

FAST CLUSTERING WITH NOISE REMOVAL FOR LARGE DATASETS

 by

Afees Adegoke Odebode

Submitted in partial fulfillment of the requirements

for the degree of Master of Computer Science

at

Dalhousie University

Halifax, Nova Scotia

August 2017

© Copyright by Afees Adegoke Odebode, 2017

ii

TABLE OF CONTENTS

LIST OF TABLES ... iv

LIST OF FIGURES .. v

ABSTRACT ... vii

LIST OF ABBREVIATIONS USED .. viii

ACKNOWLEDGEMENTS .. ix

CHAPTER 1 INTRODUCTION... 1

1.1 MOTIVATION ... 2

1.2 OVERVIEW OF THE PROPOSED ALGORITHMS .. 3

1.3 THESIS OUTLINE ... 4

CHAPTER 2 RELATED WORK ... 5

2.1 CLUSTER ANALYSIS .. 5

2.2 CLUSTERING METHODS .. 7

2.2.1 PARTITIONING METHODS .. 7

2.2.2 HIERARCHICAL METHODS .. 9

2.2.3 DENSITY BASED METHODS ... 10

2.3 ADVANCED METERING INFRASTRUCTURE .. 11

2.4 SMART METERS .. 12

2.5 CLUSTERING AND SMART METER DATA ... 14

2.5 OUTLIER DETECTION AND DATA CLUSTERING 16

2.6 RECENT DEVELOPMENT IN FAST DATA CLUSTERING 17

CHAPTER 3 FAST CLUSTERING WITH NOISE REMOVAL 18

3.1 TIME SERIES DATA CLUSTERING ... 18

3.2 SIMILARITY MEASURE ... 21

3.2.1 MINKOWSKI DISTANCE ... 22

3.2.2 EUCLIDEAN FRAMEWORK ... 22

3.3 THREE NOVEL CLUSTERING METHODS: KD, KDS AND KDSD 22

3.3.1 DATA PREPARATION ... 25

iii

3.3.2 DETAILS OF THE PROPOSED ALGORITHMS 33

3.3.3 COMPLEXITY AND RUN-TIME ANALYSIS OF THE ALGORITHMS 36

3.3.4 SAMPLING TECHNIQUE .. 37

CHAPTER 4 EXPERIMENTAL RESULTS ... 38

4.1 EXPERIMENTAL DESIGN .. 38

4.2 EXPERIMENTAL RESULTS OF KM ... 39

4.3 EXPERIMENTAL RESULTS OF KD ... 40

4.4 EXPERIMENTAL RESULTS OF KDS AND KDSD 42

4.4.1 KDS AND KDSD WITH 1% SAMPLE .. 42

4.4.2 KDS AND KDSD WITH 2% SAMPLE .. 48

4.4.3 SUMMARY OF KDS RESULTS .. 55

4.4.4 SUMMARY OF KDSD RESULTS.. 56

CHAPTER 5 CONCLUSION AND FUTURE WORK ... 58

5.1 CONCLUSION ... 58

5.2 FUTURE WORK .. 59

BIBLIOGRAPHY ... 60

APPENDIX: SAMPLE CONSUMPTION DATA.. 65

iv

LIST OF TABLES

Table 3.1 Average Temperature between Nov 15th – Dec. 15th 2015 29

Table 3.2 Average Temperature (Weekdays Only) .. 30

Table 3.3 Temperature sorted in order(ascending) ... 31

Table 3.4 Temperature Variations .. 31

Table 4.1 DBSCAN Anomaly Detection on Cluster ... 40

Table 4.2 Outlier Detection 1% Sample .. 42

Table 4.3 Predicted Cluster from remaining Sample (198000) 44

Table 4.4 Time taken to Clean the remaining Sample ... 44

Table 4.5 Predicted Clusters Using SKNN .. 45

Table 4.6 Time Taken to Clean the remaining Clusters ... 45

Table 4.7 Predicted Cluster with 5% Sample SKNN... 46

Table 4.8 Time taken to clean the remaining Cluster .. 46

Table 4.9 Initial Cluster from 2% Sample ... 48

Table 4.10 Predicted Cluster with 1% SKNN ... 50

Table 4.11 Time taken to clean the remaining Sample ... 50

Table 4.12 Predicted Clusters on 2% Sample ... 51

Table 4.13 Time Taken to Clean each Cluster (SKNN 2%) ... 51

Table 4.14 Predicted Clusters (SKNN 5%) .. 53

Table 4.15 Time taken to Clean the Clusters (SKNN 5%) ... 53

Table 4.16 Predicted Cluster From KD .. 54

Table 4.17 Running Times for KDS Algorithm ... 55

Table 4.18 Cluster and noise points for KDS ... 55

Table 4.19 Running Times for KDSD Algorithm .. 56

Table 4.20 Cluster and noise points for KDSD .. 56

Table 4.21 Cluster Overlapping Percentage KM, KD, KDS and KDSD 57

Table 4.22 Cluster Overlapping Percentage KD, KDS, and KDSD 57

v

LIST OF FIGURES
Figure 2.1 Hierarchical Clustering .. 9

Figure 2.2 Advanced Metering Infrastructure .. 11

Figure 2.3 Smart Meter .. 13

Figure 3.1(a-c) Approaches to Time Series Data Clustering .. 20

Figure 3.2 An overview of the clustering process. .. 21

Figure 3.3 Residential Monthly Consumption Pattern .. 24

Figure 3.4 Residential Daily Consumption Pattern ... 24

Figure 3.5 Residential Weekly Consumption Pattern ... 25

Figure 3.6 Software Architecture of the Proposed System 26

Figure 3.7 System Architecture of the Proposed System .. 27

Figure 3.8 Temperature Variation (Hour 1 – Hour 12) ... 28

Figure 3.9 Temperature Variation from (Hour 13 – Hour 24) 28

Figure 3.10 Overview of the Algorithmic process ... 32

Figure 4.1 Elbow curve to determine the number of clusters 39

Figure 4.2 Result of K-Means Algorithm on the whole dataset 40

Figure 4.3 Outlier Detection on Cluster 1: 91744 .. 41

Figure 4.4 Outlier Detection on Cluster II: 108256 ... 41

Figure 4.5 Result of K-means on 1% sample ... 42

Figure 4.6 Outliers on cluster I using DBSCAN .. 43

Figure 4.7 Outlier on Cluster II using DBSCAN ... 43

Figure 4.8 Outlier on Cluster I using DBSCAN: 90491 .. 44

Figure 4.9 Outlier on Cluster I using DBSCAN:90617 ... 45

Figure 4.10 Outlier on Cluster II using DBSCAN:107383 ... 46

Figure 4.11 Outlier on Cluster I using DBSCAN:90783 .. 47

Figure 4.12 Outlier on Cluster II using DBSCAN:107217 .. 48

Figure 4.13 Result of K-means on 2% sample ... 48

Figure 4.14 Outlier on Cluster I using DBSCAN:1822 ... 49

Figure 4.15 Outlier on Cluster II using DBSCAN:2178 ... 49

Figure 4.16 Outlier on Cluster I using DBSCAN:89934 .. 50

Figure 4.17 Outlier on Cluster II using DBSCAN:106066 ... 51

vi

Figure 4. 18 Outlier on Cluster I using DBSCAN:89921 ... 52

Figure 4.19 Outlier on Cluster II using DBSCAN:106079 .. 52

Figure 4. 20 Outlier on Cluster I using DBSCAN:89888 .. 53

Figure 4. 21 Outlier on Cluster II using DBSCAN:106112 ... 54

vii

ABSTRACT

 Availability of large temporal data enabled by improved collection tools and

storage devices has posed a new set of challenges in data mining, especially in the area of

clustering data into different groups according to the basic attributes. The existing

clustering algorithms, such as K-means, tend to suffer from slow processing speed. In

addition, most of them lack the ability to eliminate outliers and anomalies. In this thesis,

we present three fast clustering algorithms with noise removal capability: KD, KDS, and

KDSD.

Technically, the proposed algorithms make use of the features of three existing

data mining methods, K-means, DBSCAN and K-Nearest Neighbor (KNN). K-means has

been an effective clustering algorithm. However, the clusters resulting from K-means are

likely to include many outliers. In addition, K-means does not scale well with cluster

size. In our research, to tackle the outlier problem, we proposed KD, a novel clustering

algorithm with noise removal capability that is based on K-means and DBSCAN.

Essentially, DBSCAN is employed to remove the outliers in the clusters resulting from

K-means. To solve the scaling problem with K-means, we proposed KDS, a fast

clustering algorithm that scales well. Finally, KDSD, a fast clustering algorithm with

noise removal capability was proposed to achieve both excellent scalability and noise

removal ability.

The performance of the proposed algorithms is thoroughly investigated through

extensive experiments with a large power consumption data set. Our experimental results

indicate that, compared to K-means, KDS runs at a much faster rate. Specifically, it takes

K-means 7.56 seconds to cluster the whole data set under investigation. However, it takes

KDS 0.363 seconds and 0.513 seconds in the case of 1% and 5% training sample

respectively. In addition, although KDSD is not as fast as KDS due to the final anomaly

removal operation, it outperforms KD. In our experiments, it takes KD 268.62 seconds to

complete the clustering process while it takes KDSD 237.836 seconds in the worst case.

viii

LIST OF ABBREVIATIONS USED
AMI Advanced Metering Infrastructure

KM K-Means

DBSCAN Density-Based Spatial Clustering of Application with Noise

KNN K Nearest Neighbor

KDS K-means, DBSCAN with Small Training Set Nearest Neighbor

KDSD K-means, DBSCAN &Small Training Set Nearest Neighbor and DBSCAN

ODIN Outlier Detection using Indegree Number

MDMS Meter Data Management System

HAN Home Area Network

DNO Distribution Network Operators

DR Demand Response

ToU Time of Use

MODH Modified Hausdorff

DTW Dynamic Time Warping

LCSS Longest Common Sub-Sequence

ix

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to my supervisor Dr. Qiang Ye for

his expert guidance, support, valuable feedback and wealth of knowledge which has

contributed immensely towards this research work. I am equally thankful to my co-

supervisor Dr. Srinivas Sampalli, whose door is always open whenever I needed

assistance and for providing the enabling environment to work towards my goals. Their

counsel, support, and encouragement as well continuous constructive criticism helped me

immeasurably throughout this research. I equally thank all my friends at MyTechLab:

Saurabh, Manveer, Shristi, and others for their encouragement and positive feedbacks.

Lastly, my deepest appreciation goes to my wife Dr. Mrs. Adeola Odebode, my

children (Adekorede, Ayomide, and Adeshewa) and the rest of my family for their

continuous prayer, support and encouragement. This thesis would not have been possible

without their unconditional love and affection. I thank you all!

1

CHAPTER 1 INTRODUCTION

Advancement in data collection tools, storage devices and continuous improvements

in new technologies and applications as well as people’s capability to generate data have

contributed to a phenomenal growth in data available for analysis. Improvement in

networking, wireless technologies, data storage, communication and sensor devices etc.

have increased traffic on the internet which has resulted in access to increased high-

volume, high dimensional data sets [1].

The fast-growing, large volume of data collected and managed in numerous

databases, requires powerful analytical tools to properly understand them [2]. Although

the process of discovering or organizing data into meaningful patterns arises naturally in

many scientific endeavors, new methods and techniques will be needed to assist us to

transform today’s high-volume, high-velocity data sets into meaningful information. In

fact, this has opened a new set of challenges for data mining experts such as extracting

interesting patterns and features, establishing relationships between the different features,

identifying anomalies and correctly grouping the data into different groups [3-4].

The task of identifying classes or grouping data into clusters is normally

accomplished through classification or clustering techniques. Classification is a

supervised learning method that uses a sampled data set to represent and correctly

describe the features of the data to generate a model for putting the data into different

classes. Clustering is an unsupervised learning process that groups data into classes or

clusters so that data objects within a cluster have high similarity in comparison to one

another, but are very dissimilar to objects in other clusters.

