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Abstract 
 The principal objective of this thesis was to test a novel adaptation of the 

support vector machine (SVM), called a longitudinal support vector machine(LSVM), on 

longitudinal functional neuroimaging data. LSVM performance was compared to a 

traditional SVM and logistic regression (LR) using classification accuracy and 

interpretability of feature weights. Classification accuracy was measured as the 

percentage of subjects placed into their correct categories, and feature weights by how 

closely they matched the known signal. The first study involved purely simulated data, 

which found the LSVM had higher classification accuracy for data without 

heteroscedasticity, but performed worse when heteroscedasticity was introduced. The 

second study used real magnetoencephalography (MEG) resting state readings added to 

a simulated trend. The LSVM had similar classification accuracy, and only had more 

interpretable feature weights at the highest SNR dataset. Currently the LSVM is not 

recommended over the SVM/LR algorithms. 
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Chapter 1 Introduction  
Interpreting functional neuroimaging data is a complicated task. Collected data 

is typically high dimensional and low sample size. The analysis is further complicated 

when the data is collected over multiple sessions (i.e., longitudinally). Time between 

sessions typically varies between subjects, meaning that changes in measured variables 

might not be consistent between different subjects. Also, responses might be 

correlated (not independent) as a variables’ measurement at one session can be related 

to its measurement at other sessions. The variance of a variable might not be consistent 

over time (heteroscedasticity). For longitudinal data, heteroscedasticity means that 

repeated measures of a variable can have different distributions. Lastly, it is more likely 

that measurements closer in time are correlated than measurements that are farther 

apart in time [1-3].  

To analyse functional neuroimaging data, highly regularized models need to be 

used. Two common regularized models are the support vector machine (SVM) and 

logistic regression (LR). In this thesis, I test a novel addition to the SVM, developed by 

Chen and Dubois[4], which explicitly takes into account the longitudinal nature of 

sessioned functional neuroimaging data using a model called the longitudinal support 

vector machine (LSVM). This work will develop an understanding of whether the LSVM 

has a role in predicting long term changes for patients by extending the simulations of 

Chen and Dubois to evaluate the LSVM performance with variation of more input 

parameters, and by evaluating the algorithm on simulated neuroimaging data. 

Classifiers that perform well with longitudinal data may have value in predicting 

recovery of a patient after a brain injury (prognosis). This has the possibility of giving 

clinicians a new tool to use when determining next steps to take during treatment.  

1.1 Functional Neuroimaging 

1.1.1 Measuring Brain Activity with Functional Neuroimaging 
Functional neuroimaging machines measure an indicator of brain activity, such 

as electrical potentials on the scalp, magnetic fields propagating from the head, or 

metabolic changes in neurons that affect blood flow to brain regions. A typical 
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paradigm would have the subject performing a timed task, for which related brain 

activity is recorded. Functional imaging provides insight into the roles of different brain 

regions by being able to detect where activity is occurring during tasks. This 

differentiates functional neuroimaging from structural imaging, because structural 

imaging is not able to show where the activity is occurring. Structural imaging will only 

reveal the physical structure of the brain. 

Functional neuroimaging is useful for studying the roles of different brain 

regions during tasks, and can help measure functional changes to the brain when no 

macroscopically apparent anatomical change is present. As an example, adults suffering 

from mTBI show subtle changes in their functional neuroimaging data not detected 

with purely neuropsychological tests, and where less than 5% of adults show signs of a 

distinct lesion [5, 6]. This provides evidence for functional neuroimaging being an 

important tool for finding indicators of change.  

1.1.2 Modalities of Functional Neuroimaging  
Three popular functional neuroimaging modalities are electroencephalography 

(EEG), functional magnetic resonance imaging (fMRI), and magnetoencephalography 

(MEG). EEG and MEG measure activity corresponding to electrophysiological changes in 

neuronal populations that are time-locked to a stimulus or task [7]. These time locked 

changes are called event-related potentials or event-related fields, as they refer to 

changes in brain activity due to some event. This event can be a visual stimulus, 

auditory stimulus, or physical stimulus, as well as a physical response to the stimulus. 

Since brain activity of interest is time locked to the event stimulus, background brain 

activity can be reduced by averaging. Averaging across multiple time segments around 

an event of interest therefore improves the signal-to-noise ratio (SNR). The signal being 

recorded by EEG/MEG is primarily generated by post-synaptic potentials.[8]. The post-

synaptic potential at a single neuron is too small to produce a detectable signal; the 

measurements obtained represent the summed activity of many neurons. These 

measurements are either of the electric potential produced at the scalp by the post-

synaptic potentials (EEG), or of the associated magnetic field (MEG). EEG and MEG 
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provide complimentary information as the electrical and magnetic fields are 

perpendicular to each other. Both measurements have a temporal resolution on the 

order of milliseconds due to the nature of bioelectromagnetic fields [9]. In contrast, 

fMRI uses blood oxygenation level dependent (BOLD) contrast [10], which is dependent 

on the blood flow to travel to regions of activity (i.e., neurovascular response), giving a 

lower temporal resolution on the order of seconds. EEG has poorer spatial resolution 

than MEG since the electrical potentials are spatially “smeared” by the high 

conductivity in the skull and scalp [8, 11]. 

1.1.3 Magnetoencephalography  
MEG measures the magnetic fields of the brain using superconducting quantum 

interference device (SQUID) sensors [12]. SQUID sensors are able to measure the 

extremely small magnetic fields generated by brain activity; they use superconducting 

material that can be affected by the small magnetic fields of the brain [13]. SQUID 

sensors provide the required sensitivity to detect the brain’s magnetic fields, but larger 

magnetic fields in the environment need to be removed to improve the signal-to-noise 

ratio (SNR) of measured brain activity [14].  

To achieve improved SNR, typical MEG data is collected over a period of time 

and then split into discrete sections synchronized to events of interest (epoched) and 

averaged (evoked). The data is split into discrete sections based on when event triggers 

occur. This would be an auditory tone or some other stimuli. The MEG data collected 

after this trigger shows a signal that relates to the recent event. In the case of an 

auditory tone, the signal would be active in both auditory cortices. 

As mentioned above, the magnetic fields being measured with MEG come from 

currents in the brain. If the primary source and surrounding conductivity distributions 

are known, the resulting magnetic field signal can be calculated [15]. The solution is 

modelled by using equivalent current dipoles as sources of signal in the brain, which 

approximate the flow of electrical current in a small area. It also assumes there is no 

propagation delay in the signal and no temporal derivative (quasi-static). Under these 
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assumptions, the magnetic field perpendicular to an MEG sensor can be calculated 

using the equation 

 

𝐵𝑧 =
𝜇0

4𝜋

𝑄×(𝑟−𝑟𝑄)∙𝑒𝑧

|𝑟−𝑟𝑄|
3  ( 1 ) 

 

𝐵𝑧 is the magnetic field perpendicular to the sensor, r is the point where the 

field is computed (i.e. location of the sensor), e is given by 
𝑟

|𝑟|
, 𝑟𝑄 is the current dipole 

location, and 𝜇0 is a permeability constant. Using this equation for the generation of 

magnetic fields, an equation to compute the forward model is given by  

𝑀 = 𝐺𝑋 ( 2 ) 

M is the matrix of sensor readings, G is the forward solution described in 

equation ( 1 ), and X is the matrix of source amplitudes over time. By knowing the 

location and orientation of the source current dipoles (X) and the forward solution (G) 

the sensor readings can be calculated. The inverse of this task is called source 

estimation, where the source is estimated based on sensor readings. 

1.1.4 Current Univariate and Multivariate Analysis Approaches 
There are two common approaches to statistical analysis of functional 

neuroimaging data: univariate, and multivariate methods [16]. Data used for analysis in 

functional neuroimaging is typically low sample size and with a high number of 

dimensions. This holds true for sensor level data (i.e. 𝐵𝑧), and for source estimate data 

(i.e., current dipoles Q). Inferential methods use a statistical model on a per-voxel basis 

and tests variations from the null hypothesis. A voxel, in this case, refers to the smallest 

unit of a 3D image. The null hypothesis states that there is no statistically significant 

variation between one set of data and another. If there is a statistically significant 

variation, the null hypothesis is rejected. Non-inferential methods try to characterize 

the nature of the signal in the data without depending on a particular model, essentially 

finding patterns in the data [17].  
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Inferential methods use a null hypothesis that is assessed with a test statistic (a 

function sensitive to departure from the null hypothesis and looking at the region of 

interest), which gives a score of how much a voxel deviates from a voxel that is not 

activated. This score is a measure of the support behind a null hypothesis and is used to 

either accept or reject it [18]. An example would be a time series where the magnitude 

of activation in a voxel under one observation is compared to itself at another 

observation. These observations might be during different tasks the subject is asked to 

perform. If the value at the voxel is determined to be significantly different between 

the two observations, via a test against the null hypothesis, then there is said to be a 

change in activity at that voxel. 

Examples of multivariate exploratory methods used in functional neuroimaging 

are principle component analysis (PCA), and independent component analysis (ICA). 

PCA identifies patterns in the data that are orthogonal to each other, while ICA 

identifies patterns that are statistically independent and spatially sparse with respect to 

each other. PCA requires that the principle components be orthogonal, while ICA puts 

no constraints on orthogonality [19]. When applied to functional neuroimaging data, 

these methods involve determining the components, and inspecting the projection of 

the components onto the data as an indicator of experimental effects. The projected 

data is analyzed first, and then labeled with an interpretation in the context of the 

experimental design [16]. 

In contrast with multivariate methods, univariate approaches are more focused 

on testing hypothesis related to a single variable [20]. This is because univariate 

approaches are testing a specific question about whether certain voxels show changes 

in activity during certain tasks, and whether these changes in activity are statistically 

significant. Multivariate approaches, such as PCA and ICA, generate spatial patterns of 

activity, and then leave the interpretation of these generated patterns to the 

researcher. Univariate methods, therefore, allow for a stronger link to the experimental 

variables when performing studies using functional neuroimaging techniques. A 

research question that could be asked with multivariate methods is “What patterns of 
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activity explain variations across the set of brain maps?”, while with inferential statistics 

it would be “Does the activation level of a voxel vary significantly as a function of 

experimental condition?”. Since univariate analysis is done on a per voxel basis, the 

hypothesis is phrased in terms of voxel-wise activation and does not look at possible 

shared activations that could be occurring, which is available with a multivariate 

approach.  

1.1.5 Flaws of Univariate and Multivariate Approaches 
There are several limitations associated with inferential and multivariate 

methods that may cause problems when answering certain types of questions in the 

field of functional neuroimaging. Voxel-based inferential statistics treats every voxel as 

being an independent data point. This is flawed as brain activity occurs in “blobs” of 

voxels that are correlated to each other.  

Another problem with inferential techniques is that they run into type 1 error. 

Type 1 error is the incorrect rejection of a null hypothesis – meaning that a change is 

considered to be statistically significant when it is actually not. In terms of functional 

imaging, it means that certain voxels are considered to be activated when they are not. 

Since there are many non-activated voxels in a functional image, the model would lean 

towards predicting a voxel is activated to match the probability of the model, creating 

falsely identified activated voxels. Unfortunately, corrections for this tend to push the 

result towards type 2 error. Type 2 error is not rejecting the null hypothesis when it is 

false – claiming that an effect is not significant when it is.  

Many multivariate exploratory methods commonly applied to functional 

neuroimaging data are flawed because they do not directly connect data to the 

experimental conditions [16]. For example, consider performing principle component 

analysis (PCA) on a set of MEG data. PCA will return components to the researcher 

representing different patterns, each component explaining some amount of the 

variability in the data [21]. Researchers can then project data for each condition onto 

these components, and relate the resulting data to the experimental conditions of the 

experiment. Even if a component explains a large amount of variance in the data, the 
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researcher still needs to relate what it means in the context of the experiment. 

Interpreter bias and reproducibility become serious issues given that there is no 

systematic way of correlating variance in an image to experimental conditions. As well, 

some variations might be as large as artifacts (e.g.,  head movement), making it difficult 

to select proper components [16].  

Human bias and error present obstacles when analysing results from techniques 

like PCA. Since the components being produced need to be interpreted by the 

researcher, the conclusions reached are subject to bias. Subjectivity in scientific results 

is not desirable as it makes it difficult to reproduce the same results. Error in 

interpretation is also a risk as the high number of dimensions in the components can be 

difficult to interpret. Researcher bias can cause several different issues as findings may 

be motivated by what the researchers believes is the correct interpretation. If a 

researcher spent significant time on a project, for example, they might be more inclined 

to see positive results. 

1.2 Machine Learning 

1.2.1 What is Machine Learning? 
A popular formal definition of machine learning attributed to Dr. Mitchell is “A 

computer program is said to learn from experience E with respect to some class of tasks 

T and performance measure P if its performance at tasks in T, as measured by P, 

improves with experience E”[22]. Put more simply, machine learning is the study of 

algorithms that improve at some task when given experience in performing said task. 

There are three main classes of machine learning algorithms: supervised, unsupervised, 

and reinforcement learning. My thesis will focus on the application of supervised 

machine learning to functional neuroimaging data. In supervised learning, the computer 

is given the inputs (features) and the correct outputs (targets). The supervised learner 

then tries to develop a pattern classification model to predict the outputs from future 

inputs using the discovered patterns in the data [21].  
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1.2.2 What is a Classification Model? 
Classification approaches to functional neuroimaging data associate exemplars 

of functional data with a discrete set of classes. Supervised machine learning is common 

for functional neuroimaging studies, because it allows the researcher to classify the 

functional neuroimaging data into chosen classes [4, 23-26]. The classification accuracy 

is determined by how many test sets are predicted to be in the correct class, once the 

algorithm has been trained to classify. By looking at what patterns of brain activity help 

drive classification accuracy, the relevancy of those patterns to certain tasks can be 

assessed. How the input data is presented to the algorithm will determine what 

information the algorithm uses to classify, and leads to different representations of the 

patterns driving accuracy. Then, when new data is introduced, the supervised learning 

algorithm should be able to predict which class the functional neuroimaging data 

belongs to.  

1.2.3 Classification Models/Algorithms 
Pattern based classification is a promising new way to analyze functional 

neuroimaging data. It is a subset of the field of machine learning. To give an idea of the 

benefits of using machine learning over more classic approaches, consider the following 

example [27]. Using fMRI, it is possible to distinguish if a participant is looking at an 

image of a face or a house without the use of computerized pattern based 

classification. One way this is done is by looking at the magnitude of activation in the 

fusiform face area, which responds strongly to faces, and the parahippocampal place 

area, which responds strongly to images containing views of houses and visual scenes. 

