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ABSTRACT 

 
 Availability of large temporal data enabled by improved collection tools and 

storage devices has posed a new set of challenges in data mining, especially in the area of 

clustering data into different groups according to the basic attributes. The existing 

clustering algorithms, such as K-means, tend to suffer from slow processing speed. In 

addition, most of them lack the ability to eliminate outliers and anomalies. In this thesis, 

we present three fast clustering algorithms with noise removal capability: KD, KDS, and 

KDSD. 

Technically, the proposed algorithms make use of the features of three existing 

data mining methods, K-means, DBSCAN and K-Nearest Neighbor (KNN). K-means has 

been an effective clustering algorithm. However, the clusters resulting from K-means are 

likely to include many outliers. In addition, K-means does not scale well with cluster 

size. In our research, to tackle the outlier problem, we proposed KD, a novel clustering 

algorithm with noise removal capability that is based on K-means and DBSCAN. 

Essentially, DBSCAN is employed to remove the outliers in the clusters resulting from 

K-means. To solve the scaling problem with K-means, we proposed KDS, a fast 

clustering algorithm that scales well. Finally, KDSD, a fast clustering algorithm with 

noise removal capability was proposed to achieve both excellent scalability and noise 

removal ability. 

The performance of the proposed algorithms is thoroughly investigated through 

extensive experiments with a large power consumption data set. Our experimental results 

indicate that, compared to K-means, KDS runs at a much faster rate. Specifically, it takes 

K-means 7.56 seconds to cluster the whole data set under investigation. However, it takes 

KDS 0.363 seconds and 0.513 seconds in the case of 1% and 5% training sample 

respectively. In addition, although KDSD is not as fast as KDS due to the final anomaly 

removal operation, it outperforms KD. In our experiments, it takes KD 268.62 seconds to 

complete the clustering process while it takes KDSD 237.836 seconds in the worst case. 
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CHAPTER 1 INTRODUCTION 

Advancement in data collection tools, storage devices and continuous improvements 

in new technologies and applications as well as people’s capability to generate data have 

contributed to a phenomenal growth in data available for analysis. Improvement in 

networking, wireless technologies, data storage, communication and sensor devices etc. 

have increased traffic on the internet which has resulted in access to increased high-

volume, high dimensional data sets [1].  

The fast-growing, large volume of data collected and managed in numerous 

databases, requires powerful analytical tools to properly understand them [2]. Although 

the process of discovering or organizing data into meaningful patterns arises naturally in 

many scientific endeavors, new methods and techniques will be needed to assist us to 

transform today’s high-volume, high-velocity data sets into meaningful information. In 

fact, this has opened a new set of challenges for data mining experts such as extracting 

interesting patterns and features, establishing relationships between the different features, 

identifying anomalies and correctly grouping the data into different groups [3-4].  

The task of identifying classes or grouping data into clusters is normally 

accomplished through classification or clustering techniques. Classification is a 

supervised learning method that uses a sampled data set to represent and correctly 

describe the features of the data to generate a model for putting the data into different 

classes.  Clustering is an unsupervised learning process that groups data into classes or 

clusters so that data objects within a cluster have high similarity in comparison to one 

another, but are very dissimilar to objects in other clusters.   

In this thesis, we propose three innovative clustering algorithm for a large data set 

with noise removal using a test data set from Smart Meters [5-6]. As part of the process 

of achieving a fast algorithm for clustering power data, we first present the motivation of 

this study, then we describe the overview of the proposed algorithms. Finally, a short 

outline of the thesis is included. 
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1.1 MOTIVATION 

The vast amount of data that are being generated every day, render the traditional 

method of capturing, storing, analyzing, querying and processing inadequate for handling  

 

large data set. The quantity of data increases at a phenomenal rate because devices 

for gathering information such as – mobile devices, remote sensing, cameras, and 

wireless sensor networks – keep improving. Opportunities for big data could be found 

almost in all human endeavors: manufacturing, transportation, automotive, energy as well 

as cyber security. The task of organizing data into meaningful information through 

traditional methods such as relational database systems is no longer effective. Not only is 

the data increasing in volume, the variety, as well as the veracity of the data set, also 

keeps changing [7]. In essence, improvement of traditional method is highly necessary.   

The energy industry has been undergoing changes lately and one major change is the 

introduction of smart meters. The device can record millions of data per day which can be 

classified as a big data [2]. Installation of smart meters; under the Advanced Metering 

Infrastructure (AMI) has opened a new set of opportunities for understanding customers’ 

electricity consumption patterns. This new information can readily be used by 

Distribution Network Operators (DNO), to identify suitable customers for energy 

management solutions such as Demand-Side-Response. In addition, this can improve the 

effectiveness of storage device in electricity distribution. Choosing correct attributes, a 

DNO can use the pattern to identify suitable customer group for demand reduction 

solutions. Gaining insight into the consumption patterns of different categories of 

electricity users, based on their load data classification, will be of huge benefit to 

electricity producer as well as the consumers. It will assist in achieving proper planning 

and distribution of electricity. It can also aid the development of a more competitive 

market policy, and with a good knowledge of their consumption patterns, consumers can 

adjust their electricity consumption to suit their needs [8].  

Several algorithms have been developed to group time series (Smart Meter) data into 

clusters. However, the two main algorithms are the partition based and the hierarchical 

clustering algorithms [2]. K-Means is an example of partition or centroid based clustering 

algorithm. It partitions several observations into k clusters, with each observation 
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belonging to a cluster with the nearest centroid. It is a popular clustering technique 

because it is easy to implement although it may fail to converge to an optimum if the 

dataset is not well separated. K-means is also not sensitive in detecting outliers [9].  

Most algorithms developed for smart meters use centroid-based approach without 

provision for detecting the outlier and improving the speed of clustering the dataset [8], 

[10–12]. The increase in deployment of smart meters requires a more efficient, scalable 

and outlier-aware algorithm to meaningfully cluster the dataset and provide accurate 

information for customers’ needs. In this thesis, we present a series of algorithms that are 

fast and efficient for the large data set and can correctly detect possible outliers. As part 

of the process of achieving a fast algorithm for clustering power data, we implemented 

the following steps: 

(1) Import time series data for each meter ID, clean it and calculated aggregates on 

daily basis. 

(2) Define the consumption pattern of customers based on electricity usage for each 

meter ID on the imported time series data. 

(3) Cluster all meter IDs based on weather characteristics such as temperature to 

reduce the volume of data for analysis. The process can be extended to other 

behavioral characteristics of the customer obtained from the time series. 

(4) Predict unlabeled time series data using already designed predictive model based 

on a Nearest Neighbor algorithm.     

(5) Clean the cluster generated  

(6) Evaluate and compare our model to existing model based on cluster overlap, 

running time and time complexity.  

1.2 OVERVIEW OF THE PROPOSED ALGORITHMS 

The major objective of this thesis is to design series of algorithms that are capable 

of detecting outliers and that scale well with large data sets. The proposed algorithms 

utilize the positive features of three existing algorithms: K-Means, Density-Based Spatial 

Clustering of Applications with Noise (DBSCAN) and K- Nearest Neighbor Algorithm.  

K-Means Algorithm partitions a set of observations ( in d-

dimensional real vector into k groups where (  ). The aim is to minimize the within-

cluster sum of squares and the objective can be stated formally as: 
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where is the means of points in  

It has two major steps: assignment and update. In the assignment step, the 

observations are assigned to the cluster that yields the least within-cluster sum of squares 

(WCSS) and the update step recalculates the centroids of the observations in the new 

clusters. The two-step process is repeated until convergence [13]. The proposed 

algorithms use K-Means to determine the clusters from a selected sample of observations.  

In this thesis, DBSCAN was used to prepare the initial training set for the K-

Nearest Neighbor Algorithm. It was also used to remove outliers from the final clusters 

generated from the Nearest Neighbor Algorithm in the KDSD version of the algorithm. 

The proposed algorithm explores the nonparametric nature of K-Nearest Neighbor to 

classify the rest of the dataset using a Small Training Set K-Nearest Neighbor(SKNN). 

SKNN uses a small training set obtained from the cleaned data set resulting from 

DBSCAN. The training set is then used to generate labels. The labels are then used to 

classify the rest of the dataset based on majority vote of neighbors.  

 

1.3 THESIS OUTLINE 

 

The rest of the thesis is organized as follows. Chapter 2 includes a detailed 

background on clustering types, application, tools and clustering algorithms. It describes 

some of the key terms and research that has been undertaken especially in clustering of 

smart meter data. Some existing algorithms are examined in detail from the viewpoint of 

research that has recently been undertaken in the field. In addition, this chapter presents 

an overview of several important concepts and technologies that are closely related to our 

proposal. Chapter 3 discusses the idea behind our algorithm “Fast Clustering with Noise 

Removal”. It highlights the different stages of the algorithm. We present the proposed 

fast clustering algorithm for time series energy data and time series dataset in general. 

Chapter 4 contains a detail discussion of the experimental result obtained from the 

algorithm’s application on smart meters. Finally, Chapter 5 discusses the result and the 

conclusion drawn from the result of the experiment. 
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CHAPTER 2 RELATED WORK 

Due to the increase of the data available for data analysts because of improved 

sensing and data storage capacity, the opportunity of generating information from 

raw/unlabeled data set through data analysis has been tremendous. Research in Big data 

and Data mining, as well as Machine learning, have applied existing and new algorithms 

to resolve issues related to identifying patterns/ characteristics of observations based on 

behavioral as well as attitudinal characteristics inferred from the data. This chapter 

describes some of the key terms and research that has been conducted especially in 

clustering of smart meter data. Some existing algorithms are examined in detail from the 

viewpoint of research that has recently been undertaken in the field. In addition, this 

chapter presents an overview of several important concepts and technologies that are 

closely related to our proposal. 

