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Abstract

This thesis investigates the capability of employing the SOM, an unsupervised learn-

ing technique as a network data analytics system. In doing so, the aim is to under-

stand how far such an approach could be pushed to analyze the network traffic, and

to detect malicious behaviours. To this end, three different unsupervised SOM train-

ing schemes for different data acquisition conditions are employed. The approach is

tested against publicly available botnet and malicious web request data sets. The

results show that SOMs possess high potential as a data analytics tool on unknown

traffic, and unseen attack behaviours. They can identify the botnet and normal flows

with high confidence approximately 99% of the time on the data sets employed in this

thesis, which is comparative to that of popular supervised and unsupervised learning

methods in the literature. Furthermore, it provides unique visualization capabilities

for enabling a simple yet effective network data analytic system.

viii



List of Abbreviations and Symbols Used

Abbreviations

BMU Best Matching Unit

C&C Command and Control

CDR Class-wise Detection Rate

CRLF Carriage Return Line Feed

CSIC Spanish Research National Council

DDoS Distribution Denial of Service

DNS Domain Name System

DR Detection Rate

EM Expectation Maximization

HTTP HyperText Transfer Protocol

HTTPS HTTP Secure

ICMP Internet Control Message Protocol

IDS Intrusion Detection System

IoT Internet of Things

IP Internet Protocol

IRC Internet Relay Chat

LBNL Lawrence Berkeley National Laboratory

ix



NIDS Network Intrusion Detection System

P2P Peer-to-Peer

PCA Principle Component Analysis

ROC Receiver Operating Characteristic

RTP Real-time Transport Protocol

SOM Self Organizing Map

SQL Structured Query Language

SVM Support Vector Machine

TCP Transmission Control Protocol

UDP User Datagram Protocol

URL Uniform Resource Locator

XSS Cross Site Scripting

x



Symbols

c the index of the winning node / best matching unit

l SOM training length (number of iterations)

M1 ×M2 the size/number of neurons of a SOM, where M1 and M2 are two side

lengths of the SOM lattice

N number of training instances

n number of dimensions of input space

σ(t) the kernel width / neighbourhood radius at time t

τ the threshold for identifying important SOM nodes

W SOM lattice of neurons wi

wi weight vector of a SOM neuron/node/unit, wi = [ωi1, ωi2, ..., ωin]
T ∈ Rn

X list of all input vectors x

x an input vector, x = [ξ1, ξ2, ..., ξn]
T ∈ Rn

xi



Acknowledgements

First and foremost, I would like to express my deepest gratitude to my supervisors,

Dr. Nur Zincir-Heywood and Dr. Malcolm I. Heywood, for their support, guidance,

encouragement, and great ideas that have helped me complete the research project

and this thesis. I would also like to thank Nova Scotia Government, Dalhousie Uni-

versity, and Mitacs for their supports toward this thesis research. Last but not least,

I would like to acknowledge all the small things that helped me go through the life of

a graduate student, from the things that kept distracting me from what I should be

doing: Naruto (Masashi Kishimoto sensei) and animes of Ghibli studio to the things

that helped me gain back the much needed focus: instrumental music, coffee, and

tea.

xii



Chapter 1

Introduction

The general utility of the Internet continues to grow on a yearly basis, and at the

same time, so does the cybercrime threat landscape. There is a wide variety of

network threats on the Internet, with different aims and attack vectors. Among

these, botnet - the main focus of this thesis - has become one of the most dangerous

threats [29][45]. Botnets consist of compromised machines, or bots, controlled by

attackers (the botmasters) through Command and Control (C&C) communication

channels. Botnets are responsible for many types of attacks these days, including

but not limited to spam spreading, Distribution Denial of Service (DDoS) attacks,

distribution of malicious software, information harvesting, identity theft, or exploiting

victims’ computational and network resources.

The threats are becoming more and more serious, as we are seeing the incoming

wave of Internet of Things (IoT), which will connect a plethora of device categories

- not only conventional computers or smartphones, but also smaller and lower cost

devices, e.g. home appliances, security systems, portable medical devices, etc. Poorly

protected IoT devices can be easily turned into a platform for attacking anything from

individual websites to core parts of the Internet’s infrastructure, hence opens the door

for an once unthinkable generation of botnets. Just recently, in October 2016, the

record of terabit-per-second DDoS attack was first achieved by an army of some

145,000 tiny compromised cameras, digital video recorders in two botnets - Mirai

and Bashlight [17]. The attack on Dyn’s Domain Name System (DNS) infrastructure

disrupts a long list of high-profile online services, including Amazon Web Services,

Twitter, Spotify, Paypal, Netflix, CNN, the New York Times, Yelp, and so on [46].

More dangerously, the source code of the Mirai botnet was made open-sourced [24],

much similar to what happened to Zeus and SpyEye in the past, which sparked a

series of attacks launched by the botnets in the family [9].

1
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Botnet has the ability to maintain its virulence by evolving its structure and pro-

tocols over time. One component of a botnet that has been through many evolutions

is C&C channels. A botnet C&C channel accommodates communications between

bots and bot masters, which differentiate botnets from other malwares. The com-

munication channels provide botnets the ability of updating its malicious code and

protocols, allow bots to perform attacks simultaneously under the control of a bot-

master. Thus C&C channel one of the targets of security researchers in order to take

botnets down. Earlier botnets use Internet Relay Chat (IRC) as their C&C protocol.

Eventually, as this protocol and botnet structures became obsolete and started to

be detected easily, botnets abused a wide range of other protocols from HyperText

Transfer Protocol (HTTP), HTTP Secure (HTTPS) to Peer-to-Peer (P2P) [47]. More

recently, social network joins the list of communication channels that botmasters use

for C&C [13].

In general, botnets have two main architectures, or C&C infrastructures: Cen-

tralized and Decentralized. In the centralized architecture, all bots establish their

communication channel with one or a few central control servers typically over IRC

and HTTP/HTTPS protocols. The obvious advantages of this topology are speedy

command propagation and synchronization. However, while most earlier botnets are

centralized, decentralized C&C is increasingly employed in recent years to overcome

central point of failure problem. By utilizing P2P protocols to allow each node in a

botnet act as a client or a master, decentralized C&C provides great flexibility and ro-

bustness. Moreover, a botnet topology can be a hybrid model of the two architectures

to combine advantages of both C&C models.

Given the threats posed by botnets, botnet detection has become a critical com-

ponent in network security solutions. Machine learning-based approaches are used

for their ability to learn underlying patterns of data and adaptation to the dynamic

nature of modern botnets. Moreover, to identify novel botnets in particular, and mali-

cious network activities in general, anomaly detection systems based on unsupervised

machine learning methods are gaining more and more interest [4].

In this thesis, a data driven approach for network traffic behaviour analysis based

on an unsupervised neural network technique, namely Kohonen’s Self Organizing Map

(SOM) [31], is investigated. Having a unique combination of unsupervised learning
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and topological preserving visualization capabilities, the Self Organizing Map (SOM)

is a promising technique to support network traffic analysis in a wide range of condi-

tions and cyber-security environments.

Based on the available amount of ground truth, the thesis will examine the pro-

posed approach in different aspects: to work as traffic behaviour classification system,

or an anomaly detection system, or a clustering technique with visualization capa-

bilities for supporting security experts in finding the threats. Moreover, the effect

of different data acquisition mechanisms in identifying malicious traffic behaviours is

studied by using three training schemes under unsupervised learning paradigm. Fur-

thermore, the approach is evaluated on modern publicly available data sets, which

contain not only botnet captures but also captures of other network attack behaviours,

with and without packet content.

The remainder of the thesis is organized as follows. Chapter 2 summarizes the

related work on malicious behaviour detection and applications of the SOM in this

field. Chapter 3 discusses the methodology, whereas Chapter 4 presents the evalua-

tion and results. Finally conclusions are drawn and the future work is discussed in

Chapter 5.



Chapter 2

Related Work

Network malicious detection approaches have evolved extensively and expeditiously

to cope with the advancement in malware architectures and protocols, as well as the

sophistication of new attack vectors. In this chapter, Section 2.1 surveys different

techniques for network malicious behaviour detection in the literature, with focus on

network traffic analysis systems, at both host and network levels. Applications of

the SOM and related methods in the field are summarized in Section 2.2. Finally, in

Section 2.3, summary of previous approaches in the literature is presented with current

limitations. From that, the novelty and functionality of this thesis in addressing open

network security issues are introduced.

2.1 Network Malicious Behaviours Detection

2.1.1 Signature based approaches

Network Intrusion Detection Systems (NIDSs), from early researches to most of prod-

ucts nowadays, are mainly based on searching for a known set of identities, or signa-

tures within network packets to identify malicious activities. Snort [8] and Bro [40],

which are open source network-based deep packet inspection systems for intrusion

detection, are two of the most notorious examples of this category. The systems de-

pend on predetermined rule sets and policy scripts for not only intrusion detection

but also forensic investigations and traffic baselining. As the tools are equipped with

many rules/policies which aim to cover a wide variety of possible network conditions,

the users need to determine the needs for specific features/rules and enable them

accordingly to match their network conditions.

Based on Snort, Gu et al. [19] used a botnet life-cycle model to develop BotH-

unter. The tool correlates alerts generated using a tailored version of Snort to detect

botnets and other coordination-centric malwares based on the assumption that most

4
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of the malwares follow a specific infection life-cycle model from initial inbound scan

to attack behaviours. The concept is called dialog correlation, which helps to signif-

icantly reduce the number of Snort alerts, and hence generate meaningful evidences

to declare a host infected. It should be noted that alongside Snort, BotHunter makes

extensive use of Internet Protocol (IP) address black lists and custom tuned plugins

for malicious behaviours detection.

On the other hand, Wurzinger et al. proposed a botnet detection model based

on the observable command and response patterns of the botnet communications

[57]. Based on the assumption that every bot receives commands from the botmaster

to which it responds appropriately, the work attempts to build the malware traffic

patterns by identifying hosts’ responses and inspecting the preceding traffic. Ap-

parently, deep packet inspection is required for identifying command and response

tokens in the traffic that match specific signatures. The system then automatically

derive signatures for detecting such command and control behaviours, and deploy

them in Bro for detecting future events. On their IRC, HTTP and P2P botnet data

sets, which are generated in a controlled environment, the automatically extracted

detection signatures outperform BotHunter.

Although signature-based Intrusion Detection System (IDS) is very efficient de-

tecting known attacks, which have been analyzed by security experts to release appro-

priate signatures/rules/policies, the approach is highly vulnerable against “zero-day”

attacks. Moreover, the systems are heavily depend on receiving frequent signature

updates, much like anti-virus solutions, to maintain the detection ability on even

small variations in attack vectors. Thus machine learning techniques naturally found

their applications in the field for the ability to automatically learn from data and

extract patterns that can be used for distinguishing attack behaviours.

2.1.2 Automatic learning approaches

The same group of authors of BotHunter proposed BotMiner, an approach based on

group behavior analysis, which combines both packet payload and network flow mon-

itors for botnet detection [18]. Based on the assumption that the bots communicate

with C&C servers/peers and perform malicious activities in a similar or correlated

way, the work employs clustering approaches to find similar communication behaviors,
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as well as network activities. The model works on two planes: C-plane for clustering

similar communication traffic, and A-plane - which is based on Snort - for clustering

malicious activities. Cross cluster correlation is then performed to identify the hosts

that share both similar communication patterns and similar malicious activity pat-

terns. The model obtained promising results on evaluation data sets combined from

campus traffic and botnet traffic generated in sandbox environments.

Strayer et al. developed a system that employ both classification and clustering

techniques for detecting IRC botnet [48]. The system performs gross, simple filtering

to reduce the amount of traffic flows to be analyzed before applying computationally

intensive machine learning algorithms to classify the flows in “chat” group. The flows

are then correlated to find clusters of flows that share similar flow characteristics and

to identify the botnet controller host. They evaluated the model, together with other

machine learning classifiers - Naive-Bayes, C4.5 and Bayesian Networks - on campus

data to prove the concept.

Zhao et al. investigated a botnet detection system based on packet header infor-

mation and time intervals [59]. Decision Tree based machine learning algorithms were

utilized to generate detection models using network flow features of traffic packets.