By simply being given the activity levels in these two regions, human observers were 

able to correctly identify the class of object the participant was looking at in 85% of 

trials. More difficult classification tasks like predicting the orientation of an object, 

which causes a very fine change in brain activity patterns, can not be solved with 

univariate approaches and need a machine learning algorithm to operate on patterns. 

An example is the accurate classification of visual stimulus class, even amongst multiple 

categories with overlapping brain activation patterns [28, 29]. In these cases, it is 

possible to increase sensitivity by distinguishing what object a subject is looking at, 



9 
 

even when regions overlap, using classification algorithms like support vector machines. 

A good example of how pattern based classification techniques are much more 

powerful than using univariate models is that univariate models are unable to detect 

when an object is rotated, even if data was gathered for hundreds of scans. Pattern 

recognition techniques were able to achieve 80% accuracy on just a single fMRI scan 

that was collected in under 2 seconds, where a single scan refers to a single 

measurement for every voxel of the brain [30]. 

1.2.4 Support Vector Machines 
One of the most popular machine learning algorithms is the support vector 

machine (SVM). This supervised learning algorithm has been shown to classify relatively 

well when inputs have a large number of dimensions (or “features”) and low number of 

class examples, which happens to be the case with most functional neuroimaging data 

[28]. SVMs are extensively used in modern functional neuroimaging studies [31-33]. 

Initial excitement in their use might stem from the results of a competition in 2003, 

where an SVM was able to perfectly classify the data [24, 34]. The data was composed 

of EEG recordings during a character selection task. Healthy controls (HCs) were shown 

matrices with 36 characters (6x6) and had random characters highlighted in the 

matrices. While the order was random, the characters were highlighted an equal 

amount per session. Each session had a character highlighted 12 times. Accuracy of the 

classifier was measured by having it predict what character the subject was looking at. 

The SVM was able to achieve perfect classification using only 5 sequences, the least of 

all tested classifiers. It also only needed ~16% of the original electrodes to achieve this 

accuracy.  
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Figure 1 - Svm Classification Example 

This example shows the SVM classifying two different data sets at different C 

values. The X and Y axis are not shown as their values are arbitrary. White circles 

represent class one, black circles represent class 2, and double circles are the support 

vectors. A C value of 1 is used for the left plot, and a C value of 0.1 is used for the right 

plot. Solid black lines represent the hyperplane and dashed black lines represent the 

margin. As the value of C decreases, the error tolerance increases, in turn increasing the 

width of the margin. As the width of the margin increases, more points are treated as 

support vectors and end up being within the margin.  
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An SVM operates by taking in the input data designated for training and trying 

to separate input vectors associated with different classes by using a hyperplane, as 

shown in Figure 1. Inputs to the SVM are composed of different variables, known as 

features.   

𝑥𝑠 = [𝑥1, 𝑥2, … , 𝑥𝑛], 𝑠 ∈ (1, … , 𝑁) ( 3 ) 

In equation ( 3 ) the input 𝑥𝑠 is composed of 𝑛 features, with there being 𝑁 

subjects in total. In the case of MEG data, each feature would be a reading from a 

sensor at a specific time point. However, data can be preprocessed to reduce the 

number of features that are input to the SVM (e.g., a priori time/sensor selection, PCA, 

ICA, etc.). Each subject also has a corresponding target, 𝑦𝑠 that defines the class 

𝑦𝑠 ∈ [−1, 1]  ( 4 ) 

The goal of the SVM algorithm is to correctly classify subjects into each class. 

Classification accuracy is defined as the percentage of correctly classified inputs. An 

SVM classifies inputs into two categories by separating the data with a hyperplane 

ℎ(𝑥𝑠) = 𝑤𝑥𝑠 + 𝑏 = {
1, 𝑖𝑓 ≥ 0

−1, 𝑖𝑓 < 0,
, ||𝑤|| = 1  ( 5 ) 

𝑤 is a vector of weights which multiplies all the features. Since it is of unit 

length, the dot product between 𝑤𝑠 and 𝑥𝑠 gives the projection of the input onto the 

weights. This result is a scalar value, which decides whether the input belongs to class 1 

or class 2 (1 and -1). 𝑏 is a bias term. The closest inputs to the hyperplane of each class 

are called the support vectors. While there may be many hyperplanes that can separate 

the classes, the optimal one is the one which maximises the margin, the distance 

between the hyperplane and the support vectors, as shown in Figure 1, where the 

dashed lines are the boundaries of the margin. Vapnik showed that an optimal 

hyperplane can be defined as the one which maximizes the distance to the closest 

points from either class [21, 35]. This formulation of the problem allows for a unique 

solution to the problem, and by assuming a simple separation rule, performance on 

unseen data is improved. This has been shown to be equivalent to minimizing  
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𝑚𝑖𝑛
𝑤,𝑏

1

2
||𝑤||

2

𝑠. 𝑡.  𝑦𝑠(𝑤 ∙ 𝑥𝑠 + 𝑏) ≥ 1
  ( 6 )  

It is convenient to formulate the minimization problem in the form of a 

Lagrangian 

𝐿 =
1

2
||𝑤||

2
− ∑ 𝛼𝑠[𝑦𝑠(𝑤 ∙ 𝑥𝑠 + 𝑏) − 1𝑁

𝑠 ]  ( 7 ) 

 𝛼 is the lagrangian variable, where only the support vectors have non-zero 

values. To find the dual of the Lagrangian, the partial derivatives with respect 𝑤 and 𝑏 

are taken giving  

𝑤 = ∑ 𝛼𝑠
𝑁
𝑠 𝑦𝑠𝑥𝑠  ( 8 ) 

and 

 0 = ∑ 𝛼𝑠
𝑁
𝑠 𝑦𝑠  ( 9 ) 

 Using equation ( 8 ) and ( 9 ) the dual of the Lagrangian is obtained by 

substitution 

𝐿 = ∑ 𝛼𝑠 −
1

2
∑ ∑ 𝛼𝑠𝛼𝑠′𝑦𝑠𝑦𝑠′(𝑥𝑠 ∙ 𝑥𝑠′)

𝑁
𝑠′

𝑁
𝑠

𝑁
𝑠   ( 10 ) 

Equations ( 8 ) and ( 9 ) can also be plugged into the hyperplane equation ( 5 ) to 

obtain the hyperplane equation in terms of the Lagrangian variables 

ℎ(𝑥𝑠) = ∑ 𝛼𝑖𝑦𝑖(𝑥𝑠′ ∙𝑁
𝑠′ 𝑥𝑠 ) + 𝑏  ( 11 ) 

An important thing to notice in equations ( 10 ) and ( 11 ) is that only the dot 

product of inputs is necessary for computation, not the inputs themselves. This 

becomes useful when wanting to use non-linear separators. Not all data can be 

separated with a linear hyperplane. In that case, the input features are mapped to an 

alternate dimension (usually higher) using a kernel function. The kernel is a mapping of 

the input vector from its original set of features to a new feature space, where the 

mapping can be linear or not linear [26]. By transforming the data to a new feature 

space, one might be able to find a linear separator in this new feature space and use 

the same algorithm to find a linear hyperplane. Importantly, instead of mapping the 
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inputs to a new coordinate frame, the dot product can be mapped instead. This is called 

the kernel trick. This changes equation ( 11 ) to 

ℎ(𝑥𝑠) = ∑ 𝛼𝑖𝑦𝑖𝐾(𝑥𝑠′
𝑁
𝑠′ 𝑥𝑠) + 𝑏  ( 12 ) 

where K is the kernel function mapping the dot product to the new feature 

space. 

One important property to note about equations ( 11 ) and ( 12 ) is that these 

solutions do not allow for incorrect classification. To get around this, a slack variable 𝜉 

is added to equation ( 13 ). 

𝑚𝑖𝑛
𝑤,𝑏

1

2
||𝑤||

2
+ 𝐶 ∑ 𝜉𝑠

𝑁
𝑠=1

𝑠. 𝑡.  𝑦𝑠(𝑤 ∙ 𝑥𝑠 + 𝑏) ≥ 1 − 𝜉𝑖    𝜉𝑠 ≥ 0
  ( 13 ) 

𝜉 measures the distance from the proper side of the hyperplane an input is 

allowed to be during training. C is the parameter controlling error tolerance. Making the 

value of C larger in equation ( 13 ) will punish the SVM more for having examples on the 

wrong side, resulting in smaller margins. Smaller values of C will punish the classifier 

less for misclassification and allow for larger margins. Taking the slack variable into 

account and finding the Lagrangian minimization problem in the form of equation ( 10 ) 

gives 

𝑚𝑖𝑛
𝛼

1

2
∑ 𝑎𝑠𝑎𝑠′𝑦𝑠𝑦𝑠′𝐾(𝑥𝑠, 𝑥𝑠′)𝑠,𝑠′ − ∑ 𝛼𝑠

𝑁
𝑠=1  

𝑠. 𝑡.  𝐶 ≥ 𝑎𝑠 ≥ 0 𝑎𝑛𝑑 ∑ 𝛼𝑠𝑦𝑠 = 0𝑠

  ( 14 ) 

 

 Finally, the notation can be greatly simplified if the 𝑦 values and the kernel 𝐾 

are put into a matrix called the Gram matrix 

𝑚𝑖𝑛
𝛼

1

2
𝛼𝑇𝐺𝛼 − 𝛼 

𝑠. 𝑡.  𝐶 ≥ 𝑎𝑠 ≥ 0 𝑎𝑛𝑑 ∑ 𝛼𝑠𝑦𝑠 = 0𝑠

  ( 15 ) 

Where 
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𝐺 = [
𝑦1𝑦1′𝐾(𝑥1, 𝑥1) ⋯ 𝑦1𝑦𝑁′𝐾(𝑥1, 𝑥𝑁)

⋮ ⋱ ⋮
𝑦𝑁𝑦1′𝐾(𝑥𝑁 , 𝑥1) ⋯ 𝑦𝑁𝑦𝑁′𝐾(𝑥𝑁 , 𝑥𝑁)

]  ( 16 ) 

 Each cell in the gram matrix is the product of the targets and kernel of the dot 

product between two variables. In the top left corner, both inputs start at the first 

index. Moving right and down, both increase the indices for one of the inputs. 

A key example of the use of SVMs with functional neuroimaging data is the work of 

LaConte et al. [26]. In this paper, LaConte et al. collected data from sixteen right-

handed volunteers performing two repeated runs of a static force task, alternating 

between six rest and five force periods (45 s/period; (200, 400, 600, 800, 1000) g 

randomized target force with thumb and forefinger). fMRI data was collected using a 

Siemens 1.5T scanner. An SVM was compared to a multivariate analysis technique 

called canonical variate analysis (CVA), mainly in terms of classification accuracy and 

model interpretation. Hyperparameters of the models were tuned using a cross-

validation set, which also acted as the estimate of classification accuracy. This 

classification accuracy estimation method results in optimistic predictions, as noted in 

the paper. A more optimal method is splitting the data three ways where classification 

accuracy is computed on held out data. 2880 SVM models were generated, and 1600 

CVA models were generated. This is not an ideal method for comparing classifiers as the 

chances of type 1 error increases when subject count stays the same, but model count 

increases.  Model complexity was controlled by using the C value, and kernel for the 

SVM, while for the CVA (as with ICA), the complexity was controlled by the number of 

components.  

 It was found that the linear kernel was the best performing kernel for the SVM. 

Another finding was that the C value would vary when using different subjects in the 

validation set, while the CVA model stayed mostly consistent. Another finding was that 

the prediction accuracy would only go down at low C values, though this is likely an 

effect of using the validation set as the test set. The SVM was also found to be less 

sensitive to different pre-processing techniques than the CVA.  
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One of the better model interpretation techniques, described in the work by 

LaConte et al., looked at support vectors to see which features were ambiguous 

between classes, and which were not. Nonlinear kernels do not suit model 

interpretation, as weights in a different dimension do not preserve their meaning, 

making interpretation ambiguous. The paper suggests further work is needed to 

properly evaluate the importance of features, but it does provide a helpful quote by 

Mjolsness and DeCoste[36]: 

“Discriminative models make no attempt to explicitly capture the true underlying 

physics of the phenomena. Nevertheless, as many recent successful applications of 

methods such as SVMs have shown, such classifiers can provide strong insights into the 

nature of the phenomena, including such aspects as which input dimensions are most 

useful, which examples are most likely to be outliers, and what new observations might 

be most worthwhile to gather.” 
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Figure 2 - Outline of Workflow for Machine Learning Classification 

Figure 2 shows the workflow for classifying MEG data. Starting at the top left of 

the figure is the collected MEG data, which initially undergoes feature selection and 

scaling. Feature selection and scaling transforms the data into a set of vectors 

composed of features and labels. These vectors are then randomly split into folds. The 

folds are fed into a loop where the folds are randomly put into a train and test set. The 

train data is then fed into a loop that searches through various hyperparameter values. 
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Further, the current hyperparameter value being tested is fed into a loop along with a 

random split of the train set into a train/validation set. This innermost loop is further 

explained in Figure 3. From this, the tuned hyperparameters are obtained by picking the 

hyperparameters giving the largest classification accuracy. Tuned hyperparameters and 

train/test folds are used to fit the machine learning model. Classification accuracy on 

the test data is computed, and the average of classification accuracies is output by the 

outermost loop. 

1.2.5 Logistic Regression 
Logistic regression (LR) is similar to support vector machines, and serves as a 

good comparison for SVMs to more standard classification approaches. Instead of 

separating data with a hyperplane like an SVM, LR tries to fit the data to a continuous 

function [21] 

𝐹(𝑥) =
1

1+𝑒𝑤𝑥+𝑏    ( 17 ) 

 

This function quickly switches between 0 and 1, representing the probability of 

an example belonging to class 1. The “hyperplane” in LR would represent the point 

where probability is 0.5. A minimization problem can be formulated by taking the log 

likelihood giving 

𝑚𝑖𝑛
𝑤,𝑏

∑ 𝑙𝑜𝑔 (𝑒−𝑦𝑠(𝑥𝑠
𝑇𝑤+𝑏)

 + 1)𝑁
𝑠=1   ( 18 ) 

 

1.2.5.1 Logistic Regression vs SVM 
 Since LR fits the data to a continuous function, all data points are taken into 

account, unlike an SVM which only looks at the support vectors. An SVM does not 

naturally give the probabilities as a result. For an SVM, information about the 

distributions is missing, as only the support vector are used during test time, meaning 

information about each classes distribution is missing. Solutions to this problem exist 

like Platt scaling. In Figure 1, where the SVM only takes into account the circled support 
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vectors, LR would take every point into account. Taking all the points into account 

makes LR more computationally expensive than using an SVM. An SVM and LR can both 

use the kernel trick described above so that non-linear models can be developed by 

both methods. The motivations for the SVM and LR also differ. The SVM is more 

geometrically motivated, as it tries to find a hyperplane to separate the data, while 

logistic regression tries to fit the data to a function. In practice, LR and linear SVMs tend 

to have similar performance [37]. 