 

2.1 CLUSTER ANALYSIS 

Cluster analysis has been described as the organization of several patterns into groups 

based on similarity, the patterns are usually points in multidimensional space. Patterns 

that belong to the same cluster are closely similar to one another compared to patterns 

that belong to another cluster [14].  Webster, an online dictionary defines Cluster 

Analysis as “a statistical classification technique for discovering whether the individuals 

of a population fall into different groups through quantitative comparison of multiple 

characteristics “ [15]. Fraley and Raftery, conceptualized cluster analysis as the process 

of determining the intrinsic structure of a data set when there is no other information 

other than the values of the observation[16]. Cluster Analysis is a major task in 

exploratory data mining, and a useful tool for statistical data analysis used in the various 

field such as image analysis, bioinformatics, data compression and machine learning 

among others. Clustering can be defined formally as a set of subsets of the form: 

  

such that: 

  and  
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There are different tools and approaches to clustering each with its own definition of 

what represents a cluster.  Clusters even from the same data set differ in shape, size and 

density and the presence of noise may constitute a roadblock in detecting the right cluster 

in a dataset. Clusters can be differentiated based on how small the distance between the 

members of a group is to one another or the density of the data space or as mentioned 

earlier the shape may be the defining characteristic. Flynn [16], correctly captured the 

task of clustering as a subjective process and that the choice of the clustering algorithm is 

a function of the individual data set as well as the use of the result obtained from 

clustering [14].  A cluster can be described as isolated or distinct groups in a data set or 

the organization of a collection of data points based on similarity. The pattern that 

describes a cluster is like one another while those that belong to the different cluster are 

dissimilar to one another [6]. Most data set that is often encountered in practice such as 

time series data, documents and text data set often do not have distinct characteristics to 

exhibit compactness in their distribution.   

As difficult as the process of clustering may be, it is a useful tool in a wide number of 

applications too numerous to fully explore. One of its applications is in Document 

clustering- a field in information retrieval and language processing that arrange 

documents into clusters with each cluster exhibiting some common characteristics based 

on the similarity measure. Documents clustering is a technique in information retrieval 

aimed at the efficient organization, browsing, and summarization of large volume of text 

documents [17]. Cluster analysis has also been applied in medical image processing; a 

good segmentation of the medical images produced by the clusters will benefit clinicians 

and patients especially for visualization, surgical planning and for early disease detection 

[18]. Mining in time series are often characterized by high dimension and large volume 

with a propensity for continuous updates; the mining tasks associated with time series 

data can be roughly classified into four main areas: Pattern discovery and clustering, 

classification, rule discovery, and summarization. Examples of time series data include 

counts of sunspots, heights of ocean tides, ocean isotope levels, exchange rates, Smart 

Meter data etc.  

The natural temporal ordering of time series data makes it unique in its requirement 

for clustering.  Time series data during clustering are often represented as either 
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aggregate or as a sample of the original data. The reason is to reduce the dimensionality 

of the data and the volume. The continuous increase in the volume and variety or type of 

Time Series data available for analysis requires improvement in processing, 

summarization, and understanding of information buried in the data. Such data is mostly 

unstructured and often meaningless in their raw form; making it difficult to analyze them 

[19]. Clustering can be effectively employed in understanding the underlying structure, 

detect anomalies, estimate the degree of similarity and organize data into meaningful 

summary [20]. Zhou, in studying the consumption pattern of electricity users (a Time 

Series Data), affirms that there is a marked difference in the consumption pattern of all 

categories of consumers from commercial to residential or industrial users; electricity 

consumers, even of the same type exhibit different consumption patterns[8]. Knowing the 

different consumption pattern and being able to adequately cater for different categories 

of customers need through consumption information is a potent means of improving 

service delivery to the customers. 

 

2.2   CLUSTERING METHODS  

Clustering groups data objects into subsets in a way that objects that are similar are 

grouped together, while dissimilar objects are grouped into different clusters. 

Classification is predictive while Clustering is descriptive.  Clustering algorithm can be 

classified into five (5) categories: Partitioning Methods, Density based methods, Grid 

based methods, Hierarchical method and Model-based Methods. Three of the approaches 

will be explained briefly below [21]. 

2.2.1 PARTITIONING METHODS 

The idea behind this method of clustering data is to partition a given data set say n into a 

set of k clusters. The goal in partitioning methods is to find a specified number of cluster 

(k) say:  of the input dataset n that optimizes a certain criterion. The criterion 

is usually of the form  
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Where  represents the centroids of the clusters Ci and  represents the Euclidean 

distance between x and .  It is required that the estimated number of partition be 

selected at the start of the run. All instances and possible partitions are then searched 

iteratively and enumerated to achieve a global optimum. Rokach and Maimon, stated that 

achieving global optimum is not feasible instead greedy heuristics are often employed 

towards a global optimum[22]. Two types of partitioning methods were identified by [8]: 

(i) Error Minimization Algorithms- In error minimization, the underlying idea is to 

determine cluster pattern that minimizes a chosen error criterion usually Sum of Squared 

Error (SSE) through exhaustive search or heuristics. An example is K-Means Algorithm. 

K-Means Clustering: Is a classic example of partitioning or centroid-based method and it 

minimizes the SSE. It can be described as follows. Given a set of n observations 

 where each   k-means partition the dataset 

into k clusters  . Each cluster  has an associated centroid 

 which can be computed using:  

 , 

The methods consist of two main steps: The cluster assignment where the data points are 

assigned to their respective clusters, re-computation of the centroids until there are no 

more changes. A simplified k-means algorithm is as shown below: 

Algorithm 1: A simplified k-means Algorithm 

Input: A time-series data set  

Parameters: Number of cluster k 

Output: Clusters 

(1) Arbitrarily choose k as initial cluster centers 

(2) Repeat 

a. (re) assign each object to the cluster with the closest centroid 

Or the cluster to which it is most similar using the mean value of the 

objects in the cluster 

b. Recalculate and update the cluster means (centroids) 

(3) Until convergence 
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Although it might not converge to the expected optimum if the initial seed(k) is not 

selected appropriately or the data is not clearly separated, K-means is capable of handling 

large data set if it can fit into memory and it is efficient. 

(ii) Graph-theoretic clustering is an alternative approach that constructs a similarity 

graph where two elements i and j are connected by an edge if and only if i and j are 

similar enough to belong to a single cluster. If the similarity measure is clear and 

consistent the graph will consist of disjoint cliques otherwise there could be overlaps in 

the graph structure. An example is the Minimal Spanning Tree. 

2.2.2 HIERARCHICAL METHODS 

Hierarchical clustering methods work by grouping data objects into a tree-like 

structure. It may be either agglomerative or divisive.  If the hierarchy is formed in a 

bottom-up fashion it is agglomerative otherwise it is divisive [23]. The clusters from 

hierarchical clustering suffer from its inability to adjust once a merge or a split has been 

concluded. It cannot backtrack in case a poor choice has been made in the hierarchical 

decomposition and it is not scalable for large dataset. The figure below shows the two 

main types of Hierarchical clustering. 

 

 

 

     

 

 

 

      

 

 

 

 

 

 

Figure 2.1  Hierarchical Clustering 
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2.2.3 DENSITY BASED METHODS 

Density based clustering is designed around the idea of density. Unlike partition-

based methods, the cluster continues to grow if the density in the neighborhood exceeds a 

certain threshold. Each of the data point in a cluster is considered a member of the 

neighborhood of a given radius if it contains at least a minimum number of points. 

Density based methods are used to filter and detect possible outliers in a cluster and they 

can discover clusters of unusual shape [24]. OPTICS is an example of Density Based 

Clustering algorithm. DBSCAN (Density-Based Spatial Clustering of Applications with 

Noise) is another example of the density based clustering algorithm. It is efficient for 

large spatial databases and it can discover arbitrarily shaped clusters. We would explore 

DBSCAN further because it is one of the main algorithms that will be employed in the 

design of our new algorithm. DBSCAN has the following parameters and they are as 

defined:  

(i) ℰ-neighborhood of an object is the maximum radius of the neighborhood from a 

point say p  

(ii) Given a set of objects, say D, an object p is directly density-reachable from 

another object q if p is within ℰ-neighborhood of q, and q is a core object.   

(iii) Core Point: A point p is a core point if at least minimum points (minPoints) are 

within ℰ distance of it (p included). The core points are said to be directly reachable from 

p. A point cannot be directly reachable from a non-core point.  

(iv) Density-Reachable: An object p is density-reachable from another object q w.r.t 

to minPoints and ℰ in a set of objects, D, if there exist objects    

where =q and  is density reachable from 

 

(v) All points or object not reachable from any other points are outliers. 

(vi) An object p is density-connected to another object q w.r.t ℰ and minPoints in a set 

of objects D, if there is an object say o : both p and q are density-reachable from o. 

DBSCAN requires two input parameters: minimum number of points (minPoints) and ℰ; 

the two requires minimum domain knowledge to be able to correctly determine them, 

[21]. In this thesis, a further explanation of the two parameters will be expatiated upon 

during the presentation of the case study in chapter 4.  
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2.3 ADVANCED METERING INFRASTRUCTURE  

Advanced Metering Infrastructure is a combination of home network systems such as 

thermostats, smart-meters, communication networks from the meters to corporate data 

centers, the meter data management system and the integration of those systems into the 

software platforms. The entire data collection system that revolve around the customers’ 

meter’s site, the communication networks and the service provider that the customers 

interact with, (gas, water utility as well as the medium(systems), through which data is 

been received and managed constitutes an Advanced Meter Infrastructure(AMI) [41]. 

