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Abstract

This thesis, based on an industry problem, looks at the job-shop scheduling problem

from a project planning and scheduling perspective. In the job-shop in question, a

client customer order or project involves multiple jobs, each job consisting of batches.

The job-shop has two types of resources, namely operators and machines and involves

generalized precedence relations arising from part routings. In addition, the job-shop

environment has other considerations such as project priority, alternative resources, and

partial resource usage.

An integer linear programming with binary variables is developed for the job-shop with

the above features in mind considering two objectives, with the minimization of total

weighted tardiness as the primary objective and minimization of weighted throughput

time for all projects as the secondary objective. This model can be used at two different

hierarchical production planning levels, namely for high level planning and detailed

scheduling simply by changing the time-scale of the model and passing the constraints of

a high level planning solution to the lower level detailed scheduling problem. The higher

level planning of the model is aimed at upper management in the job-shop who can use

it for aggregate purposes such as resource allocation, customer order promising, due-

date planning, and material procurement. On the other hand, the detailed scheduling

is targeted towards production managers and is used to develop detailed short-term

operation schedules.

The model is coded in Pulp, a linear/integer programming modeler written in Python,

which can call a variety of solvers. Several numerical experiments are run on example

problems of various sizes. The model was also solved using real data from the job-shop

to show how the model can be used flexibly for both planning and scheduling, while

meeting the functional requirements of the job-shop. The computational time to solve

the problem was reasonable and the solution time characteristics are presented.
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Chapter 1

Introduction

Project Management (PM) is the process and activity of planning, organizing, motivat-

ing, and controlling resources, procedures and protocols to achieve specific goals. One of

the vital issues of PM is the determination of the project schedule when the resources

required are limited which is referred to as Resource Constraint Project Scheduling

Problem (RCPSP). An example of resource-constrained project scheduling applied in

manufacturing systems is job-shop scheduling. The project completion time is governed

by the resource constraints and precedence relationships between the jobs within the

project.

In a typical job-shop environment, customers arrive dynamically with a request for an

order. The shop management and the customer negotiate the order specifications and

its delivery date. If the customer decides to place the order, it is entered to the shop

as a project with a specific due-date. In job-shop, it is customary to think of different

orders as projects. Prior to planning and detailed scheduling of a project, the specific

machining requirements are determined then the project is scheduled depending on the

due-date, availability of resources, and materials [25].

The Job Shop Scheduling Problem (JSSP) is one of the most complex problems in

scheduling and has been studied since the 1950s. A project consists of a number of jobs

to be performed according to a set of precedence relations. All jobs have a processing

time and usually require resources for their execution [6]. The aim of job-shop schedul-

ing is therefore to assign jobs to resources in order to optimize an objective function

such as minimization of total weighted tardiness or minimization of throughput time.

Late projects are subjected to a predefined penalty per unit of lateness depending on

the importance of the projects. Weighted tardiness is the sum of the tardiness of each

project multiplied by the associated penalty. Throughput time is the total time of all

1
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projects in the shop [21].

The JSSP is a very relevant problem in today’s competitive environment where manu-

facturing companies are very concerned about their ability to quote accurate due-dates,

organize efficient production, and ensure timely delivery. Projects must be delivered

according to promised due-dates to satisfy customer expectations. While the loss of

customer goodwill due to late delivery can be thought of as a penalty, penalties are

sometimes explicitly written into project contracts.

The JSSP has gained much attention from researchers over the last 6 decades and the

literature on the subject is vast. There are many different approaches to solve the

problem. Since the JSSP is NP-hard (non-deterministic polynomial-time hard), many

researchers have focused on feasibility and near-optimality. Since the JSSP needs to

be solved continuously and repeatedly, the speed of the solution algorithm is impor-

tant. The solution time (particularly in optimal approaches) depends on the network

complexity of the JSSP. According to [7], in a classic JSSP, network complexity is a

function of the number of jobs, the number of precedence relationships, the length of the

time horizon, and the proximity of due-dates (shorter due-dates lead to more difficulty

problems). Additional constraints and requirements such as batching could increase

the network complexity.

1.1 Thesis Objective

The purpose of this thesis is to develop a planning and scheduling solution for a tool

and die manufacturing company operating as a job-shop environment to improve its

productivity and increase customer satisfaction. As the company grows and the number

of employees continues to rise, it becomes more cumbersome for an individual to manage

orders manually and efficiently. In addition, the environment is dynamic and Make-To-

Order (MTO), which makes it even more difficult to predict and manage the workload

in the shop. As a consequence, production in the shop is in constant flux in order

to accommodate due-dates and priorities, which is one of the most difficult aspects of

managing projects through their entire life-cycle (from the projects entering time to the
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delivery time). The job-shop in question has the basic elements of the JSSP, namely,

multiple resource constraints and generalized precedence relations as well as several

requirements that go beyond the classic JSSP.

The objective of this thesis is to build a production scheduling system that considers

resource availability, order due-dates, and order priorities. The objectives considered in

this thesis are minimizing the total weighted tardiness and weighted throughput time.

While heuristics can often provide a satisfactory solution in reasonable computational

time, it was felt that with advances in problem formulation, optimization software,

and computer hardware, that an exact optimization approach would provide a good

benchmark for initial implementation. In the thesis, the focus is on exact optimization

methods.

In conclusion, this thesis presents a planning and scheduling framework for a job-shop.

The optimization model, its use in both planning and scheduling, and application in

real-life are presented. Furthermore, the performance of the optimization model is

contrasted against typical job-shop heuristics such as Shortest Processing Time (SPT),

Earliest Due Date (EDD), SPT-EDD, and EDD-SPT.

1.2 Thesis Organization

The remainder of this thesis is organized as follows: A literature review relevant to

project and job-shop scheduling problem is presented in chapter 2. In chapter 3, the

exact problem is discussed in greater detail. In chapter 4, an Integer Linear Program-

ming (ILP) formulation to solve the problem is presented. In chapter 5, the results

of implementing the ILP model are presented and compared against classic job-shop

heuristic approaches, concludes the thesis and identifies areas for future research.



Chapter 2

Literature Review

In this chapter, a review of the RCPSP and the JSSP is presented . This review focuses

on problem extensions in both cases. First, research papers are classified based on their

problem context and then discussed based on methodology.

2.1 Project Scheduling With Limited Resources

In the RCPSP, a project consist of a set of jobs. The jobs are interrelated by two

types of constraints: (1) precedence constraints; which force job j to be scheduled after

all of its predecessors are completed, and (2) resource requirements [20]. The basic

RCPSP assumes non-preemptive jobs, meaning that no interruption is allowed once a

job has started. Each job requires the use of one or more resources during its execution.

Resources can only perform one job at a time. The resource requirements of a job are

constant during processing and are renewable fully or partially in every period. In real-

life situations, delays in the execution time of jobs occur when resources (e.g. machine

or operator) required by these jobs are not available during the time interval when they

are scheduled to take place. The release date is the earliest time at which a project

may be started (it may be constrained by the availability of materials required for the

project). Likewise, the due-date is the latest time a project must be finished [15].

The RCPSP is considered in [5], [2], [17] and [20] with different solution methodologies.

In [5], a mathematical formulation with binary variables is proposed. The formulation

exploits three variables, one associated with the start time of a job, one associated

with the finish time of a job, and the last one associated with the portion of a job in

progress at a given time. This approach resulted in lower computation time compared

with other approaches in the literature.

4
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In [17], two new mixed integer linear programming methods are proposed for solving

the RCPSP. The two methods are start/end event-based formulation and on/off event-

based formulation. The main advantage of these formulations is that fewer variables

are needed to formulate the problem. It is claimed that this approach reduces the

computation time because the variables are event-based as opposed to time-based and

they are not a function of the time horizon. The advantage of these methods is seen in

cases with long scheduling horizons. In contrast, according to the state of art presented

in [19], in order to account for resource limitations other than processing units, the unit-

specific-time-event based formulation requires a new set of constraints and variables

which monitor the level of resources at every time event. Because the same time event

can take place at different times for different units, these constraints are significantly

more complex and numerous than in the case of global time points. A larger number

of event points, as well as additional continuous variables for timing of resources, are

needed.

In [11], a branch and bound method is proposed for solving RCPSP with generalized

precedence relations. The method aims at an optimum solution by minimizing the

project makespan. Makespan is the time by which all projects are completed [21], in

other words, it is the completion time of the last project. The RCPSP is extended to

include arbitrary minimal and maximal time lags between the starting and completion

times of jobs. In the minimal lag, a job can start (finish) if the predecessor has already

begun (finished) after a particular period. In the maximal lag, a job should be started

(finished) at the latest a particular period beyond the start (finish) of another job. The

proposed extension allows to model very general class of project scheduling problems

including:

• Precedence constraints.

• Job arrival times and due-dates.

• Multiple resource constraints with time-varying resource requirements and avail-

abilities.

• Job and resource time windows and several types of mandatory job overlaps.
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Genetic Algorithm (GA) is a problem-solving technique that uses the concepts of evo-

lution and heredity to produce good solutions to complex problems that typically have

enormous search spaces and are therefore difficult to solve. In [2], a differential evolution

algorithm is proposed based on the GA meta-heuristic. This approach provides similar

results when compared with existing approaches. In [20], a multi-array project-oriented

GA formulation is used to represent chromosomes that provide similar solution quality

as in the literature with lower computation time.

The single and multi-mode RCPSPs are considered in [6] who propose a simulated

annealing algorithm to solve the problem . The proposed algorithm handles different

objective functions including the minimization of makespan, total project cost, and

the maximization of net-present value. In the single mode problem, there is only one

duration and resource requirement for every job. In the multi-mode problem, there are

several modes, i.e., processing time and resource requirement, for every job. A start

time and an execution mode must be chosen for each job.

In [12], a local search methodology and a Tabu search procedure are proposed for solving

the RCPSP. In this methodology, the proposed approach in [5] (multiple execution

modes of jobs) and [11] (minimal and maximal time lags between the starting and

completion time of a job) are combined. Jobs have multiple execution modes. It is

concluded that a more efficient way of using resources can be achieved because multi-

modal problems allow trade-offs between time and cost, depending on resource usage.

The RCPSP with several multi-mode projects allowing for renewable and non-renewable

resources is considered in [4]. The modeling approaches in this paper for multi-project

scheduling do not allow resource sharing between the projects. This multi-project prob-

lem environment is defined as the Resource Dedication Problem (RDP). RDP seeks the

optimal dedication of resource capacities to different projects within the overall limits

of the resources and with the objective of minimizing a predetermined objective func-

tion. This paper proposes two methodologies: (1) GA employing a new improvement

move called combinatorial auction for RDP, which is based on preferences of projects

for resources, and (2) a linear and Lagrangian relaxation.

In [3] a RCPSP with preemptive jobs is considered where a maximum of one interruption
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per job is allowed. The proposed heuristics in the literature are modified to deal with

preemptive jobs. The paper concludes that preemption significantly helps decrease

project length.

2.2 Job Shop Scheduling With Limited Resources

The classic JSSP is considered in [1], [8], [26] and [18] with different solution method-

ologies. In [1], a shifting bottleneck procedure is proposed. This heuristic method

sequences one machine at a time. At first, it solves the one-machine scheduling prob-

lem to optimality. Then, it uses the outcome for ranking and sequencing the machines

with the highest priority. Every time a new machine is sequenced, the heuristic checks

for the machines that are already sequenced. This procedure repeats until all the ma-

chines are optimally sequenced. This paper solves the famous 10*10 problem with 10

machines and 10 jobs [?].

A branch and bound method is used for solving the JSSP in [8]. In this approach,

a generalization of a branching scheme and a method to fix disjunction before each

branching are combined. The objective function for this problem is the minimization

of the makespan. This method is used to solve the 10*10 benchmark problem. The

proposed approach solves the problem faster than the proposed approach in [1]. In [26]

the JSSP is solved using GA. Three algorithms are presented and the proposed algo-

rithms find feasible solutions within reasonable computational time. In [18], a Tabu

thresholding heuristic that uses a new block-based neighborhood function is proposed

to solve the JSSP with limited machine availability.

A Tabu thresholding consists of the successive iteration between intensification phase

called improving phase, and diversification phase called mixed phase. The improving

phase is the steepest descent that iteratively searches for a local optimum by visiting

neighbor solutions that are generated by improving moves. Once the neighborhood

does not contain any improving move, the intensification phase is stopped, and the

mixed phase is started from the local optimum. The mixed phase is a diversification

that accepts both improving and non-improving moves to escape from local optima and

thus to guide the search toward new regions. The objective function for this approach
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is the minimization of the makespan. A concept of blocks is used to consider the

unavailability periods of machines. Hence, several efficient neighborhood functions are

defined using the concepts of blocks. This approach does not promise a better solution

as opposed to the ones proposed in the literature.

Project priority in JSSP is considered in [25], [13], [27], [28], [23] and [21]. Project

priority determines which competing projects can access limited resources (operator

or machine) faster. Project priority is assigned according to customer importance or

project due-date. A general two-step approach for solving the problem is proposed in

[25]. The heuristic approach essentially decomposes the problem into two easier prob-

lems. First, the proposed approach suggests the release and sequencing of jobs to min-

imize work in process (WIP). Then, due-dates are set to reduce the due-date lead time

(due-date minus arrival time). A simulation experiment is performed to demonstrate

the strength of the approach compared to other research. In [27], the Particle Swarm

Optimization (PSO) technique is proposed. PSO is a type of intelligent optimization

algorithm developed from swarm intelligent optimization. The PSO algorithm searches

for the best solution over the complex space through co-operation and competition.

This efficient approach is said to provide good solutions.

In [13], a GA approach is proposed. This approach is used to address the Open Shop

Scheduling Problem (OSSP) and the job-shop rescheduling problem. OSSP is an ex-

tention of JSSP where there is no priority among the jobs within a project. Job-shop

rescheduling is a process of revising the estimated processing time or the start time

of some jobs. This approach improves the result obtained from other GA methods in

literature.

According to [28], the JSSP and due-date assignments are two interrelated problems

(e.g. a tighter due date setting will increase the chances of tardiness despite its appeal

for the incoming customer). Hence, this paper integrates the problems as one opti-

mization problem to achieve a better solution. A double-layered heuristic approach is

proposed to solve the integrated problem. In the first layer, a GA is used to assign

rough due-dates to unassigned jobs. The objective of this approach is to minimize the

total weighted tardiness of all jobs. Then, the parameter perturbation method is em-

ployed to optimize the due-dates based on their potential interplay in the second layer.
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The relation between a job’s due-date is important because the due-date for one job

may have an impact on the optimal due-date of other jobs. The proposed approach is

said to be efficient and has the potential for future extensions.

Also, duration uncertainty in JSSP is considered in [28] and [23]. In this approach,

a factor is assigned to deal with unexpected events in processing times. Alternative

resources are also considered in [23] and [21]. In the presence of alternative resources,

one or more resources are capable of performing a job.

Flexible Job Shop Scheduling Problem (FJSSP) is an extension of the JSSP, where jobs

are allowed to be processed on the multiple available resources. Different approaches

are proposed in [9], [29] and [22] for solving the FJSSP. In [9] an iterative GA method is

proposed. This algorithm indicates the potential improvement in FJSSP, especially with

multiple identical machines under a resource-constrained environment. The proposed

model helps in quantifying the flexibility between machines under limited resources.

Two approaches for solving the FJSSP are proposed in [29]. The first approach is a

hierarchical method based on two steps: (1) assigning jobs to machines, and (2) job

sequencing, which determines the order of jobs on the different machines. Minimizing

total tardiness is the objective for both steps. The second approach is the integration

of the two steps of the first method that is based on GA.

In [22], a greedy randomized adaptive search procedure (GRASP) is proposed to solve

the FJSSP. The proposed meta heuristic algorithm consists of two stages: (1) construc-

tion and (2) local search. The objective function for this approach is to minimize the

makespan and maximize total workload. Three problems instances (8*5, 12*5 and 8*8)

are used to demonstrate the strength of the approach. The first two cases provides bet-

ter result compared with another paper in the literature. However, last problem could

not be compared with other approaches because it was not solved before. The balance

between resource limitation and machine flexibility is also discussed in this paper.

Splitting in the JSSP is considered in [23] and [21]. In splitting, jobs can be broken

down to a number of batches, and different resources can be allocated to do each batch.

Batches may or may not start at the same time. Splitting is very flexible from the

scheduling point of view, but the set-up cost dictates the extent of splitting [21]. While
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GA is used in [23] to conclude that the schedule can be improved using splitting, this

paper does not use setup costs.

In [21], a zero-one integer linear programming approach is proposed to solve the JSSP

with limited resources. The extensions discussed in this paper are alternative resources,

splitting, concurrency and non-concurrency of jobs. In alternative resources, one or

more operators or machines are capable of performing a job. Concurrency and non-

concurrency of jobs state that two jobs must or must not be performed simultaneously.

In non-concurrency, jobs are allowed to be performed in any order. Three objective

functions are considered in the paper including, the minimization of total throughput

time , the minimization of makespan and the minimization of total tardiness for all

projects. Individual project throughput time is defined as the elapsed time between

project arrival time and project completion time.

2.3 Discussion and Conclusion

Project scheduling is mostly concerned about projects in the context of construction and

shipbuilding, while job-shop scheduling is applied to scheduling problems in job-shops.