1.2.6 Feature Selection and Scaling: Importance of Pre-Processing 
Processing the raw data prior to training involves feature selection, 

normalization, and any modifications to the raw data. Feature selection is the choice of 

what data to feed into the machine learning algorithm, and the transformation of the 

data into a form that can be fed into the machine learning algorithm. It is important to 

perform feature selection because redundant features or useless features would just 

make the training process take a longer time to find a good solution, require more data, 

or even be biased. Removing interdependence and redundancy is helpful because 

fewer features means faster execution of the algorithm and training of the pattern 

based classification model. Feature selection is not always performed; various machine 

algorithms can still give good classification accuracy for functional neuroimaging data 

simply by using every voxel [26]. However, feature selection has been shown to reduce 

prediction error and improve interpretability [38, 39].  

A popular method for feature selection is recursive feature elimination, where 

different sets of features are used to train a machine learning algorithm and the subset 

with the lowest error is used as the official set of features for the training. It is difficult 

to know beforehand how many features need to be selected before moving on, but 

there are some principles one can follow as a general guide to the process. If previous 

knowledge exists about the system undergoing pattern recognition, then certain 

features can be selected as being useful a priori. If the features have interdependence, 

then one can try to modify them so that they are independent and normalize the 

features [40].  
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Normalization/scaling can be applied to each feature independently so that no 

variable is considered more important simply because its magnitude is larger. 

Normalizing each feature independently is commonly done when different features 

have different scales. Normalization, along with realignment and filtering, are 

important pre-processing steps [17]. Realignment centers the data around 0 so that no 

variable is considered more important simply because of its magnitude. Low-pass filters 

remove frequencies above a certain value. This is useful when collecting real world 

data, as it can remove unwanted signals like power line noise (50/60 Hz). High pass 

filtering removes frequencies below a certain value. This can remove drift in the signal. 

The input data can also be transformed into an alternate representation. For 

example, multivariate analysis can be used to separate artifacts like head movement 

from brain activity by finding their independent components and removing them from 

the data [41]. Instead of using multivariate analysis, another machine learning 

algorithm called auto-associative networks can be also be used to reduce the 

dimensionality of the data [42], but no such usage was found in literature for functional 

neuroimaging.  

1.2.7 Cross Validation, Parameter Tuning, and Generalizability 
Any model can be fit to a set of data with perfect accuracy, given the model is 

sufficiently complex to describe the patterns in the data. Perfect fits are not typically 

the desired result as it can mean fitting to noise present in the data. Fit models typically 

want to be applied to examples outside of the data that the model was trained on. The 

ability to classify data outside of the experimental data used to train the algorithm is 

the desired outcome as it allows for the algorithm to be applied to new data.  This is 

known as generalizability. One of the keys to generalizing properly is using a cross-

validation data set [43, 44]. Cross-validation involves splitting the data into separate 

sets composed of training, cross-validation, and test sets as shown in Figure 3 

(sometimes the last two are treated as one if there is a small amount of data available).  

Cross-validation is used in order to estimate classification accuracy and select 

hyperparameters [21, 45]. In cross-validation, the entire dataset is split into smaller 
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sets. Subsets are created by randomly drawing from the entire dataset without 

replacement, and making sure there is an equal number of each class in each subset 

(stratified). A popular cross-validation scheme is K-Folds, where the data is split into 

different folds. For example, consider N sets of inputs. For K folds there would be K 

different sets of input vectors, with each iteration containing K-1 training sets, and one 

validation set. If there were three input vectors and leave-one-out cross validation 

(LOOCV) were used, then the three different trains would be: Train= [1,2] CV = [3], 

Train= [2,3] CV = [1], and Train= [3,1] CV = [2].  

 

Figure showing how cross-validation works with 11 sets. Initially, the data is 

randomly ordered and split into 11 sets of data. One of these sets is set aside at the 

beginning and only used again at the end to test classification accuracy. The remaining 

10 sets are then used for picking the best hyperparameters by training on all the sets 

except for one, and using the excluded set to estimate performance. This repeats 

multiple times to find the best hyperparameter value. In the end, all of the 10 sets are 

used for training with the optimal hyperparameters, and the test set is used to estimate 

accuracy. 

  

Figure 3 – Cross Validation Outline 
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Classifiers have different hyperparameters to tune during cross-validation 

before classification accuracy is estimated. All the classifiers in this study tuned their 

hyperparameters using the cross-validation scheme outlined in Figure 3. There are two 

main phases in this scheme, tuning and then error estimation. One set is put aside at 

the very beginning to use for error estimation later on. The rest of the data is then used 

for tuning of the hyperparameters. This is done by assigning some value for the 

hyperparameter in question, and then training on all the sets except one. Performance 

of the model using that specific value for the hyperparameter is evaluated by testing on 

the held out set. This is repeated until every set is held out to obtain an average 

accuracy for the model with that hyperparameter. Then, another value for the 

hyperparameter is picked and the process repeats. Once the search is finished, the 

optimal hyperparameter is picked and tuning is complete. The tuned hyperparameters 

are then used to estimate the accuracy of the classification model on unseen data.  

1.2.7.1 Trade-Offs 
Tuning hyperparameters involves a trade off between bias and variance. Bias is 

the error which measures how close the model’s predictions are to the true value 

across multiple splits (in the context of cross-validation). The variance is a measure of 

error the model has for a single split. When cross-validation is performed, the algorithm 

determines the optimal trade off between the two. It does this by using the held out 

data set, called the validation set (as seen in Figure 3 and Figure 4), to estimate bias 

error. A model fit that gives high bias but low variance means the model is only good at 

predicting for that single data set. Cross-validation increases the variance in order to 

decrease the bias. Achieving high variance, ignoring bias, is actually trivial given the 

model is sufficiently complex. With an SVM, a large C value generally decreases 

variance at the cost of bias. A small C value increases variance, but decreases bias.  

1.2.8 Diagnosis and Prognosis 
SVMs have started to see application in the diagnosis and prognosis of 

neurological and psychological disorders [46]. Merriam-Webster defines prognosis as 

“A doctor’s opinion about how someone will recover from an illness or injury”, and 
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diagnosis as “The act of identifying a disease, illness, or problem by examining someone 

or something” [47]. In the context of functional neuroimaging data, diagnosis would be 

the development of a classifier able to tell whether there is a certain brain disease or 

injury, and prognosis would be looking at a functional image to predict the disease 

trajectory. Using multivariate pattern analysis, one can significantly improve sensitivity 

in early detection or diagnosis, in particular when the changes are very subtle [45].  

According to Orrù et al., pattern based classification studies of neurological and 

psychiatric disorders can be split into three categories [46], “(i) studies which examine 

the diagnostic value of neuroimaging data by comparing patients and healthy controls 

(HCs); (ii) studies which examine the potential of neuroimaging data for predicting the 

onset of a disease by comparing the brain scans (acquired at baseline) of individuals 

with prodromal symptoms who subsequently did and did not become ill, and (iii) 

studies which examine the prognostic value of imaging data by comparing the brain 

scans obtained from patients prior to treatment onset who subsequently did and did 

not respond.”.   

First are studies which examine the diagnostic value of neuroimaging data by 

comparing patients and controls. SVMs have been able to distinguish not only between 

HCs and patients with dementia, but also between different types of dementia: 

frontotemporal lobar degeneration and Alzheimer’s disease (AD) [48]. In this study by 

Dukart et al., different biomarkers were investigated to try and improve detection and 

differentiation of different types of dementia. 21 subjects with AD, 14 with 

frontotemporal lobar degeneration (FTLD), and 13 HCs were scanned using positron 

emission tomography (FGD-PET) scanning and magnetic resonance imaging (MRI), 

together with clinical and behavioral assessments as benchmarks. Support vector 

machines with a linear kernel were used as the classification tool. The researchers 

obtained a differentiation accuracy of 92% between the groups by using the structural 

MRI and FGD-PET information together. 94% accuracy was obtained when 

differentiating AD and FTLD patients.  
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Second are studies which examine the potential of neuroimaging data for 

predicting the onset of a disease by comparing brain scans of individuals with initial 

symptoms who subsequently do, or do not become ill. SVMs have been applied to the 

detection of mild cognitive impairment (MCI), which is thought to be a transition 

between normal ageing and AD associated dementia. Early detection of MCI can help 

provide treatments that will help alleviate deficits in cognition coming from the further 

progression of AD [49]. A study by Nho K et al. predicted conversion from MCI to AD 

associated dementia given data from follow-up periods of 1, 2, and 3 years using 

structural MRI with 72.3% prediction accuracy [23]. They used an SVM to classify 

between subjects who had AD and HCs. They also attempted to predict conversion 

between MCI and AD. They were able to achieve 90.5% classification accuracy in 

differentiating the groups and 72.3% in predicting the conversion. Since model 

interpretation was not a concern in this study a radial basis function kernel was used.  

Third are studies which examine the prognostic value of imaging data by 

comparing the brain scans obtained from patients prior to treatment onset, who 

subsequently did or did not respond to the treatment. For predicting the recovery of 

patients following treatment, the majority of studies have been focused on major 

depression. A study by Gong et al. found that SVMs were able to distinguish between 

patients that did and did not respond to medication using structural MRI in a 

longitudinal study with an accuracy of 69.57% (based on gray matter) and 65.22% 

(based on white matter) [50]. This study evaluated 61 drug-naïve adults suffering 

depression and 42 HCs. Subjects were given medication in the drug-naïve group and 

evaluated for depression at a future date. The SVM’s task was to predict which subjects 

would and would not respond to the medication. In this study a non-linear kernel was 

used to avoid the risk of over-fitting the data, as suggested by the authors.  

Proper function of the brain is an important component to living normally. Over 

time brain activity can change based on disease, injury, or recovery.  Measurements 

that are indicative of different prognoses can be found by collecting data from subjects 

longitudinally. Current prognosis of brain injury, such as concussion, primarily uses 
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measurements of symptoms to make clinical decisions. Longitudinal functional 

neuroimaging data may help inform these decisions, if models that are predictive of 

diagnosis or prognosis can be generated.  

1.3 Longitudinal Functional Neuroimaging Data 

1.3.1 What is Longitudinal Functional Neuroimaging Data 
Typical functional neuroimaging studies, such as those described above, are 

constrained to a single session with each participant, meaning the researcher only has 

cross-sectional information about brain activity over a group (or groups) of individuals. 

This is useful for determining which sections of the brain are active for specific tasks, 

but does not allow for trend level analysis. Trend level analysis gives information about 

neural development: be that positive, neutral, or negative trends. Longitudinal 

functional imaging takes multiple scans of the brain over time to give more information 

about a subject’s trajectory. As an example, attention related brain activity could be 

probed for processing efficiency using reaction time measures with multiple sessions 

over some period of time [51]. A trend-level analysis can be completed when multiple 

cross-sections of the attention related activity over time are recorded. This is possible 

because a longitudinal approach increases sensitivity to the changes in the brain by 

reducing between-subject variability and accounting for the temporal order of scans [1, 

2]. Increased sensitivity means the trajectory of outcome measures can be more 

accurately assessed based on within-subjects’ changes. Assessing recovery trajectories 

would allow for better treatments for those suffering from neurological problems by 

being able to predict if someone is recovering or not. Longitudinal functional 

neuroimaging data also helps us understand the brain by being able to see how 

longterm changes in the brain can affect behaviour. 

1.3.2 Example: Prognosis for mTBI  
Current prognosis of brain injury, such as concussion, primarily uses 

measurements of symptoms to make clinical decisions. Over time, brain activity can 

change based on disease, injury, or recovery.  Measurements that are indicative of 

different prognoses can be found by collecting data from subjects longitudinally.  
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Those who suffer mild traumatic brain injuries (mTBIs), commonly known as 

concussion, can have changes in brain activity that lead to a diminished quality of life. 

This is made worse for those who are members of vulnerable groups like children. 

Deficits in attention are one example of negative changes arising from mTBIs for 

students who recently suffered mTBIs [52-54]. Neurologists assess post concussion 

symptom severity and recovery rate (or “trajectory”) using standardized questionnaires 

that may elicit symptoms not reported freely, such as the Concussion Symptom 

Inventory (CSI) [55]. The CSI is a self-report questionnaire that rates twelve symptoms 

on a scale of 0 (absent) to 6 (severe). Symptoms assessed relate to sensation (i.e., 

headache, sensitivity), vision (i.e., blurring), and cognition (i.e., memory, attention). 

Other examples of common questionnaires are the Sports Concussion Assessment Tool 

3 (SCAT3) and the Immediate Postconcussion Assessment and Cognitive Testing 

(ImPACT) test battery [56]. The questionnaire-style test includes a symptom inventory, 

cognitive assessment of attention and memory, and physical evaluation that includes 

the Glasgow Coma Scale and a balance assessment [57, 58]. The ImPACT test battery 

includes demographic data, neuropsychological tests, and the Post-Concussion 

Symptom Scale [59]. The battery measures deficits in verbal memory, visual memory, 

processing speed, and reaction time, and has been shown to have high sensitivity and 

specificity for detecting effects relating to sports-related mTBI [60]. Towards prognosis 

in a cohort of male football players, a combination of scores from the ImPACT battery 

collected in the early stages following mTBI achieved 80% sensitivity in classifying short 

or long recovery times with a cut-off of 14 days [61]. However, such classification 

algorithms require validation on an additional follow-up cohort, which has not yet been 

reported. 

Components of the SCAT3 and ImPACT administered by a second party are 

problematic, in that they are confounded by inter-rater variability. The self-report 

sections are confounded by the subjective nature of the patient’s rating, which can 

deemphasize cognitive and emotional reactivity symptoms [62]. In addition, patients 

with a vested interest (i.e., athletes hoping to return to sport) may underrate symptoms 
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in order to create the perception of recovery. Further, compensatory changes within 

the brain can mask the clinical manifestation of damage to the brain, which generates a 

significant confound to behavioural measures [63]. An objective measure of the 

recovery of brain function following mTBI provided by functional neuroimaging, which 

looks directly at brain activity, would be an attractive alternative, and may be 

developed using pattern classification algorithms.  

