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Abstract 

 This thesis quantified the distribution of several ecologically and commercially 

important canopy-forming marine macrophytes in the Northwest Atlantic using species 

distribution models (SDM) and satellite remote sensing. Firstly, correlative SDMs and 

physiological thresholds were used to determine current and projected distributions by 

2100 under different climate change scenarios for six seaweed species common to the 

Northwest Atlantic. Species ranges will shift north with continued warming where 

fucoids and kelps were projected to have a net loss of latitudinal range, while other 

species gain latitudinal range. Secondly, SPOT 6/7 imagery was classified with two 

different classification techniques and modest ground-truthing effort to determine the 

distribution of eelgrass (Zostera marina) in three bays in Nova Scotia. Only one bay 

successfully classified eelgrass distribution, highlighting the need for excellent satellite 

image quality, and clear water. The two approaches can inform conservation and 

management of canopy-forming marine macrophytes on different spatial and temporal 

scales. 
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Chapter 1 Introduction 

1.1 Importance of Marine Macrophytes  

 Canopy-forming marine macrophytes, including seagrasses, kelp, and fucoids, are 

important components of coastal ecosystems. As ecosystem engineers (Jones et al. 1994), 

they provide shelter and food to a multitude of different marine taxa through their 

complex three-dimensional structure (Schmidt et al. 2011; Krumhansl and Scheibling 

2012; Kay et al. 2016). Despite covering only 0.2% of the surface area of the world’s 

oceans (Duarte et al. 2013a), marine macrophytes are estimated to contribute 2 to 6% of 

global net primary productivity, and are the predominant primary producers in coastal 

ecosystems (Duarte and Cebrián 1996; Field et al. 1998). They form large quantities of 

primary producer biomass which allows them to store large amounts of carbon and 

nutrients (Smith 1981; Schmidt et al. 2011). Recognizing this importance, eelgrass 

(Zostera marina) has been designated as an ecologically significant species in Eastern 

Canada (DFO 2009) with a policy of no net loss of habitat function (Hanson et al. 2008), 

and is protected by the Clean Water Act in the USA (Nelson 2009). Yet the canopy-

forming seaweeds, such as kelp and fucoids, which perform similar ecosystem functions 

as eelgrass, are not protected by similar policies. Several seaweed species are impacted 

by direct commercial exploitation (Seeley and Schlesinger 2012; Vandermeulen 2013; 

Arbuckle et al. 2014). Furthermore, the ecosystem functions provided by canopy-forming 

macrophytes in the Northwest (NW) Atlantic are also affected by anthropogenic activities 

including the spread of invasive species (Garbary and Miller 2006; Schmidt and 

Scheibling 2006, 2007), nutrient loading (Worm and Lotze 2006; Waycott et al. 2009; 

Schmidt et al. 2012), and climate change (Harley et al. 2006, 2012; Wilson et al. 2015; 

Kay et al. 2016). Consequently these anthropogenic impacts can alter the abundance and 
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distribution of canopy-forming macrophytes with potentially negative consequences for 

the functions and services they provide, and the species communities that depend on them 

(Schmidt et al. 2012, 2017; Seeley and Schlesinger 2012; Wilson et al. 2015).  

1.2. Marine Macrophyte Distribution in the Northwest Atlantic 

The rocky shores of the NW Atlantic are dominated by perennial, canopy-forming 

seaweeds with distinct zonation patterns from Long Island Sound into the Arctic (Lüning 

1990; Adey and Hayek 2011). South of Long Island Sound, seaweed distribution is 

limited due to the predominance of soft sediment shores (Schneider and Searles 1991). 

Fucoids dominate the mid-intertidal with rockweed (Ascophyllum nodosum) in more 

sheltered and Fucus vesiculosus in more exposed regions (Adey and Hayek 2011). The 

low-intertidal is dominated by smaller bushy red-algae, predominantly Irish moss 

(Chondrus crispus). In the subtidal, laminarian kelps can form dense forests and includes 

species such as Alaria esculenta, Agarum clathratum, Laminaria digitata, Saccharina 

latissima, and S. longicruris.  

In 1957, the invasive Codium fragile was first introduced to the NW Atlantic in 

Long Island Sound (Carlton and Scanlon 1985). Originating from Japan (Provan et al. 

2008), C. fragile has since spread south to North Carolina and north to Newfoundland 

(Matheson et al. 2014). Codium fragile competes with native kelp species; if a 

disturbance removes kelp canopy cover, C. fragile can quickly colonize the exposed 

substrate and inhibit the recruitment of kelp (Scheibling and Gagnon 2006). The spread 

of C. fragile has not been as extreme as at first anticipated; C. fragile had an average 

percent coverage of 28.5% in 2000 along the exposed Atlantic coast of Nova Scotia, 
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which had decreased to 11.70% by 2007, compared to 24.7% of coverage for kelps in 

2007 (Watanabe et al. 2010). 

By comparison, the soft sediment shores of the NW Atlantic from South Carolina 

into the Arctic are dominated by one perennial, canopy-forming seagrass species: Zostera 

marina (eelgrass), with occasional small patches of widgeon grass (Rupia maritima; 

Gosner 1978). This unique dominance of just one canopy-forming species on most soft-

sediment habitat underscores the importance of eelgrass being recognized as an 

ecologically significant species (DFO 2009). 

1.3. Assessing and Projecting Shifts in Species Distribution  

 Understanding the spatial distribution of any species is important for many 

conservation and management applications. Two techniques that can be used to estimate 

or project a species’ distribution are species distribution models (SDM; Elith and 

Leathwick 2009; Franklin 2009), and satellite remote sensing (SRS; Pettorelli et al. 

2014), both of which have been used to quantify the distribution of marine macrophytes 

(Klemas 2011; Hossain et al. 2015; Marcelino and Verbruggen 2015).  

1.3.1 Species Distribution Models 

SDMs are used in a wide variety of applications to make predictions about a 

species’ present distribution. They can also be used to project a species distribution using 

historic data, or its future distribution using projected environmental data, to examine 

temporal changes in a species’ range (Elith and Leathwick 2009). The development of 

SDMs relies on the niche concept, where a species persists and maintains a stable 

population size under a given set of abiotic and biotic conditions (Hutchinson 1957). 

There are two types of SDMs: correlative and mechanistic, which have been used to 
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predict the distribution of seaweed and seagrass species (Valle et al. 2014; Boscutti et al. 

2015; Marcelino and Verbruggen 2015). Correlative SDMs are used to classify a species’ 

realized niche; the range of environmental conditions a species occurs over that is 

constrained by dispersal capabilities and biological interactions. Whereas mechanistic 

models are used to classify a species fundamental niche; the entire range of 

environmental conditions that a species can persist in (Marcelino and Verbruggen 2015).  

Correlative SDMs are more common, and are built by relating known instances of 

species presence (occurrence records) with biologically significant environmental 

variables to determine a species’ distribution (Franklin 2009). Correlative SDMs can then 

be projected onto a new set of environmental variables (novel environments), to examine 

how a species’ distribution may change (i.e. how a distribution changes with future 

climate data). There are two main disadvantages with correlative SDMs. The first is that 

both occurrence records and environmental data needed to build the model may be 

limited. The second is that they have difficulty making projections into novel 

environments, as the range of environmental conditions used to build the SDM may not 

match new projected environmental conditions (Elith et al. 2011).  

Mechanistic models are less common as they require detailed physiological data 

to predict species presence, often collected through extensive laboratory studies (Franklin 

2009). The physiological data is used to determine physiological tolerances, which 

classify environmental variables into areas of suitable habitat. Mechanistic models are 

typically more robust when making predictions into novel climate outside the range of 

environmental conditions the species is currently observed in, as they include 

physiological responses (Kearney and Porter 2009). Hybrid approaches, where a 
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correlative SDM is built, and added to a mechanistic model, can improve model 

projections for novel environment (Elith et al. 2010). This can be done simply by 

including information on a species’ warm-water tolerance on its growth rate and 

mortality, indicating thermal physiological thresholds (Martínez et al. 2014; Franco et al. 

2017).  

1.3.2 Remote Sensing 

There are several types of optical SRS which can be active (e.g. sensor emits a 

light source, including lidar) or passive (e.g. sensor uses light from the sun, including 

commercial and governmental satellites platforms such as WorldView, SPOT, IKONOS, 

and Landsat) to measure a features reflectance as each feature has different spectral 

properties (Horning et al. 2010; Hossain et al. 2015). Since the creation of Landsat 

satellites in 1972, passive, optical SRS have been used to successfully quantify marine 

macrophyte coverage (e.g. Casal et al. 2011; Hossain et al. 2014; Uhl et al. 2016). All 

passive, optical SRS rely on the same principles where ground reflectance is measured at 

different wavelengths (Horning et al. 2010). This is known as the spectral resolution, 

where one sensor (known as a band) measures a very specific grouping of 

electromagnetic radiation, typically corresponding to a colour (e.g. blue light). 

Multispectral imagery typically has between 4 to 12 bands. This reflectance is measured 

by a defined range of numbers, known as the radiometric resolution (i.e. 256 unique 

values for an image with 8-bit resolution), at a defined spatial resolution (pixel size on the 

ground; i.e. 1.5 x 1.5 m). The SRS image is then classified into ground cover with 

(supervised) or without (unsupervised) the use of known ground cover points. The 

resulting classification can be used in several applications including mapping species 
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distribution, habitat management, and if imagery exists across years, a temporal change 

analysis (Klemas 2011; Pettorelli et al. 2014; Rose et al. 2015). 

1.4 Research Objectives 

This thesis examined how passive optical SRS and SDMs can be used to estimate 

or project marine macrophyte distribution. In Chapter 2, I focus on projecting the large-

scale, continental response of common canopy-forming seaweed distribution to continued 

climate warming. Since large-scale patterns for seaweed growth and survival are mainly 

controlled by sea surface temperature (SST; Lüning 1990), seaweed distributions closely 

follow SST isotherms (van den Hoek 1975). As the NW Atlantic continues to warm due 

to human-induced climate change (Barnett et al. 2001; Lee et al. 2011), seaweed 

distributions will be impacted across their entire geographic range, likely resulting in 

northward range shifts. I used species distribution models (SDMs) in combination with 

physiological thresholds (hybrid SDMs, see section 1.3.1) and climate model projections 

to investigate the extent of this shift in the NW Atlantic over the next century. 

In Chapter 3, I focus on quantifying eelgrass distribution at a smaller, bay-wide 

scale. With the recent declines of eelgrass in Nova Scotia (Hanson 2004) and globally 

(Orth et al. 2006; Waycott et al. 2009), baseline knowledge of eelgrass distribution is 

critical to understand the extent of these declines. I used high-resolution multispectral 

satellite imagery in combination with ground truthing, local ecological knowledge, and 

substrate data to compare two methods for classifying remotely sensed data.  

Note that while the general introduction (Chapter 1) and conclusion (Chapter 4) 

are written in the first person, the two data chapters (Chapters 2 and 3) are written as 

manuscripts and therefore include the use of ‘we’ in acknowledgement of my co-authors.  
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Chapter 2 Projected 21st Century Distribution of Canopy-Forming 

Seaweed Species in the Northwest Atlantic   

2.1 Introduction 

Since 1750, the exponential increase in greenhouse gas emissions, particularly 

CO2, has resulted in sea level rise, ocean acidification, and ocean warming (IPCC 2013). 

Consequently the NW Atlantic has significantly warmed since 1980 (Barnett et al. 2001), 

at a faster rate than other ocean basins (Lee et al. 2011). Since 1982, sea surface 

temperature (SST) has significantly increased at latitudes of 42°N to 60°N (Baumann and 

Doherty 2013), and SST isotherms have been moving north at a rate of 40 km/year since 

1975 (Hansen et al. 2006). By 2100, there is an anticipated 3°C further increase in SST 

expected, with the Arctic anticipated to warm by 4.9°C up to 9.3°C, under RCP 4.5 

(representative concentration pathways; IPCC 2013). Therefore, coastal ecosystems in 

the NW Atlantic, including seaweed communities, will continue to be affected by 

increasing SST over the coming century. 

 SST is the major factor influencing seaweed survival and growth on large spatial 

scales (Lüning 1990), resulting in seaweed distributions which closely follow SST 

isotherms (van den Hoek 1975). In the NW Atlantic, there are four distinct 

phytogeographic regions representing common distribution limits: warm-temperate, cold-

temperate, Subarctic, and Arctic regions (Figure 2.1; van den Hoek 1975; Adey and 

Hayek 2011). The warm-temperate region runs from Cape Hatteras, North Carolina to 

Cape Cod, Massachusetts. The cold-temperate/boreal region runs from Cape Cod to 

western Newfoundland, the Subarctic region from western Newfoundland to southern 

Labrador centered on the Strait of Belle Isle, and the Arctic region runs from mid-

Labrador to the North Pole.  
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All study species are found in the warm-temperate region, where rockweed 

Ascophyllum nodosum (Gosner 1978), Irish moss, Chondrus crispus (Lüning 1990), and 

the kelps Laminaria digitata and Saccharina latissima (Merzouk and Johnson 2011) 

occur south to Long Island Sound, and Fucus vesiculosus and the invasive Codium 

fragile occur south to North Carolina (Taylor 1957; Carlton and Scanlon 1985). The 

Subarctic is the northern limit for C. fragile, C. crispus, and L. digitata, with the other 

three species existing into the Arctic (Lüning 1990; Adey and Hayek 2011).  

Seaweeds are indicators of climate change in coastal ecosystems (Marbà et al. 

2017) and will either need to adapt to a warmer climate, or shift their distribution to 

conserve their niche (Harley et al. 2012). Marine species are known to typically fill their 

thermal niche (Sunday et al. 2012), therefore present range limits likely indicate the true 

range of thermal tolerance for these species. If seaweed species fail to acclimate to 

increasing temperatures, range shifts are expected to occur (Müller et al. 2009; 

Jueterbock et al. 2013; Assis et al. 2014). As of yet, there have been no observed large-

scale range shifts in the field for NW Atlantic kelp communities (Merzouk and Johnson 

2011); however, smaller-scale decreases in abundance have occurred in many areas 

(Filbee-Dexter et al. 2015; Krumhansl et al. 2016; Dijkstra et al. 2017), which has been 

attributed to lack of baseline knowledge of kelp distribution (Merzouk and Johnson 

2011). For rockweeds, there is anecdotal evidence suggesting that A. nodosum has had a 

small range shift at its southern edge from New Jersey to Long Island Sound (Keser et al. 

2005), with decreases in abundance throughout the Canadian Maritimes (Ugarte et al. 

2010).  
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The lack of observations of larger range shifts of seaweeds across the NW 

Atlantic despite significantly increasing SST is surprising. Range shifts of seaweeds have 

been observed elsewhere in Portugal (Lima et al. 2007), Spain (Duarte et al. 2013b), 

Britain (Gallon et al. 2014; Yesson et al. 2015), Australia (Wernberg et al. 2011), and 

Japan (Tanaka et al. 2012), and these shifts have been attributed to the impacts of climate 

change. Consequently, the NW Atlantic is also likely experiencing similar range shifts of 

seaweeds with continued warming. 

 The goal of this chapter was to assess how projected scenarios of future climate 

change will impact the distribution of common canopy-forming seaweed species in the 

NW Atlantic. To do so, we had three main objectives: (i) create a comprehensive 

database to determine where the seaweed species are currently observed; (ii) use these 

occurrence records in combination with environmental data to build a hybrid species 

distribution model (SDM) to predict current suitable habitat; and (iii) use this hybrid 

SDMs to make projections of future distribution under projected climate change. We 

chose six study species common in the NW Atlantic including mid-intertidal fucoids (A. 

nodosum and F. vesiculosus), low-intertidal Irish moss (C. crispus), and subtidal 

laminarian kelps (L. digitata and S. latissima), as well as the highly invasive C. fragile. It 

was hypothesized that each species would experience a northward shift of both the 

southern and northern distribution boundary. However, this shift will likely vary by 

species and as such, the seaweed community will not shift as an assemblage due to their 

varying thermal tolerances.   
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Figure 2.1 Phytogeographic regions of NW Atlantic from van den Hoek (1975) and Adey 

and Hayek (2011). 
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2.2 Methods 

2.2.1 Species Occurrence Records 

Presence-only occurrence records were collected from 1980 onwards to reflect the 

present-day distribution of six species of seaweeds within their current range in the NW 

Atlantic: Codium fragile (63 records), Fucus vesiculosus (134 records), Ascophyllum 

nodosum (86 records), Laminaria digitata (88 records), Saccharina latissima (122 

records), and Chondrus crispus (72 records; Appendix B). These records were obtained 

through a literature search, correspondence with other research groups, personal 

observations, and online databases (Ocean Biogeographic Information System, Aquatic 

Biodiversity Monitoring Network, and Global Biodiversity Information Facility). If a 

study provided a map with sample locations, but no specific latitude and longitude 

coordinates, then these were obtained by matching the site in Google Earth. Generally, 

records were collected from 1980 onwards, as this was the first year significant increases 

in sea surface temperature were detected in the NW Atlantic (Barnett et al. 2001). 

However, due to the inaccessibility of the far north, very few occurrence records exist for 

the Canadian Arctic and Greenland. Therefore, records prior to 1980 were used in areas 

north of Newfoundland. It was assumed that along this northern range seaweeds who 

were present prior to 1980, could still occur after 1980 in these areas as any Arctic 

warming will promote northward range shifts. 

2.2.2 Environmental Data 

To inform species distribution models (SDMs), environmental parameters should 

be biologically relevant to the species examined at the study scale (Phillips et al. 2006). 

Environmental layers used in this study include sea surface temperature (SST), surface 

air temperature (SAT), sea ice area coverage (SIC), and sea surface salinity (SSS; Table 
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2.1). Monthly and seasonal long term averages (LTA) were determined in the statistical 

environment R (R Core Team 2014) for August, February, summer, and winter. The LTA 

of SAT at 0.5° resolution was interpolated using inverse distance weighting to extend 

over coastal areas, and resampled to a 0.25° resolution. All layers were projected into the 

North America Albers equal-area conic projection (Elith et al. 2011), and set to the same 

extent and cell size (0.25°x0.25°) using ArcGIS® v. 10.3 (ESRI, Redlands, USA). 

Occurrence records were processed to match the environmental data by projecting to the 

same equal-area projection, and duplicate records within a grid cell were removed. As the 

environmental layers do not perfectly match the coastline, occurrence records that did not 

overlay the environmental data were moved to the closest grid cell. 

The variable inflation factor (VIF) was used to remove any correlated 

environmental variables, as correlations may change with future projected climate data 

(Elith et al. 2010). Variables were removed in a step-wise fashion by removing the 

variable with the highest VIF until all remaining variables had a VIF values less than or 

equal to 10 (Naimi and Araújo 2016).  

2.2.3 Species Distribution Model 

 To build the correlative species distribution model (SDM) the software program 

Maxent v. 3.3.3k was used (Phillips et al. 2004, 2006) which determines areas of suitable 

habitat using machine learning techniques and the principle of maximum entropy. 

Maxent only requires the input of presence data to build a SDM, and it consistently 

performs well when compared to other correlative modelling algorithms (Elith et al. 

2006). It assumes that (i) the occurrence records are unbiased (Elith et al. 2011), and from 

a source habitat (Phillips et al. 2006), (ii) the study area has been randomly sampled for 
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species presence (Phillips et al. 2006), (iii) the environmental data are independent of one 

another (Phillips et al. 2006), (iv) the probability of detecting a species is the same for all 

pixels (Yackulic et al. 2013) and, (v) that any pixel can be used as background as a 

species can occur anywhere in the study area (Merow et al. 2013). Criteria i and ii were 

not fully met due to limited occurrence records in northern areas, therefore it is likely that 

the niche breadth is these areas is under-estimated and therefore northern borders are 

predicted too far south.    

Maxent is a deterministic model that tests against the null hypothesis that the 

study species shows no preference for a certain range of environmental conditions 

(Phillips et al. 2006; Elith et al. 2011). Entropy is a measure of dispersiveness, so 

maximizing the entropy results in a probability distribution which is maximally random 

based on the constraints. The probability distribution that most closely matches where a 

species occurs is the distribution with the maximum entropy subject to the same 

constraints. Maxent requires the input of occurrence records and environmental data. The 

area the environmental data covers defines the area the probability distribution is defined 

over. The environmental layers are transformed into feature classes, and then constrain 

the probability distribution so that the value expected from the environmental layers (i.e. 

August maximum SST) is the same as the empirical average. These constraints are 

regularized with L1-regularization to avoid over-fitting the model, for more detail see 

Phillips et al. (2006), and Elith et al. (2011). 

Maxent also requires the use of random background points (default at 10,000), 

taken from the environmental data layers within the study area, which may or may not 

contain presence records. To determine a relative probability of presence, Maxent 



 

14 

 

transforms the raw model output into a logistic model, based on assuming a value of 

species prevalence (default at 0.5), to build the best model to determine the relative 

probability of presence of a species from background environmental data.  

2.2.4 Model Building and Evaluation 

We originally considered a large suite of environmental variables (Table 2.1) that 

were reduced using the VIF to only include uncorrelated environmental variables (see 

section 2.2.1). These uncorrelated environmental variables were input into the Maxent 

model, which was then run using k-fold cross-validation (Kohavi 1995). The number of 

folds (k) used depended on the number of occurrence records, where species with over 

100 occurrences records (F. vesiculosus and S. latissima) k=5, and for the species with 

under 100 occurrence records (A. nodosum, C. crispus, C. fragile, and L. digitata) k=4. 

Feature classes were set to allow only linear (sample mean true to average conditions 

required), quadratic (sample range true to species tolerance range), and hinge (same as 

linear but constant past a threshold; Phillips et al. 2006; Elith et al. 2011) and the runs 

were set to 5000 iterations to ensure model convergence. As environmental layers had 

fewer than 10,000 pixels, all pixels were always used as background points.  

A jackknife test was performed to determine the importance of each 

environmental variable, and the variable with the smallest decrease in average test gain 

when removed from the full model was dropped. This was repeated until only one 

variable remained to determine the most important variable for predicting a species 

distribution. To balance variables that performed well in training and testing, average 

regularized training gain was used to determine the best model for each species. This was 

done to balance model complexity and performance, where the best model was 
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determined to be the one with the fewest number of predictor variables that did not result 

in a significantly different training gain from the full model, based on 95% confidence 

intervals (Yost et al. 2008). Therefore, test gain was used to decide which variables to 

remove, while regularized training gain was used to decide when to stop removing 

variables from the model. 

All continuous logistic model output was turned into binary presence/absence data 

based on the maximizing the sum of test sensitivity and specificity threshold (Liu et al. 

2016). Sensitivity indicates where true presence occur (true positive rate), and specificity 

indicates where true absences occur (in this case, distinguishing presence from random 

background points; Phillips et al. 2006). This results in a model with the highest sum of 

correctly classified presences and pseudo-absences.  

