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Abstract

Radiology reports are one of the most important medical documents that a diagnos-

tician looks into, especially in the emergency situations. They provide the emergency

physicians with critical information regarding the condition of the patient and help

the physicians take immediate action on urgent conditions. However, the reports are

complex and unstructured.

We developed a machine learning system to efficiently extract the clinically sig-

nificant parts and their level of importance in radiology reports. The system also

classifies the overall report into critical or non-critical which help radiologists in iden-

tifying potential high priority reports. As a starting point, the system uses Chest

X-RAY reports of adults (de-identified) and provides the doctors with 3 levels of

medical phrases namely high-critical conditions, critical conditions and non-critical

conditions. We used Conditional Random Field (CRF) to identify clinically signifi-

cant phrases with an average F1-score of 0.75.

The CRF Model is used as a filter with the web interface which highlights the

medical phrases and their criticality level to the emergency physician. The overall

classification of the report is identified using Stochastic Gradient Descent and features

used are phrases extracted from the CRF model which provides an average accuracy

of 0.85.
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Chapter 1

Introduction

Information Extraction (IE) is the task of automatically extracting structured in-

formation from unstructured and/or semi-structured machine-readable documents 1.

Information extraction has been one of the most fascinating and challenging areas of

natural language processing. The most important aspect of information extraction is

to extract ‘key’ information from the given free form text. However, identifying ‘key’

information is a complex task due to a number of factors. One such complexity is

analyzing the context of the information in a given sentence. Usually, depending on

the context (what happened in previous words and what is happening in next words

of the sentence), the information extracted could be relevant or irrelevant. For exam-

ple. If the system is trying to extract ‘names’ of people from a given e-mail, the word

such as ‘Ltd’ can distinguish between a company name and a human name if this

word comes after the observed word. If the algorithm does not consider this context,

the extracted name could be a person’s name instead of a company name. Informa-

tion extraction plays a crucial role in a medical domain where patient information is

usually stored as text information. Up until recent times, these free-form texts were

not used for future diagnostic analysis or patient profiling. One of the main reasons

is the difficulty involved in extracting information from medical documents. Medical

reports contain more medical terms which are highly domain oriented and normal

methods of information extraction would perform poorly.

One of the key resources of information used by doctors (especially emergency

physicians) are radiology reports of the patients (Hall, 2000). The radiology report

comprises key medical observations dictated by the radiologist when analyzing the

patient’s medical imaging reports (for example, x-rays) and these are automatically

transcribed to text. It is the emergency physician who makes the decision on the

1https://en.wikipedia.org/wiki/Information extraction

1
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treatment of the medical conditions. In the case of long radiology reports, the doctor

may miss some of the key observations made by the radiologist. Another complexity

in the processing of radiology reports is the presence of transcription errors. A sample

of chest x-ray radiology report is shown in Figure 1.1

Figure 1.1: Example of Chest X-Ray radiology report of a patient

The main purpose of this research was to change the unstructured data obtained

from radiology reports into structured information so that this information can be

further used in machine learning for diagnoses. The structured information also pro-

vides a template for future structure design for the radiologists to directly record

the information into a structured data format. The key information extracted from

the reports are the critical level of the medical conditions of the patient. This is a

complex task because the radiology reports contain lot of information even on small

reports and identifying medical terms or conditions and identifying the critical level

of them require significant domain knowledge even for a human.

Our proposed model tries to aid the emergency physicians in automatically iden-

tifying key medical observations from the radiology report, based on the criticality

level of the medical phrases, using machine learning and a web-based visual interface.

The system highlights the medical phrases on the fly, based on their criticality values

for the doctors. We also classify the overall report to identify if the patient is in need
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of urgent treatment. We have listed our main contributions as the following:

• The design of a novel system which identifies the medical phrases and their

associated criticality values and presents this information in a visual interface.

In terms of performance, our proposed method is able to achieve similar perfor-

mance to human annotators when identifying key phrases and their criticality

level.

• The design of a Web-based tagging system which can be used by doctors for an-

notating the radiology reports to provide training data for the machine learning

model.

• We have also managed to improve the accuracy of word segmentation and

spelling correction algorithms and have tuned them for use in radiology reports.

• Designing a novel binary classification system for extracting radiology reports

of critical-condition patients. The proposed approach was able to achieve better

performance as compared to using ’bag of words’ having tf-idf weights. We have

managed to use a novel list of features for better classification of the radiology

reports.

We start this thesis with an overview of related models or systems which use ra-

diology or similar medical reports for extracting information from unstructured data.

We present the overall flow of our proposed model for extracting information from

the radiology report in Chapter 3. The implementation details of each of the modules

are mentioned in subsections. We then compare and evaluate the performance of our

system in Chapter 4. Finally, we conclude the thesis in Chapter 5.



Chapter 2

Related Work

There have been a lot of work done on analyzing and extracting information from

medical documents. The medical field is becoming more and more aware of the ad-

vantages and importance of using advanced machine learning1 and natural language

processing2 methods for analyzing the text and unstructured medical records. In this

thesis, we try to analyze the previous work done by various researchers on analysis of

medical text documents and information extraction from them using various methods.

We divided the previous work section into two sub-sections. First, we discuss various

research works done on extracting specific information from medical reports such as

diagnostic of a medical condition or finding specific medical dosage information. On

the second section specifically, discuss on the information extraction from radiology

reports.

2.1 Information Extraction from Medical reports

Extracting information from medical reports are a complex task due to the unstruc-

tured format of the reports. Even though there is a template form for some of the

reports, the template could change as per institutions and standards. Because of

these reasons, it is difficult to extract multiple types of information from a single

report. Because of this, many of the information extraction models try to extract one

specific information from the patient records such as dosage information or diagnosis

of a specific type of disease for the patient. Some researchers use machine learning

techniques alone for extracting the information required while some, use a combina-

tion of machine learning and rule-based models for extracting the information.

1https://en.wikipedia.org/wiki/Machine learning
2https://en.wikipedia.org/wiki/Natural language processing

4
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One research which tries to extract information from medical records is the work

done by Meystre et al. (2010). This research was focused on extracting medica-

tion information from the patient’s EHR files. They extracted 5 separate classes as

Dosage, Route, Frequency, Duration and Reason. They implemented a hybrid system

which consisted of machine learning and pattern matching techniques for extracting

the medication information.One of the main resource used is the MMTx which is a

java version of meta map3 which can map the terms with the UMLS concepts (Bo-

denreider, 2004) . The model consisted of the main class which is the medication

and several subclasses which can help to predict the medication class. Two slots

are also used along with the main class. The first slot tells if the entity is part of

the list or narrative list and second slot which tries to link the annotated text with

the subclasses.The model consisted of a document structure analysis module which

identifies the structure of the document based on the pattern matching and regular

expression so that the patient report can be segmented into various sections and can

be easily processed for identifying the subclasses. Some sections can be eliminated if

not useful for the given task. Sentence detection is done based on regular expression

and pipelined to POS tagger. MMTx is used to identify the UMLS concepts for the

medications and to identify possible reasons for the prescription of the medication.

The MMTx concept is recognized for each sentence.Context analyzer uses the con-

text tool to identify the context of the text. Medical terms are extracted based on

regular expression. The medication reconciliation is also based on regular expressions

which look for several patterns which can identify the subclass sections. the class and

sub-class model is given in Figure 2.1

Another similar system Patrick and Li (2009) uses similar techniques as (Meystre

et al., 2010). The model is also used to extract medication information from the

patient discharge file. The information to be extracted are dosage, mode, frequency,

duration, reason, and context. The train data consisted of 130 reports annotated by

the physician and further reference by the researcher. The test set consisted of 30

reports. The model consisted of the following steps. This system uses CRF to iden-

tify the entities, and build pairs for each medication relationship (only consider drug

3https://metamap.nlm.nih.gov/
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Figure 2.1: Class model for textractor system adopted from Meystre et al. (2010)

and its related entity, since the whole related entities, such as dosage, frequency, etc.,

could be further connected based on the drug). The output is then classified by the

binary classifier SVM. The final medication entries are based on the results from the

CRF and SVM. Initially, the records are divided into sentences and POS tags were

identified. Seven features from the patient records are identified as drug, dosage,

mode, frequency, duration, reason and other morphological features. The features

are then trained on the CRF model. Finally, the output of CRF is converted into

SVM input. The SVM is then used to classify the relationship between medication

pairs. The context identification unit identifies which context the entry is related to.

The hybrid design model is shown in Figure 2.2

Some other interesting works include the use of the Decision Trees to identify the

clinical findings and recommendations in the radiology report by Dreyer (2014). How-

ever, the exact implementation details of this model are not provided by the author
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Figure 2.2: Hybrid System Model for (Patrick and Li, 2009)

for replicating the results. Another system that uses patient’s discharge summary

report for extracting medication information which includes drug names and dosage

information is Xu et al. (2010). This model uses regular expressions, dictionary looks

up to identify the medication and dosage information from the file. The main part

of this system is semantic, which uses pre-loaded lexicons to initially tag the parts of

a sentence into various types such as drug name, modifier etc. Then a second stage

parsing is done to further tag the uncertain values to get final tagging. The model

for Medley system is shown in Figure 2.3
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Figure 2.3: System model for Medex adopted from Xu et al. (2010)

2.2 Information extraction from radiology reports

Radiology reports are a special case of medical reports. They do have a vague struc-

ture which can change depending on the reports and also based on the radiologist.

They also have multiple information in them. Because of this reason, most of the

research work done tries to identify a specific information from the radiology reports.

Another issue with radiology reports is the privacy of the reports. usually, the re-

ports are de-identified which removes any personal information related to the patient

including age and sex. However, in practice, these information plays a crucial role

in diagnosis. A medical condition identified for a 24-year-old male could be benign

while malignant for a 60-year-old female. In this section, we identify several studies

which try to extract information from radiology reports.
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One such study Yetisgen-Yildiz et al. (2013) uses a text processing pipeline to

extract recommendations from the radiology reports. CTakes uses a combination of

rule-based and machine learning methods to extract clinically significant information

from the radiology reports. The model is an open source system which includes sev-

eral components (Sentence boundary detection, tokenizer4, normalizer5, POS tagger

6, Shallow parser, and NER7 including status and negation annotator). The tokenizer

will detect the various tokens including the measurement, person, title etc.The nor-

malizer normalizes the word based on various properties of the word including the

case, punctuation, generative markers etc. The NER is implemented based on a dic-

tionary look up for noun phrases, and the negation detector detects negation words

associated with the named entities.The various semantic attributes identified are: (1)

the text span associated with the named entity (span attribute), (2) the terminology

ontology code the named entity maps to (concept attribute), (3) whether the named

entity is negated(negation attribute), and (4) the status associated with the named

entity with a value of current, history of, family history of, possible(status attribute).

The model validation is done by 10 fold cross validation. The system needs a rich up

to date dictionary for producing accurate results and the system does not do well at

a complex level of synonym. The system design is given in Figure 2.4

Figure 2.4: System Model for Yetisgen-Yildiz et al. (2013)

Some of the recent work includes the extraction of tumor information from radi-

ology reports (Yim et al., 2016). In this model, the objective was to extract tumor

4https://en.wikipedia.org/wiki/Tokenization (lexical analysis)
5https://en.wikipedia.org/wiki/Text normalization
6https://en.wikipedia.org/wiki/Part-of-speech tagging
7https://en.wikipedia.org/wiki/Named-entity recognition
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information for Hepato Cellular Carcinoma8 disease. They used patients Electronic

Medical Record for identifying information such as tumor number, size, and anatomic

location from the Impression section of the radiology report. They used CRF and

MEMM (McCallum et al., 2000) models for extracting the tumor information such

as tumor size, tumor count, anatomical part etc. A window size of 2 with unigram

model is used for identifying the entities such as anatomy, tumor count, size etc. Once

the entities are identified, it is further associated with relation to identifying if the

disease is present or not. This model is a simpler variation of the model discussed in

this thesis since it only identifies conditions related to one specific disease. Also, the

entities identified in this approach are fairly straight forward which can be identified

by using a dictionary. The overlap of entities are minimal which increase the accuracy

of the system.

On similar note, another work done on radiology paper was to extract informa-

tion on a structured format by Hassanpour and Langlotz (2016).They use NER from

radiology reports based on 6 different types of classes. The process is based on the

machine learning and NLP based methods. The model mainly deal with 3 different

types of methods: Dictionary based named entity recognition, CMM based machine

learning approach and CRF based machine learning approach. The main contribution

of that research was it was able to extract clinically significant information from radi-

ology report based on an information model which is radiology specific. The methods

are based on existing machine learning approaches. The information can be further

used for searching images of the report. The information model used for this paper

was based on 5 different classes of clinical term data namely: anatomy, anatomy

modifier, observation, observation modifier, and uncertainty. It is assumed that most

of the clinically significant data of the radiological report are covered with the above

information model.This information model was originally developed to support the

system by Langlotz and Meininger (2000). The radiology dataset was adopted from

RadCore9 which has a collection of radiological reports from various sources. For

the study, the reports were extracted from 3 different institutions: Mayo Clinic, MD

8https://en.wikipedia.org/wiki/Hepatocellular carcinoma
9https://www.pennmedicine.org/departments-and-centers/department-of-radiology/radiology-

research/core-facilities/radcore
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Anderson Cancer Center, and Medical College of Wisconsin. And the chest CT (Cat

Scan) reports are used for the training and testing of the model. The train and test

reports were constructed based on manually annotated data from 150 chest CT re-

ports. Chest CT reports have a variety of organs mentioned in the report and it is

assumed that the reports are fairly complex.

