗ 𝑆3 + 552964598.7 ∗ 𝑆2 + 9.925757646 ∗ 10^11 ∗ S + 1.73146264 ∗ 10^14
 

 
 
𝑉0

𝑉𝑖𝑛
=

18.3792815 ∗ 𝑆4 + 11085794.48 ∗ 𝑆3 + 3.30847222 ∗ 10^11 ∗ 𝑆2 + 1.763756566 ∗ 10^15 ∗ S + 1.558361602 ∗ 10^18

𝑆4 + 44679.1111 ∗ 𝑆3 + 330847222.1 ∗ 𝑆2 + 4.376238097 ∗ 10^11 ∗ S + 2.864156647 ∗ 10^13
 

 (4.11) 

(4.10) 

(4.9) 
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Figure 32 Frequency response for 4th order approximation for α = 0.2, 0.5, 0.8 

4.2 Realization of CPE using BDI-based SC biquad 

SC circuits have been widely used in the design of integrated circuits due to their high 

precision compared to normal RC-circuits which often require a tuning circuit to ensure 

proper operation. The frequency response of SC circuits is ideally a function of capacitor 

ratios, whereas the frequency response of RC-circuits is highly dependable on the operating 

temperature and the fabrication process. Capacitor ratios can be made very precise and 

almost independent of fabrication errors. 

SC circuits operate by charging and discharging capacitors with a predefined switching 

scheme consisting of two or more non-overlapping clock signals. The total charge 

transferred during the switching period averaged over time be a current. This makes them 

possible to emulate resistors. 

The charging and discharging of a capacitor ideally acts as a simple sample and hold circuit. 

This sampling property makes it possible to describe the functionality of SC circuits using 
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Discrete Time z-domain transfer functions. Hence, the SC circuit can be realized by 

implementing either LDI, BDI or CDI. 

4.2.1 BDI-based SC biquad 

A general bi-quad switched capacitor circuit can be realized through the following discrete 

time transfer function is demonstrated in Figure 33 [44,51]. 

 

This circuit follows the two-integrator-loop topology and implements the noninverting 

forward-Euler (FEDI) and backward-Euler discrete integrator (BEDI). The schematics of 

these two integrators are shown in Figure 34. Transmission zeros can be realized using the 

feedforward technique. We assume that ϕa and ϕb are non-overlapping clocks and the output 

voltage of each block (V1 and V2) are sampled at the end of clock ϕb. Therefore, transfer 

function of each block can be obtained by: 

 

(4.12) 

(4.13) 
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Figure 33 General SC biquad [44] 
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Figure 34 (a) Forward-Euler discrete integrator, (b) Backward-Euler integrator [44] 

Where coefficients can be calculated as 

 

 

 

 

 

 

(4.14) 
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All switched capacitor bi-quad circuits based on two-integrator-loop can be generated 

from the circuit shown in Figure 33 through the equations (4.13) and (4.14). 

4.2.2 Second order approximation of CPE using BDI-based SC 
biquad 

BDI based switched capacitor circuit can be realized from the general biquad circuit given 

in Figure 33 and by equaling few γ values to zero. The second order approximation of CPE 

using simplified biquad switched capacitor circuit is given in Figure 35. 

 

Figure 35 BDI-based SC biquad circuit 
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The 2nd order approximated transfer functions in Z-domain obtained through substituting 

BDI based S to Z transform (2.51) in above equations 4.9 through 4.11 are given in 

following equations 4.15 through 4.17 for α = 0.2, 0.5, 0.8; respectively. 

 

𝑉0

𝑉𝑖𝑛
=

545.8825976459214∗𝑍2−1089.881675765322∗Z+543.9994725085768

𝑍2−1.998116659732295 ∗Z+0.998116874853664
              (4.15)      

 

𝑉0

𝑉𝑖𝑛
=

205.0044216361548 ∗𝑍2−397.4821008723775∗Z+192.5169087182993

𝑍2 −1.987504655119579  ∗Z+0.987512501014580
           (4.16) 

 

𝑉0

𝑉𝑖𝑛
=

51.601417899887490∗𝑍2−94.821138452060540∗Z+43.259031960324585

𝑍2 −1.991655742089618   ∗Z+0.991657614061433
       (4.17) 

 

The design and implementation of main building blocks of the circuit including operational 

amplifier, switches, and non-overlapping clock generator using TSMC 65nm technology 

has been already explained in the previous chapter. The circuit depicted in Figure 35 has 

been designed and simulated using TSMC 65nm technology in Cadence is shown in Figure 

36. The γ values and integration capacitors (C1 and C2) of the designed circuit for α = 0.2, 

0.5, 0.8 are given in Table 7. Periodic analysis including periodic steady state (PSS) and 

periodic AC (PAC) have been performed on circuits for α = 0.2, 0.5, and 0.8 with 

parameters values in femto farads from Table 7. The magnitude and phase of the output 

voltage of these circuits for α = 0.2, 0.5, 0.8 are given in Figure 37 to Figure 39, 

respectively. 
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Figure 36 Second order approxim
ation of C

