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ABSTRACT 
 
Bitter taste receptors (Tas2Rs) are a subfamily of G-protein coupled receptors expressed 

not only in the oral cavity but also in several extra-oral tissues and disease states. For 

example, mammary epithelial cells express Tas2Rs, and their expression is 

downregulated in breast cancer. Tas2R expression was also observed in colon and 

pancreatic cancer, among others. As several natural bitter compounds from plants have 

displayed beneficial effects in ovarian cancers, the expression of several Tas2R subtypes 

was characterized in ovarian cell lines and patient tissue samples and their functionality 

was determined. Our qPCR analysis of 5 TAS2Rs shows that mRNA expression of 

several Tas2Rs was significantly reduced in ovarian cancer cells when compared to 

healthy tissue. Tas2R14 was also shown to be expressed using immunohistochemistry 

and immunocytochemistry on epithelial ovarian carcinoma tissues. Tas2R proteins were 

also expressed in various ovarian cancer cell lines and their expression was decreased 

with receptor-specific siRNAs. Noscapine stimulation of ovarian cancer cells resulted in 

an effect on apoptosis that was receptor-dependent. Our results demonstrate that Tas2Rs 

are expressed in ovarian cancer and their activation has an impact on cell survival. 
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CHAPTER 1     INTRODUCTION 

 

1.1     G-PROTEIN COUPLED RECEPTORS 

 

G-protein coupled receptors (GPCRs) comprise the largest family of cell surface 

signaling receptors and one of the largest protein superfamilies encoded in the human 

genome, and mediate many neurological, physiological and environmentally activated 

responses1-3. The expansive GPCR superfamily is not only large in number, but 

exceptionally diverse in signal recognition. Nearly half of all GPCR genetic sequences in 

humans encode odorant and pheromone receptors, which are responsible for perceiving 

scent molecules4; however, GPCRs may also recognize photons, hormones, 

neurotransmitters and small molecules among others5. Presently, GPCR drugs comprise 

an estimated 30% of all pharmaceuticals on the market6 and two out of the top ten selling 

drugs in 2015, aripiprazole and fluticasone-salmeterol, act on GPCRs7. Given that 

GPCRs are present on cells of nearly every organ system, GPCRs are thus of interest in 

the development of novel drug therapies8.  

 

GPCRs are evolutionarily conserved across the tree of eukaryotes9, 10. Indeed, analyses of 

the genomes of early eukaryotic species such as the diatom Thalassiosira pseudonana 

and the placozoan Trichoplax adhaerens uncovered vertebrate-like GPCR repertoires 

with 99.4-99.8% sequence homology to those encoded in the human genome11. This high 

level of sequence identity suggests that GPCRs changed little since their emergence in 
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eukaryotic genomes, highlighting once more the overall importance of GPCRs in cellular 

signaling. 

 

GPCR activity is generally explained through the canonical model of GPCR signaling. In 

this model, inactive GPCRs are associated with a heterotrimeric Gabg protein complex 

on the cytoplasmic side of the membrane composed of alpha (a), beta (b) and gamma (g) 

subunits bound to low energy guanosine diphosphate (GDP, Figure 1). Upon binding an 

agonist molecule, the GPCR is activated and, acting as a guanine nucleotide exchange 

factor (GEF), exchanges a GDP molecule associated with the Ga subunit for a GTP 

molecule12. Once bound to GTP, the now active Ga and Gbg subunits functionally and/or 

physically dissociate and go on to regulate effector molecules such as adenylate cyclase, 

phospholipases C and D, phosphoinositide 3-kinase (PI3K) and intracellular calcium12. 

These effector molecules have many targets, and depending on which Ga subtype is 

activated through GPCR ligand binding, can positively regulate (activate) or negatively 

regulate (inactivate) many downstream signaling cascades involved in cellular 

communication, growth, survival and cell death13. Thus, a thorough understanding of 

GPCR signaling in a given tissue or disease can further the development of targeted 

pharmaceutical strategies. 
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Figure 1 GPCR-mediated signaling pathways. Upon activation by extracellular 
ligands, GPCRs can regulate key biological functions, such as cell 
proliferation, metabolism, secretion, motility, tumour progression, 
invasion, and metastasis, through signaling pathways mediated by the four 
G protein α subunits (Gs, Gi, Gq/11, and G12/13). Adapted with permission 
from Humana Press – Cancer Genomics and Proteomics: Methods and 
Protocols (Wu et al., 2012)14, Copyright © 2017. 
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1.2     GPCR CLASSES 

 

GPCRs, as mentioned previously, are highly similar across eukaryotic species11. Despite 

this, there exists a high level of structural and biochemical variability among the GPCR 

superfamily, and it is due to this variation that we observe how these 7 transmembrane-

spanning (7TM) cell surface receptors can regulate highly diverse signaling cascades. 

Developing classification systems to encompass all GPCRs has thus been difficult, and 

both previous and current systems have relied upon comparison of amino acid sequences, 

structural features, ligand recognition motifs and physiological signaling partners15, 16. 

Attwood and Findlay were the first to introduce a classification system in 1993 by 

developing a sequence-based “fingerprint” technique aimed at characterizing the 7TM 

hydrophobic domains of GPCRs and sorting them into several “clans” based on their 

sequence homology17, 18. The classification system commonly used today can trace its 

roots to Kolakowski’s seven membrane classification system, created one year following 

Attwood and Findlay’s, based on sequence homology19. In Kolakowski’s now defunct 

database GCRDb, all G-protein binding receptors were classified through an A-F 

classification, with an additional class, O, reserved for 7TM proteins that do not associate 

with G-proteins. 

 

Currently, a six-class version (A-F) of the Kolakowski system is used to classify GPCRs. 

This six class version is useful in that it encompasses all eukaryotic GPCRs; however, 

some classes such as the Class D fungal pheromone receptors and the Class E cAMP 

receptors (that to-date have been found only in lower eukaryotic species) are irrelevant in 
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the study of human specific GPCRs. Thus, the GRAFS classification system (an acronym 

for Glutamate, Rhodopsin, Adhesion, Frizzled/Tas2 and Secretin) was developed to more 

accurately represent the signaling systems encoded in the human genome2.  

 

The rhodopsin-like receptors are the largest class of GPCRs encompassing some ~ 670 

receptors, and includes all opioid, cannabinoid, dopamine and olfactory receptors20. Most 

rhodopsin-like receptors have short N-termini without many conserved domains, and 

bind a large variety of ligands such as peptides and amines. Rhodopsin-like receptors are 

also the class of GPCRs that are the most highly targeted in clinical applications21.  

Secretin-like receptors are smaller in number and include hormone receptors such as 

those that bind calcitonin, parathyroid hormone, glucagon and their namesake secretin22, 

while those of the glutamate receptor family include GPCRs involved in 

neurotransmission such as metabotropic glutamate receptors, sweet and umami taste 

receptors (Tas1R1-3) and the calcium sensing receptor (CASR)21, 23. Finally, the 

frizzled/Tas2R receptors includes those receptors that are important for embryonic 

development and taste perception12. To-date, there have been no therapeutics designed 

and approved that target frizzled receptors. This figure may well soon change as several 

of these receptors have been implicated in tumourigenesis24, 25, indicating their potential 

as targets for the development of novel chemotherapeutics. 
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1.3     GPCR SIGNALING THROUGH G PROTEINS  

 

Human G proteins are divided into four families based on sequence similarity and 

signaling output: Gs, Gq, G12/13 and Gi/o
26. Gs proteins initiate a stimulatory cascade, and 

their activity ultimately leads to the activation of adenylate cyclase (AC), an enzyme that 

catalyzes the conversion of ATP to the second messenger cyclic AMP (cAMP). 

Increasing intracellular levels of cAMP leads to the activation of protein kinase A (PKA), 

a cAMP-dependent protein kinase. Once activated, PKA can then affect downstream 

messengers that regulate cell proliferation and modulate the cell cycle through the 

phosphorylation and activation of transcription factors such as cAMP-responsive 

binding-element protein (CREB) and the RAS/ERK pathway proteins27.  

 

The initiation of Gq-coupled GPCR signaling causes a different intracellular cascade to be 

activated. Once bound to GTP, active Gαq dissociates from the Gβγ heterodimer and 

activates phospholipase C (PLC). PLC then catalyzes the hydrolysis of 

phosphatidylinositol 4,5-biphosphate (PIP2), a membrane-associated phospholipid28, into 

inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG). Free IP3 then interacts with 

IP3 receptors on the endoplasmic reticulum (ER) and stimulates the release of Ca2+ into 

the cytoplasm. Once bound to cytosolic Ca2+, DAG stimulates the activation of protein 

kinase C (PKC)29. Activated PKC can then phosphorylate and activate many downstream 

signaling proteins such as Raf, NF-κB and p3830. Receptors that often couple to Gαq will 

sometimes display coupling with G12/13 G proteins, the third and least understood of the G 

protein subfamilies. The initial discovery of the G12/13 subfamily in several vertebrate and 
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invertebrate species31, 32 prompted structure function analysis to determine their 

downstream signaling partners, the most well characterized of those being the RhoGEF 

signaling cascade33. Once activated, Gα12/13 will activate RhoGEFs, leading to the 

exchange of GDP for GTP and activating Rho, a member of the Ras superfamily of 

GTPases. Activated Rho then contributes to the regulation of actin polymerization and 

stress fiber formation, affecting cell migration, adhesion and contraction34. 

 

Finally, the fourth subfamily of G proteins, the Gi/o subfamily, consists of eight members 

that propagate a signaling cascade which inhibits AC, leading to decreased levels of 

cAMP. This lowered cellular level of cAMP leads to a reduction in active PKA and 

negatively regulates PKA signaling. Interestingly, Gi/o coupled signaling can also affect 

ERK signaling. Active GTP-bound Gαi/o can interact with a GTPase activating protein 

(GAP) of the Ras-family protein Rap1 called Rap1GAP, leading to a decrease in the 

amount of GTP-bound Rap1. The decrease in GTP-Rap1 then leads to the inactivation of 

the Ras-MAPK-ERK signaling pathway35. The inhibitory effect of Rap1 on the ERK 

signaling cascade remains controversial, however, as Rap1 has also been shown to be 

involved as an activator of the MAPK/ERK cascade and not involved in its activation as 

well36-38. Despite these conflicting findings, it remains clear that the effects of G protein 

signaling are wide ranging and play essential roles in mediating important chemosensory 

processes.  
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1.4     BITTER TASTE RECEPTORS (TAS2RS) 

 

Mammals can detect and interpret five main taste qualities: sweet, salty, sour, umami, 

and bitter, with a possible sixth modality (fat) having been recently identified39. Like all 

sensory systems, those involved in the detection of taste are thought to have evolved as a 

tool to enhance survival in new environments and to increase fitness. Sour tastes signify 

the presence of organic acids while salty taste is generated mostly by sodium, both of 

which are perceived through the activation of ion channels by proton and Na+ ion 

gradient formation across taste receptor cell membranes, respectively40. Sweet taste 

receptors detect carbohydrates and sugars and indicate foods with high caloric content, 

while umami taste sensations are mediated by the detection of L-amino acids such as 

monosodium glutamate (MSG)40. These sweet and umami ligands are detected by the 

taste 1 receptor (Tas1R) family of glutamate-like GPCRs, sweet taste sensation being 

induced by the heterodimerization of the Tas1R2/Tas1R3 monomers while umami taste is 

detected by Tas1R1/Tas1R3 heteromers41. 

 

Bitter taste receptors are encoded by the taste 2 receptor gene subfamily (Tas2R) and fall 

under the frizzled family of GPCRs. As their name implies, they are involved in the 

perception of natural and artificial bitter substances. The molecular basis of bitter taste 

detection is thought to have evolved for more practical purposes. Plants often produce 

poisonous secondary metabolites to protect themselves from ingestion by predators, and 

mammals, birds and other animals have evolved the ability to detect which plants and 

plant material are and are not safe to consume. Since a large proportion of poisonous 
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compounds produced by plants are bitter in taste, the ability to sense bitter taste would 

have proved to be advantageous in avoiding harm. However, the correlation between 

toxicity and bitterness is complicated. Many bitter compounds, such as those found in 

coffee, beer and broccoli, are not toxic at concentrations typically consumed, while others 

even present health benefits such as chemoprotection42. 

 

The molecular components involved in the perception of bitter taste had not been known 

or understood until the early 2000s; until then it had only been hypothesized that there 

must exist a large family of genes whose products were able to detect bitter compounds, 

as the chemical entities responsible for evoking bitter taste are structurally diverse43. The 

first biochemical evidence to prove the existence of these molecules came from 

Chandrashekar et al.44, who used a heterologous expression system to express three 

candidate taste receptors, mTas2r5 and mTas2r8 from mice, and hTas2R4 from humans, 

in modified HEK-293A cells. They showed that cells expressing both the mTas2r5 

receptor and the G protein Gα15 responded specifically to cycloheximide, a compound 

that is exceptionally aversive to mice due to its bitter taste, through a G-protein coupled 

response resulting in the release of endogenous Ca2+ from internal stores. Additionally, 

by assaying a selection of 11 human Tas2Rs, hTas2R4 was found to respond significantly 

to high levels of denatonium benzoate and 6-n-propyl-2-thiouracil (PROP), and was 

found to be 70% identical in sequence to the mouse bitter receptor mTas2r8. To 

determine whether mTas2r5 receptor polymorphisms had any effect on ligand binding or 

corresponded to the cycloheximide-tasting locus, three previously characterized 

cycloheximide taster strains (i.e. a mouse strain whose members are sensitive to the taste 
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of cycloheximide) and one non-taster strain mTas2r5 sequences were isolated and 

compared to the mTas2r5 sequence in DBA/2J taster and C57BL/6 non-taster mice44. It 

was found that all the taster strains had the same mTas2r5 alleles as the DBA/2J strain 

and that all the non-tasters harboured the same alleles as those found in the C57BL/6 

strain; additionally, the non-taster strains exhibited a change in cycloheximide sensitivity 

compared to the taster strains, indicating that mTas2r5 is indeed a detector of the bitter 

ligand cycloheximide. Coupled with the finding that mTas2r5 associates with the taste 

transduction G-protein gustducin, the authors demonstrated that the TAS2R family of 

GPCRs is essential in the transduction of bitter taste stimuli. 
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Figure 2 The five taste modalities and their receptors. Umami, sweet, and bitter 
taste receptors are members of the GPCR family, while salt taste 
perception is mediated by epithelial sodium channels and sour taste 
perception is mediated by acidic compounds acting at the PKD2L1 
receptor. The sixth proposed taste modality, fat, is pictured with the 
GPR120 receptor, which has been implicated in its function along with 
GPR40. Reprinted with permission from Springer: Encyclopedia of 
Signaling Molecules (Martin & Dupré, 2016)45, Copyright © 2017. 
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GPR40. Reprinted with permission from Springer: Encyclopedia of 
Signaling Molecules (Martin & Dupré, 2016)45, Copyright © 2017. 
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1.5     EVOLUTION OF TAS2RS IN VERTEBRATE SPECIES 

 

1.5.1  Tas2R Repertoires 

 

The dynamic evolution of bitter taste receptors has been documented in the past using 

comparative genomics and phylogeny-based methods to detect gains and losses across 

vertebrates, teleost fish, cetaceans, and other species. Feng et al.46 found evidence of 

massive losses of Tas2R and Tas1R genes in their analysis of six toothed-whale species 

and five baleen species, such that all three members of the Tas1R gene family and 10 

Tas2R receptor genes were pseudogenized, except for Tas2R16 in three baleen whale 

species. Massive pseudogenization or absence of bitter taste receptor genes have also 

been found in teleost fish47. These discoveries have been explained by a theory positing 

that vertebrate bitter taste receptor gene evolution was heavily influenced by 

environmental factors, namely due to the changing feeding behaviors of animals48. Thus, 

herbivorous species of animals would most likely encode and express the largest number 

of bitter taste receptors as their diets consist of many more bitter molecule-containing 

foods than omnivores or carnivores. As for the major gene losses in aquatic species such 

as whales and fish, several other reasons have been presented, among them the notion 

that the high concentration of sodium in the ocean would conceal any bitter tastant that 

could present itself to taste receptor cells in the oral cavity and that engulfing food whole 

may have rendered their taste perceiving machinery obsolete46. However, a universal 

correlation does not exist between dietary habits and TAS2R repertoire. For example, the 

coelacanth species Latimeria chalumnae exhibits a large collection of bitter taste 
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receptors (58)47. Coelacanths not only have the largest repertoire of bitter taste receptors 

among aquatic vertebrates but also one of the largest repertoires among other vertebrates, 

alongside frogs49, guinea pigs50 and horses with 61, 69 and 55 receptor genes, 

respectively.  

