

APPLICATION OF SUPPORT VECTOR MACHINES TO LONGITUDINAL FUNCTIONAL

NEUROIMAGING DATA

by

Alexander Adam Rudiuk

Submitted in partial fulfilment of the requirements

for the degree of Master of Applied Science

at

Dalhousie University

Halifax, Nova Scotia

November 2016

© Copyright by Alexander Adam Rudiuk, 2016

ii

For my Mother and Father

iii

LIST OF TABLES .. VI

LIST OF FIGURES ... VII

ABSTRACT .. VIII

LIST OF ABBREVIATIONS AND SYMBOLS USED .. IX

ACKNOWLEDGEMENTS .. XI

CHAPTER 1 INTRODUCTION .. 1

1.1 FUNCTIONAL NEUROIMAGING .. 1

1.1.1 Measuring Brain Activity with Functional Neuroimaging ... 1

1.1.2 Modalities of Functional Neuroimaging ... 2

1.1.3 Magnetoencephalography ... 3

1.1.4 Current Univariate and Multivariate Analysis Approaches .. 4

1.1.5 Flaws of Univariate and Multivariate Approaches ... 6

1.2 MACHINE LEARNING .. 7

1.2.1 What is Machine Learning? .. 7

1.2.2 What is a Classification Model? .. 8

1.2.3 Classification Models/Algorithms ... 8

1.2.4 Support Vector Machines ... 9

1.2.5 Logistic Regression.. 17

1.2.5.1 Logistic Regression vs SVM .. 17

1.2.6 Feature Selection and Scaling: Importance of Pre-Processing 18

1.2.7 Cross Validation, Parameter Tuning, and Generalizability ... 19

1.2.7.1 Trade-Offs .. 21

1.2.8 Diagnosis and Prognosis ... 21

1.3 LONGITUDINAL FUNCTIONAL NEUROIMAGING DATA .. 24

1.3.1 What is Longitudinal Functional Neuroimaging Data .. 24

1.3.2 Example: Prognosis for mTBI .. 24

1.3.3 Challenges for Analysis ... 26

1.4 LONGITUDINAL SUPPORT VECTOR MACHINE ... 27

1.4.1 Derivation ... 27

1.4.2 Differences from the SVM and LR ... 29

1.5 OBJECTIVES AND HYPOTHESES.. 29

CHAPTER 2 METHODS ... 31

2.1 STUDY ONE: PURE SIMULATION ... 31

iv

2.1.1 Simulation of Longitudinal Data ... 31

2.1.1.1 Simulation One .. 32

2.1.1.2 Simulation Two .. 33

2.1.2 Feature Selection and Scaling ... 34

2.1.3 Implementation of Classifiers ... 34

2.1.3.1 Logistic Regression .. 34

2.1.3.2 Support Vector Machine ... 35

2.1.3.3 Longitudinal Support Vector Machine ... 35

2.1.3.3.1 𝛃 Optimisation .. 35

2.1.4 Cross-Validation .. 35

2.1.5 Model Interpretation .. 36

2.1.6 Evaluating Relative Performance of Classifiers... 36

2.1.6.1 SNR Impact on Classification Accuracy .. 36

2.1.7 Heteroscedasticity .. 37

2.2 STUDY TWO: RESTING STATE MEG DATA WITH SIMULATED TRENDS... 37

2.2.1 Simulation of Longitudinal MEG Data .. 37

2.2.1.1 Simulating a Trend ... 37

2.2.1.2 Adding a Trend to Resting State Data .. 38

2.2.2 Feature Selection and Scaling ... 40

2.2.2.1 Feature Selection ... 40

2.2.2.2 Scaling Strategies ... 41

2.2.3 Cross-Validation .. 41

2.2.4 Evaluating Relative Performance of Classifiers... 41

2.2.5 Model Interpretation .. 41

2.2.5.1 Interpretation in the Context of MEG.. 41

CHAPTER 3 RESULTS ... 43

3.1 STUDY ONE .. 43

3.1.1 Simulation One ... 43

3.1.1.1 Simulation .. 43

3.1.1.2 𝜷 Values... 46

3.1.1.3 C Values ... 47

3.1.1.4 Classification Accuracy .. 49

3.1.1.5 Model Interpretation ... 51

3.1.1.5.1 Weights ... 51

3.1.1.5.2 Hyperplane Distances ... 53

3.1.2 Simulation Two ... 55

3.1.2.1 Simulation .. 55

v

3.1.2.2 Classification Accuracy .. 57

3.1.2.3 Model Interpretation ... 59

3.1.2.3.1 Weights ... 59

3.1.3 Heteroscedasticity .. 61

3.2 STUDY TWO: RESTING STATE WITH SIMULATED TREND ... 63

3.2.1 Simulation ... 63

3.2.2 𝜷 Values .. 71

3.2.3 Classification Accuracies ... 73

3.2.4 Model Interpretation .. 76

CHAPTER 4 DISCUSSION ... 81

4.1 SUMMARY OF MAIN FINDINGS ... 81

4.2 IMPACT OF RANDOM Β STRATEGY ON LSVM PERFORMANCE ... 82

4.3 SELECTING A CROSS VALIDATION STRATEGY .. 82

4.4 COMPARING CLASSIFIERS .. 84

4.5 WHAT DOES C SAY? .. 85

4.6 INTERPRETABILITY OF FEATURE WEIGHTS ... 86

4.7 DIFFERENT STRATEGIES FOR FEATURE SELECTION ... 87

4.8 HETEROSCEDASTICITY ... 88

4.9 GENERALIZABILITY ... 89

4.10 CHALLENGES ... 90

4.11 SIGNIFICANCE FROM A CLINICAL PERSPECTIVE ... 91

CHAPTER 5 CONCLUSION .. 93

BIBLIOGRAPHY ... 94

vi

List of Tables
Table 1 - Feature Weights Correlation .. 80

vii

List of Figures
Figure 1 - Svm Classification Example ... 10

Figure 2 - Outline of Workflow for Machine Learning Classification 16

Figure 3 – Cross Validation Outline ... 20

Figure 4 – Chen and DuBois Simulation with Averaged Features 44

Figure 5– Chen and DuBois Simulation with Averaged Subjects 45

Figure 6 – Simulation One Beta Values ... 47

Figure 7 – Simulation One C Values .. 48

Figure 8 – Simulation One Classification Accuracies .. 50

Figure 9 – Simulation One Weights at 𝜏 of 1 .. 52

Figure 10 – Simulation One Hyperplane Distance at 𝜏 of 0.1 54

Figure 11 – Simulation Two With Averaged Features .. 56

Figure 12 – Classification Accuracy of Simulation Two ... 58

Figure 13 – Simulation Two Weights .. 60

Figure 14 – Heteroscedasticity Classification Accuracy .. 62

Figure 15 – Current Dipole Simulation.. 64

Figure 16 – First Session Butterfly Plot ... 65

Figure 17– Second Session Butterfly Plot ... 66

Figure 18– Third Session Butterfly Plot... 67

Figure 19– Fourth Session Butterfly Plot .. 68

Figure 20– Fifth Session Butterfly Plot .. 69

Figure 21– Sixth Session Butterfly Plot ... 70

Figure 22 – Study Two 𝛽 values .. 72

Figure 23 – Study Two Scaling Comparisons .. 74

Figure 24 – Study Two Classification Accuracies .. 75

Figure 25 – Study Two Feature Weights LSVM ... 77

Figure 26 – Study Two Feature Weights SVM .. 78

Figure 27 – Study Two Feature Weights LR .. 79

https://d.docs.live.net/4378deb17249b6d3/Master/Thesis/Alexander_Rudiuk_Thesis_Edits_AR6_TB.docx#_Toc469498397

viii

Abstract
 The principal objective of this thesis was to test a novel adaptation of the

support vector machine (SVM), called a longitudinal support vector machine(LSVM), on

longitudinal functional neuroimaging data. LSVM performance was compared to a

traditional SVM and logistic regression (LR) using classification accuracy and

interpretability of feature weights. Classification accuracy was measured as the

percentage of subjects placed into their correct categories, and feature weights by how

closely they matched the known signal. The first study involved purely simulated data,

which found the LSVM had higher classification accuracy for data without

heteroscedasticity, but performed worse when heteroscedasticity was introduced. The

second study used real magnetoencephalography (MEG) resting state readings added to

a simulated trend. The LSVM had similar classification accuracy, and only had more

interpretable feature weights at the highest SNR dataset. Currently the LSVM is not

recommended over the SVM/LR algorithms.

ix

List of Abbreviations and Symbols Used
AD – Alzheimer’s Disease

CVA – Canonical Variate Analysis

EEG – Electroencephalography

fMRI – Functional Magnetic Resonance Imaging

HC – Healthy Control

ICA – Independent Component Analysis

LOOCV – Leave One Out Cross Validation

LR – Logistic Regression

LSVM – Longitudinal Support Vector Machine

MCI – Mild Cognitive Impairment

MEG – Magnetoencephalography

MRI – Magnetic Resonance Imaging

PCA – Principle Component Analysis

SNR – Signal-to-Noise Ratio

SQUID – Superconducting Quantum Interference Device

SVM – Support Vector Machine

𝑥 – Input

𝑦 – Target

𝑤 – Weights

G – Gram Matrix

𝛼 – Support Vectors

x

𝑏 – Bias

𝐾 – Kernel

𝐶 – Regularization Term

𝑡 – Session Number

𝑁 – Subject Count

𝛽 – Beta Term of LSVM

𝑚 – Mean

𝑁 – Normal Distribution

𝜎2 – Standard Deviation at Session 1

𝜙2 – Standard Deviation at Session 2

𝜏 – Scaling Term

𝜓 – Heteroscedasticity Term

xi

Acknowledgements
I would like to thank my thesis supervisors, Dr. Tim Bardouille and Dr. Steven

Beyea, of the School of Biomedical Engineering at Dalhousie University. Dr. Bardouille

was always available to provide guidance when I ran into trouble with my research and

writing. Dr. Beyea also provided valuable insight into my writing. They allowed for this

paper to be my own work, but helped steered me.

I would also like to thank my committee, Dr. Thomas Trappenberg and Dr.

Robert Adamson, for their expert guidance. Dr. Trappenberg primarily for his help with

the machine learning aspects of the project, and Dr. Adamson for his help with

developing comparison models.

I would also like to thank BIOTIC and my lab members: Ronald Bishop, John

Lincoln, Santosh Vema, and Sarah McLeod. I thank Dr. Steve Patterson for his

discussions about machine learning, statistics, and life which helped me throughout my

thesis. I would like to thank Jessica Luedi for help with editing this paper. I would also

like to thank my friends Max Wawer, Carl Kooka, and Scott Cameron who have provided

me with help throughout my degree.

Finally, I would like to acknowledge my parents for always supporting me

through the good times and bad. Without their constant support, I would not be the

person I am today. Thank you.

1

Chapter 1 Introduction
Interpreting functional neuroimaging data is a complicated task. Collected data

is typically high dimensional and low sample size. The analysis is further complicated

when the data is collected over multiple sessions (i.e., longitudinally). Time between

sessions typically varies between subjects, meaning that changes in measured variables

might not be consistent between different subjects. Also, responses might be

correlated (not independent) as a variables’ measurement at one session can be related

to its measurement at other sessions. The variance of a variable might not be consistent

over time (heteroscedasticity). For longitudinal data, heteroscedasticity means that

repeated measures of a variable can have different distributions. Lastly, it is more likely

that measurements closer in time are correlated than measurements that are farther

apart in time [1-3].

To analyse functional neuroimaging data, highly regularized models need to be

used. Two common regularized models are the support vector machine (SVM) and

logistic regression (LR). In this thesis, I test a novel addition to the SVM, developed by

Chen and Dubois[4], which explicitly takes into account the longitudinal nature of

sessioned functional neuroimaging data using a model called the longitudinal support

vector machine (LSVM). This work will develop an understanding of whether the LSVM

has a role in predicting long term changes for patients by extending the simulations of

Chen and Dubois to evaluate the LSVM performance with variation of more input

parameters, and by evaluating the algorithm on simulated neuroimaging data.

Classifiers that perform well with longitudinal data may have value in predicting

recovery of a patient after a brain injury (prognosis). This has the possibility of giving

clinicians a new tool to use when determining next steps to take during treatment.

1.1 Functional Neuroimaging

1.1.1 Measuring Brain Activity with Functional Neuroimaging
Functional neuroimaging machines measure an indicator of brain activity, such

as electrical potentials on the scalp, magnetic fields propagating from the head, or

metabolic changes in neurons that affect blood flow to brain regions. A typical

2

paradigm would have the subject performing a timed task, for which related brain

activity is recorded. Functional imaging provides insight into the roles of different brain

regions by being able to detect where activity is occurring during tasks. This

differentiates functional neuroimaging from structural imaging, because structural

imaging is not able to show where the activity is occurring. Structural imaging will only

reveal the physical structure of the brain.

Functional neuroimaging is useful for studying the roles of different brain

regions during tasks, and can help measure functional changes to the brain when no

macroscopically apparent anatomical change is present. As an example, adults suffering

from mTBI show subtle changes in their functional neuroimaging data not detected

with purely neuropsychological tests, and where less than 5% of adults show signs of a

distinct lesion [5, 6]. This provides evidence for functional neuroimaging being an

important tool for finding indicators of change.

1.1.2 Modalities of Functional Neuroimaging
Three popular functional neuroimaging modalities are electroencephalography

(EEG), functional magnetic resonance imaging (fMRI), and magnetoencephalography

(MEG). EEG and MEG measure activity corresponding to electrophysiological changes in

neuronal populations that are time-locked to a stimulus or task [7]. These time locked

changes are called event-related potentials or event-related fields, as they refer to

changes in brain activity due to some event. This event can be a visual stimulus,

auditory stimulus, or physical stimulus, as well as a physical response to the stimulus.

Since brain activity of interest is time locked to the event stimulus, background brain

activity can be reduced by averaging. Averaging across multiple time segments around

an event of interest therefore improves the signal-to-noise ratio (SNR). The signal being

recorded by EEG/MEG is primarily generated by post-synaptic potentials.[8]. The post-

synaptic potential at a single neuron is too small to produce a detectable signal; the

measurements obtained represent the summed activity of many neurons. These

measurements are either of the electric potential produced at the scalp by the post-

synaptic potentials (EEG), or of the associated magnetic field (MEG). EEG and MEG

3

provide complimentary information as the electrical and magnetic fields are

perpendicular to each other. Both measurements have a temporal resolution on the

order of milliseconds due to the nature of bioelectromagnetic fields [9]. In contrast,

fMRI uses blood oxygenation level dependent (BOLD) contrast [10], which is dependent

on the blood flow to travel to regions of activity (i.e., neurovascular response), giving a

lower temporal resolution on the order of seconds. EEG has poorer spatial resolution

than MEG since the electrical potentials are spatially “smeared” by the high

conductivity in the skull and scalp [8, 11].

1.1.3 Magnetoencephalography
MEG measures the magnetic fields of the brain using superconducting quantum

interference device (SQUID) sensors [12]. SQUID sensors are able to measure the

extremely small magnetic fields generated by brain activity; they use superconducting

material that can be affected by the small magnetic fields of the brain [13]. SQUID

sensors provide the required sensitivity to detect the brain’s magnetic fields, but larger

magnetic fields in the environment need to be removed to improve the signal-to-noise

ratio (SNR) of measured brain activity [14].

To achieve improved SNR, typical MEG data is collected over a period of time

and then split into discrete sections synchronized to events of interest (epoched) and

averaged (evoked). The data is split into discrete sections based on when event triggers

occur. This would be an auditory tone or some other stimuli. The MEG data collected

after this trigger shows a signal that relates to the recent event. In the case of an

auditory tone, the signal would be active in both auditory cortices.

As mentioned above, the magnetic fields being measured with MEG come from

currents in the brain. If the primary source and surrounding conductivity distributions

are known, the resulting magnetic field signal can be calculated [15]. The solution is

modelled by using equivalent current dipoles as sources of signal in the brain, which

approximate the flow of electrical current in a small area. It also assumes there is no

propagation delay in the signal and no temporal derivative (quasi-static). Under these

4

assumptions, the magnetic field perpendicular to an MEG sensor can be calculated

using the equation

𝐵𝑧 =
𝜇0

4𝜋

𝑄×(𝑟−𝑟𝑄)∙𝑒𝑧

|𝑟−𝑟𝑄|
3 (1)

𝐵𝑧 is the magnetic field perpendicular to the sensor, r is the point where the

field is computed (i.e. location of the sensor), e is given by
𝑟

|𝑟|
, 𝑟𝑄 is the current dipole

location, and 𝜇0 is a permeability constant. Using this equation for the generation of

magnetic fields, an equation to compute the forward model is given by

𝑀 = 𝐺𝑋 (2)

M is the matrix of sensor readings, G is the forward solution described in

equation (1), and X is the matrix of source amplitudes over time. By knowing the

location and orientation of the source current dipoles (X) and the forward solution (G)

the sensor readings can be calculated. The inverse of this task is called source

estimation, where the source is estimated based on sensor readings.