Model performance was evaluated using both threshold dependent and 

independent tests. A one-tailed binomial test requires the use of thresholds, and 

determines if test locations are predicted significantly better than random in the model. 

The null hypothesis states that the test values are predicted no better than a random model 

with the same proportional predicted area (Phillips et al. 2006). The associated p-value is 

exact since the number of test samples for each species was less than 25. This test uses 

the omission rate, the fraction of test samples which were not denoted as suitable habitat, 

and the proportional predicted area, the proportion of total pixels found to be suitable 

habitat, to determine this probability.  

The threshold independent evaluation used was the area under the curve (AUC) of 

the receiver operator characteristics curve (ROC; Phillips et al. 2006). This curve plots 1- 

specificity (true negative rate) against sensitivity to determine the AUC as a value 
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between 0.5 (random prediction) and 1 (perfect model). Typically, specificity is 

determined using absence data points. In presence-only datasets, specificity is determined 

by determining presence from random, also known as pseudo-absence. This results in a 

decrease of the maximum value of the AUC to 1-a/2, where a is the fraction of pixels 

noting the species distribution. An AUC of 0.5-0.7 is indicative of poor, 0.7-0.9 of 

moderate, and >0.9 of high model performance (Franklin 2009).  

2.2.5 Climate Model Data 

Two representative concentration pathways (RCP) were used: RCP 2.6 

represented a “best-case scenario” with a peak and then decline in CO2 concentration, and 

RCP 8.5 indicated a “business as usual scenario” with a continual increase in CO2 

concentration by 2100 (Moss et al. 2010). Presently, CO2 emissions are on target with the 

RCP 8.5 scenario (Sanford et al. 2014), which projects the highest magnitude of 

environmental changes by 2100 (Bopp et al. 2013).  

Global climate models are available from the Coupled Model Intercomparison 

Project (CMIP5, Taylor et al. 2012). Each global climate model has its own bias, 

therefore multi-model ensemble means are frequently used to attempt to approximate the 

true range of environmental conditions expected under different climate scenarios (Bopp 

et al. 2013). Two climate models were used from CMIP5 (Taylor et al. 2012), indicating 

lower (GFDL-ESM2M; GFDL hereafter;  Dunne et al. 2012) and higher (IPSL-CM5A-

LR; IPSL hereafter, Dufresne et al. 2013) levels of SST warming (Bopp et al. 2013). 

LTAs of SST and SAT were calculated for current conditions (2006-2015), mid-century 

(2040-2050), and end-century (2090-2100). The combination of the two climate models 

and the two RCPs gives a range of best to worst-case scenarios of warming in the NW 
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Atlantic over the next century. All data were re-gridded to the same 0.25 x 0.25° grid 

used for the present-day environmental layers.  

2.2.6 Future Projections 

 The best species distribution/Maxent model (determined in 2.2.4) was rerun using 

k-fold cross-validation to make projections about future changes under climate warming. 

First, to determine differences between present-day environmental data, and present-day 

climate model data, the best model was run and projected onto present-day climate model 

data (LTA of 2006-2015) for RCP 2.6 and 8.5. Next, to determine future changes in 

distribution, the Maxent model was projected onto future LTA over 2040-2050 and 2090-

2100 for both GFDL and IPSL at RCP 2.6 and 8.5. Models were clamped to avoid 

training with data outside the species range and clamp grids were created to determine 

how clamping influenced the projection (Elith et al. 2010). A multidimensional 

environmental surface similarity plot was also created to determine areas of novel habitat. 

 To determine the present and future day northern and southern limit of the study 

species, the latitude for the furthest most northern and southern pixel of continuous 

distribution was determined. Continuous distribution was defined as pixels (grid cell) 

predicted to contain suitable habitat being separate by one or less pixels predicted to 

contain unsuitable habitat along the southern and northern edge. As many species 

exhibited a patchy distribution at their northern and southern limits, this was also done 

for the absolute most northern and southern pixel predicted, excluding outliers. Here, 

northern limit was defined as northern limit for the NW Atlantic, as such, no distinction 

was made as to whether the habitat was along the Canadian or Greenland coastline. This 
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was done for each model fold (k = 4 or 5) per model, time-period, and RCP to determine 

the standard error around the species range limits.  

These absolute distribution limits were standardized to determine relative 

distribution limits and range shifts. First, the difference between present-day climate 

model data (LTA of 2006-2015) and future climate model data (i.e. LTA of 2040-2050) 

distribution limit (i.e. southern range limit) for one climate model (i.e. GFDL) was 

determined to find the magnitude of range shift expected (i.e. 3° shift north). This 

difference was added to the predicted present-day range limit (based on present-day 

environmental data) to determine the new relative projected distribution limit (i.e. 40°N 

to 43°N). This was repeated for all southern and northern distribution limits for both mid 

and end-century, RCP 2.6 and 8.5, and both GFDL and IPSL. Individual model responses 

of GFDL and IPSL are presented to assess the range of projected responses. The relative 

changes in distribution limits for GFDL (mild warming) and IPSL (strong warming) were 

averaged for each species to determine the most likely projection. Taking the average 

between the lower and higher increases in SST provides the most likely magnitude of 

range shift that can be expected by 2100 (Bopp et al. 2013).  

2.2.7 Physiological Thresholds  

A previous lab experiment (Wilson et al. 2015) provided information on the 

growth and survival of all study species except S. latissima between 12 and 29°C from 

Atlantic Canada populations found in the middle of each species respective range. This 

data were used to create physiological thresholds (PT) for heat-related survival to define 

the water temperatures (SST) at which each species grew well, experienced reduced 

growth, experienced reduced growth and partial mortality, and complete mortality. 
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Reduced growth was defined as the first temperature at which there was a significant 

reduction in relative growth rate, based on perANOVA post-hoc comparisons (Wilson et 

al. 2015). Partial mortality was defined as at least one individual dying during the 

experiment at a specific temperature, and complete mortality was defined as all replicates 

at a specific temperature dying. Saccharina latissima was assumed to experience similar 

PT as L. digitata based on experimental studies completed on Halifax (Bolton and Lüning 

1982; Simonson et al. 2015) and Maine and Long Island Sound (Redmond 2013) 

populations. Cold-related survival was not tested but all species exhibit measurable 

photosynthesis in water temperatures of at least 0°C (Lüning 1990). Present-day and 

projected future climate model SST data were classified into these four categories in 

areas where August maximum SST was greater than 12°C, creating a layer for each 

species PT (Martínez et al. 2014).  

The PT were combined with the correlative Maxent model to create a hybrid 

SDM. To do so, the predicted present-day and projected future climate Maxent 

distribution, binary coded for species presence absence, was multiplied by the 

corresponding species PT. Therefore, the resulting map denotes where Maxent 

predicted/projected each species to occur, while indicating where the PT agree and 

disagree with the model output. Areas where Maxent predicted/projected the species to 

occur, which correspond to PT for good and reduced growth, are likely to be areas with 

suitable habitat. Areas where Maxent predicted/projected the species to occur, which 

correspond to PT for partial and complete mortality, are less likely to be areas with 

suitable habitat. The PT provide empirical data help to improve model confidence in 

projecting a species distribution in a novel and changing environment (Elith et al. 2010).  
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Table 2.1 Original environmental data sources considered for building the Maxent model. Long term averages (LTA) per year range 

and parameter were determined for minimum (min), mean (mea), and maximum (max), for February (Feb), August (Aug), 

Winter (Wnt) and Summer (Smr). Winter is the combination of January-March and summer of June-August. 

 

Environmental parameter LTA Unit Year range Resolution Reference 

Sea Surface Salinity 

(SSS) 

Wnt mea 
PSS 1955-2012 

0.25 x 

0.25° 

World Ocean Atlas 2013 version 2 (Zweng 

et al. 2013) Smr mea 

Surface Air Temperature 

(SAT) 

Feb min 

°C 1980-2011 
0.50 x 

0.50° 

Climate Prediction Centre Land Surface Air 

Temperature Analysis dataset(Fan and van 

den Dool 2008) 

Aug max 

Wnt mea 

Wnt max 

Smr mea 

Smr min 

Sea Surface Temperature 

(SST) 

Feb min 

°C 1982-2015 
0.25 x 

0.25° 

National Oceanic and Atmospheric 

Administration (NOAA) optimum 

interpolation SST version 2 high resolution 

dataset (Reynolds et al. 2007) provided by 

the NOAA/OAR/ESRL PSD, Boulder, 

Colorado, USA, from their Web site at 

http://www.esrl.noaa.gov/psd/ 

Aug max 

Wnt mea 

Wnt max 

Smr mea 

Smr min 

Sea Ice Concentration  

(SIC) 

Feb min 

% 
1982-1986, 

1989-2015 

0.25 x 

0.25° 

National Oceanic and Atmospheric 

Administration (NOAA) optimum 

interpolation SST version 2 high resolution 

dataset (Reynolds et al. 2007) provided by 

the NOAA/OAR/ESRL PSD, Boulder, 

Colorado, USA, from their Web site at 

http://www.esrl.noaa.gov/psd/ 

Aug max 

Wnt mea 

Wnt max 

Smr mea 

Smr min 



 

21 

 

2.3 Results 

2.3.1 Maxent Model 

 After removing correlated variables in a stepwise fashion based on the variable 

inflation factor (VIF), nine environmental variables were chosen to be included in the full 

Maxent model (Table 2.2). In the process of model selection, the least important 

environmental variables were removed from the model to determine the best model per 

species that balanced model complexity and performance (Appendix B: Table B.1). 

August maximum sea surface temperature (SST) was the most important predictor 

variable for Chondrus crispus, Codium fragile, and Laminaria digitata. Winter maximum 

sea ice area coverage (SIC) was the most important predictor variable for Ascophyllum 

nodosum and Saccharina latissima, and winter mean sea surface salinity (SSS) was the 

most important predictor variable for Fucus vesiculosus. Across all species, August 

maximum SST and winter maximum SIC were the only two variables consistently 

retained in all six models (Table 2.3). Figure 2.2 gives an example of how these variables 

were chosen to select the best model outlined in Table 2.3 (see Appendix B: Figures B.1-

B.5 for similar figures for the other five species). As C. crispus test gain increased from 

drop 0 (full model) to drop 5 (five variables removed) there is a small but non-significant 

decrease in training gain. When the sixth variable was removed, there was a decrease in 

test gain, and a significant decrease (based on non-overlapping 95% CIs) in training gain, 

therefore for C. crispus the best model would be the one with only five variables 

removed. There was also a decrease in training and test AUC when the sixth variable was 

removed (Figure 2.2). All models had a significant binomial p-value, and an AUC >0.87 

for training and test data (Table 2.3), indicating moderate to high model performance.  
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 Each occurrence record was also plotted against its corresponding August 

maximum SST (Figure 2.3) to test if the physiological thresholds aligned with where the 

occurrence records were found. Most occurrence records occur in areas where the 

physiological thresholds indicate good and reduced growth for each species. However, 

some kelp occurrence records occur in SST that should indicate complete mortality.  
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 Table 2.2 Variable inflation factor (VIF) for the nine environmental variables included in 

the full Maxent model and abbreviations used in subsequent tables. 

 

 

 

 

 

 

 

 

 

 

Figure 2.2 Change in Chondrus crispus average model regularized training and test gain 

(+SE) and AUC (area under the curve) when a variable is removed from the 

model (See text for detailed explanation). Letters indicate significant change in 

training gain based on whether 95% CI overlap or not, which was important to 

identify for training gain to decide when to stop removing variables, while test 

gain was used to decide which variable to remove.   

 

 

Variable Abbreviations VIF 

August Maximum SST AugMaxSST 7.13 

August Maximum SAT AugMaxSAT 6.75 

Summer Mean SIC SmrMeaSIC 4.01 

Summer Minimum SIC SmrMinSIC 1.76 

Winter Max SIC WntMaxSIC 2.85 

Summer Mean SSS SmrMeaSSS 3.15 

Summer Minimum SST SmrMinSST 3.10 

Winter Mean SSS WntMeaSSS 3.27 

Winter Maximum SAT WntMaxSAT 4.28 
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Figure 2.3 Occurrence records plotted against the corresponding August maximum sea 

surface temperature (SST) for a Ascophyllum nodosum, b Fucus vesiculosus, c 

Chondrus crispus, d Codium fragile, e Saccharina latissima, and f Laminaria 

digitata. Coloured lines indicate physiological thresholds where green is good 

growth, yellow is reduced growth, and dark red indicates complete mortality 

(Wilson et al. 2015). 
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Table 2.3 Variables included in the best model per species with the associated average training and test AUC (±SE), and maximizing 

the sum of test sensitivity and specificity threshold and binomial p-value. See table 2 for abbreviations.  

 

  

A. nodosum F. vesiculosus C. crispus C. fragile S. latissima L. digitata 

Variable 

AugMaxSST X X X X X X 

AugMaxSAT 

 

X 

    SmrMeaSIC X X 

 

X X 

 SmrMinSIC 

 

X 

   

X 

SmrMeaSSS X 

     SmrMinSST 

 

X X 

   WntMaxSIC X X X X X X 

WntMeaSSS 

 

X X X X 

 WntMaxSAT X X 

    
Average Training AUC 

0.9348 

±0.001 

0.9162 

±0.002 

0.9527 

±0.002 

0.9618 

±0.002 

0.8939 

±0.004 

0.9150 

±0.004 

Average Test AUC 
0.9140 

±0.010 

0.8792 

±0.009 

0.9421 

±0.006 

0.9479 

±0.006 

0.8764 

±0.020 

0.8954 

±0.013 

Average maximum test 

sensitivity and specificity 

threshold and binomial p-value 

0.2437 

p <0.001 

0.2084 

p <0.001 

0.1613 

p <0.001 

0.1891 

p <0.001 

0.2893 

  p <0.001 

0.1630 

p <0.001 
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2.3.2 Response of Fucoids: Ascophyllum nodosum and Fucus vesiculosus   

Maxent predicted the present-day southern edge of the distribution of both fucoids 

within ~1° of known occurrence records (Figures 2.4-2.6, Table 2.4). The physiological 

thresholds (PT) used in this study suggest that A. nodosum grows well at SST of 12-22°C, 

with reduced growth at 23°C, partial mortality at 26°C, and complete mortality at 29°C 

(Appendix C: Table C.1). When the PT and Maxent results are combined, A. nodosum’s 

present distribution corresponds to a maximum August SST (SST hereafter) of ≤26°C, 

with the SST range for good growth (12-22°C) beginning at 42°N (Appendix C: Table 

C.2). The second fucoid species, F. vesiculosus, has a slightly higher thermal tolerance 

and grows well at SST of 12-25°C, experiences reduced growth and partial mortality at 

26°C, and complete mortality at 29°C (Appendix C: Table C.1). Combining the PT and 

Maxent results for F. vesiculosus, the predicted present distribution extends south to 

35.5°N, with SST for improved good growth beginning at 41°N (Appendix C: Table 

C.2).  

The present-day northern edge is less clear for both species. Maxent predicted a 

continuous distribution further south, and patchy distribution further north, then A. 

nodosum is presently observed (Figures 2.4a, 2.6a, Table 2.4). For F. vesiculosus Maxent 

predicted suitable habitat marginally further north than the species is presently observed 

(Figures 2.5a, 2.6b, Table 2.4). The 12°C SST isotherm occurs at 56°N, therefore fucoids 

exist north of this study’s lowest used PT (Appendix C: Table C.2) and the PT data 

cannot be incorporated to help denote fucoids northern range limit.  

Regardless of the RCP scenario used, individual climate model projections for 

IPSL (strong warming) project a more drastic change in distribution than for GFDL (mild 

warming; Figures 2.4-2.6, Appendix D: Figures D.1-D.4). When climate model 
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projections are averaged to determine the most likely response between the mild and 

strong climate warming scenarios, the RCP 2.6 scenario projects minimal to no shifts of 

the southern and northern range limit of fucoids based on Maxent projections alone 

(Figure 2.6, Table 2.4). Presently, A. nodosum has a limited distribution (~1.5°) in areas 

where SST ranges from 23 to 26°C, indicating reduced growth and/or partial mortality 

(Figures 2.4a, 2.6a, Appendix C: Table C.2). By 2100, this area is projected to increase to 

~2.5° under RCP 2.6. In both the present and future day models, SST reaches 26°C only 

along the most southern 0.5° of the range, indicating that the PT agrees with the Maxent 

model. In comparison, the PT for F. vesiculosus suggest that F. vesiculosus should not 

occur in areas where SST reaches 29°C, yet Maxent projections by 2100 define suitable 

habitat across 3.5° of latitude where SST reaches 29°C (Figures 2.5a, 2.6b, Appendix C: 

Table C.2). This would suggest a 3.5° range shift to the north based on the PT by 2100 at 

RCP 2.6.  

The RCP 8.5 scenario results in a varying response in fucoids. Maxent projects an 

average southern range shift for A. nodosum of 1° to the north by 2050, and an overall 

5.5° by 2100 (Figure 2.6a, Table 2.4). This new distribution includes 2.5° of latitude 

where SST reaches 26°C with expected reduced growth and partial mortality, much 

greater than the 0.5° presently observed (Appendix C: Table C.2). Consequently, adding 

together the average relative Maxent projected range shift of 5.5° to the north, with the 

2.5° of projected habitat with reduced growth, A. nodosum’s southern border may move 

north by 8° by 2100. This would shift A. nodosum’s southern boundary from its current 

location in Long Island Sound, New York (~40.5°N), to somewhere between Cape 

Breton (~46°N) and southern Newfoundland (~48°N) by 2100. Along the northern edge, 
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continuous habitat is projected to shift north 1.5° by 2050, and an overall 2° by 2100. The 

patchy distribution limit shifts 3.5° to the north by 2050, and 7° by 2100. This shift in the 

northern distribution limit is expected to create new habitat along the rocky shores of 

northern Greenland, and potentially Baffin Island. 

In contrast at RCP 8.5, Maxent projected F. vesiculosus’ southern edge to only 

shift 1° to the north by 2100 (Figure 2.6b, Table 2.4). Again however, this corresponds to 

4° of latitude where SST reach 29°C (Appendix C: Table C.2). When the Maxent average 

projected range shift is added to the PT, a total range shift of 5° to the north is expected. 

Therefore, the southern edge of F. vesiculosus may shift from Cape Hatteras, North 

Carolina (35.5°N) to Long Island Sound, New York (~40.5°N) by 2100. The northern 

border of continuous distribution is projected to shift north by 1.5° by 2050, and an 

overall 3° by 2100. The northern edge shifts less drastically resulting in mostly 

continuous habitat along the entire west coast of Greenland, and large areas of suitable 

habitat forming along Baffin Island. 

Ultimately the relative average projected response of fucoids to continued 

warming by 2100 at RCP 8.5 is a range shift north and latitudinal contraction as A. 

nodosum southern edges shifts north by 8° (890 km), while the northern edge shifts less 

drastically north between 2° (223 km) to 7° (779 km), and F. vesiculosus southern edge 

shifts north by 5° (556 km), with a maximum northern range shift of 3° (334 km, Table 

2.4, Figure 2.6). 

2.3.4 Response of Chondrus crispus 

  Maxent predicted the present-day southern and northern distribution limits for C. 

crispus within ~1° of known occurrence records, which agrees with the PT, excluding 
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one outlier pixel in North Carolina (Figures 2.7, 2.9a, Table 2.4, Appendix C: Table 2). 

The PT used in this study suggests good growth for C. crispus at SST of 12-28°C, with 

growth reductions beginning at 29°C (Appendix C: Table C.1).  

 By 2050, regardless of RCP used, there is an average (between mild and strong 

warming climate models) projected southern range shift north by 1.0 to 1.5° (Figures 

2.9a, Table 2.4). This is based off no projected range shift from the mild warming model 

(GFDL), and a 2° north range shift of the strong warming model (IPSL, Appendix D: 

Figures D.5-D.6). By 2100, at RCP 8.5 the relative average projected response increases 

to a potential 2.5° total shift north of the southern edge (Figure 2.9a, Table 2.4), which 

corresponds to the PT within SST for good growth. Interestingly, both GFDL and ISPL 

projected the same degree of range shift by 2100 at RCP 8.5 (Appendix D: Figures D.5-

D.6). Therefore, C. crispus southern edge is projected to shift north from Long Island 

Sound (~40.5°N) to Southern Maine (~43°N) by 2100. 

 The northern boundary is likely to continually shift by 2100, corresponding to 

SST warmer than 11°C, although the magnitude of the shift is highly dependent on the 

RCP (Figure 2.9a, Table 2.4). At RCP 2.6, there is a relative average range expansion 

north of continuous habitat by 1.5°, and of patchy habitat by 2.5° by 2100. This is based 

off no projected range shift from the mild warming model (GFDL), and a northern range 

shift north of the strong warming model (IPSL, Appendix D: Figures D.5-D.6). At RCP 

8.5, there is a relative average continuous northern edge shift north by 4°, and 12.5° of 

patchy habitat by 2100 (Figure 2.9, Table 2.4). The mild warming model (GFDL) 

projects suitable habitat to mid-Labrador (Figure 2.7), while the strong warming model 

(IPSL) projects suitable habitat throughout the Canadian Arctic and Western Greenland 
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(Figure 2.7). Therefore, it is likely by 2100 that the northern edge will shift further north 

into the Canadian Arctic. This would result in large areas of the Labrador coast, and 

potentially parts of Greenland and Baffin Island containing suitable habitat for C. crispus 

by 2100.  

Ultimately, the relative average projected response of C. crispus to continued 

warming by 2100 at RCP 8.5 is a slight range shift and northern latitudinal expansion as 

the southern border shifts slightly north by ~2.5° (278 km), while the northern border 

shifts more drastically north by 4° (445 km) to 12.5° (1391 km, Table 2.4, Figure 2.9a). 

2.3.5 Response of Codium fragile 

 Maxent defined a present-day southern edge for C. fragile within 1°, and a 

northern edge further north than present occurrence records (Figures 2.8, 2.9b, Table 2.4). 

The PT used in this study for C. fragile suggests good growth at SST of 12-25°C, with 

growth reductions beginning at 26°C (Appendix C: Table C.1). Presently C. fragile is 

found at SST of 12 to >29°C (Figures, 2.9b, Appendix C: Table C.2). 

Neither RCP 2.6 or 8.5 project a relative average shift in C. fragile’s southern 

edge by 2100 (Figure 2.9b, Table 2.4) and, this is consistent across both the mild (GFDL) 

and strong (IPSL) warming climate models (Figure 2.8, Appendix D: Figures D.7-D.8). 

Furthermore, as C. fragile is presently commonly found within SST ≥26°C, the Maxent 

southern distribution likely represents its true southern limit. Therefore, continued 

warming is unlikely to result in a southern range shift for C. fragile by 2100. 