A summary of the literature review is made through three tables (2.1, 2.2, 2.3), which

map and classify project and job-shop scheduling problems with limited resources.

In Table 2.1, the papers in the literature are classified according to solution method-

ology and problem characteristics. As can be seen in the table, most papers consider

precedence relations, while some consider project priority. A few papers also consider

other extensions such as alternative resources, duration uncertainty, preemption and

splitting. Also, most problem extensions explained above are considered in [23] and

[21], while a majority of the reviewed papers use heuristics or meta heuristics.

The two other tables organize the same information differently: Table 2.2 shows the

terms used in the objective function of the models in the paper depending on the

characteristics of the problem considered. Finally, Table 2.3 maps the methodology

used in the papers with the different terms used in the objective function.

In partial resource usage, some jobs may not require full resource capacity. Hence,
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Table 2.1: Methodologies vs. Problem Characteristics

Table 2.2: Objective Functions vs. Problem Characteristics
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Table 2.3: Methodologies vs. Objective Functions

resources may be assigned to more than one job during a particular period to the extent

of their full capacity. In batching, jobs can be broken down to a number of batches

so that when these batches are completed, successor machines can start processing

without starvation. Based on the papers considered in this literature review, partial

resource usage and batching have not been considered in the past. In fact, one of the

assumptions in the JSSP is that once a resource is assigned to a job, no other jobs can

be allocated to it.

In [21], a solution is proposed to the JSSP with job priority, alternative resources,

and splitting. This paper uses a binary linear programming approach to solving the

optimization problem to obtain optimum solutions. The model was written a long time

ago where lack of technology (old computers) forbade solving problems with reasonable

sizes. This thesis uses some of the basic ILP formulations proposed in that paper to

successfully solve much larger problems.



Chapter 3

Thesis Context and Assumptions

The problem considered in this thesis may be thought of as a RCPSP with generalized

precedence relations, alternate resources, partial resource usage, batching, and project

priorities.

The case study used in this thesis is a MTO job-shop which manufactures machined

components on order. This strategy results in longer wait times for the consumer to

receive the product but allows for more product customization compared to directly

purchasing from product catalogs. In companies with the MTO production strategy,

effective resource allocation significantly improves the production efficiency. At the

job-shop, a PM handles the scheduling of jobs by taking into consideration the process

plans required for machining, the availability of both machining and operator resources,

and the preferred customer due-dates.

The process of resource allocation is often very difficult and time-consuming due to

the combinatorial complexity of the decision space. The complexity of this process

increases as the number of resources and projects increase, as is the case at the MTO

job-shop which has been growing in recent years. Therefore, it was determined that

a tool for optimal resource allocation that takes into account production constraints

would be beneficial.

13
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3.1 Definitions

Customers arrive at the job shop and negotiate a due-date for a given quantity of

products (e.g. machined components or machined parts). Once a contract is signed

with the customer, a project is created. Each product has an ordered set of processes.

Figure 3.1 shows a project created for a product with three processes, where the dotted

lines show the precedence relationships between the processes.

Figure 3.1: Hierarchical representation of a project

Also as shown in figure 3.1, there is a setup step for each of the processes. Based on

these setup and processing requirements, a set of jobs with precedence relationships is

created for each project, as shown in figure 3.2. In the figure, each process is effectively

represented by two jobs: a setup job and a process job. Therefore, the example in the

figure shows six jobs that cover the three processes. Without loss of generality, each

process (a combination of a setup job and a processing job together) requires a machine

(from an eligible list) and each job (whether setup or processing) requires an operator

(from an eligible list). The required precedence relationships between setup jobs and

processing jobs and between processing jobs is also shown in the figure.
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Since the setup operation is carried out exactly once for an entire product batch, the

duration of the setup jobs depends on the product and may depend on the machine

assigned to the job. On the other hand, the duration or cycle time of the processing jobs

depends on the required production quantity and may depend on the assigned machine.

Therefore, for all active projects, the corresponding setup and processing jobs can be

generated along with their durations and precedence requirements.

Figure 3.2: Setup and Processing Job Definitions

3.2 Thesis Assumptions

This section lists the common assumptions made in the JSSP, which are also made in

this thesis:

• Projects have desired due-dates. No cost is incurred if the project is completed

before the due-date. If it is completed after the due-date, a lateness cost is

imposed. The lateness cost depends on the duration of lateness and the unit

lateness cost may vary from project to project.

• Projects have absolute due-dates (latest possible finish time). Each project must

be completed before its absolute due-date.

• Estimated setup and processing jobs durations are available.

• A processing job may have another processing job as predecessor. Predecessors
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are the set of jobs that need to be completed before a job can start.

• Jobs (both setup and processing) are non-preemptive. This means that no inter-

ruption is allowed once a job is started.

• Machines/operators have limited capacities.

• A delay between the end of a setup job and the start of the corresponding process-

ing job is permitted. Since the operator required for the setup may be different

from the operator required for the processing job, it is sometimes advantageous to

finish the setup job when the setup operator is available, even though processing

job itself might start later.

The additional requirements specific to this thesis are:

• Machines and operators availability in each period may be different throughout

the planning horizon.

• Processing jobs can be done in batches. Batching allows breaking down a pro-

cessing job to enable successive jobs to start processing a batch as soon as it

is available. This is done in a way to avoid starvation at a successor machine.

Batching has no impact on the setup cost because a setup is incurred only once

for a process sequence.

• Operators may be used partially for a job. In a real manufacturing environment,

some jobs only need a portion of an operator’s time. This concept is used to allow

operators perform multiple jobs simultaneously. For example, an operator may

be able to monitor two or three machines in process.

• One or more resources (machines or operators) may be capable of performing a

job. A machine from the eligible list must be chosen for a setup and its corre-

sponding processing job. On the other hand, an eligible operator must be chosen

for the setup job and an eligible operator must be chosen for the corresponding

processing job. Operators selected for the setup and processing jobs may or may

not be the same, depending on their eligibility.

• An inflation factor may be used to incorporate the uncertainty in processing times.
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• Projects are prioritized according to customer importance or upcoming due-dates.

Penalty costs (in cost per unit time) for lateness are assigned to projects to reflect

their priorities.



Chapter 4

Methodology

An ILP formulation with binary variables is developed to solve the aforementioned

problem considering two objectives that minimize the total weighted tardiness and the

weighted throughput time of all projects. The formulation contains multiple binary

variables, two of which identify the completion time of the projects and jobs. Project

completion time is dependent on the completion time of all its jobs, and contributes

directly to the objective function. The job completion time is used to impose the

precedence requirements as well as batching. Job processing periods are used to take

into account the engagement of the resources while the job is being processed. What

follows identifies the elements of the proposed ILP model in detail.

4.1 Mathematical Model

The definitions and variables used to develop the model are presented here followed by

the model formulation.

18
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4.1.1 Sets and Parameters

I Set of projects

|I| Total number of projects

Ji Set of jobs in project i

|Ji| Total number of jobs in project i

Aij Earliest possible time to start job j of project i

Dij Processing time required to perform job j of project i

ADDi Absolute due-date of project i

gi Desired due-date of project i

M Set of machines

|M | Total number of machines

O Set of operators

|O| Total number of operators

Opuijo (<= 1) Operator o requirement of job j of project i

lij The earliest completion time of job j of project i in absence of resource con-

straints(Calculated in preprocessing stage)

uij The latest completion time of job j of project i in absence of resource con-

straints (Calculated in preprocessing stage)

ei The earliest completion time of project i in absence of resource constraints

(Calculated in preprocessing stage)

wi Priority of project i

Bij Total number of batches for job j of project i

Rmt Capacity of machine m during period t

Vot Capacity of operator m during period t

ε Weightage given to weighted throughput time objective, 0.01 by default
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T Problem analysis horizon, starting from the minimum arrival of all projects to

the their maximum absolute due-date.

Ti Set of feasible process periods for project i, starting from its earliest job start

time to its absolute due-date, i.e., Ti = min
∀j∈Ji

(Aij) , · · · , ADDi ∀i ∈ I

Tij Feasible job completion times; set of periods starting from job j of project i’s

earliest possible completion time to the job’s latest possible completion time.

i.e., Tij = lij, · · · , uij, ∀i ∈ I, ∀j ∈ Ji
TEGi Set of feasible project completion times; set of periods starting from project

i’s earliest possible completion time to the project’s absolute due-date, i.e.,

TEGi = ei, · · · , ADDi, ∀i ∈ I

MRijm =


1 If machine m is capable of performing machining require-

ment of job j of project i,

0 Otherwise.

ORijo =


1 If operator o is capable of performing operator requirements

of job j of project i,

0 Otherwise.

Pijk =

1 If k is a precedence of j in project i,

0 Otherwise.
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4.1.2 Variables

hit =

1 If project i is completed at time t,

0 Otherwise.

xijt =

1 If job j of project i is completed at time t,

0 Otherwise.

zzijt =

1 If job j of project i is in process during period t,

0 Otherwise.

zzsijt =


1 If job j (setup) of project i is competed on a machine but its

successor, job j+ 1 (processing), has not started on the same

machine yet,

0 Otherwise.

Sijm =

1 If machine type m is assigned to perform job j of project i,

0 Otherwise.

Wijo =

1 If operator type o is assigned to perform job j of project i,

0 Otherwise.

QSijmt =

1 If machine m is utilized for job j of project i during period t,

0 Otherwise.

QQSijmt =


1 If the setup job j related to processing job j + 1 has finished

during period t on machine m, but the processing job j + 1

has not yet started,

0 Otherwise.

QWijot =


1 For the assigned operator o to job j of project i if the job is

in process during period t,

0 Otherwise.
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4.1.3 Objective function

Minimize:

∑
i∈I

ADDi∑
t=gi+1

[wi ∗ (t− gi) ∗ hit] +
∑
i∈I

ADDi∑
ei

[ε ∗ wi ∗ hit ∗ t] (4.1)

4.1.4 Constraints

Job Completion Time

uij∑
t=lij

xijt = 1; ∀i ∈ I,∀j ∈ Ji (4.2)

Processing Periods

(t+Dij)−1∑
s=t

xijs = zzijt; ∀i ∈ I, ∀j ∈ Ji, ∀t ∈ Ti (4.3)

t∑
s=lij

xijs −
t+Dij∑
p=lij

xi,j+1,p = zzsijt; ∀i ∈ I, ∀j ∈ Ji, ∀t ∈ Ti (4.4)

Job Precedence

Pijk ∗

 uik∑
t=lijk

t ∗ xikt

−Dik +
Dik

Bik

 <=

uij∑
t=lijt

t ∗ xijt −Dij; ∀i ∈ I,∀j ∈ Ji,∀k ∈ Ji

(4.5)

Pijk ∗

[(
uik∑
t=lik

t ∗ xikt

)
+
Dij

Bij

]
<=

uij∑
lij

t ∗ xijt; ∀i ∈ I,∀j ∈ Ji,∀k ∈ Ji

(4.6)
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Project Completion Time

ADDi∑
ei

hit = 1; ∀i ∈ I (4.7)

uij∑
t=lij

∑
j∈Ji

xijt > = (his) ∗ |Ji|; ∀i ∈ I,∀s ∈ TEGi (4.8)
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Machine Assignment

∑
m∈M

Sijm <=
∑
m∈M

MRijm; ∀i ∈ I,∀j ∈ Ji

(4.9)

|M | ∗
∑
m∈M

Sijm >=
∑
m∈M

MRijm; ∀i ∈ I,∀j ∈ Ji

(4.10)∑
m∈M

Sijm <= 1; ∀i ∈ I,∀j ∈ Ji

(4.11)

Sijm <= MRijm; ∀i ∈ I,∀j ∈ Ji,∀m ∈M
(4.12)

0 <= zzijt + Sijm −QSijmt ∗ 2 <= 1; ∀i ∈ I,∀j ∈ Ji, ∀m ∈M, ∀t ∈ T
(4.13)

0 <= zzsijt + Sijm −QQSijmt ∗ 2 <= 1; ∀i ∈ I,∀j ∈ Ji, ∀m ∈M, ∀t ∈ T
(4.14)

Si,j+1,m = Sijm; i ∈ I, j ∈ Ji : mod(j, 2) = 1; ∀m ∈M
(4.15)

Operator Assignment

∑
o∈O

Wijo <=
∑
o∈O

ORijo; ∀i ∈ I,∀j ∈ Ji (4.16)

|O| ∗
∑
o∈O

Wijo >=
∑
o∈O

ORijo; ∀i ∈ I,∀j ∈ Ji (4.17)∑
o∈O

Wijo <= 1; ∀i ∈ I,∀j ∈ Ji (4.18)

Wijo <= ORijo; ∀i ∈ I,∀j ∈ Ji (4.19)

0 <= zzijt +Wijo −QWijot ∗ 2 <= 1; ∀i ∈ I,∀j ∈ Ji, ∀o ∈ O, ∀t ∈ T (4.20)
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Machine and Operator Capacity Restrictions

∑
i∈I

∑
j∈Ji

QSijmt +
∑
i∈I

∑
j∈Ji

QQSijmt <= Rmt; ∀m ∈M, ∀t ∈ T (4.21)

∑
i∈I

∑
j∈Ji

QWijot ∗Opuijo <= Vot; ∀o ∈ O, ∀t ∈ T (4.22)

The objective function minimizes the total weighted tardiness and the weighted through-

put time concurrently. The first part of the objective function in 4.1 considers a penalty

for projects completed later than their desired due-date and is the primary objective.

The penalty is weighted by project priority wi. The second part penalizes the objective

function for projects not being completed at the earliest possible time and is secondary

objective; thus, the model minimizes the total weighted tardiness as the primary ob-

jective and minimizes the weighted throughput time for all projects as the secondary

objective. The weightage for the second part of the objective function (ε = 0.01 by

default) may need to be adjusted based on the decision maker’s preferences.

Constraint 4.2 forces job completion time to be between the earliest job completion

time (lij) and the latest job completion time (uij). The summation on the LHS of this

equation is set equal to 1, meaning each job can only be completed once during the

specified periods.

Constraint 4.3 sets job processing period variable (zzijt) to 1 while job j is in process.

The summation on the LHS of this equation is carried on all possible intervals equal

to the length of the processing period of each job of all projects. This summation only

produces value 1 if the job completion variable for project i of job j (xijt) is equal to

1 in one of the times during the interval. The job processing period variables are used

to allocate resources considering their capacity during each period (see equations 4.13,

4.14, and 4.20).

Constraint 4.4 forces the job idling period variable (zzsijt) to be 1 while the completed

job j (setup job) is waiting for job j+ 1 (processing job) to start. Job j and j+ 1 must

be performed by the same machine. Once job j is completed, no other jobs can be

allocated to the same machine unless job j + 1 is completed. The LHS of the equation
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is composed of the completion of setup job (
∑t

s=lij
xijs) and start of the processing job

(
∑t+Dij

p=lij
xi(j+1)p). If

∑t
s=lij

xijs is equal to 1 and
∑t+Dij

p=lij
xi,(j+1),p is equal to 0 at time

t, it means the setup job is completed and the processing job has not started yet, so

zzsijt will be equal to 1. When the processing job starts being processed, the LHS of

the equation, and consequently zzsijt will be equal to 0. The job idling period variable

is used to occupy (idle) the machine allocated to the setup job when its value is equal

to 1.

Constraints 4.5 and 4.6 jointly force precedence relations between jobs of a project and

also incorporates the batching concept. If job j is a predecessor of job k, constraint 4.5

forces start time of job k to be after the completion time of the first batch of job j.

The completion time of the predecessors first batch
[
(
∑uik

t=lij2
t ∗ xikt)−Dik +Dik/Bik

]
has to be before the start time of the successor. This constraints is only forced when

Pijk is equal to 1. Constraint 4.6 prevents interruptions (starvation) in successor job.

It forces completion time of the successor (
∑uij

lij
t ∗ xijt) to be after the predeces-

sor completion time plus the time required to finish the last batch of the successor[(∑uik

t=lik
t ∗ xikt

)
+Dij/Bij

]
. Figure 4.1 shows the execution of jobs according to the

concept of batching with respect to the above constraints.

Figure 4.1: Classic execution of jobs comparing with batching concept

Constraint 4.7 forces the completion time of project i to be between earliest project

completion time (ei) and the latest project completion time (ADDi). The summation

on the LHS of this equation during the specified periods is equal to 1, meaning that

projects can only be completed once. A project completion time is dependent on the

completion time of all its jobs. Constraint 4.8 forces the completion time of project i to
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be after the completion time of all its jobs. The LHS of the equation is the summation

of the completion time of all jobs of project i, between the earliest and the latest job

completion times (lij and uij). The project completion time (his) is multiplied by the

total number of jobs of project i, (|Ji|). This forces his to be equal to 1 when all the

jobs of the project are completed.

Constraint 4.9 restricts the summation of the machines allocated to the job j, (
∑

m∈M Sijm)

to be less or equal to its total machining requirement, which is calculated in the RHS. If

job j has no machining requirement, the RHS of the equation will be 0 which prevents

allocation of any machine to the job. At least one machine must be allocated to the

jobs with machining requirements. If job j requires a machine to perform it, the RHS

of equation 4.10 will be equal or greater than 1. In the LHS of the equation, machine

assignment variable (Sijm) is multiplied by the total number of the machines (|M |)
to force assigning at least one capable machine to the job. Constraint 4.11 prevents

allocating more than one machine to a job regardless of its machining requirements.

