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Abstract

A mathematical description of percussive pressure events is considered. This model

gives a clearer clinical understanding of how these events lead to percussion injury af-

fecting the brain, a mechanism for traumatic brain injury. The linear model presented

here utilizes shell theory in parallel with fluid mechanics to describe a percussive pres-

sure event to the head. An analytic solution is obtained and used to simulate the

interaction between the skull structure and brain tissue during a head impact. Cer-

tain patterns in the results have been observed that are in agreement with current

clinical knowledge, while other new findings have been observed which may lead to a

greater understanding and ability to prevent traumatic brain injuries.
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Chapter 1

Introduction

Over the last decade concussions, or more precisely traumatic brain injuries (TBI),

have entered the spotlight as a frequent and devastating form of brain injury. Trau-

matic brain injury is one of the leading causes of morbidity and mortality at all ages.

Disruption of brain tissues during such a head impact leads to a number of clinical

effects including concussion. These events consist of an external force to the head,

either from a physical blunt force trauma or a blast pressure wave. Depending on

the type of brain injury (blast/blunt), two main mechanisms leading to brain damage

have been proposed. These are inertial, or viscous, events resulting from the rotation

and shearing of the brain, and percussive pressure events resulting in pressure gra-

dients and compression of the brain. Injuries resulting from these events can result

in various clinical effects from the mild inconvenience of a headache lasting several

days to the onset of progressive degenerative disease of the brain, known as chronic

traumatic encephalopathy (CTE) (Gavett et al., 2011; McKee et al., 2016). These ef-

fects are well-known and documented through recent studies (Guskiewicz et al., 2005;

McKee et al., 2009; Omalu et al., 2005). In response to these studies, the severity of

concussions has been acknowledged within areas such as professional sports (Viano

et al., 2005) through the implementation of new rules and regulations regarding con-

cussions (Aubry et al., 2002; Bonds et al., 2014; Cantu, 1992) With this being said,

there remains a distinct lack of understanding on what is occurring within the brain

during an impact (Gupta and Przekwas, 2013).

In order to reliably prevent concussions and brain injuries, it is necessary to not

only study the after-effects of a concussion but also to gain an understanding of what

happens in the brain during an impact. This includes pressure gradients and inertial

effects associated with large stresses and strains within the brain before, during, and

after an impact and the physiological response of the brain to impact. With the recent

rise in focus on concussions, especially in sports and the military, many studies have

1
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tried to ‘solve’ the concussion problem (Bolouri and Zetterberg, 2015; Thompson

et al., 2005; Wei et al., 1981). There are a number of studies using animal models

and theoretical models of various kinds that focus, for example, on a ‘better helmet’

or a consistent way of mimicking features of TBI (Bar-Kochba et al., 2012). These

studies have been very useful to uncover the complexity of the brain’s response to

sudden impacts both large and small. As a result, the definition of concussion has

moved from the standard catastrophic event of being ‘knocked out’ to a spectrum

where long-term exposure of the brain to a low-impact environment, such as repeated

and frequent injury in sports, leads to serious and permanent long-term brain damage

(Ommaya and Gennarelli, 1974).

Studies related to traumatic brain injuries so far have been categorized into two

broad groups: clinical and theoretical. Clinical studies focus on experimental tech-

niques such as an animal models where brain scans are taken before and after an

impact is delivered to an anaesthetized live or dead animal (Flierl et al., 2009; Mar-

marou et al., 1994; Foda and Marmarou, 1994; Kabadi et al., 2010). In others,

accelerometers are mounted on helmets worn by people or test dummies and gross

measurements of accelerations are taken (Guskiewicz and Mihalik, 2011; Duma et al.,

2005). When the helmets are worn by people, the impact effect upon function is also

noted (Council, 2014). As for the theoretical studies, these focus on creating com-

puter models of the brain and subjecting the model to impacts and approximating

the equation solution using numerical methods such as finite element analysis (Cloots

et al., 2010; Takhounts et al., 2003). These models range in complexity and their

main strength is the capacity to include many factors within the brain structure such

as axon orientation and location of blood vessels and test the effects of these features

in ways that cannot be entertained in the clinical setting.

Initial studies of concussion, both theoretical and clinical, have tended to take in

the broader context of the problem (Ommaya and Gennarelli, 1974; Engin, 1969).

These were quickly followed by those with a more targeted focus once the complexity

of concussion injury began to become apparent. For example, there are studies that

have focused only on inertial collisions, or viscous events, associated with the rotation

of the head(Stevenson, 2006). These types of injuries are common during a blunt

impact to the head or resulting from head trauma commonly associated with most
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car accidents. Others have considered purely percussive (non-inertial, non-rotational)

events that are more common in the military such as explosions and blast waves

(Moore et al., 2009; Thibault et al., 1992). While there is plenty of research regarding

these percussive events there is little knowledge of the extent to which percussive

events cause and/or interact with inertial aspects of concussion.

A key finding in the area of concussion has been the relevance of linear accelera-

tion that occurs in rapid pressure events versus rotational acceleration experienced,

for example, in glancing blows. While there is a reasonable understanding of linear

acceleration and its related injury thresholds (Zhang et al., 2004), these do not seem

to produce concussions experimentally and that observation has led to a deeper study

of rotational acceleration (Meaney and Smith, 2011; Zhang et al., 2006). It is often

pointed out that shear deformation caused by rotational acceleration is the predom-

inant mechanism of concussive injuries due to the higher resistance of the brain to

compression (pressure events) than to shear (rotational events) (Bradshaw and Mor-

fey, 2001). However, when linear acceleration is coupled with minor shear effects,

concussion is observed experimentally (Frost, 2011) and this points out that there is

a need for more basic understanding of the underlying physics of concussion than is

already available.

As explained above, it is clear that there are many unknowns in the concussion

problem. A notable, and intensively studied example is diffuse axonal injury (DAI).

DAI is one of the most common and devastating types of TBI leading to unconscious-

ness and coma, yet no theoretical model has been able to reproduce even the basic

features of DAI. Multi-scale finite element models have accounted for immense detail

in the brain structure, such as axon orientation and the wrapping around of blood

vessels in the search to find structures that may exacerbate shear effects, without

success (Cloots et al., 2010; Miller et al., 1998). The only conclusion that can be

garnered from this is that even in acute injury such as DAI there are mechanisms of

interaction between the global and microscopic levels within the brain that are yet to

be discovered (Smith et al., 2003). Unravelling these will require the modelling of the

coupling of physical effects such as pressure and inertial influences with the response

of microscopic structures within the brain.

The aforementioned studies have led to some general conclusions surrounding
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linear and rotational accelerations along with qualitative descriptions of CTE and

DAI. However, their most important discovery has been the level of complexity in

the response of a sophisticated and delicate organ like the brain to impact injuries.

This complexity, while not surprising in hindsight, is an interesting example of the

need to build theories that mix biology and engineering in novel ways (Goldsmith,

2001; Goldsmith and Monson, 2005). A starting point may be to rethink previous

understanding of basic models (Engin, 1969; Chan and Liu, 1974) and repackage the

mathematical description of percussion injury and concussion in a way that is more

clinically and pathologically useful (Choe, 2016). Hence, the goal of this thesis is to

develop a mathematical description of percussive pressure events that gives a clearer

clinical understanding of how percussion injury affects the brain.



Chapter 2

Mathematical Model

2.1 The Potential Formulation

We consider a fluid-filled spherical shell of radius r0 and thickness h. The physical

representation of this model can be seen in Figure 2.1 with the skull and brain being

represented by the shell and fluid respectively. It is known that h/r0 ≫ 1 and

also that the shell deflections are small in comparison to its thickness. It follows

from this knowledge that linear shell theory is applicable. The tangential and radial

displacements of the shell are u and w respectively as seen in Figure 2.2. The shell

material is defined by density ρp, sound speed cp, Poisson’s ratio ν, and modulus of

elasticity E. The fluid is defined by density ρf , and sound speed cf . The shell is

subjected to a direct impact resulting in an incident pressure p˜0.