The work focused on P2P botnets on HTTP protocol, which employ fast-flux based

DNS technique for their resilience. A data set consists of normal traffic from several

legitimate sources and botnet traffic captures using Honeynet, [50], is the used to

examine the proposed method before it is applied to live traffic detection scenarios

in a web-based setting. The results shows that the system achieves high detection

rates on offline data, but could also generate high false positive rate on unseen botnet

traffic.

Also based on Netflow to detect P2P botnets, Nagaraja et al. proposed BotGrep -

a monitoring framework that construct graphs of traffic patterns [38]. The work takes

advantage of a key feature that modern botnets increasingly use structured overlay

topologies to localize botnet members with unique communication patterns from the

built graphs. The authors applied the model on Internet service provider sized benign

network traffic, with Honeynet botnet traffic injected to demonstrate the concept.

Moreover, a privacy-preserving extension was also introduced to simplify deployment

across networks. It is noteworthy that the model based on computationally extensive
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graph algorithms, which can take days to build and manipulate the graphs before the

conclusions can be drawn.

Haddadi et al. employed two machine learning algorithms, namely C4.5 Decision

tree, and Symbiotic Bid-based Genetic programming, for building detection models

[21]. The objectives are not only to apply the genetic programming to improve the

state-of-the-art in intrusion detection, but also to find the feature sets that best de-

scribe the botnets and to return a solution that is suitable for a signature-based botnet

detection system. Furthermore, in [20], the authors confirmed the advancement of

proposed method over packet payload inspection based systems.

Recently, in [58], Yan et al. proposed PeerClean - a multi-phase detection system

targeting peer-to-peer botnets. The first phase clusters individual connections or hosts

with similar flow traffic statistics into groups. Then PeerClean extracts collective

connection patterns from each group using a proposed dynamic group behaviour

analysis method. Finally, a Support Vector Machine (SVM) classifier is trained using

group connection patterns to identify botnet groups. The system is shown to be

effective in detecting several known botnets in a mixed data which consists of traffic

captured from an edge router of a campus network with known P2P applications

(benign), and botnet data from running botnet sample in a controlled environment.

AI2, a concept proposed in [53] by Veeramachaneni et al. incorporates analyst’s

responses in an active learning detection solution. From the raw web and firewall

logs, the system performs aggregation efficiently to produce features representing

user behaviours. An ensemble of outlier detection methods - Principle Component

Analysis (PCA)-based, autoencoder-based, or density-based outlier analysis - is used

to discover suspicious instances and then present them to security analysts to obtain

feedback. Finally, a supervised learning module is applied to classify future instances

based on the feedback and outlier indicators. It should be noted that the system

requires a big data infrastructure to accommodate the resource extensive learning

algorithms and a moderate amount of expert knowledge and learning time to improves

the detection performance.

While most of the machine learning approaches for botnet detection are based on

supervised learning, unsupervised learning approaches have also found their applica-

tions in the field, especially in anomaly detection systems. Leung et al. proposed a
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density-based and grid-based clustering algorithm to discover the characteristics of

the majority of connections in network traffic [34]. A clustering algorithm, fpMAFIA

- a modified adaptive grid algorithm similar to Apriori algorithm [1], is used to mine

frequent pattern tree of connection records. The characteristics of malicious clusters

are used to classify future connections. Evaluated using the 1999 KDD Cup data set,

the technique produced comparable results to existing supervised approaches but also

suffered from a high false positive rate.

Perdisci et al. proposed using an ensemble of one-class SVM for payload-based

anomaly detection systems [42]. They used a clustering algorithm originally proposed

for text classification problems to reduce the dimensionality of the feature space

obtained from n-gram analysis of payload. Then the anomaly detectors are applied

to each description of the payload to produce aggregated results. It has been shown

that the system improved both the detection accuracy and the hardness of evasion of

the payload-based anomaly detection system.

2.2 Applications of SOM in network security

Kayacik et al. proposed an approach to network intrusion detection based on a

hierarchy of SOMs [30]. Using 1999 KDD Cup data set for training, two hierarchical

SOM architectures were proposed. The first architecture uses only six basic features

from the data set and generates a three-layered SOM hierarchy, where the first layer

SOMs are used to generalize data from each feature individually. Output of each first-

level SOM is clustered to six clusters for higher layer training. The second architecture

uses all 41 features to directly train a two-layer SOM model, which is similar to the

second and third layers in the first model. The proposed method achieved the best

performance to date of a detector based on an unsupervised learning algorithm on

the KDD data set.

Based on the Growing SOM - a variant of the SOM - Ippolity et al. developed

a threshold based training approach, namely Adaptive Growing Hierarchical SOM,

for building an online network intrusion detection system [27]. In their work, sys-

tem parameters are adjusted dynamically by using quantization error feedback to

adapt to the new training data. A dynamic input normalization process is applied to

accommodate live training conditions. Furthermore, the SOM units are monitored
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using the proposed confidence filtering and forwarding mechanism. The results on

1999 KDD Cup data set and their own simulated traffic in a testbed network show

enhancement over performance of previous approaches.

Recently, a combined approach of PCA and probabilistic SOM for network in-

trusion detection is introduced by De la Hoz et al. in [10]. In the model, feature

selection and noise removal are carried out using PCA and Fisher discriminant ratio.

The SOM is then employed to model the feature space and represent different types

of connections, including both normal and anomalous connections. From the SOM, a

Gaussian mixture model is calculated for classification, which allows modifying detec-

tion priorities by adjusting the units posterior activation probabilities. On NSL-KDD

data set, which is a modified version of 1999 KDD Cup data set with balance training

set, the experiment results shows a detection accuracy of up to 88%.

2.3 Summary

While machine learning has been studied broadly in network security, there exists

several issues in the literature that inhibit a widespread deployment of such systems:

• Many approaches are heavily dependent on deep packet inspection [10][18][34][42][57],

which makes them become nearly impossible to be applied to modern network

environments, where almost all traffic from both normal users and malwares

is encrypted. Hence, an approach not utilizing encrypted payload information,

e.g. based on network flows, may improve the state-of-the-art in traffic analysis.

• Some proposed systems, [38][48][58][59], focus only on a specific botnet archi-

tecture/ botnet connection protocol. One notable instance of outdated commu-

nication protocol that is not employed by modern botnet is IRC.

• Many previous works were built upon and tested against outdated data sets,

especially the 1999 KDD cup data set [34][30][27][10], or data sets from closed

environments [19][18][57][48][42][58]. It should be noted that the 1999 KDD cup

data set has many drawbacks that have been pointed out in [37]. Moreover, the

data set is already well investigated by proposed detection models using packet

statistics. This raises the question about performance of such systems on new

publicly available data sets representing modern botnets.
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• Many proposed systems employ sophisticated and computational extensive anal-

ysis architecture [53][18][38][58][27][48]. The models are also based on specific

assumptions about correlation and synchronization in traffic patterns. Those

reasons limit the models from becoming a ubiquitous network traffic analysis

and classification system.

Furthermore, the fact that in practice either there is no labelled data or there

is very few of them reduces the versatility of systems employing supervised learn-

ing techniques. On the other hand, approaches based on unsupervised learning in

the aforementioned works provided comparable results to that of supervised learning

approaches, while enable an intrusion detection system to potentially generalize the

learned data for recognizing novel threats, i.e. anomaly detection.

Applying SOM - an unsupervised learning method with strong visualization ca-

pabilities preserving the key topological relationships of the data [31], potentially

would be one of the most supportive features for a human expert to analyze the data.

Therefore, the novelty and the functionality of the approach in this thesis lie in the

following aspects:

• The thesis attempts to explore further in unsupervised learning and visualiza-

tion landscape, thus concurrently seeking a simple solution that is less depen-

dent on expert knowledge and labelled data, and also more flexible in deploy-

ment.

• The thesis relies on only network traffic flows, which is statistics exported from

network packet headers solely but not the packet content, hence possess the

ability to overcome the curse of encryption.

• The thesis explores a wide range of data acquisition conditions that can happen

in real-world situations. The approach in the thesis is examined against diverse

data sets of not only modern botnets but also web attack behaviours.

• The capability of the approach in supporting security experts in analyzing un-

known/unlabelled data is also explored, by applying the model for recognizing

unseen botnets, and investigating unlabelled majority portions of the employed

data sets. The process also attempts to show the capacity of topographic pre-

serving visualization ability of the SOM for network security.



Chapter 3

Methodology

The principle interest of this research is to explore the capabilities of an unsupervised

learning approach as a data analytics tool for network and system behaviour detection

using minimal a priori information. The data-driven approach based on unsupervised

learning enables network administrators to discover threats and malicious behaviours

in circumstances where experts’ knowledge is scarce or nonexistent. To this end, Self

Organizing Map (SOM) is employed to build an analysis system, not only supported

by its unsupervised nature but also its abilities in visualizing the data. Different

SOM training schemes are used for evaluating real-world data acquisition strategies

for behaviour detection and to overcome the lack of well-labelled data. Moreover, the

work is focused on network traffic flows instead of raw network data (packet payload)

for increasing capabilities against network traffic encryption. In the following, the

employed data sets and network traffic flow will be presented in Section 3.1. The

learning algorithm is described in Section 3.2. The proposed system architecture is

presented in Section 3.3.

3.1 Network Traffic Flow and Data Sets

3.1.1 Network traffic flows

Two network traffic data sets in this research (ISOT and CTU13) are exported as

network traffic flows. A flow is defined as a logical equivalent to a call or connection,

which connects a pair of terminals and contains a group of features [5]. Flows are

commonly identified by a set of five different attributes (5-tuples) including source

and destination IP addresses, source and destination Transmission Control Protocol

(TCP) / User Datagram Protocol (UDP) port numbers, and the protocol, over a

predetermined duration. Flow features typically include descriptive statistics that

are calculated from aggregating Network and Transport layers header information of

11
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the packets in a flow.

The use of low layer packet header properties (especially Network and Transport

layers) as descriptive characteristics of a flow makes the approaches based on flow

Application layer independent. Moreover, given that network traffic encryption is

very popular in both benign applications, for protecting users’ privacy and sensitive

information, and malicious ones, for hiding from the detection systems that analyze

network packet payload, the detection approach using only flow exported from packet

headers may improve the state-of-the-art in unsupervised learning based network

and system analysis. One can imagine network flow as the summary of network

connections between hosts in a form that is not directly decided by the packet content.

So, although botnet master can effectively change a part of malicious packet payload,

or encrypt the connection to evade signature based detection systems, it would be

much harder to change the abstract depiction of network connections formed by the

flows. The reason is that ultimately the malicious connections are still established

automatically by predefined code, and hence would be different from diverse normal

user and computer behaviours.

Flows can be extracted from network traffic using proprietary flow exporters in

routers and switches, e.g. Cisco Netflow [7] and Juniper JFlow[28]. On the other

hand, open source flow exporters can also extract flows from network traffic captured

at network devices as well as network terminals with a wide variety of features and

great flexibility. Good performances achieved by such flow exporters, e.g. Argus [43]

and Tranalyzer [6], were confirmed by Haddadi et al. in [22]. Hence in this thesis,

Tranalyzer is employed for exporting the flows from raw network traffic. The lists of

features exported using Tranalyzer, as well as the features employed in this research

are presented in Appendix A.1.

3.1.2 Data sets

Obtaining high quality data for designing and evaluating attack behaviour detection

systems typically involves considerable difficulties. One reason is that companies and

organizations are prevented from sharing network traffic by agreements protecting

users’ identities and privacy. Moreover, even when data is published / shared, it may

come with no additional information about the contained activities. Hence, it is still
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hard to identify the correct labels (ground-truth) for training and testing purposes.

In this thesis, three publicly available network traffic traces are used. First two

sets, CTU13 and ISOT contain botnet traffic, while the remaining data set, HTTP-

CSIC contains web attack traffic. The data sets ensure a wide range of malicious as

well as normal behaviours and categories, both with and without traffic payload. This

enables the proposed SOM based approach to be evaluated under different network

security scenarios and applications.