AMI deployments have improved the collection and acquisition of refined and accurate 

consumption information associated with each customer from which behavioral and 

consumption characteristics of individual customers can be inferred. If external stimuli 

such as weather are accounted for then customer's energy consumption can be attributed 

to lifestyle [25]. Figure 2.2, shows an overview of the different components that make up 

the Advanced Metering Infrastructure. 

NETL Modern Grid Strategy Powering our 21st-Century Economy, US 

Department of Energy Office of Electricity and Energy Reliability: page 5 

(2008) 

  

 

                        

 

 

 

 

 

 

 

 

 

Figure 2.2 Advanced Metering Infrastructure [26] 
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As shown above, AMI is a combination of technologies that have been integrated to work 

together as one. Some of its components include: 

• Smart meters 

• Wide-Area Network Infrastructure 

• Meter Data Management Systems (MDMS) 

• Home Area Network (HANs) 

• Operational gateway 

AMI improves customers’ choice about price and services provided by energy 

companies, as well as higher reliability and improves power quality. Utility companies 

also benefit from the installation of AMI through the provision of accurate and timely 

bills, a more efficient and reliable service delivery as well as improving customer service. 

It is fast becoming the standard in today’s utility industry in that it has contributed to 

improving the performance of the grid and customer experience have also been positively 

impacted[26][27]. To achieve maximum performance utility companies will need to scale 

up research in analyzing the data collected from AMI devices in other to continuously 

improve customers experience and efficiency in service delivery[28].   

 

2.4 SMART METERS  

Smart meters are solid state programmable devices that can perform time-based 

pricing, record consumption data for use by consumer and utility companies, calculate net 

metering, notify the customer in case of loss of power, and remotely perform turning on 

and off operations as well as perform power quality monitoring and energy prepayment. 

Smart meters record electricity consumption in intervals of hours or minutes. It can 

communicate both wired and wirelessly (Wi- Fi) on the network to relay information 

between itself and server[29][30][26][31]. A smart meter can measure electricity 

consumption at the installed facility and transmits this information to the consumer and 

the energy supplier or operator. It can measure and monitor electricity consumption in 

real-time or near real-time as well as record the power quality. It is at different stages of 

implementation in most developed countries. For example, Australian Essential Service 

Commission (ESC) adopted a new Electricity Customer Metering Code in 2004. In 
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Canada, Ontario Energy Board had been working to define a regulatory framework for 

the effective implementation of Smart Meters since 2007. Likewise, other provinces in 

Canada are at various stages in their implementation. Oxxio, a Dutch company, is at the 

forefront of ensuring that smart meter is fully deployed in Netherlands [32]. Vassileva 

and Campillo, in evaluating consumer interaction with smart meters based on their 

preferences and feedback for smart meter deployment in Sweden; observed that smart 

meters provide customers with more detailed information about their energy consumption 

as well as variable pricing. When such potential (improved information and variable 

pricing) are fully explored by the network operators, energy saving through increased 

knowledge in energy consumption will be enhanced. They advocated for improvement in 

customer experience analysis rather than only dynamic pricing and improved electricity 

consumption information[28].  

   

Figure 2.3 Smart  Meter  [42] 
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2.5 CLUSTERING AND SMART METER DATA 

Before the advent of smart meters, various Non-Intrusive Load Monitoring 

Techniques have been adapted in the past, towards understanding the consumption 

pattern of consumers in households. Greveler et al constructed a power prediction 

function, which was based on series of pictures made of elementary shades. Additive 

RGB color notation was used in constructing each byte of the Red, Green and blue 

portion. Frames are then extracted; the darker the picture frames, the higher the rate of 

power consumption. The application of the algorithm on live TV programs shows that it 

is possible to accurately monitor power consumption profiles of customers, the signatures 

of the devices associated with them,  and even the viewed content [33].  Chicco et al 

identified the electrical behavior of customers by forming the Representative Load 

Pattern (RLP) of each customer using unsupervised clustering algorithms (K-means, 

fuzzy K-means, and modified follow-the-ladder). All the clustering algorithms tested 

could form the required number of clusters. Modified follow-the-leader algorithm 

outperformed other algorithms in that it built well-separated classes and created 

uncommon load patterns. They reiterated the importance of clustering algorithms in the 

classification of electricity customer using load pattern shape especially for the 

distribution service providers [34].  

Various clustering methods and approaches have been applied to analyze trends 

and identify groups using time-series smart meter data. To manage customer user specific 

characteristics, enhance theft detection in electricity use, track behavioral changes and 

enable development of consumer specific demand response programs; Frameworks have 

been developed to segment customers based on consumption in relation to other context-

specific attributes such as weather and ToU (Time of Use) [30]. Mandel et al[35], while 

examining the impact of raw data temporal resolution on the  residential electricity 

profiles of customers using clustering concludes that the key to properly represent the 

consumption pattern of a customer is to be able to select a data resolution that satisfies 

both the level of detail to be represented as well as the essential behavior associated with 

a user. Three algorithms were used in the process (K-Means, Hierarchical algorithm and 

Dirichlet process mixture model algorithm). They concluded that 8 minutes’ resolution 
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data would provide a useful basis for establishing customer consumption pattern and that 

data collected slower than 30 minutes is not sufficiently reliable. The data used for this 

experiment were collected at 5 minutes’ interval.  

The process of enlisting customer for Demand Response (DR) program to 

determine their consumption characteristics based on adjusting the demand for power 

instead of adjusting supply is another aspect that has been studied in the clustering of 

smart meter data.  Data-driven methodology for predicting customer eligibility to be 

enlisted in a DR program by using a combination of clustering and classification 

techniques have been developed with an algorithm such as Random forest [23], neural 

networks, decision trees, k-nearest neighbor, genetic algorithms and fuzzy clustering etc 

[36]. Pereira et al identified three major advantages of demand response which is: energy 

reduction during peak times, facilitating a balance between supply and demand, and 

reduction in energy bills [36].   Han and Piette were of the view that a successful 

implementation of demand response, aside from promoting a fair electric market 

operation is an effective short-term tool for correcting the imbalance between supply and 

demand [37].    

Smart meters are susceptible to several attacks: Man-in-the-middle, Denial of 

service attack, Authentication, False-Data-Injection, and Disaggregation. Solutions to 

address privacy issues in smart meters have been developed using applied Fuzzy c-means 

to infer energy profile characteristics of customers. The result indicated that gaining 

insight into such knowledge can be a potent platform for curbing abuse by attackers 

through home invasion and other behavioral profiling of customer even by utility 

companies against customers wish, [38].  Parvesh et al, similarly observed that due to the 

wireless nature of communication in AMI there are potential threats to data privacy 

through injection of false data, unauthorized decoding of energy consumption readings 

and network jamming. It is equally possible for an attacker to learn customer movements 

either present or absent from home which may pose an unimaginable level of threat to the 

customer and the community at large [39]. Understanding customer consumption pattern 

through data obtained from a smart meter is a potent source of improving overall service 

delivery in the energy sector.  
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2.5 OUTLIER DETECTION AND DATA CLUSTERING 

An outlier can be described simply as a data point that exhibits significant difference 

when compared with the rest of the data sets. Hawkins formally defined an outlier as “an 

observation which deviates so much from the other observations as to arouse suspicions 

that it was generated by a different mechanism”[40]. They are often referred to as 

abnormalities, deviants or simply anomalies. An outlier can sometimes contain useful 

information about behavior not yet captured by the data analyst. It has been used for 

fraud detection, intrusion detection systems, credit card fraud identification and medical 

diagnosis. Several approaches have been used in outlier detection, two common example 

of such approach will be explored further. The first approach is Distance based methods 

of outlier detection[41][42]. It assumes that the k-nearest neighbor distances or outlier 

data points differ appreciably from that of normal data points. Distance based methods 

exhibit high level of granularity in its analysis and this allows it to handle varied and 

tricky outliers. The second approach is the density-based method. It based on identifying 

dense regions and points that fall outside of the dense regions is classified as outliers, a 

good example is DBSCAN. Density based methods of outlier detection provide high 

level of interpretability, especially if the original attributes of the data set can be 

represented as sparse regions in the data[43]. Bae et al proposed two methods for 

detecting outliers in a data set: centrality and center-proximity. Centrality is a measure of 

how much, objects in a cluster recognize another object within the same cluster as the 

center of their cluster and center proximity measures how much close an object is to the 

center of the cluster. It was implemented using graph-based outlier detection methods 

such as a k-NN graph. The algorithms effectively solve the problem associated with local 

density and the micro-cluster problems[44].  The outlier detection algorithm, ODIN 

(Outlier Detection based on Indegree Number) has been used to improve the cluster 

generated by K-means. ODIN uses K-nearest neighbor graph, every vertex represents a 

data vector, and the edges are pointers to neighboring vectors[45]. In this thesis, we 

identified outliers in our dataset using a Density-based clustering algorithm (DBSCAN) 

that groups a set of densely packed points into clusters of the same unit while labeling 

points outside the dense region as outliers [46]. DBSCAN is robust to outliers and is very 
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effective in detecting arbitrary shape. In addition, ODIN has only been applied to small 

data set to the best of our knowledge. 

