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Abstract

Apples and grapes are two long-lived perennial crops which are economically valuable 
but whose genomic and phenomic diversity has not yet been fully described and 
exploited. In this thesis, there were two main objectives: to characterize the genetic basis 
of several traits in apple and to estimate the degree to which wild relatives have been 
exploited in modern grape breeding. To achieve these objectives, I first describe variation 
in apple leaf morphology and demonstrate that comprehensive morphometric analyses of 
leaf shape can capture hidden, heritable phenotypes. Next, I performed a genome-wide 
association study using historical data from a diverse apple collection. I identified 
numerous genotype-phenotype associations, including an amino acid substitution in the 
transcription factor NAC18.1 that is a strong functional candidate for fruit firmness and 
harvest date. I also assessed ancestry in some of the most widely grown commercial 
hybrid grape cultivars. Over one third of hybrids derived approximately half of their 
ancestry from wild Vitis and half from the domesticated grape Vitis vinifera, suggesting 
hybrid grape breeding is in its infancy. Finally, I conclude by describing the potential of 
using genomics to improve perennial crops through introgression of valuable traits from 
wild relatives, such as disease resistance. Genetic mapping in wild relatives is difficult 
since genomic tools are often ill-suited to wild-relatives and phenotyping is an expensive 
and difficult process. However, there is an urgent need to immediately begin the 
collection and characterization of wild relatives to enable introgression of these valuable 
traits using genomics-assisted breeding. Overall, the results of this thesis lead to the 
following conclusions: comprehensive morphometric techniques capture heritable 
variation, novel genomic insights can be generated using historical phenotype data from 
gene banks, hybrid grape breeding is still in its infancy, and wild relatives should be 
exploited for genomics-assisted breeding of perennial crops. 
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Chapter 1: Introduction

Global food availability must double within the next 25 years to meet demands of a 

growing population, and yet, perennial species occupy less than 14% of the world’s 

surface area dedicated to food production (McCouch et al., 2013; Food and Agriculture 

Organization of the United Nations, 2017). Increasing biodiversity should be a major 

priority for agriculture, and while the historical focus has been on annual crops, over 13% 

of the world’s surface area dedicated to food production grows perennial crops (Food and 

Agriculture Organization of the United Nations, 2017). Perennial species, which live for 

2 years or longer, will be critical to increasing food supply and sustainability. In 

comparison to annual species, perennials generally have longer growing seasons 

(Dohleman and Long, 2009), increased root carbon (Glover et al., 2010a), and reduced 

soil erosion risk (Vallebona et al., 2016). Despite the vital—and increasing—importance 

of perennial crops, most work towards understanding agricultural species has centered on 

annual models such as maize (Zea mays L.) and rice (Oryza sativa L.). It is essential that 

future work focuses on understanding the availability of unique and desirable traits in 

perennial species, as well as the genomic architecture underlying these traits, to improve 

breeding of new and desirable cultivars.

While the benefits of perennial crops are evident, advances in breeding are limited by 

several major barriers. Many important perennial crops such as apple (Malus X. 

domestica Borkh.) and grape (Vitis vinifera L.) have a lengthy juvenile phase, which 

makes the breeding of new cultivars time-consuming. For example, the recent breeding of 

3 commercial apple cultivars took 26 years (Peil et al., 2008). Additionally, apple and 

grape are large plants requiring substantial space and money to grow. Further, when 

breeding new perennial cultivars, often a small number of elite cultivars are used. For 

example, work on 439 commercial apple cultivars and breeding selections found 64% 

were descended from five founding cultivars (Noiton and Alspach, 1996). Limited 

diversity mean that perennial crops are threatened by continually evolving pathogens, 

which can easily devastate entire agricultural industries. Breeding new perennial crops 
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capable of surviving a changing environment, including disease pressure and climate 

change, is critical. However, the time and expense required to breed long-lived perennial 

crops demands that we use new tools to improve the speed and efficiency of the process, 

thus also decreasing the cost. 

The most critical tool available for decreasing the time and expense of breeding new 

perennial cultivars is genomics. By using marker-assisted selection (MAS) or genomic 

selection (GS) breeders can select progeny possessing a trait of interest at the seed or 

seedling stage. Such tools are particularly valuable for perennials which are expensive 

and time-consuming to grow to maturity and evaluate. For example, in grape, MAS was 

estimated to save up to 34% of operational costs over the first 6 to 8 years of a breeding 

program, while in apple savings of up to 43% were predicted (Edge-Garza et al., 2015). 

MAS relies on either a small number of genetic markers, or even only one, that are 

strongly linked to a phenotype. MAS is valuable for traits which are controlled by a small 

number of large effect loci. In comparison, GS uses genome-wide markers to predict a 

polygenic phenotype controlled by a large number of small effect loci. Thus, in order to 

determine which method of genomics-assisted breeding is most valuable, it is necessary 

to first have an understanding of the genetic architecture of the trait of interest.   

Understanding the genetic basis of a trait requires both phenotype and genotype data. 

Fortunately, the development of next-generation DNA sequencing technologies (NGS), 

such as genotyping-by-sequencing (GBS), have greatly reduced the costs of acquiring 

genome-wide genotype data (Elshire et al., 2011). Over the past decade reference 

genomes have been developed for many perennial crops including apple (Velasco et al., 

2010b) and grape (Jaillon et al., 2007), and this number continues to increase. Reference 

genomes are an essential tool for the alignment of DNA sequence data in order to detect 

genetic variants—in particular single nucleotide polymorphisms (SNPs)—throughout the 

genome. The increasing availability and decreasing cost of genomic tools and resources 

in perennial crops can facilitate a better understanding of the genetic basis of both simple 

(i.e. Mendelian) and polygenic traits. 
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While it is reasonable to assume that the cost of acquiring genotype data for the purposes 

for genetic mapping and genomics-assisted breeding will continue to decrease, the cost of 

acquiring high quality phenotype data is unlikely to follow a similar trajectory. Thus, 

there is an increasing interest in developing high-throughput (HT) phenotyping methods 

that enable the rapid collection of high quality phenotype information. Of particular 

interest is the use of automated procedures to generate high dimensional comprehensive 

phenotypic evaluations of plant morphology. This new field of HT phenotyping is often 

referred to as phenomics (Houle et al., 2010; Furbank and Tester, 2011).  

One valuable tool for HT phenotyping is automated image analysis of 2-dimensional 

shapes, such as leaves. Traditional estimates of leaf shape were restricted to linear 

measurements such as length and width, but advanced image analysis tools and 

comprehensive morphometric techniques can now be used to quantify the outline of a 

shape. Recent work on leaf shape has made use of two comprehensive morphometric 

techniques in particular. In the first method, Generalized Procrustes analysis uses 

landmarks representing homologous points, such as vein architecture and lobes, scales 

the data to eliminate the effect of size, and thereby allows for a comparison between leaf 

shapes. Alternatively, elliptical Fourier descriptors (EFDs) converts the outline of a leaf 

into a chain of numbers, indicating step-by-step movements that comprise the outline, 

after which a Fourier decomposition is applied converting the shape into a harmonic 

series. Both landmarks and EFDs have been applied to leaves from species such as 

tomato (Chitwood et al., 2012) and Passiflora (Chitwood and Otoni, 2017). In 

comparison, comprehensive morphometric techniques have not yet been performed on 

apple leaves, although EFDs have been applied to the fruit (Currie et al., 2000). In 

addition to landmarks and EFDs, a novel, topology-based morphometric technique, 

persistent homology, was recently described. Unlike landmarks and EFDs, persistent 

homology can be applied to 3-dimensional structures, such as branching patterns and root 

architecture (Li et al., 2017b). Regardless of the morphometric method used for 

estimating shape, Principal Components Analysis (PCA) can be applied to the resulting 

numeric dataset. In grape, PCA of leaf shape using comprehensive morphometrics has 

been used to distinguish between species (Chitwood et al., 2016), cultivars (Chitwood et 
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al., 2014), and even clones of a particular genotype (Klein et al., 2017). However, while 

comprehensive morphometrics can be used to capture variation in leaf shape, the genetic 

basis and heritability of the phenotypes estimated from these techniques is unknown. 

Decreasing sequencing costs are increasing access to genomic information and 

facilitating our understanding of complex traits such as leaf shape, but phenotyping traits 

of interest remains a slow and expensive process, resulting in a “phenotyping bottleneck” 

(Furbank and Tester, 2011). In addition to the use of HT phenotyping, one highly 

supported mechanism for addressing the barrier of limited phenotype data—especially in 

long-lived perennials where the collection of new phenotype data may take decades—is 

the use of historical phenotype data from gene banks. Despite the difficulties associated 

with using phenotype data not specifically collected for genetic mapping purposes, 

historical phenotype data has been successfully used for genetic mapping in barley 

(Hordeum vulgare L.) and potato (Solanum tuberosum L.) (Baldwin et al., 2011; Matthies 

et al., 2014). The first step of genomics-assisted breeding is to link a trait with genomic 

data for marker discovery, and thus gene banks are a valuable resource for historical 

phenotype data that can facilitate this process. 

In addition to the use of historical phenotype data for genetic mapping, another valuable 

resource for improvement of perennial crops are crop wild relatives (CWRs). Perennial 

breeding makes use of a small number of elite cultivars and over 75% of perennials are 

clonally propagated and thus remain genetically frozen (Miller and Gross, 2011). In 

comparison, wild relatives continue to evolve in response to natural selection such as 

disease pressure. As a result, wild relatives often harbor valuable disease resistance 

genes. Introgression of these traits has been the primary area of interest when breeding 

with wild relatives thus far: in a review of 19 different crops over 80% of traits from 

CWRs were involved in disease and pest resistance (Hajjar and Hodgkin, 2007). The use 

of wild relatives for perennial crop breeding can result in cultivars resistant to evolving 

pathogens, thus increasing yield and decreasing chemical input. 
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In perennial crops, wild relatives have been an important source of disease resistance in 

grape. In the 1860s, the North American louse phylloxera (Daktulosphaira vitifoliae) 

devastated European vineyards that were planted exclusively with grapes from the 

domesticated species, V. vinifera.  It was only through making use of wild Vitis species 

for hybrid rootstocks that breeders rescued the wine industry (Alleweldt and Possingham, 

1988; Zhang et al., 2009). More recently, Pierce’s disease (PD) (Xylella fastidiosa) has 

become a costly threat to the California wine industry (Alston et al., 2013). Fortunately, 

wild grapes harbor disease-resistance, and breeders can use MAS to track this resistance 

when breeding new commercial grape cultivars. By repeated backcrossing to V. vinifera, 

grape breeders have managed to generate breeding lines with both PD resistance from the 

wild and over 97% V. vinifera ancestry (Walker et al., 2014). However, the proportion V. 

vinifera ancestry in most other hybrid grapes is much less clear. Even cultivars identified 

as V. vinifera may be incorrect. For example, recent work revealed that ‘Koshu’, a 

Japanese wine grape widely believed to be 100% V. vinifera, contains 30% wild ancestry 

(Goto-Yamamoto et al., 2015). Quantifying the level of wild ancestry in commercially 

grown hybrid grapes is the first step towards facilitating the breeding of new cultivars 

which possess both desirable traits, such as disease resistance, from wild relatives as well 

as a high proportion of V. vinifera ancestry to allow for commercially acceptable wine. 

It is not simply grape breeding that can benefit from traits present in wild relatives. The 

combination of genomics-assisted breeding and introgression of desirable traits—

including diseases resistance, fruit quality and rootstock traits—provides a critical 

opportunity for improving perennial crops while decreasing the cost and time required for 

breeding. For example, a recently released commercial apple cultivar, ‘WA 5’, underwent 

genetic testing to determine that it carried alleles for scab resistance from a wild relative 

and desirable alleles for fruit firmness (Evans et al., 2011). Many other perennial crops 

could also benefit from genomics-assisted breeding using wild relatives and it is time to 

begin harvesting their potential.   
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Given the global importance of perennial crops and the need to improve our 

understanding of them, the main goals of my thesis were to characterize patterns of 

genomic and phenomic diversity in two important perennial species, apple and grape. In 

Chapter 2, I begin by using comprehensive morphometrics to describe variation in leaf 

shape in apple, linking this information with genome-wide SNP data to describe the 

genetic architecture underlying this trait. In Chapter 3, I use historical phenotype data 

available from the United States Department of Agriculture to perform genetic mapping 

in apple for agriculturally important traits like fruit color and harvest date. In Chapter 4, I 

estimate the wild ancestry of commercially important hybrid grape cultivars from 

Canada, the United States and Germany. In Chapter 5, I conclude with a discussion of the 

current limitations and future promise of wild relatives for genomics-assisted breeding in 

perennial crops. Overall, my thesis describes the genetic basis of immense phenomic 

diversity in two economically important crops, while emphasizing the potential of both 

genomics and wild relatives for further improvement of perennial crops. 
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Chapter 2: Quantifying the genetic basis of leaf shape in apple

Introduction 

Apples (Malus spp.) are one of the world’s most widely grown fruit crops, with the third 

highest global production quantity of over 84 million tonnes in 2014 (Food and 

Agriculture Organization of the United Nations, 2017). Apple leaves are generally 

simple, with an elliptical-to-ovate shape. Previous studies in apple used linear 

measurements, such as length and width, to quantify leaf shape (Liebhard et al., 2003; 

Bassett et al., 2011). The length-to-width aspect ratio is a major source of variation in leaf 

shape. Differing aspect ratios lead to a disproportionate increase or decrease in length 

relative to width, or allometric variation, in leaves (Gurevitch, 1992; Chitwood et al., 

2013). While linear measurements such as leaf length and width are useful, they fail to 

capture the full extent of leaf shape diversity. Failing to measure leaf shape 

comprehensively also limits our ability to discern the total underlying genetic 

contributions.

Elliptical Fourier descriptors (EFDs) are a valuable, well-recognized tool for quantifying 

the outline of a shape. EFD analysis first converts a contour to a chaincode, a lossless 

data compression method that encodes shape by a chain of numbers, in which each 

number indicates step-by-step movements to reconstruct the pixels comprising the shape. 

A Fourier decomposition is subsequently applied to the chain code, quantifying the shape 

as a harmonic series. EFDs have been used extensively to quantify leaf shape in diverse 

species, such as grape (Chitwood et al., 2014), tomato (Chitwood et al., 2012), and 

Passiflora (Chitwood and Otoni, 2017). Previous work used EFDs to assess apple fruit 

shape (Currie et al., 2000), but this technique has not yet been applied to apple leaves. A 

newly developed morphometric technique, persistent homology (PH), provides another 

method for estimating leaf shape. PH, like EFDs, is normalized to differences in size, but 

it is also orientation invariant. PH treats the pixels of a contour as a 2D point cloud before 

applying a neighbor density estimator to each pixel. A series of annulus kernels of 

increasing radii are used to isolate and smooth the contour densities. The number of 
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connected components is recorded as a function of density for each annulus, resulting in a 

persistence barcode that quantifies shape as topology. The topology-based PH approach 

can also be applied to serrations and root architecture, allowing the same method to be 

used across different plant structures (Li et al., 2017a; Li et al., 2017b). 

Comprehensively measuring leaf shape, using approaches such as EFDs and PH, is 

important, as shape features may be associated with agriculturally important traits. 

Leaves are present during the lengthy juvenile phase in apple but fruits appear only on 

mature trees and thus, leaf traits can enable early selection without the need for genetic 

markers. In apple, it generally takes 5 years for significant fruiting to occur and thus, any 

ability to discard trees not possessing a trait of interest earlier in development is 

extremely valuable (Kumar et al., 2012a). There are already several cases of unique leaf 

characteristics providing an early marker for other genetic differences in apple. For 

example, the gene underlying red fruit flesh color may lead to anthocyanin accumulation 

in the leaves, causing red foliage (Chagne et al., 2007; Espley et al., 2009) while 

columnar tree architecture may be accompanied by an increase in leaf number, area, 

weight per unit area and length-to-width ratio (Talwara et al., 2013). Leaf pH has also 

been proposed as an early indicator of low acid fruit (Visser and Verhaegh, 1978). 

In addition to serving as early markers for other traits, leaf shape and size may influence 

the amount of light a tree receives, and light exposure is crucial for flowering in apple. 

Light penetration results in higher levels of flowering, while leaf injury or defoliation can 

reduce flowering (Dennis, 2003). Thinning apple trees to a particular leaf-to-fruit ratio is 

a common practice to attain optimal fruit color and size (Fletcher, 1932; Preston, 1954). 

Contrastingly, trees with fewer fruit may increase vegetative growth and thus leaf area 

(Wünsche et al., 2000). In previous work, several leaf traits such as area and perimeter 

were correlated with apple fruit size (Khan et al., 2014). Clearly, there is an important 

relationship between the leaves and the fruit, and comprehensively quantifying the 

variation in leaf shape is a crucial component to understanding this relationship in apple. 
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Leaves are the main photosynthetic organs of apple, but the genetic basis underlying their 

shape and size remains unknown. In cotton, a single locus controls the major leaf shapes 

(Andres et al., 2017), but in most instances leaf shape appears to be controlled by 

numerous small-effect loci (Tian et al., 2011; Chitwood et al., 2013). There are limited 

examples of genomic analyses of leaf shape in apple, however, a previous bi-parental 

linkage mapping study found two suggestive quantitative trait loci for leaf size (Liebhard 

et al., 2003). Previous work also measured several leaf traits such as area, perimeter and 

circularity, in 158 apple accessions. The study linked these measurements with 901 single 

nucleotide polymorphisms (SNPs) but found no significant genotype-phenotype 

relationships (Khan et al., 2014). Thus far, efforts have not been made to estimate the 

genetic heritability of comprehensive morphometric leaf phenotypes, such as those 

described using EFDs and PH. It therefore remains unclear to what extent these methods 

are capturing biologically meaningful, heritable variation. 

To fully understand the genetic basis of leaf shape, it is essential to include both linear 

and morphometric estimates of shape. Decreasing sequencing costs and access to a large 

and diverse germplasm collection allowed us to analyze approximately 9,000 leaves from 

over 800 unique accessions which we linked to over 122,000 genome-wide SNPs. We 

present the first comprehensive analysis of leaf shape in apple, revealing that both 

accessions and species show allometric variation due to differences in the width of the 

leaf blade. While the primary axis of variation in apple using EFDs and PH is due to this 

allometric variation, we find high narrow-sense heritability values even at later principal 

components, indicating that comprehensive estimates of shape capture heritable variation 

which would be missed by linear estimates alone.  

Materials and Methods

Sample collection 

Apple trees in Kentville, Nova Scotia, Canada were budded onto M.9 rootstocks in spring 

2012. In the fall, the trees were uprooted and kept in cold storage until spring 2013, when 

trees were planted in an incomplete block design (see “REstricted Maximum Likelihood 
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(REML)” below). Leaves from over 900 trees were collected from August 24th to 

September 16th 2015. Ten leaves were collected from each tree. Leaves were flattened 

and placed to avoid touching, then scanned using Canon CanoScan (LiDE 220) Colour 

Image Scanners. Leaves were then dried for 48 hours at 65 C and weighed to estimate 

the total dry weight (g) for each tree.  

Morphometric analyses 

Leaf scans were converted into a separate binary image for each leaf using custom 

ImageJ macros, which included the ‘make binary’ function (Abràmoff et al., 2004). A 

new image file was created for each leaf and named after the tree ID. Images were 

converted to RGB .bmp files and a chain code analysis was performed using SHAPE 

(Iwata and Ukai, 2002). The chain code was used to calculate normalized elliptical 

Fourier descriptors (EFDs) in SHAPE. The normalized EFDs were read into Momocs 

v1.1.5 (Bonhomme et al., 2014) in R (R Core Team, 2016) where harmonics B and C 

were removed to eliminate asymmetrical variation in leaf shape. 

The binary leaf images were also analyzed using persistent homology (PH) (Li et al., 

2017b). To numerically estimate the shape of the leaves using PH, we extracted the leaf 

contour using a 2D point cloud (Figure 2-1a). After centering and normalizing the 

contour to its centroid size, we used a Gaussian density estimator (Figure 2-1b), which 

assigns high values (red) to pixels with many neighboring pixels, and low values (blue) to 

pixels with fewer neighboring pixels. We multiplied the density estimator by an annulus 

kernel, or ring (Figure 2-1c), which emphasizes the shape in an annulus at the centroid 

and is thus invariant to orientation (Figure 2-1d). The resulting function can also be 

visualized from the side view (Figure 2-1e,f). As we moved a plane from top to the 

bottom, we recorded the number of connected components above the plane, forming a 

curve. With each new component this value increased, and each time components were 

merged, it decreased (Figure 2-1g). For each leaf, we computed 16 curves corresponding 

to 16 expanding rings. For computational purposes, each curve is divided into 500 

numbers, ultimately resulting in the shape of each leaf being represented by 8,000 

(16*500) values.   
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Figure 2-1. Visualization of persistent homology technique for annulus kernel 7. Binary 
images were converted into a 2D point cloud (a) which was then normalized using a 
Gaussian density estimator (b). For each leaf, 16 annulus kernels were used. Annulus 
kernel 7, indicated in purple (c) is used as an example for this visualization. The density 
estimator is multiplied by annulus kernel 7 (d). The function can also be visualized from 
the side view (e, f). As a plane moves from top to bottom, the number of connected 
components is recorded along the curve (g). Below (g) are five visualizations of curves 
that are represented as red vertical dotted lines in (g).  
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Only leaves for which both EFDs and PH shape estimations were successfully calculated 

were included in subsequent analyses. Additionally, only trees with 8-10 leaves were 

included, as leaves were sometimes removed due to tears, folding, or the absence of a 

petiole which did not allow for accurate quantification of shape. The final dataset 

consisted of 915 trees with 8-10 leaves, which included 869 unique accessions and 8,995 

leaves. 

EFDs and PH values were averaged across leaves from an individual tree. The 

contribution of EFD harmonics 1 to 15 to the mean leaf shape across all trees was 

visualized using the ‘hcontrib’ function in the Momocs R package (Figure 2-2). To allow 

for discrimination between accessions based on leaf shape, principal component analysis 

(PCA) was performed using the Momocs ‘PCA’ function (Bonhomme et al., 2014) for 

EFDs, and the ‘prcomp’ function in R for PH values, which center but do not scale the 

data. The resulting PC values were adjusted using REstricted Maximum Likelihood (see 

below). Subsequently, we identified the accession with the minimum and maximum 

value along each of the first 5 PCs.   
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Figure 2-2. Contribution of elliptical Fourier descriptor harmonics to leaf shape. The leaf 
shapes depicted are the mean leaf shapes based on all 915 trees. Harmonics 1 to 15 are 
represented on the x-axis and each harmonic is multiplied by the amplification factor on 
the y-axis to visualize their contribution to mean leaf shape. An amplification factor of 0 
indicates the removal of the harmonic; a factor of 1 results in the normal shape; and 
values above 1 exaggerate effects to better visualize the harmonic’s contribution to the 
final shape.
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In addition to estimating the contour of the leaf using EFDs and PH, we used several 

more metrics to describe the leaves. Using ImageJ, we automated the measurement of 

leaf surface area (cm2), length (cm) of the leaf and width (cm) of the leaf as well as major 

(blade length) and minor (blade width) axes of the best fitting ellipse—which excluded 

the petiole—through batch processes (Abràmoff et al., 2004). Throughout the manuscript, 

we use ‘major’ when referring to the length of the leaf blade, and ‘minor’ when 

referencing the width of the leaf blade. We also calculated the aspect ratio of the leaf, by 

dividing the major axis by the minor axis. Additionally, leaf mass per area was calculated 

for 780 trees where we possessed surface area data for all 10 leaves, by calculating the 

ratio of dry weight to surface area (g/cm2).

While linear phenotypes were calculated as an average value for a particular tree, we also 

estimated variance within a tree for aspect ratio, length, width, major and minor axis, and 

surface area. Variance was calculated as the coefficient of variation using the ‘cv’ 

function in the raster package (Hijmans, 2016) in R to estimate within-tree variability in 

leaf size, which is indicated as ‘var’ throughout this manuscript.

REstricted Maximum Likelihood (REML) adjustment of phenotype data

The orchard sampled in this study is an incomplete block design with 1 of 3 standards per 

grid. The standards, or “control trees”—‘Honeycrisp’,  ‘SweeTango’, and ‘Ambrosia’—

are replicated across the grid. Leaves from these trees were sampled multiple times across 

the orchard, which allowed us to correct for positional effects. Each phenotype was 

adjusted using a REstricted Maximum Likelihood (REML) model which resulted in one 

adjusted value per accession, even when multiple trees were measured. The impact of 

row grid (rGrid), column grid (cGrid) and rGrid x cGrid effects were adjusted for using 

the following REML model: 

𝑝ℎ𝑒𝑛𝑜𝑡𝑦𝑝𝑒 ~ 𝑎𝑐𝑐𝑒𝑠𝑠𝑖𝑜𝑛 + ( 1 | 𝑟𝐺𝑟𝑖𝑑) + ( 1 | 𝑐𝐺𝑟𝑖𝑑) + ( 1 | 𝑐𝐺𝑟𝑖𝑑:𝑟𝐺𝑟𝑖𝑑)
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We fit a linear mixed-effects model via REML using the ‘lmer’ function in the lme4 

package in R (Bates et al., 2015) and then calculated the least squares means using the 

‘lsmeans’ function in the lsmeans R package (Lenth, 2016).

Thus, while the initial phenotype data was collected for 915 trees, following REML 

adjustment, one value remained per unique accession, resulting in 869 accessions. 

REML-adjustment was applied directly to all size, weight and variance estimates. For PH 

and EFDs, we applied the REML following PCA and thus the percent contribution for 

each PC was calculated using unadjusted values. 

Phenomic analyses 

The correlation between leaf phenotypes was calculated using Pearson’s correlation and 

p-values were Bonferroni-corrected for multiple comparisons. The resulting heatmap was 

visualized using the ‘geom_tile’ function in ggplot2 in R (Wickham, 2009). Next, we 

examined the leaves for allometry using the ‘SMA’ function in the smartr R package 

(Warton et al., 2012) to estimate if the slope between the log-transformed minor and 

major axis differed from 1.

Accessions were labelled as either Malus x. domestica Borkh. or Malus sieversii Lebed. 

based on information provided by the United States Department of Agriculture (USDA) 

Germplasm Resources Information Network website (http://www.ars-grin.gov/). We used 

a Mann-Whitney U test to test if any phenotypes differed between species and 

Bonferroni-corrected all p-values for multiple comparisons.  

Genomic analyses

DNA was extracted using commercial extraction kits. Genotyping-by-sequencing (GBS) 

libraries were prepared using ApeKI and PstI-EcoT221I restriction enzymes according to 

Elshire et al. (2011). GBS libraries were sequenced using Illumina Hi-Seq 2000 
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technology. Reads which failed Illumina's “chastity filter” were removed from raw fastq 

files. Remaining reads were aligned to the Malus x. domestica v1.0 pseudo haplotype 

reference sequence (Velasco et al., 2010a) using the Burrows-Wheeler aligner tool 

v0.7.12 (Li and Durbin, 2009) and the Tassel version 5 pipeline (Glaubitz et al., 2014). 