1.3.3 Challenges for Analysis 
Taking the temporal aspect of longitudinal data into account is important because it 

is information not available with typical cross-sectional data. However, longitudinal 

data analysis has several difficulties that are not present when looking at cross-

sectional data. Since data is being collected over a period of time, subjects can miss 

some scans for unforeseeable reasons, resulting in unbalanced data, which some SVMs 

can handle [64]. The amount of time between scans might differ between subjects as 

well, giving non-uniform data. Certain statistical aspects need to be taken into account 

as well: responses are correlated (not independent), variance of repeated measures 

often change and increase steadily with time (heteroscedasticity), and measures closer 

in time are likely to be more highly correlated than measurement pairs that are further 

separated in time [1-3]. The variance between subjects is not consistent over time. The 

variance between two subjects can increase over time if the trajectories diverge, or it 

may decrease if the trajectories start to converge. 

The factors affecting the trajectory can also not be of interest. A subject’s 

performance of a task can change over time from getting used to the paradigm, or even 

decline in some cases. A good model should account for increasing variance within 

subjects over time, and dissociate performance-related changes from changes relating 

to the covariates of interest. Predictive modelling can be utilized to assess the probable 

trajectory of additional participants, based on the acquired data [4]. However, 

predictive modelling requires the use of additional tools to learn the patterns that exist 

in longitudinal data that are most predictive of trajectory.  
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1.4 Longitudinal Support Vector Machine 
The longitudinal support vector machine (LSVM) is an adaption of the SVM that 

specifically takes the temporal component of longitudinal data into account [4, 25].  

1.4.1 Derivation 
The LSVM starts with the SVM model of classification, but adds some 

modifications. Firstly, the way of interpreting an input is changed. Instead of thinking of 

the feature space as being made from independent features like in equation ( 3 ) it is 

composed of measurements that are repeated across sessions 

𝑥𝑠 = (

𝑥1,𝑡=1 ⋯ 𝑥𝑛,𝑡=1

⋮ ⋱ ⋮
𝑥1,𝑡=𝑇 ⋯ 𝑥𝑛,𝑡=𝑇

)  ( 19 ) 

Here 𝑡 represents the sessions number at which the feature was measured. A 

new variable 𝛽 is added that combines the features across sessions defining linear 

trends of change. Thus, the input for the LSVM is re-formulated as below: 

𝑥𝑠 = 𝑥𝑠,1 + 𝛽2𝑥𝑠,2 + 𝛽3𝑥𝑠,3 + ⋯ + 𝛽𝑇𝑥𝑠,𝑇  ( 20 ) 

The hyperplane is still defined properly by ( 5 ), but the length of 𝑤 and 𝑥𝑠 are 

different from the standard SVM. Note that the first 𝛽 is a 1. In order to learn the 𝛽 

values at the same time as 𝛼 a custom gram matrix is defined for equation ( 15 ) 

𝐺𝑚 = [
𝑋̃𝑡=1

𝑇 𝑋̃𝑡=1 ⋯ 𝑋̃𝑡=1
𝑇 𝑋̃𝑡=𝑇

⋮ ⋱ ⋮
𝑋̃𝑡=𝑇

𝑇 𝑋̃𝑡=1 ⋯ 𝑋̃𝑡=𝑇
𝑇 𝑋̃𝑡=𝑇

]  ( 21 ) 

where 

 𝑋̃𝑡=𝑘 = [𝑦1𝑥1,𝑡=𝑘, 𝑦2𝑥2,𝑡=𝑘, … , 𝑦𝑁𝑥𝑛,𝑡=𝑘]  ( 22 ) 

 

  

giving 

𝑚𝑖𝑛
𝛼

1

2
𝛼𝑇𝐺𝛼 − 𝛼 

𝑠. 𝑡. 𝐶 ≥ 𝛼𝑠 ≥ 0, ∑ ∑ 𝛼 (𝑠+𝑡𝑁)𝑦𝑠 = 0, 𝑓𝑜𝑟 𝑠 ∈ 1 … 𝑁 𝑎𝑛𝑑 𝑡 ∈ 1 … 𝑇𝑁
𝑠

𝑇
𝑡

  ( 23 ) 
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There are several new things going on in equation ( 23 ). One is the gram matrix 

which is composed of the dot product between features at the same time point, instead 

of all the features at once like in equation ( 15 ). The other is that the 𝐶 constraint only 

applies to the first 𝛼 of every session as that is the only alpha value not combined with 

a 𝛽 term as shown in the equation below when expanding the Lagrangian 

parameterized form of the weights 

𝑤 = ∑ 𝑦𝑠𝛼𝑠(𝑥𝑠,1 + 𝛽2𝑥𝑠,2 … + 𝛽𝑇𝑥𝑠,𝑇)𝑛
𝑠=1  ( 24 ) 

A more convenient formulation of the problem is recommended by Chen et al 

using an iterative procedure that splits the gram matrix into four parts when using two 

data points 

[
𝛼

𝛽𝛼]
𝑇

[
𝐺𝑚

0,0 𝐺𝑚
0,𝑇

𝐺𝑚
𝑇,0 𝐺𝑚

𝑇,𝑇] [
𝛼

𝛽𝛼] − 1′𝛼 ( 25 ) 

𝐺𝑀
0,0and 𝐺𝑀

𝑇,𝑇represent only the first and last sessions respectively, while the 

submatrices fill in the rest of the values. In the iterative procedure, 𝛼 is found first by 

assuming 𝛽 is known, followed by the reverse. For the following steps the bias −1′𝛼 

will be ignored. Since the βs are assumed to be known in the first step the objective 

simplifies to  

𝛼𝑇(𝐺𝑚
0,0 + 𝛽𝐺𝑚

𝑇,0 + 𝛽𝐺𝑚
0,𝑇 + 𝛽2𝐺𝑚

𝑇,𝑇)𝛼

= 𝛼𝑇(𝐺′)𝛼
 ( 26 ) 

Which can be solved using the same techniques as equation ( 15 ). When the 

alphas are assumed to be known the problem simplifies to 

𝐺𝑚𝛼

0,0 + 𝛽𝐺𝑚𝛼

𝑇,0 + 𝛽𝐺𝑚𝛼

0,𝑇 + 𝛽2𝐺𝑚𝛼

𝑇,𝑇 ( 27 ) 

Taking the derivative and setting it equal to zero gives 

𝛽 =  −
𝐺𝑚𝛼

𝑇,0 +𝐺𝑚𝛼
0,𝑇

𝐺𝑚𝛼
𝑇,𝑇  ( 28 ) 

Which gives the 𝛽 values.  
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The LSVM handles several of the issues raised by longitudinal functional 

neuroimaging data. First is that the responses measured across sessions are related, 

instead of being independent. Secondly is that the model, like the SVM, should be 

robust against noise – like that introduced by heteroscedasticity. This model does not 

account for missing data, or that measurements closer in time are more related than 

measurements that are further away in time. 

1.4.2 Differences from the SVM and LR 
There are two main differences between the LSVM and SVM/LR. First is that the 

temporal component is explicitly taken into account by having a β term define the 

change in features between sessions in the longitudinal data as shown in equation ( 20 

). A measurement that was repeated over several sessions is reduced to one feature by 

combining the longitudinal values using the learned β terms. The other difference is 

that, unlike an SVM, the LSVM takes all of an examples measurements or none of them. 

This is shown in equation ( 24 ) where a single 𝛼 value is shared across all sessions for a 

subject. 

The LSVM is expected to provide higher classification accuracy on data that fits 

its assumptions, because of how it reduces the number of features by a factor equal to 

the number of sessions, as compared to SVM and LR. The assumptions that need to 

hold true for this are that the important features for classification share a similar 

(ideally the same) magnitude of change across sessions. Higher classification accuracy 

should also lead to more stable weights that are being discovered, meaning their 

interpretation should be more consistent. 

1.5 Objectives and Hypotheses 
Unique to longitudinal data compared to cross-sectional functional 

neuroimaging data is the temporal ordering of the data. Explicitly utilizing this temporal 

component should improve classification accuracy by removing the amount of 

information that needs to be learned during training. The objective of this thesis is to 

implement the LSVM, and to test its performance with longitudinal data relative to an 

SVM and LR. To do this two studies were done. Both studies involved the simulation of 
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data that had two sessions, and two classes. In the first study, purely simulated data 

was used similar to what was done by Chen et al. in the paper describing the LSVM [4]. I 

hypothesize that the longitudinal support vector machine, by explicitly including the 

temporal component of longitudinal data, will have a higher classification accuracy and 

produce more interpretable feature weights, as compared to classification models that 

do not explicitly account for the temporal component. This hypothesis is based on the 

preliminary results of Chen et al., and the assumption that higher classification 

accuracies will lead to feature weights that more strongly reflect the simulated input 

data.  

In the second study, a simulated signal was inserted in resting state MEG data to 

generate simulated longitudinal functional neuroimaging data. For this study, I also 

hypothesize that the longitudinal support vector machine, by explicitly including the 

temporal component of longitudinal data, will have a higher classification accuracy and 

produce more interpretable feature weights, as compared to classification models that 

do not explicitly account for the temporal component. This is also based on the work of 

Chen et al. as they also showed improved performance with neuroimaging data in 

terms of classification accuracy. Importantly, this second study will allow us to 

determine the magnitudes of temporal trends in MEG data for which the LSVM 

outperforms the SVM and LR.   
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Chapter 2 Methods 
This thesis contains two main studies. Each study involved trying to correctly 

classify a subject into either a “stable” or “manipulated” class. In the case of functional 

neuroimaging data, the class may relate to disease state (“healthy” vs. “patient”) or 

prognosis (“recovering” vs. “declining”). Each class example is composed of features, 

where each feature in MEG would be the sensor reading at a given latency. In the first 

study features for each subject were purely simulated. Features for both classes were 

drawn from normal distributions of varying means and standard deviations. The first 

study replicated, and expanded upon, the work from the original LSVM paper by Chen 

and Dubois [4]. Modifications on the work done by Chen and Dubois resulted in a 

follow-up simulation that looked at the question, “could the LSVM find interpretable 

weights for more complex datasets?”. The second study used real resting state MEG 

data to add real noise levels to a simulated MEG signal.  

2.1 Study One: Pure Simulation   

2.1.1 Simulation of Longitudinal Data 
Data was generated using the procedure described by Chen and DuBois [4]. Two 

hundred subjects of data were generated, simulating a situation wherein half of the 

subjects were part of a stable class, and the other half were part of the manipulated 

class (i.e., different distribution between session one and two). Two sessions were 

simulated for each subject, with 100 features per session. Each subject’s features were 

drawn from a normal distribution with varying mean and standard deviation. The point 

of the first simulation was to emulate the work of Chen and DuBois to verify if the LSVM 

algorithm outperforms the SVM in terms of classification accuracy. Going beyond the 

work described in [4], I further modified the first simulation to see how the different 

algorithms (including LR) would behave in cases that were more challenging to classify, 

and with more complicated patterns in the features. Finally, I performed a 

heteroscedasticity study which tested how the algorithms performed when there was 

increased variation at the second session, which is very different from the initial 

simulation by Chen and DuBois.  
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2.1.1.1 Simulation One 
The first simulation in Study One implemented the simulation used by Chen and 

Dubois in their paper. The stable class had no change in the mean used to generate the 

features between sessions one and two. The manipulated class had an increase in the 

mean between session one and two. Following the work by Chen and Dubois the data 

at the first session was generated using   

𝑥𝑡=1(𝑚𝑐, 𝜎2) = 𝑁(𝑚𝑐, 𝜎2)  ( 29 ) 

In this equation 𝑚𝑐 and 𝜎2 are the mean and variation of the normal 

distribution respectively. Half the subjects of each class at each session had their 𝑚𝑐 

value shifted up by a magnitude of 1. The value of 𝑚𝑐 is controlled by the index c which 

defines the class from the class example is drawn from. The standard deviation was 

kept at a constant value of 1. 

Session 2 values were drawn from  

𝑥𝑡=2(𝑚𝑐, 𝜎2, 𝑥𝑡=1) = 𝑥𝑡=1 + 𝑁(𝑚𝑐, 𝜎2)  ( 30 ) 

Here the result of equation( 29 ) was added to a random value drawn from a 

normal distribution. If the subject was part of the stable class (c = 0) then the mean was 

0, if the subject was part of the manipulated class (c = 1) the mean was 1. This meant 

that only the manipulated class would have added signal that was not due to noise at 

the second session. The standard deviation was 0.1 for the 𝑥𝑡=1 term in equation ( 30 ).  

To test the robustness of the classifiers a modification was performed to 

equation ( 30 ) so that the magnitude of change in the mean at the second session for 

the manipulated class could be controlled 

 𝑥𝑡=2(𝑚𝑐, 𝜙2, 𝜏, 𝑥𝑡=1) = 𝑥𝑡=1 + 𝑁(𝜏𝑚𝑐, 𝜙2)  ( 31 ) 

 

A new variable, 𝜏, was introduced to define the magnitude of change for the 

second session, and was varied between 0.0001 and 100. By controlling the magnitude 

of the change the SNR is also controlled as it becomes harder to differentiate the two 
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classes at small values of 𝜏. Once the data was generated, the feature space (i.e., input 

matrix for machine learning) was an N x M matrix, where N is the number of examples 

(200, 100 of each class) and M is the number of features (100 per session times 2 

sessions – 200 features overall). Additionally, a vector of class labels (-1, 1) was included 

to indicate the class for each example. 

2.1.1.2 Simulation Two 
Next a pair of diverging trends across the feature space was simulated. This was 

done to see how the classifiers would perform in terms of weight interpretability and 

classification accuracy when a more complex feature pattern was used. The dataset was 

more complex by having some features contain more information than others. This 

simulates the case in functional neuroimaging where some sensors or voxels may be 

more informative than others.Feature values at the first session were simulated the 

same way as that described by equation ( 30 ). Feature values for the second session 

were drawn from a modified version of equation ( 31 ) 

𝑥𝑡=2(𝑚𝑐, 𝜙2, 𝜏, 𝑥𝑡=1, 𝑓) = 𝑥𝑡=1 + 𝑁 (
𝑓

100
𝜏𝑚𝑐, 𝜙2) ( 32 ) 

 

Equation ( 32 ) adds a new variable 𝑓 which is the index of the feature (starting 

at 1). The added scaler 
𝑓

100
 scales the features so that the normal distribution from 

which the initial feature is drawn has a small mean and the last feature’s normal 

distribution mean is equivalent to 𝜏𝑚̅𝑐. For subjects in the stable class the mean was -1 

and for the manipulated class it was 1. These mean values cause for the two trends to 

diverge across features at session 2. The 𝜏 values were selected to give a range of 

classification accuracies between 50% and 100%. A small 𝜏 value would mean that the 

two classes would not diverge as much from each other as when a larger 𝜏 value was 

used. 