PE using B
D

I-based SC
 biquad circuit 
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Table 7 Parameters of BDI based SC biquad circuit for 2nd order approximation of CPE 

Parameters α = 0.2 α = 0.5 α = 0.8 

γ1 89.362104922178100 14.093537890589500 28.852807143984200 

γ2 207.979024943233000 12.645422619993000 8.412566818698500 

γ3 498.951545772826000 194.951363674389000 43.622951457159500 

γ4 0.048742966286530 0.002818707070674 0.001373943193859 

γ5 0.048742966286530 0.002818707070674 0.001373943193859 

γ6 0.207979025936280 0.012645408511370 0.008412566817690 

C1, C2 

(femtoF) 
41.03156111 709.5451744 1455.664258 

 

Figure 37 Magnitude and phase response of CPE for α= 0.2 
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Figure 38 Magnitude and phase response of CPE for α= 0.5 

 

Figure 39 Magnitude and phase response of CPE for α= 0.8 

From the 2nd order approximation of constant phase element that is shown in Figure 36 

which is implemented using switched capacitor circuits is constant from 200Hz to 8 KHz 

for the magnitude form 20Hz to 10 KHz. As the α value increasing the magnitude and 

phase is increasing linearly. 
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4.2.3. Fourth order approximation of CPE using cascaded BDI-
based SC biquad 

The 4th order approximated transfer functions in Z-domain obtained through substituting 

BDI-based S to Z transform (2.51) in above equations 4.6 through 4.8 are given in 

following equations 4.18 through 4.20 for α = 0.2, 0.5, 0.8; respectively. 
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𝑉0

𝑉𝑖𝑛

=
442.8183401794126  ∗ 𝑍4 − 1715.570855516201 ∗ 𝑍3 + 2490.724919354077 ∗ 𝑍2 − 1606.007609114218  ∗ Z + 1.558361558 ∗ 10^18

𝑍4 − 3.922559099835297 ∗ 𝑍3 + 5.768598404850625 ∗ 𝑍2 − 3.769517346307320 ∗ Z + 0.923478041939019
 

 
 
 

𝑉0

𝑉𝑖𝑛

=
120.2661153966578 ∗ 𝑍4 − 456.1002720923152 ∗ 𝑍3 + 647.2446203175863 ∗ 𝑍2 − 407.2506334823162  ∗ Z + 95.8401713741012

𝑍4 − 3.942464764730645 ∗ 𝑍3 + 5.827932872188635 ∗ 𝑍2 − 3.828470485693705 ∗ Z + 0.943002378403905
 

 

𝑉0

𝑉𝑖𝑛

=
23.478664925952970   ∗ 𝑍4 − 82.747097090745210 ∗ 𝑍3 + 107.6954831654120 ∗ 𝑍2 − 61.062606637680140  ∗ Z + 12.635557161246167

𝑍4 − 3.955976815467431 ∗ 𝑍3 + 5.868254680032196  ∗ 𝑍2 − 3.868578485579612 ∗ Z + 0.956300621042859
 

 

 

 

(4.18) 

(4.19) 

(4.20) 
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Higher order approximation of CPE can be obtained by either cascading second order   

biquad circuit or other multi-feedback topologies [54]. The fourth order approximation has 

been realized by cascading two second order biquad circuits given in Figure 40. The 

cascaded structure is illustrated in Figure 41. The parameter values of each stage including 

γ values and integration capacitors (C1 and C2) of the designed circuit for α = 0.2, 0.5, 0.8 

are given in Table 7. Periodic analysis including periodic steady state (PSS) and periodic 

AC (PAC) have been performed on circuits for α = 0.2, 0.5, and 0.8 with parameters values 

from Table 7. The magnitude and phase of the output voltage of these circuits for α = 0.2, 

0.5, 0.8 are given in Figure 42 to Figure 44; respectively. 

 

 

Figure 40: Fourth order approximation using cascading two biquad SC circuit 

Bi-quad 
2nd order 

Bi-quad 
2nd order Vi Vo 
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Figure 41: Fourth order approxim
ation of C

PE using cascading SC
 biquad 
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Table 8 Parameters of cascaded BDI-based SC biquad circuit for 4th order approximation 

of CPE 

Parameters α = 0.2 α = 0.5 α = 0.8 

2nd
 o

rd
er

 B
iq

ua
d#

1 

γ1 27.432455006726500 20.858859125164700 16.302455950018900 

γ2 57.389093069525000 25.252810013443000 11.232834188175800 

γ3 420.680181067901000 101.709295030001000 13.277689169367100 

γ4 0.027416450452780 0.020873184957500 0.016262727128618 

γ5 0.027416450452780 0.020873184957500 0.016262727128618 

γ6 0.079605858112680 0.058017542028700 0.043948769440010 

C1, 

C2 

(fF) 