The features extracted from the report consisted of the following segments:

• Part of speech tags: Extracted the POS tags for the phrases

• Word stems: Stemming the word to get its root form

• Word n-grams: Prefix and suffix substrings with less than 6 char in length is

extracted

• Word shape: Orthographic signature of the word based on Stanford NLP toolkit

• Negation: Used Negex which is a negation extraction tool which identifies nega-

tions for phrases.

• RadLex10 lexicon: Controlled lexicon for the radlex terminology.

The method used cTakes (Yetisgen-Yildiz et al., 2013) as the dictionary based

method to identify the named entities of the reports. The dictionary is derived from

the Radlex ontology. The terms were converted to their canonical forms before evalu-

ating them. The Longest matching phrase is considered for the matching of dictionary

entries. Further, they used CRF and CMM sequence classifier models to identify the

entities.

Our model tried to design a system which can extract clinically significant infor-

mation without focusing on any one specific disease or clinical data. The information

extracted by our system can be used as a key information for bigger models which

can be used for high-level patient profiling systems and in advanced machine learning

tasks which use radiology data. We use robust features for training and modeling our

system.

10https://www.rsna.org/RadLex.aspx



Chapter 3

Methodology

In this chapter, we discuss the methodology. The overall flow of the entire model is

shown in Figure 3.1. In summary, the radiology reports are provided to the model

as text files which are already de-identified of patient information. The reports are

then cleaned of spelling and word-joined errors using customized algorithms. Once

the reports are cleaned, they are provided to the feature extraction modules which

extract the word and sentence level features which are used as input to the infor-

mation extraction module. The information extraction module captures the features

extracted from prior modules and builds a machine learning model which is used

for predicting future report’s information to be extracted. A document classification

module is used for classifying the entire reports to positive or negative. All relevant

output information is provided to user through a web interface which further allows

the user to tweak the model.

In the following sections, a description of each step in the methodology is explained

starting with document preprocessing module. We then explain in detail about the

feature extraction module, information extraction module, document classification

module and the final active adaptive interface provided to the user.

3.1 Document preparation

Real-world radiology reports are usually associated with spelling errors and joined

words errors. In this section, we explain in detail about the type of errors found in

radiology reports, the algorithm used for correcting the errors and the tweaks imple-

mented to improve the accuracy of the system.

12
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Figure 3.1: The overall view of the proposed system. At first all reports will be pre-
processed (1) then several word and sentence level features will be extracted (2). The
Information Extraction module (3) used the extracted features for identifying impor-
tant phrases with their level of importance. The Document Classifier (4) classifies
reports into two critical and non-critical categories based on the information exacted
from the previous step. The visual interface (5) provides the user the extracted in-
formation and then tries to incorporate the user feedbacks in the system.

3.1.1 Common Errors

Radiology reports are generated by an automated system which converts the voice

data from the radiologist to text files. It is required to review these automated

records to check for spelling errors and should be corrected by a human reviewer.

However, often times this process is not followed. One reason for this is that the

doctor who uses these reports would be easily able to distinguish the errors and can

easily review the radiology report. But a machine would not be able to easily identify

the errors in the text. This is one of the major challenges in NLP. For processing

the text document, we have to clean the text of the errors and unnecessary characters.

One of the most common errors in radiology text is the ‘joined-word’ error. Two

or more words of the speech are represented as a single word in the text document.

These type of errors are easily identified by the human because of the domain knowl-

edge and language skills that we possess. An example of this error is ‘thereare’ which



14

should have been represented as ‘there are’. A sample radiology report with joined-

word error is shown in Figure 3.2

Figure 3.2: A sample radiology report with Joined word error

Another type of error is the spelling errors. These are comparatively less to the

joined-word errors. The main reason for this is that the voice o text system is less

likely to make spell errors for common English words. And the reviewer would be

more likely to correct spell errors when they see one.

3.1.2 Word Segmentation

The word segmentation model is based on the probability model to identify the possi-

ble corrected sequence. The algorithm is adopted from the book of Natural Language

Corpus Data: Beautiful Data1 (Segaran et al., 2009)2. The algorithm consists of a

language model and an error model. The language model provides the probability of

a word. The error model provides the probability of error given the word. For cre-

ating the word segmentation they have defined a model based on the Google n-gram

values (Goldwater et al., 2009). And to reduce the computation and to improve the

efficiency bi-gram model is used instead of using 3 or 5 grams.

1http://norvig.com/ngrams/
2http://norvig.com/ngrams/ch14.pdf
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The language model: The language model is created as a probabilistic model based

on the bi-gram data. The frequency table from the bi-gram data is used to calculate

the probabilities. The parameters of the model are later learned from the corpus and

for unknown words, a probability is estimated. The longer words are divided into

smaller parts for applying the probability model. The probability of a given sequence

of words can be obtained by the multiplying the probability each of the words in the

sequence. However, in practice, multiplying all the prior word segments for a given

input word can be costly because

• Language model will require a large amount of memory.(A 5-gram model require

30Gb of space)

• It is computationally expensive, a word of n characters would have 2n-1 candi-

dates.

• The language model would have a lot of zero probability values since the candi-

date combinations are large and most of them are not real world word sequences.

This requires back off algorithms.

The language model tries to split the given word into two parts and then calculate

the overall probability as the product of the probability of the first word and the

remaining segment. The best candidate would give the highest probability. The

implementation of this method is done by using dynamic programing3, which allows

storing of the prior results for use on the next iteration. The complexity of this

algorithm is O(n2). The unigram file contains only 1/3 of the million words which

account for 98% of the most common tokens. The unknown word probability is

created based on the length of the word so that an unknown word of length 100

would have less probability than an unknown word of length 5. The efficiency of this

algorithm is improved by including the bi-gram values to the model, which would

calculate the probability of a word based on the prior word.

P (W1:n) =
∏

k=1:nP (Wk) (3.1)

3https://en.wikipedia.org/wiki/Dynamic programming
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The unigram and bi-gram files used in this algorithm are from the Google web 1T

corpora (Halevy et al., 2009) which can improve the performance of the system. The

bi-grams are based on the Google bi-gram file and the model uses bi-grams which

appear more than 100,000 times, which constitutes 250,000 bigrams. If a bi-gram is

not present in the file, the model uses unigram model to calculate the probability.

The algorithm uses Viterbi4 method to efficiently compute the probabilities, where

the complexity is O(L2n) where L is the length of the word and n is the number of

segments.

Candidate enumeration: This step is used to enumerate all the possible candidates

of the given word or a subsample based on careful analysis. For a word of length L,

there would be 2*L-1 number of candidates.

Most probable candidate: This step will choose the most probable candidate based

on the probability values. The candidates which provide the highest probability is

chosen as the likely candidate.

best = argmaxc ∈ candidates P (c)

where c = Candidates , P(c) = Probability of the candidate

A sample radiology report after joined-word error correction is shown in Figure

3.3

3.1.3 Spell Error Correction

In common radiology reports, the chance of spelling errors is less compared with the

joined word errors. This is because of the fact that, the reviewer is more likely to

correct the spell errors in the review process. In this module, we try to correct spell

errors which are missed by the reviewer.

The error model is implemented based on probability theory 5. For each word of

the sentence two probabilities are calculated. The probability of the corrected word

4https://en.wikipedia.org/wiki/Viterbi algorithm
5http://norvig.com/spell-correct.html
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Figure 3.3: Sample radiology report after Joined word error correction

P(c) and the probability of the corrected word given the current word P (w|c). for

each of the candidate, the candidate with the highest probability product is chosen

as the corrected word, given by corrected word = argmaxc ∈ candidates P (c) P (w|c).
We used an existing implementation in python 6.

3.1.4 Contribution to Joined Word correction and Error Correction

It is not a good practice to use existing algorithms, which were designed for normal/

real-world text data for correcting a medical report. The occurrence of medical terms

in the real world is much lower than the common words. So the system would produce

inaccurate results for most of the medical terms. For example, ‘nabothian’ would be

segmented into ‘na’ + ‘both’ + ‘ian’ since these separate words are more common

than ‘nabothian’. So we have modified the algorithm in two ways.

• Instead of using normal Google web 1T corpus (Lewis, 1998) with the first

333,000 uni-grams and 250,000 bi-grams (the black box algorithm uses this cor-

pus to increase speed), we included medical or radiology term counts from the

original Google n-gram corpus to the Google web 1T unigram corpus. This

would make the algorithm assign a healthy count (occurrence in the real world)

to the medical domain words rather than assigning a default unknown-word

6https://pypi.python.org/pypi/autocorrect/0.1.0
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count. This would increase the probability value calculated for medical domain

words.

• We used Radlex (Langlotz, 2006) and UMLS (Bodenreider, 2004) dictionaries

which we created from the Radlex ontology and UMLS Ontology. Each word

is checked in UMLS and Radlex dictionaries to see if it is a valid medical term.

Only terms which are not present in these dictionaries are processed for joined

word and spell error correction. This increased both the speed and accuracy of

the word segmentation and spell correction system.

3.2 Feature Extraction

This section explains in detail regarding the auxiliary features used in training the

machine learning models for extracting the clinically significant medical phrases from

the reports. The first type of features are the word level features discussed in detail

in Section 3.2.1 and the second type of features used are the sentence level features

discussed in Section 3.2.2.

3.2.1 Word Level Feature Extraction

In this section, we discuss the various word level features extracted from the radiol-

ogy reports which is further used for modeling the machine learning models. These

features are used for identifying the various characteristics of a given word. More

often than not, the words associated with medical domain have some characteristics

compared to the normal words. The word level features try to capture the structural

information of a word and use it for helping the machine learning model to determine

the type of word processed.

Word level features are auxiliary features which are extracted from each of the

words in the report. These features are used by the CRF model (Lafferty et al., 2001)

in the final information extraction model. These features are explicitly created by us
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for enhancing the performance of the model on identifying the criticality levels of the

current word based on its structure. The various word level features extracted are:

• Stem and lemma of the word: The stem is the core part of a word. For example,

the stem of playing is play. The lemma is the canonical or dictionary form of

the word.

• Part of speech: We used the MedPost/SKR part-of-speech tagger (Smith et al.,

2004) to extract the POS tags for our words.

• Word length: length of the word (number of characters).

• Anatomy: This is a boolean flag value which is set if the given word is an

anatomical word. The anatomy dictionary for this flag is generated from the

Radlex (Langlotz, 2006) ontology.

• Suffix and prefix: We extract the first and the last two letters of a word as a

two-letter prefix and suffix. We also use the first and the last three letters of

the word as three-letter prefixes and suffixes, respectively.

• Critical level flags: This is a boolean flag value which is set if the given word

is a high-critical, critical or non-critical word. This dictionary is created based

on the tagged data set generated by the human taggers.

• Meta Label and Meta Concept: This is the Meta Label and Meta Concept for

a given word generated using the MetaMap system (Aronson, 2001).

• Filter words: The tagger automatically highlights several phrases to the hu-

man annotator, during the tagging process, based on the dictionary model.

We capture explicitly the phrases which are removed by the human annotator

during tagging process. These words are used to create a boolean flag feature

which helps the system to eliminate some medical terms that are commonly

disregarded by the emergency physicians.
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3.2.2 Sentence Level Features

In this section of the thesis, we discuss the second type of features extracted from

the radiology reports. Sentence level features capture the context of the given word.

These features focus on the previous and next words of the current word in the

sentence. These features are explicitly created by us for enhancing the performance

of the model in identifying the criticality levels of the current word based on its

context information.

The various sentence level features used are:

• Previous and next word Part of Speech tags: These features help to identify the

type of the current word. Similarly to the word-level POS, the sentence-level

POS tags are generated from the MedPost (Smith et al., 2004).

• Next Negative and next positive words: This feature identifies the positive

or negative sentiment words after the current word. The positive and negative

sentiment word list are extracted based on the social media sentiment analysis7.

The value of this feature is the actual positive or negative sentiment of the word.

• Previous and next negative word positions relative to the current word: This

feature calculates how far the negative word is located from the current word.

The negation word-list in this feature is based on the Negex (Chapman et al.,

2001) trigger word list. The value of this feature is the distance of the negative

word from the current word.

• Word similarity: This feature compares the similarity of current word with the

previous word. We used the word2vec (Mikolov et al., 2013) model for extract-

ing this feature. The word2vec model was created based on 20,000 corrected

radiology reports.

• Aggressive and Anatomy descriptors: These are boolean flags set to 1 if the

anatomy or aggressive descriptors (from Radlex) are present in a 7-word window

size of the current word (3 previous words + current word + 3 next words).