CTU13

The CTU13 botnet traffic data sets were captured in 2011 by Malware Capture Facil-

ity Project of Czech Technical University [15]. The goal was to have a large database

of real botnet traffic mixed with normal traffic and background (unidentified) traffic.

These data sets, which are referred as CTU13a-m in this thesis, consist of thirteen

traffic traces of different botnet samples. Under each scenario (botnet sample), a spe-

cific malware was executed in a set of virtualized Microsoft Windows XP computers

in a Linux Debian host. Traffic from each virtual machine, which is exclusively mali-

cious, was being bridged into the university network. The traffic was then captured

both on the Linux host and on one of the university routers. The final data set is the

one captured from the router, with botnet label information taken from traffic of the

Linux host.

The main characteristics of the scenarios and their behaviours are shown in Ta-

ble 3.1. Due to privacy limitations, only the network flow files containing basic flow

features extracted using Argus are published by the CTU. The features are: the dura-

tion, port numbers, the direction, source and destination types of services, the number

of packets, the number of bytes, the number of source bytes, and the protocol. The list

of features is supported by almost every traffic flow exporters. Thus, the capability

of a model employed such features is not limited to Argus but any flow exporter that

is applicable to specific network deployment.

All of the provided features, except the direction, are employed in this thesis.

By using only the provided basic flow characteristics, the intention is to test the

performance of the proposed approach using minimum a priori information. By

minimizing the a priori information, the thesis aims to minimize the blind sights and
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not to miss the new (unknown) malicious behaviours.

The labelling process of the CTU13 data set, as discussed in Garćıa et al. [15], is

summarized below:

1. Assign the Background label to the whole traffic.

2. Assign the Normal label to the traffic that can certainly be identified as traf-

fic from the known and controlled computers in the network, such as routers,

proxies, switches, and their personal computers in their laboratory.

3. Assign the Botnet label to all the traffic that comes from or to any of the known

infected IP addresses.

Hence, in CTU13 data set, there is a large portion of data for further exploration,

because ground-truth is not known for this portion. Garcia et al. labelled this portion

as Background. In other words, the Background traffic flows of these data sets may

contain either normal or malicious behaviours. This portion (background) is also

referred as the unknown portion of the data in this thesis.

ISOT botnet data set

ISOT botnet data set, provided by University of Victoria [59], is the combination of

several publicly available malicious and non-malicious data sets, including data sets

from the Traffic Lab at Ericsson Research in Hungary[49] and Lawrence Berkeley Na-

tional Laboratory (LBNL) [33] for legitimate and background traffic, and Storm and

Waledac botnet traffic from the French chapter of honeynet project [50]. Waledac and

Storm were two of the most prevalent P2P botnets with decentralized communication

protocols. While Storm using the old-fashioned peer-to-peer Overnet as its commu-

nication channel, its successor Waledac utilizes HTTP and a fast-flux based DNS

network for concealing malicious activities. The Ericsson Lab traffic contains general

traffic from a variety of applications, including HTTP web browsing behaviour, World

of Warcraft gaming, and popular bittorrent clients such as Azureus. Additional non-

malicious background traffic is also incorporated from the LBNL trace data, which

contains network traces for a variety of activities spanning from web and email to

backup applications as well as streaming media in an enterprise network environ-

ment. The merging process of ISOT data set from the component sets is as follow:
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Table 3.1: CTU13 data sets description ([15]). CF: ClickFraud, PS: Port Scan, FF:
FastFlux, ICMP: Internet Control Message Protocol.

Scen. Bot IRC SPAM CF PS DDoS P2P HTTP Note

a Neris ✓ ✓ ✓

b Neris ✓ ✓ ✓

c Rbot ✓ ✓

d Rbot ✓ ✓ UDP and ICMP
DDoS. Scan

e Virut ✓ ✓ ✓ Scan web proxies.

f Menti ✓ Proprietary C&C.
RDP.

g Sogou ✓ Chinese hosts.

h Murlo ✓ Proprietary C&C.
Net-BIOS, STUN.

i Neris ✓ ✓ ✓ ✓

j Rbot ✓ ✓ UDP DDoS

k Rbot ✓ ✓ ICMP DDoS.

l NSIS.ay ✓ Synchronization.

m Virut ✓ ✓ ✓ Captcha. Web mail.

first, the IP addresses of the infected machines in the botnet data are mapped to two

of the machines providing the background traffic, second, all of the network trace

files are replayed using the TcpReplay on the same network interface card in order

to homogenize the network behaviour in the component sets. This replayed data is

then captured again using Wireshark [59].

HTTP-CSIC

The HTTP data set CSIC 2010 from the Information Security Institute of Spanish

Research National Council (CSIC) [16] contains thousands of web requests for testing

web attack protection systems. The normal and anomalous web requests are auto-

matically generated for a set of web page on a server from databases that contain

parameters extracted from actual normal and anomalous web requests. The web

attacks were generated based on web security assessment tools such as Paros and

W3AF. The attacks are targeted to an e-Commerce web application developed at

CSIC. The data set is generated automatically and contains 36,000 normal requests
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and more than 25,000 anomalous (attack) requests. This data set includes attacks

such as Structured Query Language (SQL) injection, buffer overflow, information

gathering, file disclosures, Carriage Return Line Feed (CRLF) injection, Cross Site

Scripting (XSS) attack, server side include, parameter tampering and so on. There

are three types of anomalous requests included in the data set:

1. Static resource requests, which try to request hidden (or non-existent) resources.

These requests include obsolete files, session identifier in Uniform Resource Lo-

cator (URL) rewrite, configuration files, default files, etc.

2. Dynamic resource requests (attacks), which modify valid request arguments:

SQL injection, CRLF injection, XSS attack, buffer overflows, etc.

3. Unintentional illegal requests. These requests do not have malicious intention,

however they do not follow the normal behaviour of the web application and

do not have the same structure as normal parameter values (for example, a

telephone number composed of letters).

From the provided requests in the data set, numerical representation vectors are

extracted using a set of heuristically determined features for training and testing the

proposed system. The features can be found in Appendix A.2.

3.2 Learning Algorithm - Self Organizing Map

Self Organizing Map (SOM), or Kohonen’s map is one of the most popular unsu-

pervised neural network models [31]. The algorithm is based on unsupervised, com-

petitive learning to produce a non linear, ordered, low dimensional (typically two-

dimensional) similarity map projection of multi-dimensional input space, which can

also be called the output space. The SOM output space consists of nodes or neurons

which can act as decoders or detectors of their respective input space domains af-

ter the training process. Hence, the SOM provides visualization and summarization

options for high dimensional data with topological relationships preserved.

Figure 3.1 presents a schematic representation of a self organized map. Each node

in the SOM output space has a weight vector with the same number of dimensions as

the input vector, as well as a fixed position in the map plane. The SOM algorithm is
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performed in an iterative basis in order to form the final map. In an iteration, for each

training vector, the algorithm calculates distances between input vectors and SOM

nodes to choose the Best Matching Unit (BMU). The algorithm then updates the

weight vectors of the BMU and its neighbours accordingly for the training process.

Figure 3.1: A schematic representation of a self-organizing map

Define the training set X as a list of all input vectors x = [ξ1, ξ2, ..., ξn]
T ∈ Rn.

The original SOM iterative learning procedure can be summarized as follows:

Step (1) Initialize a M1×M2 two-dimensional, typically a hexagonal or rectangular,

lattice W of neurons, each has a weight vector wi = [ωi1, ωi2, ..., ωin]
T ∈ Rn

and a position ri in the 2D plane. The weight vectors can be assigned

randomly or linearly based on input range.

Step (2) A random input vector x is presented to train the lattice. A distance

measure is calculated between x and all the SOM nodes. One popular choice

for the distance measure is the Euclidean distance, d(x,wi) = ||x − wi||,
where ||x|| =

√∑n
j=1 ξ

2
j . Then the winning node wc, or the BMU, is

identified by minimum distance to the input vector.

c = argmin
i

d(x,wi). (3.1)
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Step (3) Weight vectors of the winning neuron and its neighbours are adjusted ac-

cording to the input vector:

wi(t+ 1) = wi(t) + hci(t)(x− wi(t)), (3.2)

where hcci is the neighbourhood function and t = 0, 1, 2, ... is the discrete

time coordinate. Acting as a smoothing kernel defined over the lattice

points, the neighbourhood function plays a vital role in the SOM con-

vergence process. It defines the magnitude of influence each input training

vector has over the SOM nodes, and implicitly the update region around the

BMU. The neighbourhood function can simply include the neighbourhood

set of neurons around node c. However, more frequently the neighbourhood

function has a Gaussian form:

hci(t) = α(t).exp

(
−||ri − rc||2

2σ(t)2

)
, (3.3)

where αt is the learning rate factor and σ(t) is the kernel width, also called

the neighbourhood radius. Both α(t) and σ(t) are scalar-valued and mono-

tonically deceasing over time.

Step (4) Repeat steps (2 - 3) by a predetermined number of iterations or until the

convergence criterion is satisfied, i.e. the corrections to the SOM weight

vectors become zero.

The original iterative SOM algorithm is also called on-line SOM [31], as it can be

applied in an on-line fashion by incrementally updating the SOM each time a new

training pattern appears.

3.2.1 Batch SOM training

In practice, when the whole training set is presented at the beginning, the SOM batch

training algorithm is generally preferred for faster convergence rate, less computa-

tional cost, and less number of learning parameters. Additionally, the SOM training

process usually consists of two phases: coarse training, during which the high-level

topographic order of the SOM is quickly formed, and fine training, for obtaining a

more accurate final state. Different from the original SOM learning algorithm, steps

(2-3) are performed for all data points in the training set at one:
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Step (2’-3’) For each SOM node i, collect a list of all training data points x whose

BMU is wi. The weight vectors of SOM nodes are then updated as

follows:

wi(t+ 1) =

∑N
j=1 hci(t)xj∑N
j=1 hci(t)

, (3.4)

where N is the training set size.

Step (4’) Repeat step (2’-3’) in two phase: coarse training phase with large neigh-

bourhood radius σcoarse(t) and small number of iterations lcoarse, followed

by fine training phase with small and constant neighbourhood radius

σfine(t). The fine training phase can have higher number of iterations

lfine, or is continued until convergence.

The batch SOM algorithm is employed for this work. The parameters and the

initialization method are presented in Section 4.1

3.2.2 Characteristics and visualization capabilities of SOM

Post training, SOM preserves the topological properties of the input space, and there-

fore can be used as a data analytics tool to visualize and analyze the high-dimensional

data. Moreover, SOM has the ability to generalize data from the training set. Char-

acteristics of each new input can be derived by identifying its BMU and quantization

error. Quantization error of each data instance is defined as the distance to its BMU,

hence it quantifies the similarity between the data instance and the SOM [31].

In this section, a synthesized data is used to demonstrate the visualization capa-

bilities of SOM. For simplicity and clarity, it is assumed that the input data has two

dimensions and is distributed in three different clusters as in Figure 3.2. Using linear

initialization, the initialized SOM lattice is shown in Figure 3.2(a). Post training, the

SOM lattice is adjusted to represent the data, as shown in Figure 3.2(b).

The distance matrix is calculated between weight vectors of SOM nodes to reveal

the structure of the trained SOM post training. Longer distances indicate less simi-

larity between the weight vectors. Basically, for a SOM of size M1×M2, the distance

matrix has size (2M1−1)×(2M2−1). The SOM distance matrix for the SOM trained
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Figure 3.2: The SOM lattice and the synthetic data

on the synthetic data is shown in Figure 3.3(a). In practice, the distance matrix usu-

ally visualized as U-matrix [51]. Each node in the U-matrix represents one element

in the distance matrix, Figure 3.3(b), where the colour bar on the right shows the

distance range. The lighter the colour gets, the longer the distance becomes. In this

example, it is clear that the U-matrix successfully illustrates the degree of clustering

tendency on the trained SOM, which resembles three clusters in the data.

The SOM can also be visualized based on the distribution of data points on SOM

nodes, as shown in Figure 3.4(a). In this case, the size of each SOM node wi is

determined by the number of data points whose BMU is wi. In this thesis, hit map

(Figure 3.4(b)), a combination of the U-matrix and the SOM hit distribution, is

extensively employed for visualizing the SOMs. On a hit map, the background colour

represents an interpolated shading version of U-matrix, while the size and colour of

each node represent volume and class label of best matching data for each SOM node,

respectively.