72.94890356 95.81671432 122.9806037 

2nd
 o

rd
er

 B
iq

ua
d#

2 

γ1 0.002234515966596 0.005749562506502 0.018063204551433 

γ2 0.004184636409809 0.005253262652050 0.006549343146867 

γ3 0.998832133200531 0.997038920911480 0.995124597695983 

γ4 0.000965463515630 0.000639815606094 0.000332814513397 

γ5 0.000965463515630 0.000639815606094 0.000332814513397 

γ6 0.003016769610340 0.002292183563530 0.001673940842850 

C1, 

C2 

(fF) 

2071.543842 3125.90062 6009.353317 
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Figure 42 Magnitude and phase response of CPE for α= 0.2 

 

 

Figure 43 Magnitude and phase response of CPE for α= 0.5 
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Figure 44 Magnitude and phase response of CPE for α= 0.8 

The periodic analysis including periodic steady state (PSS) and periodic AC (PAC) have 

been performed on circuits for α = 0.2, 0.5, and 0.8 for 4th order approximation with 

parameters values from Table 7. From above the 4th order approximation of constant phase 

element, which is implemented using switched capacitor circuits has magnitude in the 

range 80Hz to 30 KHz and a constant phase in the range 20Hz to 100KHz. As the α value 

increasing the magnitude and phase is increasing linearly. 

4.3 Realization of CPE using CDI-based SC biquad 

The most popular discrete integration techniques suffer from either magnitude or phase 

errors in their analog counterpart as tabulated in table [1]. A special integrator for high 

frequency applications is introduced in [46] using an optimal linear combination of BDI 

and LDI called as CDI and is a double sampling integrator, later this integrator was 

improved and a general equation for the selection of the integrator coefficients are given 

in equations 4.21 through 4.23 which is proposed in [53]. 
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1

𝑆
=

𝜎𝑇

2
[
1 + 𝑍−1

1 − 𝑍−1
] +

𝛿𝑇𝑍−1

1 − 𝑍−1
                           

Where 𝜎, 𝛿 are constants such that  𝜎 + 𝛿 = 1 and 0 < 𝜎 < 𝛿 < 1   

The magnitude error of CDI which is also a linear combination of BDI and LDI errors, 

which are of in opposite sign whose combination is given in below equation (4.23) and 

general stray insensitive CDI based SC integrator is shown in Figure 45 

∈=
𝜔𝑇

2
(𝜎𝑐𝑜𝑡

𝜔𝑇

2
+ 𝛿𝑐𝑠𝑐

𝜔𝑇

2
) − 1                    

 

Figure 45 Stray insensitive CDI based SC integrator [46] 

𝑉0

𝑉𝑖
= −𝛾1 [

1 + 𝑍−1

1 − 𝑍−1
] − (2𝛾1 + 𝛾2)

𝑍−1

1 − 𝑍−1
                      

4.3.1 CDI-based SC biquad 

The CDI based SC biquad is proposed in [46], the circuit shown in Figure 45 can be 

designed through two popular versions [46] optimal and sub-optimal versions.  

1) The sub-optimal version is a special case where 𝜎 = 𝛿 = 0.5 that gives a double 

sampling BDI used to design the circuits with over sampling ratio without extra 

requirements of clock rate, op-amp settling time, and DC gain [52] 

 

(4.21) 

(4.22) 

(4.23) 

(4.24) 
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2) The optimal version is designed using the general linear combination of  𝜎, 𝛿 from 

equation 4.22 whose optimized values are given in [53] and the circuit 

configuration is shown in Figure 46. This circuit is designed and is fully differential 

which offers better output voltage swing and rejects common mode noise, this 

structure requires more hardware which leads to redundancy and noise in the 

circuit.   

 

 

Figure 46 CDI based SC biquad [46] 
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Figure 47 CDI based SC configuration [46] 

This CDI based SC circuit follows the two-integrator-loop topology and implements the 

combination of Lossless Discrete Integrator (LDI) and Bilinear Discrete integrator (BDI). 

The schematics of these two-integrator combination is shown in Figure 47. Transmission 

zeros can be realized using the feedforward technique. We assume that ϕa and ϕb are non-

overlapping clocks and the output voltage of each block (V1 and V2) are sampled at the end 

of clock ϕb. Therefore, transfer function of each block can be obtained by equation 4.25 

and their coefficients are given in equation 4.26.  