In this thesis, we propose three innovative clustering algorithm for a large data set

with noise removal using a test data set from Smart Meters [5-6]. As part of the process

of achieving a fast algorithm for clustering power data, we first present the motivation of

this study, then we describe the overview of the proposed algorithms. Finally, a short

outline of the thesis is included.

2

1.1 MOTIVATION

The vast amount of data that are being generated every day, render the traditional

method of capturing, storing, analyzing, querying and processing inadequate for handling

large data set. The quantity of data increases at a phenomenal rate because devices

for gathering information such as – mobile devices, remote sensing, cameras, and

wireless sensor networks – keep improving. Opportunities for big data could be found

almost in all human endeavors: manufacturing, transportation, automotive, energy as well

as cyber security. The task of organizing data into meaningful information through

traditional methods such as relational database systems is no longer effective. Not only is

the data increasing in volume, the variety, as well as the veracity of the data set, also

keeps changing [7]. In essence, improvement of traditional method is highly necessary.

The energy industry has been undergoing changes lately and one major change is the

introduction of smart meters. The device can record millions of data per day which can be

classified as a big data [2]. Installation of smart meters; under the Advanced Metering

Infrastructure (AMI) has opened a new set of opportunities for understanding customers’

electricity consumption patterns. This new information can readily be used by

Distribution Network Operators (DNO), to identify suitable customers for energy

management solutions such as Demand-Side-Response. In addition, this can improve the

effectiveness of storage device in electricity distribution. Choosing correct attributes, a

DNO can use the pattern to identify suitable customer group for demand reduction

solutions. Gaining insight into the consumption patterns of different categories of

electricity users, based on their load data classification, will be of huge benefit to

electricity producer as well as the consumers. It will assist in achieving proper planning

and distribution of electricity. It can also aid the development of a more competitive

market policy, and with a good knowledge of their consumption patterns, consumers can

adjust their electricity consumption to suit their needs [8].

Several algorithms have been developed to group time series (Smart Meter) data into

clusters. However, the two main algorithms are the partition based and the hierarchical

clustering algorithms [2]. K-Means is an example of partition or centroid based clustering

algorithm. It partitions several observations into k clusters, with each observation

3

belonging to a cluster with the nearest centroid. It is a popular clustering technique

because it is easy to implement although it may fail to converge to an optimum if the

dataset is not well separated. K-means is also not sensitive in detecting outliers [9].

Most algorithms developed for smart meters use centroid-based approach without

provision for detecting the outlier and improving the speed of clustering the dataset [8],

[10–12]. The increase in deployment of smart meters requires a more efficient, scalable

and outlier-aware algorithm to meaningfully cluster the dataset and provide accurate

information for customers’ needs. In this thesis, we present a series of algorithms that are

fast and efficient for the large data set and can correctly detect possible outliers. As part

of the process of achieving a fast algorithm for clustering power data, we implemented

the following steps:

(1) Import time series data for each meter ID, clean it and calculated aggregates on

daily basis.

(2) Define the consumption pattern of customers based on electricity usage for each

meter ID on the imported time series data.

(3) Cluster all meter IDs based on weather characteristics such as temperature to

reduce the volume of data for analysis. The process can be extended to other

behavioral characteristics of the customer obtained from the time series.

(4) Predict unlabeled time series data using already designed predictive model based

on a Nearest Neighbor algorithm.

(5) Clean the cluster generated

(6) Evaluate and compare our model to existing model based on cluster overlap,

running time and time complexity.

1.2 OVERVIEW OF THE PROPOSED ALGORITHMS

The major objective of this thesis is to design series of algorithms that are capable

of detecting outliers and that scale well with large data sets. The proposed algorithms

utilize the positive features of three existing algorithms: K-Means, Density-Based Spatial

Clustering of Applications with Noise (DBSCAN) and K- Nearest Neighbor Algorithm.

K-Means Algorithm partitions a set of observations (in d-

dimensional real vector into k groups where (). The aim is to minimize the within-

cluster sum of squares and the objective can be stated formally as:

4

where is the means of points in

It has two major steps: assignment and update. In the assignment step, the

observations are assigned to the cluster that yields the least within-cluster sum of squares

(WCSS) and the update step recalculates the centroids of the observations in the new

clusters. The two-step process is repeated until convergence [13]. The proposed

algorithms use K-Means to determine the clusters from a selected sample of observations.

In this thesis, DBSCAN was used to prepare the initial training set for the K-

Nearest Neighbor Algorithm. It was also used to remove outliers from the final clusters

generated from the Nearest Neighbor Algorithm in the KDSD version of the algorithm.

The proposed algorithm explores the nonparametric nature of K-Nearest Neighbor to

classify the rest of the dataset using a Small Training Set K-Nearest Neighbor(SKNN).

SKNN uses a small training set obtained from the cleaned data set resulting from

DBSCAN. The training set is then used to generate labels. The labels are then used to

classify the rest of the dataset based on majority vote of neighbors.

1.3 THESIS OUTLINE

The rest of the thesis is organized as follows. Chapter 2 includes a detailed

background on clustering types, application, tools and clustering algorithms. It describes

some of the key terms and research that has been undertaken especially in clustering of

smart meter data. Some existing algorithms are examined in detail from the viewpoint of

research that has recently been undertaken in the field. In addition, this chapter presents

an overview of several important concepts and technologies that are closely related to our

proposal. Chapter 3 discusses the idea behind our algorithm “Fast Clustering with Noise

Removal”. It highlights the different stages of the algorithm. We present the proposed

fast clustering algorithm for time series energy data and time series dataset in general.

Chapter 4 contains a detail discussion of the experimental result obtained from the

algorithm’s application on smart meters. Finally, Chapter 5 discusses the result and the

conclusion drawn from the result of the experiment.

5

CHAPTER 2 RELATED WORK

Due to the increase of the data available for data analysts because of improved

sensing and data storage capacity, the opportunity of generating information from

raw/unlabeled data set through data analysis has been tremendous. Research in Big data

and Data mining, as well as Machine learning, have applied existing and new algorithms

to resolve issues related to identifying patterns/ characteristics of observations based on

behavioral as well as attitudinal characteristics inferred from the data. This chapter

describes some of the key terms and research that has been conducted especially in

clustering of smart meter data. Some existing algorithms are examined in detail from the

viewpoint of research that has recently been undertaken in the field. In addition, this

chapter presents an overview of several important concepts and technologies that are

closely related to our proposal.

2.1 CLUSTER ANALYSIS

Cluster analysis has been described as the organization of several patterns into groups

based on similarity, the patterns are usually points in multidimensional space. Patterns

that belong to the same cluster are closely similar to one another compared to patterns

that belong to another cluster [14]. Webster, an online dictionary defines Cluster

Analysis as “a statistical classification technique for discovering whether the individuals

of a population fall into different groups through quantitative comparison of multiple

characteristics “ [15]. Fraley and Raftery, conceptualized cluster analysis as the process

of determining the intrinsic structure of a data set when there is no other information

other than the values of the observation[16]. Cluster Analysis is a major task in

exploratory data mining, and a useful tool for statistical data analysis used in the various

field such as image analysis, bioinformatics, data compression and machine learning

among others. Clustering can be defined formally as a set of subsets of the form:

such that:

 and

6

There are different tools and approaches to clustering each with its own definition of

what represents a cluster. Clusters even from the same data set differ in shape, size and

density and the presence of noise may constitute a roadblock in detecting the right cluster

in a dataset. Clusters can be differentiated based on how small the distance between the

members of a group is to one another or the density of the data space or as mentioned

earlier the shape may be the defining characteristic. Flynn [16], correctly captured the

task of clustering as a subjective process and that the choice of the clustering algorithm is

a function of the individual data set as well as the use of the result obtained from

clustering [14]. A cluster can be described as isolated or distinct groups in a data set or

the organization of a collection of data points based on similarity. The pattern that

describes a cluster is like one another while those that belong to the different cluster are

dissimilar to one another [6]. Most data set that is often encountered in practice such as

time series data, documents and text data set often do not have distinct characteristics to

exhibit compactness in their distribution.

As difficult as the process of clustering may be, it is a useful tool in a wide number of

applications too numerous to fully explore. One of its applications is in Document

clustering- a field in information retrieval and language processing that arrange

documents into clusters with each cluster exhibiting some common characteristics based

on the similarity measure. Documents clustering is a technique in information retrieval

aimed at the efficient organization, browsing, and summarization of large volume of text

documents [17]. Cluster analysis has also been applied in medical image processing; a

good segmentation of the medical images produced by the clusters will benefit clinicians

and patients especially for visualization, surgical planning and for early disease detection

[18]. Mining in time series are often characterized by high dimension and large volume

with a propensity for continuous updates; the mining tasks associated with time series

data can be roughly classified into four main areas: Pattern discovery and clustering,

classification, rule discovery, and summarization. Examples of time series data include

counts of sunspots, heights of ocean tides, ocean isotope levels, exchange rates, Smart

Meter data etc.

The natural temporal ordering of time series data makes it unique in its requirement

for clustering. Time series data during clustering are often represented as either

7

aggregate or as a sample of the original data. The reason is to reduce the dimensionality

of the data and the volume. The continuous increase in the volume and variety or type of

Time Series data available for analysis requires improvement in processing,

summarization, and understanding of information buried in the data. Such data is mostly

unstructured and often meaningless in their raw form; making it difficult to analyze them

[19]. Clustering can be effectively employed in understanding the underlying structure,

detect anomalies, estimate the degree of similarity and organize data into meaningful

summary [20]. Zhou, in studying the consumption pattern of electricity users (a Time

Series Data), affirms that there is a marked difference in the consumption pattern of all

categories of consumers from commercial to residential or industrial users; electricity

consumers, even of the same type exhibit different consumption patterns[8]. Knowing the

different consumption pattern and being able to adequately cater for different categories

of customers need through consumption information is a potent means of improving

service delivery to the customers.

2.2 CLUSTERING METHODS

Clustering groups data objects into subsets in a way that objects that are similar are

grouped together, while dissimilar objects are grouped into different clusters.

Classification is predictive while Clustering is descriptive. Clustering algorithm can be

classified into five (5) categories: Partitioning Methods, Density based methods, Grid

based methods, Hierarchical method and Model-based Methods. Three of the approaches

will be explained briefly below [21].

2.2.1 PARTITIONING METHODS

The idea behind this method of clustering data is to partition a given data set say n into a

set of k clusters. The goal in partitioning methods is to find a specified number of cluster

(k) say: of the input dataset n that optimizes a certain criterion. The criterion

is usually of the form

8

Where represents the centroids of the clusters Ci and represents the Euclidean

distance between x and . It is required that the estimated number of partition be

selected at the start of the run. All instances and possible partitions are then searched

iteratively and enumerated to achieve a global optimum. Rokach and Maimon, stated that

achieving global optimum is not feasible instead greedy heuristics are often employed

towards a global optimum[22]. Two types of partitioning methods were identified by [8]:

(i) Error Minimization Algorithms- In error minimization, the underlying idea is to

determine cluster pattern that minimizes a chosen error criterion usually Sum of Squared

Error (SSE) through exhaustive search or heuristics. An example is K-Means Algorithm.

K-Means Clustering: Is a classic example of partitioning or centroid-based method and it

minimizes the SSE. It can be described as follows. Given a set of n observations

 where each k-means partition the dataset

into k clusters . Each cluster has an associated centroid

 which can be computed using:

 ,

The methods consist of two main steps: The cluster assignment where the data points are

assigned to their respective clusters, re-computation of the centroids until there are no

more changes. A simplified k-means algorithm is as shown below:

Algorithm 1: A simplified k-means Algorithm

Input: A time-series data set

Parameters: Number of cluster k

Output: Clusters

(1) Arbitrarily choose k as initial cluster centers

(2) Repeat

a. (re) assign each object to the cluster with the closest centroid

Or the cluster to which it is most similar using the mean value of the

objects in the cluster

b. Recalculate and update the cluster means (centroids)

(3) Until convergence

9

Although it might not converge to the expected optimum if the initial seed(k) is not

selected appropriately or the data is not clearly separated, K-means is capable of handling

large data set if it can fit into memory and it is efficient.

