

Retrieved from DalSpace, the institutional repository of Dalhousie University https://dalspace.library.dal.ca/handle/10222/73006

Version: Post-print

Publisher's version: Figliola, C., Robertson, K., Greening, S., & Thompson, A. (2017). Asymmetric Dipyrrin and F-BODIPYs Conjugated to Terminal Alkynes and Alkenes. Journal of Organic Chemistry. doi: <u>10.1021/acs.joc.7b01129</u> (June 24, 2017)

Asymmetric dipyrrin and F-BODIPYs conjugated to

terminal alkynes and alkenes

Carlotta Figliola,^a Katherine N. Robertson,^b Sarah Greening^a and Alison Thompson^{*a}

^aDepartment of Chemistry, Dalhousie University, PO BOX 15000, Halifax, NS, B3H 4R2,

Canada

^bDepartment of Chemistry, Saint Mary's University, Halifax, NS, B3H 3C3, Canada

Abstract

An asymmetric meso-*H* dipyrrin featuring a conjugated terminal alkyne substituent was converted to its corresponding difluoro boron complex and the extent of π -conjugation extended using Sonogashira cross-coupling. Treatment of the alkyne-substituted dipyrrin with BF₃•OEt₂ and NEt₃ revealed the reactivity of the conjugated terminal alkyne towards Lewis-activated electrophilic substitution, and led to the isolation of *F*-BODIPYs bearing terminal bromovinyl and enol substituents.

4,4'-Difluoro-4-bora-(3a,4a)-diaza-s-indacenes (F-BODIPYs)¹ are popular courtesy of their robustness in chemical and physiological environments, tunable nanosecond fluorescence lifetime, negligible triple-state population and high quantum yield.²⁻⁷ Indeed, the electronic

properties of BODIPYs have recently been exploited in chromogenic and pH probes in biomolecular environments,^{8,9}, drug delivery agents,^{10,11} fluorescent switches,¹² electroluminescent films,^{13,14} and photosensitizers in both solar cells and photodynamic therapy.¹⁵⁻¹⁷ However, the emission wavelength of the BODIPY core (generally <600 nm) is outside of the 650-1000 nm biological window, where auto-fluorescence and light scattering are minimized.¹⁸ Furthermore, conjugation of BODIPYs to large biomolecules is rather underdeveloped^{19,20} and relies on synthetic methodology involving extended reaction times and harsh conditions. A bathochromic shift of the emission wavelength has been achieved by extending the π -conjugation of the dipyrrinato ligand of BODIPYs (Figure 1).²¹ All eight positions of the dipyrrinato core can be substituted with groups such as aryl, ethynylphenyl, steryl and vinyl, as can the fluoro substituents at boron²¹⁻²⁸ (Figure 1). Particularly appealing is the incorporation of an acetelyne substituent on the β -positions of the dipyrrinato ligand with the goal of both extending π conjugation and introducing a functional handle for linkage to other moieties.²⁹⁻⁴³ Despite the large body of work concerning the synthesis and the reactions of alkene-substituted F-BODIPYs, systems substituted with terminal alkenes are scarce.⁴⁴

Figure 1. BODIPYs exhibiting a bathochromic shift through extension of the π -conjugation.

In an ongoing effort to synthesize new dipyrrole-based dyes and investigate their photochemical properties and reactivity,⁴⁵⁻⁵⁰ we targeted the meso-*H* asymmetric dipyrrin 1 (Scheme 1), featuring a terminal alkyne directly conjugated to the dipyrrinato core, and complexed to $-BF_2$ to provide the *F*-BODIPY **4**. Furthermore, we report the generation and

reactivity of the first bromovinyl- (5) and enol-substituted (6) *F*-BODIPYs (Scheme 2) bearing terminal alkenyl units. Our pre-functionalization synthetic approach to 1 (Scheme 1),³ involving condensation of the corresponding alkyne-substituted 2-formyl pyrrole (2)⁵¹ and krypto pyrrole (3), allows independent modification of the electronic and steric features of each pyrrole of the dipyrrin. Although *F*-BODIPYs have been isolated bearing alkynyl functionality at the βposition, most are symmetrical (with an alkynyl unit on each pyrrolic unit) and/or are synthesized in one pot from the requisite pyrroles, i.e. not isolated at the pre-ligand step.^{29,30,41,51-⁵⁵ Burgess reported the synthesis of an asymmetric *F*-BODIPY similar to **4** and bearing a terminal alkyne at the β-position of the dipyrrinato core, but the constituent dipyrrin was not isolated.⁵⁵}

We first synthesized the asymmetric dipyrrin hydrobromide salt **9**, bearing a TMSprotected alkynyl unit (Scheme 1). The β -iodo pyrrole **7**⁵⁵ underwent Sonogashira cross-coupling reaction conditions with TMS-acetylene to afford pyrrole **8**.⁵¹ Condensation of **8** and the α -free pyrrole **3** afforded the TMS-protected dipyrrin hydrobromide salt **9**. However, upon treatment of **9** with NEt₃ and BF₃•OEt₂, loss of the TMS-group was accompanied by decomposition rather than formation of the corresponding *F*-BODIPY. At this point, we began to appreciate the unusual susceptibility of the β -alkynyl unit towards Lewis acid activation.

Scheme 1. Synthesis of dipyrrins bearing alkynyl groups.

Fortunately, TMS-deprotection could be achieved earlier in the sequence using the pyrrole **8**, followed by condensation of the resulting 2-formyl-4-alkynynl pyrrole **2** with **3** to provide the desired dipyrrin hydrobromide salt **1** (Scheme 1). The structure of **1**, featuring a terminal alkyne directly conjugated to the dipyrrinato core, was confirmed using X-ray crystallography (see Supporting Information, Figure S1). The ability of the alkynyl unit to extend the π -conjugated system of the dipyrrinato core is demonstrated by the C(6)-C(15) bond length of 1.438 Å, intermediate between the expected length of C–C single and double bonds (Figure 2). In contrast, the structure of the dipyrrin hydrobromide salt **10** (Supporting Information, Figure S2),⁵⁶ with only ethyl groups substituting the β -positions of the dipyrrinato core, features a C(2)-C(11) bond length of 1.503 Å. The short C(6)-C(15) bond length within **1** suggests that the triple bond π -system participates in the delocalization of electrons originating within the dipyrrinato core, and is thereby activated towards electrophilic attack.