Constraint 4.12 forces the selection of the allocated machine to be a member of the set

of capable machines to perform the jobs. Constraint 4.13 seizes the allocated machines

during the processing period of jobs. If both job processing period (zzijt) and machine

assignment variable (Sijm) are equal to 1 during period t, machine assignment period

(QSijmt) will become equal to 1, meaning that the machine is being utilized by job j

during period t. Constraint 4.14 forces the allocated machine to setup job j to be idled

while waiting for the processing job j + 1 to start being processed. During the idling

period when zzsijt is equal to 1, one unit of the machine m capacity is occupied. If

both job idling period (zzsijt) and machine assignment variable (Sijm) are equal to 1

during period t, machine idling period (QQSijmt) will be equal to 1, meaning that the

machine is being idled during period t. Constraint 4.15 forces the setup and processing

jobs to be performed by the same machine.

Constraint 4.16 restricts the summation of the operators allocated to the job j (
∑

o∈OWijo)

to be less or equal to its total operator requirements. If job j has no operator require-

ment, the RHS of the equation will be 0 which prevents allocation of any operator to

the job. At least one operator must be allocated to jobs with operator requirement

regardless of the number of operators capable of performing the job. If job j requires
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an operator to perform it, the RHS of equation 4.17 will be equal or greater than 1. In

the LHS of the equation, operator assignment variable (Wijo ) is multiplied by the total

number of the operators (|O| ) to force assigning at least one capable operator to the

job. Constraint 4.18 prevents allocating more than one operator to a job regardless of

its operator requirement. Constraint 4.19 forces the selection of the allocated operator

to be a member of the set of capable operators to perform the jobs. Constraint 4.20

seizes the allocated operator during the processing period of jobs. If both job processing

period (zzijt) and operator assignment variable (Wijo) are equal to 1 during period t,

operator assignment period (QWijot) will become equal to 1, meaning the operator is

being utilized by job j during period t.

Constraint 4.21 states that in any given period, the total used and idled capacity of

a machine by all jobs cannot exceed the machine’s capacity during the period (Rmt).

The LHS of the equation includes (1) the total used capacity of the machine by all

jobs (
∑

i∈I
∑

j∈Ji QSijmt) and (2) the total idled capacity of the machine by all jobs

(
∑

i∈I
∑

j∈Ji QQSijmt).

Constraint 4.22 states that in any given period, the total used capacity of an operator by

all jobs cannot exceed the operator’s capacity during the period (Vot). The summation

takes into account the operator requirement of the jobs, Opuijo (which may be smaller

or equal to 1).

4.2 Preprocessing Phase

The speed and performance of an ILP model can be improved by eliminating invalid

ranges of variables to reduce the search area of the model. This elimination is done

before solving the model in the preprocessing phase.

lij is the earliest completion time of job j of project i considering only the precedence

relations between jobs. If job j of project i has no predecessors, lij is its earliest possible

start time plus its processing time. If job k is the predecessor of job j, lij is the maximum

of (1) its earliest possible start time plus its processing time, and (2) its processing time

plus the earliest completion time of the first batch of its predecessors. The complete
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code for calculation of lij can be found in Appendices (section 5.5.1). The following is

the Pseudo code for lij calculation:

• For all jobs of project i:

– If job has no precedence requirement, set the earliest completion time of job

j equal to its earliest possible start time plus its processing time, (Aij +Dij).

– If job k is the predecessor of job j, set the earliest completion time of the

job to the maximum of:

∗ Its earliest possible start time plus its processing time, (Aij +Dij).

∗ Its processing time, (Dij) plus earliest completion time of the first batch

of its predecessor, (lik −Dik + (Dik/Bik)).

uij is the latest completion time of job j of project i considering only the precedence

relations between jobs. If job j of project i has no successors, uij is the absolute due-date

of project i. If job j is the successor of job k, uik is the minimum of (1) project i absolute

due-date, and (2) the latest completion time of its successor minus the processing time

of the last batch of the successor job. The complete code for calculation of uij can be

found in Appendices (section 5.5.1).The following is the Pseudo code for uij calculation:

• For all jobs of project i:

– If job has no precedence requirement, set the latest completion time of job

j equal to an absolute due-date of project i.

– If job j is the successor of job k, change the latest completion time of the

job to the minimum of:

∗ The absolute due-date of project i, (ADDi).

∗ Latest completion time of its successor minus the processing time of the

last batch of the successor job (uij −Dij/Bij).

ei, earliest project completion time is the maximum among the earliest completion time

of all jobs of project i.
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lij, uij, and ei are used to reduce the search area of the introduced ILP model. Instances

of the application can be seen in equation 4.7 as well as the definition of Ti in section

4.1.1.

4.3 Implementation

This model can be used at two different hierarchical production planning levels, namely

for high level planning and detailed scheduling by changing the time-scale of the model

and passing some constraints of the high level planning solution to the lower level

detailed scheduling problem. The higher level planning of the model is aimed at upper

management in the job-shop who can use it for aggregate purposes such as resource

allocation, customer order promising, due-date planning, and material procurement.

On the other hand, the detailed scheduling is targeted towards production managers

and is used to develop detailed short-term operation schedules.

In the high level planning phase, the objective is to minimize the total weighted tardi-

ness and the weighted throughput time. In the detailed scheduling phase, the objective

is to complete all planned jobs within the specified horizon of the detailed scheduling

phase, respecting the results of the high level planning phase. The scheduling will use

the original time-scale (usually hours) to generate the flow of jobs and allocate the

resources. Resource allocation in the detailed scheduling phase may be different from

the high level planning phase as far as the passed constraints of the high level planning

are respected. The constraints that are passed from the high level planning phase are:

• The latest completion time of every job according to the high level planning that

has been planned to be completed during the detailed scheduling horizon, shall

be set equal to the end of the detailed scheduling horizon.

• The latest completion time of the last job of a project according to the high level

planning that has been planned to be completed during the detailed scheduling

horizon, shall be set equal to its completion time. This is considered to ensure

that the rescheduling does not impact the objective function of the high level

planning negatively.



31

• If a job is partially processed during the detailed scheduling horizon, the resources

allocated by the high level planning phase will be restrictedly used for processing

the job during the detailed scheduling horizon.

• If only one of the setup or its processing job are planned to be processed during the

detailed scheduling horizon, the same machine assigned by the high level planning

should be restrictedly used for processing the jobs during the detailed scheduling

horizon.

If the scheduled jobs could not be performed as scheduled due to any reasons, the data

can be updated and the jobs can be re-planned/rescheduled to achieve a new optimum

plan. The updating consists of replacing processing times of the jobs accordingly. This

requires to replace the processing time of completed jobs with 0, and that of partially

processed jobs with estimated remaining processing time. Some examples of reasons to

deviate from the schedule are:

• jobs may take more or less time than originally estimated.

• resources may become unavailable.

• material may arrive late.

Figure 4.2 shows an example where jobs are planned to be processed in the current

scheduling horizons. Since job 4 of project 8 (8-4) will not be completed in the current

scheduling horizon, its remaining process time should be updated to 6 and its completion

time must be set to 46. This ensures that the job will complete without any preemption.

Also, the same machine performed the job in the current scheduling horizon must be

assigned to process the remaining process in the next scheduling horizon.

The constraints of the re-planning phase are:

• If a job is partially processed, the resources used to process the job will be re-

strictedly used for processing the job during the re-planning phase.

• If only the setup job is processed (partially or completely), the same machine

assigned to the setup job will be restrictedly used for its processing jobs during

the re-planning phase.
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Figure 4.2: An example of overlapping jobs between two scheduling horizon

The following figure shows the cycle or process review for the two phases of high level

planning and detailed scheduling. In high level planning phase, more jobs are considered

for a long horizon broken into daily time buckets. On the other hand, the detailed

scheduling phase considers fewer jobs for a shorter horizon broken into hourly time

buckets.

Figure 4.3: ProcessFlow-Planning/Scheduling/Updating/Replanning

The model is coded in Pulp, an open source linear/integer programming modeler written

in Python, which can call a variety of solvers (both open source and commercial). The

python code for the ILP model can be found in Appendices (section 5.5.1).



Chapter 5

Results and Discussion

In this section, an example is considered to validate, verify and explore the capabilities

of the model. The example includes instances of all assumptions and requirements of

the model. It consists of 10 projects with total of 36 jobs. The processing times of

the jobs is shown in Table 5.1. We have constructed the example using three different

schemes of precedence relationships. Any project in the example will have the same

precedence relations as shown in Figure 5.1, according to its number of jobs. The odd

numbered jobs are the setup for the even numbered jobs. For example, a project with 4

jobs will have identical precedence relations to Figure 5.1 (B), and jobs 1 and 3 are the

setup for jobs 2 and 4 respectively. The processing jobs may be carried out in batches.

The maximum number of batches for the jobs are shown in Table 5.2.

Table 5.1: Processing time of the jobs (hours)

Six operators and six machines with limited capacity are considered. Operators have

various skills, and machines capabilities to process the jobs are different. Consequently,

some jobs have a set of capable machines and a set of capable operators to process

them. Only one of the resources in each set of machines and operators is needed

to perform a job. Table 5.4 shows the set of capable machines to perform each job.

33
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Figure 5.1: Precedence relations for projects with 2, 4 and 6 jobs

Table 5.2: Maximum number of batches of the processing jobs
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All the machines are available all the times except machine 4 which is unavailable

during day 2 and 3. Table 5.5 shows the set of capable operators to perform each

job. The coefficient multiplied by operators represent the partial operator requirement.

For example, operator 3 is partially used for all the jobs (Opuijo = 0.5) meaning that

he may be able to handle more than one job at any given period. All the operators

are available all the times except operator 2 which is unavailable during day 4 and 5.

Desired and absolute due-dates are known for each project. No cost is incurred if a

project is completed before its desired due-date. If it is completed after the desired

due-date, a lateness cost is imposed. The lateness cost depends on the priority of the

project and the lateness. All the projects must be completed before their absolute due-

dates. Desired and absolute due-dates, and priority of the project are shown in Table

5.3.

Table 5.3: A hypothetical example with 10 projects

Table 5.4: Machine requirements of the jobs
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Table 5.5: Operator requirements of the jobs

5.1 ILP Solution

The introduced example is solved by the proposed ILP model with the minimization of

total weighted tardiness and the weighted throughput time as the objective functions.

The details of the solution is presented in following. For the above example, it takes

96 seconds for the model to find the optimum solution and output the results on a

personal computer with Intel core i5, 3.2 GHz processor, installed memory (RAM) 8

GB, and Python version 2.7. In Figure 5.2, the Gantt Chart represents the start and

completion time of the jobs in the example solved to obtain the optimum solution for

the high level planning phase. All the jobs are planned to be completed in 10 days. All

the example’s assumptions and requirements as explained earlier are respected when

obtaining the optimum solution.

Table 5.6 shows the start and completion days as well as the penalty cost of the projects

related to the optimum solution of the high level planning phase. The planning problem

has 2396 variables. The solution’s objective function is 1500 which is reflected in 5 late

projects; Project 4, 6, 7, 9 and 10.

We opt to run the detailed scheduling phase for the next 5 days (40 hours). All com-

pleted or partially processed jobs in the first 5 days of the high level planning horizon

are considered to be scheduled in the detailed scheduling horizon. Therefore, all the jobs

of project 1, 2, 3, 5, 6, 7, and 8 need to be considered. In figure 5.3, the Gantt Chart

shows the start and completion time of the jobs planned in the detailed scheduling



37

Figure 5.2: Gantt Chart- (Projects versus Time) for high level planning phase

Table 5.6: Result of the high level planning phase
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phase.

Projects 1, 5, and 8 are taking advantage of batching to reduce the completion time of

the projects (e.g. project 1: job 2 and 4, project 3: job 2, 4 and 6). Batching is not

applied to setup jobs as shown in the Gantt Chart (e.g. project 1: job 1 and 2 or job 3

and 4). The result shows that the selected jobs for the detailed scheduling horizon are

planned to be processed within 37 hours.

Figure 5.3: Gantt Chart- (Projects versus Time) for the detailed scheduling phase

The scheduling problem has 6374 variables. Therefore, for this case, the planning

problem has less variables than the scheduling problem.

According to the high level planning solution (5.2), the completion time for job 4

of project 8 is out of scheduling horizon. If due to any reason the job could not

be completed in the detailed scheduling horizon or progressed more than expected,

remaining jobs must be re-planned/re-scheduled.

Figure 5.4 shows the Gantt Chart of the machines utilization. Setups and their corre-

sponding processing jobs use the same machine (e.g. project 3: job 1 and 2, project 2:
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Figure 5.4: Gantt Chart- Machine Utilization versus Time for the detailed scheduling
phase

job 1 and 2). Table 5.4 is used to show that machines are allocated to the jobs respect-

ing their machining requirement. Machine 4 is not allocated to any job between time

16 and 32 due to its unavailability. Since the operator required for the setup may be

different from the operator required for the processing job, it is sometimes advantageous

to finish the setup job when the setup operator is available, even though processing job

itself might start later, which introduces idling for the machines. The optimum solution

of this example does not recommend any idling between the setup and processing jobs.

Figure 5.5: Gantt Chart- Operator Utilization versus Time for scheduling phase

Figure 5.5 shows the Gantt Chart of operators utilization respecting the set of capable

to process each job (Table 5.5).

It also shows, operator 3 is allocated to process two jobs between times 23 and 37.

Operator 2 is not assigned to any jobs due to its unavailability between times 24 to 40.

The objective of the detailed scheduling phase is to complete all planned jobs within the
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Table 5.7: Result of the first detailed scheduling phase

specified horizon of the detailed scheduling phase (5 days). For the detailed scheduling

phase, it takes 36 seconds for the model to solve the problem. Table 5.7 shows the

solution of the detailed scheduling phase. The completion times of the all the jobs is

within the 40 hours (the detailed scheduling horizon).

In a real world situation, a detailed scheduling will rarely be performed exactly as

planned. For that reason, a third phase is required to update the progress of the

projects before re-running the high level planning and detailed scheduling phases. In

what follows, the details of this phase (updating phase) is explained through an example.

Assume that when implementing scheduling as detailed in Figure 5.3, job 4 of project

1 is only 70% done despite it being expected to finish within the detailed scheduling

horizon. Also assume that job 4 of project 8 that was planned to be 20% done is 60%

done. In order to get the optimum plan/schedule after the discrepancies, it is required

to re-run the planing and scheduling phase after updating the data as explained in

section 4.3. It also requires the constraints discussed in that section to be passed to the

re-planning and re-scheduling phases.

The earlier example is also solved with several desired due-dates for the projects and

throughput coefficients. A throughput coefficient is a constant number multiplied by

the completion time in the objective function to decrease or increase the effect of the

throughput on the solution. Due-dates are given in the following types: (1) Flexible

due-dates: almost all projects can be completed on-time. All the projects are given
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due-dates greater than their earliest completion time (ei), (2) Reasonable due-dates:

sufficient time is given so most projects to be completed on or before the due-dates.

The due-dates are greater than ei for almost 50”%” of the projects, (3) Tight due-

dates: inadequate time is given so that most projects will finish late. About 25”%” of

the projects are given due-dates greater than their ei, and (4) Very Tight due-dates:

almost no projects can be completed on or before the due-dates. The due-dates are

either equal or less than their ei. The more restricted the due-dates are, the more

resources are required to complete the jobs on or before the due-dates. On the other

hand, if the due-dates are flexible, less resources are required to complete the jobs

on-time. Examples with various desired due-dates for the projects are solved with

the following throughput coefficients; 0.01, 0.1, 1, and 10. The results are shown in

Table 5.8. The test is considered to measure the impact of the desired due-dates and

throughput coefficient on the computational time.

Table 5.8: Results from the example with different due-date types and throughpout
coefficients

In Table 5.8, the impact of the due-dates and throughput coefficient on computation

time and the average weighted tardiness and throughput time are not huge but non-

negligible. When the due-dates are given to the projects reasonably, the model obtains a

solution quickly in most cases. Tight due-dates makes the problem more complex which

takes longer for the model to get the solution with the minimum objective value. In case

of very tight due-dates, the model finds solutions much faster than the tight due-dates
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since the search space is smaller. Flexible due-dates are very time-consuming because

the search space is bigger. In most cases, in the given example, different due-date types

have some impact on the computation time while the variation of throughput coefficient

shows less impact. The computation times in flexible due-dates are considerably higher

among other due-date types. In Table 5.8, the times in red represent the minimum

computation time for each coefficient. Examples with reasonable due-dates mostly

obtained results faster than others but, the differences are not very big. In the example

with very tight due-dates, and 1 as the coefficient, the solution was obtained faster than

the other due-date types. In general, the coefficient does not seem to change the time

and the variation looks very random. As a result, the order in all of the computation

times seems to be (1) Reasonable, (2) Very tight, (3) Tight, and (4) Flexible except for

the case where the coefficient is 1. This conclusion is based on one example only and

is not statistically proven and more research needs to be done on this.

5.2 Heuristic Approaches

In this section we intend to compare the performance of the introduced ILP model

with some well-known heuristic models. To do so, some examples with different project

sizes are solved by the models, and the weighted tardiness, makespan, and average

project lateness are compared. Batching is not considered in the heuristic models,

which handicaps them to a certain extent.