𝐻(𝑍) =
𝐶0 + 𝐶1𝑍

−1
2⁄ + 𝐶2𝑍−1+𝐶3𝑍

−3
2⁄ + 𝐶4𝑍−2

𝑑0 + 𝑑1𝑍
−1

2⁄ + 𝑑2𝑍−1+𝑑3𝑍
−3

2⁄ + 𝑑4𝑍−2
          

Where coefficients can be calculated as 

𝐶0 = 𝑎0 +
𝑎1𝜎𝑇

2
+

𝑎2𝜎2𝑇2

4
     

 
𝐶1 = 𝑎1𝛿𝑇 + 𝑎2𝜎𝛿𝑇2 

 

(4.25) 

(4.26) 
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𝐶2 = −2𝑎0 + 𝑎2 [𝛿2𝑇2 +
𝜎2𝑇2

2
] − 𝑎1𝜎𝑇 

𝐶3 = −𝑎1𝛿𝑇 + 𝑎2𝜎𝛿𝑇2 
 

𝐶4 = 𝑎0 +
𝑎1𝜎𝑇

2
+

𝑎2𝜎2𝑇2

4
 

 

𝑑0 = 𝑏0 +
𝑏1𝜎𝑇

2
+

𝑏2𝜎2𝑇2

4
 

 
𝑑1 = 𝑏1𝛿𝑇 + 𝑏2𝜎𝛿𝑇2 

 

𝑑2 = −2𝑏0 + 𝑏2 [𝛿2𝑇2 +
𝜎2𝑇2

2
] − 𝑏1𝜎𝑇 

 
𝑑3 = −𝑏1𝛿𝑇 + 𝑏2𝜎𝛿𝑇2 

 

𝑑4 = 𝑏0 +
𝑏1𝜎𝑇

2
+

𝑏2𝜎2𝑇2

4
 

The optimal version of CDI based SC bi-quad can be realized through two ways  

1) By replacing input and output 𝑍
−1

2⁄  with 𝑍−1 , which can be implemented in SC 

circuits by placing a S/H circuit at input and output is sampled as phase ϕb, with this 

method of implementation the transfer function of the circuits can be realized using 

general stray insensitive SC biquads discussed earlier in this chapter sections 4.3.1, 

4.3.2.  This method of implementation requires two BDI based SC biquads to 

realize a single CDI based biquad increasing the number of components needed 

thereby increasing more power and can produce more noise redundancy. 

 

2) As an alternate procedure, CDI based SC circuit is implemented through a 

traditional methodology assigning few capacitor values to zero in the fully 

differential CDI based SC biquad structure, which will reduce the circuit to a single 



 

 71 

ended structure as shown in Figure 48 with this configuration and the opamp needs 

to be much faster as it should sample two signals with a half-clock delay. 

 

4.3.2 Second order approximation of CPE using CDI-based SC 
biquad 

CDI based switched capacitor circuit can be realized from the fully differential biquad 

circuit given in Figure 46. By equaling few γ values to zero, the second order 

approximation of CPE using simplified CDI based switched capacitor biquad circuit is 

given in Figure 48.
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Figure 48 Second order approxim
ation of C

PE using C
D

I-based SC
 biquad circuit 
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The 2nd order approximated transfer functions in Z-domain obtained through substituting 

CDI based S to Z transform (2.53) in above equations 4.9 through 4.11 are given in 

following equations 4.27 through 4.29 for α = 0.2, 0.5, 0.8; respectively. 

𝐻(𝑍)

=
548.5971388 + 12.57477868𝑍

−1
2⁄ − 1090.889353𝑍−1 − 12.55723376𝑍

−3
2⁄ + 542.3141451𝑍−2

1.003142095 + 0.012570791𝑍
−1

2⁄ − 1.999989234𝑍−1 − 0.012561221𝑍
−3

2⁄ + 0.996859101𝑍−2
     

 
 
𝐻(𝑍)

=
202.0954272 + 8.386107637𝑍

−1
2⁄ − 399.980262𝑍−1 − 8.36856274𝑍

−3
2⁄ + 197.9067659𝑍−2

1.002094548 + 0.00837908𝑍
−1

2⁄ − 1.999996052𝑍−1 − 0.008375571𝑍
−3

2⁄ + 0.997905891𝑍−2
     

 
 
𝐻(𝑍)

=
49.01636498 + 5.593664142𝑍

−1
2⁄ − 95.21835714𝑍−1 − 5.576119222𝑍

−3
2⁄ + 46.22392333𝑍−2

1.001396273 + 0.005585309𝑍
−1

2⁄ − 1.99999906 − 0.005584474𝑍
−3

2⁄ + 0.998603831𝑍−2
   

 

 

The circuit depicted in Figure 46 has been designed and simulated using TSMC 65nm 

technology at Cadence is shown in Figure 48. The γ values and integration capacitors (C1 

and C2) of the designed circuit for α = 0.5, 0.8 are given in Table 9. Periodic analysis 

including periodic steady state (PSS) and periodic AC (PAC) have been performed on 

circuits for α = 0.5, and 0.8 with parameters values in femto farads from Table 9. The 

magnitude and phase of the output voltage of these circuits for α = 0.5, 0.8 are given in 

Figure 49 and Figure 50; respectively. 