Figure 2. Comparison of bond length between dipyrrin hydrobromides 1 and 10.

Treatment of dipyrrin hydrobromide salt **1** with NEt₃ and BF₃•OEt₂ did not initially afford the expected *F*-BODIPY **4** (Scheme 2). Instead, two new stable compounds, that were inseparable via chromatography over silica, were isolated. The ¹H NMR spectrum (Supporting Information, Figure S3a) of the mixture contained two sets (4:1 ratio) of vinylic protons between 6.00 and 5.20 ppm. Although the ¹¹B NMR triplet diagnostic was too broad to reveal detailed information beyond confirming the presence of *F*-BODIPYs, the ¹⁹F NMR spectrum clearly displayed two overlapping quartets, thereby also suggesting the presence of two *F*-BODIPYs in the mixture. ${}^{1}H{-}{}^{13}C$ HSQC NMR analysis showed distinct correlations between peaks due to each set of vinylic protons (A and B in Figure 3) and signals due to their respective carbon atoms, implying that both compounds in the mixture feature a terminal vinyl group at the β -position.

Figure 3. $^{1}H^{-13}C$ HSQC NMR spectra of the mixture of *F*-BODIPYs 5 and 6.

Alongside two-dimensional NMR analysis, mass spectrometric analysis of the mixture enabled the identification of these two products as the bromovinyl- and enol-containing *F*-BODIPYs **5** and **6**, respectively, with the bromovinyl- derivative as the major constituent (Scheme 2). Both materials presumably formed as a result of addition across the triple bond, with **6** as a result of exposure to water in the work-up. To determine whether **5** was formed as the direct product of the reaction of **4** with NEt₃ and BF₃•OEt₂, or during work-up, the reaction was monitored through ¹H NMR spectroscopic analysis (Supplementary Information, Figures S3b and S3c). Analysis of the vinylic region revealed that the bromovinyl analog **5** dominates throughout the reaction, with signals due to **6** becoming more prominent upon addition of aqueous acid in work-up. Although the use of silica did not enable the chromatographic separation of **5** and **6**, the use of basic alumina was effective in that it resulted in elimination of HBr from **5** to produce the desired *F*-BODIPY **1** (Scheme 2, yields based on the amount of **5** in the mixture). However, the remarkably stable enol *F*-BODIPY **6** was recovered. The mixture of

5 and **6** was reacted with either TsCl or MeI in the presence of a base (DIPEA and NEt₃, respectively). However, in both cases, only starting materials were recovered.

Scheme 2. Reaction of dipyrrin hydrobromide 1 with BF₃•OEt₂ and NEt₃.

The elimination of HBr from **5** to form the alkynyl-substituted *F*-BODIPY **4** was investigated spectroscopically via treatment of a solution of the mixture of **5** and **6** in CD₃CN with NEt₃ (Supporting Information, Figure S4). Two sets of vinyl peaks were clearly apparent until 1 equiv. of NEt₃ was added whereupon the alkynyl peak at 3.60 ppm of **4** appeared. Further additions of NEt₃ resulted in increasing conversion to **4** at the expense of only the bromo-vinyl substituted *F*-BODIPY **5**, as determined through monitoring the vinyl protons. The vinyl proton peaks of the enol-containing *F*-BODIPY **6** remained constant, matching the previous observation following chromatography over basic alumina. Presumably, the conversion of **5** to **4** does not occur in the original complexation reaction, despite the presence of excess NEt₃, due to equilibria involving NEt₃ preferably interacting with HF and HBF₄, as well as forming the BF₃•NEt₃ Lewis pair,^{45,57} which was reported unreactive towards terminal alkyne.⁵⁸

Cognizant that activation of terminal alkynes can occur in the presence of Lewis acids, including those involving boron species,^{53,54,58-64} dipyrrin hydrobromide salt **1** was reacted with stoichiometric BF₃•OEt₂ whereby formation of the *F*-BODIPY would not be expected.⁴⁵ A solution of **1** in CDCl₃ (Figure 4, spectrum a) was treated with BF₃•OEt₂ (1 equiv.), under anhydrous conditions, and the mixture analyzed using ¹H NMR spectroscopy. Immediately after the addition, the intensity of the signal due to the alkynyl proton of **1** diminished and two sets of vinyl peaks appeared (Figure 4, spectrum b). One of the sets of signals due to vinyl protons

corresponded to our previous characterization of 5 (Figure 4, spectrum g). The other set of vinylic peaks was assigned to the free-base 11. The broad peak in the range of 4.20 and 3.90 ppm corresponds to the ethyl groups originating from BF₃•OEt₂. Sequential ¹H NMR analysis (Figure 4, spectra c-f), revealed conversion of 1 to the mixture of 5 and the corresponding free-base 11. Stoichiometric activation of the triple bond of the dipyrrin 1 clearly enables addition of HBr (from the original dipyrrin hydrobromide salt) across the exo-cyclic π -system. To the best of our knowledge, this is the first report whereby the HX unit of a dipyrrin salt reacts with the substituents about the dipyrrinato core. The same experiment was repeated using 1-hexyne in CDCl₃ (Supporting Information, Figure S5), but ¹H NMR spectroscopy revealed no reaction over 3 hours thus confirming the surprising sensitivity of the terminal alkyne of dipyrrin hydrobromide 1. Treatment of the free-base of 1, prepared through washing the hydrobromide salt with 2 M NaOH, with 1 equiv. BF₃•OEt₂ resulted in the dark green solution producing a dark purple colour and then a black polymerized precipitate. Attempts to solubilize the precipitate in organic solvents, including DMSO- d_6 , were unsuccessful. Similar polymerization occurred when the F-BODIPY 4 was treated with stoichiometric BF₃•OEt₂. It is curious that the alkynyl functionality of the salt 1 is essentially protected upon reaction with HBr, yet this unit of HBr was introduced with the intention of protecting the dipyrrinato unit. The HBr addition product 5 essentially masks the triple bond, yet can be ready converted to the alkyne 4 upon treatment with base.

