

METAHEURISTIC ALGORITHMS FOR THE VEHICLE ROUTING

PROBLEM WITH TIME WINDOW AND SKILL SET CONSTRAINTS

by

Lu Han

Submitted in partial fulfilment of the requirements

for the degree of Master of Applied Science

at

Dalhousie University

Halifax, Nova Scotia

December 2016

© Copyright by Lu Han, 2016

ii

Table of Contents

List of Tables .. iv

List of Figures .. v

Abstract ... vi

List of Abbreviations Used ... vii

Acknowledgements ... viii

Chapter 1 Introduction .. 1

Chapter 2 Literature Review ... 5

2.1 General VRP .. 5

2.1.1 Exact Algorithms .. 5

2.1.2 Heuristic and Metaheuristic Algorithms .. 7

2.2 Variants of Vehicle Routing Problem ... 12

2.2.1 The Travelling Salesman Problem (TSP) .. 12

2.2.2 The Capacitated Vehicle Routing Problem (CVRP) .. 13

2.2.3 The Inventory Routing Problem (IRP) ... 14

2.2.4 The Period Vehicle Routing Problem (PVRP) .. 15

2.2.5 The Split Delivery Vehicle Routing Problem (SDVRP) .. 16

2.2.6 Vehicle Routing Problem with Time Windows (VRPTW) ... 16

2.2.7 Vehicle Routing Problem with Skill Sets (VRPSS) ... 19

2.2.8 Travelling Repairman Problem (TRP) ... 21

Chapter 3 Problem Context and Assumptions.. 23

3.1 Problem Definition .. 23

3.2 Problem Assumptions and Requirements ... 24

Chapter 4 Methodology .. 26

4.1 MILP Model ... 26

4.1.1 Sets and Parameters .. 26

4.1.2 Variables .. 27

4.1.3 Objective Function.. 28

4.1.4 Constraints ... 28

iii

4.1.5 Preprocessing Phase ... 31

4.2 Heuristic Algorithm .. 31

4.2.1 Initialization .. 32

4.2.2 Local Improvement .. 38

4.3 Metaheuristic Algorithms .. 48

4.3.1 Tabu Search .. 49

4.3.2 Simulated Annealing .. 51

Chapter 5 Results and Discussions .. 55

5.1 Data Simulation ... 55

5.1.1 Customer data ... 55

5.1.2 Technician data .. 57

5.1.3 Travel time .. 58

5.2 Selection of parameters for metaheuristic algorithms ... 60

5.2.1 Tabu Search parameters .. 60

5.2.2 Simulated Annealing parameters ... 62

5.3 Comparison between two neighborhood heuristics .. 66

5.4 Comparison among different methods ... 67

5.5 Tests on Large-Scale Examples .. 71

5.6 Conclusion and Future Research... 73

5.6.1 Future Research ... 74

Bibliography .. 75

Appendix A Solomon’s Insertion Heuristic ... 84

Appendix B Average cost of running different numbers of replications in SA

 algorithm .. 86

Appendix C Comparisons of different neighborhood structure by algorithms 87

Appendix D Comparisons of applying different methods .. 89

iv

List of Tables

Table 5.1 Comparison of Tabu Search parameter combinations………………………60

Table 5.2 Comparison of different Tabu Size………………………………………….62

Table 5.3 Comparison of Simulated Annealing parameter combinations...……….…...64

Table 5.4 Number of optimal solutions of four methods………………………………69

Table 5.5 Average computation time of four methods…………………………………69

Table 5.6 Results of tabu search with different tabu size in 100- and 150-customer

 examples……………………………………………………………………..72

Table 5.7 Comparison among heuristic and metaheuristic algorithms on large-scale

 examples………………………………………………………………….….72

v

List of Figures

Figure 1.1 Overall process……………………………………………………………...1

Figure 2.1 Or-opt heuristic……………………………………………………………..10

Figure 2.2 Relocate (Transfer) heuristic………………………………………………..11

Figure 2.3 Exchange (Swap) heuristic………………………………………………….11

Figure 2.4 2-opt* heuristic……………………………………………………………...18

Figure 4.1 Process of checking the eligibility of a technician for a specific customer....33

Figure 4.2 Process of pre-allocation…………………………………………………….36

Figure 4.3 Process of selecting a technician and inserting customers…………………..38

Figure 4.4 Sub-tour reversal……….…….…….…….…….…….…...…….…….……...41

Figure 4.5 Waiting time improvement when feasible delay is less than waiting time......42

Figure 4.6 Waiting time improvement when feasible delay is greater than waiting

 time…….…….…….…….…….…...……….…….…….…….……..………42

Figure 4.7 The transfer of customer C………………………………………………..…45

Figure 4.8 The swap of customer C………………………………………………….….47

Figure 4.9 Searching for the best solution…………………………..………………..…48

Figure 4.10 Process of tabu search…………………………………..……………….…51

Figure 4.11 Process of simulated annealing…………………..…………..………….…54

Figure 5.1 Probability density function of Pareto distribution (Danvildanvil (2014))….56

Figure 5.2 One standard of the Mean for 1, 3, 5 replications…………………………...64

Figure 5.3 Mean, Std, and Optimality percentage of different neighborhood structures

 by algorithms………………...……………………………………...……….66

Figure 5.4 Mean, Std, and Optimality percentage of four methods by different

 problem scale………………………………………………..……………….68

vi

Abstract

A subcontractor assigns installation services requested by a group of geographically

scattered customers to its technicians daily. Requested services by the customers require

a set of skills and should start during customers’ availability periods. Each technician has

certain skills, and limited availability daily to perform the services. Subcontractor’s

revenue from the installation jobs is fixed based on standard time for each type of job.

The problem of assigning the optimum subset of the jobs to eligible technicians and

identifying the optimum route to perform the services is classified as NP-Hard and is a

challenging problem to solve.

In this research, a vehicle routing problem with time window and skill set constraints

(VRPTWSS) is considered to address the problem. Due to the NP-hardness of vehicle

routing problem, two metaheuristic algorithms are proposed to solve this problem.

Performance of these approaches is evaluated against an MILP model for smaller

problems via simulation.

vii

List of Abbreviations Used

VRP Vehicle Routing Problem

mVRP m-Vehicle Routing Problem

TSP Travelling Salesman Problem

TRP Travelling Repairman Problem

CVRP Capacitated Vehicle Routing Problem

VRPTW Vehicle Routing Problem with Time Windows

IRP Inventory Routing Problem

SDVRP Split Delivery Vehicle Routing Problem

GVRP Green Vehicle Routing Problems

PVRP The Period Vehicle Routing Problem

VRPSS Vehicle Routing Problem with Skill Sets

TSRP Technician Scheduling and Routing Problem

FSSP Field Service Scheduling Problem

MILP Mixed Integer Linear programming

TS Tabu Search

SA Simulated Annealing

viii

Acknowledgements

I would like to take this opportunity to express my profound gratitude to my supervisor

Dr. Alireza Ghasemi for his guidance, encouragement, and patience. In the last two years,

he gave me great help by providing inspiration of new ideas and considerate suggestions

on my research and life.

I would also like to thank Dr. Pemberton Cyrus and Dr. Jenny Chen for being my

committee members, Dr. Claver Diallo and Dr. Uday Venkatadri for teaching me and

providing me with instructive suggestions on my seminar, and all my teachers for their

scholarly advice on my graduate courses.

My appreciation also extends to my friends Parth Pancholi, Fatemeh Mortazavi, Pin Hou

for their selfless suggestions and encouragement on my research.

I would like to give my sincere appreciation to my parents, who give me strong support

both emotionally and financially. Thanks for providing me the opportunity to study

abroad and to pursue advanced degrees.

1

Chapter 1 Introduction

The research considers a subcontractor providing utility installation services that receives

next day installation orders from its client. Each customer requiring an installation

service has a predetermined available time window to start the job and each job requires a

specific skill. This thesis will deal with the jobs supplied by the client who is responsible

for defining the skill requirements of each job and scheduling installation appointments

with customers. Besides, the client will estimate the time spent in each job and negotiate

a predetermined cost with the subcontractor. Each technician hired by the subcontractor

has a skill set with limited availability. Figure 1.1 illustrated the overall process.

Figure 1.1 Overall process

Ultimately, the subcontractor’s goal is to minimize their total cost since the revenue is

fixed based on standard time for each type of job and complete information of each

specific job. This problem can be regarded as a special case of Vehicle Routing Problem

(VRP).

2

The VRP is one of the most studied combinatorial optimization and integer-programming

problem and can be described as designing the optimal routes of a fleet of vehicles to

serve a number of scattered customers from one or several depots (Golden et al. (2008)).

In a VRP, each customer is visited exactly once by only one vehicle, and all vehicles

must leave and return to the depot. The VRP attracts great attention and plays a

significant role in the field of distribution and logistics since it is practical and hard to

solve. The concept of VRP was first proposed by Dantzig and Ramser (1959) and a

mathematical programming formulation and algorithm method for the VRP were also

developed in this study. Clarke and Wright (1964) developed a greedy heuristic to reach

an approximate solution of the VRP. Since then, hundreds of papers have been focused

on the topic of looking for exact or approximate solutions for this problem and many of

its variants. In a typical single VRP, the purpose is to find a tour with the minimum cost

starting from the depot and connecting all the customers, then return to the depot. The m-

Vehicle Routing Problem (mVRP) extends the single VRP to m tours.

VRP generalizes the well-known Travelling Salesman Problem (TSP) that is one of the

simplest routing problems. Ropke (2005) describes TSP as the problem of finding the

shortest route that visits all the nodes exactly once and returns back to the starting node

given a set of nodes and a way of measuring distances between nodes. A similar problem

relative to our research is the Travelling Repairman Problem (TRP). The objective of this

problem is to find a route that minimizes the total waiting time of all the nodes.

Many variants of the VRP have been extensively studied. The Capacitated Vehicle

Routing Problem (CVRP) is a variant in which vehicles have capacity limitations and

customers have certain amount of goods to be picked up or unloaded. Thus, the vehicle

capacity must be taken into consideration when designing the routes. A customer can

only be served by a vehicle if the remaining capacity of the vehicle is greater than or

equal to the capacity requirement of the customer. Another commonly studied variant of

VRP is the Vehicle Routing Problem with Time Windows (VRPTW). For a VRPTW, all

nodes have time windows within which the visits or deliveries must be made.

More complex variants of the VRP are featured by multiple depots, multiple vehicle

types with different capacity or other constraints. For example, Heterogeneous Fleet VRP

3

or the Mixed Fleet VRP is characterized by a fleet of vehicles with different capacities

and costs. Baldacci et al. (2008) present an overview of methods in solving

Heterogeneous Fleet VRP. The aim is to find the optimal routes for each vehicle. The

Inventory Routing Problem (IRP) or sometimes known as VRP with Inventory

Constraints integrates and coordinates the two components of supply chain: inventory

management and vehicle routing (Campbell et al. (1998)). Customers have an inventory

capacity up to a predetermined maximum. A fleet of homogeneous vehicles with certain

capacity is available for the distribution. The objective is to minimize total cost without

leading to stockouts at any customers in the basic model. The Split Delivery Vehicle

Routing Problem (SDVRP) was first introduced and defined by Dror and Trudeau (1990).

SDVRP allows each customer to be visited more than once and the demand of each

customer might exceed the capacity of the vehicle. However, the sum of quantities in

each route cannot exceed the capacity of the vehicle. The development of Green Vehicle

Routing Problems (GVRP) is motivated by the long-term sustainable requirement in

distribution and logistics strategies. GVRP are identified by the objective of minimizing

economic and environmental cost. Lin et al. (2014) present a survey on GVRP. Another

extension of the VRP problem relevant to our research is the Vehicle Routing Problem

with Skill Sets (VRPSS). It deals with a limited number of technicians that serves a

bunch of customers with different requests. In one of its variants, Technician Scheduling

and Routing Problem (TSRP), other constraints including tools, spare parts and requests

with different urgency levels are considered (Pillac et al. (2013)).

Lenstra and Kan (1981) pointed out that most VRPs belong to NP-hard problems and are

not likely to be solved in polynomial time. This NP-hardness characteristic accounts for

the great attention on VRPs and the importance of solving VRPs by different algorithms.

Both exact and approximate algorithms were developed in the last several decades. Exact

methods are only effective to relatively small problems considering the NP-hardness of

VRPs, while some approximate algorithms can provide excellent solutions and save a lot

of time in the meanwhile according to Laporte (1992). Thus, heuristic methods are very

popular in dealing with VRP-related problem.

4

The purpose of this research is therefore to develop models and algorithms for the

subcontractor to arrive at a planning and scheduling solution for assigning customers to

technicians, thereby minimizing total cost and improving the scheduling speed.

The remainder of this thesis is organized as below: In chapter 2, a literature review

relevant to VRP and its variants is presented. In chapter 3, the exact problem definition is

presented in further detail and several assumptions are made and explained. In chapter 4,

a linear programming mathematical model, a heuristic method with local improvement

and two metaheuristic algorithms (Tabu Search and Simulated Annealing) are presented

to solve this problem. In chapter 5, the methods are examined using simulated data and

the comparisons among different methods on cost and computation time are presented.

Finally, conclusions and discussions are presented and further researches are identified.

5

Chapter 2 Literature Review

In this chapter, a review of VRP and its variants is demonstrated. VRP is an extensively

researched area and is defined quite broadly. Desrochers et al. (1990) proposed a

classification scheme for vehicle routing and scheduling problem and Desrochers et al.

(1999) presented a modified methodology of classifying VRP in terms of real-life

problem situation, abstract problem type, and algorithms applied. Eksioglu et al. (2009)

then defined the domain of VRP and classified the literature in much greater detail based

on type of study, scenario characteristics, problem physical characteristics and so forth.

The type of study includes theory, applied methods, survey or review. In the second

category, various scenario characteristics include whether the number of stops on route is

deterministic or not, whether the load splitting is allowed, and so forth. Problem physical

characteristics include the number of depot, number of vehicles, capacity considerations

and so on. Since the concept of VRP was proposed, various methods have been

developed to deal with it. Commonly used methods include exact algorithms, heuristic

algorithms and metaheuristics and researches on these methods will be discussed in the

following.

2.1 General VRP

2.1.1 Exact Algorithms

Exact algorithms have been extensively studied to solve VRPs in the last decades.

Laporte and Nobert (1987) classified exact algorithms into three categories: direct tree

search methods; dynamic programming; and integer linear programming. The latter

category is very broad and can be subdivided into three categories according to Magnanti

(1981): set partitioning formulations, vehicle flow formulations, and commodity flow

formulations. Among them, vehicle flow formulations account for the most research

efforts in early researches.

Direct tree search method works by sequentially constructing vehicle routes by means of

a branch and bound tree. The branch and bound algorithm was first proposed to deal with

TSP and then applied to VRP according to Christofides et al. (1981). They computed

6

lower bounds by shortest spanning k-degree center tree and q routes. Computational

results showed that problems with up to 25 customers could be solved optimally. Laporte

et al. (1986) applied this algorithm into VRP through transforming the distance matrix

and solved asymmetrical CVRPs optimally including up to 260 nodes. Kumar and Jain

(2015) solved a school bus routing problem with 65 buses to optimum.

Dynamic programming was first introduced in VRP by Eilon et al. (1974). This method

requires a large number of computations. Efficient dynamic programming requires a

relaxation procedure or feasibility or dominance criteria to reduce the number of states.

Christofides et al. (1981) solved CVRPs with up to 50 nodes optimally using this

approach. Desrosiers et al. (1984) considered a VRP in which customers request to be

picked up at a given location and delivered to another one and solved the problem

involving 80 nodes to optimum in less than 6 seconds.

Over the years, several integer linear programming models have been proposed for VRPs.

Examples of mathematical models of VRP and its variants can be found in Laporte and

Nobert (1987), Laporte (1992), Ropke (2005), Toth and Vigo (2014). Among integer

linear programming algorithms, set partitioning formulations account for many research

efforts. Balinski and Quandt (1964) were the first to propose set partitioning

formulations. The set partitioning formulation consists of an m*n binary matrix in which

each column represents a feasible route and each row represents a customer. All the rows

should be covered at a minimal cost by subsetting columns. However, the formulations

include an exponential number of variables in problems with many feasible solutions and

usually cannot be used directly to solve VRPs. Many researchers have applied column

generation schemes to deal with the difficulties generated by using the set partitioning

approach. The idea of column generation is that many linear programs are too large to

consider all variables explicitly and since most of the variables are assumed a value of

zero in the optimal solution, only a subset of variables need to be considered. Thus, the

column generation only generates variables with the potential to improve the objective

function value. The problem is then split into two problems: the master problem is the

original problem with only a subset of variables being considered and the subset problem

adds variables to the master problem. For instance, Foster and Ryan (1976) proposed a

7

column generation method and obtain routes by dynamic programming. Agarwal et al.

(1989) presented an exact algorithm based on set partitioning formulations. The results

demonstrated that this method is roughly 13 times faster than that of Christofides et al.

(1981). Vehicle flow formulations use binary variables to demonstrate whether the

vehicle travels between two nodes in the optimal solution. In a two-index

formulation, 𝑥𝑖𝑗 indicates whether edge (𝑖 , 𝑗) is traversed by a vehicle. A two-index

formulation is widely used in symmetrical CVRPs and DVRPs. In a three-index

formulation, binary variables 𝑥𝑖𝑗𝑘 indicates that vehicle 𝑘 travels directly from node 𝑖 to

node 𝑗. Naddef and Rinaldi (2001) used a branch-and-cut algorithm to solve a CVRP

based on a two-index vehicle flow formulation. Fisher and Jaikumar (1981) developed a

three-index vehicle flow formulation in a VRP with time windows and capacity

constraints. In commodity flow formulations, flow variables that indicate the quantity of

demand travelling on an arc are associated. Baldacci et al. (2004) developed a commodity

flow formulation and then obtained a lower bound from the relaxation of this

formulation. Baldacci et al. (2012) present a review of mathematical formulations and

recent algorithms for CVRP and VRPTW.

2.1.2 Heuristic and Metaheuristic Algorithms

In recent years, although several sophisticated exact algorithms have been proposed for

solving the VRPs, only relatively small problems with around 100 customers can be

solved to optimum and the variance of computation time is high (Laporte et al. (2014)).

However, practical problems are often large and require more efficient methods to solve

the problem within reasonable computation time. Thus, efficient heuristics attract the

attention of researchers. Overview of classical heuristics and metaheuristics of VRPs can

be found in Laporte et al. (2000), Laporte (2007), Cordeau et al. (2005), and Toth and

Vigo (2014).

Classical heuristics for VRP can be categorized typically into construction heuristics and

improvement heuristics. Construction heuristics created a feasible solution and pay

attention to the objective value in the meanwhile. However, they do not include any

improvement attempts. Construction heuristics in VRPs usually falls into three

8

categories: insertion heuristics, saving heuristics, and clustering heuristics (Ropke

(2005)).

Insertion heuristics create routes by inserting customers into routes. Routes can be built

one at a time (sequential insertion heuristics) or several at the same time (parallel

insertion heuristics). The insertion heuristics apply different criterion to determine which

customer to insert and where to insert the customer. Recent applications of insertion

heuristics include the VRPTW insertion heuristic proposed by Ioannou et al. (2001) and a

pickup and delivery problem by Lu and Dessouky (2006).

The classical savings heuristic was first proposed in 1964 by Clarke and Wright (1964) to

solve CVRPs. It initialized with single node routes and then two routes are merged at

each step according to the largest saving that can be generated. Several enhancements of

this heuristic can be found in the work of Nelson et al. (1985) and Paessens (1988).

Nelson et al. (1985) proposed six methods for implementing the savings heuristic and

tested 55 problems to compare these methods. The results clearly provided suggestions

on the choice of methods for different VRPs with given characteristics. Paessens (1988)

modified the savings heuristic which showed less computation time and reduced storage

requirements. Most savings algorithms have been developed for CVRPs. For example,

Altinel and Öncan (2005) proposed a new enhancement of savings heuristic to solve a

CVRP. This research differs from previous ones in considering customer demands in

addition to distances as the saving criterion. The results proved this enhancement to be

fast and accurate. Laporte and Semet (2001) proposed several variants of the savings

algorithm to speed up computations. The examples of applying savings algorithms on

other variants of VRP include a VRPTW by Liu and Shen (1999) and a pickup and

delivery problem by Gronalt et al. (2003). Liu and Shen (1999) described several

insertion-based savings heuristics for solving the VRPTW with a heterogeneous fleet and

took into account a sequential route construction parameter to avoid too many short

routes. Experimental results demonstrated that heuristics with the consideration of this

parameter yields better solution than all other heuristics tested. Gronalt et al. (2003)

proposed four savings heuristics for the pickup and delivery problem under time window

constraints. Computational results showed that these heuristics find very good solutions

9

quickly and the consideration of the opportunity costs significantly improved the solution

quality.

Clustering algorithms are two-phase algorithms. The first phase works on grouping

customers into subsets and each subset of customers is served by one vehicle. The second

phase constructs routes for each subset. Fisher and Jaikumar (1981) proposed a clustering

heuristic for CVRP. This clustering algorithm is proved to outperform the existing

heuristics on some standard test examples and can always find a feasible solution if it

exists. Another classical clustering algorithm is the sweep algorithm that was first

proposed in the work of Wren (1971). This algorithm selects a vehicle and assigns

unrouted nodes with the smallest angle to the vehicle until the capacity of the vehicle is

exceeded. Once all the nodes have been assigned, each vehicle route is optimized

internally by solving the corresponding TSP and externally by exchanges between

adjacent routes. Gillett and Miller (1974) started to call this method the sweep algorithm

and popularized it. Computational results in their research figured out that sweep

algorithm generally produced better results than the savings approach while less efficient

in computational time.