 

 

(4.27) 

(4.28) 

(4.29) 
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Table 9 Parameters of CDI based SC biquad circuit for 2nd order approximation of CPE 

Parameters α = 0.5 α = 0.8 

γ1 4.093537890589500 8.852807143984200 

γ2 2.645422619993000 8.412566818698500 

γ3 4.951363674389000 3.622951457159500 

γ4 0.002818707070674 0.001373943193859 

γ5 0.002818707070674 0.001373943193859 

γ6 0.012645408511370 0.008412566817690 

γ7 0.000965463515630 0.000639815606094 

γ8 0.002818707070674 0.001373943193859 

γ9 0.002818707070674 0.001373943193859 

γ10 0.000965463515630 0.000639815606094 

C1, C2 (femtoF) 59.5451744 255.664258 
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Figure 49 Magnitude and phase response of CPE for α= 0.5 

 

Figure 50 Magnitude and phase response of CPE for α= 0.8 
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From the 2nd order approximation of constant phase element through CDI shown in Figure 

48, which is implemented using switched capacitor circuits is constant from 200Hz to 8 

KHz for the phase and magnitude for 20Hz to 10 KHz. As the α value increasing the 

magnitude and phase is increasing linearly and the magnitude of CDI is much more linear 

due to minimum errors compared with BDI based SC biquad. 

From above sections, the CPE is implemented through BDI and CDI based SC biquads, 

the 2nd and 4th order approximations of BDI and the simulation results are shown in Figures 

(42-44). The 2nd order approximations of CDI and the simulation results are shown in 

Figures 49,50. By comparing BDI and CDI simulations, CDI is much more linear and 

magnitude error less than BDI. The performance parameters for different α values is shown 

in Table 10. 
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Table 10 Performance parameters of CPE using BDI and CDI based SC biquads 

Parameter 
 

BDI 

 

 
CDI 

 

Voltage 0.7 V 0.7 V 

Order of approximation 2 4 2 

Phase α=0.2, 

θ=18ᶱ 

200Hz-3KHz 80Hz-10KHz 200Hz-3KHz 

α=0.5, 

θ=45ᶱ 

200Hz-3KHz 80Hz-10KHz 200Hz-3KHz 

α=0.8, 

θ=72ᶱ 

200Hz-8KHz 80Hz-30KHz 200Hz-8KHz 

Gain α=0.2 10db 20db 10db 

α=0.5 20db 40db 20db 

α=0.8 35db 70db 35db 

Clock 1 MHz 1MHz 1 MHz 

PC 5.956mW 10.11 mW 7.114mW 
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CHAPTER 5 SIMULATING SC CIRCUIT 

5.1 Simulating SC Circuits using Cadence 

Periodic Steady State (PSS) analysis is one of the primary analyses that are often 

performed to check the conditions of any SC circuit. This is a large signal analysis which 

estimates the initial conditions of the circuit during steady state over a range of values 

through shooting method. Shooting methods are iterative methods that begin the simulation 

with an estimation of the desired initial condition that result in the signal being periodic as 

defined by Vf -Vi =ΔV=0. The signal in Figure 51 (a), which start at Vi and end at Vf 

which does not result in periodicity for the signal in Figure 51 (b), the starting point was 

adjusted by the shooting method to directly result in a periodic steady-state. The circuit is 

evaluated for one period starting with the initial condition and the final state (Vf) of the 

circuit is computed along with the sensitivity of the final state with respect to the initial 

state. The non-periodicity (ΔV= Vf -Vi) and the sensitivities are used to compute a new 

initial condition, if the final state obtained is a linear function of the initial state, then the 

new initial condition results in periodicity. If not, the process repeats and more iterations 

are performed to achieve a periodic signal [55,56]. The simulation specifications for PSS 

analysis are given in appendix. 

 

 

Figure 51. (a) Non-periodic signal (b) Periodic signal 
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Periodic Small Signal (PAC) analysis: is also very important analysis for any SC circuit 

design. After performing the PSS analysis, PAC analysis should be performed to estimate 

the behavioral analysis of the circuit when conventional small signals are applied as its 

inputs. The conventional small-signal analyses do not linearize about the DC or time-

invariant operating point and they are not used for circuits that include frequency 

conversion effects. Once the circuit is linearizing for certain periodic operating point using 

above mentioned PSS analysis, a periodic AC analysis can be performed. The frequency 

and phase response of the circuit can be plotted through this analysis. The bandwidth, cut-

off frequency, gain, dissipation factor etc. for the circuit are obtained through PAC 

analysis. The simulation specifications for PAC analysis are given in appendix. 

 

5.2 Monte Carlo Analysis 

Monte Carlo analysis is an essential statistical analysis for any circuit design. Monte Carlo 

analysis calculates the response of the circuit when the device parameters are changed 

randomly within the limited tolerance limits of each device present in a circuit. It measures 

the response of the same circuit numerous times by assigning a random value for each 

device within a tolerance level. The purpose of doing this analysis is that the capacitors 

and transistors will not have the ideal theoretical values when implemented practically. For 

example, the capacitor of 1F with a tolerance of 1% might produce anywhere between 990F 

to 1010F and this is the same case with all the other components. Therefore, Monte Carlo 

analysis is performed to simulate the same circuit for 100 or 1000 times by varying the 

values of every component within practical limits to get a better understanding of the 

circuit. Higher the number of simulations, more accurate the results produced to determine 

the sensitivity of circuit. 
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5.2.1 Fourth order approximation of CPE using BDI-based SC 

Biquad  

The interest in low-sensitivity monolithic circuits has leaded to the development of 

different design topologies of switched capacitor biquad circuits over the past decades. 