Figure 4. Treatment of a solution of dipyrrin 1 in CDCl₃ (0.1 M) with 1 equiv. BF₃•OEt₂.

The susceptibility of a conjugated alkynyl-substituted pyrrole to addition reactions was similarly observed when pyrrole 12^{65} was subjected to Vilsmeier-Haack reaction conditions. Alongside the desired product 13, the alkynes 14 and 15 were isolated (note that initial formylation suffers from poor regioselectivity). Furthermore, the chlorovinyl-pyrrole 16 was also isolated, presumably as a consequence of HCl addition to the alkyne 14 under the reaction conditions (Scheme 3). The contribution of the pyrrolic nitrogen lone pair to the reactivity of substituents has been well-documented,⁶⁶⁻⁶⁹ and in the case of 4 and 15 is responsible for enabling a facile addition reaction across the triple bond.

Scheme 3. Formylation of pyrrole 12 using Vilsmeier-Haack reaction conditions.

With the goal of extending the π -conjugation, the chemical reactivity of *F*-BODIPYs **4-6** was investigated. First, alkyne-containing *F*-BODIPY **4** was reacted with 3-iodoanisole under Sonogashira cross-coupling conditions (a, Scheme 4).⁵⁵ The expected aryl-conjugated alkynyl *F*-BODIPY **17** was isolated in 72% yield. Interestingly, reaction of the mixture of **5** and **6** (4:1

ratio) with 3-iodoanisole, under the same conditions also gave the aryl-conjugated alkynyl F-BODIPY 17 (53% yield based on the amount of 5 in the mixture, reaction b in Scheme 4). The enol 6 again remained unreacted, and was isolated in a mixture alongside the excess 3-iodoanisole.

Scheme 4. Sonogashira cross-coupling reaction between *F*-BODIPYs 4-6 and 3-iodoanisole.

The absorbance and fluorescence exhibited by the new *F*-BODIPYs **4** and **17** were compared to those of the known *F*-BODIPY **18**, formed from **10**, with ethyl groups on each of the β -positions of the dipyrrinato core. The replacement of one of the β -ethyl groups of **18** with an alkynyl moiety (**4**), results in a negligible red-shift absorbance maximum of 3 nm whereas the extended conjugation seen in **17** results in a red-shift of 13 nm (Figure 5). Noteworthy is the fact that the emission wavelengths are significantly red-shifted courtesy of an increased Stoke's shift for both **4** (14 nm) and **17** (29 nm) cf. just 4 nm for the per-alkyl analog **18**. However, the *F*-BODIPY **17** exhibits a slightly lower quantum yield ($\phi_{fluo} = 0.60$) compared to the simpler analogs (near quantitative, see Supporting Information).

Figure 5. Absorbance and emission of *F*-BODIPYs 4, 17 and 18

In conclusion, the synthesis, characterization and reactivity of the asymmetric meso-*H* alkyne-conjugated dipyrrin **1** are reported. The reaction of **1** with BF₃•OEt₂ and NEt₃ revealed that the conjugated terminal alkynyl unit undergoes electrophilic attack. Future work involving dipyrrins bearing terminal alkynes should take this unusual reactivity into consideration. Two new terminal alkene-substituted *F*-BODIPYs, **5** and **6**, were isolated after treating **1** with BF₃•OEt₂ and NEt₃. ¹H NMR spectroscopic analysis suggests activation of the alkynyl unit by BF₃, and subsequent nucleophilic addition of HBr onto the triple bond. Basic conditions induced elimination of HBr from **5** and restoration of the conjugated triple bond. Extension of the π -conjugation of **4** and **5** give the new dye **17**. The absorption and emission spectra of *F*-BODIPYs **4** and **17** were compared to a per alkyl dipyrrin, thereby enabling the effect of the terminal and substituted alkynyl units to be assessed. The extension of the π -conjugation resulted in red shifted absorbance and a Stoke's shift of almost 30 nm.

Experimental procedures

All chemicals were purchased and used as received unless otherwise indicated. Moisture sensitive reactions were performed in oven-dried glassware and under a positive pressure of nitrogen. Air- and moisture-sensitive compounds were introduced via syringe or cannula through a rubber septum. Flash chromatography was performed using either ultra-pure silica (230-400 mm) or 150 mesh Brockmann III activated basic alumina oxide as indicated. The NMR spectra were recorded using a 500 MHz spectrometer instrument using CDCl₃ as solvent and is reported in parts per million (ppm). Internal solvent was referenced at 7.26 ppm for ¹H and at 77.16 ppm for ¹³C when using CDCl₃. All chemical shifts regarding ¹¹B and ¹⁹F were referenced using the absolute referencing procedure standard on digital spectrometers. For ¹¹B chemical shifts the 0 ppm position corresponds to the chemical shift of BF₃·Et₂O (15% in CDCl₃) whereas for ¹⁹F the

reference compound is CCl₃F. Coupling constants (*J*) are given in Hertz (Hz). Mass spectra were obtained using TOF and LCQ Duo ion trap instruments operating in $\text{ESI}^{+/-}$ or APCI mode, as indicated. Compounds **2**,⁵¹ **3**,⁵⁵ **8**,⁵¹ **10**,⁷⁰ **12**⁶⁵ and **18**⁷¹ were prepared according to literature procedures.

General Procedure for Absorbance and Emission Measurements

A 10 mm quartz cuvette was used. For fluorescence experiments, a slit width of 3 nm was used for both excitation and emission. Each compound was dissolved in CH_2Cl_2 .