1.1.4 Current Univariate and Multivariate Analysis Approaches
There are two common approaches to statistical analysis of functional

neuroimaging data: univariate, and multivariate methods [16]. Data used for analysis in

functional neuroimaging is typically low sample size and with a high number of

dimensions. This holds true for sensor level data (i.e. 𝐵𝑧), and for source estimate data

(i.e., current dipoles Q). Inferential methods use a statistical model on a per-voxel basis

and tests variations from the null hypothesis. A voxel, in this case, refers to the smallest

unit of a 3D image. The null hypothesis states that there is no statistically significant

variation between one set of data and another. If there is a statistically significant

variation, the null hypothesis is rejected. Non-inferential methods try to characterize

the nature of the signal in the data without depending on a particular model, essentially

finding patterns in the data [17].

5

Inferential methods use a null hypothesis that is assessed with a test statistic (a

function sensitive to departure from the null hypothesis and looking at the region of

interest), which gives a score of how much a voxel deviates from a voxel that is not

activated. This score is a measure of the support behind a null hypothesis and is used to

either accept or reject it [18]. An example would be a time series where the magnitude

of activation in a voxel under one observation is compared to itself at another

observation. These observations might be during different tasks the subject is asked to

perform. If the value at the voxel is determined to be significantly different between

the two observations, via a test against the null hypothesis, then there is said to be a

change in activity at that voxel.

Examples of multivariate exploratory methods used in functional neuroimaging

are principle component analysis (PCA), and independent component analysis (ICA).

PCA identifies patterns in the data that are orthogonal to each other, while ICA

identifies patterns that are statistically independent and spatially sparse with respect to

each other. PCA requires that the principle components be orthogonal, while ICA puts

no constraints on orthogonality [19]. When applied to functional neuroimaging data,

these methods involve determining the components, and inspecting the projection of

the components onto the data as an indicator of experimental effects. The projected

data is analyzed first, and then labeled with an interpretation in the context of the

experimental design [16].

In contrast with multivariate methods, univariate approaches are more focused

on testing hypothesis related to a single variable [20]. This is because univariate

approaches are testing a specific question about whether certain voxels show changes

in activity during certain tasks, and whether these changes in activity are statistically

significant. Multivariate approaches, such as PCA and ICA, generate spatial patterns of

activity, and then leave the interpretation of these generated patterns to the

researcher. Univariate methods, therefore, allow for a stronger link to the experimental

variables when performing studies using functional neuroimaging techniques. A

research question that could be asked with multivariate methods is “What patterns of

6

activity explain variations across the set of brain maps?”, while with inferential statistics

it would be “Does the activation level of a voxel vary significantly as a function of

experimental condition?”. Since univariate analysis is done on a per voxel basis, the

hypothesis is phrased in terms of voxel-wise activation and does not look at possible

shared activations that could be occurring, which is available with a multivariate

approach.

1.1.5 Flaws of Univariate and Multivariate Approaches
There are several limitations associated with inferential and multivariate

methods that may cause problems when answering certain types of questions in the

field of functional neuroimaging. Voxel-based inferential statistics treats every voxel as

being an independent data point. This is flawed as brain activity occurs in “blobs” of

voxels that are correlated to each other.

Another problem with inferential techniques is that they run into type 1 error.

Type 1 error is the incorrect rejection of a null hypothesis – meaning that a change is

considered to be statistically significant when it is actually not. In terms of functional

imaging, it means that certain voxels are considered to be activated when they are not.

Since there are many non-activated voxels in a functional image, the model would lean

towards predicting a voxel is activated to match the probability of the model, creating

falsely identified activated voxels. Unfortunately, corrections for this tend to push the

result towards type 2 error. Type 2 error is not rejecting the null hypothesis when it is

false – claiming that an effect is not significant when it is.

Many multivariate exploratory methods commonly applied to functional

neuroimaging data are flawed because they do not directly connect data to the

experimental conditions [16]. For example, consider performing principle component

analysis (PCA) on a set of MEG data. PCA will return components to the researcher

representing different patterns, each component explaining some amount of the

variability in the data [21]. Researchers can then project data for each condition onto

these components, and relate the resulting data to the experimental conditions of the

experiment. Even if a component explains a large amount of variance in the data, the

7

researcher still needs to relate what it means in the context of the experiment.

Interpreter bias and reproducibility become serious issues given that there is no

systematic way of correlating variance in an image to experimental conditions. As well,

some variations might be as large as artifacts (e.g., head movement), making it difficult

to select proper components [16].

Human bias and error present obstacles when analysing results from techniques

like PCA. Since the components being produced need to be interpreted by the

researcher, the conclusions reached are subject to bias. Subjectivity in scientific results

is not desirable as it makes it difficult to reproduce the same results. Error in

interpretation is also a risk as the high number of dimensions in the components can be

difficult to interpret. Researcher bias can cause several different issues as findings may

be motivated by what the researchers believes is the correct interpretation. If a

researcher spent significant time on a project, for example, they might be more inclined

to see positive results.

1.2 Machine Learning

1.2.1 What is Machine Learning?
A popular formal definition of machine learning attributed to Dr. Mitchell is “A

computer program is said to learn from experience E with respect to some class of tasks

T and performance measure P if its performance at tasks in T, as measured by P,

improves with experience E”[22]. Put more simply, machine learning is the study of

algorithms that improve at some task when given experience in performing said task.

There are three main classes of machine learning algorithms: supervised, unsupervised,

and reinforcement learning. My thesis will focus on the application of supervised

machine learning to functional neuroimaging data. In supervised learning, the computer

is given the inputs (features) and the correct outputs (targets). The supervised learner

then tries to develop a pattern classification model to predict the outputs from future

inputs using the discovered patterns in the data [21].

8

1.2.2 What is a Classification Model?
Classification approaches to functional neuroimaging data associate exemplars

of functional data with a discrete set of classes. Supervised machine learning is common

for functional neuroimaging studies, because it allows the researcher to classify the

functional neuroimaging data into chosen classes [4, 23-26]. The classification accuracy

is determined by how many test sets are predicted to be in the correct class, once the

algorithm has been trained to classify. By looking at what patterns of brain activity help

drive classification accuracy, the relevancy of those patterns to certain tasks can be

assessed. How the input data is presented to the algorithm will determine what

information the algorithm uses to classify, and leads to different representations of the

patterns driving accuracy. Then, when new data is introduced, the supervised learning

algorithm should be able to predict which class the functional neuroimaging data

belongs to.

1.2.3 Classification Models/Algorithms
Pattern based classification is a promising new way to analyze functional

neuroimaging data. It is a subset of the field of machine learning. To give an idea of the

benefits of using machine learning over more classic approaches, consider the following

example [27]. Using fMRI, it is possible to distinguish if a participant is looking at an

image of a face or a house without the use of computerized pattern based

classification. One way this is done is by looking at the magnitude of activation in the

fusiform face area, which responds strongly to faces, and the parahippocampal place

area, which responds strongly to images containing views of houses and visual scenes.

By simply being given the activity levels in these two regions, human observers were

able to correctly identify the class of object the participant was looking at in 85% of

trials. More difficult classification tasks like predicting the orientation of an object,

which causes a very fine change in brain activity patterns, can not be solved with

univariate approaches and need a machine learning algorithm to operate on patterns.

An example is the accurate classification of visual stimulus class, even amongst multiple

categories with overlapping brain activation patterns [28, 29]. In these cases, it is

possible to increase sensitivity by distinguishing what object a subject is looking at,

9

even when regions overlap, using classification algorithms like support vector machines.

A good example of how pattern based classification techniques are much more

powerful than using univariate models is that univariate models are unable to detect

when an object is rotated, even if data was gathered for hundreds of scans. Pattern

recognition techniques were able to achieve 80% accuracy on just a single fMRI scan

that was collected in under 2 seconds, where a single scan refers to a single

measurement for every voxel of the brain [30].

1.2.4 Support Vector Machines
One of the most popular machine learning algorithms is the support vector

machine (SVM). This supervised learning algorithm has been shown to classify relatively

well when inputs have a large number of dimensions (or “features”) and low number of

class examples, which happens to be the case with most functional neuroimaging data

[28]. SVMs are extensively used in modern functional neuroimaging studies [31-33].

Initial excitement in their use might stem from the results of a competition in 2003,

where an SVM was able to perfectly classify the data [24, 34]. The data was composed

of EEG recordings during a character selection task. Healthy controls (HCs) were shown

matrices with 36 characters (6x6) and had random characters highlighted in the

matrices. While the order was random, the characters were highlighted an equal

amount per session. Each session had a character highlighted 12 times. Accuracy of the

classifier was measured by having it predict what character the subject was looking at.

The SVM was able to achieve perfect classification using only 5 sequences, the least of

all tested classifiers. It also only needed ~16% of the original electrodes to achieve this

accuracy.

10

Figure 1 - Svm Classification Example

This example shows the SVM classifying two different data sets at different C

values. The X and Y axis are not shown as their values are arbitrary. White circles

represent class one, black circles represent class 2, and double circles are the support

vectors. A C value of 1 is used for the left plot, and a C value of 0.1 is used for the right

plot. Solid black lines represent the hyperplane and dashed black lines represent the

margin. As the value of C decreases, the error tolerance increases, in turn increasing the

width of the margin. As the width of the margin increases, more points are treated as

support vectors and end up being within the margin.

11

An SVM operates by taking in the input data designated for training and trying

to separate input vectors associated with different classes by using a hyperplane, as

shown in Figure 1. Inputs to the SVM are composed of different variables, known as

features.

𝑥𝑠 = [𝑥1, 𝑥2, … , 𝑥𝑛], 𝑠 ∈ (1, … , 𝑁) (3)

In equation (3) the input 𝑥𝑠 is composed of 𝑛 features, with there being 𝑁

subjects in total. In the case of MEG data, each feature would be a reading from a

sensor at a specific time point. However, data can be preprocessed to reduce the

number of features that are input to the SVM (e.g., a priori time/sensor selection, PCA,

ICA, etc.). Each subject also has a corresponding target, 𝑦𝑠 that defines the class

𝑦𝑠 ∈ [−1, 1] (4)

The goal of the SVM algorithm is to correctly classify subjects into each class.

Classification accuracy is defined as the percentage of correctly classified inputs. An

SVM classifies inputs into two categories by separating the data with a hyperplane

ℎ(𝑥𝑠) = 𝑤𝑥𝑠 + 𝑏 = {
1, 𝑖𝑓 ≥ 0

−1, 𝑖𝑓 < 0,
, ||𝑤|| = 1 (5)

𝑤 is a vector of weights which multiplies all the features. Since it is of unit

length, the dot product between 𝑤𝑠 and 𝑥𝑠 gives the projection of the input onto the

weights. This result is a scalar value, which decides whether the input belongs to class 1

or class 2 (1 and -1). 𝑏 is a bias term. The closest inputs to the hyperplane of each class

are called the support vectors. While there may be many hyperplanes that can separate

the classes, the optimal one is the one which maximises the margin, the distance

between the hyperplane and the support vectors, as shown in Figure 1, where the

dashed lines are the boundaries of the margin. Vapnik showed that an optimal

hyperplane can be defined as the one which maximizes the distance to the closest

points from either class [21, 35]. This formulation of the problem allows for a unique

solution to the problem, and by assuming a simple separation rule, performance on

unseen data is improved. This has been shown to be equivalent to minimizing

12

𝑚𝑖𝑛
𝑤,𝑏

1

2
||𝑤||

2

𝑠. 𝑡. 𝑦𝑠(𝑤 ∙ 𝑥𝑠 + 𝑏) ≥ 1
 (6)

It is convenient to formulate the minimization problem in the form of a

Lagrangian

𝐿 =
1

2
||𝑤||

2
− ∑ 𝛼𝑠[𝑦𝑠(𝑤 ∙ 𝑥𝑠 + 𝑏) − 1𝑁

𝑠] (7)

 𝛼 is the lagrangian variable, where only the support vectors have non-zero

values. To find the dual of the Lagrangian, the partial derivatives with respect 𝑤 and 𝑏

are taken giving

𝑤 = ∑ 𝛼𝑠
𝑁
𝑠 𝑦𝑠𝑥𝑠 (8)

and

 0 = ∑ 𝛼𝑠
𝑁
𝑠 𝑦𝑠 (9)

 Using equation (8) and (9) the dual of the Lagrangian is obtained by

substitution

𝐿 = ∑ 𝛼𝑠 −
1

2
∑ ∑ 𝛼𝑠𝛼𝑠′𝑦𝑠𝑦𝑠′(𝑥𝑠 ∙ 𝑥𝑠′)

𝑁
𝑠′

𝑁
𝑠

𝑁
𝑠 (10)

Equations (8) and (9) can also be plugged into the hyperplane equation (5) to

obtain the hyperplane equation in terms of the Lagrangian variables

ℎ(𝑥𝑠) = ∑ 𝛼𝑖𝑦𝑖(𝑥𝑠′ ∙𝑁
𝑠′ 𝑥𝑠) + 𝑏 (11)

An important thing to notice in equations (10) and (11) is that only the dot

product of inputs is necessary for computation, not the inputs themselves. This

becomes useful when wanting to use non-linear separators. Not all data can be

separated with a linear hyperplane. In that case, the input features are mapped to an

alternate dimension (usually higher) using a kernel function. The kernel is a mapping of

the input vector from its original set of features to a new feature space, where the

mapping can be linear or not linear [26]. By transforming the data to a new feature

space, one might be able to find a linear separator in this new feature space and use

the same algorithm to find a linear hyperplane. Importantly, instead of mapping the

13

inputs to a new coordinate frame, the dot product can be mapped instead. This is called

the kernel trick. This changes equation (11) to

ℎ(𝑥𝑠) = ∑ 𝛼𝑖𝑦𝑖𝐾(𝑥𝑠′
𝑁
𝑠′ 𝑥𝑠) + 𝑏 (12)

where K is the kernel function mapping the dot product to the new feature

space.

One important property to note about equations (11) and (12) is that these

solutions do not allow for incorrect classification. To get around this, a slack variable 𝜉

is added to equation (13).

𝑚𝑖𝑛
𝑤,𝑏

1

2
||𝑤||

2
+ 𝐶 ∑ 𝜉𝑠

𝑁
𝑠=1

𝑠. 𝑡. 𝑦𝑠(𝑤 ∙ 𝑥𝑠 + 𝑏) ≥ 1 − 𝜉𝑖 𝜉𝑠 ≥ 0
 (13)

𝜉 measures the distance from the proper side of the hyperplane an input is

allowed to be during training. C is the parameter controlling error tolerance. Making the

value of C larger in equation (13) will punish the SVM more for having examples on the

wrong side, resulting in smaller margins. Smaller values of C will punish the classifier

less for misclassification and allow for larger margins. Taking the slack variable into

account and finding the Lagrangian minimization problem in the form of equation (10)

gives

𝑚𝑖𝑛
𝛼

1

2
∑ 𝑎𝑠𝑎𝑠′𝑦𝑠𝑦𝑠′𝐾(𝑥𝑠, 𝑥𝑠′)𝑠,𝑠′ − ∑ 𝛼𝑠

𝑁
𝑠=1

𝑠. 𝑡. 𝐶 ≥ 𝑎𝑠 ≥ 0 𝑎𝑛𝑑 ∑ 𝛼𝑠𝑦𝑠 = 0𝑠

 (14)

 Finally, the notation can be greatly simplified if the 𝑦 values and the kernel 𝐾

are put into a matrix called the Gram matrix

𝑚𝑖𝑛
𝛼

1

2
𝛼𝑇𝐺𝛼 − 𝛼

𝑠. 𝑡. 𝐶 ≥ 𝑎𝑠 ≥ 0 𝑎𝑛𝑑 ∑ 𝛼𝑠𝑦𝑠 = 0𝑠

 (15)

Where

14

𝐺 = [
𝑦1𝑦1′𝐾(𝑥1, 𝑥1) ⋯ 𝑦1𝑦𝑁′𝐾(𝑥1, 𝑥𝑁)

⋮ ⋱ ⋮
𝑦𝑁𝑦1′𝐾(𝑥𝑁 , 𝑥1) ⋯ 𝑦𝑁𝑦𝑁′𝐾(𝑥𝑁 , 𝑥𝑁)

] (16)

 Each cell in the gram matrix is the product of the targets and kernel of the dot

product between two variables. In the top left corner, both inputs start at the first

index. Moving right and down, both increase the indices for one of the inputs.