34 
 

2.1.2 Feature Selection and Scaling 
Feature selection was not performed for any of the data sets in study one. All 

data was scaled by normalizing each feature to have unit variance and centering around 

0. The mean was calculated using 

𝑓𝑚
̅̅ ̅ =

1

𝑛
∑ 𝑥𝑖,𝑓

𝑛
𝑖=1  ( 33 ) 

And the variation by 

𝑓𝜎2̅̅ ̅̅̅ =
1

𝑛
∑ (𝑥𝑖,𝑓 − 𝑓𝑚

̅̅ ̅)
2

 𝑛
𝑖=1  ( 34 ) 

Each feature was then scaled by 

𝑓 =
𝑓−𝑓𝑚̅̅ ̅̅

√𝑓𝜎2̅̅ ̅̅ ̅
 ( 35 ) 

To prevent overestimating classification accuracy, the mean and variation were 

calculated using only the training set during cross validation. The resulting mean and 

variation were then used to transform the test set. If the mean and variation were 

calculated using the entire dataset, then information would be “leaked” from the test 

set that should not have been seen by the algorithm to the training process. This 

information leakage makes the algorithm perform better than it should be as 

information about the distribution of the data that should not be available is used 

during training.  

2.1.3 Implementation of Classifiers 

2.1.3.1 Logistic Regression 
LR was implemented using the scikit-learn Python library [65, 66]. The 

implementation used equation ( 17 ) with added terms to control overfitting 

𝑚𝑖𝑛
𝑤,𝑏

𝐶 ∑ 𝑙𝑜𝑔 (𝑒−𝑦𝑠(𝑥𝑠
𝑡𝑤+𝑏)

 + 1)𝑁
𝑠=1 +

1

2
𝑤𝑇𝑤  ( 36 ) 

This equation is L2 regularized meaning that large weight values, 𝑤, are 

punished by adding the dot product of 𝑤 with itself. During optimization the only 

hyperparameter is the C term, which controls the error tolerance. Smaller values of C 

allow for greater error during training, and larger values the reverse.  
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2.1.3.2 Support Vector Machine 
SVMs were implemented using the scikit-learn (version 0.18.dev0) Python 

library. Python release version 2.7.11 was used. The minimization problem described in 

equation ( 15 ) was implemented. A hyperparameter C was used to regulate error 

tolerance during training, although the measurement of error was different compared 

to LR. Only a linear kernel was used with the SVM. 

2.1.3.3 Longitudinal Support Vector Machine 
The LSVM pipeline was implemented using the iterative procedure outlined in 

equations ( 25 )->( 28 ). All code was written in Python using tools from the SciPy stack 

(important packages: NumPy - 1.11.0, SciPy – 0.17.0, pandas – 0.17.1, iPython – 4.2.0, 

Matplotlib – 1.4.3, Seaborn – 0.7.0,  [67]. The primary expression being worked with is  

𝛼𝑇(𝐺𝑚
0,0 + 𝛽𝐺𝑚

𝑇,0 + 𝛽𝐺𝑚
0,𝑇 + 𝛽2𝐺𝑚

𝑇,𝑇)𝛼  ( 37 ) 

For the implementation 𝛼 was the first variable to be estimated, followed by 𝛽. 

To estimate 𝛼, a 𝛽 had to be provided.  𝛽 was initially estimated by taking a uniformly 

distributed random value between -10 and 10. With an estimated 𝛽, 𝛼 was calculated 

using the minimization problem outlined in equation ( 26 ) by creating a single gram 

matrix. This optimisation problem is actually the standard SVM formulation, so the SVM 

solver provided by Sklearn was used. 𝛽 was then solved for by using the calculated 

alpha and the derivative to obtain equation ( 27 ). 

2.1.3.3.1 𝛃 Optimisation 
𝛽 is unique to the LSVM classifier. This parameter, along with 𝛼, is found during 

optimization of the classifier. It was found during testing that 𝛽 would not always 

converge. In order to help convergence of the 𝛽 term, random starting points of 𝛽 were 

used. If convergence within an error of 0.001 did not occur within 100 iterations then 

the algorithm  was restarted. This helped reduce cases where the algorithm would 

become stuck between two values. 

2.1.4 Cross-Validation  
Following the cross validation scheme outline in Figure 3, the data set was 

randomly partitioned into a train and test set. This was done 10 times to obtain an 
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average accuracy. For Study 1, 80% of the data was used for training, and 20% was used 

for testing. With 200 subjects this results in a split of 160/40 for train/test. During the 

validation step the C parameter for all classifiers was tuned. Classification accuracy for 

each of the 10 runs was calculated by dividing the sum of correctly classified subjects by 

the total number of subjects in the test set. Values obtained from classification 

(weights, C, 𝛽, etc) were averaged across the 10 trials by using the classification models 

obtained after validation.  

2.1.5 Model Interpretation 
Models were interpreted based on the feature weights, 𝑤, that were found. For 

interpretation to make sense a linear kernel was used, so no kernel mapping was done 

for any of the classifiers. Kernel mapping refers to mapping the inputs to a higher 

dimension, which can help with the separation of data. The LSVM has half the features 

of an SVM or LR. For this reason, the SVM and LR weights are interpreted by the 

difference between feature weights at the second and first measurement. Feature 

weights were plotted against features on the x-axis. To compare different classifiers, 

the weight plots were compared based on how well they match the simulated data, and 

how large the error bars were. Compared to the LSVM, the other methods should be 

less robust in capturing the change from session one to session two as they are not 

explicitly programmed to do so. This would be seen primarily by the LSVM having 

smaller error bars on the weight plots, and more closely matching the input. 

2.1.6 Evaluating Relative Performance of Classifiers 

2.1.6.1 SNR Impact on Classification Accuracy 
Classifier performance was measured by looking at classification accuracy on the 

test set for various SNR values. For simulations one and two, 𝜏 was used to quantify 

how easily separable the different trends, or classes, were as a function of SNR. If 𝜏 was 

small, then there was a small change between sessions in the second class (and no 

change between sessions in the first class). I expected that the LSVM would 

demonstrate higher classification accuracy than the SVM and LR across different values 

of SNR. 
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2.1.7 Heteroscedasticity 
To investigate the impact of heteroscedasticity on classification accuracy for the 

classifiers, equation ( 31 ) was modified to 

𝑥𝑡=2(𝑚𝑐, 𝜓, 𝑥𝑡=1) = 𝑥𝑡=1 + 𝑁(𝑚𝑐, 𝜓)  ( 38 ) 

Where 𝜓 was a value in the set [0.01, 0.1, 1.0, 10.0, 100.0, 1000.0, 10000.0]. 

This equation makes it so that the variance in the second session is controlled by 𝜓. All 

other aspects of the simulation were the same as study one: simulation one. Since the 

standard deviation for session two was 0.01, a 𝜓 value of 0.01 results in no change in 

the heteroscedasticity. 𝜓 values 0.1, 1.0, 10.0, 100.0, 1000.0, and 10000.0 result in 

increased heteroscedasticity. Classification accuracy as a function of heteroscedasticity 

was investigated by running training and testing as described above for each model, 

with 𝑚̅𝑐 set to 1.0 for the manipulated class, and 0.0 for the stable class.   

2.2 Study Two: Resting State MEG Data with Simulated Trends  

2.2.1 Simulation of Longitudinal MEG Data 
The goal of the second study was to generate data more similar to actual MEG 

data. Specifically, this study simulates longitudinal changes in an evoked field due to 

brain activity that would be generated during a left handed motor task. The evoked 

field data is superimposed onto MEG sensor data recorded from humans at rest. Thus, 

we can test the classifiers under conditions that are closer to tasks that generate well 

known MEG signals. This should make the simulation more applicable to real MEG 

studies. 

2.2.1.1 Simulating a Trend 
A current dipole was created to simulate brain activity. The strength of the 

current dipole was simulated over 500 time points, simulating a 1000ms amplitude time 

course being sampled once every 2ms (100ms of baseline was also added to the 

beginning). The current dipole strength over time followed a Gaussian distribution that 

peaked at 500ms with a standard deviation of 62.5ms. The peak magnitude of the 

current dipole was easily changed by modifying the height of the Gaussian curve. For 

each class, six dipole time courses were generated, such that different pairs of time 
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courses could be used as session one and session two data to make a variety of 

temporal trends. For the stable class, the peak magnitude was 10 nAm for all six 

sessions, and for the manipulated class, the peak magnitude ranged from 10 to 35 nAm 

in increments of 5. Different pairs of sessions (e.g., one and four) were selected to 

investigate a range of temporal trend magnitudes.  

The current dipole was forward facing, and located slightly off-centre of the 

brain – roughly on the motor cortex. The MEG coordinate system used was a standard 

Euler x, y, and z based system. The x axis went from the left to right ear, y axis from 

back to front of head, and z from bottom to top of head. Head shape was approximated 

as a sphere. The dipole was inserted using polar coordinates, 2cm from the scalp and 

rotated 30 degrees upwards in the x/z plane. This location was picked as the motor 

cortex is a commonly studied area.  

2.2.1.2 Adding a Trend to Resting State Data 
Processing of MEG data was performed using mne-python [68-70] in Python, 

and FieldTrip [71] in MATLAB. The current dipole signal was added to resting state data 

to simulate realistic levels of noise. Resting state data was collected during a passive 

task where the subject is instructed to relax and focus their attention on a cross in front 

of them. This minimizes head and eye movement. Twenty adult subjects were recorded 

using a 306-channel MEG system (Elekta Oy, Helsink, Finland; 204 planar gradiometers; 

102 axial magnetometers). Nine subjects were male and eleven were female. The 

average age of subjects was 25.8 with a standard deviation of 4.2 years. Before 

scanning, seven electrodes were placed on the subject to track certain signals: eye 

movements were recorded with electro-oculogram (EOG) using four sensors (one 

superior and one inferior to the left eye, and one lateral to each eye), heart rhythms 

with electro-cardogram (ECG) with two sensors (one on the inside of each arm), and a 

ground (collarbone). Four head position indicator (HPI) coils were placed on the 

subject’s head to track head movement: two on the forehead and one on each mastoid 

process. Video footage was used to see if the subject fell asleep. ECG and EOG 

recordings were concurrent with MEG throughout the scan. HPI coils were continuously 
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activated to generate alternating magnetic fields at frequencies between 293 and 321 

Hz. Data was collected at either 1000Hz or 1500Hz.  

Resting state MEG data was preprocessed using MaxFilter (MaxFilter, 2.2 [2016], 

Elekta AB, Stockholm, Sweden). Temporal signal space separation was applied to 

remove MEG signal from outside the brain, including components from the 

environment. A low pass filter of 125Hz was used and the data was down sampled to a 

500Hz sampling rate. The data was further low pass filtered using a cut-off frequency of 

40Hz because this is the usual frequency range over which evoked responses are 

observed. The subject group was then split so that every odd subject would receive the 

constant trend (stable class), and every even subject would receive the increasing trend 

(manipulated class).  

The simulated trend was added to the resting state by computing the forward 

solution with FieldTrip [71], based on equation ( 1 ). These MEG sensor readings for the 

simulated current dipole were then summed with the resting state data at 100 

randomly selected segments without replacement or overlap. Each subject had two 

scans of resting data. Both resting state scans for the subject were used to simulate 

MEG data; half of the simulated data was generated by superimposing the simulated 

signal on the first resting scan, and the other half of the simulated data was generated 

using the second resting scan. These segments simulated “trials” of neuronal activity 

occurring within ongoing brain activity. “Event markers” were added to the MEG data 

to indicate the data sample at which each trial began. Each trial contained 100ms of 

data prior to the onset of the current dipole activity (to act as a baseline measure), and 

1000ms following onset to capture the entire simulated activity. Once the resting state 

sensor data was added to the current dipole sensor data, the combined data was 

averaged across trials to attenuate uncorrelated signals (a common practice to 

accentuate MEG signals). This process resulted in the MEG evoked field data for each 

subject.  
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Once the data was generated, the feature space (i.e., input matrix for machine 

learning) was an N x M matrix, where N is the number of examples (20, 10 of each class) 

and M is the number of features (102 sensors x 550 timepoints x 2 sessions = 112200 

features). Additionally, a class vector was included with a label (-1, 1) for each example 

to indicate the class. There are 102 sensors because only the magnetometers were 

used. 550 times points were available as 500 samples (1000ms) were used for the 

signal, and 50 samples (100ms) for baseline. This gave data with very large feature size, 

and small sample size. 

2.2.2 Feature Selection and Scaling 

2.2.2.1 Feature Selection 
Two approaches were attempted for feature selection. The first approach used 

all the sensor data. In the second approach, PCA decomposition was used to reduce the 

dimensionality of the feature space.  For both approaches features were scaled the 

same way as study one.PCA 

PCA was implemented using the scikit-learn library. PCA decomposes a 

multivariate data set into orthogonal components that can be ranked by how much 

variance in the data set they explain. Specifically, for MEG evoked field data it would 

find spatial patterns over time that explain the maximum amount of variance. If the 

MEG evoked field data had a single large signal in one part of the brain, a component 

that mimicked this signal would explain most of the variance in the data. To make sure 

that no classification information was leaked the PCA was only used on the training 

data, and the resulting PCA weights were used to transform the train and test sets, 

similar to how normalization was done in study one. PCA was done on the final session 

of each example in the training set, and then applied to the initial session. This was 

done as applying PCA across all features, disregarding that they are from different 

sessions, would cause the PCA to combine features across measurements. This would 

then invalidate assumptions of the LSVM, as it combines related features across 

measurement sessions.  
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PCA changes input size from 20 x 112200 to 20 x 2F, where 2F is the 

dimensionalilty after the PCA transformation. The number of features is 2F as PCA is 

only applied to the second session, which gives F features, and is then applied to the 

first session giving a second F amount of features. This results in a lower number of 

features, where the remaining features explain x amount of variance in the data. x 

being a percentage of variance defined by the user, either 0.80, 0.90, or 0.95. 

2.2.2.2 Scaling Strategies 
Different scaling strategies had to be used for different classifiers. For SVM and 

LR, optimal performance was reached by using the same scaling strategy as in Study 

One. For the LSVM, the 𝛽 term acted as a scaling factor, so no scaling provided better 

performance than scaling. 

2.2.3 Cross-Validation  
 The same cross-validation scheme used for Study One was used for Study Two. 

Since there were 20 subjects instead of 200, the 80/20 split resulted in 16 subjects used 

for training and 4 subjects used for testing.  

2.2.4 Evaluating Relative Performance of Classifiers 
Classifiers were compared by their test set classification accuracy at different 

SNRs. In this case, the SNR was calculated by dividing the signal strength by the 

standard deviation of the baseline for the MEG data in the second session. First, the 

MEG sensor that showed the strongest activation at 500 ms (i.e., peak latency) was 

isolated as the peak sensor to calculate SNR. The numerator was calculated by taking 

the average of 5 points before and after the peak sensor values at 500ms. The 

denominator was calculated by taking the standard deviation of the first 50 points 

(prior to current dipole activity) to compute the standard deviation. 