Fluorescence Quantum Yield

Relative fluorescence quantum yields were obtained by comparing the area under the emission spectrum of the compound of interest to that of the standard, rhodamine 6G (ϕ =0.94 in ethanol).⁷² The excitation wavelength was 520 nm for rhodamine 6G, *F*-BODIPY **4** and *F*-BODIPY **17**. The excitation wavelength was 500 nm for the reference compound **18**, and compared to rhodamine 6G excited at 500 nm. Relative quantum yields were determined using Equation 1,⁷³ where Φ_{st} is the reported quantum yield of the standard, I is the area of the integrated emission spectra, A is the absorbance at the excitation wavelength and η is the refractive index of the solvent used. The subscripts "X" and "st" denote the unknown and standard compound, respectively.

$$\Phi_X = \Phi_{st} \left(\frac{I_X}{I_{st}}\right) \left(\frac{A_{st}}{A_X}\right) \left(\frac{\eta_X^2}{\eta_{st}^2}\right)$$

Equation 1. Relative quantum yield (Φ_X) .

3-Ethyl-5-((4-ethynyl-3,5-dimethyl-2*H*-pyrrol-2-ylidene)methyl)-2,4-dimethyl-1*H*-pyrrole hydrobromide (1)

2-Formyl pyrrole 2^{51} (0.10 g, 0.680 mmol) was dissolved in MeOH:THF (1:1.5 mL) and α -free pyrrole 3^{55} (0.08 g, 0.680 mmol) was added in one portion at room temperature. The reaction mixture was degassed (× 3) and 48% aq. HBr (0.18 mL, 0.680 mmol) was added at 0 °C. The reaction mixture was placed under an atmosphere of N₂ and stirred for 1 hour and then poured into Et₂O (30 mL). The resulting precipitate was isolated *via* suction filtration and then washed with Et₂O (10 mL × 3) to afford the title compound as a bright red solid (80%). M.p.: decomposition >170 °C. ¹H NMR (CDCl₃, 500 MHz) 1.08 (t, *J* = 7.6 Hz, 3H), 2.29 (s, 3H), 2.39 (s, 3H), 2.44 (q, *J* = 7.6 Hz, 2H), 2.70 (s, 3H), 2.71 (s, 3H), 3.33 (s, 1H), 7.07 (s, 1H), 13.16 (br s, 1H), 13.29 (br s, 1H) ppm. ¹³C NMR (CDCl₃, 125 MHz) 10.2, 11.4, 13.2, 13.4, 14.4, 17.4, 75.2, 83.8, 110.9, 119.8, 124.8, 127.8, 132.4, 143.6, 145.5, 155.3, 158.5 ppm. HRMS-ESI (m/z): [M-Br]⁺ calcd for C₁₇H₂₁N₂, 253.1699; found, 253.1693.

3-Ethyl-5-((4-ethynyl-3,5-dimethyl-2*H*-pyrrol-2-ylidene)methyl)-2,4-dimethyl-1*H*-pyrrole (free-base)

A solution of dipyrrin **1** (0.10 g, 0.300 mmol) in CH₂Cl₂ (10 mL) was washed with 2 M NaOH (10 mL × 3). The organic layer was washed with water (10 mL × 2) and brine (10 mL), dried over Na₂SO₄ and concentrated under reduced pressure to give the title compound as a dark green solid (0.07 g, quant.). M.p.: decomposition >110 °C. ¹H NMR (CDCl₃, 500 MHz) 1.06 (t, J = 7.6 Hz, 3H), 2.13 (s, 3H), 2.27 (s, 3H), 2.31 (s, 3H), 2.37 (q, J = 7.6 Hz, 2H), 2.40 (s, 3H), 3.30 (s, 1H), 6.66 (s, 1H), 8.84 (br s, 1H) ppm. ¹³C NMR (CDCl₃, 125 MHz) 9.6, 10.7, 14.6, 14.8, 15.2, 17.9, 78.5, 81.9, 109.3, 116.3, 132.6, 134.2, 136.1, 138.1, 140.0, 151.1, 157.3 ppm. HRMS-ESI (m/z): [M+H]⁺ calcd for C₁₇H₂₁N₂, 253.1699; found, 253.1707.

4,4-Difluoro-1,3,5,7-tetramethyl-2-ethynyl-6-ethyl-8H-4-bora-3a,4a-diaza-s-indacene (4)

NEt₃ (2.5 mL, 18.0 mmol) was added to a solution of dipyrrin hydrobromide 1 (1.00 g, 3.00 mmol) in anhydrous CH₂Cl₂ (313 mL) at room temperature under a N₂ atmosphere. The reaction mixture was stirred for 15 minutes and BF₃•OEt₂ (3.3 mL, 27.0 mmol) was then added. After 2 hours, NEt₃ (2.5 mL, 18.0 mmol) and BF₃•OEt₂ (3.3 mL, 27.0 mmol) were added and the reaction mixture stirred for an additional 2 hours. 5 M HCl (20 mL) was added and the two layers were separated. The organic layer was washed with 5 M HCl (20 mL \times 4), water (50 mL \times 2) and brine (50 mL), dried over Na₂SO₄ and concentrated under reduced pressure. The crude mixture was purified using column chromatography over either SiO₂ or type III neutral Al₂O₂ (hexanes:EtOAc, 100:0, 95:5) and an inseparable mixture of compounds 5 and 6 was obtained as a bright purple powder (0.68 g). Purification of this mixture over type III basic Al_2O_2 (hexanes:EtOAc, 100:0, 99:1, 98:2, 95:5, 90:10) gave 4 as a dark red solid (70%). Data for 4: m.p.: decomposition> 150 °C. ¹H NMR (CDCl₃, 500 MHz) 1.08 (t, *J* = 7.6 Hz, 3H), 2.19 (s, 3H), 2.29 (s, 3H), 2.40 (q, J = 7.6 Hz, 2H), 2.53 (s, 3H), 2.59 (s, 3H), 3.30 (s, 1H), 7.01 (s, 1H) ppm; ¹³C NMR (CDCl₃, 125 MHz) 9.5, 10.6, 13.1, 13.3, 14.4, 17.4, 76.8, 82.8, 111.5, 119.8, 130.7, 133.8, 134.6, 139.3, 140.6, 156.3, 159.7 ppm; ¹¹B {1H} NMR (CDCl₃, 160 MHz) 0.74 (t, J = 31Hz) ppm; ¹⁹F NMR (CDCl₃, 470 MHz) -146.5 (q, J = 31 Hz); HRMS-ESI (m/z): $[M+Na]^+$ calcd for $C_{17}H_{19}BF_2N_2Na$, 323.1502; found, 323.1492; UV/vis(CH₂Cl₂): 534 nm ($\varepsilon = 100280 \text{ L mol}^{-1}$ cm⁻¹); Data for the mixture of 5 and 6, present in a 4:1 ratio: ¹H NMR (CDCl₃, 500 MHz) 1.08 (t, J = 7.6 Hz, $(0.8 \times 3H) + (0.2 \times 3H)$, CH_3CH_2 of 5 and 6), 2.19 (s, $(0.8 \times 3H) + (0.2 \times 3H)$, CH_3 of 5 and 6), 2.25 (s, $0.8 \times 3H$, CH_3 of 5), 2.27 (s, $0.8 \times 3H$, CH_3 of 6), 2.40 (q, J = 7.6 Hz, $(0.8 \times 3H)$ 2H) + $(0.2 \times 2H)$, CH₃CH₂ of 5 and 6), 2.53 (s, $(0.8 \times 3H) + (0.2 \times 3H)$, CH₃ of 5 and 6), 2.55 (s, 0.8 ×3H, CH₃ of 5), 2.56 (s, 0.2 × 3H, CH₃ of 6) 5.27 (s, 0.2 × 1H, CH₂COH of 6), 5.67 (s, 0.2 × 1H, $CH_2COH \text{ of } 6$), 5.70 (s, $0.8 \times 1H$, $CH_2CBr \text{ of } 5$), 5.93 (s, $0.8 \times 1H$, $CH_2CBr \text{ of } 5$), 7.02 (s,