A key example of the use of SVMs with functional neuroimaging data is the work of

LaConte et al. [26]. In this paper, LaConte et al. collected data from sixteen right-

handed volunteers performing two repeated runs of a static force task, alternating

between six rest and five force periods (45 s/period; (200, 400, 600, 800, 1000) g

randomized target force with thumb and forefinger). fMRI data was collected using a

Siemens 1.5T scanner. An SVM was compared to a multivariate analysis technique

called canonical variate analysis (CVA), mainly in terms of classification accuracy and

model interpretation. Hyperparameters of the models were tuned using a cross-

validation set, which also acted as the estimate of classification accuracy. This

classification accuracy estimation method results in optimistic predictions, as noted in

the paper. A more optimal method is splitting the data three ways where classification

accuracy is computed on held out data. 2880 SVM models were generated, and 1600

CVA models were generated. This is not an ideal method for comparing classifiers as the

chances of type 1 error increases when subject count stays the same, but model count

increases. Model complexity was controlled by using the C value, and kernel for the

SVM, while for the CVA (as with ICA), the complexity was controlled by the number of

components.

 It was found that the linear kernel was the best performing kernel for the SVM.

Another finding was that the C value would vary when using different subjects in the

validation set, while the CVA model stayed mostly consistent. Another finding was that

the prediction accuracy would only go down at low C values, though this is likely an

effect of using the validation set as the test set. The SVM was also found to be less

sensitive to different pre-processing techniques than the CVA.

15

One of the better model interpretation techniques, described in the work by

LaConte et al., looked at support vectors to see which features were ambiguous

between classes, and which were not. Nonlinear kernels do not suit model

interpretation, as weights in a different dimension do not preserve their meaning,

making interpretation ambiguous. The paper suggests further work is needed to

properly evaluate the importance of features, but it does provide a helpful quote by

Mjolsness and DeCoste[36]:

“Discriminative models make no attempt to explicitly capture the true underlying

physics of the phenomena. Nevertheless, as many recent successful applications of

methods such as SVMs have shown, such classifiers can provide strong insights into the

nature of the phenomena, including such aspects as which input dimensions are most

useful, which examples are most likely to be outliers, and what new observations might

be most worthwhile to gather.”

16

Figure 2 - Outline of Workflow for Machine Learning Classification

Figure 2 shows the workflow for classifying MEG data. Starting at the top left of

the figure is the collected MEG data, which initially undergoes feature selection and

scaling. Feature selection and scaling transforms the data into a set of vectors

composed of features and labels. These vectors are then randomly split into folds. The

folds are fed into a loop where the folds are randomly put into a train and test set. The

train data is then fed into a loop that searches through various hyperparameter values.

17

Further, the current hyperparameter value being tested is fed into a loop along with a

random split of the train set into a train/validation set. This innermost loop is further

explained in Figure 3. From this, the tuned hyperparameters are obtained by picking the

hyperparameters giving the largest classification accuracy. Tuned hyperparameters and

train/test folds are used to fit the machine learning model. Classification accuracy on

the test data is computed, and the average of classification accuracies is output by the

outermost loop.

1.2.5 Logistic Regression
Logistic regression (LR) is similar to support vector machines, and serves as a

good comparison for SVMs to more standard classification approaches. Instead of

separating data with a hyperplane like an SVM, LR tries to fit the data to a continuous

function [21]

𝐹(𝑥) =
1

1+𝑒𝑤𝑥+𝑏 (17)

This function quickly switches between 0 and 1, representing the probability of

an example belonging to class 1. The “hyperplane” in LR would represent the point

where probability is 0.5. A minimization problem can be formulated by taking the log

likelihood giving

𝑚𝑖𝑛
𝑤,𝑏

∑ 𝑙𝑜𝑔 (𝑒−𝑦𝑠(𝑥𝑠
𝑇𝑤+𝑏)

 + 1)𝑁
𝑠=1 (18)

1.2.5.1 Logistic Regression vs SVM
 Since LR fits the data to a continuous function, all data points are taken into

account, unlike an SVM which only looks at the support vectors. An SVM does not

naturally give the probabilities as a result. For an SVM, information about the

distributions is missing, as only the support vector are used during test time, meaning

information about each classes distribution is missing. Solutions to this problem exist

like Platt scaling. In Figure 1, where the SVM only takes into account the circled support

18

vectors, LR would take every point into account. Taking all the points into account

makes LR more computationally expensive than using an SVM. An SVM and LR can both

use the kernel trick described above so that non-linear models can be developed by

both methods. The motivations for the SVM and LR also differ. The SVM is more

geometrically motivated, as it tries to find a hyperplane to separate the data, while

logistic regression tries to fit the data to a function. In practice, LR and linear SVMs tend

to have similar performance [37].

1.2.6 Feature Selection and Scaling: Importance of Pre-Processing
Processing the raw data prior to training involves feature selection,

normalization, and any modifications to the raw data. Feature selection is the choice of

what data to feed into the machine learning algorithm, and the transformation of the

data into a form that can be fed into the machine learning algorithm. It is important to

perform feature selection because redundant features or useless features would just

make the training process take a longer time to find a good solution, require more data,

or even be biased. Removing interdependence and redundancy is helpful because

fewer features means faster execution of the algorithm and training of the pattern

based classification model. Feature selection is not always performed; various machine

algorithms can still give good classification accuracy for functional neuroimaging data

simply by using every voxel [26]. However, feature selection has been shown to reduce

prediction error and improve interpretability [38, 39].

A popular method for feature selection is recursive feature elimination, where

different sets of features are used to train a machine learning algorithm and the subset

with the lowest error is used as the official set of features for the training. It is difficult

to know beforehand how many features need to be selected before moving on, but

there are some principles one can follow as a general guide to the process. If previous

knowledge exists about the system undergoing pattern recognition, then certain

features can be selected as being useful a priori. If the features have interdependence,

then one can try to modify them so that they are independent and normalize the

features [40].

19

Normalization/scaling can be applied to each feature independently so that no

variable is considered more important simply because its magnitude is larger.

Normalizing each feature independently is commonly done when different features

have different scales. Normalization, along with realignment and filtering, are

important pre-processing steps [17]. Realignment centers the data around 0 so that no

variable is considered more important simply because of its magnitude. Low-pass filters

remove frequencies above a certain value. This is useful when collecting real world

data, as it can remove unwanted signals like power line noise (50/60 Hz). High pass

filtering removes frequencies below a certain value. This can remove drift in the signal.

The input data can also be transformed into an alternate representation. For

example, multivariate analysis can be used to separate artifacts like head movement

from brain activity by finding their independent components and removing them from

the data [41]. Instead of using multivariate analysis, another machine learning

algorithm called auto-associative networks can be also be used to reduce the

dimensionality of the data [42], but no such usage was found in literature for functional

neuroimaging.

1.2.7 Cross Validation, Parameter Tuning, and Generalizability
Any model can be fit to a set of data with perfect accuracy, given the model is

sufficiently complex to describe the patterns in the data. Perfect fits are not typically

the desired result as it can mean fitting to noise present in the data. Fit models typically

want to be applied to examples outside of the data that the model was trained on. The

ability to classify data outside of the experimental data used to train the algorithm is

the desired outcome as it allows for the algorithm to be applied to new data. This is

known as generalizability. One of the keys to generalizing properly is using a cross-

validation data set [43, 44]. Cross-validation involves splitting the data into separate

sets composed of training, cross-validation, and test sets as shown in Figure 3

(sometimes the last two are treated as one if there is a small amount of data available).

Cross-validation is used in order to estimate classification accuracy and select

hyperparameters [21, 45]. In cross-validation, the entire dataset is split into smaller

20

sets. Subsets are created by randomly drawing from the entire dataset without

replacement, and making sure there is an equal number of each class in each subset

(stratified). A popular cross-validation scheme is K-Folds, where the data is split into

different folds. For example, consider N sets of inputs. For K folds there would be K

different sets of input vectors, with each iteration containing K-1 training sets, and one

validation set. If there were three input vectors and leave-one-out cross validation

(LOOCV) were used, then the three different trains would be: Train= [1,2] CV = [3],

Train= [2,3] CV = [1], and Train= [3,1] CV = [2].

Figure showing how cross-validation works with 11 sets. Initially, the data is

randomly ordered and split into 11 sets of data. One of these sets is set aside at the

beginning and only used again at the end to test classification accuracy. The remaining

10 sets are then used for picking the best hyperparameters by training on all the sets

except for one, and using the excluded set to estimate performance. This repeats

multiple times to find the best hyperparameter value. In the end, all of the 10 sets are

used for training with the optimal hyperparameters, and the test set is used to estimate

accuracy.

Figure 3 – Cross Validation Outline

21

Classifiers have different hyperparameters to tune during cross-validation

before classification accuracy is estimated. All the classifiers in this study tuned their

hyperparameters using the cross-validation scheme outlined in Figure 3. There are two

main phases in this scheme, tuning and then error estimation. One set is put aside at

the very beginning to use for error estimation later on. The rest of the data is then used

for tuning of the hyperparameters. This is done by assigning some value for the

hyperparameter in question, and then training on all the sets except one. Performance

of the model using that specific value for the hyperparameter is evaluated by testing on

the held out set. This is repeated until every set is held out to obtain an average

accuracy for the model with that hyperparameter. Then, another value for the

hyperparameter is picked and the process repeats. Once the search is finished, the

optimal hyperparameter is picked and tuning is complete. The tuned hyperparameters

are then used to estimate the accuracy of the classification model on unseen data.

1.2.7.1 Trade-Offs
Tuning hyperparameters involves a trade off between bias and variance. Bias is

the error which measures how close the model’s predictions are to the true value

across multiple splits (in the context of cross-validation). The variance is a measure of

error the model has for a single split. When cross-validation is performed, the algorithm

determines the optimal trade off between the two. It does this by using the held out

data set, called the validation set (as seen in Figure 3 and Figure 4), to estimate bias

error. A model fit that gives high bias but low variance means the model is only good at

predicting for that single data set. Cross-validation increases the variance in order to

decrease the bias. Achieving high variance, ignoring bias, is actually trivial given the

model is sufficiently complex. With an SVM, a large C value generally decreases

variance at the cost of bias. A small C value increases variance, but decreases bias.

1.2.8 Diagnosis and Prognosis
SVMs have started to see application in the diagnosis and prognosis of

neurological and psychological disorders [46]. Merriam-Webster defines prognosis as

“A doctor’s opinion about how someone will recover from an illness or injury”, and

22

diagnosis as “The act of identifying a disease, illness, or problem by examining someone

or something” [47]. In the context of functional neuroimaging data, diagnosis would be

the development of a classifier able to tell whether there is a certain brain disease or

injury, and prognosis would be looking at a functional image to predict the disease

trajectory. Using multivariate pattern analysis, one can significantly improve sensitivity

in early detection or diagnosis, in particular when the changes are very subtle [45].

According to Orrù et al., pattern based classification studies of neurological and

psychiatric disorders can be split into three categories [46], “(i) studies which examine

the diagnostic value of neuroimaging data by comparing patients and healthy controls

(HCs); (ii) studies which examine the potential of neuroimaging data for predicting the

onset of a disease by comparing the brain scans (acquired at baseline) of individuals

with prodromal symptoms who subsequently did and did not become ill, and (iii)

studies which examine the prognostic value of imaging data by comparing the brain

scans obtained from patients prior to treatment onset who subsequently did and did

not respond.”.

First are studies which examine the diagnostic value of neuroimaging data by

comparing patients and controls. SVMs have been able to distinguish not only between

HCs and patients with dementia, but also between different types of dementia:

frontotemporal lobar degeneration and Alzheimer’s disease (AD) [48]. In this study by

Dukart et al., different biomarkers were investigated to try and improve detection and

differentiation of different types of dementia. 21 subjects with AD, 14 with

frontotemporal lobar degeneration (FTLD), and 13 HCs were scanned using positron

emission tomography (FGD-PET) scanning and magnetic resonance imaging (MRI),

together with clinical and behavioral assessments as benchmarks. Support vector

machines with a linear kernel were used as the classification tool. The researchers

obtained a differentiation accuracy of 92% between the groups by using the structural

MRI and FGD-PET information together. 94% accuracy was obtained when

differentiating AD and FTLD patients.

23

Second are studies which examine the potential of neuroimaging data for

predicting the onset of a disease by comparing brain scans of individuals with initial

symptoms who subsequently do, or do not become ill. SVMs have been applied to the

detection of mild cognitive impairment (MCI), which is thought to be a transition

between normal ageing and AD associated dementia. Early detection of MCI can help

provide treatments that will help alleviate deficits in cognition coming from the further

progression of AD [49]. A study by Nho K et al. predicted conversion from MCI to AD

associated dementia given data from follow-up periods of 1, 2, and 3 years using

structural MRI with 72.3% prediction accuracy [23]. They used an SVM to classify

between subjects who had AD and HCs. They also attempted to predict conversion

between MCI and AD. They were able to achieve 90.5% classification accuracy in

differentiating the groups and 72.3% in predicting the conversion. Since model

interpretation was not a concern in this study a radial basis function kernel was used.

Third are studies which examine the prognostic value of imaging data by

comparing the brain scans obtained from patients prior to treatment onset, who

subsequently did or did not respond to the treatment. For predicting the recovery of

patients following treatment, the majority of studies have been focused on major

depression. A study by Gong et al. found that SVMs were able to distinguish between

patients that did and did not respond to medication using structural MRI in a

longitudinal study with an accuracy of 69.57% (based on gray matter) and 65.22%

(based on white matter) [50]. This study evaluated 61 drug-naïve adults suffering

depression and 42 HCs. Subjects were given medication in the drug-naïve group and

evaluated for depression at a future date. The SVM’s task was to predict which subjects

would and would not respond to the medication. In this study a non-linear kernel was

used to avoid the risk of over-fitting the data, as suggested by the authors.

Proper function of the brain is an important component to living normally. Over

time brain activity can change based on disease, injury, or recovery. Measurements

that are indicative of different prognoses can be found by collecting data from subjects

longitudinally. Current prognosis of brain injury, such as concussion, primarily uses

24

measurements of symptoms to make clinical decisions. Longitudinal functional

neuroimaging data may help inform these decisions, if models that are predictive of

diagnosis or prognosis can be generated.

1.3 Longitudinal Functional Neuroimaging Data

1.3.1 What is Longitudinal Functional Neuroimaging Data
Typical functional neuroimaging studies, such as those described above, are

constrained to a single session with each participant, meaning the researcher only has

cross-sectional information about brain activity over a group (or groups) of individuals.

This is useful for determining which sections of the brain are active for specific tasks,

but does not allow for trend level analysis. Trend level analysis gives information about

neural development: be that positive, neutral, or negative trends. Longitudinal

functional imaging takes multiple scans of the brain over time to give more information

about a subject’s trajectory. As an example, attention related brain activity could be

probed for processing efficiency using reaction time measures with multiple sessions

over some period of time [51]. A trend-level analysis can be completed when multiple

cross-sections of the attention related activity over time are recorded. This is possible

because a longitudinal approach increases sensitivity to the changes in the brain by

reducing between-subject variability and accounting for the temporal order of scans [1,

2]. Increased sensitivity means the trajectory of outcome measures can be more

accurately assessed based on within-subjects’ changes. Assessing recovery trajectories

would allow for better treatments for those suffering from neurological problems by

being able to predict if someone is recovering or not. Longitudinal functional

neuroimaging data also helps us understand the brain by being able to see how

longterm changes in the brain can affect behaviour.

1.3.2 Example: Prognosis for mTBI
Current prognosis of brain injury, such as concussion, primarily uses

measurements of symptoms to make clinical decisions. Over time, brain activity can

change based on disease, injury, or recovery. Measurements that are indicative of

different prognoses can be found by collecting data from subjects longitudinally.

25

Those who suffer mild traumatic brain injuries (mTBIs), commonly known as

concussion, can have changes in brain activity that lead to a diminished quality of life.

This is made worse for those who are members of vulnerable groups like children.

Deficits in attention are one example of negative changes arising from mTBIs for

students who recently suffered mTBIs [52-54]. Neurologists assess post concussion

symptom severity and recovery rate (or “trajectory”) using standardized questionnaires

that may elicit symptoms not reported freely, such as the Concussion Symptom

Inventory (CSI) [55]. The CSI is a self-report questionnaire that rates twelve symptoms

on a scale of 0 (absent) to 6 (severe). Symptoms assessed relate to sensation (i.e.,

headache, sensitivity), vision (i.e., blurring), and cognition (i.e., memory, attention).

Other examples of common questionnaires are the Sports Concussion Assessment Tool

3 (SCAT3) and the Immediate Postconcussion Assessment and Cognitive Testing

(ImPACT) test battery [56]. The questionnaire-style test includes a symptom inventory,

cognitive assessment of attention and memory, and physical evaluation that includes

the Glasgow Coma Scale and a balance assessment [57, 58]. The ImPACT test battery

includes demographic data, neuropsychological tests, and the Post-Concussion

Symptom Scale [59]. The battery measures deficits in verbal memory, visual memory,

processing speed, and reaction time, and has been shown to have high sensitivity and

specificity for detecting effects relating to sports-related mTBI [60]. Towards prognosis

in a cohort of male football players, a combination of scores from the ImPACT battery

collected in the early stages following mTBI achieved 80% sensitivity in classifying short

or long recovery times with a cut-off of 14 days [61]. However, such classification

algorithms require validation on an additional follow-up cohort, which has not yet been

reported.