Figure 2.1: Model Description

2.2 Dimensional Form

The full problem is stated in dimensional form with all boundary and initial condi-

tions.

The potential equation in spherical coordinates is satisfied by the fluid,

φrr +
2

r
φr +

1

r2
φθθ +

cot(θ)

r2
φθ =

1

c2f
φtt , (2.1)

5
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with elevation angle θ and the radius is r. A subscript notation has been used for

greater readability to denote partial derivatives so that
∂2y

∂x2
is written as yxx. The

azimuthal dependence of the potential is neglected since the external forcing to the

shell will be assumed to have azimuthal symmetry.

There are two boundary conditions that relate the fluid to its shell enclosure at

r = r0. The first is that the normal velocity of the shell and fluid in the radial

direction must be equal,

φr = −wt, r = r0 . (2.2)

This condition in (2.2) is consistent with the acceleration of the fluid and shell

being equal because φt(θ, r, t) = p(θ, r, t) and differentiating 2.2 with respect to time

yields the radial acceleration of the shell which is proportional to the pressure gradient

(at the shell this has only a radial component).

The fluid potential satisfies zero initial conditions

φ = 0 φt = 0 at t = 0 .

The second condition relates to conservation of energy and the satisfaction by

the displacements of a minimal energy principle (Junger and Feit, 2003). The shell,

under the assumption of azimuthal symmetry assumed here, is allowed to deform

in the radial direction as w(θ, t) and tangentially oriented with change in elevation

variable θ as u(θ, t). The coordinate system in use can be see in Figure 2.2.

Figure 2.2: Spherical coordinate system



7

The displacements u(θ, t) and w(θ, t) satisfy the coupled system of equations

(Junger and Feit, 2003)

(1 + β2)
[
uθθ + cot(θ)uθ − (ν + cot2(θ))u

]
u+ β2wθθθ + β2 cot(θ)wθθ −[

(1 + ν) + β2(ν + cot2(θ))
]
wθ =

a2

c2p
utt , (2.3)

and

β2uθθθ + 2β2 cot(θ)uθθ −
[
(1 + ν)(1 + β2) + β2 cot2(θ)

]
uθ +

cot(θ)
[
(2− ν + cot2(θ))β2 − (1 + ν)

]
u+ β2wθθθθ + 2β2 cot(θ)wθθθ −

β2(1 + ν + cot2(θ))wθθ + β2 cot(θ)(2− ν + cot2(θ))wθ + 2(1 + ν)w

+
a2

c2p
wtt = −p˜a(t)

(1− ν2)a2

Eh
, (2.4)

and satisfy zero displacement and zero velocity initial conditions

u = 0, t = 0

ut = 0, t = 0

w = 0, t = 0

wt = 0, t = 0 (2.5)

The total pressure can be defined as

p˜a(t) = ρfφt + p˜0(t) , (2.6)

where ρf is the fluid density and ρfφt is the fluid feedback pressure. The second term,

p˜0, is the external pressure

p˜0(t) = f(θ)p˜0e−t/tc , (2.7)

where p˜0 is the pressure scale, tc is the impact contact time, and is dependent on a

function of θ, f(θ).

2.3 Physical Parameters

Many parameters within this model can be defined using physical and known values.

For instance a typical boxing punch has a contact time, tc, of approximately 0.01
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seconds and an incident pressure, p˜0, of between 1 and 2 MPa. Table 2.1 summarizes

this along with other physical parameters used in this model.

Parameter Value

ρbrain = ρf 1050 kg/m3

ρskull = ρp 1750 kg/m3

tc 0.01 s

p˜0 1× 106 kg/m · s

Eskull 1.4× 10(10) kg/m · s2

r0 0.1 m

hskull 0.01 m

νskull 0.5

cp (skull) 4080 m/s

cf (brain) 1500 m/s

Table 2.1: Physical Parameters

2.4 Rescaling

In order to expose the parametric dependence of the model equations and thus gain

an understanding of the physics represented by the model, a rescaling was performed

as indicated in Table 2.2.
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Parameter Definition

τ
cf t

r0

R
r

r0

Φ(R, θ, τ)
φ(r, θ, t)

φ0

U(θ, τ)
u(θ, t)

w0

W (θ, τ)
w(θ, t)

w0

P˜ a(τ)
p˜a(t)
p̄˜0

P˜ 0(τ)
p˜0(t)
p˜0

ω
cp
cf

Table 2.2: Rescaled dependent and independent variables.

These rescaled variables in Table 2.2 resulted in a set of dimensionless parameter

groupings that define the parametric dependence of the solution. The three groupings

that appear within this dimensionless form are carried throughout the problem and

are of particular physical interest

1. The shell velocity ‘feed forward’ parameter, b, relates to the continuity of ac-

celeration at the shell-fluid interface in equation (2.2). The term ‘feed forward’

means here that the external pressure ‘causes’ the shell movement and this

movement results in an ‘effect’ on the fluid at interface between the two. This

dimensionless parameter is
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b =

(
w0

φ0

)
cf . (2.8)

2. The ‘feed back’ of fluid pressure a is in response to the external pressure that

initiated a movement of the shell and led to a reaction of the fluid. This term

is represented in the model on the right-hand-side of the radial displacement

shell equation in equation (A.2). In equation (2.6) ρfφt appears and rescaling

of equation (2.6) leads to

a =

⎛⎝φ0

p̄˜0
⎞⎠(ρfcf

r0

)
. (2.9)

3. Finally, defining the dimensionless group

c =

⎛⎝(1− ν2)p˜0
E

⎞⎠( r0
w0

)(
r0
h

)
(2.10)

and scaling it by ω2 = (cp/cf )
2 arising from the right-hand-side of the radial

displacement shell equation in (A.2) leads to the definition

c̃ = cω2 . (2.11)

The parameter c̃ represents the product of four things: (i) the relative size of

the impact pressure p˜0 relative to a ‘shell’ pressure involving E and ν, (ii) the

radius r0 to shell thickness h, (iii) the radius r0 to the displacement scale w0

and (iv) the relative size of the wave speed in the fluid to the wave speed in the

shell.

Even without access to the final solution, it can be seen here that the solution

dynamics are independent of the scales φ0, w0 and p˜0. In fact, the solution and

its dynamics depend upon one parameter: the product a · b · c̃. This is due to the

neglecting of viscosity in the mathematical model. Stated another way, in the absence

of viscosity, this mathematical model represents an approximation where the size of

the pressure, the displacement, and the impact pressure are neglected in determining
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the shell-fluid dynamics. This can again be seen later on when the model solution is

discussed.

To connect the model to the concussion application, it is useful to explicitly state

those parts of the dimensionless parameters that are known and they are

Parameter Subparameter Subparameter

Definition Value

a

(
φ0

p˜0
)
am am =

ρfcf
r0

= 1.58× 107

b

(
w0

φ0

)
bm bm = cf = 1500

c
( p˜0
w0

)
cm cm =

(1− ν2)r20
Eh

= 5.4× 10−11

c̃
( p˜0
w0

)
c̃m c̃m =

[
(1− ν2)r20

Eh

]
ω2 = 4× 10−10

Table 2.3: Dimensionless Groupings and Parameters

where ω = cp/cf = 2.72 from Table 2.2.

The product a · b · c̃ = (ρfc
2
f (1− ν2)r0)/(Eh)ω2 = O(10) is the central parameter

that determines the shell-fluid dynamical interaction as approximated by the math-

ematical model considered here. The fact this parameter is large compared to unity

comes from the head injury model where the skull is considerably more rigid than the

brain tissue.