Inverse Follow-the-Leader Feedback (IFLF) [51], Follow-the-Leader Feedback (FLF) [51] 

and Multiple Loop Feedback (MLF) [54,59] topologies are among the most popular ones. 

IFLF and FLF topologies benefit from the symmetric realization method, use of bilinear z-

transform to realize filters with exact specifications as well as the modularity due to 

implementing strays-insensitive switched capacitor biquad circuits [44]. The sensitivity 

performance of these topologies, however, is limited to low-Q and low order (n ≤ 6) filters. 

FLF topology demonstrates lower sensitivity for the frequencies closer to upper edge in 

the passband while IFLF topology has better sensitivity performance for the frequencies 

closer to the lower edge in the passband. Therefore, the combination of these topologies 

(MLF topology) results in lower sensitivity specially for high-Q filters by introducing 

additional feedback paths. However, it should be noted that such improvement in 

sensitivity performance achieved at a cost of more complex design. In this work, the forth 

order transfer function has been realized by cascading two switched capacitor biquads to 

avoid unnecessary complexity. The sensitivity performance of the implemented circuit for 

α = 0.5 has been examined using Monte Carlo simulations. It has been assumed that the 

values of capacitors are perturbed about their nominal value by a random percentage Δ. In 

order to generate these random percentages, a statistical model similar to the tracking 

model introduced in [54] has been employed.  

 

It has been assumed that the value of each capacitor C in the ith unit has a common tolerance 

Δi while the random perturbation Δc represent the deviations. In this simulation, ±20 

percent and ±0.5 percent triangular distributions have been used for Δi and Δc; respectively. 

Monte Carlo analysis using this tracking model has been performed for 100 runs. Figure 

52 and Figure 53 illustrate the magnitude and phase of output voltage, respectively. Solid 

 (5.1) 
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lines in both figures represent nominal values and dashed lines denote the m±σ values 

where m is the mean value and σ is the standard deviation of the corresponding graph.  

 

Figure 52. Sensitivity Analysis for CPE magnitude implemented through 4th order 

approximated cascaded SC bi-quad for α=0.5 

 

Figure 53. Sensitivity Analysis for CPE phase implemented through 4th order 

approximated cascaded SC bi-quad for α=0.5 
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Table 11 Monte Carlo Analysis Values for 4th order approximation of CPE at certain 

frequencies 

Frequency 
(Hz) 

Nominal 
Value (dB) 

Mean  
Value (dB) 

Mean Value + 
Standard Deviation 

(dB) 

Mean Value - 
Standard 

Deviation (dB) 
10 78.64 78.4320 79.4327 77.4313 

100 70.17 70.0073 71.0921 68.9225 

1000 60 59.8316 60.9941 58.6691 

10000 49.58 49.3913 50.8907 47.8919 

100000 40.73 33.8773 38.2536 29.5013 
 
 

 
From the analysis of the 4th order approximated CPE for alpha=0.5, the sensitivity 
performance be nominal. It can be seen from the output graph and the tabulated values in  

Table  that the design is very much sensitive to variations within the device values assigned. 

To achieve much better sensitivity performance, the circuit can be designed using Follow 

the Leader (FLF) or Inverse Follow the Leader (IFLF) feedback methods. 

5.3 Optimization of the Normalized Approximation using Steepest 

Descent Method 

In previous sections the 2nd order and 4th order approximations of CPE have been realized 

using BDI-based SC biquad circuit for different values of α. In this section, the obtained s-

domain transfer functions for the 2nd and 4th order approximations with α = 0.5 will be 

optimized. There are many different optimization methods among which Steepest Descent 

[61] and Newton Raphson’s [62] methods are the most popular ones. Steepest descent 

method deals with local and global minimum values and requires more iterations. Newton 

method, on the other hand, is much faster but it is more sensitive to initial conditions and 

requires higher computational cost. Hence, steepest descent method has been used here to 

optimize the obtained transfer function. 



 

 83 

The derived transfer functions of the second 2nd and 4th order approximations of CPE were 

optimized through minimizing the sum of the squared differences between the phase angle 

of an ideal response and the phase angle calculated through the initial parameters of the 

obtained transfer function. This sum-of-the-squared errors is considered as the objective 

function to be minimized. The phase angle of the transfer function is calculated between 

the frequency range of 1 Hz to 107 Hz at 200 Hz increments using derived parameters in 

the transfer functions shown in the following equations:  

 

 

An ideal phase angle of θ =45 ° is used for the 2nd and 4th order transfer functions with α = 

0.5. The square of error between the phase angle calculated from the transfer function and 

the ideal phase angle is calculated at the frequency range close to the ideal phase angle and 

the sum of square of errors should be minimized.  