Components of the SCAT3 and ImPACT administered by a second party are

problematic, in that they are confounded by inter-rater variability. The self-report

sections are confounded by the subjective nature of the patient’s rating, which can

deemphasize cognitive and emotional reactivity symptoms [62]. In addition, patients

with a vested interest (i.e., athletes hoping to return to sport) may underrate symptoms

26

in order to create the perception of recovery. Further, compensatory changes within

the brain can mask the clinical manifestation of damage to the brain, which generates a

significant confound to behavioural measures [63]. An objective measure of the

recovery of brain function following mTBI provided by functional neuroimaging, which

looks directly at brain activity, would be an attractive alternative, and may be

developed using pattern classification algorithms.

1.3.3 Challenges for Analysis
Taking the temporal aspect of longitudinal data into account is important because it

is information not available with typical cross-sectional data. However, longitudinal

data analysis has several difficulties that are not present when looking at cross-

sectional data. Since data is being collected over a period of time, subjects can miss

some scans for unforeseeable reasons, resulting in unbalanced data, which some SVMs

can handle [64]. The amount of time between scans might differ between subjects as

well, giving non-uniform data. Certain statistical aspects need to be taken into account

as well: responses are correlated (not independent), variance of repeated measures

often change and increase steadily with time (heteroscedasticity), and measures closer

in time are likely to be more highly correlated than measurement pairs that are further

separated in time [1-3]. The variance between subjects is not consistent over time. The

variance between two subjects can increase over time if the trajectories diverge, or it

may decrease if the trajectories start to converge.

The factors affecting the trajectory can also not be of interest. A subject’s

performance of a task can change over time from getting used to the paradigm, or even

decline in some cases. A good model should account for increasing variance within

subjects over time, and dissociate performance-related changes from changes relating

to the covariates of interest. Predictive modelling can be utilized to assess the probable

trajectory of additional participants, based on the acquired data [4]. However,

predictive modelling requires the use of additional tools to learn the patterns that exist

in longitudinal data that are most predictive of trajectory.

27

1.4 Longitudinal Support Vector Machine
The longitudinal support vector machine (LSVM) is an adaption of the SVM that

specifically takes the temporal component of longitudinal data into account [4, 25].

1.4.1 Derivation
The LSVM starts with the SVM model of classification, but adds some

modifications. Firstly, the way of interpreting an input is changed. Instead of thinking of

the feature space as being made from independent features like in equation (3) it is

composed of measurements that are repeated across sessions

𝑥𝑠 = (

𝑥1,𝑡=1 ⋯ 𝑥𝑛,𝑡=1

⋮ ⋱ ⋮
𝑥1,𝑡=𝑇 ⋯ 𝑥𝑛,𝑡=𝑇

) (19)

Here 𝑡 represents the sessions number at which the feature was measured. A

new variable 𝛽 is added that combines the features across sessions defining linear

trends of change. Thus, the input for the LSVM is re-formulated as below:

𝑥𝑠 = 𝑥𝑠,1 + 𝛽2𝑥𝑠,2 + 𝛽3𝑥𝑠,3 + ⋯ + 𝛽𝑇𝑥𝑠,𝑇 (20)

The hyperplane is still defined properly by (5), but the length of 𝑤 and 𝑥𝑠 are

different from the standard SVM. Note that the first 𝛽 is a 1. In order to learn the 𝛽

values at the same time as 𝛼 a custom gram matrix is defined for equation (15)

𝐺𝑚 = [
𝑋̃𝑡=1

𝑇 𝑋̃𝑡=1 ⋯ 𝑋̃𝑡=1
𝑇 𝑋̃𝑡=𝑇

⋮ ⋱ ⋮
𝑋̃𝑡=𝑇

𝑇 𝑋̃𝑡=1 ⋯ 𝑋̃𝑡=𝑇
𝑇 𝑋̃𝑡=𝑇

] (21)

where

 𝑋̃𝑡=𝑘 = [𝑦1𝑥1,𝑡=𝑘, 𝑦2𝑥2,𝑡=𝑘, … , 𝑦𝑁𝑥𝑛,𝑡=𝑘] (22)

giving

𝑚𝑖𝑛
𝛼

1

2
𝛼𝑇𝐺𝛼 − 𝛼

𝑠. 𝑡. 𝐶 ≥ 𝛼𝑠 ≥ 0, ∑ ∑ 𝛼 (𝑠+𝑡𝑁)𝑦𝑠 = 0, 𝑓𝑜𝑟 𝑠 ∈ 1 … 𝑁 𝑎𝑛𝑑 𝑡 ∈ 1 … 𝑇𝑁
𝑠

𝑇
𝑡

 (23)

28

There are several new things going on in equation (23). One is the gram matrix

which is composed of the dot product between features at the same time point, instead

of all the features at once like in equation (15). The other is that the 𝐶 constraint only

applies to the first 𝛼 of every session as that is the only alpha value not combined with

a 𝛽 term as shown in the equation below when expanding the Lagrangian

parameterized form of the weights

𝑤 = ∑ 𝑦𝑠𝛼𝑠(𝑥𝑠,1 + 𝛽2𝑥𝑠,2 … + 𝛽𝑇𝑥𝑠,𝑇)𝑛
𝑠=1 (24)

A more convenient formulation of the problem is recommended by Chen et al

using an iterative procedure that splits the gram matrix into four parts when using two

data points

[
𝛼

𝛽𝛼]
𝑇

[
𝐺𝑚

0,0 𝐺𝑚
0,𝑇

𝐺𝑚
𝑇,0 𝐺𝑚

𝑇,𝑇] [
𝛼

𝛽𝛼] − 1′𝛼 (25)

𝐺𝑀
0,0and 𝐺𝑀

𝑇,𝑇represent only the first and last sessions respectively, while the

submatrices fill in the rest of the values. In the iterative procedure, 𝛼 is found first by

assuming 𝛽 is known, followed by the reverse. For the following steps the bias −1′𝛼

will be ignored. Since the βs are assumed to be known in the first step the objective

simplifies to

𝛼𝑇(𝐺𝑚
0,0 + 𝛽𝐺𝑚

𝑇,0 + 𝛽𝐺𝑚
0,𝑇 + 𝛽2𝐺𝑚

𝑇,𝑇)𝛼

= 𝛼𝑇(𝐺′)𝛼
 (26)

Which can be solved using the same techniques as equation (15). When the

alphas are assumed to be known the problem simplifies to

𝐺𝑚𝛼

0,0 + 𝛽𝐺𝑚𝛼

𝑇,0 + 𝛽𝐺𝑚𝛼

0,𝑇 + 𝛽2𝐺𝑚𝛼

𝑇,𝑇 (27)

Taking the derivative and setting it equal to zero gives

𝛽 = −
𝐺𝑚𝛼

𝑇,0 +𝐺𝑚𝛼
0,𝑇

𝐺𝑚𝛼
𝑇,𝑇 (28)

Which gives the 𝛽 values.

29

The LSVM handles several of the issues raised by longitudinal functional

neuroimaging data. First is that the responses measured across sessions are related,

instead of being independent. Secondly is that the model, like the SVM, should be

robust against noise – like that introduced by heteroscedasticity. This model does not

account for missing data, or that measurements closer in time are more related than

measurements that are further away in time.

1.4.2 Differences from the SVM and LR
There are two main differences between the LSVM and SVM/LR. First is that the

temporal component is explicitly taken into account by having a β term define the

change in features between sessions in the longitudinal data as shown in equation (20

). A measurement that was repeated over several sessions is reduced to one feature by

combining the longitudinal values using the learned β terms. The other difference is

that, unlike an SVM, the LSVM takes all of an examples measurements or none of them.

This is shown in equation (24) where a single 𝛼 value is shared across all sessions for a

subject.

The LSVM is expected to provide higher classification accuracy on data that fits

its assumptions, because of how it reduces the number of features by a factor equal to

the number of sessions, as compared to SVM and LR. The assumptions that need to

hold true for this are that the important features for classification share a similar

(ideally the same) magnitude of change across sessions. Higher classification accuracy

should also lead to more stable weights that are being discovered, meaning their

interpretation should be more consistent.

1.5 Objectives and Hypotheses
Unique to longitudinal data compared to cross-sectional functional

neuroimaging data is the temporal ordering of the data. Explicitly utilizing this temporal

component should improve classification accuracy by removing the amount of

information that needs to be learned during training. The objective of this thesis is to

implement the LSVM, and to test its performance with longitudinal data relative to an

SVM and LR. To do this two studies were done. Both studies involved the simulation of

30

data that had two sessions, and two classes. In the first study, purely simulated data

was used similar to what was done by Chen et al. in the paper describing the LSVM [4]. I

hypothesize that the longitudinal support vector machine, by explicitly including the

temporal component of longitudinal data, will have a higher classification accuracy and

produce more interpretable feature weights, as compared to classification models that

do not explicitly account for the temporal component. This hypothesis is based on the

preliminary results of Chen et al., and the assumption that higher classification

accuracies will lead to feature weights that more strongly reflect the simulated input

data.

In the second study, a simulated signal was inserted in resting state MEG data to

generate simulated longitudinal functional neuroimaging data. For this study, I also

hypothesize that the longitudinal support vector machine, by explicitly including the

temporal component of longitudinal data, will have a higher classification accuracy and

produce more interpretable feature weights, as compared to classification models that

do not explicitly account for the temporal component. This is also based on the work of

Chen et al. as they also showed improved performance with neuroimaging data in

terms of classification accuracy. Importantly, this second study will allow us to

determine the magnitudes of temporal trends in MEG data for which the LSVM

outperforms the SVM and LR.

31

Chapter 2 Methods
This thesis contains two main studies. Each study involved trying to correctly

classify a subject into either a “stable” or “manipulated” class. In the case of functional

neuroimaging data, the class may relate to disease state (“healthy” vs. “patient”) or

prognosis (“recovering” vs. “declining”). Each class example is composed of features,

where each feature in MEG would be the sensor reading at a given latency. In the first

study features for each subject were purely simulated. Features for both classes were

drawn from normal distributions of varying means and standard deviations. The first

study replicated, and expanded upon, the work from the original LSVM paper by Chen

and Dubois [4]. Modifications on the work done by Chen and Dubois resulted in a

follow-up simulation that looked at the question, “could the LSVM find interpretable

weights for more complex datasets?”. The second study used real resting state MEG

data to add real noise levels to a simulated MEG signal.

2.1 Study One: Pure Simulation

2.1.1 Simulation of Longitudinal Data
Data was generated using the procedure described by Chen and DuBois [4]. Two

hundred subjects of data were generated, simulating a situation wherein half of the

subjects were part of a stable class, and the other half were part of the manipulated

class (i.e., different distribution between session one and two). Two sessions were

simulated for each subject, with 100 features per session. Each subject’s features were

drawn from a normal distribution with varying mean and standard deviation. The point

of the first simulation was to emulate the work of Chen and DuBois to verify if the LSVM

algorithm outperforms the SVM in terms of classification accuracy. Going beyond the

work described in [4], I further modified the first simulation to see how the different

algorithms (including LR) would behave in cases that were more challenging to classify,

and with more complicated patterns in the features. Finally, I performed a

heteroscedasticity study which tested how the algorithms performed when there was

increased variation at the second session, which is very different from the initial

simulation by Chen and DuBois.

32

2.1.1.1 Simulation One
The first simulation in Study One implemented the simulation used by Chen and

Dubois in their paper. The stable class had no change in the mean used to generate the

features between sessions one and two. The manipulated class had an increase in the

mean between session one and two. Following the work by Chen and Dubois the data

at the first session was generated using

𝑥𝑡=1(𝑚𝑐, 𝜎2) = 𝑁(𝑚𝑐, 𝜎2) (29)

In this equation 𝑚𝑐 and 𝜎2 are the mean and variation of the normal

distribution respectively. Half the subjects of each class at each session had their 𝑚𝑐

value shifted up by a magnitude of 1. The value of 𝑚𝑐 is controlled by the index c which

defines the class from the class example is drawn from. The standard deviation was

kept at a constant value of 1.

Session 2 values were drawn from

𝑥𝑡=2(𝑚𝑐, 𝜎2, 𝑥𝑡=1) = 𝑥𝑡=1 + 𝑁(𝑚𝑐, 𝜎2) (30)

Here the result of equation(29) was added to a random value drawn from a

normal distribution. If the subject was part of the stable class (c = 0) then the mean was

0, if the subject was part of the manipulated class (c = 1) the mean was 1. This meant

that only the manipulated class would have added signal that was not due to noise at

the second session. The standard deviation was 0.1 for the 𝑥𝑡=1 term in equation (30).

To test the robustness of the classifiers a modification was performed to

equation (30) so that the magnitude of change in the mean at the second session for

the manipulated class could be controlled

 𝑥𝑡=2(𝑚𝑐, 𝜙2, 𝜏, 𝑥𝑡=1) = 𝑥𝑡=1 + 𝑁(𝜏𝑚𝑐, 𝜙2) (31)

A new variable, 𝜏, was introduced to define the magnitude of change for the

second session, and was varied between 0.0001 and 100. By controlling the magnitude

of the change the SNR is also controlled as it becomes harder to differentiate the two

33

classes at small values of 𝜏. Once the data was generated, the feature space (i.e., input

matrix for machine learning) was an N x M matrix, where N is the number of examples

(200, 100 of each class) and M is the number of features (100 per session times 2

sessions – 200 features overall). Additionally, a vector of class labels (-1, 1) was included

to indicate the class for each example.

2.1.1.2 Simulation Two
Next a pair of diverging trends across the feature space was simulated. This was

done to see how the classifiers would perform in terms of weight interpretability and

classification accuracy when a more complex feature pattern was used. The dataset was

more complex by having some features contain more information than others. This

simulates the case in functional neuroimaging where some sensors or voxels may be

more informative than others.Feature values at the first session were simulated the

same way as that described by equation (30). Feature values for the second session

were drawn from a modified version of equation (31)

𝑥𝑡=2(𝑚𝑐, 𝜙2, 𝜏, 𝑥𝑡=1, 𝑓) = 𝑥𝑡=1 + 𝑁 (
𝑓

100
𝜏𝑚𝑐, 𝜙2) (32)

Equation (32) adds a new variable 𝑓 which is the index of the feature (starting

at 1). The added scaler
𝑓

100
 scales the features so that the normal distribution from

which the initial feature is drawn has a small mean and the last feature’s normal

distribution mean is equivalent to 𝜏𝑚̅𝑐. For subjects in the stable class the mean was -1

and for the manipulated class it was 1. These mean values cause for the two trends to

diverge across features at session 2. The 𝜏 values were selected to give a range of

classification accuracies between 50% and 100%. A small 𝜏 value would mean that the

two classes would not diverge as much from each other as when a larger 𝜏 value was

used.

34

2.1.2 Feature Selection and Scaling
Feature selection was not performed for any of the data sets in study one. All

data was scaled by normalizing each feature to have unit variance and centering around

0. The mean was calculated using

𝑓𝑚
̅̅ ̅ =

1

𝑛
∑ 𝑥𝑖,𝑓

𝑛
𝑖=1 (33)

And the variation by

𝑓𝜎2̅̅ ̅̅̅ =
1

𝑛
∑ (𝑥𝑖,𝑓 − 𝑓𝑚

̅̅ ̅)
2

 𝑛
𝑖=1 (34)

Each feature was then scaled by

𝑓 =
𝑓−𝑓𝑚̅̅ ̅̅

√𝑓𝜎2̅̅ ̅̅ ̅
 (35)

To prevent overestimating classification accuracy, the mean and variation were

calculated using only the training set during cross validation. The resulting mean and

variation were then used to transform the test set. If the mean and variation were

calculated using the entire dataset, then information would be “leaked” from the test

set that should not have been seen by the algorithm to the training process. This

information leakage makes the algorithm perform better than it should be as

information about the distribution of the data that should not be available is used

during training.

2.1.3 Implementation of Classifiers

2.1.3.1 Logistic Regression
LR was implemented using the scikit-learn Python library [65, 66]. The

implementation used equation (17) with added terms to control overfitting

𝑚𝑖𝑛
𝑤,𝑏

𝐶 ∑ 𝑙𝑜𝑔 (𝑒−𝑦𝑠(𝑥𝑠
𝑡𝑤+𝑏)

 + 1)𝑁
𝑠=1 +

1

2
𝑤𝑇𝑤 (36)

This equation is L2 regularized meaning that large weight values, 𝑤, are

punished by adding the dot product of 𝑤 with itself. During optimization the only

hyperparameter is the C term, which controls the error tolerance. Smaller values of C

allow for greater error during training, and larger values the reverse.

