
INVESTIGATING A BEHAVIOUR ANALYSIS-BASED EARLY
WARNING SYSTEM TO IDENTIFY BOTNETS
USING MACHINE LEARNING ALGORITHMS

by

Fariba Haddadi

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

at

Dalhousie University
Halifax, Nova Scotia

September 2016

c© Copyright by Fariba Haddadi, 2016

I dedicate this thesis to my beloved family

You have successfully made me the person I am becoming

You have always loved me unconditionally and taught me to work hard

for the things that I aspire to achieve.

ii

Table of Contents

List of Tables . vii

List of Figures . x

Abstract . xiii

List of Abbreviations Used . xiv

Acknowledgements . xvi

Chapter 1 Introduction . 1

1.1 Objectives . 8
1.2 Contributions . 9
1.3 Organization of the Thesis . 13

Chapter 2 Background . 14

2.1 Botnet Topology . 14
2.1.1 Protocols Employed . 16

2.1.1.1 HyperText Transfer Protocol (HTTP) 16
2.1.1.2 Domain Name System (DNS) 16
2.1.1.3 Internet Relay Chat (IRC) 18

2.2 Botnet samples . 18
2.3 Related Work . 20

2.3.1 Host-based detection approaches 21
2.3.2 Network-based detection approaches 23

2.4 Summary . 32

Chapter 3 Learning Algorithms and Tools 35

3.1 Machine learning algorithms . 35
3.1.1 C4.5 . 35
3.1.2 Support Vector Machine (SVM) 37

3.1.2.1 SVM with string kernel (SSK) 38
3.1.2.1.1 SSK- Lambda Pruning (SSK-LP) 38

3.1.3 Artificial Neural Networks (ANN) 39
3.1.4 Naive Bayes . 39
3.1.5 Bayesian Networks . 40
3.1.6 Adaboost . 40
3.1.7 K Nearest Neighbour (KNN) 41
3.1.8 SBB . 41

iii

3.1.9 Performance criteria . 43

3.2 Publicly Available Tools Employed 45

3.2.1 Flow exporters . 45

3.2.2 Malicious behaviour detection systems 49

3.2.2.1 Snort . 49

3.2.2.2 BotHunter . 50

3.2.2.3 Performance Criteria 50

3.3 Summary . 51

Chapter 4 Data Sets . 52

4.1 Data Sets Employed . 53

4.1.1 Public log files . 53

4.1.1.1 Snort Sourcefire VRT lab repository 53

4.1.1.2 NETRESEC repository 53

4.1.1.3 CVUT malware captures facility repository 53

4.1.1.4 University of Victoria repository 54

4.1.1.5 Center of Applied Internet Data Analysis (CAIDA)
repository . 54

4.1.1.6 Lawrence Berkeley National Lab (LBNL) repository 55

4.1.1.7 Wireless and Secure Networks Research Lab (WiS-
Net) repository . 55

4.1.2 Dalhousie University NIMS lab repository 55

4.1.2.1 Sandbox log files . 55

4.1.2.2 Domain-based HTTP log files 56

4.1.3 Data evaluation . 57

4.1.3.1 Verifying the generated data 59

4.1.3.1.1 First Step for Confirming the Data Gener-
ated – Visualization of Flow Characteristics 60

4.1.3.1.2 Second Step for Confirming the Data Generated–
Post-Classification Analysis by Using a De-
cision Tree Classifier 61

4.1.3.2 Properties of the traffic log files employed 69

4.2 Summary . 70

Chapter 5 Application Data Analysis: Feature extraction 72

5.1 Pruned Stateful-SBB . 76

5.2 Domain name lists employed . 76

5.3 Empirical evaluation and Results . 77

5.3.1 Summary . 81

iv

Chapter 6 Network Data Analysis: Feature extraction 83

6.1 Empirical evaluation . 86
6.1.1 Results . 87

6.1.1.1 Type of network traffic to be analyzed– On the effect
of protocol filtering 93

6.1.1.1.1 HTTP filtering 93
6.1.1.1.2 DNS filtering 97
6.1.1.1.3 Highlights: 100

6.1.1.2 Feature representation– the effect of non-numeric fea-
tures . 101

6.1.1.3 Time generalization– On the effect of botnet behaviour
evolution . 105

6.1.1.4 Normal behaviour representation 113
6.1.1.5 Exploring further flow feature sets 118
6.1.1.6 How similar or different are botnet behaviours? . . . 120