 For the northern distribution limit, regardless of RCP, the northern distribution 

corresponds to SST ≥12°C (Figure 2.9b). RCP 2.6 projects no change in the relative 

average northern edge of C. fragile’s continuous distribution by 2100, with patchy 
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distribution shifting north by 3°, which all remain within SST ≥12°C (Figure 2.9b, Table 

2.4, Appendix C: Table C.2). The mild (GFDL) and strong (IPSL) warming climate 

models give similar projections for the continuous distribution, however IPSL projects a 

patchy distribution limit much further north (Appendix D: Figures D.7-D.8). RCP 8.5 

projects the relative average continuous northern edge to shift north by 1.5° by 2050, to a 

total shift north of 2.5° by 2100 (Table 2.4, Figure 2.9b). More extreme shifts of patchy 

distribution are projected, with a 3° northward shift by 2050, to a total northward shift of 

9.5°N by 2100. The RCP 8.5 projection have higher variation between the two climate 

models, where the mild warming (GFDL) projects small range shifts, and the strong 

warming (IPSL) projects large range shifts north (Figure 2.8, Appendix D: Figure D.7). 

Ultimately, for the relative average RCP 8.5 scenario projections, there is the 

potential for a shift of the northern edge of C. fragile from northern Newfoundland 

(~51°N), to parts of Labrador by 2050 (~52.5°N), to Ungava Bay (~53.5°N) by 2100. 

Therefore, the relative average projected response of C. fragile to continued warming by 

2100 at RCP 8.5 is a latitudinal range expansion north as the southern edge does not shift, 

while the northern border shifts north by 2.5 (278 km) to 9.5° (1057 km, Table 2.4, 

Figure 2.9b). 

2.3.6 Response of Kelps: Saccharina latissima and Laminaria digitata  

 Maxent predicted S. latissima and L. digitata (hereafter kelp) present-day 

southern distribution limits within 1° of known occurrence records (Figures 2.10-2.12, 

Table 2.4). The PT used in this study suggest that kelps grow well at SST of 12-19°C, 

experience growth reductions and partial mortality at 20°C, and complete mortality 

beginning at 23°C (Appendix C: Table C.1). When the PT are overlaid over the Maxent 
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distribution, the predicted habitat corresponds to SST ≥26°C over 1° of latitude, and SST 

≥23°C over 7°, therefore kelps exist in a narrow range of habitat with lethal SST, but are 

relatively common at SST with reduced growth (Figures 2.10-2.12, Appendix C: Table 

C.2). Maxent predicted S. latissima northern edge well, however L. digitata continuous 

distribution was predicted 7° too far south, and the patchy distribution was predicted 4° 

too far south (Figures 2.10-2.12, Table 2.4). Both kelp distributions exist north of the 

12°C SST isotherm (Appendix C: Table C.2) and the PT data cannot be incorporated to 

help denote kelps northern range limit. 

 Looking to the future, there was no projected relative average shift of kelps 

southern edge by 2100 at RCP 2.6 (Figure 2.12, Table 2.4), with minimal changes in the 

23°C and 26°C SST isotherms (Appendix C: Table C.2). This is consistent across the 

mild (GFDL) and strong (IPSL) warming climate models (Appendix D: Figure D.9-

D.12). There was a small relative average projected shift of the northern edge of kelp 

distribution north by 1 to 2° by 2100 (Figure 2.12, Table 2.4). The response of the 

northern edge was varied across climate models with the strong (IPSL) climate warming 

model projecting suitable habitat much further north than the mild (GFDL) climate 

warming model (Appendix D: Figures D.9-D.12). 

 At RCP 8.5, kelps southern edge is projected to shift north by 3° based on the 

relative average response by 2100 (Figure 2.12, Table 2.4). While the PT shows that by 

2050, the kelp projected Maxent distribution will be covering 3° of latitude at SST with 

complete mortality, by 2100 this increases to 6° of latitude (Appendix C: Table C.2). 

Therefore, adding together the 3° relative average projected range shift from the Maxent 

model, and the 6° projected range shift from the PT, kelps may experience a northward 
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range shift of the southern edge of 9° by 2100. This corresponds to a shift of its southern 

edge from Long Island Sound (~40.5°N) to southern Maine (43°N) by mid-century, and 

by end-century, kelps may not exist south of northern Newfoundland (~49°N).  

Kelps have a varying response for the northern edge at RCP 8.5 where S. 

latissima is projected to shift 2° north by 2050, to give a total shift north of 3.5° by 2100, 

with patchy habitat shifting north as much as 4.5°, based on the relative average response 

(Figure 2.12a, Table 2.4). At this northern edge, S. latissima is likely to become more 

abundant along the shores of Baffin Bay by 2100. Laminaria digitata is projected to shift 

more during the latter half of the century, where there is a 1° shift north by 2050, to a 

total 4° shift by 2100, and patchy habitat shifting north by 8°, based on the relative 

average response (Figure 2.12b, Table 2.4). Yet, only the patchy distribution surpasses its 

current observed occurrence records. For L. digitata, there is likely to be a shift of the 

patchy distribution from its current distribution limit in Ungava Bay (60°N) to further 

north in the Canadian Arctic by 2100 (63.5°N) by 2100. 

Ultimately the projected relative average response for kelps to continued warming 

by 2100 at RCP 8.5 is a range shift north and latitudinal contraction as the southern edge 

shifts north by 9° (1002 km), while the northern edge for both species shifts north by <9° 

(Figure 2.12, Table 2.4). However, this response is not consistent across climate models 

where the mild warming (GFDL) climate model projects a smaller range shifts, and the 

strong warming (IPSL) climate model projects a larger range shift further into the Arctic 

(Figure 2.10-2.11, Appendix D: Figures D.9, D.11). 
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Figure 2.4 

Ascophyllum nodosum 

a present distribution 

as predicted by 

Maxent. Black dots 

indicate the occurrence 

records used to build 

the Maxent model. 

Projected distribution 

for GFDL RCP 8.5 

over b 2006-2015, c 

2040-2050, and d 

2090-2100, and for 

IPSL RCP 8.5 over e 

2006-2015, f 2040-

2050, and g 2090-

2100. Physiological 

thresholds were 

overlaid over the 

distribution of a to 

show areas of good 

growth (green, 12-

22°C), reduced growth 

(yellow-orange, 23-

25°C), reduced growth 

and partial mortality 

(pink-red, 26-28°C), 

and complete mortality 

(dark red, ≥29°C). 

Data is in an equal-area 

projection. 
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Figure 2.5 Fucus 

vesiculosus a 

present distribution 

as predicted by 

Maxent. Black dots 

indicate the 

occurrence records 

used to build the 

Maxent model. 

Projected 

distribution for 

GFDL RCP 8.5 

over b 2006-2015, c 

2040-2050, and d 

2090-2100, and for 

IPSL RCP 8.5 over 

e 2006-2015, f 

2040-2050, and g 

2090-2100. PT were 

overlaid over the 

distribution to show 

areas of good 

growth (12-25°C), 

reduced growth and 

partial mortality 

(26-28°C), and 

complete mortality 

(≥29°C). Data is in 

an equal-area 

projection.
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 Figure 2.6 Relative northern and southern continuous (bars) and patchy (dots) 

distribution limits of a Ascophyllum nodosum and b Fucus vesiculosus based on 

occurrence records (OR), average Maxent (±SE) present-day (1980-2015), and 

average relative projected future limits at mid- (2040-2050) and end-century 

(2090-2100) based on two climate models (GFDL, IPSL) for two emission 

scenarios (RCP 2.6, 8.5). Physiological thresholds were overlaid to indicate areas 

of unknown growth (light green), good growth (green), reduced growth (yellow), 

reduced growth and partial mortality (red), and complete mortality (dark red). 

Grey hashed line indicates present-day Maxent continuous southern and northern 

limit.  
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Figure 2.7 

Chondrus crispus 

a present 

distribution as 

predicted by 

Maxent. Black 

dots indicate the 

occurrence records 

used to build the 

Maxent model. 

Projected 

distribution for 

GFDL RCP 8.5 

over b 2006-2015, 

c 2040-2050, and 

d 2090-2100, and 

for IPSL RCP 8.5 

over e 2006-2015, 

f 2040-2050, and g 

2090-2100. PT 

were overlaid over 

the distribution to 

show areas of good 

growth (green, 12-

28°C), and 

reduced growth 

(yellow-orange, 

≥29°C). Data is in 

an equal-area 

projection.  
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Figure 2.8 

Codium fragile a 

present 

distribution as 

predicted by 

Maxent. Black 

dots indicate the 

occurrence 

records used to 

build the Maxent 

model. Projected 

distribution for 

GFDL RCP 8.5 

over b 2006-2015, 

c 2040-2050, and 

d 2090-2100, and 

for IPSL RCP 8.5 

over e 2006-2015, 

f 2040-2050, and 

g 2090-2100. PT 

were overlaid over 

the distribution to 

show areas of 

good growth 

(green, 12-28°C), 

and reduced 

growth (yellow-

orange, ≥29°C). 

Data is in an 

equal-area 

projection.
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Figure 2.9 Relative northern and southern continuous (bars) and patchy (dots) distribution 

limits of a Chondrus crispus and b Codium fragile based on occurrence records, 

Maxent (±SE) present-day (1980-2015), and average relative projected future 

limits at mid- (2040-2050) and end-century (2090-2100) based on two climate 

models (GFDL, IPSL) for two emission scenarios (RCP 2.6, 8.5). Physiological 

thresholds overlaid to indicate areas of good growth (green) and reduced growth 

(yellow). Grey hashed line indicates present-day Maxent continuous southern and 

northern limit. 
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Figure 2.10 

Saccharina latissima 

a present distribution 

as predicted by 

Maxent. Black dots 

indicate the 

occurrence records 

used to build the 

Maxent model. 

Projected distribution 

for GFDL RCP 8.5 

over b 2006-2015, c 

2040-2050, and d 

2090-2100, and for 

IPSL RCP 8.5 over e 

2006-2015, f 2040-

2050, and g 2090-

2100. Physiological 

thresholds were 

overlaid over to show 

areas of good growth 

(green, 12-19°C), 

reduced growth and 

partial mortality 

(yellow, 20-22°C), 

and complete 

mortality (orange-red, 

≥23°C). Data is in an 

equal-area projection. 
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Figure 2.11 

Laminaria digitata a 

present distribution as 

predicted by Maxent. 

Black dots indicate 

the occurrence 

records used to build 

the Maxent model. 

Projected distribution 

for GFDL RCP 8.5 

over b 2006-2015, c 

2040-2050, and d 

2090-2100, and for 

IPSL RCP 8.5 over e 

2006-2015, f 2040-

2050, and g 2090-

2100.  Physiological 

thresholds were 

overlaid over to show 

areas of good growth 

(green, 12-19°C), 

reduced growth and 

partial mortality 

(yellow, 20-22°C), 

and complete 

mortality (orange-red, 

≥23°C). Data is in an 

equal-area projection.
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Figure 2.12 Relative northern and southern continuous (bars) and patchy (dots) 

distribution limits of a Saccharina latissima and b Laminaria digitata based on 

occurrence records, Maxent present-day (±SE, 1980-2015), and average relative 

projected future limits at mid- (±SE, 2040-2050) and end-century (±SE, 2090-

2100) based on two climate models (GFDL, IPSL) for two emission scenarios 

(RCP 2.6, 8.5). PT were overlaid over the distribution to show areas of good 

growth (green), reduced growth and partial mortality (yellow), and complete 

mortality (red). Grey hashed line indicates present-day Maxent continuous 

southern and northern limit. 
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Table 2.4 Species average S southern limit and N northern limit (±SE) based on occurrence records and present-day Maxent model, with the 

relative average projected shift north per RCP and time period from the present-day Maxent model. Future projections are the average 

response from GFDL (mild warming) and IPSL (strong warming). A southern range shift is indicated with a negative sign. Latitude in 

brackets indicates patchy distribution limit if applicable.  
  

  Present-day 2040-2050 2090-2100 

 Species Occurrence 

Records 

Maxent RCP 2.6 RCP 8.5 RCP 2.6 RCP 8.5 

S 

A. nodosum 

41.0°N 40.5°N ±0.4 

(40.0°N 

±0.0) 

0.5 ±0.8 1.0 ±0.8 

(1.0 ±0.8) 

0.5 ±0.9 

 
  

5.5 ±1.6 

(3.0 ±1.0) 

F. vesiculosus 

35.0°N 35.5°N ±0.1 

(33.0°N 

±0.0) 

0.5±0.6 

(0.0 ±0.3) 

0.5 ±0.5 

(0.0 ±0.5) 

0.5 ±0.6 

(0.0 ±0.3) 
  

1.0 ±0.5 

(1.0 ±1.0) 

C. crispus 

41.0°N 40.5°N ±0.3 

(40.0°N 

±0.1) 

1.0 ±0.9 

(1.0 ±0.7) 

1.5 ±0.9 

(1.0 ±0.7) 

1.0 ±0.8 

(1.0 ±0.6) 
  

2.5 ±0.6 

(2.0 ±0.6) 

C. fragile 34.0°N 33.0°N ±0.0 0.0 ±0.1 0.0 ±0.1 0.0 ±0.1 
  

0.0 ±0.5 

L. digitata 
41.0°N 40°N ±0.0 0.0 ±0.1 0.0 ±0.1 0.0 ±0.0 

 
  

3.0 ±0.15 

(0.5 ±0.2) 

S. latissima 
41.0°N 40.0°N ±0.2 0.0 ±0.3 1.0 ±0.5 

(0.0 ±0.1) 

0.0 ±0.2 
  

3.0 ±1.5 

N 

A. nodosum 65.5°N 

63.0°N ±0.9 

(76.5°N 

±0.5) 

0.0 ±1.2 

(2.5 ±2.0) 

1.5 ±1.3 

(3.5 ±2.2) 

0.0 ±1.3 

(1.5 ±2.0) 
  

2.0 ±1.5 

(7.0 ±2.8) 

F. vesiculosus 70.0°N 

72.0°N ±0.0 

(79.5°N 

±0.5) 

0.5 ±2.2 

(-1.5 ±1.8) 

1.5 ±1.3 

(0.5 ±0.6) 

-0.5 ±2.1 

(-1.0 ±1.3) 
  

3.0 ±1.9 

(1.0 ±1.1) 

C. crispus 50.0°N 

50.5°N ±0.1 

(51.0°N 

±0.3) 

1.0 ±0.7 

(0.0 ±0.9) 

2.5 ±0.9 

(4.5 ±1.6) 

1.5 ±0.8 

(2.5 ±1.8) 
  

4.0 ±0.8 

(12.5 ±3.9) 



 

 

 

4
4 

 Present-day 2040-2050 2090-2100 

Species Occurrence 

Records 

Maxent RCP 2.6 RCP 8.5 RCP 2.6 RCP 8.5 

C. fragile 49.5°N 

51.0°N ±1.1 

(52.0°N 

±1.5) 

0.0 ±1.0 

(1.0±2.1) 

1.5 ±1.7 

(3.0 ±2.9) 

0.5 ±1.3 

(3.0 ± 3.0) 
  

2.5 ±2.6 

(9.5 ±4.9) 

L. digitata 60.0°N 

53.0°N ±0.9 

(55.5°N 

±0.1) 

0.0 ±0.9 

(2.0 ±1.2) 

1.0 ±0.9 

(4.5 ±1.1) 

0.0 ±0.9 

(1.0 ±0.8) 
  

4.0 ±1.3 

(8.0 ±3.0) 

S. latissima 77.5°N 

78.5°N ±0.3 

(79.0°N 

±0.3) 

2.0 ±1.7 

(0.5 ±0.7) 

2.0 ±1.2 

(3.5±2.6) 

2.0 ±1.7 

(0.5 ±0.3) 

3.5 ±1.8 

(4.5 ±2.4) 
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2.4 Discussion 

The goal of this chapter was to project how future climate change may shift the 

distribution of common canopy-forming seaweeds in the NW Atlantic. To do so, we 

compiled a comprehensive database of occurrence records to determine current 

distribution, then used this data to build a hybrid species distribution model (SDM), and 

finally used this hybrid SDM to project future distributions under different climate 

change scenarios. We found that the future projections generally suggested northward 

shifts of the species’ ranges. The addition of physiological thresholds (PT) suggested 

additional northward shifts of the southern edge relative to only the projected Maxent 

model. 

2.4.1 Seaweed Distribution in the Northwest Atlantic 

The quality of any species distribution model depends on accurate occurrence 

records, which are limited for seaweeds in the NW Atlantic. Present-day knowledge of 

seaweed distribution in the Subarctic to Arctic is limited; systematic surveys of seaweed 

distribution are either >30 years old (i.e. Wilce 1959; Lee 1980) or lacking entirely. 

However, recent efforts have aimed at documenting seaweed community composition 

along Baffin Island (Küpper et al. 2016) and Greenland (Høgslund et al. 2014). Surveys 

in other areas of the Arctic, such as Northern Alaska have found much higher seaweed 

diversity than anticipated (Wilce and Dunton 2014), and within the Canadian Arctic, 

kelps and fucoids have been observed as far north as Grise Fiord, Nunavut (~76°N; K. 

Krumhansl, personal communication), much further north than present-day published 

distribution limits. Therefore, it is likely that our present-day Maxent models and future 

projections could be improved and provide higher certainty for species’ northern edges if 
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more detailed occurrence records become available. It is likely the northern border has 

been predicted too far south, due to an underestimated niche breadth, for each species.  

2.4.2 Modelling Current Seaweed Distribution 

 When building the Maxent model, August maximum SST and winter maximum 

SIC were two of the most important environmental variables for predicting species 

distribution. Other SDMs in the NW Atlantic have considered some variation of 

maximum SST in their model (Müller et al. 2009; Jueterbock et al. 2013; Assis et al. 

2014), yet this study was the second known study to include sea ice as an environmental 

variable (Assis et al. 2017). Seaweed distribution is primarily defined by water 

temperature, and closely follow SST isotherms (van den Hoek 1975; Lüning 1990). 

Consequently, August maximum SST coincides with southern distribution limits and 

therefore this variable was chosen to define the PTs used in this study. In northern areas, 

ice scouring strongly impacts the distribution of seaweeds, particularly for long lived 

species such as A. nodosum (Aberg 1992) with low dispersal capabilities (Vadas et al. 

1990). Ice scour results in a bare intertidal zone and seaweed communities only 

beginning to occur in the subtidal below the lowest impacts of ice (Küpper et al. 2016). 

The presence of ice further decreases the amount of light that penetrates the water 

column, resulting in growth reductions (Krause-Jensen et al. 2012).    

 While all six SDMs had moderate to high model performance, fucoids, C. fragile, 

and C. crispus had higher AUC values than both species of kelp. These findings  may be 

partially due to all environmental variables being associated with surface variables, while 

kelps are found from the low-intertidal into several meters of water depth, dependent on 

light availability (Krause-Jensen et al. 2012). While other studies examining range shifts 
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in kelp have also used surface environmental variables (Raybaud et al. 2013), the 

predicted distribution may differ if bottom environmental variables, such as bottom 

temperature and light availability, were used to build the SDMs.  

Overall, Maxent present-day models predicted the southern border for all six 

species, and the northern borders for both C. crispus and C. fragile within one degree of 

known occurrence records, and published distribution limits (Taylor 1957; Gosner 1978; 

Carlton and Scanlon 1985; Lüning 1990; Merzouk and Johnson 2011). Yet for the kelp 

and fucoid species, which exist into the Subarctic/Arctic, the northern edge was not 

predicted well, likely due to the limited occurrence records from this region. The northern 

limits of A. nodosum and L. digitata were under predicted, while those of F. vesiculosus 

and S. latissima were predicted further north of known occurrence records.  

2.4.3 Projected Distribution Shifts with Climate Change  

As expected given the higher levels of projected warming (Bopp et al. 2013), 

IPSL typically projected a more drastic change in species distributions by end-century 

then GFDL. Interestingly, IPSL also typically projected the present-day distribution 

closer to the observed occurrence records. In contrast, GFDL typically projected the 

present-day distribution either further south or smaller in range with almost no change by 

end-century. Since the overall goal of this study was to determine the most likely 

response of the study species to continued climate change, the average of these mild and 

strong warming climate models was used in combination with different emission 

scenarios. Such multi-model means are increasingly being used to reflect the most likely 

climate change scenario given that each individual model has its own biases (i.e. Bopp et 

al. 2013; Raybaud et al. 2013). 
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If global CO2 and other greenhouse gas emissions are greatly reduced or mitigated 

during this century, reflected by the RCP 2.6 scenario, our results suggest there will 

likely be no major shifts in the distribution of the studied seaweeds by 2100. In contrast, 

following the business-as-usual or worst-case RCP 8.5 scenario, there will likely be shifts 

in distribution by 2050 that continue up to 2100, but which vary by species. Based on our 

Maxent model results, average northward range shifts of up to 5° north of the southern 

edge by 2100 are possible. These shifts may be even more pronounced when combined 

with PTs to give northward shifts of the southern edge for kelps and A. nodosum of up to 

9° (1002 km), F. vesiculosus up to 5° (556 km), C. crispus up to 2° (222 km), and no 

change for C. fragile. Maxent projections for the northern border also exhibited 

northward range shifts of up to 5° for each species, ultimately resulting in kelps and 

fucoids having an overall net loss of latitudinal habitat range and thus experiencing a 

range contraction. In contrast, warm-tolerant species (C. crispus, C. fragile) with smaller 

shifts of the southern, yet similar 5°C shifts of the northern edge, may experience a 

latitudinal range expansion.  

Considering potential future changes under the RCP 8.5 scenario, the largest 

impacts on the seaweed community composition will likely occur in two major areas: the 

NE American seaboard from Long Island Sound north to the Canadian Maritimes, within 

the Canadian Arctic, and Greenland.  Other studies projecting distribution shifts of 

fucoids (F. vesiculosus, A. nodosum), S. latissima, L. digitata, and C. crispus also found 

the NE American seaboard and southern Arctic (including Greenland) seeing the most 

drastic changes in species composition dues to species range shifts (Müller et al. 2009; 
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Jueterbock et al. 2013; Assis et al. 2014, 2017). No other known studies have made 

projections for C. fragile in the NW Atlantic.  

There is large disagreement between studies about the magnitude of fucoids’ 

responses to continued climate change. Jueterbock et al. (2013) projected a more extreme 

range shift of the southern edge of F. vesiculosus to Halifax, Nova Scotia, but a less 

extreme shift for A. nodosum to Delaware Bay by 2100 based off CMIP3 projections. 

Furthermore, both species’ northern distribution limits were under projected in 

Jueterbock et al. (2013), resulting in minimal northern range shifts. Assis et al. (2014) 

used CMIP5 projections, for different climate models, to project F. vesiculosus southern 

range shift to southern Nova Scotia, with no change in species at the northern edge by 

2100. These differences are likely due to: (i) differences between what was defined as 

present-day distribution limits, (ii) different environmental layers used to build the 

models (i.e. this study’s use of SIC), (iii) the incorporation of PT in this study, and (iv) 

different climate models used to make future projections.  