7https://github.com/jeffreybreen/twitter-sentiment-analysis-tutorial-201107
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• High-flag, crit-flag, and non-crit flags: These flags check for the high-critical,

critical, and non-critical word presence in the 7-word window size. These dic-

tionaries are created based on the manual tagger.

3.3 Information Extraction

In this section of the thesis, we discuss the information extraction module of the sys-

tem. This module is the heart of the system which extracts the clinically significant

information and assigns critical values to them. We identify three different types

of phrases from the radiology reports. The three types of phrases are high-critical,

critical, and non-critical. We discuss two type of systems in this section. The first

is a trivial dictionary based model which tries to identify the medical phrases. The

second type model are the machine learning models which is implemented in the final

interface.

3.3.1 Dictionary based model

The Dictionary based model is a trivial model which uses dictionaries extracted from

the Radlex ontology. We extracted 4 dictionaries from Radlex. The dictionaries are

based on the paper by Hassanpour (Hassanpour and Langlotz, 2016). The dictionar-

ies are anatomy, modifier, observation, uncertainty. We further process the dictionary

values to eliminate ‘verb’ words from the dictionary since they are usually not of im-

portance to the doctors. Further, we also remove stop words from the dictionaries.

This model is used in the manual tagging interface provided for the user for

tagging clinically significant phrases. It helps the user to easily focus on possible

medical terminologies and conditions in the radiology reports. They help the user in

long reports, where the chance of missing a medical condition is high. This model

will not be able to identify the critical level for the medical condition because the

medical condition criticality depends on its context information. In normal entity

recognition systems, the chance of an entity belonging to multiple groups is less. But
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Figure 3.4: Dictionary based model Phrase extraction implemented on tagging inter-
face

in our model, a disease can be in any of the 3 criticality levels based on the context.

A sample of the Dictionary based phrase extraction is shown in Figure 3.4.

Tagging Interface

We used a simple web interface for the user to interact with the system. The inter-

face is used for getting the manual tag data from the user during the initial training

process. The interface for manual tagging consists of buttons which the user can

use to mark the relevant information along with the different critical levels. It also

provides the user with an option to mark the overall critical level of the report. By

default, the phrases extracted using the dictionaries are assigned as non-critical and

are highlighted. The user can change the criticality levels of both highlighted and

non-highlighted phrases. The user also has the ability to correct any spell errors still

present in the report.



23

3.3.2 CRF Model

Our objective in this thesis was to extract the relevant information about the patient’s

medical condition from the radiology reports and assign a critical value for them. Ex-

tracting the information from a sentence is similar to identifying the various entities

in the sentence. In the area of natural language processing, it is usually achieved by

sequence learning models. Given an input vector x that is divided into x0, x1..xT the

sequence classifier produces a set of outputs y= y0, y1, .yT (Sutton and McCallum,

2010). Here each xs contains various information about the word at positions. This

information is discussed in Sections 3.2.1 and 3.2.2.

CRF combines the advantages of both classification and graphic model into a

model which can leverage the multivariate data with the help of a large number of in-

put features (Sutton and McCallum, 2010). This is precisely the reason that we chose

CRF model for implementing our information extraction model. We provide several

auxiliary features which are used by the model for predicting the class value for each

word in the sentence. CRF also have other advantages over MEMM and stochastic

grammars which have strong independence assumptions. CRF also performs better

than MEMM and other discriminative graphic based models which have bias towards

states with few successor states (Lafferty et al., 2001).

The formal definition of CRF is given as below (Sutton and McCallum, 2010) :

Let Y, X be random vectors, θ = {θk} ∈ RK be a parameter vector, and

{fk(y, y0 , xt)}Kk=1 be a set of real-valued feature functions. Then a linear-chain

conditional random field is a distribution p(y—x) that takes the form

p(y|x) = 1
Z(x)

T∏
t=1

exp (
K∑
k=1

θkfk(yt , yt−1, xt) ) (3.2)

The graphical structure of various generative and discriminative models is shown

in Figure 3.5. As we can see from the structure, MEMM and CRF are closely related.

Each label Yt uses the word and sentence level features for its weight learning, and the

process is shown in Figure 3.6. During training process, each label Yt uses the word



24

Figure 3.5: Diagram of the relationship between naive Bayes, logistic regression,
MEMM, linear chain CRF, generative models, and general CRF (Sutton and McCal-
lum, 2010)

level,sentence level, previous and next labels for learning the weight parameters. As

discussed in Section 3.2.2, the sentence level features are extracted from the previous

and next words of the sentence relative to current word. Here X values are the actual

words in the sentence and Y values represent the labels (in this case criticality levels).

The model is trained to classify the phrases into three separate classes chosen after

consulting with an emergency physician. Since the emergency physicians are primar-

ily concerned with the immediate treatment of a patient’s condition, it is necessary

for the system to find medical phrases which have to be treated immediately. We use

the classic BIO (Carreras et al., 2003) model for labeling the training data. Prefix B-

indicates the beginning part of the phrase and I- indicates the subsequent words. eg:

B-Crit and I-Crit labels are used to indicate critical phrases, and the phrase ‘heart is

enlarged’ is labeled as ‘B-Crit I-Crit I-Crit’.

Using the CRF model, we would be able to get the probability scores for the var-

ious labels for each word and the highest probability value is provided as output by
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Figure 3.6: Feature function usage in the CRF model implemented for clinically
significant information extraction. The sentence level feature functions looks into the
previous and next words of current sentence while word level feature looks at the
current word structure.

the CRF model. However, we can take advantage of the various probability values

for evaluating the confidence score of the prediction. For instance, if the predicted

label probability is 0.5, we can conclude that the model is not very confident on the

predicted label, while a probability score of 0.9 shows high confidence. We used the

L-BFGS (Nocedal, 1980) algorithm for the convergence during the training of CRF

model. L-BFGS provides the fastest and accurate results compared with other algo-

rithms.

3.3.3 Structured Perceptron

The second machine learning model implemented is the Structured Perceptron. We

used the Structured Perceptron to compare our CRF model’s performance with an-

other generative model. We used the same auxiliary features that we used for CRF

model in the Structured Perceptron as well. This allows us to directly compare the

performance values for both the machine learning models.
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Structured Perceptrons are generative models which are used for sequential classi-

fication with lots of features 8. Similar to the CRF model, each feature in the Struc-

tured Perceptron is given a weight value. During the training process, the weight is

increased for each of the positive samples and weight is reduced for negative samples,

as w ← w + y φ (x) where φ (x) are the feature vector for the input X and Y is the

output class and w is the weight assigned (Daumé III and Marcu, 2005). The highest

incorrect prediction is given by Equation3.3:

Ŷ = argmaxY

∑
i
w i ϕi (X , Y ) (3.3)

The weight values are then updated by equation3.4:

w ← w + ϕ(X , Y ′)− ϕ(X , Ŷ ) (3.4)

If the highest scoring answer is the correct label, weight is not updated. Other-

wise, the weight is reduced for that label. The algorithm is given in Algorithm 19.

More detailed explanation can be found in (Collins, 2002)

1 create map W;

2 for I iterations do

3 for each labeled pair X,Y prime in the data do

4 Y hat = HMM VITERBI(W,X)

5 phi prime = CREATE FEATURES(X,Y prime)

6 phi hat = CREATE FEATURES(X,Y hat)

7 W += phi prime - phi hat

8 end

9 end

Algorithm 1: Structured Perceptron learning algorithm

8http://www.phontron.com/slides/nlp-programming-en-12-struct.pdf
9http://www.phontron.com/slides/nlp-programming-en-12-struct.pdf
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3.4 Document Classifier

Once the radiology report is processed by the information extraction module, we clas-

sify the overall document to two classes. A positive report is a high priority report,

while a negative report is a low priority report. This classification allows the system

to highlight the high priority reports to the doctors and allows to prioritize the report.

We used three well-known document classification algorithm to evaluate and compare

the performance of the system. We classify the document using bag-of-words with

tf-idf weights (Aizawa, 2003) and compare the results with the performance score

of classifiers by providing the information extracted from the information extraction

module.

We used RF, SVM with linear kernel and SGD for classifying the radiology re-

ports. RFs are a special case of bootstrapping method in which n trees are generated

from the sample and each un-pruned tree is based on m predictors. The final result

is obtained by averaging the result of n trees (Liaw and Wiener, 2002). In SVMs the

objective is to find a function that maximizes the margin between the two classes

(Gunn et al., 1998). SGD works in a similar sense as the gradient descent method

with lower steps taken each time. More detailed explanation can be found in (Amari,

1993). We used 3 algorithms to compare how the information extracted works for

each of these completely different approaches to classification.

For each algorithm, we compared the precision, recall, and f1-score by using bag-

of-words with tf-idf weights and then using criticality level phrases extracted using

the CRF model. The models were trained using 10 fold cross validation and the

average precision, recall and f1-score values of each model with the two types of fea-

tures (bag-of-words with tf-idf weight and criticality level phrases extracted using

CRF model) are compared. For training the algorithms with criticality level phrases

extracted, we used a patient level report vector discussed in Section 3.4.1 along with

some additional features such as word count of the given report, and criticality level

phrase counts on each report.
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3.4.1 Document Matrix

The Document Matrix is generated based on the output of the machine learning

Model. It is essentially a vector for each of the patient reports where the columns

represent the unique phrases extracted from all reports. This information can be used

to quickly identify the condition of the patient from a collection of records. The level

of criticality for each phrase is represented by a numeric value. A high-critical phrase

is represented by +1, a critical level phrase is represented by 0.5 and a non-critical

phrase is represented by -1. A sample snapshot of the Document Matrix is shown in

Figure 3.7

Figure 3.7: Sample Feature matrix for extracted medical phrases with critical levels.
+1 is for high-critical phrase, 0.5 for critical and -1 for non-critical phrases. each row
denotes each patient Ids. 0 values denotes ’not present in the report’.

3.5 Active Adaptive Interface

Our Active Adaptive Learning Interface is the user interface which shows the final

phrases extracted and their criticality level to the user. This interface can be used

to edit the extracted phrases predicted by the model. The user can add, remove, or

change the criticality level of the phrases and the model is able to learn from the

annotations of the report for predicting the phrases for next report. This is achieved

by including the predicted phrases and criticality levels as part of the binary level

auxiliary features. This helps the system to provide higher weight to the observed

word based on corrected or previously predicted phrases. A sample screen shot is

given in Figure 3.8.

The interface is also able to provide the level of certainty for the phrases as well

as the overall criticality level of the report. The interface provides a visual cue for the
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user for the terms which are less certain by the system (shown in larger font). The

user has the ability to edit the tag (criticality level) of the phrases or leave it as it

is. This extra information provides the user with the phrases which may have to be

manually annotated by the user. We only focus on the critical (high-critical/critical)

level phrases and the OTHER type of phrases of the radiology report for providing

the uncertainty levels. We omitted uncertainty level for non-critical phrases since

they are terms which are usually not of interest to by emergency physicians and to

simplify the user’s interactions. OTHER phrases are phrases which are not having any

critical information (for example, medical phrases which are not tagged by the human

annotator during training because it is not of much significance on the condition of

the patient). OTHER phrases are focused since they are phrases which are perceived

to be having no information by the system but can have valuable information to the

user. The system determines a phrase as uncertain based on three cases as given in

the list below.

• Its high-critical prediction probability is at least 0.1 and the predicted label is

not high-critical.

• Critical prediction probability is at least 0.3 and the Predicted label is not

critical.

• Predicted probability is less than 0.5 and the predicted label is Other.

The system also provides the user with the overall criticality level of the report

as well as how confident the system is in its prediction. This can help doctors to

identify emergency reports faster. A report is shown as low confidence prediction if

the report class predicted distance is within one unit distance of the hyper plane. If

the distance is more than one unit, it is predicted with high confidence. The distance

score is negative for non-critical class and positive for the critical class.



30

Figure 3.8: Final Interface which highlights the information extracted from the radiol-
ogy reports along with critical levels for the phrases extracted. The overall document
class (positive/negative) is shown at the upper top corner with the confidence level



Chapter 4

Experiments and Results

4.1 Data Collection

For the purpose of this thesis, the dataset used is a real world radiology data set. We

focus on chest radiology reports because it is more complex and can help the system

to be more robust. Chest radiology reports usually contain medical terminologies

and conditions associated with chest, abdomen and sometimes part of the leg of the

patient. This provides the model with a variety of medical terms and complexities

associated with the report. The complete chest radiology dataset contains more than

20,000 radiology reports. These reports are created using voice to text processing

systems and are reviewed later by a radiologist to correct any errors produced during

the conversion. However, these radiology reports contain errors created by joined

words. Our model corrects these errors during preprocessing stage so that the human

annotator do not have to correct these errors during the tagging process.

In this thesis, our system is modeled to extract clinically significant information

based on the critical level of medical conditions. We divided the critical levels to

high-critical, critical and non-critical levels. Even though the initial model was based

on chest radiology reports, it was later extended to model abdominal radiology re-

ports.

The tagged data is collected using the manual tagging web interface which is cou-

pled with the dictionary based phrase extraction model discussed in Section 3.3.1.

The phrases are extracted based on the various dictionaries and are highlighted for

tagging to the user. Each of the phrases is assumed to be non-critical by default.