SPT, EDD, SPT-EDD and EDD-SPT are the heuristic approaches tested and compared

with the ILP method. The SPT sequences the jobs in increasing order of their processing

times. Whenever a resource is available, the shortest job ready in the queue at the time,

will begin processing. The queue consists of jobs with all their predecessors completed.

The Pseudo code of the SPT model is as follows:

• Set time to t=0

• Generate a list (All-Jobs) of all remaining jobs of projects.

• From the generated list, select the jobs that either has no predecessors or their

predecessors are completed. Generate a new list (Jobs at time t) from the selected
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jobs.

• Sort all the jobs of the new list (Jobs at time t) in ascending order based on their

processing time.

• Start from the first job in the new list (Jobs at time t) and check if its machine

and operator requirements are available during its processing time.

– If yes, assign the corresponding machine and operator to the job and update

resources availability during the given periods.

– If no, move to the next job in the list (Jobs at time t).

• Carry out the same procedure for all the remaining jobs in the list (Jobs at time

t).

• Update the All-Jobs list according to the remaining jobs in the list (Jobs at time

t).

• Set time to t+1

• Continue until all the jobs in All-Jobs list are scheduled.

All the steps of the other heuristic models are identical to SPT except for sorting

the new list (item 4). The EDD sorts the jobs in increasing order of their due-dates.

The SPT-EDD first sorts the jobs in increasing order of their processing times and

then sort them in increasing order of their due-dates. The EDD-SPT first sorts the

jobs in increasing order of their due-dates and then sort them in increasing order of

their processing time. The Pseudo code of EDD, SPT-EDD, EDD-SPT approaches are

similar to SPT. The only difference is that jobs in EDD, SPT-EDD, EDD-SPT jobs are

sorted in ascending order of their due-dates, processing times and due-dates, due-dates

and processing time, respectively. The python code for all the heuristic model can be

found in Appendices (SPT: 5.5.1, EDD: 5.5.1, SPT-EDD: 5.5.1, EDDSPT: 5.5.1).

The example of the previous section is also solved using the heuristic models and the

results are presented in table 5.9. Not surprisingly, none of the solutions obtained

by heuristics approaches is optimal. It must be noted that the heuristics solutions



44

are disadvantaged because they cannot take advantage of batching. The ILP model

obtained the global optimum solution and with advances in computation power, the

ILP solution can be obtained in a reasonable time. In the following sections, more

complex examples are solved to assess the model performance.

Table 5.9: Comparison of the result from ILP model with heuristic approaches

5.3 Examples with other problem sizes

More examples with a different number of projects (10, 20, 30, 40, and 50) are con-

sidered in this section. The purpose is to test the model performance with different

problem sizes. The results from ILP model and heuristic approaches are compared and

shown in the following figures. All examples include instances of all assumptions and

requirements of the model. 10 operators and 10 machines are considered to perform the

jobs. These examples are considered to show the effect of problem size on the solution

and computation times (all runs were made on a personal computer with Intel core i5,

3.2 GHz processor, installed memory (RAM) 8 GB, and Python version 2.7.). The list

of all 50 projects in these examples are shown in Table 5.10. The first 10, 20, 30, 40,

and 50 projects are considered for example 1, 2, 3, 4, and 5, respectively.

The results shows that an increase in problem size increases the network complexity

of the problem so that it takes the ILP model longer to obtain an optimum solution.

However, the computation time of heuristic approaches for all the examples is short and

consistent, but the objective functions are far from optimum. The computation times

are shown in Table 5.11. Once again, all runs were made on a personal computer with

Intel core i5, 3.2 GHz processor, installed memory (RAM) 8 GB, and Python version

2.7.
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Table 5.10: The examples with 10,20,30,40, and 50 projects
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Table 5.11: Computation time using ILP model for solving problems with various sizes

The difference between the optimal ILP solution and the heuristic solutions is not huge

for smaller problems but it becomes larger as problem size increases. As earlier, it

must be noted that the heuristics solutions are disadvantaged because they cannot take

advantage of batching.

Figure 5.6: ILP model versus Heuristic Approaches - Makespan comparison for various
problem sizes
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Figure 5.7: ILP model versus Heuristic Approaches - Objective Value comparison for
various problem’s size

5.4 Comparison between ILP Model solution and Company’s

Performance

In this section, the company performance is compared with the ILP model and heuristic

models solution. In this comparison, the total weighted tardiness of the projects is not a

suitable factor for comparing the actual performance with other approaches. The due-

dates given to the projects are not the original due-dates of the projects. In practice,

the company changes the due-dates regularly when current due-dates cannot be met.

There is not an accessible record of actual due-dates available. Hence, the time to

complete all the projects (makespan) is considered to compare the results.

In this real-life example, 50 projects consisting of 294 jobs are considered. The analysis

starts from 09/01/2015 (the earliest arrival date of the projects) and ends by 11/05/2015

(latest completion date of the projects). In Table 5.12, the start date is when a project

arrives at the shop, and the end date is when the project is completed. Actual perfor-

mance represents the total number of days the projects stayed in the shop, excluding

weekends. Column of ILP model (Duration) shows the duration of the projects obtained
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Table 5.12: The comparison of the completion times of the projects performed by the
company and the proposed plan by ILP model
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from the model. In column of Improved, YES means that the company’s completion

time for the given project was improved by the ILP model while NO means the other

way around. According to Table 5.12, the obtained solution by the ILP model outper-

forms the company performance. As a result, 90% of the projects completion time were

improved. The makespan given by the model is 40 days while the company completed

all the projects in 82 days. However, we anticipate that the 42 days difference is not

purely result of ILP planning. The comparison of the completion times of the projects

performed by the company and the proposed plan by ILP model can be seen in Table

5.12.

The ILP model is also compared with the heuristics approaches. According to Table

5.13, ILP model outperforms the heuristic approaches. Among the heuristic model,

EDD obtained smaller makespan which is consistent with the previous conclusion. On

the other hand, EDD-SPT obtained the minimum tardiness. Both makespan and tar-

diness obtained by heuristic approaches are far from the optimal solution.

Table 5.13: Comparison of ILP model with heuristic approaches using the real-life
example

5.5 Conclusion and Future Research

Based on a real-life case study at a machine shop, we considered some extensions to

multiple resource constraint JSSP with generalized precedence relations and proposed

a linear integer programming model to solve the problem. The extensions are project

priority, alternative resources, partial resource usage, and batching. According to the

literature review, among the extensions, partial resource usage and batching are the

new contributions to job-shop scheduling and also the combination of all these extension

has not been considered in any single research. Project priority determines competing

projects, priority to access the limited resources respect to their desired due-dare. With
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alternative resources, more than one resource may exis with the required capabilities

to perform a job. In partial resource usage jobs may not require the resource’s full

capacity to perform them. Hence, operators may be assigned to more than one job

during a particular period, to the extent of their full capacity. Batching breaks down a

job into smaller jobs to allow the successors start processing earlier and thus improving

the efficien while preventing any preemption.

The introduced ILP model presents a planning/scheduling framework. In the planning

stage, the model produces a long-term plan for the production. Then, the constraints

from the high level planning phase is passed to the detailed scheduling phase to provide a

short-term schedule for the production. The objective is to minimize the total weighted

tardiness and the weighted throughput time for all the projects. The model is coded in

Pulp, a linear/integer programming modeler written in Python, which can call different

solvers to solve the problem.

The proposed model is compared with multiple heuristics (SPT, EDD, SPT-EDD, and

EDD-SPT) models as well as the actual performance at the shop. The heuristic ap-

proaches find relatively good solutions fast, but they are far from the optimality. The

bigger the size of the problem, the farther the solution from the optimality. Among the

heuristic approaches, EDD outperforms others with the minimum total weighted tardi-

ness and makespan. According to the ILP vs. Heuristics table, ILP model outperforms

the heuristic models by 106.31% (tardiness) comparing to the next best solution which

is the EDD-SPT.

In a real-life example, the ILP model obtained solution where 90% of the projects

had an smaller completion time. The model completed all the projects in 40 days

while the company’s makespan was 82 days. The Same example was solved using

heuristic approaches. All heuristic approaches performed better than the company’s

performance. Among the heuristic approaches, EDD obtained the minimum makespan

while EDD-SPT got the lowest tardiness. Nonetheless, the model proved to have a

better solution comparing to the heuristic approaches and the actual performance of

the company.
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5.5.1 Future Research

• Resource Efficiency: Operator skills and machine specification are not considered

in this thesis. The model assume that alternative operators and machines to

perform the jobs by a constant processing time. However, operator’s with various

skills might be able to perform jobs more or less efficient. On the other hand,

different machine types might have different efficiencies. The consideration of

resource efficiency can be a future extension of the model.

• Consideration of Splitting: The concept of splitting is similar to batching. how-

ever, splitting considers breaking down jobs into batches potentially performed

by different resources and allows for preemption. Splitting could be considered in

the model as a future research.

• Flexibility of Resource Allocation: The considered resources in the model are

operators and machines. More resources (e.g. tools) may be required to perform

the jobs. The model can be adopted to consider additional resources in the

problems.

• This research only investigated the impact of one throughput coefficient on one

example. To better study the impact of various throughput coefficients on model’s

performance further studies is required.
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Appendix 1 Preprocessing

import numpy as np

import xlrd

import time

import datetime

import matplotlib.pyplot as plt

import sys

import shutil

import os

from matplotlib.ticker import MultipleLocator ,

FormatStrFormatter

from datetime import datetime

print ’#’,datetime.now().strftime(’%Y-%m-%d %H:%M:%S’),’#’

book = xlrd.open_workbook("datanew.xls")

sheet = book.sheet_by_index (18)

#print ’Worksheet Names: %s; Rows: %s; Columns: %s ’% (sheet.name

,

sheet.nrows , sheet.ncols)

for i in xrange(sheet.nrows):

for j in xrange(sheet.ncols):

Process = sheet.cell_value(i,j)

#print ’Process ’, Process

sheet = book.sheet_by_index (0)

#print ’Worksheet Names: %s; Rows: %s; Columns: %s ’% (sheet.name

,

sheet.nrows , sheet.ncols)

Project = []

for i in xrange(sheet.nrows):

for j in xrange(sheet.ncols):

Project.append(int(sheet.cell_value(i,j)))

#print ’Project ’, Project

sheet = book.sheet_by_index (1)

#print ’Worksheet Names: %s; Rows: %s; Columns: %s ’% (sheet.name

,
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sheet.nrows , sheet.ncols)

ActualDuration = []

for i in xrange(sheet.nrows):

ActualDuration.append(sheet.row_values(i))

for i in xrange(sheet.nrows):

while ’’ in ActualDuration[i]:

ActualDuration[i]. remove(’’)

#print ’Actual Duration ’, ActualDuration

sheet = book.sheet_by_index (11)

#print ’Worksheet Names: %s; Rows: %s; Columns: %s ’% (sheet.name

,

sheet.nrows , sheet.ncols)

InflationRate = []

for i in xrange(sheet.nrows):

InflationRate.append(sheet.row_values(i))

for i in xrange(sheet.nrows):

while ’’ in InflationRate[i]:

InflationRate[i]. remove(’’)

#print ’InflationRate ’, InflationRate

#

#

sheet = book.sheet_by_index (4)

#print ’Worksheet Names: %s; Rows: %s; Columns: %s ’% (sheet.name

,

sheet.nrows , sheet.ncols)

AbsoluteDueDate = []

for i in xrange(sheet.nrows):

for j in xrange(sheet.ncols):

AbsoluteDueDate.append(int(sheet.cell_value(i,j)))

#print ’AbsoluteDueDate ’, AbsoluteDueDate

#

#

sheet = book.sheet_by_index (3)
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#print ’Worksheet Names: %s; Rows: %s; Columns: %s ’% (sheet.name

,

sheet.nrows , sheet.ncols)

DesiredDueDate = []

for i in xrange(sheet.nrows):

for j in xrange(sheet.ncols):

DesiredDueDate.append(int(sheet.cell_value(i,j)))

#print ’DesiredDueDate ’, DesiredDueDate

#

#

sheet = book.sheet_by_index (10)

#print ’Worksheet Names: %s; Rows: %s; Columns: %s ’% (sheet.name

,

sheet.nrows , sheet.ncols)

Weight = []

for i in xrange(sheet.nrows):

for j in xrange(sheet.ncols):

Weight.append(int(sheet.cell_value(i,j)))

#print ’Weight ’, Weight

#

#

sheet = book.sheet_by_index (2)

#print ’Worksheet Names: %s; Rows: %s; Columns: %s ’% (sheet.name

,

sheet.nrows , sheet.ncols)

Arrivall =[]

Arrival =[]

for i in xrange(sheet.nrows):

Arrivall.append(sheet.row_values(i))

for i in xrange(sheet.nrows):

while ’’ in Arrivall[i]:

Arrivall[i]. remove(’’)
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for i in range(len(Project)):

Arrival.append(map(int ,Arrivall[i]))

#print ’Arrival ’, Arrival

#

#

sheet = book.sheet_by_index (5)

#print ’Worksheet Names: %s; Rows: %s; Columns: %s ’% (sheet.name

,

sheet.nrows , sheet.ncols)

PrecedenceN =[]

for i in xrange(sheet.nrows):

PrecedenceN.append(sheet.row_values(i))

for i in xrange(sheet.nrows):

while ’’ in PrecedenceN[i]:

PrecedenceN[i]. remove(’’)

#print ’Precedence ’

Precedence = []

z = 0

for n in Project:

n = z+n

x = Precedence.append(PrecedenceN[z:n])

z = n

#print Precedence

#

#

sheet = book.sheet_by_index (13)

#print ’Worksheet Names: %s; Rows: %s; Columns: %s ’% (sheet.name

,

sheet.nrows , sheet.ncols)

RS = []

for i in xrange(sheet.nrows):
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RS.append(sheet.row_values(i))

for i in xrange(sheet.nrows):

while ’’ in RS[i]:

RS[i]. remove(’’)

#print ’RemainingStatus ’, RS

#

#

# Auxilary

TotProj=len(Project)

IAux = range(1,TotProj +1)

JAux= dict(zip(IAux ,( range(1,Project[i -1]+1) for i in IAux)))

#

#

Duration =[]

for i in IAux:

InflatedDuration =[]

for j in JAux[i]:

InflatedDuration.append(round(ActualDuration[i-1][j-1]*

InflationRate

[i-1][j-1]))

Duration.append(InflatedDuration)

#

#

for i in IAux:

for j in JAux[i]:

if RS[i-1][j-1] > 0:

Duration[i-1][j-1]=( round(Duration[i-1][j-1]*RS[i-1][j

-1]+0.4999))

else:

continue
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#print ’Duration ’, Duration

#print ’DoubleCheckDuration ’,Duration

#

#

sheet = book.sheet_by_index (12)

#print ’Worksheet Names: %s; Rows: %s; Columns: %s ’% (sheet.name

,

sheet.nrows , sheet.ncols)

Batch = []

for i in xrange(sheet.nrows):

Batch.append(sheet.row_values(i))

for i in xrange(sheet.nrows):

while ’’ in Batch[i]:

Batch[i]. remove(’’)

#print ’Batch ’, Batch

#

#

l= [[] for x in xrange(len(Project))]

def EF(n,j):

Templl= Arrival[n][j] + Duration[n][j]

for k in range(Project[n]):

if Precedence[n][j][k]==1:

temp = EF(n,k) - Duration[n][k] + round(( Duration[n][k]/ Batch[n

][k])

+0.49999) + Duration [n][j]

tempp= EF(n,k) + round (( Duration[n][j]/Batch[n][j]) +0.49999)

if temp > Templl:

Templl = temp

if tempp > Templl: Templl = tempp

else:

if tempp > Templl:
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Templl = tempp

return Templl

n = 0

while n<len(Project):

for j in range(Project[n]):

l[n]. append(int(EF(n,j)))

n+=1

#print ’Earliest Finish ’

#print l

#

#

def LF(n,j):

TempU= AbsoluteDueDate[n]

for k in range(Project[n]):

if Precedence[n][k][j]==1:

temp = LF(n,k) - Duration[n][k]

if temp < TempU: TempU = temp

return TempU

u= [[] for x in xrange(len(Project))]

n = 0

while n<len(Project):

for j in range(Project[n]):

u[n]. append(int(LF(n,j)))

n+=1

#print ’Latest Finish ’

#print u

#

#

sheet = book.sheet_by_index (8)



62

#print ’Worksheet Names: %s; Rows: %s; Columns: %s ’% (sheet.name

,

sheet.nrows , sheet.ncols)

Operatorr =[]

for i in xrange(sheet.nrows):

Operatorr.append(sheet.row_values(i))

OperatorReq = []

z = 0

for n in Project:

n = z+n

x = OperatorReq.append(Operatorr[z:n])

z = n

#print ’OperatorReq ’

#print OperatorReq

#

#

sheet = book.sheet_by_index (14)

#print ’Worksheet Names: %s; Rows: %s; Columns: %s ’% (sheet.name

,

sheet.nrows , sheet.ncols)

CC = []

CCC = []

for i in xrange(sheet.nrows):

CCC.append(sheet.row_values(i))

for i in xrange(sheet.nrows):

while ’’ in CCC[i]:

CCC[i]. remove(’’)

for i in range(len(Project)):

CC.append(map(int ,CCC[i]))

#print ’CompletionConstraint ’

