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Abstract

This thesis focuses on estimation and tracking of underwater acoustic channels. A

model of underwater acoustic channel suitable to study the channel estimation prob-

lem is constructed. The model is used together with a Bellhop acoustic wave propa-

gation simulator to generate channels for various propagation environments, depths

and distances, and we studied their sparseness and variation properties. Finally a

number of estimation methods such as basis pursuit and approximate message pass-

ing are adapted to channel estimation problems and tested on a number of channels.

Window-based and Kalman-filter based channel tracking is also studied. A detailed

comparison of estimation and tracking methods is presented.
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Chapter 1

Introduction

The area of underwater acoustic (UWA) communications has been growing rapidly

over the recent years. Its origin can be traced back to World War I when the echo

detection scheme was first explored, and its first application, the underwater tele-

phone was developed in 1945 for communications with submerged submarines [1].

Apart from military use, nowadays, UWA acoustic communications finds applica-

tions in environmental monitoring, unmanned underwater vehicles (UUVs), oilfields

exploration, etc.

Underwater channels are quite different from the classical wireless channels. Elec-

tromagnetic waves can only propagate for very short distances underwater because

water is a conductive medium with very high absorption [2]. Hence low-frequency

electro-magnetic communications underwater is only effective at distances of a few

tens of meters. Similarly optical communications beyond few hundreds of meters is

also impossible. Besides high attenuation optical communications underwater suffers

from the scattering effect and requires high precision positioning alignment of the

transmitter and receiver [3]. As a consequence, acoustic waves are generally the best

choice for underwater wireless communications.

In general, however, UWA communications is much more challenging than ra-

dio communications. Major difficulties come from the properties of UWA channels,

including multi-path propagation, long delay spread, and the Doppler effect. In ad-

dition, high frequency acoustic signals also experience high attenuation limiting the

available communication bandwidths and as a consequence decreasing achievable data

throughput. The multi-path propagation is mainly caused by the reflections of acous-

tic waves on the sea surface and bottom. The fact that the delay spread is long stems

from the slow sound speed in the water (around 1500 m/s) compared to the speed

of light. This make UWA channels frequency-selective and may result in significant

inter-symbol interference (ISI) complicating the design of efficient transmitters and

1
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receivers. The Doppler effect, on the other hand, leads to the time-varying behavior

of UWA channels which is mainly due to the surface motion (Doppler spread) and the

relative motion between transmitters and receivers (Doppler shift). Doppler spread

makes UWA channels time-selective and therefore, the channel variations need be

tracked over time. Hence, the channel is both time and frequency selective.

Many experiments [4] confirm that the Doppler spectrum of UWA channel may be

closely approximated by a stretched exponential, which is different from the Jake’s

spectrum in radio channels. The channel coherence time is closely related to the

inverse of the Doppler spread and for UWA channels, the product of the delay spread

τmax and Doppler spread is often larger than for wireless channels. In case this product

is close to unity or exceeds, then the channel is overspread. In an overspread UWA

channel, the channel information is already changed when the last signal echo arrives

with the last path. Therefore, channel estimation and tracking as well as coherent

communications is impossible in such a scenario.

Typically an UWA channel’s multi-path profile is sparse in nature [5]. That means

there are just a few multi-path arrivals in a long delay span. This sparse structure

suggests that estimation techniques geared to sparse signals may improve the per-

formance of channel estimator and tracker. While traditional algorithms, like Least

Squares (LS), take all the channel taps into account, then the estimation of many

insignificant taps may add the burden of computation complexity and degrade the

estimation accuracy. Hence, the motivation of this thesis is to learn more about ac-

tual sparsity in UWA channels and find out if the sparse structure can really give

advantages to estimation and tracking methods.

The channel estimation methods used in this thesis are training-based, that is,

some known pilot signals are sent first to obtain the channel information prior to

transmission of actual data. A number of sparse estimation techniques available from

the literature are being examined. These include Matching Pursuit (MP), a greedy

algorithm to find a sparse solution over a set of dictionary [6], and its improved version

Orthogonal Matching Pursuit (OMP), which also enforces orthogonality of residual

errors at every step [7, 8]. In this thesis we also apply an alternative approach

is called Approximate Message Passing (AMP), which is an iterative thresholding

algorithm related to message passing on graphs [9] to channel estimation. In particular
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we adapt the Complex Approximate Message Passing (CAMP) [10] version of the

AMP to channel estimation and compare its performance to the matching pursuit

algorithms both for time and frequency domain based estimation. Specifically we

study a relationship between the sparsity level of the channel and the percentage of

pilot bits relative to the data bits that needs to be used for reliable estimation. The

details will be described in Chapter 3.

Since the UWA channel is time varying, it needs to be re-estimated frequently or,

alternatively, its variation needs to be tracked over time. Based on this observation

there are two approaches which address the time variability. The first is the window-

based tracking method. It is based on selecting a window of channel observations

such that the channel variation over the window is not too strong, then we estimate

the channel using the observations to receive the communicated data, and then re-

estimating it based on the new window again [5]. The other method first constructs

an autoregressive (AR) model of the channel to characterize its time-varying behavior

and then uses a channel tracker to track the channel. This technique has been explored

in [11], and related research can be found in [12, 13, 14, 15]. With the latter approach

we first send a few pilot signals to obtain the initial channel information and calculate

the AR model coefficients, and then Kalman filter is applied to track the channel taps.

The accuracy of the initial AR model can greatly influence the tracking performance.

Therefore, the accuracy of the initial channel estimation is crucial. Both approaches

are implemented in this thesis and compared.

There are three main contributions of this thesis.

First, a theoretic background for a basic dynamic channel model is outlined and

then the model is derived, tested and used to generate UWA channels for estima-

tion and tracking. The model incorporates the sum-of-sinusoid (SOS) technique pre-

sented in [16] to generate the dynamic variation of the analog channel taps and uses

transmit-received filtering and sampling to generate discrete channel taps (in both

time and delay domain). The model incorporates channel variation statistics based on

Qarabaqi and Stojanovic’s work [17]. The model introduced in this thesis possesses

the important features required to design and testing of communications systems. At

the same time it does not rely on a complicated set of parameters many of which are

only known from experiments in specific underwater environments [17].
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Second, an extensive study of UWA channel scenarios has been performed using

Bellhop [18] software in combination with the derived channel model. It has been

found that UWA channels are not always sparse, and in many cases various multi-path

profile density levels are encountered. A specific notion of coherence time which fits

channel estimation framework is introduced and feasibility of orthogonal frequency-

division multiplexing (OFDM) signaling for various channel scenarios can be assessed.

Third, a number of channel estimation and tracking methods have been studied.

For static channel estimation, we adapted AMP and CAMP algorithms for channel

estimation, implemented OMP and compared their performances for particular cases

and in terms of the phase transition curves. Different problem settings are stud-

ied. We have also explored the phase transition curves with the impact of filtering

for OFDM systems which is a part of the work in paper [19]. For dynamic channel

tracking, we compared the bit error rate (BER) performances of Kalman filter, recur-

sive least squares (RLS), and OMP algorithms in OFDM setting with the channels

generated by our model.

The outline of this thesis is as follows.

Chapter 2 presents the basic dynamic channel model with independent analog

paths as its inputs and transmit-receiver matched filters are also included in this

model. We used a single value α as a shape parameter of Doppler spetra to charac-

terize the channel variation. In Section 2.3, different channel scenarios are studied

and compared. The feasibility of OFDM communication systems is discussed for each

scenario.

Next, Chapter 3 introduces two sparse estimation algorithms, OMP and AMP,

and we compared them with respect to the phase transition performance. Different

tuning methods and stopping criteria for those two algorithms are presented. In this

chapter, we implemented time domain approach and frequency domain approach for

sparse channel estimation. We then compared MSE performance of OMP, AMP, LS

algorithms and some lower bounds in OFDM system setup. At last we discussed

about the impact of filtering and resolution to sparse channel estimation.

Chapter 4 implemented two tracking mechanisms for dynamic channel estimation,

one is window-based method for single carrier communication system and another is

frequency domain method for OFDM communication system. Both of the tracking
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mechanisms are sparse-aided, that is, we only track the dominant channel taps. The

positions of the dominant channel taps are found in the initializing stage. Adap-

tive filter algorithms, RLS and Kalman filter are implemented for benchmark. MSE

performance of RLS and BER performance of Kalman filter are presented.

Chapter 5 discussed about the analysis over the results in this thesis. We first

present that in which scenario the channel is sparse or under-spread, and then give

suggestions about which sparse algorithms is better for different channel scenarios.

At last we make comparison between window-based tracking and frequency domain

tracking and analyzed their pro and cons.

Finally Chapter 6 concludes this thesis and discusses the future work.



Chapter 2

Underwater Acoustic Channel Geometry and

Characterization

2.1 A Mathematical Channel Model

A mathematical UWA channel model can provide us a useful tool for testing chan-

nel estimation and tracking algorithms. From the research in [17], UWA channels

show random time-varying behavior in both large-scale and small-scale. However the

larger-scale channel model mainly features the channel amplitude-delay profile given

the channel geometry information and it varies slowly, usually including many wave-

lengths. Based on the large-scale channel model, the small-scale effects can be added

to characterize the variations of instantaneous channel impulse responses. It is mainly

involved in a few wavelengths of one path and caused by the signal scattering on the

sea surface or the objects. One large-scale path can include numbers of intra-paths

because of the scattering effect.

2.1.1 The Large-Scale Channel Model

In [17], the large-scale channel frequency response is given as

H(f) = H0(f)
P∑

p=1

hpe
−j2πfτp (2.1)

where f is the carrier frequency, j2 = −1, P is the number of paths, hp is the path

amplitude and τp is the path delay. H0(f) is a low-pass filter assumed to underlie

all the paths due to the large signal attenuations at high frequencies. This model

determines the nominal paths between the receiver and transmitter as shown in Figure

2.1. In this example, there are 3 large-scale paths with two of them having reflection

on the surface and the other one reflecting on the bottom.

Because of the long delay spread property and the signal attenuations along the

transmission range, the UWA channel usually shows a sparse structure in the delay

6



7

Transmitter Receiver

Figure 2.1: An example of large-scale effects of UWA channels.

domain in a long-range communication (� 10 km [20]). If we apply the inverse Fourier

transform to the Equation 2.1, and then we obtain a time domain expression as

h(t) =
P∑

p=1

hp(t)δ(t− τp) (2.2)

it is clearly to see that the channel impulse responses are composed of P echoes with

P different amplitudes and arrival times. If we plot the amplitude of each arrival path

versus its arrival time, then we obtain the channel amplitude-delay profile. Figure

2.2 is an example. We can see that there are 15 paths spanned in the delay domain,

and the delay spread is around 0.013 seconds.
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Figure 2.2: An example of amplitude-delay profile of a sparse UWA channel.

2.1.2 The Small-Scale Channel Model

For each large-scale path in Figure 2.1, the scattering effect can split it into many

intra-paths, as shown in Figure 2.3. The scattering usually happens on the sea surface
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because of its roughness. Now we call each path as a path bundle. Assume that,

for path bundle p, there are Sp intra-paths, then adding this small-scale effect into

Equation 2.1, we obtain

H(f) = H0(f)
P∑

p=1

Sp∑
i=1

hp,ie
−j2πfτp,i (2.3)

where hp,i is the micro-path gain for path bundle p, τp,i = τp + δτp,i is the micro-

path delay and δτp,i is the deviation of the micro-path delay assumed to be Gaussian

distributed.

Transmitter Receiver

Figure 2.3: An example of small-scale effects of UWA channels.

Then the small-scale fading coefficient for path bundle p is defined as

γp(f) =
1

hp

Sp∑
i=1

hp,ie
−j2πfδτp,i (2.4)

Substituting Equation 2.4 into 2.3, the overall channel frequency response is expressed

as

H(f) = H0(f)
P∑

p=1

hpγp(f)e
−j2πfτp (2.5)

Since for each path bundle the intra-paths have similar distances, their amplitudes

hp,i are also similar. However, the phase 2πfδτp,i can change significantly resulting

to the rapid variation of γp(f). Hence, the statistical properties of γp(f) determines

the time-varying behavior of the overall UWA channel model. The details will be

described in Section 2.2.



9

2.1.3 Basic Dynamic Channel Model

Observing the Equation 2.5, the low-pass filter H0(f) underlying all the paths makes

paths dependent and therefore, the channel model is not wide-sense stationary. Hence,

to generate the paths separately and more simply, we assume that the channel model

consists of some independent impulses in conjunction with transmit and receiver

filters, as shown in Figure 2.4, and we denote the whole blocks as basic dynamic

channel model.

       RRC
Transmit Filter

       RRC 
Receive Filter

       SOS 
Channel Model

Figure 2.4: Block diagram of basic dynamic channel model.

The transmit-receiver filter must satisfy the Nyquist criteria [21] and it replaces

the low-pass filtering effect of H0(f). Here we consider about the Root-Raised Cosine

(RRC) filter pairs. Those independent impulses can be generated by the sum-of-

sinusoids (SOS) model originally proposed in [22]. In the discrete time domain, each

path hp[i] = hp(iTs) can be created according to

hp[i]Rayleigh =
1√
M

M∑
m=1

ej(φm+2πfmiTs) (2.6)

where each path are composed of M sinusoid waves and follows Rayleigh distribution.

Here, Ts is the sampling time consistent with the bandwidth of transmit-receiver filter,

φm are random phases uniformly distributed in the interval [0, 2π] with initial phase

φ0 and fm are the M Doppler frequencies of each path.

We can notice that in the SOS model, each path hp is time-varying with the sample

index i. To capture the time-varying behavior, we need the statistical distribution of

Doppler frequencies fm. From the experiments in [17] and [4], the Doppler spectrum

of UWA channel is measured to be a stretched exponential shape. In formula, the

Doppler spectrum can be expressed as

S(v) =
1

2α
e−

|v|
α (2.7)

where v denotes the Doppler frequency, and α is the shape parameter that matches

the Doppler spectrum to the exponential function. Hence, fm can be drawn from
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the distribution with probability density function (PDF) expressed as Equation 2.7.

Derived from the inverse transform sampling lemma, the cumulative distribution func-

tion (CDF) of fm is uniformly distributed in [0, 1], which is expressed as

F (fm) =

∫ fm

−∞
S(v)dv

=

∫ fm

−∞

1

2α
e−

|v|
α

=
sgn(fm)

2
(1− e−

|fm|
α ) (2.8)

Then let F (fm) = u be uniformly distributed in [0, 1], we obtain

fm = −α log(mod(2u, 1))sgn(1− 2u) (2.9)

therefore, fm can be generated using Formula 2.9 with PDF expressed as Equation

2.7. Here α determines the exponential shape of Doppler spectrum S(v), and larger

Doppler spread is obtained with larger value of α.

To consider about the transmit-receiver filtering effect in Figure 2.4, assume that

we transmit pulse trains x(t) =
∑∞

i=−∞ x[i]q(t− iTs) with sampling interval Ts, where

q(t) = g(t) ∗ g(−t) is the convolution between transmit filter g(t) and receiver filter

g(−t). Here, q(t) is the convolution between two RRC filters which leads to a root-

cosine (RC) filter. The formula is given as

q(t) =
cos(πβ t

Ts
)

1− (2β t
Ts
)2

× sin(π t
Ts
)

π t
Ts

(2.10)

where β is the roll-off factor determining the bandwidth B ofQ(f) which is the Fourier

transform of q(t), and B = 1+β
Ts

. q(t) has zero-crossing at t = kTs, k = 0,±1,±2, . . . .