(ii) Graph-theoretic clustering is an alternative approach that constructs a similarity

graph where two elements i and j are connected by an edge if and only if i and j are

similar enough to belong to a single cluster. If the similarity measure is clear and

consistent the graph will consist of disjoint cliques otherwise there could be overlaps in

the graph structure. An example is the Minimal Spanning Tree.

2.2.2 HIERARCHICAL METHODS

Hierarchical clustering methods work by grouping data objects into a tree-like

structure. It may be either agglomerative or divisive. If the hierarchy is formed in a

bottom-up fashion it is agglomerative otherwise it is divisive [23]. The clusters from

hierarchical clustering suffer from its inability to adjust once a merge or a split has been

concluded. It cannot backtrack in case a poor choice has been made in the hierarchical

decomposition and it is not scalable for large dataset. The figure below shows the two

main types of Hierarchical clustering.

Figure 2.1 Hierarchical Clustering

A, B, C, D, E, F, G

A, B, C, D E, F, G

A E, F C, D, E G

C D, E

D E

E F

DIVISIVE AGGLOMERATIVE

10

2.2.3 DENSITY BASED METHODS

Density based clustering is designed around the idea of density. Unlike partition-

based methods, the cluster continues to grow if the density in the neighborhood exceeds a

certain threshold. Each of the data point in a cluster is considered a member of the

neighborhood of a given radius if it contains at least a minimum number of points.

Density based methods are used to filter and detect possible outliers in a cluster and they

can discover clusters of unusual shape [24]. OPTICS is an example of Density Based

Clustering algorithm. DBSCAN (Density-Based Spatial Clustering of Applications with

Noise) is another example of the density based clustering algorithm. It is efficient for

large spatial databases and it can discover arbitrarily shaped clusters. We would explore

DBSCAN further because it is one of the main algorithms that will be employed in the

design of our new algorithm. DBSCAN has the following parameters and they are as

defined:

(i) ℰ-neighborhood of an object is the maximum radius of the neighborhood from a

point say p

(ii) Given a set of objects, say D, an object p is directly density-reachable from

another object q if p is within ℰ-neighborhood of q, and q is a core object.

(iii) Core Point: A point p is a core point if at least minimum points (minPoints) are

within ℰ distance of it (p included). The core points are said to be directly reachable from

p. A point cannot be directly reachable from a non-core point.

(iv) Density-Reachable: An object p is density-reachable from another object q w.r.t

to minPoints and ℰ in a set of objects, D, if there exist objects

where =q and is density reachable from

(v) All points or object not reachable from any other points are outliers.

(vi) An object p is density-connected to another object q w.r.t ℰ and minPoints in a set

of objects D, if there is an object say o : both p and q are density-reachable from o.

DBSCAN requires two input parameters: minimum number of points (minPoints) and ℰ;

the two requires minimum domain knowledge to be able to correctly determine them,

[21]. In this thesis, a further explanation of the two parameters will be expatiated upon

during the presentation of the case study in chapter 4.

11

2.3 ADVANCED METERING INFRASTRUCTURE

Advanced Metering Infrastructure is a combination of home network systems such as

thermostats, smart-meters, communication networks from the meters to corporate data

centers, the meter data management system and the integration of those systems into the

software platforms. The entire data collection system that revolve around the customers’

meter’s site, the communication networks and the service provider that the customers

interact with, (gas, water utility as well as the medium(systems), through which data is

been received and managed constitutes an Advanced Meter Infrastructure(AMI) [41].

AMI deployments have improved the collection and acquisition of refined and accurate

consumption information associated with each customer from which behavioral and

consumption characteristics of individual customers can be inferred. If external stimuli

such as weather are accounted for then customer's energy consumption can be attributed

to lifestyle [25]. Figure 2.2, shows an overview of the different components that make up

the Advanced Metering Infrastructure.

NETL Modern Grid Strategy Powering our 21st-Century Economy, US

Department of Energy Office of Electricity and Energy Reliability: page 5

(2008)

Figure 2.2 Advanced Metering Infrastructure [26]

12

As shown above, AMI is a combination of technologies that have been integrated to work

together as one. Some of its components include:

• Smart meters

• Wide-Area Network Infrastructure

• Meter Data Management Systems (MDMS)

• Home Area Network (HANs)

• Operational gateway

AMI improves customers’ choice about price and services provided by energy

companies, as well as higher reliability and improves power quality. Utility companies

also benefit from the installation of AMI through the provision of accurate and timely

bills, a more efficient and reliable service delivery as well as improving customer service.

It is fast becoming the standard in today’s utility industry in that it has contributed to

improving the performance of the grid and customer experience have also been positively

impacted[26][27]. To achieve maximum performance utility companies will need to scale

up research in analyzing the data collected from AMI devices in other to continuously

improve customers experience and efficiency in service delivery[28].

2.4 SMART METERS

Smart meters are solid state programmable devices that can perform time-based

pricing, record consumption data for use by consumer and utility companies, calculate net

metering, notify the customer in case of loss of power, and remotely perform turning on

and off operations as well as perform power quality monitoring and energy prepayment.

Smart meters record electricity consumption in intervals of hours or minutes. It can

communicate both wired and wirelessly (Wi- Fi) on the network to relay information

between itself and server[29][30][26][31]. A smart meter can measure electricity

consumption at the installed facility and transmits this information to the consumer and

the energy supplier or operator. It can measure and monitor electricity consumption in

real-time or near real-time as well as record the power quality. It is at different stages of

implementation in most developed countries. For example, Australian Essential Service

Commission (ESC) adopted a new Electricity Customer Metering Code in 2004. In

13

Canada, Ontario Energy Board had been working to define a regulatory framework for

the effective implementation of Smart Meters since 2007. Likewise, other provinces in

Canada are at various stages in their implementation. Oxxio, a Dutch company, is at the

forefront of ensuring that smart meter is fully deployed in Netherlands [32]. Vassileva

and Campillo, in evaluating consumer interaction with smart meters based on their

preferences and feedback for smart meter deployment in Sweden; observed that smart

meters provide customers with more detailed information about their energy consumption

as well as variable pricing. When such potential (improved information and variable

pricing) are fully explored by the network operators, energy saving through increased

knowledge in energy consumption will be enhanced. They advocated for improvement in

customer experience analysis rather than only dynamic pricing and improved electricity

consumption information[28].

Figure 2.3 Smart Meter [42]

14

2.5 CLUSTERING AND SMART METER DATA

Before the advent of smart meters, various Non-Intrusive Load Monitoring

Techniques have been adapted in the past, towards understanding the consumption

pattern of consumers in households. Greveler et al constructed a power prediction

function, which was based on series of pictures made of elementary shades. Additive

RGB color notation was used in constructing each byte of the Red, Green and blue

portion. Frames are then extracted; the darker the picture frames, the higher the rate of

power consumption. The application of the algorithm on live TV programs shows that it

is possible to accurately monitor power consumption profiles of customers, the signatures

of the devices associated with them, and even the viewed content [33]. Chicco et al

identified the electrical behavior of customers by forming the Representative Load

Pattern (RLP) of each customer using unsupervised clustering algorithms (K-means,

fuzzy K-means, and modified follow-the-ladder). All the clustering algorithms tested

could form the required number of clusters. Modified follow-the-leader algorithm

outperformed other algorithms in that it built well-separated classes and created

uncommon load patterns. They reiterated the importance of clustering algorithms in the

classification of electricity customer using load pattern shape especially for the

distribution service providers [34].

Various clustering methods and approaches have been applied to analyze trends

and identify groups using time-series smart meter data. To manage customer user specific

characteristics, enhance theft detection in electricity use, track behavioral changes and

enable development of consumer specific demand response programs; Frameworks have

been developed to segment customers based on consumption in relation to other context-

specific attributes such as weather and ToU (Time of Use) [30]. Mandel et al[35], while

examining the impact of raw data temporal resolution on the residential electricity

profiles of customers using clustering concludes that the key to properly represent the

consumption pattern of a customer is to be able to select a data resolution that satisfies

both the level of detail to be represented as well as the essential behavior associated with

a user. Three algorithms were used in the process (K-Means, Hierarchical algorithm and

Dirichlet process mixture model algorithm). They concluded that 8 minutes’ resolution

15

data would provide a useful basis for establishing customer consumption pattern and that

data collected slower than 30 minutes is not sufficiently reliable. The data used for this

experiment were collected at 5 minutes’ interval.

The process of enlisting customer for Demand Response (DR) program to

determine their consumption characteristics based on adjusting the demand for power

instead of adjusting supply is another aspect that has been studied in the clustering of

smart meter data. Data-driven methodology for predicting customer eligibility to be

enlisted in a DR program by using a combination of clustering and classification

techniques have been developed with an algorithm such as Random forest [23], neural

networks, decision trees, k-nearest neighbor, genetic algorithms and fuzzy clustering etc

[36]. Pereira et al identified three major advantages of demand response which is: energy

reduction during peak times, facilitating a balance between supply and demand, and

reduction in energy bills [36]. Han and Piette were of the view that a successful

implementation of demand response, aside from promoting a fair electric market

operation is an effective short-term tool for correcting the imbalance between supply and

demand [37].

Smart meters are susceptible to several attacks: Man-in-the-middle, Denial of

service attack, Authentication, False-Data-Injection, and Disaggregation. Solutions to

address privacy issues in smart meters have been developed using applied Fuzzy c-means

to infer energy profile characteristics of customers. The result indicated that gaining

insight into such knowledge can be a potent platform for curbing abuse by attackers

through home invasion and other behavioral profiling of customer even by utility

companies against customers wish, [38]. Parvesh et al, similarly observed that due to the

wireless nature of communication in AMI there are potential threats to data privacy

through injection of false data, unauthorized decoding of energy consumption readings

and network jamming. It is equally possible for an attacker to learn customer movements

either present or absent from home which may pose an unimaginable level of threat to the

customer and the community at large [39]. Understanding customer consumption pattern

through data obtained from a smart meter is a potent source of improving overall service

delivery in the energy sector.

16

2.5 OUTLIER DETECTION AND DATA CLUSTERING

An outlier can be described simply as a data point that exhibits significant difference

when compared with the rest of the data sets. Hawkins formally defined an outlier as “an

observation which deviates so much from the other observations as to arouse suspicions

that it was generated by a different mechanism”[40]. They are often referred to as

abnormalities, deviants or simply anomalies. An outlier can sometimes contain useful

information about behavior not yet captured by the data analyst. It has been used for

fraud detection, intrusion detection systems, credit card fraud identification and medical

diagnosis. Several approaches have been used in outlier detection, two common example

of such approach will be explored further. The first approach is Distance based methods

of outlier detection[41][42]. It assumes that the k-nearest neighbor distances or outlier

data points differ appreciably from that of normal data points. Distance based methods

exhibit high level of granularity in its analysis and this allows it to handle varied and

tricky outliers. The second approach is the density-based method. It based on identifying

dense regions and points that fall outside of the dense regions is classified as outliers, a

good example is DBSCAN. Density based methods of outlier detection provide high

level of interpretability, especially if the original attributes of the data set can be

represented as sparse regions in the data[43]. Bae et al proposed two methods for

detecting outliers in a data set: centrality and center-proximity. Centrality is a measure of

how much, objects in a cluster recognize another object within the same cluster as the

center of their cluster and center proximity measures how much close an object is to the

center of the cluster. It was implemented using graph-based outlier detection methods

such as a k-NN graph. The algorithms effectively solve the problem associated with local

density and the micro-cluster problems[44]. The outlier detection algorithm, ODIN

(Outlier Detection based on Indegree Number) has been used to improve the cluster

generated by K-means. ODIN uses K-nearest neighbor graph, every vertex represents a

data vector, and the edges are pointers to neighboring vectors[45]. In this thesis, we

identified outliers in our dataset using a Density-based clustering algorithm (DBSCAN)

that groups a set of densely packed points into clusters of the same unit while labeling

points outside the dense region as outliers [46]. DBSCAN is robust to outliers and is very

17

effective in detecting arbitrary shape. In addition, ODIN has only been applied to small

data set to the best of our knowledge.