#print CC

#

#
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sheet = book.sheet_by_index (9)

#print ’Worksheet Names: %s; Rows: %s; Columns: %s ’% (sheet.name

,

sheet.nrows , sheet.ncols)

OperatorPartialUsage =[]

for i in xrange(sheet.nrows):

OperatorPartialUsage.append(sheet.row_values(i))

Opu = []

z = 0

for n in Project:

n = z+n

x = Opu.append(OperatorPartialUsage[z:n])

z = n

#print ’OperatorPartialUsage ’

#print Opu

#

#

sheet = book.sheet_by_index (7)

#print ’Worksheet Names: %s; Rows: %s; Columns: %s ’% (sheet.name

,

sheet.nrows , sheet.ncols)

MachinePartialUsage =[]

for i in xrange(sheet.nrows):

MachinePartialUsage.append(sheet.row_values(i))

Mpu = []

z = 0

for n in Project:

n = z+n

x = Mpu.append(MachinePartialUsage[z:n])

z = n

#print ’MachinePartialUsage ’

#print Mpu
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#

#

Machinee = []

sheet = book.sheet_by_index (6)

#print ’Worksheet Names: %s; Rows: %s; Columns: %s ’% (sheet.name

,

sheet.nrows , sheet.ncols)

for i in xrange(sheet.nrows):

Machinee.append(sheet.row_values(i))

MachineReq = []

z = 0

for n in Project:

n = z+n

x = MachineReq.append(Machinee[z:n])

z = n

#print ’MachineReq ’

#print MachineReq

#

#

sheet = book.sheet_by_index (15)

#print ’Worksheet Names: %s; Rows: %s; Columns: %s ’% (sheet.name

,

sheet.nrows , sheet.ncols)

MC = []

MCC = []

for i in xrange(sheet.nrows):

MCC.append(sheet.row_values(i))

for i in xrange(sheet.nrows):

while ’’ in MCC[i]:

MCC[i]. remove(’’)

for i in range(len(Project)):

MC.append(map(int ,MCC[i]))

#print ’MachineConstraint ’
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#print MC

#

#

sheet = book.sheet_by_index (16)

#print ’Worksheet Names: %s; Rows: %s; Columns: %s ’% (sheet.name

,

sheet.nrows , sheet.ncols)

OC = []

OCC=[]

for i in xrange(sheet.nrows):

OCC.append(sheet.row_values(i))

for i in xrange(sheet.nrows):

while ’’ in OCC[i]:

OCC[i]. remove(’’)

for i in range(len(Project)):

OC.append(map(int ,OCC[i]))

#print ’OperatorConstraint ’

#print OC

#

#

sheet = book.sheet_by_index (17)

#print ’Worksheet Names: %s; Rows: %s; Columns: %s ’% (sheet.name

,

sheet.nrows , sheet.ncols)

LFC = []

for i in xrange(sheet.nrows):

LFC.append(sheet.row_values(i))

for i in xrange(sheet.nrows):

while ’’ in LFC[i]:

LFC[i]. remove(’’)

#print ’LastestFinishConstranit ’

#print LFC

#
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# Import PuLP modeler functions

from pulp import *

# Create the ’prob’ variable to contain the problem data

prob = LpProblem("The Optimzation Problem",LpMinimize)

###-----Sets -----###

# number of projects

ProjNum=len(Project)

#set of project numbers

I = range(1,ProjNum +1)

#index auxilary

N=[[] for x in xrange(len(Project))]

for i in I:

N[i-1]. append(i)

#number of jobs in Project i

P = dict(zip(I,(( Project[i-1]) for i in I)))

#set of jobs in project i

J= dict(zip(I,(range(1,Project[i -1]+1) for i in I)))

#number of machine types

Machine =22

# set of machine types

M= range(1,Machine +1)

#number of operator types

Operator =14
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#set of operators types

O= range(1,Operator +1)

for i in I:

for j in J[i]:

if Duration[i-1][j -1]==0:

RS[i-1][j-1]= float (0)

if Process ==’Planning ’:

DurationPortion =[]

for i in I:

DP=[]

AbsoluteDueDate[i-1]= int(round (( AbsoluteDueDate[i -1]/8.0)

+0.4999))

DesiredDueDate[i-1]= int(round(( DesiredDueDate[i -1]/8.0) +0.4999))

for j in J[i]:

if Duration[i-1][j-1]<>0:

DP.append(Duration[i-1][j -1]/8.0)

Arrival[i-1][j-1]= int(round(( Arrival[i-1][j -1]/8.0) +0.4999))

for m in M:

Mpu[i-1][j-1][m-1]= Mpu[i-1][j-1][m -1]*(( Duration[i-1][j -1]/8.0)/

(round (( Duration[i-1][j -1]/8.0) +0.4999)))

for o in O:

Opu[i-1][j-1][o-1]= Opu[i-1][j-1][o -1]*(( Duration[i-1][j -1]/8.0)/

(round (( Duration[i-1][j -1]/8.0) +0.4999)))

Duration[i-1][j-1]= round (( Duration[i-1][j -1]/8.0) +0.4999)

else:

Duration[i-1][j -1]=0.001

DP.append(Duration[i-1][j -1]/8.0)

Arrival[i-1][j-1]= int(round(( Arrival[i-1][j -1]/8.0) +0.4999))

for m in M:

Mpu[i-1][j-1][m-1]= Mpu[i-1][j-1][m -1]*(( Duration[i-1][j -1]/8.0)/

(round (( Duration[i-1][j -1]/8.0) +0.4999)))
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for o in O:

Opu[i-1][j-1][o-1]= Opu[i-1][j-1][o -1]*(( Duration[i-1][j -1]/8.0)/

(round (( Duration[i-1][j -1]/8.0) +0.4999)))

Duration[i-1][j-1]= round (( Duration[i-1][j -1]/8.0) +0.4999)

DurationPortion.append(DP)

#print ’DurationPortion ’,DurationPortion

def LFP(n,j):

TempU= AbsoluteDueDate[n]

for k in range(P[n+1]):

if Precedence[n][k][j]==1:

temp = LFP(n,k) - DurationPortion[n][k]

if temp < TempU: TempU = temp

return TempU

n = 0

u= [[] for x in xrange(len(P))]

while n<len(P):

for j in range(P[n+1]):

u[n]. append(int(round(LFP(n,j)+0.4999)))

n+=1

def EFP(n,j):

Templl= Arrival[n][j] + DurationPortion[n][j]

for k in range(P[n+1]):

if Precedence[n][j][k]==1:

temp = EFP(n,k) - DurationPortion[n][k] + (DurationPortion[n][k

]/

Batch[n][k])+DurationPortion[n][j]

tempp= EFP(n,k) + DurationPortion[n][j]/Batch[n][j]

if temp > Templl:

Templl = temp

if tempp > Templl: Templl = tempp

else:

if tempp > Templl:
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Templl = tempp

return Templl

n = 0

l= [[] for x in xrange(len(P))]

while n<len(P):

for j in range(P[n+1]):

l[n]. append(int(round(EFP(n,j)+0.4999)))

n+=1

for i in I:

deletlist =[]

for j in range(Project[i-1]):

if RS[i-1][j]==0:

for k in range(Project[i-1]):

Precedence[i-1][k][j]=0

for z in range(Project[i-1]):

Precedence[i-1][j][z]=0

if Process ==’Planning ’:

EFP(i-1,k)

l[i-1][k]=int(round(EFP(i-1,k)+0.4999))

LFP(i-1,k)

u[i-1][k]=int(round(LFP(i-1,k)+0.4999))

else:

EF(i-1,k)

l[i-1][k]=int(round(EF(i-1,k)+0.4999))

LF(i-1,k)

u[i-1][k]=int(round(LF(i-1,k)+0.4999))

deletlist.append(j+1)

else:

continue

for x in deletlist:

J[i]. remove(x)
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#print ’Latest Finish ’

#print u

#print ’Earliest Finish ’

#print l

for i in I:

if len(J[i]) <=P[i]:

P[i]=len(J[i])

else:

continue

deletjob =[]

for i in I:

if not J[i]:

deletjob.append(i)

for x in deletjob:

I.remove(x)

if Process ==’Planning ’:

for i in I:

for j in J[i]:

if LFC[i-1][j-1] >0:

LFC[i-1][j-1]= round(LFC[i-1][j -1]/8+0.4999)

if LFC[i-1][j-1]<=u[i-1][j-1]:

u[i-1][j-1]= int(LFC[i-1][j-1])

if Process <>’Planning ’:

for i in I:

for j in J[i]:

if LF(i-1,j-1) >0:

if LF(i-1,j-1) <=u[i-1][j-1]:

u[i-1][j-1]= int(LF(i-1,j-1))

ADD =[]

for i in I:

ADD.append(AbsoluteDueDate[i-1])
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print ’*DATA ARE IMPORTED ...’

#earliest possible period in which project i could be completed

ee=[]

for i in I:

x=[]

for j in J[i]:

x.append(l[i-1][j-1])

eee=max(x)

ee.append(eee)

e=dict(zip(I,ee))

#priority of project i

w= dict(zip(I,Weight))

#time interval 1

T= dict(zip(I,(range(min(Arrival[i-1]),AbsoluteDueDate[i -1]+1)

for i in I)))

#time interval 2

T2= range(0,max(ADD)+1)

#time interval 3

T3= {}

for i in I:

for j in J[i]: T3[i,j]= range(l[i-1][j-1],u[i-1][j -1]+1)

#time interval 4

T4={}

for i in I:
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for j in J[i]: T4[i,j]= range(l[i-1][j-1], AbsoluteDueDate[i

-1]+1)

#time interval 5

T5={}

for i in I:

for j in J[i]: T5[i,j]= range(l[i-1][j-1],u[i-1][j -1]+1)

#time interval 6

TeG ={}

for i in I: TeG[i]= range(e[i],AbsoluteDueDate[i -1]+1)

#time interval 7

Tal ={}

for i in I:

for j in J[i]: Tal[i,j]= range(Arrival[i-1][j-1],l[i-1][j-1])

#time interval 8

TuG ={}

for i in I:

for j in J[i]: TuG[i,j]= range(u[i-1][j-1]+1 , AbsoluteDueDate[i

-1]+1)

#time interval 9

T1e= dict(zip(I,( range(min(Arrival[i-1]),e[i]) for i in I)))

R={}

for m in M:

for t in T2: R[m,t]=1

V={}

for o in O:

for t in T2: V[o,t]=1
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#desired due date for project i

g= dict(zip(I,(( DesiredDueDate[i-1]) for i in I)))

# a variavle which is 1 if job j in project i is completed in

period t,

0 otherwise

x={}

for i in I: x[i] = LpVariable.dicts(’x’,(N[i-1],J[i],T[i]) ,0,1,

LpInteger)

# a variable which is 1 in period t if all jobs of project i

have been

comlpeted , 0 otherwise

h={}

for i in I: h[i] = LpVariable.dicts(’h’,(N[i-1],TeG[i]) ,0,1,

LpInteger)

# a varibale which is 1 within a duration of job j in project i

zz={}

for i in I: zz[i] = LpVariable.dicts(’zz’,(N[i-1],J[i],T[i])

,0,1,LpInteger)

# a variable which is 1 if machine m is chosen for job j in

project i,

0 otherwise

S={}

for i in I: S[i] = LpVariable.dicts(’S’,(N[i-1],J[i],M) ,0,1,

LpInteger)

# a variable which is 1 if operator n is chosen for job j in

project i,

0 otherwise

W={}
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for i in I: W[i] = LpVariable.dicts(’W’,(N[i-1],J[i],O) ,0,1,

LpInteger)

# a variable which is used to assisst constraint 5

QS={}

for i in I: QS[i] = LpVariable.dicts(’QS’,(N[i-1],J[i],M,T[i])

,0,1,LpInteger)

# a variable which is used to assisst constraint 6

QW={}

for i in I: QW[i] = LpVariable.dicts(’QW’,(N[i-1],J[i],O,T[i])

,0,1,

LpInteger)

# a variable which is 1 during the period that a setup for a

step is

completed but the processing has not been

started yet - This is only used for machine utilization

zzs={}

for i in I: zzs[i] = LpVariable.dicts(’zzs’,(N[i-1],J[i],T[i])

,0,1

,LpInteger)

# a variable which is 1 if a machine is utilized during a period

defined for zzs

QQS={}

for i in I: QQS[i] = LpVariable.dicts(’QQS’,(N[i-1],J[i],M,T[i])

,0,1,LpInteger)

Time_Start = time.clock ()

print ’*VARIABLES ARE GENERATED , THE MODEL IS BEING PROCESSED ...

’,’ ##’,Process ,’##’
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Appendix 2 ILP Model

#-----Objective Function -----#

# a project is late if it is completed after the desired due -

date , g[i]

prob += (sum(w[i]*((t-g[i])*h[i][i][t]) for i in I for t in TeG[

i]

if t>=g[i]+1)+ sum (0.01*w[i]*h[i][i][t]*t

for i in I for t in TeG[i]))

#-----Subject To -----#

for i in I:

#job completion constraint 1

prob += sum(h[i][i][t] for t in TeG[i]) == 1

#prob += sum(h[i][i][t] for t in T1e[i]) == 0

for j in J[i]:

#step completion constraint

prob += sum(x[i][i][j][t] for t in T3[i,j] ) == 1

prob += sum(x[i][i][j][t] for t in TuG[i,j]) == 0

prob += sum(x[i][i][j][t] for t in Tal[i,j]) == 0

if CC[i-1][j-1] >0:

B = CC[i-1][j-1]

prob += x[i][i][j][B]==1

#step duration

for t in T[i]:

prob += sum(x[i][i][j][t1] for t1 in T[i] if t1 >=t if t1 < t +

Duration[i-1]

[j-1] if t1 <= AbsoluteDueDate[i-1]) == zz[i][i][j][t]

#prob += sum(zz[i][i][j][t] for t in T[i] if t>= AbsoluteDueDate

[i -1]+1)

== 0



76

#prob += sum(zz[i][i][j][t] for t in Tal[i,j] if Duration[i-1][j

-1]<t-

Duration[i-1][j-1]) == 0

#machine constraint auxilary

prob += sum(MachineReq[i-1][j-1][m-1] for m in M) >= sum(S[i][i

][j][m]

for m in M)

prob += sum(MachineReq[i-1][j-1][m-1] for m in M) <= sum(S[i][i

][j][m]

for m in M)*Machine

prob += sum(S[i][i][j][m] for m in M) <= 1

for m in M:

prob += S[i][i][j][m] <= MachineReq[i-1][j-1][m-1]

for t in T[i]:

prob += zz[i][i][j][t]+S[i][i][j][m] - QS[i][i][j][m][t]*2 <= 1

prob += zz[i][i][j][t]+S[i][i][j][m] - QS[i][i][j][m][t]*2 >= 0

#machine constraint during a period , starting from setup

completion

upto a begining of a corresponding processing

prob += zzs[i][i][j][t]+S[i][i][j][m] - QQS[i][i][j][m][t]*2 <=

1

prob += zzs[i][i][j][t]+S[i][i][j][m] - QQS[i][i][j][m][t]*2 >=

0

if MC[i-1][j-1] >0:

Y = MC[i-1][j-1]

prob += S[i][i][j][Y]==1

#operator constraint auxilary

prob += sum(OperatorReq[i-1][j-1][o-1] for o in O) >= sum(W[i][i

][j][o]

for o in O)

prob += sum(OperatorReq[i-1][j-1][o-1] for o in O) <= sum(W[i][i

][j][o]



77

for o in O)*Operator

prob += sum(W[i][i][j][o] for o in O) <= 1

for o in O:

prob += W[i][i][j][o] <= OperatorReq[i-1][j-1][o-1]

for t in T[i]:

prob += zz[i][i][j][t]+W[i][i][j][o] - QW[i][i][j][o][t]*2 <= 1

prob += zz[i][i][j][t]+W[i][i][j][o] - QW[i][i][j][o][t]*2 >= 0

if OC[i-1][j-1] >0:

B = OC[i-1][j-1]

prob += W[i][i][j][B]==1

#cycle must be assigned to a machine that is assigned to its

corresponding

setup

for j in J[i]:

if j%2<>0:

if j+1 in J[i]:

for m in M:

prob += S[i][i][j][m]==S[i][i][j+1][m]

#Machine constraint during the period in which the setup of a

step is

completed but the cycle has not been

started yet

for j in J[i]:

if j%2<>0:

if j+1 in J[i]:

for t in T[i]:

if Process ==’Planning ’:

if l[i-1][j -1]==l[i-1][j]:

prob += (sum(x[i][i][j][t1] for t1 in T[i] if t1 >=l[i-1][j-1] if

t1 <=t)-sum

(x[i][i][j+1][t1] for t1 in T[i] if t1 >=l[i-1][j] if t1 <=t+

Duration[i-1][j]))==zzs[i][i][j][t]

else:
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prob += (sum(x[i][i][j][t1] for t1 in T[i] if t1 >=l[i-1][j-1] if

t1<t)-sum(

x[i][i][j+1][t1] for t1 in T[i] if t1 >=l[i-1][j-1] if t1<t+

Duration[i-1][j]))==zzs[i][i][j][t]

else:

prob += sum(x[i][i][j][t1] for t1 in T[i] if t1 >=l[i-1][j-1] if

t1<t)-sum

(x[i][i][j+1][t1] for t1 in T[i] if t1>l[i-1][j-1] if t1<t+

Duration[i-1][j])==zzs[i][i][j][t]