2.5 Dimensionless Problem

Nondimensionalizing equation (2.1) using Table 2.2 gives

ΦRR +
2

R
ΦR +

1

R2
Φθθ +

cot(θ)

R2
Φθ = Φττ . (2.12)

The initial conditions are all zero for the potential Φ and shell displacements U
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and W along with the derivatives with respect to time so that

Φ = 0, Φτ = 0, τ = 0

U = 0, Uτ = 0, τ = 0

W = 0, Wτ = 0, τ = 0 (2.13)

At the shell-fluid interface the velocity is continuous so that

ΦR = −bWτ at R = 1 . (2.14)

The dimensionless shell equations are

(1 + β2)ω2Uθθ + (1 + β2)ω2 cot(θ)Uθ − (1 + β2)ω2(ν + cot2(θ))U − β2ω2Wθθθ

−β2ω2 cot(θ)Wθθ +
[
1 + ν + β2

(
ν + cot2(θ)

)]
ω2Wθ

−Utt = 0 ,(2.15)

and

β2ω2Uθθθ + 2β2ω2 cot(θ)Uθθ −
[
(1 + ν)(1 + β2) + β2 cot2(θ)

]
ω2Uθ

+cot(θ)
[
(2− ν + cot2(θ))β2 − (1 + ν)

]
ω2U

−β2ω2Wθθθθ − 2β2 cot(θ)ω2Wθθθ + β2(1 + ν + cot(θ)2)ω2Wθθ

−β2 cot(θ)(2− ν + cot(θ)2)ω2Wθ − 2(1 + ν)ω2W

−Wττ = −c̃P˜ a(τ) . (2.16)

The total pressure is now

P˜ a(τ) = aΦτ + P˜ 0(τ) , (2.17)

where a is defined by equation (2.9). The external pressure, P˜ 0, is the dimensionless

form

P˜ 0(τ) = f(θ)e−τ/β̃ , (2.18)

where β̃ is the relative size of the impact time scale relative to the fluid potential time

scale r0/(cf tc). Referring to Table 2.2

β̃ =
tccf
r0

= 150 ≫ 1 . (2.19)
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The size of this parameter illustrates the wide gap between the time scale over which

the impact occurs compared with the rate that its initial effect passes through the

shell and fluid. In other words, the initial effect can be seen passing through the fluid

numerous times before the entire impact is complete. A first approximation will be

to consider the impact as constant given τ ≪ β̃.

2.6 Laplace Transform Solution of Dimensionless Problem

2.6.1 Laplace Transform of Wave Equation

The dimensionless form of the wave equation (2.12) is

ΦRR +
2

R
ΦR +

1

R2
Φθθ +

cot θ

R2
Φθ = Φττ . (2.20)

We apply Laplace transform with respect to τ to (2.20) to arrive at

ΦRR +
2

R
ΦR +

1

R2
Φθθ +

cot θ

R2
Φθ = s2Φ , (2.21)

where Φ(R, s, θ) denotes the Laplace transform of Φ(R, τ, θ) (From here on, an overbar

denotes the Laplace transform of the variable in question).

Representing Φ(R, s, θ) as a generic separated product of Q(R, s) and P (θ) yields

Φ(R, θ, s) ∝ Q(R, s)P (θ) , (2.22)

where the ∝ refers to fact that any function of the Laplace transform variable s

that represents a constant multiple in equation (2.22) is also a solution. With this

definition, equation (2.20) becomes

R2QRR + 2RQR −R2s2Q

Q
+

Pθθ + cot θPθ

P
= 0 . (2.23)

P (θ) satisfies the Legendre equation

Pθθ + cot θPθ − n(n+ 1)P = 0 , (2.24)

where n(n + 1) is an integer to ensure that the series solution truncates and is con-

vergent for 0 ≤ θ ≤ π. Given the presence of the integer n, Q(R, s) is renamed to
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Qn(R, s) to reflect the solution modal nature (from here on, a subscript n denotes a

modal form of the variable in question). Equation (2.23) then leads to

R2QnRR + 2RQnR − (R2s2 + n(n+ 1))Qn = 0 . (2.25)

Equation (2.24) is the modified spherical Bessel differential equation. For the solution

to be bounded at R = 0,

Qn(R, s) =

√
π

2Rs
In+1/2(Rs) . (2.26)

Equation (2.24) is a Legendre differential equation and its solution is an nth order

polynomial that may be assumed to conveniently depend upon cos θ such that

P (θ) = Pn(cos θ) . (2.27)

Given Qn(r, s) from the above

Φn(R, s) = Fn(s)

√
π

2Rs
In+1/2(Rs) , (2.28)

and the general solution to the field equation that satisfies zero initial conditions and

is bounded at r = 0 is

Φ(R, θ, s) =
∞∑
n=0

Φn(R, s)Pn(θ) , (2.29)

where Fn(s) is absorbed into the definition of Φn(R, s) for notational convenience.

Note that equation (2.29) implies that a formal inversion gives the field variable as

Φ(R, θ, τ) =
∞∑
n=0

Φn(R, τ)Pn(θ) . (2.30)

2.6.2 Laplace Transform of Dimensionless Separated Shell Equations

The dimensionless shell displacements may be written in the separated form

W (θ, t) =
∞∑
n=0

Pn(θ)Wn(t)

U(θ, t) = −
∞∑
n=0

P 1
n(θ)Un(t)

(2.31)
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This yields (see Appendix A for details)

(1 + β2)ω2 [1− ν − n(n+ 1)]Un(τ) +
[
(n(n+ 1)− 1 + ν)β2 + 1 + ν

]
ω2Wn(τ)

−Unττ = 0 ,

(2.32)

and

ω2
[
−(1 + ν)n(n+ 1) + β2(1− n(n+ 1)− ν)n(n+ 1)

]
Un(τ)

−ω2β2n(n+ 1) [1− n(n+ 1)− ν]Wn(τ)

+2(1 + ν)ω2Wn(τ) +Wnττ = −c̃ (aΦnτ (R = 1, τ) + An) . (2.33)

The inhomogeneous terms on the right-hand-side of equation (2.33) follow from equa-

tion (2.30) and the total pressure in equation (2.18) written as

P˜ 0(τ) =
∞∑
n=0

AnPn(θ)e
−τ/β̃ , (2.34)

and further approximated as

P˜ 0(τ) =
∞∑
n=0

AnPn(θ) (2.35)

under the assumption that τ ≪ β̃ = 150.

Taking Laplace transforms and applying the zero initial conditions in equation

(2.13)

(1 + β2)ω2 [1− ν − n(n+ 1)]Un(s) +
[
(n(n+ 1)− 1 + ν)β2 + 1 + ν

]
ω2W n(s)

−s2Un(s) = 0 ,

(2.36)

and

ω2
[
−(1 + ν)n(n+ 1) + β2(1− n(n+ 1)− ν)n(n+ 1)

]
Un(s)

−ω2β2n(n+ 1) [1− n(n+ 1)− ν]W n(s)

+2(1 + ν)ω2W n(s) + s2W n = −c̃
(
asΦn(R = 1, s) +

An

s

)
. (2.37)
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2.7 Solution of Dimensionless Modal Problem and Finding Fn(s)

The Laplace-transformed problem for the nth mode has three unknowns: Un(s), Wn(s)

and Fn(s) (which is bundled into Φn(R, s) for convenience). These three quantities are

determined via the remaining three equations: the two shell equations in (2.36) and

(2.37) and the acceleration boundary condition in equation (2.14). The key quantity

of interest here is Fn(s) which is the Laplace transform of the time-dependent modal

amplitude that determines the entire dynamics of the fluid. The solution presented

for this model along with the shell equations differ from all current spherical models

(Hasheminejad et al., 2011).