 0.8×1 H, meso-*H* of **5**), 7.03 (s, 0.2×1 H, meso-*H* of **6**) ppm; ¹³C NMR (CDCl₃, 125 MHz) 9.6, 10.3 (×2), 13.1 (×2), 14.5, 17.4, 117.9, 120.0, 122.2, 122.9, 129.5, 131.0, 132.9, 133.7, 134.4, 136.2, 138.9, 151.9, 159.4 ppm; ¹¹B {1H} NMR (CDCl₃, 160 MHz) 0.83 (t, *J* = 31 Hz) ppm; ¹⁹F NMR (CDCl₃, 470 MHz) -146.1 (two overlapping q, *J* = 33 Hz); HRMS-APCI (*m/z*): **5** [M]⁺ calcd for C₁₇H₂₁BBrF₂N₂, 381.0944; found, 381.0948) and **6** [M+H]⁺ calcd for C₁₇H₂₂BF₂N₂O, 319.1788; found, 319.1779).

2-((3,5-Dimethyl-4-((trimethylsilyl)ethynyl)-2*H*-pyrrol-2-ylidene)methyl)-4-ethyl-3,5dimethyl-1*H*-pyrrole hydrobromide (9)

2-Formyl pyrrole **8**⁵¹ (0.30 g, 1.37 mmol) was dissolved in MeOH:THF (1:1, 10 mL), and α -free pyrrole **3**⁵⁵ (0.20 g, 1.64 mmol) was added in one portion at room temperature. The reaction mixture was degassed (× 3) and 48% aq. HBr (0.75 mL, 1.37 mmol) was added at 0 °C. The reaction mixture was placed under an atmosphere of N₂ and stirred for 1.5 hours and then poured into Et₂O (50 mL). The resulting precipitate was isolated *via* suction filtration and then washed with Et₂O (× 3) to afford compound **13** as an orange solid (81%). M.p.: decomposition >220 °C. ¹H NMR (CDCl₃, 500 MHz) 0.26 (s, 9H), 1.07 (t, *J* = 7.6 Hz, 3H), 2.29 (s, 3H), 2.38 (s, 3H), 2.43 (q, *J* = 7.6 Hz, 2H), 2.69 (s, 6H), 7.05 (s, 1H), 13.12 (br s, 1H), 13.22 (br s, 1H) ppm. ¹³C NMR (CDCl₃, 125 MHz) 0.22, 10.2, 11.4, 13.2, 13.4, 14.4, 17.4, 96.1, 101.7, 112.3, 119.7, 124.9, 127.6, 132.2, 143.3, 145.2, 155.5, 158.0 ppm. HRMS-ESI (m/z): [M-Br]⁺ calcd for C₂₀H₂₉N₂Si, 325.2095; found, 325.2096.

4-Acetyl-3-ethyl-1*H*-pyrrole-2-carbaldehyde (13)

POCl₃ (2.04 mL, 21.9 mmol) was added dropwise to DMF (16 mL) at 0 °C and under a N₂ atmosphere. The mixture was allowed to warm to room temperature and then stirred for 15 minutes. A solution of pyrrole 12^{65} (2.00 g, 14.6 mmol) in 1,2-DCE (49 mL) was added at 0 °C