2.6 RECENT DEVELOPMENT IN FAST DATA CLUSTERING

Several algorithms have recently been developed to overcome the shortcomings of

existing algorithms such as K-Means, DBSCAN, PROCLUS, CLIQUE[47] and a host of

other algorithms. The main driving reason for the need for such improvement is mostly

associated with the speed of clustering, choice of similarity, the number of clusters

(parameters), curse of dimensionality, the data set to be clustered (Spherical or non-

spherical) and a host of other factors. The speed of clustering has recently been gaining

traction in the research community. Lin et al, improves the speed of processing of k-

means algorithms for image retrieval by using the discrete function of the levels’

histogram value along with a k-means algorithm to train cluster centers of the image

database[1]. Rodriguez and Laio developed CFSFDP an algorithm that assumes that

centroids of clusters are surrounded by neighbors with lower local density at a distance

far from points with higher densities. The algorithm can be easily implemented, it is fast

and it can cluster non-spherical data[48]. One major disadvantage of the algorithm is that

it cannot be used to cluster data with multi-density peak accurately. To improve the

algorithm, a grid-based partition version of the algorithm was developed

(GbCFSFDP)[49], it is aimed at resolving some of the shortcomings of CFSFDP.

Ghanem et al, introduces Dimension based Partition and Merging(DPM) to cluster large

scale data sets with automatic cluster number detection. The algorithm is in three stages:

Stage one, partition the data space into small dense partitions using dimension histogram

and locating partition dimension value once. The second stage filters the noise based on

the density of the dimension from the partitions. Lastly, clusters are constructed based on

the identified boundaries from the samples[50]. Our own approach is aimed at clustering

large time series data sets using a combination of features from three existing algorithms.

18

CHAPTER 3 FAST CLUSTERING WITH NOISE REMOVAL

In this chapter, we present the proposed fast clustering algorithms for time series

energy data. Two clustering approaches mentioned previously will be combined as they

are mostly related to our context: partitioning methods and density-based methods.

Partitioning methods identify partitions k from the input data set where each partition

represents a cluster. The number of clusters k will need to be manually specified.

Density-based algorithms treat as a cluster a collection of data points spread in spatial

space of the contiguous region of high density separated by regions of low density. Points

outside of these regions are referred to as outliers [46]. The proposed algorithms are

designed for speed and anomaly detection.

 3.1 TIME SERIES DATA CLUSTERING

The data used for the experiment is a time series data set. In this thesis, we attempt to

describe briefly time series data and two of the similarity measure that can be used to

cluster them. Time series is a common data type widely used in diverse application areas

such as engineering, finance, economics, communication, energy sector and online

services. Time series data, unlike static data, are temporal and their features change with

time. Identifying groups in static data clustering and time series clustering require a

clustering algorithm but the approach differs based on the nature of the data available and

the purpose of the application. Time series data can be discrete valued, real valued,

univariate or multivariate and can be of equal or unequal length. In this section, we will

explain time series, the different types of time series data clustering approaches, the

proposed method and outline of the algorithm.

We will now describe briefly Time Series data set and two of the similarity measures

that can be used to cluster them. Fu defines a times series data as a collection of

observations made chronologically, often they are characterized by high volume, high

dimensionality with a propensity for continuous updates[19]. The mining task associated

with time series can be classified roughly into four main areas: Pattern discovery and

clustering, classification, rule discovery and summarization. Zhang et al, identify three

main objectives associated with clustering time series data: similarity in time, the

19

similarity in shape and similarity in change[10] [51]. The large volume associated with

time series data often requires that it be represented as either aggregate or with a sample

from the original data set to reduce the dimensionality of the data. The simplest means of

reducing dimensionality is through sampling but it may distort the original shape of the

data especially for low sampling rate. An enhanced method is to use the average value of

the features under consideration [19]. Keogh et al in reducing the dimensionality of the

data set segments the sequences into equal-length sections and then record the mean

value of each section. Each mean value is then indexed efficiently into a lower

dimension. Other dimensionality reduction techniques include Spectral decomposition,

Wavelet Decomposition and Singular Value Decomposition [52]. Liao identifies three

types of approaches to time series data clustering as shown in the figures 3.1

(a) Raw-Data Based

 (b) Feature Based

Time Series

Clusters/Cluster Centers

Clustering

Time Series

Feature Extraction

Clustering

Clusters/Cluster Centers

20

(c) Model-Based

Figure 3.1(a-c) Approaches to Time Series Data Clustering

The raw-data-based approach uses raw time series data. The similarity measure

may need to be replaced with an appropriate one for time series data. The other two

approaches either converts the time series into feature vectors or model parameters before

clusters are generated [53]. Although other features such as the temperature will be used

in data selection and processing, only one feature of the customers (consumption) will be

used in determining the cluster to which a customer belongs and the overall

representation of the data will still be maintained during the sampling process. An

overview of the process involved in time series clustering is as shown in the Figures 3.2.

Time Series

Model Parameters

Modelling Discretization

Clustering

Clusters/Cluster Centers

21

Figure 3.2 An overview of the clustering process.

3.2 SIMILARITY MEASURE

To measure how related two objects are in a cluster, a similarity measure is needed.

The similarity measure is a set of rules that define the criteria for establishing a group as

a cluster. Clustering algorithms are built on dissimilarity or similarity measure. They are

usually non-negative real numbers. If the objects are close to one another the dissimilarity

will be smaller and the reverse is the case if the objects are far from one another. The

common similarity measure used in time series includes Hausdorff distance, modified

Hausdorff (MODH), HMM-based distance, Dynamic Time Warping (DTW), Euclidean

distance, Manhattan distance, Minkowski Distance, Euclidean distance in a PCA

subspace, and Longest Common Sub-Sequence (LCSS). Each of this similarity measure

has proven to be useful for different categories of data set but there is no one-size fit all in

any of the methods. The one that has stood the test of time among the similarity measure

is the Euclidean Distance, hence our preference for it in our design.

Raw Time

series data

Data

Representation/Dimensionality

Reduction

Feature Selection

Clustering

Cluster evaluation

22

3.2.1 MINKOWSKI DISTANCE

This is a generalization of the Euclidean and the Manhattan distance. This

Minkowski distance between two points

) and

can be defined as:

where

When p = 1 it is referred to as the Manhattan distance and when it is equal to 2 it is

referred to as the Euclidean distance.

3.2.2 EUCLIDEAN FRAMEWORK

 This can be defined as the geometric distance between two points in space. Given

two points x and y, it is computed using the following formula:

The Root Mean Square is

It has many advantages, one of which is that addition of a new object to the dataset does

not affect the existing distance between objects. However, the difference in scale can

have a strong effect on the dimension from which the distances are computed. We have

taken care of this effect through normalization of the data set.

 3.3 THREE NOVEL CLUSTERING METHODS: KD, KDS AND KDSD

In this thesis, we proposed a layered data-driven approach that is based on the

household consumption characteristics and features such as temperature, humidity, and

pressure etc. The features were selected based on the average consumption characteristics

as well as the increase in consumption over a period e.g. winter period or the Holiday and

weekends as well as weekly and daily consumption characteristics. The method is based

on the consumption increment instead of the power consumption or the average

23

consumption. This is to be able to identify a house that uses electricity more in winter and

which does not and by how much. By knowing this parameter, we could categorize

customers on the consumption increment which gives a clearer view of the consumption

characteristics of customers rather than using averages over a period. Non-holiday

weekdays were separated from holiday weekdays based on the assumption that holiday

weekdays and weekends may have the same pattern of power consumption. The days

were sorted from lowest temperature to the highest temperature based on consumption

increment over the period under observation.

We have divided our algorithm into three different categories for ease of

assessment and comparison. The three algorithms are KD- which combines K-means and

DBSCAN algorithm on the whole data set, KDS – This algorithm uses DBSCAN to

remove outliers from cluster initially generated by K-means from sampled data, this is

then used to create clean clusters used as a training set for classification with SKNN. The

KDSD is a complete form of KDS in that after the classification of the clusters from

unlabeled data set, DBSCAN further removed any cluster, that was not initially removed

through sampling.

In other to have a quick view of the consumption pattern of customers at various

times of the year and different time frames: weekly, monthly etc. we have presented

below the consumption pattern based on the average total consumption at different

time/period of the year, as shown in figures (3.3 – 3.5) below. The choice of the period

under consideration was chosen randomly to give different views of the data set at the

different time of the period under observation.

24

Figure 3.3 Residential Monthly Consumption Pattern

Figure 3.4 Residential Daily Consumption Pattern

25

Figure 3.5 Residential Weekly Consumption Pattern

3.3.1 DATA PREPARATION

Smart Meter reads of 18000 electrical meters was provided through the NSERC

project in affiliation with SpryPoint Inc. The data was collected at intervals of five

minutes’. The daily data collection is around 1.5 GB. Data generated from these meters

were initially stored on Amazon S3. The platform for data analysis is as shown in figure

3.5 below. The process of data cleaning and feature selection involves the creation of a

local Cassandra database and the transfer of the CSV files stored on Amazon S3 into

Cassandra tables. Using a combination of Scala programming interface and the

Spark/Cassandra Connection, aggregates were generated from the meter reads and the

residential information provided. The aggregates generated were exported into CSV files

on the local file system for further analysis.

Using R studio, a data cleaning and pre-processing procedure are applied before the

clustering algorithms are used to segment the raw data. These are the steps we followed

to prepare data for further analysis:

(i) Filter out weekends and Holidays: We concentrated our analysis on weekdays,

which allows us to see stable electricity usage patterns from customers.

(ii) Removed irrelevant variables: There were some zero recordings and

inconsistencies, such as reading errors. We removed those customers whose

data were not constantly recorded.

26

(iii) Removed repeated IDs across multiple files: We ensured that there are no

repeated IDs (representing each customer) across files.

(iv) Calculated aggregate (mean consumption and total consumption).

(v) For uniform measurement, we normalized the data set.

Fig 3.6 shows the setup of the interface. Cassandra an Apache database system was used

for the data processing and feature selection because of the following unique features:

(i) Cassandra is fault tolerant and data can be replicated across multiple clusters.

(ii) It consistently outperforms other popular NoSQL alternatives

(iii)There are no single points of failure

Figure 3.6 Software Architecture of the Proposed System

27

Figure 3.7 System Architecture of the Proposed System

Fig 3.6 shows the components parts of the system architecture. The Spark data

source handler load data from Cassandra context into a data frame for analyzing

consumption data. The Base Repository serves as an abstract object that helps store

consumption average for each day into a data structure (in this case a List).

Consumption Utils: Helps Calculate consumption averages or total consumption over a

period. The IOUtils/StringUtils: provides basic utilities for input/output and string

operations respectively. Lastly, the Spark Consumption Analyzer serves as the central

point for processing data loaded from a Spark Data source.

The data used for this experiment is from the city of Massachusetts. All analysis

will be related to the city’s calendar. There are two holidays in Massachusetts between

November 15th, 2015 and December 15th, 2015. November 11th is the Veterans Day and

November 26th, is the Thanksgiving Day. To understand the consumption pattern of

customers, weekdays were used and all weekends were excluded from the calculation

because we viewed weekends as holidays too. The weekends between those dates are as

listed below:

● Sundays: 15th,22nd,29th November

● Saturday: 21st, 28th November

● Sunday, 6th, 13th December

28

● Saturday 5th, 12th December.