 

In a recent review, Behrens and Meyerhof 51 outline several reasons as to why these 

observed correlations between diet and Tas2R repertoire are not always observed. First, 

some herbivorous species may have developed better methods of digesting bitter or toxic 

metabolites, potentially leading to losses of bitter taste receptor genes without negatively 

impacting overall fitness. The next two points relate to the relatively mild correlation 

between bitterness and toxicity52; since not all bitter substances are toxic, it would be 

expected that mild losses and gains of Tas2R genes might not necessarily influence 

survival. Additionally, since some bitter compounds can improve the health of animals, 

seeking behaviors would have had a dynamic effect on shaping their bitter taste receptor 

gene repertoires. Finally, the ever-expanding list of extra oral bitter taste receptors that 

have been identified in non-gustatory tissues has muddied scientists’ abilities to draw 

relationships between the two variables, as Tas2Rs may have roles beyond the perception 

of bitter taste. 

 

1.5.2  In- and Between-Species Conservation of Tas2Rs 

 

The human bitter taste receptor family consists of 43 TAS2R genes (around 40 % of 

which are pseudogenes), most which are found in two multigene clusters; 10 gene 
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sequences on chromosome 7, and 20 on chromosome 12, while only TAS2R1 is encoded 

on chromosome 553. Interestingly, the organization of mTas2r sequences in the mouse 

genome very closely resembles that of humans, where two clusters of mTas2r genes of 10 

and 29 sequences are encoded on chromosome 6. The conservation of these motifs has 

led to the suggestion that the arrangement of TAS2R gene clusters was determined prior 

to the divergence of primates54. 

 

The Tas2R family of receptors display a low degree of sequence similarity with Class A/ 

rhodopsin-like GPCRs55. As such, they were classified with the Frizzled family of 

GPCRs; however, in most studies they are reported as distant relatives of classical Class 

A GPCRs. In contrast to the TAS1R family, all TAS2R genes contain no spliceosomal 

introns. Additionally, TAS2R gene products exhibit short N-terminal extracellular 

domains and as such are much shorter in length than their Tas1R counter- parts (300 

amino acids versus ~800 amino acids). TAS2R genes, as with Tas1Rs and salt receptors 

(epithelial sodium channels or ENaCs), are highly conserved across vertebrates; mouse 

taste receptor genes in some cases share at least 70% sequence identity with their human 

counterparts44. 
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Table 1 Tas2R repertoires in vertebrate species. 

 Number of Tas2R genes 

Vertebrate (Genus species) Intact Partial Pseudogenes Total 

Guinea pig (Cavia porcellus)49 
 

30 0 39 69 

Frog (Xenopus tropicalis)48, 56-58 
 

51 0 10 61 

Coelacanth (Latimeria chalumnae)47 
 

58 0 1 59 

Horse (Equus caballus)48 
 

21 0 34 55 

Lizard (Anolis carolinensis)48 
 

36 0 14 50 

Shrew (Sorex araneus)49 
 

21 11 13 45 

Mouse (Mus musculus)48, 57-61 
 

35 0 7 42 

Rat (Rattus norvegicus)48, 57, 60 36 0 6 42 

Rabbit (Ochotona cuniculus)49 
 

28 0 13 41 

Chimpanzee (Pan troglodytes)49 
 

26 0 11 37 

Bushbaby (Otolemur garnettii)49 
 

23 4 10 37 

Human (Homo sapiens)48, 57-60, 62, 63 
 

25 0 11 36 

Orangutan (Pongo pygmaeus)49 
 

23 1 12 36 

Tree shrew (Tupaia belangeri)49 
 

16 3 17 36 

Rhesus macaque (Macaca mulatta)48 
 

25 0 10 35 

Opossum (Monodelphis domestica)48, 57, 

58 
 

27 1 7 35 

Marmoset (Callithrix jacchus)49 
 

22 1 11 34 

Cow (Bos taurus)48, 57, 58 
 

21 0 13 34 

Microbat (Myotis lucifugus)49 

 

29 1 4 34 
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Squirrel (Spermophilus 
tridecemlineatus)49 
 

19 2 12 33 

Gorilla (Gorilla gorilla)49 
 

24 0 9 33 

Naked mole rat (Heterocephalus 
glaber)49 
 

18 0 14 32 

Manatee (Trichechus manatus)49 
 

7 0 25 32 

Wallaby (Macropus eugenii)49 
 

16 4 12 32 

Pika (Ochotona princeps)49 
 

14 8 9 31 

Tasmanian devil (Sarcophilus 
harrisii)49 
 

19 0 11 30 

Hedgehog (Erinaceus europaeus)49 
 

12 5 12 29 

Gibbon (Nomascus leucogenys)49 
 

18 1 8 27 

Tarsier (Tarsius syrichta)49 
 

12 4 11 27 

Hyrax (Procavia capensis)49 
 

14 4 9 27 

Panda (Ailuropoda melanoleuca)49 
 

15 0 11 26 

Tenrec (Echinops telfairi)49 
 

11 4 9 24 

Kangaroo rat (Dipodomys ordii)49 
 

10 7 6 23 

Pig (Sus scrofa)49 
 

15 1 7 23 

Megabat (Pteropus vampyrus)49 
 

15 0 8 23 

Mouse lemur (Microcebus murinus)49 
 

9 4 9 22 

Cat (Felis catus)49 
 

6 11 5 22 

Ferret (Mustela putorius)49 
 

14 0 7 21 

Dog (Canis lupus)48, 57, 58 
 

15 0 6 21 

Alpaca (Vicugna pacos)49 
 

6 6 5 17 
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Sloth (Choloepus hoffimanni)49 
 

4 2 9 15 

Turtle (Pelodiscus sinensis)49 
 

11 0 3 14 

Armadillo (Dasypus novemcinctus)49 
 

5 3 5 13 

Dolphin (Tursiops truncates)64 
 

0 0 10 10 

Platypus (Ornithorhynchus anatinus)48 
 

7 0 3 10 

Medium ground finch (Geospiza 
fortis)49 
 

6 2 1 9 

Zebra finch (Taeniopygia guttata)49 
 

7 0 1 8 

Pufferfish (Tetraodon nigroviridis)48, 57 
 

6 0 0 6 

Cod (Gadus morhua)49 
 

5 0 0 5 

Fugu (Takifugu rubripes)48, 57, 58 
 

4 0 0 4 

Zebrafish (Danio rerio)56-58 
 

4 0 0 4 

Turkey (Meleagris gallopavo)49 
 

2 0 1 3 

Chicken (Gallus gallus)48, 57, 58, 65 
 

3 0 0 3 

Stickleback (Gasterosteus aculeatus)48 
 

3 0 0 3 

 

 

1.6     THE HUMAN TAS2R REPERTOIRE 

 

The identification of thousands of natural and synthetic bitter substances in the human 

oral cavity is achieved by around 25 functional members of the human Tas2R gene 

family. This obvious discrepancy in the ratio of receptors to bitter compounds has raised 

the question as to how so many different bitter taste stimuli could be perceived by so few 
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signaling molecules51. Two main mechanisms have been put forward to explain this 

phenomenon; first, as both umami and sweet taste perception is recognized through the 

heteromerization of Tas1R1/Tas1R3 and Tas1R2/Tas1R3 monomers66-69, respectively, it 

was proposed that perhaps Tas2Rs form heterologous oligomers to account for this 

discrepancy in ligand-receptor numbers. Kuhn et al.70 set out to determine whether all 

325 homo- and heterodimeric combinations of Tas2Rs could exist by using a 

heterologous expression system in HEK cells and performing a bioluminescence 

resonance energy transfer (BRET) screen. The binary combination screen demonstrated 

that most human Tas2Rs form homo and heterodimers in vitro, although they did not 

observe any obvious functionality in those receptors that formed heteromers70.  

 

The second mechanism that was proposed to explain the large number of bitter tastant 

molecules that are perceived by mammalian Tas2Rs was the presence of so called 

“broadly tuned” Tas2Rs71. The first of these identified in humans, hTas2R14, was shown 

to interact with several structurally diverse bitter tastant molecules including (-)-a-

thujone, the active plant metabolite in absinthe, and picrotoxinin, a toxic metabolite from 

Indian berries71. These observations are in contrast with Tas2Rs 1672 and 3873, which 

exhibit a high specificity for β-glucopyranosides and phenylthiocarbamide (PTC)/PROP-

like compounds, respectively. Bitter taste receptors in humans can thus be categorized in 

four categories: narrowly tuned “specialists” (those whose range of ligand specificity 

extends to few bitter tastants); broadly tuned “generalists” (such as Tas2R14 and 

Tas2R10); group-specific receptors (Tas2Rs that recognize only specific classes of 

molecules such as Tas2R16); and intermediate receptors (Table 2). Therefore, by 
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retaining a Tas2R repertoire with a wide molecular range, humans can sense an enormous 

number of structurally diverse bitter compounds74.  

 

The diverse tuning abilities of Tas2Rs in humans helped to explain why such a limited 

number of sensing molecules could interact with so many bitter ligands, although it did 

not explain the observed in-species variation in response to various bitter taste stimuli. 

The diverse responses to bitter taste stimuli between populations was thus examined by 

determining whether there existed allelic variation in the loci of TAS2R genes that could 

account for these differences in taste perception. Kim et al.75, 76 examined 22 out of the 

25 identified human TAS2R genes in 55 individuals from five geographical areas and 

performed polymerase chain reaction (PCR) experiments to amplify the open reading 

frames (ORFs) of these genes. By analyzing these sequences, they identified single 

nucleotide polymorphisms (SNPs) in the TAS2R gene sequences and correlated these to 

the functional abilities of these Tas2Rs. They demonstrated that each TAS2R gene has an 

average of six SNPs, with some receptors such as TAS2R48 having up to 12 SNP sites, 

indicating that there exists a wide array of human TAS2R haplotypes. Many studies have 

since identified the repercussions of these polymorphisms such as irreparable changes to 

the receptor polypeptide chain73, 77, 78 or minor changes leading to a decreased response to 

simulation with bitter ligands79, effectively altering Tas2R signaling capabilities. 
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Table 2 Categorization of Tas2Rs based on bitter perception ability. 

Group 
(% of 
known 
ligands that 
interact) 

Receptor Number 
of known 
ligands80 

Examples of ligands80 

Broad 
(~ 30%) 

Tas2R10 32 Benzoin, quinine, caffeine, cucurbitacin B, 
chloramphenicol, erythromycin 

Tas2R14 125 Noscapine, picrotoxinin, (-)-a-thujone, 
quercetin, genistein, flavone, resveratrol 

Tas2R46 28 Chlorpheniramine, diphenidol, yohimbine, 
strychnine, hydrocortisone, cnicin 

Intermediate 
(~ 30%) 

Tas2R1 35 Humulone, xanthohumol, isoxanthohumol, L-
phenylalanine, sodium cyclamate 

Tas2R4 21 Colchicine, denatonium benzoate, 
azathioprine, quassin 

Tas2R7 9 Papaverine, chloroquine, cromolyn, H. g.-12 
(Hoodia gordonii) 

Tas2R8 3 Parthenolide, chloramphenicol, denatonium 
benzoate 

Tas2R30 10 Absinthin, cascarillin, diphenidol, 
andrographolide 

Tas2R31 
 

8 Famotidine, acesulfame K, aloin, saccharin 

Tas2R39 78 Thiamine, acetaminophen, coumestrol, 
flavone, resveratrol 

Tas2R40 11 Humulone, colupulone, dapsone, 
adhumulone, diphenidol 

Tas2R43 16 Arglabin, caffeine, helicin, amarogentin, 
aristolochic acid 

Narrow 
(~ 10%) 

Tas2R3 
 

1 Chloroquinine 

Tas2R5 
 

1 1,10-phenanthroline 

Tas2R13 
 

2 Diphenidol, denatonium benzoate 

Tas2R20 
 

2 Diphenidol, cromolyn 

Tas2R41 
 

1 Chloramphenicol 

Tas2R50 2 Amarogentin, andrographolide 

Group-
specific 

Tas2R16 10 Arbutin, diphenidol, sodium benzoate, D-
salicin, phenyl ß-D-glucopyranoside 
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(~ 20%) 
 

Tas2R38 21 Limonin, phenylthiocarbamide (PTC), 
propyltiouracil (PROP), N-methylthiourea 

 

 

1.7     TAS2R SIGNALING 

 

The first protein identified during initial research into the molecular basis of taste in the 

oral cavity was the Gα-subunit gustducin (Gαgust)81.  McLaughlin et al.81 first identified 

gustducin through amplifying and cloning Gα cDNAs from a library of taste tissue 

cDNAs, and found that not only was α-gustducin universally expressed in circumvallate, 

foliate and fungiform taste papillae, but that it most closely resembled the α-transducin 

rod and cone photoreceptor G proteins, implicating their role in taste transduction. 

Tas2Rs are thus almost without exception expressed in Gαgust containing cells.  

 

The involvement of Gαgust in the transduction of bitter taste signals is crucial for full 

activation and signaling to occur, as demonstrated through the use of mouse knockout 

models demonstrating reduced response to bitter compounds in the absence of Gαgust
82

. 

However, lacking the Gαgust subunit does not limit the potential for GPCR activation, as 

knockout does not completely abolish bitter taste sensation. Therefore, bitter taste 

potentiation may still occur with the help of other Gα protein subunits expressed in TRCs. 