This allows the user to only focus on the critical and high-critical phrases and change

the critical level using the appropriate buttons provided through the interface. The

interface also captures the overall document class provided by the user. Once each

31
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report is tagged, the user clicks on the overall class of the report (either a positive

report or negative report) and the report with the tags are saved and removed from

the interface. The user manual tagger interface also has the functionality to view

previously tagged reports if needed. For this thesis, the user was able to tag 253

chest radiology reports. Special instructions were provided to the user to provide us

with an equal distribution of both positive and negative reports and reports of vary-

ing length. To simplify this process, the interface was loaded with only 2000 reports

chosen from the initial 20,000 with varying length of reports.

4.2 Evaluation Measures

We have used CRF and Structured Perceptron models for extracting information from

the radiology reports and SGD, RF and SVM for classifying the radiology reports.

The precision is the number of true positives over the sum of the number of true

positives and number of false positives as shown in Equation 4.1.

P =
|Tp|

|Tp|+ |Fp|
(4.1)

Recall is the number of true positives over sum of number of true positive and

number of false negatives as shown in Equation 4.2

R =
|Tp|

|Tp|+ |Fn|
(4.2)

F-measure or F1 is a single value representation for precision and recall, and it

is a harmonic mean of precision and recall. The formula to calculate F1 is show in

Equation 4.3:

F1 = 2
P ×R

P +R
(4.3)

Accuracy is the number of correctly identified samples from the entire dataset and

it is calculated as the sum of the number of true positives and true negatives over

total number of samples |D| as in Equation 4.4.

A =
|Tp|+ |Tn|
|D|

(4.4)
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All the reported values are macro and weighted average. Macro-average is the

average of values of the system on different sets and it is shown in Equation 4.5.

Whereas in weighted average we consider imbalance in the number of samples of

different sets and each set is assigned a weight as shown in Equation 4.6.

Macro average =

∑n
i=1 Vi

|Di, Dj, ..., Dn|
where, (4.5)

n is the total number of data sets, Vi is the value of the data set Di.

Weighted average =

∑n
i=1 Wi.Vi

|Di, Dj, ..., Dn|
where, (4.6)

n is the total number of data sets, Vi is the value and Wi is the weight of the data set Di.

4.3 Report Preprocessing

The most common error in the radiology reports were the joined words. The word

segmentation module is used to segment the joined words present in the radiology

reports. We used two methods to test our word segmentation module. Initially, we

used a clean-text data set, which does not have any spelling errors, and we tested our

model to check its accuracy. This provides us with an estimate of how many bogus

word-segmentations are introduced, by the model, on clean text. For the second test,

we created joined words (specifically radiology domain terms) and tested the system

once again for the accuracy of segmentation.

For testing of the model with clean text, we used the text8 dataset (Zhang et al.,

2016) which contains over 3 million words. The text8 data is given to the algorithm

for processing and we checked the number of words which are segmented by the model

(ideally it should be 0). We obtained an accuracy of 98.9% on this data. This test

was done to make sure that the algorithm does not segment correct words present in

real world documents.

For the second test, we created joined words from the words present in the Radlex

ontology, chosen randomly and then combined together to create a joined word. The

words chosen are medical words (not common words) in order to provide a better
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Table 4.1: Accuracy of base and implemented models for joined word correction

Accuracy
(Our model)

Accuracy
(Existing model)

Text 8 Dataset 98.9% 98.9%
Radlex
random word combination
10k iterations

87.46% (2w)
81.28% (3W)

42.58% (2w)
25.69% (3W)

view of how well the system performs on uncommon words. We tested 2-word and 3-

word combinations. The experiment was repeated for 10,000 iterations. We obtained

an accuracy of 87.46% for 2-word combinations and 81.28% for 3-word combinations.

This higher accuracy was obtained after adding the unigrams from the Google n-gram

corpus for radiology terms (explained in detail on Section 3.1.2). Without adding the

unigram radiology terms to the algorithm, the accuracy of 2-word combination was

42.58% and for 3-word combinations, it was 25.69%. This clearly shows that our

model, with the addition of radiology terms, provides the best accuracy results. The

results are shown in Table 4.1

For evaluating the performance of the spell correction algorithm, it was tested with

the text8 data set which has 3M words. It was found that the algorithm produces an

error rate of 0.5%.

4.4 Inter annotation Score

In order to compare our model to real-world human annotation performance we asked

a second annotator to annotate the radiology reports and we then examined the con-

sistency between the two sets of annotations.

The second annotator annotated 57 random reports out of the 253 reports tagged

by the first annotator. For calculating the inter-annotator score, we used two methods.

First, we used a ‘soft’ matching algorithm that only calculates the inter-annotator

agreement on phrases which were annotated by both annotators. For the second

method, we calculated the Precision, Recall, and f1-score of the second annotator on

annotating the reports by keeping Annotator-1 as the gold standard. In both of these
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Table 4.2: Confusion matrix for annotations done by annotator two on the radiology
reports. Gold standard is based on the initial tagging done by annotator one.

Predicted
B-NonCrit I-NonCrit B-Crit I-Crit B-HighCrit I-HighCrit

A
ct
u
a
l
L
a
b
e
ls B-NonCrit 129 7 6 0 13 0

I-NonCrit 7 126 0 5 1 10
B-Crit 11 1 16 8 33 5
I-Crit 1 12 0 15 3 17
B-HighCrit 8 0 8 0 95 9
I-HighCrit 0 2 0 8 7 75

methods, we used the 57 reports annotated by the second annotator (Annotator-2).

The first evaluation method involves the calculation of the soft agreement score

between annotators. The formula for the soft agreement score calculation is given in

Equation 4.7.

Soft score = AV G
(∑57

i=1
Wi

Ni

)
(4.7)

• Wi = Number of words predicted by both annotators with same criticality level

in report i.

• Ni = Number of words predicted by both annotators in report i.

We obtained the soft agreement score of 71.47% on annotation. This proves that

annotating a report and providing criticality levels to the phrases is a complicated

task even for a human annotator who has ample domain knowledge. Moreover, reduc-

ing the annotation task to a 2-class system (critical/ non-critical) increased the inter

annotation score to 85.01%. This experiment proves that the boundary of critical and

high-critical can change based on the user’s perception of each report. The confusion

matrix for the soft score is shown in Table 4.2

The second evaluation method involves the training of the CRF model on the 200

reports that were not tagged by the second annotator. Once we trained the CRF

model, we tested the model on the 57 reports tagged by the first annotator. We com-

pared this result with the performance score obtained by asking the second annotator
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Table 4.3: Precision, Recall and f1-Score comparison between human annotator and
CRF model

HUMAN ANNOTATOR CRF MODEL
precision recall f1-score precision recall f1-score

B-NonCrit 0.6825 0.6324 0.6565 0.8140 0.5122 0.6287
I-NonCrit 0.7241 0.6632 0.6923 0.8947 0.6041 0.7212
B-Crit 0.2712 0.1928 0.2254 0.4583 0.4074 0.4314
I-Crit 0.2239 0.2500 0.2362 0.4643 0.2203 0.2989
B-HighCrit 0.5220 0.7308 0.6090 0.6406 0.3228 0.4293
I-HighCrit 0.5682 0.7353 0.6410 0.7692 0.4000 0.5263
Average 0.5703 0.5930 0.5759 0.7359 0.4564 0.5601

to tag the same 57 reports. The results are shown in Table 4.3. The CRF model gives

similar performance to that of the human annotator but with higher precision. The

performance dip in f1-score is due to the lower recall value, which would improve on

an ongoing basis as the system acquires more data.

Both these experiments proved that the annotation of clinically significant infor-

mation and assigning critical values to them is a complex task. Even for a human

expert who has years of experience, the significance of a medical phrase can change

based on their own viewpoint. Another important point to be noted here is that the

reports used for training the model are de-identified which limits the performance of

the model. This is because of some information such as the age of the patient, sex of

the patient and physical condition of the patient.

4.5 Machine learning models

We used two sequence classifiers for our phrase extraction and criticality level iden-

tification. For each of the criticality levels, we used separate labels. For non-critical

terms, we used B-NonCrit and I-NonCrit as the labels (Beginning word and subse-

quent word). Similarly, we used B-HighCrit, I-HighCrit, B-Crit, I-Crit respectively

for high-critical and critical phrases. We used Conditional Random Field and Struc-

tured Perceptron as our two machine learning sequence classifiers.



37

4.5.1 CRF model

The train data set for the machine learning CRF model is obtained from annotator

one through the user interface implemented with the dictionary based phrase extrac-

tion model. The interface highlights medical phrases identified through dictionary

lookup. The user (in this case, emergency physician) assigns a critical value to the

phrases (can be phrases highlighted by the interface or phrases which the physician

thinks are important for diagnosis). Each of the phrases annotated is given a critical

score and saved as a data set. High-critical phrases have a score of +1, critical phrases

have a score of +0.5 and non-critical phrases have a score of -1. These score values

are later used for predicting overall Class of the report.

In this study, the doctor was able to provide 253 radiology reports, with varying

levels of length and complexity in the reports. We used the already existing fast

implementation of CRF (Lafferty et al., 2001; Sha and Pereira, 2003) for our Model.

The features used for the CRF are discussed in Section 3.2.1 and 3.2.2. We used

L-BFGS (Nocedal, 1980) algorithm for the optimization. The coefficient values are

dynamically calculated based on the training data.

We used 10 fold cross validation (Refaeilzadeh et al., 2009) on the training data.

Since we do not check for inter-sentence parameters, the algorithm treats each sen-

tence as single sample. We have obtained an average f1-score (Sokolova et al., 2006)

of 0.75.

Evaluating the performance of phrases extracted

Comparing the performance of the model on extracting various critical levels from

the radiology report, we can see that the system performs well for all 3 types of the

phrases. The system performs especially well on extracting high-critical phrases which

provide extremely critical information to the doctors. Out of the 3 different types of

phrases, the system performs comparatively less for the critical phrases. The main

reason for this gap is the difficulty on segregating between critical and high-critical

phrases. It also depends on the quality of the dataset and annotations. Since the
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Figure 4.1: Performance of CRF model on extracting various critical informa-
tion from radiology reports. B-NonCrit, I-NonCrit represents non-critical phrases
beginning and middle words, B-Crit, I-Crit represents critical phrases and B-
HighCrit, I-HighCrit represents high-critical phrases extracted from the radiology
reports.Performance is measured by precision, recall and f1-score matrices.

annotation was done over a period of time, the doctors may tend to change their way

of annotation on later reports. This may affect the consistency of the tagging. For

example, the doctor may tag heart is enlarged as high-critical in earlier reports and

may tag the same as critical in later reports. Figure 4.1 shows the precision, recall

and f1-scores measured for CRF model.

The confusion matrix obtained on training the CRF model is shown in Table 4.4.

The confusion matrix is based on the 10 fold cross-validated result obtained on train-

ing the model. Analyzing the confusion matrix, we can clearly see how the classifier

performs for each of the critical level phrases extracted. The majority of the error
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Table 4.4: Confusion matrix of CRF model with various critical level phrases. ’O’ de-
notes phrases which are not irrelevant or are considered of no value to the doctors.’B’
and ’I’ denotes the beginning and Intermediate words of the phrase.

Predicted labels
B-NonCrit I-NonCrit B-Crit I-Crit B-HighCrit I-HighCrit O

Actual Labels

B-NonCrit 63 4 2 1 2 0 21
I-NonCrit 1 61 1 2 0 1 9
B-Crit 2 0 35 1 5 1 8
I-Crit 0 1 1 27 0 3 4
B-HighCrit 2 0 4 0 40 2 2
I-HighCrit 0 1 0 1 1 32 2
O 12 11 5 5 3 2 1354

occurred is the misclassification of labels to one of the other critical levels. Misclas-

sification to ’other’ category is comparatively less.

4.5.2 Structured Perceptron

The second sequence learning classifier used in this thesis is the Structured Percep-

tron. Structured Perceptrons works similarly to other sequence classifiers such as

MEMM (McCallum et al., 2000) and MEMMs (Rabiner and Juang, 1986) (Baldridge

et al., 2010) and CRF. They also can be trained based on auxiliary features which

allow the classifier to predict values based on the context information. The auxiliary

features are used to learn the various weight values which are further used to predict

phrases in unknown reports.We evaluated the Structured Perceptron using 10 fold

cross validation and have obtained an average f1-score of 0.72 which is slightly less

than the performance obtained from the CRF model. We used Structured Percep-

tron model to test the efficiency of our auxiliary features as well as to compare and

evaluate the best model for the phrase extraction.

Performance evaluation of Structured Perceptron

The performance scores for Structured Perceptron model on extracting various critical

level phrases from the radiology reports is shown in the Figure 4.2. Similar to CRF

model, the performance of the Structured Perceptron is less on extracting critical
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Figure 4.2: Performance of Structured Perceptron model on extracting various critical
information from radiology reports. B-NonCrit, I-NonCrit represents non-critical
phrases beginning and middle words, B-Crit, I-Crit represents critical phrases and
B-HighCrit, I-HighCrit represents high-critical phrases extracted from the radiology
reports.Performance is measured by precision, recall and f1-score matrices.

phrases compared to high-critical and non-critical phrases. The performance for non-

critical terms were worse than CRF model (0.68). The f1-score for non-critical terms

were almost the same as CRF model (0.76). And for high-critical terms, the accuracy

was lower compared to CRF model (0.76).