Tassel parameters included a minKmerL of 30, mnQS of 20, mxKmerNum of 50000000 

and batchSize of 20. The kmerlength was set to 82 for ApeKI and 89 for PstI-EcoT22I 

based on the max barcode size. The minMAF for the DiscoverySNPCallerPluginV2 was 

set to 0.01. All other default parameters were used. Non-biallelic sites and indels were 

removed using VCFtools v.0.1.14 (Danecek et al., 2011). VCFs for both enzymes were 

then merged using a custom perl script, preferentially keeping SNPs called by PstI-

EcoT22I at overlapping sites, since those sites tended to be at higher coverage. 

Missing data was imputed using LinkImputeR v0.9 (Money et al., Submitted, available: 

http://www.cultivatingdiversity.org/software.html) with global thresholds of 0.01 for 

minor allele frequency (MAF) and 0.70 for missingness. We examined depths of 3 to 8 

and selected a case for imputation with a max position/sample missingness of 0.70, a 

minimum depth of 5, and an imputation accuracy of 94.9%. The VCF was converted to a 

genotype table using PLINK v1.07 (Purcell et al., 2007; Purcell, 2009b). 

Of the 869 accessions assessed in this study, 816 had genomic data following imputation 

and filtering and were included in downstream analyses. The resulting genotype table 

consisted of 816 accessions and 197,565 SNPs. Subsequently, a 0.05 MAF filter was 

applied using PLINK, after which 128,132 SNPs remained. SNPs with more than 90% 

heterozygous genotypes were removed. The final genotype table consisted of 816 

samples and 122,596 SNPs. 

To perform PCA, SNPs were pruned for linkage disequilibrium (LD) using PLINK. We 

considered a window of 10 SNPs, removing one SNP from a pair if R2 > 0.5, then 

shifting the window by 3 SNPs and repeating (PLINK command: indep-pairwise 10 3 

0.5). This resulted in a set of 75,973 SNPs for 816 accessions. PCA was performed on the 



16

LD-pruned genome-wide SNPs using ‘prcomp’ in R with data that were centered but not 

scaled. The first 2 genomic PCs were visualized using ggplot2 in R (Wickham, 2009). 

We performed a genome-wide association study (GWAS) using the mixed linear model 

in Tassel (version 5) for each phenotype, adjusting for relatedness among individuals 

using a kinship matrix as well as the first 3 PCs for population structure (Bradbury et al., 

2007; Zhang et al., 2010). The threshold for significance was calculated using simpleM 

(Gao et al., 2008; Gao et al., 2010) which estimates the number of PCs needed to explain 

0.995 of the variance, or the number of independent SNPs. The inferred Meff used to 

calculate the significance threshold was 91,667 SNPs. 

We searched the regions surrounding any significant GWAS SNPs using the Genome 

Database for Rosaceae GBrowse tool for Malus x. domestica v1.0 p genome (Jung et al., 

2014). We used a window of +/- 5,000 bp (10 kb) surrounding the significant SNP to 

check for genes, and when identified, we used the basic local alignment search tool 

(BLAST) from NCBI to search for the mRNA sequence and reported the result with the 

max score (Altschul et al., 1990).

Genomic prediction was performed using the ‘x.val’ function in the R package PopVar 

(Mohammadi et al., 2015). The rrBLUP model was selected and 5-fold (nFold=5) cross-

validation was repeated 3 times (nFold.reps=3) with no further filtering (min.maf=0) 

from the set of 122,596 SNPs used for GWAS. All other default parameters were used. In 

addition to performing genomic prediction on the main 24 phenotypes examined in this 

study, we performed genomic prediction on all 40 PCs for EFDs and on the first 40 PCs 

for PH values. We also used the ‘rnorm’ function in R to generate 1,000 random 

phenotypes with a mean of 0 and a standard deviation of 1, and performed genomic 

prediction using these random phenotypes to obtain the range of genomic prediction 

accuracies one can expect at random. Lastly, we used genome-wide complex trait 

analysis (GCTA) v.1.26.0 which estimates the genetic relationships between individuals 

based on genome-wide SNPs and uses this information to calculate the variance 

explained by these SNPs. The ratio of additive genetic variation to phenotypic variance is 
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used to calculate narrow-sense heritability (h2), or SNP heritability, of a trait (Yang et al., 

2011). We used GCTA to estimate heritability for each phenotype, including the first 40 

PCs for EFD and PH. We also estimated the correlation between genomic prediction 

accuracy (r) and narrow-sense heritability (h2) using a Pearson’s correlation. 

Results

Variation in apple leaf shape

We examined 24 phenotypes related to apple leaf shape and size including length, width, 

surface area, dry weight, leaf mass per area, within-tree variance, and overall shape 

estimated using PCs derived from EFD (elliptical Fourier descriptor) and PH (persistent 

homology) data (Figure 2-1, Figure 2-2). 

To visualize the primary axes of morphometric variation, we chose a representative leaf 

from accessions with the minimum and maximum values along the first 5 PCs for EFDs 

and PH (Figure 2-3a). The accessions with extreme values along PC1 for both methods 

are similar. In fact, ‘Binet Rouge’ has the lowest value along PC1 for EFD and PH, with 

the axis clearly representing a decrease in the length-to-width (aspect) ratio. The annulus 

kernels most strongly contributing to PH PC1 (Figure 2-4) provide further evidence that 

this PC captures variation in aspect ratio. Variation in leaf shape captured by higher-order 

PCs is more complex and cryptic, and is thus not captured using linear measurements 

alone. In addition, while the primary axis of variation (PC1) using EFDs and PH may 

explain similar aspects of leaf morphology, the morphospaces resulting from the two 

techniques differ (Figure 2-3b). 
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Figure 2-3. Examples of leaf shape across PCs derived from EFDs and PH. Binary 
images of leaves from accessions with minimum and maximum values along PCs 1 to 5 
for EFD and PH estimates. PCs were calculated using values estimated as the average 
across 8-10 leaves but only a single representative leaf is displayed. PCs were REML-
adjusted based on tree position in the orchard. The accession name is also listed (a). 
Visualization of PC1 vs PC2 for EFD and PH data. Accession with minimum and 
maximum values along PC1 and PC2 are indicated (b).
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Figure 2-4. Visualization of contributions of each ring to PH PC1. Rings 6, 7 and 16 
contribute the most to leaf shape according to PH PC1. The placement of each ring is 
visualized on a leaf representing the minimum and maximum value along PC1 (a). The 
contribution to PC1 of each of the 16 rings is also shown (b).  

Next, we examined the correlation between all measured traits. By assessing the 

correlation of PCs resulting from a classical morphometric technique such as EFDs with 

a novel, topology-based morphometric approach like PH, we reveal how complementary 

the methods are (Figure 2-5). While there is a highly significant correlation between PC1 
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for both methods (R2 = 0.949, p < 1 x 10-15), later PCs are often not significantly 

correlated, with the most notable exception being EFD PC2 and PH PC3 (R2 = 0.432, p < 

1 x 10-15), although several other PCs also show weak correlations. Thus, while the 

primary axis of variation (PC1) is consistent and highly correlated between methods, 

each method captures distinct aspects of leaf morphology in subsequent PCs. 
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according to the Pearson’s correlation coefficient, and those below the diagonal indicate 
Bonferroni-corrected p-values. The box enclosed by the dotted lines include comparisons 
only between phenotypes captured by comprehensive morphometric analyses. 

Many of the leaf phenotypes show a strong correlation with each other (Figure 2-5). In 

particular, aspect ratio is highly correlated with PH PC1 (r = -0.878, p < 1 x 10-15), EFD 

PC1 (r = -0.855, p < 1 x 10-15) and minor axis (leaf blade width) (r = -0.734, p < 1 x 10-
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15). The correlation between the minor axis of a leaf and surface area (r = 0.939, p < 1 x 

10-15) is higher than the correlation between the major axis (blade length) and surface 

area (r = 0.810, p < 1 x 10-15). As expected, leaf surface area is also highly correlated 

with average leaf dry weight (r = 0.934, p < 1 x 10-15), indicating that larger leaves are 

heavier.

Allometry in apple leaves

The high correlation between aspect ratio and PC1 for both EFD and PH methods 

indicates that length-to-width ratio is the primary source of variation in apple leaf shape. 

If there is an allometric relationship between the minor and major axis, and thus, the 

length and width of a leaf do not increase at equal rates, a slope significantly differing 

from 1 is expected. We find that the slope between the two measurements is significantly 

greater than 1 (95% CI = 1.506-1.678, R2 = 0.343, p < 1 x 10-15), indicating that the minor 

axis increases at a greater rate than the major axis. While there is no significant 

correlation between the major axis (blade length) and EFD PC1 (R2 = 0.001, p = 1) or PH 

PC1 (R2 = 0.002, p =1), there is a significant correlation for the minor axis (blade width) 

and EFD PC1 (R2 = 0.541, p < 1 x 10-15) and PH PC1 (R2 = 0.573, p < 1 x 10-15) (Figure 

2-6). As PC1 explains 80.23% of the variation in the leaf shape for EFDs, and 62.20% for 

PH, it is apparent that the width of the leaf blade, and not length, is the major source of 

leaf shape variation in apple. In fact, the aspect ratio, calculated as the ratio of major axis 

to minor axis, is even more strongly correlated with EFD and PH PC1, with an R2 of 

0.732 for EFD PC1 (p < 1 x 10-15) and R2 of 0.771 for PH PC1 (p < 1 x 10-15). Given the 

significant correlation between EFD PC1 and PH PC1, it is not surprising that aspect 

ratio is highly correlated with both. 
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Figure 2-6. Correlation between the primary axis of variation (PC1) captured using EFD 
and PH values and leaf shape measures. The EFD PC1 is plotted against the major axis 
(length of leaf blade) (a), minor axis (width of leaf blade) (b) and aspect ratio (ratio of 
length-to-width of blade) (c). The PH PC1 is plotted against the same measures in panels 
d-f.  The percent variances explained by PC1, prior to REML-adjustment, is shown in 
parentheses. All p-values are Bonferonni-corrected based on the number of comparisons 
in Figure 2-5. A regression line from a linear model with a shaded 95% confidence 
interval is also shown.

In addition to variation between accessions, we investigated differences in leaf shape and 

size between species by comparing Malus domestica, the domesticated apple, with its 

primary progenitor species, Malus sieversii (Appendix I: Table I-I). PCA of the genome-

wide SNP data reveals a primary axis of genetic variation that separates M. domestica 

and M. sieversii, although separation is incomplete (Figure 2-7a). The major axis (p = 

0.975) of the leaves does not differ between species (Figure 2-7b). However, the minor 

axis (p = 4 x 10-4) of M. domestica leaves are significantly larger than M. sieversii (Figure 

2-6c) and the aspect ratio (p = 0.023) is significantly less (Figure 2-7d). Thus, there is 

allometric variation both within (Figure 2-6) and between (Figure 2-7) Malus species. 
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Figure 2-7. Genetic and phenotypic comparison of the domesticated apple and its wild 
ancestor. PCs 1 and 2 were derived from 75,973 genome-wide SNPs and samples are 
labeled as M. domestica (purple), M. sieversii (green) or unknown (gray). M. domestica 
leaves do not differ from M. sieversii leaves along the major axis (b), but they have a 
larger minor axis (c) and aspect ratio (d). P-values reported are Bonferroni-corrected 
based on multiple comparisons (Appendix I: Table I-I). Species labels are based on 
USDA classification.  

The genetic basis of leaf shape in apple 

GWAS of the 24 leaf phenotypes examined in this study yielded few significant results 

(Appendix I: Figure I-I). We identified 70 significant SNPs representing 5 phenotypes 

which are reported in Appendix I: Table-II. We examined the regions surrounding 

significant SNPs for candidate genes using the GBrowse tool (Appendix I: Table-III) 

(Jung et al., 2014). We searched within a +/- 5,000 bp window, which should capture any 

linked causal variation given the rapid LD decay observed in a diverse collection of 

apples that is largely replicated in the germplasm studied here (Migicovsky et al., 2016a). 

However, no strong candidate genes were identified. 

While GWAS examines the genome for single, large-effect loci, genomic prediction 

estimates our ability to predict a phenotype using genome-wide marker data. We 

complimented our GWAS with genomic prediction and observed prediction accuracies 

(r) ranging from -0.10 to 0.52 (Figure 2-8). Aspect ratio is the primary source of variation 
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in leaf shape (Figure 2-5c) and it is also the leaf measurement that had the highest 

genomic prediction accuracy (0.52). Other phenotypes highly correlated with aspect ratio, 

such as leaf width (0.51), minor axis (0.49), EFD PC1 (0.48) and PH PC1 (0.47), all had 

relatively high prediction accuracies. PH PC3 (0.51) was also among the most well-

predicted using genetic data. 

Figure 2-8. Genomic prediction accuracy (r). Values represent the average correlation 
(+/- standard deviation) between observed and predicted phenotype scores, based on 5-
fold cross-validation with 3 iterations. Dotted red lines indicate the minimum and 
maximum prediction average accuracy (r) achieved using 1,000 randomly generated 
phenotypes. The percent variance explained by each PC was calculated prior to REML-
adjusted and is indicated in parenthesis.  
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Similarly, estimates of narrow-sense heritability (h2) calculated using GCTA (Yang et al., 

2011) ranged from 0 to 0.75, with the highest heritability observed for aspect ratio (0.75) 

followed by leaf width (0.71), EFD PC1 (0.71), minor axis (0.69) and PH PC1 (0.65) 

(Figure 2-9). Heritability estimates were highly correlated with genomic prediction 

accuracies (Figure 2-10, R2 = 0.936, p < 1 x 10-15), which is not surprising given that both 

techniques involve predicting a phenotype from genome-wide SNP data. None of the 

phenotypes measuring variance within the 8-10 leaves sampled had heritability estimates 

significantly different from 0. 

While the principal component of variation in leaf shape detected by EFDs and PH is 

aspect ratio, we were also interested in determining if higher-order PCs, which capture 

variation not readily visible to the eye, are extracting information that is biologically 

meaningful. Using genomic prediction and heritability estimates, we found evidence of a 

genetic basis for these “hidden phenotypes”, which are unmeasurable using linear 

techniques. For example, the heritability of phenotypes such as PH PC6 (0.48), PH PC9 

(0.35), PH PC10 (0.33) and EFD PC9 (0.33) are similar to traditionally measured 

phenotypes such as leaf length (0.44) and leaf mass per area (0.40). While higher PCs 

may have relatively high heritability values, after a certain point the values (+/- standard 

error) overlap with 0, indicating that they are not heritable. The cutoff for morphometric 

PCs with a heritable genetic basis is approximately PC17. These results suggest that by 

making use of morphometric techniques that measure shape comprehensively, we are 

describing biologically meaningful, heritable phenotypes which would be missed by 

simple measurements such as leaf length, width and surface area.
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Figure 2-9. Narrow-sense heritability (h2) for leaf phenotypes. Values represent the 
additive genetic variance divided by the phenotypic variance (+/- standard error), as 
calculated using GCTA. Dotted red lines indicate h2 = 0, at which point the phenotypic 
variation is not heritable. The percent variance explained by each PC was calculated prior 
to REML-adjusted and is indicated in parenthesis.  

Figure 2-10. Correlation between genomic prediction accuracy (r) and narrow-sense 
heritability estimates (h2) for all leaf phenotypes. 
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Discussion

Leaf shape and size play a crucial role in the growth and development of apple trees, 

including the fruit. To elucidate the genetic basis of this variation, we quantified leaf 

shape in apple using traditional linear measurements and comprehensive morphometric 

techniques. Our work offers the first comparison between the novel topology-based 

technique, PH, and EFDs, which we find are complementary but distinct methods. For 

both methods, PC1 was highly correlated with the aspect ratio, thus providing evidence 

that the primary axis of variation in apple leaf shape can be captured using linear 

measurements. The minor axis, or width of the leaf blade, was also highly correlated with 

PC1, while the major axis was not. Thus, variation in the aspect ratio is due to variation 

in the leaf blade width, not length. Leaf surface area was also more highly correlated with 

the minor axis than the major axis. Variation in leaf width is therefore essential to both 

the size and shape of apple leaves, similar to previous work in tomato (Schwarz and 

Kläring, 2001). 

The width of the leaf blade is not only the source of variation between apple accessions, 

but also between M. domestica and M. sieversii. The presence of the same allometric 

relationship within and between species suggests that the genetic loci controlling intra-

specific leaf shape variation within M. domestica may be the same as those controlling 

the divergence in leaf shape observed between the domesticated apple and its wild 

ancestor. For example, in birds, while PC1 and PC2 of bill shape explain the majority of 

variation across 2,000 species, they are also consistently associated with the variation 

between higher taxa (possessing >20 species) (Cooney et al., 2017). Our results suggest 

that the increase in leaf size since domestication has not been an overall increase in leaf 

size but specifically an increase in blade width leading to larger leaves with a reduced 

length-to-width ratio. 

Our work provides evidence that allometry is the primary source of morphometric 

variation in apple leaves. These findings are consistent with work reported in other 

species such as tomato, where the length-to-width ratio was the major source of shape 
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variation (>40%) (Chitwood et al., 2013). Similarly, work in Passiflora and Vitis species 

performed using two independent morphometric techniques identified allometric 

variation as the primary source of variation in PC1, which explained at least 40% of the 

variation in leaf shape (Chitwood and Otoni, 2017; Klein et al., 2017). Thus, linear 

measurements—in particular aspect ratio—are an important source of information when 

describing leaf shape. However, linear measurements are not sufficient for capturing the 

full spectrum of diversity. In our study, PC1 accounts for 62.20% or 80.23% of the 

variation, depending on the technique used. By simply quantifying apple leaves using 

linear measurements, we would miss nearly 40% of the variation in some cases. While 

PC1 is highly correlated with aspect ratio, later PCs represent orthogonal variation that 

can likely only be captured through morphometric techniques such as EFDs and PH. To 

fully quantify variation in leaf shape, comprehensive morphometric techniques are 

therefore essential. 

To discern the genetic contributions to leaf shape, we paired both linear and 

comprehensive morphometric estimates of shape with genome-wide SNP data. There are 

examples of a simple genetic basis of leaf shape, such as in Arabidopsis thaliana, where 

the ANGUSTIFOLIA and ROTUNDIFOLIA3 independently control leaf width and length 

(Tsuge et al., 1996). In barley, transcript levels of BFL1 limit leaf width, with 

overexpression resulting in narrower leaves and loss of BFL1 function resulting in a 

reduced length-to-width ratio (Jöst et al., 2016). Using GWAS, we found no robust 

associations with shape phenotypes, observed a low ratio of significant SNPs to the 

number of phenotypes examined, and found that significant SNPs were sparsely 

distributed across multiple chromosomes. In addition, the small number of significant 

SNPs are likely spurious associations due to poor correction for cryptic relatedness, as 

evidenced by the QQ plots (Appendix I: Figure I-I). These observations suggest that leaf 

shape is likely polygenic and controlled by a large number of small effect loci, such as in 

tomato and maize (Tian et al., 2011; Chitwood et al., 2013). In comparison, GWAS on 

apple fruit phenotypes, such as color and firmness, have revealed strong associations 

resulting from a small number of large effect loci (Migicovsky et al., 2016a). However, it 

is possible that large effect loci were missed in the present study, either because of poor 
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reference genome assembly or inadequate marker density. Improvements in genome 

assembly and increases in marker number will aid to further reveal the genetic 

architecture of apple leaf shape variation.

Lastly, we investigated the degree to which leaf shape is heritable and can be predicted 

using genome-wide SNP data. We find that the genomic prediction accuracies of the 

primary axes of leaf shape variation are similar to previously reported estimates for fruit 

width (0.48) and length (0.47), indicating that leaf shape is as heritable as fruit shape 

(Migicovsky et al., 2016a). In combination with few significant GWAS results, high 

narrow-sense heritability estimates support a polygenic basis for leaf shape. Aspect ratio 

was identified as the primary source of variation in leaf shape in apple and had the 

highest genomic prediction and heritability estimates, indicating that there is a genetic, 

heritable basis for allometric variation in apple. Further, although the first 5 PCs for both 

EFDs and PH explain the majority of the variation in apple leaf shape, most PCs from 1 

to 14 have heritability estimates above 0.20 and may still represent crucial differences in 

leaf shape from an ecological, evolutionary, or agricultural perspective. Thus, while our 

ability to detect the primary axes of variation in leaf shape using genome-wide data is 

expected, our observation that higher level PCs are also heritable confirms that these 

comprehensive morphometric methods capture biologically meaningful variation that 

would be missed by linear measurements alone. 

Conclusions

It is clear from our work that variation in apple leaf shape and size are under genetic 

control. Further, high genomic prediction and heritability estimates for higher 

morphometric PCs indicate that techniques such as EFDs and PH are capturing heritable 

biological variation that will be missed if researchers restrict leaf shape estimates to 

linear measurements. Based on these results, it may be possible to perform genomic 

selection for a phenotype that could only be detected using morphometrics. If a higher 

order PC was correlated with a trait that was difficult or expensive to measure, assessing 

leaf shape could potentially be used as proxy for that phenotype, in the same manner that 
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red leaf color can be used to select for red fruit flesh color in apples (Chagne et al., 2007; 

Espley et al., 2009). Additionally, a better understanding of the variation in leaf shape 

and size in apple could ultimately have important implications for canopy management, 

where light exposure is crucial to flowering (Dennis, 2003). Ultimately, through the first 

in-depth study of leaf shape in apple, we uncover allometry between accessions and 

species, as well as evidence that complex and heritable phenotypes can be captured using 

comprehensive morphometric techniques. 
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Chapter 3: Genome to phenome mapping in apple using historical data

Introduction

To meet the needs of a growing global population, food availability must double within 

25 years (McCouch et al., 2013). Fortunately, advances in genomics allow breeders to 

more accurately and quickly improve crops (Lusser et al., 2012). However, continued 

food improvement relies on increasing our understanding of the genome-phenome 

relationship (Morrell et al., 2011; Varshney et al., 2014). Association mapping can detect 

causal genes of interest using phenotyped populations of unrelated individuals, such as 

those already available in germplasm collections. Once genetic markers linked to 

important traits are discovered, marker-assisted breeding can enable more efficient 

selection for plants with these desirable characteristics (Morrell et al., 2011; McCouch et 

al., 2013). 

Apple (Malus X. domestica Borkh.) had the third highest global gross production value 

among fruit crops in 2013 and is well-poised to benefit from marker-assisted selection 

(MAS) that would eliminate undesirable genotypes at the early seedling stage (Myles, 

2013; McClure et al., 2014; Food and Agriculture Organization of the United Nations, 

2015). Apples have a long juvenile period: significant fruiting generally occurs 5 years 

after germination, even when using a quickly maturing dwarf rootstock (Kumar et al., 

2012a). Two to three additional years may be required to phenotype fruit quality traits 

before selecting parents for crosses, and a large percentage of offspring are discarded 

within the first decade of fruit evaluation (Kumar et al., 2013b; Myles, 2013). Apple 

breeding is also limited by self-incompatibility and a large tree size that requires 

substantial space and money to breed (Brown and Maloney, 2003; Myles, 2013; McClure 

et al., 2014). As a result, one recent breeding program required 26 years to generate 3 

commercial cultivars from a starting population of 52,000 seedlings (Peil et al., 2008).

Markers linked to numerous phenotypes have been discovered in apple and MAS is 

already being applied for traits such as disease resistance, postharvest storability, skin 
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color and fruit texture as well as dwarfing and precocity in rootstocks (Fazio et al., 2014; 

Ru et al., 2015). In one example, using MAS to select for a single marker linked to 

postharvest storability resulted in an estimated savings of at least 60% of the operating 

costs associated with first-stage seedling selection (Edge-Garza et al., 2010).

A major barrier to establishing robust genotype-phenotype relationships that can be 

leveraged for MAS is poor quality phenotype data (Benfey and Mitchell-Olds, 2008; 

Cobb et al., 2013; Meneses and Orellana, 2013). While technological advances continue 

to increase the speed and decrease the cost of acquiring genetic data, slow and expensive 

phenotyping results in a “phenotyping bottleneck” (Houle et al., 2010; Kumar et al., 

2012a; Burleigh et al., 2013). It is well known that high quality phenotype data often 

results in far better powered quantitative trait locus (QTL) analyses (Van Eerdewegh et 

al., 2002). Fortunately, improvements to phenotyping technology have begun and the 

scientific community generally recognizes the need for high quality phenotypic measures 

(Houle et al., 2010; Furbank and Tester, 2011; Meneses and Orellana, 2013; Deans et al., 

2015).  

There has been great support for the use of historical phenotype data from gene banks for 

genetic mapping. However, phenotypic evaluation is especially challenging and costly 

over long time periods, and using data not collected specifically for genetic mapping is 

often problematic (Myles et al., 2009; Houle et al., 2010; McCouch et al., 2012). 

Different observers measuring traits over multiple years in varying environments cause 

phenotyping discrepancies in historical data sets. While DNA sequences are comparable 

between studies, phenotype data are much more difficult to compare due to missing data, 

inconsistent replication, and the frequent use of non-quantitative measurements (Peace 

and Norelli, 2009; Houle et al., 2010; McCouch et al., 2012).

Despite the difficulty of acquiring reliable data and the subsequent need for curation, 

historical phenotype data has been successfully employed to identify genotype-phenotype 

relationships in barley (Hordeum vulgare L.) and potato (Solanum tuberosum L.) 

(Baldwin et al., 2011; Matthies et al., 2014). Here we examine historical phenotype data 
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available from a large apple gene bank, the United States Department of Agriculture 

(USDA) apple germplasm collection, and link them to genotypes collected using 

genotyping-by-sequencing (GBS) (Elshire et al., 2011). We find relationships of interest 

between phenotypes, identify several genotype-phenotype associations using genome-

wide association study (GWAS), describe the very rapid linkage disequilibrium (LD) 

decay in the domesticated apple and quantify our ability to predict phenotypes using 

genomic prediction.

Materials and Methods

Phenotype scoring and filtering 

Publicly available phenotype data were downloaded from the USDA- Germplasm 

Resources Information Network (GRIN) website (http://www.ars-grin.gov/cgi-

bin/npgs/html/crop.pl?115) on July 18th, 2011. A description of the steps to edit and 

curate the phenotype data is provided in Figure 3-1. Phenotype data were first trimmed to 

exclude accessions not labeled as Malus domestica, as well as outliers that were clearly 

mislabeled and did not fall within the M. domestica variation observed according to a 

principal components analysis (PCA) of the genetic data. We manually curated and 

recoded phenotypes when phenotype scoring was incompatible with downstream 

applications. In several cases, such as recoding color as a binary trait, data points were 

removed as a result. Using the genetic data, we determined which accessions exhibited 

clonal relationships and measurements across clones were averaged (see “Genetic 

analysis” below). Phenotypes were also combined across years and averaged in cases of 

replication for a particular accession. Categorical phenotypes were excluded from 

analysis. We removed phenotypes containing data for fewer than 100 accessions, as well 

as invariable phenotypes scored entirely as one value. Binary phenotypes with highly 

uneven distributions of trait scores (i.e. one of the two values was present at a frequency 

> 95%) were also excluded. The final phenotype data set included binary, ordinal and 

quantitative phenotypes. 
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Complete USDA-GRIN database

Retained phenotypes for genotyped
M. domestica

Removed phenotypes with an
extremely skewed distribution

Final data set

Phenotypes recoded Removed phenotypes with no
variability

Clones averaged Removed phenotypes
with <100 samples

Phenotypes averaged across years Removed categorical phenotypes

Figure 3-1. Flowchart of processing for phenotype data. 