From the data set a total of 10 days are either weekend or holiday until November 15th,

and December 15th, 2015. These days were removed from the experiment to allow for

uniformity in consumption pattern.

The figures below show the variation in temperature between 15th, November to 15th,

December.

Figure 3.8 Temperature Variation (Hour 1 – Hour 12)

Figure 3. 9 Temperature Variation from (Hour 13 – Hour 24)

29

The average temperature of each day is as shown in table 3.1

Table 3.1 Average Temperature between Nov 15th – Dec. 15th 2015

S/N Date Average Temperature

1 2015-11-15 46.4763

3 2015-11-16 49.2054

4 2015-11-17 34.9187

5 2015-11-18 35.3025

6 2015-11-19 51.2933

7 2015-11-20 49.7988

8 2015-11-21 37.375

9 2015-11-22 42.5063

10 2015-11-23 34.1071

11 2015-11-24 28.9187

12 2015-11-25 31.0229

13 2015-11-26 43.5696

14 2015-11-27 54.1908

15 2015-11-28 47.4942

16 2015-11-29 33.4138

17 2015-11-30 29.385

18 2015-12-01 32.025

19 2015-12-02 40.4058

20 2015-12-03 43.1687

21 2015-12-04 41.9154

22 2015-12-05 37.1812

23 2015-12-06 33.7188

24 2015-12-07 37.2842

25 2015-12-08 39.1575

26 2015-12-09 40.3237

27 2015-12-10 46.3504

28 2015-12-11 46.1221

29 2015-12-12 48.6054

30 2015-12-13 50.1017

31 2015-12-14 50.4154

32 2015-12-15 53.1283

30

After removing weekends and holidays we obtained the list shown in Table 3.2.

Weekends and holiday are adjudged similar in our design. To avoid unnecessary

variations in our calculation, we have decided to consider only regular weekdays.

 Table 3.2 Average Temperature (Weekdays Only)

S/N Date Average Temperature

33 1 34 2015-11-16 35 49.2054

36 2 37 2015-11-17 38 34.9187

39 3 40 2015-11-18 41 35.3025

42 4 43 2015-11-19 44 51.2933

45 5 46 2015-11-20 47 49.7988

48 6 49 2015-11-23 50 34.1071

51 7 52 2015-11-24 53 28.9187

54 8 55 2015-11-25 56 31.0229

57 9 58 2015-11-27 59 54.1908

60 10 61 2015-11-30 62 29.385

11 2015-12-01 32.025

11 12 12 2015-12-02 13 40.4058

12 13 13 2015-12-03 14 43.1687

63 14 64 2015-12-04 65 41.9154

66 15 67 2015-12-07 68 37.2842

69 16 70 2015-12-08 71 39.1575

72 17 73 2015-12-09 74 40.3237

75 18 76 2015-12-10 77 46.3504

78 19 79 2015-12-11 80 46.1221

81 20 82 2015-12-14 83 50.4154

21 2015-12-15 53.1283

In order that we may have a clearer view of the temperature variation from lowest

to the highest for the period under consideration, we sorted the days based on non-

holiday weekday and their corresponding consumption is as shown in table 3.3. The

Temperature is represented in abbreviation as T1…T21 which corresponds to the

corresponding values 28.9187…54.1908 of temperature in increasing order

31

Table 3.3 Temperature sorted in order(ascending)

S/N Date Temperature

1 2015-11-24 28.9187 (T1)

2 2015-11-30 29.385 (T2)

3 2015-11-25 31.0229 (T3)

4 2015-12-01 32.025 (T4)

5 2015-11-23 34.1071 (T5)

6 2015-11-17 34.9187 (T6)

7 2015-11-18 35.3025 (T7)

8 2015-12-07 37.2842 (T8)

9 2015-12-08 39.1575 (T9)

10 2015-12-09 40.3237 (T10)

11 2015-12-02 40.4058 (T11)

 12 2015-12-04 41.9154 (T12)

13 2015-12-03 43.1687 (T13)

14 2015-12-11 46.1221 (T14)

15 2015-12-10 46.3504 (T15)

16 2015-11-16 49.2054 (T16)

17 2015-11-20 49.7988 (T17)

18 2015-12-14 50.4154 (T18)

19 2015-11-19 51.2933 (T19)

20 2015-12-15 53.1283 (T20)

21 2015-11-27 54.1908 (T21)

The difference in temperature from the coldest day in the period under

consideration to the warmest day under the same period i.e. the temperature variation is

as shown in table 3.4. below. The temperature increase in table 3.4 is calculated using

T_I = T_high – T_lowest, the lowest temperature T1 is removed from each of the

corresponding higher temperature for each day as shown in table 3.4

Table 3. 4 Temperature Variations

Serial Number Temperature increase (T_I)

1 0.4663

2 2.1042

3 3.1063

4 5.1884

5 6

6 6.3838

7 8.3655

8 10.2388

9 11.405

10 11.4871

11 12.9967

12 14.25

13 17.2034

14 17.4317

32

Serial Number Temperature increase (T_I)

15 20.2867

16 20.8801

17 21.4967

18 22.3746

19 24.2096

20 25.2721

We extracted the power consumption(PC) at times T1…T21 and the corresponding PCI

values is also calculated using the following equations:

 PC (T2) - PC (T1) = PCI_1

 PC(T3) - PC (T1) = PCI_2

.

.

.

PC (T21) - PC (T1) = PCI_20

 The data generated for the corresponding consumption retrieved based on the above

days and temperature values from the data in R studio is as shown in figure 3.10

Figure 3.10 Sample Power Consumption Data for 04th Dec and 15th Dec. 2015

PCI_11 and PCI_20 are the power consumption values for 4th December and 15th

December 2015. It is the data used to cluster and test the proposed algorithms.

33

3.3.2 DETAILS OF THE PROPOSED ALGORITHMS

The algorithms under investigation have been divided into four major methods for

ease of comparison. The first approach, KM runs K-means on the entire data set. The

second approach (KD) runs k-means on the data set and uses DBSCAN to identify the

anomalies of the data set. Our major contribution starts from the third algorithm that is

called KDS, which is based on K-means, DBSCAN with SMALL Training set KNN.

KDS is presented in Algorithm 3.

Algorithm 2: KD

Input: A time-series data set

Parameters: Number of clusters k, minPoints, epsilon

Output: Clusters

(i) Identify number of clusters k

(ii) Clean each cluster identified (Use DBSCAN)

We observed that because K-Means is not sensitive to outliers the clusters generated may

contain anomalies. The main motivation for this algorithm (KD) is to obtain clean

clusters from the clusters generated from K-Means.

Algorithm 3: KDS

Input: A time-series data set/ Sample data set (1%,2%,5% etc)

Parameters: Number of cluster k

Output: Clusters

(i) Identify number of clusters k

(ii) Partition the sample data set into k clusters

(iii) Remove outliers from each cluster k (Clean Cluster)

(iv) Obtain the centroid of each cleaned cluster k

o Note that the centroids are the centroids of the clusters with no

outliers. For each cleaned cluster, the average of the x coordinates in

the cluster will be the x coordinate of the cluster centroid; the average

of the y coordinates will be the y coordinate of the cluster centroid.

34

o Calculate the mean values of the x and y coordinates

o

(v) Select (1%, 2%, 5%) sample from each of the clean cluster obtained in (iv) above

(vi) Combine (iv and v) the centroid and the selected sample to create the training set.

(vii) Generate a KNN Model using (vi) as the training set and Algorithm 3.

(viii) Use the Model in (vii) to classify the rest of the dataset.

(ix) Stop.

In this thesis, we were motivated by the fact that although K-Means works well with

great speed on large data set, the cluster re-assignment step of the algorithm can be quite

demanding in terms of running time, especially for the very large data set. It may thus

slow down the convergence of the algorithm. Instead of having K-Means go through the

whole data set at once, the proposed algorithm (KDS and KDSD) first select a few

sample points from the data set and divide them into clusters. Thereafter, the proposed

algorithms allocate each of the remaining data points to one of the previously generated

clusters according to the distance to these clusters. This can not only correctly classify the

rest of the data set but also be explored by a density based outlier-aware approach to

remove possible anomalies. The idea is to efficiently identify points that belongs to the

different clusters (cluster pre-assignment) in the data set from initial sub-sampled data

through a combination of centroid and small sample of clean cluster member (Cluster

pre-processing) and then use the pre-processed cluster as training set to re-assign other

members in the unlabelled data set using Nearest Neighbour Algorithm. The clusters

generated from the unlabelled data set are not clean because they were only allocated

based on the data from the training example, hence the need to finally run DBSCAN for

cleaning the final dataset in the case of KDSD algorithm. The details of KDSD are

summarised in Algorithm 4.

35

Algorithm 4: KDSD

Input: A time-series data set/ Sample data set (1%,2%,5% etc)

Parameters: Number of cluster k

Output: Clusters

(i) Run KDS

(ii) Remove outlier from the classified data set (Generated Clusters)

(iii)Stop

The details of SKNN are summarised in Algorithm 5.

Algorithm 5: SKNN (Small Training Set K Nearest Neighbor)

Input: x: unknown/unlabeled data set

Output: Yi: clusters with labels

Classify (X, Y, x)//

X: randomly select {1%, 2% or 5% plus average point in each cluster i.e centroid}

Y: Class labels for the selected sample and the centroids

x: unlabeled data set

for i=1 to m do

compute

 between the points

end for

Compute set I containing indices for the k smallest distance d

Return majority labels for {Yi where i belongs to I}

36

The diagram below shows the various stages in the algorithmic process

(A) Cluster Assignment (B) Cluster Pre-processing

(C) Cluster Allocation

Figure 3.11 Overview of the Algorithmic process

3.3.3 COMPLEXITY AND RUN-TIME ANALYSIS OF THE ALGORITHMS

To estimate the performance of the algorithms based on storage, amount of time taken to

run the algorithm coupled with other resources the algorithm will need for its execution;

we considered the big O notation of each of the corresponding algorithms used above on

an initial 1% sample (2000) and 1% clean cluster plus the centroid for the SKNN. K

means algorithm was run on over 30 iterations, in two dimensions (PCI_11 and PCI_20)

for two clusters i.e k =2. The run time for the K-means algorithm is O(iknd) where the i=

number of iterations, k=number of clusters, n=number of points and d=dimensions.

DBSCAN, on the other hand, has a running time complexity of O(nlogn). To reduce the

runtime, a KD-tree implementation of the algorithm in C++ in the package DBSCAN

(CRAN) was chosen as our preferred alternative. KD-tree is a space-partitioning data

structure for organizing points in k-dimensional space. It has two nodes and it splits the

k-dimensional points into a binary tree where every leaf node is associated with one of

the k-dimensions. K-distance graph was used to enhance the search for the appropriate

value of epsilon. The time complexity of this improved DBSCAN is O(logn). The KD-

Tree implementation has been demonstrated to increase both the clustering efficiency and

speed. It has also been adjudged as the best implementation for DBSCAN[54]. KNN,

(i) Determine the Number of

Cluster on the selected

sample

(ii) Generate Clusters from the

sample

(iii) Identify

Outliers in

each of the

generated

clusters

(iv) Calculate the

centroid of the

cleaned cluster

(Simple

average of the

clean sample)

(v) Mix the

centroid with

selected

sample from

cleaned cluster.

(vi) Generate labels from the

mix.

(vii) Use the mix to create a

model for SKNN

(viii) Use model to classify the

Unlabeled data.

37

unlike the two other algorithms, is a supervised learning method where the result of new

unlabeled data is classified based on majority vote of the nearest neighbor category. The

algorithm consists of two phases the training and the test phase. The algorithm is said to

be a lazy learning algorithm because the 1% training phase runs linearly, only the

implementation of the actual allocation of the unlabeled data takes O(logn). We can,

therefore, conclude that KDS will run at most at O(logn), similarly, KDSD will run

O(logn).