under inert atmosphere. The resulting mixture was heated to 80 °C and stirred for an additional 80 minutes. Aq. NaOH (2 M) was added to the reaction mixture until pH > 8, and the resulting emulsion was then heated at reflux temperature for 20 minutes. After cooling to room temperature, H₂O (50 mL) was added and the reaction mixture was extracted with EtOAc (50 mL \times 3). The combined organic layers were washed with brine (50 mL), dried over Na₂SO₄ and concentrated under reduced pressure. The crude mixture was purified using column chromatography on SiO₂ (hexanes:EtOAc 80:20, 70:30) to afford the title compound as a brown solid (0.33 g, 14%), along with 2-fomyl pyrroles 14 (0.44, 21%), 15 (0.22 g, 10%) and 16 (0.05 g, 2%). The position of the formyl group was determined using 2D NMR (HSQC and HMBC). Data for 13: M.p.: 119-123 °C; ¹H NMR (500 MHz; CDCl₃) 1.26 (t, J = 7.5 Hz, 3H), 2.44 (s, 3H), 3.11 (q, J = 7.5 Hz, 2H), 7.61 (d, J = 3.4 Hz, 1H), 9.74 (s, 1H), 10.03 (br s, 1H) ppm; ¹³C NMR (125 MHz; CDCl₃) 16.7, 17.9, 28.5, 125.0, 130.4, 130.7, 140.4, 179.1, 193.5 ppm; HRMS-ESI (m/z): $[M+Na]^+$ calcd for C₉H₁₁NNaO₂, 188.0682; found, 188.0680. **3-Ethyl-4-ethynyl-1***H*pyrrole-2-carbaldehyde (14): M.p.: decomposition > 80 °C, followed by melting at 119-120 °C. ¹H NMR (CDCl₃, 500 MHz) 1.30 (t, J = 7.6 Hz, 3H), 2.85 (q, J = 7.6 Hz, 2H), 3.10 (s, 1H), 7.22 (d, J = 3.0 Hz, 1H), 9.46 (br s, 1H), 9.64 (s, 1H) ppm.¹³C NMR (CDCl₃, 125 MHz) 16.4, 18.0, 76.3, 79.6, 106.8, 128.6, 129.6, 141.6, 177.9 ppm. HRMS-ESI (*m/z*): [M+Na]⁺ calcd for C₉H₉NNaO₁, 170.0576; found, 170.0575. **4-Ethyl-3-ethynyl-1***H***-pyrrole-2-carbaldehyde (15)**: M.p.: decomposition > 95 °C, followed by melting at 104-105 °C. ¹H NMR (CDCl₃, 500 MHz) 1.23 (t, 3H, J = 7.6 Hz), 2.58 (q, 2H, J = 7.6 Hz), 3.35 (s, 1H), 6.86 (br s, 1H), 9.28 (br s, 1H), 9.68 (s, 1H) ppm. ¹³C NMR (CDCl₃, 125 MHz) 14.5, 18.8, 75.2, 83.8, 114.7, 123.3, 132.5, 134.2, 178.5 ppm. HRMS-ESI (m/z): $[M+Na]^+$ calcd for C₉H₉NNaO₁, 170.0576; found, 170.0578. **3-(1-Chlorovinyl)-4-ethyl-1***H***-pyrrole-2-carbaldehyde (16)**: M.p.: 65-66°C. ¹H

NMR (CDCl₃, 500 MHz) 1.22 (t, J = 7.6 Hz, 3H), 2.59 (q, J = 7.6 Hz, 2H), 5.45 (d, J = 0.6 Hz, 1H), 5.74 (d, J = 0.6 Hz, 1H), 6.87 (s, 1H), 9.56 (br s, 1H), 9.66 (s, 1H) ppm. ¹³C NMR (CDCl₃, 125 MHz) 14.6, 18.6, 119.2, 123.1, 128.2, 129.7, 131.1, 131.3, 179.2 ppm. HRMS-ESI (*m/z*): [M+Na]⁺ calcd for C₉H₁₀ClNNaO, 206.0343; found, 206.0341.

4,4-Difluoro-1,3,5,7-tetramethyl-2-(3-methoxyphenyl)ethynyl)-6-ethyl-8*H*-4-bora-3a,4adiaza-s-indacene (17)

A solution of 4 (56 mg, 0.187 mmol), 3-iodoanisole (27 µL, 0.224 mmol) and CuI (7.0 mg, 0.037 mmol) in THF:NEt₃ (5:1, 3.4 mL) was degassed (\times 3) and placed under a N₂ atmosphere. $Pd(PPh_3)_4$ (22 mg, 0.019 mmol) was added to the solution and the resulting reaction mixture degassed (\times 2), placed under a positive pressure of N₂ and stirred at 60 °C in a sealed system for 19 hours. The reaction mixture was diluted with EtOAc (5.0 mL), washed with water (10 mL \times 3) and brine (10 mL), dried over Na₂SO₄, concentrated under reduced pressure and purified using column chromatography (SiO₂, hexanes:EtOAc, 80:20) to give the title compound as a dark pink solid (41%). Following the above procedure compound 17 was also obtained (56 mg, 53%) from the mixture of **5** and **6** (100 mg). M.p.: 192-193 °C. ¹H NMR (CDCl₃, 500 MHz) 1.08 (t, J = 7.6Hz, 3H), 2.20 (s, 3H), 2.35 (s, 3H), 2.41 (q, J = 7.6 Hz, 2H), 2.54 (s, 3H), 2.65 (s, 3H), 3.83 (s, 3H), 6.88 (ddd, J = 8.3, 2.6, 1.0 Hz, 1H), 7.02 (s, 1H), 7.10 (dt, J = 8.3, 1.0 Hz, 1H), 7.24 (t, J =8.3 Hz, 2H) ppm. ¹³C NMR (CDCl₃, 125 MHz) 9.6, 10.8, 13.1, 13.6, 14.5, 17.4, 55.5, 82.1, 95.3, 112.8, 114.6, 116.3, 119.7, 124.1, 124.9, 129.5, 131.2, 133.7, 134.4, 139.0, 139.8, 156.4, 159.2, 159.4 ppm. ¹¹B {1H} NMR (CDCl₃, 160 MHz) 0.76 (t, J = 31 Hz) ppm. ¹⁹F NMR (CDCl₃, 470 MHz) -146.5 (q, J = 31 Hz). HRMS-ESI (m/z): $[M+Na]^+$ calcd for $C_{24}H_{25}BF_2N_2NaO$, 429.1920; found, 429.1918. UV/vis(CH₂Cl₂): 547 nm (ϵ = 141000 L mol⁻¹ cm⁻¹).

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: XXX. X-ray structure and data for **1** and **10**. NMR spectroscopic analysis of reactions. Absorption and emission data for **4**, **17** and **18**. NMR spectra of all new compounds.

AUTHOR INFORMATION

Corresponding Author

*E-mail: Alison.Thompson@dal.ca

ORCID

Alison Thompson: 0000-0003-4231-3446

Notes

The authors declare no competing financial interest.

Acknowledgements

This work was supported by the Natural Sciences and Engineering Research Council of Canada

(NSERC). A.T. is Faculty of Science Killam Professor at Dalhousie University.

References

- (1) Treibs, A.; Kreuzer, F. H. *Liebigs Ann. Chem.* **1968**, *718*, 208.
- (2) Boens, N.; Leen, V.; Dehaen, W. Chem. Soc. Rev. 2012, 41, 1130.