If there is only one path of the channel h1(t) with delay τ1, then the received signal is

y(t) =
∞∑

i=−∞
A1h1(t)x[i]q(t− iTs − τ1) + n(t) (2.11)

where A1 is the averaged path amplitude and n(t) is the additive white Gaussian

(AWGN) noise. Sampling at time t = jTs, j = 0, 1, 2, . . . , we obtain the sampled

received signals as

y[j] = y(jTs) =
∞∑

i=−∞
A1h1(jTs)x[i]q(jTs − iTs − τ1) + n(jTs) (2.12)
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Denote the sample of h(t) at time t = jTs as h[j], and denote n(jTs) as n[j], we have

y[j] =
∞∑

i=−∞
A1h1[j]x[i]q ((j − i)Ts − τ1) + n[j] (2.13)

Combining the channel tap h1[j] with filtering function q(t), we obtain the equivalent

formula

y[j] =
∞∑

i=−∞
f [j, l]x[i] + n[j]

=
L∑
l=1

fj[l]x[j − l] + n[j] (assume L taps in a causal system) (2.14)

where j − i = l, and

fj[l] = A1h1[j]q(lTs − τ1) (2.15)

If we have multiple paths, we generalize the formula 2.15 as

fj[l] =
P∑

p=1

Aphp[j]q (lTs − τp) (2.16)

Equation 2.14 is the tapped-delay line model, and then we have a equivalent block

diagram of Figure 2.4 as shown below.

x[j]

y[j]

n[j]
fj[1]

Ts Ts Ts

fj[2] fj[3] fj[L]

Figure 2.5: A tapped-delay line model.

In summary, the process of generating the basic dynamic channel model with

filtering effects is as following.

1. Generate each path hp based on Equation 2.6 with Doppler frequency fm created

by Equation 2.9. The averaged path amplitudes Ap is generated based on the

channel geometry information which is assumed to known before applying this

model. The details about how to generate Ap will be described in Section 2.3.
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2. Add the filtering effect to each path following Equations 2.16 and 2.10.

There is still a unknown parameter α need to be set in Equation 2.9, which is a

shape parameter of Doppler spectrum. It determines the Doppler spread describing

how fast the channel will vary. The next section will talk about how to set the value

α to make it represent the small-scale channel variation correctly.

Here is an example of generating the basic dynamic channel model. The inputs

are

1) SysPara.B = 20000 (System bandwidth in Hz)

2) SysPara.fc = 30000 (Carrier frequency in Hz)

3) SysPara.fostime = 1 (Oversampling factor in time domain)

4) SysPara.fostau = 1 (Over sampling in delay domain)

5) SysPara.beta = 1 (Rolloff factor of transmitter-receiver filter)

6) SysPara.taua = [0 0.8 1.5 2.75 10.25 10.75 11.8 20.5 21.8 30.15 31.25 32.35

50.75 51.45 61.5]/5×10−3 (Analog path delays in seconds)

7) SysPara.Pow = [0.8 0.7 0.9 0.3 0.5 0.7 0.1 0.8 0.2 0.6 0.8 0.4 0.5 0.3 0.2] (Analog

path powers)

8) SysPara.M = 500 (The number of sinusoid waves in SOS model)

9) SysPara.a = 1 (Shape parameter of the stretched exponential Doppler spectra)

10) SysPara.del f = 0(Dopper shift)

11) SimPara.NumSamp = 2000 (Total number of samples to generate in discrete

time domain)

12) SimPara.Lmax = 260 (Maximum delay sampled in discrete time domain)

The output is a channel tap matrix H. Each entry Hij denotes the amplitude of

the channel tap in ith sampling time and jth delay, for i = 1, 2, . . . , SysPara.NumSamp

and j = 1, 2, . . . , SysPara.Lmax. An example of its plot shows in Figure 2.6.

There are 15 analog paths in this example, and each path has the same Doppler

spread since the shape parameter SysPara.a is set to be the same for each path.

Taking two channel taps with largest amplitude as examples, we plot the histogram

of their Doppler frequencies and obtain the approximate Doppler spectra in Figure

2.7.
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Figure 2.6: An 3-dimensional plot example of a realization of basic dynamic channel
model. The number of analog paths is 15 and the shape parameter α is the same for
every path.
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(a) Doppler spectra of the channel tap with
largest amplitude.
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(b) Doppler spectra of the channel tap with
second largest amplitude.

Figure 2.7: An example of approximate Doppler spectra of channel taps generated
by basic dynamic channel model.
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2.2 Time Variation of the Channel

In Section 2.1.2, the small-scale effects of UWA channels are characterized by the

fading coefficient γp(f). Because of the change of its random phase 2πfδτp,i, γp(f) is

also a function of time, hence, for convenience we rewrite the Equation 2.5 as

H(f, t) = H0(f)
P∑

p=1

hpγp(f, t)e
−j2πfτp (2.17)

where γp(f, t) is the main contributor of channel variations for each path. In [17], its

time autocorrelation function is expressed as

Rp(f,Δt) = E[γp(f, t)γ
∗
p(f, t+Δt)]

≈ 2σ2
p(f)e

−πBp(f)|Δt| (2.18)

where 2σ2
p(f) andBp(f) are the variance and the effective Doppler bandwidth (Doppler

spread) of γp(f, t) and they are large-scale parameters. The approximation is based

on the assumption that the intra-path delays δτp,i(t) are Gaussian distributed, and

obey a first-order autoregressive model. The authors in [17] have also defined

Bp(f) = (2πfσδp)
2Bδp (2.19)

σ2
p(f) ≈

1

2
μ2
pSp

(
1− e−(2πf)

2σ2
δp

)
(2.20)

where σ2
δp and Bδp are the variance and the 3-dB width of the power spectrum density

of the intra-path delays of path p, μp is the mean value of the intra-path amplitudes,

and Sp is the number of intra-paths. We assume that Sp intra-paths form one large-

scale path. Based on Equations (2.18) - (2.20), one can see that the time autocorre-

lation function Rp(f,Δt) is mainly determined by the small-scale parameters σδp and

Bδp, and hence by the variations in propagation delays of these many intra-paths.

These, in turn, are heavily affected by the sea stat. It is assumed that Bδp, μp, and Sp

are all constant for all large-scale paths. The variance parameter σ2
δp is determined

by the geometry of the channel, and in turn, depends on the number of reflections

nsp on the surface and at the bottom, nbp, and the angle of arrival θp. If we denote

the intra-path delay variances on the surface and bottom by σ2
s and σ2

b respectively,

we have

σ2
δp =

1

c
(2 sin θp)

2(nspσ
2
s + nbpσ

2
b ) (2.21)
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Different large-scale paths experience different numbers of bounces on the surface and

bottom that result in different values of σ2
δp. Therefore σ2

δp is path-dependent. An

example of a shallow water propagation scenario is illustrated in Figure 2.8.
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Figure 2.8: An example of shallow-water channel geometry and its amplitude-delay
profile. Figure (a) is an example of shallow-water wave propagation and (b) is its
corresponding amplitude-delay profile with different value of σδp on each path.

We can see that there are 7 paths in this example. The path p0 is a direct

path, and all other paths either have reflections on the surface, the bottom or both.

Figure 2.8(b) shows the channel amplitude-delay profile without filtering. Different
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numbers of bounces and different arrival angles result in different variances of intra-

path delays σ2
δp. In general, the higher the number of bounces of a path, the larger

the variance of the intra-path delays and attenuation of the path.

To understand the relationship between the Doppler spectrum and the small-scale

parameters, we calculate the Doppler spectrum of path p as the Fourier transform of

the autocorrelation function Equation (2.18)

Sp(f, v) =

∫ ∞

−∞
Rp(f,Δt)e−j2πvΔtdΔt

=

∫ 0

−∞
2σ2

p(f)e
πBp(f)Δte−j2πvΔtdΔt+

∫ ∞

0

2σ2
p(f)e

−πBp(f)Δte−j2πvΔtdΔt

=
4πσ2

p(f)Bp(f)

π2B2
p(f) + (2πv)2

(2.22)

where v is the Doppler frequency and f is the carrier frequency. In the small-scale

channel model the Doppler spectrum is a function of the carrier frequency f , and

different paths have different Doppler spectrum due to Equations (2.19) and (2.20).

To fit Equation (2.22) to an exponential form as Equation (2.7), we use least squares

curve fitting method. For the example in Figure 2.8, we choose paths p = 1, 2, 3 to

demonstrate our results. We set the carrier frequency to f = 10 kHz, μp = 0.0025 and

Sp = 20 (we use the parameter setting in [17]). The Doppler spectrum expressed by

Equation (2.22) and its fitted exponential curve are shown in Figure 2.9 for positive

frequencies.

For paths p = 1, 2, 3, the parameter α of the fitted curve is computed and shown

in Figure 2.9. On the one hand, we can see that different paths with different values

of σδp are characterized by different values of α. The total Doppler spectrum is the

summation of the spectra of all the larg-scale paths. The total Doppler spread is

typically dominated by the path which has the largest value of σδp. If we want to

use the stretched exponential function (2.7) with a single constant parameter α for

all paths, it is reasonable to choose the value of α based on the worst significant path

which has the largest Doppler spread.

Comparing Figures 2.9(a) and (b), we note that Bδp has a significant impact on

the Doppler spectrum as well. We choose two candidate values of Bδp based on

the experiments in [17]. It can be seen that larger Bδp gives us a broader Doppler

spectrum, which indicates that large Doppler spread of intra-paths can lead to larger
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Figure 2.9: Doppler spectrum of paths p1, p2 and p3 in Figure 2.8 with carrier fre-
quency f = 10 kHz, the mean of intra-paths amplitudes μp = 0.0025 and the number
of intra-paths Sp = 20. The red curves are their fitted exponential curves.

Doppler spread of large-scale paths. Using this approach and applying different carrier

frequencies, we find out how the value of α increases with carrier frequency (see Figure

2.10). Broadening of the Doppler spectrum at high frequencies is observed.
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Figure 2.10: The relationship between α and the carrier frequency f for the channel
in Figure 2.8. The channel parameters are the same as in Figure 2.9.

In summary, the small-scale parameter σδp and Bδp determine the large-scale pa-

rameters σp and Bp, and in turn, affects the Doppler spectrum of each large-scale

path. For choosing one single value of α to represent the overall Doppler spread of

the channel to put into the SOS model (Equation 2.9), the reasonable solution is
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to choose the largest α corresponding to the broadest Doppler spread among all the

large-scale paths.

2.3 Channel Geometry

In this section, we consider different underwater acoustic channel topologies, and

apply the Bellhop software for acoustic wave propagation [18] to compute the multi-

path profiles for these channels. Incorporating the effect of transmit-receiver filtering,

we discuss the resulting channel parameters important for communications and study

the effects on the channel estimation.

The inputs of the Bellhop simulator are the transmitter-receiver distance, transmitter-

receiver depth, water depth, the sound speed profile and the signal frequency. The

outputs of the simulator provide the delay-amplitude profile of the channel. We use

the Bellhop simulator to generate the nominal channel taps, which is the large-scale

paths. We then add transmit-receiver filtering and the Doppler effect to characterize

the time variation of the channel when we generate the SOS channel model in Figure

2.4.

We simulate five UWA channel scenarios which are often used for UWA communi-

ations, including long-range deep-water channels, long-range shallow-water channels,

short-range shallow-water channels, medium-range deep-water channels and arctic

channels.

2.3.1 Long-Range Deep-Water Channels

We use the Bellhop software to evaluate the wave propagation a deep-water channel

at depth d = 5000 m, with transmitter-receiver distance l = 10 km, and the depth of

the transmitter and the receiver are up to 1000 m. In this scenario, we transmit with

a carrier frequency f = 2 kHz, and bandwidth B = 300 Hz. The sound speed profile is

set to be the Munk profile (see Figure 2.11(a)), and the angle θ of beams in Bellhop is

from −50◦ to 50◦. An example of ray tracing is shown in Figure 2.11(b). If we change

the angle of the beams, the rays propagate differently. The red curves represent the

rays that have no bounce at the bottom or surface, the black curves represent the

rays that hit both boundaries, the blue ones only hit the bottom and the green ones

only hit the surface. Therefore, if we put the receiver at different depths and ranges,



20

we will obtain different channel delay profiles, and the receiver may even lie in the

shadow zone where no ray passes. Transmitting with different launch angles have

impact on the distance of propagation paths. The path with higher launch angles

will have more reflections and longer propagation distance. This will result in higher

transmission loss. The reasons are the scattering effect on the sea surface and the

absorption of energy by the water. For example, the paths with launching angle from

0◦ to 2◦ have the shortest propagation distance and do not have any reflections on

the sea surface.
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Figure 2.11: An example of sound speed profile in a deep-water channel and its
corresponding ray tracing plot.

When we put the transmitter of depth dtx = 700 m, and put 50 receivers uniformly

up to depth 1000 m and distance 10 km, the number of delays we observe at different

receiver depths drx is shown in Figure 2.12. The maximum delay τmax increases with

drx, which has a impact on the difficulty of communication. There is no channel tap

when the receiver is above 700 m due to the shadow zone.

To understand the time variation behavior of this long-range deep-water channel

after filtering we applied different values of α to obtain different levels of Doppler

spread (see Equation (2.7)), and then calculate the corresponding coherence time Tcoh

numerically, which is based on percentage of change of the channel path amplitude

Et

(
||hp(t)−hp(t+Tcoh)||

||hp(t)||

)
≤ θ. We then obtain the maximum Tcoh corresponding to a

threshold of θ = 10%.

Here, we applied the same value of α for all the taps. The coherence time Tcoh is
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Figure 2.12: Different channel delay profiles for different receiver depths in a long-
range deep-water channel.

a useful parameter when implementing a transmission system. Assume the sampling

interval is Ts, and the number of discrete-time channel taps is Lmax, and the number

of carries in an OFDM system is N , then Tcoh must satisfy

(Lmax +N)Ts < Tcoh (2.23)

in order to avoid inter-channel interference (ICI). Lmax is also the minimum number

of samples of the OFDM cyclic prefix. Therefore, with different values of α, we

can calculate the coherence time Tcoh and see whether the channel is overspread or

not w.r.t an OFDM frame, and in turn decide whether the OFDM system can be

implemented on a specific channel without complex ICI compensation. For example,

if a channel is overspread, which means the maximum delay τmax > Tcoh, then N will

be negative. We conclude our results in Table 2.1 choosing the delay profile where

τmax = 17 ms as example.

We can see that the channel is underspread when α = 0.003, 0.03 and OFDM can

be implemented. An important note is that we choose the value of α from Figure

2.10 with f = 2 kHz. α1 is taken from Figure 2.10(b) which is an example of a calm

channel, and α2 and α3 are taken from Figure 2.10(a) corresponding to a fast varying

channel. Tcoh can vary slightly with different paths and we choose the smallest value

among all the paths.
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Long range deep water (l = 10 km)

f = 2 kHz, B = 300 Hz, τmax = 17 ms, Lmax = 9

Coherence
time Tcoh

Spreading
factor τmax

Tcoh

Number of OFDM
sub-carriers N

α1 = 0.003 1.5 s 0.0113 441
α2 = 0.03 0.22 s 0.0772 57
α3 = 0.5 0.016 s 1.06 <1

Table 2.1: Summary of time variation of long-range deep-water channel (transmission
range l = 10 km).

We then apply the same parameters but change the transmitter-receiver distance

to l = 50 km for the same simulation. We put 50 receivers uniformly at different

depths and obtained 50 different channel multi-path profiles. Figure 2.13 demon-

strates the resulting multi-path profiles corresponding to three different depths of

receivers. The sub-figures on the left hand side correspond to the actual channel im-

pulse responses generated by the Bellhop with path delays measured in seconds. The

sub-figures on the right are the channel tap-delay line coefficients obtained after the

application of the transmit-receive filtering assuming that no Doppler effect is added.