3.3.4 SAMPLING TECHNIQUE

The sampling process is multi-staged. Initially, the simple random technique was

used to have a good representation of the population. One major advantage that we

explored at this stage is that we want every member of the population to be equally-likely

represented in the clustering process. After determining the possible cluster in the

population, we selected sample from each cluster to serve as representative of each

cluster initially identified, to prevent the population from been under-represented or over-

represented. A clean copy of the targeted cluster characteristics was the main population

from where the selection was made. This approach increases the chance of arriving at a

perfectly classified data set using a modified Nearest Neighbor Algorithm called SKNN.

38

CHAPTER 4 EXPERIMENTAL RESULTS

This chapter presents the details of the algorithm implementation and the

experimental results. The primary goal of the study is to design an algorithm that is fast

and able to effectively detect the anomalies in large data sets. Our experimental results

show that the goal has been achieved.

4.1 EXPERIMENTAL DESIGN

This section describes the experiment performed on the four algorithms: KM, KD,

KDS, and KDSD. The data was prepared from CSV files of raw consumption data using

Scala programming language, R and a few Python scripts. The data used for this

experiment consists of 200,000 households simulated from initial 12000 households

provided using the following steps:

We generated from each data point (x, y) in the 12000-element data set, a new data point

(x1, y1). Specifically, and . is a random number in the

range of (and is a random number in the range of

(. The choice of and is based on the data set under

consideration. The values may differ for a different data set. We observed that there was

too much overlap in the data set, we decided to separate the data set into odd-numbered

and even-numbered data, for the odd-numbered meters we added 200 points to have two

separate clusters. The resulting data set consist of nearly equal number of odd-numbered

meters and even-numbered meters. The rest of the section describes the result obtained

from the algorithm. Two days in winter were selected (the warmest day and the coldest

day) as the feature. Consumption on the warmest temperature is plotted against coldest

temperature in a two-dimensional graph. The result of the experiment is as shown below.

39

4.2 EXPERIMENTAL RESULTS OF KM

The entire data set (200,000 households) was generated through data pre- processing.

Specifically, the data was separated into two clusters to include those users whose

consumption increases with temperature and the other includes users whose consumption

does not increase much with temperature. For odd-numbered meters, we added a constant

value (delta= 200) to x and y axis, so that we could clearly generate two separate clusters.

Initially, we identified the number of clusters using elbow method [55]. Elbow method

help to determine an appropriate number of clusters in an unlabeled data set. It uses the

percentage of variance to estimate the number of clusters in a dataset. It is the point at

which any addition of extra cluster to the once already identified will lead to convergence

in the number of clusters identified. This point often represented by an angle in the plot

of variance as a function of the number of clusters lead to an elbow-like point in the

curve, hence the name “elbow curve”. The massive data set generated from the meters

coupled with little knowledge we had about the data makes an appropriate value of k not

apparent from mere studying the features of the data set. To give us a clearer picture of

the appropriate number of clusters to be generated. We used the Elbow method: The

figure indicates that adding another cluster after 2 (two) does not generate any significant

change in the data.

Figure 4.1 Elbow curve to determine the number of clusters

The time taken to run KMEANS on the whole data set = 7.56 seconds

40

Figure 4.2 Result of K-Means Algorithm on the whole dataset

4.3 EXPERIMENTAL RESULTS OF KD

DBSCAN was used to identify anomalies in the cluster generated above. The

result from the two cluster shows that Cluster I have 91744 households and cluster II has

108256 Households. The rest of the result and the corresponding time taken to run

DBSCAN on each of the clusters are shown below:

Table 4. 1 DBSCAN Anomaly Detection on Cluster

Cluster Name Cluster size Clean Cluster Noise points Time Taken

Cluster 1 91744 91439 305 2.039877 minutes

Cluster 2 108256 107999 257 2.310681 minutes

Power Consumption (PCI_20)

P
o
w

er C
o
n
su

m
p
tio

n
 (P

C
I_

1
1
)

• Cluster 1

• Cluster 2

41

Figure 4. 3 Outlier Detection on Cluster 1: 91744

Figure 4.4 Outlier Detection on Cluster II: 108256

Power Consumption (PCI_20)

• Cluster Members

• Noise points

Power Consumption (PCI_20)

• Cluster Members

• Noise points

P
o
w

er C
o
n
su

m
p
tio

n
 (P

C
I_

1
1
)

P
o
w

er C
o
n
su

m
p
tio

n
 (P

C
I_

1
1
)

42

4.4 EXPERIMENTAL RESULTS OF KDS AND KDSD

As stated earlier in the algorithm in chapter 3, a small training sample of 1%, 2% or 3%

sample will be used to train and classify the data set. We randomly select the sample

from the 200,000 households.

4.4.1 KDS AND KDSD WITH 1% SAMPLE

 Two thousand samples which represent 1% of the household was initially

selected for the experiment, the result is as shown in table 4.2. The time taken by K-

means is

0.089 seconds.

Table 4.2 Outlier Detection 1% Sample
 Cluster Name Cluster Size Cleans Cluster Noise Points Time Taken

 Cluster 1 882 853 29 0.01 seconds

Cluster 11 1118 1067 51 0.015 seconds

Figure 4.5 Result of K-means on 1% sample

Power Consumption (PCI_20)

• Cluster 1

• Cluster II

P
o
w

er C
o
n
su

m
p
tio

n
 (P

C
I_

1
1
)

43

 From table 4.2 the total time taken to clean cluster I and II are respectively,

0.01sec and 0.015 seconds. The noise points are 29 and 51 for cluster I and cluster II

respectively.

Figure 4.6 Outliers on cluster I using DBSCAN

Figure 4.7 Outlier on Cluster II using DBSCAN

Power Consumption (PC1_20

Power Consumption (PCI_20)

• Cluster Members

• Noise points

• Cluster Members

• Noise points

P
o
w

er C
o
n
su

m
p
tio

n
 (P

C
I_

1
1
)

P
o
w

er C
o
n
su

m
p
tio

n
 (P

C
I_

1
1
)

44

KNN on the cleaned Clusters

The next step in the algorithm is to select clean samples from the two clean clusters: 853

and 1067. From each of this clean cluster 1%, 2% and 5% each will be selected and

added to the centroids obtained from the axis. The 1% sample will be 0.01* 853 = 9 and

0.01* 1067= 11 approximately. A total of 20 data-points plus the two data-points each

from the centroids; gives 22 data points as the seed for our training set for K Nearest

Neighbor Algorithm. The total time taken for KNN to classify the sample is 0.112

seconds. Similar result will be calculated for 2% sample and 5% sample of the data set

Remaining sample = 198000

Table 4.3 Predicted Cluster from remaining Sample (198000)

Cluster

name

Predicted

Cluster

Mean Median 1st

Quartile

3rd Quartile

Cluster I 90783 0.4042 0.5158 0.2584 0.5288

Cluster II 107217 0.7706 0.8397 0.6791 0.8500

Table 4.4 Time taken to Clean the remaining Sample

Cluster Name Cluster Size Clean Cluster Noise Points Time Taken(DBSCAN)

 Cluster 1 90783 90491 292 1.929 mins

Cluster 11 107217 106869 348 2.015 mins

Figure 4.8 Outlier on Cluster I using DBSCAN: 90491

P
o
w

er C
o
n
su

m
p
tio

n
(P

C
I_

1
1
)

Power Consumption (PCI_20)

• Cluster Members

• Noise points

45

SKNN WITH 2% Sample

The 2% sample will be 0.02* 853 = 18 and 0.02* 1067= 22 approximately, which

gives 40 data-points plus the two data-points each from the centroids; in total, we have 42

data points as the seed for our training set for K Nearest Neighbor Algorithm. The total

time taken for KNN to classify the sample is 0.134 secs. A similar result will be

calculated for 5% sample.

Table 4.5 Predicted Clusters Using SKNN

Cluster

name

Predicted

Cluster

Mean Median 1st Quartile 3rd Quartile

Cluster I 90617 0.4042 0.5158 0.2584 0.5288

Cluster II 107383 0.7706 0.8397 0.6791 0.8500

Table 4.6 Time Taken to Clean the remaining Clusters

Cluster Name Cluster Size Clean Cluster Noise Points Time Taken(DBSCAN)

 Cluster 1 90617 90377 240 1.905 mins

Cluster 11 107383 106821 562 2.098 mins

Figure 4.9 Outlier on Cluster I using DBSCAN:90617

P
o
w

er C
o
n
su

m
p
tio

n
 (P

C
I_

1
1
)

Power Consumption (PCI_20)

• Cluster Members

• Noise points

46

Figure 4. 10 Outlier on Cluster II using DBSCAN:107383

SKNN WITH 5% Sample

The 5% sample will be 0.05* 853 = 43 and 0.05* 1067= 54 approximately. We have 97

data-points plus the two data-points each from the centroids; in total, we have 99 data

points as the seed for our training set for K Nearest Neighbor Algorithm. The total time

taken for KNN to classify the sample is 0.184 secs.

Table 4.7 Predicted Cluster with 5% Sample SKNN

Cluster

name

Predicted

Cluster

Mean Median 1st

Quartile

3rd Quartile

Cluster I 90783 0.4042 0.5158 0.2584 0.5288

Cluster II 107217 0.7706 0.8397 0.6791 0.8500

Table 4.8 Time taken to clean the remaining Cluster

Cluster Name Cluster Size Clean Cluster Noise Points Time Taken(DBSCAN)

 Cluster 1 90783 90491 292 1.959 mins

Cluster 11 107217 106869 348 2 mins

P
o
w

er C
o
n
su

m
p
tio

n
 (P

C
I_

1
1
)

Power Consumption (PCI_20)

• Cluster Members

• Noise points

47

Figure 4. 11 Outlier on Cluster I using DBSCAN:90783

P
o
w

er C
o
n
su

m
p
tio

n
 (P

C
I_

1
1
)

Power Consumption (PCI_20)

P
o
w

er C
o
n
su

m
p
tio

n
(P

C
I_

1
1
)

Power Consumption (PCI_20)

• Cluster Members

• Noise points

• Cluster Members

• Noise points

48

Figure 4.12 Outlier on Cluster II using DBSCAN:107217

4.4.2 KDS AND KDSD WITH 2% SAMPLE

 We now repeat the experiment with 2% (4000 households) of the total sample.

Time taken to run K-means on the selected sample is 0.159 secs

Figure 4.13 Result of K-means on 2% sample

Table 4.9 Initial Cluster from 2% Sample
Cluster Name Cluster Size Clean Cluster Noise Points Time Taken(DBSCAN)

 Cluster 1 1822 1795 27 0.028 secs

Cluster 11 2178 2157 21 0.037 secs

P
o
w

er C
o
n
su

m
p
tio

n
 (P

C
I_

1
1
)

Power Consumption (PCI_20)

• Cluster 1

• Cluster II

49

Figure 4.14 Outlier on Cluster I using DBSCAN:1822

Figure 4.15 Outlier on Cluster II using DBSCAN:2178

SKNN WITH 1% clean Sample

The next step in the algorithm is to select clean samples from the two clean clusters: 1795

and 2157. From each of this clean cluster 1%, 2% and 5% each will be selected and

P
o
w

er C
o
n
su

m
p
tio

n
 (P

C
I_

1
1
)

Power Consumption (PCI_20)

Power Consumption (PCI_20)

• Cluster Members

• Noise points

• Cluster Members

• Noise points

P
o
w

er C
o
n
su

m
p
tio

n
 (P

C
I_

1
1
)

50

added to the centroids obtained from the axis. The 1% sample will be 0.01* 1795 = 18

and 0.01* 2157= 22 approximately. We have 40 data-points plus the two data-points each

from the centroids; in total, we have 42 data points as the seed for our training set for K

Nearest Neighbor Algorithm. The total time taken for KNN to classify the sample is

0.139 secs seconds. A similar result will be calculated for 2% sample and 5% sample of

the data set.