4.5.3 Comparing CRF and Structured Perceptron Model

Both of these models are similar in performance. However, the CRF model performs

better on average. The auxiliary features used for the training and prediction of

sequence labels are the same. The CRF model is able to provide better recall than

Structured Perceptron. Moreover, CRF provides the predicted probability values for

the labels which can then be used for identifying the uncertainty of the predicted
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values. Evaluating the results for both CRF and Structured Perceptron by t-test, we

obtain a p-value of 0.0549.

4.6 Auxiliary Features and weights

For our machine learning models, we have used two types of auxiliary feature:, word

level, and sentence level features. In this section, we compare the models’ perfor-

mance based on the auxiliary features provided. For the sentence level features, we

have segmented the performance graph into two parts, namely sentence level fea-

tures, and flag level (or binary) features. The binary features are provided separately

since the contribution of the binary features on the models’ performance is significant.

As we compare the performance of the system based on the set of auxiliary fea-

tures, the sentence and binary-level features provide a more significant contribution to

the models’ performance than do word-level features. One reason for this difference

is that some of the word level features are inherently present in the sentence level

features as well. For example, previous and next POS tags give similar contributions

to assigning the POS tags of the current word. We assigned the current word POS

tag contributes to the models’ performance in special cases such as the beginning and

end words of the sentence, and one-word sentences where there are no previous or

next POS tags.

Binary features are part of the sentence-level feature-extraction module. These

features are the main contributors to the Machine Learning model used in the active

adaptive interface. These features are dynamically created based on the prior-tagged

reports. For example, tagged phrases provided by humans during the training pro-

cess are updated dynamically as the user uses the active/adaptive learning interface.

These features create dictionaries based on the types (high-critical, critical and non-

critical) of tagged critical phrases. These features help the model to identify medical

terms which are critical or high-critical on most of the reports.

The combination of the 3 sets of features provides the best accuracy results for
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Table 4.5: Performance scores for CRF model based on various features used during
training process.

B-NonCrit I-NonCrit B-Crit I-Crit B-HighCrit I-HighCrit

Word Level
precision 0.656 0.676 0.647 0.577 0.569 0.625
recall 0.625 0.797 0.584 0.546 0.501 0.613
f1-score 0.639 0.731 0.610 0.541 0.529 0.611

Sentence Level
precision 0.756 0.768 0.601 0.531 0.653 0.681
recall 0.683 0.739 0.483 0.395 0.511 0.579
f1-score 0.717 0.752 0.532 0.439 0.571 0.620

Binary Level
precision 0.706 0.735 0.738 0.704 0.712 0.755
recall 0.593 0.769 0.591 0.698 0.679 0.790
f1-score 0.643 0.750 0.653 0.694 0.692 0.769

Combined
precision 0.781 0.804 0.720 0.712 0.762 0.788
recall 0.702 0.816 0.666 0.731 0.762 0.850
f1-score 0.737 0.808 0.689 0.716 0.760 0.811

our model. The sentence level features help in increasing the recall value of our

model while the word level features are used to increase the precision of our model.

Another reason for adding binary features and sentence level features is to increase

the efficiency of the model on predicting medical phrases which are not seen by the

model in previous training samples. The binary features ensure that the phrases

previously were seen are given higher weight while the sentence level features ensure

that the medical phrases which are not seen in the past are considered by the model.

The f1-score comparison for various features is provided in Table 4.5.

4.6.1 Top Auxiliary Features

As mentioned in Section 3.3.2, the CRF model learns weights for the different auxil-

iary features provided to it during the training process. The new phrases are predicted

based on the calculated feature values and weights computed during the prediction

process. The top 5 feature weights used by the CRF model for predicting the new

critical phrases is shown in the Table 4.6 .

On closer inspection, we can see that the binary features are a critical part of the

model. They are almost always part of the top 5 positive features when predicting a

critical phrase. Some of the other interesting features are the suffix words, which is

part of the top features in predicting high-critical Values. Word-to-vec model plays

another crucial role in predicting phrases. It is mostly used in the intermediate word
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Table 4.6: Top 5 positive and negative features used for predicting the critical level
phrases in the CRF model. ’B’ denotes the beginning and ’I’ denotes the intermediate
words for a given phrase.

Positive Features Negative Features

B-High

’highFlag:True’
’nextWord1:can’
’prevWord1:lobe’
’suffix1:is’
’prevWord1:a’

’nextWordPos1:adj’
’prevWordPos1:det’
’pref2:bre’
’critFlag:True’
’nonCritFlag:True’

I-High

’word2VecSimilarityPrev:0.999597393253’
’nextPos:superior’
’highFlag:True’
’word2VecSimilarityPrev:0.999418976773’
’suffix1:in’

’pos tag:adj’
’nextWord1:at’
’pos tag:verb’
’pref1:le’
metaConcept:’Qualitative,Concept’

B-Crit

’nextNeg:chronic,’
’prevWord1:mild’
metaConcept:’Pathologic,Function”Finding’
’nextWord1:areas’
’prevWord1:known’

’pref1:ch’
’word2VecSimilarityPrev:0.999468437275’,
pref2:con’
’nextWord1:and’
’nonCritFlag:True’

I-Crit

’critFlag:True’
’pos tag:noun’
’nextWord1:unchanged’
’word2VecSimilarityPrev:0.999558585312’
’word2VecSimilarityPrev:0.999675685209’

’pos tag:adj’
’negExNext:’
’pref1:lu’
’suffix1:al’
’prevWord1:unfolding’

B-NonCrit

’word2VecSimilarityPrev:0.999108931789’
’negExPrev:1’
’prevWord1:consolidation’
’nextPos:appreciated,’
’prevWord1:based’

’prevWord1:a’
’suffix1:ly’
’negExPrev:15’
’pref2:int’
’suffix1:er’

I-NonCrit

’nextPos:improvement,’
’nextWord1:pattern’
’nextWord1:base’
’nonCritFlag:True’
’nextNeg:no no,’

’word2VecSimilarityPrev:0.998901530601’
’nextWord1:mediastinum’
’pref1:ma’
’suffix1:um’
’nextWord1:effusion’
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predictions because it provides a close relation with the previous word. As expected,

the next positive or next negative word feature provides information to the model on

what the criticality level of the phrase is. For example, the word ’improvement’ after

the current word suggests that the word is possibly a non-critical phase.

Negative features help the model to decide if the current word is not a part of

the critical phrase. Part of speech tags of the current word plays a crucial role in the

negative features. Another important negative feature for predicting critical level are

the previous, next words and prefix/suffix terms. The Binary features do not play a

significant role in negative features.

Figure 4.3: Performance of the CRF model when trained based on two critical level
classes. High-critical and critical level phrases are joined together to produce a single
critical Class.

4.7 Two Class Model for phrase Extraction

From our previous experiments, we found that the most prominent errors occurred

for the machine learning as well as the human taggers is the misclassification of the

phrases to critical and high-critical segments. A lot of factors contribute to assigning

a phrase to high-critical or critical. So we combined the high-critical and critical seg-

ments into a single phrase Class and trained our model based on the two final classes
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Table 4.7: Confusion Matrix for CRF model with two levels of critical phrases. High-
critical and critical level phrases are merged into a single critical Level.’O’ Denotes
’Other’ or not tagged phrases.

Predicted
B-NonCrit I-NonCrit B-Crit I-Crit O

Actual

B-NonCrit 64 4 5 1 20
I-NonCrit 1 61 1 3 9
B-Crit 4 0 87 4 8
I-Crit 0 2 2 61 8
O 14 12 9 9 1350

as non-critical and critical.

As expected the performance of the model increased to an average f1 score of 79.5

for the CRF model. The label performance of the CRF model is shown in the Figure

4.3. The performance of the system is especially High for the critical level phrases

with an average f1 score of 82.7. However, this model is oriented more towards the

general information extraction of medical phrases from the radiology report rather

than the special information extraction required by the emergency physicians. The

confusion Matrix of the two class model is shown in Table 4.7.

4.8 Scalability of the model

Once the CRF model is trained on the 250 reports, we obtain an initial information

extraction model. We tested the model on unknown reports where we do not have

labeled information and checked to see how the number of unique phrases extracted

changes as we provide more reports to the model.

The number of unique phrases extracted increases linearly if we provide the feed-

back option turned on, as shown in the Figure 4.4. By using the feedback option,

the system recognizes the phrases it has already predicted from each of the previous

reports on the go and adds the phrases as part of the binary features for critical,

high-critical and non-critical medical terms and uses this data for predicting critical

phrases on the new report. This method is helpful if we have a good number of
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labeled data for the system to train in as the error rate would be small.

Figure 4.4: Number of phrases extracted by the CRF model when evaluated against
unknown reports with feedback option. The phrases extracted from the first report is
added to the binary feature dictionary and is used for the auxiliary feature creation
of next report and so on.

4.9 Report Classification

The radiology reports are classified into two classes, critical reports, and non-critical

reports. The classification is based on the overall report and is related to whether

immediate action is required, on the patient in the emergency department. In order

to analyze the relevance of the extracted phrases using the CRF model, we com-

pared the classification accuracy of well known machine-learning algorithms using

two methods. On the first trial, the reports are classified based on the ’bag of words’

method having tf-idf weights assigned on those given in the report. In the second

method, we used the phrases extracted using the CRF model along with the values

assigned (-1 for non-critical phrases, 0.5 for critical phrases and 1 for high-critical

phrases). We have used three separate machine learning algorithms (Linear Support

Vector Machine, RF and Stochastic Gradient Descent from the Sklearn library1) to

1www.scikit-learn.org



47

compare the performance of each machine learning algorithm on these two types of

feature. The comparison results are shown in Figure 4.5.

Comparing the results of the three algorithms on the two types of feature, we

can see that the phrases extracted out-perform the ’bag of words’ method having

the tf-idf weights-based model on both the RF (Liaw and Wiener, 2002) and Linear

SVM (Gunn et al., 1998). Even on the SGD (Amari, 1993) the phrases extracted

have similar performance to ’bag of words’ having a tf-idf weights model. Also, the

phrases extracted from the reports are comparatively much fewer than ’bag of words’

having a tf-idf weights model.

Using the phrases extracted we were able to achieve an average f1-score of 86.42,

in comparison to the average f1-score of 86.52 for ’bag of words’ having a tf-idf weights

model with SGD. These results demonstrate that the phrases extracted from the ra-

diology reports are quite powerful features in classification.

Evaluating the statistical significance using the student t-test on the results, we

have obtained a p-value of 9.43E-08 and 1.1E-05 respectively, for random forest and

linear SVM and for ’bag of words’ having tf-idf weights model and extracted phrase

features. These results show that the ‘extracted phrases’ method performs better on

classification of the report using these algorithms.

4.10 Error Analysis

We have analyzed the misclassification errors for the CRF model which used the

three level criticality levels for the extracted phrases. Upon analysis, the greatest

misclassification occurs on classifying the non-critical phrases, which get classified as

Other. These types of error are not a big concern in emergency-room practice since

the doctors are mostly concerned about critical phrases. Even on manual tagging, de-

pending on the report, some of the medical phrases may not be tagged by the doctor

as non-critical. On analyzing the results, about 22% of the total non-critical phrases

were predicted as ‘Other’ by the system. However, less than 2% of those terms which
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Figure 4.5: Performance comparison for various machine learning document classi-
fiers on classifying radiology reports. Reports are classified to critical or non-critical
classes. Each classifier is evaluated based on two type of feature sets. One is the tf-idf
score of the words of the report and the second is using the phrases extracted using
CRF model.

were actually non-critical were predicted as critical by the system.

Analyzing the critical phrases, the most common misclassification was, again, the

classification of a ‘critical’ phrase as being ‘Other’. However, the misclassification rate

is lower compared to the non-critical phrases. The misclassification of critical phrases

as Other is about 15%. However, on further analysis, it has been identified that the

same phrase is misclassified in multiple reports which adds to the misclassification

percentage. For example, the phrase ’Intrathoracic’ is misclassified more than once,

which adds to the misclassification rate even though only one phrase is misclassified.

But this problem can be solved as we increase the amount of training data. As the

doctors use the active adaptive learning interface through the on-line interface, these

types of errors could be reduced considerably.



49

Table 4.8: Error rates for various critical level phrases extracted using the CRF model.
The values are shown as percentages.