6.1.2 Summary . 125

Chapter 7 Evaluations Using State-of-the-art Systems 128

7.1 Systems Employed . 129
7.1.1 Packet payload-based System: 129
7.1.2 Flow aggregation/fraction-based System 130

7.2 Evaluations and Results . 132
7.2.1 Discussion and Highlights . 141

7.3 Malware/Botnet Detection Analysis in Cellular Networks 144
7.4 Summary . 146

Chapter 8 Conclusion and Future Works 149

8.1 Future research directions . 151

Bibliography . 153

Appendix A Domain name samples . 164

A.1 Malicious samples . 164
A.2 Legitimate samples . 164

Appendix B Softflowd detailed feature representation anal-
ysis . 165

B.1 C4.5 solution analysis . 168
B.2 SBB solution Analysis . 169

v

Appendix C Non-numeric Feature Representation 172

vi

List of Tables

3.1 The properties of the flow exporters employed. 48

3.2 The feature categories of the flow exporters employed. 49

4.1 The sandbox configuration. 56

4.2 Softflowd feature set definition 67

4.3 The C4.5 decision tree classification results. 68

4.4 The number of domain names in the data sets. 70

4.5 The data specification. 71

5.1 The Domain name’s feature set definition. 73

5.2 Domain name-based analysis results of the Conficker, Kraken
and Alexa: unbalanced datasets. 78

5.3 Classification results of the botnet domain name-based datasets:
unbalanced. 80

5.4 Classification results of botnet the domain name-based datasets:
balanced. 81

6.1 Average training time (in seconds) 92

6.2 The C4.5 classification results using the Tranalyzer feature set
with the HTTP filter. 101

6.3 The Tranalyzer features employed by C4.5 for botnet classification–
all botnets. 101

6.4 Performances reported in the literature. 102

6.5 Classification Results. 110

6.6 Classification Results– with an HTTP filter. 111

6.7 Classification Results. 112

6.8 Classification Results– with an HTTP filter. 112

6.9 Normal behaviour representation– TTest result. 114

6.10 Normal behaviour representation– Classification Results. 117

vii

6.11 TTest results of Tranalyzer vs. Argus Score performance. . . . 120

6.12 Argus vs. Tranalyzer classification Results. 123

6.13 Botnet versus legitimate behaviour using the C4.5 classifier. . . 124

6.14 BvL-MultiClass classification results. 126

7.1 Packet-based approach– network features. 130

7.2 Selected feature set in [153]. 131

7.3 Classification Results– with a flow interval of 300. 131

7.4 Classification Results . 134

7.5 Botnet versus legitimate behaviour using the c4.5 classifier. . . 136

7.6 BvL-MultiClass classification results. 137

7.7 Detailed BotHunter detection results. 140

7.8 Detailed Snort detection results. 142

7.9 BotHunter and Snort overall performance on botnet data samples.143

7.10 Classification Results. 146

7.11 Data specification . 148

B.1 The Softflowd features employed. 165

B.2 The number of flows in each data set employed. 166

B.3 Classification Results Using Softflowd set.1 Feature Set 167

B.4 Classification Results Using Softflowd set.2 Feature Set 167

B.5 Feature Matrix. 171

C.1 Non-numeric feature representation– classification results with
no TCP flag. 172

C.2 Non-numeric feature representation– classification results for nu-
merical representation. 173

C.3 Non-numeric feature representation– classification results for Nom-
inal representation. 174

viii

C.4 Non-numeric feature representation– classification results for bi-
nary representation. 175

ix

List of Figures

1.1 Botnet life cycle . 2

1.2 Types of network traffic . 4

2.1 Botnet protocols and techniques timeline [102]. 15

2.2 A simplistic view of the domain name space 17

2.3 A simplistic view of the DNS look up 17

3.1 SVM hyperplane and support vectors [99] 37

3.2 SBB team-based mechanism [110] 43

3.3 Flow exporting mechanism . 46

4.1 The frequencies of the flow durations in the Zeus data sets. The
X-axis denotes the buckets of 10 seconds. 62

4.2 The frequencies of the number of packets per flow in the Zeus
data sets. The X-axis denotes the number of packets per flow. 63

4.3 The frequencies of the number of bytes per flow in the Zeus
data sets. The X-axis denotes the number of bytes per flow. . 64

4.4 The frequencies of the flow durations in the Citadel data sets.
The X-axis denotes the buckets of 10 seconds. 65

4.5 The frequencies of the number of packets per flow in the Citadel
data sets. The X-axis denotes the number of packets per flow. 66

4.6 The frequencies of the number of bytes per flow in the Citadel
data sets. The X-axis denotes the number of bytes per flow. . 66

5.1 The Stateful-SBB mechanism. 77

6.1 Number of Extracted Flows 89

6.2 DR of all classifiers on the five flow exporters 89

6.2 DR of all classifiers on the five flow exporters (Cont.) 90

6.3 FPR of all classifiers on the five flow exporters 91

x

6.3 FPR of all classifiers on the five flow exporters (Cont.) 92

6.4 DR of all classifiers on the five flow exporters using HTTP traffic
only . 95

6.5 FPR of C4.5 and ANN classifiers on the five flow exporters
using HTTP traffic only . 96

6.6 DR of all classifiers on the five flow exporters using DNS traffic
only . 98

6.7 FPR of C4.5 and ANN classifiers on five flow exporters using
DNS traffic only . 99

6.8 Score analysis of the C4.5 and SBB classifiers based on TCP
flags representations. 104

6.9 Score analysis of C4.5 vs. SBB– without TCP flags. 105

6.10 Solution complexity analysis of C4.5 vs. SBB– without TCP
flags. 106

6.11 Zoomed solution complexity analysis of C4.5 vs. SBB– without
TCP flags. 106

6.12 Time complexity analysis of C4.5 vs. SBB– without TCP flags. 107

6.13 The Zeus botnet score analysis of C4.5, ANN, KNN and SBB
using a model trained on Zeus-T1-1. 109

6.14 The Zeus botnet score analysis of C4.5 and SBB using a model
trained on Zeus-T1-1– with and without HTTP filtering . . . 109

6.15 The Citadel botnet score analysis of C4.5, ANN, KNN and SBB
using a model trained on Citadel-T1. 111

6.16 The Citadel botnet score analysis of C4.5 and SBB using a
model trained on Citadel-T1– with and without an HTTP fil-
tering. 112

6.17 Normal behaviour representation– Detection analysis of botnets
on three different legitimate data sets. 115

6.18 Normal behaviour representation– Detection analysis of botnets
on three different legitimate data sets. 115

6.19 Normal behaviour representation– Solution complexity analysis. 116

6.20 Normal behaviour representation– Solution complexity analysis
(zoomed). 116

xi

6.21 Argus vs. Tranalyzer Score performance results 119

6.22 Argus vs. Tranalyzer Score performance results (zoomed). . . 120

6.23 Argus vs. Tranalyzer FPRs. 121

6.24 Argus vs. Tranalyzer FPRs (zoomed). 121

6.25 Argus vs. Tranalyzer solution complexity analysis. 121

6.26 Argus vs. Tranalyzer solution complexity analysis (zoomed). . 122

6.27 Multi-Class Classification results– TPR. 125

7.1 Score classification results . 133

7.2 Score classification results (zoomed) 133

7.3 FPR classification results . 134

7.4 Multi-Class classification results. 136

B.1 Part of the Zeus (Snort) C4.5 decision tree 169

B.2 SBB- a sample learner instruction set with botnet label on the
Torpig– Softflowd set.2 set. 170

xii

Abstract

Botnets represent one of the more aggressive threats against cyber security and botnet

traffic analysis is one of the main approaches to study and investigate such threats.