35

2.1.3.2 Support Vector Machine
SVMs were implemented using the scikit-learn (version 0.18.dev0) Python

library. Python release version 2.7.11 was used. The minimization problem described in

equation (15) was implemented. A hyperparameter C was used to regulate error

tolerance during training, although the measurement of error was different compared

to LR. Only a linear kernel was used with the SVM.

2.1.3.3 Longitudinal Support Vector Machine
The LSVM pipeline was implemented using the iterative procedure outlined in

equations (25)->(28). All code was written in Python using tools from the SciPy stack

(important packages: NumPy - 1.11.0, SciPy – 0.17.0, pandas – 0.17.1, iPython – 4.2.0,

Matplotlib – 1.4.3, Seaborn – 0.7.0, [67]. The primary expression being worked with is

𝛼𝑇(𝐺𝑚
0,0 + 𝛽𝐺𝑚

𝑇,0 + 𝛽𝐺𝑚
0,𝑇 + 𝛽2𝐺𝑚

𝑇,𝑇)𝛼 (37)

For the implementation 𝛼 was the first variable to be estimated, followed by 𝛽.

To estimate 𝛼, a 𝛽 had to be provided. 𝛽 was initially estimated by taking a uniformly

distributed random value between -10 and 10. With an estimated 𝛽, 𝛼 was calculated

using the minimization problem outlined in equation (26) by creating a single gram

matrix. This optimisation problem is actually the standard SVM formulation, so the SVM

solver provided by Sklearn was used. 𝛽 was then solved for by using the calculated

alpha and the derivative to obtain equation (27).

2.1.3.3.1 𝛃 Optimisation
𝛽 is unique to the LSVM classifier. This parameter, along with 𝛼, is found during

optimization of the classifier. It was found during testing that 𝛽 would not always

converge. In order to help convergence of the 𝛽 term, random starting points of 𝛽 were

used. If convergence within an error of 0.001 did not occur within 100 iterations then

the algorithm was restarted. This helped reduce cases where the algorithm would

become stuck between two values.

2.1.4 Cross-Validation
Following the cross validation scheme outline in Figure 3, the data set was

randomly partitioned into a train and test set. This was done 10 times to obtain an

36

average accuracy. For Study 1, 80% of the data was used for training, and 20% was used

for testing. With 200 subjects this results in a split of 160/40 for train/test. During the

validation step the C parameter for all classifiers was tuned. Classification accuracy for

each of the 10 runs was calculated by dividing the sum of correctly classified subjects by

the total number of subjects in the test set. Values obtained from classification

(weights, C, 𝛽, etc) were averaged across the 10 trials by using the classification models

obtained after validation.

2.1.5 Model Interpretation
Models were interpreted based on the feature weights, 𝑤, that were found. For

interpretation to make sense a linear kernel was used, so no kernel mapping was done

for any of the classifiers. Kernel mapping refers to mapping the inputs to a higher

dimension, which can help with the separation of data. The LSVM has half the features

of an SVM or LR. For this reason, the SVM and LR weights are interpreted by the

difference between feature weights at the second and first measurement. Feature

weights were plotted against features on the x-axis. To compare different classifiers,

the weight plots were compared based on how well they match the simulated data, and

how large the error bars were. Compared to the LSVM, the other methods should be

less robust in capturing the change from session one to session two as they are not

explicitly programmed to do so. This would be seen primarily by the LSVM having

smaller error bars on the weight plots, and more closely matching the input.

2.1.6 Evaluating Relative Performance of Classifiers

2.1.6.1 SNR Impact on Classification Accuracy
Classifier performance was measured by looking at classification accuracy on the

test set for various SNR values. For simulations one and two, 𝜏 was used to quantify

how easily separable the different trends, or classes, were as a function of SNR. If 𝜏 was

small, then there was a small change between sessions in the second class (and no

change between sessions in the first class). I expected that the LSVM would

demonstrate higher classification accuracy than the SVM and LR across different values

of SNR.

37

2.1.7 Heteroscedasticity
To investigate the impact of heteroscedasticity on classification accuracy for the

classifiers, equation (31) was modified to

𝑥𝑡=2(𝑚𝑐, 𝜓, 𝑥𝑡=1) = 𝑥𝑡=1 + 𝑁(𝑚𝑐, 𝜓) (38)

Where 𝜓 was a value in the set [0.01, 0.1, 1.0, 10.0, 100.0, 1000.0, 10000.0].

This equation makes it so that the variance in the second session is controlled by 𝜓. All

other aspects of the simulation were the same as study one: simulation one. Since the

standard deviation for session two was 0.01, a 𝜓 value of 0.01 results in no change in

the heteroscedasticity. 𝜓 values 0.1, 1.0, 10.0, 100.0, 1000.0, and 10000.0 result in

increased heteroscedasticity. Classification accuracy as a function of heteroscedasticity

was investigated by running training and testing as described above for each model,

with 𝑚̅𝑐 set to 1.0 for the manipulated class, and 0.0 for the stable class.

2.2 Study Two: Resting State MEG Data with Simulated Trends

2.2.1 Simulation of Longitudinal MEG Data
The goal of the second study was to generate data more similar to actual MEG

data. Specifically, this study simulates longitudinal changes in an evoked field due to

brain activity that would be generated during a left handed motor task. The evoked

field data is superimposed onto MEG sensor data recorded from humans at rest. Thus,

we can test the classifiers under conditions that are closer to tasks that generate well

known MEG signals. This should make the simulation more applicable to real MEG

studies.

2.2.1.1 Simulating a Trend
A current dipole was created to simulate brain activity. The strength of the

current dipole was simulated over 500 time points, simulating a 1000ms amplitude time

course being sampled once every 2ms (100ms of baseline was also added to the

beginning). The current dipole strength over time followed a Gaussian distribution that

peaked at 500ms with a standard deviation of 62.5ms. The peak magnitude of the

current dipole was easily changed by modifying the height of the Gaussian curve. For

each class, six dipole time courses were generated, such that different pairs of time

38

courses could be used as session one and session two data to make a variety of

temporal trends. For the stable class, the peak magnitude was 10 nAm for all six

sessions, and for the manipulated class, the peak magnitude ranged from 10 to 35 nAm

in increments of 5. Different pairs of sessions (e.g., one and four) were selected to

investigate a range of temporal trend magnitudes.

The current dipole was forward facing, and located slightly off-centre of the

brain – roughly on the motor cortex. The MEG coordinate system used was a standard

Euler x, y, and z based system. The x axis went from the left to right ear, y axis from

back to front of head, and z from bottom to top of head. Head shape was approximated

as a sphere. The dipole was inserted using polar coordinates, 2cm from the scalp and

rotated 30 degrees upwards in the x/z plane. This location was picked as the motor

cortex is a commonly studied area.

2.2.1.2 Adding a Trend to Resting State Data
Processing of MEG data was performed using mne-python [68-70] in Python,

and FieldTrip [71] in MATLAB. The current dipole signal was added to resting state data

to simulate realistic levels of noise. Resting state data was collected during a passive

task where the subject is instructed to relax and focus their attention on a cross in front

of them. This minimizes head and eye movement. Twenty adult subjects were recorded

using a 306-channel MEG system (Elekta Oy, Helsink, Finland; 204 planar gradiometers;

102 axial magnetometers). Nine subjects were male and eleven were female. The

average age of subjects was 25.8 with a standard deviation of 4.2 years. Before

scanning, seven electrodes were placed on the subject to track certain signals: eye

movements were recorded with electro-oculogram (EOG) using four sensors (one

superior and one inferior to the left eye, and one lateral to each eye), heart rhythms

with electro-cardogram (ECG) with two sensors (one on the inside of each arm), and a

ground (collarbone). Four head position indicator (HPI) coils were placed on the

subject’s head to track head movement: two on the forehead and one on each mastoid

process. Video footage was used to see if the subject fell asleep. ECG and EOG

recordings were concurrent with MEG throughout the scan. HPI coils were continuously

39

activated to generate alternating magnetic fields at frequencies between 293 and 321

Hz. Data was collected at either 1000Hz or 1500Hz.

Resting state MEG data was preprocessed using MaxFilter (MaxFilter, 2.2 [2016],

Elekta AB, Stockholm, Sweden). Temporal signal space separation was applied to

remove MEG signal from outside the brain, including components from the

environment. A low pass filter of 125Hz was used and the data was down sampled to a

500Hz sampling rate. The data was further low pass filtered using a cut-off frequency of

40Hz because this is the usual frequency range over which evoked responses are

observed. The subject group was then split so that every odd subject would receive the

constant trend (stable class), and every even subject would receive the increasing trend

(manipulated class).

The simulated trend was added to the resting state by computing the forward

solution with FieldTrip [71], based on equation (1). These MEG sensor readings for the

simulated current dipole were then summed with the resting state data at 100

randomly selected segments without replacement or overlap. Each subject had two

scans of resting data. Both resting state scans for the subject were used to simulate

MEG data; half of the simulated data was generated by superimposing the simulated

signal on the first resting scan, and the other half of the simulated data was generated

using the second resting scan. These segments simulated “trials” of neuronal activity

occurring within ongoing brain activity. “Event markers” were added to the MEG data

to indicate the data sample at which each trial began. Each trial contained 100ms of

data prior to the onset of the current dipole activity (to act as a baseline measure), and

1000ms following onset to capture the entire simulated activity. Once the resting state

sensor data was added to the current dipole sensor data, the combined data was

averaged across trials to attenuate uncorrelated signals (a common practice to

accentuate MEG signals). This process resulted in the MEG evoked field data for each

subject.

40

Once the data was generated, the feature space (i.e., input matrix for machine

learning) was an N x M matrix, where N is the number of examples (20, 10 of each class)

and M is the number of features (102 sensors x 550 timepoints x 2 sessions = 112200

features). Additionally, a class vector was included with a label (-1, 1) for each example

to indicate the class. There are 102 sensors because only the magnetometers were

used. 550 times points were available as 500 samples (1000ms) were used for the

signal, and 50 samples (100ms) for baseline. This gave data with very large feature size,

and small sample size.

2.2.2 Feature Selection and Scaling

2.2.2.1 Feature Selection
Two approaches were attempted for feature selection. The first approach used

all the sensor data. In the second approach, PCA decomposition was used to reduce the

dimensionality of the feature space. For both approaches features were scaled the

same way as study one.PCA

PCA was implemented using the scikit-learn library. PCA decomposes a

multivariate data set into orthogonal components that can be ranked by how much

variance in the data set they explain. Specifically, for MEG evoked field data it would

find spatial patterns over time that explain the maximum amount of variance. If the

MEG evoked field data had a single large signal in one part of the brain, a component

that mimicked this signal would explain most of the variance in the data. To make sure

that no classification information was leaked the PCA was only used on the training

data, and the resulting PCA weights were used to transform the train and test sets,

similar to how normalization was done in study one. PCA was done on the final session

of each example in the training set, and then applied to the initial session. This was

done as applying PCA across all features, disregarding that they are from different

sessions, would cause the PCA to combine features across measurements. This would

then invalidate assumptions of the LSVM, as it combines related features across

measurement sessions.

41

PCA changes input size from 20 x 112200 to 20 x 2F, where 2F is the

dimensionalilty after the PCA transformation. The number of features is 2F as PCA is

only applied to the second session, which gives F features, and is then applied to the

first session giving a second F amount of features. This results in a lower number of

features, where the remaining features explain x amount of variance in the data. x

being a percentage of variance defined by the user, either 0.80, 0.90, or 0.95.

2.2.2.2 Scaling Strategies
Different scaling strategies had to be used for different classifiers. For SVM and

LR, optimal performance was reached by using the same scaling strategy as in Study

One. For the LSVM, the 𝛽 term acted as a scaling factor, so no scaling provided better

performance than scaling.

2.2.3 Cross-Validation
 The same cross-validation scheme used for Study One was used for Study Two.

Since there were 20 subjects instead of 200, the 80/20 split resulted in 16 subjects used

for training and 4 subjects used for testing.

2.2.4 Evaluating Relative Performance of Classifiers
Classifiers were compared by their test set classification accuracy at different

SNRs. In this case, the SNR was calculated by dividing the signal strength by the

standard deviation of the baseline for the MEG data in the second session. First, the

MEG sensor that showed the strongest activation at 500 ms (i.e., peak latency) was

isolated as the peak sensor to calculate SNR. The numerator was calculated by taking

the average of 5 points before and after the peak sensor values at 500ms. The

denominator was calculated by taking the standard deviation of the first 50 points

(prior to current dipole activity) to compute the standard deviation.

𝑆𝑁𝑅 =
𝑠𝑖𝑔𝑛𝑎𝑙𝑎𝑣𝑔

𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝑠𝑡𝑑
 (39)

2.2.5 Model Interpretation

2.2.5.1 Interpretation in the Context of MEG
As with study one, the weights were used for model interpretation. Additional

formatting steps were performed to interpret the data in the context of MEG data.

42

Weights after classification are in a 𝑠𝑒𝑛𝑠𝑜𝑟𝑠 ∗ 𝑡𝑖𝑚𝑒 matrix. To obtain the weights in an

understandable format the weights were mapped to a butterfly plot that shows the

magnitude of each sensor over 1000ms, and topographical maps that show spatial

activity at specific times. Important visual factors for interpretation were the location of

the magnetic fields, and how they changed over time.

A more objective measure of the model interpretability was a correlation

computed between the feature weights and the actual data. So that the SVM and LR

could be compared to the LSVM, the SVM/LR feature weights at the first session were

subtracted from the second session. The feature weights were then normalized the

same way as that outlined in equation (35). The simulation session with the highest

SNR was used to correlate with the feature weights. This correlation measure was not

used on the Study One data, as the true signal in study one had a variance of 0.

43

Chapter 3 Results
3.1 Study One

3.1.1 Simulation One
The first simulation served as a way of replicating the work by Chen and DuBois,

while expanding on it by adding a check for robustness of classifiers by comparing

classifiers across various magnitudes of temporal trend.

3.1.1.1 Simulation
 Figure 4 and Figure 5 show how the simulated data looks for a 𝜏 of 1. 𝜏 is the

measure of separability of the data. Specifically, it defines the scale of change between

the first and second session for the manipulated group, and the size of the difference

between half the subjects in each class. With larger values of 𝜏 the size of the jump

between the first and second session increases. Figure 4 shows the averaged feature

values at a 𝜏 of 1, for the stable (subjects 1-100) and manipulated (subjects 101-200)

classes. The change in feature values can be seen between the first and second session

of the green class. The variability within the class can be seen between every

consecutive set of 50 subjects. Figure 5 shows the same data as Figure 4, but this time

features are on the x-axis and they are averaged across subjects. The change in feature

values in session two for the manipulated class can be seen in the bottom part of the

figure. The mean feature values for the stable class are around 0.5 due to the dual

distribution within class (i.e., half the subjects in each class are offset by 1) and the

mean feature values for the manipulated class are around 1.5 for the same reason.

44

Figure 4 – Chen and DuBois Simulation with Averaged Features

Plot of each subjects averaged features. The y-axis represents the arbitrary value

of the features, with the x-axis representing subjects. The top plot is from the first

measurement session, and the bottom plot is from the second session. Blue represents

the stable class where this is no change from the first session to the second. Green

represents the manipulated class where there is an increase in the feature values. Error

bars represent 95% confidence intervals.

45

Figure 5– Chen and DuBois Simulation with Averaged Subjects

Plot of averaged features across subjects. The y-axis represents the arbitrary

value of the features, with the x-axis representing features. The top plot is from the first

measurement session, and the bottom plot is from the second measurement. Blue

represents the stable class where this is no change from the first session to the second.

Green represents the manipulated class where there is an increase in the feature values.

Error bars represent 95% confidence intervals.

46

3.1.1.2 𝜷 Values
 Figure 6 shows the average 𝛽 value determined by the LSVM at each value of 𝜏.

𝛽 is used in the LSVM algorithm as the vector of scalars which define the magnitude

relationship between features across sessions. In the case of two sessions, 𝛽 is a single

scaler which defines the scalar multiplier applied to the second session as it is added to

the first session. In Figure 6, most of the 𝛽 values are -1 indicating that a stable solution

is simply subtracting the second session from the first session. The massive variation at

the first 𝜏 value is likely as sign that the LSVM can not find an optimal solution. Evidence

for this is in Figure 8 where the LSVM has 50% classification accuracy.

47

Figure 6 – Simulation One Beta Values

Plot of average β at various τ values. The x axis is the τ value, and the y axis is

the average β value. The βs tended to be around -1. Error bars represent 95%

confidence intervals.

3.1.1.3 C Values
Optimal C values during training were recorded in Figure 7. The C value refers to

the amount of training error allowed by the algorithms. The LSVM and SVM share the

same meaning behind C, that is that it refers to the magnitude of the penalty put on

points that are on the wrong side of the margin. For LR, C is the penalty magnitude for

error as measured by the log likelihood. As 𝜏 becomes larger the data becomes easier

to separate, and results in smaller optimal C values.