𝑆𝑁𝑅 =
𝑠𝑖𝑔𝑛𝑎𝑙𝑎𝑣𝑔

𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝑠𝑡𝑑
 ( 39 ) 

2.2.5 Model Interpretation 

2.2.5.1 Interpretation in the Context of MEG 
As with study one, the weights were used for model interpretation. Additional 

formatting steps were performed to interpret the data in the context of MEG data. 
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Weights after classification are in a 𝑠𝑒𝑛𝑠𝑜𝑟𝑠 ∗ 𝑡𝑖𝑚𝑒 matrix. To obtain the weights in an 

understandable format the weights were mapped to a butterfly plot that shows the 

magnitude of each sensor over 1000ms, and topographical maps that show spatial 

activity at specific times. Important visual factors for interpretation were the location of 

the magnetic fields, and how they changed over time.  

A more objective measure of the model interpretability was a correlation 

computed between the feature weights and the actual data. So that the SVM and LR 

could be compared to the LSVM, the SVM/LR feature weights at the first session were 

subtracted from the second session. The feature weights were then normalized the 

same way as that outlined in equation ( 35 ). The simulation session with the highest 

SNR was used to correlate with the feature weights. This correlation measure was not 

used on the Study One data, as the true signal in study one had a variance of 0.  
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Chapter 3 Results 
3.1 Study One 

3.1.1 Simulation One 
The first simulation served as a way of replicating the work by Chen and DuBois, 

while expanding on it by adding a check for robustness of classifiers by comparing 

classifiers across various magnitudes of temporal trend. 

3.1.1.1 Simulation 
 Figure 4 and Figure 5 show how the simulated data looks for a 𝜏 of 1. 𝜏 is the 

measure of separability of the data. Specifically, it defines the scale of change between 

the first and second session for the manipulated group, and the size of the difference 

between half the subjects in each class. With larger values of 𝜏 the size of the jump 

between the first and second session increases. Figure 4 shows the averaged feature 

values at a 𝜏 of 1, for the stable (subjects 1-100) and manipulated (subjects 101-200) 

classes. The change in feature values can be seen between the first and second session 

of the green class. The variability within the class can be seen between every 

consecutive set of 50 subjects. Figure 5 shows the same data as Figure 4, but this time 

features are on the x-axis and they are averaged across subjects. The change in feature 

values in session two for the manipulated class can be seen in the bottom part of the 

figure. The mean feature values for the stable class are around 0.5 due to the dual 

distribution within class (i.e., half the subjects in each class are offset by 1) and the 

mean feature values for the manipulated class are around 1.5 for the same reason.  
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Figure 4 – Chen and DuBois Simulation with Averaged Features 

Plot of each subjects averaged features. The y-axis represents the arbitrary value 

of the features, with the x-axis representing subjects. The top plot is from the first 

measurement session, and the bottom plot is from the second session. Blue represents 

the stable class where this is no change from the first session to the second. Green 

represents the manipulated class where there is an increase in the feature values. Error 

bars represent 95% confidence intervals.  

 



45 
 

 

Figure 5– Chen and DuBois Simulation with Averaged Subjects 

Plot of averaged features across subjects. The y-axis represents the arbitrary 

value of the features, with the x-axis representing features. The top plot is from the first 

measurement session, and the bottom plot is from the second measurement. Blue 

represents the stable class where this is no change from the first session to the second. 

Green represents the manipulated class where there is an increase in the feature values. 

Error bars represent 95% confidence intervals.  
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3.1.1.2 𝜷 Values 
 Figure 6 shows the average 𝛽 value determined by the LSVM at each value of 𝜏. 

𝛽 is used in the LSVM algorithm as the vector of scalars which define the magnitude 

relationship between features across sessions. In the case of two sessions, 𝛽 is a single 

scaler which defines the scalar multiplier applied to the second session as it is added to 

the first session. In Figure 6, most of the 𝛽 values are -1 indicating that a stable solution 

is simply subtracting the second session from the first session. The massive variation at 

the first 𝜏 value is likely as sign that the LSVM can not find an optimal solution. Evidence 

for this is in Figure 8 where the LSVM has 50% classification accuracy.  
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Figure 6 – Simulation One Beta Values 

Plot of average β at various τ values. The x axis is the τ value, and the y axis is 

the average β value. The βs tended to be around -1. Error bars represent 95% 

confidence intervals. 

 

3.1.1.3 C Values 
Optimal C values during training were recorded in Figure 7. The C value refers to 

the amount of training error allowed by the algorithms. The LSVM and SVM share the 

same meaning behind C, that is that it refers to the magnitude of the penalty put on 

points that are on the wrong side of the margin. For LR, C is the penalty magnitude for 

error as measured by the log likelihood. As 𝜏 becomes larger the data becomes easier 

to separate, and results in smaller optimal C values.   
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Figure 7 – Simulation One C Values 

Plot of Cs at various τ values for various classifiers. Blue is used for LSVM, green 

for SVM, and red for LR. Dark solid colors represent the test data set, and light dashed 

colors represent the training sets. Lines represent the average result, while dots are the 

individual values. Error bars represent 95% confidence intervals. The trend seems to be 

that easier to separate data results in lower optimal C values. 
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3.1.1.4 Classification Accuracy 
Based on the results in Figure 8, the LSVM performs better than the SVM and LR, 

in terms of classification accuracy, but only over a range of 𝜏 values. This was calculated 

using all 200 subjects of data (100 subjects in each class). When the separation 

parameter 𝜏 is 0.001 the LSVM test performance starts to go up before the other 

classifiers, and peaks with perfect accuracy at a 𝜏 of 0.1. The SVM and LR classifiers do 

not reach perfect classification accuracy until a 𝜏 of 1.0. An interesting piece of 

information to note is that the SVM and LR classification accuracies seem to stay at 

chance until a 𝜏 of 0.1 is reached.  
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Figure 8 – Simulation One Classification Accuracies 

Plot of classification accuracy at various τ values. The y-axis represents the 

classification accuracy, with the x-axis representing the τ value. Blue is used for the 

LSVM, green for SVM, and red for LR. Dark solid colors represent the test data set, and 

light dashed colors represent the training sets. Lines represent the average accuracy and 

dots represent the individual results. Error bars represent 95% confidence intervals. 

LSVM appears to be more robust as it has a higher classification accuracy over a larger 

range. 
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3.1.1.5 Model Interpretation 

3.1.1.5.1 Weights 
For the first simulation classifier weights were fairly flat, as the longitudinal 

trend in the features is just a constant increase selected from the same distribution for 

all features. The LSVM encompassed this property of the feature input space by having 

all the output feature weights around a constant negative value as shown in Figure 9. 

The SVM and LR classifiers show this property of the feature input space by having the 

second session weights being positive, and the first session weights being negative. This 

essentially shows the same thing as the LSVM; the most useful representation of the 

data is the difference between sessions irrespective of which feature is being 

considered.  
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Figure 9 – Simulation One Weights at 𝜏 of 1 

Plot of weight values for the various classifiers when τ was 1.0. The y-axis 

represents the weight, with the x-axis representing the feature. Blue is used for LSVM, 

green for SVM, and red for LR. Error bars represent 95% confidence intervals. All 

classifiers show through their weights that the most distinguishing feature of whether 

something is class one or two is the difference between session one and two features. 
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3.1.1.5.2 Hyperplane Distances 
Figure 10 shows the distance from the hyperplane for each subject for the LSVM 

and SVM classifiers. As the value of τ decreases the separability of the data also 

decreases. In Figure 10, the hyperplane distance is shown for τ = 0.1, where the LSVM 

achieved perfect accuracy, but not the SVM as shown in Figure 8. For the SVM the 

distances are more variable, and in some cases ends up on the wrong side of the 

hyperplane. The LSVM maintains significant separation from the hyperplane where the 

SVM does not, which matches the findings regarding classification accuracy.  
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Figure 10 – Simulation One Hyperplane Distance at 𝜏 of 0.1  

 Plot of distances each subject is from the hyperplane at a separation of 0.1. The x 

axis is the subject, and the y axis is the distance from the hyperplane to the subject. Blue 

is used for the LSVM and green is used for the SVM. With a smaller separation the 

variance in distance from the hyperplane for subjects has increased, with some 

examples being incorrectly classified. Error bars represent 95% confidence intervals. 
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3.1.2 Simulation Two  
After the first simulation in Study One, the next study sought to check if 

classifiers were able to correctly classify and obtain interpretable weights from more 

complex data. In simulation two, the features were linearly scaled between two values 

as seen in Figure 11. The stable class and the manipulated were scaled between two 

different values at session two, but the features were drawn the same way at session 1 

as simulation one.  

3.1.2.1 Simulation 
Figure 11 displays the different patterns of variability in input features at a 𝜏 

value of 1. The bottom of Figure 11, session two, shows how the two different classes 

scale their feature between 1 and -1, as described in equation ( 32 ). The stable class 

goes from 0 to 1, while the manipulated class goes from 0 to -1. 𝜏 controls the value to 

which the features trend towards. This makes the behaviour of this simulation similar to 

simulation one where smaller values of 𝜏 lead to a harder classification problem as the 

features between classes would overlap more. 
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Figure 11 – Simulation Two With Averaged Features  

Plot of averaged features across subjects. The y-axis represents the arbitrary 

value of the features, with the x-axis representing features. The top plot is from the first 

measurement session, and the bottom plot is from the second measurement. Blue 

represents the stable class where this is no change from the first session to the second. 

Green represents the manipulated class where there is an increase in the feature values. 

Error bars represent 95% confidence intervals. Diverging trend is clearly visible in the 

bottom portion of the image. 
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3.1.2.2 Classification Accuracy 
Figure 12 shows the classification accuracy of various classifiers. This was 

calculated using all 200 subjects of data. The LSVM performs better again than the SVM 

and LR, in terms of classification accuracy, but only over a range of 𝜏 values. The LSVM 

is more robust at a 𝜏 of 0.1. From a value of 𝜏 value of 0.0001 to 0.01 all classifiers 

perform around chance. From a 𝜏 value of 1.0 and onward all classifiers achieve perfect 

classification accuracy. 
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Figure 12 – Classification Accuracy of Simulation Two 

Plot of classification accuracy at various τ values. The y-axis represents the 

classification accuracy, with the x-axis representing τ values. Blue is used for LSVM, 

green for SVM, and red for LR. Dark solid colors represent the test data set, and light 

dashed colors represent the training sets. Line represent the average accuracy and dots 

represent the individual results. Error bars represent 95% confidence intervals. LSVM is 

more robust as it increases in classification accuracy first. 
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3.1.2.3 Model Interpretation 

3.1.2.3.1 Weights 
Figure 13 shows the weights for various classifiers at a 𝜏 of 1.0, where all models 

have achieved perfect classification accuracy. Important to note is that all the classifiers 

clearly picked up the diverging trend by having weights that got larger at later features. 

For the LSVM this is shown by the constantly increasing weight values. For the SVM and 

LR this is shown by having the features at the second session start going down in 

magnitude. Interestingly, though some of the classifiers appear to have more noise 

than their counterparts, they still result in perfect classification accuracy. This is evident 

by the error bars for feature weights being larger for LR than the LSVM or SVM. 
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Figure 13 – Simulation Two Weights 

Plot of weight values for the various classifiers when τ was 1.0. The y-axis 

represents the weight, with the x-axis representing the feature. Blue is used for LSVM, 

green for SVM, and red for LR. Error bars represent 95% confidence intervals. All 

classifiers show increasing importance placed on later features. 
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3.1.3 Heteroscedasticity 
To simulate heteroscedasticity, the procedure outline in Section 2.2 was used. 

This was calculated using all 200 subjects of data. Variance of the distribution from 

which input feature values were drawn was varied for the second session data for both 

classes. This resulted in the classification accuracy vs. heteroscedasticity plot shown in 

Figure 14. In this case, 𝜓 represents the amount of noise being added to the trends. The 

simulated signal is the same as Figure 4, except with 𝜓 controlling the standard 

deviation of the distribution from which features at the second session are drawn from. 

Figure 14 shows that as the value of 𝜓 increases, the classification accuracy decreases, 

likely due to increasing overlap between the two sessions input feature values due to 

increasing variance. The LSVM classification accuracy starts to decrease at larger values 

of 𝜓 before the SVM and LR classification accuracy. This means that the LSVM is less 

robust against heteroscedasticity.  
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Figure 14 – Heteroscedasticity Classification Accuracy 

Plot of classification accuracy at various ψ values. The y-axis represents the 

classification accuracy, with the x-axis representing the ψ. Blue is used for LSVM, green 

for SVM, and red for LR. Dark solid colors represent the test data set, and light dashed 

colors represent the training sets. Lines represent the average accuracy and dots 

represent the individual results. Error bars represent 95% confidence intervals. LSVM is 

less robust as it decreases in classification accuracy first. 
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3.2 Study Two: Resting State with Simulated Trend 

3.2.1 Simulation 
The top of Figure 15 shows the different peak magnitudes used for the Gaussian 

distribution for the two classes. To simulate the time course of MEG data the amplitude 

of a current dipole was manipulated to match the Gaussian distribution, shown in the 

bottom of Figure 15. The simulated data included 100ms of zero-value data before 0ms 

so that a baseline can be established during computation. The actual magnitude of the 

baseline varies since the current dipole is combined with real resting state MEG data. 

This is evident in the error bars in the top of Figure 15, which are based on ( 39. This 

variation is evidence that the real resting state MEG data contributed a non trivial 

amount of noise to the simulated signal. Figure 16->Figure 21 show the projection of 

the simulated current dipole onto the MEG sensor signals for the different sessions. 