This finding has raised the question of whether Gαgust is simply favored due to relative 

abundance in taste tissues, whether different Tas2Rs are selective for G-protein subunits 

to become fully activated, or whether other biological factors such as spatial arrangement 

in taste cells exist that may play a role in their coupling to bitter taste receptors83. 
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Co-localization and mouse knockout studies were performed early in the elucidation of 

bitter taste receptor signaling to determine the factors necessary for proper signal 

transduction of bitter taste stimuli. For signaling to occur, the formation of a 

heterotrimeric G-protein complex between α-gustducin and Gβ3 and Gɣ13 occurs the 

most often, while some trimers are comprised of Gβ183. Tas2R stimulation and activation 

of the G protein heterotrimer leads to the dissociation of Gαgust and Gβ3ɣ13, the latter of 

which activates PLCβ2. Active PLCβ2 then causes an increase in cellular levels of IP3 

and DAG via the breakdown of PIP2. Free IP3 then binds to IP3 receptors on the ER and 

stimulates the release of Ca2+ into the cytosol. As the cytoplasmic concentration of Ca2+ 

increases, free Ca2+ binds a member of the transient receptor potential cation channel 

protein M family (TRPM5), whose induction generates a depolarization across the taste 

receptor cell membrane through the influx of Na+ ions. This influx of Na+ leads to 

activation of voltage gated sodium channels (VGNaCs) on the cell membrane, allowing 

further depolarization of the membrane and an eventual action potential84.  ATP, now 

recognized as the primary taste cell neurotransmitter, is then released from the taste 

receptor cell and acts on ionotropic purigenic receptors P2X2 and P2X3 on the afferent 

terminals of gustatory nerves enervating to the brain85. Additionally, the Gαgust subunit 

activates phosphodiesterase (PDE) resulting in a decrease in cellular cyclic nucleotide 

monophospates (cNMPs), such as cAMP and cGMP86; however, the exact reason for 

which these changes in cNMPs occur in taste receptor cells and the role of cNMP 

signaling in Gαgust-coupled taste transmission has not yet been determined83.  
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Figure 3 Tas2R signaling in the oral cavity. Stimulation of Tas2Rs in the oral 
cavity with exogenous bitter ligands leads to the activation of the 
heterotrimeric G-protein complex and the dissociation of Gαgust from 
Gβ3ɣ13. Gβ3ɣ13 activates PLCβ2 at the plasma membrane, which 
catalyzes the breakdown of PIP2 to DAG and IP3. IP3 then binds to IP3 
receptors on the smooth ER, leading to release of intracellular Ca2+. 
Increases in Ca2+ activate the TRPM5 channel and cause influx of Na+, 
which leads to further depolarization of the membrane through voltage 
gated sodium channels (VGNaCs). Upon depolarization, ATP, the primary 
neurotransmitter, is released through PX-1 and stimulates P2X2/3 
receptors on afferent terminals of nearby gustatory nerves. Figure 
modified and reprinted with permission from Springer: Encyclopedia of 
Signaling Molecules (Martin & Dupré, 2016)45, Copyright © 2017. 
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1.8     TAS2R EXPRESSION 

 

1.8.1  Expression in the Oral Cavity 

 

Tas2R expression in the oral cavity is restricted to the surface of gustducin-expressing 

type II taste receptor cells (TRCs) lining tongue microvilli87, and are thus not expressed 

in sweet or umami receptor expressing cells88. Neurophysiological studies have lent 

credence to two possible modes of expression of Tas2Rs in the mouth. TRCs may co-

express multiple Tas2Rs, such that most or all receptor subtypes are expressed in any 

given Tas2R-positive cell, or they may exhibit minimal Tas2R repertoires and thus 

express only a few receptor subtypes. In situ hybridization and genetically engineered 

mouse experiments performed by Adler et al.43 and Mueller et al.89 have provided 

support for the “broadly tuned” model of TRCs while others have found that Tas2Rs may 

be heterogeneously expressed in bitter TRCs90, 91. The latter of these two postulations has 

become the more accepted of the two, as mRNA analysis of human and mouse tongue 

tissue has supported a heterogeneous distribution of Tas2Rs92, 93.  

 

1.8.2  Expression in the Gastrointestinal Tract 

 

Interestingly, the expression of bitter taste receptors is not restricted solely to the oral 

cavity. The notion that other tissues along the digestive tract may contain cells expressing 

functional chemosensory proteins was originally proposed by Fujita94, who observed that 

the enteroendocrine cells of the gut epithelium, whose microvilli-lined apical processes 
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interact with incoming foodstuffs, structurally and functionally resembled taste receptor 

cells in the mouth. Thus, in 1996, Höfer et al.95 attempted to demonstrate that 

enteroendocrine cells express molecules important in taste recognition, and were the first 

to identify extra-orally expressed α-gustducin in TRC-like brush cells of the stomach and 

intestine. Further co-localization studies and characterization of mouse stomach cells 

expressing α-gustducin revealed that α-gustducin is expressed on solitary chemosensory 

cells (SCCs) as well as glucagon-like peptide 1 (GLP-1) producing cells in the small 

intestine87, 96. As SCCs expressing α-gustducin were found to be spatially located near 

ghrelin/serotonin-releasing and GLP-1-releasing cells, it was suggested that SCCs may 

act as chemosensory mediators of appetite regulation by communicating with these 

adjacent secretory cells. Interestingly, treatment of NCI-H716 human enteroendocrine 

cells, or intragastric administration of the hTas2R4/hTas2R10-agonist denatonium 

benzoate and extracts from the root of the Korean gentian plant (Gentiana scabra) in 

mice, lead to α-gustducin-dependent increases in cholecystokinin (CKK) and GLP-1 

release77, 97-100. Additionally, intragastric administration of a mixture of bitter compounds 

in mice and rats lead to modest increases in ghrelin, causing short-lived increases in food 

intake followed by prolonged decrease in feeding behaviour101.  

 

These observed changes in orexigenic and anorexigenic peptide release lead to the 

characterization of Tas2Rs in not only cells of the intestinal epithelium, but also those of 

the smooth muscle lining the gut, as the observed changes in feeding behaviours in mice 

were associated with delayed gastric emptying. Administration of denatonium benzoate 

to muscle strips isolated from the fundi of mice induced canonical Tas2R pathway-
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dependent smooth-muscle contraction and inhibited gastric emptying in mice102. 

Additionally, healthy patient volunteers who underwent intragastric nutrient infusion post 

treatment with denatonium benzoate experienced increased intragastric pressure as well 

as increased satiation compared to those pretreated with placebo102. The implications of 

these findings are intriguing as they suggested another role for Tas2Rs other than the 

neurological transmission of bitter taste stimuli in the oral cavity despite still being linked 

to the direct consumption of bitter-tasting foods. These experiments indicated that 

Tas2Rs expressed on gut epithelium and gut smooth muscle cells may be acting to 

hormonally and muscularly regulate dietary habits. Coupled with mounting evidence 

suggesting that bitter taste receptor expression can be negatively and positively regulated 

by dietary interventions103-105, Tas2Rs could prove to be viable pharmaceutical targets for 

the treatment of GI disorders. 

 

1.8.3  Expression in the Respiratory Tract 

 

Upon the discovery that Tas2Rs are expressed on SCCs and ciliated cells of the gut, 

several groups sought to characterize their expression on SCCs of the airway epithelium. 

As a result, bitter signaling mediators (α-gustducin106-108, TRPM5109, IP3 receptors108 and 

PLCβ2108, 110) and several Tas2Rs have since been characterized in the SCCs of multiple 

species and their physiological role in the airway has been of intrigue to many. Activated 

hTas2Rs/mTas2rs appear to display interesting roles in both innate airway immunity and 

cell autonomous responses. PLC-dependent calcium release and trigeminal nerve 

stimulation was observed when denatonium benzoate was applied to isolated mouse 
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SCCs from nasal epithelium, as was a cessation of breathing upon application to 

anaesthetized rats107, 111. A different response was observed in human nasal SCCs 

responsive to denatonium benzoate expressing the bitter taste receptor Tas2R47, where 

bitter agonist stimulation lead to a “calcium wave” which proceeded through gap 

junctions to other epithelial cells in the nose and stimulated release of antimicrobial 

peptides involved in preventing increased bacterial colonization112. Additionally, nasal 

SCC TasRs appeared to be responsive to acyl-homoserine lactones (AHLs) released by 

Gram-negative bacteria and their activation prevented further bacterial colonization by 

promoting pro-inflammatory neuropeptide release from mast cells113, 114. 

 

In addition to their role in innate immunity of the upper airway, several studies have 

elucidated the involvement of Tas2Rs in airway smooth muscle contraction. An initial 

screen115 elucidating the expression of Tas2Rs on human airway smooth muscle cells 

prompted Deshpande et al.116 to characterize their potential as new targets for the 

treatment of asthma. Bitter taste receptors expressed on airway smooth muscle were not 

only functional and signalled in a calcium-dependent fashion, but were paradoxically able 

to induce a level of bronchial relaxation that was three times greater than a commercially 

available β2-agonist116. The efficacy of Tas2Rs in comparison to β2-adrenergic induced 

bronchodilation has been called into question by some and several groups have reported 

conflicting results describing the degree of Tas2R agonism on smooth muscle relaxation. 

Despite these conflicting accounts of their ability to out-perform conventional β2-

agonists, Tas2R-agonists have been recognized by the majority as having a bona fide 
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therapeutic potential, perhaps most effectively as a combination therapy with existing β2 

therapies. 

 

1.8.4  Expression in Other Extra-Oral Tissues and Disease States 

 

Tas2Rs have been discovered in many other non-gustatory tract tissues such as the 

heart103, the brain117 and the testis118, further suggesting that their neurostimulatory role in 

the oral cavity does not represent the entirety of their signaling abilities. Additionally, 

their differential expression in pathologies such as hypo- and hyperthyroidism119, 

Schizophrenia120 and Parkinson’s disease121 suggests that Tas2Rs could prove to be 

valuable drug targets in multiple diseased states122. 

 

The expression of bitter taste receptors has been documented in various cancers as well. 

Carrai et al.123  forged the first link between Tas2Rs and cancer by investigating whether 

genetic variability in TAS2R38 correlated with the risk of developing colorectal cancer in 

1203 German and Czech colorectal cancer cases. Two SNPs of the TAS2R38 gene, the 

functional PAV and non-functional AVI haplotypes, are the most common in European 

and North American populations and are associated with the ability to perceive 6-propyl-

2-thiouracil, or PROP, as bitter124. As the PAV “taster” TAS2R38 haplotype mediates 

strong responses to bitter taste stimuli, and low bitter vegetable intake can increase 

colorectal cancer risk, it was proposed that “tasters” may exhibit a higher risk of 

developing colorectal cancer as a possible consequence of avoiding bitter antioxidant-rich 

vegetables. No association between CRC risk and SNP haplotype (PAV or AVI) was 
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observed; however, when attempting to observe any correlation between TAS2R38 

diplotypes and cancer risk (PAV/PAV, PAV/AVI and AVI/AVI), Carrai et al. found that 

the “non-taster” AVI/AVI genotype was associated with increased risk of developing 

colorectal cancer123. These results demonstrated that aversion to bitter tasting foods may 

not pose as high of a risk on the development of colorectal cancer as those posed by the 

expression of a non-functional bitter taste receptor, suggesting the importance of 

Tas2R38 signaling in the colon. 

 

More recently, Tas2Rs have been identified in breast cancer and pancreatic cancer cells. 

Tas2R4 expression was downregulated by 20–30 % in the breast cancer cell lines MDA-

MB-231 and MCF-7 when compared to the noncancerous cell line MCF-10A. Functional 

calcium assays were conducted using quinine, dextromethorphan, and 

phenylthiocarbamide, showing that although reduced in number, Tas2Rs are functional in 

breast cancer cells125. The expression of another taste receptor, Tas2R38, was identified 

in lipid droplets in pancreatic ductal adenocarcinoma tumour biopsies as well as in a 

pancreatic cancer-derived cell line126. Stimulation of pancreatic Tas2R38 by 

phenylthiourea or N-acetyldodecanoyl homoserine was found to induce activation of p38 

and ERK-1/2 while upregulating the expression of nuclear factor of activated T-cells c1 

(NFATc1). As active NFATc1 binds to the interleukin-2 promoter in the nucleus during 

T-cell activation127 and has been found to play roles in metastatic processes such as 

tumour cell migration128 and tumour angiogenesis129, exploring its relationship with 

activated bitter taste receptors in various cancers would be an interesting avenue to 

explore the relationships between bitterness, immunity and cancer therapies. The 
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discovery of functionally active Tas2Rs in these cancers is therefore intriguing. 

Expanding the list of pathologies in which functional Tas2Rs are expressed is thus 

warranted, as their links to pro- and anti-apoptotic pathways in these tissues could help in 

developing novel small molecule anti-cancer therapies aimed at modulating cancer 

immune responses or apoptosis. 

 

1.9     OVARIAN CANCER 

 

1.9.1  Overview and Pathological Classification 

 

Ovarian cancer is the deadliest gynecological cancer and the seventh most common 

cancer among women130. It is estimated that nearly 240,000 new cases of ovarian cancer 

are recorded each year worldwide, and that the estimated death-toll is 152,000 

annually131. The low 5-year relative survival rate of ovarian cancer (~29%) is typically a 

result of its primary presentation as metastatic disease. This observation, coupled with the 

fact that there are currently no reliable screening methods available to detect early stage 

carcinomas132, has impacted the development of new surgical or therapeutic strategies 

and has led to no significant reduction in ovarian cancer-related mortality over the last 

two decades133.  

 

Ovarian cancer can be classified as being of epithelial, stromal or germline cell origin. As 

nearly 90% of all documented cases of ovarian cancer tend to be of epithelial cell 

origin134, most case studies and new therapies tend to be directed at these cancers. 
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Epithelial ovarian cancers (EOCs) are then subdivided into several histotypes which 

depend on their morphological characteristics135, sites of origin136 and genetic and 

expression profiles137. Malignant EOCs have thus been classified as being either high-

grade serous (HGSEOC, accounting for 70% of EOCs), low-grade serous (LGSEOC, 

<5%), endometrioid (10%), clear cell (10%) and mucinous (3%)130, 135, 136. It has become 

increasingly accepted that most invasive ovarian tumours do not arise from precursor 

lesions in the ovarian epithelium, but rather originate in other tissues and migrate to the 

ovary secondarily. The “serous” designation thus classifies tumours thought to be of 

fallopian tube epithelial origin138-145 often modeled in laboratory conditions with the cell 

lines OVCAR4 and OVCAR8, while those of endometrioid and clear-cell character are 

thought to arise from endometrial cysts retroactively transplanted into the ovaries133, 146-

149, represented by the cell lines IGROV1 and SKOV3, respectively. 
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Figure 4 The female reproductive system. Anatomical representation of the major 
areas of the female reproductive tract. High grade serous epithelial ovarian 
cancers (HGSEOCs) originate in the epithelium of the Fallopian tube and 
then establish themselves in the ovary, while endometrioid and clear cell 
ovarian cancers originate in the endometrium/the uterine epithelium and 
are established in the ovary via retrograde menstruation. Figure modified 
and reprinted with permission from Terese Winslow Medical and 
Scientific Illustration, Copyright © 2017. 
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1.9.2  Natural Bitter Compounds and Ovarian Cancer 

 

The standard of treatment for EOCs usually consists of surgical resection alongside 

platinum-based and taxane chemotherapies such as cisplatin, a purine base DNA 

crosslinking agent that interferes with DNA repair and induces DNA damage150, and 

paclitaxel, a microtubule-stabilizing compound that induces mitotic arrest in actively 

dividing cells151, respectively152. Quite often, chemoresistance and relapse occur in EOC 

after the administration of these first line therapies153; thus, identifying new 

chemotherapeutic targets and strategies are essential to improve patient outcomes. 