2.6 RECENT DEVELOPMENT IN FAST DATA CLUSTERING 

Several algorithms have recently been developed to overcome the shortcomings of 

existing algorithms such as K-Means, DBSCAN, PROCLUS, CLIQUE[47] and a host of 

other algorithms. The main driving reason for the need for such improvement is mostly 

associated with the speed of clustering, choice of similarity, the number of clusters 

(parameters), curse of dimensionality, the data set to be clustered (Spherical or non-

spherical) and a host of other factors. The speed of clustering has recently been gaining 

traction in the research community. Lin et al, improves the speed of processing of k-

means algorithms for image retrieval by using the discrete function of the levels’ 

histogram value along with a k-means algorithm to train cluster centers of the image 

database[1].  Rodriguez and Laio developed CFSFDP an algorithm that assumes that 

centroids of clusters are surrounded by neighbors with lower local density at a distance 

far from points with higher densities. The algorithm can be easily implemented, it is fast 

and it can cluster non-spherical data[48]. One major disadvantage of the algorithm is that 

it cannot be used to cluster data with multi-density peak accurately. To improve the 

algorithm, a grid-based partition version of the algorithm was developed 

(GbCFSFDP)[49], it is aimed at resolving some of the shortcomings of CFSFDP. 

Ghanem et al, introduces Dimension based Partition and Merging(DPM) to cluster large 

scale data sets with automatic cluster number detection. The algorithm is in three stages: 

Stage one, partition the data space into small dense partitions using dimension histogram 

and locating partition dimension value once. The second stage filters the noise based on 

the density of the dimension from the partitions. Lastly, clusters are constructed based on 

the identified boundaries from the samples[50]. Our own approach is aimed at clustering 

large time series data sets using a combination of features from three existing algorithms. 
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CHAPTER 3 FAST CLUSTERING WITH NOISE REMOVAL  

In this chapter, we present the proposed fast clustering algorithms for time series 

energy data. Two clustering approaches mentioned previously will be combined as they 

are mostly related to our context: partitioning methods and density-based methods. 

Partitioning methods identify partitions k from the input data set where each partition 

represents a cluster. The number of clusters k will need to be manually specified. 

Density-based algorithms treat as a cluster a collection of data points spread in spatial 

space of the contiguous region of high density separated by regions of low density. Points 

outside of these regions are referred to as outliers [46]. The proposed algorithms are 

designed for speed and anomaly detection.  

 

 3.1 TIME SERIES DATA CLUSTERING  

The data used for the experiment is a time series data set. In this thesis, we attempt to 

describe briefly time series data and two of the similarity measure that can be used to 

cluster them. Time series is a common data type widely used in diverse application areas 

such as engineering, finance, economics, communication, energy sector and online 

services. Time series data, unlike static data, are temporal and their features change with 

time. Identifying groups in static data clustering and time series clustering require a 

clustering algorithm but the approach differs based on the nature of the data available and 

the purpose of the application. Time series data can be discrete valued, real valued, 

univariate or multivariate and can be of equal or unequal length. In this section, we will 

explain time series, the different types of time series data clustering approaches, the 

proposed method and outline of the algorithm.  

We will now describe briefly Time Series data set and two of the similarity measures 

that can be used to cluster them. Fu defines a times series data as a collection of 

observations made chronologically, often they are characterized by high volume, high 

dimensionality with a propensity for continuous updates[19]. The mining task associated 

with time series can be classified roughly into four main areas: Pattern discovery and 

clustering, classification, rule discovery and summarization. Zhang et al, identify three 

main objectives associated with clustering time series data: similarity in time, the 
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similarity in shape and similarity in change[10] [51]. The large volume associated with 

time series data often requires that it be represented as either aggregate or with a sample 

from the original data set to reduce the dimensionality of the data. The simplest means of 

reducing dimensionality is through sampling but it may distort the original shape of the 

data especially for low sampling rate. An enhanced method is to use the average value of 

the features under consideration [19]. Keogh et al in reducing the dimensionality of the 

data set segments the sequences into equal-length sections and then record the mean 

value of each section. Each mean value is then indexed efficiently into a lower 

dimension. Other dimensionality reduction techniques include Spectral decomposition, 

Wavelet Decomposition and Singular Value Decomposition [52]. Liao identifies three 

types of approaches to time series data clustering as shown in the figures 3.1 
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(c) Model-Based 

Figure 3.1(a-c)  Approaches to Time Series Data Clustering 

 

The raw-data-based approach uses raw time series data. The similarity measure 

may need to be replaced with an appropriate one for time series data. The other two 

approaches either converts the time series into feature vectors or model parameters before 

clusters are generated [53]. Although other features such as the temperature will be used 

in data selection and processing, only one feature of the customers (consumption) will be 

used in determining the cluster to which a customer belongs and the overall 

representation of the data will still be maintained during the sampling process. An 

overview of the process involved in time series clustering is as shown in the Figures 3.2. 
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Figure 3.2  An overview of the clustering process. 

 

3.2  SIMILARITY MEASURE  

To measure how related two objects are in a cluster, a similarity measure is needed. 

The similarity measure is a set of rules that define the criteria for establishing a group as 

a cluster. Clustering algorithms are built on dissimilarity or similarity measure. They are 

usually non-negative real numbers. If the objects are close to one another the dissimilarity 

will be smaller and the reverse is the case if the objects are far from one another. The 

common similarity measure used in time series includes Hausdorff distance, modified 

Hausdorff (MODH), HMM-based distance, Dynamic Time Warping (DTW), Euclidean 

distance, Manhattan distance, Minkowski Distance, Euclidean distance in a PCA 

subspace, and Longest Common Sub-Sequence (LCSS). Each of this similarity measure 

has proven to be useful for different categories of data set but there is no one-size fit all in 

any of the methods. The one that has stood the test of time among the similarity measure 

is the Euclidean Distance, hence our preference for it in our design. 
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3.2.1   MINKOWSKI DISTANCE 

This is a generalization of the Euclidean and the Manhattan distance. This 

Minkowski distance between two points  

 ) and    

can be defined as: 

 

 

where  

When p = 1 it is referred to as the Manhattan distance and when it is equal to 2 it is 

referred to as the Euclidean distance. 

3.2.2    EUCLIDEAN FRAMEWORK  

 This can be defined as the geometric distance between two points in space. Given 

two points x and y, it is computed using the following formula:  

 

The Root Mean Square is 

       

It has many advantages, one of which is that addition of a new object to the dataset does 

not affect the existing distance between objects. However, the difference in scale can 

have a strong effect on the dimension from which the distances are computed. We have 

taken care of this effect through normalization of the data set. 

 3.3 THREE NOVEL CLUSTERING METHODS: KD, KDS AND KDSD 

In this thesis, we proposed a layered data-driven approach that is based on the 

household consumption characteristics and features such as temperature, humidity, and 

pressure etc. The features were selected based on the average consumption characteristics 

as well as the increase in consumption over a period e.g. winter period or the Holiday and 

weekends as well as weekly and daily consumption characteristics. The method is based 

on the consumption increment instead of the power consumption or the average 
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consumption. This is to be able to identify a house that uses electricity more in winter and 

which does not and by how much. By knowing this parameter, we could categorize 

customers on the consumption increment which gives a clearer view of the consumption 

characteristics of customers rather than using averages over a period. Non-holiday 

weekdays were separated from holiday weekdays based on the assumption that holiday 

weekdays and weekends may have the same pattern of power consumption. The days 

were sorted from lowest temperature to the highest temperature based on consumption 

increment over the period under observation. 

We have divided our algorithm into three different categories for ease of 

assessment and comparison. The three algorithms are KD- which combines K-means and 

DBSCAN algorithm on the whole data set, KDS – This algorithm uses DBSCAN to 

remove outliers from cluster initially generated by K-means from sampled data, this is 

then used to create clean clusters used as a training set for classification with SKNN. The 

KDSD is a complete form of KDS in that after the classification of the clusters from 

unlabeled data set, DBSCAN further removed any cluster, that was not initially removed 

through sampling.   

In other to have a quick view of the consumption pattern of customers at various 

times of the year and different time frames: weekly, monthly etc. we have presented 

below the consumption pattern based on the average total consumption at different 

time/period of the year, as shown in figures (3.3 – 3.5) below. The choice of the period 

under consideration was chosen randomly to give different views of the data set at the 

different time of the period under observation. 
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Figure 3.3 Residential Monthly Consumption Pattern 

 

 

 

Figure 3.4 Residential Daily Consumption Pattern 
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Figure 3.5 Residential Weekly Consumption Pattern 

 

3.3.1 DATA PREPARATION 

Smart Meter reads of 18000 electrical meters was provided through the NSERC 

project in affiliation with SpryPoint Inc. The data was collected at intervals of five 

minutes’. The daily data collection is around 1.5 GB. Data generated from these meters 

were initially stored on Amazon S3.  The platform for data analysis is as shown in figure 

3.5 below. The process of data cleaning and feature selection involves the creation of a 

local Cassandra database and the transfer of the CSV files stored on Amazon S3 into 

Cassandra tables. Using a combination of Scala programming interface and the 

Spark/Cassandra Connection, aggregates were generated from the meter reads and the 

residential information provided. The aggregates generated were exported into CSV files 

on the local file system for further analysis.  

Using R studio, a data cleaning and pre-processing procedure are applied before the 

clustering algorithms are used to segment the raw data. These are the steps we followed 

to prepare data for further analysis:  

(i) Filter out weekends and Holidays: We concentrated our analysis on weekdays, 

which allows us to see stable electricity usage patterns from customers.  

(ii)  Removed irrelevant variables: There were some zero recordings and 

inconsistencies, such as reading errors. We removed those customers whose 

data were not constantly recorded. 
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(iii)  Removed repeated IDs across multiple files: We ensured that there are no 

repeated IDs (representing each customer) across files.  

(iv)   Calculated aggregate (mean consumption and total consumption). 

(v)  For uniform measurement, we normalized the data set. 