Root-raised cosine filters with β = 1, B = 300 Hz, are applied at both transmitter

and receiver and sampling with sampling interval Ts = 1/B is done at the receiver.

Because of the sidelobes introduced by the filtering, we set a cut-off at 10−3 for the

path amplitudes of the paths shown in the right hand side sub-figures.

The common property of the figures on the left is that the multi-path profiles are

all sparse with only few delays. However, they potentially show different difficulty

levels of channel estimation, and here we choose three candidates to demonstrate our

observations.

Let us denote the minimum delay as τmin, the time difference between two closest

paths, and the operation bandwidth of the transmitter-receiver filter as B. Based on

the super-resolution theory [19], the necessary and sufficient condition to resolve all

the channel taps in the discrete-time domain is

B >
4

τmin

(2.24)

and we denote the minimum operation bandwidth as Bmin = 4
τmin

.
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(a) Channel delay profile with receiver depth
drx = 510 m, Bmin = 63 Hz
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(b) Channel delay profile after filtering effect
with receiver depth drx = 510 m
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(c) Channel delay profile with receiver depth
drx = 1530 m, Bmin = 65 Hz
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(d) Channel delay profile after filtering effect
with receiver depth drx = 1530 m
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(e) Channel delay profile with receiver depth
drx = 2755 m, Bmin = 2766 Hz
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(f) Channel delay profile after filtering effect
with receiver depth drx = 2755 m

Figure 2.13: Different channel delay profiles in a deep-water long-range scenario
(transmission range l = 50 km).

Comparing these three sub-figures on the left, we can see that the delay spread

increases with receiver depth. In Figure 2.13(a) and (c), we can clearly see all the taps,
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but in Figure 2.13(e) some of the taps are very close to each other, which means that

the minimum delay τmin is very small, and therefore, a larger bandwidth is required

to satisfy the condition (2.24). Here, we indicate the minimum bandwidth Bmin in

the caption of the sub-figures, and we can see from Figure 2.13(b)(d)(f), B = 300 Hz

is sufficient to resolve all the channel taps.

The time variation behavior is concluded in Table 2.2. Because all sub-figures

of Figure 2.13 on the left hand side have similar values of τmax, we take Figures

2.13(a)(b) as an example.

Long range deep water (l = 50 km)

f = 2 kHz, B = 300 Hz, τmax = 5.14 s, Lmax = 1541

Coherence
time Tcoh

Spreading factor
τmax

Tcoh

Number of OFDM
subcarriers N

α1 = 0.003 1.95 s 2.64 <1
α2 = 0.03 0.213 s 24.13 <1
α3 = 0.5 0.013 s 395 <1

Table 2.2: Summary of time variation of long-range deep-water channels in Figure
2.13 (a)(b) (transmission range l = 50 km).

From Table 2.2, it can be seen that the spreading factors are larger than 1 for all

the cases, therefore the channel is overspread and OFDM is not applicable without

causing ICI.

2.3.2 Long-Range Shallow-Water Channels

In a long-range shallow-water scenario, we set the channel depth d = 100 m, channel

distance l = 50 km, the depth of the transmitter and receiver dtx = 50 m, drx = 12

m. We transmit signals with carrier frequency f = 2 kHz and bandwidth B = 300

Hz. In the shallow water simulation, the sound speed profile is not needed, instead,

the sound speed c in the water and the sound speed c2 in the bottom are needed.

Typically c is around 1500 m/s and it changes little based on temperature, pressure

and salinity. The bottom sound speed c2 is influenced by the hardness of the bottom,

and c2 increases dramatically with a harder bottom.

In Figure 2.14, we generated two cases of channel impulse responses, Figure 2.14(a)

for the soft bottom case and Figure 2.14(c) for the hard bottom case. In both cases,
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(a) Channel delay profile with soft bottom c2 =
1550 m/s, Bmin = 95 kHz
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(b) Channel delay profile after filtering effect
with soft bottom c2 = 1550 m/s
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(c) Channel delay profile with hard bottom
bottom c2 = 1650 m/s, Bmin = 200 kHz
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(d) Channel delay profile after filtering effect
with hard bottom bottom c2 = 1650 m/s

Figure 2.14: Different channel delay profiles in a shallow-water long-range scenario.

we set c = 1548 m/s. We can see that in shallow water with hard bottom, there are

many more channel taps compared to the soft bottom case due to more reflections at

a harder bottom. Comparing Figure 2.14 with the deep-water scenario in Figure 2.13,

the channel impulse responses in deep water have higher sparsity level than those in

shallow water and also have longer delays and larger minimum delay. We can see from

Figure 2.14(b) and (d) that after filtering (the same filter parameters are applied as

in Section 2.3.1), most of the channel taps cannot be resolved by a system bandwidth

B = 300 Hz because of the small minimum delay.

Tables 2.3 and 2.4 summarize the time variation behavior of the long-range shallow-

water channel. Applying the same approach as in previous sections, we can see that

the channel is underspread for α1 and α2 in the soft bottom case, and OFDM can be

implemented. However, in the hard bottom case, the channel is overspread.
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Long range shallow water (soft bottom)

f = 2 kHz, B = 300 Hz, τmax = 13.2 ms, Lmax = 6

Coherence
time Tcoh

Spreading factor
τmax

Tcoh

Number of OFDM
subcarriers N

α1 = 0.003 1.71 s 0.0077 507
α2 = 0.03 0.2 s 0.066 54
α3 = 0.5 0.0133 s 0.99 <1

Table 2.3: Summary of time variation of the long-range shallow-water channel (soft
bottom c2 = 1550 m/s).

Long range shallow water (hard bottom)

f = 2 kHz, B = 300 Hz, τmax = 0.343 s, Lmax = 105

Coherence
time Tcoh

Spreading factor
τmax

Tcoh

Number of OFDM
subcarriers N

α1 = 0.003 < Ts > 102.9 <1
α2 = 0.03 < Ts > 102.9 <1
α3 = 0.5 < Ts > 102.9 <1

Table 2.4: Summary of time variation of the long-range shallow-water channel (hard
bottom c2 = 1650 m/s).

2.3.3 Short-Range Shallow-Water Channels

In the short-range shallow-water scenario, the channel depth is d = 30 m, the channel

distance l = 200 m, the transmitter and receiver depths are dtx = 15 m, drx = 9.7 m,

respectively. We transmit signals with carrier frequency f = 20 kHz and bandwidth

B = 20 kHz. Similar to Section 2.3.2, we simulated soft bottom and hard bottom

cases in Figure 2.15. We can see that in this channel, there are not as many bounces

as in Figure 2.14, for both soft and hard bottoms. Therefore the minimum delay τmin

is relatively large, and also because the bandwidth here is 20 kHz, all the delays can

be resolved.

However, Table 2.6 indicates that this channel with a hard bottom is typically

overspread because of its longer maximum delay. We choose the value of α corre-

sponding to f = 20 kHz, but actually α will be larger, because if we implement

OFDM in this broadband channel, the subcarrier frequency will be in a range of

[f − B
2
, f + B

2
] = [10kHz, 30kHz]. For a narrowband channel, α can be approximated
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(a) Channel delay profile with soft bottom c2 =
1550 m/s, Bmin = 4 kHz
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(b) Channel delay profile after filtering effect
with soft bottom c2 = 1550 m/s
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(c) Channel delay profile with hard bottom
bottom c2 = 1650 m/s, Bmin = 2.8 kHz
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(d) Channel delay profile after filtering effect
with hard bottom bottom c2 = 1650 m/s

Figure 2.15: Different channel delay profiles in a shallow-water short-range scenario.

as a constant number over all the frequencies.

Short range shallow water (soft bottom)

f = 20 kHz, B = 20 kHz, τmax = 30 ms, Lmax = 607

Coherence
time Tcoh

Spreading factor
τmax

Tcoh

Number of OFDM
subcarriers N

α1 = 0.1 1s 0.3 19393
α2 = 0.2 20 ms 1.5 <1
α3 = 2 2.5 ms 12 <1
α4 = 35 0.2 ms 150 <1

Table 2.5: Summary of time variation of the short-range shallow-water channel (soft
bottom c2 = 1550 m/s).
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Short range shallow water (hard bottom)

f = 20 kHz, B = 20 kHz, τmax = 55 ms, Lmax = 1093

Coherence
time Tcoh

Spreading factor
τmax

Tcoh

Number of OFDM
subcarriers N

α2 = 0.2 12 ms 4.58 <1
α3 = 2 2 ms 28 <1
α4 = 35 0.2 ms 280 <1

Table 2.6: Summary of time variation of the short-range shallow-water channel (hard
bottom c2 = 1650 m/s).

2.3.4 Meduim-Range Deep-Water Channels

In the medium-range deep-water scenario, the water depth is d = 5 km, the channel

distance l = 1 km, and the depth of transmitter and receiver are up to 3 km. The

carrier frequency and bandwidth are both 20 kHz. We put one transmitter at the

depth dtx = 3 km, and put 50 receivers vertically up to depth drx = 3 km, and then

obtained delay profiles at each receiver (see Figure 2.16). We can see that this channel

is an easy underspread channel because there is only a single path at each receiver

location.
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Figure 2.16: Different channel delay profiles at different receiver depths in a deep-
water medium-range scenario.

For f = 20 kHz, we choose the value of α = 0.16, and the results of the time

variation behavior is in shown Table 2.7.
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Meduim range deep water

f = 20 kHz, B = 20k Hz, τmax = 0 ms, Lmax = 1

Coherence
time Tcoh

Spreading
factor τmax

Tcoh

Number of OFDM
sub-carriers N

α1 = 0.16 50 ms 0 1000

Table 2.7: Summary of time variation of medium-range deep-water channel.

2.3.5 Arctic Ocean Channels

Different from typical ocean channels in previous four scenarios, the sound speed in

Arctic Ocean is generally increasing with the water depth (see Figure 2.17(a)), and

it is only found in polar waters, slightly changing with the season [23]. The typical

ray propagation model with this sound speed profile in shown in Figure 2.17(b) with

beam degree ranging from −50◦ to 50◦. The green curves represents the rays only hit

the surface, the black curves have reflections on both surface and bottom, the blue

curves only hit the bottom, and the red curves propagates with no boundaries. One

interesting characteristic for Arctic Ocean is that the rays which only hit the surface

or does not hit both boundaries can propagate in a long range.
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(a) Typical sound
speed profile in Arctic
Ocean
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(b) Typical ray propagation

Figure 2.17: Typical sound speed profile and ray propagation in Arctic Ocean (as-
suming flat surface and bottom without ice).

However, because of the ice cover on the surface and variation of the ocean floor,
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the ray propagation model will be more complex than Figure 2.17(b), which will ex-

perience much more reflections and transmission loss, in turn, it will be more difficult

for long range communications.

In following sections, we will apply the ice draft profile obtained in summer and

a bathymetry file (see Figure 2 in [24]) to Bellhop software to generate the channel

taps in deep water and shallow water respectively.

Deep-Water Channel in Arctic Ocean

In this scenario, the water depth is up to 4 km with the ocean floor applied, the depth

of transmitter is dtx = 1000 m, and the average of the thickness of the ice cover is

2.15 m. The carrier frequency is 250 Hz. The ray propagation model with 20 beams

is in Figure 2.18.
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Figure 2.18: Ray propagation model in deep water with bathymetry and ice draft
profile applied.

We can see that most of the rays are absorbed after 100 km because of the large

number of reflections on the surface, except the rays without hitting the boundaries.

Then, we obtained the channel tap arrival profile at different receiver ranges in

Figure 2.19. It is clear that at range 260 km the channel is sparse but with small

minimum delay, and at range 104 km, the channel has larger numbers of delays and

longer delay spread. An example of the delay-amplitude profile in Figure 2.19(b) is

shown in Figure 2.20. This result is consistent with Figure 2.18.
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(a) The channel tap arrival profile at 260 km
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(b) The channel tap arrival profile at 104 km

Figure 2.19: The channel tap arrival profiles at range 260 km and 104 km, dtx = 1000
m, f = 250 Hz (deep water).

71 72 73 74 75 76 77 78 79 80
Time [s]

0

0.5

1

1.5

2

2.5

Am
pl

itu
de

×10-6

Figure 2.20: Channel delay-amplitude profile at range 104 km, dtx = 1000 m, drx =
102 m, f = 250 Hz.

Shallow-Water Channel in Arctic Ocean

In shallow-water channel, the depth of the water is d = 250 m with assuming a flat

and hard bottom, same ice draft profile applied as in deep-water scenario, and the

depth of the transmitter is dtx = 100 m. We choose this depth of the transmitter

because in the experiment we find we can transmit signals at the longest range at this

depth. The carries frequency is 250 Hz. Figure 2.21 is the ray propagation model.

From Figure 2.21, we can see that the longest distance the rays can propagate

is around 20 km, which is much shorter than in deep water channel since in shallow

water the signals will experience more reflections and attenuations. We present the

channel tap arrival profiles in Figure 2.22. Different from the shallow water in other
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Figure 2.21: Ray propagation model in deep water with ice draft profile applied.

typical oceans, there are few bounces at a long range because the rough ice cover

makes siginificant transmission loss.
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(a) Channel tap arrival profile at 13 km
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(b) Channel tap arrival profile at 4.4 km

Figure 2.22: Channel tap arrival profiles at range 13 km and 4.4 km, dtx = 1000 m,
f = 250 Hz (shallow water).

2.3.6 Conclusion

From the experiments above, we can see that UWA channels have shown various

sparsity levels. Deep water channels are usually sparse, but the shallow water channels

with soft bottom are dense and hard to resolve. The channels can be overspread in

a long range communications because of the long maximum delay. In general, the

meduim range deep water channels are favorable channels to communicate.



Chapter 3

Sparse Channel Estimation

3.1 Introduction

Sparse channel estimation is an application of Compressed Sensing (CS). It is a novel

technique to recover the sparse signal from fewer samples than the number of samples

acquired from the Nyquist rate [25]. In a mathematical form, first consider a signal

x ∈ C
N having a sparse representation in a basis Ψ = [ψ1, ψ2, . . . , ψN ], where Ψ is

a N ×N matrix and ψi, i = 1, 2, . . . , N standing for the column of Ψ. In this basis,

x = Ψθ, where the coefficients θi are sparse. If there are k nonzero elements in vector

θ, then we call the signal x as k-sparse signal in Ψ basis. For example, if Ψ is the

discrete Fourier transform (DFT) matrix, then it means the frequency-domain signal

has a sparse representation in the time domain. However, most of the time, a signal

can be disturbed by some noise, therefore, the signal is called approximately k-sparse

if it can be represented by most of the large coefficients in some basis up to a certain

accuracy [26].

A compressed sensing problem is an under-determined problem for sparse signals.

Consider we need to recover the signal x from the received samples y, and the signal

acquisition process can be written as

y = Φx

= ΦΨ︸︷︷︸
A

θ (3.1)

where y is a known vector of size n × 1, θ is an unknown vector of size N × 1, and

matrix A (n × N) is called sensing matrix or measurement matrix which we need

to design. Based on the linear algebra, we need n ≥ N samples to have the exact

answer of θ; otherwise, there will be multiple solutions. However, with the condition

that θ is sparse, then we can use fewer samples (n < N) to recover the signal by l1

minimization[25]

min ||θ||l1 , subject to y = Aθ (3.2)

33



34

where ||θ||l1 =
∑N

i=1 θi. If the received samples is interfered with noise y = Φx+w,

where w is assumed to be white Gaussian noise with zero mean of size n × 1, we

recover the signal by solving an alternative of problem 3.2

min ||θ||l1 , subject to ||y −Aθ||l2 ≤ ε (3.3)

where ε is a small number indicating the variance of the noise, and for arbitrary vector

z, the l2 norm is ||z||l2 = (
∑

i z
2
i )

1
2 .