Predicted
B-NonCrit I-NonCrit B-Crit I-Crit B-HighCrit I-HighCrit O

Actual

B-NonCrit 67.5% 4.7% 2.1% 0.5% 2.3% 0.0% 22.8%
I-NonCrit 1.9% 80.6% 1.2% 2.0% 0.5% 1.7% 12.1%
B-Crit 3.7% 0.0% 67.8% 1.9% 9.7% 1.8% 15.0%
I-Crit 0.0% 3.6% 2.2% 76.2% 0.0% 7.0% 10.9%
B-HighCrit 3.9% 0.2% 8.1% 0.4% 79.7% 3.4% 4.3%
I-HighCrit 0.0% 1.9% 0.8% 2.4% 3.8% 85.3% 5.9%
O 0.9% 0.8% 0.4% 0.4% 0.2% 0.2% 97.2%

Finally, for high-critical terms, the most common errors are misclassification of

the criticality level. About 8% of the high-critical phrases are misclassified as critical

phrases by the system. However, since the doctors are able to view both critical and

high-critical phrases in the interface, along with the reports, these errors would not

have a significant impact on the user experience. The various error types and the

impact of them on the model is shown in the Table 4.8.



Chapter 5

Conclusion & Discussion

Radiology reports are complex reports which are often difficult to process using stan-

dard NLP tools because of the spelling and word-join errors. We propose a system

that provides better accuracy in correcting joined word and spell errors, followed by

extraction of medical phrases and their criticality level, and classification of the whole

report as critical or not.

Information extraction from the radiology reports as phrases is complex but valu-

able data which can be further used in complex or simple applications. The com-

plexity of this task is mainly centered around the criticality level which have to be

assigned based on the context of the phrases extracted. The radiology report model

extracts medical phrases and the associated criticality level (high-critical, critical and

non-critical). This is accomplished by a CRF model that is trained on a small corpus

of reports labeled by two emergency physicians. We demonstrate that this informa-

tion extraction task achieves performance that is comparable to the inter-annotator

agreement. For obtaining this performance we have developed advanced auxiliary

feature extraction which extracts several types of feature values for each word to be

predicted. The auxiliary features are broadly segmented into Word level and sentence

level features in which the word level features provide information regarding the struc-

ture of the word including the part of speech tag and UMLS concepts. The sentence

level features help the system by providing information regarding the context of the

word including previous and next words and negations.

Using the extracted medical phrases as features, we address a classification task

that classifies entire radiology reports as critical or non-critical (i.e. whether the

emergency physician needs to take immediate action on them).

50
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We also developed an active adaptive learning interface which bridges the gap

of machine learning models and human feedback. This system provides the user

with clinically significant phases extracted for each report and also helps the user

in changing the predicted annotations based on the uncertainty level of predictions.

This allows the doctors to easily identify the patient’s condition and also helps the

machine learning model to adjust the predictions of future reports as per the feed-

back. The interface provides visual cues to the user on the uncertainty level of the

predicted phrases so that the user is aware of the level of confidence the system has

on the predicted phrases. The interface also provides information on how certain it

is on predicting the overall critical level of the report.

The research also contributes to the improved accuracy of word segmentation and

error correction of radiology reports. The default word segmentation algorithms are

based on the daily language spoken by the humans, which perform poorly on the

complex medical documents. Our research was able to improve the accuracy of these

algorithms considerably for medical text processing.

Our research was also able to identify and capture medical phrases used by emer-

gency physicians and was also able to identify phrases which are considered most

important during the diagnosis procedure. We were also able to capture medical

phrases which are always considered as highly critical or critical to the patient as

well.

5.1 Future Work

The current research focused on extracting clinically significant information and build-

ing a feature matrix using the output of the machine learning linear classifiers. We

were able to segregate the clinically significant critical levels to 3 classes as high-

critical, critical and non-critical values. And the simple active learning interface was

able to provide the user with a visual interface which shows the various critical level

phrases along with the confidence level. This active learning interface can be used for

gathering further annotations for enhanced performance of the system.
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An enhancement of this system can be implemented in high-level programming

languages such as PHP and can be implemented as an end product for patient diagno-

sis. The model can be further tuned to process thousands of medical reports and rank

the reports as per the overall criticality level which can help the doctors to prioritize

patients based on criticality levels. Another use of the system is the patient history

diagnosis in which the system is used to identify the critical medical information of a

single patient over a period of time. This can help the doctors to pinpoint root causes

of long-term medical conditions and can help in effective treatment of the patient.

Another enhancement of the system is by combining multiple types of reports

of patients and identifying medical information or disease analysis. Combining the

image data of chest X-rays and text radiology reports can provide the doctors with a

plethora of information regarding the patient’s condition. The system can be trained

to identify disease patterns in the chest x-ray image and can process the radiology

reports for descriptive details. This will require advanced machine learning object de-

tection models for image processing combined with CRF or similar sequence learners

for text processing. The feature matrix created by the CRF model in this research can

also be used as additional feature vectors for advance machine learning algorithms for

creating detailed patient profiling models or auto template mapping of patient records.

The active learning interface can also be extended to an advanced model in which

all the records of the same patient are shown in a single interface along with the

criticality terms extracted. The doctors could choose each phrase extracted and can

visualize the different reports in which such phrase is present. This could also help

in tagging multiple reports at the same time for gathering training data.

Further to this, the model itself can be changed to advance deep learning models

(Collobert and Weston, 2008) . However, the current CRF model can help in gath-

ering training data faster than manual methods. As more data is labeled using the

CRF model, the labeled data can be used in deep networks for better performance.

Another method to increase the number of labeled data is by using feedback approach

mentioned in this research in Section4.8.
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Appendix A

Training CRF model

This section shows the experimental results for training the CRF model in detail.

A.1 Cross validation performance across folds for CRF model

In our thesis the CRF model is trained by using 10 fold cross validation. The sam-

ples for training and testing are selected by random sampling with replacement. The

following tables show the various performance scores achieved on training the model

based on random sampling. The sampling of the data is done at sentence level which

provides a good balance between training and testing data sets across each folds. If

the sampling is done at report level, the imbalance of training testing data would be

large. This is because of the inconsistency in the report length(number of sentences

in each report).

Performance of the model is measured based on the precision, recall and f1-score

of the predicted labels.The best average performance was obtained on fold7 with an

average f1-score of 79.52 and the worst f1-score was obtained on the fold4 with average

f1-score as 68.52.

Table A.1: Performance scores for CRF model for Fold1. Training and testing data
is obtained based on random sampling at sentence level.

precision recall f1-score
B-NonCrit 0.7821 0.6932 0.7349
I-NonCrit 0.7816 0.8095 0.7953
B-Crit 0.7708 0.7708 0.7708
I-Crit 0.9762 0.8723 0.9213
B-HighCrit 0.6667 0.6667 0.6667
I-HighCrit 0.8261 0.8837 0.8539
avg / total 0.7947 0.7729 0.7826
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Table A.2: Performance scores for CRF model for Fold2. Training and testing data
is obtained based on random sampling at sentence level.

precision recall f1-score
B-NonCrit 0.7917 0.6552 0.717
I-NonCrit 0.8529 0.7699 0.8093
B-Crit 0.878 0.6102 0.72
I-Crit 0.6591 0.7073 0.6824
B-HighCrit 0.68 0.7556 0.7158
I-HighCrit 0.6122 0.9375 0.7407
avg / total 0.7814 0.7192 0.7414

Table A.3: Performance scores for CRF model for Fold3. Training and testing data
is obtained based on random sampling at sentence level.

precision recall f1-score
B-NonCrit 0.7222 0.6989 0.7104
I-NonCrit 0.747 0.8378 0.7898
B-Crit 0.6977 0.75 0.7229
I-Crit 0.5556 0.75 0.6383
B-HighCrit 0.8772 0.8197 0.8475
I-HighCrit 0.8444 0.95 0.8941
avg / total 0.7584 0.7927 0.7733

Table A.4: Performance scores for CRF model for Fold4. Training and testing data
is obtained based on random sampling at sentence level.

precision recall f1-score
B-NonCrit 0.7595 0.5714 0.6522
I-NonCrit 0.6848 0.7326 0.7079
B-Crit 0.6792 0.6207 0.6486
I-Crit 0.6667 0.5854 0.6234
B-HighCrit 0.6786 0.7451 0.7103
I-HighCrit 0.6949 0.9318 0.7961
avg / total 0.7027 0.6805 0.6852
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Table A.5: Performance scores for CRF model for Fold5. Training and testing data
is obtained based on random sampling at sentence level.

precision recall f1-score
B-NonCrit 0.7714 0.6328 0.6953
I-NonCrit 0.8172 0.717 0.7638
B-Crit 0.6061 0.5405 0.5714
I-Crit 0.5833 0.5833 0.5833
B-HighCrit 0.6889 0.7561 0.7209
I-HighCrit 0.7273 0.8276 0.7742
avg / total 0.7428 0.674 0.7044

Table A.6: Performance scores for CRF model for Fold6. Training and testing data
is obtained based on random sampling at sentence level.

precision recall f1-score
B-NonCrit 0.6966 0.7045 0.7006
I-NonCrit 0.7386 0.8228 0.7784
B-Crit 0.8983 0.7361 0.8092
I-Crit 0.7941 0.8438 0.8182
B-HighCrit 0.8065 0.8929 0.8475
I-HighCrit 0.8846 0.9583 0.92
avg / total 0.785 0.7895 0.7845

Table A.7: Performance scores for CRF model for Fold7. Training and testing data
is obtained based on random sampling at sentence level.

precision recall f1-score
B-NonCrit 0.8434 0.7368 0.7865
I-NonCrit 0.8452 0.8659 0.8554
B-Crit 0.6977 0.7692 0.7317
I-Crit 0.7045 0.8857 0.7848
B-HighCrit 0.86 0.7049 0.7748
I-HighCrit 0.8378 0.7561 0.7949
avg / total 0.8162 0.7819 0.7952
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Table A.8: Performance scores for CRF model for Fold8. Training and testing data
is obtained based on random sampling at sentence level.

precision recall f1-score
B-NonCrit 0.8333 0.8065 0.8197
I-NonCrit 0.8471 0.878 0.8623
B-Crit 0.6939 0.6296 0.6602
I-Crit 0.6444 0.7436 0.6905
B-HighCrit 0.7241 0.7636 0.7434
I-HighCrit 0.717 0.76 0.7379
avg / total 0.7647 0.7775 0.7702

Table A.9: Performance scores for CRF model for Fold9. Training and testing data
is obtained based on random sampling at sentence level.

precision recall f1-score
B-NonCrit 0.8315 0.7048 0.7629
I-NonCrit 0.8608 0.85 0.8553
B-Crit 0.6531 0.6667 0.6598
I-Crit 0.8438 0.6136 0.7105
B-HighCrit 0.8333 0.7447 0.7865
I-HighCrit 0.8286 0.8286 0.8286
avg / total 0.8156 0.7382 0.7728

Table A.10: Performance scores for CRF model for Fold10. Training and testing data
is obtained based on random sampling at sentence level.

precision recall f1-score
B-NonCrit 0.7778 0.8116 0.7943
I-NonCrit 0.8611 0.8732 0.8671
B-Crit 0.625 0.5682 0.5952
I-Crit 0.6957 0.7273 0.7111
B-HighCrit 0.8056 0.7733 0.7891
I-HighCrit 0.9091 0.6667 0.7692
avg / total 0.7943 0.7577 0.773
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Below tables shows the detailed confusion matrix for the various folds of CRF

model.

Table A.11: Confusion Matrix for fold1 of the CRF model training.

Predicted
B-NonCrit I-NonCrit B-Crit I-Crit B-HighCrit I-HighCrit O

Actual

B-NonCrit 58 5 0 0 1 0 19
I-NonCrit 2 61 0 0 0 1 12
B-Crit 1 0 42 1 8 1 12
I-Crit 0 2 2 27 0 4 7
B-HighCrit 0 0 1 0 40 0 1
I-HighCrit 0 0 0 0 1 36 1
O 9 9 4 3 0 2 1379

Table A.12: Confusion Matrix for fold2 of the CRF model training.

Predicted
B-NonCrit I-NonCrit B-Crit I-Crit B-HighCrit I-HighCrit O

Actual

B-NonCrit 66 6 2 0 2 0 31
I-NonCrit 2 60 3 1 1 3 14
B-Crit 0 0 36 1 5 1 8
I-Crit 0 0 1 20 0 3 2
B-HighCrit 2 0 4 0 39 1 3
I-HighCrit 0 1 1 0 3 31 2
O 10 8 5 7 2 1 1361

Table A.13: Confusion Matrix for fold3 of the CRF model training.

Predicted
B-NonCrit I-NonCrit B-Crit I-Crit B-HighCrit I-HighCrit O

Actual

B-NonCrit 75 4 4 1 4 0 31
I-NonCrit 1 77 1 3 0 2 7
B-Crit 0 0 32 0 3 0 7
I-Crit 0 0 2 24 0 1 3
B-HighCrit 1 0 4 1 38 2 3
I-HighCrit 0 1 0 2 2 25 7
O 14 13 6 8 2 3 1299
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Table A.14: Confusion Matrix for fold4 of the CRF model training.

Predicted
B-NonCrit I-NonCrit B-Crit I-Crit B-HighCrit I-HighCrit O

Actual

B-NonCrit 64 3 3 2 0 0 17
I-NonCrit 0 54 1 4 0 0 12
B-Crit 2 0 39 1 5 2 13
I-Crit 0 2 1 42 0 3 11
B-HighCrit 5 0 5 0 36 1 2
I-HighCrit 0 0 0 0 0 23 0
O 13 11 2 5 6 4 1333

Table A.15: Confusion Matrix for fold5 of the CRF model training.