Because of the frequent and undesirable toxic side effects of most small molecule 

antineoplastic compounds in clinical trials, recent efforts have been aimed at the 

identification of nutraceutical agents or traditional medicines. Natural bitter compounds 

have been shown in several cancers, including EOCs154, to induce cancer cell death; 

extracts from the bitter melon Momordica charantia were shown to inhibit cell 

progression and proliferation and reduce multiple drug resistance (MDR)-associated 

resistance in colon cancer155, 156, to arrest prostate cancer cells in S phase, and to delay 

cell cycle progression in a mouse model of human prostatic adenocarcinoma157, to induce 

apoptosis in breast cancer cells158, and both inhibit tumour formation and improve the 

efficacy of cisplatin-based chemotherapy in EOC154. Noscapine, a phthalide isoquinoline 

non-narcotic alkaloid derived from the opium poppy Papaver somniferum, sensitized a 

cisplatin-resistant derivative of the SKOV3 clear cell EOC cell line to platinum-based 

chemotherapy by increasing the number of cells in the G2/M phase of the cell cycle and 

induce caspase-mediated apoptosis159. The underlying molecular mechanisms of many 
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nutraceutical agents with anti-cancer activity remain poorly defined, and some of their 

activity could be dependent on Tas2Rs expressed in these tissues. Noscapine is an agonist 

of the human bitter taste receptor Tas2R14, and along with other bitter ligands, 

demonstrates effects on cancer cells159-162; but whether its effect on EOCs is mediated 

through extra-oral expression of Tas2R14 is thus far unknown. 
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1.10     OBJECTIVES 

 

As several natural bitter products have been shown to influence the growth and death of 

ovarian cancer cells, the objectives of this study were to: 

1. Characterize the expression of several Tas2Rs at the mRNA and protein level in 

EOC cells and primary tissue samples. 

2. Determine the functional consequences of Tas2R activation by a bitter 

phytochemical in EOC cells. 

 

It was hypothesized that ovarian cancer cells are affected through Tas2R-mediated 

signaling. 
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CHAPTER 2     METHODS 

 

2.1     CELL CULTURE  

 

Ovarian cell lines were obtained from American Type Culture Collection (ATCC, 

Manassas, VA, USA) except OVCAR4, obtained from NCI-Frederick Cancer DCTD 

Tumor/Cell Line repository, Frederick, MD, USA. Cells were grown in a CO2 incubator 

(5% CO2 and 37°C). OVCAR8, IGROV1, SKOV3, and HEC-1a cells were cultured in 

DMEM (Sigma-Aldrich; Oakville, ON) supplemented with 10% fetal bovine serum 

(Thermo Fisher; Waltham, MA) and 10% penicillin-streptomycin (Thermo Fisher). 

OVCAR4 cells were cultured in RPMI (Sigma-Aldrich) supplemented with 10% fetal 

bovine serum and 10% penicillin-streptomycin.  Institutional approval for research with 

human materials was received prior to the initiation of these studies (University of 

Manitoba, #HS12920), and primary human EOC cell samples were obtained after 

receiving Informed Consent. Primary human EOC cells were isolated from ascites fluid 

obtained from patients with stage III or IV high grade serous adenocarcinoma, and were 

isolated and grown as previously described163, 164. The FT240 normal fallopian tube cell 

line was obtained from the Drapkin laboratory (Penn Ovarian Cancer Research Center; 

Philadelphia, PA) and grown as previously described165. 
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2.2     RNA SAMPLES 

 

Ovarian cell line total RNA was isolated from OVCAR8, IgROV1, SKOV3 and 

OVCAR4 cell lines. Total RNA from EOC cells and a papillary serous ovarian 

cystadenocarcinoma from a 53-year-old Caucasian female (Clontech; Mountain View, 

CA) was extracted using a TRIzol/100% isopropanol protocol (Thermo Fisher). Human 

fallopian tube total RNA from a single 47-year-old female donor and human uterine total 

RNA from a 57-year-old female donor total RNA was isolated using a modified 

guanidinium thiocyanate method (Agilent Technologies; Santa Clara, CA). HEC-1a cell 

line total RNA was isolated using the RNeasy Plus kit (QIAGEN). 

 

2.3     RNA EXTRACTION AND CDNA SYNTHESIS 

 

Oligo(dT)12-18 primers, Superscript II Reverse Transcriptase (200 U/µL) and 10mM 

dNTP mix were purchased from Invitrogen (Carlsbad, CA). A first-strand cDNA 

synthesis step was performed on total RNA isolated from ovarian cell line, ovarian 

tumour tissue, uterine tissue and fallopian tissue mRNA samples as per manufacturer’s 

recommendations with a single incubation step at 42°C for 50 minutes, followed by an 

inactivation step at 72°C for 15 minutes. 
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2.4     QUANTITATIVE PCR (QPCR)  

 

A Taqman® Probe-Based Gene Expression Assay was performed using Taqman® probes 

for Tas2R1 (assay ID: Hs00251930_s1), Tas2R4 (assay ID: Hs00249946_s1), Tas2R10 

(assay ID: Hs00256794_s1), Tas2R14 (assay ID: Hs00256800_s1), Tas2R38 (assay ID: 

Hs00604294_s1) and glyceraldehyde 3-phosphate dehydrogenase (GAPDH, assay ID: 

Hs03929097_g1). qPCR was performed on a LightCycler96 according to manufacturer 

recommendations and analyzed using LightCycler96 software (Roche, Basel, 

Switzerland). The 2−ΔΔC
T method was used to establish relative gene expression levels 

compared to GAPDH166, 167. 

 

2.5     ANTIBODIES 

 

Tas2R1 (OSR00153W), Tas2R4 (OSR00153W), and Tas2R14 (OSR00161W) rabbit 

polyclonal antibodies used for Western blotting were purchased from Osenses (Keswick, 

Australia). Caspase-3 p11 mouse monoclonal antibody (sc-271759) was purchased from 

Santa Cruz Biotechnology (Dallas, TX, USA). Bcl-XL rabbit monoclonal antibody 

(2764S) was purchased from Cell Signaling Technology (Danvers, MA). β-actin 

(ab8226) and β-tubulin (ab6046) mouse monoclonal antibodies was purchased from 

Abcam (Cambridge, UK). Goat anti-rabbit IgG-HRP (sc-2004) and goat anti-mouse IgG-

HRP (sc-2005) polyclonal antibodies were purchased from Santa Cruz Biotechnology.    
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2.6     IMMUNOHISTOCHEMISTRY/IMMUNOCYTOCHEMISTRY 

 

Paraffin-embedded high grade serous ovarian cancer tissue samples (EOC75, 88, and 

127) were obtained from the Manitoba Ovarian Biobank Program at the Manitoba Tumor 

Bank. Samples were processed in a Leica Bond Rx autostainer using the Leica Bond 

Polymer Refine to detect expression of Tas2R14 (1:2000 dilution). Images were acquired 

with a Leica DM4000B microscope with a Leica DFC480 camera. 

 

For immunocytochemistry, cells were grown on glass coverslips.  Cells were rinsed with 

PBS and fixed in fresh 2% paraformaldehyde for 5 min at room temperature, followed by 

2 washes with PBS. Cells were permeabilized and blocked with 5% goat serum in PBS 

containing 0.5% Triton X-100. Slides were incubated with primary Tas2R14 antibody 

(1:1000 dilution) overnight at 4°C in a humidified chamber. Cells were subsequently 

washed 3 times and incubated with secondary antibody (Alexa-488, goat anti-rabbit IgG; 

Invitrogen, A11008) for 1 h at room temperature.  Nuclei were stained with Hoechst 

33342.  Cell were visualized using a Zeiss Axio Imager Z2 microscope with AxioVisio 

Rel.4.8.2 software. 

 

2.7     siRNA TRANSFECTION  

 

Negative control siRNA (ID 1027310), Tas2R1-specific siRNA (SI03044734, 

SI03032617, SI02643690, SI02643676) and Tas2R4-specific siRNA (SI03119144, 

SI02642535, SI00117789, SI00117782) were purchased from Qiagen (Hilden, Germany). 
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Tas2R14-specific siRNA (s27146) was purchased from Ambion (Burlington, ON). X-

tremeGENE HP DNA Transfection Reagent was purchased from Roche (Basel, 

Switzerland). Semi-confluent plates (~80%) were transfected with siRNAs per 

manufacturers recommendations in a 1:5 ratio (siRNA:X-tremeGENE HP) for 24 hours 

prior to cell lysis for Western blot analysis or treatment with Tas2R-specific ligands.  

 

Table 3 Sequences of siRNAs used. Manufacturer is identified below the siRNA 
ID in brackets. 

 
siRNA ID	 Sense strand	 Antisense strand	

Negative (-) control 
siRNA 

(Qiagen)	

5’-UUCUCCGAAC 
GUGUCACGUTT-3’	

5’-ACGUGACACGU 
UCGGAGAATT-3’	

Hs_TAS2R1_5 
(Qiagen)	

5’-GGACACUCUC 
UCAUCUUAATT-3’	

5’-UUAAGAUGAG 
AGAGUGUCCAG-3’	

Hs_TAS2R1-7 
(Qiagen)	

5’-ACGUUAAUGU 
GAUUGUUAUTT-3’	

5’-AUAACAAUCA 
CAUUAACGUAG-3’	

Hs_TAS2R1_8 
(Qiagen)	

5’-GCAAAUUGAU 
GCUAGAGUATT-3’	

5’-UACUCUAGCA 
UCAAUUUGCTT-3’	

Hs_TAS2R4_1 
(Qiagen)	

5’-GGUUUGUGAC 
CUUGCUCAATT-3’	

5’-UUGAGCAAGG 
UCACAAACCAG-3’	

Hs_TAS2R4_2 
(Qiagen)	

5’-GGACAUUCUGU 
UCUCAUUATT-3’ 

5’-UAAUGAGAAC 
AGAAUGUCCTG-3’	

Hs_TAS2R4_6 
(Qiagen)	

5’-UGUUUAUUAC 
AGUGGUCAATT-3’	

5’-UUGACCACUG 
UAAUAAACAGA-3’	
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Hs_TAS2R4_7 
(Qiagen)	

5’-CUAUGAAGCU 
GAUGGUCUATT-3’	

5’-UAGACCAUCAG 
CUUCAUAGCA-3’	

Silencer® Select vs 
TAS2R14 
(Ambion) 

5’-UGAUAAACAU 
CCAUAUAAATT-3’ 

5’-UUUAUAUGGAU 
GUUUAUCAGT-3’ 

TAS2R38HSS108754 
(Invitrogen) 

5’-CCAGAUGCUCCU 
GGGUAUUAUUCUU-3’ 

5’-	AAGAAUAAUAC 
CCAGGAGCAUCUGG-

3’ 

TAS2R38HSS108755 
(Invitrogen) 

5’-GGCACAUGAGG 
ACAAUGAAGGUCUA-3’ 

5’-	UAGACCUUCAU 
UGUCCUCAUGUGCC-

3’ 

TAS2R38HSS108756 
(Invitrogen) 

5’-CCUACUGAUUCU 
GUGGCGCGACAAA-3’ 

5’-UUUGUCGCGCCAC 
AGAAUCAGUAGG-3’ 

 

2.8     CELL LYSIS AND WESTERN BLOTTING  

 

Cells were lysed with RIPA buffer (150 mM NaCl, 50 mM Tris-HCl pH 7.5, 1% NP4O, 

0.5% sodium deoxycholate, 0.1% sodium dodecyl sulfate and 1 cOmplete™ EDTA-free 

protease inhibitor cocktail tablet (Roche). BSA-coated beads (Protein A-Sepharose® 

lypholised powder from Staphylococcus aureus, Sigma-Aldrich) and 10% DNase I 

(Sigma-Aldrich) were added to remove nucleic acid and organellar material from the 

sample. Lysates were mixed 50:50 with 2X Laemmli Buffer and 1X 2-mercaptoethanol 

(final concentration) (Bio-Rad Laboratories, Hercules, CA). Samples were run on a 10% 
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polyacrylamide SDS-PAGE gel and transferred to nitrocellulose membranes before being 

blocked in a 10% skim milk powder/PBS solution for 60 minutes, and incubated 

overnight at 4°C with their respective primary antibodies. Chemiluminescence was 

performed on nitrocellulose membranes using Western Lightning® Plus-ECL Enhanced 

Chemiluminescence Substrate (PerkinElmer, Waltham, MA) before exposing them to x-

ray film and development.  

 

2.9     TAS2R LIGANDS 

 

Colchicine [(S)-N-(5,6,7,9- tetrahydro-1,2,3,10-tetramethoxy-9 oxobenzol[a]heptalen-7-

yl) acetamide] and noscapine [S(R*,S*)-6,7-Dimethoxy-3-(5,6,7,8-tetrahydro-4-

methoxy-6-methyl-1,3- dioxolo[4,5-g]-isoquinolin-5-yl)-1(3H)-isobenzofuranone] were 

purchased through Cedarlane (Burlington, ON) from MP Biomedicals (Ca. No’s. 

05208170 and 02153558, respectively; Santa Ana, CA). 6-propyl-2-thiouracil [2,3-

Dihydro-6-propyl-2-thioxo-4(1H)-pyrimidinone] was purchased from Sigma-Aldrich. 

 

2.10    CALCIUM MOBILIZATION ASSAY 

 

The Fluo-4 NW Calcium Assay kit (Ref. No. F36206) was used to detect changes in 

intracellular calcium release (Thermo Fisher). Cells were seeded at a density of 25,000 

cells/well and left overnight in a CO2 incubator. Growth medium was removed and Fluo-

4 NW die mixed in assay buffer (1X HBSS, 20 mM HEPES) was added to the cells. 

After a 30-minute incubation at 5% CO2/37°C and 30 minutes at 25°C, calcium 
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mobilization was assessed immediately after stimulation of Tas2R4, Tas2R14 and 

Tas2R38 with colchicine (100 µM) noscapine (100 µM) and PROP (10 µM ) 

respectively. Fluorescence was recorded using an EnVision Multilabel Reader (software 

version 1.12, product no. 2104-0010A; PerkinElmer). 

 

Table 4 Bitter ligands and their known molecular targets. Molecular weights, 
chemical formulas and effective concentrations*. 

 
Ligand 
Name 

IUPAC Systemic Name Molecular 
Weight  

 

Tas2R 
Targetted 

 

Effective 
Concentration 

(µM)* 

Colchicine (S)-N-(5,6,7,9- 
tetrahydro-1,2,3,10-
tetramethoxy-9 
oxobenzol[a]heptalen-7-
yl) acetamide 

399.437 Tas2R4 
 
Tas2R39 
 
Tas2R46 

100 
 
3000 
 
300 

Noscapine S(R*,S*)-6,7-Dimethoxy-
3-(5,6,7,8-tetrahydro-4-
methoxy-6-methyl-1,3- 
dioxolo[4,5-g]-
isoquinolin-5-yl)-1(3H)-
isobenzofuranone 

413.421 Tas2R14 10 

PROP 
(6-propyl-2-
thiouracil) 

6-propyl-2-sulfanylidene-
1H-pyrimidin-4-one 
 

170.232 Tas2R38 0.11 

*reported in the literature and obtained from BitterDB80 
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2.11     APOPTOSIS ASSAY 

 

SKOV3 cells were grown on glass coverslips in 6 well plates and transfected at 50-60% 

confluency with (-) control siRNA and Tas2R14 siRNA. Cells were then treated with 

DMSO or 25µM noscapine (MP Biomedicals, Santa Ana, CA) in DMSO for 24 hours. 