#project completion constraint 2

for t2 in TeG[i]:

prob += sum(x[i][i][j][t] for j in J[i] for t in T3[i,j] if t<=

t2) >= (h[i][i]

[t2])*P[i]

#Sequencing constraint

#for j1 in J[i]:

# for j2 in J[i]:

# prob += Precedence[i-1][j1 -1][j2 -1]*( sum(t*x[i][i][j2][

t] for t in T5[i,j2])

+Duration[i-1][j1 -1]) <= sum(t*x[i][i][j1][t] for t in T5[i,j1])

for j1 in J[i]:

for j2 in J[i]:

if Process ==’Planning ’:

#prob += Precedence[i-1][j1 -1][j2 -1]*( sum(t*x[i][i][j2][t] for t

in T5[i,j2])-D

uration[i-1][j2 -1]+ DurationPortion[i-1][j2 -1]) <=sum(t*x[i][i][j1

][t] for t in T5[i,j1])-DurationPortion[i-1][j1 -1]
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prob += Precedence[i-1][j1 -1][j2 -1]*( sum(t*x[i][i][j2][t] for t

in T5[i,j2])-Duration[i-1][j2 -1]+( DurationPortion[i-1][j2 -1]/

Batch[i-1][j2 -1])) <= sum(t*x[i][i][j1][t] for t in T5[i,j1])

-DurationPortion[i-1][j1 -1]

prob += Precedence[i-1][j1 -1][j2 -1]*( sum(t*x[i][i][j2][t] for t

in T5[i,j2])-Duration[i-1][j2 -1]+ DurationPortion[i-1][j2 -1]+(

DurationPortion[i-1][j1 -1]/ Batch[i-1][j1 -1]))

<= sum(t*x[i][i][j1][t] for t in T5[i,j1])

else:

prob += Precedence[i-1][j1 -1][j2 -1]*( sum(t*x[i][i][j2][t] for t

in T5[i,j2])

-Duration[i-1][j2 -1]+( Duration[i-1][j2 -1]/ Batch[i-1][j2 -1])) <=

sum(t*x[i][i][j1][t]

for t in T5[i,j1])-Duration[i-1][j1 -1]

prob += Precedence[i-1][j1 -1][j2 -1]*( sum(t*x[i][i][j2][t] for t

in T5[i,j2])+

(Duration[i-1][j1 -1]/ Batch[i-1][j1 -1]))

<= sum(t*x[i][i][j1][t] for t in T5[i,j1])

#machine and operator constraint

for t in T2:

for m in M:

prob += (sum(QS[i][i][j][m][t]*Mpu[i-1][j-1][m-1] for i in I for

j in J[i] if t in T[i])+

sum(QQS[i][i][j][m][t]for i in I for j in J[i] if t in T[i]))<=

R[m,t]

for o in O:

prob += sum(QW[i][i][j][o][t]*Opu[i-1][j-1][o-1] for i in I for

j in J[i] if t in T[i]) <= V[o,t]

#prob.writeLP (" OptimizationProblem.lp")
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#Gurobi Solver

print ’*LP MODEL IS GENERATED ----Solver: GUROBI ’

solvers.GUROBI_CMD(path=None ,keepFiles=0,mip=1,msg=1,options =[])

.solve(prob)# options=

[’TimeLimit =10’]).solve(prob)

#GLPK Solver

#solvers.GLPK_CMD(path=None ,keepFiles =0,mip=1,msg=1,options =[]).

solve(prob)# options=

[’TimeLimit =10’]).solve(prob)

#COIN Solver

#print ’Solver: COIN’

#prob.solve ()

print("Status:", LpStatus[prob.status ])

print("Objective = ", value(prob.objective))

Time_Elapsed = (time.clock() - Time_Start)

print ’Computation Time’, Time_Elapsed

if LpStatus[prob.status ]==’Not Solved ’:

#print ’The model could not provide a feasible solution ’

sys.exit("The model could not provide a feasible solution")

print ""

JobCompletion = ""

print "#JOB COMPLETION TIME#"

for i in I:

JobCompletion = JobCompletion + "Job "+repr(i)+" Completion_Time

:"

for t in TeG[i]:

if h[i][i][t]. value()==1:

JobCompletion = JobCompletion + str(t)



81

else:

continue

print JobCompletion

JobCompletion = ""

print ""

CompletionTime = ""

print "#STEP COMPLETION TIME#"

for i in I:

print "**** Job "+repr(i)+"****"

for j in J[i]:

CompletionTime= " Step "+repr(j)+": "

for t in T[i]:

if x[i][i][j][t]. value()==1:

CompletionTime = CompletionTime +str(t)

else:

continue

print CompletionTime

CompletionTime = ""

print ""

ProcessingPeriods = ""

print "#JOB PROCESSING PERIODS#"

for i in I:

print "**** Job "+repr(i)+"****"

for j in J[i]:

ProcessingPeriods = ProcessingPeriods+" Step"+repr(j)+": "+"(

"

for t in T[i]:

if zz[i][i][j][t]. value()==1:
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ProcessingPeriods = ProcessingPeriods + str(t)+" "

else:

continue

ProcessingPeriods=ProcessingPeriods + ")"

print ProcessingPeriods

ProcessingPeriods = ""

print ""

MachineUsagePeriod = ""

print "#Machine USAGE PERIOD#"

for m in M:

print "**** Machine "+repr(m)+"****"

print " Job - step - period "

for t in T2:

for i in I:

if t in T[i]:

for j in J[i]:

if QS[i][i][j][m][t]. value()==1 or QQS[i][i][j][m][t]. value()

==1:

print " "+str(i)+" "+str(j)+" "+str(t)

MachineUsagePeriod ="1"

else:

continue

if MachineUsagePeriod =="":

print "*** Machine "+repr(m)+" was not used AT ALL***"

else:

MachineUsagePeriod = ""

print ""

OperatorUsagePeriod = ""
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print "#OPERATOR USAGE PERIOD#"

for o in O:

print "**** Operator "+repr(o)+"****"

print " Job - step - period "

for t in T2:

for i in I:

if t in T[i]:

for j in J[i]:

if QW[i][i][j][o][t]. value()==1:

print " "+str(i)+" "+str(j)+" "+str(t)

OperatorUsagePeriod="1"

else:

continue

if OperatorUsagePeriod =="":

print "*** Operator "+repr(o)+" was not used AT ALL***"

else:

OperatorUsagePeriod = ""

##GanttChart ##

Identitylist =[]

numpylist =[]

for i in I:

for j in J[i]:

for t in T[i]:

if zz[i][i][j][t]. value()==1:

steplist =[]

steplist.append(i+0.05*j)

steplist.append(j)

steplist.append(t-1)

steplist.append(t)

Identitylist.append(str(i)+"-"+str(j))

numpylist.append(steplist)
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else:

continue

#print ’numpylist ’,numpylist

ganttchart=np.array(numpylist)

np.savetxt("ganttchart.csv", ganttchart , delimiter=",")

np.savetxt("numpylist.csv", numpylist , delimiter=",")

file = open("Identitylist.txt", "w")

for item in Identitylist:

file.write("%s\n" % item)

file.close ()

plt.ylim(0,max(I)+1)

color= [’r’, ’b’, ’g’, ’k’, ’m’, ’c’, ’y’]

color_mapper = np.vectorize(lambda x: {1: ’r’, 2: ’b’, 3: ’g’,

4:’m’, 5:’c’, 6:’y’, 7:

’r’, 8:’b’, 9:’g’, 10:’k’, 11:’m’, 12:’c’, 13:’y’ ,14:’k’}.get(x)

)

plt.hlines(ganttchart [:,0], ganttchart [:,2], ganttchart [:,3],

colors=color_mapper

(ganttchart [: ,1]),linewidth =5)

plt.title(’Jobs vs. Time’)

plt.ylabel(’Jobs’)

if Process ==’Planning ’:

plt.xlabel(’Time(days)’)

else:

plt.xlabel(’Time(hours)’)
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#plt.locator_params(’both ’,1)

plt.yticks(range(0,max(I)+1))

plt.minorticks_on ()

plt.tick_params(axis = ’both’, which = ’major’, labelsize = 10)

#plt.set_major_formatter(majorFormatter)

x1=0

x2=1

x3=2

x4=3

n=0

while n<len(numpylist):

x5=float(numpylist[n][x3]+ numpylist[n][x4])/2

plt.text(x5 ,numpylist[n][x1],Identitylist[n])

n+=1

plt.show()

###

Identitymachine =[]

numpymachine =[]

for m in M:

for i in I:

for j in J[i]:

for t in T[i]:

if QS[i][i][j][m][t]. value()==1:

steplist =[]

steplist.append(i)

steplist.append(j)

steplist.append(m+0.05*i)

steplist.append(t-1)

steplist.append(t)



86

Identitymachine.append(str(i)+"-"+str(j))

numpymachine.append(steplist)

else:

continue

#print ’numpymachine ’,numpymachine

ganttchartm=np.array(numpymachine)

np.savetxt("ganttchartm.csv", ganttchartm , delimiter=",")

np.savetxt("numpymachine.csv", numpymachine , delimiter=",")

file = open("Identitymachine.txt", "w")

for item in Identitymachine:

file.write("%s\n" % item)

file.close ()

plt.yticks(range(len(M)+1))

plt.ylim(0,len(M)+2)

plt.hlines(ganttchartm [:,2], ganttchartm [:,3], ganttchartm [:,4],

linewidth=4,colors

=color_mapper(ganttchartm [: ,1]))

plt.title(’Machine Utilization ’)

plt.ylabel(’Machine ’)

if Process ==’Planning ’:

plt.xlabel(’Time(days)’)

else:

plt.xlabel(’Time(hours)’)

x1=0

x2=1

x3=2

x4=3

x5=4
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n=0

while n<len(numpymachine):

x6=float ((( numpymachine[n][x4]+ numpymachine[n][x5])/2) +0.05*

numpymachine[n][x2])

plt.text(x6 ,numpymachine[n][x3],Identitymachine[n])

n+=1

plt.show()

###

Identityoperator =[]

numpyoperator =[]

for o in O:

for i in I:

for j in J[i]:

for t in T[i]:

if QW[i][i][j][o][t]. value()==1:

steplist =[]

steplist.append(i)

steplist.append(j)

steplist.append(o+0.05*i)

steplist.append(t-1)

steplist.append(t)

Identityoperator.append(str(i)+"-"+str(j))

numpyoperator.append(steplist)

else:

continue

#print ’numpyoperator ’,numpyoperator

ganttcharto=np.array(numpyoperator)

np.savetxt("ganttcharto.csv", ganttcharto , delimiter=",")

np.savetxt("numpyoperator.csv", numpyoperator , delimiter=",")
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file = open("Identityoperator.txt", "w")

for item in Identityoperator:

file.write("%s\n" % item)

file.close ()

#color_mapper = np.vectorize(lambda x: {1: ’red ’, 2: ’blue ’, 3:

’green ’}.get(x))

plt.yticks(range(len(O)+1))

plt.ylim(0,len(O)+2)

plt.hlines(ganttcharto [:,2], ganttcharto [:,3], ganttcharto [:,4],

linewidth=4,

colors=color_mapper(ganttcharto [:,1]))

plt.title(’Operator Utilization ’)

plt.ylabel(’Operator ’)

if Process ==’Planning ’:

plt.xlabel(’Time(days)’)

else:

plt.xlabel(’Time(hours)’)

x1=0

x2=1

x3=2

x4=3

x5=4

n=0

while n<len(numpyoperator):

x6=float ((( numpyoperator[n][x4]+ numpyoperator[n][x5])/2) +0.05*

numpyoperator[n][x2])

plt.text(x6 ,numpyoperator[n][x3],Identityoperator[n])

n+=1

plt.show()

##if Process==’Planning ’:
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## BusyPeriods =[]

## SchedulingPeriod =[]

## for t in T2:

## SchedulingPeriod1 =[]

## for i in I:

## if t in T[i]:

## for j in J[i]:

## if zz[i][i][j][t].value ()==1:

## if t not in BusyPeriods:

## BusyPeriods.append(t)

## Schedule =[]

## Schedule.append(str(i)+"-"+str(j))

## SchedulingPeriod1.append(Schedule)

## SchedulingPeriod.append(SchedulingPeriod1)

prevName = ’datanew.xls’

if Process ==’Planning ’:

newName = ’datanewPlanning.xls’

else:

newName = ’datanewScheduling.xls’

shutil.copyfile(prevName ,newName)

print ’Computation Time’, Time_Elapsed
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Appendix 3 SPT Model

print ’*VARIABLES ARE GENERATED , THE MODEL IS BEING PROCESSED ...

’,’

##’,Process ,’##’

#JobsToComplete

JTC =[]

for i in I:

#DurationListJob

DLJ =[]

for j in J[i]:

#DurationListStep

DLS =[]

DLS.append(i)

DLS.append(j)

DLS.append(Duration[i-1][j-1])

JTC.append(DLS)

def LESPP(i,j):

for j2 in J[i]:

if Precedence[i-1][j-1][j2 -1]==1:

return 0

else: continue

return 1

LES =[]

for i in I:

for j in J[i]:

if LESPP(i,j)==1:

LES.append ([i,j,Duration[i-1][j -1]])

LES=sorted(LES ,key=itemgetter (2))
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def LESP(i,j):

for j2 in J[i]:

if X[i-1][j-1][j2 -1]>t:

return 0

else:

if Precedence[i-1][j-1][j2 -1]==1:

return 0

else: continue

return 1

#List of eligible steps

def LESD():

del LES[:]

for i in I:

for j in J[i]:

if [i,j,Duration[i-1][j-1]] in JTC:

if LESP(i,j)==1:

LES.append ([i,j,Duration[i-1][j -1]])

else:

continue

else:

continue

Identitylist =[]

numpylist =[]

Identitymachine =[]

numpymachine =[]

Identityoperator =[]



92

numpyoperator =[]

#Machine Avilability

def MA(x1 ,x2 ,t):

D=range(t,t+int(Duration[x1 -1][x2 -1]))

for m in MRL[x1 -1][x2 -1]:

Mcheck =[]

for t in D:

if (R[m,t]-Mpu[x1 -1][x2 -1][m-1]) >=0:

Mcheck.append (1)

else:

Mcheck.append (0)

if sum(Mcheck)==len(D):

return m

else:

continue

return 0

#Operator Vavailabilty

def OA(x1 ,x2 ,t):

D=range(t,t+int(Duration[x1 -1][x2 -1]))

for o in ORL[x1 -1][x2 -1]:

Ocheck =[]

for t in D:

if (V[o,t]-Opu[x1 -1][x2 -1][o-1]) >=0:

Ocheck.append (1)

else:

Ocheck.append (0)

if sum(Ocheck)==len(D):

return o

else:

continue

return 0
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#Machine Constraint Cycle

def MCC(x1 ,x2 ,m):

if x2%2<>0:

MRL[x1 -1][x2]=[]

MRL[x1 -1][x2]. append(m)

def AC(x1 ,x2 ,t):

if t>= Arrival[x1 -1][x2 -1]:

D=range(t,t+int(Duration[x1 -1][x2 -1]))

if MA(x1 ,x2 ,t) >=1 and OA(x1 ,x2 ,t) >=1:

m=MA(x1,x2,t)

#print "MA(X1,X2,t)",x1,x2,m

o=OA(x1,x2,t)

#print "OA(X1,X2,t)",x1,x2,o

MCC(x1 ,x2 ,m)

for t in D:

R[m,t]=R[m,t]-Mpu[x1 -1][x2 -1][m-1]

V[o,t]=V[o,t]-Opu[x1 -1][x2 -1][o-1]

for j in J[x1]:

Precedence[x1 -1][j-1][x2 -1]= float (0)

X[x1 -1][j-1][x2 -1]= int(max(D))

steplist =[]

steplist.append(x1 +0.01* x2)

steplist.append(x2)

steplist.append(min(D))

steplist.append(max(D)+1)

Identitylist.append(str(x1)+"-"+str(x2))

numpylist.append(steplist)

steplist =[]

steplist.append(x1 +0.01* x2)

steplist.append(x2)

steplist.append(m+0.01* x1)

steplist.append(min(D))
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steplist.append(max(D)+1)

Identitymachine.append(str(x1)+"-"+str(x2))

numpymachine.append(steplist)

steplist =[]

steplist.append(x1 +0.01* x2)

steplist.append(x2)

steplist.append(o+0.01* x1)

steplist.append(min(D))

steplist.append(max(D)+1)

Identityoperator.append(str(x1)+"-"+str(x2))

numpyoperator.append(steplist)

return 1

for t in T2:

if JTC:

LES=sorted(LES ,key=itemgetter (2))

for x in LES:

x1=x[0]

x2=x[1]

if AC(x1 ,x2 ,t)==1:

JTC.remove(x)