Botnets employ different techniques (e.g. fluxing and encryption), topologies (e.g.

centralized and de-centralized) and communication protocols (e.g. HTTP and DNS)

in different stages of their lifecycle. Therefore, identifying the botnets has become

very challenging given that they can upgrade their methodology automatically at any

time for one reason or another. To this end, different approaches are proposed for

botnet traffic analysis and detection based on various botnet behaviours and struc-

tures. Hence, the main focus of this thesis is to investigate various botnet detection

approaches based on the technique used and the available data.

Specifically, two main categories of solutions are explored: application data analysis-

based solutions and network analysis-based solutions. In the application data analysis

category, two different approaches are explored: one with a priori knowledge and the

other one without any a priori knowledge. On the other hand, flow-based botnet

detection approaches are explored in the network analysis-based category focused on

using minimum a priori knowledge. In this case, various feature extraction methods,

machine learning algorithms, protocol filtering, non-numeric feature representation,

normal behaviour representation and time generalization issues are investigated. Fi-

nally, a flow-based early warning system is proposed.

The effectiveness of the solutions is shown on several botnet data sets from IRC

botnets to peer-to-peer botnets. Results indicate that the proposed solutions can

detect botnet behaviour with good performances. Moreover, two botnet detection

systems from the literature and two publicly available malicious behaviour detection

systems are employed for further evaluation of the proposed early warning system.

The results indicate that the proposed system outperformed these four systems. Last

but not least, the proposed system is evaluated as well on botnets in cellular networks

on an exploratory basis. It is shown that the proposed system demonstrates promising

performance under such circumstances as well.

xiii

List of Abbreviations Used

AcknowledgementACK

ANN Artificial Neural Networks

BvL Botnet versus Legitimate

Command and ControlC&C

CWR Congestion Window Reduced

Distributed Denial of Service

Domain Generation Algorithm

Domain Name System

Denial of Service

DDoS

DGA

DNS

DoS

DR Detection Rate

ECE ECN-Echo

Finish

Flow Aggregation/Fraction

False Positive Rate

FIN

FlowAF

FPR

FTP File Transfer Protocol

Internet ProtocolIP

IRC Internet Relay Chat

KNN K Nearest Neighbour

MAC Media Access Control

xiv

NIMS Network Information Management and Security

Peer-to-PeerP2P

PSH Push

RST Reset

SBB

SSK

SSK-LP

Stateful-SBB

SVM

SYN

Symbiotic Bid-Based

SVM String Kernel classifier

SSK- Lambda Pruning

Stateful Symbiotic Bid-Based Genetic Program-

ming

Support Vector Machine

Synchronize

Transmission Control Protocol

True Positive Rate

TCP

TRR

TTL Time To Live

User Datagram ProtocolUDP

URG Urgent

xv

Acknowledgements

Foremost, I would like to express my sincere gratitude to my supervisor, Professor

Nur Zincir-Heywood for her continuous support during my Ph.D study, and for her

patience, motivation, and enthusiasm. I want to thank you for all of the opportunities

I was given to conduct my research and further my thesis.

My sincere thanks also goes to Professor Malcolm Heywood for his valuable guid-

ance. You definitely provided me with the tools that I needed to choose the right

direction and successfully complete my thesis.

My thanks and appreciation go to members of my dissertation committee and the

Faculty of Computer Science, Dalhousie University who have given their time and

expertise generously to better my work. I thank you all for your contribution and

your good-natured support.

With great pleasure, I would like to thank my parents, Parivash Haddad and

Ahmadreza Haddadi, for their wise counsel, unceasing encouragement and support

throughout my life. You have always been there for me. Last but not least, I am

grateful to my husband, Vahid Aghaei Foroushani, who supported me through this

venture. I am truly thankful for having you in my life.

Thank you very much, everyone!

xvi

Chapter 1

Introduction

In the world of fast growing Internet and online activities where almost everyone has

something to share and benefit from, having a secure infrastructure is the primary

need for protecting users identity and information. A botnet is a network of compro-

mised hosts which are controlled remotely by a master (a.k.a a botmaster). Different

types of botnets have been created to perform various malicious tasks such as spread-

ing spam, conducting Denial of Service attacks, performing identity thefts or simply

taking advantage of victims’ computational resources. In 2010, Damballa Inc. pub-

lished a paper on the top ten active botnets indicating that the botnet infection rate

is increasing rapidly by an average growth of 8% per week [101]. McAfee threat re-

ports also confirm that this growth continued into 2013 [125]. These reports indicate

as well that new powerful botnets enter the Internet realm every year. In January

2014, McAfee published a threat prediction report- an indication of how botnets will

evolve and act in 2014 [124]. Hence, botnets are considered to be one of the main

threats against cyber security [69].

Unlike the earlier botnets that had a list of exploits to launch on targets and all

the commands were set at the time of infection, today a typical advanced bot uses

multiple phases to create and maintain a botnet including: initial infection, secondary

injection, connection, malicious Command and Control (C&C), update and finally,

maintenance [69, 143], Fig. 1.1. In the first phase, the attacker infects the victim

using several exploitation techniques to find its existing vulnerabilities. Once the

target is infected, in the second phase, a script known as shell-code is executed on

the victim machine. The shell-code fetches the image of the bot binary and the bot

binary installs itself on the machine. At this time the host is converted completely

to a zombie and malicious applications can run automatically on the host. In the

connection phase, the bot binary establishes a C&C channel with the master. At

this stage, the master uses the C&C channel to send the commands to its bot army

1

2

Figure 1.1: Botnet life cycle

(botnet) and the bot applications execute the commands as soon as they receive them.