The Annexin V Apoptosis Detection kit (sc-4252 AK, Santa Cruz) was used to determine 

the rates of apoptosis. Cells were harvested and washed with PBS, then resuspended in 

Annexin V Assay Buffer following the manufacturer’s instructions. Cells were gently 

shaken in the dark with propidium iodide (PI) and Annexin V-FITC-conjugated stain for 

20 min. Cells were then examined by fluorescence microscopy and at least 5 fields of 

view were recorded using an Olympus IX81 microscope equipped with a Photometrics 

coolSNAP HQ2 camera and an Excite series 120Q light source. Annexin V stain was 

excited at 488 nm and images were captured at 525 nm. PI was excited at 535 nm and 

images captured at 617nm. Rates of early apoptosis were determined by dividing the 

number of cells that stained positive for Annexin-V divided by the total number of 

cells168. 
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CHAPTER 3        RESULTS 

 

3.1     TAS2R mRNA EXPRESSION IN EOC 

 

qPCR was performed on five candidate TAS2Rs (TAS2R1, TAS2R4, TAS2R10, TAS2R14, 

and TAS2R38) using receptor specific Taqman® Probe qPCR probes and cDNA 

generated from four EOC cell lines of different histotypes including high grade serous 

(OVCAR4, OVCAR8), clear cell (SKOV3), and the hypermutated IGROV1 cell line 

originally designated as an endometrioid subtype, as well as RNA from EOC tissue. The 

2−ΔΔC
T method was used to assess the relative level of expression of all five TAS2Rs, 

whereby the difference in threshold cycle (ΔCT) scores for each gene from the qPCR 

readout and a reference gene (glyceraldehyde 3-phosphate dehydrogenase, or GAPDH) is 

assessed for each sample cell line and is compared to the ΔCT of a reference sample 

(ΔΔCT)166. As it has become increasingly evident through animal and pathological 

investigation that high grade serous EOCs may originate from secretory epithelial cells of 

the distal fallopian tube 169 and that endometrioid and clear cell tumours likely develop 

from endometrial tissue by retrograde menstruation 170, the expression of OVCAR4 and 

OVCAR8 TAS2R transcripts was compared to normal fallopian tube mRNA while those 

of SKOV3 and IGROV1 were compared to normal uterine tissue mRNA. Additionally, 

TAS2R mRNA expression of a uterine/endometrial adenocarcinoma cell line, HEC-1a, 

was assessed and compared to UN tissue RNAs. 
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3.1.1  Expression of TAS2R1 mRNA 
 

All the assessed cell lines expressed TAS2R1 at varying levels; OVCAR8 cells exhibited 

a significant decrease in expression (72%) of TAS2R1 mRNA compared to normal 

fallopian tube tissue (FN), while OVCAR4 cells and ovarian papillary 

cystadenocarcinoma tissue (OT) expressed 1.3 and 3.1 times as much TAS2R1 mRNA as 

FN (Figure 5). TAS2R1 transcript levels were significantly lower in HEC-1a uterine 

cancer cells (88.4%) compared to normal uterine (UN) RNA, while those of SKOV3 and 

IGROV1 did not vary from those of normal uterine tissue (Figure 6). 
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Figure 5 TAS2R1 expression is variable in high grade serous EOC cells. Results 
of qPCR analysis comparing the gene expression level of TAS2R1 in high 
grade serous EOC cells to those of normal fallopian tube tissue (FN). 
Relative expression for each receptor was determined using the 
comparative 2-ΔΔdT method with GAPDH as a reference gene. OT: ovarian 
cystadenocarcinoma tumour tissue RNA. 𝑛 ≥ 3, two-tailed, paired t-test 
vs FN +/- SEM. **=p<0.01. 
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Figure 6 Endometrioid-like EOC cell TAS2R1 expression does not vary from 
baseline. Results of qPCR analysis comparing the gene expression level 
of TAS2R1 in endometrioid ovarian cancer cells to those of normal 
uterine tissue (UN). Relative expression for each receptor was determined 
using the comparative 2-ΔΔdT method with GAPDH as a reference gene. 
𝑛	 ≥ 3, two-tailed, paired t-test vs UN +/- SEM. *=p<.05. 
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3.1.2  Expression of TAS2R4 mRNA 

 

As it has been observed in cells derived from breast tissue that TAS2R4 mRNA is 

downregulated in breast cancer cells in comparison to mammary epithelial cells125, the 

expression of TAS2R4 mRNA was assessed in EOC cells. Compared to fallopian tissue, 

OT and OVCAR4 cells exhibited non-significant increases in TAS2R4 mRNA of 27% 

and 43% respectively, while levels of TAS2R4 mRNA were 66% lower in OVCAR8 cells 

(Figure 7). Additionally, only SKOV3 cells expressed significantly less TAS2R4 mRNA 

compared to uterine tissue (72%), while levels of HEC-1a and IGROV1 TAS2R4 mRNA 

levels trended downward (Figure 8). 
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Figure 7 TAS2R4 expression is not universally low across HGSEOC. qPCR 
analysis of TAS2R4 gene expression in HGSEOC cells compared to 
normal fallopian tube tissue (FN). Relative expression for each receptor 
was determined using the comparative 2-ΔΔdT method with GAPDH as a 
reference gene. OT: ovarian cystadenocarcinoma tumour tissue RNA. 𝑛 ≥
3, two-tailed, paired t-test vs FN +/- SEM. **=p<0.01. 
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Figure 8 TAS2R4 mRNA is downregulated in endometrioid EOCs. qPCR 
analysis of TAS2R4 gene expression in endometrioid ovarian cancer cells 
to those of normal uterine tissue (UN). Relative expression for each 
receptor was determined using the comparative 2-ΔΔdT method with 
GAPDH as a reference gene. 𝑛 ≥ 3, two-tailed, paired t-test vs UN +/- 
SEM. *=p<.05. 
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3.1.3  Expression of TAS2R10 mRNA 

 

qPCR analysis of TAS2R10 expression revealed no significant changes in OVCAR4 and 

OVCAR8 cells compared to FN, but a 56.7% decrease in expression in OT RNA was 

observed (Figure 9). No significant variation in TAS2R10 transcript levels were observed 

for all tested endometrioid-derived EOC cell lines (Figure 10). 
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Figure 9 HGSEOC cells express similar levels of TAS2R10 mRNA as control 
fallopian tissue. Relative expression for each receptor was determined 
using the comparative 2-ΔΔdT method with GAPDH as a reference gene. 
𝑛 ≥ 3, two-tailed, paired t-test vs FN +/- SEM. *=p<.05. 
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Figure 10 TAS2R10 mRNA does not vary significantly in endometrioid EOC 
relative to healthy uterine tissue. Relative expression for each receptor 
was determined using the comparative 2-ΔΔdT method with GAPDH as a 
reference gene. 𝑛 ≥ 3, two-tailed, paired t-test vs UN +/- SEM. 
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3.1.4  Expression of TAS2R14 mRNA 

 

Recent studies have identified several anti-proliferative properties of the opium poppy 

alkaloid noscapine in the treatment of prostate160, breast171 and ovarian159, 162 cancers. As 

noscapine is an agonist of the bitter taste receptor Tas2R1474, TAS2R14 transcript levels 

were assessed in EOC cell lines. Interestingly, the expression of TAS2R14 mRNA was 

significantly reduced in HGSEOC, 79% lower in OT and 58% lower in OVCAR8 cells, 

compared to healthy fallopian tube tissue (Figure 11). TAS2R14 mRNA levels were also 

significantly lower in SKOV3 cells and HEC-1a cells (67% and 93% respectively), but 

not in IGROV1 cells (Figure 12). 
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Figure 11 TAS2R14 expression is significantly lower in HGSEOC tissue and 
cells. Relative expression for each receptor was determined using the 
comparative 2-ΔΔdT method with GAPDH as a reference gene. 𝑛 ≥ 3, two-
tailed, paired t-test vs FN +/- SEM. **=p<0.01; ***=p<0.001. 
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Figure 12 Endometrioid cancer and endometrioid-like EOC cells express 
significantly less TAS2R14 mRNA. Relative expression for each 
receptor was determined using the comparative 2-ΔΔdT method with 
GAPDH as a reference gene. 𝑛 ≥ 3, two-tailed, paired t-test vs UN +/- 
SEM. *=p<.05; **=p<0.01. 
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3.1.5  Expression of TAS2R38 mRNA 

 

The expression of Tas2R38 and its association with cancer risk has been studied in both 

colorectal123 and pancreatic126 cancers. Because of its possible importance in several 

different cancers, the expression of Tas2R38 was characterized in EOC cells and tissues. 

Transcriptional levels of TAS2R38 were highly reduced across all HGSEOC and 

endometrioid-like EOC samples. OT, OVCAR4 and OVCAR8 TAS2R38 transcript levels 

were diminished by 99.3%, 96.2% and 96.6%, respectively (Figure 13). Additionally, 

TAS2R38 transcription was reduced 98.3%, 99.7% and 99.9% in HEC-1a, SKOV3 and 

IGROV1 cells, respectively (Figure 14). 
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Figure 13 TAS2R38 transcript levels are highly reduced in HGSEOC. Relative 
expression for each receptor was determined using the comparative 2-ΔΔdT 
method with GAPDH as a reference gene. Expression is represented on a 
log10 scale. 𝑛 ≥ 3, two-tailed, paired t-test vs FN +/- SEM. 
****=p<0.0001. 
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Figure 14 Endometrioid-like EOCs express significantly less TAS2R38 mRNA 
than uterine tissue. Relative expression for each receptor was determined 
using the comparative 2-ΔΔdT method with GAPDH as a reference gene. 
Expression is represented on a log10 scale. 𝑛 ≥ 3, two-tailed, paired t-test 
vs FN +/- SEM. **=p<0.01; ****=p<0.0001. 
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3.1.6  Summary 

 

To date, there exists little evidence suggesting a strong correlation between mRNA 

expression levels and those of their corresponding protein products172, 173. Despite this, 

observing changes in mRNA expression profiles remains a reliable technique in 

diagnosing many diseases such as cancer174. As gene expression levels of TAS2Rs have 

been shown to fluctuate in several pathological states103, 119-121, 125, 175, the expression of 

multiple TAS2R mRNAs was evaluated in both high and low grade serous EOCs of 

fallopian and endometrioid origin. While the expression of some TAS2R transcripts did 

not vary from normal healthy tissue, TAS2R14 and TAS2R38 mRNA expression was 

downregulated up to 93% and 99.9% in some EOC cell and tissue subtypes.  

 

Table 5 Differentially regulated TAS2R transcripts in EOC cell lines 

Cell line Subtype 
(normal tissue) 
 

Expression vs normal tissue 

TAS2R1 TAS2R4 TAS2R10 TAS2R14 TAS2R38 

OVCAR4 HGSEOC (FN)     **** 

OVCAR8 HGSEOC (FN) ** **  ** **** 

SKOV3 LGSEOC/ 
Endometrioid 
(UN) 

 *  ** **** 
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IGROV1 LGSEOC/ 
Endometrioid 
(UN) 

    **** 
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3.2     TAS2R PROTEIN EXPRESSION IN PRIMARY TISSUE SAMPLES 

 

To assess whether TAS2R mRNAs are translated and expressed in EOCs, immunological 

staining for Tas2R14 was performed on several primary HGSEOC cell samples as well as 

on normal fallopian tube cells to assess protein expression. Immunocytochemical analysis 

of CaOV3 cells, patient derived EOC cells (EOC267) and fallopian tube cells (FT240) 

with GFP-tagged secondary antibody revealed that Tas2R14 is expressed in both ovarian 

cancer and fallopian tube cell types (Figure 15).  

 

To visualize the expression of Tas2R14 with respect to EOC tissue architecture, 

immunohistochemistry was performed on three HGSOC tissue samples (Figure 16). All 

samples exhibited staining for Tas2R14 in the epithelial component of the tumour 

(brown), with notably reduced staining in the stromal component (clear).  These results 

demonstrate that Tas2R14 is expressed at the protein level in EOC cells and tissues. 
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Figure 15 Immunocytochemistry reveals expression of Tas2R14 protein in EOC 
cells. Ovarian cancer cells (CaOV3), a primary epithelial ovarian cancer 
sample (EOC267) and a fallopian tube secretory epithelial cell line 
(FT240) reveal Tas2R14 protein expression (green). Cells were incubated 
with primary antibody, secondary antibody or both alongside Hoescht 
33342 nuclear stain (blue). Images were obtained and prepared by the 
Nachtigal lab at the University of Manitoba.  
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Figure 16 Immunohistochemistry of two epithelial ovarian cancer primary 
tissue samples reveals expression of Tas2R14. Images of patient primary 
tissue samples (EOC88 and EOC127). Both were captured at 5X and 20X 
(inset). Images were obtained by the Nachtigal lab at the University of 
Manitoba. 
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3.3     MODULATION OF TAS2R PROTEIN LEVELS USING siRNA 

 

3.3.1  Western blot analysis of Tas2R1, Tas2R4 and Tas2R14 

 

The most common and effective way to elucidate the function of a protein in a tissue or 

disease context is by impacting its function in order to observe a phenotypic change176. 

Protein function can be influenced by numerous techniques including: introducing loss of 

function mutations into the protein coding gene of interest, pharmacologically inhibiting 

expressed proteins or impacting gene transcription at the mRNA level with siRNAs. To 

determine whether the expression of Tas2R proteins could be modulated, one HGSEOC 

cell line, OVCAR4 (Figure 17), and one clear cell EOC cell line, SKOV3 (Figure 18), 

were transfected with a negative control siRNA or pooled Tas2R-specific siRNAs. Cells 

were harvested 24 h post-transfection and Western blots were performed for Tas2R1, 

Tas2R4 and Tas2R14 expression. Partial knockdown of Tas2R1, Tas2R4 and Tas2R14 

was achieved in OVCAR4 and SKOV3 cells when compared to a β-actin loading control. 

After the administration of Tas2R-specific siRNAs, protein levels of Tas2R1, Tas2R4 

and Tas2R14 were reduced up to 81% in OVCAR4 and SKOV3. 
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Figure 17 Tas2R proteins can be selectively knocked down with receptor specific 
siRNAs in HGSEOC cells. Western blot analyses were performed for 
using rabbit anti-Tas2R14 antibody 24 hours after treating OVCAR4 cells 
with no siRNA (N), a scrambled control siRNA (-) or a Tas2R14-specific 
siRNA (+). β-actin was included as a loading control. Western is a 
representative blot of n = 3 replicates. 
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Figure 18 Tas2R-specific siRNAs can be used to knockdown Tas2R protein 
production in clear cell EOC cells. Western blot analyses were 
performed for using rabbit anti-Tas2R14 antibody 24 hours after treating 
SKOV3 cells with no siRNA (N), a scrambled control siRNA (-) or a 
Tas2R14-specific siRNA (+). β-actin was included as a loading control. 
Western is a representative blot of n = 3 replicates. 