Insertion of the current dipole is verified by the Gaussian like structure of the simulated 

time courses. The final data that is fed into the classifiers is composed of the base 

session combined with with a numbered session.  
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Figure 15 – Current Dipole Simulation 

Inner A: Current dipole magnitude distribution over one second. X-Axis is time in 

seconds, and y axis is the dipole magnitude in nAm. Outer: Current dipole magnitudes 

for different sessions. X-Axis is the session, and y-axis is the mean SNR of the dipole once 

combined with real resting state MEG data. Error bars represent 95% confidence 

intervals across the 10 subjects of each class.  
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Figure 16 – First Session Butterfly Plot 

 Simulated subject for the first session after baseline, showing an example 

from the manipulated class. The x axis represents the time, and the y axis represents the 

amplitude of the sensor readings. Topographical representations of spatial activity are 

above the graph at specific latencies. Note the dipolar pattern of activity in the brain at 

500ms. The field strength of this dipolar pattern increases across sessions, as shown in 

Figure 17->Figure 21. 
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Figure 17– Second Session Butterfly Plot 

 Simulated subject for the second session after baseline, showing an 

example from the manipulated class. The x axis represents the time, and the y axis 

represents the amplitude of the sensor readings. Topographical representations of 

spatial activity are above the graph at specific latencies.  
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Figure 18– Third Session Butterfly Plot 

 Simulated subject for the third session after baseline, showing an 

example from the manipulated class. The x axis represents the time, and the y axis 

represents the amplitude of the sensor readings. Topographical representations of 

spatial activity are above the graph at specific latencies.  
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Figure 19– Fourth Session Butterfly Plot 

Simulated subject for the fourth session after baseline, showing an example from the 

manipulated class. The x axis represents the time, and the y axis represents the 

amplitude of the sensor readings. Topographical representations of spatial activity are 

above the graph at specific latencies.  
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Figure 20– Fifth Session Butterfly Plot 

Simulated subject for the fifth session after baseline, showing an example from the 

manipulated class. The x axis represents the time, and the y axis represents the 

amplitude of the sensor readings. Topographical representations of spatial activity are 

above the graph at specific latencies.  
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Figure 21– Sixth Session Butterfly Plot 

Simulated subject for the sixth session after baseline, showing an example from 

the manipulated class. The x axis represents the time, and the y axis represents the 

amplitude of the sensor readings. Topographical representations of spatial activity are 

above the graph at specific latencies.  
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3.2.2 𝜷 Values 
Figure 22 shows the average 𝛽 value at various SNR values. 𝛽 is used in the 

LSVM algorithm as the vector of scalars which adds future sessions to the baseline. In 

the case of two sessions, 𝛽 is a single scalar which defines the scalar multiplier applied 

to the second sessions as it is added to the first session. 𝛽 becomes a smaller negative 

number as the SNR value increases. This is likely due to the gap between the first 

session feature values and second session features values becoming larger. 𝛽 then 

becomes smaller so that when the first and second session feature values are combined 

the output is close to 1. This behaviour is likely a result of the data not being scaled for 

the LSVM.  
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Figure 22 – Study Two 𝛽 values 

Plot of βs at various SNR values. The x axis is the SNR value, and the y axis is the 

average β value. As the separation between session one and two becomes larger the β 

values becomes larger. Error bars represent 95% confidence intervals. 
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3.2.3 Classification Accuracies 
Figure 23 shows how different classifiers perform with and without scaling on 

the study two data. Classification accuracy was was calculated using all 20 subjects of 

data. The top performing classifiers were the no scaling LSVM, and scaling SVM/LR. This 

result is very clear as their counterparts had around 50% classification accuracy at the 

different SNR values (1->2, 1->3, etc.). The results from this figure were then used to 

choose which classifiers to show in Figure 24. Specifically, I moved forward with an 

LSVM with no scaling, SVM with scaling, and LR with scaling. 

 Figure 24 shows how the classifiers all had very similar performance at all SNR 

values. It is not possible to say any classifier is better than another one since the error 

bars overlapped. It is difficult to apply statistical tests to see if any of the classifiers are 

superior as the variation and distribution in classification accuracy at various points is 

unknown. As such, many standard statistical tests cannot be applied. Instead, the 

classification accuracies were compared qualitatively by comparing their overlap across 

all folds. The relatively similar performance of all three methods was also evident when 

PCA feature selection was used, in an effort to boost performance. It is also worth 

noting that PCA did not seem to have much effect on the classification accuracies. 
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Figure 23 – Study Two Scaling Comparisons 

Plot of classification accuracy at various SNR values, scaling options, and 

classifiers. The y-axis represents the classification accuracy, with the x-axis representing 

the SNR, with smaller differences between the numbers representing smaller SNR 

values. Error bars represent 95% confidence intervals. The LSVM with no scaling is 

clearly better than the LSVM with scaling, and the SVM/LR with scaling are better than 

the ones without scaling. 
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Figure 24 – Study Two Classification Accuracies 

Plot of classification accuracy at various SNR values and different amounts of 

PCA preprocessing. The y-axis represents the classification accuracy, with the x-axis 

representing the separation of classes (larger values mean the data is easier to 

separate). Blue is used for LSVM, green for SVM, and red for LR. Dark solid colors 

represent the test data set, and light dashed colors represent the training sets. Lines 

represent the average, and dots are the individual values. The dots are quantized at 0% 

25%, 50%, 75%, and 100% for the test set because there were 4 subjects in each test set 

(20% of the data). Error bars represent 95% confidence intervals. None of the classifiers 
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can be judged to be better than any of the other ones due to the large variance in 

classification accuracies. 

 

3.2.4 Model Interpretation 
Figure 25, Figure 26, and Figure 27 show the feature weights represented in the 

same format as MEG data for all three classifiers. The goal of reformatting the feature 

weights in this way was to visualize the weights in comparison to the input MEG evoked 

field data (as shown in Figure 25). Results for this dataset offer evidence that the LSVM 

was able to find weights that more closely matched the input signal than the SVM or LR. 

The used dataset was composed of the base and session six data (highest SNR) with no 

PCA.  An objective measure of correlating the scaled raw signal and scaled feature 

weights suggest that this was the primary point of difference between the classifiers 

(where classification accuracy was greater than chance) as shown in Table 1. This means 

that the provided feature weights are the results of the “best case” scenario for this 

simulation. 

The LSVM appears to be the best classifier in terms of interpretability of the 

weights, because the LSVM feature weights match more closely to the butterfly plots in 

Figure 21 than the other classifiers’ feature weights. In terms of temporal dynamics, the 

LSVM feature weights (Figure 25) fall off quicker at latencies less than or greater than 

500 ms, compared to the SVM (Figure 26) and LR (Figure 27) feature weights. Temporal 

patterns for LSVM feature weights seem to match more closely to the Gaussian curve 

used for the simulation by being smoother. Smoothing is a common technique to 

reduce the noise in a signal [21]. Signs of fit feature weights have larger variance means 

that noise is being fit, as the actual signal has no variance. In terms of spatial patterns, 

the topographical plots also give clear indication that the LSVM feature weights are 

more accurately matching the input signal. Most obviously at the peak latency of 500 

ms, the SVM and LR feature weights both consider a very broad area of the topography 

(i.e., many sensors) to be of importance for classification. In contrast, the LSVM feature 

weights accurately accentuate the regions that show peak magnetic field strength in 
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Figure 25.  This interpretation is supported by the increase in correlation between the 

grand average MEG data and the feature weights for the LSVM, as compared to SVM 

and LR, demonstrated in Table 1. 

 

Figure 25 – Study Two Feature Weights LSVM 

Plot of feature weight values for the LSVM when no preprocessing is done, and 

the highest SNR at session two is used. The bottom figure is a butterfly plot, showing the 

sensor weights over time. The y-axis represents the weight value for a sensor, with the 

x-axis representing the time course of the sensor. Topographical maps up top show the 

spatial weights at a specific time point. The LSVM topographical plots show that it was 

able to assign weights to specific areas in the brain where activity was simulated. 
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Figure 26 – Study Two Feature Weights SVM 

Plot of feature weight values for the SVM when no preprocessing is done, and 

the highest SNR at session two is used. The bottom figure is a butterfly plot, showing the 

sensor weights over time. The y-axis represents the weight value for a sensor, with the 

x-axis representing the time course of the sensor. Topographical maps up top show the 

spatial weights at a specific time point. The SVM topographical plots show that the 

method was only precise enough to distinguish the left and right hemispheres. 

 

 



79 
 

 

Figure 27 – Study Two Feature Weights LR 

Plot of feature weight values for the LR when no preprocessing is done, and the 

highest SNR at session two is used. The bottom figure is a butterfly plot, showing the 

sensor weights over time. The y-axis represents the weight value for a sensor, with the 

x-axis representing the time course of the sensor. Topographical maps up top show the 

spatial weights at a specific time point. The SVM topographical plots show that the 

method was only precise enough to distinguish the left and right hemispheres. 
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Table 1 - Feature Weights Correlation 

 LSVM Correlation SVM Correlation LR Correlation 

1->2 0.0938 0.266 0.284 

1->3 0.351 0.378 0.387 

1->4 0.413 0.436 0.446 

1->5 0.502 0.51 0.484 

1->6 0.679 0.606 0.597 
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Chapter 4  Discussion 
4.1 Summary of Main Findings 

Four simulations were performed for this paper. The first simulation replicated 

the work of Chen and DuBois, which developed and tested the LSVM. The LSVM 

performed better than the SVM and LR in terms of classification accuracy, but only 

between 𝜏 values of 0.001 and 0.1 (Figure 8). For the first simulation classifier weights 

were fairly flat as the longitudinal trend in the features is a constant increase selected 

from the same distribution for all features at the same session. For the second 

simulation the LSVM performed better than the SVM and LR in terms of classification 

accuracy, between 𝜏 values of 0.01 and 1.0 (Figure 12). All the classifiers picked up the 

diverging trend by having weights that got larger at later features (Figure 13). 

Interestingly, LR appeared to have more noise in the feature weights than its’ 

counterparts at perfect classification accuracy.  

To simulate heteroscedasticity, the procedure outlined in Section 2.2 was used. 

𝜓 represents the magnitude of noise being added to the second session. The simulated 

signal was the same as the first simulation, except 𝜓 controls the standard deviation of 

the distribution from which features at the second session were drawn from. As the 

value of 𝜓 increased, the classification accuracy decreased, likely due to increasing 

overlap between the two sessions input feature values due to increasing variance 

(Figure 14). The LSVM classification accuracy was poorer than the SVM and LR 

classification accuracy for a range of values of 𝜓. This means that the LSVM performs 

poorer against heteroscedasticity.  

For the second study a simulated current dipole signal was combined with 

resting state MEG readings (Figure 16->Figure 21). It was not possible to say any 

classifier was better than another in terms of classification accuracy since the error bars 

overlapped (Figure 24). The LSVM appeared to be the best classifier in terms of 

interpretability of the weights at the highest SNR dataset, because the LSVM feature 

weights matched more closely to the butterfly plots (Figure 21) than the other 

classifiers’ feature weights. The topographical plots also gave clear indication that the 
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LSVM feature weights more accurately matched the input signal. Most obviously at the 

peak latency of 500 ms, the SVM and LR feature weights both consider a broad area of 

the topography (i.e., many sensors) to be of importance for classification. In contrast, 

the LSVM feature weights accurately accentuate the regions that show peak magnetic 

field strength (Figure 25). This interpretation is supported by the increase in correlation 

between the grand average MEG data and the feature weights for the LSVM, as 

compared to the SVM and LR, demonstrated in Table 1. 

4.2 Impact of Random β Strategy on LSVM Performance 
During initial replication of the LSVM algorithm developed by Chen and Dubois, I 

noted that the β values found during training were not always converging to a single 

value. Instead, the iterative algorithm would sometimes jump between two solutions, 

with neither being the optimal solution. To get around this, the optimal value could be 

found by restarting the LSVM fitting process multiple times with a random β value until 

convergence to a single β value. This occurred more frequently in hard to separate 

cases (low 𝜏 or low SNR value). One of the costs of having random starts for the 𝛽 value 

was an increase in computation time. To get around the cost of increasing computation 

time, several constraints on the search were placed. The most significant was having 

the algorithm stop searching after a set number of iterations. This prevented the 

algorithm from looking too long for a 𝛽 value when a bad start was provided. The 

computation time of the algorithm was still significant, and means that when training 

this algorithm in practice it will likely take a couple days or longer. Another limitation 

due to computation time is that only so many folds of the data can be done for cross 

validation, as it would take too long otherwise. 

4.3 Selecting a Cross Validation Strategy  
The cross validation strategy used in the study was important to prevent 

overestimating the accuracy of the classifier. Basing the reported classification accuracy 

off a single cross-validation split iteration could result in reporting accuracy for an 

outlier. A demonstration of this concept is that if 10 random folds of the data exist, and 

one of the folds happens to have easy to classify examples, the model will report a high 
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classification accuracy. This will be a false report, as it is giving the classification 

accuracy for the best performing examples in the data. When presented with unseen 

data that does not fit the model well, classification accuracy will be worse. This means 

the model will be less generalizable to data outside the training set. A more 

generalizable estimate of how performance would be with population data is also given 

by resampling the folds, as different smaller subsets of the data are tested multiple 

times. For this study a stratified resampling technique was used, as it allowed for 

multiple calculations of the classification accuracy, and therefore gave a mean and 

confidence interval of the distribution. Due to the computational time limit the 

resampling was only able to be run 10 times, with 95% confidence intervals computed 

from the 10 samples using bootstrapping. Bootstrapping in statistics is a technique to 

estimate the confidence interval of a measure, in this case the mean, by sampling a set 

of values thousands of times to generate a distribution. These confidence intervals 

were then used to estimate if the model would generalize well by looking at the mean 

classification accuracy, and the variability of it. For our data it was concluded that none 

of the classifiers performed better than any other as the error bars for each classifier’s 

classification accuracy in Figure 24 overlapped with each other. 

“Information leak” in cross-validation is an important issue that is common in 

machine learning since it becomes easy to accidently use some information from the 

test set when performing many operations on a set of data. Information leakage is bad, 

because it can cause researchers to overestimate generalizability of the model because 

a higher classification accuracy on the test set with less variability can be obtained. This 

occurs if information about the test set is used during training, then the model is 

essentially fitting to data it should not be able to see. This makes it seem like it is 

performing better on unseen data than it should be. An example of leakage during the 

study occurred through scaling the training and testing data sets together. This leakage 

was fixed by firstly estimating the mean and standard deviation of the data using only 

the training set, and then transforming the test set using the mean and standard 

deviation from the training set. The technique that worked best for us, to avoid leakage, 
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was setting the test data aside at the very beginning making sure not to touch the data 

until the very end. This was done by splitting the data into the train and test folds 

before any transformations were done, and making sure not to use the test fold until all 

training is done. 

4.4 Comparing Classifiers  
Visual inspection was used to compare the classification accuracy of classifiers 

as standard statistical tests which assume shared distributions, or shared variances 

were mostly not valid. Since the error bars on the graph corresponded to 95% variance 

from a bootstrap estimation it is likely that overlapping accuracies are similar. This was 

thought to be true even for slight overlap as the distribution is not known meaning the 

mean is not necessarily the area of concentration of values. An example can be seen in 

Figure 8 for a 𝜏 value of 0.001. At this 𝜏 value the LSVM classifier has 4 points above the 

the error bar, suggesting that the population concentration of values might be at the 

extreme, and the mean only represents that expected value because of extremes on 

the other side of the error bar. Using this methodology, one can say that the classifiers 

have similar performance at a 𝜏 of 0.0001 in the same figure, and at 0.01 the LSVM 

performs better. 