Classical improvement heuristics work on intra-route or inter-route moves. Intra-route

moves improve the route internally by exchanging the order of nodes on a single route.

Intra-route moves were first proposed for TSP and then applied to all VRPs. Lin (1965)

proposed a k-opt exchange in which k consecutive nodes are removed and the first node

in one sequence is connected to the last node of the second sequence. Later on, Lin and

Kernighan (1973) modified the parameter k dynamically during the improvement

procedure. Or (1976) proposed the Or-opt heuristic in which a sequence of one, two or

three consecutive customers from one route is removed and inserted into another location

in the same route or in another route (see Figure 2.1). Renaud et al. (1996) developed a

restricted version of 4-opt algorithm in which four links in a single route are removed and

then four other links are added to rebuild a feasible route. Results presented in their

research indicated that this algorithm outperformed Or-opt but not as good as 3-opt in

terms of solution quality, but it is faster than 3-opt. Johnson and McGeoch (1997)

analyzed and compared various improvement procedures for TSP. The computation

10

results showed that the dynamic k-opt heuristic proposed by Lin and Kernighan (1973)

lead to the best results.

In practice, inter-route heuristics are significant in reaching good results according to

Toth and Vigo (2014). Inter-route improvement heuristics move nodes from their current

routes to other routes. Van Breedam (1994) classified improvement heuristics as string

cross, string exchange, string relocate and string mix. Relocate heuristic removes one

node from its current route and then insert it into another route (see Figure 2.2). A node

can also be relocated from its current route to an empty route, leading to the generation of

a new route; Exchange heuristic swaps two nodes from their original routes to the other

route separately (see Figure 2.3); In cross heuristic, two links in two routes are broken

separately and the first sub-route of the first original route is linked to the second sub-

route of the second original route and vice versa. Thus, each new route is the combination

of two sub-routes from both two routes. The string mix is the combination of the string

exchange and the string relocate. These heuristics are widely used in different variants of

VRP. Thompson and Psaraftis (1993) proposed cyclic transfers to multivehicle routing

problems in which b routes are considered and k nodes of each route are relocated to the

next route.

Figure 2.1 Or-opt heuristic

11

Common metaheuristic algorithms in VRPs include tabu search, simulated annealing,

genetic algorithms, and ant colony optimization. The basic idea of tabu search is to accept

the best neighbor of current solution as the new trial solution even if it is a worse

solution. Different memory structures are applied to avoid cycling back to the same

solution. Tabu search is the most extensively studied metaheuristic algorithm in VRPs.

Recent examples can be found in Wassan (2006), Derigs and Kaiser (2007), and Lai et al.

(2016). In simulated annealing algorithm, a solution is randomly selected from the

neighborhood of the current solution and cycling is prevented. Examples include Zeng et

al. (2005) and Osman (1993). Genetic algorithms mimic the nature selection and combine

Figure 2.2 Relocate (Transfer) heuristic

Figure 2.3 Exchange (Swap) heuristic

12

selection, recommendation and mutation processes. Examples can be found in Baker and

Ayechew (2003), Berger and Barkaoui (2003), and Prins (2004). In ant colony

optimization, artificial ants construct solutions in a greedy and random way in each cycle

and then chooses new element to be included into the current solution based on the

evaluation of the element. Bell et al. (2004) modified ant colony optimization algorithm

used to solve TSP in order to apply it on multiple routes of VRP. Reimann et al. (2004)

proposed a savings based ant colony algorithm in which solutions are constructed based

on the savings algorithm and Doerner et al. (2005) proposed a parallelization version of

the same algorithm in which the problem is decomposed into a number of sub-problems

and the sub-problems are processed in parallel.

2.2 Variants of Vehicle Routing Problem

In this section, a review of several important variants of VRP is presented.

2.2.1 The Travelling Salesman Problem (TSP)

TSP is one of the most studied NP-hard problem and current solution methods have

reached a very high level. A TSP aims at finding the shortest tour that visits each node

exactly once and return to the starting node. TSPs have been extensively studied in the

literature and many algorithms proposed for TSPs have been modified to solve other

variants of VRP.

Mathematical formulations of TSP can be found in Laporte (1992), Hoffman et al. (2013)

and many other researches. Letchford et al. (2013) provided a review of different

formulations of the TSP.

Common exact algorithms derived from the mathematical formulations of TSP include

branch-and-bound algorithms and shortest spanning tree algorithms. Laporte (1992),

Lawler et al. (1985), and Gutin and Punnen (2006) provided a review of different exact

algorithms.

Local search heuristics are among the main tools to search for near optimal solutions in

TSP. As mentioned above, improvement heuristics for TSP can be found in Lin (1965),

Lin and Kernighan (1973), Or (1976), Renaud et al. (1996) and Johnson and McGeoch

13

(1997). These algorithms have been applied to all VRPs as well to improve the route

internally.

Metaheuristic approaches are widely applied in solving large-scale TSPs. Potvin (1996),

Bryant and Benjamin (2000), and Yuan et al. (2013) applied genetic algorithms. Asrts et

al. (1988), Wang et al. (2013) applied simulated annealing. Flechter (1994) developed a

parallel tabu search algorithm to solve large-scale TSPs. Xu et al. (2015) compared

different tabu search algorithms and proposed hybrid algorithms by combining tabu

search with other methods.

2.2.2 The Capacitated Vehicle Routing Problem (CVRP)

Other than the TSP, many VRPs deal with problems including a fleet of vehicles instead

of working on a single vehicle. The CVRP is the most studied variant of VRP since it was

first introduced by Dantzig and Ramser (1959). Vehicles in the CVRPs have limited

capacity of goods that must be delivered. Among mathematical models developed for the

CVRP, Achuthan and Caccetta (1991) proposed a mixed integer linear programming

formulation constrained by distance travelled. Kara et al. (2004) provided a formulation

for the CVRP and extended the subtour elimination constraints that prevent subtours from

arising. Mathematical models in recent research can also be found in Baldacci et al.

(2012) and Semet et al. (2014) that provided a review of different formulations.

Most extensively applied exact algorithms in the CVRP are based on branch-and-cut

algorithms and set partitioning formulation. Augerat et al. (1995) were the first to apply

an exact branch-and-cut algorithm in the CVRP and this algorithm was able to solve a

CVRP with 135 customers according to the computational results. Lysgaard et al. (2004)

presented a new branch-and-cut algorithm in which several classes of valid inequalities

were used and the results showed the algorithm to be competitive with others. The first

set partitioning formulation of CVRP was developed by Balinski and Quandt (1964).

Fukasawa et al. (2006) proposed a set partitioning formulation which could solve up to

100 nodes optimally. Baldacci et al. (2008) improved a set partitioning model by using

valid inequalities. Computational results showed that the lower bounds generated by this

model are better than the best lower bounds generated by Fukasawa et al. (2006).

14

Many common heuristic algorithms designed for VRP have been used to solve the CVRP

as well. For instance, Toth and Vigo (2001) applied a 3-opt algorithm to search for

neighbors in an improved savings algorithm. Some researches used a two-step method

(Fisher and Jaikumar (1981), Gillett and Johnson (1976)) where in the first step the

customers are clustered into several groups and the second step constructs each route.

Metaheuristic approaches attract much attention in solving CVRP especially in recent

years. Extensively used metaheuristics in CVRP include simulated annealing algorithms

(Robust et al. (1990), Osman (1993), Tavakkoli et al. (2006), Xiao et al. (2014)), tabu

search algorithms (Osman (1993), Gendreau et al. (1994), Jin et al. (2012)), and genetic

algorithms (Baker and Ayechew (2003), Prins (2004), Nazif and Lee (2012)). Lin et al.

(2009) applied a hybrid algorithm of simulated annealing and tabu search to solve CVRP.

2.2.3 The Inventory Routing Problem (IRP)

The IRP differs from other variants of VRPs due to the consideration of inventory of

customers. The supplier must ensure that customers do not experience a stock-out by

managing inventory of each customer. Meanwhile, the inventory cost is incurred in the

process and is considered in the objective function in many cases. The subject is usually

to trade off between transportation cost and inventory cost in studies taking into

consideration the inventory cost.

IRPs have been studied since the eighties. Among papers considering the inventory cost,

Speranza and Ukovich (1994) was the first to propose a model for a single retailer case

with fixed shipping frequencies. They also built up a mixed-integer programming model

to solve the problem and showed that the model is NP-hard (Speranza and Ukovich

(1996)). Bertazzi et al. (2000) applied both an exact algorithm based on a branch-and-

bound algorithm and some heuristics to solve the problem. Later on, Bertazzi et al. (2007)

analyzed different dispatch policies to decide when to make shipments and the how to

load vehicles. In multiple retailers’ cases, Archetti et al. (2007) proposed a mixed integer

linear programming model and used a branch-and-cut algorithm to solve it optimally.

Bertazzi et al. (2002) applied a two-step heuristic algorithm in which a feasible solution

is constructed and then improved to solve the IRP. Then Bertazzi et al. (2005) proposed

both exact and heuristic algorithms to analyze two vendor-managed inventory policies in

15

which the facility takes charge of the replenishment policies of the retailer. Cousineau-

Ouimet (2002) used a tabu search algorithm to design the route and determine the

delivery size and frequency for IRP.

There are also a group of papers without considering inventory costs. For example,

Berman and Larson (2001) proposed a dynamic programming method to dynamically

determine the amount of product provided to each customer. Campbell and Savelsbergh

(2004) proposed a two-phase method. The first phase constructs a delivery schedule and

then the routes are built up in the second phase. Savelsbergh and Song (2007) compared

the performance of different greedy heuristics.

2.2.4 The Period Vehicle Routing Problem (PVRP)

In the PVRP, routes are constructed over a planning period with more than one day. In

each single day, a fleet of vehicles should travel from and end at a depot.

Solution methods have focused on the classical two-phase construction-improvement

methods for PVRP. For example, Tan and Beasley (1984) determined the delivery day

for each customer in the first phase. Then they assign the customer to a vehicle in the

chosen delivery day. Russell and Gribbin (1981) also presented a multi-phase method.

The first phase achieved a feasible initial solution, followed by two improvement phases

applying interchange heuristics. This multiphase approach generates improvements over

previous research according to the computational results.

Among metaheuristic algorithms for PVRP, Chao et al. (1995) created an initial solution

and then improved it iteratively by moving a customer from one schedule to another. The

movement is always accepted if it leads to a decrease in total distance. Otherwise, the

move is accepted if the total distance is less than a threshold. With the increase of

iterations, the threshold gradually decreases. This metaheuristic is similar to the

simulated annealing except that they use different acceptance criteria. Cordeau et al.

(1997) proposed a tabu search method to solve PVRP, the period TSP, and multi-depot

VRP. Drummond et al. (2001) presented a hybrid metaheuristic algorithm based on the

combination of parallel genetic algorithms and local search heuristics.

16

2.2.5 The Split Delivery Vehicle Routing Problem (SDVRP)

In the SDVRP, customers can be visited by more than one vehicle. This variant of VRP

attracts the attention of researchers because it leads to up to 50% cost savings by splitting

deliveries according to Archetti et al. (2006).

Exact approaches for the SDVRP include Lee et al. (2006) and Jin et al. (2007). Lee et al.

(2006) applied a shortest path search algorithm to solve the SDVRP. Jin et al. (2007)

proposed a two-stage algorithm. The first stage creates clusters and establishes lower

bound, while the second stage constructs routes for each cluster. Both methods are able to

solve only small instances. Better solutions can be reached in Feillet et al. (2006) in terms

of cost and number of vehicles. They considered the SDVRP with time windows and

were able to solve instances with 100 customers.

The first heuristic algorithm for the SDVRP is introduced by Dror et al. (1990) through a

local search process. Frizzell and Giffin (1995) proposed a construction heuristic and two

improvement heuristics (swap and transfer) to solve the SDVRP with time windows.

Archetti et al. (2006) proposed a tabu search metaheuristic and applied the relocate

heuristic (See Figure 2.2) as the neighborhood structure. The results were compared with

that of Dror et al. (1990) and showed the algorithm can almost always provide better

solutions. Later on, Archetti et al. (2008) combined tabu search with optimization method

to solve the SDVRP.

2.2.6 Vehicle Routing Problem with Time Windows (VRPTW)

In VRPTW, each customer has a specified time interval and the service for each customer

has to begin within this time interval. VRPTWs have been thoroughly studied during the

last few decades due to its extensive applications in practice.

Mathematical model of the VRPTW can be found in a great number of papers such as

Kallehauge et al. (2005) and Kohl and Madsen (1997). Among exact algorithms, Kohl

and Madsen (1997) developed a method exploiting Lagrangian relaxation of the

assignment constraint that every customer is served exactly once. The algorithm is able to

solve problems with up to 100 customers. Desrosiers et al. (1984) applied a column

generation method for solving the VRPTW, and then Desrochers et al. (1992) presented a

17

more effective version of the same model by using a set partitioning formulation. The

results proved the capability of this algorithm to solve a 100-customer problem. As the

case of other VRPs, the exact methods often perform poorly in computation time and

may take days or more to find good solutions. Thus, heuristic methods are more attractive

in VRPTWs.

Solomon’s research (1987) has always been regarded as Benchmark for construction type

approaches and he illustrated several route construction heuristics including an extension

to the savings heuristics, a time-oriented, nearest-neighbor heuristic, two insertion

heuristics and a time-oriented sweep heuristic. After a thorough analysis of their

performance of all above methods based on minimum number of vehicles, schedule time,

distance, and waiting time, the author summarized that the first insertion heuristics has

the best performance in this problem. Different form Solomon’s sequential algorithm

(1987) that may generate poor quality of the last routes, Potvin and Rousseau (1993)

adopted the parallel algorithm for initializing routes. Sequential algorithms build one

route at a time; parallel algorithms construct a set of routes simultaneously. The

computational results showed that this approach is better than Solomon’s sequential

approach in most cases. Russell (1995) also developed a parallel algorithm based on

Solomon’s insertion heuristic. Ioannou et al. (2001) used an insertion heuristic with a

new insertion criteria based on the minimization function of the greedy look-ahead

framework. The algorithm was proved to be of good quality for large-scale problems in

short computational time.

Various examples of route improvement heuristics can be found in VRPTW. For instance,

Potvin and Rousseau (1995) introduced a new 2-opt* exchange heuristic and applied a

hybrid heuristic based on 2-opt* and Or-opt exchange heuristics. In 2-opt* exchange

heuristic, two routes are selected and one link connecting two nodes from each route is

removed. Then the first node of the link in the first route is attached to the second node of

the second route and the second node of the link in the first route is linked to the first

node of the second route (see Figure 2.4). The 2-opt* heuristic is especially capable in

problems with time windows since it reserves the direction of the previous routes. Prosser

and Shaw (1996) compared one intra-tour heuristic (the 2-opt heuristic) with three inter-

18

tour heuristics (relocate, exchange, and cross heuristics). Comparisons of these

neighborhood heuristics imply that the relocate heuristic is most effective in leading to a

better solution, while exchange provides the least benefit. Besides, the best combination

of two neighbourhood heuristic is relocate with cross. Kontoravdis and Bard (1995) first

set the number of routes to a fixed lower bound in the route construction phase. Then the

authors adopted Solomon’s insertion algorithm (1987) in selecting customers. The

computational tests indicated an improvement over previous procedures. Bräysy (2002)

proposed a three-phase approach for solving VRPTWs. The first phase is to create an

initial solution. The second phase combines routes with only few customers into one

route. In the last phase, the Or-opt heuristic was applied again to reduce the total distance.

Metaheuristic methods received the most attention in the field of VRPTW. Chiang and

Russell (1996) and Afifi et al. (2013) both applied simulated annealing metaheuristic

with different neighborhood structures. Chiang and Russell (1996) applied the k-node

interchange process and the 𝜆-interchange mechanism as proposed by Osman (1993).

They also improved the simulated annealing process by a tabu list. The computational

tests generated better results in four of six data sets compared to previous research. In

Afifi et al. (2013), simulated annealing algorithm is applied in solving a VRPTW with

synchronization constraints, in which customers are allowed to be visited by more than

vehicles but the visits need to be synchronized. This paper used a 2-opt* and Or-opt

Figure 2.4 2-opt* heuristic

19

neighborhood heuristics in the local search procedure. The experiments showed this

algorithm to be fast and outperform existing approaches in solving this problem.

Tabu search algorithm is widely used in VRPTWs. Potvin et al. (1996) applied a

neighborhood structure based on the combination of 2-opt* and Or-opt methods. Taillard

et al. (1997) applied the cross change neighborhood heuristic. It used an adaptive

memory to store and select solutions. This methodology generated many good solutions

on Solomon’s test sets. Chiang and Russell (1997) developed four tabu search

metaheuristics including simple tabu search and tabu search including intensification,

diversification, and reactive strategies and compare their results. The above three

research applied sequential construction heuristic. Badeau et al. (1997) applied a parallel

tabu search algorithm and the cross neighborhood heuristic, while Schulze and Fahle

(1999) used a shift-sequence neighborhood heuristic based on simple customer shifts.

Computational results showed an evident improvement on computational time while

maintaining a high quality of solution. Thangiah et al. (1991) described a genetic

algorithm method called GIDEON. The first phase of this method used genetic algorithm

to divide customers into sectors or clusters and the second phase applied 𝜆-interchange

local optimization to relocate infeasible customers to other routes. Thangiah et al. (1994)

applied a hybrid metaheuristic method involving all three metaheuristics and the results

demonstrated the successful combination of tabu search, simulated annealing and genetic

algorithm.

2.2.7 Vehicle Routing Problem with Skill Sets (VRPSS)

In VRPSS, each technician has a set of skills and each requested service by the customers

requires a skill. The technician can serve a customer only if he or she masters the skill the

customer requires. Another problem relative to VRPSS is referred to as Technician

Scheduling and Routing Problem (TSRP). TSRP includes routing staff to serve requests

while taking into account time windows, skills, tools and spare parts.

The researches on VRPSS are very limited. Cappanera et al. (2011) was the first to

formulate the mathematical model for skill vehicle routing problem. They first defined

the problem of deciding a set of tours and each of them is operated by a skilled technician

in order to fulfill the service required by customers within a given tour. Then they

20

developed three mathematical models with increasing level of disaggregation and some

related valid inequalities that help enhance some less disaggregated models. Tests on

randomly generated examples proved that increasing disaggregation levels strengthen the

associated MILP bounds. However, the skill VRP is still hard to arrive at an optimal

solution within reasonable computational time according to their tests. Krishnamurti and

Iranmanesh (2012) discussed the vehicle routing problem with skill sets using both

integer programming model and local search. The authors tested the integer programming

model in small instances using Cplex. Then they applied the combination of two

neighborhood heuristics (intra-route and 2-opt) as the neighborhood structure in local

search. The intra-route heuristic searches neighborhood internally by removing customers

and insert them in the same route, while 2-opt heuristic removes customers from two

different routes and exchanges them if the technicians can serve the exchanged

customers. After the comparison of optimal solution and local search algorithm, the

authors found that with the increase of jobs and vehicles, the differences of computation

time and solutions between local search and integer programming model become

increasingly more significant.

Among TSRP, Xu and Chiu (2001) aimed at maximizing the number of requests served

while taking into consideration the skill constraints and priorities. Tang et al. (2007) also

accounted for different urgency levels and used a multi-period maximum collection

problem formulation to solve the problem. Pillac et al. (2013) proposed a parallel

metaheuristic to solve the TSRP without considering the dynamic setting such as

unexpected delays and new requests. The results showed a tiny gap of 0.23% to the

optimal solutions on Solomon’s benchmark (1987). Another research conducted by Pillac

et al. (2012) was the first to consider all the important components of TSRP. These

components include skills, tools, spare parts, and dynamically arriving requests. The

authors proposed a period optimization approach as well as a continuous optimization

approach. The computational results showed that the first method yields better results

within limited computation time compared to the other.

Another relative problem is the Field Service Scheduling Problem (FSSP) that focuses on

situations when the mobile workforce has to accomplish scattered tasks. Each task

21

requires a specific skill and each workforce possesses a combination of several skills.

Tasks also have deadlines and different priorities. Lesaint et al. (2003) worked on a FSSP

by developing a heuristic algorithm based on simulated annealing.Petrakis et al. (2012)

proposed both static and dynamic algorithms to solve this particular problem. Static

algorithms generate routes once a day in the morning, while dynamic algorithms process

new tasks throughout the day and update the routing schedules dynamically.

2.2.8 Travelling Repairman Problem (TRP)

Another problem relative to our research is the TRP. This problem is also known as the

minimum latency problem or the deliveryman problem. In a TRP, each node represents a

machine to be repaired, and there is only one repairman. The total waiting time is the sum

of the waiting time of all the nodes. The objective of this problem is to find a route that

minimizes the total waiting time. The repair times are assumed to be equivalent.

Among exact approaches for TRP, Yang (1989) applied a dynamic programming

algorithm. Simichi-Levi and Berman (1991) used a branch and bound algorithm to search

for the optimal tour sequence. Fischetti et al. (1993) built up a linear programming model

and obtained lower bounds for TRP. The proposed algorithm can optimally solve

problems with up to 60 nodes.

The first approximation algorithm is proposed by Blum et al. (1994). They proposed an

approximation algorithm with an approximation factor of 144. The best approximation

algorithm for general metric spaces known now was proposed by Chaudhuri et al. (2003)

with an approximation factor of 3.59. Considering the edge-weighted tree, the smallest

approximation factor of 3.03 was found by Archer and Blasiak (2010).

Researches on TRP using metaheuristics are limited in literature. Salehipour et al. (2011)

presented the first metaheuristic approach for TRP. These metaheuristics consist of a

greedy randomized approach used in the construction phase and a Variable

Neighborhood Descent or Variable Neighborhood Search used in the improvement phase.