LESD()

ganttchart=np.array(numpylist)

np.savetxt("ganttchart.csv", ganttchart , delimiter=",")

np.savetxt("numpylist.csv", numpylist , delimiter=",")
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file = open("Identitylist.txt", "w")

for item in Identitylist:

file.write("%s\n" % item)

file.close ()

plt.ylim(0,max(I)+1)

color= [’r’, ’b’, ’g’, ’k’, ’m’, ’c’, ’y’]

color_mapper = np.vectorize(lambda x: {1: ’r’, 2: ’b’, 3: ’g’,

4:’m’,

5:’c’, 6:’y’, 7:’r’, 8:’b’, 9:’g’, 10:’k’, 11:’m’, 12:’c’, 13:’y

’ ,14:’k’}.get(x))

plt.hlines(ganttchart [:,0], ganttchart [:,2], ganttchart [:,3],

colors=color_mapper(ganttchart [:,1]),linewidth =5)

plt.title(’Jobs vs. Time’)

plt.ylabel(’Jobs’)

if Process ==’Planning ’:

plt.xlabel(’Time(days)’)

else:

plt.xlabel(’Time(hours)’)

#plt.locator_params(’both ’,1)

plt.yticks(range(0,max(I)+1))

plt.minorticks_on ()

plt.tick_params(axis = ’both’, which = ’major’, labelsize = 10)

#plt.set_major_formatter(majorFormatter)
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x1=0

x2=1

x3=2

x4=3

n=0

while n<len(numpylist):

x5=float(numpylist[n][x3]+ numpylist[n][x4])/2

plt.text(x5 ,numpylist[n][x1],Identitylist[n])

n+=1

plt.show()

#print ’numpymachine ’,numpymachine

ganttchartm=np.array(numpymachine)

np.savetxt("ganttchartm.csv", ganttchartm , delimiter=",")

np.savetxt("numpymachine.csv", numpymachine , delimiter=",")

file = open("Identitymachine.txt", "w")

for item in Identitymachine:

file.write("%s\n" % item)

file.close ()

plt.yticks(range(len(M)+1))

plt.ylim(0,len(M)+2)

plt.hlines(ganttchartm [:,2], ganttchartm [:,3], ganttchartm [:,4],

linewidth =4,colors=color_mapper(ganttchartm [: ,1]))

plt.title(’Machine Utilization ’)

plt.ylabel(’Machine ’)

if Process ==’Planning ’:
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plt.xlabel(’Time(days)’)

else:

plt.xlabel(’Time(hours)’)

x1=0

x2=1

x3=2

x4=3

x5=4

n=0

while n<len(numpymachine):

x6=float ((( numpymachine[n][x4]+ numpymachine[n][x5])/2) +0.05*

numpymachine[n][x2])

plt.text(x6 ,numpymachine[n][x3],Identitymachine[n])

n+=1

plt.show()

#print ’numpyoperator ’,numpyoperator

ganttcharto=np.array(numpyoperator)

np.savetxt("ganttcharto.csv", ganttcharto , delimiter=",")

np.savetxt("numpyoperator.csv", numpyoperator , delimiter=",")

file = open("Identityoperator.txt", "w")

for item in Identityoperator:

file.write("%s\n" % item)

file.close ()

#color_mapper = np.vectorize(lambda x: {1: ’red ’, 2: ’blue ’, 3:

green ’}.get(x))
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plt.yticks(range(len(O)+1))

plt.ylim(0,len(O)+2)

plt.hlines(ganttcharto [:,2], ganttcharto [:,3], ganttcharto [:,4],

linewidth =4,colors=color_mapper(ganttcharto [: ,1]))

plt.title(’Operator Utilization ’)

plt.ylabel(’Operator’)

if Process ==’Planning ’:

plt.xlabel(’Time(days)’)

else:

plt.xlabel(’Time(hours)’)

x1=0

x2=1

x3=2

x4=3

x5=4

n=0

while n<len(numpyoperator):

x6=float ((( numpyoperator[n][x4]+ numpyoperator[n][x5])/2) +0.05*

numpyoperator[n][x2])

plt.text(x6 ,numpyoperator[n][x3],Identityoperator[n])

n+=1

plt.show()
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Appendix 4 EDD Model

print ’*DATA ARE IMPORTED ...’

#earliest possible period in which project i could be completed

ee=[]

for i in I:

x=[]

for j in J[i]:

x.append(l[i-1][j-1])

eee=max(x)

ee.append(eee)

e=dict(zip(I,ee))

#priority of project i

w= dict(zip(I,Weight))

#time interval 1

T= dict(zip(I,(range(min(Arrival[i-1]),AbsoluteDueDate[i -1]+1)

for i in I)))

#time interval 2

T2= range(min(min(A)),max(ADD)+1)

#time interval 3

T3= {}

for i in I:

for j in J[i]: T3[i,j]= range(l[i-1][j-1],u[i-1][j -1]+1)

#time interval 4

T4={}

for i in I:
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for j in J[i]: T4[i,j]= range(l[i-1][j-1], AbsoluteDueDate[i

-1]+1)

#time interval 5

T5={}

for i in I:

for j in J[i]: T5[i,j]= range(l[i-1][j-1],u[i-1][j -1]+1)

#time interval 6

TeG ={}

for i in I: TeG[i]= range(e[i],AbsoluteDueDate[i -1]+1)

#time interval 7

Tal ={}

for i in I:

for j in J[i]: Tal[i,j]= range(Arrival[i-1][j-1],l[i-1][j-1])

#time interval 8

TuG ={}

for i in I:

for j in J[i]: TuG[i,j]= range(u[i-1][j-1]+1 , AbsoluteDueDate[i

-1]+1)

#time interval 9

T1e= dict(zip(I,( range(min(Arrival[i-1]),e[i]) for i in I)))

R={}

for m in M:

for t in T2: R[m,t]=1

V={}

for o in O:

for t in T2: V[o,t]=1
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#desired due date for project i

g= dict(zip(I,(( DesiredDueDate[i-1]) for i in I)))

Time_Start = time.clock ()

print ’*VARIABLES ARE GENERATED , THE MODEL IS BEING PROCESSED ...

’,’

##’,Process ,’##’

#JobsToComplete

JTC =[]

for i in I:

#DurationListJob

DLJ =[]

for j in J[i]:

#DurationListStep

DLS =[]

DLS.append(i)

DLS.append(j)

DLS.append(Duration[i-1][j-1])

DLS.append(DesiredDueDate[i-1])

JTC.append(DLS)

def LESPP(i,j):

for j2 in J[i]:

if Precedence[i-1][j-1][j2 -1]==1:

return 0

else: continue

return 1

LES =[]

for i in I:



102

for j in J[i]:

if LESPP(i,j)==1:

LES.append ([i,j,Duration[i-1][j-1], DesiredDueDate[i -1]])

LES=sorted(LES ,key=itemgetter (3))

def LESP(i,j):

for j2 in J[i]:

if X[i-1][j-1][j2 -1]>t:

return 0

else:

if Precedence[i-1][j-1][j2 -1]==1:

return 0

else: continue

return 1

#List of eligible steps

def LESD():

del LES[:]

for i in I:

for j in J[i]:

if [i,j,Duration[i-1][j-1], DesiredDueDate[i-1]] in JTC:

if LESP(i,j)==1:

LES.append ([i,j,Duration[i-1][j-1], DesiredDueDate[i -1]])

else:

continue

else:

continue

Identitylist =[]

numpylist =[]
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Identitymachine =[]

numpymachine =[]

Identityoperator =[]

numpyoperator =[]

#Machine Avilability

def MA(x1 ,x2 ,t):

D=range(t,t+int(Duration[x1 -1][x2 -1]))

for m in MRL[x1 -1][x2 -1]:

Mcheck =[]

for t in D:

if (R[m,t]-Mpu[x1 -1][x2 -1][m-1]) >=0:

Mcheck.append (1)

else:

Mcheck.append (0)

if sum(Mcheck)==len(D):

return m

else:

continue

return 0

#Operator Vavailabilty

def OA(x1 ,x2 ,t):

D=range(t,t+int(Duration[x1 -1][x2 -1]))

for o in ORL[x1 -1][x2 -1]:

Ocheck =[]

for t in D:

if (V[o,t]-Opu[x1 -1][x2 -1][o-1]) >=0:

Ocheck.append (1)

else:

Ocheck.append (0)

if sum(Ocheck)==len(D):

return o

else:
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continue

return 0

#Machine Constraint Cycle

def MCC(x1 ,x2 ,m):

if x2%2<>0:

MRL[x1 -1][x2]=[]

MRL[x1 -1][x2]. append(m)

def AC(x1 ,x2 ,t):

if t>= Arrival[x1 -1][x2 -1]:

D=range(t,t+int(Duration[x1 -1][x2 -1]))

if MA(x1 ,x2 ,t) >=1 and OA(x1 ,x2 ,t) >=1:

m=MA(x1,x2,t)

#print "MA(X1,X2,t)",x1,x2,m

o=OA(x1,x2,t)

#print "OA(X1,X2,t)",x1,x2,o

MCC(x1 ,x2 ,m)

for t in D:

R[m,t]=R[m,t]-Mpu[x1 -1][x2 -1][m-1]

V[o,t]=V[o,t]-Opu[x1 -1][x2 -1][o-1]

for j in J[x1]:

Precedence[x1 -1][j-1][x2 -1]= float (0)

X[x1 -1][j-1][x2 -1]= int(max(D))

steplist =[]

steplist.append(x1 +0.01* x2)

steplist.append(x2)

steplist.append(min(D))

steplist.append(max(D)+1)

Identitylist.append(str(x1)+"-"+str(x2))

numpylist.append(steplist)

steplist =[]

steplist.append(x1 +0.01* x2)
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steplist.append(x2)

steplist.append(m+0.01* x1)

steplist.append(min(D))

steplist.append(max(D)+1)

Identitymachine.append(str(x1)+"-"+str(x2))

numpymachine.append(steplist)

steplist =[]

steplist.append(x1 +0.01* x2)

steplist.append(x2)

steplist.append(o+0.01* x1)

steplist.append(min(D))

steplist.append(max(D)+1)

Identityoperator.append(str(x1)+"-"+str(x2))

numpyoperator.append(steplist)

return 1

for t in T2:

if JTC:

LES=sorted(LES ,key=itemgetter (3))

for x in LES:

x1=x[0]

x2=x[1]

if AC(x1 ,x2 ,t)==1:

JTC.remove(x)

LESD()



106

ganttchart=np.array(numpylist)

np.savetxt("ganttchart.csv", ganttchart , delimiter=",")

np.savetxt("numpylist.csv", numpylist , delimiter=",")

file = open("Identitylist.txt", "w")

for item in Identitylist:

file.write("%s\n" % item)

file.close ()

plt.ylim(0,max(I)+1)

color= [’r’, ’b’, ’g’, ’k’, ’m’, ’c’, ’y’]

color_mapper = np.vectorize(lambda x: {1: ’r’, 2: ’b’, 3: ’g’, 4

:’m’, 5:’c’, 6:’y’, 7:’r’, 8:’b’, 9:’g’, 10:’k’, 11:’m’, 12:’c’,

13:’y’ ,14:’k’}.get(x))

plt.hlines(ganttchart [:,0], ganttchart [:,2], ganttchart [:,3],

colors=color_mapper(ganttchart [:,1]),linewidth =5)

plt.title(’Jobs vs. Time’)

plt.ylabel(’Jobs’)

if Process ==’Planning ’:

plt.xlabel(’Time(days)’)

else:

plt.xlabel(’Time(hours)’)

#plt.locator_params(’both ’,1)

plt.yticks(range(0,max(I)+1))

plt.minorticks_on ()

plt.tick_params(axis = ’both’, which = ’major’, labelsize = 10)

#plt.set_major_formatter(majorFormatter)
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x1=0

x2=1

x3=2

x4=3

n=0

while n<len(numpylist):

x5=float(numpylist[n][x3]+ numpylist[n][x4])/2

plt.text(x5 ,numpylist[n][x1],Identitylist[n])

n+=1

plt.show()

#print ’numpymachine ’,numpymachine

ganttchartm=np.array(numpymachine)

np.savetxt("ganttchartm.csv", ganttchartm , delimiter=",")

np.savetxt("numpymachine.csv", numpymachine , delimiter=",")

file = open("Identitymachine.txt", "w")

for item in Identitymachine:

file.write("%s\n" % item)

file.close ()

plt.yticks(range(len(M)+1))

plt.ylim(0,len(M)+2)

plt.hlines(ganttchartm [:,2], ganttchartm [:,3], ganttchartm [:,4],

linewidth =4,colors=color_mapper(ganttchartm [: ,1]))

plt.title(’Machine Utilization ’)
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plt.ylabel(’Machine ’)

if Process ==’Planning ’:

plt.xlabel(’Time(days)’)

else:

plt.xlabel(’Time(hours)’)

x1=0

x2=1

x3=2

x4=3

x5=4

n=0

while n<len(numpymachine):

x6=float ((( numpymachine[n][x4]+ numpymachine[n][x5])/2) +0.05*

numpymachine[n][x2])

plt.text(x6 ,numpymachine[n][x3],Identitymachine[n])

n+=1

plt.show()

#print ’numpyoperator ’,numpyoperator

ganttcharto=np.array(numpyoperator)

np.savetxt("ganttcharto.csv", ganttcharto , delimiter=",")

np.savetxt("numpyoperator.csv", numpyoperator , delimiter=",")

file = open("Identityoperator.txt", "w")

for item in Identityoperator:

file.write("%s\n" % item)

file.close ()
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#color_mapper = np.vectorize(lambda x: {1: ’red ’, 2: ’blue ’,

3: ’green’}.get(x))

plt.yticks(range(len(O)+1))

plt.ylim(0,len(O)+2)

plt.hlines(ganttcharto [:,2], ganttcharto [:,3], ganttcharto [:,4]

,linewidth=4,colors=color_mapper(ganttcharto [:,1]))

plt.title(’Operator Utilization ’)

plt.ylabel(’Operator ’)

if Process ==’Planning ’:

plt.xlabel(’Time(days)’)

else:

plt.xlabel(’Time(hours)’)

x1=0

x2=1

x3=2

x4=3

x5=4

n=0

while n<len(numpyoperator):

x6=float ((( numpyoperator[n][x4]+ numpyoperator[n][x5])/2)+

0.05* numpyoperator[n][x2])

plt.text(x6 ,numpyoperator[n][x3],Identityoperator[n])

n+=1

plt.show()
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Appendix 5 SPT-EDD Model

print ’*DATA ARE IMPORTED ...’

#earliest possible period in which project i could be

completed

ee=[]

for i in I:

x=[]

for j in J[i]:

x.append(l[i-1][j-1])

eee=max(x)

ee.append(eee)

e=dict(zip(I,ee))

#priority of project i

w= dict(zip(I,Weight))

#time interval 1

T= dict(zip(I,(range(min(Arrival[i-1]),AbsoluteDueDate

[i -1]+1) for i in I)))

#time interval 2

T2= range(min(min(A)),max(ADD)+1)

#time interval 3

T3= {}

for i in I:

for j in J[i]: T3[i,j]= range(l[i-1][j-1],u[i-1][j -1]+1)

#time interval 4

T4={}

for i in I:
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for j in J[i]: T4[i,j]= range(l[i-1][j-1], AbsoluteDueDate[i

-1]+1)

#time interval 5

T5={}

for i in I:

for j in J[i]: T5[i,j]= range(l[i-1][j-1],u[i-1][j -1]+1)

#time interval 6

TeG ={}

for i in I: TeG[i]= range(e[i],AbsoluteDueDate[i -1]+1)

#time interval 7

Tal ={}

for i in I:

for j in J[i]: Tal[i,j]= range(Arrival[i-1][j-1],l[i-1][j-1])

#time interval 8

TuG ={}

for i in I:

for j in J[i]: TuG[i,j]= range(u[i-1][j-1]+1 , AbsoluteDueDate[i

-1]+1)

#time interval 9

T1e= dict(zip(I,( range(min(Arrival[i-1]),e[i]) for i in I)))

R={}

for m in M:

for t in T2: R[m,t]=1

V={}

for o in O:

for t in T2: V[o,t]=1
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#desired due date for project i

g= dict(zip(I,(( DesiredDueDate[i-1]) for i in I)))

Time_Start = time.clock ()

print ’*VARIABLES ARE GENERATED , THE MODEL IS BEING PROCESSED ...