2.7.1 Determining Fn(s)

Beginning with the acceleration boundary condition atR = 1, the Laplace-transformed

solution must satisfy

ΦR(θ, R = 1, s) = −bsW (θ, s) , (2.38)

and the modal form of this condition from equations (2.30) and (2.31) is

ΦnR(R = 1, s) = −bsW n(s) . (2.39)

Substituting ΦnR(R = 1, s) from equation (2.28) yields

Fn(s)
∂

∂R

(√
π

2Rs
In+1/2(Rs)

)⏐⏐⏐⏐
R=1

= −bsW n(s) . (2.40)

It remains to determine W n(s) from the shell equations (2.36) and (2.37). These

are a system of two linear equations for Un(s) and W n(s) and it is convenient, before

determining W n(s), to make the definitions

γ1 = (1 + β2)ω2[1− ν − n(n+ 1)]

γ2 = ω2[(n(n+ 1)− 1 + ν)β2 + 1 + ν]

γ3 = ω2[−(1 + ν)n(n+ 1) + β2(1− n(n+ 1)− ν)n(n+ 1)]

γ4 = −ω2[−(1 + ν)n(n+ 1) + β2(1− n(n+ 1)− ν)n(n+ 1)] + 2(1 + ν)ω2 .

(2.41)
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With these definitions the shell equations (2.36) and (2.37) simplify to the form

(γ1 − s2)Un + γ2W n = 0

γ3Un + (γ4 + s2)W n = −
[
ac̃sΦn + c̃An/s

]
, (2.42)

and immediately

W n(s) =
−(γ1 − s2)

(
ac̃sΦn(R = 1, s) + c̃An/s

)
(γ1 − s2)(γ4 + s2)− γ2γ3

. (2.43)

Then, from (2.40), Fn(s) is obtained as

Fn(s) =
bs(γ1 − s2)(ac̃sΦn(R = 1, s) + c̃An/s)

D
, (2.44)

where the denominator term is

D =
∂

∂R

(√
π

2Rs
In+1/2(Rs)

)⏐⏐⏐⏐
R=1

(
(γ1 − s2)(γ4 + s2)− γ2γ3

)
. (2.45)

A standard definition for the modified spherical Bessel function of the first kind is

in(z) =

√
π

2z
In+1/2(z) . (2.46)

Applying the chain rule in (2.45) and denoting din/dz
⏐⏐⏐⏐
z=s

= i′n(s),

D = si′n(s)
(
(γ1 − s2)(γ4 + s2)− γ2γ3

)
. (2.47)

Rewriting the numerator in equation (2.44) slightly

Fn(s) =
abc̃s2(γ1 − s2)Φn(R = 1, s) + bc̃An(γ1 − s2)

D
. (2.48)

Cross-multiplying in equation (2.48) and combining Φ(1, s)n from equation (2.28)

with the definition from equation (2.46) yields

Fn(s)D = abc̃s2(γ1 − s2)Fn(s)in(s) + bc̃An(γ1 − s2) . (2.49)

Collecting terms in Fn(s) and solving for Fn(s) yields

Fn(s) =
bc̃An(γ1 − s2)

D − abc̃s2(γ1 − s2)in(s)
, (2.50)

and substituting for D from equation (2.47), we arrive at

Fn(s) =
bc̃An(γ1 − s2)

si′n(s)− abc̃s2(γ1 − s2)in(s)
. (2.51)
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The parameter, abc̃, that controls the dynamics has emerged in the solution and this

parameter is renamed

α = abc̃ , (2.52)

and then

Fn(s) =
bc̃An(γ1 − s2)

si′n(s)− αs2(γ1 − s2)in(s)
. (2.53)

To clarify notations for the remainder of the discussion, it is useful to write equa-

tions (2.28) and (2.29) using the compact form in equation (2.46) and then

Φn(R, s) = Fn(s)in(Rs) , (2.54)

giving

Φ(R, θ, s) =
∞∑
n=0

Fn(s)in(Rs)Pn(θ) . (2.55)

The next step is to invert the nth modal term Fn(s)in(Rs).

2.7.2 Finding Modal Inverse by Inverting Fn(s)in(Rs)

The inverse is evaluated using the residue theorem in two steps: (i) the roots of the

denominator of Fn(s) are found and (ii) the ratio of the numerator of Fn(s) multiplied

by in(Rs) and the derivative of the denominator is evaluated at these roots.

2.7.3 Roots

The roots of the denominator satisfy

i′n(s)[(γ1 − s2)(γ4 + s2)− γ2γ3]− αs(γ1 − s2)in(s) = 0 , (2.56)

where a factor of s has been removed and the root at s = 0 yields a shift that is sub-

tracted from the solution and does affect the dynamics. Substituting the recurrence

formula

i′n(s) =
nin−1 + (n+ 1)in+1

2n+ 1
(2.57)
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into equation (2.56) and simplifying, we obtain

[nin−1 + (n+ 1)in+1]
[
(γ1 − s2)(γ4 + s2)− γ2γ3

]
− αs(2n+ 1)(γ1 − s2)in(s) = 0 .

(2.58)

The zeroes are confined to the imaginary axis since there is no exponential decay and

in(s) grows exponentially with real component and is oscillatory on the imaginary

axis. In what follows, we use the fact that

in(iP) = injn(P) , (2.59)

where P is real, jn(P) is related to the ordinary Bessel function of the first kind as

jn(P) =

√
π

2P
Jn+1/2(P) (2.60)

that oscillates with dying amplitude for P real.

If s = iP are the roots of equation (2.58) then

[njn−1(P)− (n+ 1)jn+1(P)]
[
(γ1 + P2)(γ4 − P2)− γ2γ3

]
+

αP(2n+ 1)(γ1 + P2)jn(P) = 0 . (2.61)

2.7.4 Residues

The residue requires finding the derivative of the denominator of (2.53) and evaluating

it at the roots of (2.56). It is shown in Appendix B that

(si′n(s))
′ =

1

s

(
(s2 + n2)in − sin+1

)
. (2.62)

Differentiating the denominator of (2.53) with respect to s yields

(si′n(s))
′[(γ1 − s2)(γ4 + s2)− γ2γ3]

+si′n(s)[−2s(γ1 − γ4)− 4s3]− α(2sγ1 − 4s3)in(s)

−αs2(γ1 − s2)i′n(s) . (2.63)

Substituting for (si′n(s))
′ from equation (2.62) and applying the recurrence relation

in equation (2.57), we arrive at

1

s
[(s2 + n2)in − sin+1][(γ1 − s2)(γ4 + s2)− γ2γ3]− 2αs[γ1 − 2s2]in

s2
[
nin−1 + (n+ 1)in+1

2n+ 1

] [
2(γ1 − γ4)− 4s2 − α(γ1 − s2)

]
. (2.64)
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To simplify the presentation, the numerator and denominator of Fn(s)in(Rs) will be

treated separately. The factor of 1/s in equation (2.63) is removed by multiplying

top and bottom by s so that the numerator of Fn(s)in(Rs) from equation (2.53) is

bc̃Ans(γ1 − s2)in(Rs) , (2.65)

and its denominator is

[(s2 + n2)in − sin+1][(γ1 − s2)(γ4 + s2)− γ2γ3]− 2αs2[γ1 − 2αs2]in

+s3
nin−1 + (n+ 1)in+1

2n+ 1
[2(γ1 − γ4)− 4s2 − α(γ1 − s2)] . (2.66)

Recalling that s = iP and substituting from equation (2.59) the numerator may

be rewritten as

bc̃AnP(γ1 + P2)jn(RP)ineiPt , (2.67)

while the denominator is

[(n2 − P2)injn − iPin+1jn+1] [ (γ1 + P2)(γ4 − P2)− γ2γ3] + 2αP2[γ1 + 2αP2]injn

+ i3P3ni
n−1jn−1 + (n+ 1)in+1jn+1

2n+ 1
( 2(γ1 − γ4) + 4P2 − α(γ1 + P2)) . (2.68)