The example showed that the SOM is an effective unsupervised learning method

for data visualization and exploration. Not only preserving the topographic relation-

ships in the data, the SOM also provides the ability to detect “anomalous” data
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Figure 3.4: Visualization of data distribution on the trained SOM
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points, which are different from the training data by having high quantization errors

or by matching the lighter regions on the SOM U-matrix.

3.3 System Architecture

The proposed system architecture is shown in Figure 3.5. Fundamentally the sys-

tem is based on a data-driven approach using unsupervised learning with visualiza-

tion abilities (SOM) to learn network and system behaviours with minimum expert

knowledge.

Figure 3.5: Proposed system architecture

Adhering to the unsupervised paradigm, the system architecture is kept minimal

and straightforward. Raw input data is processed to numerical vectors, which are
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network flows from traffic captures or request characteristics for web log files. The

data is then pre-processed, e.g. for normalization purposes or for dimensionality

reduction purposes (detailed later in the thesis), before being input to the SOM

learning algorithm. The original data distributions are always kept intact. Hence

the SOM is obtained post training in a completely unsupervised manner. Since no

label information or human-defined knowledge of data is used for the proposed SOM

training process, only one layer of SOM with sufficient resolution is employed. This is

supported by the presumption that learning from data, SOM may form well-separated

node regions to differentiate distinct communication behaviours.

To quantify the system performance, if the ground-truth of the training data is

available, it can be applied for labelling the SOM nodes post training. The labelled

SOM can then be used to classify unseen testing sets. Details of the SOM nodes

labelling process will be presented in Section 4.1.2.

On the other hand, when label information is not available, cluster analysis based

on the trained SOM topology visualization, e.g U-matrix (Figure 3.3(b)), can be used

along with expert knowledge and information from other sources to derive meaningful

insights from the data. Moreover, possessing powerful visualizing capabilities, the

trained SOM can be employed to investigate the unknown data, using knowledge

learned in the training and labelling phases.

3.3.1 Training schemes

Hackers are employing more and more sophisticated techniques to hide malevolent

software and any fingerprints (evidence) that might be left by the attack performed

[47]. This results in the malicious traffic becoming more and more similar to legitimate

(normal) traffic, making the identification established in previous works blurry. So,

to shed light into this phenomena and to analyze it further, in this thesis the SOMs

are trained using three different schemes based on the chosen training data:

(i) use both known normal / legitimate and known malicious traffic for training

purposes, as done in the previous supervised learning approaches [30][26];

(ii) use only normal / legitimate traffic for training purposes as done in the previous

unsupervised learning (anomaly detection) approaches [34];



24

(iii) use only malicious (botnet / C&C) traffic or anomalous requests for training

purposes as done in some of the previous one-class classifier approaches [55][42].

The reason behind these training schemes is to not only represent the real-life

security conditions, but also to shed light into understanding the performance gains

/ losses under different types / amounts of labelling information, i.e. ground-truth.

For example, the data collected by honeypots is usually only considered as being rep-

resentative of malicious behaviour. On the other hand, in idealistic cases of networks

where there are no attacks, the data collected contains only legitimate traffic. More-

over, even when a threat is discovered in the collected traffic, it is very challenging to

fully identify the extent of the threat and label the data collected.

In summary, three different types of SOMs (trained based on the aforementioned

training schemes) are employed for exploring the unknown / unlabelled traffic present

in the aforementioned data sets. By analyzing the distribution of such traffic on the

trained SOMs, the intention is to investigate the ability of the different training

schemes on inspecting / analyzing unknown traffic for different attack and normal

(legitimate) behaviours. This is the basic step toward an unsupervised system for

automatically detecting anomalous behaviours in everyday traffic/ system logs. It

should be noted here that the aim is to help the human expert to analyze the unknown

data, but not to automatically classify. In the proposed system, the final decision

(classification) is left to the human expert.



Chapter 4

Evaluation

In this chapter, first the details of SOM training and labelling, as well as data sets

and performance measurements are presented in Section 4.1 and 4.2. Then, the clas-

sification results of the three mentioned training schemes on the data sets are shown

in Section 4.3 before the performances of the SOM on the data sets are compared

to other well known supervised and unsupervised learning algorithms in Section 4.4.

Next, Section 4.5 presents the performance evaluations of the proposed system and

a hierarchical method which employ the SOM in a semi-supervised manner. Finally,

the SOMs are used for unknown data analysis in Section 4.6.

4.1 SOM Training

The proposed system in this thesis is built based on SOM Toolbox 2.1 [54], which is

developed and recommended by the developers of SOM [32].

4.1.1 SOM initialization and training parameters

The SOM training parameters used in this thesis are summarized in Table 4.1. The

initialization of the SOM can be done by assigning a random weight vector, or a

random input data point to each node. However, as stated in [32], SOM learning

is generally faster (in terms of convergence) if regular initial values are given to the

maps. Thus, the SOMs in this thesis are initialized linearly.

In SOM linear initialization method, the beginning weight vectors are uniformly

distributed in a rectangle on a hyperplane made of the two greatest eigenvectors of the

input data. The ratio between the sidelengths of the rectangle is decided according

to the two eigenvalues, while the center of the initialized SOM is also the center of

the input data, Figure 3.2. The number of the map units in this thesis is determined

based on the size of the input data N using the following formula: M1 ·M2 = 10
√
N

[54]. Given the number of nodes, one can easily see from Section 3.2 that one batch

25
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Table 4.1: SOM training parameters

Parameter Value

SOM map 2D hexagonal lattice

Initialization method Linear initialization

Number of nodes (M1 ·M2) 10
√
N

Neighbourhood function Gaussian

Coarse training length lcoarse 100

Fine training length lfine minimum 400, the final number is decided by con-
vergence criteria

Coarse training neighbourhood radius σcoarse 0.25 ·max (M1,M2) to max (1, 0.05 ·min(M1,M2))

Fine training neighbourhood radius σfine max (1, 0.05 ·min(M1,M2))

SOM training iteration would take O(N
√
N) time. Hence the total SOM training

time is O((lcoarse + lfine)N
√
N).

4.1.2 Labelling the SOM nodes

As described in Section 3.3, three different training schemes based on three distinct

training data compositions are employed. For each training scheme, when the ground-

truth of the input data is available, post training, the SOMs can be labelled as the

following:

• Training scheme (i), using both Normal and Malicious data: post training,

for each SOM node i, the set of labelled training examples whose BMU is wi

is collected. From this set, votes toward different classes are calculated with

training data distribution taken into account to offset the skewness in the data.

For example: If node i is the BMU of 50 examples, out of which 18 are labelled

“A” and 32 are labelled “B”, and given that the input data has a distribution

of 60% “A” and 40% “B”, then the votes are calculated as viA = 18/0.6 = 30,

and viB = 32/0.4 = 80. This leads to the node being labelled as “B”. It is also

noteworthy that the trained SOM usually consists of well-separated regions of

different classes (Figure 3.4(b)). Thus, the votes are routinely dominated by

only one class. For the remaining SOM nodes on the trained map that do not

have best matching data examples, the labelling process is done based on the

nearest neighbours basis. Specifically, the nodes are assigned the labels of the
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majority of their neighbouring nodes.

• Training schemes (ii) and (iii), using only Normal or Malicious data, re-

spectively: Since the training data of these two training schemes contains only

one class, the SOMs are labelled by adopting an outlier detection principal.

Specifically, a threshold τ is determined for each trained SOM to specify the

set of important map units, which represent the core behaviours of the training

class. Basically the set of important map units is defined as the minimal set

of SOM nodes with the greatest hits that are BMUs for at least τ · N train-

ing data points. Although the value of τ varies from one data to another, the

principle assumed here is that τ needs to be greater or equal to 0.9 to retain

a sufficient number of nodes representing the behaviours of the training class.

The selected τ values will be justified by the Receiver Operating Characteristic

(ROC) curves. Naturally, any number of mechanisms could be assumed for

outlier detection [36], the thresholding approach adopted here represents a con-

venient starting point. Future work could conduct a wider study of the relative

significance of assuming different approaches.

4.1.3 Verification of SOM’s learning ability

To verify the performance of the SOMs post training, tSNE [52], an independent non-

parametric mapping method for data visualizing, is employed. Although being limited

by non-parametric nature, which prohibit the mapping from applying to unseen data,

and expensive runtime, tSNE is prominent for its ability to produce 2D mappings that

captures the structure of the high-dimensional input data. Figure 4.1, 4.2, 4.3 presents

the tSNE mappings of the original data sets, as well as the mappings of the codebooks1

of the SOMs trained on the respective data sets. Specifically, Figures 4.1(a), 4.2(a),

4.3(a) show the tSNE mappings of ISOT, CTU13a, and HTTP-CSIC respectively,

while Figures 4.1(b), 4.2(b), 4.3(b) show the tSNE mappings of codebooks of the

trained SOM using the corresponding data. It is noteworthy to mention that SOM

and especially tSNE are capable of representing non linear properties. So, one shall

only expect to see the structure similarity (but not the linear similarity) between the

mappings of the same data set, e.g. between Figures 4.2(a) and 4.2(b). The similarity

1The codebook is the set of all weight vectors of the SOM.
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(b) tSNE mapping of the SOM trained on ISOT. The size of each
node denotes the number of data points that hit the node, while the
mixed colour in a node denotes that the node is the BMU for data
from more than one class.

Figure 4.1: tSNE mappings of ISOT data set and the SOM trained on ISOT
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(b) tSNE mapping of the SOM trained on CTU13a. The size of each
node denotes the number of data points that hit the node, while the
mixed colour in a node denotes that the node is the BMU for data
from more than one class.

Figure 4.2: tSNE mappings of CTU13a data set and the SOM trained on CTU13a



30

-50 -30 -10 10 30 50
-50

-30

-10

10

30

50

(a) tSNE mapping of HTTP-CSIC
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(b) tSNE mapping of the SOM trained on HTTP-CSIC. The size of
each node denotes the number of data points that hit the node, while
the mixed colour in a node denotes that the node is the BMU for
data from more than one class.

Figure 4.3: tSNE mappings of HTTP-CSIC data set and the SOM trained on HTTP-
CSIC
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between the mappings clearly demonstrate the ability of the SOM in summarizing and

generalizing the input data. On visually comparing subplot (a) to the corresponding

subplot (b) it is apparent that the SOM codebooks preserve the general structure of

the data, while also reducing the noise and combining similar data regions into SOM

nodes. Specifically, the distribution with which each class is represented is retained,

as is the degree of mixing/purity with which different classes are expressed.

4.2 Experimental Settings

4.2.1 Data sets

From the original network traffic captures and the web access (request) logs, the data

sets are exported as numerical vectors representing network flows or HTTP requests

(see Section 3.1). Tables 4.2 and 4.3 present the flow and the request distributions in

CTU13, ISOT, and HTTP-CSIC data sets, respectively. The botnet C&C and botnet

attack traffic in CTU13 sets are distinguished as C&C and Botnet in the table. Due

to the highly skewed distributions, the C&C flows and Botnet flows in CTU13 c-g

and j-l data sets are considered one class (Botnet and C&C) in the experiments.

Given that the SOM is built based on the distances between data vectors and

nodes, the features of the training data are normalized with zero means and unit

variance before they are used for training.