Finally, when the master needs to update the bots for various reasons such as avoiding

an antivirus, changing the C&C server information, or adding a new functionality,

the update and maintenance phase is entered.

In this lifecycle, the communication scheme is the main characteristic of the bot-

net architecture which evolved over time to enhance botnet functionality and avoid

botnet classification (detection) systems. In the architecture, compromised bots in-

teract with the C&C server to receive the instructions of the master. Until 2003, the

Internet Relay Chat (IRC) protocol was the most common botnet communication

protocol using centralized topology [102]. In the botnet arms race, security systems

adapted to use solutions (such as firewalls) to block ports such as IRC ports or to

perform content analysis/filtering which can reveal botnet communication informa-

tion. Since 2003, not only have botnets started to use more ubiquitous protocols such

as HyperText Transfer Protocol (HTTP) and Domain Name System (DNS) as well

as a de-centralized topology such as Peer-to-Peer (P2P), but they have started to

employ techniques such as fluxing and encryption as well to avoid detection. Hence,

identifying the botnets and detecting them have become very challenging.

Internet Protocol (IP) Network traffic analysis (e.g. classification) has the capacity

to assist in analyzing complicated network defence problems and therefore has been

3

used widely by many researchers in the security field. The aim of this thesis is

to design, develop and investigate an early warning system for identifying botnet

behaviour via network traffic analysis. To this end, the approaches that are designed

and the tools that are employed in such an early warning system very much depend

on the botnet communication methods and the type of the network traffic available

for analysis (e.g. having access to the packets payload and encrypted vs. unencrypted

communication). Hence, several scenarios were considered and suitable approaches

designed which match the goal and type of data that is accessible.

Botnets have been observed in wired and wireless networks with various topolo-

gies. In this thesis, the focus is on analyzing botnet behaviours specifically on wired

networks. However, preliminary evaluations were conducted on data sets including

botnets on cellular devices as the basis of exploring how far the proposed system

can be pushed. Botnets found on wired networks have different topologies and take

advantage of various protocols and techniques. Given that recent botnets tend to use

de-centralized topologies (such as P2P), most of the data sets used in this research

are placed in this category. Among the protocols utilized by these botnets in such

topologies, HTTP is one of the more ubiquitous ones in Internet realm. Hence, the

HTTP-based botnets with the de-centralized topology can be considered as the most

dangerous botnets which can hide their malicious activity very well in the high vol-

ume of normal HTTP traffic. For this reason, special attention is paid to botnets

with the HTTP protocol while older botnets, such as IRC botnets, are included in

the evaluations as well.

Using this framework, two different approaches were designed and analyzed, each

dealing with specific scenarios where both aim to detect botnet behaviour using the

available information. In other words, the goal is to analyze the available information

to recognize the behaviour of the botnet communication based on the footprints left

by these attackers. Basically, various features of the data are extracted and analyzed

to recognize such behaviour. Generally, there are two main types of network traffic:

encrypted and unencrypted, Fig. 1.2. In each of these two main categories, the packet

payload may or may not be accessible because of privacy and security issues.

Since 2004, DNS has been used in botnet traffic more and more to add mobility,

remove the single point of failure [123] and thereby implementing a de-centralized

4

Figure 1.2: Types of network traffic

topology. To this end, fluxing techniques are designed to move the communication

between the victims and the C&C server from one domain/IP to another domain/IP

using the DNS protocol. Hence, the first scenario assumes that the botnet commu-

nication is using domain fluxing and the packet payload is accessible, specifically for

DNS queries. Consequently, for this approach, an application data analysis-based

system was designed.

In this case, the proposed approach works on the domain name strings extracted

from the DNS packet payload. Two different methods are studied: feature extraction

with a priori information and feature extraction without a priori information. The

first method employs the features extracted from the domain name strings, based on

a priori information, in order to detect the botnets. In the second method an evolu-

tionary computation technique is designed, called Stateful-SBB (Stateful Symbiotic

Bid-Based Genetic Programming), which employs the raw domain name strings (no

a priori information) extracted from the DNS packet payload. These application

analysis-based approaches address the important questions of this field:

(i) Can botnet DNS communication be detected based on domain name analysis

without any further traffic analysis?

(ii) If yes, what domain name features should be extracted using a priori infor-

mation?

(iii) Can a detection system be designed to recognize botnet behaviour at the

application level without any a priori knowledge (a.k.a without a pre-defined feature

set)?

(iv) Is the performance of a detection system with no a priori knowledge compa-

rable to a system with a priori information?

(v) What would be gained/missed while using any of the aforementioned methods?

To evaluate this approach, publicly available malicious and legitimate domain

5

name lists (from legitimate resources) are employed. Results show that the first

method can detect the botnet’s domain names with a detection rate (DR) of up

to 96% and the second proposed method (Stateful-SBB) performed better with a

detection rate of up to 100% without requiring a predefined feature set. Avoiding

such a requirement is the most important contribution of this technique since this

enables the approach to adapt to changes in the botnet upgrades of the domain

generation algorithm. The performance of these approaches changed based on the

type of botnet and the type of data set (balanced vs. unbalanced).

On the other hand, there are other possible scenarios in which the network traffic

is encrypted (with/without payload), or it is un-encrypted but the packet payload is

not accessible or the collected traffic does not contain any DNS packets. For such

scenarios, a second approach was proposed and designed based on network data anal-

ysis. In this approach, the flow-based1 network traffic features extracted using various

flow exporters and machine learning (ML) classifiers are employed for differentiating

legitimate traffic from the malicious. The goal is to explore the possibility of using

publicly available tools and algorithms to design an early warning system with a min-

imum a priori knowledge. Specifically, several experiments are designed to address

the following questions:

(i) Can all types of botnets be analyzed and detected with one feature set or should

different feature sets be be introduced and employed depending on the botnet?

(ii) What role does the choice of machine learning play in the effectiveness and

performance of a botnet detection system?

(iii) Given that botnets may use different protocols at each stage of their lifecycle,

can data filtering (i.e. protocol filtering) make a difference in detection performance?