Dividing by in in the numerator and denominator in equations (2.67) and (2.68)

respectively gives the numerator as

bc̃An (iP) (γ1 + P2)jn(RP)eiPt , (2.69)

while the denominator is

[(n2 − P2)jn + Pjn+1][(γ1 + P2)(γ4 − P2)− γ2γ3] + 2αP2[γ1 + 2αP2]jn

−P3njn−1 − (n+ 1)jn+1

2n+ 1
[2(γ1 − γ4) + 4P2 − α(γ1 + P2)] . (2.70)

At the complex conjugate root, s = −iP , equation (2.69) becomes equal to its

complex conjugate due to the −iPe−iPτ , while equation (2.70) is unchanged. Before

summing the results for s = ±iP it is convenient to note that there are a set of roots

m = 1, 2, 3, · · · in equation (2.61) for each choice of n = 0, 2, 3, · · ·. Therefore the

roots at s = ±iP are relabelled as snm = ±iPnm.
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Adding both results for snm = ±iPnm in equations (2.69) and (2.70) leads to the

numerator as

Nnm(R) [−2 sin(Pnmτ)] = bc̃AnPnm(γ1 + P2
nm)jn(RPnm) [−2 sin(Pnmτ)] , (2.71)

and this form is also intended to define Nnm(R). The denominator remains the same

for snm = ±iPnm and

Dnm = [(n2 − P2
nm)jn + Pnmjn+1][(γ1 + P2

nm)(γ4 − P2
nm)− γ2γ3]

+ 2αP2
nm[γ1 + 2αP2

nm]jn

− P3
nm

njn−1 − (n+ 1)jn+1

2n+ 1
[2(γ1 − γ4) + 4P2

nm − α(γ1 + P2
nm)] . (2.72)

Referring to equation (2.55) the inverse of Φ(R, θ, s) follows from equations (2.71)

and (2.72) as

Φ(R, θ, τ) =
∞∑
n=0

m=∞∑
m=1

Nnm(R)

Dnm

Pn(θ) [−2 sin(Pnmτ)] . (2.73)

2.8 Results

The total pressure or impact P˜ 0(τ) from equation (2.18) is

P˜ 0(τ) = f(θ)e−τ/β̃ , (2.74)

where exp(−τ/β̃) in equation (2.74) is assumed to be unity given that τ ≪ β̃ = 150.

The θ dependence

f(θ) =
∞∑
n=0

AnPn(cos(θ)) (2.75)

is represented as a series of An terms. If a step input is applied over 0 ≤ θ ≤ θ∗ then

A0 =
1− cos(θ∗)

2

An =
Pn−1(cos(θ

∗))− Pn+1(cos(θ
∗))

2
(2.76)

The Legendre-Fourier series coefficients Nnm(R)/Dnm are found subject to the

constraint to minimize the squared error between the exact solution and its Legendre-

Fourier representation. Thus, the least-squares pathway that optimally approximates
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the solution in a least-squares sense simply follows the decreasing magnitude of the

coefficients Nnm(R)/Dnm in equation (2.73).

In this way, the double summation in (2.73) is reduced to a single sum that depends

upon the radius R. The least-squares pathway through the pair of indices n and m

is followed down to a minimum magnitude and a formal summation index used here

is L(R) = 1, 2, 3, · · · , N(R) where the maximum numbered coefficient is N(R), and

then

Φ(R, θ, τ) =
L=N(R)∑

L=1

Nn(L)m(L)(R)

Dn(L)m(L)
Pn(L)(θ)

[
−2 sin(Pn(L)m(L)τ)

]
. (2.77)

2.8.1 Space-Time Evolution

The solution Φ(R, θ, τ) in equation (2.77) is evaluated using MATLAB. The results

presented in Figures 2.3-2.6 are computed after organizing the magnitudes into de-

scending order and retaining sufficient terms to obtain a desired level of accuracy.

Early times show the development of a leading pressure wave, and by t = 0.8 a dis-

tinct wave can be seen. This ‘wave’ can be tracked and observed travelling through

the sphere through all times, in particular near the outer radii of the sphere. Near the

center of the sphere, this ‘wave’ starts to breaks down as it meets other rebounding

waves as can be seen at t = 1.6. This can also be explained by the lack of organized

coherence of the energies near the center of the sphere seen later on in Figure 2.17.

Continuing to proceed through time, the wave can be seen to reach the back surface of

the sphere at t = 2.0. This feature represents the contrecoup feature of head impacts.

Onwards from t = 2.2 to t = 4.8 the first internal pressure wave continues travelling

through the sphere and encounters other waves rebounding from the surface of the

sphere causing local minimums and maximums which can be seen for instance at

t = 3.8.



23

Figure 2.3: Solution from t = 0.2 to t = 1.2.
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Figure 2.4: Solution from t = 1.4 to t = 2.4.
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Figure 2.5: Solution from t = 2.6 to t = 3.6.
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Figure 2.6: Solution from t = 3.8 to t = 4.8.

An approximation for the results was also computed and can be seen in Figures 2.7-

2.10. This was accomplished by keeping only residues and amplitudes that represented

80% of the total energy used in the previous figures. By observation, the same features

described in the previous solution can also be seen in the approximate solution. This
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means that the key features of the dynamics are bound upon and rely heavily on only

a few amplitudes and frequencies as discussed in a later section. It can therefore be

concluded that 80% of the overall energy was sufficient in describing the dynamics of

the solution.

Figure 2.7: Approximate solution from t = 0.2 to t = 1.2.
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Figure 2.8: Approximate solution from t = 1.4 to t = 2.4.
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Figure 2.9: Approximate solution from t = 2.6 to t = 3.6.
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Figure 2.10: Approximate solution from t = 3.8 to t = 4.8.
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To better understand the clinical implications of the solutions, we can compare

the solution to the brain scan seen in Figure 2.11.

Figure 2.11: MRI scan of a brain (Courtesy of Darvesh, S., Maritime Brain Tissue
Bank, 2016)

This image is used as an overlay for the obtained solutions to determine visually

the anatomical structures of the brain that are affected by the pressure waves in the

solution, in Figures 2.12-2.15.
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Figure 2.12: Solution with brain overlay from t = 0.2 to t = 1.2.
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Figure 2.13: Solution with brain overlay from t = 1.4 to t = 2.4.
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Figure 2.14: Solution with brain overlay from t = 2.6 to t = 3.6.
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Figure 2.15: Solution with brain overlay t = 3.8 to t = 4.8.
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By combining the brain image and the series solution, a clear pattern emerges of

what structures within the brain are affected. The coup feature of the impact which

can be seen at t = 0.2 and again at t = 4.8 is predominantly confined to within

the frontal lobe of the brain. Similarly, the contrecoup feature, seen at t = 2.0,

can be seen primarily affecting the occipital lobe and the cerebellum. Throughout all

times, the pressure waves can be seen travelling around the outer regions of the brain,

involving all the brain regions from the frontal to temporal lobes and the parietal to

occipital lobes. Near the center of the brain coherence is lost and many pressure waves

exist simultaneously. Here in the center, these waves focus on the limbic system of

the brain, including the hippocampus, among other structures part of the temporal

lobe. These affected structures can also be seen to reflect the symptoms and effects

seen during traumatic brain injuries and concussions. For example, memory loss is

commonly seen with these types of injuries which can be linked to the temporal lobe

and specifically the hippocampus. As well, problems with attention and concentration

are other common symptoms of traumatic brain injuries which can be linked to the

frontal lobe. The structures that can be seen affected in the above figures are in

agreement with clinical understanding and the symptoms and effects of traumatic

brain injuries can be linked back to these affected structures (Barkhoudarian et al.,

2011; Blennow et al., 2012; Signoretty et al., 2011)