 

 

 

 

 

 

 

 

 

 



 69 

3.4     CALCIUM MOBILIZATION ASSAYS 

 

Expression of a protein in a given tissue does not necessarily imply that it is functional in 

that tissue. As Tas2Rs primarily couple to a Gαi family G protein, Gαgust, their stimulation 

leads to IP3-mediated release of intracellular calcium from the ER. Therefore, to assess 

receptor function through G-protein coupled receptor-mediated calcium release, cells 

were again transfected with either a negative control siRNA or pooled Tas2R-specific 

siRNAs and plated onto a 96-well plate for Fluo-4 NW calcium assays carried out 24 

hours later. Cells were then stimulated with one of three bitter ligands: colchicine, a toxic 

natural product from the meadow saffron plant (Colchicum autumnale) and Tas2R4 

ligand; noscapine, a Tas2R14 agonist from the Papaver somniferum poppy; and 6-propyl-

2-thiouracil, or PROP, a thioamide drug used clinically to treat hyperthyroidism and 

selective agonist of Tas2R38. Endogenous calcium release in SKOV3 and OVCAR4 cells 

was then recorded over 50 seconds following administration of Tas2R ligand. The 

concentrations of each ligand were determined by literary searches for the threshold 

concentration (i.e. the lowest concentration of test substance capable of producing a 

physiological response) of each receptor80. 
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3.4.1  Ca2+ release following stimulation of Tas2R4 

 

After administration of 100 µM colchicine, OVCAR4 cells did not appear to experience 

an increase in calcium release compared to baseline measures of relative fluorescence. 

Additionally, cells expressing Tas2R4-specific siRNAs appeared to experience a decline 

in intracellular calcium concentration (Figure 19A). This decline in Fluo-4 bound calcium 

in Tas2R4-low cells can also be seen when comparing the AUC values of the control 

siRNA and Tas2R4-specific siRNA calcium traces (Figure 19B). Conversely, stimulating 

Tas2R4 expressed in SKOV3 cells with colchicine led to modest increases in calcium 

release, which were abolished significantly upon knockdown of the receptor with siRNA 

(Figures 20A, 20B), indicating that Tas2R4 is responsive to colchicine stimulation in 

SKOV3 cells but not in OVCAR4 cells.  
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Figure 19 Colchicine does not induce Tas2R4-mediated calcium release from 
internal calcium stores. A OVCAR4 cells were treated with control or 
Tas2R4-specific siRNA for 24 hours, and changes in intracellular calcium 
release was recorded for 50 seconds and traces were plotted as a relative 
change in fluorescence units (ΔRFU) from baseline measurements (dotted 
black line) before addition of ligand (100 µM colchicine). Traces are a 
representative of 𝑛 ≥ 5 replicates. B Area under the curve measurements 
(ΔRFU x time) of each representative trace. 𝑛 ≥ 3, two-tailed, paired t-
test. *=p<.05. 
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Figure 20 Tas2R4 is functional in SKOV3 cells as demonstrated through 
colchicine-mediated endogenous calcium release. A SKOV3 cells were 
treated with control or Tas2R4-specific siRNA for 24 hours, and changes 
in intracellular calcium release was recorded for 50 seconds and traces 
were plotted as a relative change in fluorescence units (ΔRFU) from 
baseline measurements (dotted black line) before addition of ligand (100 
µM colchicine). Traces are a representative of 𝑛 ≥ 5 replicates. B Area 
under the curve measurements (ΔRFU x time) of each representative trace. 
𝑛 ≥ 3, two-tailed, paired t-test. **=p<0.01. 
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3.4.2  Ca2+ release following stimulation of Tas2R14 

 

OVCAR4 cells appeared to express functional Tas2R14 protein, as evidenced by modest 

increases in calcium mobilization after stimulation with 10 µM noscapine that did not 

occur in absence of the receptor (Figure 21A). This increase in calcium was significantly 

larger than observed in Tas2R4-negative OVCAR4 cells (Figure 21B).  Endogenous 

calcium release upon stimulation with noscapine was also observed in SKOV3 cells 

relative to baseline measurement (Figures 22A, 22B). These results indicate that 

functional Tas2R14 proteins are expressed on OVCAR4 and SKOV3 cells, and that this 

effect can be reduced after transfection of cells with Tas2R14-specific siRNAs. 
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Figure 21 HGSEOC cells express functional Tas2R14 as assessed through the 
monitoring of intracellular calcium mobilization. A OVCAR4 cells 
were treated with control or Tas2R14-specific siRNA for 24 hours, and 
changes in intracellular calcium release was recorded for 50 seconds and 
traces were plotted as a relative change in fluorescence units (ΔRFU) from 
baseline measurements (dotted black line) before addition of ligand (10 
µM noscapine). Traces are a representative of 𝑛 ≥ 5 replicates. B Area 
under the curve measurements (ΔRFU x time) of each representative trace. 
𝑛 ≥ 3, two-tailed, paired t-test. ***=p<0.001. 
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Figure 22 Noscapine mediated calcium release observed in SKOV3 cells 
expressing Tas2R14. A SKOV3 cells were treated with control or 
Tas2R14-specific siRNA for 24 hours, and changes in intracellular 
calcium release was recorded for 50 seconds and traces were plotted as a 
relative change in fluorescence units (ΔRFU) from baseline measurements 
(dotted black line) before addition of ligand (10 µM noscapine). Traces 
are a representative of 𝑛 ≥ 5 replicates. B Area under the curve 
measurements (ΔRFU x time) of each representative trace. 𝑛 ≥ 3, two-
tailed, paired t-test. **=p<0.01. 
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3.4.3  Ca2+ release upon stimulation of Tas2R38 

 

The activity of Tas2R38 in OVCAR4 and SKOV3 cells was assessed by monitoring 

intracellular calcium release as well. As PROP is a Tas2R38-specific ligand and does not 

activate any other human Tas2Rs, a higher concentration (1 µM) was used in lieu of its 

reported effective concentration of 0.1 µM74 to ensure that activation of the receptor was 

observable. Stimulation of OVCAR4 cells lead to a robust change in relative fluorescence 

compared to cells that had been pre-treated with Tas2R38-specific siRNAs (Figure 23A). 

This increase was significant, as is demonstrated in Figure 22B. However, as in the case 

of Tas2R4, Tas2R38 activity did not appear to hold over between different EOC 

subtypes. SKOV3 cells, when stimulated with PROP in the presence and absence of 

Tas2R38, did not display any increased release of intracellular calcium (Figures 24A, 

24B). 
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Figure 23 Tas2R38 is functional in HGSEOC cells and stimulation leads to 
increased calcium mobilization. A OVCAR4 cells were treated with 
control or Tas2R38-specific siRNA for 24 hours, and changes in 
intracellular calcium release was recorded for 50 seconds and traces were 
plotted as a relative change in fluorescence units (ΔRFU) from baseline 
measurements (dotted black line) before addition of ligand (1 µM PROP). 
Traces are a representative of 𝑛 ≥ 5 replicates. B Area under the curve 
measurements (ΔRFU x time) of each representative trace. 𝑛 ≥ 3, two-
tailed, paired t-test. *=p<.05. 
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Figure 24 SKOV3 cells do not express functional Tas2R38. A SKOV3 cells were 
treated with control or Tas2R38-specific siRNA for 24 hours, and changes 
in intracellular calcium release was recorded for 50 seconds and traces 
were plotted as a relative change in fluorescence units (ΔRFU) from 
baseline measurements (dotted black line) before addition of ligand (1 µM 
PROP). Traces are a representative of 𝑛 ≥ 5 replicates. B Area under the 
curve measurements (ΔRFU x time) of each representative trace. 𝑛 ≥ 3, 
two-tailed, paired t-test.  
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3.4.4  Summary 

 

The expression of four bitter taste receptors was characterized in both a HGSEOC and 

LGSEOC cell line to determine their role in cellular physiology during ovarian cancer. 

Their expression in these cells led to the characterization of their signaling ability. Using 

Fluo-4 calcium imaging following stimulation with Tas2R-specific ligands, the activity 

of these receptors was assessed by monitoring GPCR-mediated release of intracellular 

calcium. Both OVCAR4 HGSEOC cells and SKOV3 LGSEOC cells appeared to express 

functional Tas2R14. Tas2R4 were functionally active in SKOV3 cells only, while 

Tas2R38 appeared to be non-responsive to PROP stimulation in OVCAR4 cells only, as 

demonstrated using bitter receptor-specific siRNA-mediated knockdowns (Table 6). 

These results are similar to those observed in breast cancer cells, in that Tas2R4 was 

functionally active in MDA-MB-231 and MCF-7 cells after stimulation with a Tas2R4 

ligand125 and to those in pancreatic cancer cells that express functional Tas2R38126. 

 

Table 6 Summary of functionally active Tas2Rs in EOC cells 

Receptor OVCAR4 (HGSEOC) SKOV3 (LGSEOC) 

Tas2R4 Non-responsive Functional 

Tas2R14 Functional Functional 

Tas2R38 Functional Non-responsive 
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3.5     WESTERN BLOTTING OF APOPTOTIC PATHWAY PROTEINS 

 

As bitter compounds have been previously identified to promote apoptosis in ovarian 

cancer 154, 159, the pro-apoptotic effect of noscapine was assessed in the context of 

Tas2R14 activation. SKOV3 cells were transfected with negative control siRNA or 

Tas2R14-specific siRNAs 24 h prior to stimulation with 25 µM noscapine for 24 h. The 

cells were lysed, protein expression was determined by Western blot analysis, and protein 

expression levels were assessed relative to β-tubulin loading controls. Previously, altered 

apoptotic protein dynamics have been observed in ovarian cancers after exposure to 

natural bitter compounds: increases in cleaved caspase-3 among other protein changes, 

have been observed after exposing EOC cells to noscapine and other bitter compounds154, 

159. Therefore, the expression of Bcl-XL, a pro-survival protein, and cleaved caspase-3, a 

pro-apoptotic protein was assessed. Treatment of SKOV3 cells for 24 h with noscapine 

led to an increase in the expression of cleaved caspase-3 (Figure 25). By contrast, in the 

presence of Tas2R14 siRNA, the basal level of cleaved caspase-3 were reduced. 

Additionally, treatment of SKOV3 cells with noscapine for 24 h led to a decrease in Bcl-

Xl expression, while this effect was reduced when Tas2R14 siRNAs were expressed. 

Together, these observations implicate the involvement of Tas2R14 in the activation of 

the apoptotic pathways induced by noscapine. 
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Figure 25 Noscapine induces changes in Bcl-XL expression and caspase-3 
activation. SKOV3 cells were treated with either a negative control 
siRNA 24 h prior to treatment with 25 µM noscapine. Western blotting 
analysis was then performed on whole-cell lysates using a mouse anti-
caspase-3 p11 antibody and rabbit anti-Bcl-XL antibodies. b-tubulin was 
included as a loading control. Figure is a representative blot of n = 3 
experiments.  
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3.6     ANNEXIN V APOPTOSIS ASSAY WITH NOSCAPINE 

 

As exposure to noscapine for 24 hours modulated apoptotic signals, and noscapine has 

been documented to induce apoptotic cell death in ovarian cancer 159, 177, an apoptosis 

assay was performed to determine whether Tas2R14 expression produced noticeable 

effects on the rates of apoptotic cell death in SKOV3 cells. Annexin V and propidium 

iodide staining was used on siRNA transfected SKOV3 cells that had been treated with 

noscapine for 24 hours or vehicle. Cells staining for annexin V (AV) only or both AV 

and propidium iodide (PI) were counted, and the ratios of AV+/PI- and AV+/PI+ cells 

were calculated to determine the percentage of cells in the early stages of apoptosis and 

of cells whose cell membrane has begun to break down, respectively. SKOV3 cells 

transfected with negative control siRNA and stimulated with NOS for 24 h displayed a 

17% increase in AV labelled cells (Figure 26A). This effect was lost upon knockdown of 

the receptor with Tas2R14-specific siRNAs. Additionally, treatment with noscapine led 

to a 9.6% increase in cells staining for both AV and PI (Figure 26B).  
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Figure 26 Exposure to noscapine increases rates of SKOV3 cells staining for 
annexin V and propidium iodide. Cells were grown on coverslips and 
transfected with scrambled siRNA (-) or anti-TAS2R14 siRNA (+) for 24 
hours, then treated with DMSO or 25µM noscapine (NOS) for 24 hours. 
Cells staining for (A) annexin V (AV) only or (B) both propidium iodide 
and annexin V (PI/AV) were counted from 6 random fields of view on a 
fluorescence microscope. 𝑛 = 3,	two-tailed, paired t-test. **=p<0.01. 
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CHAPTER 4     DISCUSSION 

 

4.1     GENERAL OVERVIEW 
 

GPCRs make up one of the largest families of signaling proteins in vertebrates, and 

mediate many diverse signaling cascades. Given that most human tissues express GPCRs 

on their cell membranes and that they display a wide range of signaling abilities, it is not 

surprising that GPCR signaling is a major point of consideration in the development of 

new pharmaceutical strategies. We know that GPCRs can propagate signals by 

interacting with heterotrimeric G proteins, and that these signaling cascades can impact 

the transcription of genes associated with proliferation, differentiation, cell survival and 

cancer178. Thus, uncovering the biological implications of functional GPCR expression in 

a given tissue and characterizing that GPCRs signaling will better help those in the 

pharmaceutical industry develop new pharmacological strategies for diseases in which 

few robust treatment options exist.  

 

Despite their obvious promise in the pharmaceutical world, present attempts aimed at 

identifying robust GPCR-targeting drugs are slow-moving, particularly in cancer. This is 

due in part to the relative lack of crystal structures available to predict receptor-ligand 

interactions179-182, but also because of industrial practices using high-throughput screen-

friendly synthetic chemical libraries and rapid hit-to-lead drug discovery tactics that 

largely omit the discovery of naturally derived and safer GPCR drugs183. Therefore, 

investigating the potential of GPCRs that have known natural ligands with well-
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established risk profiles in tissues of interest can help researchers to identify new 

therapies for diseases with reduced side effect profiles. 

 

Nearly two decades ago, the Tas2R subfamily of GPCRs was identified as the family of 

receptors responsible for the transduction of bitter taste stimuli in the oral cavity of 

vertebrates43, 44, 54, 184, 185. It is believed that Tas2Rs originally evolved as a protective 

mechanism to ingesting toxic bitter-tasting metabolites, and that Tas2R repertoires are 

impacted primarily by environmental and dietary factors. Some studies have observed a 

significant correlation between bitter tasting ability and the amount of plant material in an 

animal’s diet49, 64, 186-188; however, these studies fail to explain why some non-herbivorous 

species, such as the coelacanth (Latimeria chalumnae) and the domestic cat (Felis catus) 

encode more TAS2R genes than some herbivores. These discrepancies in Tas2R 

repertoires have been explained away as being impacted by the co-evolution of improved 

degradation systems in some species189, as well as being influenced by the non-strict 

correlation between toxicity and bitter taste52. Additionally, since some bitter tasting 

phytochemicals exhibit some positive health benefits, it would be expected that active 

seeking behaviours would alter the gene repertoires of some species190, 191. It is, however, 

the discovery of extra-orally expressed bitter taste receptors that has provided a concrete 

explanation for why diet does not always negatively or positively influence Tas2R 

repertoires, and has caused many to reconsider their roles beyond bitter taste51. 
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The first extra-orally expressed bitter taste-recognition molecules were identified in 1996 

after several groups observed similarities between enteroendocrine cells of the 

gastrointestinal tract and taste receptor cells lining the tongue94, 95. The activation of these 

intestinal Tas2Rs was found to impact appetite as well as gastric motility and marked the 

first time that direct activation of non-oral Tas2Rs had physiological consequences. 