Table 4.10 Predicted Cluster with 1% SKNN

Cluster name Predicted

Cluster

Mean Median 1st Quartile 3rd Quartile

Cluster I 89934 0.4041 0.5158 0.2584 0.5288

Cluster II 106066 0.7705 0.8397 0.6791 0.8500

Table 4.11 Time taken to clean the remaining Sample

Cluster Name Cluster Size Clean Cluster Noise Points Time Taken(DBSCAN)

 Cluster 1 89934 89621 313 1.873 mins

Cluster 11 106066 105737 329 2.00 mins

Figure 4.16 Outlier on Cluster I using DBSCAN:89934

Power Consumption (PCI_20)

• Cluster Members

• Noise points

P
o
w

er C
o
n
su

m
p
tio

n
 (P

C
I_

1
1
)

51

Figure 4.17 Outlier on Cluster II using DBSCAN:106066

SKNN WITH 2% Sample

The 2% sample will be 0.02* 1795 = 36 and 0.02* 2178= 44 approximately, which gives

80 data-points plus the two data-points each from the centroids; in total, we have 82 data

points as the seed for our training set for K Nearest Neighbor Algorithm. The total time

taken for KNN to classify the sample is 0.189 secs. Similar results will be calculated for

5% sample.

Table 4. 12 Predicted Clusters on 2% Sample

Cluster

name

Predicted

Cluster

Mean Median 1st Quartile 3rd Quartile

Cluster I 89921 0.4041 0.5158 0.2584 0.5288

Cluster II 106079 0.7705 0.8397 0.6791 0.8500

Table 4.13 Time Taken to Clean each Cluster (SKNN 2%)

Cluster Name Cluster Size Clean Cluster Noise Points Time Taken(DBSCAN)

 Cluster 1 89921 89621 300 1.934 mins

Cluster 11 106079 105737 342 2.00 mins

P
o
w

er C
o
n
su

m
p
tio

n
 (P

C
I_

1
1
)

Power Consumption (PCI_20)

• Cluster Members

• Noise points

52

Figure 4. 18 Outlier on Cluster I using DBSCAN:89921

Figure 4.19 Outlier on Cluster II using DBSCAN:106079

P
o
w

er C
o
n
su

m
p
tio

n
 (P

C
I_

1
1
)

Power Consumption (PCI_20)

Power Consumption (PCI_20)

• Cluster Members

• Noise points

• Cluster Members

• Noise points

P
o
w

er C
o
n
su

m
p
tio

n
 (P

C
I_

1
1
)

53

SKNN WITH 5% Sample

The 5% sample will be 0.05* 1795 = 90 and 0.05* 2178= 109 approximately,

which is equivalent to 199 data-points plus the two data-points each from the centroids;

in total, we have 201 data points as the seed for our training set for K Nearest Neighbor

Algorithm. The total time taken for KNN to classify the sample is 0.184 secs.

Table 4.14 Predicted Clusters (SKNN 5%)

Cluster

name

Predicted

Cluster

Mean Median 1st

Quartile

3rd Quartile

Cluster I 89888 0.4041 0.5158 0.2584 0.5288

Cluster II 106112 0.7705 0.8396 0.6791 0.8500

Table 4.15 Time taken to Clean the Clusters (SKNN 5%)

Cluster Name Cluster Size Clean Cluster Noise Points Time Taken(DBSCAN)

 Cluster 1 89888 89621 267 1.905 mins

Cluster 11 106112 105737 375 2 mins

Figure 4. 20 Outlier on Cluster I using DBSCAN:89888

Power Consumption (PCI_20)

• Cluster Members

• Noise points

P
o
w

er C
o
n
su

m
p
tio

n
 (P

C
I_

1
1
)

54

Figure 4. 21 Outlier on Cluster II using DBSCAN:106112

 Analysis of the data based on the cluster overlap and the run time obtained for

each of the algorithms shows that the time taken by K means to partition the data set into

the two clusters identified by Elbow method is 7.56 seconds, while K-means with

DBSCAN (KD) took 268.62 seconds. K-means, as expected, is quite faster than a

combination of K-means and DBSCAN because both methods were used directly on the

entire sample only that KD identified the anomalies. The noise points identified by KD

on cluster1 is 305 while the noise point identified for cluster II is 257 with a total of

91439 clean clusters in cluster I and 107999 clean clusters in cluster II. The rest of the

result for KD algorithm is as shown in Figure. 4.16

Table 4. 16 Predicted Cluster From KD

S/N Cluster Size

 Clean Noise Total

1 Cluster I 91439 305 91744

2 Cluster II 107999 257 108256

Power Consumption (PCI_20)

• Cluster Members

• Noise points

P
o
w

er C
o
n
su

m
p
tio

n
 (P

C
I_

1
1
)

55

4.4.3 SUMMARY OF KDS RESULTS

 Table 4.17 and 4.18 shows the result of running time and cluster overlap for

KDS. This approach uses Small Training Set obtained from clean samples of both

clusters, from 1% sample and 2% sample as a training set for K Nearest Neighbor

Algorithms. The result shows that the highest time taking is 0.226 seconds and 0.298

seconds for 1% and 5% sample as the training set. While it was 0.363 seconds and 0.513

for 1% and 5% training sample for 2% sample, the algorithm outperforms K-means

which took 7.56 seconds. As earlier reported the cluster do not defer much when

compared with one another in both methods, there was above 95% similarity in the

cluster sample for both cluster I and Cluster II when the cluster was compared with initial

clusters from K-means.

Table 4.17 Running Times for KDS Algorithm

S/N 1 Percent Sample/sec (2000) 2 Percent Sample/sec (4000)

1 K Means 0.089s K Means 0.159

2 DBSCAN for Cluster I 0.010s Clean Cluster I 0.028

3 DBSCAN for Cluster II 0.015s Clean Cluster II 0.037

4 SKNN (1% + Centroids) 0.112s SKNN (1% + Centroids) 0.139

5 SKNN (2% + Centroids) 0.134s SKNN (2% + Centroids) 0.189

6 SKNN (5% + Centroids) 0.184s SKNN (5% + Centroids) 0.286

7 Subtotal (1% + Centroids) 0.226s Subtotal (1% + Centroids) 0.363

8 Subtotal (2% + Centroids) 0.248s Subtotal (2% + Centroids) 0.413

9 Subtotal (5% + Centroids) 0.298s Subtotal (5% + Centroids) 0.513

Table 4. 18 Cluster and noise points for KDS

S/N I Percent Sample/Cluster Size 2 Percent Sample/ Cluster Size

 Cluster I Cluster 2 Cluster 1 Cluster 2

1 SKNN (1% + Centroids) 90783 107217 89934 106066

2 SKNN (2% + Centroids) 90617 107383 89921 106079

3 SKNN (5% + Centroids) 90783 107217 89888 106112

56

4.4.4 SUMMARY OF KDSD RESULTS

 Tables 4.19 and 4.20 shows the outcomes of running time and anomalies

analysis for KDSD algorithm. The results are similar to the one obtained by the earlier

two methods but due to the cleaning of the generated cluster, there was an increase in the

time taken. The result shows for 1% and 2% training sample for initial 2000 observations

is 236.526 seconds and 234.548 seconds for 1% and 2% sample as training set and

232.363 seconds and 236.453 seconds for 1% and 2% sample with 4000 observations as

initial sample. Although this was not able to perform as fast as K-means algorithm, it

outperforms KD which took 268.62 seconds for all sample considered.

Table 4.19 Running Times for KDSD Algorithm
S/N 1 Percent Sample/sec (2000) 2 Percent Sample/sec (4000)

1 K-means 0.089 K-means 0.159

2 DBSCAN for Cluster I 0.010 Clean Cluster I 0.028

3 DBSCAN for Cluster II 0.015 Clean Cluster II 0.037

4 SKNN (1% + Centroids) 0.112 SKNN (1% + Centroids) 0.139

 Clean Cluster I 115.400 Clean Cluster I 112.38

 Clean Cluster II 120.900 Clean Cluster II 120.000

5 SKNN (2% + Centroids) 0.134 SKNN (2% + Centroids) 0.189

 Clean Cluster I 114.300 Clean Cluster I 116.04

 Clean Cluster II 120.000 Clean Cluster II 120.000

6 SKNN (5% + Centroids) 0.184 SKNN (5% + Centroids) 0.286

 Clean Cluster 1 117.540 Clean Cluster I 114.540

 Clean Cluster II 120.000 Clean Cluster II 120.000

7 Subtotal (1% + Centroids) 236.526 Subtotal (1% + Centroids) 232.363

8 Subtotal (2% + Centroids) 234.548 Subtotal (2% + Centroids) 236.453

9 Subtotal (5% + Centroids) 237.836 Subtotal (5% + Centroids) 235.05

Table 4.20 Cluster and noise points for KDSD

S/N I Percent Sample/Cluster Size 2 Percent Sample/ Cluster

Size

1 SKNN (1% + Centroids) Clean Noise Total Clean Noise Total

 Cluster I 90491 292 90783 89621 313 89934

 Cluster 1I 106869 348 107217 105737 329 106066

2 SKNN (2% + Centroids)

 Cluster I 90377 240 90617 89621 300 89921

 Cluster II 106821 562 107383 105737 342 106079

3 SKNN (5% + Centroids)

 Cluster I 90491 292 90783 89621 267 89888

 Cluster II 106869 348 107217 105737 375 106112

57

Using the two clusters generated from KM as a baseline, we compared the result

with clusters generated from KD, KDS and KDSD element-wise, the table below is a

summary of the overlaps from the different clusters. The table shows the overlapping

percentage of clusters when KD, KDS, and KDSD were compared with cluster generated

from K-Means. The result indicates that clusters generated from K-Means contain

anomalies and that each of the other methods generated cleaner cluster as can be inferred

from the table.

Table 4.21 Cluster Overlapping Percentage KM, KD, KDS and KDSD

S/N Cluster 1 Percentage Overlap Cluster 2 Percentage Overlap

KD 99.20 99.31

KDS 98.25 99.71

KDSD 97.93 99.70

Similarly, the two clusters resulting from KD were used as the baseline to check how the

corresponding cluster from KDS and KDSD overlaps i.e the percentage of the cluster

members of KD clusters that appear in the corresponding cluster from KDS and KDSD.

The result is as shown in the table below 4.22.

Table 4.22 Cluster Overlapping Percentage KD, KDS, and KDSD

S/N Cluster 1 Percentage Overlap Cluster 2 Percentage Overlap

KDS 98.95 99.04

KDSD 98.63 98.71

We conclude that although KDSD performs a bit higher in terms of running time, the

resulting clusters generated from it are much cleaner than what obtains from either KDS

or KD.

58

CHAPTER 5 CONCLUSION AND FUTURE WORK

 This chapter concludes the thesis by summarizing the experimental results and

comparing the proposed algorithms to k-means clustering. The improvements that are

planned to be completed in the future are also presented.

5.1 CONCLUSION

 In this thesis, we propose a series of fast clustering algorithms for large data set

with special consideration on time series data set. The proposed methods explore a

combination of excellent features of existing clustering and classification algorithms. The

proposed algorithms detect anomalies and correctly classify large data set with improved

speed.

In order to evaluate the effectiveness of the algorithms, we carried out an

extensive analysis of smart meter data, which is a good example of time series data.

Extensive data analysis was carried out using Scala, R Studio, and a few Python scripts.

The analysis incorporates a careful analysis of data obtained over a period with special

emphasis on the weekdays to be able to correctly understand the customers’ consumption

trend over the periods considered.

In order to achieve the goal, we designed three innovative algorithms, KD, KDS,

and KDSD. Our experimental results show that they can quickly cluster large data sets

and effectively remove possible anomalies from the data set. KD, KDS, and KDSD use

the excellent features of K-means algorithm in handling large data set coupled with

DBSCAN ability to cluster data set of arbitrary shape and identify possible outliers. Our

implementation incorporates an improved multi-stage sampling method to arrive at a

training set that uniquely mirrors the data set and generates a model that gives near

accurate classification of the unlabeled data set using the proposed SKNN approach.