From the literature [26, 27], the l1 minimization problem 3.2 is also called Ba-

sis Pursuit (BP) and its alternative problem 3.3 is called Basis Pursuit De-Noising

(BPDN) or LASSO. The use of l1 norm constraint to solve sparsity problem has a

long history since 1930s [28, 29, 30]. It is a natural mathematical choice to measure

the sparsity, compared to the l0 constraint (the number of nonzero elements in a

sparse vector) which is non-tractable and l2 constraint does not require the sparsity

[31]. Moreover, based on the paper [32], for most of the under-determined system,

the solution of l1 minimization problem is the exact sparse answer.

Minimizing l1 norm subject to a constraint can be solved by the linear program-

ming; however, it has a disadvantage of computational complexity. Other ways to

recover the sparse signal include the greedy algorithm (OMP) and iterative thresh-

olding. For OMP, assume we know that the signal is k-sparse, then the algorithm

can stop the iterations at kth step by choosing one nonzero element at each step.

However in reality we have no knowledge about the value of k; therefore we usu-

ally choose different stop criteria for each instance. OMP has the advantage of its

speed, and also in paper [8], it has been rigorously proved that OMP can recover

the exact k-sparse signal with measurements nearly proportional to k. For iterative

thresholding, at each step it simply sets a threshold to choose the subset of columns

of sensing matrix which is highly correlated to the received signals. However, even

though iterative thresholding is computationally efficient, it has worse performance

compared with OMP and l1 minimization method [33]. Another algorithm with both

advantages of low computational complexity and competitive performance is AMP.

It is derived from the sum product belief algorithm and has a crucial term added to

the iterative thresholding formula which influences the performance significantly.

For all the algorithms to solve the CS problems efficiently, the sensing matrix

A is required to show randomness. This randomness is described by the restricted
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isometry property (RIP) [25].

Definition 1. A matrix A satisfied the restricted isometry property (RIP) of order

k if there exists a δk ∈ (0, 1) such that

(1− δk)||θ||2l2 ≤ ||Ax||2l2 ≤ (1 + δk)||x||2l2 (3.4)

holds for all x.

This property means that matrix A can approximately preserve the Euclidean

length of k-sparse signals. To construct such matrices holding RIP with highly prob-

ability, we prefer the random matrix in which each element is independent and iden-

tically distributed (i.i.d.) with the number of rows n ≥ Ck log(N/k), where C is

a constant depending on each scenario [25]. To measure the estimation capability

of the matrix, we calculate the incoherence of the matrix defined as the maximum

cross-correlation of any two columns [19].

μ � max
l �=l′

< Al,A
′
l > (3.5)

where l, l′ are both column indexes, and < Al,A
′
l > represents the inner product of

two columns and μ ∈ (0, 1). The incoherence of the matrix is related to how many

nonzero elements (s) that we can recover shown in Equation 3.6 [19]. So the less μ

is, the less sparse signal we can handle.

μ <
1

2s− 1
(3.6)

In this Chapter, we consider the CS problem in the sparse UWA channel scenario

where the sparse signal is a channel tap vector denoted by h, and it is sparse in its

acquired delay domain. Therefore the basis Ψ in Equation 3.1 is an identity matrix.

The sensing matrix A is constructed by shifted pilot signals such that each row is

one-shifted vector of the previous row. To satisfy the requirement for the randomness,

the pilot signals are designed to be shift-orthogonal or with low autocorrelations. The

problem setup details will be described in Section 3.4.

The performances of sparse algorithms are measured by the phase transition curve,

which represents the trade-off between the sparsity and under-sampling. To be spe-

cific, consider the CS problem in Equation 3.1, then the sparsity level of the signal is

denoted by

ρ =
k

n
(3.7)
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where k is the number of nonzero elements of the signal vector or the approximate

number of nonzero elements if we have noise. The under-sampling level is denoted by

δ =
n

N
(3.8)

Therefore the phase transition curve is a ρ− δ curve. The larger δ, the large ρ we can

tolerate for the success of the algorithms. In other words, the more measurements we

take, the more nonzero elements in the signals we can recover. For testing the success

of the algorithms, we calculate the MSE between the estimated signal vector and the

original one. If we denote the estimation as ĥ, then the MSE is expressed as

MSE = E{||ĥ− h||2} (3.9)

If the MSE is smaller than a certain threshold, then it means that the algorithm

recovers h successfully.

The following two sections 3.2 and 3.3 will focus on the details of two algorithms

(OMP and AMP) that solve the CS problem. To adjust the algorithms to the sparse

channel estimation problem we consider, some parameters and steps need to be tuned

appropriately. Section 3.4 will describe the problem setup and present the numerical

results of these two algorithms.

3.2 Orthogonal Matching Pursuit (OMP)

Consider the problem setup in Equation 3.1 with random matrix A, and we try to use

the OMP algorithm to find the sparsest solution of θ. The estimated result is denoted

by θ̂. The first step is to initialize the residual error to be equal to the measurement

vector.

r0 = y (3.10)

Next at each iteration t, we find the column in A that has the maximum correlation

with residual rt−1 in the previous iteration, and then put the column index st into

the index set St−1. The column index st at the tth iteration is computed as

st = arg max
l=1,...,N

< rt−1,Al > (3.11)

This step simply calculate the inner product between residual rt and each column of

A and then choose the column with largest result. Some variations of OMP exclude
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the chosen columns in this step, which means each column of A can be chosen only

once, however, we follow the procedures in paper [8]. Then the index set St becomes

St = St−1 ∪ {st} (3.12)

The estimated result θ̂ is updated at tth iteration by solving a least square problem

using the columns in A which have been already chosen

θ̂t = argmin
θ

||y −AStθ||2l2
= (Ah

St
ASt)

−1Ah
St
y (3.13)

where Ah
St

denotes the Hermitian transpose of matrix ASt . The next step is to

calculate the new residual error

rt = y −AStθ̂ (3.14)

We then recursively iterates following the step from Equation 3.11 to Equation 3.14

until the iteration index t reaches k, the exact number of non-zero elements in vector

θ. However, in reality, we do not know about k or θ is approximately sparse, therefore,

for the approximate sparse signal, we use relatively thresholding (RT) criteria to stop

the iteration [19].

10 log10
max{θ̂1, . . . , θ̂N}
min{θ̂1, . . . , θ̂N}

< γ1 (3.15)

Because OMP chooses the significant elements in θ̂ in a amplitude-decreasing order,

here we set γ1 in dB to determine the stop iteration for comparing the maximum

element and the minimum element in θ̂. For the exactly sparse signal, we use the

residual decay rate (RDR) stopping criteria expressed as

log10
||rt−1||l2
||rt||l2 > γ2 (3.16)

It is because in the experiments we find that the residual will suddenly drop after

kth iteration. We did not simply use the amplitude of the residuals to determine the

stopping criteria since OMP would pick the noise tap after kth iteration to make the

residual smaller. The RDR stopping criteria is implemented in Section 3.4.3.

If there is noise vector w (AWGN with variance N0) added in the measurement

vector y, then the measurement formula is expressed as

y = Aθ +w (3.17)
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and the estimate update step in Equation 3.13 should be changed as

θ̂t = (Ah
St
ASt +N0I)

−1Ah
St
y (3.18)

where I is an identity matrix with size n × n. In summary, the procedures of OMP

is in Algorithm 1.

Algorithm 1 Orthogonal Matching Pursuit (OMP)

Input:

n× 1 measurement vector y

n×N random sensing matrix A

Noise variance N0

Relative thresholding γ in dB

Output:

An estimate n× 1 vector θ̂

1: Initialization: r0 = y, S0 = ∅, t = 1

2: while 10 log10
max{θ̂1,...,θ̂N}
min{θ̂1,...,θ̂N} < γ1 (approximate sparse) or log10

||rt−1||l2
||rt||l2 > γ2 (ex-

actly sparse) do

3: st = argmaxl=1,...,N < rt−1,Al >

4: St = St−1 ∪ {st}
5: θ̂t = (Ah

St
ASt +N0I)

−1Ah
St
y

6: rt = y −AStθ̂

7: t = t+ 1

8: end while

3.3 Approximate Message Passing (AMP)

AMP algorithm is derived from the graphical model theory and message passing

algorithm [27]. It simplifies the procedures of message passing that requires tracking

of 2nN messages. The following sections will first look at the derivation from message

passing to AMP briefly and then describe the AMP algorithm for both real and

complex numbers.
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3.3.1 From Message Passing to AMP

Consider the problem in Equation 3.1, y = Aθ, and denote the residual vector as z.

Then the factor graph for message passing between N variable nodes θ1, . . . , θN and

n factor nodes z1, . . . , zn is illustrated in Figure 3.1. In this figure, i ∈ {1, 2, . . . , N}
is the index of variable nodes and a ∈ {1, 2, . . . , n} is the index of factor nodes. θ̂i→a

represents the message passing from the ith variable node to the ath factor node,

and similarly za→i represents the message passing from the ath factor node to the ith

variable node.

z1

z2

zn

1
i a

za i 2

3

N

Figure 3.1: Factor graph of message passing algorithm.

Each factor node will pass message to every variable node through the edge and

vice versa. We follow the derivation in the reference [27]. The requirement for matrix

A is that each entry is i.i.d with zero mean and variance 1/n, and the l2 norm of

each column is normalized to be 1, i.e. ||Al||2l2 = 1, where l is the column index. The

message passing rules are expressed as

θ̂t+1
i→a = η(

∑
b �=a

Abiz
t
b→i; τ̂

t) (3.19)

zta→i = ya −
∑
j �=i

Aaj θ̂
t
j→a (3.20)

τ̂ t+1 =
τ̂ t

n

∑
j∈[N ]

η′(
∑
b∈[n]

Abjz
t
b→j; τ̂

t) (3.21)
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where t is the iteration number and Aai denotes the element in ath row and ith

column. η(x; b) is a thresholding function applied component-wise expressed as

η(x; b) =

⎧⎪⎪⎨
⎪⎪⎩

x− b, if b < x

0, if− b ≤ x ≤ b

x+ b, if x < −b

(3.22)

and η(·)′ = ∂η(·)
∂x

is also a component-wise function. At each iteration, the message

received at each variable node from ith factor node is a sum of the messages passing

from all the other variable nodes to the ith factor node. The purpose of the thresh-

olding function η(·) is to force the sparsity of the message θ̂i→a with thresholding

level τ̂ t updated at each iteration. In a heuristic point of view, τ̂ t is like the variance

of za→i and we will see later that τ̂ t can be tuned using the variance of the residual

vector z.

Observing the Equation 3.19, it is easy to see that the right-hand term depends

weakly on the index a, and the right-hand side of Equation 3.20 also depends weakly

on the index i. To construct the AMP algorithm, we first assume that there exists

�θti→a,�zta→i = O( 1√
N
) such that

θ̂ti→a = θ̂ti +�θ̂ti→a +O(1/N) (3.23)

zta→i = zta +�zta→i +O(1/N), for all i, a (3.24)

where �θ̂ti→a,�zta→i = O( 1√
N
) are the errors that depend on the choice of the edge.

Substituting Equations 3.23 and 3.24 into the equations of message passing rules

(3.19, 3.20, 3.21), we obtain

θ̂t+1
i→a = η(

∑
b �=a

Abiz
t
b→i)

= η(
∑
b∈[n]

Abiz
t
b→i − Aaiz

t
a→i)

= η(
∑
b∈[n]

Abiz
t
b +

∑
b∈[n]

Abi�ztb→i − Aaiz
t
a) +O(

1

N
)

= η(
∑
b∈[n]

Abiz
t
b +

∑
b∈[n]

Abi�ztb→i)︸ ︷︷ ︸
θ̂t+1
i

−Aaiz
t
aη
′(
∑
b∈[n]

Abiz
t
b +

∑
b∈[n]

Abi�ztb→i)︸ ︷︷ ︸

θ̂t+1

i→a

(3.25)

+O(
1

N
) (3.26)
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where the last two step has applied the Taylor expansion, and the thresholding pa-

rameter τ t is omitted for convenience. Similarly, for zta→i, we have

zta→i = ya −
∑
j �=i

Aaj θ̂
t
j→a

= ya −
∑
j∈[N ]

Aaj θ̂
t
j→a + Aaiθ̂

t
i→a

= ya −
∑
j∈[N ]

Aaj θ̂
t
j −

∑
j∈[N ]

Aaj�θ̂tj→a︸ ︷︷ ︸
zta

+Aaiθ̂
t
i→a︸ ︷︷ ︸


zta→i

+O(
1

N
) (3.27)

In underbrace, the updates of the variable nodes and factor nodes are defined as

θ̂t+1
i = η(

∑
b∈[n]

Abiz
t
b +

∑
b∈[n]

Abi�ztb→i)

= η(
∑
b∈[n]

Abiz
t
b +

∑
b∈[n]

A2
biθ̂

t
i)

= η(
∑
b∈[n]

Abiz
t
b + θ̂ti) (3.28)

zta = ya −
∑
j∈[N ]

Aaj θ̂
t
j +

∑
j∈[N ]

Aaj�θ̂tj→a

= ya −
∑
j∈[N ]

Aaj θ̂
t
j +

∑
j∈[N ]

A2
ajz

t−1
a η′(

∑
b∈[n]

Abiz
t−1
b +

∑
b∈[n]

Abi�zt−1b→i)

= ya −
∑
j∈[N ]

Aaj θ̂
t
j +

∑
j∈[N ]

A2
ajz

t−1
a η′(

∑
b∈[n]

Abiz
t−1
b + θ̂t−1j )

= ya −
∑
j∈[N ]

Aaj θ̂
t
j +

1

n

∑
j∈[N ]

zt−1a η′(
∑
b∈[n]

Abiz
t−1
b + θ̂t−1j )

= ya −
∑
j∈[N ]

Aaj θ̂
t
j +

1

δ
zt−1a < η′(

∑
b∈[n]

Abiz
t−1
b + θ̂t−1j ) > (3.29)

where < η′(·) > denotes the mean of vector η′(·), and δ = n
N
. For update of τ̂ t, we

have

τ̂ t+1 =
τ̂ t

n

∑
j∈[N ]

η′(
∑
b∈[n]

Abjz
t
b→j; τ̂

t)

=
τ̂ t

n

∑
j∈[N ]

η′(
∑
b∈[n]

Abiz
t
b +

∑
b∈[n]

AbiΔztb→i; τ̂
t)

=
τ̂ t

δ
< η′(

∑
b∈[n]

Abiz
t
b + θ̂tj; τ̂

t) > (3.30)
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Here, the derivation of last two steps are the same as the derivation in Equation 3.29.

For the measurement vector with AWGN noise, y = Aθ+w, with noise variance N0,

τ̂ t is tuned as

τ̂ t+1 =

√√√√√N0 +

⎛
⎝ τ̂ t

δ
< η′(

∑
b∈[n]

Abiztb + θ̂tj; τ̂
t) >

⎞
⎠2

(3.31)

Now the derivation of AMP is finished and the thresholding parameter τ̂ t is au-

tomatically tuned in this version. The summary of AMP in vector form is illustrated

in Algorithm 2.