2.8.2 Energy Transfer – Numerical vs Analytical

The work presented so far is a standard approach to solving a straightforward linear

equation. A significant effort was required to construct the analytical solution and

using this form to construct the figures presented in the previous section could have

been done also via a numerical solution. Note also that the rescaling analysis and

discovery of a single dimensionless group governing the dynamics was done without

recourse to the analytical solution. While there may be issues surrounding analytical

versus numerical solution accuracy, it is a reasonable assertion that the analytical

solution has not provided any additional insight into the problem that could not have

been found via a numerical solution. So it follows that one would ask, ‘Why bother

obtaining the analytical solution at all?’ To answer this question, it is useful to focus

on the coup-contrecoup feature which is generally of greatest practical interest. This
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feature is striking in the application considered here mainly because of the level of

simplicity of its evolution. This simplicity stands in direct contrast to the degree

of complexity of the analytical solution. The key qualitative feature of the coup-

contrecoup feature is its high degree of coherence which implies that there must be

an underlying simplicity in the way energy is transferred within the sphere. Previous

studies have presented analyses of the free vibrations of a fluid-filled shell, as sum-

marized by Engin and Liu (1970) and Huang (1969), and formed the basis for the

model considered here. Those results of free vibration are essentially extended here

into the fluid and it is found that the fluid-filled shell may be viewed as a collection

of shells that transfer energy in a very simple way that retains wave coherence until

the center of the shell is reached. Therefore, in this section the solution Φ(R, θ, τ)

in equation (2.77) is re-examined and a qualitative energy transfer function is found.

This function shows how energy is transferred as the pressure-wave makes its way

around the sphere in space-time. As a result, the precise way that the linear model

represents energy transfer between various radii as a function of spatial and tempo-

ral frequencies is made clear. Stated another way, the energy description reduces

the sphere to a set of concentric shells where the movement of energy through these

shells follows some very simple rules and this provides insight into the high degree

of coherence seen in the coup-contrecoup evolution. In other words, such an energy

transfer function remains outside of the scope of any numerical solution and this fact

alone provides a justification for constructing the analytical solution.

2.8.3 Qualitative Energy Transfer Function

In this section the relationship between frequency in time via sin(Pn(L)m(L)τ) and fre-

quency in space through Pn(L)(θ) and the dependence of these two quantities upon R

is considered. It is found that the least-squares approach presents a simple relation-

ship between frequency in space and time that varies continuously with the radius R

and essentially determines the movement of energy through frequency in space-time.

The energy in a wave is proportional to its squared amplitude which in this problem

is (Nnm(R)/Dnm)
2. Therefore, the amplitudes, for each value of the dimensionless

radius R, are respectively re-arranged into descending order to run between a max-

imum of unity and a minimum of zero. The energy contributed by each amplitude,



38

used to construct the ‘exact’ solution presented in the previous section, is depicted

in Figure 2.16 where the scaled energy is shown as a function of the radius, spatial

frequency, and temporal frequency.

Figure 2.16: Energy as a function of the radius, spatial frequency, and temporal
frequency.

In this plot, the radius is shown as the color of the dots as well as on the vertical

axis, where dark blue represents R = 0, the center of the sphere, and red represents

R = 1, the outer radius of the sphere. As well, a fourth dimension is added into the

plot; the diameter of the dots represents the amplitudes. Larger dots are associated

with larger amplitudes and therefore larger energies. The spatial frequency associated

with the mode n is qualitatively approximated as n/4 where n is the order of the

Legendre polynomial. The sense of spatial periodicity used here is a convenient

variable and is defined such that, for example, P4(x) is symmetric on −1 ≤ x ≤ 1

and qualitatively has period 1 over 0 ≤ x ≤ 1. It will become apparent below that

choosing n/4 also leads to an approximately unit dimensionless wave speed for the

outer and moderate radii of the sphere. The temporal frequency is related to the root

in the complex root associated with the Legendre order and is Pn(L)m(L)/(2π).

To get a better understanding of the key features of this plot, a 2D projection has

been provided in Figure 2.17.
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Figure 2.17: 2D projection of energy levels.

It is clear from Figure 2.17, that energy near the outer portions of the sphere

(coloured red) is spread over a range of spatial-temporal frequencies that are approx-

imately linearly related. This linear relationship observed for radii near the shell

strongly resembles the same relationship seen in free vibrations of the shell and im-

plies that the shell dynamics are transferred into the interior region to some extent.

It can also be seen that for moderate values (green) of the dimensionless radius, the

spatial-temporal relationship occupies primarily two lines and the relationship be-

tween spatial and temporal frequencies is slightly more complex. Continuing into

the center of the sphere (blue), all of the energy is now heavily concentrated into a

range of space-temporal frequencies that occupy many lines and thus any relationship

between spatial and temporal frequencies is lost. Finally, the slope of the lines seen

above approximate unity and thus the wavespeed in the outer (red) and moderate

radii (green) approximates unity (via n/4 definition of the spatial frequency above)

and this leads to coherence of the coup-contrecoup feature. The same is not true

however nearer the center (blue) where a single relation between the spatial-temporal

frequencies cannot be found and many wavespeeds exist.

Referring to the amplitudes (diameter of the dots) in Figures 2.16 and 2.17, the

main feature of interest is that the maximum amplitudes appear at moderate radii
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(green) at lower spatial-temporal frequencies. This concentration of energy represents

the coherence of the coup-contrecoup feature that is itself primarily located at moder-

ate radii which can be seen for example at t = 2.0 in Figure 2.4. Continuing into the

center of the sphere (blue) the amplitudes are maximal near the origin of the spatial-

temporal frequencies and show no clear relationship as the amplitudes decrease in

size. This latter observation is consistent with what is seen in the previous section

where the wave ‘breaks up’ when it nears the center of the sphere and becomes less

coherent as compared with what is seen at outer and moderate radii.

The comparison of the ‘exact’ and approximate series earlier showed that 80% of

the energy was sufficient to describe much of the qualitative dynamics. Therefore,

Figures 2.16 and 2.17 are reconsidered in Figure 2.18 and its projection in Figure 2.19

for only amplitudes representing 80% of the total energy.

Figure 2.18: Extracted energy levels representing 80% of the total energy

When considering 80% of the overall energy it is apparent that near the outer

region of the sphere (red) the energy is captured by roughly a dozen amplitudes

confined to a single spatial-temporal frequency line. Moving further inward (green)

the same energy is confined to two lines, as in the ’exact’ results, and again there

is no relation nearer the center of the sphere (blue). The most important overall

observation is that most (80%) of the total energy is bound up in few (approximately
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Figure 2.19: Projection of extracted energy levels representing 80% of the total energy

a dozen) amplitudes where these show a nearly linear relationship between space and

temporal frequencies for moderate radii. This slope of the linear relation between the

spatial and temporal frequencies approximates unity in the outer 60% of the sphere

and this leads to the coherence observed for moderate radii in the space-time series

given above. Nearer the center of the shell the energy coherence is lost and energy

is spread in a complex fashion through space-time frequencies. These observations

provide a basis for understanding how energy is moved through different radii within

the fluid and the shell may be viewed as a set of concentric shells that simply transfer

energy along lines in the spatial-temporal frequency plane. This description closely

mirrors that seen for free vibrations of the shell (Engin and Liu, 1970) and implies

that the shell dynamics are preserved to some extent and penetrate the fluid. It is

interesting that the coup-contrecoup seen for t = 2.0 is organized from waves that

proceed into the center and re-emerge in a coherent fashion with the implication being

that the simplicity of the dynamics continues even after the waves enter and exit the

center of the sphere where there is relatively little coherence.



Chapter 3

Conclusion

We have considered a mathematical model of percussive pressure events impacting a

spherical, fluid-filled shell with circular symmetry. The fluid is assumed to be irrota-

tional and its velocity is described by a linear potential that is coupled to the shell.