48

Figure 7 – Simulation One C Values

Plot of Cs at various τ values for various classifiers. Blue is used for LSVM, green

for SVM, and red for LR. Dark solid colors represent the test data set, and light dashed

colors represent the training sets. Lines represent the average result, while dots are the

individual values. Error bars represent 95% confidence intervals. The trend seems to be

that easier to separate data results in lower optimal C values.

49

3.1.1.4 Classification Accuracy
Based on the results in Figure 8, the LSVM performs better than the SVM and LR,

in terms of classification accuracy, but only over a range of 𝜏 values. This was calculated

using all 200 subjects of data (100 subjects in each class). When the separation

parameter 𝜏 is 0.001 the LSVM test performance starts to go up before the other

classifiers, and peaks with perfect accuracy at a 𝜏 of 0.1. The SVM and LR classifiers do

not reach perfect classification accuracy until a 𝜏 of 1.0. An interesting piece of

information to note is that the SVM and LR classification accuracies seem to stay at

chance until a 𝜏 of 0.1 is reached.

50

Figure 8 – Simulation One Classification Accuracies

Plot of classification accuracy at various τ values. The y-axis represents the

classification accuracy, with the x-axis representing the τ value. Blue is used for the

LSVM, green for SVM, and red for LR. Dark solid colors represent the test data set, and

light dashed colors represent the training sets. Lines represent the average accuracy and

dots represent the individual results. Error bars represent 95% confidence intervals.

LSVM appears to be more robust as it has a higher classification accuracy over a larger

range.

51

3.1.1.5 Model Interpretation

3.1.1.5.1 Weights
For the first simulation classifier weights were fairly flat, as the longitudinal

trend in the features is just a constant increase selected from the same distribution for

all features. The LSVM encompassed this property of the feature input space by having

all the output feature weights around a constant negative value as shown in Figure 9.

The SVM and LR classifiers show this property of the feature input space by having the

second session weights being positive, and the first session weights being negative. This

essentially shows the same thing as the LSVM; the most useful representation of the

data is the difference between sessions irrespective of which feature is being

considered.

52

Figure 9 – Simulation One Weights at 𝜏 of 1

Plot of weight values for the various classifiers when τ was 1.0. The y-axis

represents the weight, with the x-axis representing the feature. Blue is used for LSVM,

green for SVM, and red for LR. Error bars represent 95% confidence intervals. All

classifiers show through their weights that the most distinguishing feature of whether

something is class one or two is the difference between session one and two features.

53

3.1.1.5.2 Hyperplane Distances
Figure 10 shows the distance from the hyperplane for each subject for the LSVM

and SVM classifiers. As the value of τ decreases the separability of the data also

decreases. In Figure 10, the hyperplane distance is shown for τ = 0.1, where the LSVM

achieved perfect accuracy, but not the SVM as shown in Figure 8. For the SVM the

distances are more variable, and in some cases ends up on the wrong side of the

hyperplane. The LSVM maintains significant separation from the hyperplane where the

SVM does not, which matches the findings regarding classification accuracy.

54

Figure 10 – Simulation One Hyperplane Distance at 𝜏 of 0.1

 Plot of distances each subject is from the hyperplane at a separation of 0.1. The x

axis is the subject, and the y axis is the distance from the hyperplane to the subject. Blue

is used for the LSVM and green is used for the SVM. With a smaller separation the

variance in distance from the hyperplane for subjects has increased, with some

examples being incorrectly classified. Error bars represent 95% confidence intervals.

55

3.1.2 Simulation Two
After the first simulation in Study One, the next study sought to check if

classifiers were able to correctly classify and obtain interpretable weights from more

complex data. In simulation two, the features were linearly scaled between two values

as seen in Figure 11. The stable class and the manipulated were scaled between two

different values at session two, but the features were drawn the same way at session 1

as simulation one.

3.1.2.1 Simulation
Figure 11 displays the different patterns of variability in input features at a 𝜏

value of 1. The bottom of Figure 11, session two, shows how the two different classes

scale their feature between 1 and -1, as described in equation (32). The stable class

goes from 0 to 1, while the manipulated class goes from 0 to -1. 𝜏 controls the value to

which the features trend towards. This makes the behaviour of this simulation similar to

simulation one where smaller values of 𝜏 lead to a harder classification problem as the

features between classes would overlap more.

56

Figure 11 – Simulation Two With Averaged Features

Plot of averaged features across subjects. The y-axis represents the arbitrary

value of the features, with the x-axis representing features. The top plot is from the first

measurement session, and the bottom plot is from the second measurement. Blue

represents the stable class where this is no change from the first session to the second.

Green represents the manipulated class where there is an increase in the feature values.

Error bars represent 95% confidence intervals. Diverging trend is clearly visible in the

bottom portion of the image.

57

3.1.2.2 Classification Accuracy
Figure 12 shows the classification accuracy of various classifiers. This was

calculated using all 200 subjects of data. The LSVM performs better again than the SVM

and LR, in terms of classification accuracy, but only over a range of 𝜏 values. The LSVM

is more robust at a 𝜏 of 0.1. From a value of 𝜏 value of 0.0001 to 0.01 all classifiers

perform around chance. From a 𝜏 value of 1.0 and onward all classifiers achieve perfect

classification accuracy.

58

Figure 12 – Classification Accuracy of Simulation Two

Plot of classification accuracy at various τ values. The y-axis represents the

classification accuracy, with the x-axis representing τ values. Blue is used for LSVM,

green for SVM, and red for LR. Dark solid colors represent the test data set, and light

dashed colors represent the training sets. Line represent the average accuracy and dots

represent the individual results. Error bars represent 95% confidence intervals. LSVM is

more robust as it increases in classification accuracy first.

59

3.1.2.3 Model Interpretation

3.1.2.3.1 Weights
Figure 13 shows the weights for various classifiers at a 𝜏 of 1.0, where all models

have achieved perfect classification accuracy. Important to note is that all the classifiers

clearly picked up the diverging trend by having weights that got larger at later features.

For the LSVM this is shown by the constantly increasing weight values. For the SVM and

LR this is shown by having the features at the second session start going down in

magnitude. Interestingly, though some of the classifiers appear to have more noise

than their counterparts, they still result in perfect classification accuracy. This is evident

by the error bars for feature weights being larger for LR than the LSVM or SVM.

60

Figure 13 – Simulation Two Weights

Plot of weight values for the various classifiers when τ was 1.0. The y-axis

represents the weight, with the x-axis representing the feature. Blue is used for LSVM,

green for SVM, and red for LR. Error bars represent 95% confidence intervals. All

classifiers show increasing importance placed on later features.

61

3.1.3 Heteroscedasticity
To simulate heteroscedasticity, the procedure outline in Section 2.2 was used.

This was calculated using all 200 subjects of data. Variance of the distribution from

which input feature values were drawn was varied for the second session data for both

classes. This resulted in the classification accuracy vs. heteroscedasticity plot shown in

Figure 14. In this case, 𝜓 represents the amount of noise being added to the trends. The

simulated signal is the same as Figure 4, except with 𝜓 controlling the standard

deviation of the distribution from which features at the second session are drawn from.

Figure 14 shows that as the value of 𝜓 increases, the classification accuracy decreases,

likely due to increasing overlap between the two sessions input feature values due to

increasing variance. The LSVM classification accuracy starts to decrease at larger values

of 𝜓 before the SVM and LR classification accuracy. This means that the LSVM is less

robust against heteroscedasticity.

62

Figure 14 – Heteroscedasticity Classification Accuracy

Plot of classification accuracy at various ψ values. The y-axis represents the

classification accuracy, with the x-axis representing the ψ. Blue is used for LSVM, green

for SVM, and red for LR. Dark solid colors represent the test data set, and light dashed

colors represent the training sets. Lines represent the average accuracy and dots

represent the individual results. Error bars represent 95% confidence intervals. LSVM is

less robust as it decreases in classification accuracy first.

63

3.2 Study Two: Resting State with Simulated Trend

3.2.1 Simulation
The top of Figure 15 shows the different peak magnitudes used for the Gaussian

distribution for the two classes. To simulate the time course of MEG data the amplitude

of a current dipole was manipulated to match the Gaussian distribution, shown in the

bottom of Figure 15. The simulated data included 100ms of zero-value data before 0ms

so that a baseline can be established during computation. The actual magnitude of the

baseline varies since the current dipole is combined with real resting state MEG data.

This is evident in the error bars in the top of Figure 15, which are based on (39. This

variation is evidence that the real resting state MEG data contributed a non trivial

amount of noise to the simulated signal. Figure 16->Figure 21 show the projection of

the simulated current dipole onto the MEG sensor signals for the different sessions.

Insertion of the current dipole is verified by the Gaussian like structure of the simulated

time courses. The final data that is fed into the classifiers is composed of the base

session combined with with a numbered session.

64

Figure 15 – Current Dipole Simulation

Inner A: Current dipole magnitude distribution over one second. X-Axis is time in

seconds, and y axis is the dipole magnitude in nAm. Outer: Current dipole magnitudes

for different sessions. X-Axis is the session, and y-axis is the mean SNR of the dipole once

combined with real resting state MEG data. Error bars represent 95% confidence

intervals across the 10 subjects of each class.

65

Figure 16 – First Session Butterfly Plot

 Simulated subject for the first session after baseline, showing an example

from the manipulated class. The x axis represents the time, and the y axis represents the

amplitude of the sensor readings. Topographical representations of spatial activity are

above the graph at specific latencies. Note the dipolar pattern of activity in the brain at

500ms. The field strength of this dipolar pattern increases across sessions, as shown in

Figure 17->Figure 21.

66

Figure 17– Second Session Butterfly Plot

 Simulated subject for the second session after baseline, showing an

example from the manipulated class. The x axis represents the time, and the y axis

represents the amplitude of the sensor readings. Topographical representations of

spatial activity are above the graph at specific latencies.

67

Figure 18– Third Session Butterfly Plot

 Simulated subject for the third session after baseline, showing an

example from the manipulated class. The x axis represents the time, and the y axis

represents the amplitude of the sensor readings. Topographical representations of

spatial activity are above the graph at specific latencies.

68

Figure 19– Fourth Session Butterfly Plot

Simulated subject for the fourth session after baseline, showing an example from the

manipulated class. The x axis represents the time, and the y axis represents the

amplitude of the sensor readings. Topographical representations of spatial activity are

above the graph at specific latencies.

69

Figure 20– Fifth Session Butterfly Plot

Simulated subject for the fifth session after baseline, showing an example from the

manipulated class. The x axis represents the time, and the y axis represents the

amplitude of the sensor readings. Topographical representations of spatial activity are

above the graph at specific latencies.

70

Figure 21– Sixth Session Butterfly Plot

Simulated subject for the sixth session after baseline, showing an example from

the manipulated class. The x axis represents the time, and the y axis represents the

amplitude of the sensor readings. Topographical representations of spatial activity are

above the graph at specific latencies.

71

3.2.2 𝜷 Values
Figure 22 shows the average 𝛽 value at various SNR values. 𝛽 is used in the

LSVM algorithm as the vector of scalars which adds future sessions to the baseline. In

the case of two sessions, 𝛽 is a single scalar which defines the scalar multiplier applied

to the second sessions as it is added to the first session. 𝛽 becomes a smaller negative

number as the SNR value increases. This is likely due to the gap between the first

session feature values and second session features values becoming larger. 𝛽 then

becomes smaller so that when the first and second session feature values are combined

the output is close to 1. This behaviour is likely a result of the data not being scaled for

the LSVM.

72

Figure 22 – Study Two 𝛽 values

Plot of βs at various SNR values. The x axis is the SNR value, and the y axis is the

average β value. As the separation between session one and two becomes larger the β

values becomes larger. Error bars represent 95% confidence intervals.

73

3.2.3 Classification Accuracies
Figure 23 shows how different classifiers perform with and without scaling on

the study two data. Classification accuracy was was calculated using all 20 subjects of

data. The top performing classifiers were the no scaling LSVM, and scaling SVM/LR. This

result is very clear as their counterparts had around 50% classification accuracy at the

different SNR values (1->2, 1->3, etc.). The results from this figure were then used to

choose which classifiers to show in Figure 24. Specifically, I moved forward with an

LSVM with no scaling, SVM with scaling, and LR with scaling.

 Figure 24 shows how the classifiers all had very similar performance at all SNR

values. It is not possible to say any classifier is better than another one since the error

bars overlapped. It is difficult to apply statistical tests to see if any of the classifiers are

superior as the variation and distribution in classification accuracy at various points is

unknown. As such, many standard statistical tests cannot be applied. Instead, the

classification accuracies were compared qualitatively by comparing their overlap across

all folds. The relatively similar performance of all three methods was also evident when

PCA feature selection was used, in an effort to boost performance. It is also worth

noting that PCA did not seem to have much effect on the classification accuracies.

74

Figure 23 – Study Two Scaling Comparisons

Plot of classification accuracy at various SNR values, scaling options, and

classifiers. The y-axis represents the classification accuracy, with the x-axis representing

the SNR, with smaller differences between the numbers representing smaller SNR

values. Error bars represent 95% confidence intervals. The LSVM with no scaling is

clearly better than the LSVM with scaling, and the SVM/LR with scaling are better than

the ones without scaling.

75

Figure 24 – Study Two Classification Accuracies

Plot of classification accuracy at various SNR values and different amounts of

PCA preprocessing. The y-axis represents the classification accuracy, with the x-axis

representing the separation of classes (larger values mean the data is easier to

separate). Blue is used for LSVM, green for SVM, and red for LR. Dark solid colors

represent the test data set, and light dashed colors represent the training sets. Lines

represent the average, and dots are the individual values. The dots are quantized at 0%

25%, 50%, 75%, and 100% for the test set because there were 4 subjects in each test set

(20% of the data). Error bars represent 95% confidence intervals. None of the classifiers

76

can be judged to be better than any of the other ones due to the large variance in

classification accuracies.

3.2.4 Model Interpretation
Figure 25, Figure 26, and Figure 27 show the feature weights represented in the

same format as MEG data for all three classifiers. The goal of reformatting the feature

weights in this way was to visualize the weights in comparison to the input MEG evoked

field data (as shown in Figure 25). Results for this dataset offer evidence that the LSVM

was able to find weights that more closely matched the input signal than the SVM or LR.

The used dataset was composed of the base and session six data (highest SNR) with no

PCA. An objective measure of correlating the scaled raw signal and scaled feature

weights suggest that this was the primary point of difference between the classifiers

(where classification accuracy was greater than chance) as shown in Table 1. This means

that the provided feature weights are the results of the “best case” scenario for this

simulation.

The LSVM appears to be the best classifier in terms of interpretability of the

weights, because the LSVM feature weights match more closely to the butterfly plots in

Figure 21 than the other classifiers’ feature weights. In terms of temporal dynamics, the

LSVM feature weights (Figure 25) fall off quicker at latencies less than or greater than

500 ms, compared to the SVM (Figure 26) and LR (Figure 27) feature weights. Temporal

patterns for LSVM feature weights seem to match more closely to the Gaussian curve

used for the simulation by being smoother. Smoothing is a common technique to

reduce the noise in a signal [21]. Signs of fit feature weights have larger variance means

that noise is being fit, as the actual signal has no variance. In terms of spatial patterns,

the topographical plots also give clear indication that the LSVM feature weights are

more accurately matching the input signal. Most obviously at the peak latency of 500

ms, the SVM and LR feature weights both consider a very broad area of the topography

(i.e., many sensors) to be of importance for classification. In contrast, the LSVM feature

weights accurately accentuate the regions that show peak magnetic field strength in

77

Figure 25. This interpretation is supported by the increase in correlation between the

grand average MEG data and the feature weights for the LSVM, as compared to SVM

and LR, demonstrated in Table 1.

Figure 25 – Study Two Feature Weights LSVM

Plot of feature weight values for the LSVM when no preprocessing is done, and

the highest SNR at session two is used. The bottom figure is a butterfly plot, showing the

sensor weights over time. The y-axis represents the weight value for a sensor, with the

x-axis representing the time course of the sensor. Topographical maps up top show the

spatial weights at a specific time point. The LSVM topographical plots show that it was

able to assign weights to specific areas in the brain where activity was simulated.

78

Figure 26 – Study Two Feature Weights SVM

Plot of feature weight values for the SVM when no preprocessing is done, and

the highest SNR at session two is used. The bottom figure is a butterfly plot, showing the

sensor weights over time. The y-axis represents the weight value for a sensor, with the

x-axis representing the time course of the sensor. Topographical maps up top show the

spatial weights at a specific time point. The SVM topographical plots show that the

method was only precise enough to distinguish the left and right hemispheres.

79

Figure 27 – Study Two Feature Weights LR

Plot of feature weight values for the LR when no preprocessing is done, and the

highest SNR at session two is used. The bottom figure is a butterfly plot, showing the

sensor weights over time. The y-axis represents the weight value for a sensor, with the

x-axis representing the time course of the sensor. Topographical maps up top show the

spatial weights at a specific time point. The SVM topographical plots show that the

method was only precise enough to distinguish the left and right hemispheres.