Algorithm 2 Approximate Message Passing (AMP)

Input:

n× 1 measurement vector y

n × N random sensing matrix A with each entry E(Aij) = 0,E(A2
ij) = 1

n
, and

each column ||Al||2l2 = 1, for i = 1, . . . , n, j = 1, . . . , N ,l = 1, . . . , N

Noise variance N0

Iteration number I

Output:

An estimate n× 1 vector θ̂

1: Initialization: z0 = y, θ0 = 0, t = 0

2: while t < I do

3: θ̂
t+1

= η(ATzt + θt; τ̂ t)

4: zt = y −Aθ̂
t
+ 1

δ
zt−1 < η′(ATzt−1 + θ̂

t−1
; τ̂ t−1) >

5: t = t+ 1

6: τ̂ t+1 =

√
N0 +

(
τ̂ t−1

δ
< η′(ATzt−1 + θ̂

t−1
; τ̂ t−1) >

)2

7: end while

Compared with regular iterative thresholding algorithms (see [34]), the AMP has a

crucial term, 1
δ
zt−1 < η′(ATzt−1+θ̂

t−1
; τ̂ t−1) >, added to the residual zt, which makes

it outperform the iterative thresholding. The expression η′(·) actually computes the

number of nonzero elements in the previous estimate, therefore, alternatively zt can

be expressed as

zt = y −Aθ̂
t
+

∣∣∣∣θ̂t∣∣∣∣
0

n
zt−1 (3.32)
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where the zero norm of θ̂
t
is the number of nonzeros in this vector.

An important note is that the thresholding parameter τ̂ t is a scaler and it sets

the same threshold to each entry in θ̂t. As iteration goes, the MSE will converge

to a nearly zero value if the algorithm works successfully. The MSE threshold can

be set for each problem setup to determine the success of the algorithm and we can

also calculate the success rate for running Monte Carlo simulations. The iteration

number I is chosen based on the convergence speed in each scenario, and usually

I = 300 is enough for a successful sparse signal recovery. More parameter settings

will be articulate in Section 3.4.

3.3.2 Complex Approximate Message Passing (CAMP)

The AMP algorithm in previous section is derived for real numbers. For complex

case, we follow the similar the derivation in reference [10] but have the automatic

updated thresholding parameter τ̂ t. The summary is in Algorithm 3.

Here, R(·) and I(·) represent the real and imaginary part of a complex number

respectively, Ah is the Hermitian transpose of A, and A∗aj is the conjugate of element

Aaj. The thresholding function η(·) for complex numbers is defined as

η(u+ iv; τ) =

{
u+ iv − τ(u+iv)√

u2+v2
, if

√
u2 + v2 > τ

0, otherwise
(3.33)

and ∂ηR

∂y
, ∂η

R

∂y
and ∂ηI

∂y
, ∂η

I

∂y
denote the partial derivatives of ηR and ηIwith respect to

the real and imaginary parts of the input.

3.3.3 Alternative Tuning of Thresholding Parameter and Stop Criteria

In the original papers of AMP and CAMP (see [9, 10]), there is a free paramter λ

in the expression of the thresholding parameter τ̂ t and need to be tuned for each

scenario.

τ̂ t = λ

√
(σ̂t)2 +N0 (3.34)
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Here, σ̂t is called formal MSE and is the prediction of the true MSE at each iteration.

Its recursive expression is

(
σ̂t+1

)2
= E

⎧⎪⎨
⎪⎩
⎡
⎣η

⎛
⎝X +

√
(σ̂t)2

δ
+N0Z; τ̂

t

⎞
⎠−X

⎤
⎦2
⎫⎪⎬
⎪⎭ (for AMP) (3.35)

(
σ̂t+1

)2
= E

⎧⎪⎨
⎪⎩
⎡
⎣η

⎛
⎝X +

√
(σ̂t)2

δ
+N0Z1 + i

√
(σ̂t)2

δ
+N0Z2; τ̂

t

⎞
⎠−X

⎤
⎦2
⎫⎪⎬
⎪⎭ (for CAMP)

(3.36)

where X has the same distribution as the input vector θ, and Z ∼ N (0, 1), Z1, Z2 ∼
N (0, 1

2
). The analysis of formal MSE is called State Evolution (SE), and it can

theoretically track the performance of AMP and CAMP and determine the success

region (δ − ρ phase transition curve). This has been rigorously proved for A being

Gaussian matrix [35]. Therefore, if we know the distribution of θ and have the

Gaussian sensing matrix A, we can apply this approach to update τ̂ t. The free

parameter λ need to be tuned such that the algorithms achieve the highest phase

transition curve.

However, different from the thresholding updating steps in Algorithm 2 and 3, this

approach does not update τ̂ t automatically and it needs extensive experiments to find

the optimal solution of λ. Moreover, in practice, we do not know the distribution of θ

beforehand and sometimes A is not ideally Gaussian. An alternative way to update

τ̂ t is to apply the variance of the residual zt but still need free parameter λ [36]. The

expression is

τ̂ t = λ

√
||zt||2l2

n
(3.37)

Inspired by this approach, we propose another way to update τ̂ t automatically by

minimizing ||zt||2l2 over τ̂ t, that is

τ̂ t = arg min
τ̂ t∈[0,τ̂ t−1]

||zt||2l2 (3.38)

where τ̂ t is getting smaller as the estimated sparsity level getting higher and closer

to the original signal. The advantage of this approach is that the algorithm will

not diverge, compared with Algorithm 2 and 3 having small probability of diverging
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even in the success region. However, the computation complexity is the main issue

especially for complex numbers with large n and N .

Since the iteration speed of CAMP is much slower than AMP, an constant iteration

number I which is chosen by trial and error would not be the best choice for stopping

the iterations. Alternatively, in the converging case, we compute the variance of the

squared l2 norm of the residuals ||z||2l2 in the last six iterations, and if it is smaller

than some small number (< 10−5) ε1, then we stop the algorithms. For the diverging

case, if ||z||2l2 is larger than some large number (100 ∼ 101) ε2, then we stop. In

formula, the stopping criteria is

var(||zt||2l2 , ||zt−1||2l2 , . . . , ||zt−5||2l2) < ε1 ,or (3.39)

||zt||2l2 > ε2 (3.40)

The reason for doing this is that the MSE of AMP and CAMP will converge to a

nearly constant value if the algorithms successfully recover the signal (see Figure 3.2),

and the residual will also stay nearly unchanged. Therefore, we can compute the vari-

ance of the squared l2 norm of the residuals in the last several iterations to determine

the algorithms converged or not.

0 100 200 300 400 500 600
Iteration

10-35

10-30

10-25

10-20

10-15

10-10

10-5

100

MSE E{||θ̂ − θ||22}

residual ||z||22

(a) MSE map of AMP
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100

MSE E{||θ̂ − θ||22}
residual ||z||22

(b) MSE map of CAMP

Figure 3.2: An example of MSE map of AMP algorithm and in the converging case.
Blue curve is the MSE curve and red curve is the squared l2 norm of the residuals.
They both converge at almost the same iteration. For both AMP and CAMP, A is
Gaussian matrix, N = 800, δ = 0.3, ρ = 0.2, and the nonzero entries of θ is Rayleigh
distributed.
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Algorithm 3 Complex Approximate Message Passing (CAMP)

Input:

n× 1 measurement vector y

n × N random sensing matrix A with each entry E(Aij) = 0,E(A2
ij) = 1

n
, and

each column ||Al||2l2 = 1, for i = 1, . . . , n, j = 1, . . . , N , l = 1, . . . , N

Noise variance N0

Iteration number I

Output:

An estimate n× 1 vector θ̂

1: Initialization: z0 = y, θ0 = 0, t = 0

2: while t < I do

3: θ̂
t+1

= η
(
Ahzt + θt; τ̂ t

)
4:

zta = ya −
∑
j

Aajθ
t
j

+
∑
j

Aaj

(
∂ηR

∂x

(
θt−1j +

∑
b

A∗bjz
t−1
b

))
R
(
A∗ajz

t−1
a

)

+
∑
j

Aaj

(
∂ηR

∂y

(
θt−1j +

∑
b

A∗bjz
t−1
b

))
I
(
A∗ajz

t−1
a

)

+ i
∑
j

Aaj

(
∂ηI

∂x

(
θt−1j +

∑
b

A∗bjz
t−1
b

))
R
(
A∗ajz

t−1
a

)

+ i
∑
j

Aaj

(
∂ηI

∂y

(
θt−1j +

∑
b

A∗bjz
t−1
b

))
I
(
A∗ajz

t−1
a

)
for a = 1, 2, . . . , n

5: t = t+ 1

6:

τ̂ t =
τ̂ t−1

δ
<
∣∣∣∣∣∣∂ηR

∂x

(
Ahzt−1 + θ̂

t−1)
+

∂ηR

∂y

(
Ahzt−1 + θ̂

t−1)
+ i

∂ηI

∂x

(
Ahzt−1 + θ̂

t−1)
+ i

∂ηI

∂y

(
Ahzt−1 + θ̂

t−1) ∣∣∣∣∣∣ >
τ̂ t =

√
N0 + (τ̂ t)2

7: end while
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3.4 Numerical Results

3.4.1 Problem Formalism

In this section, we will present some numerical results for analyzing the performance

of OMP, AMP and CAMP algorithms. For the simulation framework in Section

3.4.2, we first consider the “easiest” scenario for OMP, AMP, and CAMP, the noise-

free measurement vector with Gaussian sensing matrix A, and then plot the phase

transition curve for comparing the performance of all the algorithms.

Next we apply the tap-delayed line channel model (Figure 2.5) to estimate the

static channel taps, denoted by h = [h1, h2, . . . , hN ]
T . Pilot sequence is denoted by

x = [x1, x2, . . . , xN ], then, the received samples y = [y1, y2, . . . , yn]
T is the convolution

between x and h, expressed as⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1

y2

y3
...

yn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

xN xN−1 xN−2 . . . x1

x1 xN xN−1 . . . x2

x2 x1 xN . . . x3

...
...

...
. . .

...

xN−1 xn−2 xn−3 . . . xn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

h1

h2

h3

...

hN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
+w (3.41)

that is,

y = A · h+w (3.42)

where w = [w1, w2, . . . , wn]
T is the Gaussian noise vector. In this problem setup, the

sensing matrix A is a shifted-orthogonal pilot matrix such that each row of A is a

shifted pilot sequence. To construct a nearly random matrix A, we choose the Zadoff-

Chu sequence as pilot signals which has very low autocorrelation [37]. Then phase

transition curves are plotted with pilot shifting matrix A and Rayleigh distributed

channel taps in different noise levels.

In the following section 3.4.3, we tested the MSE performance of all the sparse

estimation algorithms in OFDM setup with comparison to different bounds for dif-

ferent SNR levels. We follow the problem setup in [19]. The received samples in the

frequency domain is

Y = HX +W (3.43)

where Y = [Y0, Y1, ..., YN−1]T is the received OFDM symbols,X = [X0, X1, ..., XN−1]T

is the transmitted OFDM symbols, and W = [W0,W1, ...,WN−1]T is the Gaussian
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noise. Matrix H is defined to be a N×N diagonal matrix containing the components

diag(H) = [H0, H1, ..., HN−1], which is the DFT of h (Severe ICI may cause the chan-

nel matrix to be band-diagonal, this effect can also be included). Assume the indexes

of pilot symbols are p = [p1, p2, . . . , pn], then the received symbols corresponding to

the pilot sub-carriers’ frequencies are

Y p = HXp +W p (3.44)

where Y p = [Yp1 , Yp2 , ..., Ypn ]
T , Xp = [Xp1 , Xp2 , ..., Xpn ]

T . The pilot density is defined

as δ = n
N
. To make the channel coefficients hl, l = 0, ..., L− 1 appear in time domain,

where L is the number of discrete channel taps and in the simulations we set L = N ,

let us define D to be an N × L N -point DFT matrix with elements Dk,l = e−j2πl
k
N .

Hence Hk,l =
∑L−1

l=0 Dk,lhl. We also define a matrix diag(Cp) = Xp and obtain

HXp = CpDph (3.45)

where Dp is a partial DFT matrix composed of rows in D with indexes p. Then, for

processing both pilots and received observations in the frequency domain, the sensing

matrix A can be written as A = CpDp. At last we can obtain the compressed sensing

formula in OFDM setup as

Y p = Ah+W p (3.46)

The pilot sub-carriers Xp is set to be unit one in the simulation, then the sensing

matrix A = Dp is just a partial DFT matrix. As stated in [19] and analyzed in [38], a

uniformly-spaced pilot sub-carriers results to the incoherence of A (see Equation 3.5)

being one and this implies that no sparse signal recovery is possible. For this reason,

we set pilot sub-carriers randomly-spaced and it also shows good performance in the

simulation in Section 3.4.3.

3.4.2 Phase Transition

Static Real-Valued Channel Estimation

We first obtain the phase transition curve for noise-free measurements with Gaussian

sensing matrix A as a benchmark, then replace A with pilot-shifting matrix. The

simulation parameters are selected as followings:
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1. Consider 100 equispaced values of δ and ρ both between 0.1 and 1.

2. For each (δ, ρ) pair, calculate the number of measurements n = Nδ, and the

number of nonzero channel taps k = ρn, and then make 100 trials.

3. Generate N = 1000 discrete channel taps h with k nonzero elements in random

position.

4. In each trial, set the MSE tolerance as 10−4 and the number of iteration as

1000. A trial is successful if the MSE is lower than the tolerance.

5. For each (δ, ρ) pair, calculate the success rate, and for a fixed value of δ, find

the largest ρ that makes the success rate larger than 0.5.

Note that the success rate 0.5 is a standard choice used in references [10, 27], and

it simply means that we can possibly recover the sparse vector when the (δ, ρ) pair

is above the phase transition curve. We consider two sparse channel vectors for

comparison between OMP and AMP with Gaussian sensing matrix, and one is with

Rayleigh distributed nonzero entries and another is with nonzero entries in {−1, 1}.
Figure 3.3 shows the phase transition curves for real sparse vector.
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(b) Rayleigh distributed nonzero entries

Figure 3.3: Phase transition curves of AMP and OMP algorithms for real sparse
vector with Gaussian sensing matrix. MSE tolerance for a successful trial is 10−4.

Each phase transition curve partitioned the δ − ρ plane into two regions. The

region below the curve is the successful region where the algorithms can recovery
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the signal with a specific tolerance of MSE, and the region above the curve is where

the algorithms fail. For example, in Figure 3.3(a), when δ = 0.6, the sparsity level

that AMP can tolerance is about ρ = 0.4, which means that the algorithm can re-

cover the signal with ρδ = 0.24 percentage nonzero elements with success probability

larger than 0.5. Above this percentage, AMP will fail with probability larger than

0.5. Phase transition gives us a good guidance for setting the under-sampling rate

in a communication system. It is important to note that AMP has the same phase

transition for those two distribution of nonzero elements while OMP has a bad per-

formance when nonzero entries in {−1, 1}. Actually, the performance of AMP has

been rigorously proved that it is not influenced by the distribution of sparse vectors

[33]. For OMP, it suffers from recovering the nonzero entries with equivalent power

because at each iteration, there may be two columns ofA that can be chosen since the

products between residual and those two columns of A could be the same. Therefore,

OMP has the possibility to pick a wrong column at some iteration.

Gaussian sensing matrix is the ideal case for AMP and OMP, however, it cannot be

realized in practice. Therefore, we replace the Gaussian matrix A with pilot-shifting

matrix, and set the MSE tolerance to 10−3. Results are shown in Figure 3.4. Here,

we only implemented Rayleigh distributed nonzero channel taps since it is close to

the reality.
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Figure 3.4: Phase transition curves of AMP and OMP algorithms for real sparse
vector with pilot-shifting sensing matrix. MSE tolerance for a successful trial is 10−3.