- (3) Boens, N.; Verbelen, B.; Dehaen, W. Eur. J. Org. Chem 2015, 6577.
- (4) Loudet, A.; Burgess, K. Chem. Rev. 2007, 107, 4891.
- (5) Ulrich, G.; Ziessel, R.; Harriman, A. Angew. Chem. Int. Ed. 2008, 47, 1184.
- (6) Lakshmi, V.; Rajeswara Rao, M.; Ravikanth, M. Org. Biomol. Chem. 2015, 13, 2501.
- (7) Ziessel, R.; Ulrich, G.; Harriman, A. New. J. Chem. 2007, 31, 496.
- (8) Sarder, P.; Maji, D.; Achilefu, S. *Bioconjugate Chem.* 2015, 26, 963.
- (9) Yuan, L.; Lin, W.; Zheng, K.; He, L.; Huang, W. Chem. Soc. Rev. 2013, 42, 622.
- (10) Matsumoto, T.; Urano, Y.; Shoda, T.; Kojima, H.; Nagano, T. Org. Lett. 2007, 9, 3375.
- (11) McCusker, C.; Carroll, J. B.; Rotello, V. M. Chem. Commun. 2005, 996.
- (12) Rurack, K.; Kollmannsberger, M.; Daub, J. Angew. Chem. Int. Ed. 2001, 40, 385.
- (13) Benstead, M.; Mehl, G. H.; Boyle, R. W. Tetrahedron 2011, 67 3573.
- (14) Frath, D.; Massue, J.; Ulrich, G.; Ziessel, R. Angew. Chem. Int. Ed. 2014, 53, 2290.
- (15) Awuah, S. G.; You, Y. RSC Adv. 2012, 2, 11169.

(16) Kamkaew, A.; Lim, S. H.; Lee, H. B.; Kiew, L. V.; Chung, L. Y.; Burgess, K. Chem. Soc. Rev. 2013, 42, 77.

(17) Lin, H.-Y.; Huang, W.-C.; Chen, Y.-C.; Chou, H.-H.; Hsu, C.-Y.; Lin, J. T.; Lin, H.-W. *Chem. Commun.* **2012**, *48*, 8913.

(18) Neto, B. A. D.; Carvalho, P. H. P. R.; Correa, J. R. Acc. Chem. Res. 2015, 48, 1560.

(19) Baker, G. A.; Pandey, S.; Kane, M. A.; Maloney, T. D.; Hartnett, A. M.; Bright, F. V. *Biopolymers* **2001**, *59*, 502.

(20) Hansen, A. M.; Sewell, A. L.; Pedersen, R. H.; Long, D.-L.; Gadegaard, N.; Marqueza, R. *Tetrahedron* **2013**, *69*, 8527.

- (21) Rohand, T.; Qin, W.; Boens, N.; Dehaen, W. Eur. J. Org. Chem. 2006, 2006, 4658.
- (22) Descalzo, A. B.; Xu, H.-J.; Shen, Z.; Rurack, K. Ann. N. Y. Acad. Sci. 2008, 1130, 164.
- (23) Gomez-Duran, C. F. A.; Esnal, I.; Valois-Escamilla, I.; Urias-Benavides, A.; Banuelos,

J.; Lopez Arbeloa, I.; Garcia-Moreno, I.; Pena-Cabrera, E. Chem. - Eur. J. 2016, 22, 1048.

- (24) Lu, H.; Mack, J.; Yang, Y.; Shen, Z. Chem. Soc. Rev. 2014, 43, 4778.
 - (25) Luo, L.; Wu, D.; Li, W.; Zhang, S.; Ma, Y.; Yan, S.; You, J. Org. Lett. 2014, 16, 6080.
 - (26) Ni, Y.; Wu, J. Org. Biomol. Chem. 2014, 12, 3774.
 - (27) Poirel, A.; De Nicola, A.; Retailleau, P.; Ziessel, R. J. Org. Chem. 2012, 77, 7512.
 - (28) Ziessel, R.; Goze, C.; Ulrich, G. Synthesis 2007, 936.

(29) Allen, J. P.; Pfrunder, M. C.; McMurtrie, J. C.; Bottle, S. E.; Blinco, J. P.; Fairfull-Smith, K. E. *Eur. J. Org. Chem.* **2017**, *2017*, 476.

(30) del Rio, M.; Lobo, F.; Lopez, J. C.; Oliden, A.; Banuelos, J.; Lopez-Arbeloa, I.; Garcia-Moreno, I.; Gomez, A. M. J. Org. Chem. 2017, 82, 1240.

(31) Duran-Sampedro, G.; Agarrabeitia, A. R.; Garcia-Moreno, I.; Gartzia-Rivero, L.; de la Moya, S.; Banuelos, J.; Lopez-Arbeloa, I.; Ortiz, M. J. *Chem. Commun.* **2015**, *51*, 11382.

(32) Erbas-Cakmak, S.; Cakmak, F. P.; Topel, S. D.; Uyar, T. B.; Akkaya, E. U. Chem. Commun. 2015, 51, 12258.

(33) Fan, G.; Lin, Y.-X.; Yang, L.; Gao, F.-P.; Zhao, Y.-X.; Qiao, Z.-Y.; Zhao, Q.; Fan, Y.-S.; Chen, Z.; Wang, H. *Chem. Commun.* **2015**, *51*, 12447.

(34) Lambert, C.; Scherpf, T.; Ceymann, H.; Schmiedel, A.; Holzapfel, M. J. Am. Chem. Soc. 2015, 137, 3547.

(35) Liras, M.; Iglesias, M.; Sanchez, F. Macromolecules 2016, 49, 1666.

(36) Roedle, A.; Ritschel, B.; Mueck-Lichtenfeld, C.; Stepanenko, V.; Fernandez, G. Chem. - Eur. J. 2016, 22, 15772.

(37) Sen, C. P.; Devendar Goud, V.; Shrestha, R. G.; Shrestha, L. K.; Ariga, K.; Valiyaveettil, S. *Polym. Chem.* **2016**, *7*, 4213.

(38) Sen, C. P.; Shrestha, R. G.; Shrestha, L. K.; Ariga, K.; Valiyaveettil, S. Chem. - Eur. J. **2015**, 21, 17344.