An analytic solution to this model was obtained and used to simulate interactions

between the skull structure (shell) and brain tissue (fluid) during a percussive impact.

It was found that the response of the linear model is dependent upon a sin-

gle dimensionless group that represents the relationship between the shell and fluid

properties, a · b · c̃. For the application of the model to head injury this parameter is

large compared with unity (O 10) since the skull is considerably more rigid than the

brain tissue. The main objective of the thesis was to find a simplified description of

the coup-contrecoup feature of the response to a percussive step-impact. This clear

occurrence of the coup-contrecoup feature implies a coherence in space-time that may

be extracted from the solution of the coupled potential and shell response equations.

In particular, the Legendre-Fourier series is a least squares approach to the solution

and thus the solution amplitudes are directly related to the energy content of each

contributing wave in the separated series solution. It was found to be useful to con-

sider the energy as a function of the radius for a qualitative spatial frequency of the

Legendre polynomials and the temporal frequencies of sinusoidal component. In par-

ticular, the primary contributors in space-time to the pressure wave have a nearly

linear relationship in space-time frequency and this linearity is a direct measure of

wave coherence. It was found that for radii exceeding approximately one-half of the

sphere the linear relationship and coherence persist, while there is a sharp drop in

coherence within the one-tenth of the sphere center. Thus, the energy perspective

shows how the response of the fluid-filled sphere moves energy in a coherent fashion

in the outer portion and less so in central regions. Given most waves are damped, it

is likely that the coherence of the waves is the most important clinical aspect.

42



43

In practice, it is the accumulated effect of sub-concussive glancing blows that is

difficult to diagnose and treat due to the nature of its progression. This problem

was not considered here, but what is of greater interest is that the work presented

here is useful to furthering our understanding of that problem. To date, progress

on sub-concussive effects has been elusive and, as outlined in the introduction, both

percussive and viscous (rotation) models consistently underpredicted its effects. The

primary feature that delineates percussion and viscous effect is time scale: percussive

effects are temporally fast, spatially small, while viscous effects are relatively slower

temporally and spatially larger. Including both percussive and viscous effects into a

single numerical model has not been done due to computational and memory over-

heads; the fast, percussive model greatly increases the requirements for accuracy in

both space and time. Therefore it will be of great interest to include viscosity into

the linear model in a simplistic way (Joseph, 2003). Finally, there are no studies in

the literature surrounding the stochastic nature of concussion.

Hence, it is proposed that a model be constructed that considers all three aspects:

percussion, viscosity (inertial effects), and stochasticity. The model is not intended to

be ‘more exacting’ by inserting an increasing number of features, but will attempt to

uncover generic features of the fast and slow coupling between percussion and viscous

effects in the presence of stochasticity. A way forward, that will be considered in the

future, is to view the percussive and viscous aspects as independent to first order. This

assumption will allow for the solution of the viscous and percussive problems to be

independently constructed. The key to this problem is that the coupling between the

two effects involves the detection of windows of vulnerability in the brain tissue, due to

the viscous component, that are made sensitive to percussive effects. Stated another

way, the viscous effects induces local shearing of brain tissue that may expose small

regions of tissue to additional injury from percussive effects. Monte Carlo simulation

of the entire process will lead to the ability to analyze risk of injury. This approach

where percussive and viscous effects work in concert to create greater injury may

provide a mechanism to explain why neither approach has yet provided an adequate

explanation.
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Appendix A

Separation of Dimensional Shell Equations

The dimensional form is separated here to allow for comparison with what is found in

the literature and is easily moved into a dimensionless form immediately afterward.

The homogeneous form of the shell equations (2.3) and (2.4) are

uθθ + cot(θ)uθ − (ν + cot2(θ))u− β2

1 + β2
wθθθ

− β2

1 + β2
cot(θ)wθθ +

[
1 + ν

1 + β2
+

β2

1 + β2

(
ν + cot2(θ)

)]
wθ

− a2

1 + β2
utt = 0 , (A.1)

and the radial shell displacements w(θ, t) satisfy

β2uθθθ + 2β2 cot(θ)uθθ −
[
(1 + ν)(1 + β2) + β2 cot2(θ)

]
uθ

+cot(θ)
[
(2− ν + cot2(θ))β2 − (1 + ν)

]
u

−β2wθθθθ − 2β2 cot(θ)wθθθ + β2(1 + ν + cot(θ)2)wθθ

−β2 cot(θ)(2− ν + cot(θ)2)wθ − 2(1 + ν)w

−a2

c2p
wtt = 0 . (A.2)

Only the homogeneous form of the w(θ, t) equation needs to be considered since the

external input p˜a(θ, t) will be reduced to separated form. In addition the second order

derivative acceleration terms will be ignored since these are immediately separated

and may be conveniently returned after separating the R and θ terms.

The separated form of the dimensional dependent variables is

w(θ, t) =
∞∑
n=0

Pn(θ)wn(t)

u(θ, t) = −
∞∑
n=0

P 1
n(θ)un(t) , (A.3)

where Pn is the m = 0 legendre polynomial and P 1
n is the m = 1 form.
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A.1 Preliminaries

Before separating these equations in the angle θ and time t some preliminary forms

are used to make the algebra a little easier to follow.

The relationship between the m = 0 and m = 1 polynomial is

P 1
n(θ) = Pnθ . (A.4)

Now the m = 0 legendre polynomial is Pn and it satisfies

Pnθθ + cot(θ)Pnθ + n(n+ 1)Pn = 0 , (A.5)

while the m = 1 legendre polynomial P 1
n satisfies

P 1
nθθ + cot(θ)P 1

nθ + n(n+ 1)P 1
n − (1 + cot2(θ))P 1

n = 0 . (A.6)

When the separated form of w(θ, t) and u(θ, t) are substituted to the shell equa-

tions it is necessary to reduce the higher derivatives of Pn and P 1
n to become propor-

tional to Pn. This is accomplished by differentiating the m = 1 form with respect to

θ to obtain a relationship between the third and lower derivatives in θ.

Differentiating equation (A.6) and rearranging gives

P 1
nθθθ = − cot(θ)P 1

nθθ + 2(1 + cot(θ)2)P 1
nθ

− n(n+ 1)P 1
nθ − 2 cot(θ)(1 + cot2(θ))P 1

n . (A.7)

A.2 Separating u(θ, t) equation (A.1)

Since w ∝ Pn and wθ ∝ Pnθ = P 1
n after substituting equation (A.3), equation (A.1)

takes the form

−
(
P 1
nθθ + cot(θ)P 1

nθ − cot2(θ)P 1
n

)
un(t)

− β2

1 + β2

(
P 1
nθθ + cot(θ)P 1

nθ − cot2(θ)P 1
n

)
wn(t)

+νP 1
nun(t) +

[
1 + ν

1 + β2
+

β2ν

1 + β2

]
P 1
nwn(t)

= − a2

(1 + β2)c2p
untt = 0 . (A.8)
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Substituting equation (A.6) into equation (A.8) becomes

− [1− n(n+ 1)]P 1
nun(t)

− β2

1 + β2
[1− n(n+ 1)]P 1

nwn(t)

+νP 1
nun(t) +

[
1 + ν

1 + β2
+

β2ν

1 + β2

]
P 1
nwn(t)

= − a2

(1 + β2)c2p
P 1
nuntt = 0 , (A.9)

and rearranging, the coefficient of P 1
n(t) yields the ordinary differential equation

[1− ν − n(n+ 1)] un(t)

− 1

1 + β2

[
(n(n+ 1)− 1 + ν)β2 + 1 + ν

]
wn(t) =

a2

(1 + β2)c2p
untt . (A.10)

A.3 Separating w(θ, t) equation (A.2)

This equation is somewhat more complicated than equation (A.2) due to the presence

of a fourth derivative. There are two sets of terms in equation (A.2): the u(θ, t) terms

and the w(θ, t) terms.