Silva et al. (2012) proposed a metaheuristic approach based on a greedy randomized

approach in the construction phase and Variable Neighborhood Descent with random

22

neighborhood ordering in the improvement phase. This approach was tested on many

instances with up to 1000 customers and can optimally solve instances with up to 107

customers. Dewilde et al. (2013) developed a tabu search algorithm to solve the TRP with

profits. They applied the construction-improvement two-phase algorithm and used

multiple neighborhood heuristics. Computational results demonstrated the high quality

and efficiency of tabu search algorithm in finding very good solutions.

From the literature, common approaches of solving VRPs can be classified into exact

algorithms, heuristic algorithms, and metaheuristics. Thus, we would develop these three

types of methods to solve our problem as well. In heuristic algorithms, we select the

neighborhood structure based on the constraints of our problem and the computational

results demonstrated in the literature. In metaheuristic algorithms, we develop tabu search

and simulated annealing to solve the problem since these two approaches received the

most attention in metaheuristics according to the literature.

23

Chapter 3 Problem Context and Assumptions

The problem considered in this thesis aims at finding the optimal set of routes for a group

of technicians with limited availability in order to satisfy the installation service

requirements of customers with different appointment time windows. This problem can

be regarded as The Vehicle Routing Problem with Time Window and Skill Set

Constraints (VRPTWSS), which is a combination of the VRPTW and the VRPSS.

VRPTWSS has not received much attention in the literature. However, it is a problem

originated from real application and is worthwhile for further studies.

The process of allocating available technicians to suitable customers is time-consuming

and difficult especially considering the large number of customers in practice and the

complicated constraints in this particular problem. In this chapter, the definition and

assumptions of this problem are provided in detail and the scope of this thesis is clarified.

3.1 Problem Definition

There are a large number of installation jobs received by the subcontractor in each

working day. Every job has a specific skill requirement from the technician to complete

the job. When booking the installation appointments, customers can choose from a

variety of time windows and jobs must be started within the appointment time windows.

Each technician has a combination of skills with limited availability. A technician must

satisfy the skill requirement of the installation job and be able to start the job during the

installation time window of a customer. Due to the variety of experience, knowledge and

aptitude, technicians have distinct working efficiencies. Technicians are responsible for

both driving and serving customers. Besides, technicians arriving before the earliest

available time of a customer have to wait and start the service at the customer’s earliest

available time.

Regional difficulties are taken into account in this problem too. The client company

served by the subcontractor has identified that the time to complete the same jobs at

different regions varies in light of old or nonexistent infrastructure in some

neighborhoods. Besides, the client is responsible for estimating the basic service time to

24

complete each installation job and negotiating a predetermined service price with the

subcontractor based on the basic service time. Since the number of jobs offered by the

client is predetermined, the total revenue of the subcontractor in a given day is fixed and

the only way to increase the profit is to reduce the total cost. The objective of this

research is therefore to determine the combination of installation jobs and optimal routes

for a group of technicians under time window and skill set constraints in order to reduce

the total cost and computation time.

3.2 Problem Assumptions and Requirements

This section lists the detailed assumptions made and requirements of this problem:

 There is one depot in the entire system. Technicians must start from and return to

the depot for daily tasks.

 Customers can select a time window consisting of the earliest and latest available

time from several choices. In this research, we assume that time windows of

customers do not partially overlap.

 Technicians can select a time window consisting of their earliest and latest

available time from several choices as well. We assume that time windows of

customers are no longer than that of technicians and the time windows of

technicians do not partially overlap with the time windows of any customers.

 The service start time should be within the time window of each customer and the

available time period of the technician. However, technicians are not required to

finish the task within the available time periods of both the customer and the

technician.

 Technicians are required to return to the depot before 18 p.m.

 Not all available technicians have to be assigned to the installation jobs.

 Technicians have different working efficiencies, while working efficiencies of a

technician are assumed equal in performing different types of jobs. Hourly wage

of different technicians are not much variant and are assumed equal in this study.

The hourly wage of a technician is assumed equal during driving, waiting, and

performing tasks as well.

25

 The actual service time spent during performing each job is based on three

elements: basic service time, technician efficiency, and regional difficulty. Basic

service time is the estimated time to complete a specific job predetermined by the

client based on historic information of specific installation service or the industry

standards. Regional difficulty reflects the condition of infrastructure required to

complete the job at a customer’s location. The rating of regional difficulty is also

provided by the client based on existent records and evaluations. The rating of

technician efficiencies is predetermined by the subcontractor through the analysis

of history data.

 The total cost consists of technicians’ salary and vehicle operation cost.

Technician’s salary is calculated based on the total time spent during driving,

waiting, and performing jobs. Waiting cost is caused by early arrival at a

customer’s location. Vehicle operation cost is assumed to be fixed per unit of

driving time.

 Factors that cannot be realized in advance or controlled by the model are not

considered in this problem. Those factors may include: weather or traffic caused

delays, customers not at home or sudden cancellations, stochastic variations of

actual service time, lack or disruption of necessary infrastructure that cannot be

solved within one working day and so forth.

26

Chapter 4 Methodology

In this chapter, four models and algorithms are presented to allocate the customers to

eligible technicians and to determine the sequence of each technician route considering

time window and skill set constraints. A mixed integer linear programming (MILP)

model with binary variables is developed to find the optimal solution of this specific

problem. Preprocessing is adopted to determine the eligibility of technicians to serve each

customer in advance to simplify the MILP model and speed up computation. Since VRPs

belong to NP-hard problems (Clarke and Wright (1964)), it is hard to arrive at optimal

solutions for large-scale problems using an MILP model. Thus, a heuristic method is

proposed by integrating two inter-route neighborhood heuristics and two intra-route

heuristics. Finally, two metaheuristic algorithms (tabu search and simulated annealing)

are applied to search for better solutions. The following content will describe these four

methods in detail.

4.1 MILP Model

MILP (Hillier (2012)) is a method used to obtain an optimal result in a mathematical

model in which all the mathematical functions are linear. The mathematical model

consists of a linear function to be optimized (minimize or maximize), linear constraints,

and usually non-negative variables. Parameters and variables used in the introduced

MILP model are presented here followed by mathematical model and the preprocessing

method.

4.1.1 Sets and Parameters

𝑇𝑒𝑐ℎ𝑛𝑖𝑐𝑖𝑎𝑛𝑠 Set of technicians, {0, … , 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑐ℎ𝑛𝑖𝑐𝑖𝑎𝑛𝑠 -1}

𝑁𝑜𝑑𝑒𝑠 Set of nodes including customers and the depot. i.e., 𝑁𝑜𝑑𝑒𝑠 =

 {0,⋯ , 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠}, 0 denotes the depot

𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 Set of customers. i.e., 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 = {1,⋯ , 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠}

𝐴𝑅𝐶𝑆 Set of arcs from one node to another in 𝑁𝑜𝑑𝑒𝑠 set

𝑒𝑡𝑖, 𝑙𝑡𝑖 Time window of node 𝑖. Installation service at node 𝑖 can only

27

 start within this time period.

𝑡𝑒𝑐ℎ_𝑒𝑡𝑘, 𝑡𝑒𝑐ℎ_𝑙𝑡𝑘 Time window of technician 𝑘. Technician 𝑘 can only start work at a

 Customer’s location within this time period

𝑏𝑎𝑠𝑖𝑐𝑡𝑖𝑚𝑒𝑖 Basic service time of completing the job at node 𝑖. The basic service

 time at the depot is 0 since the depot is assumed as a node

𝑟𝑒𝑔𝑖𝑜𝑛𝑎𝑙𝑑𝑖𝑓𝑓𝑖 Regional difficulty of node 𝑖

𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦𝑘 Efficiency of technician 𝑘

𝑎𝑐𝑡𝑢𝑎𝑙𝑡𝑖𝑚𝑒𝑖𝑘 Actual service time for technician 𝑘 at node 𝑖. i.e.,

 = 𝑏𝑎𝑠𝑖𝑐𝑡𝑖𝑚𝑒𝑖 × 𝑟𝑒𝑔𝑖𝑜𝑛𝑎𝑙𝑑𝑖𝑓𝑓𝑖/𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦𝑘 .

𝑇𝑟𝑎𝑣𝑒𝑙𝑡𝑖𝑚𝑒𝑖𝑗 Travel time from node 𝑖 to node 𝑗, (𝑖, 𝑗)𝜖𝐴𝑅𝐶𝑆

𝑓 Vehicle operation cost per hour

𝑀 The big M parameter

𝑤𝑎𝑔𝑒 Hourly wage of technicians

𝑒𝑙𝑖𝑔𝑖𝑏𝑖𝑙𝑖𝑡𝑦𝑖𝑘 = {
1 If technician 𝑘 can serve customer 𝑖,
0 Otherwise.

4.1.2 Variables

𝑥𝑖𝑗𝑘 = {
1 If technician 𝑘 visits node 𝑗 right after node 𝑖, (𝑖, 𝑗)𝜖𝐴𝑅𝐶𝑆
0 Otherwise.

𝑣𝑘 = {
1 If technician 𝑘 is assigned to work,

0 Otherwise.

𝑠𝑖 ≥ 0 Service start time at node 𝑖.

𝑑0𝑘 ≥ 0 Departure time of technician 𝑘 from the depot

𝑎0𝑘 ≥ 0 Arrival time of technician 𝑘 to the depot

𝑂𝑖𝑘 ≥ 0 Waiting time of technician 𝑘 at customer 𝑖’s location

28

𝑢𝑖 ≥ 0 Subtour elimination variable for customer 𝑖

4.1.3 Objective Function

Minimize:

∑ 𝑤𝑎𝑔𝑒 ∗ (𝑎0𝑘 − 𝑑0𝑘) + ∑ ∑ 𝑓 ∗ 𝑇𝑟𝑎𝑣𝑒𝑙𝑡𝑖𝑚𝑒𝑖𝑗
𝑘𝜖𝑇𝑒𝑐ℎ𝑛𝑖𝑐𝑖𝑎𝑛𝑠(𝑖,𝑗)𝜖𝐴𝑅𝐶𝑆,𝑘𝜖𝑇𝑒𝑐ℎ𝑛𝑖𝑐𝑖𝑎𝑛𝑠

∗ 𝑥𝑖𝑗𝑘 (4.1)

4.1.4 Constraints

Assignment Constraint

∑ ∑ 𝑥𝑖𝑗𝑘 = 1; 𝑘𝜖𝑇𝑒𝑐ℎ𝑛𝑖𝑐𝑖𝑎𝑛𝑠𝑖𝜖𝑁𝑜𝑑𝑒𝑠 ∀𝑗 𝜖 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 (4.2)

Starting from and Ending at the Depot

∑ 𝑥0𝑗𝑘 = 𝑣𝑘; ∀𝑘 𝜖 𝑇𝑒𝑐ℎ𝑛𝑖𝑐𝑖𝑎𝑛𝑠

𝑗 𝜖 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠

 (4.3)

∑ 𝑥𝑖0𝑘 = 𝑣𝑘; ∀𝑘 𝜖 𝑇𝑒𝑐ℎ𝑛𝑖𝑐𝑖𝑎𝑛𝑠

𝑖 𝜖 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠

 (4.4)

𝑥𝑖𝑗𝑘 ≤ 𝑣𝑘; ∀𝑖 𝜖 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠, ∀ 𝑗 𝜖 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠, ∀𝑘 𝜖 𝑇𝑒𝑐ℎ𝑛𝑖𝑐𝑖𝑎𝑛𝑠 (4.5)

Flow Balance Constraint

∑ 𝑥𝑖𝑗𝑘
𝑖 𝜖 𝑁𝑜𝑑𝑒𝑠

− ∑ 𝑥𝑗𝑖𝑘
𝑖 𝜖 𝑁𝑜𝑑𝑒𝑠

= 0; ∀𝑗 𝜖 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠, ∀𝑘 𝜖 𝑇𝑒𝑐ℎ𝑛𝑖𝑐𝑖𝑎𝑛𝑠 (4.6)

Sub-tour Elimination Constraint

𝑢𝑖 − 𝑢𝑗 + 𝑛 ∗ (∑ 𝑥𝑖𝑗𝑘
𝑘 𝜖 𝑇𝑒𝑐ℎ𝑛𝑖𝑐𝑖𝑎𝑛𝑠

) ≤ 𝑛 − 1; ∀𝑖 𝜖 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠, ∀𝑗 𝜖 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 (4.7)

Time Window Constraints

𝑒𝑡𝑖 ≤ 𝑠𝑖 ≤ 𝑙𝑡𝑖; ∀𝑖 𝜖 𝑁𝑜𝑑𝑒𝑠 (4.8)

𝑑0𝑘 ≥ 𝑡𝑒𝑐ℎ_𝑒𝑡𝑘; ∀𝑘 𝜖 𝑇𝑒𝑐ℎ𝑛𝑖𝑐𝑖𝑎𝑛𝑠 (4.9)

29

𝑎0𝑘 ≤ 𝑙𝑡0; ∀𝑘 𝜖 𝑇𝑒𝑐ℎ𝑛𝑖𝑐𝑖𝑎𝑛𝑠 (4.10)

𝑎0𝑘 ≥ 𝑑0𝑘; ∀𝑘 𝜖 𝑇𝑒𝑐ℎ𝑛𝑖𝑐𝑖𝑎𝑛𝑠 (4.11)

Service start time Constraints

𝑠𝑖 + 𝑇𝑟𝑎𝑣𝑒𝑙𝑡𝑖𝑚𝑒𝑖𝑗 + 𝑎𝑐𝑡𝑢𝑎𝑙𝑡𝑖𝑚𝑒𝑖𝑘 ≤ (1 − 𝑥𝑖𝑗𝑘) ∗ 𝑀 + 𝑠𝑗; ∀ (𝑖, 𝑗)𝜖 𝐴𝑅𝐶𝑆,

𝑘 𝜖 𝑇𝑒𝑐ℎ𝑛𝑖𝑐𝑖𝑎𝑛𝑠, 𝑖, 𝑗! = 0 (4.12)

𝑑0𝑘 + 𝑇𝑟𝑎𝑣𝑒𝑙𝑡𝑖𝑚𝑒0𝑗 ≤ (1 − 𝑥0𝑗𝑘) ∗ 𝑀 + 𝑠𝑗; ∀ 𝑗 𝜖 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠,

𝑘 𝜖 𝑇𝑒𝑐ℎ𝑛𝑖𝑐𝑖𝑎𝑛𝑠 (4.13)

Eligibility constraint

𝑥𝑖𝑗𝑘 ≤
𝑒𝑙𝑖𝑔𝑖𝑏𝑖𝑙𝑖𝑡𝑦𝑖𝑘 + 𝑒𝑙𝑖𝑔𝑖𝑏𝑖𝑙𝑖𝑡𝑦𝑗𝑘

2
 (4.14)

The objective function in 4.1 minimizes the total cost of serving all the customers. The

objective function consists of the vehicle operation cost during driving and the salary of

technicians during driving, waiting, and actual service. The salary of technicians can be

calculated as the product of the hourly wages and the total working time of technicians

from the time of departure to the time of return to the depot.

Constraint 4.2 forces each customer to be visited exactly once and by only one technician

arriving from another node (depot or another customer).

Constraints 4.3, 4.4, and 4.5 jointly force technicians with some assigned jobs to start

from and end at the depot. In equation 4.3, 𝑥0𝑗𝑘 equals 1 if 𝑗 is the first customer visited

by technician 𝑘. Similarly, in equation 4.4, 𝑥𝑖0𝑘 equals 1 if 𝑖 is the last customer visited

by technician 𝑘. The sum of 𝑥0𝑗𝑘 for each technician 𝑘 and the sum of 𝑥𝑖0𝑘 both equal the

binary variable 𝑣𝑘. If 𝑣𝑘 equals 1, meaning that technician 𝑘 is assigned with jobs, the

technician must leave and return to the depot for only once. Otherwise, a technician

without jobs would not leave or return to the depot, which means all the 𝑥0𝑗𝑘 and 𝑥𝑖0𝑘 are

0 for this technician 𝑘. Therefore, constraints 4.3 and 4.4 guarantee the consistency of

leaving and returning to the depot. In constraint 4.5, all 𝑥𝑖𝑗𝑘 should be less than or equal

30

to the binary variable 𝑣𝑘 for each technician 𝑘 . The binary variable 𝑣𝑘 equals zero if

technician 𝑘 is not assigned with any jobs (i.e., all 𝑥𝑖𝑗𝑘 for technician 𝑘 is 0).

Constraint 4.6 forces a technician to leave one customer and then visit another one or

return to the depot. Customers in each route have to be consecutively connected. In this

equation, the total number of links pointing to each customer should equal the total

number of links leaving from this customer in the route of technician 𝑘. Associating with

constraint 4.2, the total number equals 1.

Constraint 4.7 is the Sub-tour Elimination Constraint proposed by Miller–Tucker–Zemlin

(1960). This constraint eliminates tours not starting from and ending at the depot.

Continuous variables 𝑢 should be non-negative. This constraint forces 𝑢𝑗 ≥ 𝑢𝑖 + 1, when

customer 𝑗 is visited directly after customer 𝑖 (i.e., ∑ 𝑥𝑖𝑗𝑘𝑘 𝜖 𝑇𝑒𝑐ℎ𝑛𝑖𝑐𝑖𝑎𝑛𝑠 =1). If there is a

sub-tour, the 𝑢𝑖 value will also be greater than 𝑢𝑗 value, which makes the above

inequality invalid.

Constraints 4.8, 4.9, 4.10, and 4.11 are time constraints for customers and technicians.

Constraint 4.8 forces service at each customer to start within their time windows.

Constraint 4.9 restricts technicians’ departure time from the depot to be no earlier than

their earliest available time. However, the job does not have to be finished within the

time window constraints of both the customer and the technician. Constraint 4.10 forces

all technicians to return to the depot before the latest available time of the depot.

Constraint 4.11 guarantees that each technician returns to the depot after departure time

from the depot.

Constraint 4.12 uses the big M method to force the service start time to be no earlier than

the arrival time at a customer. The LHS of the equation is the arrival time at customer 𝑗

represented by the summation of service start time, actual service time of customer 𝑖, and

the travel time from 𝑖 to 𝑗. If technician 𝑘 visits customer 𝑗 right after serving customer 𝑖

(i.e., 𝑥𝑖𝑗𝑘 = 1), the RHS equals 𝑠𝑗, which is the service start time of customer 𝑗. Thus, the

constraint guarantees that the delivering of service to a customer starts after the

technician arrives. If 𝑥𝑖𝑗𝑘 = 0, the RHS is a big number and the constraint is inactive

under this condition. Constraint 4.8 and 4.12 jointly restrict the service start time to be the

31

maximum of the technician’s arrival time and the earliest available time of the customer.

Similar to constraint 4.12, constraint 4.13 forces the service start time of the first

customer visited by each technician to be equal to or greater than the arrival time of

technicians.

Constraint 4.14 considers the eligibility of technicians to serve each customer in view of

both time window constraints and skill set constraints. Parameter 𝑒𝑙𝑖𝑔𝑖𝑏𝑖𝑙𝑖𝑡𝑦𝑖𝑘 equals 1 if

technician 𝑘 is eligible to serve customer 𝑖. Otherwise, the parameter equals 0. The LHS

𝑥𝑖𝑗𝑘 equals 1 only if technician 𝑘 is eligible to serve both customer 𝑖 and customer 𝑗.

4.1.5 Preprocessing Phase

Instead of determining the eligibility of technicians in the MILP model, a preprocessing

phase is adopted to determine the eligibility of technicians, which simplifies the MILP

model considering the complex combination of time window and skill set constraints.

Parameters required to determine the feasibility include the skill requirement and time

window of each customer as well as skill sets and time window of each technician.

To be specific, for each technician-customer pair, the first step is to check if the skill

required to complete the job is satisfied by the technician. The next step is to check if the

technician is available during the time window of the customer. If both requirements are

satisfied, the technician is eligible for the customer and the parameter eligibility equals 1

for this technician-customer pair.

4.2 Heuristic Algorithm

Heuristics are practical problem solving methods not guaranteed to find an optimal

solution, but to find a satisfactory feasible solution respecting the current objective

function. Heuristic algorithms can speed up the process of finding a near optimum

solution and are widely used when searching for an optimal solution is impractical. As

mentioned in Clarke and Wright (1964), most VRPs are NP-hard and large-scale

problems cannot be solved in reasonable time. Thus, a heuristic method is proposed in the

following to solve this problem. The heuristic method consists of two parts: initialization

and local improvement.

32

4.2.1 Initialization

The first step of the heuristic method is to find a good initial solution since the selection

of initial solution is of great significance to the final solution. The main steps of

initialization are summarized as follows (Pseudo Code 4.1):

 Step 1: Count the number of eligible technicians that can serve each customer

 Step 2: Pre-allocate all customers that can only be served by ≤ 𝑛 technicians. 𝑛

 is a predetermined parameter.

 Step 3: While there are unrouted customers:

 Select a technician (a route) and insert feasible unrouted customers

 into it based on Solomon’s insertion heuristic (Solomon (1987))

These three steps in initialization are illustrated in detail as follows.

1. Count the number of eligible technicians

Due to time and skill sets constraints, there might be customers that can be served by

only one technician in some cases. In order to avoid useless attempts and improve

efficiency, customers with limited feasible choices should be allocated first, which is

done in Step 2. Thus, it is necessary to check the number of eligible technicians for each

customer in this step. If no customer has been assigned to a technician, the technician is

eligible for a customer if both time window and skill set constraints are satisfied.

However, when the route of a technician is not empty, besides satisfying the time window

and skill sets constraints, the technician is eligible for the new customer only if the

service start time of both the new customer and those current customers in the route is

within their time windows respectively after the insertion of the new customer.