80

Table 1 - Feature Weights Correlation

 LSVM Correlation SVM Correlation LR Correlation

1->2 0.0938 0.266 0.284

1->3 0.351 0.378 0.387

1->4 0.413 0.436 0.446

1->5 0.502 0.51 0.484

1->6 0.679 0.606 0.597

81

Chapter 4 Discussion
4.1 Summary of Main Findings

Four simulations were performed for this paper. The first simulation replicated

the work of Chen and DuBois, which developed and tested the LSVM. The LSVM

performed better than the SVM and LR in terms of classification accuracy, but only

between 𝜏 values of 0.001 and 0.1 (Figure 8). For the first simulation classifier weights

were fairly flat as the longitudinal trend in the features is a constant increase selected

from the same distribution for all features at the same session. For the second

simulation the LSVM performed better than the SVM and LR in terms of classification

accuracy, between 𝜏 values of 0.01 and 1.0 (Figure 12). All the classifiers picked up the

diverging trend by having weights that got larger at later features (Figure 13).

Interestingly, LR appeared to have more noise in the feature weights than its’

counterparts at perfect classification accuracy.

To simulate heteroscedasticity, the procedure outlined in Section 2.2 was used.

𝜓 represents the magnitude of noise being added to the second session. The simulated

signal was the same as the first simulation, except 𝜓 controls the standard deviation of

the distribution from which features at the second session were drawn from. As the

value of 𝜓 increased, the classification accuracy decreased, likely due to increasing

overlap between the two sessions input feature values due to increasing variance

(Figure 14). The LSVM classification accuracy was poorer than the SVM and LR

classification accuracy for a range of values of 𝜓. This means that the LSVM performs

poorer against heteroscedasticity.

For the second study a simulated current dipole signal was combined with

resting state MEG readings (Figure 16->Figure 21). It was not possible to say any

classifier was better than another in terms of classification accuracy since the error bars

overlapped (Figure 24). The LSVM appeared to be the best classifier in terms of

interpretability of the weights at the highest SNR dataset, because the LSVM feature

weights matched more closely to the butterfly plots (Figure 21) than the other

classifiers’ feature weights. The topographical plots also gave clear indication that the

82

LSVM feature weights more accurately matched the input signal. Most obviously at the

peak latency of 500 ms, the SVM and LR feature weights both consider a broad area of

the topography (i.e., many sensors) to be of importance for classification. In contrast,

the LSVM feature weights accurately accentuate the regions that show peak magnetic

field strength (Figure 25). This interpretation is supported by the increase in correlation

between the grand average MEG data and the feature weights for the LSVM, as

compared to the SVM and LR, demonstrated in Table 1.

4.2 Impact of Random β Strategy on LSVM Performance
During initial replication of the LSVM algorithm developed by Chen and Dubois, I

noted that the β values found during training were not always converging to a single

value. Instead, the iterative algorithm would sometimes jump between two solutions,

with neither being the optimal solution. To get around this, the optimal value could be

found by restarting the LSVM fitting process multiple times with a random β value until

convergence to a single β value. This occurred more frequently in hard to separate

cases (low 𝜏 or low SNR value). One of the costs of having random starts for the 𝛽 value

was an increase in computation time. To get around the cost of increasing computation

time, several constraints on the search were placed. The most significant was having

the algorithm stop searching after a set number of iterations. This prevented the

algorithm from looking too long for a 𝛽 value when a bad start was provided. The

computation time of the algorithm was still significant, and means that when training

this algorithm in practice it will likely take a couple days or longer. Another limitation

due to computation time is that only so many folds of the data can be done for cross

validation, as it would take too long otherwise.

4.3 Selecting a Cross Validation Strategy
The cross validation strategy used in the study was important to prevent

overestimating the accuracy of the classifier. Basing the reported classification accuracy

off a single cross-validation split iteration could result in reporting accuracy for an

outlier. A demonstration of this concept is that if 10 random folds of the data exist, and

one of the folds happens to have easy to classify examples, the model will report a high

83

classification accuracy. This will be a false report, as it is giving the classification

accuracy for the best performing examples in the data. When presented with unseen

data that does not fit the model well, classification accuracy will be worse. This means

the model will be less generalizable to data outside the training set. A more

generalizable estimate of how performance would be with population data is also given

by resampling the folds, as different smaller subsets of the data are tested multiple

times. For this study a stratified resampling technique was used, as it allowed for

multiple calculations of the classification accuracy, and therefore gave a mean and

confidence interval of the distribution. Due to the computational time limit the

resampling was only able to be run 10 times, with 95% confidence intervals computed

from the 10 samples using bootstrapping. Bootstrapping in statistics is a technique to

estimate the confidence interval of a measure, in this case the mean, by sampling a set

of values thousands of times to generate a distribution. These confidence intervals

were then used to estimate if the model would generalize well by looking at the mean

classification accuracy, and the variability of it. For our data it was concluded that none

of the classifiers performed better than any other as the error bars for each classifier’s

classification accuracy in Figure 24 overlapped with each other.

“Information leak” in cross-validation is an important issue that is common in

machine learning since it becomes easy to accidently use some information from the

test set when performing many operations on a set of data. Information leakage is bad,

because it can cause researchers to overestimate generalizability of the model because

a higher classification accuracy on the test set with less variability can be obtained. This

occurs if information about the test set is used during training, then the model is

essentially fitting to data it should not be able to see. This makes it seem like it is

performing better on unseen data than it should be. An example of leakage during the

study occurred through scaling the training and testing data sets together. This leakage

was fixed by firstly estimating the mean and standard deviation of the data using only

the training set, and then transforming the test set using the mean and standard

deviation from the training set. The technique that worked best for us, to avoid leakage,

84

was setting the test data aside at the very beginning making sure not to touch the data

until the very end. This was done by splitting the data into the train and test folds

before any transformations were done, and making sure not to use the test fold until all

training is done.

4.4 Comparing Classifiers
Visual inspection was used to compare the classification accuracy of classifiers

as standard statistical tests which assume shared distributions, or shared variances

were mostly not valid. Since the error bars on the graph corresponded to 95% variance

from a bootstrap estimation it is likely that overlapping accuracies are similar. This was

thought to be true even for slight overlap as the distribution is not known meaning the

mean is not necessarily the area of concentration of values. An example can be seen in

Figure 8 for a 𝜏 value of 0.001. At this 𝜏 value the LSVM classifier has 4 points above the

the error bar, suggesting that the population concentration of values might be at the

extreme, and the mean only represents that expected value because of extremes on

the other side of the error bar. Using this methodology, one can say that the classifiers

have similar performance at a 𝜏 of 0.0001 in the same figure, and at 0.01 the LSVM

performs better.

 Interpretability of feature weights was compared among classifiers by visual

inspection, and for study two a correlation measure as well. Feature weights were

plotted against features on the x-axis. Different classifiers were compared by how well

the feature weight plots matched the simulated data, and how large the error bars are.

For the first study, analysis was limited as the trends were very simple, and each

classifier’s feature weights essentially captured the same information. With the possible

exception of LR which had noisier feature weights.

For the second study butterfly and topographical plots were used to compare

the spatial and temporal aspects of the feature weights as shown in Figure 25, Figure

26, and Figure 27. As well, for the second study a correlation computed between the

feature weights and the actual data provided an objective measure of model

interpretability. The simulation session with the highest SNR was used when correlating

85

with the feature weights, as it provided the closest classification accuracy between

classifiers.

As mentioned in the results, the LSVM appeared to be the best classifier in

terms of interpretability of feature weights for study two. The temporal patterns for the

LSVM feature weights seemed to match more closely to the simulated Gaussian curve

upon inspection. The most important factor for this conclusion was the LSVM feature

weights (Figure 25) falling off quicker at latencies less than or greater than 500 ms,

compared to the SVM (Figure 26) and LR (Figure 27) feature weights. In terms of spatial

patterns, the topographical plots gave clear indication that the LSVM feature weights

are more accurately matching the input signal. Most obviously at the peak latency of

500 ms, the SVM and LR feature weights both consider a very broad area of the

topography (i.e., many sensors) to be of importance for classification. In contrast, the

LSVM feature weights accurately accentuate the regions that show peak magnetic field

strength in Figure 25. These reasoned interpretations of the feature weights is

supported by the correlation values in Table 1. A suprising result is that given the larger

interpetability of the LSVM, the classification accuracy is not improved. A possible

explanation for this is that the SVM/LR feature weights will still give you enough

information to classify properly.

4.5 What Does C Say?
 For the purely simulated data the values of C tended to decrease when the

sessions were easier to separate. For the LSVM/SVM, the C parameter controls error

tolerance. Making the value of C larger in equation (13) will punish the model more for

having examples on the wrong side, resulting in smaller margins. Smaller values of C will

punish the classifier less for misclassification and allow for larger margins. For the

LSVM, the C value also controls error tolerance, but there is no margin for it to affect.

With a small C value, if there is a point on the wrong side of the hyperplane, then the

small C will counteract this to a degree. This leads to a larger margin, because according

to equation (13) if C is small then the
1

2
||w||

2
 term is punished more for being larger.

And since the width of the margin is inversely related to the weight it increases when

86

the weights are forced to be smaller. Intuitively a larger margin can lead to better

generalisation by taking more of the points into account.

 For study one the C value shown in Figure 7 decreased as the 𝜏 value increased.

This indicated that as the classes became harder to differentiate the value of C

decreased. Since the value of C decreases with improving classification accuracy this

suggests that tolerating some classification error provides the best solution to the

problem. When classification error is higher, the value of C also has a higher variation.

This was not shown in a figure as C values at low classification accuracy have massive

variation with no consistent value. C likely has a larger variation at poorer classification

accuracy because it is not able to find a single stable model to solve the problem, unlike

at higher classification accuracy values.

4.6 Interpretability of Feature Weights
With the purely simulated data the LSVM and SVM provided better feature

weights than LR based on the interpretability of the feature weights (LR having more

variation in the feature weights). With MEG data the LSVM provided better feature

weights when using the dataset with the highest SNR, as evidenced by visual inspection

and a correlation measure. The correlation values in Table 1 suggested that the LSVM

had more interpretable feature weights based on the higher correlation score between

the original signal and the learned feature weights for the LSVM compared to the SVM

and LR. Visual inspection suggested the LSVM feature weights were more precise about

which MEG sensors and which time intervals were important for classification.

To explain why the LSVM has more interpretable weights it is important to note

that the LSVM fits less data overall because it implicitly combines the first and second

sessions feature measurements before finding the support vectors. A possible reason is

that for all the simulations the best feature weight interpretations involved taking a

combination of the features between session one and session two as there were clear

simulated temporal trends. The LSVM may also have been helped by the fact that the

simulated features (at least the most relevant ones) changed in the same direction.

These models work well for the LSVM as the 𝛽 term describes the direction of change,

87

and the weights can control the magnitude (though to be fair the LSVM feature

weights can be opposite signs so that not all features have to change in the same

direction). The LSVM makes an assumption that relevant information is obtained by

combining the first and second session. It then makes sense for it to perform well when

data matches these assumptions. The LSVM algorithm, however, seems to run into

difficulty when the variation at the second session is larger than the first (Figure 14).

Results are only interpretable when a linear kernel is used, as this finds weights

in the original space. If a polynomial kernel, for example, is used then the weights in the

new space do not map back to the original space linearly, as there are more

dimensions/features in the new space. Although higher classification accuracy may be

achieved with the kernel trick, this means that the feature weights cannot be

interpreted in the original dimension. Sometimes the extra classification accuracy that

can be achieved with a kernel is worth it. For example, if the goal is not related to

interpreting the weights that come out of the classifier. If the goal is diagnosis then

non-linear kernels can be used, as the loss of feature interpretability is not relevant. If

understanding what the classifier is doing is more important, then a linear kernel should

be used so that the feature weights can be interpreted.

4.7 Different Strategies for Feature Selection
In the first study there was no feature selection as the classifiers were able to

achieve a high classification accuracy without any feature selection. Feature scaling was

done to centre the features around 0 and normalize the feature value spread. If the

features were not scaled then the model would give the feature with larger values

more importance in the objective function, even though that feature might not contain

the most information. It is important to note that for the second study the LSVM did

not scale the inputs as this gave higher classification accuracy. To make sure the LSVM

was not cheating, by not scaling, the classifiers were all compared with no scaling as

shown in Figure 23. The figure showed that the other classifiers did not benefit from no

scaling, so the LSVM is unique in benefiting from that.

88

For the second study PCA was tried, which did not improve classification

accuracy noticeably. PCA was done to see if classification accuracies could be improved

by doing some feature selection, but no improvement was noted. Picking the number of

components used by PCA was difficult, as that could significantly affect classifier

performance. I ended up picking the number of components that would explain some

percentage of the variation, as it was less arbitrary than picking an actual number of

components. PCA also proved problematic with the LSVM as it could not be applied

over the entire data set. If PCA was applied to the entire dataset then information could

be combined between session 1 and 2, which invalidates the assumptions of the LSVM

model. The LSVM model combines each feature independently across sessions, and an

algorithm like PCA that could combine features across sessions might break that

assumption. To get around this it was decided to apply PCA to the second session first,

since I assumed that had more useful information than the first session, and then

applied the same transform to the first session. It should be noted that this approach

did not benefit classification in a noticeable way. Future research with LSVMs should

investigate different feature selection techniques that can be applied to the entire

dataset, but still preserve independence of features across sessions.

4.8 Heteroscedasticity
The problem trying to be solved with the LSVM (and other classifiers) is the

correct classification of whether a subject is in one class or another. Based on the

weights in Figure 9 the best performing classifiers learn to differentiate stable examples

from manipulated examples by taking the difference between the features at the

second session from the first session. The LSVM was found to be more robust in

simulation one, and I hypothesize this is because it explicitly combines the first and

second session together. Unfortunately, as the SNR was made worse the LSVM started

to perform worse than the SVM and LR. As a reminder, the LSVM tries to learn from

some linear combination of the sessions, where all features are combined across

sessions using the same scaling term. Specifically, the simplest case of two time points

is examined

89

𝑋𝑠 = 𝑋𝑠,𝑡=0 + 𝛽𝑋𝑠,𝑡=1 (40)

The basic idea of the simulation was that the stable class has no change

between the first and second session means, while the manipulated class has the

feature values shifted up by 1.0 at the second session. In the heteroscedasticity

simulation the variance at the second session is varied for both classes.

I have two main hypotheses for why the LSVM reached chance performance

before the SVM and LR as heteroscedasticity increased. The first is that by taking the

difference before applying the learning algorithm the LSVM is throwing out information

that the algorithm could possibly be using to increase the SNR. That is, the SVM and LR

keep the first and second session data when developing their models. This means that

they have twice as many points when developing their models, so it can be said that a

greater SNR is available. My other theory is based on the triangle inequality

||𝐴 + 𝐵|| ≤ ||𝐴|| + ||𝐵|| (41)

Essentially the LSVM is adding the first and second session together before

computing the distance to the hyperplane, the A and B term in equation 41. The SVM

and LR add the first and second session together as evidenced by the weights, but do so

after computing the distances to the hyperplane. This matches the triangle equality in

equation 41 so that the LSVM corresponds to the left expression, and the SVM and LR

correspond to the right side. This would mean that the LSVM points are either the same

distance or closer to the hyperplane than the SVM or LR.

4.9 Generalizability
In the first study, the LSVM performed better on the test sets compared to the

SVM or LR. This was shown by having the LSVM achieving 100% classification accuracy

on the test sets with lower values of 𝜏. The first study was still poor evidence for the

LSVM performing better in the real world as the data was purely simulated. For this

reason, study two with real resting state MEG noise was done.

In the second study none of the classifiers performed better on the test set than

any of the others. This is evidence that when working with real world data the LSVM

90

will not perform any better than the SVM or LR. I suspect that for the LSVM to perform

better, better preprocessing techniques which reduce the amount of information would

be necessary. It might also turn out that the LSVM is better or worse with real world

data, and similar performance only occurs for this simulation. For this reason, further

testing is advised before any solid conclusions can be made.

In terms of feature weight interpetability, the LSVM performed similarly or

better than the other methodologies for all the studies. This suggests that when applied

to real world data the LSVM could provide more interpretable feature weights for

easier to classify cases. However, the results of the heteroscedasticity simulation

suggest that the LSVM is likely to have trouble with real world longitudinal data (see

below). It is difficult to make a solid claim about this as the trends used in this study are

fairly simple and contained some simulated aspects.

A problem with the initial simulation proposed by Chen and DuBois was that the

variance at the second session was not very different from the first session. When this

aspect of the simulation was broken in my thesis by adding heteroscedasticity, the

LSVM performed worse than SVM and LR. A stronger claim about the LSVM having

more interpretable feature weights could be made once studies involving real world

data are done. Since the LSVM only performed better in the simplest simulated cases

(and worse with heteroscedasticity),I would not expect that the LSVM will perform

better than the SVM or LR with real data.