A.3.1 The u(θ, t) terms.

Consideration of equation (A.2) shows that the u(θ, t) terms are in two parts those

without β2 and those with β2

1. Terms not multiplied by β2.

These terms are

−(1 + ν)uθ − cot(θ)(1 + ν)u , (A.11)

and applying equation (A.3) this is

(1 + ν)
[
P 1
nθ + cot(θ)P 1

n

]
un(t) . (A.12)

If this is further written in terms of the zeroth legendre polynomial via equation

(A.4) yields

(1 + ν) [Pnθθ + cot(θ)Pnθ]un(t) , (A.13)
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and applying equation (A.5) this last form simplifies to

−(1 + ν)n(n+ 1)Pnun(t) . (A.14)

2. Terms multiplied by β2.

These terms are

uθθθ + 2 cot(θ)uθθ −
[
1 + ν + cot2(θ)

]
uθ + cot(θ)

[
2− ν + cot2(θ)

]
u , (A.15)

and applying equation (A.3)

P 1
nθθθ + 2 cot(θ)P 1

nθθ −
[
1 + ν + cot2(θ)

]
P 1
nθ

+cot(θ)
[
2− ν + cot2(θ)

]
P 1
n , (A.16)

where a multiplicative factor of −un(t) has been dropped to simplify what

follows.

From equation (A.7) replacing P 1
nθθθ

− cot(θ)P 1
nθθ +

[
2(1 + cot2(θ))− n(n+ 1)

]
P 1
nθ

−2 cot(θ)(1 + cot2(θ))P 1
n + 2 cot(θ)P 1

nθθ

−
[
1 + ν + cot2(θ)

]
P 1
nθ + cot(θ)

[
2− ν + cot2(θ)

]
P 1
n , (A.17)

and simplifying yields

cot(θ)P 1
nθθ +

[
1 + cot2(θ)− ν − n(n+ 1)

]
P 1
nθ −

[
cot3(θ) + ν cot(θ)

]
P 1
n ,(A.18)

noting that this last term is multiplied by −un(t).

Continuing similarly from equation (A.6) replacing P 1
nθθ gives

cot(θ)
[
− cot(θ)P 1

nθ − n(n+ 1)P 1
n + (1 + cot2(θ))P 1

n

]
+[

1 + cot2(θ)− ν − n(n+ 1)
]
P 1
nθ −

[
cot3(θ) + ν cot(θ)

]
P 1
n , (A.19)

and simplifying

(1− n(n+ 1)− ν)
(
P 1
nθ + cot(θ)P 1

n

)
. (A.20)

From equation (A.4)

P 1
nθ + cot(θ)P 1

n = Pnθθ + cot(θ)Pnθ . (A.21)



53

Substituting from equation (A.6) to the right-hand-side of equation (A.21)

yields the simplified form

Pnθθ + cot(θ)Pnθ = −n(n+ 1)Pn , (A.22)

and finally equation (A.20) with equation (A.22) yields

[1− n(n+ 1)− ν] (−n(n+ 1)Pn) . (A.23)

Returning the factor −un(t) and the terms multiplied by β2 are then

β2 [1− n(n+ 1)− ν]n(n+ 1)Pnun(t) . (A.24)

3. Combining both sets of terms. Combining both sets of terms multiplying u(t)

gives [
β2(1− n(n+ 1)− ν)− (1 + ν)

]
n(n+ 1)Pnun(t) . (A.25)

A.3.2 The w(θ, t) terms.

These terms from equation (A.2) are

−β2wθθθθ − 2β2 cot(θ)wθθθ + β2(1 + ν + cot(θ)2)wθθ

−β2 cot(θ)(2− ν + cot(θ)2)wθ − 2(1 + ν)w . (A.26)

Applying equations (A.3) and (A.4) and dropping the factor wn(t) for convenience

−β2P 1
nθθθ − 2β2 cot(θ)P 1

nθθ + β2(1 + ν + cot(θ)2)P 1
nθ

−β2 cot(θ)(2− ν + cot(θ)2)P 1
n − 2(1 + ν)Pn . (A.27)

Rearranging slightly yields

−β2
(
P 1
nθθθ + 2 cot(θ)P 1

nθθ − (1 + ν + cot(θ)2)P 1
nθ + cot(θ)(2− ν + cot(θ)2)P 1

n

)
−2(1 + ν)Pn .

(A.28)

The terms multiplying β2 collectively are identical to that in equation (A.16) which

leads to equation (A.23) and this gives the final result after slight rearrangement(
β2n(n+ 1) (1− n(n+ 1)− ν)− 2(1 + ν)

)
Pnwn(t) . (A.29)
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A.3.3 Combining the u(θ, t) and w(θ, t) terms.

Combining the results in equations (A.25) and (A.29) yields

[
β2(1− n(n+ 1)− ν)− (1 + ν)

]
n(n+ 1)Pnun(t)

+
(
β2n(n+ 1) (1− n(n+ 1)− ν)− 2(1 + ν)

)
Pnwn(t) . (A.30)

A.4 Final Separated Forms

The final separated form of the homogeneous verions of the shell equations (A.1) and

(A.2) is respectively

[1− ν − n(n+ 1)]un(t) +
1

1 + β2

[
(n(n+ 1)− 1 + ν)β2 + 1 + ν

]
wn(t)

− a2

(1 + β2)c2p
ün(t) = 0 , (A.31)

and

[
−(1 + ν)n(n+ 1) + β2(1− n(n+ 1)− ν)n(n+ 1)

]
un(t)

−β2n(n+ 1) [1− n(n+ 1)− ν]wn(t)

+2(1 + ν)wn(t) +
a2

c2p
ẅn(t) = 0 , (A.32)

and the shell movements are defined in equation (A.3).



Appendix B

Development of (zi′n(z))
′

The following is a development of the result

(zi′n)
′ =

(
z +

n2

z

)
in − in+1 , (B.1)

noting the functional dependence if in(z) upon z is assumed for notational clarity.

The approach used here to prove equation (B.1) starts from the two recurrence

relations

in−1 − in+ 1 =
2n+ 1

z
in , (B.2)

i′n = in+1 +
n

z
in . (B.3)

From equation (B.3)

zi′n = zin+1 + nin , (B.4)

and differentiating

(zi′n)
′ = (zin+1)

′ + ni′n , (B.5)

and substituting i′n from equation (B.3)

(zi′n)
′ = (zin+1)

′ + nin+1 +
n2

z
in . (B.6)

Applying the product rule to the first term on the right-hand-side of equation (B.6)

(zin+1)
′ = in+1 + zi′n+1 . (B.7)

Referring to equation (B.3), multiplying by z and shifting indices from n → n + 1

yields a form for zi′n+1 which upon substitution to equation (B.7)

(zin+1)
′ = in+1 + z

(
in+2 +

n+ 1

z
in+1

)
, (B.8)
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which simplifies to

(zin+1)
′ = zin+2 + (n+ 2)in+1 . (B.9)

This last result is substituted to the right-hand-side of equation (B.6) and gives

(zi′n)
′ = zin+2 + (n+ 2)in+1 + nin+1 +

n2

z
in

= zin+2 + 2(n+ 1)in+1 +
n2

z
in . (B.10)

The term in+2 is eliminated by appealing to equation (B.2) from which

zin−1 − zin+1 = (2n+ 1)in ,

zin+1 = zin−1 − (2n+ 1)in ,

zin+2 = zin − (2n+ 3)in+1 , (B.11)

and replacing zin+2 from equation (B.11) in equation (B.10) gives

(zi′n)
′ = zin − (2n+ 3)in+1 + 2(n+ 1)in+1 +

n2

z
in

= zin − in+1 +
n2

z
in

=

(
z +

n2

z

)
in − in+1 , (B.12)

where equation (B.12) is the desired result.
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