To be specific, when determining the feasibility of inserting a customer, we check the

feasibility of inserting the new customer into each potential insertion place in the route

and calculate the new service start time of each customer in the new route. The service

start time of a customer 𝑗 is the maximum of arrival time of the technician and the earliest

available time of the customer 𝑗. Suppose that the current technician visits customer 𝑗

directly after customer 𝑖, then the arrival time at customer 𝑗 is the sum of the service start

time 𝑠𝑖 at customer 𝑖 , the actual service time 𝑎𝑖 at customer 𝑖 , and the travel time 𝑡𝑖𝑗

33

between customer 𝑖 and customer 𝑗. Thus, the service start time for each customer can be

expressed by the following formulation:

𝑠𝑗 = max{𝑒𝑗 , 𝑠𝑖 + 𝑎𝑖 + 𝑡𝑖𝑗} (4.16)

The insertion place for the new customer is only acceptable if the service start time of all

customers after the insertion is still within their time windows. If the customer can be

inserted into at least one position of the current non-empty route, the technician is eligible

to serve the customer. According to the above analysis, the process of checking the

eligibility of a technician for a specific customer is summarized below.

Figure 4.1 Process of checking the eligibility of a technician for a specific

customer

34

2. Pre-allocation

After examining the eligibility of each technician following the above process, the

number of eligible technicians for each customer can be determined. Customers with less

than or equal to 𝑛 eligible technicians are allocated. We first set 𝑛 to be 1 and allocate

customers that can only be served by one technician. When trying to allocate these

customers, if the route of the only eligible technician is empty, the new route becomes

depot-customer-depot. If the route is not empty and has more than one feasible place for

the customer to be inserted, the insertion place is decided by Solomon’s first type

insertion heuristic (1987) (See Appendix A). Two factors are considered in this method to

determine the best insertion place for a customer in a technician route. The first factor is

the increase in total distance of the current route after the insertion; the second factor is

the delay of service start time of the subsequent customer of the new customer in the

current route. The customer is inserted into the feasible place with the lowest value of the

sum of these two factors.

After the allocation of a customer, the eligibility of the technician might change and

unrouted customers with only one eligible technician might appear again. Thus, after

customers with only one eligible technician are allocated, the number of eligible

technicians to serve all unrouted customers must be counted again. The newly generated

customers with only one eligible technician should be allocated as a matter of priority

until all remaining customers can be served by at least two technicians.

However, this pre-allocation does not guarantee a feasible solution. For example, a

customer might have two eligible potential technicians. However, after the allocation of

some customers, both these two technicians might become infeasible for the current

customer. In this case, the procedure should restart from the pre-allocation stage by

setting 𝑛 to 2, which means once all customers with one eligible technician have been

allocated, customers with two eligible technicians should be allocated. Since hourly wage

of technicians are assumed equal, the higher efficiency a technician has, the less service

time the technician will spend, which may result in more cost saving. Thus, the

technician with higher efficiency will be selected to serve the customer in this method. If

the route of the technician is empty, the new route becomes a single customer route.

35

Otherwise, the insertion place should be decided using Solomon’s method (1987) as just

described. Every time a new customer is allocated, the number of feasible technicians to

serve each unrouted customer must be checked again and unrouted customers with only

one eligible technician will be allocated first. The process repeats until all remaining

customers can be served by at least 𝑛 + 1 technicians. Similarly, after allocating all

customers with less than or equal to n eligible technicians, if a feasible initial solution

cannot be reached, the parameter n will be set to n + 1. The procedure repeats until a

feasible initial solution is reached or until the number of eligible technicians of a

particular customer becomes 0, which means the data set is infeasible.

The process of allocating customers with less than or equal to 𝑛 eligible technicians is

described as follows.

36

Figure 4.2 Process of pre-allocation

3. Select technicians and allocate unrouted customers

After the pre-allocation, the next step in initialization is to select a technician and then

allocate customers into his route. As explained before, preference is given to more

efficient technicians who can complete a job in less time, therefore potentially bringing

greater income into the company. However, if the technician with the highest efficiency

cannot serve any of the unrouted customers due to time or skill constraints, the technician

37

with the second highest efficiency is examined and the process repeats until a technician

is selected.

Once a technician is selected to initialize a route, customers that can be served by the

technician are then allocated into the route. If the route is empty, the algorithm will select

the first customer to be allocated following the initialization in Solomon’s heuristic

(1987). In this algorithm, two initialization criteria are considered to determine the first

customer in a route:

a) The farthest unrouted customer, and

b) The unrouted customer with the earliest deadline

The cost function for selecting the first customer 𝑖 is calculated by:

𝐶𝑖 = −𝛼 ∗ 𝑑0𝑖 + 𝛽 ∗ 𝑙𝑖 , 𝛼 + 𝛽 = 1; 𝛼, 𝛽 ≥ 0; (4.17)

Where 𝑑0𝑖 is the distance between the depot and customer 𝑖, and 𝑙𝑖 is the latest available

time of customer 𝑖. The farthest unrouted customer is allocated first in order to avoid

leaving the last unrouted customers widely apart. Among all customers that the current

technician can serve, the one with the minimum value of the cost function is selected as

the first customer to be visited. The two weights were derived empirically and the priority

concern for the selection of the first customer is the distance (Thangiah et al. (1994)).

Thus, these two weights were set to 𝛼 = 0.9 and 𝛽 = 0.1.

After the first customer is selected, the algorithm selects the next customer to be inserted

into the current technician route using two criteria proposed by Solomon’ insertion

heuristic (1987) (See Appendix A). The first criterion, as mentioned before, is applied to

determine the best feasible insertion place for each unrouted customer that can be served

by the technician. The second criterion for each customer is calculated as the difference

between the distance from the depot to the customer to be inserted and the first criterion

value. The customer with the minimum value of the second criterion is selected as the

next customer to be inserted in the current route.

Every time a new customer is inserted into the current route, the feasibility of the

technician might change and the process of checking eligibility should be implemented

38

again. The above process is repeated until all customers that can be served by the current

technician without violating time constraints are inserted. Then a new technician is

selected and customers are inserted. The process is repeated until all customers are

assigned to technicians and a feasible initial solution is created. The process of selecting a

technician and inserting customers into the route is as follows.

Figure 4.3 Process of selecting a technician and inserting customers

4.2.2 Local Improvement

Beginning with a feasible solution obtained from the initialization of this heuristic

method, a local search procedure will repeatedly search for better solutions from the

neighborhood of the current solution until no better solution can be found. The

neighborhood of a feasible solution is a set of solutions generated by a specific

39

neighborhood structure. In the literature, several commonly applied neighborhood

heuristics from previous researches on VRPTW are introduced. These neighbourhood

heuristics can be classified into inter-route heuristics that improve the current solution by

exchanging nodes between several routes and intra-route heuristics that achieve

improvements by working on a single route.

Transfer (also called relocate) and swap (or exchange) neighborhood heuristics proposed

by Prosser and Shaw (1996) are applied as inter-route heuristics in this research. A

transfer heuristic relocates a customer from one route to another, while a swap heuristic

exchanges two customers between two routes. Among inter-route neighborhood

heuristics, transfer is proved to be the most powerful operator leading to a better solution

among four neighborhood heuristics in Prosser and Shaw (1996). Besides, transfer and

swap heuristics only change at most one customer at a time from a route. Considering the

tight constraints of time and skills in the problem under study, the feasible neighborhood

in each iteration is very limited. Big changes from the previous solution may only lead to

infeasible solutions. Thus, although some neighborhood heuristics such as 2-opt* and

Shift-sequence are effective in VRPTWs (Potvin and Rousseau (1995), Schulze and

Fahle (1999)), they sometimes result in big changes from the previous solution and spend

a lot of time on searching for areas that can only generate infeasible solutions.

Once customers assigned to a specific technician are determined, the total actual service

time of the technician is fixed. The route of the current technician can be improved in two

ways. The first one is to rearrange the customers by sub-tour reversal in order to reduce

the total distance traveled, thereby reducing traveling cost. Besides, we decide to delay

departure time from the depot in order to potentially reduce unnecessary waiting time.

We operate both methods for intra-route improvements. The intra-route heuristics are

applied every time two new routes are generated by a transfer or swap neighbourhood

heuristic.

In summary, our local search starts off finding all feasible neighbors of the initial solution

through transfer heuristic and replaces the current solution with the neighbor leading to

the most decrease in total cost. The process repeats until no more improvement can be

achieved by any feasible neighbors of the current solution. Then the swap heuristic is

40

applied and the solution is repeatedly replaced by the best feasible neighbor with

improvement until no further improvement can be achieved. If swap heuristic leads to

improvement, transfer heuristic is applied again. The entire process terminates if neither

of these two heuristics can bring about any improvement. The intra-route heuristics are

applied after the generation of each feasible neighbor.

The three heuristics are explained in greater detail in the following.

1. Intra-route heuristics

In intra-route heuristics, we rearrange the customers by sub-tour reversal to shorten the

travel distance and delay technicians’ departure time from the depot to reduce the waiting

time.

In the process of rearrangement, only customers with the same time windows are allowed

to be exchanged because there is no overlapping time between time windows of

customers. For every sequence of two consecutive customers with the same time

windows, the algorithm exchanges these two customers and calculates the new service

start time of all customers in the current route. If the service start time of all customers is

within their time windows, the cost of this new route is calculated. The new route will be

accepted if it leads to a decrease in cost. If sequences of two consecutive customers with

the same time windows exist in the same route, all the sequences of three consecutive

customers with the same time windows will be examined. These sequences will be

reversed and the service start time is checked again. The process repeats until no more

consecutive customers with the same time windows can be reversed for improvement.

Through this procedure, the current route can be improved and the sequence of visiting

customers can be determined. Figure 4.4 provides an example of sub-tour reversal in

which the sequence of two customers A and B is reversed and then the sequence of three

customers C, E, and F is reversed.

41

Figure 4.4 Sub-tour reversal

Waiting time is incurred by early arrival at a customer’s location. Given that technicians

are paid from the time they leave the depot to the time of return, it may be beneficial to

delay technicians’ departure time from the depot on the premise of not violating the time

window constraints. The original service start time of each customer and the waiting time

of the technician at each customer’s location are initially calculated under the assumption

that all technicians leave the depot at their earliest available time. The original service

start time is calculated by equation 4.16. Suppose the current technician visits customer 𝑗

after customer 𝑖, waiting time at customer 𝑗 is calculated by:

𝑤𝑗 = max{0, 𝑒𝑗 − 𝑠𝑖 − 𝑎𝑖 − 𝑡𝑖𝑗} (4.18)

where 𝑠𝑖 is the service start time of customer 𝑖, 𝑎𝑖 is the actual service time of customer 𝑖,

𝑡𝑖𝑗 is the travel time between customer 𝑖 and 𝑗 , 𝑒𝑗 is the earliest available time of

customer 𝑗 , and 𝑠𝑖 + 𝑎𝑖 + 𝑡𝑖𝑗 is the arrival time at customer 𝑗’s location and 𝑒𝑗 is the

earliest available time of customer 𝑗 as mentioned in equation 4.16. Waiting time at each

customer is the difference between the earliest available time of a customer and the

technician’s arrival time at this customer’s location if technician arrives before the

earliest time. Otherwise, waiting time equals 0, meaning the service starts once the

technician arrives.

42

Figure 4.5 Waiting time improvement when feasible delay is less than waiting time

Figure 4.6 Waiting time improvement when feasible delay is greater than waiting time

Figure 4.5 and 4.6 provide examples of delaying departure time under different situations.

Assume the technician leaves the depot at his earliest available time (Figure 4.5 (a),

Figure 4.6 (a)), the non-zero waiting time 𝑤2 arises since the technician’s arrival time 𝐴2

43

is earlier than the earliest available time 𝑒2 of 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟2. When trying to minimize the

waiting time, we calculate the feasible delay of 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟1 as the difference between the

latest available time and the current service start time of this customer (equation 4.19).

𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒_𝑑𝑒𝑙𝑎𝑦𝑖 = 𝑙𝑖 − 𝑠𝑖 (4.19)

Then the technician can delay his departure time by the feasible delay at most. If the

technician visits more than one customer before visiting the customer 𝑢 with a non-zero

waiting time, the maximum feasible delay of the technician is calculated as:

max_𝑑𝑒𝑙𝑎𝑦 = min (𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒_𝑑𝑒𝑙𝑎𝑦0, 𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒_𝑑𝑒𝑙𝑎𝑦1. . . 𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒_𝑑𝑒𝑙𝑎𝑦𝑢−1) (4.20)

In Figure 4.5, the feasible delay of 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟1 is less than the waiting time 𝑤2. Thus, the

technician will delay the departure time and service start time at 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟1 by the

feasible delay. The waiting time also decreases as much as the feasible delay. In Figure

4.6, in contrast, the feasible delay of 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟1 is greater than the waiting time 𝑤2. The

technician will delay the departure time from the depot by the waiting time 𝑤2 and the

waiting time decreases to 0. In both situations, the service start time of 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟2 and

subsequent customers will not change. The departure delay can be calculated as:

𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒_𝑑𝑒𝑙𝑎𝑦 = {
𝑤𝑎𝑖𝑡𝑖𝑛𝑔_𝑡, 𝑖𝑓 𝑤𝑎𝑖𝑡𝑖𝑛𝑔_𝑡 < max_𝑑𝑒𝑙𝑎𝑦
 max_𝑑𝑒𝑙𝑎𝑦, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (4.21)

If the maximum feasible delay is greater than the non-zero waiting time in the route, once

the waiting time is eliminated, the next non-zero waiting time in the route can be dealt

with in the same way. Otherwise, the entire waiting time improvement process should be

terminated since no feasible delay is available considering time window constraints of

customers.

The two intra-route improvement methods are combined together to improve a single

route in this research. Once customers allocated to a technician are determined, feasible

sequences of visiting these customers are identified through the sub-tour reversal method.

For each feasible arrangement, if non-zero waiting time exists, the waiting time

improvement method should be applied to reduce the waiting time. Once the new

departure time from the depot is determined, the total cost of this route with the current

44

order can be calculated. The sequence with the lowest cost among all the feasible

sequences is recorded as the best one. The process of intra-route improvement of a

specific route is described as below (Pseudo Code 4.2):

 Set n=2

While there are sequences of n consecutive customers with same time window:

 For every sequence of n consecutive customers with the same time windows:

 Reverse the sequence

 If this new route after the reversal satisfies the time constraints:

 Calculate the waiting time at all the customers’ location

 If non-zero waiting time exists:

 Delay the departure time

 Set 𝑛 = 𝑛 + 1

The sequence with the lowest cost is the best route for the technician with given

customers

2. Transfer Heuristic

When looking for an improvement over the current solution by transferring a specific

customer, all eligible technicians and feasible insertion positions in the route of these

technicians should be identified and compared to find an optimal position for this

customer to be inserted. To be specific, if there are eligible technicians for a specific

customer other than its current technician, the customer is removed from the current route

and this route after removing the customer is improved by the intra-route heuristics. The

customer is then tested for insertion into each new eligible technician using Solomon’s

insertion heuristic (1987). Each new route of the eligible technicians after the insertion of

this customer is improved by the intra-route heuristics. Thus, the transfer heuristic only

changes two routes at a time, while other routes remain the same. If the total cost of these

two new routes is less than that of their original routes, there is an improvement and the

new solution is recorded.

45

Assume customer C is currently in the route of technician 𝑘1 and technician 𝑘2 and 𝑘3 are

eligible for customer C to be inserted, Figure 4.7 provides an example of transferring

customer C from the route of technician 𝑘1 to the route of technician 𝑘2 and 𝑘3.

Figure 4.7 The transfer of customer C

Once all eligible technicians for the current customer are examined, the customer is

transferred to the route leading to the lowest cost. If no improvement can be achieved by

transferring the customer, the solution will remain the same.

This Procedure repeats for all customers until no more improvement can be achieved by

transferring customers. The process of transferring a specific customer 𝑖 is described as

(Pseudo Code 4.3):

 Step 1: Find eligible technicians of customer 𝑖 through the process of Figure 4.1

 Step 2: Remove customer 𝑖 from the original route and improve the original

 route after removing customer 𝑖 using intra-route heuristics

 Step 3: For each eligible technician 𝑘 in the current solution:

 Insert customer 𝑖 into the route of technician 𝑘

 Apply intra-route heuristics to improve the new route

 Calculate the new total cost

46

 Step 4: If at least one transfer attempt leads to the decrease in cost:

 Relocate customer 𝑖 into the route leading to the most decrease in cost

3. Swap Heuristic

The first step in swap heuristic is to find potential eligible technicians for each customer.

A technician is potentially eligible for a customer if he satisfies the skill requirement and

is available during the time window of the customer without considering the allocated

customers in his route. The feasibility of inserting the new customer into the current route

of this potentially eligible technician is not checked here, because a customer in the

current route of the technician will be removed in the swap heuristic and this will

influence the feasibility of inserting the new customer into this route.

Similar to transfer heuristic, all possibilities of swapping a particular customer with

another customer from a different route are explored to seek improvement. The current

customer can be swapped with another customer only if their original technicians satisfy

the skill requirements of both customers and if the service start time of all the customers

in the two new routes is within their time windows after the swap. If the time window and

skill sets constraints are both satisfied by swapping the two customers, these two new

routes after the swap are tested for further improvement by intra-route heuristics. After

analyzing all the possibilities of swapping the current customer with other customers in

the route of all potential eligible technicians, the best solution leading to the decrease in

cost will be selected. Otherwise, the solution remains unchanged.

Suppose customer C is currently in the route of technician 𝑘1 and technician 𝑘2 and 𝑘3

are potentially eligible for customer C to be swapped with another customer, Figure 4.8

provides an example of swapping customer C with customer E in the route of

technician 𝑘2 and customer H in the route of technician 𝑘3.

47

Figure 4.8 The swap of customer C

The process above repeats for all customers in each route until no more improvement can

be achieved by swapping the customers. The process of swapping a specific customer 𝑖

with another customer which lead to the most savings on cost is as below (Pseudo Code

4.4):

 Step 1: Find potential eligible technicians of customer 𝑖 in consideration of time

 windows and skill sets constraints

 Step 2: Remove customer 𝑖 from the original route and improve this new route

 after the remove of 𝑖 by intra-route heuristics

 Step 3: For each potential feasible technician 𝑘2:

 For each customer 𝑗 in the route of technician 𝑘2:

 Remove customer 𝑗 from the route

 If customer 𝑖 can be inserted in the new route of 𝑘2 and 𝑗 can be

 inserted in the new route of 𝑘1:

 Swap customers 𝑖 and 𝑗 and apply intra-route heuristics to

 the two new routes after

 Calculate the new total cost and the decrease in cost

 Step 4: If at least one transfer attempt leads to the decrease in cost:

 Swap customer 𝑖 with the customer that can lead to the most decrease

48

4.3 Metaheuristic Algorithms

A heuristic model finds a local optimum through the local improvement process, while a

metaheuristic model escapes from a local optimum and looks for better local optimum in

the hope to land at the global optimum (Hillier (2012)). This sometimes means to accept

inferior solutions to the local optimum. Accepting worse solutions is the essential

property of some metaheuristic algorithms since it allows for searching for the global

optimal solutions in a more extensive region. The process of searching optimum or near

optimum solution is like climbing the highest hill among several hills for maximization

problems. The highest hill can be regarded as the global optimum solution for a specific

problem. Rather than stopping at the top of the current hill, some metaheuristic

algorithms allow the process to search a little way down the hill until it can start climbing

to the top of another hill. Even if it reaches the global optimum, the system will not

realize it and will continue searching until a stopping rule is applied. For minimization

problems like the problem on hand, the process of searching for global optimum is like

looking for the lowest foot of several mountains (see Figure 4.9).

Figure 4.9 Searching for the best solution

In this part, two metaheuristic algorithms are applied to search for global optimal

solution. These two algorithms are tabu search and simulated annealing.

49

4.3.1 Tabu Search

Tabu Search (TS) has a strong skill in “climbing the mountain” (Hillier (2012)). Tabu

search applies a local search procedure to find a local optimum. It accepts the best

solution in the neighborhood of the local optimum even if it is a non-improving solution.

However, once a local optimum is reached, the method may lead back to the same local

optimum in further iteration. To avoid this, a tabu list is applied to record a

predetermined number of recent changes and forbids moves reversing these changes

temporarily. This memory function permits a tabu search to jump out of local search and

explores other areas. The framework of a basic tabu search is as:

 Initialization: Begins with a feasible initial solution

 Iteration: During each iteration, it applies neighbourhood structure to find all

neighborhood of the current solution through local search. Then it gets rid of any

move that is currently forbidden by tabu list unless the move leads to the best

solution so far. For all other moves, the one with the best solution is adopted as

the new solution no matter if it leads to improvement to the current solution or not.

Then the tabu list is updated to avoid a cycle back to current solution. If the tabu

list is full, the oldest member in the list is removed to bring more flexibility for

future moves.

 Stopping rule: Certain stopping criterion must be adopted to end the iterations.

Commonly used stopping rules include a fixed number of iteration, a fixed

number of consecutive iterations without an improvement, or a fixed amount of

computer running time. Then the best solution from all iterations is accepted as

the final solution.

In applying a tabu search metaheuristic, several details must be worked out to fit a

particular problem before implementation. These details include the neighborhood

structure, the length of tabu list, the form of tabu moves, and the stopping rule adopted.

In our tabu search algorithm, we use the combination of transfer and swap neighbourhood

heuristics as the neighbourhood structure. The length of tabu list is decided based on

parameter analysis presented in the next chapter. When applying transfer neighbourhood

heuristic, the tabu move consists of the customer being relocated and its original route in

50

each iteration. In swap heuristic, since two customers from two different routes are

exchanged, the tabu move consists of the two customers being swapped and their original

routes.