 Interpretability of feature weights was compared among classifiers by visual 

inspection, and for study two a correlation measure as well. Feature weights were 

plotted against features on the x-axis. Different classifiers were compared by how well 

the feature weight plots matched the simulated data, and how large the error bars are. 

For the first study, analysis was limited as the trends were very simple, and each 

classifier’s feature weights essentially captured the same information. With the possible 

exception of LR which had noisier feature weights.  

For the second study butterfly and topographical plots were used to compare 

the spatial and temporal aspects of the feature weights as shown in Figure 25, Figure 

26, and Figure 27. As well, for the second study a correlation computed between the 

feature weights and the actual data provided an objective measure of model 

interpretability. The simulation session with the highest SNR was used when correlating 
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with the feature weights, as it provided the closest classification accuracy between 

classifiers.  

As mentioned in the results, the LSVM appeared to be the best classifier in 

terms of interpretability of feature weights for study two. The temporal patterns for the 

LSVM feature weights seemed to match more closely to the simulated Gaussian curve 

upon inspection. The most important factor for this conclusion was the LSVM feature 

weights (Figure 25) falling off quicker at latencies less than or greater than 500 ms, 

compared to the SVM (Figure 26) and LR (Figure 27) feature weights. In terms of spatial 

patterns, the topographical plots gave clear indication that the LSVM feature weights 

are more accurately matching the input signal. Most obviously at the peak latency of 

500 ms, the SVM and LR feature weights both consider a very broad area of the 

topography (i.e., many sensors) to be of importance for classification. In contrast, the 

LSVM feature weights accurately accentuate the regions that show peak magnetic field 

strength in Figure 25. These reasoned interpretations of the feature weights is 

supported by the correlation values in Table 1. A suprising result is that given the larger 

interpetability of the LSVM, the classification accuracy is not improved. A possible 

explanation for this is that the SVM/LR feature weights will still give you enough 

information to classify properly.  

4.5 What Does C Say? 
 For the purely simulated data the values of C tended to decrease when the 

sessions were easier to separate. For the LSVM/SVM, the C parameter controls error 

tolerance. Making the value of C larger in equation ( 13 ) will punish the model more for 

having examples on the wrong side, resulting in smaller margins. Smaller values of C will 

punish the classifier less for misclassification and allow for larger margins. For the 

LSVM, the C value also controls error tolerance, but there is no margin for it to affect. 

With a small C value, if there is a point on the wrong side of the hyperplane, then the 

small C will counteract this to a degree. This leads to a larger margin, because according 

to equation ( 13 ) if C is small then the 
1

2
||w||

2
 term is punished more for being larger. 

And since the width of the margin is inversely related to the weight it increases when 
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the weights are forced to be smaller. Intuitively a larger margin can lead to better 

generalisation by taking more of the points into account. 

 For study one the C value shown in Figure 7 decreased as the 𝜏 value increased. 

This indicated that as the classes became harder to differentiate the value of C 

decreased. Since the value of C decreases with improving classification accuracy this 

suggests that tolerating some classification error provides the best solution to the 

problem. When classification error is higher, the value of C also has a higher variation. 

This was not shown in a figure as C values at low classification accuracy have massive 

variation with no consistent value. C likely has a larger variation at poorer classification 

accuracy because it is not able to find a single stable model to solve the problem, unlike 

at higher classification accuracy values.  

4.6 Interpretability of Feature Weights 
With the purely simulated data the LSVM and SVM provided better feature 

weights than LR based on the interpretability of the feature weights (LR having more 

variation in the feature weights). With MEG data the LSVM provided better feature 

weights when using the dataset with the highest SNR, as evidenced by visual inspection 

and a correlation measure. The correlation values in Table 1 suggested that the LSVM 

had more interpretable feature weights based on the higher correlation score between 

the original signal and the learned feature weights for the LSVM compared to the SVM 

and LR. Visual inspection suggested the LSVM feature weights were more precise about 

which MEG sensors and which time intervals were important for classification.  

To explain why the LSVM has more interpretable weights it is important to note 

that the LSVM fits less data overall because it implicitly combines the first and second 

sessions feature measurements before finding the support vectors.  A possible reason is 

that for all the simulations the best feature weight interpretations involved taking a 

combination of the features between session one and session two as there were clear 

simulated temporal trends. The LSVM may also have been helped by the fact that the 

simulated features (at least the most relevant ones) changed in the same direction. 

These models work well for the LSVM as the 𝛽 term describes the direction of change, 
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and the weights can control the magnitude  (though to be fair the LSVM feature 

weights can be opposite signs so that not all features have to change in the same 

direction). The LSVM makes an assumption that relevant information is obtained by 

combining the first and second session. It then makes sense for it to perform well when 

data matches these assumptions. The LSVM algorithm, however, seems to run into 

difficulty when the variation at the second session is larger than the first (Figure 14). 

Results are only interpretable when a linear kernel is used, as this finds weights 

in the original space. If a polynomial kernel, for example, is used then the weights in the 

new space do not map back to the original space linearly, as there are more 

dimensions/features in the new space. Although higher classification accuracy may be 

achieved with the kernel trick, this means that the feature weights cannot be 

interpreted in the original dimension. Sometimes the extra classification accuracy that 

can be achieved with a kernel is worth it. For example, if the goal is not related to 

interpreting the weights that come out of the classifier. If the goal is diagnosis then 

non-linear kernels can be used, as the loss of feature interpretability is not relevant. If 

understanding what the classifier is doing is more important, then a linear kernel should 

be used so that the feature weights can be interpreted. 

4.7 Different Strategies for Feature Selection 
In the first study there was no feature selection as the classifiers were able to 

achieve a high classification accuracy without any feature selection. Feature scaling was 

done to centre the features around 0 and normalize the feature value spread. If the 

features were not scaled then the model would give the feature with larger values 

more importance in the objective function, even though that feature might not contain 

the most information. It is important to note that for the second study the LSVM did 

not scale the inputs as this gave higher classification accuracy. To make sure the LSVM 

was not cheating, by not scaling, the classifiers were all compared with no scaling as 

shown in Figure 23. The figure showed that the other classifiers did not benefit from no 

scaling, so the LSVM is unique in benefiting from that. 
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For the second study PCA was tried, which did not improve classification 

accuracy noticeably. PCA was done to see if classification accuracies could be improved 

by doing some feature selection, but no improvement was noted. Picking the number of 

components used by PCA was difficult, as that could significantly affect classifier 

performance. I ended up picking the number of components that would explain some 

percentage of the variation, as it was less arbitrary than picking an actual number of 

components. PCA also proved problematic with the LSVM as it could not be applied 

over the entire data set. If PCA was applied to the entire dataset then information could 

be combined between session 1 and 2, which invalidates the assumptions of the LSVM 

model. The LSVM model combines each feature independently across sessions, and an 

algorithm like PCA that could combine features across sessions might break that 

assumption. To get around this it was decided to apply PCA to the second session first, 

since I assumed that had more useful information than the first session, and then 

applied the same transform to the first session. It should be noted that this approach 

did not benefit classification in a noticeable way. Future research with LSVMs should 

investigate different feature selection techniques that can be applied to the entire 

dataset, but still preserve independence of features across sessions. 

4.8 Heteroscedasticity 
The problem trying to be solved with the LSVM (and other classifiers) is the 

correct classification of whether a subject is in one class or another. Based on the 

weights in Figure 9 the best performing classifiers learn to differentiate stable examples 

from manipulated examples by taking the difference between the features at the 

second session from the first session. The LSVM was found to be more robust in 

simulation one, and I hypothesize this is because it explicitly combines the first and 

second session together. Unfortunately, as the SNR was made worse the LSVM started 

to perform worse than the SVM and LR. As a reminder, the LSVM tries to learn from 

some linear combination of the sessions, where all features are combined across 

sessions using the same scaling term. Specifically, the simplest case of two time points 

is examined 
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𝑋𝑠 = 𝑋𝑠,𝑡=0 + 𝛽𝑋𝑠,𝑡=1 ( 40 ) 

The basic idea of the simulation was that the stable class has no change 

between the first and second session means, while the manipulated class has the 

feature values shifted up by 1.0 at the second session. In the heteroscedasticity 

simulation the variance at the second session is varied for both classes.  

I have two main hypotheses for why the LSVM reached chance performance 

before the SVM and LR as heteroscedasticity increased. The first is that by taking the 

difference before applying the learning algorithm the LSVM is throwing out information 

that the algorithm could possibly be using to increase the SNR. That is, the SVM and LR 

keep the first and second session data when developing their models. This means that 

they have twice as many points when developing their models, so it can be said that a 

greater SNR is available. My other theory is based on the triangle inequality 

||𝐴 + 𝐵|| ≤ ||𝐴|| + ||𝐵|| ( 41 ) 

Essentially the LSVM is adding the first and second session together before 

computing the distance to the hyperplane, the A and B term in equation 41. The SVM 

and LR add the first and second session together as evidenced by the weights, but do so 

after computing the distances to the hyperplane. This matches the triangle equality in 

equation 41 so that the LSVM corresponds to the left expression, and the SVM and LR 

correspond to the right side. This would mean that the LSVM points are either the same 

distance or closer to the hyperplane than the SVM or LR.  

4.9 Generalizability 
In the first study, the LSVM performed better on the test sets compared to the 

SVM or LR. This was shown by having the LSVM achieving 100% classification accuracy 

on the test sets with lower values of 𝜏. The first study was still poor evidence for the 

LSVM performing better in the real world as the data was purely simulated. For this 

reason, study two with real resting state MEG noise was done. 

In the second study none of the classifiers performed better on the test set than 

any of the others. This is evidence that when working with real world data the LSVM 
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will not perform any better than the SVM or LR. I suspect that for the LSVM to perform 

better, better preprocessing techniques which reduce the amount of information would 

be necessary. It might also turn out that the LSVM is better or worse with real world 

data, and similar performance only occurs for this simulation. For this reason, further 

testing is advised before any solid conclusions can be made.   

In terms of feature weight interpetability, the LSVM performed similarly or 

better than the other methodologies for all the studies. This suggests that when applied 

to real world data the LSVM could provide more interpretable feature weights for 

easier to classify cases. However, the results of the heteroscedasticity simulation 

suggest that the LSVM is likely to have trouble with real world longitudinal data (see 

below). It is difficult to make a solid claim about this as the trends used in this study are 

fairly simple and contained some simulated aspects.  

A problem with the initial simulation proposed by Chen and DuBois was that the 

variance at the second session was not very different from the first session. When this 

aspect of the simulation was broken in my thesis by adding heteroscedasticity, the 

LSVM performed worse than SVM and LR. A stronger claim about the LSVM having 

more interpretable feature weights could be made once studies involving real world 

data are done. Since the LSVM only performed better in the simplest simulated cases 

(and worse with heteroscedasticity),I would not expect that the LSVM will perform 

better than the SVM or LR with real data.   

4.10 Challenges 
The LSVM proved difficult to implement. For one, the iterative solution did not 

always settle at a single solution. While both stages of the alpha/beta optimization are 

convex, it seems that together they are no longer convex in my implementation of the 

algorithm. Thus, the optimization proved expensive to computation time as it would 

leave the program to jump between solutions. This was reduced by implementing a 

check, and then stopping when it started happening, but computation time increased 

again when the 𝛽 value was reset several times to try and find a stable solution. It was 

also complicated to implement the LSVM so that it would interact with everything 
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properly. The LSVM was coded so that it would interact properly with the scikit-learn 

library, and also implemented some of the functions from the library. This required that 

the LSVM code had the proper interfaces and methods. Implementing pre-processing 

methods also proved more difficult with the LSVM as no techniques that (like PCA) 

combined features across sessions could be allowed to do so. Combining features 

across sessions could result in an unbalance in features in session one vs session two, 

breaking the LSVM model. This meant that any precautions taken with the LSVM also 

had to be taken with the other classifiers so that they could be compared.  

There are several limitations faced when analysing longitudinal neuroimaging 

data with the LSVM proposed by Chen and Dubois. For one the model can not handle 

missing session scans. If subjects had to come for multiple scans, but missed some, 

there is no built in way to handle the missing data. With the current LSVM model the 

missing data would have to be filled in with another technique or dropped. If the time 

at which the sessions are measured vary between subjects, then the LSVM model is not 

able to contain that information. That is, if one subject has a week between sessions 

and the other waits a month, the LSVM is not able to represent this information 

internally. The LSVM has also only been implemented for cases with two sessions so far, 

which severely limits its real world application. For future work this would be one of the 

essential concepts to show working.  

4.11 Significance from a Clinical Perspective   
Due to the highly simulated nature of this study I would not suggest applying the 

LSVM in a clinical setting without first applying it to a study involving real MEG data. 

The main reason for this being that this study suggested that with near-real MEG data 

classification accuracy is not different between the classifiers. Since an SVM or LR 

already exist and have easy to use libraries, those techniques should be used first. If a 

clinician wants to use the LSVM to investigate its feature weights, then I would still 

suggest further studies. The reason for this being the LSVM has only been shown to find 

better feature weights with the highest SNR data, but LSVM performance is reduced in 

data with heteroscedasticity, which is common in longitudinal data. To make a 
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statement about how it would operate with real MEG data, a study involving real MEG 

data would have to take place. The LSVM is still a promising technique, and has the 

possibility to help clinicians extract useful information about the spatial and temporal 

patterns in brain activity for longitudinal studies.  
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Chapter 5 Conclusion 
In conclusion, this study showed how the LSVM technique proposed by Chen 

and Dubois has some potential to provide better feature weights than an SVM or LR. 

Better feature weights mean that the feature weights learned by the model closely 

match the actual brain activity occurring during the task. This would have application in 

determining what brain activity drives classification accuracy for prognosis or diagnosis. 

However, based on current results the evidence for using the LSVM over SVM/LR is not 

there. In terms of classification accuracy the LSVM is only superior or on par with other 

methods when the change between sessions is simple. The introduction of greater 

noise at the second session causes the LSVM to perform worse, and I would expect that 

to happen with real world data. In terms of feature weight interpretability the LSVM is 

only better (based on correlation values) when the dataset with the highest SNR is 

used, which is unlikely in real world application again. 

To properly evaluate this potential, future studies would be needed to firstly see 

how the LSVM performs with real MEG data in terms of classification accuracy and 

feature weights. . Future studies would likely involve MEG data from a task where brain 

activity is well known, and can easily be modulated. This would allow for constructing a 

longitudinal neuroimaging dataset. Some advances to the LSVM technique might 

improve its performance as well. Better feature selection could be developed which 

allows for selecting features using all data while keeping them consistent across 

sessions. Another change could be finding a way to estimate 𝛼 and 𝛽 that converges 

better. 
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