Generalized Reduced Gradient (GRG) nonlinear method is a type of the steepest descent 

method which takes the gradient of the objective function as the input values and 

determines the optimum solution. This method is built in excel solver and has been used 

for error minimization with 1000 iterations and a convergence factor of 0.0001. This 

minimizing of the error function has been conducted through changing the parameters of 

the transfer functions shown in equations (4.8) and (4.12). The algorithm reached its 

optimum solution when the partial derivatives of the objective function equal zero. 

The initial and optimized parameters of the transfer functions are given in Table 12 and 

Table 13 for 2nd and 4th order, respectively. The phase responses of the original transfer 

function and the transfer functions with the optimized parameters for 2nd order and 4th order 

are also shown in Figures 54 and 55, respectively. 

 (5.2) 

 (5.3) 
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Table 12 The initial and optimized parameters of the 2nd order approximated S-domain 

transfer function 

Parameters Initial Values Optimized Values 
a 59513.42 68702.52 
b 3136.566 4267.989 
c 11902.67 15352.49 
d 663.314 819.7144 

 

 

Table 13 The initial and optimized parameters of the 4th order approximated S-domain 

transfer function 

Parameters Initial Values Optimized Values 
a 202227.7 327066.7 
b 18848.22 7202.539 
c 4423.042 38575.73 
d 813.1983 1006.356 
e 47466.95 90813.74 
f 8920.989 16980.75 
g 2094.322 2852.251 
h 195.2385 235.2571 
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Figure 54 The phase responses of the original and optimized 2nd order approximation  

 
 

 

 

Figure 55 The phase responses of the original and optimized 4th order approximation 
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Chapter 6 Conclusions 

6.1 Summary of thesis 

The theory of fractional calculus is emerging in many fields such as engineering electricity, 

mechanics, chemistry, biology [33]. The theory of fractional calculus is migrating into 

designing of FO systems and FO models, which include FO circuits such as FO integrators, 

FO oscillators, FO controllers, FO filters [8-12]. These FO circuits are having been realized 

using analog and discrete circuits such as current mirrors, OTA’s, current feedback 

operational amplifiers, SC circuits etc. [35,36]. One of the famous FO model, Cole-Cole 

impedance model used to measure electrical properties of a biological material. Recently 

these model parameters are extracted through simple integrator based setup which include 

a fractional hypothetical element named as Constant phase element (CPE) or fractional 

capacitor (FC) [34]. 

The major motive of this thesis, is to realize a Constant Phase Element (CPE), which 

measures fractional impedances of biological material through a simple integrator based 

setup [34], using SC circuits at low supply voltage achieving the factors of low power 

consumption, good linearity, dynamic range and better sensitivity. Traditionally, this CPE 

is implemented using RC ladder passive network which are bulky in size, very noise 

effective and due to temperature and time variation, it is hard to tune the passive circuits, 

this thesis provided an alternative design for CPE using SC circuits due to its advantages 

mentioned in chapter 2 and 3. 

CDI integration scheme has been used in the design that minimizes the frequency errors 

and at the same time made the design more efficient and flexible for rapid scaling in CMOS 

technologies. Detailed operation of both the BDI and CDI based integration scheme were 

analyzed for different approximations of CPE and presented in the earlier chapters. An 

optimized design that works with a low supply voltage of 0.7 V is presented. The supply 

voltage for both is set to 0.7 V for BDI and CDI which is very close to the sum of PMOS 

and NMOS transistors 0.339 V and |-0.351 V|; respectively in TSMC 65nm technology.  
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A 2nd order approximation of CPE using both BDI and CDI integration schemes was 

developed to determine the flexibility and linearity of the design. The operation of the CPE 

design and the simulations obtained from TSMC Cadence 65nm technology are presented 

in chapter 4 and 5. The BDI and CDI-based CPE achieves a constant phase about 200Hz 

to 8 KHz for the magnitude and 20Hz to 10 KHz. As the alpha value increasing the 

magnitude and phase is increasing linearly and the magnitude is much more linear for CDI 

due to minimum errors compared with BDI-based SC biquad. The power consumption of 

BDI based 2nd order approximated CPE was determined as 5.956mW and the CDI- based 

2nd order approximated CPE can be operated with a power consumption of 7.114mW. The 

advantages of the BDI-based integration scheme in higher order approximation of CPE are 

presented by designing a 4th order approximated CPE that can operate at low supply 

voltage, linearity and dynamic range compared to the traditional RC ladder designs using 

SC circuits. 