Table 4.2: Data distribution in CTU13 sets

Scen. Bot # Packets # Flows Normal Flows C&C Flows Botnet Flows Background Flows

a Neris 71,971,482 2,824,637 30,387 (1.08%) 341 (0.01%) 40,620 (1.44%) 2,753,288 (97.47%)

b Neris 71,851,300 1,808,123 9,120 (0.50%) 673 (0.04%) 20,268 (1.12%) 1,778,061 (98.34%)

c Rbot 167,730,395 4,710,639 116,887 (2.48%) 63 (0.00%) 26,759 (0.57%) 4,566,929 (96.95%)

d Rbot 62,089,135 1,121,077 25,268 (2.25%) 49 (0.00%) 1,719 (0.15%) 1,093,228 (97.52%)

e Virut 4,481,167 129,833 4,679 (3.60%) 206 (0.16%) 695 (0.54%) 124,252 (95.70%)

f Menti 38,764,357 558,920 7,494 (1.34%) 199 (0.04%) 4,431 (0.79%) 546,795 (97.83%)

g Sogou 7,467,139 114,078 1,677 (1.47%) 26 (0.02%) 37 (0.03%) 112,337 (98.47%)

h Murlo 155,207,799 2,954,231 72,822 (2.47%) 1,074 (0.04%) 5,053 (0.17%) 2,875,281 (97.33%)

i Neris 115,415,321 2,087,509 29,967 (1.44%) 2,973 (0.14%) 182,014 (8.72%) 1,872,554 (89.70%)

j Rbot 90,389,782 1,309,792 15,847 (1.21%) 37 (0.00%) 106,315 (8.12%) 1,187,592 (90.67%)

k Rbot 6,337,202 107,252 2,718 (2.53%) 3 (0.00%) 8,161 (7.61%) 96,369 (89.85%)

l NSIS.ay 13,212,268 325,472 7,628 (2.34%) 25 (0.01%) 2,143 (0.66%) 315,675 (96.99%)

m Virut 50,888,256 1,925,150 31,939 (1.66%) 536 (0.03%) 39,467 (2.05%) 1,853,207 (96.26%)
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Table 4.3: Data distribution in ISOT and HTTP-CSIC data sets

ISOT
# Packets # Flows # Normal flows # Storm flows # Waledac flows

25,284,617 264,882 212,203 (80.11%) 18,721 (7.07%) 33,958 (12.82%)

HTTP-CSIC
# Requests # Normal req. # Malicious req.

71,485 56000 (78.34%) 15,485 (21.66%)

4.2.2 Performance measurements

Except where noted, all results are analyzed with respect to 20 independent trials in

three fold cross validation in order to ensure statistical significance. The training and

testing partiontion sizes for each data set are presented in Appendix B.1.

For the classification tasks, the results are measured in terms of: Accuracy, Class-

wise Detection Rate (CDR), Class Detection Rates (DRs), and Precision of malicious

classes. While Accuracy and Detection rates show the system’s capability in correctly

classifying test instances into classes, the Precision denotes the percentage of raised

alerts that is accurate. In security applications, high precision classification systems

will reduce the amount of false alerts that require attention from the network admin-

istrators. The measurements and the data distributions will be presented in % in the

following sections.

Accuracy =
Number of correctly classified test instances

Total number of test instances
. (4.1)

DRi =
Number of correctly classified class i test instances

Total number of class i test instances
. (4.2)

CDR =
1

Nc

∑
i

DRi, where Nc is the number of classes. (4.3)

Precision =
Number of correctly classified malicious test instances

Total number of test instances classified as malicious
. (4.4)



33

4.3 SOM Classification Results

4.3.1 Training scheme (i)

Table 4.4: Classification performance of SOM training scheme (i)

Data set Accuracy CDR Detection rate Precision

CTU13 Normal C&C Botnet

a 98.15 97.51 99.25 95.92 97.35 99.45

b 96.57 95.67 99.36 92.18 95.46 99.72

c 99.66 99.77 99.59 99.95 98.25

d 99.54 99.66 99.51 99.82 95.38

e 98.86 99.25 98.68 99.82 93.58

f 99.22 99.35 98.79 99.92 98.08

g 97.20 97.78 97.16 98.41 56.75

h 99.55 99.46 99.56 99.34 99.49 95.43

i 96.43 97.32 99.15 96.84 95.96 99.87

j 99.81 99.46 98.98 99.94 99.85

k 99.73 99.56 99.23 99.90 99.74

l 99.19 99.38 98.90 99.85 97.49

m 96.73 93.30 99.40 85.72 94.79 99.52

ISOT
Normal Storm Waledac

95.31 93.69 95.91 91.38 93.77 85.71

HTTP-CSIC
Normal Malicious

92.81 93.67 92.42 94.91 69.77

Table 4.4 presents in detail the classification performance of the SOMs trained

using scheme (i), using both normal and malicious data for training the SOMs. The

results are obtained on the unseen test partitions of the data sets. As it shows in the

table and Figures 4.4 and 4.5, this training scheme achieves high performance with

a clear separation between non-overlapping groups of BMUs of traffic classes on the

hit maps. For example, in Figures 4.4, which visualize data distribution of different
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Table 4.5: Classification performance of SOM training scheme (i) when only 2 classes
are taken into account

Data set Accuracy CDR DR Normal DR Botnet Precision

CTU13a 99.64 99.59 99.25 99.93 99.45

CTU13b 99.66 99.58 99.36 99.80 99.72

CTU13h 99.59 99.74 99.56 99.92 95.43

CTU13i 99.74 99.49 99.15 99.83 99.87

CTU13m 99.69 99.66 99.40 99.92 99.52

ISOT 96.48 97.36 95.91 98.80 85.71

(a) CTU13a (b) CTU13m

Figure 4.4: Hit maps of two CTU13 data sets on the SOMs trained using scheme (i)
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(a) ISOT (b) HTTP-CSIC

Figure 4.5: Hit maps of ISOT and HTTP-CSIC data sets on the SOMs trained using
scheme (i)

traffic classes in CTU13a and CTU13m on the SOMs, it is clear that the different

classes are either separated by a lighter area in the SOM Umatrix, which indicates

large inter-node distances, or empty nodes.

Figures 4.5(a) and (b) shows hit maps of the SOMs trained on ISOT and HTTP-

CSIC data sets, respectively. Although the separation between legitimate and ma-

licious classes are not as obvious as that of the CTU13 sets, one can still easily

distinguish different traffic classes by looking at the hit maps. This supports the

hypothesis for the ability of the SOM to model network behaviours, and separate

malicious traffic from normal traffic.

Moreover, in the CTU13 sets with separate classes for C&C and Botnet attack

traffic, most of the incorrectly classified Botnet (C&C) flows are still classified as C&C

(Botnet). The same observation can be made between Waledac and Storm botnet

traffic in ISOT data set as well. Table 4.5 presents the classification performances

of the trained SOMs using scheme (i) when only two classes (Normal and Malicious)

are taken into account. This also shows the flexibility of the SOM in particular and

unsupervised learning in general in interpreting the learned model on the data. By not

using the ground-truth in the learning process, the system instead learns to generalize
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the input data, and provides the ability to obtain results based on specific interests.

Finally, it should be noted that the SOMs trained using both normal and malicious

data achieved comparable results to that of supervised learning systems in the papers

where the ISOT and HTTP-CSIC data sets are introduced. On ISOT data set, the

detection rates of REPTree classifier with reduced subset in [59] were 97.9% and

98.1% for Normal and Malicious flows, respectively. On the HTTP-CSIC data set,

the average accuracy and Normal DR obtained using decision tree learning algorithms

were 93.65% and 93.1%, respectively [39].

4.3.2 Training scheme (ii) Normal only and (iii) Malicious only

Table 4.6: Classification performance of SOM training scheme (ii) Normal only

Data set τ Accuracy CDR Normal DR Malicious DR Precision

CTU13a 0.90 38.64 45.12 88.25 2.00 18.15

CTU13b 0.95 58.42 68.05 92.56 43.55 92.26

CTU13c 0.95 94.82 96.59 93.76 99.42 78.54

CTU13d 0.93 91.55 87.43 92.49 82.37 51.63

CTU13e 0.95 87.84 79.09 92.02 66.15 59.70

CTU13f 0.94 94.09 94.72 92.06 97.39 88.36

CTU13g 0.94 88.52 79.55 89.22 69.88 19.79

CTU13h 0.93 86.61 63.17 91.34 35.01 26.35

CTU13i 0.93 38.05 59.76 89.56 29.96 90.69

CTU13j 0.95 63.32 75.50 91.95 59.05 97.82

CTU13k 0.95 93.88 93.33 92.23 94.42 97.33

CTU13l 0.95 85.64 81.62 91.61 71.63 78.40

CTU13m 0.95 68.73 71.28 93.35 49.21 88.79

ISOT 0.93 75.76 52.96 90.82 15.10 29.04

HTTP-CSIC 0.94 90.01 81.21 93.99 68.42 68.02

The testing results of the SOMs trained using only normal data and only malicious

data are presented in Tables 4.6 and 4.7, respectively. The ROCs of classification

systems based on SOMs trained using the two schemes are shown in Figures 4.6 and

4.7. Figures showing hit maps of testing sets are presented in Appendix B.2.
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Table 4.7: Classification performance of SOM training scheme (iii) Malicious only

Data set τ Accuracy CDR Normal DR Malicious DR Precision

CTU13a 0.94 83.02 81.34 70.17 92.52 83.90

CTU13b 0.90 61.90 44.71 1.01 88.41 67.22

CTU13c 0.95 92.31 92.06 92.46 91.65 82.85

CTU13d 0.93 57.38 71.88 54.09 89.67 21.83

CTU13e 0.90 26.01 48.45 15.30 81.60 16.74

CTU13f 0.94 66.69 71.25 51.94 90.56 55.70

CTU13g 0.93 50.11 63.00 49.10 76.90 14.53

CTU13h 0.95 51.72 70.10 48.02 92.19 16.26

CTU13i 0.95 93.44 92.23 90.57 93.90 98.48

CTU13j 0.92 82.50 58.68 26.52 90.84 89.26

CTU13k 0.94 86.49 81.72 72.18 91.25 91.20

CTU13l 0.95 56.70 66.62 41.96 91.27 40.56

CTU13m 0.90 50.97 46.04 3.30 88.78 53.65

ISOT 0.95 65.39 75.16 58.93 91.39 39.54

HTTP-CSIC 0.94 45.49 64.71 36.80 92.62 21.62

Among the two training schemes, the results are generally better with the scheme

using Normal data only. Ensuring the False positive rates no greater than 8%, the

scheme (ii) is typically able to detect more than 60% of malicious data vectors. On the

other hand, the training scheme using only Botnet traffic observes poor performance

on most of CTU13 data sets and HTTP-CSIC.

On ISOT data set, the trend is reversed, where SOM training by only botnet flows

gives far better results than the SOM trained by normal data only. However, con-

sidering that ISOT data set is a combination of normal and malicious data provided

by different organizations, this might be the reason why the trend is reversed. The

normal traffic in ISOT data set was provided by LBNL and the malcious traffic was

captured using Honeypots [59]. So, the results are based on data captured at different

organizations (networks) under (potentially) different topologies and conditions.

Another observation that can be made based the scheme (ii) results on CTU13

sets is that the performance suffers when the amount of training data is not sufficient,
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e.g. on CTU13 a,b,m. This suggests that expanding the normal training set to cover

more normal behaviours and protocols can improve the results obtained using scheme

(ii).

(a) CTU13 sets, training scheme (ii) Normal only

(b) CTU13 sets, training scheme (iii) Malicious only

Figure 4.6: ROCs of classification systems based on SOMs trained using schemes (ii)
and (iii) on CTU13 data sets
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(a) ISOT and HTTP-CSIC, training scheme (ii) Normal only

(b) ISOT and HTTP-CSIC, training scheme (iii) Malicious only

Figure 4.7: ROCs of classification systems based on SOMs trained using schemes (ii)
and (iii) on ISOT and HTTP-CSIC data sets
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Figure 4.8: Summarization of classification performance of the three SOM training
schemes. The columns represent average values, while the errorbars correspond to
one standard deviation.
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4.3.3 Discussion

The summary of the performances of the three SOM training schemes are presented in

Figure 4.8. As expected, SOM training scheme using both normal and botnet traffic

/ malicious requests achieves the highest performance. Hence, for higher accuracies,

data analytics systems trained on both malicious and normal behaviours should be

preferred. The results also suggest that when a complete set of training data is not

available, SOMs can be trained on well-identified normal data only and still achieve

a reasonable performance, given that the data is diverse enough to cover most of the

legitimate traffic.

Another observation from the experiments is that C&C and botnet attack traffic

(in the CTU13 data sets) are relatively different. The examples of this can be seen

in Figures 4.4(a) and (b), where the two malicious classes distributed over separated

regions in the hit maps. This might be based on the essence of these two traffic types.