(iv) Given that most of the known machine learning techniques employ numeric

features, should non-numeric features be represented in a numeric form? How effective

can this approach be? What type of representation should be used?

(v) Having different types of botnets can a detection system distinguish them

all from normal user behaviours? If so, can this system differentiate these types of

1Flow is defined as a logical equivalent for a call or a connection in association with a user-specified
group of elements [126]. The most common way to identify a traffic flow is to use a combination of
five properties (a.k.a 5-tuple) from the packet header, namely source/destination IP addresses and
port numbers as well as the protocol.

6

botnets from each other?

(vi) Finally, how effectively can a machine learning-based early warning botnet

detection system perform over a period of time, considering botnet evolution?

In this approach, six open source flow exporters (Maji, YAF, Softflowd, Tran-

alyzer, Argus and Netmate) along with several highly employed machine learning

techniques [e.g. C4.5, SVM, Naive-Bayes, Bayesian Networks and Artificial Neural

Networks (ANN)] are utilized. This approach was evaluated based on the effect of

the factors listed below.

1. Type of traffic. For this purpose, three sets of experiments are conducted;

the first set of experiments study the analysis and classification of botnet traffic

using all of the traffic flows, the second set performs the same study using only

the HTTP traffic flows, i.e. employing an HTTP protocol filter for HTTP-based

botnets, and the third set uses only the DNS traffic flows (if available) utilizing

a DNS protocol filter. The evaluation results show that the use of feature

extraction tools, machine learning algorithms and protocol filtering can affect

the performance of a detection system greatly. For the evaluations performed,

the combination of the Tranalyzer tool with the C4.5 classifier using the HTTP

filter gives the best performance in terms of the DR and false positive rate

(FPR) on all the botnet data sets employed. However, it should be considered

that HTTP filtering is not always applicable. Without using any filter, the

combination of Tranalyzer and C4.5 still outperformed the other combinations.

2. Feature representation. Some of the features calculated and exported by

flow features has non-numeric representation. Given that most of the known

machine learning algorithms accept numeric type values as inputs, experiments

were conducted on how these features should be presented. The main focus of

the analysis is on the TCP-Flag feature which has been shown to be utilized

by botnets. Overall, no notable performance increase was observed throughout

the different representations.

3. Botnet behaviour evolution. Botnets can upgrade and evolve their topology

and/or modify their algorithms on the fly based on the fifth phase of their lifecy-

cle. The important question in this case is how the trained early warning system

7

would perform in this situation. Hence, experiments were conducted to test the

performance of the proposed approach over a period of time in which different

versions of the botnets were presented as inputs. These versions vary from mi-

nor changes in the communication structure to major changes in the topology

(e.g. from a C&C-based de-centralized topology to a P2P-based de-centralized

topology). The results show that the early warning system performance changes

within a range of 80% to 100% with botnet version behaviour changes over four

years while a sharp drop in the detection rate raise a red flag- a major change

in topology.

4. Normal behaviour representation. In network traffic analysis systems in

the literature, different traffic log files are employed to represent normal use

behaviour. However, it appears no research has been done on how the choice

of traffic files representing the normal behaviours might affect the evaluation of

the proposed systems and the results. In this work three different data sets were

used to represent normal behaviours, namely Alexa-D (NIMS), ETP (LBNL)

and ISP (WiSNet), which will be introduced in Chapter 4. Evaluation results

show that although these data sets have different characteristics, choosing one

over the other does not have a notable affect on the performance of the early

warning system proposed in this thesis.

Furthermore, apart from the importance of the proposed detection methods in

the literature, in all cases, the first challenge is to obtain realistic network data that

represents botnet traffic (behaviour). Due to the malicious nature of such data, it is

difficult to find publicly available data sets reflecting real-life scenarios. Therefore,

different approaches have been explored in the literature. These include (but are not

limited to): (i) Running botnet binaries (that are publicly available or modifying

such binaries) in sandbox environments and capturing the traffic [90, 147, 106, 139];

(ii) Obtaining captured Honeynet traffic [85, 156]; or (iii) Obtaining traffic from a

network operator or a security company [71]. Using different versions of the Zeus

and Citadel botnet toolkits, various scenarios were designed and these botnets were

executed in a sandbox environment. The captured data in the sandbox is employed

in this thesis which belongs to the first category. Moreover, a systematic approach

is proposed as well to generate botnet traffic data representing the first stage of

8

botnet communication (i.e. the connection phase of the botnet lifecycle) where the

infected host intends to locate the C&C server and to make a connection with the

server. This approach was evaluated under different conditions and shows that it can

generate realistic botnet behaviour similar to the traffic captured in the wild [95, 98].

1.1 Objectives

The primary objective of this research is to explore an early warning botnet detection

system based on a behaviour analysis approach with no or minimum a priori knowl-

edge employing machine learning algorithms. To this end, the following issues were

researched on both network and application level data that were publicly available to

researchers.

1. Exploring the possibility of detecting the botnet using only the domain names

appearing in the DNS packet payload without any traffic analysis.

2. Investigating the features of the malicious domain names and exploring the

possibility of detecting the malicious automatically-generated domain names

using raw text, string format domain names without any a priori knowledge;

3. Exploring the possibility of detecting botnet traffic when the traffic is encrypted,

DNS analysis is not possible or the packet payload is not available, using flow-

based features.

4. Exploring the possibility of creating a network flow-based early warning system

that uses minimum a priori knowledge to detect botnet behaviours using open

source tools and algorithms that are publicly available. This would make the

system highly repeatable and usable for non-expert analysts in botnet detection.

5. Investigating the effect of various machine learning algorithms, feature extrac-

tion methods, various feature sets, traffic filtering, feature representation tech-

niques on botnet behaviour detection.

6. Analyzing the features employed by the machine learning algorithms to distin-

guish different botnet behaviour, e.g. Zeus and Citadel.