Associations between phenotypes were tested using Pearson’s correlation for binary-

binary, quantitative-quantitative, and binary-quantitative comparisons. Spearman's rank 

correlation was used for binary-ordinal and quantitative-ordinal comparisons, while 

Kendall’s rank correlation was used for ordinal-ordinal comparisons. Performing 

correlations between every possible pair of phenotypes generated a pairwise correlation 

matrix. To correct for multiple comparisons, a Bonferroni correction was applied by 

multiplying p-values by the number of pairwise comparisons (630).

We divided accessions into several binary categories including harvest season (early and 

late), color (red and green/yellow), use (cider and eating/cooking) and origin (New World 

and Old World) using information from the USDA-GRIN database when possible and 
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online sources otherwise. We tested whether phenotypes showed differences according to 

these categories using a Fisher’s Exact Test for binary phenotypes and a Mann-Whitney 

U test for ordinal and quantitative phenotypes. For Fisher’s Exact test we report the 

Odds-Ratios (OR) and for the Mann-Whitney U we report the W test statistic. P-values 

were Bonferroni-corrected for multiple comparisons. All analyses were performed in R 

(R Core Team, 2015).

Genetic analysis

Genotypes from the M. domestica evaluated here were generated using genotyping-by-

sequencing (GBS) described in Gardner et al. (unpublished data, 2016). Single nucleotide 

polymorphisms (SNPs) with a minor allele frequency (MAF) <0.01 were excluded. 

Accessions with >30% missing data were excluded and SNPs with <20% missing data 

were retained. The resulting genotype matrix contained 8657 SNPs and 929 accessions 

and 9.3% missing data. Missing genotypes were imputed using LinkImpute (Money et 

al., 2015). For imputation, we used values of 5 and 20 for parameters l and k, which 

resulted in an estimated genotype imputation accuracy of 92%. 

To determine if two or more accessions were clonally related, we calculated identity-by-

descent (IBD) using PLINK (Purcell et al., 2007; Purcell, 2009a). When two or more 

accessions had IBD ( )>0.9, one accession from the clonal group was randomly chosen 𝜋

and its genotype data were retained while the genotype data from the other clones were 

removed. The remaining dataset contained 840 accessions, including 689 with phenotype 

data.  

For principal components analysis (PCA), SNPs were pruned for LD using PLINK by 

considering a window of 10 SNPs, removing one SNP from a pair if LD was >0.5 then 

shifting the window by 3 SNPs and repeating the procedure (PLINK command: indep-

pairwise 10 3 0.5). After removing SNPs with MAF <0.05, 4395 SNPs and 672 

accessions remained for PCA. 
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We calculated LD decay using PLINK and used only SNPs with MAF >0.05.  The apple 

reference genome contains numerous large gaps of unknown sequence of varying length 

represented by long series of ‘N’s (Velasco et al., 2010b). To avoid bias in our LD decay 

measures, we discarded LD estimates generated from SNP pairs separated by a gap 

>10,000 ‘N’s. There are 3,590 gaps >10kb in the apple reference genome v1.0 (Genome 

Database for Rosaceae, GDR available at www.rosaceae.org) (Jung et al., 2014).

A genome-wide association study (GWAS) was performed using EMMAX (Kang et al., 

2010).  The k matrix was generated in EMMAX (command: emmax-kin –v –h –s –d 10) 

and we corrected for relatedness using the k matrix without any additional covariates. We 

used the GBrowse tool (GDR) (Jung et al., 2014) for Malus X. domestica v1.0p to check 

for potential genes of interest near GWAS hits that passed the Bonferroni corrected 

threshold for significance (p <0.05). We examined the distribution of phenotype data for 

the most significant GWAS SNPs and represented them using the tableplot package in R 

(Kwan and Friendly, 2012). We also tested which model of inheritance fit best based on 

the single most significant SNP for overcolor intensity using SNPStats (Sole et al., 2006). 

A significant GWAS result for firmness and harvest time was identified in a NAC protein 

and we aligned NAC proteins from various plant species using ClustalW (Larkin et al., 

2007). A phylogenetic tree was built using MEGA6 with the Dayhoff model (Dayhoff et 

al., 1978) and neighbor joining method. We used a pairwise deletion option for dealing 

with gaps and a consensus of 1000 bootstrap replicates (Tamura et al., 2013).

Genomic prediction was performed using the x.val function in the R package PopVar 

(Mohammadi et al., 2015). The rrBLUP model was selected and prediction accuracy was 

assessed using a 5-fold (nFold=5) cross-validation procedure which masked 20% of the 

samples’ phenotypes and then predicted them using a model generated from the other 

80% of the samples’ data. All other default parameters were used. Genomic prediction 

accuracy was calculated as the correlation between the predicted phenotypes and the 

observed values.

http://www.rosaceae.org/
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Results and Discussion 

Historical data curation

We downloaded 121,950 phenotypic observations for the genus Malus from the USDA-

GRIN database. These observations came from 105 different phenotypes measured in 

4123 accessions spanning 15 years. For the purposes of GWAS and genomic prediction, 

only accessions with shared segregating polymorphism are useful. We therefore restricted 

the data to members of the domesticated apple, M. domestica, which make up 32% 

(1339) of the accessions in the database. After filtering (Figure 3-1), the resulting dataset 

contained 24,778 measurements from 36 phenotypes across 689 different accessions, 

which represents approximately 20% of the data available for the genus Malus in the 

USDA-GRIN database. It is worth noting that only 36 of the initial 105 phenotypes 

(34%) were deemed useful for downstream analyses. Most phenotypes were not 

measured in enough accessions, or were not measured in an appropriate manner, to be 

useful for genetic mapping and genomic prediction. 

Figure 3-2A shows the frequency of phenotypes according to amount of data available. 

Although promising upon initial inspection, it does not account for the fact that data are 

often collected across multiple years. In only 26% of cases were there >100 data points 

for a given phenotype within a particular year. Sample sizes were often small and data 

collection was highly uneven across years, potentially due to available funding and 

access to resources (Figure 3-2B). Of the 36 phenotypes included, seven were measured 

in a single year while 24 were measured across 10 or more years (Figure 3-2C). The 

bimodal distribution in Figure 3-2C is the result of having a core set of phenotypes which 

were measured frequently while the remaining phenotypes were measured once. Even 

when a phenotype was measured across multiple years, the same trees were often not 

phenotyped each time so the data are highly unbalanced and corrections for year effects 

could not be implemented. 
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Figure 3-2. Description of phenotype data available from USDA-GRIN database for 
accessions belonging to the domesticated M. domestica. (A) Frequency of phenotypes 
according to number of data points available. (B) Number of data points by year. Year 
with no data available are not shown. (C) Number of years of data available for each 
phenotype; only values that apply to at least one phenotype are shown. 

Both inconsistent data collection across years and small sample sizes within years make 

exploring genotype-phenotype associations using historical data challenging. When an 

accession was measured across multiple years for a phenotype, we used the mean 

phenotype score across years in our analyses. Extensive data curation was required to 

generate data sets that could be successfully linked to genotype data. Figure 3-1 provides 

a flow chart of how the data were handled from the initial database download to the final 

data set. 

Correlations among phenotypes

Even without genotype data, assessing patterns within the phenotype data help assess 

data reliability while potentially exposing novel relationships worthy of further inquiry. 

We therefore investigated correlations between all pairs of the 36 phenotypes remaining 

after data curation (Figure 3-3). All p-values reported below are Bonferroni-corrected for 

multiple comparisons. The strongest correlations were between fruit length and width (r 

= 0.850, p < 1 x 10-15), fruit length and weight (r = 0.517, p <1 x 10-15) and fruit weight 

and width (r = 0.567, p < 1 x 10-15). In these cases, an increase in one fruit size 

measurement is positively correlated with an increase in another, indicating that longer 

fruit are also heavier and wider.
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Figure 3-3. Correlations among apple phenotypes. Values above the diagonal are colored 
to indicate the correlation results (r) and those below the diagonal indicate Bonferroni-
corrected p-values. 

Three different measurements evaluating the amount and location of russeting (rough, 

brown skin) were taken: intensity was measured as the percent of fruit surface covered in 

russet (0-100%), location of russeting indicated which area of the fruit was russeted 

(either one end, both ends, or entire fruit), and fruit russet type was a binary trait 

describing the russeting as either extremely fine or medium heavy to cracked. All 

measurements of fruit russeting including intensity and location (r = 0.370, p = 1.093 x 

10-15), intensity and type (r = 0.378, p < 1 x 10-15), and type and location (r = 0.3396, p = 

4.725 x 10-13) were positively correlated with each other. Fruit overcolor was negatively 
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correlated with all russeting measurements, indicating that green apples were more 

russeted than red apples (intensity: r = - 0.196, p = 3.792 x 10-3; type: r = - 0.181, p = 

0.0499; location: r = - 0.22799, p = 3.402 x 10-4). These correlations are all expected and 

provide confidence in the reliability of the phenotype data.

Thicker fruit stems were found to be shorter (r = -0.207, p = 5.906 x 10-5) and attached to 

heavier (r = 0.164, p = 0.016), longer (r  = 0.198, p = 2.1496 x 10-4), wider fruits (r  = 

0.249, p = 9.992 x 10-8), potentially enabling larger, heavier apples to better remain 

attached to the tree. 

Fruit uniformity in shape and size was scored as either uniform or variable by visually 

comparing 10 apples from the same cultivar. Fruit that were more uniform in shape were 

also more uniform in size (r  = 0.361, p < 1 x 10-15). Uniformity facilitates the processing 

of commercial cultivars, thus the correlation between uniform size and shape may be due 

to selective breeding for this desirable trait (Brown and Maloney, 2003). 

In agreement with previous work (Jan et al., 2012), varieties harvested late in the season 

tended to be juicier (r = 0.210, p = 0.007) and have higher soluble solids (r  = 0.359, p = 

2.142 x 10-18). Harvest time was also negatively correlated with harvest uniformity (r  = 

0.348, p = 3.090 x 10-10), indicating that apples harvested earlier in the season required 

fewer visits to the tree during harvest. Staff being occupied by other activities early in the 

growing season may partially account for this observation. Accessions with heavier 

apples required more visits during harvest (r = 0.382, p = 9.792 x 10-13) and tended to 

have a coarser fruit texture (r = 0.192, p = 4.981 x 10-4). 

Cultivars with more russeting locations (r = - 0.205, p = 1.183 x 10-3) or a higher 

intensity of russeting (r = - 0.202, p = 4.887 x 10-4) tended to have lower natural bloom, 

or wax, on the fruit at maturity. In our study, wax was scored as simply present or absent 

and did not distinguish further based on cuticle properties. However, wax impacts the 

cuticle of the fruit, and as a result could play a role in the susceptibility to russeting, 

although this may be a complicated relationship (Khanal et al., 2013). In previous work, 

genes involved in cutin and wax synthesis were downregulated in russeted apple skin 
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(Legay et al., 2015). Increased russeting type (r = 0.260, p = 7.505 x 10-7), location (r = 

0.276, p = 6.556 x 10-8) and intensity (r  = 0.259, p = 1.246 x 10-7) as well as later harvest 

season (r = 0.359, p = 2.142 x 10-18) were also correlated with higher soluble solids. 

Differences between apple types 

Cultivars were divided into several binary categories according to information from 

GRIN and/or an online search. Wherever possible, an accession was categorized as either 

from the Old World or the New World; as a primarily red or other (green/yellow) apple; 

as primarily used for cider or other (eating/cooking) purposes; and as a late 

(October/November) or early (August/September) variety. All p-values reported below 

are Bonferroni-corrected for multiple comparisons.  

Similar to the results in Figure 3-3, we found that apples we scored as “late” tended to be 

juicier (OR = 3.714, p = 0.006) and have a higher soluble solids concentration (W = 

5590.5, p = 6.11 x 10-7) than apples we scored as “early”, providing support for the 

accuracy of our scoring (Figure 3-4). In agreement with previous work, firmness was also 

higher for later varieties (OR = 4.461, p = 1.3 x 106) (Watkinsa et al., 2000; Oraguzie et 

al., 2004; Nybom et al., 2012). We also found that red apples had a higher level of fruit 

bloom or wax on the fruit compared to green/yellow apples (OR = 0.473, p = 0.007). 

New World apples were generally larger in size including length (W = 30705, p = 9.651 x 

10-10), width (W = 31220.5, p = 4.284 x 10-7) and weight (OR = 1.958, p = 0.010), while 

Old World apples had a higher russet intensity (W = 47328.5, p = 1.937 x 10-7) and were 

less likely to be red (OR = 2.626, p = 1.791 x 10-3). These observations suggest there may 

have been stronger selection in New World breeding programs for large red apples with 

less russeting. As expected based on previous work, apples primarily used for cider were 

smaller in fruit weight (OR = 5.791, p = 1.966 x 10-5), length (W = 3034.5, p = 1.618 x 

10-10), and width (W = 3158.5, p = 6.136 x 10-9) compared to other (eating and cooking) 

apples (Miles and King, 2014). Cider apples also oxidized more than eating/cooking 

apples (W = 10860, p = 2.592 x 10-6). 
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Figure 3-4. The relationship between apple categories and phenotypes. Each phenotype 
was divided into two groups according to various categories (harvest time, color, 
geography and used) and compared. p-values are Bonferroni-corrected.

Population structure

The genetic structure of the accessions from the USDA collection was investigated using 

PCA. Principal components (PCs) were calculated from the genome-wide SNP data. 

Accessions were plotted along the first two PCs and labeled by harvest time and 

geography (Figure 3-5A). The primary axis of genetic structure (PC1) in apple 

distinguishes early ripening from late ripening accessions (Figure 3-5B) (W = 5045.5, p = 
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2.441 x 10-25) while Old World and New World apples differ along PC2 (Figure 3-5C) 

(W = 117404.5, p = 1.317 x 10-44) indicating that population structure within the 

domesticated apple is at least partially due to differences in origin and harvest time. 

Figure 3-5. Genetic relatedness based on harvest time and geographic origin. (A) PCA 
was performed using genome-wide SNP data. All samples with known geography 
information were retained and labeled based on geography with point shape as well as 
harvest time with point color when possible. Unknown harvest times are marked as NA. 
The percentage of variance explained by each PC is indicated in parenthesis along each 
axis. (B) Boxplot of PC1 values for early vs. late harvest varieties of apples. (C) Boxplot 
of PC2 values for New and Old World varieties of apple. Results are reported from a 
Mann-Whitney U test.  
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According to a PCA of genome-wide SNPs, cider and other (eating and cooking) 

varieties differ significantly along PC1 (W = 8796, p = 7.082 x 10-4) and PC2 (W = 

19264, p = 8.048 x 10-17) (Figure 3-6). In contrast, two previous studies found weak 

genetic differentiation between cider and dessert cultivars (Cornille et al., 2012; 

Leforestier et al., 2015).
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Figure 3-6. Cider was compared to Other (Eating and Cooking) varieties using PCA of 
genome-wide SNPs. (A) PC1 vs. PC2 for apples based on primary use. Percentage 
indicates amount of total variance explained by a particular PC. (B) Boxplot of PC1 
values for cider and other varieties of apple. (C) Boxplot of PC2 values for cider and 
other varieties of apple. Values were compared using a Mann–Whitney U test.
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We also investigated the degree to which phenotypes were correlated with population 

structure. We determined the proportion of phenotypic variance (R2) explained by the 

first ten genetic PCs for each phenotype and values ranged from 0.07% to 28% (Figure 3-

7). In agreement with Figure 3-5, harvest season was most strongly correlated with 

population structure: the first 10 PCs explained 28% of the variance in harvest season, 

with PC1 explaining 16% of the variance. The harvest season of an accession is a proxy 

for the amount of time it requires for that accession to mature. Like many other 

phenological traits (e.g. Hall and Willis, 2006; Grillo et al., 2013), this measure of 

ripening time has likely evolved in response to local climates. Thus, the harvest season of 

an apple may reflect, to some degree, its geographic ancestry. Geography is often a 

strong predictor of genetic relatedness and models of isolation-by-distance are commonly 

supported by population genomic data (e.g. Cao et al., 2011). Our observation of harvest 

season as the trait most strongly correlated with population structure in apples is 

consistent with a model of isolation-by-distance, with the notion that the time required for 

an accession to mature has been shaped by the geographic origin of its ancestors.
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Figure 3-7. Proportion of variance explained for different phenotypes using PCs 1 to 10. 
PCs were calculated using genome-wide SNPs.
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Phenotypic measures are often used as proxies of genetic relatedness: it is assumed that 

apples that are more closely related should also be more phenotypically similar. We 

investigated the extent to which a summary of all phenotype measurements captured the 

genetic relatedness among samples. To accomplish this, we calculated a phenotypic 

Euclidean distance using the dist() function in R among all pairs of cultivars. We used 

varying numbers of phenotypes and compared this pairwise distance matrix to a pairwise 

kinship matrix generated from the genome-wide SNP data using a Mantel test. In our 

study, phenotypic measurements captured at most 24% of the variance of the kinship 

matrix. Interestingly, increasing the number of phenotypes measured may decrease the 

ability to explain genetic relatedness among cultivars, potentially due to the inclusion of 

low quality phenotypes (Figure 3-8). Thus, assessments of relatedness based on 

phenotype data alone are unlikely to accurately capture the genetic relatedness of 

germplasm collections such as this one. Inferences about relatedness in germplasm 

collections should make use of genotype data and not be based on phenotype data alone 

whenever possible (Jansky et al., 2015).
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Figure 3-8. Comparison of distance among samples calculated from phenotype and 
genotype data. (A) -log10 transformed p-values and (B) R2 were calculated by comparing 
a phenotypic distance matrix to a kinship matrix generated using genome-wide SNP data. 
The x axis indicates the number of phenotypes used to generate a phenotype distance 
matrix. For each sample size, a random set of phenotypes was sampled 100 times and the 
resulting phenotypic distance matrices were compared to the genetic kinship matrix using 
a Mantel test.

LD and GWAS

The power of GWAS is dictated in part by the degree to which genotyped SNPs are in 

LD with causal alleles. We examined the extent of LD decay in the apple genome based 

on 4096 SNPs, which were 124 kb apart on average. LD in apple is generally low, even at 

close distances, and decays rapidly (Figure 3-9A). We had 1900 SNP pairs which were 

<500 bp apart, and this allowed us to assess LD decay even at short distances (Figure 3-

9B). At distances of <100 bp, there is a bimodal distribution of LD, with many SNPs in 
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high LD (r2  > 0.8) and many in low LD (r2 < 0.2). Very few SNPs have high LD when 

the inter-SNP distance is >100 bp. 

Figure 3-9. Linkage disequilibrium (LD) decay curve in apple. (A) LD decay using 
comparisons of inter-SNP distances up to 1 Mb. (B) LD decay comparisons of inter-SNP 
distances of 10 to 500 bp. Smoothed fitted lines were calculated using the LOESS 
method. The horizontal dotted lines represent background LD: it is the upper 95% 
confidence interval from 10,000 LD measures generated from comparisons between SNP 
pairs from different chromosomes. 

The rapid LD decay we observe in apple is likely due to the lack of a true founder 

population resulting in high species diversity, as occurs in many fruit trees such as the 

domesticated grape (Vitis vinifera L.) (Myles et al., 2010; Khan and Korban, 2012). 

Given that LD decays to r2 < 0.2 at approximately 100 bp, we reason that, on average, a 

SNP is needed every 100 bp in order to perform well-powered GWAS in a diverse 

collection of domesticated apples. The apple has a genome size of ~750 Mb (Velasco et 

al., 2010b), and we therefore estimate that millions of SNPs are needed for robust GWAS 

in diverse collections of apples. It also implies that GWAS in apple collections such as 

the one studied here will achieve extraordinarily high mapping resolution and it will 

likely be possible to localize the precise nucleotide positions of many causal variants 
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without the need to perform additional fine mapping, which holds great promise for 

advancing both MAS and genome editing.

While rapid LD decay, relatively low SNP density and the use of historical phenotype 

data provided potential barriers to successful GWAS, we found several results of note 

(Figure 3-10) including hits significant associations with fruit firmness (Figure 3-10A), 

harvest time (Figure 3-10B) and fruit color (Figure 3-10C, Figure 3-10D). All GWAS 

results are visualized in Appendix II: Figure II-I. The alleles, p-value, MAF, and effect 

for all 31 SNPs significantly associated with a phenotype after Bonferonni correction are 

listed in Appendix II: Table II-I. 
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Figure 3-10. Manhattan plot of GWAS results for traits of interest, including (A) fruit 
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The apple is a climacteric fruit in which ethylene production during fruit ripening drives a 

loss of fruit firmness. Excessive softening is undesirable and leads to lower consumer 

acceptability, so there is a strong interest in breeding cultivars that retain their firmness 

during extended storage (Johnston et al., 2002). Cultivars harvested later in the season 

also tend to have slower softening rate, potentially due to having smaller cells and 

smaller intercellular spaces that may result in stronger tissue (Johnston et al., 2002; 

Nybom et al., 2012). 

Alleles at two genes in ethylene’s biosynthetic pathway, Md-ACO1 on chromosome 10 

and Md-ACS1 on chromosome 15, have been repeatedly associated with fruit firmness 

(Oraguzie et al., 2004; Costa et al., 2005; Costa et al., 2010) and markers at these loci are 

used in marker-assisted breeding (Ru et al., 2015). We did not find significant 

associations with fruit firmness on chromosome 10 or 15, likely due to low SNP density 

surrounding the causal loci. While we were unable to determine the exact position of Md-

ACS1 in the reference genome, the SNPs closest to Md-ACO1 were >100 kb away. Given 

the rapid extent of LD decay, it is not surprising we were unable to identify a significant 

peak for these two loci.

Fruit firmness is a complicated physiological process and in addition to Md-ACO1 and 

Md-ACS1, other genes are also involved (Atkinson et al., 2012; Costa et al., 2014). Here 

we report a single GWAS hit on chromosome 3 for firmness (Figure 3-10A) that overlaps 

with the hit for harvest time (Figure 3-10B). The overlap of GWAS hits for firmness and 

harvest time is likely due to the physiological relationship between fruit maturity and 

firmness. Previous work, as well as our own (Figure 3-4), have reported positive 

correlations between later harvest and firmer fruit (Watkinsa et al., 2000; Oraguzie et al., 

2004; Nybom et al., 2012).

 
Previous linkage mapping studies in biparental apple populations identified QTLs for 

both firmness and harvest date on chromosome 3 (Liebhard et al., 2003; Kenis et al., 

2008). A recent GWAS also identified significant SNPs for fruit firmness on 

chromosome 3 (Kumar et al., 2013a). Our GWAS hit on chromosome 3 is consistent with 

these previously identified QTL for firmness and harvest date. Our high resolution 
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GWAS enabled a refinement of the position of this QTL on the distal end of chromosome 

3 and we found that it falls within the coding region of NAC18.1 (GenBank 

ID: NM_001294055.1; chr3:31407982..31409374). NAC18.1 is a transcription factor that 

belongs to the NAC gene family, which is one of the largest families of plant-specific 

transcription factors (Olsen et al., 2005). NAC proteins are known to be involved in 

fruitlet abscission in apple (Botton et al., 2011) and ripening in peach (Prunus persica 

(L.) Batsch) (Pirona et al., 2013) and banana (Musa acuminate Colla) (Shan et al., 2012).

 
In our study, the most significant GWAS hit results in a nonsynonymous substitution 

from aspartic acid (D) to tyrosine (Y) at the fifth amino acid of NAC18.1, which we refer 

to as D5Y. Although D5Y does not appear to fall within a functional domain (de Castro 

et al., 2006), a D to Y amino acid substitution results in a score of -3 according to the 

BLOSUM62 matrix (Henikoff and Henikoff, 1992). Most notably, D5Y lies within a 

motif that we refer to as the TDSS motif. Using phylogenetic analysis, we demonstrate 

that NAC proteins possessing a TDSS motif cluster together with a bootstrap value of 88. 

The NAC proteins showing the highest homology to NAC18.1 have the TDSS motif, and 

the D residue is conserved in 22 of the 25 proteins analyzed (Figure 3-11, Appendix II: 

Figure II-II). We hypothesize that the possession of this motif indicates shared 

evolutionary function. For example, the tomato (Solanum lycopersicum L.) NOR protein 

is required for ripening in tomato (Karlova et al., 2014). Likewise, in Arabidopsis 

thaliana, NAC2 is involved in ethylene-mediated senescence (Qiu et al., 2015). In 

kiwifruit (Actinidia arguta var. arguta), one member of the NAC protein family, NAC2, 

which encodes a variant of the TDSS motif (PDSS), activates the promoter of terpene 

synthase 1 (TPS1) more strongly than NAC1 and NAC3, which carry the conserved 

TDSS motif. TPS1 expression results in aromatic terpene production in ripe fruit 

(Nieuwenhuizen et al., 2015). The D to Y substitution we describe here correlates with 

softer apples that ripen earlier. If D5Y is indeed causal, it may act as a gain of function by 

activating the expression of downstream proteins and accelerating ripening in 

apple. Further functional studies are required to reveal the possible function of D5Y.
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Figure 3-11. Multiple species alignment of NAC proteins. Proteins that include the 
TDSS motif were chosen from pear (NAC 18 GenBank ID: XP_009334622.1), grape 
(NAC25 GenBank ID: CBI20351.3), Arabidopsis thaliana (NAC2 GenBank ID: 
AEE75684.1), poplar (NAC25 GenBank ID: XP_011027905.1), kiwifruit (NAC1 
GenBank ID: AID55348.1 and NAC2 GenBank ID: AID55349.1), rice (Os07 g0566500, 
GenBank ID: NP_001060017.1) and wheat (NAM-1, GenBank ID: AFD54040.1). The 
D5Y substitution is highlighted.

In addition to the D5Y substitution identified, harvest season had 2 additional significant 

SNPs near the NAC18.1 coding region (chr3:31409376 and chr3:31409480, Appendix II: 

Table II-I), both in high LD (r2 > 0.94) with D5Y. Ultimately, SNPs in and around 

NAC18.1 are potential markers for MAS, which would help determine harvest time and 

firmness in seedlings from new crosses with unknown maturity dates and ensure cultivars 

were grown in the appropriate climate to ripen before winter.

Identification of markers for fruit skin color in apple using GWAS may be useful for 

marker-assisted breeding by allowing for skin color selection during the juvenile phase, 

prior to fruit production (Zhang et al., 2014). Anthocyanins are responsible for the red 

coloration in apples and the transcription factor MdMYB1 regulates anthocyanin genes, 

forming the genetic basis for apple skin color (Takos et al., 2006; Ban et al., 2007). In the 

present study, we sought associations with fruit overcolor (Figure 3-10C), which is a 

binary assessment (i.e., red vs green), and with overcolor intensity (Figure 3-10D), which 

is a quantitative measurement of the percentage of overcolor (generally red) on a fruit. 
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We confirmed the association between MYB1 and fruit color: the most convincing peaks 

for fruit overcolor and overcolor intensity occur near position 32.8 Mb on chromosome 9 

where the MYB1 is located (Zhu et al., 2010; Gardner et al., 2014). 

To investigate the ability of single GWAS hits (Figure 3-10) to explain phenotypic 

variance, we examined the phenotype data for each of the three possible genotypes at 

each of the most significant GWAS SNPs (Figure 3-12). We found that an accession with 

at least one minor allele (A) at chr3:31409362 was ‘soft’ in 67% of cases (Figure 3-12A). 