The 4th order approximation of CPE with cascade topology is implemented using BDI 

integration schemes. A Monte Carlo analysis is performed to check the sensitivity of the 

transfer function when subjected to physical variation. The 4th order approximation of CPE 

was designed for α = 0.2, 0.5, 0.8 values with a constant phase of 80Hz to 10 KHz and 

magnitude in the range of 20Hz to 100KHz. As the α value increasing the magnitude and 

phase is increasing linearly and the transfer function is designed with the procedure 

mentioned in chapter 4. The sensitivity results obtained from Cadence are demonstrated in 

chapter 5. The power consumption of the total 4th order approximated BDI- based CPE 

10.11 mW; respectively, which are far better than the conventional designs. 
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6.2 Performance Comparison Table 

Table 14 A detailed performance comparison of the novel CPE design through SC 

circuits with other existing designs 

Parameter 
[This work] 

BDI 

2017 

[This 
work] 
CDI 
2017 

[68] 
OTA’s 
2015 

[69] 
CFOA’s 

2015 

[71,105] 
RC ladder 
2008,2010 

Process 65nm 65nm 350µm Pspice Pspice 

Voltage 0.7 V 0.7 V 1.5 V - - 

Order of approximation 2 4 2 2 2 4 

Phase α=0.2, 

θ=18ᶱ 

200Hz-

3KHz 

80Hz-

10KHz 

200Hz-

3KHz 

10Hz-

90Hz 

- 1KHz-

10KHz 

α=0.5, 

θ=45ᶱ 

200Hz-

3KHz 

80Hz-

10KHz 

200Hz-

3KHz 

10Hz-

90Hz 

200Hz-

3KHz 

1KHz-

10KHz 

α=0.8, 

θ=72ᶱ 

200Hz-

8KHz 

80Hz-

30KHz 

200Hz-

8KHz 

10Hz-

90Hz 

- 1KHz-

30KHz 

Gain α=0.2 10db 20db 10db - - 20db 

α=0.5 20db 40db 20db - - 40db 

α=0.8 35db 70db 35db - - 70db 

Clock 1 MHz 1MHz 1 MHz - - - 

PC 5.956mW 10.11 

mW 

7.114mW - - - 



 

 89 

CPE-Constant Phase Element, BDI – Bilinear Discrete Integrator, CDI – Composite 

Discrete Integrator, PC – Power Consumption 

 

6.3 Future work 

One of the major advantages of SC circuits is that they produce high linearity and good 

dynamic range. In this work, we designed CPE using BDI and CDI-based SC circuits the 

FO element through CDI showed much more promising linearity with minimum errors 

compared with BDI. This work can be extended to implementation of fractional order 

filters such as fractional order low pass filters, fractional order Butterworth filters through 

CDI based SC circuits. [57,58]  

One of the disadvantage of realizing CPE using SC circuits is that, with the existing 

technology/methodology it requires capacitors with a very precise capacitance values 

ranging to a higher number of decimals to attain convergence and stability of the circuit. 

However, practical implementation with a smaller number of decimal points for each 

capacitance can be attained through fine tuning of the desired circuits. CPEs with 

α=0.2,0.5,0.8 were realized in this work as most biological tissues, fruits, vegetable tissues 

exhibit constant phase between “α” 0.5 and 0.8 [13,23,24,25]. Non-integer values of “α” 

can also be implemented simply by tuning the capacitor and clock signals by digital logic 

circuits which is flexible process in SC circuits.  

One of the major disadvantages of SC circuits is that they consume more power and 

produce more noise due to the opamp. In this research work, the power consumption is 

higher as compared to current circuits. So, the power consumption factors present in opamp 

based circuits needs to be analyzed with a detailed understanding of tuning mechanism in 

Nano-scale circuits, for example contributions from aspects such as replacing the opamp 

with inverter [59,42,43], with inverter based SC circuits we can achieve low power 

consumption and noise suppression such as flicker noise etc. can be achieved. 
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As the current designs demand ultra-low supply voltage, the supply voltage can further be 

minimized beyond 0.7 V using dynamic threshold voltage MOSFET (DTMOS) transistors 

in opamp or inverter based SC circuits. As reported in [59,60], DTMOS transistors are used 

to increase ICMR of the circuits even under smaller supply voltages. To implement this 

transistor in Nano-scale technologies, the characteristics and the detailed behavior of the 

DTMOS transistor in different regions should be examined. Traditionally, the SC circuits 

are designed using Gate- driven transistors we can implement bulk-drive (BD) technique 

for SC circuits, the NMOS transistor in the op-amp circuit is replaced with a transistor that 

is developed through the implementation of BD technique [47]. 

The realization of the CPE using SC circuits in this thesis are very much sensitive to 

component variations as presented in chapter 5 and the reason being the cascade topology 

used. This limitation can potentially be addressed through designing the filter with different 

multiple loop feedback (MLF) [51,54], [59] methods that can improve the sensitivity 

performance. However, it should be noted that such improvement in sensitivity 

performance achieved at a cost of more complex design and noise in the circuit which can 

be reduced through switch sharing.  
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Appendix: 
 

The data required to simulate the circuits discussed in this work is given in this section. 

Simulations were done using the Cadence tool with the TSMC65nm technology. 

 
I. Clock signal input data: 
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II. Periodic Steady State Analysis & Periodic AC Analysis: 
 

In Cadence, a switched capacitor circuit cannot be simulated using direct method like the 

other CMOS circuit designs. Hence, PSS must be performed prior to AC analysis to obtain 

the frequency response of any circuit. 
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