Predicted
B-NonCrit I-NonCrit B-Crit I-Crit B-HighCrit I-HighCrit O

Actual

B-NonCrit 60 1 1 0 1 0 24
I-NonCrit 2 62 0 2 0 1 12
B-Crit 2 0 35 1 2 1 3
I-Crit 0 2 1 38 0 2 1
B-HighCrit 6 0 5 0 41 4 0
I-HighCrit 0 2 0 0 2 31 2
O 7 11 4 1 3 2 1405

Table A.16: Confusion Matrix for fold6 of the CRF model training.

Predicted
B-NonCrit I-NonCrit B-Crit I-Crit B-HighCrit I-HighCrit O

Actual

B-NonCrit 52 4 3 0 2 0 24
I-NonCrit 3 55 0 1 1 0 7
B-Crit 4 0 50 0 9 2 12
I-Crit 0 1 0 43 0 4 11
B-HighCrit 1 0 2 1 35 2 2
I-HighCrit 0 1 0 2 1 36 0
O 8 9 6 8 2 3 1396

Table A.17: Confusion Matrix for fold7 of the CRF model training.

Predicted
B-NonCrit I-NonCrit B-Crit I-Crit B-HighCrit I-HighCrit O

Actual

B-NonCrit 77 5 2 0 3 0 12
I-NonCrit 1 65 0 1 0 1 3
B-Crit 1 0 27 2 3 1 4
I-Crit 0 0 1 15 0 0 1
B-HighCrit 0 0 4 0 40 0 1
I-HighCrit 0 0 0 0 1 30 0
O 18 19 5 5 3 2 1218
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Table A.18: Confusion Matrix for fold8 of the CRF model training.

Predicted
B-NonCrit I-NonCrit B-Crit I-Crit B-HighCrit I-HighCrit O

Actual

B-NonCrit 64 6 3 1 3 0 14
I-NonCrit 1 58 1 2 1 1 8
B-Crit 3 0 20 2 5 0 9
I-Crit 0 4 0 17 0 3 3
B-HighCrit 2 0 5 0 47 2 7
I-HighCrit 0 0 2 2 1 38 7
O 14 6 6 4 3 0 1389

Table A.19: Confusion Matrix for fold9 of the CRF model training.

Predicted
B-NonCrit I-NonCrit B-Crit I-Crit B-HighCrit I-HighCrit O

Actual

B-NonCrit 57 5 1 0 2 0 24
I-NonCrit 1 56 1 0 0 1 8
B-Crit 3 0 36 1 7 1 3
I-Crit 0 0 0 25 0 5 0
B-HighCrit 2 0 6 0 42 3 2
I-HighCrit 0 0 0 1 1 37 0
O 14 18 4 5 2 3 1365

Table A.20: Confusion Matrix for fold10 of the CRF model training.

Predicted
B-NonCrit I-NonCrit B-Crit I-Crit B-HighCrit I-HighCrit O

Actual

B-NonCrit 61 5 1 1 4 0 18
I-NonCrit 1 58 2 1 1 3 8
B-Crit 3 0 31 1 3 0 6
I-Crit 0 2 0 21 0 0 0
B-HighCrit 1 1 5 0 46 2 1
I-HighCrit 0 2 0 2 2 31 3
O 16 10 7 5 5 3 1399



Appendix B

Structured Perceptron Performance

Table B.1: Performance of Structured Perceptron for fold 1. Training and testing
data is random sampling with replacement.

precision recall f1-score
B-NonCrit 0.7683 0.6176 0.6848
I-NonCrit 0.8072 0.7204 0.7614
B-Crit 0.6167 0.6981 0.6549
I-Crit 0.6111 0.5641 0.5867
B-HighCrit 0.6852 0.6066 0.6435
I-HighCrit 0.6939 0.7083 0.701
avg / total 0.7198 0.6566 0.6847

Table B.2: Performance of Structured Perceptron for fold 2. Training and testing
data is random sampling with replacement.

precision recall f1-score
B-NonCrit 0.7143 0.6742 0.6936
I-NonCrit 0.7213 0.6377 0.6769
B-Crit 0.5476 0.5897 0.5679
I-Crit 0.4737 0.72 0.5714
B-HighCrit 0.7174 0.6111 0.66
I-HighCrit 0.7241 0.6176 0.6667
avg / total 0.6771 0.6419 0.6554
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Table B.3: Performance of Structured Perceptron for fold 3. Training and testing
data is random sampling with replacement.

precision recall f1-score
B-NonCrit 0.7812 0.8152 0.7979
I-NonCrit 0.8571 0.8276 0.8421
B-Crit 0.7317 0.6667 0.6977
I-Crit 0.7188 0.7667 0.7419
B-HighCrit 0.7593 0.8367 0.7961
I-HighCrit 0.8293 0.8947 0.8608
avg / total 0.7908 0.8065 0.7978

Table B.4: Performance of Structured Perceptron for fold 4. Training and testing
data is random sampling with replacement.

precision recall f1-score
B-NonCrit 0.75 0.7429 0.7464
I-NonCrit 0.7755 0.8352 0.8042
B-Crit 0.65 0.6842 0.6667
I-Crit 0.5333 0.64 0.5818
B-HighCrit 0.7105 0.6585 0.6835
I-HighCrit 0.9032 0.7368 0.8116
avg / total 0.742 0.7426 0.7405

Table B.5: Performance of Structured Perceptron for fold 5. Training and testing
data is random sampling with replacement.

precision recall f1-score
B-NonCrit 0.7949 0.6458 0.7126
I-NonCrit 0.7671 0.7179 0.7417
B-Crit 0.661 0.629 0.6446
I-Crit 0.7174 0.6875 0.7021
B-HighCrit 0.6596 0.6739 0.6667
I-HighCrit 0.7105 0.75 0.7297
avg / total 0.7308 0.6776 0.7018
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Table B.6: Performance of Structured Perceptron for fold 6. Training and testing
data is random sampling with replacement.

precision recall f1-score
B-NonCrit 0.7952 0.6667 0.7253
I-NonCrit 0.7808 0.7308 0.755
B-Crit 0.7083 0.6939 0.701
I-Crit 0.8519 0.6389 0.7302
B-HighCrit 0.7018 0.7843 0.7407
I-HighCrit 0.7143 0.8824 0.7895
avg / total 0.7639 0.7205 0.7376

Table B.7: Performance of Structured Perceptron for fold 7. Training and testing
data is random sampling with replacement.

precision recall f1-score
B-NonCrit 0.72 0.6279 0.6708
I-NonCrit 0.8732 0.9254 0.8986
B-Crit 0.6667 0.5652 0.6118
I-Crit 0.5882 0.8 0.678
B-HighCrit 0.7344 0.7231 0.7287
I-HighCrit 0.7778 0.7568 0.7671
avg / total 0.7433 0.727 0.7323

Table B.8: Performance of Structured Perceptron for fold 8. Training and testing
data is random sampling with replacement.

precision recall f1-score
B-NonCrit 0.6966 0.6739 0.6851
I-NonCrit 0.8485 0.7 0.7671
B-Crit 0.8305 0.6806 0.7481
I-Crit 0.8158 0.6596 0.7294
B-HighCrit 0.8333 0.7609 0.7955
I-HighCrit 0.7931 0.8519 0.8214
avg / total 0.7963 0.7033 0.7454
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Table B.9: Performance of Structured Perceptron for fold 9. Training and testing
data is random sampling with replacement.

precision recall f1-score
B-NonCrit 0.7037 0.76 0.7308
I-NonCrit 0.7612 0.7846 0.7727
B-Crit 0.75 0.65 0.6964
I-Crit 0.7 0.5385 0.6087
B-HighCrit 0.6774 0.9333 0.785
I-HighCrit 0.6809 0.8889 0.7711
avg / total 0.7173 0.7562 0.7301

Table B.10: Performance of Structured Perceptron for fold 10. Training and testing
data is random sampling with replacement.

precision recall f1-score
B-NonCrit 0.6932 0.7011 0.6971
I-NonCrit 0.759 0.6702 0.7119
B-Crit 0.7302 0.7797 0.7541
I-Crit 0.7632 0.6444 0.6988
B-HighCrit 0.6739 0.775 0.7209
I-HighCrit 0.5319 0.9615 0.6849
avg / total 0.7119 0.7265 0.7127



Appendix C

Two Class system for CRF model

In the two class model, the criticality levels are reduced from three levels to two. High-

critical and critical level phrases are combined into one critical level. Such reduction

in critical level value increased the accuracy of the model and generalized the model

further. The performance of the two class CRF model and the confusion matrix of

such model is given in below tables.

Table C.1: Performance of the CRF two class model with critical and non-critical
phrases extracted for fold 1

precision recall f1-score
B-NonCrit 0.8194 0.7108 0.7613
I-NonCrit 0.7922 0.8026 0.7974
B-Crit 0.93 0.8692 0.8986
I-Crit 0.9067 0.85 0.8774
avg / total 0.8678 0.8121 0.8385

Table C.2: Performance of the CRF two class model with critical and non-critical
phrases extracted for fold 2

precision recall f1-score
B-NonCrit 0.85 0.6355 0.7273
I-NonCrit 0.8158 0.7381 0.775
B-Crit 0.7885 0.82 0.8039
I-Crit 0.7397 0.8438 0.7883
avg / total 0.8047 0.7493 0.7712
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Table C.3: Performance of the CRF two class model with critical and non-critical
phrases extracted for fold 3

precision recall f1-score
B-NonCrit 0.8261 0.6387 0.7204
I-NonCrit 0.8125 0.8571 0.8342
B-Crit 0.7879 0.8571 0.8211
I-Crit 0.7049 0.6418 0.6719
avg / total 0.7912 0.7473 0.7646

Table C.4: Performance of the CRF two class model with critical and non-critical
phrases extracted for fold 4

precision recall f1-score
B-NonCrit 0.7805 0.7191 0.7485
I-NonCrit 0.7941 0.7606 0.777
B-Crit 0.8654 0.8108 0.8372
I-Crit 0.7412 0.7683 0.7545
avg / total 0.8008 0.7677 0.7835

Table C.5: Performance of the CRF two class model with critical and non-critical
phrases extracted for fold 5

precision recall f1-score
B-NonCrit 0.686 0.6782 0.6821
I-NonCrit 0.7531 0.7722 0.7625
B-Crit 0.8416 0.85 0.8458
I-Crit 0.814 0.8642 0.8383
avg / total 0.776 0.7925 0.784

Table C.6: Performance of the CRF two class model with critical and non-critical
phrases extracted for fold 6

precision recall f1-score
B-NonCrit 0.7286 0.6 0.6581
I-NonCrit 0.7671 0.8358 0.8
B-Crit 0.8649 0.8 0.8312
I-Crit 0.85 0.8586 0.8543
avg / total 0.812 0.7763 0.792
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Table C.7: Performance of the CRF two class model with critical and non-critical
phrases extracted for fold 7

precision recall f1-score
B-NonCrit 0.8039 0.8283 0.8159
I-NonCrit 0.7444 0.9437 0.8323
B-Crit 0.8778 0.9518 0.9133
I-Crit 0.8491 0.9375 0.8911
avg / total 0.8175 0.907 0.8586

Table C.8: Performance of the CRF two class model with critical and non-critical
phrases extracted for fold 8

precision recall f1-score
B-NonCrit 0.7683 0.6923 0.7283
I-NonCrit 0.8169 0.8056 0.8112
B-Crit 0.7692 0.7843 0.7767
I-Crit 0.8289 0.8182 0.8235
avg / total 0.7925 0.7719 0.7816

Table C.9: Performance of the CRF two class model with critical and non-critical
phrases extracted for fold 9

precision recall f1-score
B-NonCrit 0.7368 0.6292 0.6788
I-NonCrit 0.6835 0.806 0.7397
B-Crit 0.8692 0.8774 0.8732
I-Crit 0.7528 0.971 0.8481
avg / total 0.7718 0.8157 0.7887

Table C.10: Performance of the CRF two class model with critical and non-critical
phrases extracted for fold 10

precision recall f1-score
B-NonCrit 0.759 0.7 0.7283
I-NonCrit 0.7632 0.7838 0.7733
B-Crit 0.7876 0.89 0.8357
I-Crit 0.6591 0.9206 0.7682
avg / total 0.7495 0.8196 0.779



70

Table C.11: Confusion matrix for two class CRF model for fold 1

Predicted

Actual

B-NonCrit I-NonCrit B-Crit I-Crit O
B-NonCrit 59 4 1 1 18
I-NonCrit 2 61 0 1 12
B-Crit 2 0 93 1 11
I-Crit 0 3 3 65 9
O 9 9 4 2 1382

Table C.12: Confusion matrix for two class CRF model for fold 2

Predicted

Actual

B-NonCrit I-NonCrit B-Crit I-Crit O
B-NonCrit 68 6 6 0 27
I-NonCrit 1 62 3 6 12
B-Crit 2 0 81 5 12
I-Crit 0 1 5 52 6
O 9 7 9 8 1361