Accessions with this same allele had an ‘early’ harvest time in 63% of cases (Figure 3-

12B). When using a binary assessment for fruit color, accessions with at least one minor 

allele (A) at position chr9:31448296 were ‘red’ 87% of the time (Figure 3-12C). Further 

studies are required to evaluate the utility of these markers for predicting phenotypes in 

other populations.

We also used quantitative measurements of fruit overcolor intensity to estimate the mode 

of inheritance using SNPStats (Figure 3-12D) (Sole et al., 2006). Based on a single SNP, 

a codominant model fit best in which a single A allele resulted in a 22% increase in fruit 

overcolor intensity, while two A alleles resulted in a 28% increase compared to the mean 

overcolor value of TT (Akaike Information Criterion (AIC) = 5684). This codominant 

model fits only slightly better than a dominant model (AIC = 5692) in which a single A 

allele results in the full phenotypic effect. Based on our dataset, these SNPs all have 

potential for MAS and the ability to help select for desirable characteristics such as 

firmness and color using a single SNP. 
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Figure 3-12. Distribution of phenotype scores stratified by genotype at the most 
significant GWAS SNPs for (A) firmness, (B) harvest season, (C) fruit overcolor, and (D) 
overcolor intensity. The sequence for each potential genotype is indicated. The number of 
observations within a particular genotype or phenotype category is listed. Circled areas 
are proportional to the number of observations. 

Significant GWAS SNPs that are relatively isolated and not near any other significant 

SNPs may still be true positives given that we observed such rapid LD decay. However, 

some of the genotype-phenotype associations may be either false positives or simply 

mismapped SNPs in the reference genome. For example, LD between the lone hit on 

chromosome 17 at 11.6 Mb for overcolor intensity is as strong as the LD between the top 

chromosome 9 hit and many physically adjacent SNPs. Therefore, the chromosome 17 

SNP may have been assigned an incorrect physical position in the reference genome 

sequence used in this study. In two previous linkage mapping studies, 13.7% and 18.3% 
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of SNPs were assigned to linkage groups that conflicted with the predicted chromosomal 

locations according to the reference genome (Antanaviciute et al., 2012; Gardner et al., 

2014). Caution is therefore warranted in drawing strong conclusions about the number of 

QTL or the genetic architecture of a trait when dealing with incomplete or poor quality 

reference genome sequences. The associations we report in Appendix II: Table II-I 

should be interpreted taking this into consideration.

Phenotype prediction accuracy using historical data in apple

Although the rapid LD decay we observe here presents challenges for GWAS in apple 

using relatively low-density genotyping platforms such as GBS, we still observed 

suggestive hits including several that overlap with known QTL. However, the strict 

thresholds of GWAS only enable the detection of loci of relatively large effect. Most 

traits of interest to breeders are arguably highly polygenic and thus controlled by 

numerous small effect loci. As genome-wide marker data become available for an 

increasing number of organisms, it is becoming common to evaluate the extent to which 

phenotypes can be predicted using genomic prediction methods (Heffner et al., 2011). 

Genomic prediction is a particularly useful tool for researchers interested in predicting 

complex, polygenic phenotypes as it uses all markers simultaneously to predict 

phenotypes without identifying QTL (Gibson, 2010; Endelman, 2011). 

To investigate the degree to which we can predict the phenotypes explored in this study, 

we performed genomic prediction analysis and determined that the highest prediction 

accuracy (0.57) was found for harvest season followed by fruit width (0.48) and length 

(0.47) (Figure 3-13). Similar prediction accuracies ranging from 0.31 for grain yield to 

0.63 for flowering time have been found in rice (Spindel et al., 2015). Although many 

phenotypes are not well-predicted using genome-wide SNP data, or were collected in a 

way that does not enable genetic mapping, this was not always the case. Several 

phenotypes appeared to be heritable, predictable, and even controlled by loci that were 



56

detected using GWAS. For example, color had fairly high prediction accuracies of 0.41 

for overcolor intensity and 0.32 for fruit overcolor. 
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Figure 3-13. Genomic prediction accuracy: r values represent the correlation between 
observed and prediction phenotype scores from genomic prediction using a five-fold 
cross-validation procedure. 

Phenotype prediction accuracy was highly correlated with the proportion of phenotypic 

variance explained by genetic PCs 1 to 10 (r = 0.898, p = 1.141 x 10-13) (Figure 3-14). 

While genetic PCs capture the principal axes of population genetic structure, phenotype 

prediction relies on a genetic relationship matrix among all samples derived from all 

SNPs. The observed positive relationship between these two methods of explaining 
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phenotypic variation is expected given that both methods capture genetic relatedness 

among accessions in different manners.
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Figure 3-14. Correlation between genomic prediction accuracy and proportion of 
phenotypic variance explained by the first 10 genetic PCs.

Conclusions

There are many difficulties associated with the use of historical phenotype data for 

association mapping and genomic prediction, including small samples sizes, use of 

subjective measurements, and inconsistent data collection across years. However, by 

recoding phenotype data and combining across years we were able to observe 

relationships between phenotypes as well as provide evidence of several GWAS hits 

including color, fruit firmness and harvest time. In particular, we report a novel 

nonsynonymous SNP in transcription factor NAC18.1, which is correlated with softer 

apples that ripen earlier and warrants further functional investigation. The continued 
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advent of high-throughput phenotyping technologies and improvement in phenotype 

measurement collection will increase our ability to understand the genome-phenome 

relationship in apple. Due to rapid LD decay, whole genome sequencing may be required 

to enable well-powered association mapping in diverse collections like the one studied 

here. However, using sufficiently dense genotype data, we expect loci to be detected at 

nearly nucleotide resolution, which will allow for more widespread adoption of marker-

assisted selection.
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Chapter 4: Genomic ancestry estimation quantifies use of wild species in 
grape breeding 

Introduction

Grapes are one of the world’s most valuable crops and although grown primarily for 

wine, they are also used fresh, dried and in juice (Reisch et al., 2012). In 2013, grapes 

had the 2nd highest global gross production value among fruit crops, exceeded only by 

tomato (Food and Agriculture Organization of the United Nations, 2015). Grapes belong 

to the genus Vitis, which includes over 60 inter-fertile species spread broadly across the 

northern hemisphere (This et al., 2006). However, based on total global area in 2010, 

over 98% of wine grapes belong to a single species, Vitis vinifera (Anderson and Aryal, 

2013). Almost all grape cultivars grown commercially are either V. vinifera or hybrids 

that include V. vinifera parentage (Reisch et al., 2012).

In addition to the use of one Vitis species for almost all grape growing, grapes are 

predominately grown using vegetative propagation, which has resulted in extensive 

clonal relationships and limited diversity. The wine industry’s preference for traditional 

varieties makes the acceptance of even new V. vinifera cultivars difficult (Alleweldt and 

Possingham, 1988; Bisson et al., 2002). A study by Myles et al. (2011) found 58% of the 

950 grape cultivars examined had at least one clonal relationship. Among the unique 

cultivars, 74.8% had a first-degree relationship with at least one other cultivar. This 

extensive inter-relatedness and lack of diversity have left grape cultivars susceptible to 

many continually evolving pathogens (Myles et al., 2011; Myles, 2013). For example, 

Pierce’s disease currently costs the California wine industry approximately $92 million 

annually (Alston et al., 2013). The future of the wine industry relies on the exploration of 

new genetic diversity through breeding.

Crop wild relatives (CWRs) provide a useful source of genetic variation for crop 

improvement (Tanksley and McCouch, 1997; Hajjar and Hodgkin, 2007; McCouch et al., 

2013). An overview of 19 different crops found that more than 80% of beneficial traits 

from CWR genes were involved in pest and disease resistance (Hajjar and Hodgkin, 
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2007). By 1997, genomic crop improvements made due to CWRs had an estimated global 

benefit of $115 billion annually (Pimentel et al., 1997). Due to disease susceptibility of V. 

vinifera cultivars, settlers to North America had great difficulty growing the vine. These 

early settlers grew native, wild vines such as V. labrusca and V. aestivalis and hybridized 

them with V. vinifera (Alleweldt, 1997). Significant exploitation of CWRs began in the 

1850s when the phylloxera louse devastated European vineyards. Breeders used 

American wild Vitis species to develop rootstocks resistant to phylloxera, rescuing the 

wine industry. Commercial V. vinifera wine cultivars are still grafted onto these 

phylloxera-resistant rootstocks (Alleweldt and Possingham, 1988; Zhang et al., 2009).

Largely in response to the phylloxera crisis, wild Vitis were also used in scion breeding. 

However, the initial hybrids were generally considered undesirable for wine production 

due to unfavorable aromas and tastes inherited from the wild Vitis parents (Liang et al., 

2008; Sun et al., 2011; Liang et al., 2012; Narduzzi et al., 2015). Sustained breeding 

enabled the development of hybrid cultivars with improved disease resistance and 

without the undesirable flavor compounds, including German varieties such as ‘Phoenix’ 

and ‘Orion’ (Alleweldt and Possingham, 1988). Early French breeders, including Eugene 

Kuhlmann and Pierre Castel, also created well-known hybrids such as ‘Marechal Foch’ 

and ‘Castel’. However, despite the promise of novel hybrid grape cultivars, their use was 

met with strong resistance. France introduced several wine “quality laws” prohibiting the 

use of many French-American hybrids (Reisch et al., 2012; Meloni and Swinnen, 2014). 

French regulations influenced the perception of hybrid grape cultivars, as well as the 

European Union wine classification, which outlawed hybrids from the highest quality 

level (Meloni and Swinnen, 2014). 

Although it is widely believed that nearly all commercial grape varieties derive their 

entire ancestry from V. vinifera, there is increasing evidence that wild Vitis species may 

have been incorporated more often than previously assumed. Estimates of V. vinifera 

ancestry frequently rely on historical pedigrees from breeders, but these records may be 

flawed. Genomics provides a powerful tool for detecting pedigree errors and wild Vitis 

ancestry. For example, a recent study used nuclear microsatellite markers to determine 

that 33% of the 381 breeder pedigrees examined were incorrect. In most cases, the 
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paternal parent was incorrectly identified, likely due to pollen contamination (Lacombe et 

al., 2013). Most recently, a genomic analysis uncovered that the most important Japanese 

wine cultivar, ‘Koshu’, contained 30% wild ancestry despite being commonly classified 

as entirely V. vinifera (Goto-Yamamoto et al., 2015). 

In addition to illuminating the contribution of wild Vitis to commercial grapes, genomics 

can help breeders introgress desirable traits from wild relatives into new grape cultivars. 

Marker-assisted selection (MAS) uses genetic markers either responsible for a phenotype 

or strongly linked to it. MAS is especially helpful in long-lived perennial crops, like 

grapes, where selection can be made at the seed or seedling stage, eliminating the time 

and money required for the plant to fully mature (McClure et al., 2014). Moreover, 

combining markers linked to key traits with genomic ancestry estimates can enable 

breeders to select the progeny with the highest V. vinifera content as well as the desirable 

trait from the wild relative.

To enable genomics-assisted ancestry estimation in grapes, Sawler et al. (2013) estimated 

V. vinifera ancestry in interspecific Vitis hybrids using single nucleotide polymorphism 

(SNP) array data from 127 accessions in the grape germplasm collection of the United 

States Department of Agriculture (USDA). However, the USDA collection contains 

relatively few commonly grown commercial hybrid cultivars. To gain insight into the 

ancestry across the most common commercial hybrids, we generated genotyping-by-

sequencing (GBS) data and quantified V. vinifera ancestry from 64 of the most widely 

grown commercial hybrids from North America and Europe. We find that V. vinifera 

ancestry ranged from 11% to 76% across our sample of hybrid varieties. The distribution 

of ancestry across hybrids suggests the unusual practice of breeders backcrossing more 

frequently to wild Vitis species than to V. vinifera during hybrid grape breeding. 

Methods

Sample Collection and Genotype Calling
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Leaf tissue was collected from 63 commercial grape varieties from Canada (Nova 

Scotia), Germany and the United States. We also used samples from 11 V. vinifera, 6 

hybrids, and 15 wild accessions from the USDA grape germplasm collection which were 

previously genotyped in Sawler et al. (Sawler et al., 2013). DNA was extracted using 

commercial extraction kits. A list of all samples is available in Appendix III: Table III-I. 

A single GBS library from 96 samples was generated according to Elshire et al. (2011) 

using two different pairs of restriction enzymes (HindIII-HF/BfaI, HindIII-HF/MseI) and 

was sequenced using Illumina Hi-Seq 2000 technology. Reads were aligned to the 12X 

grape reference genome from GENOSCOPE 

(http://www.genoscope.cns.fr/externe/GenomeBrowser/Vitis/) using the Tassel/BWA 

version 5 pipeline with minimum quality score (mnQS) of 20 and minimum kmer count 

(c) of 3 to generate a genotype matrix with 830,822 sites (Li and Durbin, 2009; Glaubitz 

et al., 2014). All other default parameters were used. 

Data Curation

VCFtools v0.1.12b (Danecek et al., 2011) was used to filter for biallelic sites as well as a 

minimum number of reads (minDP) of 8. The file was converted into PLINK format and 

SNPs with <20% missing data were retained using PLINK v1.07 (Purcell et al., 2007; 

Purcell, 2009a). Accessions with >20% missing data were removed, followed by SNPs 

with a minor allele frequency (MAF) <0.05. SNPs with excess heterozygosity (i.e. failed 

a Hardy-Weinberg equilibrium test with a p-value < 0.001) were also removed, resulting 

in 80 accessions and 6664 sites remaining. An identity-by-state (IBS) similarity matrix 

was calculated using PLINK for hybrid samples. Missing genotypes were imputed using 

LinkImpute (Money et al., 2015) with optimized values of 6 and 17 for parameters l and 

k, respectively, which resulted in an estimated genotype imputation accuracy of 91%. 

 

In order to perform a PCA-based admixture analysis, equal ancestral sample sizes are 

required (McVean, 2009). We removed two random V. vinifera samples, and the resulting 

dataset contained 78 samples, which included ancestral populations of 7 wild Vitis 
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samples and 7 V. vinifera. Only SNPs with MAF >0.1 in the ancestral populations were 

retained across all samples. 

We pruned for linkage disequilibrium using PLINK by considering a window of 10 

SNPs, removing one SNP from a pair if r2 was >0.5 then shifting the window by 3 SNPs 

and repeating the procedure (PLINK command: indep-pairwise 10 3 0.5). 2538 sites, 

which included 56 indels and 2482 SNPs, remained for principal component analysis 

(PCA). The median distance between SNPs remaining after filtering was 1086 bp and the 

inter-SNP distribution can be seen in Figure 4-1. 

Figure 4-1. Distance (kb) between filtered SNPs used for ancestry estimation.

Ancestry estimation 

We calculated principal component (PC) axes using the ancestral V. vinifera and wild 

Vitis samples and then projected hybrid cultivars onto these axes using smartpca from the 

EIGENSOFT v.6.0.4 software package (Figure 4-2A) (Patterson et al., 2006; Price et al., 
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2006). Based on PCA projection, ancestry coefficients for each hybrid were estimated 

using a similar approach described in (Bryc et al., 2010; Sawler et al., 2013). The 

Euclidean distance between a particular hybrid cultivar and the mean value for V. vinifera 

(a) and wild Vitis (b) populations along PC1 was calculated and the percentage of V. 

vinifera was determined using the formula ‘% V. vinifera = b/(a+b)*100’ (Figure 4-2B). 

Simulations of Admixture 

In order to determine the accuracy of the PCA-based ancestry estimates, we generated 

simulated offspring using data from the genotyped samples as described in Sawler et al. 

(2013). We estimated the proportion V. vinifera ancestry from simulated F1 hybrids, F1 x 

V. vinifera backcrosses and F1 x wild Vitis backcrosses, which are expected to have 50%, 

75% and 25% V. vinifera ancestry, respectively. For the F1 hybrids, a parent was 

randomly selected from each two ancestral populations, and parental genotypes were 

combined by randomly sampling one allele at each site. Linkage disequilibrium between 

sites was ignored and the process was repeated 10,000 times in order to generate 10,000 

F1 offspring. The procedure was repeated with a randomly chosen simulated F1 as one 

parent and a randomly chosen wild Vitis (n = 10,000) or V. vinifera (n = 10,000) as the 

other, in order to simulate backcrossing to the ancestral populations. The percentage V. 

vinifera ancestry and 95% confidence interval were calculated for all simulated 

populations. 

Results and Discussion

Method verification

Wild Vitis species can be used in grape breeding programs to introgress disease and 

abiotic stress resistance into susceptible germplasm belonging to the domesticated grape, 

V. vinifera. Commercial cultivars with wild Vitis ancestry are often referred to as 

“hybrids”. An evaluation of ancestry across commercial hybrids can provide insight into 
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the history of hybrid grape breeding and a foundation for future efforts to select for 

ancestry based on marker data. Previous work provided accurate ancestry estimates of 

interspecific grape cultivars using Vitis9KSNP array data for cultivars belonging to the 

USDA germplasm collection (Sawler et al., 2013). We applied the same PCA-based 

method to evaluate the ancestry of some of the most widely grown hybrid cultivars 

sampled from North America and Europe using GBS data.

PCA provides a clear separation of wild Vitis and V. vinifera samples along PC1, with 

commercial hybrids found between the two ancestral groups (Figure 4-2A). The projected 

position of a hybrid along PC1 was used to calculate its percentage V. vinifera ancestry 

(Figure 4-2B). 
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Figure 4-2. PCA-based ancestry estimation using 2482 SNPs and 56 indels for 7 wild 
Vitis, 7 V. vinifera, and 64 hybrid samples. (a) PCs were generated using wild Vitis and V. 
vinifera samples. The proportion of the variance explained by each PC is shown in 
parentheses along each axis. Hybrids were projected onto the axes. (b) Boxplots of PC1 
values for wild Vitis, V. vinifera, and hybrid cultivars as well as a visual description of 
the calculation used for ancestry estimation. Further details are found in the Methods.
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In order to evaluate the accuracy of our ancestry estimates, we performed in silico crosses 

between wild Vitis and V. vinifera populations using our genome-wide SNP data to 

simulate F1 hybrids as well as hybrids generated from F1 simulated hybrids backcrossed 

to V. vinifera or wild Vitis. The simulated progeny were projected onto PC axes 

determined using the ancestral populations and the resulting PCA plot is shown in Figure 

4-3A. 

Figure 4-3. Simulation of hybrids (10,000 of each). (a) Simulated hybrids including F1 
hybrids, F1 backcrossed to V. vinifera and F1 backcrossed to wild Vitis were projected 
onto axes generated using wild Vitis and V. vinifera samples (b) Distribution of ancestry 
estimates for simulated populations

The expected V. vinifera content in an F1 offspring with one V. vinifera and one wild 

Vitis parent is 50%, and the mean estimated content in the simulated F1 population 

described here was 50.1%, with a 95% confidence interval (CI) ranging from 42.7% to 

57.2%. In progeny produced by an F1 hybrid backcrossed to wild Vitis, the expected V. 

vinifera content is 25%, which was the mean estimate of our simulated data, with a 95% 

CI of 18.4% to 32.6%. Finally, the mean V. vinifera content in simulated F1 hybrids 

backcrossed to V. vinifera is expected to be 75%, and our results have a mean value of 
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75.1%, with a 95% CI of 68.5% to 80.9%. The proximity of our simulated values to 

expected values provides support for the accuracy of our method, but it is worth noting 

that our 95% confidence intervals indicate that estimates may deviate by as much as 7-

8% from the expected value. Moreover, the accuracy of our estimates may decrease in 

cases where crosses are generated from parents whose ancestry differs significantly from 

the samples used as ancestral populations in the present study. Ancestry estimates for 

simulated progeny are shown in Figure 4-3B. 

Commercial Grape Ancestry Estimation 

The distribution of V. vinifera content estimated for the hybrid grape cultivars examined 

in this work is found in Figure 4-4A, and the ancestry estimates for each cultivar are 

listed in Figure 4-4B. 

Hybrids previously genotyped in Sawler et al. (2013) and replicated in this study using 

GBS include ‘Bertille-seyve 5563’ (DVIT 169), ‘Van Buren’ (DVIT 1129), ‘Rofar 

Vidor’ (DVIT 2258), DVIT 2180, ‘Jackson Sel. #3’ (DVIT 2916), and ‘Marechal Foch’ 

(California) (DVIT 214). The ancestry estimates for these samples differed by 2-5% from 

those previously estimated, with the exception of DVIT 2180 where our estimate of V. 

vinifera ancestry was 19% higher than in the previous work. DVIT 2180 is an unnamed 

accession simply identified as a Vitis species by the USDA. Given that the tissue for both 

studies was collected separately, the large difference in our estimates may be due to 

mislabelling or sample mix-up. Regardless of this discrepancy, the position of this sample 

in PC space confirms that it is indeed a hybrid sample (Figure 4-2A).
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Calandro 76
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Figure 4-4. Estimated V. vinifera content in 64 commercial grape hybrids. Estimates are 
based on 2538 sites. (a) Distribution of V. vinifera ancestry estimates in hybrids (b) V. 
vinifera ancestry estimates for each cultivar. Bars are colored if a hybrid cultivar’s ancestry 
estimate falls within the 95 % confidence interval of a F1, F1 x wild Vitis, or F1 x V. 
vinifera cross, based on simulated values. Dotted lines indicate mean values for the wild 
Vitis and V. vinifera samples
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In order to further confirm the accuracy of our ancestry estimates, we compared V. 

vinifera ancestries inferred from well-known pedigrees to our genomics-based ancestry 

estimates. For example, ‘Beta’ is a cross between Vitis riparia and ‘Concord’, a Vitis 

labrusca cross thought to possess some V. vinifera ancestry due in part to its 

hermaphroditic flowers (Swenson, 1985; Cahoon, 1986). Sawler et al. (2013) estimated 

the V. vinifera content of ‘Concord’ as 31%. Based on these values, the percentage V. 

vinifera found in ‘Beta’ is expected to be approximately 16%, and it was estimated as 

11% here (Figure 4-4A). ‘Baco Noir’ is a known F1 hybrid between ‘Folle Blanc’ (V. 

vinifera) and V. riparia, and therefore it is expected to be 50% V. vinifera. Our estimate is 

46%, which falls within the 95% confidence interval of the V. vinifera ancestry estimates 

from our simulated F1 hybrid offspring. In these two cases, our genomics-based ancestry 

estimates are consistent with pedigree-based estimates.

Our study also included several cultivars collected from multiple locations, and the 

ancestry estimates were generally similar or equivalent for these replicates from different 

geographic regions. For example, ‘Frontenac’ sampled from two locations in Nova 

Scotia, Missouri, as well as a Gris sport, were all estimated to be 30% V. vinifera. 

‘Marquette’ samples from both Nova Scotia and Missouri were estimated to contain 37% 

V. vinifera. However, the ancestry estimate (52%) for a ‘Marechal Foch’ accession 

retrieved from the USDA germplasm collection was 6% and 7% higher than the samples 

collected from two different locations in Nova Scotia. IBS values indicate that this 

sample is likely not the same cultivar as the ‘Marechal Foch’ grown in Nova Scotia 

(Figure 4-5). Still, all ancestry estimates of ‘Marechal Foch’ fall within the putative F1 

range, which is expected given ‘Marechal Foch’ is the offspring of ‘101-14 Mgt.’ (V. 

riparia x V. rupestris) x ‘Goldriesling’ (V. vinifera). ‘Leon Millot’ (44%) and ‘Marechal 

Joffre’ (47%) are siblings of ‘Marechal Foch’, and their ancestry estimates also fall 

within the range expected from an F1 hybrid (Figure 4-4B) (Pollefeys and Bousquet, 

2003). 
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Figure 4-5. Distribution of IBS values for expected replicates (orange), siblings (blue) 
and parent/offspring (red). (a) Histogram of IBS values calculated in hybrid samples 
only. Dotted lines are drawn at values for expected first degree relationships as well as 
replicates. (b) Expected relationships between cultivars with their associated IBS values.  
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Within cultivar differences in ancestry estimates may be due partially to genotyping 

error. Curation error also leads to the mislabeling of samples and misidentification of 

cultivars. Previous work on V. vinifera cultivars from the USDA collection revealed 

widespread curation error (Myles et al., 2011), and recent work on the same collection 

found that the species names assigned to samples were incorrect in approximately 4% of 

cases (Sawler et al., 2013). In another example, three different Italian varieties all 

referred to as ‘Bonarda’ had no direct genetic relationship with each other (Martínez et 

al., 2008). Thus, curation error represents a likely source for the discrepancies we observe 

between samples with identical names.

While our data do not allow us to resolve first-degree relationships, we did examine the 

distribution of IBS values based on expected relationships derived from pedigree data  

(Figure 4-5). We found that, while many cultivars do share alleles in a manner that 

supports their expected relationship, several pairs of samples that are supposed to be 

either geographic replicates or first-degree relatives did not have IBS values consistent 

with their pedigrees. For example, the IBS value for ‘Villaris’ and ‘Felicia’ (0.83) was at 

least 0.02 lower than all other sibling pairs examined. Additionally, the ‘Seyval Blanc’ 

sampled from Germany does not resemble the ‘Seyval Blanc’ from Nova Scotia to the 

degree we expect. In both cases, the V. vinifera ancestry estimates also differed. 

Furthermore, ‘Orion’, ‘Staufer’ and ‘Phoenix’ are all progeny of crosses between ‘Villard 

Blanc’ (62%) and V. vinifera varieties, which has been confirmed by simple sequence 

repeat genotyping (Rudolf Eibach, personal communication). However, the expected 

ancestry for these progeny based on pedigree information should be higher (~81%) than 

what we observe (59%-65%). Further work is required in order to confirm potential 

sample mislabeling, cross-contamination, or genotyping error. 

Wild Species Introgression

Often the best source for improvement of a crop plant is its wild relatives (Tanksley and 

McCouch, 1997). One crop that has benefited greatly from the use of wild relatives in 
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breeding is tomato. Disease resistance in most commercial tomato cultivars is the result 

of genes introgressed from wild species (Foolad, 2007; Menda et al., 2014). However, 

recurrent backcrossing to elite varieties is performed for several generations in order to 

remove undesirable genes introduced from the wild relative (Menda et al., 2014). In 

tomato, it is customary to continue backcrossing to elite germplasm for 4 to 6 generations 

before the resulting hybrid is tested commercially (Bai and Lindhout, 2007).

In comparison to tomato, grape breeding appears to still be in its infancy. Approximately 

one third (22/64) of the hybrids analyzed in this study have V. vinifera content consistent 

with F1 hybridization (Figure 4-4B). Our results suggest that grape breeders have not 

extensively backcrossed with V. vinifera in order to introgress wild genes of interest. The 

distribution of V. vinifera ancestry across hybrids actually implies that backcrosses to 

wild Vitis species have been more frequent than backcrosses to V. vinifera during hybrid 

grape breeding. Breeders may have generated hybrids with high wild content when 

aiming to introgress numerous beneficial traits from wild relatives over a small number 

of generations. Further local ancestry estimates would be required in order to determine 

the number of generations of crossing. 