Fig 3.6 shows the setup of the interface. Cassandra an Apache database system was used 

for the data processing and feature selection because of the following unique features: 

(i) Cassandra is fault tolerant and data can be replicated across multiple clusters. 

(ii) It consistently outperforms other popular NoSQL alternatives 

(iii)There are no single points of failure 

  

 

Figure 3.6 Software Architecture of the Proposed System 
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Figure 3.7 System Architecture of the Proposed System 

Fig 3.6 shows the components parts of the system architecture. The Spark data 

source handler load data from Cassandra context into a data frame for analyzing 

consumption data. The Base Repository serves as an abstract object that helps store 

consumption average for each day into a data structure (in this case a List). 

Consumption Utils: Helps Calculate consumption averages or total consumption over a 

period. The IOUtils/StringUtils: provides basic utilities for input/output and string 

operations respectively. Lastly, the Spark Consumption Analyzer serves as the central 

point for processing data loaded from a Spark Data source. 

The data used for this experiment is from the city of Massachusetts. All analysis 

will be related to the city’s calendar. There are two holidays in Massachusetts between 

November 15th, 2015 and December 15th, 2015. November 11th is the Veterans Day and 

November 26th, is the Thanksgiving Day. To understand the consumption pattern of 

customers, weekdays were used and all weekends were excluded from the calculation 

because we viewed weekends as holidays too. The weekends between those dates are as 

listed below: 

● Sundays: 15th,22nd,29th November  

● Saturday: 21st, 28th November  

● Sunday, 6th, 13th December 
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● Saturday 5th, 12th December. 

From the data set a total of 10 days are either weekend or holiday until November 15th, 

and December 15th, 2015. These days were removed from the experiment to allow for 

uniformity in consumption pattern. 

The figures below show the variation in temperature between 15th, November to 15th, 

December. 

  

Figure 3.8 Temperature Variation (Hour 1 – Hour 12)  

 

 
Figure 3. 9 Temperature Variation from (Hour 13 – Hour 24) 

 

 

 



 

29 

 

 

 

The average temperature of each day is as shown in table 3.1 

 

Table 3.1 Average Temperature between Nov 15th – Dec. 15th 2015 

 
S/N        Date Average Temperature  

1        2015-11-15 46.4763 

3       2015-11-16 49.2054 

4      2015-11-17   34.9187 

5     2015-11-18    35.3025 

6       2015-11-19 51.2933 

7       2015-11-20 49.7988 

8        2015-11-21 37.375 

9        2015-11-22 42.5063 

10       2015-11-23 34.1071 

11        2015-11-24 28.9187 

12        2015-11-25 31.0229 

13       2015-11-26 43.5696 

14      2015-11-27   54.1908 

15       2015-11-28 47.4942 

16        2015-11-29 33.4138 

17        2015-11-30 29.385 

18       2015-12-01 32.025 

19        2015-12-02 40.4058 

20       2015-12-03 43.1687 

21      2015-12-04   41.9154 

22      2015-12-05   37.1812 

23      2015-12-06   33.7188 

24       2015-12-07 37.2842 

25        2015-12-08 39.1575 

26      2015-12-09   40.3237 

27        2015-12-10 46.3504 

28      2015-12-11   46.1221 

29     2015-12-12    48.6054 

30       2015-12-13 50.1017 

31       2015-12-14 50.4154 

32        2015-12-15 53.1283 
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After removing weekends and holidays we obtained the list shown in Table 3.2. 

Weekends and holiday are adjudged similar in our design. To avoid unnecessary 

variations in our calculation, we have decided to consider only regular weekdays.  

  Table 3.2 Average Temperature (Weekdays Only) 

 
S/N                  Date Average Temperature 

33 1           34 2015-11-16 35 49.2054 

36 2             37 2015-11-17 38 34.9187 

39 3            40 2015-11-18 41 35.3025 

42 4             43 2015-11-19 44 51.2933 

45 5             46 2015-11-20 47 49.7988 

48 6             49 2015-11-23 50 34.1071 

51 7            52 2015-11-24 53 28.9187 

54 8             55 2015-11-25 56 31.0229 

57 9             58 2015-11-27 59 54.1908 

60 10           61 2015-11-30 62 29.385 

11            2015-12-01 32.025 

11 12           12 2015-12-02 13 40.4058 

12 13            13 2015-12-03 14 43.1687 

63 14          64 2015-12-04 65 41.9154 

66 15            67 2015-12-07 68 37.2842 

69 16            70 2015-12-08 71 39.1575 

72 17          73 2015-12-09 74 40.3237 

75 18            76 2015-12-10 77 46.3504 

78 19            79 2015-12-11 80 46.1221 

81 20            82 2015-12-14 83 50.4154 

21           2015-12-15 53.1283 

 

 

In order that we may have a clearer view of the temperature variation from lowest 

to the highest for the period under consideration, we sorted the days based on non-

holiday weekday and their corresponding consumption is as shown in table 3.3. The 

Temperature is represented in abbreviation as T1…T21 which corresponds to the 

corresponding values 28.9187…54.1908 of temperature in increasing order 
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Table 3.3 Temperature sorted in order(ascending) 

 
S/N Date Temperature 

1 2015-11-24 28.9187 (T1) 

2 2015-11-30 29.385 (T2) 

3 2015-11-25 31.0229 (T3) 

4 2015-12-01 32.025 (T4) 

5 2015-11-23 34.1071 (T5) 

6 2015-11-17 34.9187 (T6) 

7 2015-11-18 35.3025 (T7) 

8 2015-12-07 37.2842 (T8) 

9 2015-12-08 39.1575 (T9) 

10 2015-12-09 40.3237 (T10)  

11 2015-12-02 40.4058 (T11) 

              12 2015-12-04 41.9154 (T12) 

13 2015-12-03 43.1687 (T13) 

14 2015-12-11 46.1221 (T14) 

15 2015-12-10 46.3504 (T15) 

16 2015-11-16 49.2054 (T16) 

17 2015-11-20 49.7988 (T17) 

18 2015-12-14 50.4154 (T18)  

19 2015-11-19 51.2933 (T19) 

20 2015-12-15 53.1283 (T20) 

21 2015-11-27 54.1908 (T21) 

 

 

The difference in temperature from the coldest day in the period under 

consideration to the warmest day under the same period i.e. the temperature variation is 

as shown in table 3.4.  below.  The temperature increase in table 3.4 is calculated using 

T_I = T_high – T_lowest, the lowest temperature T1 is removed from each of the 

corresponding higher temperature for each day as shown in table 3.4  

Table 3. 4  Temperature Variations 

 
Serial Number  Temperature increase (T_I)   

1 0.4663 

2 2.1042 

3 3.1063 

4 5.1884 

5 6 

6 6.3838 

7 8.3655 

8 10.2388 

9 11.405 

10 11.4871 

11 12.9967 

12 14.25 

13 17.2034 

14 17.4317 
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Serial Number Temperature increase (T_I)   

15 20.2867 

16 20.8801 

17 21.4967 

18 22.3746 

19 24.2096 

20 25.2721 

We extracted the power consumption(PC) at times T1…T21 and the corresponding PCI 

values is also calculated using the following equations: 

         PC (T2) - PC (T1) =   PCI_1 

 PC(T3) -  PC (T1) =   PCI_2 

. 

. 

. 

PC (T21) - PC (T1)     =   PCI_20 

 

  The data generated for the corresponding consumption retrieved based on the above 

days and temperature values from the data in R studio is as shown in figure 3.10 

   
Figure 3.10 Sample Power Consumption Data for 04th Dec and 15th Dec. 2015 

 

PCI_11 and PCI_20 are the power consumption values for 4th December and 15th 

December 2015. It is the data used to cluster and test the proposed algorithms.  
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3.3.2 DETAILS OF THE PROPOSED ALGORITHMS 

The algorithms under investigation have been divided into four major methods for 

ease of comparison. The first approach, KM runs K-means on the entire data set. The 

second approach (KD) runs k-means on the data set and uses DBSCAN to identify the 

anomalies of the data set. Our major contribution starts from the third algorithm that is 

called KDS, which is based on K-means, DBSCAN with SMALL Training set KNN. 

KDS is presented in Algorithm 3. 

 

Algorithm 2: KD  

Input: A time-series data set  

Parameters: Number of clusters k, minPoints, epsilon 

Output: Clusters 

(i)   Identify number of clusters k 

(ii)       Clean each cluster identified (Use DBSCAN) 

 

We observed that because K-Means is not sensitive to outliers the clusters generated may 

contain anomalies. The main motivation for this algorithm (KD) is to obtain clean 

clusters from the clusters generated from K-Means.  

Algorithm 3: KDS  

Input: A time-series data set/ Sample data set (1%,2%,5% etc)  

Parameters: Number of cluster k 

Output: Clusters 

(i)      Identify number of clusters k 

(ii)       Partition the sample data set into k clusters  

(iii) Remove outliers from each cluster k (Clean Cluster) 

(iv)  Obtain the centroid of each cleaned cluster k 

o Note that the centroids are the centroids of the clusters with no 

outliers. For each cleaned cluster, the average of the x coordinates in 

the cluster will be the x coordinate of the cluster centroid; the average 

of the y coordinates will be the y coordinate of the cluster centroid. 
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o Calculate the mean values of the x and y coordinates 

o  

(v)        Select (1%, 2%, 5%) sample from each of the clean cluster obtained in (iv) above 

(vi)  Combine (iv and v) the centroid and the selected sample to create the training set. 

(vii)  Generate a KNN Model using (vi) as the training set and Algorithm 3. 

(viii)  Use the Model in (vii) to classify the rest of the dataset. 