’,’

##’,Process ,’##’

#JobsToComplete

JTC =[]

for i in I:

#DurationListJob

DLJ =[]

for j in J[i]:

#DurationListStep

DLS =[]

DLS.append(i)

DLS.append(j)

DLS.append(Duration[i-1][j-1])

DLS.append(DesiredDueDate[i-1])

JTC.append(DLS)

def LESPP(i,j):

for j2 in J[i]:

if Precedence[i-1][j-1][j2 -1]==1:

return 0

else: continue

return 1

LES =[]

for i in I:



113

for j in J[i]:

if LESPP(i,j)==1:

LES.append ([i,j,Duration[i-1][j-1], DesiredDueDate[i -1]])

LES=sorted(LES ,key=itemgetter (2,3))

def LESP(i,j):

for j2 in J[i]:

if X[i-1][j-1][j2 -1]>t:

return 0

else:

if Precedence[i-1][j-1][j2 -1]==1:

return 0

else: continue

return 1

#List of eligible steps

def LESD():

del LES[:]

for i in I:

for j in J[i]:

if [i,j,Duration[i-1][j-1], DesiredDueDate[i-1]] in JTC:

if LESP(i,j)==1:

LES.append ([i,j,Duration[i-1][j-1], DesiredDueDate[i -1]])

else:

continue

else:

continue

Identitylist =[]

numpylist =[]
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Identitymachine =[]

numpymachine =[]

Identityoperator =[]

numpyoperator =[]

#Machine Avilability

def MA(x1 ,x2 ,t):

D=range(t,t+int(Duration[x1 -1][x2 -1]))

for m in MRL[x1 -1][x2 -1]:

Mcheck =[]

for t in D:

if (R[m,t]-Mpu[x1 -1][x2 -1][m-1]) >=0:

Mcheck.append (1)

else:

Mcheck.append (0)

if sum(Mcheck)==len(D):

return m

else:

continue

return 0

#Operator Vavailabilty

def OA(x1 ,x2 ,t):

D=range(t,t+int(Duration[x1 -1][x2 -1]))

for o in ORL[x1 -1][x2 -1]:

Ocheck =[]

for t in D:

if (V[o,t]-Opu[x1 -1][x2 -1][o-1]) >=0:

Ocheck.append (1)

else:

Ocheck.append (0)

if sum(Ocheck)==len(D):

return o

else:
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continue

return 0

#Machine Constraint Cycle

def MCC(x1 ,x2 ,m):

if x2%2<>0:

MRL[x1 -1][x2]=[]

MRL[x1 -1][x2]. append(m)

def AC(x1 ,x2 ,t):

if t>= Arrival[x1 -1][x2 -1]:

D=range(t,t+int(Duration[x1 -1][x2 -1]))

if MA(x1 ,x2 ,t) >=1 and OA(x1 ,x2 ,t) >=1:

m=MA(x1,x2,t)

#print "MA(X1,X2,t)",x1,x2,m

o=OA(x1,x2,t)

#print "OA(X1,X2,t)",x1,x2,o

MCC(x1 ,x2 ,m)

for t in D:

R[m,t]=R[m,t]-Mpu[x1 -1][x2 -1][m-1]

V[o,t]=V[o,t]-Opu[x1 -1][x2 -1][o-1]

for j in J[x1]:

Precedence[x1 -1][j-1][x2 -1]= float (0)

X[x1 -1][j-1][x2 -1]= int(max(D))

steplist =[]

steplist.append(x1 +0.01* x2)

steplist.append(x2)

steplist.append(min(D))

steplist.append(max(D)+1)

Identitylist.append(str(x1)+"-"+str(x2))

numpylist.append(steplist)

steplist =[]

steplist.append(x1 +0.01* x2)
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steplist.append(x2)

steplist.append(m+0.01* x1)

steplist.append(min(D))

steplist.append(max(D)+1)

Identitymachine.append(str(x1)+"-"+str(x2))

numpymachine.append(steplist)

steplist =[]

steplist.append(x1 +0.01* x2)

steplist.append(x2)

steplist.append(o+0.01* x1)

steplist.append(min(D))

steplist.append(max(D)+1)

Identityoperator.append(str(x1)+"-"+str(x2))

numpyoperator.append(steplist)

return 1

for t in T2:

if JTC:

LES=sorted(LES ,key=itemgetter (2,3))

for x in LES:

x1=x[0]

x2=x[1]

if AC(x1 ,x2 ,t)==1:

JTC.remove(x)

LESD()
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ganttchart=np.array(numpylist)

np.savetxt("ganttchart.csv", ganttchart , delimiter=",")

np.savetxt("numpylist.csv", numpylist , delimiter=",")

file = open("Identitylist.txt", "w")

for item in Identitylist:

file.write("%s\n" % item)

file.close ()

plt.ylim(0,max(I)+1)

color= [’r’, ’b’, ’g’, ’k’, ’m’, ’c’, ’y’]

color_mapper = np.vectorize(lambda x: {1: ’r’, 2: ’b’, 3: ’g’,

4:’m’

, 5:’c’, 6:’y’, 7:’r’, 8:’b’, 9:’g’, 10:’k’, 11:’m’, 12:’c’, 13:

’y’ ,14:’k’}.get(x))

plt.hlines(ganttchart [:,0], ganttchart [:,2], ganttchart [:,3],

colors=color_mapper(ganttchart [:,1]),linewidth =5)

plt.title(’Jobs vs. Time’)

plt.ylabel(’Jobs’)

if Process ==’Planning ’:

plt.xlabel(’Time(days)’)

else:

plt.xlabel(’Time(hours)’)

#plt.locator_params(’both ’,1)

plt.yticks(range(0,max(I)+1))

plt.minorticks_on ()

plt.tick_params(axis = ’both’, which = ’major’, labelsize = 10)
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#plt.set_major_formatter(majorFormatter)

x1=0

x2=1

x3=2

x4=3

n=0

while n<len(numpylist):

x5=float(numpylist[n][x3]+ numpylist[n][x4])/2

plt.text(x5 ,numpylist[n][x1],Identitylist[n])

n+=1

plt.show()

#print ’numpymachine ’,numpymachine

ganttchartm=np.array(numpymachine)

np.savetxt("ganttchartm.csv", ganttchartm , delimiter=",")

np.savetxt("numpymachine.csv", numpymachine , delimiter=",")

file = open("Identitymachine.txt", "w")

for item in Identitymachine:

file.write("%s\n" % item)

file.close ()

plt.yticks(range(len(M)+1))

plt.ylim(0,len(M)+2)

plt.hlines(ganttchartm [:,2], ganttchartm [:,3], ganttchartm [:,4],

linewidth =4,colors=color_mapper(ganttchartm [: ,1]))
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plt.title(’Machine Utilization ’)

plt.ylabel(’Machine ’)

if Process ==’Planning ’:

plt.xlabel(’Time(days)’)

else:

plt.xlabel(’Time(hours)’)

x1=0

x2=1

x3=2

x4=3

x5=4

n=0

while n<len(numpymachine):

x6=float ((( numpymachine[n][x4]+ numpymachine[n][x5])/2) +0.05

*numpymachine[n][x2])

plt.text(x6 ,numpymachine[n][x3],Identitymachine[n])

n+=1

plt.show()

#print ’numpyoperator ’,numpyoperator

ganttcharto=np.array(numpyoperator)

np.savetxt("ganttcharto.csv", ganttcharto , delimiter=",")

np.savetxt("numpyoperator.csv", numpyoperator , delimiter=",")

file = open("Identityoperator.txt", "w")

for item in Identityoperator:

file.write("%s\n" % item)

file.close ()
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#color_mapper = np.vectorize(lambda x: {1: ’red ’, 2: ’blue ’,

3: ’green ’}.get(x))

plt.yticks(range(len(O)+1))

plt.ylim(0,len(O)+2)

plt.hlines(ganttcharto [:,2], ganttcharto [:,3], ganttcharto [:,4],

linewidth =4,colors=color_mapper(ganttcharto [: ,1]))

plt.title(’Operator Utilization ’)

plt.ylabel(’Operator ’)

if Process ==’Planning ’:

plt.xlabel(’Time(days)’)

else:

plt.xlabel(’Time(hours)’)

x1=0

x2=1

x3=2

x4=3

x5=4

n=0

while n<len(numpyoperator):

x6=float ((( numpyoperator[n][x4]+ numpyoperator[n][x5])/2)+

0.05* numpyoperator[n][x2])

plt.text(x6 ,numpyoperator[n][x3],Identityoperator[n])

n+=1

plt.show()
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Appendix 6 EDD-SPT Model

print ’*DATA ARE IMPORTED ...’

#earliest possible period in which project i could be

completed

ee=[]

for i in I:

x=[]

for j in J[i]:

x.append(l[i-1][j-1])

eee=max(x)

ee.append(eee)

e=dict(zip(I,ee))

#priority of project i

w= dict(zip(I,Weight))

#time interval 1

T= dict(zip(I,(range(min(Arrival[i-1]),AbsoluteDueDate

[i -1]+1) for i in I)))

#time interval 2

T2= range(min(min(A)),max(ADD)+1)

#time interval 3

T3= {}

for i in I:

for j in J[i]: T3[i,j]= range(l[i-1][j-1],u[i-1][j -1]+1)

#time interval 4

T4={}

for i in I:

for j in J[i]: T4[i,j]= range(l[i-1][j-1], AbsoluteDue
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Date[i -1]+1)

#time interval 5

T5={}

for i in I:

for j in J[i]: T5[i,j]= range(l[i-1][j-1],u[i-1][j -1]+1)

#time interval 6

TeG={}

for i in I: TeG[i]= range(e[i],AbsoluteDueDate[i -1]+1)

#time interval 7

Tal={}

for i in I:

for j in J[i]: Tal[i,j]= range(Arrival[i-1][j-1],l[i-1][j-1])

#time interval 8

TuG={}

for i in I:

for j in J[i]: TuG[i,j]= range(u[i-1][j-1]+1 , Absolut

eDueDate[i -1]+1)

#time interval 9

T1e= dict(zip(I,( range(min(Arrival[i-1]),e[i]) for i in I)))

R={}

for m in M:

for t in T2: R[m,t]=1

V={}

for o in O:

for t in T2: V[o,t]=1

#desired due date for project i
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g= dict(zip(I,(( DesiredDueDate[i-1]) for i in I)))

Time_Start = time.clock ()

print ’*VARIABLES ARE GENERATED , THE MODEL IS BEING PROCESSED ...

’,’

##’,Process ,’##’

#JobsToComplete

JTC =[]

for i in I:

#DurationListJob

DLJ =[]

for j in J[i]:

#DurationListStep

DLS =[]

DLS.append(i)

DLS.append(j)

DLS.append(Duration[i-1][j-1])

DLS.append(DesiredDueDate[i-1])

JTC.append(DLS)

def LESPP(i,j):

for j2 in J[i]:

if Precedence[i-1][j-1][j2 -1]==1:

return 0

else: continue

return 1

LES =[]

for i in I:

for j in J[i]:
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if LESPP(i,j)==1:

LES.append ([i,j,Duration[i-1][j-1], DesiredDueDate[i -1]])

LES=sorted(LES ,key=itemgetter (3,2))

raise

def LESP(i,j):

for j2 in J[i]:

if X[i-1][j-1][j2 -1]>t:

return 0

else:

if Precedence[i-1][j-1][j2 -1]==1:

return 0

else: continue

return 1

#List of eligible steps

def LESD():

del LES[:]

for i in I:

for j in J[i]:

if [i,j,Duration[i-1][j-1], DesiredDueDate[i-1]] in JTC:

if LESP(i,j)==1:

LES.append ([i,j,Duration[i-1][j-1], DesiredDueDate[i -1]])

else:

continue

else:

continue

Identitylist =[]

numpylist =[]

Identitymachine =[]
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numpymachine =[]

Identityoperator =[]

numpyoperator =[]

#Machine Avilability

def MA(x1 ,x2 ,t):

D=range(t,t+int(Duration[x1 -1][x2 -1]))

for m in MRL[x1 -1][x2 -1]:

Mcheck =[]

for t in D:

if (R[m,t]-Mpu[x1 -1][x2 -1][m-1]) >=0:

Mcheck.append (1)

else:

Mcheck.append (0)

if sum(Mcheck)==len(D):

return m

else:

continue

return 0

#Operator Vavailabilty

def OA(x1 ,x2 ,t):

D=range(t,t+int(Duration[x1 -1][x2 -1]))

for o in ORL[x1 -1][x2 -1]:

Ocheck =[]

for t in D:

if (V[o,t]-Opu[x1 -1][x2 -1][o-1]) >=0:

Ocheck.append (1)

else:

Ocheck.append (0)

if sum(Ocheck)==len(D):

return o

else:

continue
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return 0

#Machine Constraint Cycle

def MCC(x1 ,x2 ,m):

if x2%2<>0:

MRL[x1 -1][x2]=[]

MRL[x1 -1][x2]. append(m)

def AC(x1 ,x2 ,t):

if t>= Arrival[x1 -1][x2 -1]:

D=range(t,t+int(Duration[x1 -1][x2 -1]))

if MA(x1 ,x2 ,t) >=1 and OA(x1 ,x2 ,t) >=1:

m=MA(x1,x2,t)

#print "MA(X1,X2,t)",x1,x2,m

o=OA(x1,x2,t)

#print "OA(X1,X2,t)",x1,x2,o

MCC(x1 ,x2 ,m)

for t in D:

R[m,t]=R[m,t]-Mpu[x1 -1][x2 -1][m-1]

V[o,t]=V[o,t]-Opu[x1 -1][x2 -1][o-1]

for j in J[x1]:

Precedence[x1 -1][j-1][x2 -1]= float (0)

X[x1 -1][j-1][x2 -1]= int(max(D))

steplist =[]

steplist.append(x1 +0.01* x2)

steplist.append(x2)

steplist.append(min(D))

steplist.append(max(D)+1)

Identitylist.append(str(x1)+"-"+str(x2))

numpylist.append(steplist)

steplist =[]

steplist.append(x1 +0.01* x2)

steplist.append(x2)
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steplist.append(m+0.01* x1)

steplist.append(min(D))

steplist.append(max(D)+1)

Identitymachine.append(str(x1)+"-"+str(x2))

numpymachine.append(steplist)

steplist =[]

steplist.append(x1 +0.01* x2)

steplist.append(x2)

steplist.append(o+0.01* x1)

steplist.append(min(D))

steplist.append(max(D)+1)

Identityoperator.append(str(x1)+"-"+str(x2))

numpyoperator.append(steplist)

return 1

for t in T2:

if JTC:

LES=sorted(LES ,key=itemgetter (3,2))

for x in LES:

x1=x[0]

x2=x[1]

if AC(x1 ,x2 ,t)==1:

JTC.remove(x)

LESD()

ganttchart=np.array(numpylist)
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np.savetxt("ganttchart.csv", ganttchart , delimiter=",")

np.savetxt("numpylist.csv", numpylist , delimiter=",")

file = open("Identitylist.txt", "w")

for item in Identitylist:

file.write("%s\n" % item)

file.close ()

plt.ylim(0,max(I)+1)

color= [’r’, ’b’, ’g’, ’k’, ’m’, ’c’, ’y’]

color_mapper = np.vectorize(lambda x: {1: ’r’, 2: ’b’, 3: ’g’, 4

:’m’, 5:’c’, 6:’y’, 7:’r’, 8:’b’, 9:’g’, 10:’k’, 11:’m’, 12:’c’,

13:’y’ ,14:’k’}.get(x))

plt.hlines(ganttchart [:,0], ganttchart [:,2], ganttchart [:,3],

colors=color_mapper(ganttchart [:,1]),linewidth =5)

plt.title(’Jobs vs. Time’)

plt.ylabel(’Jobs’)

if Process ==’Planning ’:

plt.xlabel(’Time(days)’)

else:

plt.xlabel(’Time(hours)’)

#plt.locator_params(’both ’,1)

plt.yticks(range(0,max(I)+1))

plt.minorticks_on ()

plt.tick_params(axis = ’both’, which = ’major’, labelsize = 10)

#plt.set_major_formatter(majorFormatter)
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x1=0

x2=1

x3=2

x4=3

n=0

while n<len(numpylist):

x5=float(numpylist[n][x3]+ numpylist[n][x4])/2

plt.text(x5 ,numpylist[n][x1],Identitylist[n])

n+=1

plt.show()

#print ’numpymachine ’,numpymachine

ganttchartm=np.array(numpymachine)

np.savetxt("ganttchartm.csv", ganttchartm , delimiter=",")

np.savetxt("numpymachine.csv", numpymachine , delimiter=",")

file = open("Identitymachine.txt", "w")

for item in Identitymachine:

file.write("%s\n" % item)

file.close ()

plt.yticks(range(len(M)+1))

plt.ylim(0,len(M)+2)

plt.hlines(ganttchartm [:,2], ganttchartm [:,3], ganttchartm [:,4]

,linewidth=4,colors=color_mapper(ganttchartm [:,1]))

plt.title(’Machine Utilization ’)

plt.ylabel(’Machine ’)
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if Process ==’Planning ’:

plt.xlabel(’Time(days)’)

else:

plt.xlabel(’Time(hours)’)

x1=0

x2=1

x3=2

x4=3

x5=4

n=0

while n<len(numpymachine):

x6=float ((( numpymachine[n][x4]+ numpymachine[n][x5])/2) +0.05*

numpymachine[n][x2])

plt.text(x6 ,numpymachine[n][x3],Identitymachine[n])

n+=1

plt.show()

#print ’numpyoperator ’,numpyoperator

ganttcharto=np.array(numpyoperator)

np.savetxt("ganttcharto.csv", ganttcharto , delimiter=",")

np.savetxt("numpyoperator.csv", numpyoperator , delimiter=",")

file = open("Identityoperator.txt", "w")

for item in Identityoperator:

file.write("%s\n" % item)

file.close ()

#color_mapper = np.vectorize(lambda x: {1: ’red ’, 2: ’blue ’,
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3: ’green’}.get(x))

plt.yticks(range(len(O)+1))

plt.ylim(0,len(O)+2)

plt.hlines(ganttcharto [:,2], ganttcharto [:,3], ganttcharto [:,4],

linewidth =4,colors=color_mapper(ganttcharto [: ,1]))

plt.title(’Operator Utilization ’)

plt.ylabel(’Operator ’)

if Process ==’Planning ’:

plt.xlabel(’Time(days)’)

else:

plt.xlabel(’Time(hours)’)

x1=0

x2=1

x3=2

x4=3

x5=4

n=0

while n<len(numpyoperator):

x6=float ((( numpyoperator[n][x4]+ numpyoperator[n][x5])/2) +0.05*

numpyoperator[n][x2])

plt.text(x6 ,numpyoperator[n][x3],Identityoperator[n])

n+=1

plt.show()
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