The high number of hybrids consistent with F1 hybridization suggests that, overall, recent 

hybrid grape breeding has not followed standard breeding practices that aim to introgress 

desirable traits from wild species by repeatedly backcrossing to elite germplasm. 

Alternatively, because breeders often target numerous traits for introgression from the 

wild, the optimal V. vinifera content may be lower than the desired elite content in other 

crops. Ultimately, the crucial factor will be which desirable parts of each ancestral 

genome are captured, rather than the final V. vinifera percentage. 

One instance where repeated backcrossing to V. vinifera has been exploited is in the 

development of Pierce’s disease (PD) resistant wine grapes by tracking PD resistance 

alleles from the wild species V. arizonica through MAS (Riaz et al., 2009). Seedlings 

resistant to PD were repeatedly backcrossed to V. vinifera, resulting in progeny with 97% 

V. vinifera ancestry in the fifth generation, a value much higher than any estimates of 
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commercial cultivars examined in this study (Walker et al., 2014). There are many more 

opportunities for desirable trais, such as cold hardiness, to be introgressed from wild Vitis 

species into novel elite cultivars (Zhang et al., 2015). 

The use of molecular markers can also allow breeders to introgress multiple resistance 

genes into a single variety, a process called pyramiding (Joshi and Nayak, 2010). 

‘Regent’ is a cross between ‘Diana’, a V. vinifera variety, and the hybrid grape 

‘Chambourcin’, which has 46% V. vinifera ancestry according to our work. Based on 

these values, the expected V. vinifera ancestry of ‘Regent’ is approximately 73%, and our 

estimate is 68%. The complex pedigree of ‘Regent’ enabled the introgression of mildews 

and botrytis disease resistance from several Vitis species as well as high frost tolerance 

and early maturity (Eibach and Töpher, 2002). In 2013, ‘Regent’ ranked 12th in Germany 

according to total acreage (Ruehl et al., 2015). Recently, Regent was also crossed with 

VHR 3082-1-42 (Muscadinia rotundifolia x V. vinifera, then backcrossed four times with 

V. vinifera) to successfully combine powdery and downy mildew resistance genes into a 

single variety whose ancestry likely exceeds 80% V. vinifera (Eibach et al., 2007). 

The Institute for Grapevine Breeding Geilweilerhof, which developed ‘Regent’, bred 6 of 

the 7 cultivars with the highest V. vinifera content in our study (Figure 4-4B). Thus, some 

breeders have produced hybrids with a high percentage of V. vinifera ancestry while 

retaining desirable characteristics from wild species. However, the overall lack of 

evidence for repeated backcrossing to V. vinifera in hybrid grape breeding indicates that 

grape breeders have yet to fully exploit the potential of combining key traits from wild 

species into novel cultivars with high V. vinifera content.

Conclusions 

By examining the ancestry of 64 commercially grown grape hybrids using PCA-based 

ancestry estimation we found that approximately one third of hybrids have ancestry 

consistent with F1 hybridization: they derive half of their ancestry from wild Vitis and 

half from V. vinifera, suggesting that hybrid grape breeding is in its infancy. If 
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backcrossing to V. vinifera was more widely adopted, we anticipate increased acceptance 

of hybrid grape varieties. Improved hybrid cultivars with higher V. vinifera ancestry 

could eventually lead to the relaxation of regulations against planting hybrid grapes, and 

ultimately a proliferation of grape cultivars with increased abiotic and disease resistance 

as well as favored wine qualities.

We anticipate our method can be extended to facilitate marker-assisted selection by 

allowing for offspring with the highest V. vinifera content to be selected at the seedling 

stage. In combination with MAS, ancestry estimates, such as those described here, can 

enable the continued improvement of grape by exploiting the diversity of wild Vitis 

species while maintaining desirable V. vinifera characteristics.
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Chapter 5: Exploiting wild relatives for genomics-assisted breeding of 
perennial crops

Introduction 

Perennials, or species that live for more than 2 years, include herbaceous plants, woody 

shrubs, and trees (Miller and Gross, 2011). Although most agriculturally important crops 

are annuals, perennials occupy over 13% of the world’s surface area dedicated to food 

production (Table 5-1) (Food and Agriculture Organization of the United Nations, 2017). 

Not only are perennial crops a vital contributor to global food production and nutrition, 

but many offer advantages over annual crops. For example, perennial species generally 

have longer growing seasons (Dohleman and Long, 2009), increased root carbon (Glover 

et al., 2010a), and reduced soil erosion risk (Vallebona et al., 2016) when compared to 

annuals. As a result, there is increasing interest in perennializing annual grains (Glover et 

al., 2010b; Kane et al., 2016). While there are many benefits to growing perennials, 

breeding new cultivars is expensive and time-consuming due to the large size and lengthy 

juvenile phase of many species. For example, an avocado tree (Persea americana Mill.) 

may take up to 15 years to mature before flowering (Berg and Lahav, 1996). The recent 

breeding of 3 commercial apple (Malus X. domestica Borkh.) cultivars took 26 years 

(Peil et al., 2008), and thus, it is common for a limited number of elite cultivars to be 

propagated widely for long periods of time. For example, the ‘McIntosh’ apple is over 

200 years old, while the ‘Pinot Noir’ grape (Vitis vinifera L.) has been grown for a 

millennium. Propagation of the same cultivars for decades—if not centuries—results in 

increasing susceptibility to disease, since these crops remain genetically frozen while 

pathogens continue to evolve (Myles, 2013). Over 75% of perennial crops are 

vegetatively propagated and the extensive use of a small number of elite cultivars fails to 

exploit the immense phenotypic and genetic diversity available (Miller and Gross, 2011). 

Expanding the breeding pool to include wild relatives can provide a crucial new source of 

desirable traits for introgression into perennial crops. 



76

Table 5-1. The top 20 perennial crops based on total global area. Total global area, in 
million hectares, is listed as well as the proportion of total area (annuals and perennials) 
and proportion of perennial area for each of these crops. The total global area for all 
crops is estimated at 1335.37 million hectares, while the global area for perennial crops is 
estimated at 177.90 million hectares. Values are calculated based on the most recent 
available year of data from the Food and Agriculture Organization of the United Nations 
(2014) website (http://ww.fao.org/faostat). Crops we were unable to categorize due to 
ambiguous names which included both perennial and annual species were excluded.

Crop Global Area 
(Million 
Hectares)

Global 
Contribution 
(%)

Perennial 
Contribution 
(%)

Sugar cane (Saccharum spp.) 27.1 2.03 15.2
Palm fruit (Elaeis spp.) 18.7 1.4 10.5
Coconuts (Cocos nucifera L.) 11.9 0.894 6.71
Rubber (Hevea brasiliensis (Willd. ex 
A.Juss.) Müll.Arg.)

11.1 0.831 6.24

Coffee (Coffea arabica L.) 10.5 0.785 5.89
Cocoa (Theobroma cacao L.) 10.4 0.781 5.87
Olives (Olea europaea L.) 10.3 0.769 5.77
Grapes (Vitis vinifera L.) 7.12 0.534 4
Pigeon peas (Cajanus cajan (L.) 
Millsp.)

7.03 0.527 3.95

Cashew (Anacardium occidentale L.) 6.04 0.452 3.39
Mangoes (Mangifera indica L.), 
mangosteens (Garcinia x mangostana 
L.), guavas (Psidium guajva L.)

5.64 0.423 3.17

Bananas (Musa spp.) 5.39 0.404 3.03
Apples (Malus X. domestica Borkh.) 5.05 0.378 2.84
Plantains (Musa spp.) 4.5 0.337 2.53
Oranges (Citrus spp.) 3.89 0.291 2.18
Tea (Camellia spp.) 3.8 0.285 2.14
Plums (Prunus domestica L.), sloes 
(Prunus spinosa L.)

2.52 0.189 1.42

Tangerines, mandarins, clementines, 
satsumas (Citrus spp.) 

2.28 0.171 1.28

Almonds (Prunus dulcis (Mill.) D.A. 
Webb)

1.73 0.13 0.974

Pears (Pyrus communis L.) 1.57 0.118 0.885

Crop wild relatives (CWRs) provide an invaluable resource for improving perennial 

crops through disease resistance, fruit quality, and rootstocks. By 1997, improvements to 

crops due to CWRs had an estimated global benefit of $115 billion annually (Pimentel et 
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al., 1997). However, the definition of what constitutes a ‘crop wild relative’ can be 

unclear, especially in perennial species where only a few generations of breeding may 

have occurred since domestication. For example, in kiwifruit (Actinidia spp.) almost all 

cultivars were either taken directly from the wild or are the result of only two-to-three 

generations of breeding. Commercial kiwifruit cultivars, including ‘Hayward’ (Actinidia 

chinensis var. deliciosa (A.Chev.) A.Chev.), the most widely grown cultivar, are very 

similar to wild plants (Ferguson, 2007; Ferguson and Huang, 2007). Likewise, cranberry 

(Vaccinium macrocarpon Ait.) cultivars are generally either wild selections or only a few 

generations removed (Fajardo et al., 2012). Finally, most banana cultivars (Musa spp.) 

are vegetatively propagated wild individuals collected by farmers due to the presence of 

parthenocarpic fruit which develop without seeds, pollination, or fertilization (Heslop-

Harrison and Schwarzacher, 2007). When many elite perennial cultivars are in fact 

simply wild plants selected for cultivation with minimal improvement or domestication, 

the concept of CWRs becomes blurred. 

While many cultivated perennial crops are essentially wild, even crops that have been 

bred for millennia are often not genetically distinct from their wild ancestors. To 

demonstrate this, we used genome-wide single nucleotide polymorphism (SNP) data to 

compare the primary progenitor and cultivated species of grape (Vitis) and apple (Malus) 

using principal component analysis (PCA) (Figure 5-1) (Myles et al., 2011, Gardner et 

al., submitted). Figure 5-1 suggests no clear differentiation between the domesticated 

Vitis vinifera and the wild progenitor, Vitis sylvestris and the same is true of the 

domesticated Malus domestica and its primary progenitor species, Malus sieversii 

(Ledeb.) M. Roem. This is consistent with previous analyses, which found evidence of 

gene flow between wild and cultivated grapes in Western Europe, as well as between 

wild and domesticated apples (Myles et al., 2011; Cornille et al., 2012). Thus, it is worth 

noting that the distinction between cultivated crop and CWR, or progenitor species, in 

perennial crops is often blurred, as there may be shared segregating polymorphism and 

ongoing gene flow after domestication. Nevertheless, the notion of introgressing wild 

traits into elite germplasm is applicable across a diverse range of perennial crops, even 

those without a clear distinction between wild and cultivated species.
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Figure 5-1. Lack of differentiation between wild and domesticated perennial species. By 
plotting the two major axes of variation against each other (i.e. PC1 vs PC2) we gain an 
overview of the genetic relatedness among samples. The primary wild ancestors and 
domesticated species cannot be clearly separated. PCA was performed using SNP data to 
compare primary progenitor species and cultivated accessions of grape and apple. 
Cultivated accessions, as labelled by the USDA, are indicated in blue, while the primary 
progenitor species are indicated in orange. Equal sample sizes were used for both species 
and additional samples were projected onto the PCA axes

Marker-assisted selection (MAS) can increase the efficiency of incorporating desirable 

traits present in wild germplasm into domesticated, or elite, cultivars. MAS relies on 

genetic markers that are either causal for, or strongly linked to, a phenotype. The primary 

benefit of MAS is the ability to select individuals possessing a trait of interest at the seed 

or seedling stage using genetic markers. MAS allows the breeder to eliminate plants that 

do not possess the desired trait and may otherwise require a decade of cultivation to 

assess phenotypically. Instead, resources and space can be dedicated only to individuals 

with the desired characteristic. Plants with the desired trait can then be backcrossed to 

elite germplasm to maintain the wild trait of interest, while preserving important 

commercial traits (Figure 5-2). 
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Figure 5-2. Schematic of breeding using MAS. Wild relatives containing a trait of 
interest are crossed with a cultivated crop. In this example, the wild parent is 
heterozygous for a dominant Mendelian trait. With a marker associated with this trait, 
offspring can be screened for the trait and eliminated at the seedling stage. MAS ensures 
that the trait of interest is present in the progeny through several generations of 
backcrossing. Not shown here is that, with each generation, there is an increase in the 
proportion ancestry derived from the cultivated compartment while maintaining the 
desirable wild trait.

Backcrossing to elite germplasm is crucial to ensuring traits of agricultural importance 

are maintained when breeding with wild relatives: the goal is to retain all desirable 

characteristics of the elite cultivars while introducing only the small number of desirable 

loci from the wild. However, a genomic assessment of wild ancestry in over 60 

commercially grown hybrid grape cultivars found that one third had ancestry consistent 

with F1 hybridization. In fact, the study demonstrated that backcrosses to wild Vitis were 

more frequent than backcrosses to V. vinifera, indicating that repeated backcrossing to 

elite germplasm is not yet widely practiced (Migicovsky et al., 2016b). Breeding of 

perennial crops using wild relatives is still in its infancy. Through use of MAS and 
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repeated backcrossing we can anticipate new, superior cultivars possessing useful traits 

from wild relatives while still maintaining the desirable characteristics of elite cultivars. 

In addition to saving time, MAS can decrease the cost of perennial breeding using wild 

relatives. When compared to traditional fruit breeding, MAS was estimated to save up to 

43% of operational costs over the first 6 to 8 years of an apple breeding program (Edge-

Garza et al., 2015). MAS eliminates the need to phenotype and therefore offers the 

greatest cost and time savings for traits that may be difficult or expensive to measure, 

such as disease resistance, as well as traits expressed late in development, such as fruit 

quality (Töpfer et al., 2011). This review addresses the current use, future potential, and 

limitations of using wild germplasm for genomics-assisted breeding in perennial crops. 

Benefits: disease resistance

The majority of perennial crops are vegetatively propagated for decades, or even 

centuries, and are increasingly susceptible to evolving pathogens (Miller and Gross, 

2011). In contrast, wild relatives have undergone natural selection in response to disease 

pressure and often harbor crucial resistance genes, which can be exploited through 

breeding. The monogenic nature of many resistance genes means MAS is especially 

feasible for introgression of disease resistance loci. Indeed, in a review of 19 different 

crops, over 80% of the traits incorporated from CWRs were involved in disease and pest 

resistance (Hajjar and Hodgkin, 2007). Similarly, another review of 104 MAS studies 

from 1995 to 2012 found 74% focused on disease and pest resistance (Brumlop et al., 

2013). This demonstrates the widely-acknowledged potential of improving crops through 

introgression of disease resistance traits from wild relatives. 

The introgression of disease resistance from wild germplasm is perhaps best exemplified 

by modern grape breeders. While the genus Vitis contains over 60 inter-fertile species, 

approximately 99% of the world’s vineyards are planted with a single species, V. vinifera 

(This et al., 2006; Anderson and Aryal, 2013). While not commonly grown for 

commercial purposes, wild Vitis relatives possess many desirable traits not found within 
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V. vinifera. For example, the effects of Pierce’s disease (PD) (Xylella fastidiosa) cost the 

California wine industry approximately $92 million annually (Alston et al., 2013). Vitis 

arizonica Engelm., a wild grape, is resistant to PD and has been used to develop PD-

resistant wine grapes. MAS allows breeders to track PD resistance while backcrossing 

offspring repeatedly to V. vinifera. Breeding lines now possess PD resistance as well as 

97% V. vinifera ancestry (Walker et al., 2014). Thus, MAS can facilitate the introgression 

of disease resistance from wild relatives while allowing for progeny that maintain 

desirable quality traits due to a high proportion of domesticated ancestry.

In addition to facilitating introgression of a single source of disease resistance, MAS is a 

valuable tool for introgression of several sources of resistance to the same disease, or 

even resistance to multiple diseases, through a process called pyramiding. For example, a 

Muscadinia rotundifolia (Michx.) Small x V. vinifera cross was backcrossed 4 times to V. 

vinifera, resulting in the progeny ‘VHR 3082-1-42’ (Pauquet et al., 2001). ‘VHR 3082-1-

42’ was then crossed with ‘Regent’, a hybrid grape variety that is approximately 68% V. 

vinifera. The resulting progeny possess both powdery and downy mildew resistance 

genes from wild relatives as well as V. vinifera ancestry that likely exceeds 80% (Eibach 

et al., 2007; Migicovsky et al., 2016b). Wild grape species are also resistant to diseases 

such as black rot, crown gall, and others, all of which provide the opportunity for further 

improvement of commercial grape cultivars (Owens, 2008). The use of MAS to pyramid 

either several sources of resistance to a single disease, or resistance to multiple diseases, 

into a single cultivar is in its infancy. However, pyramiding of disease resistance markers 

promises to eventually result in grapes which require less chemical input to grow but still 

possess other commercially desirable traits. 

There is also great potential for MAS in improving disease resistance in apple breeding 

programs. Apple scab (Venturia inaequalis) is one of the most destructive diseases in 

apple (M. domestica) and may require 20-30 fungicide treatments per season in 

commercial orchards. The wild relative Malus floribunda Siebold ex Van Houtte is 

widely used as a source of apple scab resistance. However, the resistance offered from M. 

floribunda is ineffective against certain strains of apple scab and a broader base of 
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resistance is needed (Parisi et al., 1993; Soriano et al., 2009). Fortunately, resistance 

genes from several other wild relatives, including Malus baccata jackii (Gygax et al., 

2004) and Malus micromalus Makino. (Patocchi et al., 2005), have been identified. 

Recent work used MAS to pyramid three scab resistance genes as well as genes for 

powdery mildew (Podosphaera lecotricha) resistance and enhanced fire blight (Erwinia 

amylovora) resistance into a single apple tree (Baumgartner et al., 2015). Many other 

desirable traits, including both abiotic and biotic stress resistance, are also found in wild 

Malus species (Volk et al., 2015). Thus, cultivars are being developed that contain 

ancestry from several wild relatives, each contributing desirable alleles to achieve the 

breeder’s target. However, the achievements of breeding programs that have successfully 

exploited numerous wild perennial species are not yet widespread. The use of wild 

diversity will only increase in importance as pathogens continue to evolve.   

In many instances, there is a great urgency to identify and exploit sources of disease 

resistance. In the case of banana, ‘Cavendish’ cultivars, were first grown due to their 

resistance to Fusarium wilt (Fusarium oxysporum f. sp. cubense) (Heslop-Harrison and 

Schwarzacher, 2007). Over 40% of bananas produced worldwide are ‘Cavendish’ 

cultivars and there are now reports of an evolved form of the pathogen to which it is 

susceptible (Hwang and Ko, 2004; Ploetz et al., 2007). Once infected with Fusarium wilt, 

the disease cannot be controlled and banana plants must be replaced with a new, resistant 

cultivar (Daly and Walduck, 2006). Resistant wild banana populations which co-evolved 

with the pathogen have been found and offer a valuable source of resistance to the newly 

evolved and highly pathogenic forms of Fusarium wilt (Javed et al., 2004). Recently, a 

marker for Fusarium wilt susceptibility with a discriminatory power of 93% was 

developed (Cunha et al., 2015). MAS is likely to facilitate the development of new 

resistant cultivars that will eventually replace the ‘Cavendish’ banana. It is possible for a 

single virulent strain to devastate an entire industry, and efforts to exploit wild relatives 

will become critical if the evolvability of pathogens is ignored.   

The intense pressure to rapidly develop new, disease-resistant cultivars is not exclusive to 

the banana industry. Cacao (Theobroma cacao L.), used in the production of chocolate, is 
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a perennial tree native to South America. As a result of disease outbreak in South and 

Central America over the past 200 years, 70% of the world production now occurs in 

Africa, 10% in Asia and only 20% in South America (Brown et al., 2005). Brazil, once 

the third largest producer of cacao, became a net importer of the crop following the 

arrival of Moniliophthora perniciosa, which causes Witches’ broom disease (Meinhardt 

et al., 2008). The use of a small number of cacao cultivars has left the crop vulnerable to 

disease and requires the continued expansion of production regions. However, pathogens 

continue to move to new cacao plantations. The only viable longterm solution in cacao, 

like banana, is the development of new, disease-resistant cultivars. Fortunately, wild 

populations of cacao still exist and have evolved in the presence of these pathogens. 

These wild relatives can be easily crossed with cultivated varieties, using molecular 

markers to accelerate the breeding process (Brown et al., 2005; Meinhardt et al., 2008; 

Zhang and Motilal, 2016). The recent evaluation of 520 wild cacao trees for important 

traits such as disease resistance, bean quality and flavor will provide a valuable resource 

for future breeding (Zhang and Motilal, 2016). The cacao industry’s renewed focus on 

wild diversity serves as a warning to others who have yet to face the challenges that arise 

from evolving pathogen pressures. Only by establishing, maintaining, and evaluating 

diverse germplasm collections will the sources of pathogen resistance required in the 

future be readily available to breeders. 

Benefits: fruit quality

While most crop wild relatives don’t taste very good, they may still possess unique fruit 

quality traits that can be incorporated into domesticated germplasm to create novel 

cultivars. Prior to the use of genomics, the fruity and aromatic “foxy” flavor found in the 

wild grape, Vitis labrusca L., was introgressed into the domesticated grape, V. vinifera, 

for use in table grapes (Reisch et al., 2012). North Americans now commonly associate 

foxiness with “grape flavor”, especially in confectionary products. Although wild 

relatives are exploited primarily for their disease resistance, in some cases unique fruit 

characteristics possessed by wild relatives, but absent from cultivated germplasm, are 

targeted by breeders as well. 
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The appearance of a fruit, including color, is a critical breeding target in many fruit 

species. Most kiwifruits (A. chinensis) have green or yellow flesh, but red flesh is highly 

valued by consumers (Harker et al., 2007). The first red-fleshed commercial cultivar in 

the Chinese market, ‘Hongyang’, required 20 years of breeding and selection to produce 

(Wang et al., 2002). Only a few red-fleshed kiwifruits have been collected for use in 

breeding. Wild kiwifruit with red flesh, including both A. chinensis and other Actinida 

species, remain largely unexploited (Sui et al., 2013). Genomic work has begun in an 

effort to develop markers to easily identify red-fleshed kiwifruit. The identification of 

genetic markers for red flesh from wild relatives would allow breeders to select for this 

trait in kiwifruit, while minimizing the influence of any negative wild characteristics 

through repeated backcrossing (Wang et al., 2012). Fruit characteristics, such as color, 

are only visible in perennial crops after a juvenile phase and provide an excellent 

example of the potential for MAS to reduce the cost of breeding by allowing breeders to 

eliminate plants which do not possess the trait at an early stage. Reducing the cost of 

breeding through genomics can facilitate the development of more cultivars possessing 

unique fruit characteristics from wild relatives. 

In addition to fruit appearance, improving nutritional qualities such as antioxidant 

capacity is an area of major interest, especially in raspberry (Rubus idaeus L.) and 

blackberry (Rubus spp.) breeding. A comparison between wild and cultivated raspberries 

found the highest antioxidant capacity in Rubus caucasicus Focke, indicating the 

potential of increasing antioxidants in commercial cultivars through use of this species in 

breeding (Deighton et al., 2000). Similarly, work on blackberries found that wild 

genotypes had much higher levels of a key antioxidant than a commercial cultivar. 

Therefore, wild blackberries may be of use to breeding programs aiming to increase 

antioxidant content (Cuevas-Rodriguez et al., 2010). Raspberry and blackberry are just 

two examples of perennial crops which could benefit from breeding with wild relatives 

for desirable nutritional qualities, and it will be interesting to see how quickly—if at all—

genomics-assisted approaches are adopted in these cases.
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As evidenced by the examples provided in this review, MAS is incredibly useful for 

tracking traits that a breeder aims to introgress from wild relatives. However, in most 

cases, MAS will be used to maintain desirable traits from cultivated ancestors, rather than 

to introduce desirable quality traits from the wild. For example, in apple MAS is already 

in use for traits such as postharvest storability, firmness, acidity and skin color (Ru et al., 

2015). When introgressing disease resistance from a wild relative, a breeder wants to 

retain only progeny with the desired fruit quality traits from the elite parent. Markers can 

be used to simultaneously track these desirable traits from the elite parent and the disease 

resistance from the wild parent. Thus, genomics is a valuable tool that enables breeders to 

efficiently select for the benefits offered by both wild and cultivated germplasm.

Benefits: rootstocks 

A primary use of wild relatives in perennial breeding thus far has been for the 

development of rootstock varieties. Vegetatively propagated woody perennial crops are 

often shoots, or scions, grafted onto wild or hybrid rootstocks. Rootstocks can be used to 

improve perennial crops both above and below ground. Above ground, rootstocks can 

confer unique traits to the scion, such as precocity, or the reduction of time until a tree 

bears fruit, as well as the dwarfing of large trees. Below ground, targeted rootstock traits 

include drought tolerance, salt tolerance and disease resistance (Warschefsky et al., 

2016). While use of MAS in rootstock breeding has been limited to date, genomics can 

further improve rootstocks by facilitating the use of wild germplasm. 

Given that most perennial crops are clonally propagated from a small number of elite 

cultivars, increased ease of travel and evolving pathogens pose a dangerous threat both to 

the scion as well as the portion of the plant found below ground. In the 1860s, the North 

American phylloxera aphid (Phylloxera vastatrix) devastated European vineyards. By 

attacking the roots of the plant, phylloxera kills V. vinifera vines within one to two years. 

Breeders used American wild Vitis species to develop resistant rootstocks, rescuing the 

wine industry, and V. vinifera wine cultivars are still grafted onto these rootstocks today 

(Alleweldt and Possingham, 1988; Zhang et al., 2009). Currently, bacterial canker 
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(Pseudomonas syringae pv. actinidiae) poses a serious threat to kiwifruit worldwide. 

Fortunately, resistance to bacterial canker has been found in wild Chinese kiwifruit 

germplasm. A recent interspecies cross between wild Actinidia eriantha Benth. and 

cultivated A. deliciosa resulted in a rootstock resistant to bacterial canker. The same work 

discovered a genomic marker potentially useful for identifying bacterial-canker resistant 

hybrid rootstocks (Lei et al., 2014). As pathogens continue to evolve and spread, wild 

germplasm will be indispensable for use in rootstock breeding. Discovery of disease-

resistant rootstocks using MAS can allow for the continued use of commercially 

successful scions while protecting the plant from diseases below ground. 

Of the 25 most-produced fruit and nut crops, 20 may be grafted onto rootstocks, 

including grape and walnut (Juglans regia L.). The 5 crops not grafted are all monocots 

where grafting is not possible (Warschefsky et al., 2016). Given the global value of 

grafted perennial crops, the breeding of superior rootstocks is an area of great 

importance. While several generations of backcrossing may be necessary when crossing 

wild relatives with commercial scions to maintain fruit quality, wild trait introgression in 

rootstocks can be accomplished in fewer generations because the fruit quality of a 

rootstock cultivar is irrelevant. Use of wild relatives is further facilitated by graft 

compatibility between more distant relatives. For example, many stone fruits can be 

budded onto rootstocks developed for other Prunus species (Beckman and Lang, 2002). 

Peach (Prunus persica (L.) Batsch) and almond (Prunus amydalus (Mill.) D.A. Webb) x 

peach hybrid rootstocks with resistance to root-knot nematodes (Meloidoyne spp.) as well 

as adaption to calcareous soil have been released. Both peaches and almonds, as well as 

some plum and apricot cultivars, can be grafted onto these rootstocks (Felipe, 2009). 