While flows labelled Botnet represent attacks and malicious activities, C&C flows are

for maintaining the botnet and issuing attack orders. Thus, naturally the hackers

would want to conceal the C&C traffic to make it as similar to the normal traffic

as possible. The observation suggests that independent investigation strategies for

Botnet and C&C traffic may improve detection systems’ performance.

4.4 SOM vs Other Learning Algorithms

In this section, the performance of the model proposed in this thesis is benchmarked

against other learning techniques, both unsupervised and supervised, from the litera-

ture. Four selected algorithms are: C4.5, Naive Bayes, X-means clustering, and EM,

in which the former two are supervised, while the latter two are unsupervised. The

chosen algorithms are amongst the most popular ones in data mining, as stated in

[56]. To comply to the training data requirements of these algorithms, only training

sets consisting of both normal and malicious data (as in scheme (i)) are employed.

The implementations of the benchmarking algorithms are based on Weka [23].
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4.4.1 Learning algorithms for comparison

C4.5

C4.5 is an algorithm to generate decision tree for classification, which is extended from

the earlier ID3 algorithm developed by Ross Quinlan [44]. C4.5 uses the concept of

information entropy for creating if-then rule set at each tree node in order to build

the tree. The training data is required to be completely labelled and contain at least

two classes. At each node of the tree, the data is split into subsets which contains only

one or a few classes as majority. The criteria is satisfied most effectively by choosing

the attribute and the split point that gives the highest normalized information gain.

The C4.5 algorithm then recurs on the subtree. More detailed information on the

C4.5 learning algorithm can be found in [44]. For the parameters, Weka’s default

C4.5 parameters are applied. Only the minimum number of instances per leaf are

adjusted according to the training data size.

Naive Bayes

Naive Bayes classifier is a simple probabilistic classifier based on Bayes’ theorem, in

which strong independence is assumed between the data attributes. From the training

data, two probabilities can be calculated using Bayes theorem: the probability of each

class, and the conditional probability for each given training sample. Then, for each

input (testing) example, the posterior probability for each class are calculated using

Naive Bayesian equation to act as a vote toward the class. More details on the

algorithm can be found in [3].

X-means

X-means clustering, an extended K-Means algorithm [35] which simplifies the de-

ployment of the latter by automatically determining the number of clusters [41], is

also employed for benchmarking in this thesis. Essentially K-means is a method of

vector quantization, which is in the same group as the SOM algorithm, that aims

to partition input observations in k clusters by the distances to the closest clusters’

means. Starting from K-means with a small number of clusters, X-means employs the

Bayesian Information Criterion concept to make local decisions about which subset
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of current centroids should be split. A more detailed description of X-means learning

algorithm can be found in [41].

EM

The Expectation Maximization (EM) algorithm is an iterative method for fitting nor-

mal mixture models by maximum likelihood [11]. The algorithm estimates the model

parameters by alternating between two steps: expectation (E), and maximization

(M). In the E step, a function is created for the expectation of the log-likelihood

obtained using the current estimate for the parameters. Then in the M step, the

expectation function found in the E step is maximized in order to compute the pa-

rameters. Iteratively, these estimated parameters are then used as the input for the

next E step. More details on the algorithm can be found in [3]. In the evaluations

done in this thesis, the number of clusters for EM algorithm is determined using the

cross validation option in Weka [23].

4.4.2 Results

The classification performances of the five algorithms on CTU13, ISOT, and HTTP-

CSIC data sets are summarized in Table B.2 and Figure 4.9. It is clear that the SOM

outperformed EM and even Naive Bayes, which is a supervised learning algorithm. In

comparison with X-means, the SOM is comparable on most of CTU13 data sets, and

outperformed on CTU13b,i,m, ISOT, and HTTP-CSIC. The results of SOMs are also

comparable to C4.5, and even better in CDR for CTU13a, CTU13i and HTTP-CSIC.

Statistical support for the analysis of the results is obtained by the hypothesis testing

techniques, as presented in Appendix B.3.1.

The advantages of the proposed system are not only in the classification perfor-

mance, but also in the ability to visualize the data. For example, when ground-truth

is available, one can analyze SOM hit maps (Figure 4.4) to identify the regions, and

hence the portion of the data, that may require further analysis. On the other hand,

when the ground-truth is not available, proposed approach is still able to provide

the expression on the structure of input data. Finally, in the case where training

data is incomplete, it is possible to train the SOM in one class fashion to work as

an outlier detector as in 4.3.2, while it is more challenging to do the same with the
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Figure 4.9: Summarization of classification performance of five algorithms. The
columns represent average values, while the errorbars correspond to one standard
deviation.
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aforementioned algorithms.

4.4.3 Adaptability of algorithms on novel malicious behaviours

To examine the ability of the algorithms on detecting novel (new / unseen during

training) malicious behaviours, one experiment with special training and testing sets

is carried out. The training / testing split is done in the same manner as in [15], where

5 sets (a,b,f,h,i) in CTU13 are used for training, while the rest (CTU13c-e, g, j-m)

are used for testing. The split ensures that the testing set contains only novel botnets

(Rbot, Virut, Sogou, NSIS.ay) that are not included in the training set (Neris, Menti,

Murlo). Furthermore, while the botnets in the training set are only IRC botnets,

or use a proprietary protocol for their C&C communication, the botnets in testing

set establish their connections on not only IRC but also HTTP/HTTPS and P2P

protocols (Table 3.1). The SOM and other algorithms are trained using both normal

and botnet traffic flows in the training set (as in scheme(i)). Due to the training

data size, only 25% or the original training data is randomly sampled to train the

algorithms. The trial is repeated 20 times for each algorithm.

Table 4.8: Classification performances of five algorithms on CTU13 test set containing
unseen botnet

Algorithm Accuracy CDR Normal DR Botnet DR Precision

SOM 98.17 98.11 99.26 96.96 99.16

C4.5 83.54 82.68 99.89 65.48 99.82

Naive Bayes 72.05 70.70 97.82 43.59 94.75

X-means 81.88 81.01 98.59 63.42 97.61

EM 74.54 73.44 95.58 51.29 92.33

The results are presented in Figure 4.10 and Table 4.8. It is apparent that the SOM

was able to retain its good performance on the novel botnets, while the algorithms

for comparison failed. This demonstrates the potential of the proposed approach in

dealing with unseen behaviours, even when new communication protocols are em-

ployed for botnet C&C, by reducing the dependence on a priori ground-truth in the

learning process.
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Figure 4.10: Accuracy of 5 algorithms on CTU13 novel botnets testing set

(a) Hit map of training data (b) Hit map of testing data

Figure 4.11: Hit maps of training and testing data, novel botnet detection experiment
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To further analyze the SOMs in this experiment, the hit maps for training and

testing data are plotted in Figure 4.11. As it is shown in the figure, although the

C&C and botnet attack behaviours in the testing set are somewhat different from the

botnets in the training set, and appears to be more similar (closer in the hit maps) to

the normal traffic, the SOM was still able to successfully identify them. The figures

also suggest that the shifting in network behaviours should be gradually incorporated

(by re-training) into the system to maintain a good detection capability. This can be

done by periodically training the SOM at regular intervals, or re-training when new

network behaviours are noticed.

4.5 Comparison with Hierarchical SOM

In this section, the performance of the proposed system based on one layer of SOM

is compared against methods that employ multiple layers of SOM. The hierarchical

SOMs employed for comparison is similar to the system proposed in [30]. In the

system, the first layer consists of a 6 × 6 SOM. Post training, the SOM is analyzed

to identify the nodes with mixed hits from multiple classes. The best matching data

points for each such node are then used to build (train) a second layer of SOM. The

system can recur until the third layer of SOMs are built. Inherently, this training

process make the hierarchical SOM more dependent on the data labels. This type of

system can be termed semi-supervised.

As it is shown in Figure 4.12, the proposed system in this thesis achieves slightly

better performances on CTU13 (as in 4.4.3) and ISOT, and comparable results on

HTTP-CSIC. The performances of the two approaches on the individual CTU13

data sets are not shown due to exceeding similarities. Wilcoxon signed-ranks tests

are performed on Accuracy and CDR results of the two approaches on the data sets.

The obtained p-values for Accuracy and CDR are 0.50 and 0.47, respectively. Thus

one can not reject the null-hypotheses that the two approaches achieve the same

performances. This confirms that SOMs with sufficient resolution could accurately

model the input data for attack behaviours discovery, and also eliminates the need of

using data labels, which may be not available, during the training phase.



48

CTU13 ISOT HTTP-CSIC
0.90

0.92

0.94

0.96

0.98

1.00
Proposed system Hierarchical SOM

(a) Accuracy

CTU13 ISOT HTTP-CSIC
0.90

0.92

0.94

0.96

0.98

1.00
Proposed system Hierarchical SOM

(b) Class-wise DR

Figure 4.12: Performances of proposed system and Hierarchical SOM

4.6 SOM for Analyzing Unknown Data

In the this section, the trained SOMs presented in Section 4.3 are used to analyze

the distribution of Background (unlabelled / unknown) data in the CTU13 sets.

Appendix B.4 presents in detail the distribution of Background traffic flows on the

trained SOMs.

(a) Background flows, CTU13i (b) Normal, C&C and Botnet flows, CTU13i

Figure 4.13: Hit maps of CTU13i Background (left) and training data (right) on the
SOM trained using scheme (i)

Since there is neither ground-truth nor packet capture payload provided by the
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(a) Background flows, CTU13j (b) Normal, C&C and Botnet flows, CTU13j

Figure 4.14: Hit maps of CTU13j Background (left) and training data (right) on the
SOM trained using scheme (i)

CTU for this portion of the data sets, the SOMs trained using scheme (i) are employed

as the baseline to analyze the unknown data portion of the CTU13 data set, backed

by the promising results obtained in the previous sections. As shown in Figures 4.13,

4.14, and Table B.4, the proposed system identifies most of the Background flows as

Normal / Legitimate (53%-67%, depending on the CTU13 data set analyzed), and

only a small portion (0 - 6%) as possibly Botnet traffic. On the other hand, the rest

of the Background traffic flows appear to be very different from both Legitimate and

Botnet/C&C. The proposed system suggests that these flows are labelled as anoma-

lies for further investigation. Manually inspecting the background flows labelled as

Anomaly, it is found that many of them have unfamiliar protocols that were not seen

in the training data, for example Address Resolution Protocol, Real-time Transport

Protocol (RTP), RTP Control Protocol, and Internet Group Management Protocol.

This intuition suggests that the training sets need to be expanded to cover more

behaviours and protocols.

Figures 4.15 and B.4 show the statistics in Table B.4 for comparison. SOMs
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Figure 4.15: Stacked bar chart showing distribution of CTU13 Background traffic
flows. For each data set, the three columns show distribution of Background flows
on SOMs trained using scheme (i), (ii), and (iii) respectively. Each component in
a column represent average values, while the errorbars correspond to one standard
deviation of that component. Out Class represents the partition of Background data
that is different from the class(es) in training data.
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trained by only Normal data (scheme (ii)) show very similar Background data dis-

tributions to scheme (i). The two schemes agree not only in the Normal flow distri-

butions but also in which flows are labelled as Normal. On average, 84.8% (sd 4.14)

of the Background flows labelled as Normal by the SOMs trained using scheme (ii)

are also labelled as Normal by the SOMs trained using scheme (i), while only 1.92%

(sd 1.81) is identified as Botnet by scheme (i) SOMs. On the other hand, SOMs

trained by only Botnet/C&C data (scheme (iii)) label most of the Background flows

as Botnet, with completely different distributions from what obtained from scheme

(i). Specifically, only 7.06% (sd 6.17) of Background flows labelled as Botnet by

scheme (iii) SOMs is confirmed by scheme (i) SOMs, while 59.07% (sd 18.08) of those

flows is identified as Normal by scheme (i) SOMs.

To further investigate the Background traffic, we calculate the average quanti-

zation error (see 3.2.2) for each identified class (Normal, Botnet, Anomaly) of the

Background traffic. For the sake of simplicity, this calculation is done on the train-

ing, testing data and the trained SOMs from 4.4.3. The quantization error ranges for

labelled Background flows by the three training schemes are shown in Figure 4.16.