(39) Sui, B.; Tang, S.; Woodward, A. W.; Kim, B.; Belfield, K. D. Eur. J. Org. Chem. 2016, 2016, 2851.

(40) Sui, B.; Yue, X.; Kim, B.; Belfield, K. D. ACS Appl. Mater. Interfaces 2015, 7, 17565.

(41) Wanwong, S.; Surawatanawong, P.; Khumsubdee, S.; Kanchanakungwankul, S.; Wootthikanokkhan, J. *Heteroat. Chem.* **2016**, *27*, 306.

(42) Yang, W.; Karatay, A.; Zhao, J.; Song, J.; Zhao, L.; Xing, Y.; Zhang, C.; He, C.; Yaglioglu, H. G.; Hayvali, M.; Elmali, A.; Kucukoz, B. *Inorg. Chem.* **2015**, *54*, 7492.

(43) Zhong, F.; Karatay, A.; Zhao, L.; Zhao, J.; He, C.; Zhang, C.; Yaglioglu, H. G.; Elmali, A.; Kucukoz, B.; Hayvali, M. *Inorg. Chem.* **2015**, *54*, 7803.

(44) Ahrens, J.; Haberlag, B.; Scheja, A.; Tamm, M.; Bröring, M. Chem. – Eur. J. 2014, 20, 2901.

(45) Beh, M. H. R.; Douglas, K. I. B.; House, K. T. E.; Murphy, A. C.; Sinclair, J. S. T.; Thompson, A. Org. Biomol. Chem. 2016, 14, 11473.

(46) Groves, B. R.; Crawford, S. M.; Lundrigan, T.; Matta, C. F.; Sowlati, S.; Thompson, A. *Chem. Commun.* **2013**, *49*, 816.

(47) Lundrigan, T.; Baker, A. E. G.; Longobardi, L. E.; Wood, T. E.; Smithen, D. A.; Crawford, S. M.; Cameron, T. S.; Thompson, A. Org. Lett. 2012, 14, 2158.

(48) Lundrigan, T.; Cameron, T. S.; Thompson, A. Chem. Commun. 2014, 50, 7028.

(49) Lundrigan, T.; Crawford, S. M.; Cameron, T. S.; Thompson, A. Chem. Commun. 2012, 48, 1003.

(50) Lundrigan, T.; Thompson, A. J. Org. Chem. 2013, 78, 757.

(51) Antina, E. V.; Guseva, G. B.; Loginova, A. E.; Semeikin, A. S.; V'yugin, A. I. *Russ. J. Gen. Chem.* **2010**, *80*, 2374.

(52) Maity, A.; Sarkar, A.; Sil, A.; B. N, S. B.; Patra, S. K. New J. Chem. 2017, 41, 2296.

(53) Ucuncu, M.; Karakus, E.; Emrullahoglu, M. Chem. - Eur. J. 2015, 21, 13201.

(54) Ucuncu, M.; Karakus, E.; Emrullahoglu, M. Chem. Commun. 2016, 52, 8247.

(55) Wan, C.-W.; Burghart, A.; Chen, J.; Bergström, F.; Johansson, L. B. Å.; Wolford, M. F.;

Kim, T. G.; Topp, M. R.; Hochstrasser, R. M.; Burgess, K. Chem. Eur. J. 2003, 9, 4430.
(56) Al-Sheikh Ali, A.; Cipot-Wechsler, J.; Crawford, S. M.; Selim, O.; Stoddard, R. L.;

Cameron, T. S.; Thompson, A. *Can. J. Chem.* **2010**, *88*, 725. (57) Sanders, D. P.; Connor, E. F.; Grubbs, R. H.; Hung, R. J.; Osborn, B. P.; Chiba, T.;

MacDonald, S. A.; Willson, C. G.; Conley, W. *Macromolecules* **2003**, *36*, 1534.

(58) Iashin, V.; Chernichenko, K.; Pápai, I.; Repo, T. Angew. Chem. Int. Ed. 2016, 55, 14146.

(59) McGough, J. S.; Butler, S. M.; Cade, I. A.; Ingleson, M. J. Chem. Sci. 2016, 7, 3384.

(60) Leyva-Pérez, A.; Rubio-Marqués, P.; Al-Deyab, S. S.; Al-Resayes, S. I.; Corma, A. ACS

Catalysis 2011, 1, 601.

(61) Zhang, X.; Liu, B.; Shu, X.; Gao, Y.; Lv, H.; Zhu, J. J. Org. Chem. 2012, 77, 501.

(62) Brady, P. B.; Carreira, E. M. Org. Lett. 2015, 17, 3350.

(63) Mahdi, T.; Stephan, D. W. Chem. Eur. J. 2015, 21, 11134.

(64) Dureen, M. A.; Brown, C. C.; Stephan, D. W. Organometallics 2010, 29, 6594.

(65) Vitols, S. E.; Roman, J. S.; Ryan, D. E.; Blackwood, M. E. J.; Spiro, T. G. Inorg. Chem. **1997**, *36*, 764.

(66) Abell, A. D.; Litten, J. C.; Nabbs, B. K. Chem. Commun. 1998, 919.

(67) Abell, A. D.; Nabbs, B. K.; Bettersby, A. R. J. Am. Chem. Soc. 1998, 120, 1741.

(68) Melanson, J. A.; Figliola, C.; Smithen, D. A.; Kajetanowicz, A. K.; Thompson, A. Org. Biomol. Chem. 2017, 15, 144.

(69) Thompson, A.; Gao, S.; Modzelewska, G.; Hughes, D. S.; Patrick, B.; Dolphin, D. Org. Lett. 2000, 2, 3587.

(70) Tu, B.; Wang, C.; Ma, J. Org. Prep. Proced. Int. 1999, 31, 349.

(71) Crawford, S. M.; Thompson, A. Org. Lett. 2010, 12, 1424.

(72) Rurack, K.; Kollmannsberger, M.; Daub, J. Angew. Chem. Int. Ed. 2001, 40, 385.

(73) Fery-Forgues, S.; Lavabre, D. J. Chem. Educ. 1999, 76, 1260.