Müller et al. (2009) used February and August SST isotherms to make projections 

using CMIP3 data and observed very similar shifts in S. latissimi’s and C. crispus’ 

southern and northern distribution limits. Lastly, Assis et al. (2017) used boosted 

regression trees, and CMIP5 projections for different climate models, and found similar 

shifts in the southern edge for both S. latissima and L. digitata at RCP 8.5 by 2100, with 

an overall decrease in habitat.  

Part of the present-day warming of the NW Atlantic includes a northward shift of 

the Gulf Stream, which has resulted in significant warming along the NE American 

seaboard and Canadian Maritimes since 2004 (Pershing et al. 2015). Over this time, 
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decreases in kelp abundance have been observed in the Gulf of Maine and Scotian Shelf 

(Filbee-Dexter et al. 2016; Krumhansl et al. 2016; Dijkstra et al. 2017), while increases 

have been observed within the Gulf of St. Lawrence. Furthermore, a decrease of A. 

nodosum and increase of F. vesiculosus in the Canadian Maritimes has been related to 

increasing SST as well as harvesting of A. nodosum (Ugarte et al. 2010). Consequently, 

model projections in this study suggest the area impacted by the northward shift of the 

Gulf Stream, which includes the NE American seaboard and Canadian Maritimes, will 

experience changes in seaweed composition by 2100.   

Marine life in the Arctic will be some of the most impacted by climate change, as 

this is one of the areas facing the largest increases in warming (Krause-Jensen and Duarte 

2014). This study found that with increased warming, all study species will shift their 

range north, colonizing further into the Canadian Subarctic, Arctic, and western 

Greenland. Climate change is predicted to favour this northward expansion of seaweeds, 

particularly in the Arctic where there are large land masses connecting the temperate and 

Arctic regions (Krause-Jensen and Duarte 2014). Presently, climate change impacts have 

been observed in many Arctic ecosystems, impacting a variety of marine taxa 

(Wassmann et al. 2011), often with positive impacts on seaweed communities (Kortsch et 

al. 2012).  

2.4.4 Species-Specific Responses and Implications 

As there are projected species-specific responses, future climate change will not 

impact the seaweed community of the NW Atlantic equally, resulting in changes in both 

the intertidal and subtidal communities. The change in seaweed community along the NE 

American seaboard from Long Island Sound up to the Canadian Maritimes will likely 
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manifest itself in an increase in abundance of C. fragile, C. crispus, and F. vesiculosus 

with decreases in abundances for A. nodosum and kelps. Increasing SST will mostly drive 

this change along the southern limits as SST surpasses growth and mortality thresholds. 

Increasing SST and decreasing SIC will likely drive the change in seaweed community in 

the Subarctic, Arctic, and Greenland. This northward expansion is dependent on each 

species dispersal ability, where long-distance dispersal is possible in adult fucoids 

(Kalvas and Kautsky 1998; Olsen et al. 2010), adult C. fragile (Trowbridge and Todd 

1999), and kelp zoospores (Reed et al. 1988). The combination of increasing 

temperatures, reduced ice scour, and increased light availability will positively impact 

seaweed communities in the Subarctic and Arctic (Krause-Jensen and Duarte 2014). 

Increasing temperatures may lead to range shifts, as well as increased growth and 

productivity in kelp and fucoids (Krause-Jensen et al. 2012; Marbà et al. 2017). 

Furthermore as nutrients (nitrate and phosphates) are limiting to seaweed growth during 

an Arctic summer (Chapman and Lindley 1980), increased nutrient input due to warming 

(Kortsch et al. 2012), such as upwelling due to ice shelf-break (Arrigo et al. 2008), may 

further promote increases in seaweed productivity at local scales throughout the Arctic 

(Krause-Jensen and Duarte 2014). 

Along the mid-intertidal, F. vesiculosus is likely to replace A. nodosum from 

Long Island Sound up to PEI, to potentially Newfoundland by 2100. While A. nodosum 

typically outcompetes F. vesiculosus, F. vesiculosus is more tolerant to warmer SST then 

A. nodosum (Wilson et al. 2015). As temperatures continue to rise, A. nodosum is likely 

to experience reduced growth rates and partial mortality faster than F. vesiculosus, 

creating space for F. vesiculosus to settle. Consequently, the dominance of A. nodosum in 
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the mid-intertidal rocky shores along Long Island Sound into the Canadian Maritimes 

may shift to F. vesiculosus dominance. This has important implications for the rockweed 

harvest in both the Gulf of Maine (Arbuckle et al. 2014) and Canadian Maritimes (Ugarte 

et al. 2010), both of which may not be sustained with continued warming. As of yet, 

despite decreases in abundance on both sides of the Atlantic, currently there is only 

anecdotal evidence that A. nodosum has already experienced a small range shift in the 

NW Atlantic (Keser et al. 2005), with no range shift north of either species in the NE 

Atlantic (Lima et al. 2007; Yesson et al. 2015).  

Fucus vesiculosus is more resistant to ice scour than A. nodosum (Aberg 1992; 

Ugarte et al. 2010), suggesting why F. vesiculosus is presently observed further north 

than A. nodosum. Typically, A. nodosum outcompetes F. vesiculosus for space along 

sheltered and ice-free shores. Yet, A. nodosum has difficulty settling in an already 

established F. vesiculosus bed (Thomas 1994). Furthermore, if both these species do 

exhibit a shift north, there will be competition with the already established F. evanesces 

species in the high Arctic (Küpper et al. 2016). Fucus evanesces typically occurs in the 

low-intertidal, and can be out-competed by F. vesiculosus along sheltered locations 

(Thomsen and Brandt 1999). In the high Arctic, where ice-scouring is common, F. 

evanesces is found in the subtidal starting at depths of 3 m (Küpper et al. 2016). 

Although, one isolated population was observed in the intertidal, and assumed to be 

protected from ice, suggesting the potential for intertidal colonization in the high Arctic 

with reduced sea ice. Consequently, SDM do not consider these biotic interactions, which 

may impact the northward range shifts of fucoids.   
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Along the low-intertidal, C. crispus is presently highly abundant throughout the 

southern reaches of its distribution, often forming monoculture beds (Adey and Hayek 

2011). Older lab experiments for C. crispus found mortality occurred at water 

temperatures of 29°C (Lüning et al. 1986), yet the PT used in this study found that C. 

crispus grows at 29°C (Wilson et al. 2015). Moreover, growth reductions were not 

observed until 29°C, much higher than the previously reported 21°C (Kingsbury et al. 

1973). As of yet, there is no indication that C. crispus distribution in the NW Atlantic has 

changed due to climate change, but there appears to be some acclimation to warmer SST 

(Wilson et al. 2015). In the NE Atlantic, along its southern distribution limit C. crispus 

has shifted its distribution 180 km north since 1971 (Lima et al. 2007) and populations 

along the southern edge in Spain have declined since 1998 (Piñeiro-Corbeira et al. 2016). 

Consequently, if C. crispus shifts northward as expected in the NW Atlantic, it may be 

replaced by the recently introduced invasive red-algae Grateloupia turuturu, which is 

presently found from Long Island Sound into the Gulf of Maine (Mathieson et al. 2008), 

and is able to tolerate warmer water temperatures than C. crispus (Kraemer et al. 2017).  

Along its northern edge, C. crispus is likely to shift north. C. crispus is highly 

susceptible to ice-scour (Adey and Hayek 2011) and in areas throughout its range where 

ice-scouring is common, C. crispus exhibits a patchy distribution, finding refuge from ice 

impacts in rock cracks. Therefore, the northward shift will likely correspond to ice free 

shores, as well as increasing its abundance in Western Newfoundland/NW Gulf of St. 

Lawrence as SST continues to increase, resulting in decreases in ice coverage. 

Along the subtidal, C. fragile may be able to replace kelp beds from Long Island 

Sound to potentially Newfoundland. C. fragile can form dense beds in the subtidal if a 
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disturbance creates exposed substrate within the native kelp community (Scheibling and 

Gagnon 2006). This disturbance may result from increasing water temperatures (Steneck 

et al. 2002), causing a northern distribution shift in kelp. Codium fragile mortality only 

occurs above 33°C (Hanisak 1979), but even under the most extreme warming scenarios, 

August maximum SST is not expected to be greater than 33°C by 2100 across the NW 

Atlantic. In contrast, kelp mortality occurs at 23°C with growth reductions at 20°C 

(Wilson et al. 2015). At its southern distribution limit, kelp becomes an annual plant, 

where growth stops at SST >20°C, and populations persist through annual production of 

gametophytes that “oversummer” (Lee and Brinkhuis 1986). Gametophytes of S. 

latissima and L. digitata are produced  in spring and fall, and both gametophytes and 

adult plants experience mortality at SST >23°C (Bolton and Lüning 1982). Consequently, 

warm-water mortality has not changed since this older study, where Atlantic populations 

still exhibit mortality at 23°C (Wilson et al. 2015), despite increasing SST since 1980 

(Lee et al. 2011).  

In the high Arctic, kelp distribution is limited in the upper subtidal by the impacts 

of ice-scouring, and limited in the lower subtidal by the light reduction due to the 

presence of sea-ice (Krause-Jensen et al. 2012; Küpper et al. 2016). S. latissima blade 

biomass, area, and length were larger in populations at 64°N, and decreased in 

populations at 78°N (Krause-Jensen et al. 2012). This change was largely explained by a 

reduction in seasonal ice cover, and partially explained by slightly warmer temperatures 

at the more southern latitude (64°N). Therefore, Arctic warming should have positive 

effects on S. latissima. While S. latissima is only projected to have a minimal range shift 

north, it is likely to experience increases in production leading to larger plants, as well as 
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occupy a greater range of depths throughout the subtidal. Laminaria digitata will also 

benefit from Arctic warming through the potential to shift its range further into the 

Canadian Arctic and will likely see the same increase in production and depth range as S. 

latissima. Currently, within the shallow subtidal Alaria esculenta replaces L. digitata in 

the Arctic. Therefore, a northward migration of L. digitata may negatively impact the 

abundance of A. esculenta in the Subarctic and Arctic as L. digitata becomes more 

abundant. However, this has not been observed in the NE Atlantic, where L. digitata and 

A. esculenta have shown significant positive correlations in their changes in abundance 

since 1974, indicating that they are mirroring their response to increasing temperatures, 

and one is not causing a decrease in the other (Yesson et al. 2015). 

The northern distribution limit of C. fragile is projected to shift north to northern 

Labrador by 2100. Since C. fragile is a tropical species, warming of the Subarctic will 

only facilitate the northward expansion of C. fragile. This species survives overwintering 

in areas with winter sea ice (Matheson et al. 2014), and as a subtidal species, would be 

minimally impacted by ice-scouring. At its northern distribution edge, C. fragile does not 

form dense beds throughout the subtidal (Matheson et al. 2014), suggesting it will co-

exist with native kelp species as it expands its distribution northwards.  

2.4.8 Limitations of this Study 

 The goal of this study was to determine how increasing temperatures will impact 

the distribution of common canopy forming seaweeds in the NW Atlantic. The use of 

physiological data gives confidence to model projections in novel environments (Elith et 

al. 2010; Martínez et al. 2014). The PTs used in this study were based on juvenile plants 

(10-15 cm) from the middle of their respective ranges, which are often more sensitive 
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than adult plants (Wilson et al. 2015). The PTs may change for larger plants and for 

individuals from populations at the most southern and northern distribution limits that 

may be locally adapted to warmer or cooler SST. Moreover, the used PTs were only able 

to denote the species southern edge, additional PTs for colder temperatures would help to 

give confidence to projections of the northern edge where known occurrence records are 

sparse. 

 The environmental data used to build the SDM was only available at quarter 

degree cell resolution, which does not allow for fine-scale discrimination of species 

distribution. As this study was only interested in determining species range limits, climate 

environmental variables were used to build the SDM as they denote species distribution 

on continental scales (Pearson and Dawson 2003). Presently, the data scale which 

predicts species distribution most accurately in coastal environments is unknown, 

however based on modelling of Canadian aquatic  invasive species, finer scale does not 

necessarily result in increased model performance (Lowen et al. 2016).  

Lastly, this study used global climate models with a coarse resolution. As such, 

these global models needed to be up-scaled to match the environmental data, extrapolated 

into coastal areas, and consequently do not capture fine-scale climate variations (Stock et 

al. 2011; Lowen and DiBacco 2017). To capture fine-scale variations, regional climate 

models are required. Unlike global models, regional models can resolve coastal 

upwelling, which may decrease the magnitude of warming expected (Lowen and 

DiBacco 2017). Furthermore, coarse global climate models are known to have a warm 

bias along the NE USA, due to the Gulf Stream being predicted too far north (Saba et al. 

2015). Regional climate models exist for the NW Atlantic (Saba et al. 2015; Brickman et 
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al. 2016); however, these models were not used in this study as they did not encompass 

the entire study region, were calculated over limited temporal range, and project with 

fewer RCP scenarios.  

2.5 Conclusions 

Correlative SDMs are a powerful tool to make projections about how a species 

distribution may change with future climate change, and the addition of PT increases 

confidence in future projections of novel environments. Climate change will likely drive 

the large-scale response of the northern and southern latitudinal distribution limits of our 

study species. As such, results from this study suggest that the latitudinal ranges for 

canopy-forming seaweeds in the NW Atlantic will be impacted by continued climate 

warming, but the response will be species specific. Whereas local threats such as nutrient 

loading (Worm and Lotze 2006; Schmidt et al. 2012), change of biotic interactions 

through introduced species (Schmidt and Scheibling 2006, 2007, and commercial 

harvesting (Seeley and Schlesinger 2012; Vandermeulen 2013; Arbuckle et al. 2014) will 

likely drive the smaller-scale, local response of seaweeds throughout their range.  

The NE coast of the USA and Canadian Maritimes will likely see a shift in 

community composition. If emission levels continue to correspond with the RCP 8.5 

scenario, south of Newfoundland the mid-intertidal zone may see a transition to F. 

vesiculosus dominance and the subtidal may see a transition to C. fragile dominance. In 

the Subarctic, Arctic, and Greenland there may also be northward shifts as well as 

increases in abundance for all six species. Based on the relative average response these 

shifts would result in kelp and fucoids having an overall net loss of latitudinal habitat 

range, resulting in a range shift and contraction. These shifts are less drastic in C. crispus 
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and C. fragile with smaller shifts in the southern edge, while still shifting the northern 

edge resulting in a latitudinal range expansion. 

These projected range shifts will impact the ecological services provided, as well 

as the commercial importance of harvested species in the NW Atlantic. Along the 

southern edge, this will likely translate into negative impacts of the commercial harvest 

of A. nodosum within Maine and Canadian Maritimes. In the subtidal, a possible 

transition from a kelp forest to a C. fragile meadow may result in a shift of the 

community of associated species as kelps and C. fragile support different species 

(Schmidt and Scheibling 2006, 2007). Along the northern edge, shifting distributions and 

changes in abundance will impact the native rocky shore community in the Arctic. 

Seaweeds are not expected to shift their distribution poleward in isolation, as fish and 

invertebrates are also experiencing poleward shifts (Poloczanska et al. 2013). As many 

species of fish and invertebrates depend on the ecosystem functions provided by canopy-

forming seaweed species, it can be thought that an entire ecosystem is shifting poleward 

(Krause-Jensen and Duarte 2014), although not all species will respond in a similar way 

(Pinsky et al. 2013). In general, the poleward migration of canopy-forming seaweed 

species, such as the species in this study, may help to facilitate the poleward migration of 

associated fish and invertebrate species.  
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Chapter 3 The Usefulness of Satellite Remote Sensing as a Monitoring 

Tool for Eelgrass Distribution in Nova Scotia 

3.1 Introduction 

Eelgrass (Zostera marina) beds are the dominant perennial vegetation occurring 

along soft-sediment marine shores in Nova Scotia (Gosner 1978). As a subtidal species, 

eelgrass provides food and complex three-dimensional structure to the surrounding 

marine ecosystem (Schmidt et al. 2011). This includes supporting an increased 

abundance and diversity of fish and invertebrates compared to surrounding mudflats 

(Mattila et al. 1999), creating nursery habitat for many commercial species (Heck et al. 

2003), and providing an important food source for migratory bird species (Hanson 2004). 

Furthermore, eelgrass beds slow currents, increase sedimentation rates, and help to 

stabilize coastlines (Bos et al. 2007). 

Eelgrass beds are highly persistent through time in pristine environments (DFO 

2009). They are only periodically disturbed through storms or sediment re-distribution 

events which can uproot or bury seagrass (Waycott et al. 2009), and ice rafting events 

where eelgrass blades freeze to the underside of sea ice and are lifted out of the sediment 

with ice break up (Schneider and Mann 1991). However, in Nova Scotia (Hanson 2004) 

and globally (Orth et al. 2006; Waycott et al. 2009) seagrass beds have been decreasing 

over past decades. These decreases have been attributed to human activities such as 

nutrient loading (Hauxwell et al. 2001, 2003; Schmidt et al. 2012), the spread of invasive 

species (Garbary et al. 2014; Carman et al. 2016), aquaculture activities (Holmer et al. 

2008; Skinner et al. 2013), and climate change (Orth et al. 2006). 

To monitor further eelgrass bed decline, detailed baseline knowledge of present-

day eelgrass distribution is required, as well as long term monitoring programs (Hanson 
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2004). Presently, eelgrass beds in parts of Nova Scotia have been studied through dive 

transects (i.e. Schmidt et al. 2011; Wong et al. 2013), aerial photography (Hanson 2004), 

underwater camera tows or video transects (Vandermeulen 2017), side-scan sonar 

(Skinner et al. 2017 unpublished data; Vandermeulen 2014), as well as traditional local 

ecological knowledge (Lee 2014). Elsewhere in the Canadian Maritimes, topographic-

bathymetric lidar has also been used to map eelgrass distribution (Webster et al. 2016). 

The use of dive transects allows for quantitative information on eelgrass bed extent, 

percent cover and shoot density, as well as the diversity and abundance of associated 

flora and fauna. However, dive transects are time consuming, and as such, can only 

quantify limited spatial areas at selected time intervals (Environment Canada 2002). Boat 

based video transects can provide similar information on eelgrass bed characteristics in 

clear water, and sonar can be used in sites with murky water as light does not need to 

penetrate the water column. Yet, all boat based surveys have difficulty mapping in 

shallow water, as well as require a high sampling effort (Vandermeulen 2014; Webster et 

al. 2016). Aerial photography, can capture eelgrass bed extent over large areas, but 

requires the use of aircraft (Hossain et al. 2015). Lidar, an active sensor based on laser 

pulses, also requires an aircraft, and can map both land, shallow and deep water habitats 

at large spatial scales (Webster et al. 2016). 

Alternatively, satellite remote sensing (SRS) can be used to quantify the extent 

and density of eelgrass bed coverage over bay-wide and regional scales (Pettorelli et al. 

2014; Hossain et al. 2015; Rose et al. 2015). SRS can be used over large areas, with less 

sampling effort then dive transects and boat based surveys, and doesn’t necessarily 

require site access (Environment Canada 2002). New satellite imagery acquisition is not 
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as expensive as Lidar imagery (Kelly and Di Tommaso 2015), yet image quality is highly 

dependent on tidal cycle, water clarity, and atmospheric effects (Hossain et al. 2015). 

Furthermore, the strong attenuation of light by the water column decreases the depth 

range across which eelgrass can be classified, resulting in reduced confidence in mapping 

eelgrass along the deeper end of its depth range.  

Eelgrass distribution has been successfully classified elsewhere in temperate 

waters using passive optical SRS (i.e. Ferguson and Korfmacher 1997; Macleod and 

Congalton 1998; Lathrop et al. 2006; O’Neill and Costa 2013; Hogrefe et al. 2014; 

Barrell et al. 2015). In Nova Scotia, there has been exploratory work conducted into the 

feasibility of using SRS to quantify eelgrass distribution (Milton et al. 2009), however as 

of yet there is no published work detailing eelgrass distribution with SRS in Nova Scotia.  

 This chapter used archived high-resolution multispectral satellite imagery to 

classify eelgrass distribution in three bays in southwestern Nova Scotia. Archived 

satellite imagery was used as new satellite imagery acquisition costs can be prohibitive to 

many research groups. Furthermore, the ability to obtain ground truth points may be 

limited in remote areas, and along exposed coastlines with high wave energy. As such we 

aimed to classify the satellite imagery, with reduced image acquisitions costs, and ground 

truth sampling effort. To do so, there were three objectives: (i) classify eelgrass presence 

with a traditional supervised classification approach using ground truthing points; (ii) 

classify eelgrass presence with an unsupervised classification approach without using 

ground truthing points; and (iii) compare the output of the two classifications. If the two 

methods provide similar results, then the unsupervised classification could be used to 

map future or archived satellite imagery. Therefore, SRS could provide a useful 
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management tool for monitoring past and potential future shifts in eelgrass distribution 

due to natural or anthropogenic impacts, which can be applied at bay-wide to regional 

scales, with minimal input data.  

3.2 Methods 

3.2.1 Study Area 

 Three separate bays in southwestern Nova Scotia were chosen for their known 

presence of eelgrass (Zostera marina) beds: Port Mouton, Jordan Bay, and Port Joli 

(Figure 3.1). Port Joli is bordered on the southwestern shore by the Thomas Raddall 

Provincial Park, the Port Joli migratory bird sanctuary at the head of the bay, and on the 

northeastern shore by the Kejimkujik Seaside National Park, and is thus little impacted by 

human activities. Port Joli is a shallow bay with a maximum depth within the inner 

portion of 8 m data (CHS Direct User Licence No. 2017-0515-1260-D), and is dominated 

by soft-sediment, and mixed substrate (Schumacher et al. In Press). 

 Port Mouton and Jordan Bay are much deeper bays, where water depths (25 m 

and 20 m, respectively) exceed the 12 m (CHS Direct User Licence No. 2017-0515-1260-

D) published depth limit of eelgrass (DFO 2009), and bottom substrate ranged from 

rocky, mixed-substrate, and soft-sediment (Schumacher et al. In Press). Jordan Bay 

shoreline is mostly forested, with small fishing communities spread out along the coast. 

Port Mouton shoreline includes Carter’s Beach, as well the Summerville Beach 

Provincial Park, with small fishing communities predominantly found along the 

northwestern shore. 

 Port Mouton and Jordan Bay also both contain open net-pen finfish farms which 

have been operating since 1994 and 2012, respectively, and both leases have been 

extended until 2020 (Loucks et al. 2012; Nova Scotia Department of Fisheries and 
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Aquaculture 2015). These finfish farms have been suspected to affect eelgrass 

distribution in Port Mouton (Friends of Port Mouton 2014), therefore it is possible that 

continual aquaculture operations in Jordan Bay may have the same impact on eelgrass 

beds.  