In detail, compared to K-means, KDS runs at a much faster rate. Specifically, our

experimental results show that it takes K-means 7.56 seconds to cluster the whole data set

under investigation. However, it takes KDS 0.363 seconds and 0.513 seconds in the case

of 1% and 5% training sample over 2% initial training data respectively. We also found

that although KDSD is not as fast as KDS due to the final anomaly removal operation, it

outperforms KD, which is simply a combination of K-Means and DBSCAN. In our

59

experiments, it takes KD 268.62 seconds to complete the clustering process while it takes

KDSD 237.836 seconds in the worst case.

5.2 FUTURE WORK

 Both KDS and KDSD involve SKNN, which is essentially a classification

algorithm. Currently, SKNN constructs the training set by randomly selecting a few data

points in the cleaned clusters. Despite the fact that this approach leads to low complexity

cost, it might result in a skewed training set. In the future, a distance calculation method

could be utilized by SKNN to determine the distance between all cluster members and the

centroids of the cleaned clusters before it is used to train the model. Then a training set

that includes data points of varied distances could be constructed. We expect that this

approach will lead to cleaner clusters. This work is only used for time series data set,

extending it to data from other domains will also be interesting.

60

BIBLIOGRAPHY

[1] C. Lin, C. Chen, H. Lee, and J. Liao, “Expert Systems with Applications Fast K-

means algorithm based on a level histogram for image retrieval,” Expert Syst.

Appl., vol. 41, no. 7, pp. 3276–3283, 2014.

[2] F. Mcloughlin, A. Duffy, and M. Conlon, “A clustering approach to domestic

electricity load profile characterization using smart metering data,” vol. 141, pp.

190–199, 2015.

[3] Y. Lu, T. Zhang, and Z. Zeng, “Adaptive weighted fuzzy clustering algorithm for

load profiling of smart grid customers,” 2016 IEEE/CIC Int. Conf. Commun.

China, pp. 1–6, 2016.

[4] J. Wang, R. Cardell-Oliver, and W. Liu, “Knowledge-Base d Systems An

incremental algorithm for discovering routine behaviors from smart meter data,”

vol. 113, pp. 61–74, 2016.

[5] F. Mcloughlin, A. Duffy, and M. Conlon, “Evaluation of time series techniques to

characterize domestic electricity demand,” Energy, vol. 50, pp. 120–130, 2013.

[6] J. Schleich, C. Faure, and M. Klobasa, “Persistence of the effects of providing

feedback alongside smart metering devices on household electricity demand,”

Energy Policy, vol. 107, no. April, pp. 225–233, 2017.

[7] P. Winters, B. Data, and S. Energy, “Big Data, Smart Energy, and Predictive

Analytics Time Series Prediction of Smart Energy Data,” KNIME Whitepaper Big

Data, Smart Energy, Predict. Anal., pp. 1–37, 2013.

[8] K. Le Zhou, S. L. Yang, and C. Shen, “A review of electric load classification in a

smart grid environment,” Renew. Sustain. Energy Rev., vol. 24, pp. 103–110,

2013.

[9] V. Le and S. Kim, “K-strings algorithm, a new approach based on Kmeans,” no. 2,

pp. 15–20.

[10] X. Zhang, J. Liu, Y. Du, and T. Lv, “Expert Systems with Applications A novel

clustering method on time series data,” vol. 38, pp. 11891–11900, 2011.

[11] I. P. Panapakidis, M. C. Alexiadis, and G. K. Papagiannis, “Application of

competitive learning clustering in the load time series segmentation,” Proc. Univ.

Power Eng. Conf., 2013.

61

[12] A. Al-wakeel and J. Wu, “K-means based cluster analysis of residential smart

meter measurements,” vol. 88, pp. 754–760, 2016.

[13] A. Al-wakeel, J. Wu, and N. Jenkins, “k -means based load estimation of domestic

smart meter measurements q,” vol. 194, pp. 333–342, 2017.

[14] P. J. Flynn, “Data Clustering : A Review,” vol. 31, no. 3, 2000.

[15] Merriam-Webster, “Cluster Analysis.” [Online]. Available: https://www.merriam-

webster.com/dictionary/cluster+analysis. [Accessed: 30-Jun-2017].

[16] A. D. E. R. Aftery, “How Many Clusters ? Which Clustering Method ? Answers

Via Model-Based Cluster Analysis,” vol. 41, no. 8, 1998.

[17] H. S. H. Sun, Z. L. Z. Liu, and L. K. L. Kong, “A Document Clustering Method

Based on Hierarchical Algorithm with Model Clustering,” 22nd Int. Conf. Adv. Inf.

Netw. Appl. - Work. (Aina Work. 2008), pp. 1229–1233, 2008.

[18] H. P. Ng, S. H. Ong, K. W. C. Foong, P. S. Goh, and W. L. Nowinski, “Medical

Image Segmentation Using K-Means Clustering and Improved Watershed

Algorithm,” 2006 IEEE Southwest Symp. Image Anal. Interpret., pp. 61–65, 2006.

[19] T. C. Fu, “A review on time series data mining,” Eng. Appl. Artif. Intell., vol. 24,

no. 1, pp. 164–181, 2011.

[20] A. K. Jain, “Data clustering: 50 years beyond K-means,” Pattern Recognit. Lett.,

vol. 31, no. 8, pp. 651–666, 2010.

[21] J. Han, M. Kamber, and J. Pei, Data Mining: Concepts and Techniques. 2012.

[22] L. Rokach and O. Maimon, “Chapter 15— Clustering methods,” Data Min. Knowl.

Discov. Handb., p. 32, 2010.

[23] M. Martinez-Pabon, T. Eveleigh, and B. Tanju, “Smart meter data analytics for

optimal customer selection in demand response programs,” vol. 107, no.

September 2016, pp. 49–59, 2017.

[24] W. Qiu, F. Zhai, Z. Bao, B. Li, Q. Yang, and Y. Cao, “Clustering Approach and

Characteristic Indices for Load Profiles of Customers Using Data from AMI ,”

no. Ciced, pp. 10–13, 2016.

[25] A. Albert and R. Rajagopal, “Smart Meter Driven Segmentation: What Your

Consumption Says About You,” vol. 28, no. 4, pp. 4019–4030, 2013.

62

[26] Strategy N. M. G, “Advanced metering infrastructure,” US Dep. Energy Off.

Electr. Energy Reliab., no. February 2008.

[27] R. Rashed Mohassel, A. Fung, F. Mohammadi, and K. Raahemifar, “A survey on

Advanced Metering Infrastructure,” Int. J. Electr. Power Energy Syst., vol. 63, pp.

473–484, 2014.

[28] S. Meters, A. C. Study, I. Vassileva, and J. Campillo, “Consumers ’ Perspective on

Full-Scale Adoption of,” 2016.

[29] F. L. Quilumba, W. J. Lee, H. Huang, D. Y. Wang, and R. L. Szabados, “Using

smart meter data to improve the accuracy of intraday load forecasting considering

customer behavior similarities,” IEEE Trans. Smart Grid, vol. 6, no. 2, pp. 911–

918, 2015.

[30] T. K. Wijaya, K. Aberer, and D. P. Seetharam, “Consumer Segmentation and

Knowledge Extraction from Smart Meter and Survey Data ∗,” pp. 226–234.

[31] “Smart Grid Legislative and Regulatory Policies and Case Studies,” no. December

2011.

[32] Wikipedia, “Smart Meters.” [Online]. Available:

https://en.wikipedia.org/wiki/Smart_meter. [Accessed: 30-Jun-2017].

[33] U. Greveler, B. Justus, and D. Loehr, “Multimedia Content Identification Through

Smart Meter Power Usage Profiles.”

[34] G. Chicco, R. Napoli, and F. Piglione, “Comparisons among clustering techniques

for electricity customer classification,” IEEE Trans. Power Syst., vol. 21, no. 2, pp.

933–940, 2006.

[35] R. Granell, C. J. Axon, and D. C. H. Wallom, “Impacts of Raw Data Temporal

Resolution Using Selected Clustering Methods on Residential Electricity Load

Profiles,” IEEE Trans. Power Syst., vol. 30, no. 6, pp. 3217–3224, 2014.

[36] R. Pereira et al., “Electrical Power and Energy Systems A fuzzy clustering

approach to a demand response model,” vol. 81, pp. 184–192, 2016.

[37] J. Han and M. A. Piette, “Solutions for Summer Electric Power Shortages :

Demand Response and its Applications in Air Conditioning and Refrigerating

Systems,” vol. 29, no. 1, pp. 1–4, 2008.

[38] V. Ford, “Clustering of Smart Meter Data for Disaggregation,” pp. 507–510, 2013.

63

[39] A. M. Learning and L. B. Key, “Securing Metering Infrastructure of Smart Grid :,”

2016.

[40] G. Editor, Identification of Outliers.

[41] F. Angiulli and F. Fassetti, “Very efficient mining of distance-based outliers,”

Proc. Sixt. ACM Conf. Conf. Inf. Knowl. Manag. - CIKM ’07, p. 791, 2007.

[42] E. M. Knox and R. T. Ng, “Algorithms for Mining Datasets Outliers in Large.”

[43] O. Analysis, Outlier Analysis.

[44] D.-H. Bae, S. Jeong, S.-W. Kim, and M. Lee, “Outlier detection using centrality

and center-proximity,” Proc. 21st ACM Int. Conf. Inf. Knowl. Manag. - CIKM ’12,

p. 2251, 2012.

[45] V. Hautam, “Improving K-Means by Outlier Removal,” pp. 978–987, 2005.

[46] M. Ester, H. Kriegel, X. Xu, and D.- Miinchen, “A Density-Based Algorithm for

Discovering Clusters in Large Spatial Databases with Noise,” 1996.

[47] C. Procopiuc and J. S. Park, “Fast Algorithms for Projected Clustering,” pp. 61–

72, 1999.

[48] R. E. F. E. Rences and N. O. T. Es, “Clustering by fast search and find of,” vol.

344, no. 6191, 2014.

[49] J. Zheng, “Research on Optimization of Clustering by Fast Search and Find of

Density Peaks *,” no. 61173130, pp. 129–133, 2016.

[50] T. F. Ghanem, W. S. Elkilani, H. M. Abdelkader, and M. M. Hadhoud, “Fast

Dimension-based Partitioning and Merging clustering algorithm,” Appl. Soft

Comput. J., vol. 36, pp. 143–151, 2015.

[51] L. Gunisetti, “Outlier detection and visualization of large data sets,” Proc. Int.

Conf. Work. Emerg. Trends Technol. - ICWET ’11, p. 522, 2011.

[52] E. Keogh, K. Chakrabarti, M. Pazzani, and S. Mehrotra, “Dimensionality

Reduction for Fast Similarity Search in Large Time Series Databases,” Knowl. Inf.

Syst., vol. 3, no. 3, pp. 263–286, 2001.

[53] T. Warren Liao, “A clustering procedure for exploratory mining of vector time

series,” Pattern Recognit., vol. 40, no. 9, pp. 2550–2562, 2007.

[54] S. Vijayalaksmi, “A Fast Approach to Clustering Datasets using DBSCAN and

Pruning Algorithms,” vol. 60, no. 14, pp. 1–7, 2012.

64

[55] Elbow method (clustering), Wikipedia. 29-May-2016.

65

APPENDIX: SAMPLE CONSUMPTION DATA

The Figures below include the power consumption of a few sample smart

meters in November 2015 and December 2015.

Figure 1 Consumption variation 15th Nov – 21th Nov.

Figure 2 Consumption variation 22nd Nov – 28th Nov.

66

Figure 3 Consumption variation 01th Dec – 7th Dec.

Figure 4Consumption variation 8th Dec – 14th Dec.

67

Figure 5 Consumption variation 15th Dec – 21st Dec.