We find that even the pilot sequence has very low autocorrelation, however, it does
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not suffice the low correlations between the columns of sensing matrix A, and this

leads to the worse performance of AMP and OMP than implementing the Gaussian

matrix, especially for the small δ. Note that for δ < 0.4, the sparsity level for AMP

that can reach is nearly zero, which means at most of the time AMP cannot work in

this case.

Static Complex-Valued Channel Estimation

For the complex case, we follow the same simulation steps and parameter settings

as for the real case. Both channel taps and pilot sequence are complex numbers.

Figure 3.5 presents the phase transition curve for AMP and OMP algorithm in com-

plex number setting with Gaussian sensing matrix and pilot-shifting sensing matrix,

respectively .
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(a) Gaussian sensing matrix

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
δ

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ

OMP
AMP

(b) Pilot-shifting sensing matrix

Figure 3.5: Phase transition curves of CAMP and OMP algorithms for complex sparse
vector with Gaussian sensing matrix. The nonzero elements are Rayleigh distributed,
and MSE tolerance for a successful trial is 10−4 for Gaussian sensing matrix and 10−3

for pilot-shifting matrix.

It is same for complex numbers that when the sensing matrix is the pilot-shifting

matrix, both CAMP and OMP have bad performances for small under-sampling val-

ues. To partially compensate for this, for CAMP, we add an artificial random part

to the sensing matrix A in the estimation procedure in the CAMP algorithm. This

artificial random part is a Gaussian matrix with variance a2 = 10−8, and we find

that in the simulation it can improve the convergence of CAMP algorithm. However,
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to reach the performance of the Gaussian matrix, a better orthogonal pilot sequence

with low autocorrelation is needed.

In the OFDM setup (see Section 3.4.1), the sensing matrix is a partial DFT matrix

and we simulated phase transition curves in this scenario. The results are in Figure

3.8.
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Figure 3.6: Phase transition curves of CAMP and OMP algorithms for complex sparse
vector with partial DFT sensing matrix in OFDM setup. The nonzero elements are
Rayleigh distributed, and MSE tolerance for a successful trial is 10−4.

Comparing Figure 3.8 and Figure 3.5(a), we can notice that partial DFT sensing

matrix has almost the same result as Gaussian sensing matrix, and in both cases, OMP

is a better choice for channel estimation. In the following section, we will present more

detail about comparison between CAMP and OMP algorithm in OFDM setup.

3.4.3 MSE Performance of Static Channel Estimation in OFDM

Systems

To obtain the MSE versus SNR curve in the OFDM setup, we implemented the

parameter setting as following:

1. Generate the exactly sparse Rayleigh distributed channel with L = N = 100

taps and the number of nonzero taps is s = 12.

2. Construct the OFDM sensing matrixA = CpDp with unit one pilot sub-carriers

and randomly position vector p. The number of pilot sub-carriers is Np = δN ,

where δ is the pilot density. Matrix A is of size Np ×N .



53

3. Choose the candidate pilot densities δ = [30%, 40%, 50%, 60%, 70%, 80%] for

simulations. For each δ, we run all the estimation algorithms for 104 trials for

each SNR, and then calculate the MSE averaging over all the trials and nonzero

channel taps.

We choose the OMP algorithm with RDR stopping criteria, denoted by “OMP-

RDR”. Other different bounds are computed as following based on the technical report

[39]:

1. Least Squares (LS): It minimizes the squared measurement error and its solution

is

ĥLS = argmin
h

||Y p −Ah||2

= (AhA)−1AY p (3.47)

2. Oracle Estimator: This estimator assume that it knows the priori information

about the position of nonzero channel taps, denoted by l = [l1, l2, . . . , ls]. Fol-

lowing the LS estimator but applying the sub-matrix of A with column indexes

l, its formula is

ĥORL = (Ah
lAl)

−1AlY p (3.48)

3. The Cramer-Rao Lower Bound (CRLB): The CRLB indicates that the variance

of the minimum variance unbiased (MVU) estimator is not smaller than the

inverse of the Fisher Information. For a linear model as presented in Equation

3.46 but with matrix Al, the CRLB is derived in [40, Section 4.3],

Cĥ � N0(A
h
lAl)

−1 (3.49)

Then the MSE lower bound for nonzero channel taps is the mean of the diagonal

elements in Cĥ in columns l, expressed as

MSECRLB =

∑
diag(Cĥ)

Np

(3.50)

4. Matched Filter (MF) Estimator for Exactly Determined System: In the exactly

determined system, the sensing matrix A is compose of 100% pilot sub-carriers,



54

therefore, A becomes a DFT matrix D and is orthonormal, i.e. DhD = I. Then

the MF estimator is

ĥMF = DhY MF (3.51)

where Y MF = Dh +W . The LS estimator for the exactly determined system

is the same because of the orthonormality of matrix D.

5. The CRLB for Exactly Determined System: It has the same formula as Equation

3.49 with replacing the matrix A with the orthonormal DFT matrix.

The curves of OMP, LS and lower bounds are formulated in the report [39], and

we formulated CAMP for comparison. Figure 4.6(a) shows that OMP and CAMP

has a relatively large error floor due to the insufficient pilot density 30%, and the gap

between the lower bounds for the underdetermined and exactly determined system

is around 6dB. When the pilot density reaches 50%, the performance of OMP and

CAMP is almost near the lower bounds for under-determined system, and for pilot

density greater than 50%, the MSE improvement of OMP and CAMP is less than

2dB. This implies that we can reach almost the same MSE performance with much

less pilot densities, and larger data rate.

For comparison between OMP and CAMP, Figure 4.6 exhibits that OMP is reason-

able choice for fast, powerful, and simple sparse estimation algorithm to implement.

CAMP can also be implemented for severe noise scenarios.

3.4.4 The Impact of Filtering and Resolution on Static Channel

Estimation in OFDM Systems

The results in this section is a part of work in [19]. In this paper, we have studied

the influence of roll-off factor β of transmitter-receiver filter (see Figure 2.4) and data

rate 1
T

on the BER performance of sparse channel estimation algorithms, where T

is OFDM sample duration. The main result is that a high filtering bandwidth is

suggested to preserve the sparsity of the analog channel impulse response and then

benefit sparse estimation algorithms. This result is motivated by the super-resolution

theory in [41] that the necessary and sufficient condition for unique recovery of the

analog object with l1 minimization is:

τmin � 4

B
(3.52)
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Figure 3.7: MSE performance of OMP and CAMP in OFDM setup with com-
parison to different lower bounds. MSE curves are plotted for pilot density δ =
[30%, 40%, 50%, 60%, 70%, 80%] respectively. The original channel taps are Rayleigh-
distributed and have 100 taps with 12 nonzero elements. MSE is averaged over all
the non-zero channel taps.
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where τmin is the relative minimum delay and B = 1+β
T

is the system bandwidth.

Through extensive experiments, we have found that a compact transmitter-receiver

filter is crucial to the performance of channel estimation and β = 1 is a reasonable

option since the filters have the smallest side-lobes in the time domain in this case.

We interpreted the results in [19] (see figure 3 in this paper) in a perspective of

phase transition, and explored what combination of β and 1
T
gives us the most sparse

channel. The result is in Figure 3.8, and experiment details can be found in [19].
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Figure 3.8: Phase transition curve of OMP-RT algorithm for static channel estimation
in OFDM system. The BER thresholding is 10−3 and τmin = 0.1ms. We have tested
three values of δ = [0.25, 0.5, 0.75] and the values of ρ are found for each combination
of β and 1

T
by computing the number of channel taps whose amplitudes are above

the noise variance.

We have run OMP-RT algorithm for sparse channel estimation in OFDM system

with pilot density δ = [0.25, 0.5, 0.75] and obtain its BER performances for each value

of δ. With setting BER thresholding as 10−3, we tested the sparsity level of discrete-

time channel taps for 12 combinations of β = [0, 0.5, 1] and 1
T
= [5kHz, 10kHz, 20kHz,

40kHz].

For pilot density δ = 0.25, there are only 4 combinations of β and 1
T

that can

reach BER = 10−3. Among those 4 cases, the discrete channel is the most sparse

when 1
T
= 40kHz and β = 1. For other δ values, we have the same results. As δ goes

higher, we can see that OMP-RT is successful for more cases since the algorithm can

tolerate more dominant channel taps with more measurements. It is important to note
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that for each pair of δ and 1
T
, the case where β = 1 always give us the channel with

the highest sparsity level and the “easiest” channel for sparse estimation algorithms.

We cannot even find a point with β = 0 in this figure because in this scenario, the

number of dominant channel taps is too much to make OMP-RT algorithm success

with BER thresholding equal to 10−3. On the other hand, we can also find that the

higher date 1
T
we have, the more sparse channel we get.

Hence, we conclude that a transmitter-receiver filter with β = 1 can give us a

relatively more sparse channel to benefit sparse channel estimation algorithms, and

higher date rate is required with combination of β to satisfy the super-resolution

theory.



Chapter 4

Sparse Channel Tracking

4.1 Introduction

In contrast to the simulations in Chapter 3, the time-varying UWA channel estimation

will be considered. The speed of the channel variation can be parametrized by the

spreading factor τmax

Tcoh
(see Section 2.3), and if it is larger than 1, then it means that

the channels are over-spread and vary rapidly. In a fast varying channel environment,

only a single carrier communication system is feasible to implement since the Doppler

spread would lead to severe ICI in a multi-carrier system. We explore the window-

based tracking method in this scenario, which is based on reference [5] but we apply

the RLS adaptive filter as a performance benchmark.

For communicating via a mildly varying channel with a multi-carrier system, the

Doppler effect still needs to be considered. For compensating the Doppler shift due

to the motion of transmitters and receivers, a popular method is to first resample

the received signals and then compensate for the estimated residual Doppler shift

[42]. On the other hand, if the transmission system is OFDM, after the Doppler shift

compensation, the ICI caused by the Doppler spread will result to a mixed channel

frequency response matrix H that is no longer diagonal as expressed in Equation 3.43,

and further, it will lead to higher errors in the symbol detection process. To solve

this problem, some authors considered the banded diagonal structure of the mixed

channel matrix H and introduced more complex receiving process and equalization

algorithms [43, 44, 26, 45]. Experiments were also implemented in those papers to

test how many banded diagonal elements of H to need be considered sufficient.

Different from the approaches mentioned above, we assume that in an OFDM

system the channel taps keep constant during each OFDM symbol. Then we apply

the Kalman filter to sequentially track the channel symbol by symbol with a dynamic

state model being constructed in the first two OFDM symbols. At the receiver part,

the channel frequency response matrix H is still diagonal. We simulated the BER

58
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performance for different pilot densities at different time-varying levels of the channel

which is measured by the shape parameter α of the exponential form Doppler spectra

(see Section 2.1.3), and we analyzed how much channel variation is tolerable for

OFDM system. The Kalman filter applied is sparse-aided, that is, it only tracks the

channel taps that have significant power. This technique has been used in [11], but

we applied a different problem setup whose detail is in 4.3. The results of the channel

estimations in the first two OFDM head symbols will obtain the information about

the position of the significant channel taps.

In the next Section 4.2, the window-based tracking method will be introduced.

The main idea is that we assume the channel taps slowly vary during a short time

interval and estimate the channel in each time interval. OMP, LS, and RLS algorithms

will be implemented.

The following Section 4.3 will describe the channel tracking mechanism in an

OFDM system, and Kalman filter will be introduced. OMP, LS, and RLS will also

be compared for the BER performance.

4.2 Channel Tracking in Single Carrier Communication System

4.2.1 Window-Based Channel Tracking

We apply the basic channel model stated in Section 2.1.3 with each analog path

generated by the SOS model and each channel tap in the discrete domain is obtained

after the transmitter and receiver filtering, denoted by h = [h1, h2, . . . , hN ]
T . Consider

the tapped-delay line channel model, and the time-varying channel taps are denoted

by hl[t] which represents the value of the lth channel tap at the sampling time t.

Both subscripts are integers. In the discrete time domain, the received signals y =

[y1, y2, · · · , yN ]T can be expressed as

y1 = h1[N ]xN + h2[N − 1]xN−1 + h3[N − 2]xN−2 · · ·+ hN [1]x1 + w1

y2 = h1[N + 1]x1 + h2[N ]xN + h3[N − 1]xN−1 + · · ·+ hN [2]x2 + w2

...

yn = h1[N + n]xn−1 + h2[N + n− 1]xn−2 + h3[N + n− 2]xn−3 + · · ·+ hN [n]xn + wn

...

(4.1)
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where x = [x1, x2, . . . , xN ] is the Zadoff-chu pilot sequence and w = [w1, w2, . . . , wN ]

is the Gaussian noise. We can compare the Equation 4.1 with Equation 3.41 and it is

easy to see that the received signals are no longer the convolution between the channel

taps and pilot sequences due to the changing of the channel taps. To estimate the

channel taps h at each time sample with knowing x and y, we stack W successively

received samples or equivalently W successive equations. Here W is the size of the

observation window. The window is slid by one sample each time and the channel

estimation algorithms are conducted within each window. For example, to estimate

the channel taps at first sampling time, we stack the first W equations, and assume

that the channel taps within the first window remain constant. That is,{
h1[N ], h1[N + 1], ..., h1[N +W ]

} ≈ h̃1{
h2[N − 1], h2[N ], ..., h2[N +W − 1]

} ≈ h̃2

...{
hN [1], hN [2], ..., hN [W ]

} ≈ h̃N

(4.2)

and we use h̃1, h̃2, · · · , h̃N to represent the approximate contant channel taps in the

first window. It is obvious that the smaller the size of the window we choose, the

more accurate the estimation results.

Now, taking an example of the estimation in the first window, stacking the first

W equations of 4.1, we rewrite them in matrix formula as

⎡
⎢⎢⎢⎢⎢⎣
y1

y2
...

yW

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

xN xN−1 xN−2 . . . x1

x1 xN xN−1 . . . x2

x2 x1 xN . . . x3

...
...

...
. . .

...

xN−1 xW−2 xW−3 . . . xW

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

h̃1

h̃2

h̃3

...

h̃N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
+w + v (4.3)

That is,

y1,W = A1,W · h̃+w + v (4.4)

Here y1,W represents the first window measurement vector of size W × 1, A1,W is

the W × N measurement matrix in the first window, h̃ is a N × 1 vector that need

to be estimated and v is the noise due to the varying channel taps averaging within

the window. Similarly, the measurement vector in the second window would be
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y2,W+1 = [y2, y3, . . . , yW+1]
T , and in the third window y3,W+2 = [y3, y4, . . . , yW+2]

T ,

and so on.

Now the compressed sensing formula is constructed in Equation 4.4, and the sparse

estimation algorithms (OMP, AMP and CAMP) can be implemented for each window.

Let δ = W
N

and ρ = k
W

denote the undersampling parameter and the sparsity param-

eter, where k is the approximate number of non-zero elements in h̃. The estimation

within each window is actually a trade-off between the window size and the success

rate of sparse estimation algorithms. For better performance of those algorithms, we

expect large window size, however, it could lead to less accurate assumption of h̃. For

rapid time-varying channel, the window size will be much smaller, as a consequence,

the sparse estimation algorithms could fail because of insufficient data to operate.

Therefore, we apply the RLS adaptive filter to capture the time-varying behavior of

the channel.

4.2.2 Recursive Least Squares (RLS) Algorithm

RLS algorithm is also known as the sequential least squares. Different from the

classical least squares (see Equation 3.47) which obtain the solution of h using all

the measurements y, it updates the estimate of h with the new incoming received

sample. This procedure avoids solving the linear equation 3.47 at each sampling

time and therefore it decreased the computation complexity with avoiding the matrix

inversion.