The local optimal solution generated in the local improvement section is applied as the

initial solution in tabu search algorithm. In each iteration using transfer neighborhood

heuristic, all feasible neighbors of the current solution are explored. The immediate

neighbor with the lowest total cost among all neighbors is selected as the new trial

solution if it leads to lower cost than the current best solution, or if the move is not in the

tabu list. Otherwise, this neighbor is eliminated from consideration and the next best

neighbor is examined until the move of a neighbor is not forbidden by the tabu list. Once

a neighbor is selected as the new trial solution, the customer being relocated and its

original route are added to the tabu list. If the tabu list is full, the oldest tabu move is

deleted. The above procedure repeats and generates a new solution in each iteration. We

record the solutions obtained from each iteration and calculate the total cost.

After a fixed number of consecutive iterations without an improvement, the above

procedure stops. The solution with the lowest cost among all the iterations applying

transfer neighborhood heuristic is recorded as the initial solution for tabu search applying

swap heuristic. Then the same procedure repeats using swap heuristic until a fixed

number of non-improvement consecutive iterations are reached. The entire process

repeats until another predetermined number of iterations without an improvement is

executed using both transfer and swap heuristics.

Suppose TI is the predetermined total number of consecutive iterations without an

improvement, and I is the predetermined number of consecutive iterations without an

improvement by applying transfer or swap neighbourhood heuristic. The process of tabu

search metaheuristic is described as follows:

51

Figure 4.10 Process of tabu search

4.3.2 Simulated Annealing

The simulated annealing algorithm (SA) simulates the process of annealing in metal work

(Hillier (2012)). This physical annealing process initially melts a metal or glass at a high

temperature and gradually cools the substance until a stable state with preferred physical

properties is achieved. Early emphasis of simulated annealing algorithm is on exploring

as much feasible region as possible by taking steps in random directions and then the

emphasis gradually turns toward climbing upward by rejecting an increasing portion of

downward moves. Therefore, the process will often reach the top of the tallest hill given

enough time.

52

Specifically, the basic process of simulated annealing, just as for tabu search, is to move

from the current solution to a random neighbor from the local neighborhood in each

iteration. However, it differs from the tabu search in the selection of the immediate

neighbor to be the new solution. Let

𝑍𝑐= Objective function value for the current solution

𝑍𝑛= Objective function value for the next solution

𝑇 = A parameter influencing the probability of accepting a worse solution

Simulated Annealing algorithm creates a candidate solution randomly. Supposing a

minimization problem, the move selection rule for determining whether the candidate

solution can be accepted as the next trial solution is:

If 𝑍𝑛 ≤ 𝑍𝑐, always accept the current candidate as the next solution.

If 𝑍𝑛 > 𝑍𝑐, accept the candidate with the probability of:

Probability {acceptance} =𝑒
 𝑍𝑐−𝑍𝑛

𝑇

Thus, if the current candidate has better objective function value than the current

solution, it is always accepted as the new solution. If it is worse, the probability of

acceptance depends on the parameter T and the degree of how worse it is. Obviously, the

algorithm normally accepts candidate that is slightly worse than the current solution.

In this research, the local optimal solution generated in local search procedure is applied

as the initial solution in simulated annealing algorithm as well. The combination of

transfer and swap neighbourhood heuristics is applied as the neighbourhood structure to

search for new trial solutions. When applying transfer heuristic, we randomly select a

customer and find all eligible technicians of this customer. If there is more than one

eligible technician other than the current technician, the candidate solution is generated

by transferring this customer into the route of a randomly selected eligible technician. If

the customer cannot be relocated to other routes, another customer is randomly selected

until a feasible neighbor of the current solution is generated. As for swap heuristic, our

algorithm searches all feasible neighbors of the current trial solution in each iteration

53

since the number of feasible neighbors generated by swap heuristic is fewer than transfer

heuristic. Then the candidate solution is randomly selected from the feasible neighbors.

An essential question when designing a simulated annealing algorithm is to determine an

appropriate temperature (T) schedule. The algorithm initially sets a relatively high

temperature and then allows it to slowly decrease. This temperature schedule gradually

decrease the probability of accepting worse solutions, therefore forcing the algorithm to

gradually focus on the search area that has the potential to generate a close to optimum

solution after searching for large feasible areas. The temperature scheme usually includes

the starting temperature, the cooling down parameter, and the number of temperature

values.

In this research, the transfer neighbourhood heuristic is first applied to generate

immediate neighbors in simulated annealing algorithm. Once a predetermined number of

iterations are performed at each temperature value, the procedure stops. The swap

neighborhood heuristic is then applied and the above process repeats. The best solution

found is selected as the initial solution for the. The procedure of simulated annealing of

using either neighborhood heuristic is given as follows:

54

Figure 4.11 Process of simulated annealing

55

Chapter 5 Results and Discussions

In the methodology section, MILP model, heuristic algorithm as well as metaheuristic

algorithms are proposed to solve the VRPTWSS. For metaheuristic algorihms, both tabu

search and simulated annealing algorithms are applied. The neighborhood structure used

in heuristic and metaheuristic algorithms is the combination of transfer and swap

heuristics. In this chapter, a simulation process written in Python is used to generate data

and several examples are created by the simulation process to validate, verify and

compare different methods applied in this research. The MILP model is implemented in

GLPK 0.2.12 and Gurobi 7.0, while heuristic and metaheuristic algorithms are written

and conducted in Python 2.7.11. All the software is operated on an E1-SXTNTLIB-105

personal computer (CPU clock rate: 3.30GHz; RAM: 8.00 GB).

These four methods are compared based on the total cost and computation time. Since

both GLPK and Gurobi are only capable of solving small-scale examples within

reasonable time, we only provide comparisons of different algorithms by testing

examples with 10, 15, 20, and 25 customers. Finally, heuristic and metaheuristic

algorithms are examined on large-scale examples.

5.1 Data Simulation

Three distinct data sets can be assumed for the problem at hand: customer data (including

the depot for simplicity's sake), technician data, and travel time between each pair of

nodes (depot and customers). The following section describes the data generation

procedure in further detail.

5.1.1 Customer data

Among customer-related data, the quantity of customers determines the scale of the

problem. Other data involve the skill requirement, regional difficulty, basic service time,

and time window of each customer.

In our examples, we assume that there are five different skill types denoted by 1, 2, 3, 4, 5

and 1 is the basic skill every technician masters. The depot has actual service time of 0

56

and all the technicians should depart from it. Thus, the depot can be regarded as a

customer with basic service time of zero and the basic skill requirement 1.

Basic service time is the estimated time to perform the job and is evaluated based on the

job type and requirement of each particular customer. The basic service time of

customers is randomly selected from the range of 30 to 90 minutes with equal chance.

Regional difficulties reflect the condition of infrastructure at each customer’s location. In

our examples, Regional difficulties are assumed to be greater than or equal to 1. Regional

difficulty of 1 means that the regional factor of a particular customer does not increase

the actual service time. In this problem, we suppose that most customers are located in

urban areas with necessary infrastructure in good condition. Thus, regional difficulties of

most customers’ location are close to 1 and they are set to be random parameters with a

Pareto distribution that matches our assumption according to its probability density

function (see Figure 5.1). Potential problems of lack or disruption of necessary

infrastructure that cannot be solved within reasonable time is excluded from this problem,

so the values of regional difficulties are also set to be less than 2. Regional difficulty of

the depot is set to be 1.

Figure 5.1 Probability density function of Pareto distribution (Danvildanvil (2014))

In our examples, time windows of customers are assumed to have the same length of two

hours and are randomly selected from the four possible choices with equal chance: 8 a.m.

to 10 a.m., 10 a.m. to 12 p.m., 12 p.m. to 14 p.m., and 14 p.m. to 16 p.m. We also assume

57

that all technicians are required to leave the depot after 8 a.m. and return before 18 p.m.

Thus, time window of the depot is set to be from 8 a.m. to 18 p.m.

5.1.2 Technician data

Technician-related data are the number of technicians, working efficiencies, availabilities

and skill set of the technicians.

The number of technicians is determined based on the number of customers. In our

examples, in order to improve the feasibility of simulated data, when the number of

customers is small, the ratio of the number of customers to the number of technicians is

set to be relatively small because the random characteristic of data requires more

technicians to deal with the uneven distribution of time windows and skill requirements

of both technicians and customers. With the increase of customers, the number of

technicians increases as well and the proportion is set to be larger. For relatively large-

scale problems, the proportion is preset to be 3.2 according to the calculation of average

number of customers a technician can serve. The average available time for a technician

is 6 hours and the average travel time between every two nodes is 40 min. The average

basic service time is 60 min and the average working efficiency of each technician is 1.

Besides, the regional difficulty is estimated as 1.2 on average. Thus, each job requires

112 min including travel time and service time and each technician can therefore serve

around 3.2 customers on average. To be specific, the amount of technicians is calculated

by following formulation.

𝑛𝑢𝑚𝑡𝑒𝑐ℎ𝑛𝑖𝑐𝑖𝑎𝑛 =

{

𝑛𝑢𝑚𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟

2.5
, 𝑛𝑢𝑚𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟 ≤ 10

𝑛𝑢𝑚𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟

3
, 𝑛𝑢𝑚𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟 ≤ 20

𝑛𝑢𝑚𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟

3.2
, 𝑒𝑙𝑠𝑒.

 (5.1)

According to equation 5.1, there are 4, 5, 6 and 7 technicians respectively used in

problems with 10, 15, 20, and 25 customers.

The efficiencies of technicians must be greater than 0. In this problem efficiencies are

designed to follow normal distribution with 1 as mean and 0.4 as the standard deviation.

Efficiencies less than or equal to 0 will be removed.

58

To increase the feasibility of data, all technicians are assumed to have the basic skill 1

and two more among the five skills. As for availabilities, all technicians are assumed to

have at least four hours’ available time randomly selected from the following time with

equal chance: 8 a.m. to 12 p.m., 8 a.m. to 14 p.m., 8 a.m. to 16 p.m., 10 a.m. to 14 p.m.,

10 a.m. to 16 p.m., 12 p.m.to 16 p.m. To reduce the probability of generating infeasible

problem, the first two technicians are designed to have the complementary skill sets: [1,

3, 5] and [1, 2, 4] and have the full availability from 8 a.m. to 16 p.m. Therefore, every

customer has at least one qualified technician considering both time window and skill set

constraints.

5.1.3 Travel time

The travel distance is regarded as straight-line distance in this problem for simplicity

reasons. Given the latitude and longitude of all the nodes, the distances between every

two nodes can be calculated following Haversine formula. The haversine formula is

extensively used in navigation research and it calculates the shortest distance between

two points given their longitudes and latitudes.

According to the Haversine formula, the first step is to convert the degree difference of

longitudes and latitudes into radians. The haversine of the central angle can be calculated

by the following equation:

ℎ𝑎𝑣 (
𝑑

𝑟
) = ℎ𝑎𝑣(𝜑2 − 𝜑1) + cos(𝜑1) cos(𝜑2)ℎ𝑎𝑣(𝜆2 − 𝜆1) (5.2)

, where ℎ𝑎𝑣 is the haversine function:

ℎ𝑎𝑣(𝜃) = 𝑠𝑖𝑛2 (
𝜃

2
) =

1−cos(𝜃)

2
 (5.3)

In the Haversine formula, d is the spherical distance between two points; 𝑟 is the radius

of earth, 6378.7 in kilometers. 𝜑1, 𝜑2 denote the Latitudes of two points in radians, and

𝜆1, 𝜆2 denote the Longitudes.

After some mathematical transformations, distance between two points can be written as:

𝑑 = 2𝑟 arcsin (√ℎ𝑎𝑣(𝜑2 − 𝜑1) + cos(𝜑1) cos(𝜑2)ℎ𝑎𝑣(𝜆2 − 𝜆1))

59

= 2𝑟 arcsin(√𝑠𝑖𝑛2 (
𝜑2 − 𝜑1

2
) + 𝑐𝑜𝑠(𝜑1) 𝑐𝑜𝑠(𝜑2) 𝑠𝑖𝑛

2 (
𝜆2 − 𝜆1
2

)) (5.4)

The haversine formula provides computationally exact results even at small distances

according to Cassa et al. (2005). Therefore, this formula can be used in this problem with

small distances. The travel time between every two nodes is calculated by dividing the

distance by the speed.

In our problem, maximum travel time between two arbitrary nodes in this problem is

designed to be less than 80 minutes. The average speed is estimated to be 40 kilometers

per hour in consideration of the complex road conditions and speed limit in cities. Thus,

the maximum distance between every two nodes should be less than 53.33 kilometers. In

our examples, two points are randomly selected with the straight-line distance to be

around 53.33 kilometers. These two nodes are regarded as the two opposite corners of a

rectangular. Based on these two nodes, the longitudes and latitudes of all customers and

the depot are randomly selected within this rectangular. This guarantees travel time

between every two nodes to be within 80 minutes.

In data simulation phase, because of the randomness of data, infeasible data sets might

exist. For example, suppose two customers with the same time windows can only be

served by one technician. After one customer being allocated in the route of the

technician, the other customer may not be served by the technician. Under this condition,

the process will terminate and new data sets will be generated.

In the data simulation phase, we assume the time windows of customers do not partially

overlapped. In a more general case in which customers have the freedom to select any

time periods as their time windows, the MILP model will not change. As for the heuristic

algorithm, the sub-tour reversal intra-route improvement heuristic will be changed, while

other improvement heuristics remain the same as the current algorithm. The sub-tour

reversal will reverse sequences of consecutive customers with the same overlapping time

windows instead of only reversing customers with the exactly same time windows. The

selection of all other data will not influence the algorithms developed in this research.

60

Thus, the algorithms in this research can be applied to other VRPTWSS problems with

only slight modifications.

5.2 Selection of parameters for metaheuristic algorithms

Before comparing different methods, several parameters for both tabu search and

simulated annealing should be determined. The selection of parameters exerts a

significant influence on solutions and computation time. Normally, a larger number of

iterations has higher opportunity of generating better solutions but will take more

computation time. In this section, we select parameters by investigating several examples.

5.2.1 Tabu Search parameters

Tabu search parameters to be determined in this problem include the length of tabu list,

the number of non-improved consecutive iterations for transfer and swap neighbourhood

heuristics, and the total number of non-improving consecutive iterations.

We tend to select a large number of iterations to search for larger areas. In the

meanwhile, it is necessary to take into account the complexity of our problem and the

goal of saving computation time.

To determine the number of iterations, we generate 10 sets of data for each scale of

problems with 10, 15, 20, and 25 customers and use the combinations of (10, 40), (20,

80), and (50, 400) as the number of non-improved consecutive iterations for each

neighborhood heuristic and the total number of non-improved consecutive iterations to

study the influence of different parameter combinations on optimality and computation

time. The results of employing different parameters on different scales of problems are

shown in Table 5.1.

Table 5.1 Comparison of Tabu Search parameter combinations

 Tabu Search

 Param 10, 40 20, 80 50, 400

 Examples Optimal Cost Time optimality% Cost Time optimality% Cost Time optimality
%

10
Customers

1 288.30 288.30 2.04 100.00% 288.30 2.84 100.00% 288.30 5.36 100.00%

2 384.24 384.24 2.35 100.00% 384.24 3.89 100.00% 384.24 11.15 100.00%

3 440.43 445.88 2.69 98.78% 445.88 3.03 98.78% 445.88 8.29 98.78%

4 509.11 509.11 0.26 100.00% 509.11 0.26 100.00% 509.11 0.26 100.00%

61

Table 5.1 Comparison of Tabu Search parameter combinations (Continued)

Table 5.1 shows that with the increase of iterations, the number of optimal solutions and

the percentage of costs solved to optimality increase. However, the influence of iteration

numbers on total cost is less significant for small size examples. In Table 5.1, all

parameter sets lead to the same optimality percentage in all 10-customer examples, while

in other examples, the (50, 400) parameter set performs better than other two sets, leading

to 10 optimal solutions in 15-customer examples, 5 over 10 optimal solutions in 20-

10
Customers

5 453.49 459.95 0.27 98.60% 459.95 0.27 98.60% 459.95 0.28 98.60%

6 330.75 330.75 1.92 100.00% 330.75 3.17 100.00% 330.75 11.47 100.00%

7 665.74 665.74 0.21 100.00% 665.74 0.18 100.00% 665.74 0.64 100.00%

8 432.51 432.51 1.99 100.00% 432.51 2.47 100.00% 432.51 5.51 100.00%

9 381.31 381.31 1.27 100.00% 381.31 1.44 100.00% 381.31 4.45 100.00%

10 533.63 533.63 0.69 100.00% 533.63 1.30 100.00% 533.63 2.16 100.00%

Avg 441.95 443.14 1.37 99.74% 443.14 1.89 99.74% 443.14 4.96 99.74%

15
Customers

1 333.27 333.27 5.50 100.00% 333.27 10.03 100.00% 333.27 32.80 100.00%

2 405.78 405.78 4.82 100.00% 405.78 19.20 100.00% 405.78 53.97 100.00%

3 389.07 389.07 7.22 100.00% 389.07 12.63 100.00% 389.07 112.06 100.00%

4 444.52 444.52 4.89 100.00% 444.52 8.11 100.00% 444.52 25.94 100.00%

5 381.53 381.53 5.97 100.00% 381.53 9.73 100.00% 381.53 31.03 100.00%

6 410.98 420.19 4.48 97.81% 420.19 7.75 97.81% 410.98 36.79 100.00%

7 571.12 571.12 2.27 100.00% 571.12 4.45 100.00% 571.12 23.04 100.00%

8 734.26 734.26 4.23 100.00% 734.26 6.98 100.00% 734.26 19.46 100.00%

9 858.24 858.24 2.36 100.00% 858.24 4.68 100.00% 858.24 15.81 100.00%

10 656.70 689.93 5.20 95.18% 656.70 8.25 100.00% 656.70 23.13 100.00%

Avg 518.55 522.79 4.69 99.30% 519.47 9.18 99.78% 518.55 37.40 100.00%

20
Customers

1 968.07 971.85 3.46 99.61% 971.85 6.00 99.61% 971.85 18.85 99.61%

2 633.24 646.99 6.20 97.87% 646.99 10.73 97.87% 646.99 34.98 97.87%

3 609.21 611.82 7.65 99.57% 609.30 14.58 99.98% 609.30 41.09 99.98%

4 931.65 931.65 2.25 100.00% 931.65 4.69 100.00% 931.65 12.25 100.00%

5 864.48 934.74 5.54 92.48% 865.43 18.11 99.89% 881.94 27.88 98.02%

6 867.01 872.51 4.43 99.37% 872.51 10.46 99.37% 867.01 42.65 100.00%

7 826.32 833.55 7.54 99.13% 833.55 13.37 99.13% 826.32 43.73 100.00%

8 765.06 772.92 11.38 98.98% 783.06 12.82 97.70% 783.06 28.47 97.70%

9 710.30 710.30 7.09 100.00% 710.30 12.38 100.00% 710.30 35.58 100.00%

10 1022.99 1045.68 4.29 97.83% 1045.68 7.30 97.83% 1022.99 35.47 100.00%

Avg 819.83 833.20 5.98 98.40% 827.03 11.04 99.13% 825.14 32.10 99.36%

25
Customers

1 535.32 543.95 35.88 98.41% 539.34 65.75 99.25% 538.29 177.39 99.45%

2 1119.12 1154.00 15.47 96.98% 1119.12 26.58 100.00% 1119.12 87.98 100.00%

3 1103.00 1177.75 8.85 93.65% 1117.34 28.32 98.72% 1103.00 103.49 100.00%

4 914.23 939.89 15.77 97.27% 915.11 28.19 99.90% 914.23 88.01 100.00%

5 982.89 982.89 10.72 100.00% 982.89 27.91 100.00% 982.89 45.75 100.00%

6 1239.41 1254.37 9.17 98.81% 1254.37 14.98 98.81% 1254.37 33.51 98.81%

7 947.35 965.85 8.34 98.08% 965.85 12.35 98.08% 965.85 85.61 98.08%

8 929.17 1000.44 12.65 92.88% 929.17 51.70 100.00% 929.17 121.44 100.00%

9 1200.62 1231.41 6.73 97.50% 1231.41 19.19 97.50% 1231.41 61.14 97.50%

10 975.48 1038.21 5.05 93.96% 975.48 18.22 100.00% 975.48 43.18 100.00%

Avg 994.66 1028.87 12.86 96.75% 1003.01 29.32 99.23% 1001.38 84.75 99.33%

62

customer examples and 6 over 10 optimal solutions in 25-customer examples. However,

more iterations do not guarantee a better solution.

In all the examples with 10 to 25 customers, the parameter combination of (50, 400)

achieves an average of more than 99% optimality. Higher values of iteration numbers are

not tested due to limited improvement in the solution and the increase in computation

time especially for large-scale examples. Thus, we set the number of non-improved

consecutive iterations for transfer and swap neighbourhood heuristics to be 50 and the

total number of non-improved consecutive iterations to be 400 in all the following

examples.

Given the small scale of our examples, we select the length of tabu list from the set of (4,

6, 8). We test 10 examples in Table 5.2 to determine the tabu size and verify the

rationality of these parameters. The table illustrates that tabu size 8 generates the lowest

means for these ten examples, while tabu size of 4 has the lowest standard deviations.

Table 5.2 Comparison of different Tabu Size

According to the above results, we adopt (50, 400, 8) as the parameter set so as to find

close to optimal solution as well as to control the computation time.

5.2.2 Simulated Annealing parameters

In this research, the starting temperature of the temperature schedule is designed to be the

objective function value of the initial solution multiplies 0.2, and the cooling parameter is

0.95, where

Tabu

size

Example

1

Example

2

Example

3

Example

4

Example

5

Example

6

Example

7

Example

8

Example

9

Example

10

Mean Standar

d

Deviatio

n

4 543.95 1119.12 1137.28 914.23 982.89 1254.37 965.85 957.60 1231.41 975.48 1008.22 192.30

6 538.29 1119.12 1117.34 914.23 982.89 1254.37 965.85 929.17 1231.41 975.48 1002.81 193.32

8 538.29 1119.12 1103.00 914.23 982.89 1254.37 965.85 929.17 1231.41 975.48 1001.38 192.52

optimal

solution

535.32 1119.12 1103.00 914.23 982.89 1239.41 947.35 929.17 1200.62 975.48 994.66 188.16

63

𝑇1 = 0.2𝑍𝑐, 𝑍𝑐 is the objective function value of the initial solution

𝑇2 = 0.95𝑇1,

𝑇𝑛 = 0.95𝑇𝑛−1.