(ix)  Stop. 

 

In this thesis, we were motivated by the fact that although K-Means works well with 

great speed on large data set, the cluster re-assignment step of the algorithm can be quite 

demanding in terms of running time, especially for the very large data set. It may thus 

slow down the convergence of the algorithm. Instead of having K-Means go through the 

whole data set at once, the proposed algorithm (KDS and KDSD) first select a few 

sample points from the data set and divide them into clusters. Thereafter, the proposed 

algorithms allocate each of the remaining data points to one of the previously generated 

clusters according to the distance to these clusters. This can not only correctly classify the 

rest of the data set but also be explored by a density based outlier-aware approach to 

remove possible anomalies. The idea is to efficiently identify points that belongs to the 

different clusters (cluster pre-assignment) in the data set from initial sub-sampled data 

through a combination of centroid and small sample of clean cluster member (Cluster 

pre-processing) and then use the pre-processed cluster as training set to re-assign other 

members in the unlabelled data set using Nearest Neighbour Algorithm. The clusters 

generated from the unlabelled data set are not clean because they were only allocated 

based on the data from the training example, hence the need to finally run DBSCAN for 

cleaning the final dataset in the case of KDSD algorithm. The details of KDSD are 

summarised in Algorithm 4. 
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Algorithm 4: KDSD 

Input: A time-series data set/ Sample data set (1%,2%,5% etc)  

Parameters: Number of cluster k 

Output: Clusters 

(i) Run KDS  

(ii) Remove outlier from the classified data set (Generated Clusters) 

(iii)Stop  

 

The details of SKNN are summarised in Algorithm 5. 

Algorithm 5: SKNN (Small Training Set K Nearest Neighbor) 

Input: x: unknown/unlabeled data set 

Output: Yi: clusters with labels 

Classify (X, Y, x)// 

X: randomly select {1%, 2% or 5% plus average point in each cluster i.e centroid} 

Y: Class labels for the selected sample and the centroids 

x: unlabeled data set 

for i=1 to m do 

compute   

 between the points  

end for 

Compute set I containing indices for the k smallest distance d 

Return majority labels for {Yi where i belongs to I} 
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The diagram below shows the various stages in the algorithmic process 

(A)  Cluster Assignment                                                  (B) Cluster Pre-processing 

 

 

 

 

(C) Cluster Allocation 

 

 

 

  

 

Figure 3.11 Overview of the Algorithmic process 

3.3.3   COMPLEXITY AND RUN-TIME ANALYSIS OF THE ALGORITHMS 

To estimate the performance of the algorithms based on storage, amount of time taken to 

run the algorithm coupled with other resources the algorithm will need for its execution; 

we considered the big O notation of each of the corresponding algorithms used above on 

an initial 1% sample (2000) and 1% clean cluster plus the centroid for the SKNN. K 

means algorithm was run on over 30 iterations, in two dimensions (PCI_11 and PCI_20) 

for two clusters i.e k =2. The run time for the K-means algorithm is O(iknd) where the i= 

number of iterations, k=number of clusters, n=number of points and d=dimensions. 

DBSCAN, on the other hand, has a running time complexity of O(nlogn). To reduce the 

runtime, a KD-tree implementation of the algorithm in C++ in the package DBSCAN 

(CRAN) was chosen as our preferred alternative. KD-tree is a space-partitioning data 

structure for organizing points in k-dimensional space. It has two nodes and it splits the 

k-dimensional points into a binary tree where every leaf node is associated with one of 

the k-dimensions. K-distance graph was used to enhance the search for the appropriate 

value of epsilon. The time complexity of this improved DBSCAN is O(logn). The KD-

Tree implementation has been demonstrated to increase both the clustering efficiency and 

speed. It has also been adjudged as the best implementation for DBSCAN[54]. KNN, 

(i) Determine the Number of 

Cluster on the selected 

sample  

(ii) Generate Clusters from the 

sample 

(iii) Identify 

Outliers in 

each of the 

generated 

clusters 

(iv) Calculate the 

centroid of the 

cleaned cluster 

(Simple 

average of the 

clean sample) 

(v) Mix the 

centroid with 

selected 

sample from 

cleaned cluster.  

(vi) Generate labels from the 

mix. 

(vii) Use the mix to create a 

model for SKNN 

(viii) Use model to classify the 

Unlabeled data. 
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unlike the two other algorithms, is a supervised learning method where the result of new 

unlabeled data is classified based on majority vote of the nearest neighbor category. The 

algorithm consists of two phases the training and the test phase. The algorithm is said to 

be a lazy learning algorithm because the 1% training phase runs linearly, only the 

implementation of the actual allocation of the unlabeled data takes O(logn). We can, 

therefore, conclude that KDS will run at most at O(logn), similarly, KDSD will run 

O(logn).   

3.3.4 SAMPLING TECHNIQUE  

The sampling process is multi-staged. Initially, the simple random technique was 

used to have a good representation of the population. One major advantage that we 

explored at this stage is that we want every member of the population to be equally-likely 

represented in the clustering process. After determining the possible cluster in the 

population, we selected sample from each cluster to serve as representative of each 

cluster initially identified, to prevent the population from been under-represented or over-

represented. A clean copy of the targeted cluster characteristics was the main population 

from where the selection was made.   This approach increases the chance of arriving at a 

perfectly classified data set using a modified Nearest Neighbor Algorithm called SKNN. 

 

 

 

 

 

 

 

 

 



 

38 

 

CHAPTER 4 EXPERIMENTAL RESULTS 

This chapter presents the details of the algorithm implementation and the 

experimental results. The primary goal of the study is to design an algorithm that is fast 

and able to effectively detect the anomalies in large data sets. Our experimental results 

show that the goal has been achieved. 

 

4.1 EXPERIMENTAL DESIGN  

This section describes the experiment performed on the four algorithms: KM, KD, 

KDS, and KDSD. The data was prepared from CSV files of raw consumption data using 

Scala programming language, R and a few Python scripts.  The data used for this 

experiment consists of 200,000 households simulated from initial 12000 households 

provided using the following steps: 

We generated from each data point (x, y) in the 12000-element data set, a new data point 

(x1, y1). Specifically,  and .  is a random number in the 

range of (  and  is a random number in the range of 

( . The choice of and  is based on the data set under 

consideration. The values may differ for a different data set. We observed that there was 

too much overlap in the data set, we decided to separate the data set into odd-numbered 

and even-numbered data, for the odd-numbered meters we added 200 points to have two 

separate clusters. The resulting data set consist of nearly equal number of odd-numbered 

meters and even-numbered meters. The rest of the section describes the result obtained 

from the algorithm. Two days in winter were selected (the warmest day and the coldest 

day) as the feature. Consumption on the warmest temperature is plotted against coldest 

temperature in a two-dimensional graph. The result of the experiment is as shown below.   
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4.2 EXPERIMENTAL RESULTS OF KM   

The entire data set (200,000 households) was generated through data pre- processing. 

Specifically, the data was separated into two clusters to include those users whose 

consumption increases with temperature and the other includes users whose consumption 

does not increase much with temperature. For odd-numbered meters, we added a constant 

value (delta= 200) to x and y axis, so that we could clearly generate two separate clusters.  

Initially, we identified the number of clusters using elbow method [55]. Elbow method 

help to determine an appropriate number of clusters in an unlabeled data set. It uses the 

percentage of variance to estimate the number of clusters in a dataset. It is the point at 

which any addition of extra cluster to the once already identified will lead to convergence 

in the number of clusters identified. This point often represented by an angle in the plot 

of variance as a function of the number of clusters lead to an elbow-like point in the 

curve, hence the name “elbow curve”. The massive data set generated from the meters 

coupled with little knowledge we had about the data makes an appropriate value of k not 

apparent from mere studying the features of the data set. To give us a clearer picture of 

the appropriate number of clusters to be generated. We used the Elbow method: The 

figure indicates that adding another cluster after 2 (two) does not generate any significant 

change in the data.  

 

Figure 4.1  Elbow curve to determine the number of clusters 

The time taken to run KMEANS on the whole data set = 7.56 seconds  
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Figure 4.2 Result of K-Means Algorithm on the whole dataset 

 

4.3 EXPERIMENTAL RESULTS OF KD 

DBSCAN was used to identify anomalies in the cluster generated above. The 

result from the two cluster shows that Cluster I have 91744 households and cluster II has 

108256 Households. The rest of the result and the corresponding time taken to run 

DBSCAN on each of the clusters are shown below: 

Table 4. 1 DBSCAN Anomaly Detection on Cluster 

 
Cluster Name   Cluster size  Clean Cluster  Noise points  Time Taken 

Cluster 1 91744 91439 305 2.039877 minutes 

Cluster 2 108256 107999 257 2.310681 minutes 
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Figure 4. 3  Outlier Detection on Cluster 1: 91744 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4  Outlier Detection on Cluster II: 108256 
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4.4 EXPERIMENTAL RESULTS OF KDS AND KDSD  

As stated earlier in the algorithm in chapter 3, a small training sample of 1%, 2% or 3% 

sample will be used to train and classify the data set. We randomly select the sample 

from the 200,000 households.  

4.4.1 KDS AND KDSD WITH 1% SAMPLE  

 Two thousand samples which represent 1% of the household was initially 

selected for the experiment, the result is as shown in table 4.2. The time taken by K-

means is  

0.089 seconds. 