Using scheme (i) trained SOMs, the average quantization errors of flows labelled as

Normal is 1.06, while it is 0.42 for Botnet flows. These low quantization errors demon-

strate that SOMs trained using scheme (i) label the Background traffic as Normal

and Botnet with high confidence, considering that the overall average quantization

error is 4.69. On the other hand, for the flows labelled as Anomaly, the average quan-

tization error is 10. This higher value confirms the observation that anomaly traffic

contains very different behaviours / patterns that were not present in the training

data. This is further confirmed by the manual analysis of these flows and the different

protocols identified as a result of this analysis. Similarly, SOMs trained using scheme

(ii) give average quantization errors of 2.26 and 5.83 for flows classified as Normal

and Anomaly. On the other hand, training scheme (iii) produces SOMs with much

higher quantization errors when applied on the Background traffic. On average, the

Background flows are classified as Botnet and Not Botnet with quantization error val-

ues of 23.74 and 7.63, respectively. These very high error values indicate that SOMs

trained using scheme (iii) are not suitable for Background / unknown data analysis.



52

Figure 4.16: Quantization error ranges of Background flows by labels assigned using
SOMs from three training schemes. The box represents the interquartile range, while
the whiskers extend to the 9th percentile and the 91st percentile. Red line and plus
sign shows the median and mean, respectively.



Chapter 5

Conclusion and Future Work

The main objectives in this thesis are: (i) investigating the capability of SOMs as

an unsupervised data analytics system for modelling and classification of network

behaviours, and (ii) using this capability for analyzing unknown/unlabelled traffic.

Specifically, the thesis shows the capability of such an approach without scrutinizing

network packet content. Thus, this enables a simple solution that is more flexible and

adaptable to different deployment conditions and environments.

Using three different SOM training schemes, the capabilities of this SOM based

approach are analyzed and evaluated on publicly available data sets of modern botnets

and web attacks .The obtained results are comparable to that of previous supervised

machine learning-based approaches, even though the proposed approach is based on

the unsupervised learning paradigm. Detection rates of Botnet and Normal classes

are up to 99.95% and 99.59% with the training scheme using both classes. Moreover

the experiments on unseen botnets and unknown traffic portions show the potential of

the approach for building a strong data analytics system for unknown traffic analysis.

Our data analytics results on unknown traffic also suggest that when a complete set

of training data is not available, SOMs can be trained on normal data only and still

achieve a competitive level of performance, given that the data is diverse enough to

cover most part of the legitimate traffic.

Multiple directions are promising for extending the thesis research. First, the

process of determining the SOM size can be done based on the characteristics of

input data instead of current heuristic method. One example of this approach is

using Gap Statistics for determining the number of internal data clusters, and use

that to determine the number of SOM units needed.

Feature learning plays an important role in machine learning solutions. Given

that the SOM building process is based on distance measures, feature extraction

and selection methods can be applied to reduce the unnecessary linear dependency
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between the input features, and highlight the important attributes for discriminating

the malicious behaviours. Moreover, this may ease the curse of dimensionality, and

hence introduce the approach to more potential applications. However, preliminary

experiments using PCA for the task do not show any sign of improving performances

or significantly reducing training time. Hence, one may attempt to adapt nonlinear

dimensionality reduction methods for the preprocessing task, e.g. kernel PCA, or

bottleneck neural network. On the other hand, although the approach performed well

on the CTU13 data set with only basic flow attributes, detailed feature analysis can

be conducted to reveal the effect of such limited feature set on the performance and

the generalization ability of the approach, as well as to investigate how informative

each flow feature is in terms of traffic classification.

More analysis in the combined use of SOM hit counts and quantization errors as

a filter for unseen data can be carried out. This would test the ability of such an

approach in reducing the noise in data and increasing the accuracy. Furthermore,

probability models, such as the model in [2], can be applied for effectively confirming

if a new data sample belongs to the SOM’s trained data distribution or not.

Finally, the performance of the SOM-based data analytics system can be studied

against other data sets, to examine its potential of detecting other types of network

attacks and malicious activities. One solution is to generate a more realistic data

set that captures real-time traffic and real-world security situations. From that,

the method can also be improved to deal with live training data and live detection

scenarios. The generalization ability of the approach can also be analyzed in more

extensive studies, similar to Section 4.4.3, where the model have to deal with detection

of unseen and unmodelled threats appearing in the traffic post training.
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Appendix A

Data Features

A.1 List of flow features exported using Tranalyzer

Tranalyzer can extract uni-directional flows with a wide range of features from net-

work captures of live interface, based on the chosen plugins [6]. Designed for sim-

plicity, performance and scalability, it generates statistics from key parameters of

IPv4/IPv6 Tcpdump traces, which can be live captured from supported network in-

terfaces, or packet capture files. A wide range of modules, or plugins are provided

with Tranalyzer, each tailored to one or several fields of packet header at Link, Inter-

net, Transport or even Application layer of the Internet protocol suite. The plugins

enable network administrators not only to acquire interested information of flows in

many categories, including time, inter-arrival, packet statistics (e.g. number of pack-

ets, number of bytes, bytes per packet, packet per second, ...), histogram, and flag

information, but also to decode packet content and analyze payload when necessary.

In this thesis, the seven most popular Tranalyzer plugins are employed, Table A.1.

71 numerical features, in which IP addresses and port numbers are not included, are

then selected from the plugins’ output for training and evaluating the systems in this

thesis, Table A.2.
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Table A.1: List of employed Tranalyzer plugins

Ind. Plugin Description

1 basicFlow host identification fields and timing information

2 basicStats basic layer four statistics for each flow

3 tcpFlags contains IP and TCP header information encountered
during the lifetime of a flow for troubleshooting purposes

4 icmpDecode analyzes ICMP traffic and provides absolute and relative
statistics

5 connStat counts the connections between different IPs and ports
per flow and during the pcap lifetime in order to produce
an operational picture for anomaly detection

6 pktSIATHisto records the packet length and inter-arrival time of a flow

7 descriptiveStats calculates various statistics about a flow, using output
from pktSIATHisto
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Table A.2: List of used flow features from Tranalyzer

Ind. Plugin Flow feature Description

1 1 Duration Flow duration

2 1 ETHVlanID VLAN number (inner VLAN)

3 2 numPktsSnt Number of transmitted packets

4 2 numPktsRcvd Number of received packets

5 2 numBytesSnt Number of transmitted bytes

6 2 numBytesRcvd Number of received bytes

7 2 minPktSz Minimum layer 3 packet size

8 2 maxPktSz Maximum layer 3 packet size

9 2 avePktSize Average layer 3 packet size

10 2 pktps Sent packets per second

11 2 bytps Sent bytes per second

12 2 pktAsm Packet stream asymmetry

13 2 bytAsm Byte stream asymmetry

14 3 ipMindIPID IP Minimum delta IP Identification

15 3 ipMaxdIPID IP Maximum delta IP Identification

16 3 ipMinTTL IP Minimum Time to Live (TTL)

17 3 ipMaxTTL IP Maximum Time to Live (TTL)

18 3 ipTTLChg IP TTL Change Count

19 3 ipOptCnt IP options count

20 3 tcpPSeqCnt TCP packet sequence count

21 3 tcpSeqSntBytes TCP sent seq diff bytes

22 3 tcpSeqFaultCnt TCP sequence number fault count

23 3 tcpPAckCnt TCP packet acknowledgement (ACK)

count

24 3 tcpFlwLssAckRcvdBytes TCP flawless ack received bytes
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ind. Plugin Flow feature Description

25 3 tcpAckFaultCnt TCP ack number fault count

26 3 tcpInitWinSz TCP initial effective window size

27 3 tcpAveWinSz TCP average effective window size

28 3 tcpMinWinSz TCP minimum effective window size

29 3 tcpMaxWinSz TCP maximum effective window size

30 3 tcpWinSzDwnCnt TCP effective window size change down

count

31 3 tcpWinSzUpCnt TCP effective window size change up

count

32 3 tcpWinSzChgDirCnt TCP effective window size direction

change count

33 3 tcpOptPktCnt TCP options packet count

34 3 tcpOptCnt TCP options count

35 3 tcpMSS TCP Maximum Segment Length

36 3 tcpWS TCP Window Scale

37 3 tcpSSASAATrip (A) TCP Trip Time Syn, Syn-Ack; (B)

TCP Trip Time Syn-Ack, Ack

38 3 tcpRTTSseqAA (A) TCP Round Trip Time Syn, Syn-

Ack, Ack; (B) TCP Round Trip Time

Ack-Ack RTT

39 3 tcpRTTAckTripMin TCP Ack Trip Minimum

40 3 tcpRTTAckTripMax TCP Ack Trip Maximum

41 3 tcpRTTAckTripAve TCP Ack Trip Average

42 4 icmpEchoSuccRatio Echo reply/request success ratio

43 5 connSip Number of connections from source IP

to different hosts
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ind. Plugin Flow feature Description

44 5 connDip Number of connections from destina-

tion IP to different hosts

45 5 connSipDip Number of connections from source IP

to destination IP

46 7 MinPl Minimum packet length

47 7 MaxPl Maximum packet length

48 7 MeanPl Mean packet length

49 7 LowQuartilePl Lower quartile of packet lengths

50 7 MedianPl Median of packet lengths

51 7 UppQuartilePl Upper quartile of packet lengths

52 7 IqdPl Inter quartile distance of packet lengths

53 7 ModePl Mode of packet lengths

54 7 RangePl Range of packet lengths

55 7 StdPl Standard deviation of packet lengths

56 7 RobStdPl Robust standard deviation of packet

lengths

57 7 SkewPl Skewness of packet lengths

58 7 ExcPl Excess of packet lengths

59 7 MinIat Minimum inter-arrival time

60 7 MaxIat Maximum inter-arrival time

61 7 MeanIat Mean inter-arrival time

62 7 LowQuartileIat Lower quartile of inter-arrival times

63 7 MedianIat Median of inter-arrival times

64 7 UppQuartileIat Upper quartile of inter-arrival times

65 7 IqdIat Inter quartile distance of inter-arrival

times

66 7 ModeIat Mode of inter-arrival times
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ind. Plugin Flow feature Description

67 7 RangeIat Range of inter-arrival times

68 7 StdIat Standard deviation of inter-arrival

times

69 7 RobStdIat Robust standard deviation of inter-

arrival times

70 7 SkewIat Skewness of inter-arrival times

71 7 ExcIat Excess of inter-arrival times

A.2 List of features used for web request log analysis

From the original web request provided by CSIC, a list of features are exported to

represent each request by a numerical vector, Table A.3. A number of the features

are taken from [39], while the rest are heuristically chosen.

Table A.3: List of features extracted from CSIC HTTP data set

Ind. Type Feature Ind. Type Feature

1 real request length 2 real requested path’s depth

3 real total length of arguments 4 real number of arguments

5 real number of letters in argu-
ments

6 real number of digits in argu-
ments

7 real number of special charac-
ters in arguments

8 real number of other characters
in arguments

9 real number of letters in path 10 real number of digits in path

11 real number of other characters
in path

12 real port number

13 real payload length 14 binary SQL in payload

15 binary “login” fields in payload 16 binary type img requested

17 binary type js requested 19 binary other type requested

19 binary GET request 20 binary POST request

21 binary PUT request
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Chapter 4 Supplementary

B.1 Training and Testing data separation

The training and testing data partition size of the data sets are presented in Table B.1.

Basically the splitting procedure is based on stratified three-fold cross validation.