9

7. Exploring the possibility of presenting a systematic method to generate botnet

traffic which is similar to real botnet behaviours.

Indeed, most of the literature has analyzed botnet traffic in different ways to propose a

detection method that can be applied to one or more types of botnets. In this regard,

specific approaches could require specific types of network application/data to analyze

which might not always be accessible. Hence, collecting/capturing complete real-life

data to analyze is very challenging. For example, if a method uses packet payload

analysis, it would not be able to detect a botnet that uses payload encryption. The

objective in this research is to present a set of approaches and tools that can be

employed to detect botnet behaviour in different situations and investigate what will

be gained or missed when using a combination of the proposed approaches. This will

then help the security analyst to choose a set of tools and approaches to analyze the

available data and identify the botnet behaviour.

1.2 Contributions

As discussed earlier, the objective of this thesis is to investigate the possibility of de-

signing and developing an early warning system to detect botnet behaviours with no

or minimum a priori knowledge. To this end, a framework is proposed employing ma-

chine learning-based approaches and suitable feature sets depending on the available

data for various botnet behaviour analysis purposes. This framework is evaluated on

botnets with centralized, de-centralized and de-centralized P2P topologies utilizing

IRC, DNS, HTTP and P2P protocols. In this research, one of the main challenges

is the type of data that is analyzed and the features which should be extracted in

order to recognize botnet communication. These features may differ from botnet to

botnet based on the botnet’s structure. Therefore, a specific feature set cannot be

considered as a general feature set, i.e. one size does not fit all.

To achieve the above mentioned objectives, the contributions of this thesis can be

summarized as follows.

1. Data generation. The first challenge in designing and developing a botnet

detection system is to have access to realistic botnet data that represent botnet

behaviour and can be analyzed and used for system design, benchmarking and

10

evaluation. In this thesis publicly available data sets were employed as well as

lab-generated data sets to analyze botnet and normal behaviours for an early

warning system. In the case of data generation, two approaches were used

to generate the botnet data: (i) using botnet toolkits and publicly available

botnet binaries, (ii) using publicly available botnet domain names to generate

the botnet traffic which represents the first phase of the botnet communication.

Although the first approach has also been used previously [85, 139, 147, 145], in

this thesis different scenarios were designed and various settings were employed

(e.g. enabling a web injection option) to generate botnet traffic. This way a

collection of data sets were captured showing that the same botnet may have

various functionalities and targets. A more detailed benchmarking and botnet

behaviour analysis becomes possible with this approach. The second approach

however is novel and based on the evaluations detailed in the following chapters,

represents realistic botnet behaviours.

2. Application data, specifically domain name, analysis. This approach fo-

cuses on identifying the domain names generated by the botnets’ Domain Gen-

eration Algorithm (DGA). In this case, all of the DNS-based analysis approaches

in the literature, to the best of my knowledge, are a priori information-based

detection systems where various DNS-based features are extracted from the net-

work traffic and/or domain names [105, 53, 149]. Hence, in the application data

analysis approach of this thesis, two different methods are investigated where

both only take advantage of the DNS domain names without any further DNS

traffic analysis. One of the proposed application data analysis methods employs

a feature set defined based on a priori information for detection purposes. For

the second method, a co-evolutionary algorithm has been designed and devel-

oped purely based on the string format domain names where the features are

the ASCII code of the characters of the domain name. In other words, the pro-

posed method (called Stateful-SBB) can detect the botnets’ malicious domain

names without any a priori knowledge. This is a great advantage when botnets

can upgrade themselves at any time and the detection system need to cope with

the upgrades as quickly as possible. With this method, there is no need for the

human experts to analyze the malicious domain names in order to understand

11

the new algorithm behind the domain generation process to update the feature

sets.

3. Network Data Analysis. The second approach is based on network data

analysis, specifically traffic flows, where network traces are aggregated into

flows only using the information embedded in the header of the packets and

some statistics are then calculated. However, there is not only one standard

flow feature set that can be used in this case and several different sets have

been proposed and employed in the literature for various types of botnet com-

munications. Hence, in this approach, the goal is to study the effect of various

techniques and tools (leading to different feature sets) in detail. This form of

detailed analysis on botnet behaviour analysis through flow feature sets has not

been done by any work in the literature. This is one of the main contributions of

this research which happens to be the most comprehensive analysis in this field.

In this case, the effect of traffic filters, various feature sets, machine learning

algorithms, feature representations and botnet evolution are investigated.

Moreover, all of the approaches in the literature have chosen and employed a set

of data to represent legitimate (normal) behaviour. It appears no research has

been performed to understand how such a choice (representation of legitimate

behaviour) will effect the performance of the designed system. Consequently,

an investigation has been made of the importance of legitimate data selection

(if any) which is part of the contributions of this thesis.

4. The two proposed approaches provides solutions which can be understood by

network administrators easily. The analysis of the solutions aims to address

an important question: can these solutions reveal any patterns or structures in

botnet behaviours?

5. Although the focus of this thesis is on botnets in wired networks, the proposed

botnet behaviour analysis framework has been applied and evaluated on the

botnets seen on cellular networks. To the best of my knowledge, none of the

work in the literature has been investigated and evaluated in this manner.

6. Twenty five botnet samples are employed in this thesis. Older botnets like IRC

12

decentralized to more recent botnets like de-centralized P2P are included in this

data set collection. This is the most complete set of data sets that have been

analyzed in the literature.

7. Given that different data sets are employed in the literature and some of these

data sets are not publicly available, the repeatability of these experiments is

impossible and the claimed performances are used for the comparison of the

results. Thus, this thesis has taken advantage of the two publicly available tools

(Snort and BotHunter) for evaluating these data sets, as well as implementing

two other systems [118, 156] which have been proposed in the literature. The

goal is to provide a baseline for the work done in the literature on these data

sets.