3.2.2 Field Surveys and Ground Truthing Points 

 Two benthic ground truthing surveys were performed using a handheld GPS 

(Garmin, Canada; horizontal accuracy within 3 to 5m). One survey occurred from July 

15-20, 2015, and a second survey occurred from July 8-12, 2016 to increase spatial 

coverage of survey points. Although these surveys occurred over two years, it was 

assumed that perennial vegetated habitat coverage would minimally change within one 

year. Ground truth points were collected via SCUBA and snorkeling, and substrate cover 

was marked as eelgrass, seaweed, rockweed, rock, sand, mud, or shallow water. In all 

three bays, coastal access was limited, and so ground cover points were obtained 

haphazardly whenever there was access to the water from the road. The exception to this 

was in Port Mouton in 2015 when some sampling occurred with the use of a boat. 

Ground truth points were haphazardly collected; however, if there was a known eelgrass 

beds then targeted points were taken within the bed.  

In Port Joli, 79 field survey points were obtained (Figure 3.2) and comprised of 

sand (n=25), exposed rockweed band (n=25), submerged seaweed bed (n=12), and 

eelgrass (n=17). In Port Mouton, 102 field survey points were obtained (Figure 3.3) and 

comprised of sand (n=11), shallow water (<4m, n=20), exposed rockweed band (n=12), 

submerged seaweed bed (n=14), and eelgrass (n=45). In Jordan Bay, 41 field survey 

points were obtained (Figure 3.4) and comprised of sand (n=5), seaweed (n=19), eelgrass 
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(n=12), and mixed habitat including seaweed and seagrass (n=3). During the field 

surveys, it was noted that eelgrass and seaweed often co-occurred as mixed beds, 

therefore any field survey points that may be classified as mixed between seaweed and 

eelgrass, were denoted as eelgrass. 

To supplement field survey points, visually identified points were added using 

colour composites of the satellite imagery, available benthic substrate data (Schumacher 

et al. In Press), local ecological knowledge in Port Mouton (Lee 2014) and previous 

seagrass mapping projects in Port Joli (Milton et al. 2009) providing further identification 

for mud, sand, shallow water, deep water, rockweed band, eelgrass and seaweed. This 

resulted in a total of 50 points across mud, sand, shallow water, deep water, rockweed 

band, and seaweed, as well as 75 points for eelgrass (Figure 3.2-3.4).  

All ground truth points were buffered into circular polygons with a 10 m diameter 

to account for GPS inaccuracy. Furthermore, in order to have an independent data set to 

evaluate the accuracy of the classification, the ground truth data were split into training 

and testing groups at a ratio of 70% training and 30% testing for the satellite image 

classification (section 3.2.4 below).   
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Figure 3.1 Map of Nova Scotia with red box outlining a general study area, and b 

showing location of three study sites: Port Mouton, Port Joli, and Jordan Bay.
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Figure 3.2 Ground truthing points collected in Port Joli over a true colour composite. Orange points were collected in the field, yellow 

points were added later (see section 3.2.2). Dark grey is background data outside the satellite imagery bounds. 
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Figure 3.3 Ground truthing points collected in Port Mouton over a true colour composite. Orange points were collected in the field, 

yellow points were added later (see section 3.2.2).  Dark grey is background data outside the satellite imagery bounds. 



 

 

6
8 

 
Figure 3.4 Ground truthing points collected in Jordan Bay over a true colour composite. Orange points were collected in the field and 

no additional points were added in due to poor image quality (see Appendix E). Dark grey is background data outside the 

satellite imagery bounds.  
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3.2.3 Satellite Image Collection and Preprocessing 

 An archived SPOT 6 image (BlackBridge Geomatics, Lethbridge, Alberta) of 

Jordan Bay was acquired on July 5, 2015, at 11:43 am local time, during falling tide, at a 

16.18° viewing angle. An archived SPOT 7 image (BlackBridge Geomatics, Lethbridge, 

Alberta) of Port Mouton and Port Joli was acquired on July 11, 2015, at 11:47 am local 

time, during rising tide, at a 12.75° viewing angle. Imagery was obtained during the 

summer as this corresponds to increased density of eelgrass beds which peak in 

August/September (Wong et al. 2013). All images were free from cloud coverage. SPOT 

6/7 have four multispectral bands: blue (450-520 nm), green (530-590 nm), red (625-695 

nm), and near-infrared (NIR; 760-890 nm) at a spatial resolution of 6 x 6 m, and one 

panchromatic band (450-745 nm) at a spatial resolution of 1.5 x 1.5 m, all at a 

radiometric resolution of 16 bits (Astrium Services 2013). All images were pan-

sharpened, orthorectified, and reduced to 8 bit by BlackBridge Geomatics to deliver a 

multispectral image at a spatial resolution of 1.5 x 1.5 m, a radiometric resolution of 8 

bits, in UTM Zone 20N coordinates (Figure 3.5 Step 1).  

All analyses were performed in the software program TerrSet® v. 18.31 (Clark 

University, Worcester, Massachusetts) and ArcGIS® v. 10.3 (ESRI, Redlands, USA) 

following the work flow outlined in Figure 3.5. An atmospheric and radiometric 

correction (Figure 3.5 Step 2) for all four multispectral bands (blue, green, red, and NIR) 

per bay was performed using the COST method (Chavez 1996). This method combines 

the dark object subtraction method (removes haze), with a cosine approximation of solar 

zenith angle to remove the impacts of Rayleigh scattering and atmospheric gases 

absorption. Haze was approximated in each image by examining each band’s histogram 
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to determine the offset from zero. The removing of atmospheric effects allows for images 

across years to be compared in a future change detection study.  

 

Figure 3.5 Outline of methods used to classify SPOT 6/7 satellite imagery in this study. 

Steps 1 through 6 are explained in section 3.2.3, Steps 7-8 are explained in section 

3.2.4, and Step 9 is explained in section 3.2.5 
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To remove random noise in the images, all bands were filtered using a median 

filter with a 3 x 3 kernel (Figure 3.5 Step 3). A median filter was chosen as it performs 

well to generalize an image to remove random noise, while preserving edges (i.e. eelgrass 

bed edge; Carleer et al. 2005). Using a 3 x 3 kernel, the filter takes the median value of 

nine pixels, replaces only the central pixel with this median value, and continues through 

the imagery. Median filters are known to improve classification accuracy (Fauvel et al. 

2012). Next the reflectance values were linearly stretched to 8 bits (values from 0 to 255; 

Figure 3.5 Step 4), and a land mask was created using the NIR band to mask out all land 

pixels (Figure 3.5 Step 5). 

To create a deep water mask, an iterative self-organizing unsupervised classifier 

(ISOCLUST) analysis was performed using all four bands with land masked out (Figure 

3.5 Step 6). This was an exploratory analysis to qualitatively determine the water depth 

that was spectrally close to the vegetation signal. Canadian Hydrographic Service single 

beam lowest mean tide bathymetric data (CHS Direct User Licence No. 2017-0515-1260-

D) were used, in conjunction with true and false colour composites, to determine the 

deepest depth to be used in the analysis. The cluster associated with deep water, and 

spectrally confused with vegetation, was visually inspected to determine a depth where 

the algorithm could no longer differentiate vegetation from deep water. 

3.2.4 Image Classification 

 Each bay was classified separately using both an unsupervised and supervised 

classification algorithm (Figure 3.5 Step 7). To create the supervised classification, 

training sites were created to run a maximum likelihood classification (Richards 1986) on 

all four bands with land and deep water masked out. Each class was assigned an equal 
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prior probability to occur, and each pixel was considered to occur as each class type, but 

was assigned to the class it had the highest probability of occurring as. Training sites 

were based on seven true ground cover types: mud, sand, shallow water, deep water, 

rockweed, seaweed, and eelgrass. Training sites were built using the 70% of ground truth 

points allocated to model building, and excluded the test points. The maximum likelihood 

classification was run through a 3 x 3 majority filter to reduce speckling (Macleod and 

Congalton 1998; Figure 3.5 Step 8). 

 The unsupervised classification was a two-step process where all four bands with 

land and deep water masked out were first run through an iterative self-organizing 

unsupervised classifier (ISOCLUST) with 3 iterations, up to 50 clusters, and a minimum 

training size of 40 pixels (Figure 3.5 Step 7). ISOCLUST works by: (1) determining a 

maximum number of clusters in the data based on examining peaks in the bands 

histograms (Richards 1986); (2) then the user chooses how many clusters to keep; (3) 

each pixel is assigned to the closest cluster; and (4) a new cluster mean is determined. 

Then in an iterative process Steps 3 and 4 are repeated three times to determine stable 

clusters (Ball and Hall 1965). In Step 2 the number of clusters was decided based on 

examining a histogram showing the frequency in which the cluster occurred. Areas with 

significant changes in the histogram peaks, are where major changes happened to the 

generality of the clusters. Based on these breaks, the user chooses the number of clusters 

to keep. 

The first ISOCLUST was used to determine vegetated habitat from unvegetated 

habitat. To determine how a cluster should be labelled, each cluster’s spectral signature 

was examined in conjunction with visual interpretation of the colour composites. Clusters 
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that corresponded to unvegetated pixels were assigned to groups for sand, mud, shallow 

water, and deep water. As this first iteration was spectrally confused between seaweed 

and eelgrass, vegetated pixels were classified into groups for the exposed rockweed band, 

and then by the strength of the NIR signal relative to the red signal into strong, moderate, 

weak (all NIR>Red), and negative NIR (Red<NIR; Hogrefe et al. 2014). These groupings 

were based on the spectral response of vegetation where visible light (i.e. blue, green, and 

red) is strongly absorbed by vegetation (i.e. eelgrass) but NIR light is strongly reflected. 

Therefore, a decrease in the NIR signal either corresponds to increased water depth due 

to the water absorbing NIR light or decreased vegetation coverage resulting in reduced 

NIR reflectance. All remaining clusters were specified as unknown. These clusters were 

used to create training sites to run a maximum likelihood classification to determine 

vegetated habitat from non-vegetated habitat. This classification was used to create a 

non-vegetated mask. This was the first iteration of the unsupervised classification (Table 

3.1).  

A second ISOCLUST was run with land, deep water, and unvegetated pixels 

masked out to differentiate between seaweed and eelgrass with 3 iterations, up to 50 

clusters, and a minimum training size of 40 pixels. The resulting clusters were examined 

by looking at both their spectral signatures and visual inspection of colour composites to 

assign clusters to eight different ground cover types: mud, sand, shallow water, deep 

water, rockweed, seaweed, eelgrass, and unknown. These clusters were used to create 

training sites to run a second maximum likelihood classification to differentiate seaweed 

from seagrass. This final maximum likelihood classification was run through a 3 x 3 

majority filter to reduce speckling (Macleod and Congalton 1998; Figure 3.5 Step 8). 
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This was the second iteration of the unsupervised classification (Table 3.1). To produce 

the final map for the unsupervised classification, all non-vegetated (bare ground) pixels 

from the first iteration, were overlaid over the classification for the second iteration 

(Table 3.1).  

 In addition to the methods described above, Port Mouton was further classified by 

breaking up the bay into segments to analyze separately as there were differences in 

objects spectral signatures across the imagery. To do so, the spectral curve of each 

training site established during the supervised classification was individually analyzed to 

determine areas where the spectral curve differed. As well, exploratory unsupervised 

classifications were performed to determine areas of the bay that tended to cluster 

together. Once the bay was segmented into four segments (Table 3.1; Figure 3.6) a new 

set of ground truth points was established. To start, the ground survey points collected in 

an area were used, and visually identified points were added to bring the categories if 

present in that section, i.e. mud was not present in all segments, up to a total of 20 points, 

using the same points established in section 3.2.1 if possible (Figure 3.6). These 

categories were for: sand, mud, shallow water, deeper water, exposed rockweed, shallow 

vegetation, and deeper vegetation. These points were split 70/30% for training and 

testing, as explained in section 3.2.2. Due to having a weak vegetation signal, seaweed 

and eelgrass were combined into one category, separated by the strength of the vegetation 

signal (i.e. shallow and deep vegetation). Each segment was then classified using the 

methods described earlier in this section. As this classification only determined 

vegetation from non-vegetated pixels, the resulting maps were compared to bottom 
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substrate (Schumacher et al. In Press), and local ecological knowledge (Lee 2014) to 

qualitatively determine areas that were more or less likely to be eelgrass or seaweed.  

3.2.5 Image Evaluation  

 Each classification was evaluated using a confusion matrix (Figure 3.5 Step 9). A 

confusion matrix compares how the ground truth points relate to the image classification 

to determine user, producer, and total accuracy values (Story and Congalton 1986). Total 

accuracy examines the percentage of correctly classified points for the entire 

classification. It is calculated by dividing the number of correctly classified ground truth 

points, by the total number of ground truth points. To identify the accuracy of each 

ground cover category, user and producer accuracies are calculated. Producer accuracy 

assesses the proportion of times the ground truth data for a one ground cover category 

(i.e. eelgrass), is correctly portrayed in the map classification. It is calculated by dividing 

the total number of correctly classified ground truth points for one ground cover type, by 

the total number of points classified as that ground cover type. For instance, a value of 

100% would indicate that all eelgrass ground truth points, were classified as eelgrass on 

the map. A value <100% indicates some eelgrass ground truth points, were classified as a 

different ground cover type on the map. User accuracy assesses how the ground truth 

points agree with the map, and indicates the confidence a user should have when using 

the map. It is calculated by dividing the number of examined pixels classified as one 

ground cover type, by the total number of examined pixels classified as that ground cover 

type. For instance, a value of 100% would indicate that all examined pixels classified on 

the map, corresponded to eelgrass ground truth points. A value <100% would indicate 
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that some pixels classified as eelgrass on the map, correspond to ground truth points for a 

different ground cover type.  

Cohen’s kappa coefficient of agreement, with z-tests for significance from zero, 

were also calculated to account for the chance agreement of the ground truth points and 

map classification (Foody 2002) using the “irr” package (Gamer 2012) in the statistical 

environment R (R Core Team 2014). Cohen’s kappa ranges from -1 to 1, where values -1 

to 0 indicate lower agreement then due to chance, 0 to 0.4 indicate very poor agreement, 

0.4 to 0.8 indicate moderate agreement, and values >0.8 indicating very good agreement 

between datasets that is unlikely due to chance (Cohen 1960).  

To evaluate the supervised classification, sand, mud, shallow water, and deep 

water test ground truth points, and classified pixels were respectively merged to create a 

non-vegetated class (labelled as bare ground in confusion matrixes; Table 3.1) as the goal 

of this study was to differentiate between types of vegetated habitat. Seaweed and 

rockweed classes and testing points were merged together to create one seaweed class set 

of test points (labelled as seaweed in confusion matrixes; Table 3.1). Then the confusion 

matrix was built. A test point was positive if any pixel within the 10 m diameter 

corresponded to the ground cover. A test point was negative if no pixel within the 10 m 

diameter corresponded to the ground cover. From this, user, producer, and total 

accuracies were calculated as well as a kappa coefficient.  

For the first iteration of the unsupervised classification, the four NIR groups, as 

well as the rockweed group were merged into one vegetated class, and the test ground 

truth points for eelgrass, seaweed, and rockweed were merged into one vegetated class 

(Table 3.1). A bare ground class was also built as explained above to create a confusion 
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matrix examining vegetated from bare ground. The confusion matrix was built on both 

the test ground truth data set used for the supervised classification, and the entire data set. 

The second iteration of the unsupervised classification was evaluated in the same way as 

the supervised classification.; however, the image was evaluated using both the test data 

set, and the full data set. 

In the case of Port Mouton, rockweed, shallow vegetation, and deep vegetation 

were merged into one vegetation group for both the supervised classification, and the 

second iteration of the unsupervised classification (Table 3.1). The bare ground group 

was merged as explained above.  

The similarity of the final products for the supervised and unsupervised 

classifications were compared. In Port Joli and Port Mouton, all ground cover pixels 

associated with bare ground (Table 3.1) were reclassified into one bare ground group. In 

Port Joli, all pixels associated with seaweed and rockweed were reclassified into one 

seaweed group (Table 3.1). In Port Joli, this meant that a pixel could be defined as bare 

ground, seaweed, or eelgrass. In Port Mouton, all pixels associated with rockweed, 

shallow and deep vegetation were reclassified into one vegetation group (Table 3.1). In 

Port Mouton, this meant that a pixel could be defined as bare ground or vegetation. Then 

the supervised classification was overlaid over the unsupervised classification. The 

number of pixels that were classified the same by the two classifications (i.e. both bare 

ground), was divided by the total number of pixels in the imagery, to determine the 

percent similarity between the two classifications. Furthermore, the overall, producer and 

user accuracies were compared between the test data set for the final products for the 

supervised and unsupervised classification.   
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Table 3.1 Terminology used to refer to specific methods. 

Name used in text Definition 

Bare Ground In confusion matrix, refers to the merging of sand, 

mud, shallow water, and deep water 

First iteration Classification created by running an ISOCLUST, 

assigning clusters to groups based on the strength of 

NIR signal, using these clusters as training sites for a 

maximum likelihood classification to determine 

vegetation from not. This created a bare substrate mask 

Rockweed In figures, refers to rockweed band in the intertidal 

zone with a very strong vegetation signal 

Seaweed In confusion matrix, refers to the merging of seaweed 

and rockweed  

In figures, refers to all submerged seaweed species 

including kelp, fucoids etc. 

Second iteration Classification created by running an ISOCLUST, 

using the mask created in the first iteration, and 

assigning clusters to training sites for eelgrass, 

seaweed, and rockweed, for a maximum likelihood 

classification to eelgrass presence from absence 

Segment one Part of Port Mouton referring to area around Jackie 

and Port Mouton Island 

Segment two Part of Port Mouton from Clam Pond to Carter’s 

Beach 

Segment three Part of Port Mouton from Carters’ Beach until Jone’s 

Cove 

Segment four Part of Port Mouton from Jone’s Cove to Hunts Point 

Supervised 

classification 

Classification created by using training points 

(explained in section 3.2.2) to create training sites to 

run a maximum likelihood classification 

Unsupervised 

classification 

Classification created by using ISOCLUST to assign 

clusters to training sites to run a maximum likelihood 

classification. This was a two-step process and refers 

to the final product which merges the two iterations 

Vegetated In confusion matrix, refers to the merging of all NIR 

groupings, and the rockweed group 

Vegetation In confusion matrix, refers to the merging of 

rockweed, and shallow and deep water vegetation 
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Figure 3.6 Breakdown of Port Mouton into the four segments, showing the names of 

landmarks throughout the bay, over a true colour composite, with dark grey as 

background data. Within each segment green dots indicate visually added points 

where orange dots indicate points collected in the field.   
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3.3 Results 

3.3.1 Port Joli 

 Port Joli was successfully mapped using both classification techniques. First, the 

supervised classification, based on seven different ground cover types (Appendix E: 

Figure E.1a), classified 2.02 km2 (11.11%) of Port Joli bay as having eelgrass present, 

and 5.71 km2 (31.39%) as having seaweed present (Appendix E: Figure E.2). Seaweed 

presence was classified in areas of greater water depth, and both seaweed and eelgrass 

artifacts were noted in the middle of the bay. It is unknown if these artifacts are 

seaweed/eelgrass, floating wrack, or spectrally confused pixels. Substrate data is not 

shown in Port Joli as no area within the bay contained benthic substrate that eelgrass 

could not attach to (i.e. continuous bedrock). 

 The first iteration for the unsupervised classification, based on eight different 

ground cover types (Appendix E: Figure E.1b), classified 9.05 km2 (49.74%) of Port Joli 

bay as having some degree of a vegetation signal (Appendix E: Figure E.3). The resulting 

map classified sand and water from shallow to moderate depths well, as well as shallow 

to mid-depth vegetation, with still some misclassification of deeper water and deeper 

vegetation, and mud from sparse vegetation. The second iteration for the unsupervised 

classification, based on six ground cover types (Appendix E: Figure E.1c), classified 1.57 

km2 (8.61%) of Port Joli bay as having eelgrass present, and 5.48 km2 (30.12%) as 

having seaweed present (Appendix E: Figure E.4). The resulting map improved 

classification for mud from sparse vegetation, and deeper vegetation from deep water. 

 When the final products for the supervised and unsupervised classifications were 

compared, the two classifications were 86.91% similar to one another (Figure 3.7). The 

supervised classification, found the total area with eelgrass presence to be 2.50% greater, 
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and overall presence of vegetation to be 3.77% greater, than the unsupervised 

classification. Both classifications found a large eelgrass bed in the northwest of the bay 

bordered by muddy substrate in the shallow intertidal. Both also classified a narrow 

fringe of eelgrass in the shallow subtidal throughout Port Joli, with some vegetation 

artifacts in the middle of the bay. The largest differences between the two classifications 

existed in the eastern, outer portion of Port Joli where the supervised classification 

classified more of the pixels as seaweed, and the unsupervised classification classified 

more of the pixels as water. In the narrowing of the bay into Port Joli, the supervised 

classification classified more pixels as water, where the unsupervised classification 

classified it as seaweed. Along the border of the large eelgrass bed at the northwestern 

corner at the head of the bay, there were minor differences between the two 

classifications in delineating bed extent.  

 The final product for the supervised and unsupervised classification had similar 

accuracy values, as well as high kappa coefficients (Table 3.2a, d). To compare the two 

final products using the test data set, both the supervised and unsupervised classifications 

had similar producer (100.00%; 95.45%) and user accuracies (95.65%; 100.00%) for 

eelgrass presence, total map accuracies (97.32%, 96.42%), and significant kappa 

coefficients (0.94; 0.94), respectively (Table 3.2a, d). Furthermore, there was an 

improvement for total map accuracy and kappa coefficients from the first iteration of the 

unsupervised classification, to the second iteration of the unsupervised classification for 

the test (Table 3.2b, d) and full data set (Table 3.2c, e). 
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Figure 3.7 Vegetation coverage of Port Joli, based on the average response of the supervised and unsupervised classification. Where 

the two classifications disagree, the results from the supervised classification is denoted (S), and the unsupervised classification 

is denoted (US). These disagreements are denoted at the same level as the confusion matrix (see Table 3.1). The classification 

was overlaid over a true colour composite. Dark grey is background data outside the satellite imagery bounds. 
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Table 3.2 Confusion matrix for the classification in Port Joli based on a supervised classification on test points only; b the first 

iteration of the unsupervised classification for the test data set; and c the first iteration of the unsupervised classification for the 

full data set; and d the second iteration of the unsupervised classification for the test data set; and e the second iteration of the 

unsupervised classification for the full data set. For each confusion matrix mud, sand, shallow and deep water are merged into 

one bare ground group. Vegetated includes all NIR groups as well as rockweed group. Seaweed includes seaweed and 

rockweed. Total map accuracy (%) indicated in bold. Significant z-test (p<0.05) on kappa indicated by asterisk (*). 