However, for larger data sets - ISOT, CTU13a, c, h, i, j, m - each trial employs

only the smaller partition of split data for training the SOM. Futhermore, since the

HTTP-CSIC data set is provided with separate training and testing sets for normal

web requests, the training - testing partitioning is only applied to the malicious web

requests. From the full training partitions, which is used for training the SOMs

in scheme (i), the training sets to be used in scheme (ii) and (iii) are obtained by

retaining only Normal or only Malicious data, respectively. It should also be noted

that the training and testing partitions used in Section 4.4.3 is listed as CTU13 in

the table. For this set, only 50% the training data is randomly sampled to train the

algorithms in each run.
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Table B.1: Training and testing partition sizes of the data sets

Data set
Training partition size

Testing partition size

Scheme(i) Scheme(ii) Scheme(iii)

CTU13a 23783 10129 13654 23840

CTU13b 20041 6080 13960 10020

CTU13c 47903 38963 8940 95808

CTU13d 18565 16845 1720 9283

CTU13e 3720 3119 601 1860

CTU13f 8083 4996 3087 4041

CTU13g 1160 1118 42 580

CTU13h 26317 24275 2042 52632

CTU13i 71652 9989 61663 143302

CTU13j 40733 5282 35451 81466

CTU13k 7255 1812 5443 3627

CTU13l 6531 5086 1445 3265

CTU13m 23981 10646 13335 47961

CTU13 203159 393696

ISOT 88294 70734 17560 176288

HTTP-CSIC 38323 28000 10323 33162
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B.2 Hit Maps of Normal and malicious data on SOMs trained using

schemes (ii) and (iii)

(a) SOM trained using Normal requests (b) SOM trained using malicious requests

Figure B.1: Hit maps of HTTP-CSIC Normal and Malicious requests on SOMs
trained using only Normal requests (left) and SOMs trained using only Malicious
requests(right)
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(a) SOM trained using Normal flows, CTU13l (b) SOM trained using CC & Botnet flows,
CTU13l

(c) SOM trained using Normal flows, CTU13m (d) SOM trained using CC & Botnet flows,
CTU13m

Figure B.2: Hit maps of CTU13 Normal, C&C, and Botnet flows on SOMs trained
using only Normal flows (left) and SOMs trained using only CC & Botnet flows(right)
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(a) Normal (training) flows on SOM trained us-
ing Normal flows

(b) Botnet flows on SOM trained using Normal
flows

(c) Botnet (training) flows on SOM trained using
Botnet flows

(d) Normal flows on SOM trained using Botnet
flows

Figure B.3: Hit maps of ISOT Normal and Botnet flows on SOMs trained using only
Normal flows (up) and SOMs trained using only CC & Botnet flows(down)
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B.3 Detailed classification performances of SOM and other algorithms

Table B.2: Classification performance of SOM and other learning algorithms

Data set Alg. Accuracy CDR Detection rate Precision

CTU13 Normal C&C Botnet

CTU13a

SOM 98.13 97.44 99.23 95.77 97.33 99.44

C4.5 99.83 92.97 99.98 79.05 99.88 99.99

Naive Bayes 98.72 68.73 99.19 7.86 99.14 99.40

X-means 98.04 98.73 99.74 99.71 96.75 99.81

EM 77.57 85.87 98.84 97.28 61.49 98.88

CTU13b

SOM 96.61 95.68 99.37 92.17 95.51 99.73

C4.5 99.60 96.29 99.93 89.13 99.79 99.97

Naive Bayes 82.77 89.10 99.18 93.07 75.05 99.64

X-means 80.75 90.21 99.81 99.26 71.55 99.92

EM 81.61 89.62 97.32 97.53 74.01 98.82

CTU13c

SOM 99.67 99.78 99.60 99.95 98.30

C4.5 99.94 99.89 99.97 99.80 99.87

Naive Bayes 99.75 99.76 99.74 99.78 98.90

X-Means 99.86 99.87 99.86 99.87 99.41

EM 98.35 96.53 99.43 93.64 97.39

CTU13d

SOM 99.54 99.66 99.51 99.82 95.38

C4.5 99.89 99.73 99.92 99.54 99.24

Naive Bayes 98.62 97.92 98.78 97.05 89.05

X-Means 99.84 99.91 99.83 99.98 98.35

EM 89.37 92.44 88.67 96.21 46.43

CTU13e

SOM 98.83 99.21 98.64 99.78 93.40

C4.5 99.94 99.90 99.96 99.84 99.79

Naive Bayes 99.51 99.19 99.66 98.72 98.27

X-Means 99.85 99.88 99.85 99.91 99.20

EM 95.29 93.27 96.26 90.28 82.28
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Data set Alg. Accuracy CDR Detection rate Precision

CTU13f

SOM 99.24 99.37 98.82 99.92 98.13

C4.5 99.90 99.90 99.90 99.91 99.83

Naive Bayes 99.55 99.48 99.77 99.18 99.63

X-Means 99.85 99.87 99.77 99.97 99.63

EM 99.30 99.33 99.20 99.46 98.71

CTU13g

SOM 97.31 97.86 97.27 98.45 57.55

C4.5 99.51 98.64 99.58 97.70 89.79

Naive Bayes 99.74 98.22 99.86 96.59 96.28

X-Means 99.74 98.60 99.83 97.38 95.49

EM 88.19 81.58 88.71 74.44 19.85

CTU13h

SOM 99.56 99.48 99.57 99.39 99.47 95.48

C4.5 99.94 99.45 99.98 98.80 99.56 99.78

Naive Bayes 99.47 97.65 99.79 98.04 95.12 97.50

X-means 99.45 99.22 99.53 100.00 98.13 94.69

EM 55.94 82.22 52.61 99.21 94.83 14.84

CTU13i

SOM 96.42 97.34 99.18 96.90 95.95 99.87

C4.5 99.67 95.54 99.71 87.06 99.87 99.95

Naive Bayes 92.66 87.16 99.20 70.34 91.95 99.87

X-means 89.90 95.85 99.75 99.69 88.11 99.96

EM 81.45 87.02 96.03 86.06 78.96 99.28

CTU13j

SOM 99.81 99.45 98.97 99.94 99.85

C4.5 99.96 99.88 99.78 99.98 99.97

Naive Bayes 99.63 99.43 99.15 99.71 99.87

X-Means 99.81 99.62 99.38 99.87 99.91

EM 95.43 94.81 93.99 95.64 99.07

CTU13k

SOM 99.75 99.60 99.30 99.90 99.77

C4.5 99.85 99.85 99.85 99.85 99.95

Naive Bayes 98.84 99.20 99.92 98.48 99.97

X-Means 99.90 99.89 99.87 99.90 99.96

EM 92.49 90.79 87.37 94.20 95.73

CTU13l

SOM 99.14 99.35 98.83 99.87 97.32

C4.5 99.74 99.57 99.87 99.26 99.54

Naive Bayes 98.41 98.00 98.73 97.28 95.60

X-Means 99.45 99.18 99.66 98.71 98.81

EM 93.83 89.16 97.54 80.78 90.33
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Data set Alg. Accuracy CDR Detection rate Precision

CTU13m

SOM 96.59 93.22 99.43 85.74 94.50 99.55

C4.5 99.76 93.77 99.99 81.50 99.81 99.99

Naive Bayes 89.33 68.61 95.51 25.11 85.20 96.51

X-means 70.98 79.36 99.91 90.91 47.26 99.93

EM 65.93 62.38 58.92 56.47 71.75 72.80

ISOT

Normal Storm Waledac

SOM 95.29 93.60 95.91 91.18 93.70 85.70

C4.5 99.25 97.66 99.87 95.87 97.24 99.49

Naive Bayes 82.85 72.17 90.20 97.67 28.65 71.49

X-means 87.23 83.64 88.69 80.27 81.96 67.74

EM 34.40 42.79 30.30 42.42 55.66 23.73

Normal Malicious

SOM 92.82 93.70 92.42 94.97 69.80

HTTP- C4.5 96.50 93.05 99.14 86.97 96.54

CSIC Naive Bayes 84.08 72.61 92.86 52.35 66.96

X-Means 74.93 83.51 68.37 98.65 46.31

EM 74.86 74.97 74.78 75.16 45.18
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B.3.1 Statistical test for analysis of the results

To provide statistical support for the analysis of the results, non-parametric tests

are conducted due to the fact that the assumptions of parametric test can not be

guaranteed. Specifically, Friedman Aligned-Ranks test [25] is employed to detect

statistical significant differences among results of learning algorithms on the data

sets, and the Bonferroni-Dunn post-hoc test [12] is used to identify the algorithms

which actually differ from SOM. The tests are suggested to use in the field of machine

learning when the number of algorithms for comparison is small [14].

Two tests are carried out with the ranking of Accuracy and Class-wise detection

rate of the algorithms on the data sets as the test variables. The test results are

summarized in Table B.3. With five algorithms and fifteen data sets, the aligned

rank of the algorithms is ranging from 8 to 68, where the higher is the better. And,

the statistic T is distributed according to the chi-square distribution with 5− 1 = 4

degrees of freedom. The aligned ranks of SOM (48.73 and 52.77) are better than that

of Naive Bayes, X-means, and EM, and at a competitive level to the aligned ranks of

C4.5 (54.80 and 54.40). After computing the ranks, the Friedman aligned-ranks test

obtained statistic T and p-value of 34.92 and 4.84 · 10−7 for accuracy, and 38.32 and

9.63 · 10−8 for CDR, respectively. Consequently, the null-hypotheses stating that all

algorithms perform equally in mean ranking of Accuracy and CDR are rejected, or

the two tests detected significant differences between the algorithms.

Due to these differences, two post-hoc statistical analyses are required. The main

algorithm of this thesis, SOM, is chosen as the control method to perform the post-hoc

analyses for comparison with the rest of the algorithms. As it is shown in the table,

there were significant differences between SOM and EM for both Accuracy and CDR

(p-values of 5.83 · 10−6 and 9.02 · 10−7), and between SOM and Naive Bayes for CDR

(p-value of 0.003). The post-hoc tests could not detect any significant differences

between SOM, C4.5, and X-means in both Accuracy and CDR. The statistical tests

support that the proposed approach in this thesis outperforms EM and Naive Bayes,

and is very competitive when compared with C4.5 and X-means.
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Table B.3: Statistical test results of performances of the five algorithms on the data
sets. Post-hoc test shows the statistic z and Bonferroni adjusted p-value in parenthe-
ses, with SOM is the control algorithm

Algorithm

Accuracy Class-wise DR

Average Rank Post-hoc test Average Rank Post-hoc test

SOM 97.91 48.73 97.65 52.87

C4.5 99.55 54.80 0.76 (1.00) 97.73 54.40 0.19 (1.00)

Naive Bayes 94.93 39.00 1.22 (0.88) 89.82 26.20 3.35 (0.003)

X-means 93.31 37.07 1.47 (0.57) 95.16 44.87 1.01 (1.00)

EM 81.60 10.40 4.82 (5.83 · 10−6) 84.18 11.67 5.18 (9.02 · 10−7)

Statistic T 34.92 38.32

p-value 4.84 · 10−7 9.63 · 10−8



76

B.4 Details of CTU13 Background data analysis

Table B.4: Distribution of CTU13 Background traffic flows on the trained SOMs

CTU13
Training scheme (i) Training scheme (ii) Training scheme (iii)

Normal Anomaly Botnet Normal Anomaly Not Botnet Botnet

a 53.00 44.67 2.32 51.13 48.87 74.18 25.82

b 58.74 40.33 0.93 60.11 39.89 26.17 73.83

c 57.67 38.19 4.14 54.39 45.61 87.85 12.15

d 67.75 29.64 2.60 69.91 30.09 66.14 33.86

e 65.25 30.14 4.61 74.33 25.67 15.52 84.48

f 65.81 33.91 0.28 67.24 32.76 68.88 31.12

g 63.76 29.80 6.45 55.61 44.39 37.44 62.56

h 65.30 31.59 3.11 62.67 37.33 52.83 47.17

i 65.71 32.70 1.59 56.80 43.20 87.88 12.12

j 60.94 32.90 6.17 61.29 38.71 36.55 63.45

k 52.63 40.94 6.43 33.55 66.45 56.32 43.68

l 56.17 24.86 18.97 56.37 43.63 43.69 56.31

m 54.02 41.39 4.59 49.76 50.24 33.34 66.66

Scheme (i)
Normal

Scheme (ii)
Normal

Scheme (i)
Botnet

Scheme (iii)
Botnet
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Figure B.4: Violin plots showing the percentages of Background traffic in CTU13
data sets labelled as Normal and Botnet by SOMs trained using the three schemes
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