Other simulated annealing parameters to be determined involve the number of

temperatures and the number of iterations on each temperature. Besides, the randomness

of simulated annealing algorithms requires several runs to eliminate the effect of the

algorithm randomness on the result.

The simulated annealing algorithm randomly selects one neighbor of the current trial

solution in each iteration. This randomness process often results in different solutions

when running an example using the same parameters. The more replications we run, the

more accurate it is to reflect the performance in obtaining optimal value of this algorithm.

However, more replications require the increase in workload and computation time. Thus,

we need to determine the number of replications for our problems.

In this thesis, we test 1, 3, 5 replications on five 25-customer examples with 20

temperatures and 50 iterations on each temperature. The average cost of running 1, 3, and

5 replications of these five examples can be found in Appendix B. Figure 5.2 summarizes

the mean and standard deviation of running 1, 3, 5 replications of five examples.

According to Figure 5.2, the average cost running different numbers of replications are

similar. Running 1 replication generates the highest standard deviation, while 3 and 5

replications lead to similar standard deviations. Thus, 3 replications are conducted in all

the examples using simulated annealing in this research.

64

Figure 5.2 One standard of the Mean for 1, 3, 5 replications

Another two parameters to be determined are the number of temperatures and the number

of iterations on each temperature. Similar to the process of selecting parameters in Tabu

Search, here we compare three different parameter combinations: (20, 20), (50, 50) and

(50, 100) in Table 5.3.

Table 5.3 Comparison of Simulated Annealing parameter combinations

SA

Param 20, 20 50, 50 50, 100

Examples Optimal Cost Time optimality
%

Cost Time optimality
%

Cost Time optimality
%

10
Customers

1 288.30 288.30 2.31 100.00% 288.30 17.54 100.00% 288.30
2856

34.271
78578

100.00%

2 384.24 384.24 2.53 100.00% 384.24 13.33 100.00% 384.24 26.99 100.00%

3 440.43 440.43 2.12 100.00% 440.43 11.26 100.00% 440.43 22.39 100.00%

4 509.11 509.11 2.10 100.00% 509.11 10.11 100.00% 509.11 19.88 100.00%

5 453.49 453.49 4.51 100.00% 453.49 23.17 100.00% 453.49 48.35 100.00%

6 330.75 330.75 2.65 100.00% 330.75 17.77 100.00% 330.75 31.32 100.00%

7 665.74 665.74 0.88 100.00% 665.74 1.14 100.00% 665.74 1.67 100.00%

8 432.51 432.51 2.79 100.00% 432.51 14.44 100.00% 432.51 28.33 100.00%

9 381.31 381.31 2.12 100.00% 381.31 12.05 100.00% 381.31 24.76 100.00%

10 533.63 533.63 1.88 100.00% 533.63 15.03 100.00% 533.63 27.49 100.00%

Avg 441.95 441.95 2.39 100.00% 441.95 13.58 100.00% 441.95 26.55 100.00%

15
Customers

1 333.27 333.27 4.63 100.00% 333.27 23.74 100.00% 333.27 46.44 100.00%

2 405.78 405.78 4.31 100.00% 405.78 24.98 100.00% 405.78 58.26 100.00%

3 389.07 389.07 5.83 100.00% 389.07 22.52 100.00% 389.07 42.18 100.00%

4 444.52 444.52 5.18 100.00% 444.52 18.70 100.00% 444.52 37.85 100.00%

5 381.53 381.53 5.03 100.00% 381.53 18.84 100.00% 381.53 36.98 100.00%

6 410.98 410.98 3.13 100.00% 410.98 13.45 100.00% 410.98 25.38 100.00%

65

Table 5.3 Comparison of Simulated Annealing parameter combinations (Continued)

Table 5.3 shows that all these three parameter sets accomplish 100% optimality on 10-

customer examples in simulated annealing metaheuristic. However, in larger scale

problems, as expected, parameter set (50, 100) performs better than other parameter sets

and results in the highest optimality percentage among all parameter sets. For the 10

examples with 20 customers in Table 5.3, the parameter set (20, 20), (50, 50) and (50,

100) of SA obtain 1, 2, 4 optimal solutions over 10 problems, respectively. And the

average optimality percentages for these 10 problems are 98.23%, 99.02%, and 99.56%,

separately. Even if none of these parameter sets reaches the optimum in some examples,

the parameter set with more iterations usually has more chance of generating a better

solution. Again, higher values are not tested here considering computational efficiency

and limited improvement. Thus, we set the number of temperatures to be 50, and the

number of iterations in each Temperature to be 100.

15
Customers

7 571.12 571.12 3.20 100.00% 571.12 14.92 100.00% 571.12 30.60 100.00%

8 734.26 734.26 3.20 100.00% 734.26 12.15 100.00% 734.26 22.64 100.00%

9 858.24 858.24 3.47 100.00% 858.24 41.68 100.00% 858.24 81.87 100.00%

10 656.70 688.97 3.46 95.32% 656.70 10.61 100.00% 656.70 19.09 100.00%

Avg 518.55 521.78 4.14 99.38% 518.55 20.16 100.00% 518.55 40.13 100.00%

20
Customers

1 968.07 971.85 4.85 99.61% 971.85 19.20 99.61% 971.85 39.69 99.61%

2 633.24 644.42 5.30 98.26% 639.64 19.93 99.00% 633.24 39.41 100.00%

3 609.21 623.69 7.19 97.68% 615.65 19.60 98.95% 613.54 42.50 99.29%

4 931.65 931.65 3.75 100.00% 931.65 17.31 100.00% 931.65 34.45 100.00%

5 864.48 910.90 3.43 94.90% 880.47 12.49 98.18% 864.48 23.64 100.00%

6 867.01 875.42 5.29 99.04% 867.01 17.31 100.00% 867.01 34.60 100.00%

7 826.32 861.68 4.96 95.90% 841.86 17.29 98.15% 830.54 33.30 99.49%

8 765.06 780.89 5.64 97.97% 784.27 20.91 97.55% 783.06 41.10 97.70%

9 710.30 713.38 4.91 99.57% 711.83 18.64 99.79% 712.13 36.35 99.74%

10 1022.99 1029.8
7

4.54 99.33% 1033.4
0

18.36 98.99% 1025.1
5

32.54 99.79%

Avg 819.83 834.38 4.98 98.23% 827.76 18.10 99.02% 823.27 35.76 99.56%

25
Customers

1 535.32 543.95 18.23 98.41% 541.58 47.31 98.84% 539.43 107.17 99.24%

2 1119.12 1154.0
0

7.62 96.98% 1143.4
5

26.62 97.87% 1130.8
3

50.25 98.96%

3 1103.00 1180.7
7

6.16 93.41% 1146.7
8

22.46 96.18% 1121.6
1

42.34 98.34%

4 914.23 1030.6
9

8.69 88.70% 982.48 24.28 93.05% 968.00 26.14 94.45%

5 982.89 1036.1
7

6.77 94.86% 1010.8
4

19.96 97.23% 1003.8
8

38.74 97.91%

6 1239.41 1254.7
5

4.86 98.78% 1254.6
2

17.75 98.79% 1254.7
5

34.69 98.78%

7 947.35 965.85 8.79 98.08% 962.68 30.27 98.41% 964.00 57.31 98.27%

8 929.17 1000.4
4

8.09 92.88% 944.74 30.08 98.35% 940.44 56.82 98.80%

9 1200.62 1231.4
1

5.61 97.50% 1231.4
1

22.47 97.50% 1231.4
1

45.05 97.50%

10 975.48 1031.0
6

5.51 94.61% 984.84 18.64 99.05% 984.10 35.87 99.12%
Avg 994.66 1042.9

1
8.03 95.42% 1020.3

4
25.98 97.53% 1013.8

4
49.44 98.14%

66

5.3 Comparison between two neighborhood heuristics

In the methodology section, we proposed two neighborhood heuristics (transfer and swap

to generate immediate neighbors) in heuristic and metaheuristic algorithms. The

combination of transfer and swap neighbourhood heuristic is rarely applied in searching

for neighbors in the literature. Thus, before applying these two neighborhood heuristics,

we first validate the rationality of applying this combination. In this part, comparisons on

the employment of transfer heuristic only, swap heuristic only, and the combination of

them in 10 trials with 20 customers in heuristic, tabu search and simulated annealing

algorithms are given separately. The parameter combination derived from the previous

section is applied. The results of total cost, computation time, and optimality of each trial

using different neighbourhood structure in different algorithms can be found in Appendix

C. Figure 5.3 summarizes the mean, standard deviation and average optimality of these

10 trials.

Figure 5.3 Mean, Std, and Optimality percentage of different neighborhood structures by

algorithms

67

Looking at the means from Figure 5.3, the combination of transfer and swap heuristics

behaves the best in all three algorithms, achieving an average of 95.71% optimality in

heuristic algorithm and more than 99% optimality in tabu search and simulated annealing

algorithms. In heuristic algorithm, swap heuristic behaves a little better than transfer

heuristic with a slight gap. In tabu search and simulated annealing algorithms, transfer

heuristic performs better than swap heuristic with larger differences. Overall, transfer

heuristic is more effective in leading to a better solution according to the means in tables.

Figure 5.3 also plots the one standard deviation away from the mean. According to the

figure, the standard deviations of applying different neighbourhood structures are very

close and are relatively small compared to mean. Swap heuristic generates the lowest

standard deviations in all these three algorithms, transfer heuristic leads to the highest

standard deviation, and the combination of swap and transfer is way in between.

According to the analysis of means and standard deviations, the combination of transfer

and swap neighborhood heuristic is the most effective among these three neighborhood

structures, which proves the appropriate selection of the neighborhood structure in this

research.

5.4 Comparison among different methods

In this section, we apply all the methods employed in this research on different scales of

problems from 10 to 25 customers and compare their performance on total cost and

computational time. GLPK and Gurobi are both applied in testing the MILP model. The

GLPK package is intended for solving linear programming, mixed integer programming

and other related problems with poor performance in relatively large or complex

problems, while Gurobi optimizer is a commercial optimization solver for math

programming with outstanding solver performance. The same parameters determined

before are applied since the more iterations can explore lager areas and therefore

increasing the chance of reaching better solutions. In tabu search algorithm, tabu size of 8

is applied to different scales of examples since these examples are all in small scale. The

transfer heuristic and swap heuristic are applied together as the neighborhood structure in

heuristic and metaheuristic algorithms. 10 examples are tested in each scale of problem.

68

The cost, computation time, and optimality percentage of applying different algorithms in

each trial can be found in Appendix D.

The comparisons on average cost, standard deviation, and optimality percentage of

different approaches in different scales of examples are demonstrated in Figure 5.4. The

number of optimal solutions and the computation time of each approach in different scale

of examples are shown in Table 5.4 and 5.5, respectively.

Figure 5.4 Mean, Std, and Optimality percentage of four methods by different problem

scales

69

Table 5.4 Number of optimal solutions of four methods

Table 5.5 Average computation time of four methods

According to the figure and tables, MILP model has the best performance on both cost

and computation time in 10-customer examples using GLPK and Gurobi. The average

computation time on these 10 examples using GLPK is only 0.19 seconds and 0.47 on

Gurobi. Simulated annealing works the best among heuristic and metaheuristic

algorithms on total cost, arriving at optimum in these 10 examples with the average

computation time of 20.49 seconds. Tabu search algorithm generates 8 optimum

solutions over these 10 examples with optimality of 99.74% and average computation

time of 4.53. The performance of tabu search on total cost is highly close to optimum.

Heuristic algorithm achieves 6 optimal solutions with the minimum average computation

time of 0.18 seconds among all these methods.

For 15-customer problems, MILP model based on GLPK performs still well on

computation time with an average of 36.21 seconds, while Gurobi only takes 1.56

seconds on average. Only two examples using the heuristic algorithm generate optimal

solutions. The average optimality percentage is 96.14% with time of 0.64 seconds. Both

tabu search and simulated annealing algorithms achieve optimum in these 10 examples

with the average time of 29.25 and 39.42 seconds, respectively.

 Number of optimal solutions

Number of
customers MILP model Tabu Search

Simulated
Annealing Heuristic

10 customers 10 8 10 6

15 customers 10 10 10 2

20 customers 10 5 4 0

25 customers 10 5 0 0

Computation
time (s) MILP on GLPK

MILP on
Gurobi Tabu Search

Simulated
Annealing Heuristic

10 customers 0.19 0.47 4.53 20.49 0.18

15 customers 36.21 1.56 29.25 39.42 0.64

20 customers 2212.57 4.76 37.54 37.42 0.81

25 customers 11912.26 34.48 77.78 46.76 1.42

70

For 20-customer problems, the GLPK solver becomes time consuming and the average

computation time is 2212.57 seconds, while Gurobi only takes 4.76 seconds averagely.

Heuristic algorithm spends only 0.81 seconds but can only produce non-optimal solutions

with 95.71% optimality averagely. Tabu search algorithm provides 5 optimal solutions

with an average of 99.32% optimality and 37.54 seconds on computation time. Similarly,

simulated annealing generates 4 optimal solutions with 99.56% optimality and 37.42

seconds computation time.

As for 25-customer problems, the GLPK solver is extremely time consuming with the

average computation time of 11912.26 seconds, while Gurobi takes 34.48 seconds. The

actual average computation time might be even longer since the memory is not enough

after several hours’ computation in some attempts. Heuristic algorithm spends 1.42

seconds and reaches 94.77% of optimality on average. Tabu search method generates 5

optimal solutions over these 10 problems with 77.78 seconds of computation time on

average. The optimality percentage is 99.26%. Simulated annealing spends 46.76 seconds

averagely. Since the result in each example is the average of three replications, there is no

optimal solution. It arrives at 98.14% of optimality.

In summary, MILP model tested on Gurobi generates optimal solutions within one

minute in all the examples as expected. The average computation time spent using Gurobi

is only a little more than the heuristic algorithm in all scales of problems. GLPK performs

well for problems with 10 and 15 customers. However, it cannot solve 20 and 25

customer problems within reasonable computation time. With the increase of customer

quantities, the difference in computation time between these two solvers becomes large.

Heuristic method has the worst performance on average cost but spends the least time

among all the algorithms. This is reasonable since the heuristic method applied in this

thesis is a local search process and sometimes can only reach a local optimum. In this

thesis, the result generated from this heuristic method is applied as the initial solution in

tabu search and simulated annealing algorithms. Looking at the means of the objective

values in Figure 5.4, simulated annealing and tabu search all perform very well and the

results generated by these two algorithms are very close. Simulated annealing seems to

perform better than tabu search in small-scale problems with 10 to 20 customers, while

71

tabu search behaves a little better on 25-customer examples according to the means of

cost. However, the difference is very limited. Performance on computation time is also

similar for these two methods. Besides, tabu search and simulated annealing algorithms

can both achieve more than 98% of optimality compared to the exact algorithm with

much less computation time, usually less than one minute. Thus, our methods of tabu

search and simulated annealing based on transfer and swap neighborhood structures

prove to be very effective as well as efficient. According to Figure 5.4, the standard

deviations of applying different methods are very close and are relatively small compared

to mean in all scales of problems.

The heuristic algorithm proposed in this research is very efficient on small-scale

examples according to the optimality percentage and computation time, which validates

the appropriate selection of initialization and improvement algorithms.

Trend: According to Figure 5.4, with the increase of customer quantities, the difference

among heuristic algorithm and the two metaheuristic algorithms on optimality percentage

also increases. The optimality percentages of metaheuristic algorithms tested on different

problem scales decreases slowly and the trend is very stable, while the optimality

percentage of heuristic tested on different problem scales decreases dramatically. Thus,

metaheuristic algorithms are worthwhile to be developed because they can lead to close

to optimal solutions in large-scale examples according to the trend.

After testing problems with 10 to 25 customers, we also apply Gurobi to solve 50-

customer problems. However, the computer is out of memory and cannot reach a solution.

Thus, we will deal with large-scale problems only using heuristic and metaheuristic

algorithms.

5.5 Tests on Large-Scale Examples

Finally, we apply heuristic, tabu search and simulated annealing methods on examples

with 100, 150, and 200 customers to further demonstrate the performance of these

methods. For tabu search and simulated annealing algorithms, different computation time

(1000, 2000, and 3000 seconds) are implemented to further compare these two methods.

72

In tabu search algorithm, we test 8, 20, 30 as tabu size and the results of tabu search using

different tabu sizes in examples with 100 and 150 customers are given in Table 5.6. The

200-customer example is not tested using different tabu size since it is very time

consuming. From the table, the difference in cost using different tabu size is not large.

Thus, we decide to still use 8 as tabu size.

Table 5.6 Results of tabu search with different tabu size in 100- and 150-customer

examples

The results of heuristic and metaheuristic algorithms on large-scale problems are shown

in Table 5.7. Heuristic algorithm is very efficient in computation time and it leads to a

cost similar to that generated by simulated annealing algorithm. Tabu search leads to

improvements by running for more computation time in each problem, while increasing

the computation time do not improve the result of simulated annealing notably. Among

these two metaheuristics, tabu search performs better in the cost under the same

computation time.

Table 5.7 Comparison among heuristic and metaheuristic algorithms on large-scale

examples

 Heuristic Tabu Search
Simulated
Annealing

Number of
customers

Cost Time Cost Time Cost Time

100 3905.90 65.57

3905.90 1000 3905.90 1000

3784.38 2000 3871.31 2000

3787.81 3000 3874.61 3000

150 6088.95 184.55

5999.10 1000 6088.95 1000

5990.20 2000 6088.95 2000

5968.43 3000 6088.95 3000

200 7729.83 466.23

7657.31 1000 7729.83 1000

7656.21 2000 7729.83 2000

7628.32 3000 7729.83 3000

 tabu size 8 tabu size 20 tabu size 30

Number of customers Cost Time Cost Time Cost Time

100 3769.12 4160.35 3771.54 3607.46 3752.12 2622.8

150 5732.36 3167.63 5706.21 4537.53 5737.62 3127.52

73

5.6 Conclusion and Future Research

Based on existing research on vehicle routing problem with time windows and vehicle

routing problem with skill sets, we developed four methods to solve this VRPTWSS. To

the best of our knowledge, this is the first time the VRPTWSS is studied thoroughly in

literature. The goal in this problem is to allocate all customers to eligible technicians

considering time window and skill set constraints in a short planning time and reduce

total cost.

The MILP model is built up to solve this problem optimally and tested on Gusek and

Gurobi solvers. However, the MILP model is not capable of solving large-scale problems.

Heuristic and metaheuristic algorithms are developed to speed up computations. Heuristic

algorithm aims at reaching a local optimum, while tabu search and simulated annealing

algorithms are applied to jump out of the local optimum and obtain a close to optimum

solution. The combination of transfer and swap neighbourhood structure is applied in

heuristic and metaheuristic algorithms to search for neighbors. Another main contribution

in this research is our development of the intra-route improvement heuristics in which the

sub-tour reversal method is applied to reduce the travel time and the waiting time

improvement method is applied to reduce the waiting time. All data used in this thesis are

generated by a simulation process.

The performance of transfer only, swap only, and the combination of these two

neighborhood heuristics is examined. The combination of two heuristics behave the best

in total cost. Thus, transfer and swap heuristics are applied together as the neighborhood

structure in heuristic and metaheuristic algorithms.

All the approaches are examined on small-scale examples with 10 to 25 customers since

neither GLPK nor Gurobi can solve larger problems. Gurobi can yield optimal solutions

for these small-scale problems very fast, while GLPK takes much more computation time

in solving examples with 20 and 25 customers. Looking at means, tabu search and

simulated annealing algorithms have similar performance in these small-scale examples

and the difference in cost between MILP model and these two metaheuristics is

reasonably small. Heuristic algorithm spends the least time in approximation algorithms

while behaves the worst in improving the objective value.

74

Heuristic and metaheuristic algorithms are tested on large-scale examples as well. In

these examples, tabu search algorithm produces the best results, while being less efficient

in computation time. Heuristic and simulated annealing have similar performance on the

objective value, while heuristic is more time saving.

5.6.1 Future Research

 Intra-route improvement: In this research, we apply sub-tour reversal algorithm to

change the sequence of a route and thereby improving the route internally. Since

the time windows of customers are not overlapping in our problem, we only

exchange customers with the same time windows. Future research can put efforts

in exchanges between customers with overlapping time windows. Besides, MILP

model can be applied to explore the optimal sequence of each route.

 Neighborhood Structure: In this research, we apply transfer and swap heuristics as

our neighborhood structure. Future research can apply other neighborhood

heuristics in the literature into this VRPTWSS.

 Metaheuristics: Future research can investigate genetic algorithm and evaluate its

performance in solving this particular problem.

 Size of tabu list: In this thesis, we test several tabu sizes and apply 8 to all our

examples. In future research, the tabu size can be studied further and different

number of tabu sizes can be applied based on the scale of problems.

 Practical application: In this thesis, we apply four methods on several simulated

data set. In future research, realistic data might be collected and tested to further

evaluate our methods.

 Tests on large-scale problems: The algorithms developed in this research can be

evaluated on large-scale problems by implementing the MILP model and the two

metaheuristic algorithms for the same computation time and comparing the results

of different algorithms.

75

Bibliography

[1] Golden, B. L., Raghavan, S., & Wasil, E. A. (Eds.). (2008). The vehicle routing problem:

latest advances and new challenges (Vol. 43). Springer Science & Business Media.