Although the easiest choices would be two flow-based detection systems with

different feature sets, the goal was to choose two systems that would offer some-

thing new and different compared to the approaches employed. One of these

systems is a flow aggregation/fraction-based detection system and the other one

is a packet payload-based detection system [88]. All four of these tools/systems

are based on a priori knowledge to define the feature set or the rule set. In

summary, to the best of my knowledge, none of the work in the literature has

been compared against other approaches at such comprehensive level as in this

thesis.

Several outcomes of this thesis research have been published in different journals

and conferences dealing with network operation, artificial intelligence, and machine

learning [88, 89, 93, 90, 92, 94, 96, 97] which indicate that the proposed solutions

are worth investigating. The application data analysis-based approaches have been

published in [89, 93] in which the approaches are evaluated on different data sets and

compared to the state-of-the-art techniques. On the other hand, the network data

analysis-based early warning system and its evaluations have been published as well

[90, 92, 96, 97]. The effect of the feature extraction/selection in addition to the effect

of traffic filtering has been addressed specifically [94]. Moreover, the confirmation

of data sets generated in this research has been published as well [95]. Finally, the

evaluation and comparison of the network data-based early warning system with the

13

other approaches in the literature has been published as well [88, 91].

1.3 Organization of the Thesis

This thesis is structured into eight main chapters as follows. Chapter 2 outlines the

background information (e.g. a summary of the botnet lifecycle which will provide

a better understanding of the concepts of the following chapters) in addition to a

literature review. Chapter 3 introduces the machine learning algorithms and the

tools employed in this research. This includes the flow exporter tools and the pub-

licly available malicious behaviour detection systems. In Chapter 4 all the data sets

that are used in the evaluation of early warning system proposed in this thesis are

introduced. Chapters 5 and 6 present the application data analysis-based and net-

work data analysis-based early warning systems, respectively. Each chapter discusses

the methodology and presents the experimental results of the system according to the

corresponding proposed data analysis method. In Chapter 7 the proposed early warn-

ing system is compared against four different malicious behaviour detection systems.

Finally, conclusions are drawn and future work is discussed in Chapter 8.

Chapter 2

Background

A bot program is a self-propagating malware which infects vulnerable hosts known as

bots (zombies) and is designed to perform a task after being triggered. Hosts can be

infected with malware in different ways such as visiting an untrusted malicious website

or opening a malicious email attachment. The infected bot network is referred to as

a botnet, which is under the remote control of a master called a botmaster. Usually

bots receive commands from the master through a C&C communication channel and

carry out malicious tasks such as Distributed Denial of Service (DDoS), spamming,

phishing and identity theft attacks [69, 143]. A DoS attack is an aggressive attempt

with the purpose of making a network or a specific machine’s resources inaccessible

to its legitimate users. A DDoS is an attack in which multiple compromised systems

attack a single target to interrupt or suspend the resources and services of the targeted

system (victim) temporarily or indefinitely. Spam is any kind of a message, regardless

of its content, which is sent to recipients who have not requested it. In spamming

botnets, the botmaster commands its infected bots to send spam messages to the

predefined list of victims selected by the master. Phishing is used to describe technical

methods (such as spoof emails) which deceive targets into giving up their personal or

professional confidential information.

2.1 Botnet Topology

Botnet topology is classified in two major categories based on the C&C communi-

cation method: centralized and decentralized [114]. In the centralized model, com-

mands and data exchanges between the master and the bots are managed at the

central C&C server. The C&C server uses different services/protocols to manage the

botnet. Since all connections are going through a specific C&C server, its detection

is relatively easier. As a result, attackers started to use decentralized communication

methods such as Peer-to-Peer (P2P) architecture and decentralized C&C which is

14

15

Figure 2.1: Botnet protocols and techniques timeline [102].

more complicated and harder to discover. In the P2P model bots can act as both

clients and servers. They do not contact any specific server for commands directly

but receive the commands from their peers.

It is believed that until 2003, most of the botnets were using a centralized topology,

utilizing Internet Relay Chat (IRC) Protocol, Fig. 2.1, [102]. Since 2003, not only

have botnets started to use several protocols such as P2P-based protocols, HyperText

Transfer Protocol(HTTP) or DNS and a decentralized topology but also they have

started to employ different mechanisms such as fluxing to avoid detection. Fluxing

is a technique used to move the communication between the victims and the C&C

server from one domain/IP to another domain/IP using the DNS protocol which

forms a decentralized C&C-based architecture. Therefore, since 2004 DNS has been

used in botnet traffic more and more to add mobility and to remove the single point

of failure [123]. There are two categories of fluxing: (i) Domain fluxing, and (ii)

Fast-fluxing (or IP fluxing). Fast-flux is a mechanism in which a set of IP addresses

associated with a domain name change with high frequency. By contrast, domain

fluxing is based on the idea of generating domain names using a Domain Generation

Algorithm (DGA). A C&C server and its respective bots use the same algorithm

and parameters to generate consistent domain names. Bots try to resolve the list of

generated domain names in order to connect to the C&C server. Once one of the

domain names is resolved, that domain name and its associated IP address will be

used for server connections until the next round of the domain generating process.

16

2.1.1 Protocols Employed

Most recent botnets employ the HTTP protocol to hide their malicious activities

within the normal web traffic given the wide range of HTTP usage on the Internet

[43]. Moreover, DNS is an essential component for the Internet to function and is

used in botnet architectures to provide robustness and mobility as well as to avoid

the single point of failure [102]. Therefore, using these protocols, intruders (such

as botnets) can hide their malicious activities easily within the normal traffic and

therefore bypass firewalls and avoid detection mechanisms. As well, some of the data

sets employed in this research have utilized the IRC protocol for communication.

What follows is a brief description of these protocols.