 

 

  
Field Survey Reference Data 

Total 

Correct 

Total 

Points 

User 

Accuracy (%) 

Kappa 

coefficient 

a 

Map Data Eelgrass Seaweed Bare Ground    

0.94* 

Eelgrass 22 1 0 22 23 95.65 

Seaweed 0 27 0  27 27 100.00 

Bare Ground 0 2 60  60 62 96.77 

Total Correct 22  27  60  109     

Total Points 22 30 60   112   

Producer Accuracy (%) 100.00 90.00 100.00     97.32  

b 

Map Data Vegetated Bare Ground     

0.69* 

Vegetated 50 18   50  68 73.53 

Bare Ground 2 42    42 44 95.45 

Total Correct  50 42    92     

Total Points 52 60     112   

Producer Accuracy (%) 96.15 70.00       82.14  

c 

Map Data Vegetated Bare Ground     

0.66* 

Vegetated 166 59    166 225 73.78 

Bare Ground 7 141    141 148 95.27 

Total Correct  166 141    307     

Total Points 173 200     373   

Producer Accuracy (%) 95.95 70.50       82.31  
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  Field Survey Reference Data 
Total 

Correct 

Total 

Points 

User 

Accuracy (%) 

Kappa 

coefficient 

d 

Map Data Eelgrass Seaweed Bare Ground    

0.94* 

Eelgrass 21 0 0 21 21 100.00 

Seaweed 1 27 0 27 28 96.43 

Bare Ground 0 3 60 60 63 95.24 

Total Correct  21 27  60  108     

Total Points 22 30 60   112   

Producer Accuracy (%) 95.45 90.00 100.00     96.42  

e 

Map Data Eelgrass Seaweed Bare Ground 
   

0.92* 

Eelgrass 65 0 0  65 65 100.00 

Seaweed 8 92 1  92 101 91.09 

Bare Ground 2 6 199  199 207 96.14 

Total Correct  65 92 199 356     

Total Points 75 98 200   373   

Producer Accuracy (%) 86.67 93.88 99.50      95.44 
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3.3.4 Port Mouton 

The supervised classification of Port Mouton, based on seven ground cover types 

(Appendix E: Figure E.5a), had poor discriminatory ability between eelgrass, seaweed, 

and deep water (Appendix E: Figure E.6). In some portions of the imagery, it was 

seemingly random assignment of pixels to one of these three groups, likely due to the 

high degree of similarity between the spectral curves for eelgrass, seaweed, and deep 

water (Appendix E: Figure E.5a). The first iteration of the unsupervised classification, 

based on nine ground cover types (Appendix E: Figure E.5b), had low discriminatory 

power in differentiating vegetation from non-vegetation, with most of the bay being 

classified with some degree of a vegetation signal (Appendix E: Figure E.7). The second 

iteration of the unsupervised classification, was unable to differentiate eelgrass from non-

eelgrass and was therefore excluded from the results. Both the supervised classification 

(Appendix E: Table E.1a), and first iteration of the unsupervised classification (Appendix 

E: Table E.1b-c) had high accuracy values and kappa coefficients. The results shown in 

the confusion matrix are likely due to the good classification of rockweed, sand, mud, 

and shallow water for both the supervised classification and first iteration of the 

unsupervised classification, driving up the overall accuracy values.  

To improve the classification of Port Mouton, the bay was broken up into four 

segments to analyze individually (Figure 3.6). This resulted in an improvement in 

Segments three (Jone’s Cove and the Dyke) and four (Summerville Beach and Hunts 

Point). However, there is still some misclassification, particularly over deeper water, 

therefore the percentage of vegetated coverage within Port Mouton was not calculated 

like it was for Port Joli. These segments excluded Spectacle and Massacre Island’s as the 

vegetation signature was the same as the deep water signature.  
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For all four segments, the final product for the supervised and unsupervised 

classifications produced similar user, producer, and total map accuracy values (>90%) as 

well as significant kappa coefficients (>0.90; Tables 3.3-3.6). In addition, there were 

improvements in user, producer, and total map accuracies, and kappa coefficients, from 

the first iteration of the unsupervised classification to the second iteration of the 

unsupervised classification, and these values were comparable between the training and 

test data sets. 

 Segment one consisted of the area surrounding Jackie’s and Port Mouton Islands 

(Figure 3.6), and the final product for the supervised and unsupervised classifications 

were 86.27% similar to one another (Figure 3.8). Vegetated habitat was classified in the 

sandy shallows between Jackie’s Island and Port Mouton Island. Throughout this 

segment, only a very small portion of benthic substrate was made up of continuous 

bedrock where eelgrass cannot attach (Figure 3.8a), with local ecological knowledge 

indicating the vegetation patches in the shallows between the two islands, as well as the 

vegetation in the small bay on the northwest shore of Port Mouton Island may contain 

eelgrass beds (Figure 3.8b). See Appendix E: Figures E.8, E.12a, E.13, E.17a, E.18, 

E.22a for the results of the individual classifications. 

 Segment two consisted of the southern shore of Port Mouton from Carter’s Beach 

to Clam Pond (Figure 3.6). The final products for the supervised and unsupervised 

classifications were 85.74% similar to one another; however, this segment had the 

poorest agreement. Near Clam Pond, there was strong agreement between the two 

classifications for determining vegetated from non-vegetated (Figure 3.9). As the 

classification moves west towards Carter’s Beach, there is strong disagreement between 
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the two datasets, particularly over deeper water. Only a very small portion of this 

segment contains unsuitable bottom substrate for eelgrass (Figure 3.9a), with local 

ecological knowledge suggesting the vegetated pixels in Clam Pond, as well as 

vegetation pixels along Carter’s Beach may be eelgrass beds (Figure 3.9b). See Appendix 

E: Figures E.9, E.12b, E.14, E.17b, E.19, E.22b for the results of the individual 

classifications. 

 Segment three consisted of the Dyke and Jone’s Cove (Figure 3.6). The final 

products for the supervised and unsupervised classifications produced a map with 86.62% 

similarity to one another (Figure 3.10), and decreased the amount of misclassification of 

deeper water as eelgrass relative to the supervised classification on the whole bay 

(Appendix E: Figure E.6). Large vegetated beds were classified throughout Jone’s Cove 

and the Dyke over muddy substrate (Figure 3.10a), with local ecological knowledge 

suggesting these vegetated pixels may contain eelgrass beds (Figure 3.10b). See 

Appendix E: Figures E.10, E.12c, E.15, E.17b, E.20, E.22c for the results of the 

individual classifications.  

 Segment four consisted of the area outside of Jone’s Cove, to Hunt’s Point, 

including Summerville Beach (Figure 3.6), and had the highest similarity between the 

supervised and unsupervised classification at 95.55% (Figure 3.11). Furthermore, there 

was an improvement for the classification around Summerville Beach from the 

supervised classification on the whole bay (Appendix E: Figure E.6). Summerville and 

Hunt’s Beach classified as non-vegetated and the rest of the segment classified as 

vegetated habitat (Figure 3.11). Large portions of this segment contained purely rocky 

bedrock bottom substrate (Figure 3.11a), and local ecological knowledge suggests only 



 

88 

 

two areas which may contain eelgrass (Figure 3.11b). See Appendix E: Figures E.11, 

E.12d, E.16, E.17d, E.21, E.22d for the results of the individual classifications. 

3.3.5 Jordan Bay 

 The classification of Jordan Bay was unsuccessful due to the poor quality of the 

satellite imagery data. Similar results were obtained for both the supervised and 

unsupervised classification, across varying steps of images preprocessing. Furthermore, 

dividing the bay into smaller segments, as was performed in Port Mouton, did not help to 

improve the classification. Results for Jordan Bay were therefore excluded from the 

results section but see Appendix F for further details. 
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Figure 3.8 Average response of the supervised and unsupervised classification for Segment One in Port Mouton showing the location 

of vegetation in the bay, a has substrate data overlaid, and b shows a rough outline where local ecological knowledge (Lee 

2014) suggests eelgrass beds may occur. Purple pixels indicate where the supervised classification (S) denoted vegetated and 

the unsupervised classification (US) denoted bare ground. Yellow pixels indicate where the supervised classification (S) 

denoted bare ground and the unsupervised classification (US) denoted vegetated. Hashed substrate areas indicate bottom 

substrates capable of containing eelgrass, while black substrate areas indicate bottom substrates not capable of containing 

eelgrass. The classification was overlaid over a true colour composite. Dark grey is background data outside the satellite 

imagery bounds. 
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Figure 3.9 Average response of the supervised and unsupervised classification for Segment Two in Port Mouton showing the location 

of vegetation in the bay, a has substrate data overlaid, and b shows a rough outline where local ecological knowledge (Lee 

2014) suggests eelgrass beds may occur. Purple pixels indicate where the supervised classification (S) denoted vegetated and 

the unsupervised classification (US) denoted bare ground. Yellow pixels indicate where the supervised classification (S) 

denoted bare ground and the unsupervised classification (US) denoted vegetated. Hashed substrate areas indicate bottom 

substrates capable of containing eelgrass, while black substrate areas indicate bottom substrates not capable of containing 

eelgrass. The classification was overlaid over a true colour composite. Dark grey is background data outside the satellite 

imagery bounds. 
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Figure 3.10 Average response of the supervised and unsupervised classification for Segment Three in Port Mouton showing the 

location of vegetation in the bay, a has substrate data overlaid, and b shows a rough outline where local ecological knowledge 

(Lee 2014) suggests eelgrass beds may occur. Purple pixels indicate where the supervised classification (S) denoted vegetated 

and the unsupervised classification (US) denoted bare ground. Yellow pixels indicate where the supervised classification (S) 

denoted bare ground and the unsupervised classification (US) denoted vegetated. Hashed substrate areas indicate bottom 

substrates capable of containing eelgrass, while black substrate areas indicate bottom substrates not capable of containing 

eelgrass. The classification was overlaid over a true colour composite. Dark grey is background data outside the satellite 

imagery bounds. 



 

 

 

9
2 

 
Figure 3.11 Average response of the supervised and unsupervised classification for Segment Four in Port Mouton showing the 

location of vegetation in the bay, a has substrate data overlaid, and b shows a rough outline where local ecological knowledge 

(Lee 2014) suggests eelgrass beds may occur. Purple pixels indicate where the supervised classification (S) denoted vegetated 

and the unsupervised classification (US) denoted bare ground. Yellow pixels indicate where the supervised classification (S) 

denoted bare ground and the unsupervised classification (US) denoted vegetated. Hashed substrate areas indicate bottom 

substrates capable of containing eelgrass, whileere black substrate areas indicate bottom substrates not capable of containing 

eelgrass. The classification was overlaid over a true colour composite. Dark grey is background data outside the satellite 

imagery bounds. 
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Table 3.3 Confusion matrix for the classification in Port Mouton Segment One based on a supervised classification on test points only; 

b the first iteration of the unsupervised classification for the test data set; and c the first iteration of the unsupervised 

classification for the full data set; and d the second iteration of the unsupervised classification for the test data set; and e the 

second iteration of the unsupervised classification for the full data set. For each confusion matrix mud, sand, shallow and deep 

water were merged into one bare ground group. Vegetated includes all NIR groups as well as rockweed group. Vegetation 

includes shallow and deep vegetation. Total map accuracy (%) indicated in bold. Significant z-test (p<0.05) on kappa indicated 

by asterisk (*).  

 

 

  
Field Survey Reference Data Total Correct Total Points User Accuracy (%) 

Kappa 

coefficient 

a 

Map Data Vegetation Bare Ground    

0.94* 

Vegetation 17 0 17 17 100.00 

Bare Ground 1 18 18 19 94.74 

Total Correct 17 18 35     

Total Points 18 18   36   

Producer Accuracy (%) 94.44 100.00     97.22  

 Map Data Vegetated Bare Ground    

0.61* 
b 

Vegetated 17 6 17 23 73.91 

Bare Ground 1 12 12 13 92.31 

Total Correct 17 12 29     

Total Points 18 18   36   

Producer Accuracy (%) 94.44 66.67      80.56 

 Map Data Vegetated Bare Ground    

0.72* 
c 

Vegetated 58 15 58 73 79.45 

Bare Ground 2 45 45 47 95.74 

Total Correct 58 45 103     

Total Points 60 60   120   

Producer Accuracy (%) 96.67 75.00     85.83  



 

 

 

9
4 

  Field Survey Reference Data Total Correct Total Points User Accuracy (%) 
Kappa 

coefficient 

 Map Data Vegetation Bare Ground    

0.94* 
d 

Vegetation 17 0 17 17 100.00 

Bare Ground 1 18 18 19 94.74 

Total Correct 17 18 35     

Total Points 18 18   36   

Producer Accuracy (%) 94.44 100.00      97.22 

 Map Data Vegetation Bare Ground    

0.95* 
e 

Vegetation 58 1  58 59 98.31 

Bare Ground 2 59  59 61 96.72 

Total Correct 58 59 117     

Total Points 60 60   120   

Producer Accuracy (%) 96.67 98.33     97.5 
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Table 3.4 Confusion matrix for the classification in Port Mouton Segment Two based on a supervised classification on test points 

only; b the first iteration of the unsupervised classification for the test data set; and c the first iteration of the unsupervised 

classification for the full data set; and d the second iteration of the unsupervised classification for the test data set; and e the 

second iteration of the unsupervised classification for the full data set. For each confusion matrix mud, sand, shallow and deep 

water were merged into one bare ground group. Vegetated includes all NIR groups as well as rockweed group. Vegetation 

includes rockweed, shallow and deep vegetation. Total map accuracy (%) indicated in bold.  Significant z-test (p<0.05) on 

kappa indicated by asterisk (*). 

 

 

  
Field Survey Reference Data Total Correct Total Points User Accuracy (%) 

Kappa 

coefficient 

a 

Map Data Vegetation Bare Ground    

0.94* 

Vegetation 18 1 18 19 94.74 

Bare Ground 0 17 17 17 100.00 

Total Correct 18 17 35     

Total Points 18 18   36   

Producer Accuracy (%) 100.00 94.44     97.22 

 Map Data Vegetated Bare Ground    

0.83* 
b 

Vegetated 18 3 18 21 85.71 

Bare Ground 0 15 15 15 100.00 

Total Correct 18 15 33     

Total Points 18 18   36   

Producer Accuracy (%) 100.00 83.33      91.67 

 Map Data Vegetated Bare Ground    

0.80* 
c 

Vegetated 60 12 60 72 83.33 

Bare Ground 0 48 48 48 100.00 

Total Correct 60 48 108     

Total Points 60 60   120   

Producer Accuracy (%) 100.00 80.00     90.00 
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  Field Survey Reference Data Total Correct Total Points User Accuracy (%) 
Kappa 

coefficient 

 Map Data Vegetation Bare Ground    

0.94* 
d 

Vegetation 17 0 17 17 100.00 

Bare Ground 1 18 18 19 94.74 

Total Correct 17 18 35     

Total Points 18 18   36   

Producer Accuracy (%) 94.44 100.00     97.22  

 Map Data Vegetation Bare Ground    

0.95* 
e 

Vegetation 58 1 58 59 98.31 

Bare Ground 2 59 59 61 96.72 

Total Correct 58 59 117     

Total Points 60 60   120   

Producer Accuracy (%) 96.67 98.33     97.5 
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Table 3.5 Confusion matrix for the classification in Port Mouton Segment Three based on a supervised classification on test points 

only; b the first iteration of the unsupervised classification for the test data set; and c the first iteration of the unsupervised 

classification for the full data set; and d the second iteration of the unsupervised classification for the test data set; and e the 

second iteration of the unsupervised classification for the full data set. For each confusion matrix mud, sand, shallow and deep 

water were merged into one bare ground group. Vegetated includes all NIR groups as well as rockweed group. Vegetation 

includes shallow and deep vegetation. Total map accuracy (%) indicated in bold. Significant z-test (p<0.05) on kappa indicated 

by asterisk (*). 

 

 

  
Field Survey Reference Data Total Correct Total Points User Accuracy (%) 

Kappa 

coefficient 

a 

Map Data Vegetation Bare Ground    

1.00* 

Vegetation 18 0 18 18 100.00 

Bare Ground 0 18 18 18 100.00 

Total Correct 18 18 36     

Total Points 18 18   36   

Producer Accuracy (%) 100.00 100.00     100.00 

 Map Data Vegetated Bare Ground    

0.94* 
b 

Vegetated 18 1 18 19 94.74 

Bare Ground 0 17 17 17 100.00 

Total Correct 18 17 35     

Total Points 18 18   36   

Producer Accuracy (%) 100.00 94.44      97.22 

 Map Data Vegetated Bare Ground    

0.92* 
c 

Vegetated 58 3 58 61 95.08 

Bare Ground 2 57 57 59 96.61 

Total Correct 58 57 115     

Total Points 60 60   120   

Producer Accuracy (%) 96.67 95.00     95.83 
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  Field Survey Reference Data Total Correct Total Points User Accuracy (%) 
Kappa 

coefficient 

 Map Data Vegetation Bare Ground    

1.00* 
d 

Vegetation 18 0  18 18 100.00 

Bare Ground 0 18  18 18 100.00 

Total Correct 18 18 36     

Total Points 18 18   36   

Producer Accuracy (%) 100.00 100.00     100.00 

 Map Data Vegetation Bare Ground    

0.95* 
e 

Vegetation 58 1 58 59 98.31 

Bare Ground 2 59 59 61 96.72 

Total Correct 58 59 117     

Total Points 60 60   120   

Producer Accuracy (%) 96.67 98.33     97.50 
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Table 3.6 Confusion matrix for the classification in Port Mouton Segment Four based on a supervised classification on test points 

only; b the first iteration of the unsupervised classification for the test data set; and c the first iteration of the unsupervised 

classification for the full data set; and d the second iteration of the unsupervised classification for the test data set; and e the 

second iteration of the unsupervised classification for the full data set. For each confusion matrix mud, sand, shallow and deep 

water were merged into one bare ground group. Vegetated includes all NIR groups as well as rockweed group. Vegetation 

includes shallow and deep vegetation. Total map accuracy (%) indicated in bold.   

 

 

 

  
Field Survey Reference Data Total Correct Total Points User Accuracy (%) 

Kappa 

coefficient 

a 

Map Data Vegetation Bare Ground    

0.95* 

Vegetation 17 0 17 17 100.00 

Bare Ground 1 24 24 25 96.00 

Total Correct  17 24  41     

Total Points 18 24   42   

Producer Accuracy (%) 94.44 100.00     97.62 

 Map Data Vegetated Bare Ground    

1.00* 
b 

Vegetated 18 0 18 18 100.00 

Bare Ground 0 24 24 24 100.00 

Total Correct 18 24  42     

Total Points 18 24   42   

Producer Accuracy (%) 100.00 100.00      100.00 

 Map Data Vegetated Bare Ground    

0.97* 
c 

Vegetated 60 2 60 62 96.77 

Bare Ground 0 78 78 78 100.00 

Total Correct 60 78 138     

Total Points 60 80   140   

Producer Accuracy (%) 100.00 97.50     98.57 
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  Field Survey Reference Data Total Correct Total Points User Accuracy (%) 
Kappa 

coefficient 

 Map Data Vegetation Bare Ground    

0.95* 
d 

Vegetation 17 0 17 17 100.00 

Bare Ground 1 24 24 25 96.00 

Total Correct 17 24 41     

Total Points 18 24   42   

Producer Accuracy (%) 94.44 100.00      97.62 

 Map Data Vegetation Bare Ground    

0.99* 
e 

Vegetation 59 0  59 59 100.00 

Bare Ground 1 80  80 81 98.77 

Total Correct 59 80 139     

Total Points 60 80   140   

Producer Accuracy (%) 98.33 100.00     99.29 
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3.4 Discussion 

 Using satellite remote sensing (SRS), we successfully classified Zostera marina 

(eelgrass) distribution in Port Joli, whereas Port Mouton and Jordan Bay proved much 

more difficult to map. Yet, the methods used to produce an unsupervised classification 

yielded similar results to a supervised maximum likelihood classification. This suggests 

that the statistical methods used in this chapter are successful at mapping eelgrass 

distribution, and could be used for eelgrass monitoring and the detection of distribution 

changes, significantly reducing the cost and effort required to collect ground truth points 

through extensive field studies. However, this technique is highly dependent on the 

quality of satellite imagery, and the biophysical characteristics of the study area, 

including water depth and clarity.  

3.4.1 Port Joli 

 The successful classification of eelgrass presence in Port Joli demonstrated that 

the unsupervised classification technique was capable of classifying eelgrass distribution. 

Overall, our results suggest that 2.02-5.71 km2 or 8.61-11.10% of the bay is covered by 

eelgrass, and 30.12-31.39% by seaweed, with a total 40-41% of vegetated habitat, which 

is essential information needed by conservation and management agencies (Environment 

Canada 2002). Furthermore, the final classification for the eelgrass bed at the head of 

Port Joli was similar in terms of bed boundaries to an exploratory 2009 segmented 

supervised GeoEye-1 image classification (Milton et al. 2009). The GeoEye-1 image only 

classified the eelgrass bed at the northwestern head of the bay, at different eelgrass 

densities (sparse and dense), opposed to this study’s presence-absence classification 

across the entire imagery. The GeoEye-1 image has a more refined spatial resolution, but 
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similar spectral resolution as the SPOT 6/7 images used in this study. Despite having 

similar bed boundaries, the 2009 classification suggests a larger bed than identified in 

2015. There are three possibilities to explain the differences between the two images. The 

first is due to the seasonal variation of eelgrass shoot density, where density in Port Joli 

peaks in August/September (Wong et al. 2013). Our imagery was collected in early July, 

compared to the GeoEye-1 image collected in late August, therefore some areas with 

lower eelgrass density may not be detectable within the SPOT 6/7 imagery. The second 

possibility is that there has been a reduction of eelgrass coverage in Port Joli since 2009, 

as experienced elsewhere in Nova Scotia (Hanson 2004) and globally (Orth et al. 2006; 

Waycott et al. 2009). Lastly, the third possibility may be due to the inherent differences 

between satellite imagery where differences in the spectral resolution, or weather 

conditions (i.e. cloud cover, water column properties), resulted in different classifications 

of eelgrass bed extent.  

 The Port Joli classification described seaweed and eelgrass vegetation artifacts in 

the middle of the bay. While in the 2015 imagery this area appeared to be bare substrate 

based on examining colour composites, a drop camera survey which occurred in 2016 in 

Port Joli found patchy eelgrass and seaweed throughout this area (Vandermeulen 2017). 

It is unknown if these artifacts indicated vegetation coverage in 2015, or if it is 

misclassification of vegetation with deeper water. Furthermore, the presence of patchy 

vegetation in this deeper portion (Vandermeulen 2017) may be too deep and/or at to 

sparse of a density to be able to be picked up by the satellite imagery. Therefore, we may 

be underestimating eelgrass and seaweed coverage in Port Joli.  
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3.4.2 Port Mouton 

 In Port Mouton, the supervised and unsupervised classification per segment 

yielded similar results. However, the classification was only to the level of vegetated 

versus non-vegetated as there was a very weak vegetation signal. For future work, a 

higher sampling effort in areas of greater water depth would help to differentiate deeper 

bare ground from deeper vegetation, and would likely have improved the classification 

across all segments. Lastly, as there were many classification artifacts in deeper water, 

vegetation was not given as percent cover of Port Mouton. 