[2] Dantzig, G. B., & Ramser, J. H. (1959). The truck dispatching problem. Management

Science, 6(1), 80-91.

[3] Clarke, G. U., & Wright, J. W. (1964). Scheduling of vehicles from a central depot to a

number of delivery points. Operations Research, 12(4), 568-581.

[4] Ropke, S. (2005). Heuristic and exact algorithms for vehicle routing problems.

[5] Unpublished PhD thesis, Computer Science Department, University of Copenhagen.

[6] Baldacci, R., Battarra, M., & Vigo, D. (2008). Routing a heterogeneous fleet of vehicles.

In The vehicle routing problem: latest advances and new challenges (pp. 3-27). Springer

US.

[7] Campbell, A., Clarke, L., Kleywegt, A., & Savelsbergh, M. (1998). The inventory routing

problem. In Fleet management and logistics (pp. 95-113). Springer US.

[8] Dror, M., & Trudeau, P. (1990). Split delivery routing. Naval Research Logistics (NRL),

37(3), 383-402

[9] Lin, C., Choy, K. L., Ho, G. T., Chung, S. H., & Lam, H. Y. (2014). Survey of green

vehicle routing problem: past and future trends. Expert Systems with Applications, 41(4),

1118-1138.

[10] Pillac, V., Gueret, C., & Medaglia, A. L. (2013). A parallel matheuristic for the

technician routing and scheduling problem. Optimization Letters, 7(7), 1525-1535.

[11] Lenstra, J. K., & Kan, A. H. G. (1981). Complexity of vehicle routing and scheduling

 problems. Networks, 11(2), 221-227.

[12] Laporte, G. (1992). The vehicle routing problem: An overview of exact and approximate

 algorithms. European Journal of Operational Research, 59(3), 345-358.

[13] Desrochers, M., Lenstra, J. K., & Savelsbergh, M. W. (1990). A classification scheme

for vehicle routing and scheduling problems. European Journal of Operational Research,

46(3), 322-332.

[14] Desrochers, M., Jones, C. V., Lenstra, J. K., Savelsbergh, M. W., & Stougie, L. (1999).

Towards a model and algorithm management system for vehicle routing and scheduling

 problems. Decision Support Systems, 25(2), 109-133.

[15] Eksioglu, B., Vural, A. V., & Reisman, A. (2009). The vehicle routing problem: A

 taxonomic review. Computers & Industrial Engineering, 57(4), 1472-1483.

[16] Laporte, G., & Nobert, Y. (1987). Exact algorithms for the vehicle routing problem.

 North-Holland Mathematics Studies, 132, 147-184.

[17] Magnanti, T. L. (1981). Combinatorial optimization and vehicle fleet planning:

 Perspectives and prospects. Networks, 11(2), 179-213.

[18] Christofides, N., Mingozzi, A., & Toth, P. (1981). Exact algorithms for the vehicle

routing problem, based on spanning tree and shortest path relaxations. Mathematical

 Programming, 20(1), 255-282.

76

[19] Laporte, G., Mercure, H., & Nobert, Y. (1986). An exact algorithm for the asymmetrical

 capacitated vehicle routing problem. Networks, 16(1), 33-46.

[20] Kumar, Y., & Jain, S. (2015, September). School bus routing based on branch and bound

approach. In Computer, Communication and Control (IC4), 2015 International

 Conference on (pp. 1-4). IEEE.

[21] Eilon, S., Watson-Gandy, C. D. T., Christofides, N., & de Neufville, R. (1974).

Distribution Management-Mathematical Modelling and Practical Analysis. IEEE

 Transactions on Systems, Man, and Cybernetics, (6), 589-589.

[22] Christofides, N., Mingozzi, A., & Toth, P. (1981). State‐space relaxation procedures for

 the computation of bounds to routing problems. Networks, 11(2), 145-164.

[23] Desrosiers, J., Dumas, Y., & Soumis, F. (1984). A Dynamic Programming Method

for the Large Scale Single Vehicle Dial-a-ride Problem with Time Windows. Cahier du

GERAD, 84, 12.

[24] Toth, P., & Vigo, D. (Eds.). (2014). Vehicle routing: problems, methods, and

 applications (Vol. 18). Siam.

[25] Balinski, M. L., & Quandt, R. E. (1964). On an integer program for a delivery problem.

 Operations Research, 12(2), 300-304.

[26] Foster, B. A., & Ryan, D. M. (1976). An integer programming approach to the vehicle

 scheduling problem. Journal of the Operational Research Society, 27(2), 367-384.

[27] Agarwal, Y., Mathur, K., & Salkin, H. M. (1989). A set‐partitioning‐based exact

 algorithm for the vehicle routing problem. Networks, 19(7), 731-749.

[28] Naddef, D., & Rinaldi, G. (2001, January). Branch-and-cut algorithms for the

capacitated VRP. In The vehicle routing problem (pp. 53-84). Society for Industrial and

 Applied Mathematics.

[29] Fisher, M. L., & Jaikumar, R. (1981). A generalized assignment heuristic for vehicle

 routing. Networks, 11(2), 109-124.

[30] Baldacci, R., Hadjiconstantinou, E., & Mingozzi, A. (2004). An exact algorithm for the

capacitated vehicle routing problem based on a two-commodity network flow

 formulation. Operations Research, 52(5), 723-738.

[31] Laporte, G., Ropke, S., & Vidal, T. (2014). Heuristics for the vehicle routing problem.

 Vehicle Routing: Problems, Methods, and Applications, 18, 87.

[32] Laporte, G., Gendreau, M., Potvin, J. Y., & Semet, F. (2000). Classical and modern

heuristics for the vehicle routing problem. International Transactions in Operational

 Research, 7(4‐5), 285-300.

[33] Laporte, G. (2007). What you should know about the vehicle routing problem. Naval

 Research Logistics (NRL), 54(8), 811-819.

[34] Cordeau, J. F., Gendreau, M., Hertz, A., Laporte, G., & Sormany, J. S. (2005). New

heuristics for the vehicle routing problem. In Logistics systems: design and optimization

 (pp. 279-297). Springer US.

[35] Ioannou, G., Kritikos, M., & Prastacos, G. (2001). A greedy look-ahead heuristic for the

vehicle routing problem with time windows. Journal of the Operational Research Society,

 52(5), 523-537.

77

[36] Lu, Q., & Dessouky, M. M. (2006). A new insertion-based construction heuristic

for solving the pickup and delivery problem with time windows. European Journal of

 Operational Research, 175(2), 672-687.

[37] Nelson, M. D., Nygard, K. E., Griffin, J. H., & Shreve, W. E. (1985). Implementation

techniques for the vehicle routing problem. Computers & Operations Research, 12(3),

 273-283.

[38] Paessens, H. (1988). The savings algorithm for the vehicle routing problem. European

 Journal of Operational Research, 34(3), 336-344.

[39] Altınel, İ. K., & Öncan, T. (2005). A new enhancement of the Clarke and Wright savings

heuristic for the capacitated vehicle routing problem. Journal of the Operational Research

 Society, 56(8), 954-961.

[40] Laporte, G., & Semet, F. (2001, January). Classical heuristics for the capacitated VRP.

In The vehicle routing problem (pp. 109-128). Society for Industrial and Applied

 Mathematics.

[41] Liu, F. H., & Shen, S. Y. (1999). A method for vehicle routing problem with multiple

 vehicle types and time windows. Proceedings of Natural Science Council, 23.

[42] Gronalt, M., Hartl, R. F., & Reimann, M. (2003). New savings based algorithms for time

constrained pickup and delivery of full truckloads. European Journal of Operational

 Research, 151(3), 520-535.

[43] Wren, A., & Carr, J. D. (1971). Computers in transport planning and operation.

[44] Gillett, B. E., & Miller, L. R. (1974). A heuristic algorithm for the vehicle-dispatch

 problem. Operations Research, 22(2), 340-349.

[45] Lin, S. (1965). Computer solutions of the traveling salesman problem. The Bell System

 Technical Journal, 44(10), 2245-2269.

[46] Lin, S., & Kernighan, B. W. (1973). An effective heuristic algorithm for the traveling-

salesman problem. Operations Research, 21(2), 498-516.

[47] Or, I. (1976). Traveling salesman-type combinatorial problems and their relation to the

 logistics of regional blood banking. Xerox University Microfilms.

[48] Renaud, J., Boctor, F. F., & Laporte, G. (1996). A fast composite heuristic for the

 symmetric traveling salesman problem. INFORMS Journal on Computing, 8(2), 134-

143.

[49] Johnson, D. S., & McGeoch, L. A. (1997). The traveling salesman problem: A case

 study in local optimization. Local Search in Combinatorial Optimization, 1, 215-310.

[50] Van Breedam, A. (1994). An Analysis of the Behavior of Heuristics for the Vehicle

Routing Problem for a Selectrion of Problems with Vehicle-related, Customer-related,

 and Time-related Constraints. RUCA.

[51] Thompson, P. M., & Psaraftis, H. N. (1993). Cyclic transfer algorithm for multivehicle

 routing and scheduling problems. Operations Research, 41(5), 935-946.

[52] Wassan, N. A. (2006). A reactive tabu search for the vehicle routing problem. Journal of

 the Operational Research Society, 57(1), 111-116.

[53] Derigs, U., & Kaiser, R. (2007). Applying the attribute based hill climber heuristic to the

 vehicle routing problem. European Journal of Operational Research, 177(2), 719-732.

78

[54] Lai, D. S., Demirag, O. C., & Leung, J. M. (2016). A tabu search heuristic for the

heterogeneous vehicle routing problem on a multigraph. Transportation Research Part E:

 Logistics and Transportation Review, 86, 32-52.

[55] Zeng, L., Ong, H. L., & Ng, K. M. (2005). An assignment-based local search method for

solving vehicle routing problems. Asia-Pacific Journal of Operational Research, 22(01),

 85-104.

[56] Osman, I. H. (1993). Metastrategy simulated annealing and tabu search algorithms for

 the vehicle routing problem. Annals of Operations Research, 41(4), 421-451.

[57] Baker, B. M., & Ayechew, M. A. (2003). A genetic algorithm for the vehicle routing

 problem. Computers & Operations Research, 30(5), 787-800.

[58] Berger, J., & Barkaoui, M. (2003). A new hybrid genetic algorithm for the capacitated

 vehicle routing problem. Journal of the Operational Research Society, 54(12), 1254-

1262.

[59] Prins, C. (2004). A simple and effective evolutionary algorithm for the vehicle routing

 problem. Computers & Operations Research, 31(12), 1985-2002.

[60] Bell, J. E., & McMullen, P. R. (2004). Ant colony optimization techniques for the

 vehicle routing problem. Advanced Engineering Informatics, 18(1), 41-48.

[61] Reimann, M., Doerner, K., & Hartl, R. F. (2004). D-ants: Savings based ants divide and

 conquer the vehicle routing problem. Computers & Operations Research, 31(4), 563-

591.

[62] Doerner, K. F., Hartl, R. F., & Lucka, M. (2005). A parallel version of the d-ant

 algorithm for the vehicle routing problem. Parallel Numerics, 5, 109-118.

[63] Laporte, G. (1992). The traveling salesman problem: An overview of exact and

 approximate algorithms. European Journal of Operational Research, 59(2), 231-247.

[64] Hoffman, K. L., Padberg, M., & Rinaldi, G. (2013). Traveling salesman problem. In

Encyclopedia of Operations Research and Management Science (pp. 1573-1578).

 Springer US.

[65] Letchford, A. N., Nasiri, S. D., & Theis, D. O. (2013). Compact formulations of the

Steiner traveling salesman problem and related problems. European Journal of

 Operational Research, 228(1), 83-92.

[66] Lawler, E. L., Lenstra, J. K., Rinnooy-Kan, A. G., & Shmoys, D. B. (1985). Traveling

 salesman problem.

[67] Gutin, G., & Punnen, A. P. (Eds.). (2006). The traveling salesman problem and its

 variations (Vol. 12). Springer Science & Business Media.Johnson, D. S.

[68] Potvin, J. Y. (1996). Genetic algorithms for the traveling salesman problem. Annals of

 Operations Research, 63(3), 337-370

[69] Bryant, K., & Benjamin, A. (2000). Genetic algorithms and the traveling salesman

 problem. Department of Mathematics, Harvey Mudd College, 10-12.

[70] Yuan, S., Skinner, B., Huang, S., & Liu, D. (2013). A new crossover approach for

solving the multiple travelling salesmen problem using genetic algorithms. European

 Journal of Operational Research, 228(1), 72-82.

79

[71] Aarts, E. H., Korst, J. H., & van Laarhoven, P. J. (1988). A quantitative analysis of the

simulated annealing algorithm: A case study for the traveling salesman problem. Journal

 of Statistical Physics, 50(1-2), 187-206.

[72] Wang, Y., Tian, D., & Li, Y. (2013). An improved simulated annealing algorithm for

traveling salesman problem. In Proceedings of the 2012 International Conference on

Information Technology and Software Engineering (pp. 525-532). Springer Berlin

 Heidelberg.

[73] Fiechter, C. N. (1994). A parallel tabu search algorithm for large traveling salesman

 problems. Discrete Applied Mathematics, 51(3), 243-267.

[74] Xu, D., Weise, T., Wu, Y., Lässig, J., & Chiong, R. (2015, September). An investigation

of hybrid tabu search for the traveling salesman problem. In Bio-Inspired Computing-

Theories and Applications (pp. 523-537). Springer Berlin Heidelberg.

[75] Achuthan, N. R., & Caccetta, L. (1991). Integer linear programming formulation for a

 vehicle routing problem. European Journal of Operational Research, 52(1), 86-89.

[76] Kara, I., Laporte, G., & Bektas, T. (2004). A note on the lifted Miller–Tucker–Zemlin

subtour elimination constraints for the capacitated vehicle routing problem. European

 Journal of Operational Research, 158(3), 793-795.S

[77] Baldacci, R., Mingozzi, A., & Roberti, R. (2012). Recent exact algorithms for solving

the vehicle routing problem under capacity and time window constraints. European

 Journal of Operational Research, 218(1), 1-6.

[78] Semet, F., Toth, P., & Vigo, D. (2014). Classical exact algorithms for the capacitated

 vehicle routing problem. Vehicle Routing: Problems, Methods, and Applications, 18, 37.

[79] Augerat, P., Belenguer, J. M., Benavent, E., Corberán, A., Naddef, D., & Rinaldi, G.

(1995). Computational results with a branch and cut code for the capacitated vehicle

 routing problem. Rapport de recherche- IMAG.

[80] Lysgaard, J., Letchford, A. N., & Eglese, R. W. (2004). A new branch-and-cut algorithm

 for the capacitated vehicle routing problem. Mathematical Programming, 100(2), 423-

445.

[81] Fukasawa, R., Longo, H., Lysgaard, J., de Aragão, M. P., Reis, M., Uchoa, E., &

Werneck, R. F. (2006). Robust branch-and-cut-and-price for the capacitated vehicle

 routing problem. Mathematical programming, 106(3), 491-511.

[82] Baldacci, R., Christofides, N., & Mingozzi, A. (2008). An exact algorithm for the

vehicle routing problem based on the set partitioning formulation with additional cuts.

 Mathematical Programming, 115(2), 351-385.

[83] Toth, P., & Vigo, D. (2001, January). An overview of vehicle routing problems. In The

 vehicle routing problem (pp. 1-26). Society for Industrial and Applied Mathematics.

[84] Gillett, B. E., & Johnson, J. G. (1976). Multi-terminal vehicle-dispatch algorithm.

 Omega, 4(6), 711-718.

[85] Robust, F., Daganzo, C. F., & Souleyrette, R. R. (1990). Implementing vehicle routing

 models. Transportation Research Part B: Methodological, 24(4), 263-286.

[86] Tavakkoli-Moghaddam, R., Safaei, N., & Gholipour, Y. (2006). A hybrid simulated

annealing for capacitated vehicle routing problems with the independent route length.

 Applied Mathematics and Computation, 176(2), 445-454.

80

[87] Xiao, Y., Zhao, Q., Kaku, I., & Mladenovic, N. (2014). Variable neighbourhood

simulated annealing algorithm for capacitated vehicle routing problems. Engineering

 Optimization, 46(4), 562-579.

[88] Gendreau, M., Hertz, A., & Laporte, G. (1994). A tabu search heuristic for the vehicle

 routing problem. Management Science, 40(10), 1276-1290.

[89] Jin, J., Crainic, T. G., & Løkketangen, A. (2012). A parallel multi-neighborhood

cooperative tabu search for capacitated vehicle routing problems. European Journal of

 Operational Research, 222(3), 441-451.

[90] Nazif, H., & Lee, L. S. (2012). Optimised crossover genetic algorithm for capacitated

 vehicle routing problem. Applied Mathematical Modelling, 36(5), 2110-2117.

[91] Lin, S. W., Lee, Z. J., Ying, K. C., & Lee, C. Y. (2009). Applying hybrid meta-heuristics

for capacitated vehicle routing problem. Expert Systems with Applications, 36(2), 1505-

1512.

[92] Speranza, M. G., & Ukovich, W. (1994). Minimizing transportation and inventory costs

 for several products on a single link. Operations Research, 42(5), 879-894.

[93] Speranza, M. G., & Ukovich, W. (1996). An algorithm for optimal shipments with given

 frequencies. Naval Research Logistics (NRL), 43(5), 655-671.

[94] Bertazzi, L., Speranza, M. G., & Ukovich, W. (2000). Exact and heuristic solutions for a

 shipment problem with given frequencies. Management Science, 46(7), 973-988.

[95] Bertazzi, L., Chan, L. M. A., & Speranza, M. G. (2007). Analysis of practical policies

 for a single link distribution system. Naval Research Logistics (NRL), 54(5), 497-509.

[96] Archetti, C., Bertazzi, L., Laporte, G., & Speranza, M. G. (2007). A branch-and-cut

algorithm for a vendor-managed inventory-routing problem. Transportation Science,

 41(3), 382-391.

[97] Bertazzi, L., Paletta, G., & Speranza, M. G. (2002). Deterministic order-up-to level

 policies in an inventory routing problem. Transportation Science, 36(1), 119-132.

[98] Bertazzi, L., Paletta, G., & Speranza, M. G. (2005). Minimizing the total cost in an

 integrated vendor—managed inventory system. Journal of heuristics, 11(5-6), 393-419.

[99] Cousineau-Ouimet, K. (2002, November). A tabu search heuristic for the inventory

 routing problem. In Proceedings of 37th Annual ORSNZ Conference.

[100] Berman, O., & Larson, R. C. (2001). Deliveries in an inventory/routing problem using

 stochastic dynamic programming. Transportation Science, 35(2), 192-213.

[101] Savelsbergh, M., & Song, J. H. (2007). Inventory routing with continuous moves.

 Computers & Operations Research, 34(6), 1744-1763.

[102] Tan, C. C. R., & Beasley, J. E. (1984). A heuristic algorithm for the period vehicle

 routing problem. Omega, 12(5), 497-504.

[103] Russell, R. A., & Gribbin, D. (1991). A multiphase approach to the period routing

 problem. Networks, 21(7), 747-765.

[104] Chao, I., Golden, B. L., & Wasil, E. (1995). An improved heuristic for the period

 vehicle routing problem. Networks, 26(1), 25-44.

[105] Cordeau, J. F., Gendreau, M., & Laporte, G. (1997). A tabu search heuristic for

81

 periodic and multi‐depot vehicle routing problems. Networks, 30(2), 105-119.

[106] Drummond, L. M., Ochi, L. S., & Vianna, D. S. (2001). An asynchronous parallel

 metaheuristic for the period vehicle routing problem. Future Generation Computer

 Systems, 17(4), 379-386.

[107] Archetti, C., Savelsbergh, M. W., & Speranza, M. G. (2006). Worst-case analysis for

 split delivery vehicle routing problems. Transportation Science, 40(2), 226-234.

[108] Lee, C. G., Epelman, M. A., White, C. C., & Bozer, Y. A. (2006). A shortest path

 approach to the multiple-vehicle routing problem with split pick-ups. Transportation

 Research Part B: Methodological, 40(4), 265-284.

[109] Jin, M., Liu, K., & Bowden, R. O. (2007). A two-stage algorithm with valid inequalities

 for the split delivery vehicle routing problem. International Journal of Production

 Economics, 105(1), 228-242.

[110] Feillet, D., Dejax, P., Gendreau, M., & Gueguen, C. (2006). Vehicle routing with time

 windows and split deliveries. Technical Paper, 851.

[111] Frizzell, P. W., & Giffin, J. W. (1995). The split delivery vehicle scheduling problem

 with time windows and grid network distances. Computers & Operations Research,

 22(6), 655-667.

[112] Archetti, C., Speranza, M. G., & Hertz, A. (2006). A tabu search algorithm for the split

 delivery vehicle routing problem. Transportation Science, 40(1), 64-73.

[113] Archetti, C., Speranza, M. G., & Savelsbergh, M. W. (2008). An optimization-based

 heuristic for the split delivery vehicle routing problem. Transportation Science, 42(1),

 22-31.

[114] Kallehauge, B., Larsen, J., Madsen, O. B., & Solomon, M. M. (2005). Vehicle routing

 problem with time windows. In Column generation (pp. 67-98). Springer US.

[115] Kohl, N., & Madsen, O. B. (1997). An optimization algorithm for the vehicle routing

 problem with time windows based on Lagrangian relaxation. Operations Research,

 45(3), 395-406.

[116] Desrosiers, J., Soumis, F., & Desrochers, M. (1984). Routing with time windows by

 column generation. Networks, 14(4), 545-565.

[117] Desrochers, M., Desrosiers, J., & Solomon, M. (1992). A new optimization algorithm

 for the vehicle routing problem with time windows. Operations Research, 40(2), 342-

 354.