4.10 Challenges
The LSVM proved difficult to implement. For one, the iterative solution did not

always settle at a single solution. While both stages of the alpha/beta optimization are

convex, it seems that together they are no longer convex in my implementation of the

algorithm. Thus, the optimization proved expensive to computation time as it would

leave the program to jump between solutions. This was reduced by implementing a

check, and then stopping when it started happening, but computation time increased

again when the 𝛽 value was reset several times to try and find a stable solution. It was

also complicated to implement the LSVM so that it would interact with everything

91

properly. The LSVM was coded so that it would interact properly with the scikit-learn

library, and also implemented some of the functions from the library. This required that

the LSVM code had the proper interfaces and methods. Implementing pre-processing

methods also proved more difficult with the LSVM as no techniques that (like PCA)

combined features across sessions could be allowed to do so. Combining features

across sessions could result in an unbalance in features in session one vs session two,

breaking the LSVM model. This meant that any precautions taken with the LSVM also

had to be taken with the other classifiers so that they could be compared.

There are several limitations faced when analysing longitudinal neuroimaging

data with the LSVM proposed by Chen and Dubois. For one the model can not handle

missing session scans. If subjects had to come for multiple scans, but missed some,

there is no built in way to handle the missing data. With the current LSVM model the

missing data would have to be filled in with another technique or dropped. If the time

at which the sessions are measured vary between subjects, then the LSVM model is not

able to contain that information. That is, if one subject has a week between sessions

and the other waits a month, the LSVM is not able to represent this information

internally. The LSVM has also only been implemented for cases with two sessions so far,

which severely limits its real world application. For future work this would be one of the

essential concepts to show working.

4.11 Significance from a Clinical Perspective
Due to the highly simulated nature of this study I would not suggest applying the

LSVM in a clinical setting without first applying it to a study involving real MEG data.

The main reason for this being that this study suggested that with near-real MEG data

classification accuracy is not different between the classifiers. Since an SVM or LR

already exist and have easy to use libraries, those techniques should be used first. If a

clinician wants to use the LSVM to investigate its feature weights, then I would still

suggest further studies. The reason for this being the LSVM has only been shown to find

better feature weights with the highest SNR data, but LSVM performance is reduced in

data with heteroscedasticity, which is common in longitudinal data. To make a

92

statement about how it would operate with real MEG data, a study involving real MEG

data would have to take place. The LSVM is still a promising technique, and has the

possibility to help clinicians extract useful information about the spatial and temporal

patterns in brain activity for longitudinal studies.

93

Chapter 5 Conclusion
In conclusion, this study showed how the LSVM technique proposed by Chen

and Dubois has some potential to provide better feature weights than an SVM or LR.

Better feature weights mean that the feature weights learned by the model closely

match the actual brain activity occurring during the task. This would have application in

determining what brain activity drives classification accuracy for prognosis or diagnosis.

However, based on current results the evidence for using the LSVM over SVM/LR is not

there. In terms of classification accuracy the LSVM is only superior or on par with other

methods when the change between sessions is simple. The introduction of greater

noise at the second session causes the LSVM to perform worse, and I would expect that

to happen with real world data. In terms of feature weight interpretability the LSVM is

only better (based on correlation values) when the dataset with the highest SNR is

used, which is unlikely in real world application again.

To properly evaluate this potential, future studies would be needed to firstly see

how the LSVM performs with real MEG data in terms of classification accuracy and

feature weights. . Future studies would likely involve MEG data from a task where brain

activity is well known, and can easily be modulated. This would allow for constructing a

longitudinal neuroimaging dataset. Some advances to the LSVM technique might

improve its performance as well. Better feature selection could be developed which

allows for selecting features using all data while keeping them consistent across

sessions. Another change could be finding a way to estimate 𝛼 and 𝛽 that converges

better.

94

Bibliography
1. Skup, M., Longitudinal fMRI analysis: A review of methods. Stat Interface, 2010. 3(2): p.

235-252.
2. Bernal-Rusiel, J.L., et al., Statistical analysis of longitudinal neuroimage data with Linear

Mixed Effects models. Neuroimage, 2013. 66: p. 249-60.
3. Ganesan, R., et al., Comparative study of linear mixed-effects and artificial neural

network models for longitudinal unbalanced growth data of Madras Red sheep.
Veterinary World, 2014. 7(2): p. 52-58.

4. Chen, S. and F. DuBois Bowman, A novel support vector classifier for longitudinal high-
dimensional data and its application to neuroimaging data. Statistical Analysis and Data
Mining, 2011. 4(6): p. 604-611.

5. Kirkwood, M.W., et al., Management of pediatric mild traumatic brain injury: a
neuropsychological review from injury through recovery. Clin Neuropsychol, 2008.
22(5): p. 769-800.

6. Gaetz, M. and D.M. Bernstein, The current status of electrophysiologic procedures for
the assessment of mild traumatic brain injury. J Head Trauma Rehabil, 2001. 16(4): p.
386-405.

7. Pfurtscheller, G. and F.H. Lopes da Silva, Event-related EEG/MEG synchronization and
desynchronization: basic principles. Clinical Neurophysiology, 1999. 110(11): p. 1842-
1857.

8. Givre, S.J., Essentials of Clinical Neurophysiology, Third Edition. Journal of Neuro-
Ophthalmology, 2005. 25(1): p. 61-62.

9. Liu, Z., L. Ding, and B. He, Integration of EEG/MEG with MRI and fMRI in Functional
Neuroimaging. IEEE engineering in medicine and biology magazine : the quarterly
magazine of the Engineering in Medicine & Biology Society, 2006. 25(4): p. 46-53.

10. Logothetis, N.K., et al., Neurophysiological investigation of the basis of the fMRI signal.
Nature, 2001. 412(6843): p. 150-157.

11. Roberts, T.P.L., et al., MEG Detection of Delayed Auditory Evoked Responses in Autism
Spectrum Disorders: Towards an Imaging Biomarker for Autism. Autism research :
official journal of the International Society for Autism Research, 2010. 3(1): p. 8-18.

12. Ahonen, A.I., et al., 122-channel squid instrument for investigating the magnetic signals
from the human brain. Physica Scripta, 1993. 1993(T49A): p. 198.

13. Vrba, J. and S.E. Robinson, SQUID sensor array configurations for
magnetoencephalography applications. Superconductor Science and Technology, 2002.
15(9): p. R51.

14. Vrba, J., Squid Gradiometers in Real Environments, in SQUID Sensors: Fundamentals,
Fabrication and Applications, H. Weinstock, Editor. 1996, Springer Netherlands:
Dordrecht. p. 117-178.

15. Hämäläinen, M., et al., Magnetoencephalography: theory, instrumentation, and
applications to noninvasive studies of the working human brain. Reviews of Modern
Physics, 1993. 65(2): p. 413-497.

16. O'Toole, A.J., et al., Theoretical, Statistical, and Practical Perspectives on Pattern-based
Classification Approaches to the Analysis of Functional Neuroimaging Data. J.Cognitive
Neuroscience, 2007: p. 1735-1752.

17. Petersson, K.M., et al., Statistical limitations in functional neuroimaging. I. Non-
inferential methods and statistical models. Philosophical transactions of the Royal
Society of London.Series B, Biological sciences, 1999. 354(1387): p. 1239-1260.

95

18. Petersson, K.M., et al., Statistical limitations in functional neuroimaging. II. Signal
detection and statistical inference. Philosophical transactions of the Royal Society of
London.Series B, Biological sciences, 1999. 354(1387): p. 1261-1281.

19. Cao, L.J., et al., A comparison of PCA, KPCA and ICA for dimensionality reduction in
support vector machine. Neurocomputing, 2003. 55(1–2): p. 321-336.

20. Friston, K.J., Modes or models: a critique on independent component analysis for fMRI.
Trends in Cognitive Sciences, 1998. 2(10): p. 373-375.

21. Hastie, T., R. Tibshirani, and J. Friedman, The Elements of Statistical Learning. 10 ed.
Springer Series in Statistics. 2009: Springer-Verlag.

22. Mitchell, T., Machine Learning. 1997, McGraw Hill. p. 2.
23. Nho, K., et al., Automatic Prediction of Conversion from Mild Cognitive Impairment to

Probable Alzheimer's Disease using Structural Magnetic Resonance Imaging. AMIA Annu
Symp Proc, 2010. 2010: p. 542-6.

24. Blankertz, B., et al., The BCI competition 2003: progress and perspectives in detection
and discrimination of EEG single trials. IEEE Transactions on Biomedical Engineering,
2004. 51(6): p. 1044-1051.

25. Chen, S., et al., Some recent statistical learning methods for longitudinal high-
dimensional data. Wiley Interdisciplinary Reviews: Computational Statistics, 2014. 6(1):
p. 10-18.

26. LaConte, S., et al., Support vector machines for temporal classification of block design
fMRI data. NeuroImage, 2005. 26(2): p. 317-329.

27. Haynes, J.-D. and G. Rees, Decoding mental states from brain activity in humans. Nat
Rev Neurosci, 2006. 7(7): p. 523-534.

28. Cox, D.D. and R.L. Savoy, Functional magnetic resonance imaging (fMRI) “brain
reading”: detecting and classifying distributed patterns of fMRI activity in human visual
cortex. NeuroImage, 2003. 19(2): p. 261-270.

29. Haxby, J.V., et al., Distributed and Overlapping Representations of Faces and Objects in
Ventral Temporal Cortex. Science, 2001. 293(5539): p. 2425-2430.

30. Haynes, J.D. and G. Rees, Predicting the orientation of invisible stimuli from activity in
human primary visual cortex. Nat Neurosci, 2005. 8(5): p. 686-91.

31. Yang, B., et al., New KF-PP-SVM classification method for EEG in brain-computer
interfaces. Biomed Mater Eng, 2014. 24(6): p. 3665-73.

32. Wee, C.-Y., et al., Identification of MCI individuals using structural and functional
connectivity networks. NeuroImage, 2012. 59(3): p. 2045-2056.

33. Fair, D.A., et al., Distinct neural signatures detected for ADHD subtypes after controlling
for micro-movements in resting state functional connectivity MRI data. Front Syst
Neurosci, 2012. 6: p. 80.

34. Kaper, M., et al., BCI competition 2003-data set IIb: support vector machines for the
P300 speller paradigm. Biomedical Engineering, IEEE Transactions on, 2004. 51(6): p.
1073-1076.

35. Vapnik, V., The Nature of Statistical Learning Theory. 1995: Springer.
36. Mjolsness, E. and D. DeCoste, Machine learning for science: state of the art and future

prospects. Science, 2001. 293(5537): p. 2051-5.
37. Pereira, F., T. Mitchell, and M. Botvinick, Machine learning classifiers and fMRI: a

tutorial overview. NeuroImage, 2009. 45(1 Suppl): p. S199-S209.
38. Craddock, R.C., et al., Disease state prediction from resting state functional connectivity.

Magnetic Resonance in Medicine, 2009. 62(6): p. 1619-1628.

96

39. LaConte, S.M., Decoding fMRI brain states in real-time. NeuroImage, 2011. 56(2): p.
440-454.

40. Guyon, I. and A. Elisseeff, An introduction to variable and feature selection. J. Mach.
Learn. Res., 2003. 3: p. 1157-1182.

41. Mantini, D., et al., Improving MEG source localizations: An automated method for
complete artifact removal based on independent component analysis. NeuroImage,
2008. 40(1): p. 160-173.

42. Tan, S. and M.L. Mayrovouniotis, Reducing data dimensionality through optimizing
neural network inputs. AIChE Journal, 1995. 41(6): p. 1471-1480.

43. Hornung, R., et al., Full versus incomplete cross-validation: measuring the impact of
imperfect separation between training and test sets in prediction error estimation.
2014.

44. Braga-Neto, U.M. and E.R. Dougherty, Is cross-validation valid for small-sample
microarray classification? Bioinformatics, 2004. 20(3): p. 374-80.

45. Haller, S., et al., Multivariate Pattern Recognition for Diagnosis and Prognosis in Clinical
Neuroimaging: State of the Art, Current Challenges and Future Trends. Brain
Topography, 2014. 27(3): p. 329-337.

46. Orrù, G., et al., Using Support Vector Machine to identify imaging biomarkers of
neurological and psychiatric disease: A critical review. Neuroscience & Biobehavioral
Reviews, 2012. 36(4): p. 1140-1152.

47. Merriam-Webster. Merriam-Webster.com. 2016 [cited 2016 August 22].
48. Dukart, J., et al., Combined Evaluation of FDG-PET and MRI Improves Detection and

Differentiation of Dementia. PLoS ONE, 2011. 6(3): p. e18111.
49. Whitehead, A., et al., Donepezil for the symptomatic treatment of patients with mild to

moderate Alzheimer's disease: a meta-analysis of individual patient data from
randomised controlled trials. International Journal of Geriatric Psychiatry, 2004. 19(7):
p. 624-633.

50. Gong, Q., et al., Prognostic prediction of therapeutic response in depression using high-
field MR imaging. NeuroImage, 2011. 55(4): p. 1497-1503.

51. Fan, J., et al., Testing the efficiency and independence of attentional networks. J Cogn
Neurosci, 2002. 14(3): p. 340-7.

52. Allen, D.N., et al., Memory and attention profiles in pediatric traumatic brain injury.
Arch Clin Neuropsychol, 2010. 25(7): p. 618-33.

53. Babikian, T. and R. Asarnow, Neurocognitive outcomes and recovery after pediatric TBI:
meta-analytic review of the literature. Neuropsychology, 2009. 23(3): p. 283-96.

54. Ginstfeldt, T. and I. Emanuelson, An overview of attention deficits after paediatric
traumatic brain injury. Brain Inj, 2010. 24(10): p. 1123-34.

55. Randolph, C., et al., Concussion Symptom Inventory: An Empirically Derived Scale for
Monitoring Resolution of Symptoms Following Sport-Related Concussion. Archives of
Clinical Neuropsychology, 2009. 24(3): p. 219-229.

56. McCrory, P., et al., Consensus statement on concussion in sport: the 4th International
Conference on Concussion in Sport held in Zurich, November 2012. Br J Sports Med,
2013. 47(5): p. 250-8.

57. McCrea, M., Standardized Mental Status Testing on the Sideline After Sport-Related
Concussion. Journal of Athletic Training, 2001. 36(3): p. 274-279.

58. Guskiewicz, K.M., Assessment of postural stability following sport-related concussion.
Curr Sports Med Rep, 2003. 2(1): p. 24-30.

97

59. Maroon, J.C., et al., Cerebral concussion in athletes: evaluation and neuropsychological
testing. Neurosurgery, 2000. 47(3): p. 659-69; discussion 669-72.

60. Schatz, P., et al., Sensitivity and specificity of the ImPACT Test Battery for concussion in
athletes. Arch Clin Neuropsychol, 2006. 21(1): p. 91-9.

61. Lau, B.C., M.W. Collins, and M.R. Lovell, Cutoff scores in neurocognitive testing and
symptom clusters that predict protracted recovery from concussions in high school
athletes. Neurosurgery, 2012. 70(2): p. 371-9; discussion 379.

62. Sandel, N.K., et al., The relationship of symptoms and neurocognitive performance to
perceived recovery from sports-related concussion among adolescent athletes. Appl
Neuropsychol Child, 2013. 2(1): p. 64-9.

63. Keightley, M.L., J.K. Chen, and A. Ptito, Examining the neural impact of pediatric
concussion: a scoping review of multimodal and integrative approaches using functional
and structural MRI techniques. Curr Opin Pediatr, 2012. 24(6): p. 709-16.

64. Luts, J., et al., A mixed effects least squares support vector machine model for
classification of longitudinal data. Computational Statistics & Data Analysis, 2012. 56(3):
p. 611-628.

65. Abraham, A., et al., Machine Learning for Neuroimaging with Scikit-Learn. Frontiers in
Neuroinformatics, 2014. 8.

66. Pedregosa, F., et al., Scikit-learn: Machine Learning in Python. Journal of Machine
Learning Research, 2011. 12: p. 2825--2830.

67. Jones, E., T. Oliphant, and P. Peterson, {SciPy}: Open source scientific tools for {Python}.
2001.

68. Gramfort, A., et al., MEG and EEG data analysis with MNE-Python. Frontiers in
Neuroscience, 2013. 7.

69. Gramfort, A., et al., MNE software for processing MEG and EEG data. NeuroImage,
2014. 86: p. 446-460.

70. Larson, E., et al., MNE-Python. 2015: https://github.com/mne-tools/mne-python.
71. Oostenveld, R., et al., FieldTrip: Open Source Software for Advanced Analysis of MEG,

EEG, and Invasive Electrophysiological Data. Computational Intelligence and
Neuroscience, 2011. 2011: p. 9.

https://github.com/mne-tools/mne-python