However, the most widely used rootstocks in almonds are still susceptible to lesion and 

ring nematodes, crown gall, and bacterial canker. The National Clonal Germplasm 

Repository (NCGR) of the United States Department of Agriculture Agricultural 

Research Service (USDA-ARS) in Davis, California is using almond relatives such as 

peach, wild almond species, and plums as potential donors for disease resistance and 

drought tolerance (Aradhya et al., 2015). The phenotypic evaluation of wild relatives, in 

combination with genomic data, enables the identification of markers linked to these 
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desirable traits, allowing for donors to be efficiently selected. The development of disease 

resistant rootstocks through MAS using wild relatives is a topic of intense research 

interest in several perennial crops, and it is anticipated that this pursuit will result in 

substantial reductions in chemical input.

In addition to almond, the USDA-ARS is performing research on the use of wild relatives 

as potential sources of disease resistance for rootstocks in walnut. The primary walnut 

rootstock is ‘Paradox’, a California black walnut Juglans hindsii x cultivated walnut J. 

regia hybrid which is tolerant of wet soil conditions, but susceptible to crown gall 

(Agrobacterium tumefaciens) (Hasey et al., 2013; Aradhya et al., 2015). Promising 

sources of disease resistance to crown gall and Phytophthora rots have been identified in 

wild species such as the North American black walnut (Juglans hindsii, Juglans major, 

and Juglans microcarpa) and Asian butternut species (Juglans cathayensis Dode and 

Juglans ailantifolia Carr.). Mapping populations are currently being developed to identify 

disease resistance markers for MAS in walnut rootstocks (Aradhya et al., 2015). While 

molecular markers have not yet been used extensively in rootstock breeding, MAS can be 

used to screen hybrid progeny at a reduced cost and without the need to expose plants to 

pathogens in order to determine resistance status. Additionally, many of the traits 

important for rootstock breeding, such as disease resistance, precocity, and dwarfing of 

the scion are targeted and defined. In comparison, in scion breeding far more complex 

traits, such as overall fruit quality, may be targeted. In turn, desirable rootstock traits are 

more likely to be controlled by a small number of genetic loci with large effects. Thus, 

the simple genetic architecture of most rootstock traits makes them amenable to genetic 

mapping as well as MAS. While wild relatives have long been viewed as a valuable tool 

for rootstock breeding, combining such benefits with genomics-assisted approaches is the 

crucial next step. 

Genomic resources and limitations: mapping and breeding  

Despite the promise of wild relatives for improvement through MAS in perennial crops, 

there are several challenges to consider. In order to make use of wild relatives for MAS, 
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the first step is to discover markers for traits of interest. Genome-wide association studies 

(GWAS) and linkage mapping are two methods used to establish genotype-phenotype 

relationships. GWAS relies on differences within a population of diverse, unrelated 

individuals in order to discover correlations between markers and traits. In comparison, 

linkage mapping exploits bi-parental crosses to map traits in the resulting progeny. One 

of the main advantages of GWAS over traditional linkage mapping is its superior 

mapping resolution. GWAS markers correlated with a phenotype are likely to be very 

close to the causal locus. In some cases, the likely causal genetic variant itself can be 

identified through GWAS (Migicovsky et al., 2016a). In linkage mapping, large genomic 

intervals, often spanning millions of nucleotides, are identified while the causal genetic 

variant is unlikely to be pinpointed. GWAS is particularly promising in perennials 

because of the time and cost required to generate bi-parental crosses. An additional 

benefit is that GWAS can be applied to germplasm collections that are already in the 

ground and waiting to be exploited (Chitwood et al., 2014). The discrepancy in mapping 

resolution between the two methods is a function of the number of recombination events 

captured by each method. In GWAS, a large number of unrelated individuals means that 

a large number of recombination events have occurred in the history of the genetic 

material being assessed. In linkage mapping, only the recombination events captured 

through the generation of the bi-parental cross can be exploited, resulting in relatively 

large chunks of DNA that share co-ancestry among individuals.  

The high mapping resolution offered by GWAS is amplified in many perennials because 

of the relatively rapid linkage disequilibrium (LD) decay in high-diversity perennial 

crops. For example, LD decays within 200 bp in grape (Lijavetzky et al., 2007) and 

within 100 bp in apple (Migicovsky et al., 2016a) and Norway spruce (Picea abies (L.) 

H.Karst.) (Heuertz et al., 2006). This level of LD decay is far more rapid than in diverse 

populations of most well-studied annuals like rice (Oryza sativa L., ~75 to >500 kb; 

Mather et al., 2007), maize (Zea mays L., 1 to 10 kb; Yan et al., 2009), and soybean 

(Glycine max L. Merr., 336 to 574kb; Hyten et al., 2007). The correlation between a 

marker and a causal variant is related to the level of LD between the two: the higher the 

LD, the more likely the marker will serve as an indicator for the presence of the causal 
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variant. While rapid LD decay results in high mapping resolution, it also means that a 

very high density of markers is required for effective GWAS because the correlation 

among markers surrounding the causal variant decays so quickly. In some cases, 

generating sufficient coverage for GWAS by saturating the genome with markers may be 

prohibitively expensive due to rapid LD decay. However, the cost of marker discovery 

and genotyping is likely to continue to decrease, and it will therefore surely be feasible in 

the future for researchers to acquire the genotype data required for effective GWAS. 

While GWAS in perennials is an attractive option, it is not always viable. Traits targeted 

by breeders are often present only within a wild relative species, and are completely 

absent within cultivated germplasm. Attempts to map such a trait in a population 

composed of the wild relative and the cultivated germplasm using GWAS would be futile 

because the trait co-segregates perfectly with ancestry. The marker you aim to uncover 

will be present in the wild relative but absent in the cultivated germplasm, but that is also 

the case for millions of other markers across the genome (Figure 5-3). When the 

phenotypes are perfectly segregated, GWAS is of no help and a bi-parental cross between 

the wild and cultivated populations must be made to genetically map the trait. Linkage 

mapping in the resulting bi-parental population allows for such co-segregating traits to be 

genetically mapped, because the confounding effects of population structure are broken 

through crossing. Thus, when mapping traits of interest found only in wild relatives, 

linkage mapping studies may be necessary due to co-segregation. However, it is 

sometimes the case that wild and domesticated germplasm share segregating 

polymorphism and are not significantly genetically differentiated, as is the case with 

apples and grapes (Figure 5-1). In such instances, the confounding effects of co-ancestry 

may not be too severe and GWAS may be the genetic mapping option of choice. 

Additionally, when a phenotype is not perfectly co-segregated with ancestry, but rather 

differentially expressed in the two populations, it may be possible to perform GWAS 

using wild and domesticated plants. In this scenario, including both population structure 

and the SNP-by-population interaction in the GWAS model would help avoid false 

positives and ensure that SNPs are consistently associated with the trait across wild and 

domesticated populations (Biscarini et al., 2010). For each crop and phenotype of 
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interest, the optimal genetic mapping approach, and the desired genetic composition of 

the population, will vary.

Figure 5-3. Comparison of the effectiveness of GWAS and linkage mapping for mapping 
alleles of interest in wild relatives. When an allele of interest is found only in wild 
germplasm it co-segregates with population structure and cannot be mapped using 
GWAS. Linkage mapping provides a viable alternative for mapping traits in wild 
relatives. However, in the F1 generation, alleles homozygous for alternative states in the 
wild and cultivated parent will not segregate. Thus, a backcross, or pseudo-backcross, is 
required to map most alleles of interest.
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Linkage mapping provides a viable alternative to GWAS for co-segregating traits. In 

annual crops, it is typically performed crops through a cross of highly homozygous 

parents, often as a result of selfing. In perennials, the severe inbreeding depression and 

high level of heterozygosity requires a mapping design in which parents are not selfed. 

As an alternative, the two-way pseudo-testcross design, in which two highly 

heterozygous parents are crossed, has been successfully applied in many perennials, 

beginning in 1994 with an analysis of an interspecific Eucalyptus grandis W. Hill x 

Eucalyptus urophylla S. T. Blake cross (Grattapaglia and Sederoff, 1994). However, the 

progeny resulting from a two-way pseudo-testcross will not segregate for markers 

homozygous for alternative alleles in the parental plants (Figure 5-3). Given that many 

wild traits of interest will likely fall into this category, mapping will require at least one 

generation of backcrossing before linkage mapping can be applied. However, many 

perennials also have high levels of inbreeding depression, so close relatives cannot be 

used when performing backcrosses. Instead, a cultivar that is not one of the parents from 

the initial cross should be used to perform pseudo-backcrossing. The combination of a 

two-way pseudo-testcross design and pseudo-backcrossing can enable the detection of 

markers for valuable traits in wild perennial relatives. 

When introgressing regions of the genome associated with a phenotype, or quantitative 

trait loci (QTL), from wild germplasm, linkage drag may lead to undesirable phenotypes 

in the resulting progeny. Linkage drag is the result of unfavorable genes linked to a 

desirable QTL also being incorporated into the domesticated germplasm (Varshney et al., 

2014). Additional generations of pseudo-backcrossing can reduce the effects of linkage 

drag. If undesirable loci are tightly linked to the locus of interest, it may be difficult to 

eliminate the impact of linkage drag through conventional breeding. Fine-mapping of a 

QTL can allow for the selection of individuals with specific recombination events that 

minimize linkage drag. Unfortunately, fine mapping requires generating a large number 

of crosses for sufficient recombination (Khan and Korban, 2012). Reduced recombination 

frequencies have also been reported surrounding loci introgressed for resistance from a 

related species, such a 25-fold reduction in poplar (Populus spp.), providing further 
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evidence that large populations will likely be needed for fine mapping (Stirling et al., 

2001). As a result, the fine-mapping process is both expensive and time-consuming 

(Khan and Korban, 2012). Once a recombinant individual is identified, they can be used 

as a donor in breeding and backcrossing can continue for several generations using MAS. 

In addition to eliminating linkage drag, fine-mapping may lead to the identification of 

causal alleles which can be subsequently incorporated into the genomes of domesticated 

crops through genetic modification (GM) or genome editing techniques. These 

techniques can be applied directly to the cultivar of interest, immediately incorporating 

the trait, and does not require multiple generations of backcrossing to eliminate linkage 

drag. This is especially valuable in perennial crops with a lengthy juvenile phase or 

infertile hybrid progeny. Previous work successfully generated transgenic bananas with 

resistance to Fusarium wilt, the major pathogen threatening banana production (Paul et 

al., 2011). Simiarly, transgenic plantains (Musa spp.) with resistance to nematode pests 

Radopholus similis and Helicotylenchus multicinctus have been developed (Tripathi et 

al., 2015). In papaya (Carica papaya L.), the limiting production factor is the papaya 

ringspot virus (PRSV). While there have been attempts to transfer PRSV resistance from 

related wild Vasconcellea species to C. papaya, initially only F1 hybrids were possible as 

the resulting offspring were often infertile, preventing further backcrossing to C. papaya 

(Gonsalves et al., 2006). The first successfully backcrossed PRSV-resistant papaya was 

only reported in 2011, after 50 years of attempts (Siar et al., 2011). Instead, for almost 

two decades, papaya with transgenic resistance to PRSV have been cultivated in Hawaii 

(Gonsalves et al., 1998; Suzuki et al., 2007). Thus, GM is a valuable tool that can 

expedite the breeding of disease-resistant cultivars. 

Currently, the most promising genome editing technique is CRISPR/Cas9, which is 

simple, flexible and efficient. CRISPR/Cas9 has been successfully employed in perennial 

species including apple (Nishitani et al., 2016) and sweet orange (Citrus sinensis (L.) 

Osbeck) (Jia and Wang, 2014). Clearly, incorporation of desirable traits from wild 

relatives into perennial crops is not limited to MAS, but can also be achieved through 

GM. However, the social and regulatory acceptance of GM crops, including papaya 
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outside of Hawaii, is often limited (Davidson, 2008). Acceptance of GM perennials is 

especially difficult since many are fruit crops that are consumed fresh. However, 

CRISPR/Cas9 may result in modified crops acceptable to those opposed to traditional 

GM techniques. For example, in 2015, Sweden confirmed that some plants edited using 

CRISPR/Cas9 were not considered GMOs under the European definition (Wolter and 

Puchta, 2017). One method for achieving further acceptance of crops modified using 

CRISPR/Cas9 is to avoid the use of foreign DNA, as recently achieved in maize 

(Svitashev et al., 2016) and bread wheat (Triticum aestivum L.) (Liang et al., 2017). Until 

global acceptance of CRISPR/Cas9 occurs, MAS continues to be a useful genomic tool 

for the introgression of desirable traits. Additionally, unlike genome editing, MAS 

remains useful when precise detection of causal loci is not possible and only markers 

highly correlated with the trait of interest are available. 

The simple distinction between GWAS and linkage mapping is useful, but experimental 

designs that blur this distinction, and exploit the benefits of both methods, are uncovering 

numerous genotype-phenotype associations. For example, a Multi-parent Advanced 

Generation InterCross (MAGIC) population is created by intercrossing multiple parental 

lines rather than a single bi-parental cross. The increased level of recombination in the 

progeny allows for improved precision of mapping using inbred offspring (Cavanagh et 

al., 2008). In perennials, where the creation of inbred lines is often not possible, other 

designs have been implemented. For example, work in apple made use of a factorial 

mating design consisting of 4 female parents and 2 pollen parents (Kumar et al., 2012b). 

This family-based design allowed for the discovery of markers for traits such as fruit 

firmness, internal browning and titratable acidity, which could be implemented in MAS 

(Kumar et al., 2013a). Therefore, alternative mating designs are a promising tool for 

increased mapping resolution when performing linkage mapping between wild and 

domesticated crops. 

The limited diversity—often a single bi-parental cross—exploited in traditional linkage 

mapping results in a mapping population where many QTL will not segregate and 

therefore not be detected. Further, due to a potentially small population size, small-effect 
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QTL may not exceed the significance threshold. Significant markers identified are often 

only relevant to populations that share significant co-ancestry with the parents of the bi-

parental mapping population. Thus, in comparison to GWAS, markers discovered using 

linkage mapping may not be predictive in diverse collections of germplasm (Owens, 

2011). However, when identifying a marker for a trait from a wild relative, it is only 

necessary that the marker functions within that population, as a single source can be used 

as a donor for MAS. For example, while several sources of PD resistance have been used 

in grape breeding, the most important donor has been from a single V. arizonica 

accession, b43-17, which likely hybridized with Vitis candicans and is homozygous for 

monogenic resistance (Walker et al., 2014). Given that a single wild individual 

possessing a desirable trait is often sufficient for introgression into elite cultivars through 

MAS, transferability is of limited concern when exploiting alleles derived from a single 

wild relative. 

A form of genomics-assisted breeding that is increasingly being used for complex traits is 

genomic selection (GS). GS is particularly useful when the breeder aims to predict a 

complex trait controlled by numerous QTL. In these cases, a small number of markers 

will not be sufficient for phenotype prediction. Many economically important traits, such 

as fruit quality, are polygenic and therefore controlled by a large number of loci. MAS 

uses specific molecular markers discovered through linkage mapping or GWAS. In 

comparison, GS uses all marker data as well as phenotype data from a population to 

predict a genomic estimated breeding value (GEBV) for an individual. Once a model has 

been validated, GEBVs can be calculated using only genotype information. However, 

while particular markers for MAS can be used to track a trait of interest across multiple 

generations, as breeding populations evolve, GS requires additional rounds of 

phenotyping in order to maintain an accurate prediction model (Varshney et al., 2014). 

Additionally, in contrast to MAS, GS requires genotyping a large number of markers, 

which may still be cost-prohibitive in many breeding programs. A combination of MAS 

and GS has been proposed in apple, in which monogenic traits are screened using MAS, 

followed by GS for complex traits. Such a strategy may benefit many perennial crops 
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when introgressing multiple traits from wild relatives, especially to allow for durable 

disease resistance (Kumar et al., 2012a).

There are many tools and designs for genetic mapping and implementation of genomics-

assisted breeding. The decision of which strategy to employ will vary depending on the 

genetic architecture of the trait as well as the genetic structure of the mapping and 

breeding populations. Similarly, the specific tool for introgression of markers is a 

complex decision that will require weighing factors such as the urgency of developing a 

new cultivar, the extent of linkage drag, and the acceptance of GM technology. While the 

optimal combination of genomic tools will differ by crop, the adoption of genomics-

assisted breeding will ultimately enable breeders to more efficiently and cost effectively 

incorporate desirable wild traits that would otherwise remain locked away in wild 

germplasm. 

Genomic resources and limitations: sequencing 

Despite the immense potential of wild relatives for improving perennial crops, the first 

step to exploiting this resource through genomics-assisted breeding is discovering 

markers linked to useful phenotypes. While the genetic divergence between cultivated 

germplasm and wild relatives is precisely why wild relatives offer such unique and 

diverse traits, it may also cause difficulties for marker discovery and breeding. For 

example, when relatives differ in ploidy levels or total chromosome number, it may be 

difficult to produce fertile interspecific hybrids. The domesticated grape, V. vinifera, has 

19 chromosomes while its relative, the American wild grape Muscadinia rotundifolia, has 

20. However, progeny from V. vinifera x M. rotundifolia have been generated and used 

for backcrossing to V. vinifera. Despite occasional sterility, successful pseudo-

backcrossing occurred for 6 subsequent generations, allowing for the introgression of the 

M. rotundifolia gene for powdery mildew resistance, Run1, while maintaining a high 

proportion of V. vinifera (Bouquet et al., 2000). In cases of differing ploidy, one solution 

is the use of protoplast fusion, which has allowed for the creation of somatic hybrids in 

Citrus with ploidy differences as well as pollen/ovule sterility and abnormal chromosome 
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pairing (Guo and Deng, 2001; Rauf et al., 2013). When fertile hybrids are still not 

possible and a causal locus has been identified, genome editing provides a viable 

alternative for introgression of valuable traits from wild germplasm.

In addition to the difficulties potentially associated with crossing more distant relatives, 

wild germplasm may have higher levels of diversity, and as such, DNA sequencing and 

genotyping tools designed for domesticated species may not function as successfully. For 

example, SNP arrays are widely used in humans, but do not function as well on 

organisms with greater genetic diversity because they are designed based on a reference 

genome. Insertion/deletion polymorphisms (InDels), copy number variants (CNVs) and 

presence-absence variants (PAVs) all reduce hybridization of a sample’s DNA to the 

probes on an array. Recent work in grape using the Vitis9KSNP array found 33-44% of 

genotype calls were discarded due to poor quality. In this case, hybridization intensities 

were more useful than genotype calls for genetic mapping precisely because of the probe-

sequence hybridization issues caused by high levels of genetic divergence across grape 

species (Myles et al., 2015). Thus, when mapping in high diversity perennial crops with 

SNP arrays such as grape (Myles et al., 2010), peach (Verde et al., 2012) and apple 

(Bianco et al., 2016), use of hybridization intensities rather than genotype calls is a viable 

option to overcome the inevitably poor genotype quality. 

As an alternative to a genotyping microarray, next-generation DNA sequencing 

technologies (NGS) such as restriction site associated DNA (RAD) sequencing (Baird et 

al., 2008) and genotyping-by-sequencing (GBS) (Elshire et al., 2011) do not require 

markers to be discovered prior to genotyping. The simultaneous discovery and 

genotyping of markers eliminates the need for DNA to hybridize to previously designed 

probes and makes NGS well-suited to high diversity species as well as wild relatives. 

However, in many cases, a reference genome is still used to map DNA sequence reads 

resulting from NGS and identify SNPs for association mapping or genomic selection. 

Despite the proliferation of reference genome sequences, there is a lack of reference 

genomes for wild relatives. More than 100 plant genomes were sequenced between 2000 

and 2014, but only 15 were wild relatives and over half of those were soybean (Michael 
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and VanBuren, 2015). Thus, there is a clear need for reference genomes in wild relatives 

in order to map sequence reads allowing for the detection of SNPs for downstream 

analyses, ultimately allowing for genomics-assisted breeding.  

While more genomic resources are still needed for wild species, the number of reference 

genomes available has continued to increase. Resequencing of several Citrus species 

including oranges, pummelos and mandarins enabled researchers to determine the 

contributions of various wild progenitor species to cultivated citrus (Wu et al., 2014). 

Currently, a dozen wild Prunus species useful in hybrid breeding for rootstocks are 

undergoing genome resequencing by the USDA-ARS (Aradhya et al., 2015). Yet, in 

many cases, resequencing may not be sufficient for the detection of crucial genomic 

differences between wild and cultivated crops. Resequencing can detect SNPs as well as 

InDels when aligned to a reference genome. However, structural differences such as 

CNVs and PAVs are more difficult to detect. Within species, a large portion of the 

genome is present in only a subset of individuals. For example, transcriptome sequencing 

in maize was used to determine that only 16.4% of representative transcript assemblies 

were expressed in all 503 inbred lines examined (Hirsch et al., 2014). The divergence 

between wild relatives and cultivated plants is likely much greater. As a result, the 

genomic region of interest in a wild relative may be a sequence not present in the 

domesticated crop. DNA sequences present only in wild relatives require de novo 

assembly rather than resequencing to be mapped. The improvement of genomic 

resources, such as de novo assembly of wild relative reference genomes, can enable the 

discovery of markers for MAS and GS. 

Finally, most sequencing results in some degree of missing data in the final table of 

genotypes. Missing sequence data can be filled in using imputation. However, imputation 

generally requires that genomic data be aligned to a reference genome. Popular 

imputation software, including Beagle (Browning and Browning, 2007) and fastPhase 

(Scheet and Stephens, 2006), rely on the input of SNPs ordered according to a reference 

genome, which is not possible for many wild relatives with limited genomic resources. 

Several methods such as Random Forest and k-nearest neighbors imputation (kNNI) can 
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be used when a reference genome is not available (Nazzicari et al., 2016). LinkImpute is 

an imputation software based on kNNI, which updates the method to use linkage between 

markers rather than distance between samples when calculating neighbors. When 

compared to existing imputation methods, LinkImpute had a similar run time and 

accuracy to Beagle, despite not requiring positional information for markers (Money et 

al., 2015). As the ability to impute missing data without a reference genome improves, 

reduced representation sequencing techniques with high missing data, such as GBS, will 

continue to facilitate the discovery of new markers for genomics-assisted breeding in 

wild relatives.

While there is opportunity for great improvement to elite perennial crops through 

genomics-assisted introgression of traits from wild relatives, many barriers remain. 

Genomic tools designed for domesticated species are either not well-suited to more 

diverse wild relatives, or may be lacking completely. The same genetic divergence that 

has resulted in wild relatives harboring unique and desirable traits for breeding also 

results in difficulties in developing markers to introgress these traits into elite germplasm. 

However, given that DNA sequencing costs are likely to continue decreasing, it is 

essential that researchers begin planning for a future where the collection and analysis of 

DNA sequence data will not be the bottleneck to successful genetic mapping. Especially 

for perennial breeders used to working on timescales of decades, the focus should be on 

the collection of high-quality phenotype data that can always be paired later with 

genotype data as it becomes available. Now is the time to establish GWAS and linkage 

mapping populations that will enable powerful genetic mapping in a future where 

genotyping costs are negligible and the available genomic analysis tools are far superior 

to those available today.

Further limitations 

Although the primary focus of this review is the use of genomics, it is worth noting that 

there are several difficulties unrelated to genomics that may limit the use of improvement 

using wild relatives. First, in order to make use of wild relatives for breeding, new 
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germplasm must be collected. While some wild relative collections are well-characterized 

and actively in use, such as those described in this review, there are likely many benefits 

of wild germplasm that remain undiscovered. A focus on the collection and 

characterization of wild germplasm is the first step towards discovering which relatives 

and traits will be useful for breeding, and thus be exploitable through genomics.  

Among the major barriers to improved characterization of wild germplasm are the 

locations where such germplasm may be found. Often, wild relatives must be collected 

from locations that are difficult to access, and thus collecting new wild germplasm can be 

an expensive and time-consuming process. For example, wild cacao is found in the 

tropical rainforests of South America (Lachenaud et al., 2007), while fruits and nuts may 

be expensive and difficult to retrieve from tall trees, and even vegetative samples may be 

bulky to transport (Aradhya et al., 2015). There are also compulsory quarantine 

requirements when transferring material between political boundaries. Several decades 

may pass between the collection of wild germplasm and their use by growers (Lachenaud 

et al., 2007). Finally, it is important to consider the cultural and financial ramifications of 

collecting wild relatives. In the past, germplasm has been collected from farmers and 

communities without compensation or recognition. In such a scenario, seeds may be 

taken from one country and used to benefit the private sector in another country. While 

there is ample opportunity for commercial crops to benefit from wild relatives, it is 

necessary that farmers and communities which have preserved wild relatives receive 

adequate credit and compensation for use of such resources (Montenegro, 2016). 

The introgression of valuable wild traits into domesticated crops can only occur when 

breeders have access to these relatives through gene banks. The collection of new 

samples for marker discovery poses a major limitation to establishing such collections. 

Wild relatives are very under-represented in gene bank collections. A recent overview of 

over 1,000 taxa in 81 crops found that no CWR germplasm existed in gene banks for 

29% of taxa, while 24% had fewer than 10 accessions. Over 95% of taxa had insufficient 

wild relative representation in gene banks, clearly supporting the need for better 

collection of wild germplasm, in order to make use of it in breeding (Castañeda-Álvarez 
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et al., 2016). Future collection of germplasm is also threatened due to habitat destruction 

and climate change (Maxted et al., 2012). As the power of genomic tools increases, 

genomics will become increasingly effective for introgression of wild traits into perennial 

crops. However, the ability to exploit wild relatives for breeding requires that this 

diversity be protected for future use through gene banks and habitat conservation. 

Preservation of wild relatives will require a complex approach across many environments 

on a local, national and international scale (Montenegro, 2016). It is crucial to begin 

exhaustive sampling and extensive evaluation of wild germplasm for all major perennial 

crops, an enormously expensive and time-consuming undertaking. However, such 

projects are essential to ensuring a safe and secure future food supply as clonally 

propagated cultivars continue to be threatened by a constantly-evolving environment. 

Future directions

An essential step towards the adoption of genomic markers from wild relatives will be 

methods that accelerate the juvenile period in order to increase the efficiency of 

backcrossing progeny to domesticated germplasm. While the use of genomics-assisted 

breeding can increase the efficiency of selecting for traits of interest and decrease the 

number of plants that must be propagated, the long juvenile period of many perennials 

still poses a constraint on the rate of crop improvement.  

A solution to the problem of long juvenile periods has been found in grapes. In grapes, 

‘microvines’ possessing a Vvgai1 mutant allele display dwarfism, a short generation time 

and continuous flowering. In comparison to the 2-5 years of juvenility generally required 

for grapes, the Vvgai1 mutant produces fruit 2 months after germination. In addition to 

allowing for the rapid cycling of generations, microvines take up less space and could be 

a valuable tool for genomics studies and MAS (Chaïb et al., 2010). For example, recent 

work used microvines to aide in QTL identification for traits such as berry acidity (Houel 

et al., 2015). In apple, an early flowering transgenic line containing the BpMADS4 gene 

from silver birch (Betula pendula) was combined with MAS to pyramid resistance to 

apple scab, powdery mildew, and fire blight (Flachowsky et al., 2011). However, while 
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transgenic lines are incredibly helpful for decreasing the generation time while breeding, 

it is often desirable to have a final cultivar for release that does not contain the transgene 

and is not considered a genetically modified organism (GMO). This scenario is facilitated 

by a transgene that is dominant and heterozygous, resulting in only 50% of offspring 

possessing the gene in each generation. Thus, once the rapid cycling of generations is 

completed, a non-GMO tree possessing desirable traits from wild relatives—but not the 

transgene—can easily be selected (Flachowsky et al., 2011). The creation of similar 

mutants in other species, which reduce the juvenile phase in long-lived perennials, will be 

essential to the efficient application of MAS. 