Another major milestone in the characterization of these receptors came in 2010 when 

Deshpande et al.116 observed robust Tas2R-dependent relaxation of airway smooth 

muscle cells upon administration of an aerosolized bitter ligand. Since these initial 

discoveries, Tas2Rs have been documented in a multitude of non-oral tissues: for 

example, human, mouse and rat cardiac cells appear to express Tas2Rs, and their 

expression can be upregulated during periods of starvation103; RT-PCR analyses and 

calcium mobilization assays revealed that functional Tas2Rs are expressed in the brain 

stem, cerebellum, nucleus accumbens and cerebral cortex117; and functional assays have 

revealed the involvement of Tas2Rs in spermatogenesis and sperm motility192, 193. 

Perhaps the most interesting developments in the identification of extra-orally expressed 

Tas2Rs however are those involving the deregulation of bitter taste receptors in several 

human diseases. 

 

As of now, there have been around 15 different disorders in which Tas2Rs are in some 

way implicated122, whether it be through correlative studies or being deregulated in 

various pathological states. In some tissues, such as the thyroid119, heart194 and oral 

gingiva195, 196, varying stages of disease correlate well with Tas2R SNP haplotype. In 

others, the expression of some taste receptor mRNA transcripts has been found to be 
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upregulated (TAS2R13, TAS2R14 and TAS2R19 in human leukocytes of asthma 

patients175; TAS2R10 and TAS2R13 in Parkinson’s disease patient brains121) or 

downregulated (TAS2R5 and TAS2R50 in Parkinson’s disease121; TAS2R4, TAS2R5, 

TAS2R14 and TAS2R50 in schizophrenia patient brains120; TAS2R4 in breast cancer 

cells125). Stimulation of Tas2Rs expressed on lipid droplets of pancreatic ductal 

adenocarcinoma tumour-derived cells even lead to changes in the expression of active 

mediators of apoptosis and cell survival126, demonstrating the functional consequences of 

targeting Tas2Rs in diseases such as cancer. As there is an ever-present need to identify 

new therapeutic drug targets for chronic diseases, further characterization of Tas2Rs in 

diseased tissues for which few therapeutic strategies exist or that are prone to relapse 

should be prioritized. 

 

One chronic illness which suffers a relatively low 5-year survival rate due to pathological 

reoccurrence is ovarian cancer. A lack of robust screening techniques as well as a 

frequently late stage of presentation of most cases contribute to this statistic; however, 

resistance to treatment with first-line therapies poses a significant challenge to improving 

patient outcomes. The standard treatment procedure consists of carboplatin-paclitaxel 

combination chemotherapy following cytoreductive surgery197. Sadly, relapse may occur 

as early as 4 weeks following combination therapy, leaving clinicians with little to no 

options for low-toxicity second-line therapies198. Thus, the treatment of recurrent and 

inevitably fatal epithelial ovarian cancers is more palliative in nature, focusing primarily 

on controlling symptoms and improving the quality of life of patients199. 

 



 88 

Interestingly, several natural bitter compounds have shown promise as both sensitizing 

and cytotoxic agents in recalcitrant epithelial ovarian cancers. Extracts from the Chinese 

bitter melon Momordica charantia were shown by Yung et al.154 to inhibit EOC cell 

growth through AMPK signaling and to improve the efficacy of platinum-based 

chemotherapies. Additionally, an alkaloid from the opium poppy (Papaver somniferum), 

noscapine, was shown to sensitize paclitaxel-resistant and cisplatin-resistant EOC cells, 

as well as: induce apoptosis through c-Jun signaling; decrease the expression of the pro-

survival factors XIAP, survivin and NF-κB; increase pro-apoptotic caspase-3 expression; 

inhibit HIF-1α; and increase the proportion of G2/M cells159, 162, 177. Despite these 

observations, the molecular basis of the perceived benefit of natural bitter products in the 

treatment of cancer has not been well defined. As noscapine is a ligand for the human 

bitter taste receptor Tas2R14, we sought to determine whether the anti-tumourogenic 

effect of noscapine was due to its interaction with ovarian Tas2R14 or by altering 

microtubule dynamics as it has been previously described to elicit its effects. 

 

4.2     TAS2R MRNA AND PROTEIN IS EXPRESSED IN EPITHELIAL 

OVARIAN CANCER 

 

The measure of differentially expressed mRNA transcripts is a rapid and quantitative 

technique that has been used to diagnose and predict treatment outcomes of many cancers 

for some time174. Since differentially regulated mRNAs better correlate with protein 

expression levels than non-differentially regulated transcripts200, and Tas2R mRNAs 

appear to be differentially regulated in at least one type of cancer125, qPCR analysis was 
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performed to determine the levels of several TAS2R transcripts in several EOC cell lines 

and patient derived tissue samples (Figures 5-14). At least five bitter taste receptors are 

expressed in ovarian cancer, and the transcriptional regulation of these receptor genes is 

variable in high grade serous and low grade serous ovarian cancer cell lines. While the 

expression of some receptors mRNAs such as TAS2R14 and TAS2R38 was repressed in 

nearly all cell lines observed (Figures 11-14), the expression of others such as TAS2R4 

(Figures 7 & 8) and TAS2R10 (Figures 9 & 10) were increased compared to control tissue 

samples. These findings are similar to those documented in breast cancer cells, whereby 

Tas2R expression in breast cancer is altered compared to healthy breast cells125. These 

changes in TAS2R mRNA raise several questions with regards to bitter taste receptor 

expression in tissues and how their expression is controlled. As there are still few 

published studies indicating the roles of Tas2Rs in cancer, further investigation is 

necessary to determine whether tissues specifically up- or down-regulate the expression 

of TAS2R transcripts and the mechanism of regulation or if other factors participate in the 

control of Tas2R expression in these types of cancer. Typically, changes in expression of 

mRNAs stem from genomic changes such as mutations, deletions or amplifications in 

protein coding genes201. We therefore performed cross-cancer queries through the 

cBioPortal for Cancer Genomics (http://cbioportal.org) to identify potential changes in 

copy number alterations (CNAs), mutations and deletions of TAS2R genes. Interestingly, 

79% of breast cancer patients exhibited increased amplification levels of the 5 TAS2Rs 

investigated in this study, followed by 29% and 24% of prostate and ovarian cancer 

patients, respectively. These changes in amplification in TAS2R genes lend credence to 

the notion that Tas2Rs could be involved in multiple cancers, as genes that are encoded in 
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amplified (i.e. duplicated) regions of the genome typically correlate well with 

tumerogenicity202. 

 

After characterizing the expression of all five Tas2Rs at the mRNA level, protein 

expression of three Tas2Rs, Tas2R1, Tas2R4 and Tas2R14 was quantified by Western 

blot analysis in OVCAR4 (Figure 17) and SKOV3 (Figure 18) cells. Using receptor-

specific siRNAs, knockdown of these three Tas2Rs was also observed to varying degrees, 

demonstrating both the lack of non-specific binding of antibody as well as the ability to 

modulate the expression of Tas2Rs in EOC cells for functional assays. Additionally, the 

expression of Tas2R14 in primary epithelial ovarian tumour samples was characterized 

by immunocytochemistry (ICC, Figure 15) and immunohistochemistry (IHC, Figure 16). 

ICC revealed expression of Tas2R14 in both EOC and precursor tissue cells of the 

fallopian tube, and expression of Tas2R14 was demonstrated in several primary epithelial 

ovarian cancer tissue samples.  

 

These results are intriguing; however, their implications are limited. No analyses of 

baseline protein levels of Tas2R14 in non-cancerous tissue were conducted, therefore it 

remains unknown as to whether the expression of Tas2Rs is altered in ovarian cancers 

compared to physiologically normal ovarian tissue. Similarly, it remains unknown 

whether the varied levels of mRNA expression of these receptors are due primarily to 

changes in tissue pathology or factors such as tissue specific promotors, as the levels of 

some TAS2R transcripts seem to change in ovarian cancer cells while others do not 

change from baseline levels of measurement. Despite this, these results indicate that 
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Tas2R mRNAs and proteins are expressed in HGSEOCs and LGSEOCs and their 

expression can be modulated in EOC cell lines with siRNAs.  

 

4.3     TAS2R14 IS FUNCTIONAL IN BOTH HGSEOC AND LGSEOC CELLS  
 

As Tas2R activation leads to increases in intracellular calcium release, the activities of 

Tas2Rs 4, 14 and 38 were established by conducting calcium mobilization assays by 

using receptor-specific ligands colchicine, noscapine and PROP74 over a 50-second time 

course (Figures 19-24). In OVCAR4 cells, stimulation of Tas2Rs 14 (Figure 21) and 38 

(Figure 23) with noscapine and PROP, respectively, lead to modest increases in 

intracellular calcium, while stimulation of Tas2R4 (Figure 19) with colchicine resulted in 

no change in calcium mobilization. Interestingly, SKOV3 cells appeared to express 

functional Tas2R4 (Figure 20) and Tas2R14 (Figure 22) but non-functional Tas2R38 

(Figure 24). These results are interesting for two reasons: firstly, they suggest that 

although HGSEOCs and LGSEOCs may express the same Tas2Rs at relatively similar 

levels, they are not all functional in both subtypes of EOC. This finding is intriguing as it 

suggests that the future development of chemotherapeutic agents targeting some Tas2Rs 

may only benefit a subset of EOC patients, while agents targeting other functional 

Tas2Rs may have a broader scope of action. Secondly, that cancers in different tissues 

express different functional Tas2Rs. For example, functional Tas2R38 and Tas2R4 was 

demonstrated in pancreatic cancer tumour-derived cell lines126 and breast cancer cells125, 

while in some ovarian cancers Tas2R38 and Tas2R4 stimulation does not elicit changes 

in intracellular calcium mobilization. Thus, to develop safe therapies aimed at stimulating 

or inhibiting Tas2Rs, functional analyses of Tas2Rs in tissues other than the target tissue 
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should be carried out to minimize potential side effects. However, some anomalies in the 

calcium traces for Tas2Rs 4, 14 and 38 in SKOV3 and OVCAR4 cells should be noted. 

Most of the compounds that were used during these experiments are not wholly specific 

to any one Tas2R, which could account for some of the observed increases in 

intracellular calcium release post-transfection with Tas2R siRNAs. Additionally, due to 

the relative hydrophobicity of the three ligands used, differences in solubility of these 

compounds could help to explain the varied degrees of activation (i.e. gradual versus 

rapid release of intracellular calcium) observed between Tas2R4/Tas2R14 and Tas2R38 

(Figures 19-24). Therefore, to accurately determine the activity of these and other Tas2Rs 

in EOC cells and tissues, additional study of these receptors is necessary to assess 

whether ligand solubility or co-activated receptors are responsible the varied levels of 

activation that were observed during these experiments.  

 

As previously mentioned, several studies have investigated the pro-apoptotic and anti-

tumourogenic properties of noscapine in ovarian cancer159, 161, 162, 203. As noscapine is an 

agonist of Tas2R1474 and our Western blotting and calcium mobilization analyses 

revealed that functional Tas2R14 protein is expressed in both HGSEOC and LGSEOC 

cells, we sought to determine whether noscapine’s pro-apoptotic effects are dependent on 

Tas2R14 expression. The functional consequence of noscapine treatment was the 

induction of significant changes in Bcl-XL and cleaved caspase-3 expression, which was 

dependent on Tas2R14 protein expression (Figure 25). Despite being a Tas2R14 agonist, 

noscapine is more commonly known to induce apoptosis by directly binding to tubulin 

subunits, alter microtubule assembly and induce apoptosis in actively cycling cells204, 205. 



 93 

Our results demonstrate that noscapine’s pro-apoptotic effect in this case acts through the 

activation of an apoptotic pathway dependent on Tas2R14. This effect was demonstrated 

again by conducting an annexin V apoptotic assay in which exposure to noscapine 

significantly increased the number of apoptotic cells in EOC cell populations expressing 

Tas2R14 (Figure 26A). Interestingly, SKOV3 cell populations of all four treatment 

conditions (i.e. negative control siRNA, Tas2R14 siRNA, + noscapine or – noscapine) 

exhibited high baseline levels of late apoptotic or necrotic cells; in some cases, over 80% 

of cells that were counted were AV+ or AV+/PI+ (Figure 26B). These levels are higher 

than basal levels of apoptosis in cancer cells, and could be due to many factors such as 

cellular stress induced by cell culture in absence of any growth serum, siRNA 

transfection or inadequate cellular conditions (incubations at room temperature versus 

37ºC). However, the observed increase in cells that were early apoptotic (AV+) 

demonstrates that noscapine’s pro-apoptotic effect is indeed mediated through Tas2R14 

in EOC cells. 

 

The observation that noscapine may induce apoptosis through the activation of Tas2R14 

is novel. As noscapine has already been used in clinical trials for several different 

cancers206, 207, it is important to determine all of noscapine’s potential methods of action 

to reduce off target effects and to minimize toxicity. Noscapine’s role in altering 

microtubule assembly dynamics has been well established177, 207, 208, although the 

mechanism by which noscapine enters the cell to affect microtubule dynamics has yet to 

be discovered. Interestingly, Tas2R14 protein expression was observed not only on at the 

cell membrane, but in the cytosolic compartment of CaOV3 and patient derived EOC 
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cells as well (Figure 15). It is possible that this increased cytosolic expression of 

Tas2R14 could be explained as being a product of cellular internalization of membrane-

bound Tas2R14, and that upon binding to cell-surface Tas2R14 noscapine is internalized 

through an endocytic process.  

 

4.4     DOES TAS2R14 SIGNAL THROUGH RAC-1 IN EOC? 
 

As previously mentioned, Tas2Rs signal in a Gαi/o-dependent manner through association 

with the G proteins Gαgust, Gβ3 and Gɣ13. Upon activation and binding of a bitter ligand, 

Gαgust inhibits the conversion of ATP to cAMP by inhibiting AC and the Gβɣ 

heterodimer activates PLC. PLC converts PIP2 to DAG and IP3, the latter of which binds 

to IP3 receptors on the smooth ER and stimulates the release of intracellular calcium. In 

the oral cavity, rises in intracellular calcium activate TRPM5 channels, leading to cellular 

depolarization and release of ATP from TRCs. However, the role of Tas2R-mediated 

calcium release in activating intracellular signaling cascades or other components of the 

bitter taste cascade as secondary messengers is not as well understood. To date, only 

several extra-oral signaling mechanisms of Tas2Rs have been proposed: on airway 

smooth muscle cells and tissue116, 209; on ciliated cells of the airway epithelium210-212; on 

enteroendocrine cells of the gut epithelium104, 213; in the vomeronasal organ in rats and 

human SCCs in the nasal canal107, 113, 114, 214, 215; on urethral brush cells216; and tuft cells of 

the gut related to immunity from parasitic infection217-219. Unfortunately, only the effects 

of bitter ligand stimulation of tissues on paracrine signaling have been observed, and until 

recently there had been no documented examples of Tas2R signaling regulating 

mitogenic or anti-proliferative signaling cascades. Additionally, the molecular basis 
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behind the observed effects of bitter extracts and compounds on cancer cells has not been 

well described. Our findings in EOC suggest that Tas2R14 mediates the bitter ligand-

induced anti-tumourogenic effect of noscapine. Although promising, further experiments 

will be needed to completely explain the series of events that eventually lead to the 

activation of caspase-3 and apoptosis in EOC cells following treatment with noscapine. 