Each segments classification was qualitatively examined using substrate data 

(Schumacher et al. In Press) and local ecological knowledge (Lee 2014) to provide 

insight into which areas may include eelgrass versus seaweed coverage (Roelfsema et al. 

2009). Segment one, including Jackie’s and Port Mouton Island classified several patches 

of vegetation between the two islands. This area traditionally has had continuous eelgrass 

beds up to the 1980s, with patchy beds observed into the 2010s (Lee 2014). During the 

2015 ground truthing surveys, this area had only very patchy vegetation remaining, with 

eelgrass and seaweeds occurring together. Therefore, the results suggest a decrease in 

eelgrass coverage around Jackie and Port Mouton Islands between 1980 and 2015. The 

vegetation classified around the outer, exposed portions of Port Mouton Island are more 

likely to be seaweed coverage, although this persists to the edge of the classification 

bounds suggesting the algorithm has difficulty determining vegetation from deeper water.  

 Segment two, from Clam Pond west to Carter’s Beach had the poorest 

classification and should be interpreted with caution. Notably the high degree of 

misclassification between deeper vegetation and deeper water around Carter’s Beach 

made it impossible to determine if vegetation extents in that area. Incorporating side-scan 
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sonar data from this area (Skinner et al. unpublished data), would likely help to improve 

the classification. In Clam Pond, and the surrounding cove, the algorithms did a much 

better job. Based on local ecological knowledge (Lee 2014) it is possible the classified 

vegetation within Clam Pond contained eelgrass, whereas the outer cove more likely to 

contained seaweed beds. If this is correct, it would be the first known existence of 

eelgrass within Clam Pond since the 1980s (Lee 2014).  

 Segment three, containing the Dyke and Jone’s Cove, was classified well within 

Jone’s Cove. Based on local ecological knowledge (Lee 2014), the distribution and extent 

of eelgrass coverage appears to have decreased since 2010 in Jone’s Cove. The extent of 

this areas eelgrass beds has been highly variable since 1930 (Lee 2014), so this recent 

change should be interpreted with caution. The Dyke is another area that has traditionally 

had eelgrass beds up until the 1980s, with an unknown distribution to the 2010s (Lee 

2014). It is unlikely that the classified vegetation pixels within the Dyke were eelgrass, as 

visual examination of colour composites did not indicate vegetation coverage, and the 

spectral signature of pixels within the Dyke differed from vegetated pixels outside the 

Dyke. This suggests that floating wrack, or something in the water column such as 

tannins, microalgae, coloured dissolved organic matter (CDOM), or suspended inorganic 

particular matter, has cause spectral confusion in the satellite image (Hossain et al. 2015).  

 Segment four, from outside of Jone’s Cove to Hunts Point, has predominantly 

rocky, exposed shores. Similar to the first segment around Port Mouton Island, the 

classification of vegetation extended to the edge of the study bounds suggesting it is 

difficult for the imagery to classify deeper vegetation, which is likely seaweed, from 

deeper water. The landward inlet behind Summerville Beach has contained an eelgrass 
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bed yet local knowledge is unsure of its distribution post 1990 (Lee 2014). It is possible 

that the pixels classified within this landward inlet were an eelgrass bed in 2015.  

3.4.3 Differences Between the Supervised and Unsupervised Algorithms 

 The end goal with all remote sensing studies is to be able to quickly classify an 

image, as autonomously as possible. Traditionally, this includes field work to sample a 

predetermined set of points, and using this data to classify an image (Horning et al. 

2010). However, the collection of enough input points is time consuming, expensive 

work, which often requires the use of differential high-precision GPS units. Eelgrass and 

other seagrass species have been successfully mapped using traditional remote sensing 

approaches at moderate and high spatial resolutions  (i.e. Ferguson and Korfmacher 1997; 

Macleod and Congalton 1998; Lathrop et al. 2006; O’Neill and Costa 2013; Hogrefe et 

al. 2014; Barrell et al. 2015). This study builds on work by Hogrefe et al. (2014) and 

Roelfsema et al. (2009) to provide a framework for eelgrass classification with minimal 

ground truth points for ecologists studying eelgrass distribution, to aid local and regional 

monitoring programs.  

 For the two bays that could be classified, accuracy values as well as kappa 

coefficients were almost identical between the supervised and unsupervised approaches. 

Furthermore, the percentage of pixels differing between the two classifications ranged 

from 4.5-14.5%, median ~13.5%; therefore, more than 85% of the image was classified 

the same by the two algorithms. Based on these results, this study makes two main 

suggestions for classifying eelgrass presence with minimal ground truth points: (i) the 

unsupervised classification approach can be used as a first step in image classification 

where an image is classified using this technique and then based on the results, targeted 

ground truth points are collected within areas classified as eelgrass versus not classified 
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as eelgrass, thus reducing the sampling effort required, or (ii) the unsupervised 

classification approach can be used to classify imagery without ground truth points but 

should rely on previous mapping projects, local ecological knowledge, and available 

depth and substrate data to aid in assigning clusters to ground cover types. This second 

suggestion will only be able to map to the level of vegetated versus non-vegetated pixels, 

and would be unable to the evaluated using traditional error evaluation methods.  

3.4.4 Eelgrass Monitoring Programs in Nova Scotia 

Eelgrass is an indicator of ecosystem health (Environment Canada 2002), as well 

as being an important ecosystem engineer in coastal ecosystems (Jones et al. 1994). As 

such, the Nova Scotia Department of Natural Resources (NS DNR), Fisheries and Oceans 

Canada (DFO), as well as local non-governmental organizations are attempting to 

understand eelgrass bed distribution and density, and quantify any changes in Nova 

Scotia. In 2009 the eelgrass bed at the head of Port Joli was classified as part of an 

exploratory analysis to examine the potential use of high-resolution satellite imagery for 

eelgrass monitoring with a joint project through NS DNR and DFO (Milton et al. 2009). 

In Port Mouton, the Friends of Port Mouton have been monitoring select eelgrass sites 

since 2010 using underwater photography and dive quadrats (Friends of Port Mouton 

2014), in response to the fallowing of the nearby finfish aquaculture site. Furthermore, in 

2015 the Atlantic Eelgrass Monitoring Consortium, partnered with SeagrassNet 

Monitoring, established a monitoring site in Jone’s Cove to understand the present state 

of the eelgrass bed and monitor for future declines using traditional dive transects and 

remote sensing (COINAtlantic 2015). Ideally, a Nova Scotia wide habitat monitoring 

should be established to inform the conservation and management of eelgrass and other 
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vegetated or non-vegetated coastal habitats (Hanson 2004). Such a large-scale effort 

likely would have to rely on remote sensing as the primary tool for eelgrass monitoring. 

If changes are noted in eelgrass bed extent, then this may warrant further field work to 

examine more specific changes with dive transects or boat based surveys. 

Our results from the classifications for both Port Mouton and Port Joli contribute 

to our current understanding of eelgrass bed extents in these two, well-studied bays. 

Furthermore, the methods developed with this current study can be used to map eelgrass 

extent elsewhere in the province, particularly those that are less well studied, to create 

baseline knowledge. These methods also provide a framework to perform change 

detection studies in eelgrass beds based on older imagery, as the unsupervised 

classification requires little input ground truth data. This may be particularly important 

for helping to determine historical baseline knowledge of eelgrass extent throughout 

Nova Scotia. It may be possible to examine eelgrass distribution since the early 2000s, 

corresponding to the launch of medium and high resolution commercial satellites, and at 

a much lower spatial resolution, back until the early 1970s with Landsat imagery 

(Hossain et al. 2015). 

3.4.5 Limitations and Considerations for Eelgrass SRS Studies  

SRS can be used to classify eelgrass presence/absence, percent cover, and density, 

as well as differentiate between different seagrass and seaweed species (Hossain et al. 

2015). The successful classification of any satellite imagery depends on a study’s 

objectives, whether the goal was to map to the level of vegetated versus non-vegetated, or 

to obtain more detailed measures of eelgrass coverage. A successful classification is also 

constrained by abiotic limitations including water clarity, which can limit the depth range 
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eelgrass can be classified within (Hossain et al. 2015). In addition, wave action, as well 

as cloud cover and fog may also obscure the satellite imagery. This study demonstrated, 

that while SRS can be a useful tool to map eelgrass distribution, it is not always 

successful at classifying eelgrass versus seaweed distribution. As such, there are several 

limitations that should be considered when planning to remotely sense eelgrass 

distribution with multispectral imagery.  

The unsupervised classification is susceptible to the same limitations presently 

faced when classifying eelgrass distribution using traditional supervised classification 

methods. First and foremost is the strong absorption of visible and NIR light by water 

(Hossain et al. 2015). Land-based vegetation classifications heavily rely on vegetation 

indices which use the ratio of reflected red to NIR light, such as normalized difference 

vegetation index (NDVI), which is very good at differentiating vegetation from non-

vegetation (Myneni et al. 1995). However, NIR light is completely absorbed by water in 

depths of a few centimetres making vegetation indices impractical to use in a submerged 

environment (Hossain et al. 2015). Therefore, it is important to acquire imagery as close 

to low tide as possible to minimize impacts of water absorption across all wavelengths. 

As SPOT 6/7, and other similar commercial satellites cross over a point on the ground at 

the same time every day (near noon in southern Nova Scotia), this can limit the use of 

archived satellite imagery as the imagery not only needs to exist, and be of good quality, 

it also needs to match the tidal cycle. This can be circumvented by acquiring new tasks 

on a day known to have a low tide at the time of image acquisition at a specific site. New 

satellite image tasking has a much higher cost per squared kilometre ($29 USD versus 

$19 USD for WorldView-2), as well as requiring a larger minimum order area (100km2 
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versus 25km2) therefore costing $475 USD for archived WorldView-2 imagery versus 

$2900 USD for new tasks (LANDinfo 2016). This cost may be prohibitive for monitoring 

programs who often operate with very small budgets.  

Determining which sensor to use also has a cost factor, which ranges from freely 

available Landsat data, to thousands of dollars for new acquisition of commercial 

satellites (i.e. SPOT, WorldView). Eelgrass distribution has been mapped with both 

Landsat and commercial satellites (Hossain et al. 2015). The newest Landsat 8 has a high 

spectral resolution covering eleven different bands; however, the smallest spatial scale 

available is at most 15 m pixels (Department of the Interior U. S. Geological Survey 

2016). This broad spatial scale may miss eelgrass, intermixed with seaweed, or at very 

low density, as was commonly observed throughout Port Mouton and Port Joli (Hossain 

et al. 2015). SPOT 6/7 data, used in this study, is mid-range in cost, at a very high spatial 

resolution of 1.5m, but has limited spectral resolution at four bands (Astrium Services 

2013). This classification may have improved with products such as WorldView-2, with 

both a high spatial resolution (0.5m) and high spectral resolution (8 bands), at a slight 

increase in price from SPOT 6/7 imagery (Digital Globe 2009). However, no suitable, 

archived WorldView-2 imagery was available for 2015 in the three study areas, at a 

suitable low tide.  

Once an image has been deemed appropriate to use based on the tidal cycle, prior 

screening of satellite imagery for water clarity and cloud coverage should be performed 

prior to purchasing. In the case of a change detection study, the date the imagery was 

collected should also be noted as there are seasonal and inter-annual differences within an 

eelgrass bed (Wong et al. 2013). Therefore, it is important to acquire imagery from the 
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same season. Furthermore, once the imagery has been acquired, and pre-processing 

completed, spectral signatures across the entire image should be examined. The spectral 

signatures may vary across large areas, and therefore have negative impacts on the 

classification.  

3.5 Conclusion 

 This chapter used archived high-resolution multispectral satellite imagery to 

classify eelgrass (Zostera marina) distribution in Port Mouton, Port Joli, and Jordan Bay. 

Each bay was run through a supervised classification with ground truth data to determine 

eelgrass presence from absence. As ground truth points are time consuming and require 

extensive field studies, an unsupervised classification was also performed without using 

ground truth points. While eelgrass presence could only be successfully classified within 

one bay due to satellite image quality, our methods were appropriate to determine 

eelgrass distribution, with the two classification approaches having more than 85% 

classification similarity. Based on these results, the unsupervised classification approach 

could be used as a first step in image classification, where targeted ground truth points 

are collected afterwards, or should rely on local ecological knowledge, previous mapping 

projects, depth, and substrate data to assign clusters to classify the imagery without the 

use of known ground truth points to map to the level of vegetated versus non-vegetated. 

These methods can be used on previous or current-years satellite imagery, on a variety of 

government or commercial optical remote sensing imagery, and can be used to classify 

imagery to be later used in a change detection study. With the recent declines in eelgrass 

(Orth et al. 2006; Garbary et al. 2014), tools that help to quantify eelgrass distribution, 

are becoming increasingly important management tools to monitor changes in eelgrass 
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beds. Any observed changes in distributions can promote future work, examining why the 

eelgrass beds are changing, and what impact this may have on the species that depend on 

them.  
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Chapter 4 Conclusion 

4.1 Use of Remote Sensing and Species Distribution Models 

This thesis examined how satellite remote sensing (SRS) and species distribution 

models (SDM) can be used to estimate or project marine macrophyte distribution. In 

chapter two, I used correlative SDMs, in conjunction with physiological thresholds, to 

project how the distribution of fucoids (Ascophyllum nodosum, Fucus vesiculosus), Irish 

moss (Chondrus crispus), Codium fragile, and kelps (Laminaria digitata, and Saccharina 

latissima) may change by 2100 under projected climate warming. I found that 

distribution shifts are species-specific and depend on the choice of climate model and 

RCP scenario. Kelp and fucoids are expected to have an overall net loss of latitudinal 

habitat range due to a northward range shift and latitudinal range contraction. In contrast 

C. crispus and C. fragile are projected to experience lattitudinal range expansions due to 

only small distribution shifts at the southern edge yet large shifts at the northern edge. 

Furthermore, if emission levels continue to correspond with the RCP 8.5 scenario, south 

of Newfoundland, the mid-intertidal zone may see a transition from A. nodosum to F. 

vesiculosus dominance and the subtidal zone may see a transition from kelp to C. fragile 

dominance. Along each species northern boundary there will be northward shifts as well 

as increases in abundance.  

Climate warming impacts aren’t limited to seaweeds; eelgrass (Zostera marina) is 

also expected to experience range shifts, as well as benefit from Arctic warming (Olesen 

et al. 2015). Thus, marine macrophyte coverage is projected to increase along both rocky 

and sandy shores within the Arctic, with potential benefits to associated species and the 

ecosystem functions and services these vegetated habitats provide (Krause-Jensen and 

Duarte 2014). 
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 In chapter three I compared a supervised and unsupervised classification 

technique to classify eelgrass distribution with archived high-resolution multispectral 

satellite imagery in three bays in southwestern Nova Scotia. I found that both the 

supervised and the unsupervised classification techniques, produced similar 

classifications (>85% similarity), and at similarly high accuracy values (>90%). 

Therefore, the unsupervised classification technique could be used to classify satellite 

imagery with minimal input ground truth points. However, this technique depends on 

high-quality satellite imagery, and on the biophysical properties of the study area, to 

successfully map eelgrass presence and absence.  

The use of SRS is not limited to eelgrass distribution mapping. Multispectral 

satellite imagery can be used to quantify the distribution of other marine macrophytes 

including seaweeds (Taylor et al. 2001; Kutser et al. 2006; Vahtmae and Kutser 2007). 

Intertidal species such as fucoids and C. crispus would be ideal for this type of 

monitoring as they are minimally obscured by effects from the water column. Subtidal 

species such as kelps or C. fragile would be more difficult to map as they occur in much 

deeper waters. 

4.2 Management Applications 

As canopy-forming marine macrophytes provide critical ecosystem services, 

understanding their past, present and future distributions will provide insight into how 

these services have changed, or may continue to change in the future. If the seaweed 

species examined in this thesis shift north as projected by 2100, there may be impacts on 

the commercial fish and invertebrate species that depend on them. Understanding how 

fish habitat may be impacted by climate warming, will be useful to inform policy makers 
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and management agencies in charge of managing commercial stocks. Furthermore, as A. 

nodosum is commercially harvested throughout Maine (Arbuckle et al. 2014) and the 

Canadian Maritimes (Vandermeulen 2013), knowing the impacts of projected climate 

warming will help to inform managers when determining harvest allowances.  

In addition to the threats facing eelgrass communities presently, continued climate 

warming will also impact eelgrass throughout Nova Scotia and the NW Atlantic (Orth et 

al. 2006). This thesis provides a methods framework for quantifying eelgrass distribution, 

which can be used for long-term monitoring throughout Nova Scotia. This framework is 

unique as it requires minimal ground truth points, and can use archived satellite imagery, 

both of which greatly reduce the cost for implementing monitoring programs. 

4.3 Future Research 

 The results of this thesis spur several future research questions. Firstly, the SDMs 

created are at a very broad range in scale. Therefore, they can only capture broad, 

latitudinal range shifts in seaweed distributions. Regional species distribution models are 

better adapted for determining more specific shifts in distributions and identifying 

potential local refugia from climate warming (Lowen and DiBacco 2017). Cold-water 

upwelling along the exposed Atlantic Coast may allow A. nodosum¸ L. digitata, and S. 

latissima to persist in Nova Scotia in 2100. Therefore, it would be interesting to see what 

regional models project for seaweed distribution by 2100 in the Canadian Maritimes. 

Furthermore, currently no SDMs and, associated projections into future climate exist for 

eelgrass distribution for the entire NW Atlantic, or at regional scales. As an ecologically 

significant species (DFO 2009), both a present-day SDM and future projections would be 

highly valuable to inform eelgrass conservation and management. With these 
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suggestions, the results from the future projections from this thesis, and the two 

suggestions above, can also be compared to climate velocities, another tool used to 

project how species may respond to continued warming (Pinsky et al. 2013). Climate 

velocities complement SDM as they do not incorporate the biological response, or any 

occurrence records (Hamann et al. 2015). Lastly, while the methods for the eelgrass 

remote sensing study were successful at classifying eelgrass distribution in Port Joli, next 

steps would include using these methods in a change detection study based on past 

satellite images or images of future years, to determine its effectiveness as a long-term 

monitoring tool.  
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Appendix B: Model Metrics 

 

Figure B.1 Change in Ascophyllum nodosum average model regularized training and test 

gain (+SE) and AUC (area under the curve) when a variable is removed from the 

model (See text for detailed explanation). Letters indicate significant change in 

training gain based on whether 95% CI overlap or not. 

Figure B.2 Change in Fucus vesiculosus average model regularized training and test gain 

(+SE) and AUC (area under the curve) when a variable is removed from the 

model (See text for detailed explanation). Letters indicate significant change in 

training gain based on whether 95% CI overlap or not. 
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Figure B.3 Change in Codium fragile average model regularized training and test gain 

(+SE) and AUC (area under the curve) when a variable is removed from the 

model (See text for detailed explanation). Letters indicate significant change in 

training gain based on whether 95% CI overlap or not. 

Figure B.4 Change in Laminaria digitata average model regularized training and test gain 

(+SE) and AUC (area under the curve) when a variable is removed from the model 

(See text for detailed explanation). Letters indicate significant change in training 

gain based on whether 95% CI overlap or not.  
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Figure B.5 Change in Saccharina latissima average model regularized training and test 

gain (+SE) and AUC (area under the curve) when a variable is removed from the 

model (See text for detailed explanation). Letters indicate significant change in 

training gain based on whether 95% CI overlap or not. 

 

Table B.1 Order of variables removed from each model. The top variable is least 

important in developing the model, and the bottom variable was the most 

important for predicting the relative probability of species presence by the average 

test gain. Asterisk denotes that the variable was used in best model. See Table 2 

for abbreviations. 

 

  

A. nodosum F. vesiculosus C. crispus C. fragile S. latissima L. digitata 

AugMaxSAT SmrMeaSSS SmrMeaSIC AugMaxSAT SmrMeaSSS SmrMinSST 

SmrMinSIC SmrMinSST* SmrMinSIC SmrMinSST AugMaxSAT WntMaxSAT 

SmrMinSST AugMaxSAT* SmrMeaSSS SmrMinSIC SmrMinSST WntMeaSSS 

WntMeaSSS SmrMinSIC* AugMaxSAT SmrMeaSSS WntMaxSAT AugMaxSAT 

WntMaxSAT* WntMaxSAT* WntMaxSAT WntMaxSAT SmrMinSIC SmrMeaSSS 

AugMaxSST* AugMaxSST* WntMeaSSS* WntMeaSSS* WntMeaSSS* SmrMeaSIC 

SmrMeaSIC* SmrMeaSIC* SmrMinSST* SmrMeaSIC* AugMaxSST* SmrMinSIC* 

SmrMeaSSS* WntMaxSIC* WntMaxSIC* WntMaxSIC* SmrMeaSIC* WntMaxSIC* 

WntMaxSIC* WntMeSSS* AugMaxSST* AugMaxSST* WntMaxSIC* AugMaxSST* 
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Appendix C: Physiological Thresholds 

Table C.1 Physiological thresholds used in this study. Growth and survival of seaweeds 

from Atlantic Canada was monitored in a controlled laboratory experiment at 

water temperatures of 12 to 29°C over the course of 8 weeks. NA indicates 

growth type was not observed across these temperatures. Data from Wilson et al. 

(2015).  

 

 

 

 

 

 

 

 

 

 

 

 

Table C.2 Present-day (1980-2015), mid-century (2040-2050), and end-century (2090-

2100) sea surface temperature isotherms (°N) denoting the six temperatures used 

as physiological thresholds. Mid-century and end-century are the average relative 

isotherm of GFDL and IPSL. Latitude rounded to nearest half degree in text. 