Table 4.2  Outlier Detection 1% Sample 
 Cluster Name Cluster Size Cleans Cluster Noise Points Time Taken 

 Cluster 1 882 853 29 0.01 seconds 

Cluster 11 1118 1067 51 0.015 seconds 

 

 

 
 

 

 

Figure 4.5  Result of K-means on 1% sample   
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 From table 4.2 the total time taken to clean cluster I and II are respectively, 

0.01sec and 0.015 seconds.  The noise points are 29 and 51 for cluster I and cluster II 

respectively.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6  Outliers on cluster I using DBSCAN   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7  Outlier on Cluster II using DBSCAN 
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KNN on the cleaned Clusters 

The next step in the algorithm is to select clean samples from the two clean clusters: 853 

and 1067. From each of this clean cluster 1%, 2% and 5% each will be selected and 

added to the centroids obtained from the axis. The 1% sample will be 0.01* 853 = 9 and 

0.01* 1067= 11 approximately. A total of 20 data-points plus the two data-points each 

from the centroids; gives 22 data points as the seed for our training set for K Nearest 

Neighbor Algorithm. The total time taken for KNN to classify the sample is 0.112 

seconds. Similar result will be calculated for 2% sample and 5% sample of the data set 

Remaining sample = 198000 

Table 4.3  Predicted Cluster from remaining Sample (198000) 

 
Cluster 

name 

Predicted 

Cluster  

Mean Median 1st 

Quartile 

3rd Quartile 

Cluster I 90783      0.4042    0.5158    0.2584    0.5288    

Cluster II 107217     0.7706                      0.8397                       0.6791    0.8500                       

 

Table 4.4  Time taken to Clean the remaining Sample 

 
Cluster Name Cluster Size Clean Cluster Noise Points Time Taken(DBSCAN) 

 Cluster 1 90783 90491 292 1.929 mins 

Cluster 11 107217 106869 348 2.015 mins 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8  Outlier on Cluster I using DBSCAN: 90491 
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SKNN WITH 2% Sample 

The 2% sample will be 0.02* 853 = 18 and 0.02* 1067= 22 approximately, which 

gives 40 data-points plus the two data-points each from the centroids; in total, we have 42 

data points as the seed for our training set for K Nearest Neighbor Algorithm. The total 

time taken for KNN to classify the sample is 0.134 secs. A similar result will be 

calculated for 5% sample. 

Table 4.5  Predicted Clusters Using SKNN 

 
Cluster 

name 

Predicted 

Cluster  

Mean Median 1st Quartile 3rd Quartile 

Cluster I 90617    0.4042 0.5158    0.2584    0.5288    

Cluster II 107383     0.7706                      0.8397                       0.6791    0.8500                       

 

Table 4.6  Time Taken to Clean the remaining Clusters 

 
Cluster Name Cluster Size Clean Cluster Noise Points Time Taken(DBSCAN) 

 Cluster 1 90617 90377 240 1.905 mins 

Cluster 11 107383 106821 562 2.098 mins 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9  Outlier on Cluster I using DBSCAN:90617 
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Figure 4. 10 Outlier on Cluster II using DBSCAN:107383 

 

SKNN WITH  5% Sample 

The 5% sample will be 0.05* 853 = 43 and 0.05* 1067= 54 approximately. We have 97 

data-points plus the two data-points each from the centroids; in total, we have 99 data 

points as the seed for our training set for K Nearest Neighbor Algorithm. The total time 

taken for KNN to classify the sample is 0.184 secs.  

Table 4.7  Predicted Cluster with 5% Sample SKNN 

 
Cluster 

name 

Predicted 

Cluster  

Mean Median 1st 

Quartile 

3rd Quartile 

Cluster I 90783     0.4042 0.5158    0.2584    0.5288    

Cluster II 107217        0.7706                      0.8397                       0.6791    0.8500                       

 

Table 4.8  Time taken to clean the remaining Cluster 

 
Cluster Name Cluster Size Clean Cluster Noise Points Time Taken(DBSCAN) 

 Cluster 1 90783 90491 292 1.959 mins 

Cluster 11 107217 106869 348 2 mins 
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Figure 4. 11  Outlier on Cluster I using DBSCAN:90783 
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Figure 4.12  Outlier on Cluster II using DBSCAN:107217 

4.4.2 KDS AND KDSD WITH 2% SAMPLE  

 We now repeat the experiment with 2% (4000 households) of the total sample. 

Time taken to run K-means on the selected sample is 0.159 secs 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.13 Result of K-means on 2% sample   

 

Table 4.9  Initial Cluster from 2% Sample 
Cluster Name Cluster Size Clean Cluster Noise Points Time Taken(DBSCAN) 

 Cluster 1 1822 1795 27 0.028 secs 

Cluster 11 2178 2157 21 0.037 secs 
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Figure 4.14  Outlier on Cluster I using DBSCAN:1822 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.15  Outlier on Cluster II using DBSCAN:2178 

 

SKNN WITH 1% clean Sample 

The next step in the algorithm is to select clean samples from the two clean clusters: 1795 

and 2157. From each of this clean cluster 1%, 2% and 5% each will be selected and 
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added to the centroids obtained from the axis. The 1% sample will be 0.01* 1795 = 18 

and 0.01* 2157= 22 approximately. We have 40 data-points plus the two data-points each 

from the centroids; in total, we have 42 data points as the seed for our training set for K 

Nearest Neighbor Algorithm. The total time taken for KNN to classify the sample is 

0.139 secs seconds. A similar result will be calculated for 2% sample and 5% sample of 

the data set. 

Table 4.10  Predicted Cluster with 1% SKNN 

 
Cluster name Predicted 

Cluster  

Mean Median 1st Quartile 3rd Quartile 

Cluster I 89934    0.4041 0.5158    0.2584    0.5288    

Cluster II 106066    0.7705                      0.8397                       0.6791    0.8500                       

 

Table 4.11  Time taken to clean the remaining Sample 

 
Cluster Name Cluster Size Clean Cluster Noise Points Time Taken(DBSCAN) 

 Cluster 1 89934 89621 313 1.873 mins 

Cluster 11 106066 105737 329 2.00 mins 

 

 
 
 

Figure 4.16   Outlier on Cluster I using DBSCAN:89934 
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Figure 4.17  Outlier on Cluster II using DBSCAN:106066 

 

 

SKNN WITH 2% Sample 

The 2% sample will be 0.02* 1795 = 36 and 0.02* 2178= 44 approximately, which gives   

80 data-points plus the two data-points each from the centroids; in total, we have 82 data 

points as the seed for our training set for K Nearest Neighbor Algorithm. The total time 

taken for KNN to classify the sample is 0.189 secs. Similar results will be calculated for 

5% sample. 

Table 4. 12 Predicted Clusters on 2% Sample 

 
Cluster 

name 

Predicted 

Cluster  

Mean Median 1st Quartile 3rd Quartile 

Cluster I 89921     0.4041 0.5158    0.2584    0.5288    

Cluster II 106079      0.7705                      0.8397                       0.6791    0.8500                       

 

Table 4.13  Time Taken to Clean each Cluster (SKNN 2%) 

 
Cluster Name Cluster Size Clean Cluster Noise Points Time Taken(DBSCAN) 

 Cluster 1 89921 89621 300 1.934 mins 

Cluster 11 106079      105737 342 2.00 mins 
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Figure 4. 18  Outlier on Cluster I using DBSCAN:89921 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.19  Outlier on Cluster II using DBSCAN:106079 

 

P
o
w

er C
o
n
su

m
p
tio

n
 (P

C
I_

1
1
) 

Power Consumption (PCI_20) 

Power Consumption (PCI_20) 

• Cluster Members 

• Noise points 

 

• Cluster Members 

• Noise points 

 

P
o
w

er C
o
n
su

m
p
tio

n
 (P

C
I_

1
1
) 



 

53 

 

SKNN WITH 5% Sample 

The 5% sample will be 0.05* 1795 = 90 and 0.05* 2178= 109 approximately, 

which is equivalent to 199 data-points plus the two data-points each from the centroids; 

in total, we have 201 data points as the seed for our training set for K Nearest Neighbor 

Algorithm. The total time taken for KNN to classify the sample is 0.184 secs.  

Table 4.14  Predicted Clusters (SKNN 5%) 

 
Cluster 

name 

Predicted 

Cluster  

Mean Median 1st 

Quartile 

3rd Quartile 

Cluster I 89888    0.4041 0.5158    0.2584    0.5288    

Cluster II 106112    0.7705                      0.8396                       0.6791    0.8500                       

 

Table 4.15  Time taken to Clean the Clusters (SKNN 5%) 

 
Cluster Name Cluster Size Clean Cluster Noise Points Time Taken(DBSCAN) 

 Cluster 1 89888    89621 267 1.905 mins 

Cluster 11 106112    105737 375 2 mins 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 20 Outlier on Cluster I using DBSCAN:89888 
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Figure 4. 21 Outlier on Cluster II using DBSCAN:106112 

 

 Analysis of the data based on the cluster overlap and the run time obtained for 

each of the algorithms shows that the time taken by K means to partition the data set into 

the two clusters identified by Elbow method is 7.56 seconds, while K-means with 

DBSCAN (KD) took 268.62 seconds. K-means, as expected, is quite faster than a 

combination of K-means and DBSCAN because both methods were used directly on the 

entire sample only that KD identified the anomalies. The noise points identified by KD 

on cluster1 is 305 while the noise point identified for cluster II is 257 with a total of 

91439 clean clusters in cluster I and 107999 clean clusters in cluster II. The rest of the 

result for KD algorithm is as shown in Figure. 4.16 

Table 4. 16  Predicted Cluster From KD 

 

S/N                                                        Cluster Size 

                                       Clean                   Noise Total 

1 Cluster I 91439 305 91744 

2 Cluster II 107999 257 108256 
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4.4.3 SUMMARY OF KDS RESULTS  

 Table 4.17 and 4.18 shows the result of running time and cluster overlap for 

KDS. This approach uses Small Training Set obtained from clean samples of both 

clusters, from 1% sample and 2% sample as a training set for K Nearest Neighbor 

Algorithms. The result shows that the highest time taking is 0.226 seconds and 0.298 

seconds for 1% and 5% sample as the training set. While it was 0.363 seconds and 0.513 

for 1% and 5% training sample for 2% sample, the algorithm outperforms K-means 

which took 7.56 seconds. As earlier reported the cluster do not defer much when 

compared with one another in both methods, there was above 95% similarity in the 

cluster sample for both cluster I and Cluster II when the cluster was compared with initial 

clusters from K-means.  