The motivation of RLS is to solve the exponential weighted least squares problem

ĥLS = argmin
h̃

n∑
i

λn−i (y[i]− ŷ[i])2 (4.5)

where ŷ = A · ĥLS is the estimated received samples within each window. We have

omitted the subscript window index for convenience. We need to find the solution

that minimizes the weighted measurement errors with applying the weighting factor

or forgetting factor λ(0 < λ < 1). In this way we can put more weights on the new

incoming data and reduce the influence of old data, and the smaller λ we have, the

faster the algorithm “forgets” the old data.

The RLS algorithm iterates through two main steps, estimator update and co-

variance update. Following the derivation in reference [46], they are summarized in
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Algorithm 4.

Algorithm 4 Recursive Least Squares (RLS)

Input:

A scaler y[n] as the current received sample

A scaler λ as the forgetting factor

A N × 1 vetor x[n] as the current transmitted pilot signals

A N × 1 vector h[−1] as the initialization of estimate

A N × N diagonal matrix P[−1] = αI as the initialization of covariance matrix

of the estimate

Output:

An estimate 1×N vector ĥ at each sampling time

1: Initialization: n = 0

2: while n ≤ Total number of samples do

3: K[n] = P[n−1]x∗[n]
λ+xT [n]P[n−1]x∗[n] (Gain calculation)

4: ĥ[n] = ĥ[n− 1] +K[n]
(
y[n]− xT [n]ĥ[n− 1]

)
(Estimator update)

5: P[n] =
(
I−K[n]xT [n]

)
λ−1P[n− 1] (Covariance update)

6: n = n+ 1

7: end while

Here, the index n represents the current discrete sampling time. The estimator

update is the summation of the previous estimate and a correction term. The cor-

rection term is computed with the current received sample and a gain vector which

represents our confidence in the new data. If the forgetting factor λ is large, then

the gain vector will be small and therefore the estimator will be updated with less

correction. The covariance matrix P[n − 1] is also the factor that can influence the

gain vector. If P[n − 1] is large, which means we do not have much confidence on

the previous estimate, then the gain vector will be large and as a consequence, the

estimator update step will apply larger correction term.

In the simulation, we initialize ĥ[−1] with the OMP estimation results in the first

10 windows. Hence, the value of α in the initialization of covariance matrix P[−1]

can be chosen with a relatively small value (∼ 10−2) since we did not start RLS with

all-zero vector and we have some confidence on ĥ[−1]. However, to minimize the

biased effect we could still choose large α, the RLS will work as the same.
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4.2.3 Numerical Results

We compare the MSE performance of each algorithm averaging over time and the

simulation steps are as following:

1. Generate the time-varying channel taps as stated in Section 2.1.3. The shape

parameter α is to control the channel varying speed. All the other parameter

settings are the same as the example in Section 2.1.3. The maximum delay

length (the number of channel taps to estimate) is denoted by Lmax.

2. Specify the window size W = δLmax.

3. For initializing RLS algorithms, we apply the OMP estimate results as ĥ[−1] .

4. For each SNR value, run the algorithms in each window and then calculate the

averaged MSE for only nonzero channel taps. The threshold to determine the

nonzero taps is 10−4.

We implemented two methods. One is to track all the channel taps, and the other

is to only track the dominant channel taps and we call this method as “sparse-aided”

tracking. For the sparse-aided tracking, in the first 10 windows, we use OMP to

estimate the positions of the dominant channel taps with window size same as the

number of the channel taps. Then, we decreased the window size and the number

of rows of the pilot-shifting sensing matrix also shrank. Let us denote the position

of dominant taps as l1, l2, ..., ls whose amplitudes are above 10−4, and we find the

smallest window size N1 which satisfies mN1 
= li − lj, where i, j ∈ (1, 2, ..., s) and

m is a integer. Then, we sent the pilot sequence with period N1, and therefore the

pilot-shifting matrix A is of size N1 ×N . In this way, the columns of matrix A with

indexes l1, l2, ..., ls have zero autocorrelation. In simulations, we also tested some

window sizes smaller than N1 and we will see that the window size will not influence

the results of RLS algorithm but have a significant impact on OMP.

Fig. 4.1 shows the tracking behavior of the OMP and RLS algorithms of an instan-

taneous run when SNR = 40 dB, α = 5, and δ = 1. This is the all-tap tracking method

and we choose three candidate channel taps to compare the results. In Fig. 4.1(a),

we plot the time evolution of the first channel tap that has large amplitude relative

to other ones and we can see that both algorithms can track it very well. Fig. 4.1(b)
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Figure 4.1: Tracking behaviors of RLS and OMP algorithms on time-varying channel
in single-carrier communication system with SNR = 40 dB, α = 5 and δ = 1. The
number of discrete channel taps is 260 and the number of discrete time samples is
2000. The x-axis in all the subfigures is the sample index. Figure (a) shows the
time evolution of the original first channel tap and RLS, OMP estimated results, and
figure (b) is the corresponding MSE curve. Figure (c) and (d) are the 48th and 142th
channel tap tracking performance respectively.

shows the tracking MSE over the sampling time. Fig. 4.1(c) presents the time evolu-

tion of a relatively small channel tap, and we can see that both algorithms are still

able to track it. However, in Fig. 4.1(d) we focus on a channel tap which is nearly

equal to zero, and we find that RLS algorithm fails to estimate the amplitude and

OMP estimates it as a zero channel tap, which is why we cannot see the OMP curve

in the figure.
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To test the tracking performance of RLS, OMP and LS (as a benchmark) algo-

rithms with different noise levels, we plot the MSE curve versus SNR with different

values of α. We compute the average MSE over all the dominant channel taps whose

amplitudes are above 10−4. If we computed MSE over all the taps, we will have

smaller MSE results. We first compare the results between all-tap tracking method

and sparse-aided tracking methods (see Figure 4.2). For the sparse-aided tracking

method, the size of matrix A shrinks and it gives benefits to all the algorithms. How-

ever, when δ = 0.12 and the number of channel taps is Lmax = 260, then the window

size is W = δLmax ≈ 31, therefore, comparing with the number of dominant channel

taps being 50 approximately in the simulation, the compressed sensing problem is

still an under-determined problem. As a consequence, we can see that in Figure 4.2

there is a large gap between the performance of RLS and the other two estimation

algorithms (OMP and LS).
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(b) Sparse-aided tracking

Figure 4.2: Comparison of MSE performance between all-tap tracking method and
sparse-aided tracking method when α = 0.1 and δ = 0.12. Here, the number of
channel taps is Lmax = 260 and window size is calculated by W = δLmax ≈ 31. In
both subfigures, MSE curves are plotted for RLS, OMP and LS algorithms over SNR
value between -4dB and 40dB.

In order to test the performance of sparse-aided tracking method further, we

plotted MSE curves with different window sizes (δ ∈ [0.12, 0.2, 0.39]) and different

values of α (α ∈ [0.1, 1, 5]) in Figure 4.3. Figure 4.2 (b) is also included in the

subfigures for convenience.

We can notice that RLS algorithm barely influenced by the size of tracking window
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while OMP and LS suffer from the under-determinant formalism when δ ∈ [0.12, 0.2].

Furthermore, from the phase transition curve in Section 3.4.2, we can see that OMP

has small probability to recover the channel tap when δ is small and sensing matrix

A is a pilot shifting matrix. This is also another important reason why OMP has

a bad performance for tracking the channel when the window size is much smaller

than the number of the discrete channel taps. For any α value, RLS has the best

MSE performance, however, it still has some penalty when α > 1 corresponding a

fast varying channel. This is because even when δ = 0.12 and the window size is

small, the channel tap variation inside each window cannot be ignored.
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Figure 4.3: Comparison of MSE performances of algorithms RLS, OMP and LS for
time-varying channel tracking. MSE is computed over all dominant channel taps with
applying spares-aided tracking method.
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4.3 Channel Tracking in OFDM Communication System

4.3.1 Tracking Mechanism

Different from the previous section where the channel taps are updated for each

received sample, we consider about the estimation updated for each OFDM symbol

duration in this section. Assume that there are L channel taps and the number of

OFDM subcarriers is N = L, and the OFDM measurement model is stated in Section

3.4.1. We rewrite it below for convenience

Y p = Ah+W p (4.6)

where Y p is the received OFDM symbols corresponding to the pilot tones and A =

CpDp. Here matrix Dp is the partial DFT matrix and Cp is a diagonal matrix with

pilot symbols Xp on the diagonal elements, that is, diag(Cp) = Xp. This model

is correct for the static channel case, however, for the time-varying channels, before

the fast Fourier transform (FFT) receiving process, the received samples in the time

domain is calculated by Equation 4.1, expressed as

⎡
⎢⎢⎢⎢⎢⎣
y1

y2
...

yN

⎤
⎥⎥⎥⎥⎥⎦ = diag

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎣

xN xN−1 . . . x1

x1 xN . . . x2

...
...

. . .
...

xN−1 xn−2 . . . xn

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
DhCD

·

⎡
⎢⎢⎢⎢⎢⎣

h1[N ] h1[N + 1] . . . h1[2N ]

h2[N − 1] h2[N ] . . . h2[2N − 1]
...

...
. . .

...

hN [1] hN [2] . . . hN [N ]

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
hfull

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+w

(4.7)

where x1, x2, . . . , xN is the inverse DFT (IDFT) vector of pilot symbols X. After

implementing DFT to Equation 4.7, we obtain the received OFDM symbols in the

time-varying channel scenario as

Y = D · diag (DhCDhfull +w
)

(4.8)

Here, C is the diagonal matrix with all the pilot symbols on its diagonal term, the

matrix D and Dh stand for the full DFT matrix and full IDFT matrix respectively,

and because of the orthogonality of DFT matrix, the IDFT matrix is just the Her-

mitian transpose of the DFT matrix. Comparing Equation 4.8 with Equation 4.6,
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we can see that the OFDM measurement model for time-varying channels can not be

simply expressed by a linear equation and the linearity of Equation 4.8 is destructed

by the time-varying behavior of the channel taps.

We implemented the tracking algorithms in each OFDM symbol duration and

made an assumption that the channel taps stay constant during each OFDM symbol

time, that is, the elements on each row of hfull are approximately the same. For

all the tracking and estimation techniques, only one estimate of the channel taps

will be obtained in each OFDM symbol duration, and this is main difference from

the window-based tracking methods in the previous section. In this way, we can

transfer the non-linear Equation 4.8 into the linear model 4.6 in each OFDM symbol

duration. This is only valid for mildly varying channel, and to be specific, if we denote

the coherence time of the channel as Tcoh and the OFDM sampling duration is Ts,

then NTs � Tcoh need to be satisfied. It means that the OFDM symbol duration

need to be much smaller than channel coherence time. As stated in Section 2.3, in

some rapidly varying channels, we can not adjust the number of OFDM subcarriers

since in those case N will be a negative number if NTs � Tcoh is satisfied.

With the assumption mentioned above, we use the first two OFDM symbols to

obtain the a priori information of the channels. We follow the constructions in [11].

Those two header symbols are composed of full pilot symbols with unit value. The

estimated channel taps in the header symbols are used to acquire a first-order autore-

gressive (AR-1) model to capture the dynamic evolution of the channel taps. Note

that only significant channel taps will be considered for building the AR-1 model.

The following OFDM frames are payload frame composed of both data symbols and

pilot symbols, and the Kalman filter will track the channel with the knowledge of the

AR-1 model coefficients. The sparse estimation algorithms will also be implemented

by solving the linear Equation 4.6. The percentage of pilot symbols in the payload

frames can influence the performance of the sparse estimation algorithm significantly,

however, the performance of the Kalman filter is mainly influenced by the accuracy

of the AR modeling. An example of OFDM packet is shown in Figure 4.4.
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Figure 4.4: An example of OFDM packet. The first two OFDM symbols contains
100% pilot symbols and do not transmit any message. The following OFDM frames
are payload frames composed of both pilot symbols and data symbols.

4.3.2 Autoregressive Modeling of Discrete Time-Varying Channel Taps

From paper [11], it has been found that the first order autoregressive model is sufficient

to track the dynamic evolution of the discrete channel taps, and the number of header

symbols needed is one more than the AR model order. Assume that there s significant

taps among all the L taps (s � L) with index l = [l1, l2, . . . , ls], then the AR-1 model

is expressed as

ĥli [n] = fliĥli [n− 1] + wli [n], i = 1, 2, . . . , s (4.9)

where the superscript n denotes the sample index representing the time evolution, fli

denotes the AR coefficient for lith channel tap, and wli [n] is the uncorrelated white

Gaussian noise with zero mean. With the estimation of channel taps ĥli in the first

two header symbols, the task now is to find fli and the noise variance σ2
wli

for each

channel tap. Finding the AR coefficients and model noise variance can be completed

by constructing Yule-Walker equation first [47, 48]. Therefore, first multiplying both

side of Equation 4.9 with the conjugate of ĥli [n− 1] and then taking the expectation

operator, we obtain

E

{
ĥli [n]ĥ

∗
li
[n− 1]

}
= fliE

{
ĥli [n− 1]ĥ∗li [n− 1]

}
+ E

{
wli [n]ĥ

∗
li
[n− 1]

}
(4.10)

where the left side of Equation 4.10 is the autocorrelation of hli with lag 1, and the

right side just is the autocorrelation with zero lag since the second term is zero due

to the uncorrelated noise. Therefore, we rewrite Equation 4.10 as

Rli [1] = fliRli [0] (4.11)
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where Rli stands for the autocorrelation function. Then the AR coefficient for lith

channel tap can be solved as

fli =
Rli [1]

Rli [0]
(4.12)

The modeling noise variance σ2
wli

can be computed similarly, and the expression is

σ2
wli

= E

{
wli [n]w

∗
li
[n]
}

= E

{(
ĥli [n]− fliĥli [n− 1]

)(
ĥ∗li [n]− f ∗liĥ

∗
li
[n− 1]

)}
= E

{
ĥli [n]ĥ

∗
li
[n]
}
− f ∗liE

{
ĥli [n]ĥ

∗
li
[n− 1]

}
− fliE

{
ĥli [n− 1]ĥ∗li [n]

}
+flif

∗
li
E

{
ĥli [n− 1]ĥ∗li [n− 1]

}
= Rli [0]− f ∗liRli [1]− fliR

∗
li
[1] + flif

∗
li
Rli [0]

= (1− |fli |2)Rli [0] (4.13)

where the last two step we substitute Rli [1] with fliRli [0] and apply the property that

Rli [0] is a real number.

To acquire the accurate value of Rli [0] and Rli [1], large ensemble estimation is

required. However, we use only two header OFDM symbols to obtain two realization

of channel taps at two consecutive OFDM symbol duration. To that end, Rli [0] and

Rli [1] are approximated as

Rli [0] ≈ ĥli [n]ĥ
∗
li
[n] + ĥli [n− 1]ĥ∗li [n− 1]

2
(4.14)

Rli [1] ≈ ĥli [n]ĥ
∗
li
[n− 1] (4.15)

In summary, we have obtained the AR-1 state model for formalize the dynamic

evolution of the discrete channel taps. Rewriting Equation 4.9 into matrix form, we

have

ĥl[n] = Fĥl[n− 1] +w[n] (4.16)

where ĥ[n] =
(
ĥl1 [n], ĥl2 [n], . . . , ĥls [n]

)T

, ŵ[n] = (ŵl1 [n], ŵl2 [n], . . . , ŵls [n])
T , and F

is a s× s diagonal matrix with the diagonal elements diag(F) = (fl1 , fl2 , . . . , fls).

4.3.3 Sparse-Aided Kalman Filter

The sparse-aided Kalman filter means that it only tracks the dominant channel taps

whose positions can be acquired in the first two header OFDM symbols. Hence, the
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OFDM measurment model becomes

Y p[n] ≈ Al[n]ĥl[n] + vp[n] (4.17)

where n is OFDM symbol index, and the sensing matrix Al is the submatrix of A in

the Equation 4.6 with columns l = [l1, l2, . . . , ls] included. It is of size Np × s, where

Np is number of pilot subcarriers and s is the number of dominant channel taps.