As an alternative to transgenics, virus-induced gene silencing (VIGS) can also be used to 

shorten the juvenile phase in perennials. VIGS uses a viral vector to infect a plant with a 

particular gene, resulting in an RNA-mediated defense which silences expression of the 

gene within the plant (Lu et al., 2003). The apple latent spherical virus (ALSV) does not 

induce disease symptoms in the infected plant and can be used as a vector for VIGS 

(Igarashi et al., 2009). When ALSV is used to express Arabidopsis thaliana florigen 

while silencing expression of MdTFL1-1 in apple or PcTFL1-1 in pear, flowering time 

can be reduced to 3 months or less. As genes involved in flowering are identified in other 

perennials, VIGS could be used to silence these genes and thus shorten the juvenile 

period (Yamagishi et al., 2011; Yamagishi et al., 2016). ALSV has several other valuable 

characteristics which make it attractive for use in breeding. The virus was not detected in 

neighboring trees in an orchard where it had been present since 1984, suggesting there 

was no vector for transmission present in the sampled orchard and horizontal 

transmission via pollen did not occur (Nakamura et al., 2011). Additionally, 

approximately 99% of seedlings from ALSV-infected trees can be considered virus-free 

(Kishigami et al., 2014). Finally, ALSV can be eliminated from an infected tree using 

high temperature, allowing for vegetative propagation of that tree and resulting in fruit 

exempt from restrictions on GMOs (Yamagishi et al., 2016). Therefore, VIGS is a 

promising method for reducing the juvenile phase in perennials, allowing for a shorter 

generation time and thus facilitating backcrossing when breeding with wild relatives.  
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The ability to genotype plants using MAS at the earliest stage of development will allow 

for the least amount of time and resources to be spent propagating plants which do not 

carry the marker of interest. While extraction of DNA from seeds is possible for several 

plants, in perennials it is generally required that plants germinate in order to collect DNA 

from leaf tissue. Many tree fruits and nuts require a seed dormancy period of up to 12 

weeks at low temperatures prior to germination. The development and improvement of 

methods which overcome seed dormancy could decrease the time prior to genotyping and 

the generation time between crosses. Several techniques for overcoming seed dormancy 

include the dissection of embryos and application of bioactive gibberellins or nitric oxide 

(van Nocker and Gardiner, 2014). Work describing the nondestructive ability to extract 

DNA from seeds, although recently published in soybean, has been limited so far (Al-

Amery et al., 2016). In such a scenario, only the seeds with the desired trait would be 

germinated, greatly improving the efficiency and decreasing the cost of each breeding 

cycle.  

To facilitate DNA sequence mapping and marker discovery for wild relatives, 

improvement of genomic resources is needed. As such, there is an urgent need for 

reference genomes in wild species, or the development of pan-genome sequences that 

include sequence from both wild and domesticated relatives. To characterize the pan-

genome of poplar, recent work performed genome-wide analysis of structural variation in 

three intercrossable poplar species (Pinosio et al., 2016). Similar efforts are required in 

most other perennial species. Resequencing of wild germplasm in combination with de 

novo assembly will not only improve our understanding of the domestication history of 

perennial crops, but also enable the genetic mapping of important traits that can be used 

for genomics-assisted breeding.  

While this review focuses on the potential of genomics-assisted breeding, and in 

particular MAS, it is worth noting that these tools will always be used in combination 

with traditional evaluation of cultivars when selecting new varieties. Breeders will always 

grow and evaluate plants prior to commercial release, but genomics can speed up 

reaching that final evaluation. Moreover, there are certainly cases where MAS may not 
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even be desirable. For example, when selecting for red fruit flesh in apple, the same 

anthocyanin-regulating transcription factor often leads to red foliage and therefore trees 

with this trait can be easily identified before fruit production (Chagne et al., 2007; Espley 

et al., 2009). However, there is also a paralogous gene for red fruit flesh color where red 

foliage does not occur and MAS could be valuable in those instances (Chagne et al., 

2013). Due to the cost and labour expense of MAS, previous work selecting for downy 

and powdery mildew resistance in grape included both phenotypic and marker-assisted 

selection. The initial population of interest consisted of 119 plants inoculated with downy 

mildew. Seedlings resistant to downy mildew were then screened for powdery mildew 

resistance. Finally, the 20 seedlings resistant to both diseases were tested using MAS, 

resulting in a final reduction to only 4 seedlings (Eibach et al., 2007). In this case, while 

phenotype selection was effective, MAS allowed for an improved reduction in the 

number of seedlings. When applying MAS to perennial crops, the greatest cost-savings 

will occur if testing occurs at the seed or seedling stage. MAS is particularly useful for 

traits that are difficult, expensive, or time-consuming to phenotype, such as fruit traits 

and disease resistance. To be of use, the markers must be economical to discover as well 

as test. Lastly, MAS requires a robust marker-trait association which improves the 

breeder’s ability to select for individuals possessing a particular trait. Thus, while low 

cost MAS can facilitate the introgression of specific traits of interest from wild relatives, 

it will ultimately only be useful when the cost of phenotyping is higher than the cost of 

discovering markers and genotyping (Luby and Shaw, 2001).

Lastly, a major barrier to more widespread adoption of MAS is often not the lack of 

genomic resources for wild relatives or the cost of genotyping, but the ‘phenotyping 

bottleneck’ present when characterizing germplasm. While the cost and speed of 

collecting genomic data has continued to decrease, phenotyping remains slow and 

expensive (Burleigh et al., 2013). Given that high-quality phenotype data is required for 

well-powered QTL analyses, the improvement of phenotyping technologies is a major 

area of current research interest. The development of new, high-throughput (HT) 

phenotyping technologies has begun, including advances in image analysis and robotics 

(Furbank and Tester, 2011). Improvement to phenotyping technologies will aid in the 
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characterization of wild germplasm, a task which is particularly challenging due to the 

high level of diversity present. Thus far, HT phenotyping technologies have focused on 

annual crops such as rice (Tanger et al., 2017) and cotton (Gossypium barbadense L.) 

(Andrade-Sanchez et al., 2014), neglecting diverse perennial crops. One example of a 

technology useful for wild relatives is Field Book, an open-source application for 

collecting field data that eliminates the need to transcribe handwritten notes (Rife and 

Poland, 2014). As phenotyping technology for perennial crops and wild relatives 

improves, so will the ability to detect markers which can be exploited for genomics-

assisted breeding. Thus, phenotyping of wild relatives, while expensive, is a necessary 

task. Additionally, good quality phenotype data will continue to have value in the future. 

Phenotype data can be collected now but analyzed in the future when, for example, the 

cost of whole genome sequencing is no longer prohibitive. 

Ultimately, although genomics-assisted breeding has been used to introgress traits from 

wild relatives into perennial crops in the past, there are still many areas in which future 

work is required to improve this process. The use of genomic tools such as those which 

reduce the generation time for long-lived perennial crops and allow for DNA extraction 

from seeds—and the continued development of such tools—are two crucial steps in 

facilitating the use of MAS in perennials. To make use of markers in breeding, they must 

first be discovered, and as such improvement to genetic mapping techniques and 

resources will be necessary. Finally, MAS is especially valuable for the introgression of 

multiple traits as well as those that are difficult or expensive to phenotype. However, the 

usefulness of MAS relies on the ability to discover and genotype markers for less than the 

cost of phenotyping all progeny. As technology improves and the cost of marker 

discovery decreases, it will become increasingly feasible to introgress useful traits from 

wild relatives into elite perennial cultivars, resulting in the much-needed improvement of 

crops that may have been clonally propagated for centuries. 
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Conclusions 

There are clearly many traits such as disease resistance, fruit quality and rootstock 

characteristics which would benefit domesticated perennials but are locked in 

undesirable, wild germplasm. Use of MAS can enable breeders to unlock the potential of 

wild germplasm by facilitating selection at an early stage of development—or even as a 

seed—allowing for less time and money to be spent growing plants which will inevitably 

be discarded. However, when crossing wild relatives and elite cultivars there are certain 

limitations and difficulties. Often many generations of backcrossing are required to 

decrease linkage drag and other wild characteristics. Use of GM technology can help 

reduce the amount of time required for breeding, but decades may still be required for 

consumer and regulatory acceptance. The development of CRISPR/Cas9 is a promising 

alternative to traditional methods. Both MAS and genome editing require the initial 

discovery of markers, which is complicated by the fact that alleles for traits of interest 

often co-segregate with millions of other alleles in wild germplasm. Yet, the potential 

benefit of accessing unique and desirable traits in wild germplasm could revolutionize 

perennial crop improvement. Unfortunately, the discovery of useful markers using 

GWAS and linkage mapping may still require decades to yield results. Thus, it is 

essential the collection and characterization of wild relatives begin immediately, while 

genomic and phenomic tools suited to diverse germplasm continue to improve. The 

continued vegetative propagation of domesticated perennial cultivars affords pathogens 

the opportunity to become increasingly effective while robbing both growers and 

consumers of the unique and desirable traits present in wild germplasm. After decades, or 

even millennia, of growing the same perennial cultivars frozen in genetic time, the 

decreasing costs of sequencing can finally allow us to harvest the potential of wild 

relatives through genomics-assisted breeding. We have only begun to enjoy the benefits 

of wild relatives in perennial crop improvement, and continued technological advances 

will surely result in the more efficient development of tastier food that requires less 

chemical input to grow.



106

Acknowledgements 

We would like to acknowledge Mark O. Johnston, Christophe M. Herbinger, Robert G. 

Beiko, Robert G. Latta and Michel S. McElroy for helpful discussion. This article was 

written, in part, thanks to funding from the Canada Research Chairs program, the 

National Sciences and Engineering Research Council of Canada and Genome Canada. 

Z.M. was supported in part by a Killam Predoctoral Scholarship from Dalhousie 

University.



107

Chapter 6: : Conclusion

Summary of findings 

There were two main objectives to this thesis: to characterize the genetic basis of several 

simple and complex traits in apple and to estimate the current use of wild relatives in 

grape breeding while describing the potential of genomics and wild relatives for further 

improvement of perennial crops.  

In Chapter 2, we examined 9,000 leaves from 869 unique apple accessions using linear 

measurements and comprehensive morphometric techniques. We identified allometric 

variation in the length-to-width aspect ratio between accessions and species of apple. The 

allometric variation was due to variation in the width of the leaf blade, not length. Aspect 

ratio was highly correlated with the primary axis of morphometric variation (PC1) 

quantified using elliptical Fourier descriptors (EFDs) and persistent homology (PH). 

While the primary source of variation was aspect ratio, subsequent PCs corresponded to 

complex shape variation not captured by linear measurements. After linking the 

morphometric information with over 122,000 genome-wide SNPs, we found high 

narrow-sense heritability values even at later PCs, indicating that comprehensive 

morphometrics can capture hidden, heritable phenotypes. Thus, techniques such as EFDs 

and PH are capturing heritable biological variation that would be missed using linear 

measurements alone, and which could potentially be used to select for a hidden 

phenotype only detectable using comprehensive morphometrics. Ultimately, a better 

understanding of the genetic basis of quantitative traits is important for genomics-assisted 

breeding.  

In Chapter 3, we mined historical phenotype data from the USDA GRIN database and 

linked this information with genome-wide SNP data for 689 apple accessions. We 

identified genetic structure based on the geographic origin of the accession as well as the 

time required for ripening. Performing GWAS, we confirmed a known association 

between fruit color and MYB1. We also identified an amino acid substitution in the 
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transcription factor NAC18.1 that is a strong functional candidate for fruit firmness and 

harvest date. Finally, we demonstrated that traits such as harvest time and fruit size can 

be predicted with relatively high accuracy using genomic prediction. This work indicates 

the potential of using gene banks for genetic mapping, which holds great potential for 

continued improvement of apples through MAS.

In Chapter 4, we used genome-wide SNP data and a PCA-based ancestry estimation 

procedure to assess ancestry in some of the most widely grown commercial hybrid grape 

cultivars. We verified the method with both empirical and simulated data and found the 

ancestry of commercial hybrid grapes ranged from 11% to 76% V. vinifera. 

Approximately one third of hybrids had ancestry consistent with F1 hybridization: they 

derived half of their ancestry from wild Vitis and half from V. vinifera. Our results 

suggest that hybrid grape breeding is in its infancy. If backcrossing to V. vinifera were 

more widely adopted in grape, acceptance of hybrid grape cultivars could improve. The 

method described in this chapter could be combined with MAS to facilitate the breeding 

of hybrid grapes which require less chemical input to grow and produce high quality 

wine. 

In Chapter 5, we described the potential of using genomics to improve perennial crops 

through introgression of valuable traits from wild relatives. Given that perennial crops are 

expensive and time-consuming to breed, genomics provides a valuable tool for improving 

the efficiency of breeding by allowing for selection of progeny possessing a trait of 

interest at an early stage. Genomics will always be used in combination with traditional 

breeding techniques, but it is a valuable tool for accelerating the speed and decreasing the 

cost of breeding. Wild relatives are a largely untapped source of desirable traits such as 

disease resistance, fruit quality, and rootstock characteristics. We described examples 

from wild relatives of perennial crops possessing these traits, as well as current efforts to 

incorporate traits from wild relatives using genomics-assisted breeding. Genetic mapping 

in wild relatives is made difficult by genomic tools that are often ill-suited to the diversity 

of wild-relatives. Additionally, phenotyping wild relatives is an expensive and difficult 

process. However, there is an urgent need to immediately begin the collection and 
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characterization of wild relatives of perennial species in order to discover which relatives 

and traits can be used for genomics-assisted breeding and improvement of perennial 

crops. 

Overall, the results of this thesis lead to the following conclusions: comprehensive 

morphometric techniques capture heritable variation, novel genomic insights can be 

generated using historical phenotype data from gene banks, hybrid grape breeding is still 

in its infancy, and wild relatives should be exploited for genomics-assisted breeding of 

perennial crops. 

Future directions

While the cost of DNA sequencing continues to decrease, the ability to phenotype has 

instead become the limitation—or “phenotyping bottleneck”—to genetic mapping 

(Furbank and Tester, 2011). High-throughput (HT) phenotyping using comprehensive 

morphometrics enabled us to capture heritable variation in apple leaf shape that 

traditional phenotyping such as linear measurements would have missed. Further work on 

the apple fruit shape would complement this analysis and potentially provide evidence of 

whether leaf shape can be used as an early indicator of fruit shape or other agricultural 

important characteristics. We also exploited historical phenotype data from the USDA 

and demonstrated that this information can be linked with new genetic data for genetic 

mapping. Indeed, we presented a novel functional candidate for variation in fruit firmness 

and harvest date in apple that should be explored further. However, image-based analysis 

and historical phenotype data, though valuable, are not sufficient. HT phenotyping 

technology better-suited to diverse perennial species and wild relatives is critical to the 

success of genetic mapping and thus genomics-assisted breeding. High quality phenotype 

data collected now will continue to have value in the future, as the cost of genotyping 

becomes negligible to the cost of phenotyping. 

Once genetic mapping has been performed for important traits, this information can be 

exploited in combination with ancestry estimates—such as those we describe in hybrid 
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grapes—to select for both desirable traits and domesticated ancestry when breeding. Our 

estimates of domesticated ancestry in commercial hybrid grapes indicate that 

backcrossing to wild Vitis has been more frequent than backcrossing to V. vinifera, and as 

such, ancestry estimation could be a valuable tool for increasing V. vinifera content. The 

same technique could be applied to other hybrid crops. Wild relatives harbour many 

valuable traits that can help improve perennial crops, but remain locked inside 

germplasm with many other undesirable characteristics. Thus, ancestry estimation is a 

valuable tool for allowing the breeder to limit hybrid offspring to those with the highest 

level of domesticated ancestry and therefore the highest proportion of desirable 

characteristics. In combination with MAS or genomic selection, these ancestry estimates 

can be used to ensure both a high level of domesticated ancestry as well as the presence 

of desirable traits—both those that originate from wild relatives and domesticated 

parents—of interest in the progeny. 

Finally, the results of this thesis focus on characterizing phenomic diversity in apple and 

grape through genetic mapping, but future work is required to implement the methods 

and markers described. It is essential to focus not simply on the discovery of markers, but 

also ensuring the information is accessible and genetic tests are easily available so that 

breeders can make use of these markers. Publications describing genetic markers are not 

sufficient (Peace, 2017). If appropriate genetic tests are designed for breeders, it will 

improve efficiency of breeding and allow breeders to make use of more diverse 

germplasm. While genetic mapping and ancestry estimation, such as that performed in 

this thesis, are the first steps, it is ultimately only through applied genetic testing that 

breeders will be able to save time and money, while selecting for desirable traits and 

ancestry in perennial cultivars, ultimately improving crops for a safe and secure food 

supply.  
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Appendix I: Quantifying the genetic basis of leaf shape (Chapter 2)

Table I-I. Comparison of leaf phenotypes between accessions based on metadata. 
Bonferroni-adjusted p-values resulting from a Mann-Whitney U test estimating the 
difference between accessions based on species (Malus domestica/Malus sieversii) for the 
leaf phenotypes examined.

Phenotype M. domestica / 
M. sieversii

EFD PC1 1
EFD PC2 0.004048534
EFD PC3 1
EFD PC4 1
EFD PC5 0.003316918
PH PC1 0.683551321
PH PC2 1
PH PC3 1.06E-05
PH PC4 1
PH PC5 2.99E-05
dry weight 0.004296286
leaf mass per area 0.318844203
surface area 0.002547523
surface area var 1
length 0.21019243
length var 1
width 0.000206938
width var 1
minor 0.000413503
minor var 1
major 0.974530433
major var 1
aspect ratio 0.023214743
aspect ratio var 1
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Figure I-I. GWAS results for leaf phenotypes. Manhattan and QQ plots are included as 
well as the naive (Pearson correlation) and mixed model results. P-values are log-
transformed and the threshold for significance is simpleM-corrected and indicated by a 
dotted line. Chromosome R indicates SNPs found on contigs unanchored to the reference 
genome.
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Figure I-I. GWAS results for leaf phenotypes. Manhattan and QQ plots are included as 
well as the naive (Pearson correlation) and mixed model results. P-values are log-
transformed and the threshold for significance is simpleM-corrected and indicated by a 
dotted line. Chromosome R indicates SNPs found on contigs unanchored to the reference 
genome.
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Figure I-I. GWAS results for leaf phenotypes. Manhattan and QQ plots are included as 
well as the naive (Pearson correlation) and mixed model results. P-values are log-
transformed and the threshold for significance is simpleM-corrected and indicated by a 
dotted line. Chromosome R indicates SNPs found on contigs unanchored to the reference 
genome.
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Figure I-I. GWAS results for leaf phenotypes. Manhattan and QQ plots are included as 
well as the naive (Pearson correlation) and mixed model results. P-values are log-
transformed and the threshold for significance is simpleM-corrected and indicated by a 
dotted line. Chromosome R indicates SNPs found on contigs unanchored to the reference 
genome.
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Figure I-I. GWAS results for leaf phenotypes. Manhattan and QQ plots are included as 
well as the naive (Pearson correlation) and mixed model results. P-values are log-
transformed and the threshold for significance is simpleM-corrected and indicated by a 
dotted line. Chromosome R indicates SNPs found on contigs unanchored to the reference 
genome.



143

Figure I-I. GWAS results for leaf phenotypes. Manhattan and QQ plots are included as 
well as the naive (Pearson correlation) and mixed model results. P-values are log-
transformed and the threshold for significance is simpleM-corrected and indicated by a 
dotted line. Chromosome R indicates SNPs found on contigs unanchored to the reference 
genome.
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Figure I-I. GWAS results for leaf phenotypes. Manhattan and QQ plots are included as 
well as the naive (Pearson correlation) and mixed model results. P-values are log-
transformed and the threshold for significance is simpleM-corrected and indicated by a 
dotted line. Chromosome R indicates SNPs found on contigs unanchored to the reference 
genome.
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Table I-II. Positional information for significant leaf GWAS results. p-value, minor 
allele, minor effect, major allele, major effect and MAF are included. 

Trait Chr Position p-value Minor
Allele

Minor 
Effect

Major
Allele

Major 
Effect

MAF

EFD PC1 7 14057829 2.83E-07 A 0.230 T -0.006 0.275
EFD PC3 1 16040767 7.20E-09 C 0.100 A -0.001 0.112
EFD PC3 1 16040782 7.95E-09 C 0.100 A 0.000 0.117
EFD PC3 1 33244662 2.59E-07 A 0.075 G -0.003 0.265
EFD PC3 2 7167203 1.92E-08 A 0.046 G 0.000 0.073
EFD PC3 4 9336777 5.95E-09 A 0.100 G 0.001 0.346
EFD PC3 4 9336793 5.87E-09 A 0.100 C 0.001 0.345
EFD PC3 4 9336818 5.87E-09 G 0.100 A 0.001 0.345
EFD PC3 4 20837364 3.12E-09 G 0.043 A -0.002 0.079
EFD PC3 7 14057813 6.70E-09 A 0.054 T 0.002 0.312
EFD PC3 7 14057829 1.90E-07 A 0.057 T 0.003 0.275
EFD PC3 10 33021752 4.24E-07 G 0.060 T 0.000 0.095
EFD PC3 10 33021772 4.24E-07 C 0.060 T 0.000 0.095
EFD PC3 10 33021786 4.24E-07 C 0.060 T 0.000 0.095
EFD PC3 10 33021810 4.24E-07 C 0.060 A 0.000 0.095
EFD PC3 12 9162531 8.49E-09 A 0.047 G -0.002 0.164
EFD PC3 12 19393888 5.80E-08 T 0.067 C 0.000 0.064
EFD PC3 13 2561476 4.65E-09 A 0.068 T 0.004 0.092
EFD PC3 13 11744890 2.80E-08 A 0.065 G 0.002 0.085
EFD PC3 17 1595328 5.66E-09 C 0.099 T -0.002 0.054
EFD PC3 17 1678938 2.74E-09 G 0.097 A -0.003 0.051
EFD PC3 17 4569327 2.36E-07 T 0.029 C 0.002 0.108
EFD PC3 17 15848936 4.17E-09 G 0.100 A -0.001 0.270
EFD PC3 18 6723804 4.92E-09 C 0.100 T 0.002 0.430
EFD PC3 18 39265418 1.84E-08 T 0.066 C -0.001 0.243
EFD PC3 18 51548255 2.27E-10 T 0.075 C 0.001 0.384
EFD PC3 18 85482786 1.53E-07 T 0.062 G 0.000 0.225
EFD PC3 18 87574849 1.01E-07 C 0.051 G 0.000 0.134
EFD PC3 18 110856726 5.52E-09 T 0.101 A 0.001 0.146
leaf mass 
per area

1 7234679 3.15E-07 G 0.007 A 0.000 0.101

leaf mass 
per area

1 7234686 3.13E-07 T 0.007 A 0.000 0.104
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Trait Chr Position p-value Minor
Allele

Minor 
Effect

Major
Allele

Major 
Effect

MAF

leaf mass 
per area

1 7234687 3.15E-07 A 0.007 G 0.000 0.101

leaf mass 
per area

2 3700705 1.13E-07 C 0.007 G 0.000 0.057

leaf mass 
per area

3 18865039 3.05E-07 C 0.007 T 0.000 0.071

leaf mass 
per area

3 18865048 3.05E-07 A 0.007 G 0.000 0.071

leaf mass 
per area

3 18865054 2.27E-07 A 0.007 G 0.000 0.197

leaf mass 
per area

3 18865092 1.99E-07 A 0.007 T 0.000 0.195

leaf mass 
per area

6 6548794 2.71E-07 C 0.007 T 0.000 0.050

leaf mass 
per area

6 6765216 3.16E-07 T 0.007 C 0.000 0.052

leaf mass 
per area

7 14985838 2.70E-07 A 0.007 G 0.000 0.061

leaf mass 
per area

8 7591799 2.80E-07 G 0.007 A 0.000 0.098

leaf mass 
per area

9 18897545 1.93E-07 A 0.007 G 0.000 0.050

leaf mass 
per area

9 18897546 1.93E-07 T 0.007 G 0.000 0.050

leaf mass 
per area

12 2599754 2.31E-07 G 0.007 A 0.000 0.072

leaf mass 
per area

12 2599755 2.31E-07 A 0.007 G 0.000 0.072

leaf mass 
per area

12 2875079 2.66E-07 T 0.007 C 0.000 0.134

leaf mass 
per area

12 2875081 2.92E-07 A 0.007 G 0.000 0.064

leaf mass 
per area

14 16895798 3.06E-07 T 0.007 C 0.000 0.070

leaf mass 
per area

15 48974300 3.11E-07 G 0.007 C 0.000 0.075

leaf mass 
per area

15 48974306 3.11E-07 C 0.007 G 0.000 0.075

leaf mass 
per area

17 1752929 1.39E-07 G 0.007 C 0.000 0.137

leaf mass 
per area

17 1752972 1.78E-07 T 0.007 C 0.000 0.335

PH PC4 10 27087002 3.43E-08 C -11.747 G -0.117 0.074
PH PC4 10 27106339 3.53E-08 G -11.710 T 0.002 0.072
width var 1 5231105 1.49E-09 A 25.484 C 0.046 0.317
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Trait Chr Position p-value Minor
Allele

Minor 
Effect

Major
Allele

Major 
Effect

MAF

width var 3 7321723 1.27E-09 T 25.432 C -0.170 0.263
width var 6 21230247 1.30E-09 C 25.284 T -0.258 0.055
width var 7 20529860 1.49E-09 A 25.512 C 0.045 0.148
width var 7 20529908 1.49E-09 A 25.512 G 0.045 0.148
width var 7 20529924 1.49E-09 T 25.512 C 0.045 0.148
width var 8 9370617 1.19E-09 C 25.681 T 0.211 0.305
width var 8 9370647 1.19E-09 C 25.681 T 0.211 0.305
width var 10 31172600 1.85E-07 T 15.534 C -0.104 0.127
width var 11 33287797 4.71E-07 G 15.100 A 0.319 0.306
width var 15 38493217 1.46E-09 A 25.544 G 0.120 0.061
width var 15 38493221 1.49E-09 A 25.519 G 0.073 0.060
width var 17 4084876 3.71E-10 A 24.931 T -0.608 0.097
width var 17 23055349 9.33E-10 G 25.785 T 0.336 0.142
width var 18 9197912 1.44E-09 C 25.563 G 0.101 0.135
width var 18 51270468 1.02E-07 T 16.007 C 0.163 0.133
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Table I-III. Genes found within ±5 kb of SNPs exceeding significance threshold. Results 
are listed according to the Genome Database for Rosaceae GBrowse (accessed January 
27 2017). Trait, positional information, overlapping mRNA, Go Term Name and InterPro 
description are listed. Only SNPs with overlapping mRNA are reported. Go Term Names 
and InterPro Description is only listed once for SNPs overlapping the same mRNA. 