 

 

 

Table 4.17  Running Times for KDS Algorithm 

 
S/N 1 Percent Sample/sec (2000)   2 Percent Sample/sec (4000)  

1 K Means 0.089s  K Means 0.159 

2 DBSCAN for Cluster I 0.010s Clean Cluster I 0.028 

3 DBSCAN for Cluster II 0.015s Clean Cluster II 0.037 

4 SKNN (1% + Centroids) 0.112s SKNN (1% + Centroids) 0.139 

5 SKNN (2% + Centroids)  0.134s SKNN (2% + Centroids) 0.189 

6 SKNN (5% + Centroids)  0.184s SKNN (5% + Centroids) 0.286 

7 Subtotal (1% + Centroids) 0.226s Subtotal (1% + Centroids) 0.363 

8 Subtotal (2% + Centroids) 0.248s Subtotal (2% + Centroids) 0.413 

9 Subtotal (5% + Centroids) 0.298s Subtotal (5% + Centroids) 0.513 

 

Table 4. 18  Cluster and noise points for KDS 

 

S/N I Percent Sample/Cluster Size  2 Percent Sample/ Cluster Size 

                                      Cluster I        Cluster 2 Cluster 1       Cluster 2 

1 SKNN (1% + Centroids) 90783 107217 89934 106066 

2 SKNN (2% + Centroids) 90617 107383 89921 106079 

3 SKNN (5% + Centroids) 90783 107217 89888 106112 
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4.4.4    SUMMARY OF KDSD RESULTS 

 

 Tables 4.19 and 4.20 shows the outcomes of running time and anomalies 

analysis for KDSD algorithm. The results are similar to the one obtained by the earlier 

two methods but due to the cleaning of the generated cluster, there was an increase in the 

time taken. The result shows for 1% and 2% training sample for initial 2000 observations 

is 236.526 seconds and 234.548 seconds for 1% and 2% sample as training set and 

232.363 seconds and 236.453 seconds for 1% and 2% sample with 4000 observations as 

initial sample. Although this was not able to perform as fast as K-means algorithm, it 

outperforms KD which took 268.62 seconds for all sample considered.  

Table 4.19  Running Times for KDSD Algorithm 
S/N 1 Percent Sample/sec (2000)   2 Percent Sample/sec (4000)  

1 K-means 0.089  K-means 0.159 

2 DBSCAN for Cluster I 0.010 Clean Cluster I 0.028 

3 DBSCAN for Cluster II 0.015 Clean Cluster II 0.037 

4 SKNN (1% + Centroids) 0.112 SKNN (1% + Centroids) 0.139 

 Clean Cluster I 115.400 Clean Cluster I 112.38 

 Clean Cluster II 120.900 Clean Cluster II 120.000 

5 SKNN (2% + Centroids)  0.134 SKNN (2% + Centroids) 0.189 

 Clean Cluster I 114.300 Clean Cluster I 116.04 

 Clean Cluster II 120.000 Clean Cluster II 120.000 

6 SKNN (5% + Centroids)  0.184 SKNN (5% + Centroids) 0.286 

 Clean Cluster 1  117.540 Clean Cluster I 114.540 

 Clean Cluster II 120.000 Clean Cluster II 120.000 

7 Subtotal (1% + Centroids) 236.526 Subtotal (1% + Centroids) 232.363 

8 Subtotal (2% + Centroids) 234.548 Subtotal (2% + Centroids) 236.453 

9 Subtotal (5% + Centroids) 237.836 Subtotal (5% + Centroids) 235.05 

 

Table 4.20 Cluster and noise points for KDSD 

 
S/N I Percent Sample/Cluster Size  2 Percent Sample/ Cluster 

Size 

                                                                  

1 SKNN (1% + Centroids) Clean Noise Total Clean Noise  Total  

 Cluster I 90491 292 90783 89621 313 89934 

 Cluster 1I 106869 348 107217 105737 329 106066 

2 SKNN (2% + Centroids)       

 Cluster I 90377 240 90617 89621 300 89921 

 Cluster II 106821 562 107383 105737 342 106079 

3 SKNN (5% + Centroids)       

 Cluster I 90491 292 90783 89621 267 89888 

 Cluster II 106869 348 107217 105737 375 106112 
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Using the two clusters generated from KM as a baseline, we compared the result 

with clusters generated from KD, KDS and KDSD element-wise, the table below is a 

summary of the overlaps from the different clusters. The table shows the overlapping 

percentage of clusters when KD, KDS, and KDSD were compared with cluster generated 

from K-Means. The result indicates that clusters generated from K-Means contain 

anomalies and that each of the other methods generated cleaner cluster as can be inferred 

from the table. 

 

Table 4.21 Cluster Overlapping Percentage KM, KD, KDS and KDSD 

 

S/N Cluster 1 Percentage Overlap        Cluster 2 Percentage Overlap 

KD 99.20 99.31 

KDS 98.25 99.71 

KDSD 97.93 99.70 

 

Similarly, the two clusters resulting from KD were used as the baseline to check how the 

corresponding cluster from KDS and KDSD overlaps i.e the percentage of the cluster 

members of KD clusters that appear in the corresponding cluster from KDS and KDSD. 

The result is as shown in the table below 4.22. 

Table 4.22 Cluster Overlapping Percentage KD, KDS, and KDSD 

 
S/N Cluster 1 Percentage Overlap Cluster 2 Percentage Overlap 

KDS 98.95 99.04 

KDSD 98.63 98.71 

 

We conclude that although KDSD performs a bit higher in terms of running time, the 

resulting clusters generated from it are much cleaner than what obtains from either KDS 

or KD.  
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CHAPTER 5 CONCLUSION AND FUTURE WORK 

 This chapter concludes the thesis by summarizing the experimental results and 

comparing the proposed algorithms to k-means clustering. The improvements that are 

planned to be completed in the future are also presented.  

5.1 CONCLUSION 

 In this thesis, we propose a series of fast clustering algorithms for large data set 

with special consideration on time series data set. The proposed methods explore a 

combination of excellent features of existing clustering and classification algorithms. The 

proposed algorithms detect anomalies and correctly classify large data set with improved 

speed.  

In order to evaluate the effectiveness of the algorithms, we carried out an 

extensive analysis of smart meter data, which is a good example of time series data. 

Extensive data analysis was carried out using Scala, R Studio, and a few Python scripts. 

The analysis incorporates a careful analysis of data obtained over a period with special 

emphasis on the weekdays to be able to correctly understand the customers’ consumption 

trend over the periods considered.  

In order to achieve the goal, we designed three innovative algorithms, KD, KDS, 

and KDSD. Our experimental results show that they can quickly cluster large data sets 

and effectively remove possible anomalies from the data set. KD, KDS, and KDSD use 

the excellent features of K-means algorithm in handling large data set coupled with 

DBSCAN ability to cluster data set of arbitrary shape and identify possible outliers. Our 

implementation incorporates an improved multi-stage sampling method to arrive at a 

training set that uniquely mirrors the data set and generates a model that gives near 

accurate classification of the unlabeled data set using the proposed SKNN approach. 

In detail, compared to K-means, KDS runs at a much faster rate. Specifically, our 

experimental results show that it takes K-means 7.56 seconds to cluster the whole data set 

under investigation. However, it takes KDS 0.363 seconds and 0.513 seconds in the case 

of 1% and 5% training sample over 2% initial training data respectively. We also found 

that although KDSD is not as fast as KDS due to the final anomaly removal operation, it 

outperforms KD, which is simply a combination of K-Means and DBSCAN. In our 
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experiments, it takes KD 268.62 seconds to complete the clustering process while it takes 

KDSD 237.836 seconds in the worst case.  

 

5.2 FUTURE WORK 

 Both KDS and KDSD involve SKNN, which is essentially a classification 

algorithm. Currently, SKNN constructs the training set by randomly selecting a few data 

points in the cleaned clusters. Despite the fact that this approach leads to low complexity 

cost, it might result in a skewed training set. In the future, a distance calculation method 

could be utilized by SKNN to determine the distance between all cluster members and the 

centroids of the cleaned clusters before it is used to train the model. Then a training set 

that includes data points of varied distances could be constructed. We expect that this 

approach will lead to cleaner clusters. This work is only used for time series data set, 

extending it to data from other domains will also be interesting.  
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APPENDIX: SAMPLE CONSUMPTION DATA 

The Figures below include the power consumption of a few sample smart 

meters in November 2015 and December 2015. 

 

 

 

 

 

 

 

 

 

 

Figure 1 Consumption variation 15th Nov – 21th Nov. 

 

 

 

 

 

 

 

         

 

 

 

Figure  2 Consumption variation 22nd Nov – 28th Nov. 
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Figure 3 Consumption variation 01th Dec – 7th Dec. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  4Consumption variation 8th Dec – 14th Dec. 
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Figure 5 Consumption variation 15th Dec – 21st   Dec. 

 

 

 

 