Similarly, hl is the averaged channel tap vector in each OFDM symbol duration with

only dominant channel taps included and it is of size s × 1. At last Y p denotes

the received OFDM symbol corresponding to the pilot tones and vp denotes the

measurement noise with zero-mean Gaussian distribution. This approximation is due

to the ignorance of the non-significant channel taps.

Now we can implement the standard Kalman filter [49] running on the state-space

formalism 4.16 and 4.17. There are mainly three steps in the Kalman filter recur-

sion, prediction, Kalman gain calculation and correction, respectively. The recursion

formulas are summarized in Algorithm 5.

In the prediction step, the AR-1 state model is applied to predict the channel taps

in the next iteration using the estimated channel taps in the current iteration, then

the prediction covariance matrix C[n|n − 1] and Kalman gain K[n] are computed.

Similar to the gain vector in the RLS algorithm, the larger Kalman gain indicates

that more correction is needed.

4.3.4 Numerical Results

For measuring the tracking performance of sparse-aided Kalman filter, we first simu-

lated the MSE performance in OFDM system with 12% pilot density in the payload

frame. For benchmark, we also implemented OMP, LS, and RLS for comparison.

Then we tried different channel variation level captured by the shape parameter

α = [0.1, 1, 5] to observe its influence on the tracking performance.

Figure 4.5 illustrates the tracking process of all the algorithms intuitively and 4.6

presents the MSE performance of dominant channel taps. In Figure 4.5, the bold green

curve represents the original time-varying channel tap and the time interval between

the successive points is the sampling time. All other curves are plotted according to

the OFDM symbol index, and each dot represents the estimated channel taps within
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Algorithm 5 Kalman Filter
Input:

A s× s matrix F as diagonal coefficient matrix

A Np × s matrix Al[n] as current measurement matrix or sensing matrix

A Np × 1 vector Y p[n] as current measurements

A s× s covariance matrix for process noise W = E
[
w[n]wh[n]

]
A Np ×Np covariance matrix for measurement noise V = E

[
vp[n]v

h
p[n]

]
Output:

An estimate s× 1 vector ĥl[n|n] in each OFDM symbol duration

1: Initialization: n = 0, ĥl[−1| − 1] = 0s×1,C[−1| − 1] = 0s×s

2: while n ≤ Total number of OFDM symbols do

3: ĥl[n|n− 1] = Fĥl[n− 1|n− 1] (Prediction)

4: C[n|n− 1] = FC[n− 1|n− 1]Fh +W (Minimum prediction covariance matrix)

5: K[n] = C[n|n− 1]Ah
l [n]

(
V +Al[n]C[n|n− 1]Ah

l [n]
)−1

(Kalman gain matrix)

6: ĥl[n|n] = ĥl[n|n− 1] +K[n]
(
Y p[n]−Al[n]ĥl[n|n− 1]

)
(Correction)

7: C[n|n] = (I−K[n]Al[n])C[n|n− 1] (Minimum covariance matrix)

8: n = n+ 1

9: end while

one OFDM. We plot the tracking performance started from the third OFDM symbol

since the first two header symbols are used for acquiring a priori information of the

channel. Note that the channel taps between the dots are assumed to be constant.

The number of discrete channel taps is L = 260 and same as the number of OFDM

subcarriers N = L, therefore, there are 260 channel tap samples between the dots.

We can see in Figure 4.6 that when α becomes larger and channel varies faster, only

Kalman filter is able to keep the approximately MSE level and has the least influence

of the time variation of the channel. RLS has a competitive performance compared

with Kalman filter when α is small, however, its performance can be degraded as α

being larger.

We also tested the bit error rate (BER) performance of all algorithms with 4-

QAM-modulated subcarriers transmitted with bandwidth B = 20 kHz and carrier

frequency f = 30 kHz. The pilot density in the payload frame we applied are [0.12,

0.16, 0.2, 0.39] respectively. The results are represented in Figure 4.7. We can see that
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Figure 4.5: Tracking performance of sparse-aided Kalman Filter compared with RLS,
OMP and LS for α = [0.1, 1, 5]. For (a), (b) and (c), an instantaneous run for all the
algorithm is implemented with SNR = 20dB and 12% pilot density in the payload
frame. “KF” is short of ‘Kalman Filter‘”.
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Figure 4.6: MSE for each dominant channel tap averaged over 96 OFDM symbols.
The performance of sparse-aided Kalman Filter are compared with RLS, OMP and
LS for α ∈ [0.1, 1, 5], SNR = 20 dB and 12% pilot density in the payload frame.
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for each value of α, the level of pilot density has very small impact on the performance

of sparse-aided Kalman filter, however, it influences OMP and LS significantly. Note

that the performances of all the algorithms stay almost unchanged when pilot density

in the payload frame is larger or equal than 0.2, and their performances are close.

However, when pilot density is smaller than 0.2, the non-tracking methods, OMP and

LS suffers. We can see that the tracking algorithms, Kalman filter and RLS, require

less pilot density and therefore increase the data rate. Furthermore, when α = 1, 5

corresponding to a fast varying channel, Kalman filter is the best option for lower bit

error rate, and RLS can only be competitive when α = 0.1 corresponding to a slowly

varying channel scenario.

However, observing the figures corresponding to α = 5, we can see that Kalman

filter also cannot be able to reach a lower BER for reliable communication. This

is due to the invalid assumption that the channels can be approximately constant

within OFDM symbol duration when α = 5. In this case, according to the Equation

2.23 and simulations in Section 2.3, large bandwidth is required to adjusting channel

coherence time within OFDM symbol duration.
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Figure 4.7: BER performance of sparse-aided Kalman filter (KF), RLS, OMP and LS
with 4-QAM modulation. For each value in α ∈ [0.1, 1, 5], uncoded BER curves are
simulated for pilot density (payload frame) ∈ [0.12, 0.16, 0.20, 0.39].



Chapter 5

Analysis

5.1 Analysis of Channel Types

Based on channel studies described in Chapter 2, we find that UWA channels show

different sparsity levels in different scenarios. In some cases, the channel can be very

sparse and easy for sparse estimation, but there are scenarios in which the channel is

dense and difficult for resolution and estimation.

For deep-water communication scenarios, the channels are usually sparse. Fig-

ures 2.12, 2.13, 2.16, demonstrate amplitude-delay profiles of such channels and we

can see that there are only a few channel taps. For some values of receiver depth, the

receiver could fall into a dead zone where no wave propagates according to Bellhop

propagation curves and then no channel taps are observed. In addition, for medium

and long range deep-water channels the channel taps are usually spaced far apart

from each other in the delay domain and the super-resolution condition is typically

fulfilled. The medium and long range deep-water channels may, however, be over-

spread because of the long propagation delay and the resulting long multi-path profile.

Even mild Doppler spread can cause the over-spread condition and only non-coherent

communication is feasible in this case. For short-range communication, we can often

see only one or two channel taps as shown in Figures 2.16 and 2.12. The amplitude-

delay profile is shorter and in those cases, the channels are usually under-spread and

may serve as a convenient medium for OFDM signaling.

For shallow-water scenarios, the channels are very different for the cases of hard

bottom and soft bottom. In hard bottom cases, a lot of bounces on the bottom and

surface may occur since the wave does bot lose much energy when reflected from the

bottom. This makes channel multi-path profile dense and hard to estimate, especially

for long-range communication (see Figure 2.14). For long range communications the

super-resolution condition is usually not fulfilled in this case due to the use of low

frequencies and lack of available bandwidth. Such cannels can also be over-spread.
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However, if we transmit signals over a short range and the high system bandwidth,

the channel can still be resolved (see Figure 2.15). Shallow-water channels with soft

bottom do not have long delay profiles since bottom bounces are quickly decaying.

Such channels are often under-spread in a long range communication due to mild

channel variation with low carrier frequency (see Figure 2.10).

Compared with channels discussed above, the Arctic channels may be the hardest

channels for communication. These channels are usually long-distance channels and

the long-range communications is not easy because of the significant transmission

loss due to the wave reflections on rough ice surface and bottom. In addition, the ice

surface and hard ice bottom will make the channel dense (see Figure 2.19).

Hence, we conclude that medium-range (1km-10km) deep-water channels and

long-range shallow-water channels (with soft bottom) maybe the best UWA chan-

nels for sparse estimation and use of OFDM systems.

5.2 Comparison between AMP and OMP Algorithms

In Chapter 3, we discussed the implementation of AMP and OMP algorithms for

static (snapshot) channel estimation. Based on the phase transition results, we can

see that each algorithm has its own advantages and disadvantages. AMP has been

proven to be unaffected by the distribution of non-zero channel tap entries [33], but

the performance of OMP can be degraded if the sparse entries have equal amplitudes

(see Figure 3.3). However, OMP is easier to be implement and it usually converges

faster.

We also considered channel estimation in two different settings. One is the time-

domain approach where the sensing matrix A is a pilot-shifting matrix, and the

other is the frequency-domain approach where A is a partial DFT matrix. In the

time-domain approach, the pilot sequence we used is the Zad-off Chu sequence and

it has very low autocorrelation. However, the performances of both algorithms are

degraded compared to the use of classic Gaussian sensing matrix (see Figure 3.4 and

3.5) which is typically for testing of compressed-sensing algorithms. The reason is

that pilot-shifting matrix does not have low cross-correlation between its columns,

thus the incoherence of the matrix [19] which is related to the number of nonzero

elements we can recover is at a relatively high level.
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With pilot-shifting sensing matrix, OMP outperforms AMP for sparse channel

cases in which the sparsity level δ < 0.4. For denser channels with δ > 0.4, how-

ever, AMP has better performance. This can give us an insight in which algorithm is

appropriate to apply depending on the channel scenario. For example, if we commu-

nicate via a long-range shallow-water channel with a hard bottom, from Section 2.3

we know that the channel is possibly dense; therefore we need more measurements for

channel estimation which means we would fall into a large δ region. Hence AMP may

be a better option. However if the channel is a deep-water channel which is usually

very sparse we would choose OMP.

The time domain approach discussed above is attractive for circumstances where

single-carrier communications is preferable. When the channel is significantly under-

spread and then the use of an OFDM communication system is preferable, and we

can apply the frequency domain approach. The estimation problem formalisms are

detailed in Section 3.4.1. The main advantage of the frequency domain approach

is that the sensing matrix A is a partial DFT matrix and the algorithms have the

same phase transition properties as with the Gaussian matrix (see Figure 3.8). This

is due to the orthogonality property between the columns of the DFT matrix. In

this case, OMP outperforms AMP for all values of under-sampling level δ. Moreover,

simulations in Section 3.4.3 show that OMP also has a better MSE performance than

AMP when SNR>4 and AMP may only be a good option when SNR is very low.

In summary, for a fast-varying channel which is close to be overspread we need the

time-domain approach where the matrix A is a pilot-shifting matrix. If this channel is

highly sparse, then OMP is recommended; otherwise, AMP would be a better option.

On the other hand, the frequency domain approach can be implemented when the

channel is under-spread and varies slower. In this case, the matrix A will be a partial

DFT matrix and OMP algorithm is a better option to apply, unless SNR is very low.

5.3 Comparison between Sparse Channel Tracking Methods

For dynamic channel estimation, we implemented different sparse-aided tracking

methods in Chapter 4. The first one is a window-based method in the time domain

and the other is a frequency domain tracking approach for OFDM systems.

Just as in analysis of time domain approach in Section 5.2, in the window-based
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tracking, the sensing matrix A in each window is a pilot-shifting matrix. The main

disadvantage of this technique is that we are not able to track denser channels

(ρ > 0.1) with small window size, based on the results of phase transition curves.

However, small window size may be necessary for a fast-varying channel. Further-

more, as we know for δ < 0.4, AMP cannot even operate. We have implemented and

compared RLS, OMP and LS algorithms for window-based tracking, and found that

RLS algorithm outperforms OMP significantly and it is only slightly influenced by

the channel variation level. For all the window sizes we tested, OMP and LS can only

reach the performance of RLS when δ = 0.39. Here we note that RLS is a tracker,

i.e., it implicitly makes use of information estimated from previous windows.

In the frequency domain tracking approach we have implemented Kalman filter,

RLS, OMP and LS algorithms and we found that Kalman filter is the most powerful

for all channel variation scenarios. Comparison between the algorithms show that

only RLS and Kalman filter are robust with respect to variation of the pilot density,

and this means that we can increase the data rate without much penalty with respect

to the BER. In our setup we make symbol-based updates for the Kalman filter but

consider realistic sample-to-sample channel variation. This is why we can see that

the Kalman filter performance is strongly degraded when α = 5 in Figure 4.7. In that

case the channel variation during one OFDM symbol cannot be ignored.

Hence, comparing the window-based tracking and frequency domain tracking,

we can see that RLS in the window-based method is the least influenced by the

channel variation. The main problem of using such a approach is that incorporation

of data transmission and equalization is not straightforward. On the contrary, when

Kalman filter in frequency domain tracking is used, the data detection and channel

equalization are easy to implement in OFDM systems, but the channel variation can

have strong impact on its performance. As a consequence, for a fast-varying channel

we may use the window-based tracking and for a slow-varying channel, the Kalman

filter is a good option for tracking in OFDM systems.



Chapter 6

Conclusion

In this thesis, first we have introduced a basic dynamic channel model incorporating

SOS model to generate the dynamic channel taps. Bellhop simulator is applied to

acquire the channel multi-path profiles as inputs to the basic dynamic channel model.

The speed of the channel variation is parameterized by a single value α, which is the

shape parameter of Doppler spectra of the channel. In Section 2.3, we have considered

a number of channel geometries and simulated the channels with different values of α.

We then drew conclusions about the sparseness of the channels in various scenarios,

super-resolution, and the feasibility of OFDM communication.

Then we have adapted two sparse estimation algorithms, OMP and AMP, for static

channel estimation. Different tuning methods and stopping criteria are proposed.

Step size and thresholding have been derived for the AMP technique. We made a

detailed comparison between the estimation algorithms in terms of the derived phase

transition curves and applications to various channel types.

For sparse channel tracking, we have implemented RLS algorithm for single carrier

communication system and have found that the sparse-aided tracking method have

better performances over all-tap tracking. RLS algorithm was also the best option

compared with OMP and LS in this case. In case of OFDM communication system,

we implemented sparse-aided Kalman filter as a benchmark. The Kalman filter takes

into account the statistics of the channel variation and its behavior is also influenced

by the accuracy of the AR-1 model of the channel variation. In our simulations,

we have found that the sparse-aided Kalman filter has the best BER performance

compared with OMP, LS and RLS, however, as the value of α grows, the assumption

that channels stay constant during OFDM symbol is not valid any more. We can see

some penalty of BER in the numerical results section.
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6.1 Future Work

Regarding channel modeling, sparse channel estimation and tracking, there are several

directions that we may consider for the future work:

1. Channel Modeling: We have introduced a basic dynamic channel model and only

single parameter of α is used to characterize the channel variation. However, in

the real world, different paths of the channel have different variation, therefore,

each path needs to be characterized by a different value of α. The variation

of channel tap positions should also be counted in the model. Moreover, The

Doppler shift needs to be considered in the model which will introduce the time

stretching effect of the transmit signal.

2. Sparse Channel Tracking: We have implemented several algorithms for tracking

the time-varying channel. However, in the time domain approach, only MSE

performance is tested. To verify its feasibility, how to insert data and do the

equalization need to be considered.
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