Trait Chr Pos mRNA 
Name

GO Term Name InterPro Description

EFD PC3 1 16040767 MDP0000
168790

O-methyltransferase 
activity

O-methyltransferase, 
family 2

methyltransferase 
activity

Winged helix-turn-helix 
transcription repressor 
DNA-binding

protein dimerization 
activity

Plant methyltransferase 
dimerisation
O-methyltransferase, 
COMT, eukaryota

EFD PC3 1 16040782 MDP0000
168790

EFD PC3 1 33244662 MDP0000
266452

protein binding Homeodomain-like

Myb/SANT-like domain
MDP0000
266451

protein kinase 
activity

Protein kinase, catalytic 
domain

ATP binding Legume lectin, alpha 
chain, conserved site

binding Legume lectin domain
protein 
serine/threonine 
kinase activity

Serine/threonine- / dual-
specificity protein 
kinase, catalytic domain

protein tyrosine 
kinase activity

Serine/threonine-protein 
kinase, active site

protein 
phosphorylation

Concanavalin A-like 
lectin/glucanase
Protein kinase-like 
domain
Concanavalin A-like 
lectin/glucanase, 
subgroup
Protein kinase, ATP 
binding site
Legume lectin, beta 
chain, Mn/Ca-binding 
site
Tyrosine-protein kinase, 
catalytic domain
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Trait Chr Pos mRNA 
Name

GO Term Name InterPro Description

EFD PC3 2 7167203 MDP0000
246957
MDP0000
134259

protein binding von Willebrand factor, 
type A

MDP0000
134260

Organic solute 
transporter Ost-alpha

EFD PC3 4 20837364 MDP0000
304608

intracellular protein 
transport

Zinc finger, 
Sec23/Sec24-type

ER to Golgi vesicle-
mediated transpor

Sec23/Sec24, trunk 
domain

zinc ion binding Sec23/Sec24, helical 
domain

COPII vesicle coat Sec23/Sec24 beta-
sandwich

EFD PC3 4 9336777 MDP0000
260328

nucleotide binding Nucleotide-binding, 
alpha-beta plait

MDP0000
316458

hydrolase activity Nucleoside phosphatase 
GDA1/CD39

EFD PC3 4 9336793 MDP0000
260328
MDP0000
316458

EFD PC3 4 9336818 MDP0000
260328
MDP0000
316458

EFD PC3 10 33021752 MDP0000
555589

catechol oxidase 
activity

Polyphenol oxidase, C-
terminal

oxidation-reduction 
process

EFD PC3 10 33021772 MDP0000
555589

EFD PC3 10 33021786 MDP0000
555589

EFD PC3 10 33021810 MDP0000
555589

EFD PC3 12 19393888 MDP0000
168714

cell death Mlo-related protein

integral to membrane
EFD PC3 12 9162531 MDP0000

666968
transport Nucleoporin interacting 

component 
Nup93/Nic96

nuclear pore
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Trait Chr Pos mRNA 
Name

GO Term Name InterPro Description

EFD PC3 13 11744890 MDP0000
836932
MDP0000
193683

catalytic activity Pyruvate 
carboxyltransferase
Aldolase-type TIM 
barrel

EFD PC3 13 2561476 MDP0000
743350

sequence-specific 
DNA binding 
transcription factor 
activity

AP2/ERF domain

DNA binding DNA-binding, 
integrase-type

EFD PC3 17 1595328 MDP0000
312625

binding Pentatricopeptide repeat

MDP0000
208843

Uncharacterised protein 
family UPF0118

MDP0000
694848

protein binding Armadillo

binding Armadillo-like helical
Armadillo-type fold

EFD PC3 17 1678938 MDP0000
261713

leaf mass 
per area

1 7234679 MDP0000
520923

extracellular space Allergen Ole e 1, 
conserved site
Pollen Ole e 1 
allergen/extensin

leaf mass 
per area

1 7234686 MDP0000
520923

leaf mass 
per area

1 7234687 MDP0000
520923

leaf mass 
per area

2 3700705 MDP0000
273540
MDP0000
873812

serine-type 
endopeptidase 
activity

Peptidase S8/S53, 
subtilisin/kexin/sedolisi
n

identical protein 
binding

Proteinase inhibitor I9

proteolysis Peptidase S8, subtilisin-
related

negative regulation 
of catalytic activity

Peptidase S8, subtilisin, 
Asp-active site
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Trait Chr Pos mRNA 
Name

GO Term Name InterPro Description

leaf mass 
per area

6 6548794 MDP0000
266305

protein kinase CK2 
complex

Casein kinase II, 
regulatory subunit

protein kinase 
regulator activity

MORN motif

Casein kinase II, 
regulatory subunit, 
alpha-helical
Casein kinase II, 
regulatory subunit, beta-
sheet

leaf mass 
per area

6 6765216 MDP0000
166312

amino acid 
transmembrane 
transporter activity

Amino acid/polyamine 
transporter I

membrane Cationic amino acid 
transporter

amino acid 
transmembrane 
transport

leaf mass 
per area

7 14985838 MDP0000
134641

leaf mass 
per area

8 7591799 MDP0000
142597

NA

leaf mass 
per area

9 18897545 MDP0000
241908

Auxin responsive SAUR 
protein

leaf mass 
per area

9 18897546 MDP0000
241908

leaf mass 
per area

15 48974300 MDP0000
281060

phosphoric ester 
hydrolase activity

Synaptojanin, N-
terminal

leaf mass 
per area

15 48974306 MDP0000
281060

PH PC4 10 27087002 MDP0000
222705

Protein of unknown 
function DUF1639

PH PC4 10 27106339 MDP0000
930936

protein kinase 
activity

Serine-
threonine/tyrosine-
protein kinase catalytic 
domain

protein 
phosphorylation

Protein kinase-like 
domain

MDP0000
930939

nucleic acid binding DNA methylase, N-6 
adenine-specific, 
conserved site

methyltransferase 
activity

Putative methylase

methylation Methyltransferase small
MDP0000
259036

protein binding Bromodomain

DREPP plasma 
membrane polypeptide
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Trait Chr Pos mRNA 
Name

GO Term Name InterPro Description

width var 1 5231105 MDP0000
259316

3-deoxy-7-
phosphoheptulonate 
synthase activity

DAHP synthetase, class 
II

aromatic amino acid 
family biosynthetic 
process

width var 3 7321723 MDP0000
145529

integral to membrane Major facilitator 
superfamily

transmembrane 
transport

Major facilitator 
superfamily domain, 
general substrate 
transporter
Major facilitator 
superfamily domain

width var 6 21230247 MDP0000
136052

protein binding Armadillo

binding Armadillo-like helical
Armadillo-type fold

width var 7 20529860 MDP0000
318495

DNA binding Histone H3

protein binding Ubiquitin
nucleosome Histone core
nucleosome 
assembly

Histone-fold

Ubiquitin supergroup
Ubiquitin subgroup

width var 7 20529908 MDP0000
318495

width var 7 20529924 MDP0000
318495

width var 8 9370617 MDP0000
265371

protein 
serine/threonine 
phosphatase activity

Protein phosphatase 2C, 
manganese/magnesium 
aspartate binding site

protein kinase 
activity

Protein kinase, catalytic 
domain

ATP binding AGC-kinase, C-terminal
protein 
serine/threonine 
kinase activity

Protein phosphatase 2C-
like

catalytic activity Serine/threonine- / dual-
specificity protein 
kinase, catalytic domain

protein tyrosine 
kinase activity

Serine/threonine-protein 
kinase, active site
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Trait Chr Pos mRNA 
Name

GO Term Name InterPro Description

protein 
dephosphorylation

Protein kinase-like 
domain

protein 
phosphorylation

Protein kinase, ATP 
binding site

protein 
serine/threonine 
phosphatase complex

Tyrosine-protein kinase, 
catalytic domain

MDP0000
265372

metallopeptidase 
activity

Peptidase M1, alanine 
aminopeptidase/leukotri
ene A4 hydrolase

zinc ion binding Peptidase M1, 
membrane alanine 
aminopeptidase, N-
terminal

proteolysis Domain of unknown 
function DUF3358

width var 8 9370647 MDP0000
265371
MDP0000
265372

width var 10 31172600 MDP0000
328070

width var 11 33287797 MDP0000
948862

protein kinase 
activity

Protein kinase, catalytic 
domain

ATP binding Legume lectin domain
binding Serine/threonine- / dual-

specificity protein 
kinase, catalytic domain

protein 
serine/threonine 
kinase activity

Serine/threonine-protein 
kinase, active site

protein tyrosine 
kinase activity

Concanavalin A-like 
lectin/glucanase

protein 
phosphorylation

Protein kinase-like 
domain
Concanavalin A-like 
lectin/glucanase, 
subgroup
Protein kinase, ATP 
binding site
Tyrosine-protein kinase, 
catalytic domain

width var 15 38493217 MDP0000
406249

Protein of unknown 
function DUF1264

width var 15 38493221 MDP0000
406249
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Trait Chr Pos mRNA 
Name

GO Term Name InterPro Description

width var 17 23055349 MDP0000
278380

protein kinase 
activity

Protein kinase, catalytic 
domain

ATP binding Serine-
threonine/tyrosine-
protein kinase catalytic 
domain

protein 
serine/threonine 
kinase activity

Thaumatin, 
pathogenesis-related

protein tyrosine 
kinase activity

Serine/threonine- / dual-
specificity protein 
kinase, catalytic domain

protein 
phosphorylation

Serine/threonine-protein 
kinase, active site
Protein kinase-like 
domain
Thaumatin, conserved 
site
Tyrosine-protein kinase, 
catalytic domain

width var 17 4084876 MDP0000
544455

metabolic process UDP-
glucuronosyl/UDP-
glucosyltransferase

MDP0000
253523

metabolic process UDP-
glucuronosyl/UDP-
glucosyltransferase
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Appendix II: Genome to phenome mapping in apple using historical 
data (Chapter 3)

Figure II-I. GWAS results for apple phenotypes. Manhattan and QQ plots are included 
as well as the naive (Pearson correlation) and mixed model results. P-values are log-
transformed and the threshold for significance is Bonferroni-corrected and indicated by a 
dotted line. Chromosome R indicates SNPs found on contigs unanchored to the reference 
genome.
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Figure II-I. GWAS results for apple phenotypes. Manhattan and QQ plots are included 
as well as the naive (Pearson correlation) and mixed model results. P-values are log-
transformed and the threshold for significance is Bonferroni-corrected and indicated by a 
dotted line. Chromosome R indicates SNPs found on contigs unanchored to the reference 
genome.
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Figure II-I. GWAS results for apple phenotypes. Manhattan and QQ plots are included 
as well as the naive (Pearson correlation) and mixed model results. P-values are log-
transformed and the threshold for significance is Bonferroni-corrected and indicated by a 
dotted line. Chromosome R indicates SNPs found on contigs unanchored to the reference 
genome.
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Figure II-I. GWAS results for apple phenotypes. Manhattan and QQ plots are included 
as well as the naive (Pearson correlation) and mixed model results. P-values are log-
transformed and the threshold for significance is Bonferroni-corrected and indicated by a 
dotted line. Chromosome R indicates SNPs found on contigs unanchored to the reference 
genome.
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Figure II-I. GWAS results for apple phenotypes. Manhattan and QQ plots are included 
as well as the naive (Pearson correlation) and mixed model results. P-values are log-
transformed and the threshold for significance is Bonferroni-corrected and indicated by a 
dotted line. Chromosome R indicates SNPs found on contigs unanchored to the reference 
genome.



160

Figure II-I. GWAS results for apple phenotypes. Manhattan and QQ plots are included 
as well as the naive (Pearson correlation) and mixed model results. P-values are log-
transformed and the threshold for significance is Bonferroni-corrected and indicated by a 
dotted line. Chromosome R indicates SNPs found on contigs unanchored to the reference 
genome.
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Figure II-I. GWAS results for apple phenotypes. Manhattan and QQ plots are included 
as well as the naive (Pearson correlation) and mixed model results. P-values are log-
transformed and the threshold for significance is Bonferroni-corrected and indicated by a 
dotted line. Chromosome R indicates SNPs found on contigs unanchored to the reference 
genome.
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Figure II-I. GWAS results for apple phenotypes. Manhattan and QQ plots are included 
as well as the naive (Pearson correlation) and mixed model results. P-values are log-
transformed and the threshold for significance is Bonferroni-corrected and indicated by a 
dotted line. Chromosome R indicates SNPs found on contigs unanchored to the reference 
genome.
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Figure II-I. GWAS results for apple phenotypes. Manhattan and QQ plots are included 
as well as the naive (Pearson correlation) and mixed model results. P-values are log-
transformed and the threshold for significance is Bonferroni-corrected and indicated by a 
dotted line. Chromosome R indicates SNPs found on contigs unanchored to the reference 
genome.
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Figure II-I. GWAS results for apple phenotypes. Manhattan and QQ plots are included 
as well as the naive (Pearson correlation) and mixed model results. P-values are log-
transformed and the threshold for significance is Bonferroni-corrected and indicated by a 
dotted line. Chromosome R indicates SNPs found on contigs unanchored to the reference 
genome.
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Figure II-I. GWAS results for apple phenotypes. Manhattan and QQ plots are included 
as well as the naive (Pearson correlation) and mixed model results. P-values are log-
transformed and the threshold for significance is Bonferroni-corrected and indicated by a 
dotted line. Chromosome R indicates SNPs found on contigs unanchored to the reference 
genome.
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Figure II-I. GWAS results for apple phenotypes. Manhattan and QQ plots are included 
as well as the naive (Pearson correlation) and mixed model results. P-values are log-
transformed and the threshold for significance is Bonferroni-corrected and indicated by a 
dotted line. Chromosome R indicates SNPs found on contigs unanchored to the reference 
genome.
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Table II-I. Position information for significant GWAS hits as well as p-value and MAF. 
Chromosome R refers to concatenated unanchored contigs. The effect indicated is the 
direction of change in a particular phenotype score when the minor allele is present.

Phenotype Chr Position P-value MAF Minor Major Effect
calyx basin 11 20670942 6.96E-07 0.03139 C T -
fruit flesh firmness 3 31409362 1.89E-06 0.1752 A C -
fruit flesh firmness 3 31409376 1.89E-06 0.1752 T C -
fruit flesh oxidation 16 1426905 9.19E-07 0.4339 A G -
fruit juiciness 6 21792902 5.00E-06 0.05287 T C -
fruit overcolor 9 31448296 2.45E-14 0.4965 A T +
fruit overcolor 9 33551878 1.14E-07 0.2683 A T -
fruit overcolor 14 25461478 1.91E-06 0.4756 T C +
fruit overcolor R 88549507 8.34E-11 0.4007 C A +
fruit russet intensity 3 37428298 4.79E-07 0.01525 C A +
fruit russet intensity 3 37428308 4.79E-07 0.01525 C T +
fruit russet intensity 3 37428318 4.79E-07 0.01525 A G +
fruit stem length 15 7672279 2.59E-07 0.04587 T C +
harvest season 3 31409362 8.72E-18 0.1804 A C -
harvest season 3 31409376 8.72E-18 0.1804 T C -
harvest season 3 31409480 4.15E-16 0.1774 C T -
harvest uniformity 3 31409362 1.05E-06 0.1823 A C +
harvest uniformity 3 31409376 1.05E-06 0.1823 T C +
overcolor intensity 9 31448296 6.44E-13 0.4778 A T +
overcolor intensity 9 31690894 5.23E-06 0.2944 G C -
overcolor intensity 9 32681423 5.72E-07 0.2183 G A -
overcolor intensity 9 33551878 6.23E-12 0.2817 A T -
overcolor intensity 9 34628208 6.40E-08 0.304 T A +
overcolor intensity 9 37371284 3.84E-08 0.4302 A G +
overcolor intensity 9 37460989 1.04E-08 0.4079 T C +
overcolor intensity 14 25461478 4.86E-13 0.4937 T C +
overcolor intensity 17 11584126 2.15E-10 0.3841 C T +
overcolor intensity R 88549507 7.99E-08 0.3825 C A +
overcolor pattern 9 34628208 4.72E-06 0.3039 T A +
prebloom flower color 13 16933147 5.35E-06 0.01843 A T +
tree vigor 17 13039979 4.36E-06 0.02592 C T -
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Figure II-II. Phylogenetic analysis of NAC protein family members. NAC proteins 
possessing a TDSS motif are highlighted. Protein sequences were aligned using 
ClustalW. A phylogenetic tree was built using MEGA6 with the Dayhoff model and 
neighbor joining method. The pairwise deletion option was used for dealing with gaps 
and branches were based on a consensus of 1000 bootstrap replicates. Bootstrap 
percentage values above 50 are shown at branch nodes. Accession numbers are as 
follows: Malus domestica NAC18.1 (NP_001280984.1), M. domestica NAC18.2 
(XP_008386130.1), M. domestica NAC29 (NP_001280963.1), Pyrus x bretschneideri 
NAC18 (XP_009334622.1), Pyrus x bretschneideri NAC25 (XP_009378497.1), Pyrus x 
bretschneideri NAC25-like (XP_009379434.1), Populus euphratica NAC18 
(XP_011029435.1), P. euphratica NAC18 (XP_011027905.1), Cucumis melo NAC25 
(XP_008452274.1), Arabidopsis thaliana NAC18 (AT1G52880), A. thaliana NAC2 
(AT3G15510), A. thaliana NAC25 (AT1G61110), Vitis vinifera NAC25 (CBI20351.3), 
Actinidia arguta NAC1 (AID55348.1), A. arguta NAC2 (AID55349.1), A. arguta NAC3 
(AID55350.1), M. domestica NAC25-like X2 (XP_008383789.1), Solanum lycopersicum 
NOR (SGN-U317381), S. lycopersicum NAC3 (SGN-U568609), S. lycopersicum NAC 
protein (NP_001266277.2), S. lycopersicum SENU5 (CAA99760), S. lycopersicum 
NAC1 (AAR88435), Zea mays NAC protein (AKO90072.1), Hordeum vulgare NAC 
protein (BAK04712.1), Oryza sativa Os07 g0566500 (NP_001060017.1), Arabidopsis 
lyrata ANAC001 (XP_002892089), A. thaliana NAC47 (AT3G04070), A. thaliana 
NAC19 (AT1G52890), A. thaliana NAC55 (AT3G15500), A. thaliana ATAF1(X74755), 
A. thaliana ATAF2 (AK118910), A. thaliana NAC32 (AT1G77450), A. thaliana NAC41 
(AT2G33480), A. thaliana NAC83 (AT5G13180), A. thaliana NAC104 (At5 g64530), A. 
thaliana NAC75 (AT4G29230), A. thaliana NST1 (AT2G46770), A. thaliana SND1 
(AT1G32770), A. thaliana VND6 (AT5G62380), A. thaliana VND7 (AT1G71930), A. 
thaliana NAC40 (AT2G27300), A. thaliana NAC9 (AT4G35580), A. thaliana NAC28 
(AT1G65910), A. thaliana CUC3 (AAP82630), A. thaliana CUC1 (BAB20598), A. 
thaliana CUC2 (BAA19529), Petunia x hybrida NAM Protein (CAA63101.1), Petunia x 
hybrida NH10 (AF509873), OsNAC1 (AB028180), OsNAC3 (BAA89797), OsNAC4 
(AB028183), OsNAC5 (AB028184), OsNAC6 (BAA89800), OsNAC19 (AY596808), 
Aegilops longissima (AFD54040.1) Phaseolus vulgaris NAC2 (XP_007158644), A. 
thaliana NAC2 (AAO41710), A. thaliana NAC3 (AT3G29035), A. thaliana NAC11 
(AT1G32510), A. thaliana NAC1 (AAF21437), A. thaliana NAC42 (AT2G43000), A. 
thaliana RD26 (AT4G27410).
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Appendix III: Genomic ancestry estimation quantifies use of wild 
species in grape breeding (Chapter 4)

Table III-I. A list of the 78 cultivars examined as well as species, location and institute. 
Cultivar Species Location Institute
Baco Noir Hybrid Nova Scotia, 

Canada
Jost Vineyards

Beta Hybrid Minnesota, USA University of Minnesota
Bluebell Hybrid Minnesota, USA University of Minnesota
Blue Jay Hybrid Minnesota, USA University of Minnesota
Borner Vitis riparia x 

Vitis cinerea
Siebeldingen, 
Germany

Geilweilerhof Institute for 
Grape Breeding

Cabernet Foch Hybrid Nova Scotia, 
Canada

Jost Vineyards

Calandro Hybrid Siebeldingen, 
Germany

Geilweilerhof Institute for 
Grape Breeding

Canadice Hybrid Nova Scotia, 
Canada

Wührer Vineyards

Castel Hybrid Nova Scotia, 
Canada

Warner Vineyards

Cayuga Hybrid Nova Scotia, 
Canada

Wührer Vineyards

Chambourcin Hybrid Missouri, USA Missouri State University 
Grape Foundation 
Vineyard

Chardonelle Hybrid Missouri, USA Missouri State University 
Grape Foundation 
Vineyard

Corot Noir Hybrid Missouri, USA Missouri State University 
Grape Foundation 
Vineyard

Van Buren (DVIT 
1129)

Hybrid California, USA USDA

DVIT 1588 Vitis x champinii California, USA USDA
DVIT 1613 Vitis cinerea 

(Engelm.) Engelm. 
ex Millardet

California, USA USDA

DVIT 1641 Vitis palmata California, USA USDA
Bertille-seyve 5563 
(DVIT 169)

Hybrid California, USA USDA

DVIT 1703 Vitis aestivalis California, USA USDA
034-55 (DVIT 1807) Vitis vinifera California, USA USDA
Marechal Foch 
(California) (DVIT 
214)

Hybrid California, USA USDA

Loose Perlette (DVIT 
2177)

Vitis vinifera California, USA USDA
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Cultivar Species Location Institute
DVIT 2180 Hybrid California, USA USDA
DVIT 2217 Vitis cinerea (Engelm.) 

Engelm. ex Millardet
California, USA USDA

DVIT 2224 Vitis cinerea var. 
helleri (L. H. Bailey) 
M. O. Moore

California, USA USDA

Rofar Vidor (DVIT 
2258)

Hybrid California, USA USDA

Kecskemet (DVIT 
2639)

Vitis vinifera California, USA USDA

L'Arvine (DVIT 
2640)

Vitis vinifera California, USA USDA

Dan Ben Hanna 
(DVIT 2669)

Vitis vinifera California, USA USDA

Jackson Sel. #3 
(DVIT 2916)

Hybrid California, USA USDA

Kandhar (DVIT 
2918)

Vitis vinifera California, USA USDA

Peagudo (DVIT 
887)

Vitis vinifera California, USA USDA

Einset Hybrid Nova Scotia, 
Canada

Wührer Vineyards

Felicia Hybrid Siebeldingen, 
Germany

Geilweilerhof Institute for 
Grape Breeding

Frontenac 
(Missouri)

Hybrid Missouri, USA Missouri State University 
Grape Foundation 
Vineyard

Frontenac (Gris) Hybrid Nova Scotia, 
Canada

Jost Vineyards

Frontenac (Nova 
Scotia: Jost)

Hybrid Nova Scotia, 
Canada

Jost Vineyards

Frontenac (Nova 
Scotia: AFHRC)

Hybrid Nova Scotia, 
Canada

Atlantic Food and 
Horticulture Research 
Centre

Himrod Hybrid Nova Scotia, 
Canada

Wührer Vineyards

Kay Gray Hybrid Minnesota, USA University of Minnesota
King of the North Hybrid Minnesota, USA University of Minnesota
Leon Millot Hybrid Nova Scotia, 

Canada
Atlantic Food and 
Horticulture Research 
Centre

Marechal Foch 
(Nova Scotia: 
AFHRC)

Hybrid Nova Scotia, 
Canada

Atlantic Food and 
Horticulture Research 
Centre

Marechal Foch 
(Nova Scotia: Jost)

Hybrid Nova Scotia, 
Canada

Jost Vineyards

Marechal Joffre Hybrid Nova Scotia, 
Canada

Jost Vineyards



172

Cultivar Species Location Institute
Marquette (Nova 
Scotia)

Hybrid Nova Scotia, 
Canada

Wührer Vineyards

Marquette (Missouri) Hybrid Missouri, USA Missouri State University Grape 
Foundation Vineyard

New York Muscat Hybrid Nova Scotia, 
Canada

Wührer Vineyards

Norton Hybrid Missouri, USA Missouri State University Grape 
Foundation Vineyard

Orion Hybrid Siebeldingen, 
Germany

Geilweilerhof Institute for Grape 
Breeding

Petit Milo Hybrid Nova Scotia, 
Canada

Jost Vineyards

Petit Muscat Hybrid Nova Scotia, 
Canada

Wührer Vineyards

Petite Jewel Hybrid Minnesota, USA University of Minnesota
Petite Pearl Hybrid Missouri, USA Missouri State University Grape 

Foundation Vineyard
Phoenix Hybrid Siebeldingen, 

Germany
Geilweilerhof Institute for Grape 
Breeding

Reberger Hybrid Siebeldingen, 
Germany

Geilweilerhof Institute for Grape 
Breeding

Regent Hybrid Siebeldingen, 
Germany

Geilweilerhof Institute for Grape 
Breeding

Reliance Hybrid Nova Scotia, 
Canada

Wührer Vineyards

Sabrevois Hybrid Minnesota, USA University of Minnesota
Seyval Blanc 
(Germany)

Hybrid Siebeldingen, 
Germany

Geilweilerhof Institute for Grape 
Breeding

Seyval Blanc (Nova 
Scotia)

Hybrid Nova Scotia, 
Canada

Warner Vineyards

Suelter Hybrid Minnesota, USA University of Minnesota
Sovereign 
Coronation

Hybrid Nova Scotia, 
Canada

Wührer Vineyards

St. Croix 
(Minnesota)

Hybrid Minnesota, USA University of Minnesota

St. Croix (Missouri) Hybrid Missouri, USA Missouri State University Grape 
Foundation Vineyard

St. Pepin Hybrid Minnesota, USA University of Minnesota
Staufer Hybrid Siebeldingen, 

Germany
Geilweilerhof Institute for Grape 
Breeding

Suffolk Grape Hybrid Nova Scotia, 
Canada

Wührer Vineyards

Swenson Red Hybrid Nova Scotia, 
Canada

Atlantic Food and Horticulture 
Research Centre

Triomphe D'Alsace Hybrid Nova Scotia, 
Canada

Wührer Vineyards

Venus Hybrid Nova Scotia, 
Canada

Wührer Vineyards
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Cultivar Species Location Institute
Venus (Red) Hybrid Nova Scotia, 

Canada
Atlantic Food and Horticulture 
Research Centre

Vidal Blanc (Nova 
Scotia)

Hybrid Nova Scotia, 
Canada

Warner Vineyards

Vidal Blanc 
(Missouri)

Hybrid Missouri, USA Missouri State University Grape 
Foundation Vineyard

Vignoles Hybrid Missouri, USA Missouri State University Grape 
Foundation Vineyard

Villard Blanc Hybrid Siebeldingen, 
Germany

Geilweilerhof Institute for Grape 
Breeding

Villaris Hybrid Siebeldingen, 
Germany

Geilweilerhof Institute for Grape 
Breeding

Walter's Seedling Hybrid Nova Scotia, 
Canada

Wührer Vineyards
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