 

Recently, Sidhu et al. demonstrated in a Tas2R4/Gαgust-expressing model that stimulating 

Tas2R4 could affect the activity of the Rac-1 GTPase220. Rac-1 (Ras-related C3 

botulinum toxin substrate 1), which is a Rho-family GTPase that is activated by a wide 

range or receptor tyrosine kinases and GPCRs221, plays a role in regulating the cell cycle 

and has been associated to influence tumourogenesis and metastasis in its active form222-

225. Interestingly, HEK293T cells treated with quinine, a Tas2R4 agonist, significantly 

reduced the activity of Rac-1220. This effect was reversed by using an inverse agonist of 

Tas2R4, Nα,Nα-bis(carboxymethyl)-L-lysine, or BCML. Additionally, they found that 

intracellular calcium only partially impacts Rac-1 activity after pre-treating quinine-

treated cells with a Ca2+ chelator, indicating an additional yet to be discovered pathway, 

possibly through the activation of Rac1-specific GAPs influencing the levels of active 

Rac-1. These findings are intriguing to our study of Tas2Rs in EOC, as they provide a 

potential connection to the activation of caspase-3 and induction of apoptosis. Active 

Rac-1 has been shown to promote cell survival in several cell models226-229, and a 

reduction in the GTP-bound form of Rac-1 has been shown to increase the activation of 

pro-apoptotic ERK signaling via a PI3K/Akt/ MEK pathway independent of Ras230. 

Additionally, active Rac-1 was shown to increase the amount of Bad phosphorylation and 
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lead to a decrease in pharmacologically induced caspase-mediated apoptosis231.  Thus, 

monitoring the levels of GTP-bound Rac-1 after stimulation with noscapine or other 

Tas2R14 agonists could provide insight into the entire mechanism of Tas2R14-induced 

apoptosis in epithelial ovarian cancer. One way in which to monitor whether the Rac-1 

GTPase is involved in Tas2R14 signaling would be to observe whether Tas2R activation 

presented any effects on cellular morphology. As Rac-1 knockouts in mouse embryonic 

fibroblasts have been shown to have reduced organization of the actin cytoskeleton and 

lowered focal adhesion232, it would be expected that noscapine would impact cytoskeletal 

organization if Rac-1 were implicated in the pathway downstream of Tas2R14.  

 

4.5     FUTURE WORK 
 

Much more work is necessary to fully characterize the intracellular signaling of Tas2R14 

and the long-term implications of its activity in EOC. The realization that Tas2Rs may 

act to inhibit Rho family GTPases220 is interesting, and measuring the amount of active 

Rac-1, ERK, PI3K and AKT could help us in elucidating the entirety of the Tas2R14 

apoptotic cascade induced by noscapine. Including other pro-survival and pro-apoptotic 

proteins such as XIAP, survivin, APAF-1 and NF-κB would help to provide a better 

picture of the overall biology of EOC Tas2R14 activation, as changes in these proteins 

were observed by Shen et al.159 after treating platinum-resistant ovarian cancer cells with 

noscapine. As previously mentioned, many studies have used natural bitter compounds 

such as noscapine to treat cancers and have observed changes in the proportions of G1 

and G2/M cells159, 161, 162, 203. Therefore, it would be interesting to perform FACs analysis 
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on EOC cells expressing and lacking Tas2R14 to determine whether noscapine induces 

receptor-specific changes in the number of cells at various stages of the cell cycle.  

 

Another interesting avenue in which to continue these studies would be to investigate the 

dietary regulation of Tas2R mRNAs and proteins in EOC. Previous studies concerning 

Tas2Rs in the heart103 have demonstrated that forced starvation and re-implementation of 

bitter compound-rich diets in mice influence changes in Tas2R mRNA and protein 

expression. Thus, cell and in vivo models that monitored the changes in the expression of 

ovarian Tas2Rs after sustained high or low bitter diet, or treatment with Tas2R ligands 

such as noscapine, would provide insight into whether Tas2Rs are viable and robust 

chemotherapeutic targets for EOC. Additionally, there has been a growing interest in 

identifying endogenous bitter ligands that could influence extra-oral Tas2R activation 

such as hormones and amino acids51. As the ovaries, much like the heart, are outside of 

the gastrointestinal tract and do not interact directly with bitter compounds in food, the 

changes in their expression could be attributed to hormonal influences. Thus, 

characterizing the molecules involved in internal Tas2R regulation could better help us 

identify novel therapeutic approaches in ovarian and other cancers. 

 

4.6     CONCLUSIONS 
 

It has become increasingly difficult to consider Tas2Rs as merely the receptors 

responsible for the perception of bitter taste, as the body of evidence suggesting their 

roles beyond the oral cavity is ever-growing. In this study, we show that bitter taste 

receptor mRNAs and proteins are expressed in ovarian carcinomas, and that the 
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activation of Tas2R14 with a bitter ligand affects cell survival. Our results identify 

another type of cancer, after colorectal123, breast125 and pancreatic cancers126, to express 

functional bitter taste receptors. Our findings are preliminary, and demonstrate that 

noscapine’s pro-apoptotic effect in epithelial ovarian cancer cells is mediated through a 

receptor-mediated process, likely in addition to its effect on microtubule dynamics. To 

fully understand whether Tas2Rs present a possible new target in EOC and other cancers, 

further investigation of this receptor family’s intracellular signaling pathways is 

necessary to aid in the discovery of new and potentially safer therapeutic strategies for 

cancer patients. 
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• explicitly excludes the right for derivatives.

- Springer does not supply original artwork or content.

- According to the format which you have selected, the following conditions apply

accordingly:

• Print and Electronic: This License include use in electronic form provided it is password

protected, on intranet, or CD-Rom/DVD or E-book/E-journal. It may not be republished in

electronic open access.

• Print: This License excludes use in electronic form.

• Electronic: This License only pertains to use in electronic form provided it is password

protected, on intranet, or CD-Rom/DVD or E-book/E-journal. It may not be republished in

electronic open access.

For any electronic use not mentioned, please contact Springer at permissions.springer@spi-

global.com.

- Although Springer controls the copyright to the material and is entitled to negotiate on

rights, this license is only valid subject to courtesy information to the author (address is

given in the article/chapter).

- If you are an STM Signatory or your work will be published by an STM Signatory and you

are requesting to reuse figures/tables/illustrations or single text extracts, permission is

granted according to STM Permissions Guidelines: http://www.stm-assoc.org/permissions-

guidelines/

For any electronic use not mentioned in the Guidelines, please contact Springer at

permissions.springer@spi-global.com. If you request to reuse more content than stipulated

in the STM Permissions Guidelines, you will be charged a permission fee for the excess

content.

Permission is valid upon payment of the fee as indicated in the licensing process. If

permission is granted free of charge on this occasion, that does not prejudice any rights we

might have to charge for reproduction of our copyrighted material in the future.

-If your request is for reuse in a Thesis, permission is granted free of charge under the

following conditions:

This license is valid for one-time use only for the purpose of defending your thesis and with

a maximum of 100 extra copies in paper. If the thesis is going to be published, permission

needs to be reobtained.

- includes use in an electronic form, provided it is an author-created version of the thesis on

his/her own website and his/her university’s repository, including UMI (according to the

definition on the Sherpa website: http://www.sherpa.ac.uk/romeo/);

- is subject to courtesy information to the co-author or corresponding author.

Geographic Rights: Scope

Licenses may be exercised anywhere in the world.

Altering/Modifying Material: Not Permitted

Figures, tables, and illustrations may be altered minimally to serve your work. You may not
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alter or modify text in any manner. Abbreviations, additions, deletions and/or any other

alterations shall be made only with prior written authorization of the author(s).

Reservation of Rights

Springer reserves all rights not specifically granted in the combination of (i) the license

details provided by you and accepted in the course of this licensing transaction and (ii) these

terms and conditions and (iii) CCC's Billing and Payment terms and conditions.

License Contingent on Payment

While you may exercise the rights licensed immediately upon issuance of the license at the

end of the licensing process for the transaction, provided that you have disclosed complete

and accurate details of your proposed use, no license is finally effective unless and until full

payment is received from you (either by Springer or by CCC) as provided in CCC's Billing

and Payment terms and conditions. If full payment is not received by the date due, then any

license preliminarily granted shall be deemed automatically revoked and shall be void as if

never granted. Further, in the event that you breach any of these terms and conditions or any

of CCC's Billing and Payment terms and conditions, the license is automatically revoked and

shall be void as if never granted. Use of materials as described in a revoked license, as well

as any use of the materials beyond the scope of an unrevoked license, may constitute

copyright infringement and Springer reserves the right to take any and all action to protect

its copyright in the materials.

Copyright Notice: Disclaimer

You must include the following copyright and permission notice in connection with any

reproduction of the licensed material:

"Springer book/journal title, chapter/article title, volume, year of publication, page, name(s)

of author(s), (original copyright notice as given in the publication in which the material was

originally published) "With permission of Springer"

In case of use of a graph or illustration, the caption of the graph or illustration must be

included, as it is indicated in the original publication.

Warranties: None

Springer makes no representations or warranties with respect to the licensed material and

adopts on its own behalf the limitations and disclaimers established by CCC on its behalf in

its Billing and Payment terms and conditions for this licensing transaction.

Indemnity

You hereby indemnify and agree to hold harmless Springer and CCC, and their respective

officers, directors, employees and agents, from and against any and all claims arising out of

your use of the licensed material other than as specifically authorized pursuant to this

license.

No Transfer of License

This license is personal to you and may not be sublicensed, assigned, or transferred by you

without Springer's written permission.

No Amendment Except in Writing

This license may not be amended except in a writing signed by both parties (or, in the case

of Springer, by CCC on Springer's behalf).

Objection to Contrary Terms

Springer hereby objects to any terms contained in any purchase order, acknowledgment,

check endorsement or other writing prepared by you, which terms are inconsistent with these

terms and conditions or CCC's Billing and Payment terms and conditions. These terms and

conditions, together with CCC's Billing and Payment terms and conditions (which are

incorporated herein), comprise the entire agreement between you and Springer (and CCC)

concerning this licensing transaction. In the event of any conflict between your obligations

established by these terms and conditions and those established by CCC's Billing and

Payment terms and conditions, these terms and conditions shall control.

Jurisdiction

All disputes that may arise in connection with this present License, or the breach thereof,
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shall be settled exclusively by arbitration, to be held in the Federal Republic of Germany, in

accordance with German law.

Other conditions:

V 12AUG2015

Questions? customercare@copyright.com or +1­855­239­3415 (toll free in the US) or
+1­978­646­2777.
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established by Copyright Clearance Center, Inc. ("CCC"), at the time that you opened your

Rightslink account and that are available at any time at http://myaccount.copyright.com).

Limited License

With reference to your request to reuse material on which Springer controls the copyright,

permission is granted for the use indicated in your enquiry under the following conditions:

- Licenses are for one-time use only with a maximum distribution equal to the number stated

in your request.

- Springer material represents original material which does not carry references to other

sources. If the material in question appears with a credit to another source, this permission is

not valid and authorization has to be obtained from the original copyright holder.

- This permission

• is non-exclusive

• is only valid if no personal rights, trademarks, or competitive products are infringed.

• explicitly excludes the right for derivatives.

- Springer does not supply original artwork or content.

- According to the format which you have selected, the following conditions apply

accordingly:

• Print and Electronic: This License include use in electronic form provided it is password

protected, on intranet, or CD-Rom/DVD or E-book/E-journal. It may not be republished in

electronic open access.

• Print: This License excludes use in electronic form.

• Electronic: This License only pertains to use in electronic form provided it is password

protected, on intranet, or CD-Rom/DVD or E-book/E-journal. It may not be republished in

electronic open access.

For any electronic use not mentioned, please contact Springer at permissions.springer@spi-

global.com.

- Although Springer controls the copyright to the material and is entitled to negotiate on

rights, this license is only valid subject to courtesy information to the author (address is

given in the article/chapter).

- If you are an STM Signatory or your work will be published by an STM Signatory and you

are requesting to reuse figures/tables/illustrations or single text extracts, permission is

granted according to STM Permissions Guidelines: http://www.stm-assoc.org/permissions-

guidelines/

For any electronic use not mentioned in the Guidelines, please contact Springer at

permissions.springer@spi-global.com. If you request to reuse more content than stipulated

in the STM Permissions Guidelines, you will be charged a permission fee for the excess

content.

Permission is valid upon payment of the fee as indicated in the licensing process. If

permission is granted free of charge on this occasion, that does not prejudice any rights we

might have to charge for reproduction of our copyrighted material in the future.

-If your request is for reuse in a Thesis, permission is granted free of charge under the

following conditions:

This license is valid for one-time use only for the purpose of defending your thesis and with

a maximum of 100 extra copies in paper. If the thesis is going to be published, permission

needs to be reobtained.

- includes use in an electronic form, provided it is an author-created version of the thesis on

his/her own website and his/her university’s repository, including UMI (according to the

definition on the Sherpa website: http://www.sherpa.ac.uk/romeo/);

- is subject to courtesy information to the co-author or corresponding author.

Geographic Rights: Scope

Licenses may be exercised anywhere in the world.

Altering/Modifying Material: Not Permitted

Figures, tables, and illustrations may be altered minimally to serve your work. You may not



 135 

 

7/5/2017 RightsLink Printable License

https://s100.copyright.com/AppDispatchServlet 3/4

alter or modify text in any manner. Abbreviations, additions, deletions and/or any other

alterations shall be made only with prior written authorization of the author(s).

Reservation of Rights

Springer reserves all rights not specifically granted in the combination of (i) the license

details provided by you and accepted in the course of this licensing transaction and (ii) these

terms and conditions and (iii) CCC's Billing and Payment terms and conditions.

License Contingent on Payment

While you may exercise the rights licensed immediately upon issuance of the license at the

end of the licensing process for the transaction, provided that you have disclosed complete
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Copyright Notice: Disclaimer

You must include the following copyright and permission notice in connection with any
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"Springer book/journal title, chapter/article title, volume, year of publication, page, name(s)

of author(s), (original copyright notice as given in the publication in which the material was

originally published) "With permission of Springer"

In case of use of a graph or illustration, the caption of the graph or illustration must be

included, as it is indicated in the original publication.

Warranties: None

Springer makes no representations or warranties with respect to the licensed material and

adopts on its own behalf the limitations and disclaimers established by CCC on its behalf in

its Billing and Payment terms and conditions for this licensing transaction.

Indemnity

You hereby indemnify and agree to hold harmless Springer and CCC, and their respective

officers, directors, employees and agents, from and against any and all claims arising out of

your use of the licensed material other than as specifically authorized pursuant to this

license.

No Transfer of License

This license is personal to you and may not be sublicensed, assigned, or transferred by you

without Springer's written permission.

No Amendment Except in Writing

This license may not be amended except in a writing signed by both parties (or, in the case

of Springer, by CCC on Springer's behalf).

Objection to Contrary Terms

Springer hereby objects to any terms contained in any purchase order, acknowledgment,

check endorsement or other writing prepared by you, which terms are inconsistent with these

terms and conditions or CCC's Billing and Payment terms and conditions. These terms and

conditions, together with CCC's Billing and Payment terms and conditions (which are

incorporated herein), comprise the entire agreement between you and Springer (and CCC)

concerning this licensing transaction. In the event of any conflict between your obligations

established by these terms and conditions and those established by CCC's Billing and

Payment terms and conditions, these terms and conditions shall control.

Jurisdiction

All disputes that may arise in connection with this present License, or the breach thereof,
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shall be settled exclusively by arbitration, to be held in the Federal Republic of Germany, in

accordance with German law.

Other conditions:

V 12AUG2015

Questions? customercare@copyright.com or +1­855­239­3415 (toll free in the US) or
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