[118] Solomon, M. M. (1987). Algorithms for the vehicle routing and scheduling problems

 with time window constraints. Operations Research, 35(2), 254-265.

[119] Potvin, J. Y., & Rousseau, J. M. (1993). A parallel route building algorithm for the

 vehicle routing and scheduling problem with time windows. European Journal of

 Operational Research, 66(3), 331-340

[120] Russell, R. A. (1995). Hybrid heuristics for the vehicle routing problem with time

 windows. Transportation Science, 29(2), 156-166.

[121] Potvin, J. Y., & Rousseau, J. M. (1995). An exchange heuristic for routing problems

 with time windows. Journal of the Operational Research Society, 46(12), 1433-1446.

[122] Prosser, P., & Shaw, P. (1996). Study of greedy search with multiple improvement

82

 heuristics for vehicle routing problems.

[123] Kontoravdis, G., & Bard, J. F. (1995). A GRASP for the vehicle routing problem with

 time windows. ORSA Journal on Computing, 7(1), 10-23.

[124] Bräysy, O. (2002). Fast local searches for the vehicle routing problem with time

 windows. INFOR: Information Systems and Operational Research, 40(4), 319-330.

[125] Chiang, W. C., & Russell, R. A. (1996). Simulated annealing metaheuristics for the

 vehicle routing problem with time windows. Annals of Operations Research, 63(1), 3-

 27.

[126] Afifi, S., Dang, D. C., & Moukrim, A. (2013). A simulated annealing algorithm for the

 vehicle routing problem with time windows and synchronization constraints. In

 Learning and Intelligent Optimization (pp. 259-265). Springer Berlin Heidelberg.

[127] Potvin, J. Y., Kervahut, T., Garcia, B. L., & Rousseau, J. M. (1996). The vehicle

 routing problem with time windows part I: tabu search. INFORMS Journal on

 Computing, 8(2), 158-164.

[128] Taillard, É., Badeau, P., Gendreau, M., Guertin, F., & Potvin, J. Y. (1997). A tabu

 search heuristic for the vehicle routing problem with soft time windows. Transportation

 Science, 31(2), 170-186.

[129] Chiang, W. C., & Russell, R. A. (1997). A reactive tabu search metaheuristic for the

 vehicle routing problem with time windows. INFORMS Journal on Computing, 9(4),

 417-430.

[130] Badeau, P., Guertin, F., Gendreau, M., Potvin, J. Y., & Taillard, E. (1997). A parallel

 tabu search heuristic for the vehicle routing problem with time windows.

 Transportation Research Part C: Emerging Technologies, 5(2), 109-122.

[131] Schulze, J., & Fahle, T. (1999). A parallel algorithm for the vehicle routing problem

 with time window constraints. Annals of Operations Research, 86, 585-607.

[132] Thangiah, S. R., Nygard, K. E., & Juell, P. L. (1991, February). Gideon: A genetic

 algorithm system for vehicle routing with time windows. In Artificial Intelligence

 Applications, 1991. Proceedings., Seventh IEEE Conference on (Vol. 1, pp. 322-328).

 IEEE.

[133] Thangiah, S. R., Osman, I. H., & Sun, T. (1994). Hybrid genetic algorithm simulated

 annealing and tabu search methods for vehicle routing problems with time windows.

 Computer Science Department, Slippery Rock University, Technical Report SRU

 CpSc-TR-94-27, 69.

[134] Cappanera, P., Gouveia, L., & Scutellà, M. G. (2011). The skill vehicle routing

 problem. In Network Optimization (pp. 354-364). Springer Berlin Heidelberg.

[135] Krishnamurti, R., Iranmanesh, E., & Sun, W. (2012). The Vehicle Routing Problem

 with Skill Sets.

[136] Xu, J., & Chiu, S. Y. (2001). Effective heuristic procedures for a field technician

 scheduling problem. Journal of Heuristics, 7(5), 495-509.

[137] Tang, H., Miller-Hooks, E., & Tomastik, R. (2007). Scheduling technicians for planned

 maintenance of geographically distributed equipment. Transportation Research Part E:

 Logistics and Transportation Review, 43(5), 591-609.

[138] Pillac, V., Guéret, C., & Medaglia, A. (2012). On the dynamic technician routing and

83

 scheduling problem.

[139] Yang, C. E. (1989). A dynamic programming algorithm for the travelling repairman

 problem. ASIA-PACIFIC J. OPER. RES., 6(2), 192-206.

[140] Simchi-Levi, D., & Berman, O. (1991). Minimizing the total flow time of n jobs on a

 network. IIE TRANSACTIONS, 23(3), 236-244.

[141] Fischetti, M., Laporte, G., & Martello, S. (1993). The delivery man problem and

 cumulative matroids. Operations Research, 41(6), 1055-1064.

[142] Blum, A., Chalasani, P., Coppersmith, D., Pulleyblank, B., Raghavan, P., & Sudan, M.

 (1994, May). The minimum latency problem. In Proceedings of the twenty-sixth annual

 ACM symposium on Theory of computing (pp. 163-171). ACM.

[143] Chaudhuri, K., Godfrey, B., Rao, S., & Talwar, K. (2003, October). Paths, trees, and

 minimum latency tours. In Foundations of Computer Science, 2003. Proceedings. 44th

 Annual IEEE Symposium on (pp. 36-45). IEEE.

[144] Archer, A., & Blasiak, A. (2010, January). Improved approximation algorithms for the

 minimum latency problem via prize-collecting strolls. In Proceedings of the twenty-

 first annual ACM-SIAM symposium on Discrete Algorithms (pp. 429-447). Society for

 Industrial and Applied Mathematics.

[145] Salehipour, A., Sörensen, K., Goos, P., & Bräysy, O. (2011). Efficient GRASP+ VND

 and GRASP+ VNS metaheuristics for the traveling repairman problem. 4OR, 9(2),

 189-209.

[146] Silva, M. M., Subramanian, A., Vidal, T., & Ochi, L. S. (2012). A simple and effective

 metaheuristic for the minimum latency problem. European Journal of Operational

 Research, 221(3), 513-520.

[147] Dewilde, T., Cattrysse, D., Coene, S., Spieksma, F. C., & Vansteenwegen, P. (2013).

 Heuristics for the traveling repairman problem with profits. Computers & Operations

 Research, 40(7), 1700-1707.

[148] Hillier, F. S. (2012). Introduction to operations research. Tata McGraw-Hill Education.

[149] Miller, C. E., Tucker, A. W., & Zemlin, R. A. (1960). Integer programming

 formulation of traveling salesman problems. Journal of the ACM (JACM), 7(4), 326-

 329.

[150] Danvildanvil (2014), Own work, CC BY-SA 3.0,

 https://commons.wikimedia.org/w/index.php?curid=31096324

[151] Cassa, C. A., Iancu, K., Olson, K. L., & Mandl, K. D. (2005). A software tool for

 creating simulated outbreaks to benchmark surveillance systems. BMC Medical

 Informatics and Decision Making, 5(1), 1.

[152] Lesaint, D., Voudouris, C., Azarmi, N., Alletson, I., & Laithwaite, B. (2003). Field

 workforce scheduling. BT Technology Journal, 21(4), 23-26.

[153] Petrakis, I., Hass, C., & Bichler, M. (2012). On the impact of real-time information on

 field service scheduling. Decision Support Systems, 53(2), 282-293.

https://commons.wikimedia.org/w/index.php?curid=31096324

84

Appendix A Solomon’s Insertion Heuristic

Solomon’s insertion heuristic (1987) provided a method of selecting the new customer to

be inserted into a route using two criteria. The first criterion 𝑐1 is applied to calculate the

best feasible insertion place in the current route for each unrouted customer 𝑢 that can be

served by the technician. The second criterion 𝑐2 is then applied to select the new inserted

customer.

The criterion 𝑐1 considers two factors: the increase in total distance of the current route

after the insertion (𝑐11), and the delay of service start time of the customer following the

new inserted customer (𝑐12). To be specific, 𝑐1(𝑖, 𝑢, 𝑗) is calculated as:

𝑐1(𝑖, 𝑢, 𝑗) = 𝛼1𝑐11(𝑖, 𝑢, 𝑗) + 𝛼2𝑐12(𝑖, 𝑢, 𝑗), 𝛼1 + 𝛼2 = 1; 𝛼1, 𝛼2 ≥ 0; (A.1)

𝑐11(𝑖, 𝑢, 𝑗) = 𝑑𝑖𝑢 + 𝑑𝑢𝑗 − µ𝑑𝑖𝑗 , 𝑢 ≥ 0; (A.2)

𝑐12(𝑖, 𝑢, 𝑗) = 𝑏𝑗𝑢 − 𝑏𝑗 , (A.3)

Equation A.2 calculates the increase in total distance of the entire route. Considering the

insertion of customer 𝑢 between nodes 𝑖 and 𝑗, 𝑑𝑖𝑢 + 𝑑𝑢𝑗 is the new distance between two

nodes 𝑖 and 𝑗 after the insertion, and 𝑑𝑖𝑗 is the old distance between 𝑖 and 𝑗. In A.3, 𝑏𝑗𝑢 is

the new service start time of customer 𝑗 after the insertion of customer 𝑢 and 𝑏𝑗 is the

previous service start time. The measurement of an insertion place is based on these two

factors as shown in equation A.1.

Suppose the current route to be (𝑖0, 𝑖1, 𝑖2, … , 𝑖𝑚), the best feasible insertion place 𝑐1 in the

current route for each unrouted customer 𝑢 is calculated as:

𝑐1(𝑖(𝑢), 𝑢, 𝑗(𝑢)) = min[𝑐1(𝑖𝑝−1, 𝑢, 𝑖𝑝)] , 𝑝 = 1,… ,𝑚. (A.4)

Then the second criterion for each customer is calculated as:

𝑐2(𝑖, 𝑢, 𝑗) = 𝜆𝑑0𝑢 − 𝑐1(𝑖, 𝑢, 𝑗), 𝜆 ≥ 0, (A.5)

Where 𝑑0𝑢 is the distance between the depot and customer to be inserted. The next

customer to be inserted in the current route as the one with the minimal value of 𝑐2:

85

𝑐2(𝑖
∗, 𝑢∗, 𝑗∗) = optimum[𝑐2(𝑖, 𝑢, 𝑗)] (A.6)

And the insertion place for this new customer 𝑢∗ is between 𝑖∗ and 𝑗∗ with the minimum

value of 𝑐1.

86

Appendix B Average cost of running different numbers of replications

in SA algorithm

The following table provides the average cost of running 1, 3, and 5 replications on five

examples with 20 customers.

Table 1 Results for different numbers of replications in SA algorithm

 Avg cost of 1 rep Avg cost of 3 rep Avg cost of 5 rep

Example 1 1170.75 1167.00 1175.18

Example 2 966.63 1005.14 1004.69

Example 3 1026.40 1028.79 1028.39

Example 4 1038.21 1030.53 1032.06

Example 5 1152.29 1149.47 1150.37

87

Appendix C Comparisons of different neighborhood structure by

algorithms

The following tables provide the total cost, computation time, and optimality of each trial

with 20 customers using different neighbourhood structure in different algorithms.

Table 1 Results of different neighbourhood structure in heuristic algorithm

Table 2 Results of different neighbourhood structure in Tabu Search algorithm

 Tabu Search

 transfer & swap transfer only swap only

 Examp

les

Optimum cost time optimality

%

cost time optimality

%

cost time optimality

%

20

Custom

ers

1 968.07 971.85 18.85 99.61% 999.89 0.84 96.82% 971.85 7.05 99.61%

2 633.24 646.99 34.98 97.87% 646.99 6.83 97.87% 700.15 8.08 90.44%

3 609.21 609.30 41.09 99.98% 639.24 9.09 95.30% 649.13 10.62 93.85%

4 931.65 931.65 10.90 100.00% 931.65 0.99 100.00% 956.74 3.52 97.38%

5 864.48 881.94 24.08 98.02% 865.43 2.50 99.89% 914.34 5.07 94.55%

6 867.01 867.01 36.08 100.00% 872.78 2.25 99.34% 899.98 12.93 96.34%

7 826.32 826.32 53.94 100.00% 826.32 3.50 100.00% 912.21 8.32 90.59%

8 765.06 783.06 55.90 97.70% 770.33 2.70 99.32% 809.62 8.85 94.50%

9 710.30 710.30 46.97 100.00% 711.40 4.82 99.85% 737.93 7.54 96.26%

10 1022.99 1022.99 52.59 100.00% 1045.68 1.03 97.83% 1044.55 6.90 97.94%

Avg 819.83 825.14 37.54 99.32% 830.97 3.45 98.62% 859.65 7.89 95.14%

 Heuristic

 transfer & swap transfer only swap only

 Examples Optimum cost time optimality

%

cost time optimality

%

cost time optimality%

20

Custom

ers

1 968.07 971.85 0.44 99.61% 1004.82 0.11 96.34% 971.85 0.88 99.61%

2 633.24 646.99 0.88 97.87% 646.99 0.16 97.87% 700.15 0.34 90.44%

3 609.21 623.69 1.83 97.68% 639.24 0.32 95.30% 649.13 0.44 93.85%

4 931.65 961.81 0.15 96.86% 961.81 0.12 96.86% 956.51 0.15 97.40%

5 864.48 934.74 0.47 92.48% 1010.50 0.15 85.55% 928.44 0.22 93.11%

6 867.01 875.42 1.14 99.04% 929.19 0.32 93.31% 905.52 0.33 95.75%

7 826.32 897.36 0.66 92.08% 946.35 0.21 87.32% 912.21 0.32 90.59%

8 765.06 819.85 0.74 93.32% 831.44 0.22 92.02% 809.81 0.60 94.47%

9 710.30 786.48 1.21 90.31% 790.96 0.26 89.80% 785.02 0.32 90.48%

10 1022.99 1045.68 0.56 97.83% 1121.51 0.13 91.22% 1071.89 0.39 95.44%

Avg 819.83 856.39 0.81 95.71% 888.28 0.20 92.29% 869.05 0.40 94.34%

88

Table 3 Results of different neighbourhood structure in Simulated Annealing algorithm

 Simulated Annealing

 transfer & swap transfer only swap only

 Examp

les

Optimum cost time optimality

%

cost time optimality

%

cost time optimality

%

20

Custom

ers

1 968.07 971.85 39.69 99.61% 999.89 29.97 96.82% 971.85 10.64 99.61%

2 633.24 633.24 39.41 99.00% 633.24 23.53 100.00% 674.30 7.12 93.91%

3 609.21 613.54 42.50 99.29% 618.13 25.83 98.56% 623.69 19.38 97.68%

4 931.65 931.65 34.45 100.00% 931.65 27.96 100.00% 956.35 6.23 97.42%

5 864.48 864.48 23.64 100.00% 871.90 18.95 99.15% 914.34 8.52 94.55%

6 867.01 867.01 45.02 100.00% 870.29 24.44 99.62% 900.91 10.37 96.24%

7 826.32 830.54 33.30 99.49% 830.35 19.97 99.51% 912.21 13.82 90.59%

8 765.06 783.06 44.91 97.70% 767.68 30.72 99.66% 809.81 15.23 94.47%

9 710.30 712.13 36.35 99.74% 713.05 24.24 99.61% 762.38 15.60 93.17%

10 1022.99 1025.15 34.89 99.79% 1028.98 21.87 99.42% 1044.55 12.60 97.94%

Avg 819.83 823.27 37.42 99.46% 826.52 24.75 99.24% 857.04 11.95 95.56%

89

Appendix D Comparisons of applying different methods

The following table provides the cost, computation time, and optimality percentage of

applying different algorithms in examples with10, 15, 20, and 25 customers.

Table 1 Results of applying different methods in different scales of problems

MILP model

Heuristic Tabu Search Simulated Annealing

Exam

ples
Cost

Time-

GLPK

Time-

guro

bi

Cost Time
optimality

%
Cost Time

optimality

%
Cost Time

optimality

%

10

Custom

ers

1 288.30 0.20 0.45 302.99 0.66 95.15% 288.30 5.03 100.00% 288.30 9.25 100.00%

2 384.24 0.00 0.33 384.24 0.22 100.00% 384.24 10.69 100.00% 384.24 17.55 100.00%

3 440.43 1.00 1.73 445.88 0.04 98.78% 445.88 6.84 98.78% 440.43 23.75 100.00%

4 509.11 0.00 0.08 509.11 0.12 100.00% 509.11 0.76 100.00% 509.11 18.92 100.00%

5 453.49 0.10 0.47 459.95 0.03 98.60% 459.95 0.27 98.60% 453.49 24.51 100.00%

6 330.75 0.10 0.51 340.01 0.25 97.28% 330.75 13.98 100.00% 330.75 28.92 100.00%

7 665.74 0.20 0.05 665.74 0.11 100.00% 665.74 0.24 100.00% 665.74 1.28 100.00%

8 432.51 0.00 0.09 432.51 0.11 100.00% 432.51 2.47 100.00% 432.51 26.89 100.00%

9 381.31 0.10 0.45 381.31 0.11 100.00% 381.31 3.71 100.00% 381.31 27.69 100.00%

10 533.63 0.20 0.56 533.63 0.11 100.00% 533.63 1.30 100.00% 533.63 26.10 100.00%

Avg 441.95 0.19 0.47 445.54 0.18 98.98% 443.14 4.53 99.74% 441.95 20.49 100.00%

15

Custom

ers

1 333.27 0.20 0.83 333.77 1.01 99.85% 333.27 34.05 100.00% 333.27 46.44 100.00%

2 405.78 7.00 1.40 405.78 0.38 100.00% 405.78 29.11 100.00% 405.78 58.26 100.00%

3 389.07 275.20 2.65 398.00 1.40 97.76% 389.07 60.92 100.00% 389.07 42.18 100.00%

4 444.52 7.20 2.22 495.10 0.91 89.78% 444.52 29.81 100.00% 444.52 37.85 100.00%

5 381.53 0.20 0.48 381.53 0.86 100.00% 381.53 39.39 100.00% 381.53 36.98 100.00%

6 410.98 3.50 2.26 424.64 0.55 96.78% 410.98 23.45 100.00% 410.98 25.38 100.00%

7 571.12 0.20 0.17 602.61 0.15 94.77% 571.12 19.93 100.00% 571.12 30.60 100.00%

8 734.26 9.40 1.75 764.62 0.37 96.03% 734.26 15.75 100.00% 734.26 22.64 100.00%

9 858.24 42.80 2.09 919.17 0.23 93.37% 858.24 17.67 100.00% 858.24 74.78 100.00%

10 656.70 16.40 1.76 705.55 0.55 93.08% 656.70 22.46 100.00% 656.70 19.09 100.00%

Avg 518.55 36.21 1.56 543.08 0.64 96.14% 518.55 29.25 100.00% 518.55 39.42 100.00%

20

Custom

ers

1 968.07 6830.60 2.39 971.85 0.44 99.61% 971.85 18.85 99.61% 971.85 39.69 99.61%

2 633.24 2385.46 1.47 646.99 0.88 97.87% 646.99 34.98 97.87% 633.24 39.41 100.00%

3 609.21 864.32 3.50 623.69 1.83 97.68% 609.30 41.09 99.98% 613.54 42.50 99.29%

4 931.65 2175.20 2.90 961.81 0.15 96.86% 931.65 10.90 100.00% 931.65 34.45 100.00%

5 864.48 192.50 2.48 934.74 0.47 92.48% 881.94 24.08 98.02% 864.48 23.64 100.00%

6 867.01 1224.40 3.28 875.42 1.14 99.04% 867.01 36.08 100.00% 867.01 45.02 100.00%

7 826.32 425.10 5.07 897.36 0.66 92.08% 826.32 53.94 100.00% 830.54 33.30 99.49%

8 765.06 1685.10 8.66 819.85 0.74 93.32% 783.06 55.90 97.70% 783.06 44.91 97.70%

9 710.30 447.10 4.10 786.48 1.21 90.31% 710.30 46.97 100.00% 712.13 36.35 99.74%

10 1022.99 5895.90 13.77 1045.68 0.56 97.83% 1022.99 52.59 100.00% 1025.15 34.89 99.79%

Avg 819.83 2212.57 4.76 856.39 0.81 95.71% 825.14 37.54 99.32% 823.27 37.42 99.56%

90

Table 1 Results of applying different methods in different scales of problems (Continued)

25

Custom

ers

1 535.32 19210.50 148.0

0

543.95 3.21 98.41% 538.29 177.3

9

99.45% 539.43 107.1

7

99.24%

2 1119.12 17892.10 24.73 1154.00 1.70 96.98% 1119.12 87.98 100.00% 1130.83 50.25 98.96%

3 1103.00 15224.50 56.87 1249.44 0.61 88.28% 1117.34 103.4

9

98.72% 1121.61 42.34 98.34%

4 914.23 31619.70 22.78 1031.79 2.18 88.61% 914.23 88.01 100.00% 968.00 26.14 94.45%

5 982.89 144.30 2.50 1043.34 0.98 94.21% 982.89 45.75 100.00% 1003.88 38.74 97.91%

6 1239.41 595.10 2.96 1254.75 0.68 98.78% 1254.37 33.51 98.81% 1254.75 34.69 98.78%

7 947.35 11468.00 35.01 965.85 1.75 98.08% 965.85 85.61 98.08% 964.00 57.31 98.27%

8 929.17 7932.40 22.66 1000.44 1.52 92.88% 929.17 51.70 100.00% 940.44 30.08 98.80%

9 1200.62 12654.60 17.80 1231.41 0.76 97.50% 1231.41 61.14 97.50% 1231.41 45.05 97.50%

10 975.48 2381.40 11.47 1038.21 0.87 93.96% 975.48 43.18 100.00% 984.10 35.87 99.12%

Avg 994.66 11912.26 34.48 1051.32 1.42 94.77% 1002.81 77.78 99.26% 1013.84 46.76 98.14%