 

Time RCP 12°C 20°C 23°C 26°C 29°C 

1980-2015 NA 55.72 47.76 41.92 41.25 35.58 

2040-2050 

2.6 56.09 47.82 43.21 42.81 38.45 

8.5 56.18 48.17 46.26 43.81 38.80 

2090-2100 

2.6 56.09 47.87 43.20 41.79 38.75 

8.5 66.21 48.48 48.37 48.13 40.86 

 

 

Species Good 

growth 

Reduced 

growth 

Reduced growth/ 

partial mortality 

Complete 

mortality 

A. nodosum 12-22°C 23-25°C 26-28°C ≥29°C 

F. vesiculosus 12-25°C NA 26-28°C ≥29°C 

C. crispus 12-28°C ≥29°C NA NA 

Codium 12-25°C ≥26°C NA NA 

L. digitata 12-19°C NA 20-22°C ≥23°C 

S. latissima 12-19°C NA 20-22°C ≥23°C 
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Appendix D: Future Projections 

Figure D.1 Ascophyllum nodosum average relative northern and southern distribution limits (n=4, ±SE) over different time periods 

using occurrence records (OR), Maxent (Mxt), physiological thresholds (PT), and climate projections (RCP 2.6, 8.5 for two 

climate models). Grey bars show continuous distribution and black dots indicating patchy distribution. The PT colours indicate 

SST of 12-22°C (green, good growth), 23-25°C (yellow, reduced growth), 25-28°C (red, reduced growth and partial mortality), 

and ≥29°C (dark red, complete mortality.)
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Figure D.2 Average Maxent model output (n=4) for Ascophyllum nodosum for GFDL 

RCP 2.6 over a 2006-2015, b 2040-2050, and c 2090-2100, and for IPSL RCP 2.6 

over d 2006-2015, e 2040-2050, and f 2090-2100 with corresponding 

physiological thresholds (PT). PT were overlaid over the distribution to show 

areas of good growth (green), reduced growth (yellow-orange), reduced growth 

and partial mortality (pink-red,), and complete mortality (dark red). Data is in an 

equal-area projection. 
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Figure D.3 Fucus vesiculosus average relative northern and southern distribution limits (n=5, ±SE) over different time periods using 

occurrence records (OR), Maxent (Mxt), physiological thresholds (PT), and climate projections (RCP 2.6, 8.5 for two climate 

models). Grey bars show continuous distribution and black dots indicating patchy distribution. The PT colours indicate SST of 

12-25°C (green, good growth), 25-28°C (yellow, reduced growth and partial mortality), and ≥29°C (red, complete mortality). 
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Figure D.4 Average Maxent model output (n=5) for Fucus vesiculosus for GFDL RCP 

2.6 over a 2006-2015, b 2040-2050, and c 2090-2100, and for IPSL RCP 2.6 over 

d 2006-2015, e 2040-2050, and f 2090-2100 with corresponding physiological 

thresholds (PT). PT were overlaid over the distribution to show areas of good 

growth (green), reduced growth and partial mortality (orange), and complete 

mortality (red). Data is in an equal-area projection.
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Figure D.5 Chondrus crispus average relative northern and southern distribution limits (n=4, ±SE) over different time periods using 

occurrence records (OR), Maxent (Mxt), physiological thresholds (PT), and climate projections (RCP 2.6, 8.5 for two climate 

models). Grey bars show continuous distribution and black dots indicating patchy distribution. The PT colours indicate SST of 

12-28°C (green, good growth), and ≥29°C (yellow, poor growth). 
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Figure D.6 Average Maxent model output (n=4) for Chondrus crispus for GFDL RCP 2.6 

over a 2006-2015, b 2040-2050, and c 2090-2100, and for IPSL RCP 2.6 over d 

2006-2015, e 2040-2050, and f 2090-2100 with corresponding physiological 

thresholds (PT). PT were overlaid over the distribution to show areas of good 

growth (green), and reduced growth (yellow-orange). Data is in an equal-area 

projection.
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Figure D.d7 Codium fragile average relative northern and southern distribution limits (n=4, ±SE) over different time periods using 

occurrence records (OR), Maxent (Mxt), physiological thresholds (PT), and climate projections (RCP 2.6, 8.5 for two climate 

models). Grey bars show continuous distribution and black dots indicating patchy distribution. The PT colours indicate SST of 

12-25°C (green, good growth) and >25°C (yellow, reduced growth).
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Figure D.8 Average Maxent model output (n=4) for Codium fragile for GFDL RCP 2.6 

over a 2006-2015, b 2040-2050, and c 2090-2100, and for IPSL RCP 2.6 over d 

2006-2015, e 2040-2050, and f 2090-2100 with corresponding physiological 

thresholds (PT). PT were overlaid over the distribution to show areas of good 

growth (green), and reduced growth (yellow-orange). Data is in an equal-area 

projection.
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Figure D.9 Saccharina latissima average relative northern and southern distribution limits (n=5, ±SE) over different time periods 

using occurrence records (OR), Maxent (Mxt), physiological thresholds (PT), and climate projections (RCP 2.6, 8.5 for two 

climate models). Grey bars show continuous distribution and black dots indicating patchy distribution. The PT colours indicate 

SST of 12-19°C (green, good growth), 20-22°C (yellow, reduced growth and partial mortality), and >22°C (red, complete 

mortality).
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Figure D.10 Average Maxent model output (n=5) for Saccharina latissima for GFDL 

RCP 2.6 over a 2006-2015, b 2040-2050, and c 2090-2100, and for IPSL RCP 2.6 

over d 2006-2015, e 2040-2050, and f 2090-2100 with corresponding 

physiological thresholds (PT). PT were overlaid over the distribution to show 

areas of good growth (green), reduced growth and partial mortality (yellow and 

complete mortality (orange-red). Data is in an equal-area projection.
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Figure D.11 Laminaria digitata average relative northern and southern distribution limits (n=4, ±SE) over different time periods using 

occurrence records (OR), Maxent (Mxt), physiological thresholds (PT), and climate projections (RCP 2.6, 8.5 for two climate 

models). Grey bars show continuous distribution and black dots indicating patchy distribution. The PT colours indicate SST of 

12-19°C (green, good growth), 20-22°C (yellow, reduced growth and partial mortality), and >22°C (red, complete mortality).



 

 

 

Figure D.12 Average Maxent model output (n=5) for Laminaria digitata for GFDL RCP 

2.6 over a 2006-2015, b 2040-2050, and c 2090-2100, and for IPSL RCP 2.6 over 

d 2006-2015, e 2040-2050, and f 2090-2100 with corresponding physiological 

thresholds (PT). PT were overlaid over the distribution to show areas of good 

growth (green), reduced growth and partial mortality (yellow), and complete 

mortality (orange-red). Data is in an equal-area projection. 
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Appendix E: Port Mouton and Port Joli Classification 

 
Figure E.1 Training sites spectral signature plots used to build a the supervised maximum 

likelihood classification, and b the unsupervised classification first iteration 

maximum likelihood and c second iteration maximum likelihood classification.
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Figure E.2 Supervised maximum likelihood classification in Port Joli, on all four bands which were atmospherically corrected, run 

through a 3x3 majority filter, land and deep water (>8m) masked out run through a 3x3 majority filter. The classification was 

overlaid over a true colour composite. Dark grey is background data outside the satellite imagery bounds. 
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Figure E.3 First iteration of the unsupervised classification in Port Joli showing the results of a maximum likelihood classification, 

based on training sites created with ISOCLUST, on all four bands which were atmospherically corrected, run through a 3x3 

majority filter, land and deep water (>8m) masked out run through a 3x3 majority filter. The classification was overlaid over a 

true colour composite. Dark grey is background data outside the satellite imagery bounds. 
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Figure E.4 Second iteration of the unsupervised classification in Port Joli showing the results of a maximum likelihood classification, 

based on training sites created with ISOCLUST, on all four bands which were atmospherically corrected, run through a 3x3 

majority filter, land and deep water (>8m) masked out run through a 3x3 majority filter. The classification was overlaid over a 

true colour composite. Dark grey is background data outside the satellite imagery bounds. 
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Figure E.5 Training sites spectral signature plots used to build a supervised maximum 

likelihood classification, b the first maximum likelihood classification from the 

first ISOCLUST run, for the whole of Port Mouton. 
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Figure E.6 Supervised maximum 

likelihood classification in Port 

Mouton, on all four bands which 

were atmospherically corrected, run 

through a 3x3 majority filter, land 

and deep water (>8m) masked out 

run through a 3x3 majority filter. 

The classification was overlaid over 

a true colour composite. Dark grey is 

background data outside the satellite 

imagery bounds. 
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Figure E.7 First iteration of the 

unsupervised classification in 

Port Mouton showing the results 

of a maximum likelihood 

classification, based on training 

sites created with ISOCLUST, 

on all four bands which were 

atmospherically corrected, run 

through a 3x3 majority filter, 

land and deep water (>8m) 

masked out run through a 3x3 

majority filter. The classification 

was overlaid over a true colour 

composite. Dark grey is 

background data outside the 

satellite imagery bounds. 
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Figure E.8 First iteration of the unsupervised 

classification in Port Mouton showing the 

results of a maximum likelihood 

classification, based on training sites created 

with ISOCLUST for Segment one. The 

classification was run on all four bands which 

were atmospherically corrected, run through 

a 3x3 majority filter, land and deep water 

(>8m) masked out run through a 3x3 majority 

filter. The classification was overlaid over a 

true colour composite. Dark grey is 

background data outside the satellite imagery 

bounds. 
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Figure E.9 First iteration of the unsupervised 

classification in Port Mouton showing the 

results of a maximum likelihood classification, 

based on training sites created with 

ISOCLUST for Segment two. The 

classification was run on all four bands which 

were atmospherically corrected, run through a 

3x3 majority filter, land and deep water (>8m) 

masked out run through a 3x3 majority filter. 

The classification was overlaid over a true 

colour composite. Dark grey is background 

data outside the satellite imagery bounds. 
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Figure E.10 First iteration of the 

unsupervised classification in Port Mouton 

showing the results of a maximum 

likelihood classification, based on training 

sites created with ISOCLUST for Segment 

three. The classification was run on all four 

bands which were atmospherically 

corrected, run through a 3x3 majority filter, 

land and deep water (>8m) masked out run 

through a 3x3 majority filter. The 

classification was overlaid over a true colour 

composite. Dark grey is background data 

outside the satellite imagery bounds. 
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Figure E.11 First iteration of the unsupervised classification in Port Mouton showing the results of a maximum likelihood 

classification, based on training sites created with ISOCLUST for Segment four. The classification was run on all four bands which 

were atmospherically corrected, run through a 3x3 majority filter, land and deep water (>8m) masked out run through a 3x3 majority 

filter. The classification was overlaid over a true colour composite. Dark grey is background data outside the satellite imagery bounds. 
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Figure E.12 Training sites spectral signature plots for the training sites created with 

ISOCLUST to be used in the maximum likelihood classification for the first 

iteration of the unsupervised classification for a Segment one, b two, c three, and 

d four in Port Mouton. 
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Figure E.13 Second iteration of the 

unsupervised classification in Port 

Mouton showing the results of a 

maximum likelihood classification, 

based on training sites created with 

ISOCLUST for Segment one. The 

classification was run on all four bands 

which were atmospherically corrected, 

run through a 3x3 majority filter, land 

and deep water (>8m) masked out run 

through a 3x3 majority filter. The 

classification was overlaid over a true 

colour composite. Dark grey is 

background data outside the satellite 

imagery bounds. 
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Figure E.14 Second iteration of the unsupervised 

classification in Port Mouton showing the results of a 

maximum likelihood classification, based on training 

sites created with ISOCLUST for Segment two. The 

classification was run on all four bands which were 

atmospherically corrected, run through a 3x3 

majority filter, land and deep water (>8m) masked 

out run through a 3x3 majority filter. The 

classification was overlaid over a true colour 

composite. Dark grey is background data outside the 

satellite imagery bounds. 
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Figure E.15 Second iteration of the unsupervised 

classification in Port Mouton showing the results of a 

maximum likelihood classification, based on training 

sites created with ISOCLUST for Segment three. The 

classification was run on all four bands which were 

atmospherically corrected, run through a 3x3 majority 

filter, land and deep water (>8m) masked out run 

through a 3x3 majority filter. The classification was 

overlaid over a true colour composite. Dark grey is 

background data outside the satellite imagery bounds. 
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Figure E.16 Second iteration of the unsupervised classification in Port Mouton showing the results of a maximum likelihood 

classification, based on training sites created with ISOCLUST for Segment four. The classification was run on all four bands which 

were atmospherically corrected, run through a 3x3 majority filter, land and deep water (>8m) masked out run through a 3x3 majority 

filter. The classification was overlaid over a true colour composite. Dark grey is background data outside the satellite imagery 

bounds..  
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Figure E.17 Training sites spectral signature plots for the training sites created with 

ISOCLUST to be used in the maximum likelihood classification for the second 

iteration of the unsupervised classification for a Segment one, b two, c three, and 

d four in Port Mouton. 
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Figure E.18 Supervised maximum 

likelihood classification in Port Mouton 

for Segment one on all four bands 

which were atmospherically corrected, 

run through a 3x3 majority filter, land 

and deep water (>8m) masked out run 

through a 3x3 majority filter. The 

classification was overlaid over a true 

colour composite. Dark grey is 

background data outside the satellite 

imagery bounds. 
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Figure E.19 Supervised maximum likelihood 

classification in Port Mouton for Segment two on all 

four bands which were atmospherically corrected, run 

through a 3x3 majority filter, land and deep water 

(>8m) masked out run through a 3x3 majority filter. 

The classification was overlaid over a true colour 

composite. Dark grey is background data outside the 

satellite imagery bounds. 
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Figure E.20 Supervised maximum likelihood 

classification in Port Mouton for Segment three on all 

four bands which were atmospherically corrected, run 

through a 3x3 majority filter, land and deep water 

(>8m) masked out run through a 3x3 majority filter. The 

classification was overlaid over a true colour composite. 

Dark grey is background data outside the satellite 

imagery bounds. 
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Figure E.21 Supervised maximum likelihood classification in Port Mouton for Segment four on all four bands which were 

atmospherically corrected, run through a 3x3 majority filter, land and deep water (>8m) masked out run through a 3x3 majority filter. 

The classification was overlaid over a true colour composite. Dark grey is background data outside the satellite imagery bounds.. 
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Figure E.22 Training sites spectral signature plots for the training sites created with 

training data to be used in the supervised maximum likelihood classification for a 

Segment one, b two, c three, and d four in Port Mouton. 
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Table E.1 Confusion matrix for classifying Port Mouton for the whole bay based on test data points for the a supervised classification, 

b first iteration of the unsupervised classification, and c full data set for the first iteration of the unsupervised classification. 

Submerged seaweed and rockweed band are merged into one seaweed group, and mud, sand, shallow and deep water were 

merged into one bare ground group for the supervised classification. All groups for NIR and the rockweed band are merged 

into one vegetated group for the unsupervised classification. Total map accuracy (%) in bold.  

 

a 

 
Field Survey Reference Data Total Correct 

Total 

Points 

User 

Accuracy (%) 

Kappa 

coefficient 

Map Data Seagrass Seaweed Bare Ground 
   

0.91* 

Eelgrass 22 2 3 22 27 81.48 

Seaweed 0 28 1 28 29 96.55 

Bare Ground 0 0 56 56 56 100.00 

Total Correct 22 28 56 106   

Total Points 22 30 60  112  

Producer Accuracy (%) 100.00 93.33 93.33   94.64 

b 

Map Data Vegetated Bare Ground  
  

0.93* 

Vegetated 52 4 52 56 92.86 

Bare Ground 0 56  56 56 100.00 

Total Correct 52 56 108     

Total Points 52 60   112   

 Producer Accuracy (%) 100.00 93.33     96.43  

c 

Map Data Vegetated Bare Ground 
   

0.89* 

Vegetated 170 16 170  186 91.40 

Bare Ground 5 184  184 189 97.35 

Total Correct 170 184 354     

Total Points 175 200   375   

Producer Accuracy (%) 97.14 92.00     94.40 
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Appendix F: Jordan Bay Classification 

Methods 

 Additional visually identified points could not be added to the ground survey 

points for Jordan Bay, outlined in section 3.2.2, as the colour composites were quiet dark 

in shallow areas. Furthermore, in addition to the image preprocessing outlined in section 

3.2.3, Jordan Bay was subjected to a sun glint correction (Hedley et al. 2005). Lastly, the 

exploratory ISOCLUST did not pull out a cluster that could be used to determine a depth 

to set as a deep water mask. Therefore, all analysis were performed on depths shallower 

then 12m based on Zostera marina published maximum depth limit (DFO 2009). 

 The supervised maximum likelihood classification (section 3.2.4) was performed 

on all four bands (land and deep water masked out) on four levels of preprocessed data: 

raw output, only atmospherically corrected, atmospherically corrected with a 3 x 3 

median filter, and atmospherically corrected, sun glint correction applied with a 3 x 3 

median filter. All classifications were subjected to a 3 x 3 majority filter. In this initial 

exploratory analysis, all points were used as training data to attempt to have as much data 

as possible to train the classification, therefore there were no test points remaining to 

create the confusion matrix. These same four levels of preprocessed data were also run 

through an ISOCLUST analysis with 3 iterations, up to 50 clusters, and 40 minimum 

pixels for training sites. These clusters were analyzed in the same methods as section 

3.2.4, to label a cluster as a ground cover type. 

An unsupervised K-means clustering analysis was performed on the raw data, and 

atmospherically corrected, sun glint correction applied with a 3 x 3 median filter data, 

both with land and 12m depth masked out to attempt to pull out a cluster that could be 
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denoted as “shallow/intertidal zone”, that could then be used to run the ISOCLUST and 

maximum likelihood classification. 

Lastly, Jordan Bay was broken up into western and eastern side, to attempt 

account for potential differences in spectral signatures between different areas of the bay. 

Spectral signature plots for ground cover were created, keeping each individual training 

site isolated. The west and east side of the bay were then subjected to a maximum 

likelihood classification, and a 3 x 3 majority filter.  

Results 

The maximum likelihood classification on the four levels of processed data were 

examined (Figures F.1-F.4), as well as the spectral signatures plot (Figure F.5). Each 

classification provided similar results and similar spectral curves, with strong 

misclassification between ground cover type. 

The ISOCLUST analysis on the four levels of processed data were examined to 

label clusters as specific ground cover types (Figures F.6-F.9). Very few clusters could be 

identified as a specific ground cover type, and these clusters only corresponded to sand 

bars, and the rockweed band. 

The k-means clustering algorithm on the raw data (Figure F.10) and 

atmospherically corrected, sun glint correction applied with a 3 x 3 median filter data 

(Figure F.11) provided similar results as the ISOCLUST analysis. No “shallow/intertidal 

zone” could be created from the clusters.   

Examining the spectral signatures plot for each ground cover type for each 

individual training site, there was little difference between the west and east side of the 

bay (Figures F.12-F.13). Upon running a separate MLC classification for the west and 
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east side of the bay (Figures F.14-F.17) there was still strong misclassification between 

ground cover types. Therefore, based on the poor classification from these four different 

approaches, the imagery for Jordan Bay was deemed of too poor quality to be included as 

a final product of seagrass classification.  

 
Figure F.1 Maximum likelihood classification on the raw imagery, with all four bands, 

land and water >12m masked out, run though a 3x3 majority filter, overlaid over 

the true colour composite. Dark grey is background data outside the satellite 

imagery bounds. 
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Figure F.2 Maximum likelihood classification on the atmospherically corrected imagery, 

with all four bands, land and water >12m masked out, run though a 3x3 majority 

filter, overlaid over the true colour composite. Dark grey is background data 

outside the satellite imagery bounds. 
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Figure F.3 Maximum likelihood classification on the atmospherically corrected, and 3x3 

median filter imagery, with all four bands, land and water >12m masked out, run 

though a 3x3 majority filter, overlaid over the true colour composite. Dark grey is 

background data outside the satellite imagery bounds. 
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Figure F.4 Maximum likelihood classification on the atmospherically corrected, sun glint 

corrected, and 3x3 median filter imagery, with all four bands, land and water 

>12m masked out, run though a 3x3 majority filter, overlaid over the true colour 

composite. Dark grey is background data outside the satellite imagery bounds. 
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Figure F.5 Spectral signatures plot for the training sites used to create the maximum 

likelihood classification for a raw imagery, b only atmospherically corrected, c 

atmospherically corrected with a 3x3 median filter, and d atmospherically 

corrected, sun glint correction applied with a 3x3 median filter  
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Figure F.6 ISOCLUST analysis on the raw imagery, with all four bands, land and water 

>12m masked out, overlaid over the true colour composite. Dark grey is 

background data outside the satellite imagery bounds. 
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Figure F.7 ISOCLUST analysis on the atmospherically corrected imagery, with all four 

bands, land and water >12m masked out, overlaid over the true colour composite. 

Dark grey is background data outside the satellite imagery bounds. 
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Figure F.8 ISOCLUST analysis on the atmospherically corrected, and 3x3 median filter 

imagery, with all four bands, land and water >12m masked out, overlaid over the 

true colour composite. Dark grey is background data outside the satellite imagery 

bounds. 

  



 

194 

 

 
Figure F.9 ISOCLUST analysis on the atmospherically corrected, sun glint corrected, and 

3x3 median filter imagery, with all four bands, land and water >12m masked out, 

overlaid over the true colour composite. Dark grey is background data outside the 

satellite imagery bounds. 
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Figure F.10 K-means clustering analysis on the raw imagery, with all four bands, land 

and water >12m masked out, overlaid over the true colour composite. Dark grey is 

background data outside the satellite imagery bounds. 
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Figure F.11 K-means clustering analysis on the atmospherically corrected, sun glint 

corrected, and 3x3 median filter imagery, with all four bands, land and water 

>12m masked out, overlaid over the true colour composite. Dark grey is 

background data outside the satellite imagery bounds. 
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Figure F.12 Spectral signatures plot for blue, green, red, and NIR bands with land, and 

water >12m masked out, on raw imagery for a sand, b seaweed, c seagrass, d 

seaweed/seagrass mix, e marshgrass, f shallow water, and g deep water. Black 

lines indicate training sites on the east side of the bay, grey lines indicate training 

sites on the west side of the bay, orange line indicates the average value of the 

training sites as a whole  
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Figure F.13 Spectral signature plot for blue, green, red, and NIR bands with land, and 

water >12m masked out, on imagery that was atmospherically corrected, sun glint 

corrected, as well as run through a 3x3 median filter for a sand, b seaweed, c 

seagrass, d seaweed/seagrass mix, e marshgrass, f shallow water, and g deep 

water. Black lines indicate training sites on the east side of the bay, grey lines 

indicate training sites on the west side of the bay, orange line indicates the 

average value of the training sites as a whole. 
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Figure F.14 Maximum likelihood classification on the raw imagery, with all four bands, 

land and water >12m masked out, run though a 3x3 majority filter, overlaid over 

the true colour composite, for the east side of the bay. Dark grey is background 

data outside the satellite imagery bounds. 
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Figure F.15 Maximum likelihood classification on the atmospherically corrected, sun 

glint corrected, and 3x3 median filter imagery, with all four bands, land and water 

>12m masked out, run though a 3x3 majority filter, overlaid over the true colour 

composite, for the east side of the bay. Dark grey is background data outside the 

satellite imagery bounds.  
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Figure F.14 Maximum likelihood classification on the raw imagery, with all four bands, 

land and water >12m masked out, run though a 3x3 majority filter, overlaid over 

the true colour composite, for the west side of the bay. Dark grey is background 

data outside the satellite imagery bounds. 
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Figure F.15 Maximum likelihood classification on the atmospherically corrected, sun 

glint corrected, and 3x3 median filter imagery, with all four bands, land and water 

>12m masked out, run though a 3x3 majority filter, overlaid over the true colour 

composite, for the west side of the bay. Dark grey is background data outside the 

satellite imagery bounds. 