Table C.13: Confusion matrix for two class CRF model for fold 3

Predicted

Actual

B-NonCrit I-NonCrit B-Crit I-Crit O
B-NonCrit 75 4 8 1 31
I-NonCrit 1 77 1 5 7
B-Crit 1 0 79 2 9
I-Crit 0 1 4 43 19
O 14 13 8 10 1300

Table C.14: Confusion matrix for two class CRF model for fold 4

Predicted

Actual

B-NonCrit I-NonCrit B-Crit I-Crit O
B-NonCrit 62 3 3 2 19
I-NonCrit 0 54 1 4 12
B-Crit 4 0 90 6 11
I-Crit 0 0 1 63 18
O 15 10 9 10 1330
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Table C.15: Confusion matrix for two class CRF model for fold 5

Predicted

Actual

B-NonCrit I-NonCrit B-Crit I-Crit O
B-NonCrit 59 3 5 1 19
I-NonCrit 2 61 0 5 11
B-Crit 9 0 84 5 2
I-Crit 0 6 3 69 3
O 15 12 7 6 1393

Table C.16: Confusion matrix for two class CRF model for fold 6

Predicted

Actual

B-NonCrit I-NonCrit B-Crit I-Crit O
B-NonCrit 51 4 4 0 26
I-NonCrit 4 55 1 1 6
B-Crit 7 0 97 4 12
I-Crit 0 4 1 85 9
O 8 9 9 10 1396

Table C.17: Confusion matrix for two class CRF model for fold 7

Predicted

Actual

B-NonCrit I-NonCrit B-Crit I-Crit O
B-NonCrit 82 4 4 0 9
I-NonCrit 1 67 0 1 2
B-Crit 1 0 79 1 2
I-Crit 0 0 2 45 1
O 18 19 5 6 1222

Table C.18: Confusion matrix for two class CRF model for fold 8

Predicted

Actual

B-NonCrit I-NonCrit B-Crit I-Crit O
B-NonCrit 63 6 8 1 13
I-NonCrit 1 58 2 4 7
B-Crit 4 0 82 4 12
I-Crit 0 1 2 65 9
O 14 6 11 4 1387
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Table C.19: Confusion matrix for two class CRF model for fold 9

Predicted

Actual

B-NonCrit I-NonCrit B-Crit I-Crit O
B-NonCrit 57 4 3 0 25
I-NonCrit 1 56 1 1 8
B-Crit 4 0 93 5 4
I-Crit 0 1 1 67 0
O 15 18 9 16 1353

Table C.20: Confusion matrix for two class CRF model for fold 10

Predicted

Actual

B-NonCrit I-NonCrit B-Crit I-Crit O
B-NonCrit 63 5 5 1 16
I-NonCrit 1 58 3 4 8
B-Crit 3 1 87 3 6
I-Crit 0 2 2 56 3
O 18 12 14 22 1379



Appendix D

Feature Weights on CRF model

This section shows the detailed positive and negative feature weight values for each

criticality levels on training the CRF model.

Table D.1: Top ten positive features for CRF model. The higher the weight, the
higher the significance of the feature in deciding the high-critical class.

B-HIGH CRIT I-HIGH CRIT
Feature Weight Feature Weight
’highFlag:True’ 1.83799 ’word2VecSimilarityPrev:0.999597393253’ 1.500624

’nextWord1:can’ 1.775523
’nextPos:superior
’

1.458598

’prevWord1:lobe’ 1.540945 ’highFlag:True’ 1.41717
’suffix1:is’ 1.485263 ’word2VecSimilarityPrev:0.999418976773’ 1.320887
’prevWord1:a’ 1.464373 ’suffix1:in’ 1.112949
’prevWord1:breath’ 1.379365 ’prevWordPos1:prep’ 0.830228
’negExPrev:’ 1.320104 ’negExPrev:’ 0.7017
’opacity’ 1.279762 ’prevWord1:chest’ 0.671723
metaConcept:’Sign
or Symptom’, ’Pathologic Function’

1.229902 ’word2VecSimilarityPrev:0.99961038638’ 0.633416

’suffix1:us’ 1.023736 ’prevWordPos1:det’ 0.620302
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Table D.2: Top ten negative features for CRF model. The lower the weight, the
higher the significance of the feature in deciding against the high-critical class.

B-HIGH CRIT I-HIGH CRIT
Feature Weight Feature Weight
’nextWordPos1:adj’ -0.489813 ’pos tag:adj’ -0.41624
’prevWordPos1:det’ -0.491402 ’nextWord1:at’ -0.45768
’pref2:bre’ -0.49752 ’pos tag:verb’ -0.47826
’critFlag:True’ -0.823967 ’pref1:le’ -0.50878

’nonCritFlag:True’ -0.934061
metaConcept:’Qualitative
Concept’

-0.56377

’prevWordPos1:adj’ -0.955369 ’prevWord1:disease’ -0.59948
’nextNeg:chronic
’

-1.120375 ’nextWordPos1:noun’ -0.73814

metaConcept:’Spatial
Concept’

-1.132527 ’pref1:me’ -1.08589

’isHIghCrit:’ -1.930719 ’highFlag:’ -1.67584
’highFlag:’ -2.28174 ’isHIghCrit:’ -1.84714

Table D.3: Top ten positive features for CRF model. The higher the weight, the
higher the significance of the feature in deciding the critical class.

B-Crit I-Crit
Feature Weight Feature Weight
’nextNeg:chronic
’

1.537657 ’critFlag:True’ 1.868761

’prevWord1:mild’ 1.185485 ’pos tag:noun’ 1.27514
metaConcept:’Pathologic
Function’, ’Finding’

1.174125 ’nextWord1:unchanged’ 1.135037

’nextWord1:areas’ 1.143191 ’word2VecSimilarityPrev:0.999558585312’ 0.977696
’prevWord1:known’ 1.14195 ’word2VecSimilarityPrev:0.999675685209’ 0.966688
’critFlag:True’ 1.136861 ’nextWord1:has’ 0.77849
’nextWordPos1:modal’ 1.081014 ’nextWord1:most’ 0.652714
’prevWord1:Mild’ 1.053178 ’nextWord1:in’ 0.574062
’nextWord1:thickening’ 1.04016 ’word2VecSimilarityPrev:0.999549075206’ 0.571464
’prevWord1:The’ 0.972441 ’silhouette’ 0.559219
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Table D.4: Top ten negative features for CRF model. The lower the weight, the
higher the significance of the feature in deciding against the critical class.

B-Crit I-Crit
Feature Weight Feature Weight
’pref1:ch’ -0.49806 ’pos tag:adj’ -0.39164
’word2VecSimilarityPrev:0.999468437275’ -0.52439 ’negExNext:’ -0.45231
’pref2:con’ -0.53231 ’pref1:lu’ -0.46868
’nextWord1:and’ -0.7035 ’suffix1:al’ -0.50963
’nonCritFlag:True’ -0.72214 ’prevWord1:unfolding’ -0.57372
’prevWord1:increased’ -0.73806 ’nonCritFlag:True’ -0.60042
’suffix1:le’ -0.87009 ’pref1:pr’ -0.60831

’nextWord1:lung’ -0.96504
metaConcept:’Spatial
Concept’

-0.73183

’critFlag:’ -1.53158 ’isCrit:’ -0.91812
’isCrit:’ -2.73757 ’critFlag:’ -1.74695

Table D.5: Top ten positive features for CRF model. The higher the weight, the
higher the significance of the feature in deciding the non-critical class.

B-NON CRIT I-NON CRIT
Feature Weight Feature Weight

’word2VecSimilarityPrev:0.999108931789’ 1.754375
’nextPos:improvement
’

1.441279

’negExPrev:1’ 1.691163 ’nextWord1:pattern’ 1.38209
’prevWord1:consolidation’ 1.635556 ’nextWord1:base’ 1.313811
’nextPos:appreciated
’

1.623188 ’nonCritFlag:True’ 1.106649

’prevWord1:based’ 1.546116
’nextNeg:no no
’

1.059263

’nextWord1:or’ 1.5279 ’prevWord1:well’ 1.046057
’prevWord1:prior’ 1.481233 ’word2VecSimilarityPrev:0.999179613068’ 1.015431
’prevWord1:definite’ 1.448797 ’nextWord1:are’ 1.010685
’prevWord1:or’ 1.299454 ’prevWord1:chest’ 1.005939
’prevWord1:No’ 1.254985 ’pref1:ch’ 0.915598
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Table D.6: Top ten negative features for CRF model. The lower the weight, the
higher the significance of the feature in deciding against the non-critical class.

B-NON CRIT I-NON CRIT
Feature Weight Feature Weight
’prevWord1:a’ -0.715994 ’word2VecSimilarityPrev:0.998901530601’ -0.548026
’suffix1:ly’ -0.763041 ’nextWord1:mediastinum’ -0.61556
’negExPrev:15’ -0.766513 ’pref1:ma’ -0.69287
’pref2:int’ -0.802672 ’suffix1:um’ -0.717939
’suffix1:er’ -0.847081 ’nextWord1:effusion’ -0.721596
’word2VecSimilarityPrev:0.999610326313’ -0.933249 ’nextWord1:has’ -0.738964
’prevWordPos1:adj’ -1.007836 ’nextWordPos1:prep’ -0.954095
’prevWord1:with’ -1.074366 ’nonCritFlag:’ -0.977529
’suffix1:ma’ -1.145215 ’prevWord1:mediastinal’ -1.365657
’isNonCrit:’ -1.424129 ’isNonCrit:’ -1.372418



Appendix E

Radiology CRF model trained on abdominal dataset

To check the effectiveness of the features and the algorithm, we trained the CRF

model with same features on top of another dataset. The new dataset was abdomi-

nal data de-identified of patient information and spell and error corrected using our

algorithm. The training data was smaller than the number of reports we trained for

the chest data set. We trained the abdominal dataset with 104 reports tagged by the

physician using our tagging interface.

Even though the number of training data was considerably less than the chest

X-ray reports, the model was able to perform well and we were able to obtain an

average f1-score of 0.71 with an impressive precision of 0.75. The performance scores

of he abdominal dataset trained using CRF model is shown in Tables E.1 E.2 below.

Table E.1: performance of the CRF model trained on 104 abdominal radiology re-
ports. Performance is measured using ten fold cross validation.

precision recall f1-score
B-NonCrit 0.79378 0.74487 0.76779
I-NonCrit 0.75198 0.73469 0.73851
B-Crit 0.66284 0.55156 0.601
I-Crit 0.7299 0.6533 0.6877
B-HighCrit 0.78317 0.72231 0.74808
I-HighCrit 0.76652 0.68206 0.70839
avg / total 0.75403 0.68609 0.71372
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Table E.2: Confusion matrix for CRF model trained on abdominal dataset.

Predicted
B-NonCrit I-NonCrit B-Crit I-Crit B-HighCrit I-HighCrit O

Actual

B-NonCrit 49 4 1 0 1 0 11
I-NonCrit 3 95 0 2 0 2 30
B-Crit 1 0 22 4 2 0 10
I-Crit 0 1 4 75 0 4 32
B-HighCrit 1 0 1 0 26 2 6
I-HighCrit 0 2 0 1 2 51 21
O 8 26 5 20 2 8 1369



Appendix F

Software tools and Packages used

Table F.1: Python packages used for this research.

Package Module Description
nltk.corpus stopwords Used for removing stop words
nltk.stem.porter PorterStemmer For stemming a given word

pickle -
Storing python objects as dat
files. Useful for storing tagged data and for saving feature matrix.

csv -
For reading csv formated files,
Radiology datasets stored in csv format by default.

subprocess -
Executing unix command line
arguments from python program. Useful for executing MetaMap tool from the
python program.

re - regular expression processing.
nltk.stem WordNetLemmatizer Lemmatize given word

sklearn.metrics classification report, confusion matrix
Creating confusion matrix for
the model

random - Randomized sample selection
sklearn crfsuite - crf suite library

sklearn crfsuite scorers,metrics
For calculating
performance metrics

sklearn.grid search RandomizedSearchCV
optimizing parameter set for the
model

seqlearn.perceptron StructuredPerceptron
Structured Perceptron model
implementation

sklearn cross validation cross validation package
os - file operations

cgi,cgitg -
javascript to python value
passing

sklearn.linear model SGDClassifier
SGD Classifier for report
classification

sklearn.feature extraction.text CountVectorizer,TfidfTransformer TF idf score generation
sklearn.svm LinearSVC Linear SVM implementation
sklearn.ensemble RandomForestClassifier RF classifier
sklearn.datasets load svmlight file loading files to dataset
sklearn preprocessing Preprocessing of dataset values

Some of the other external tools used on this research are:

• MedPost SKR Tagger - This is an external Part of Speech tagging tool developed

for tagging medical text data. The full version and details can be found at

https://metamap.nlm.nih.gov/MedPostSKRTagger.shtml

• MetaMap - Another tool used in this research is the MetaMap. This tool

provides the UMLS tags and concept of a given word. The tool is installed as a

local instance. Complete details can be found at https://metamap.nlm.nih.gov/
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Appendix G

Copyright Notice

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise,

or republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.
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