2.1.1.1 HyperText Transfer Protocol (HTTP)

HTTP is an application layer protocol built on top of TCP, which is the foundation

of data communication for the World Wide Web [104]. Although this protocol is

designed mainly for the exchange/transfer of hypertext (i.e. structured text) based

on a client-server model, it can be used for many other tasks such as distributed

object management systems. In its initial client-server design, the client (e.g. a web

browser) submits an HTTP request to the server (e.g. a web site server) and the server

then responds properly based on the client’s request. The three main HTTP message

types are GET, POST and HEAD where the GET method indicates that the server is

supposed to return an entity (i.e. information retrieval), the POST method submits

data to be processed by the specified source/server (i.e. information submission) and

the HEAD method is identical to GET except the server must not return a message-

body in response (i.e. obtaining information about the entity without transferring the

entity-body itself). Botnets with centralized or decentralized architecture (including

P2P botnets) utilize the HTTP protocol to form the communication channel.

2.1.1.2 Domain Name System (DNS)

DNS is a hierarchical distributed system service which translate the domain names

to their associated IP addresses needed to locate a system. Given that memorizing

the domain names is much easier than memorizing the IP addresses, DNS is usually

17

Figure 2.2: A simplistic view of the domain name space

Figure 2.3: A simplistic view of the DNS look up

employed to locate the target by the given domain name before any type of commu-

nication can be established. Hence, this is one of the more commonly used protocols

in the Internet. The domain name space is in the form of a tree of domain names in

which each node or leaf holds information on zero or more resource records and the

top level of the hierarchy is served by the root name servers that are responsible for

the lower levels. Figure 2.2 is a very simplistic view of the domain name space.

When a DNS client needs to look up a name, it sends a DNS query to the DNS

servers which contain specific information such as the domain name. This query

can be resolved in different ways. It can be resolved locally by the client’s cached

information from previous queries or by the local DNS servers responsible. The DNS

servers, however, can also ask to resolve the query from other servers recursively if

no information is available on the authoritative zones. Figure 2.3 is a simplistic view

of a DNS resolving process when no locally cached record is available.

18

2.1.1.3 Internet Relay Chat (IRC)

IRC is an application layer protocol that forms text-based communication. This pro-

tocol is designed for real time chat communication based on client-server architecture.

The client consists of computer programs which can be installed on the users system.

The clients communicate with chat servers to transfer text messages to other clients.

In the main, the IRC protocol targets group communication through communication

channels but also supports private messaging (one-to-one communication) and data

transfer (such as file sharing).

When an IRC client connects to an IRC server, it must first register its connection.

Once several users are connected and registered, they can send messages to each

other. Each user sends the message that is intended for another registered user

through the server. The server’s duty is to receive the messages and forward them

to the target user. On the other hand, users connected to an IRC server can also

join existing channels on the server. Once a user has joined a channel, it can start

sending/receiving messages. The difference is that the server will relay the message

to all the users in the channel, instead of just a single user.

2.2 Botnet samples

What follows is a brief introduction to the botnets that are employed at some point

in this thesis.

Zeus: Zeus is a well-known botnet that made a big comeback (after a takedown

in 2012) with a new variant in 2013 [47]. This botnet has been collecting banking

data by using man-in-the-browser keystroke logging and form grabbing but also can

be configured for any type of identity theft attack. The HTTP protocol has been

used as the carrier protocol for this botnet while the architecture has changed from

C&C-based to P2P-based over the time.

Citadel: The Citadel botnet is the improved version of Zeus in which Zeus bugs

are fixed and it is adapted to the newest security platforms [4]. Hence, this is also

an HTTP-based botnet like Zeus. It is believed that Citadel stole more than $500

million and infected more than five million PCs in different countries. In June 2013,

Microsoft and the FBI took down almost 90% of the Citadel botnet based on a court

19

order in an operation. Yet, there is news of Citadel making a bold comeback [48].

Conficker: Conficker is an HTTP-based botnet which move from a C&C-based

topology to P2P topology over a period of two years. Speculations about Con-

ficker’s purpose ranges from DDoS attacks or using distributed computing resources

to steal banking credentials. In 2009 and 2010, the Conficker botnet was listed in

the Damballa top ten botnets of the year. As of 2013, it is reported [72] that the

Conficker botnet has infected many medical devices.

Cutwail: The Pushdo trojan was used originally to distribute other malware such

as Zeus. It comes with its own spam module, known as Cutwail which is responsible

for a large portion of the world’s daily spam traffic. In 2013, this botnet evolved

using domain generation algorithms (DGA) and became more resilient to takedown

attempts [46]. Some variants of Pushdo utilize HTTP on top of the SSL/TLS protocol

for C&C communication [44].

Kelihos: Kelihos is involved mainly with DDoS attacks and email Spam attacks.

Capabilities of stealing Bitcoin wallets and spreading malicious links over social net-

work sites such as Facebook were added to its latest versions. This botnet was first

discovered in December 2010 and sent billions of spam messages in one day. Since

then, three versions of Kelihos have been detected. The first two versions use HTTP

while the latest version employs an HTTP-based P2P topology along with the Fast-

Flux method [45].

Torpig: Torpig is an HTTP-based botnet designed specifically to harvest sensitive

information (such as bank account and credit card data) from its victims [138]. In

this botnet, victims are infected through drive-by-download attacks. In such attacks,

first web pages on legitimate but vulnerable web sites are modifies with HTML tags

which causes the victim’s browser to request the Javascript code from a web site

under the control of the attacker. This code then starts the vulnerability exploitation

phase of the botnet lifecycle and then moves on to the other phases if possible.

Kraken: Kraken was the world’s largest botnet in 2008 designed for spreading

spams which was estimated to have sent almost nine billion spam messages per day.

In contrast, Bobax, which is the newer version of this botnet, was listed in McAfee

threat reports of 2011 and 2012 as one of the top active treats [125]. Hence, due to

the usage of the domain fluxing technique and encryption and its high infection rate,

20

this botnet was also considered as one of the top botnets which should be analyzed.

ZeroAccess: ZeroAccess is a P2P botnet discovered first in 2011 but which

survived two take down attempts until 2015. Reports are indicating that this botnet

is used primarily for click fraud and Bitcoin mining. Sophos Lab [31] estimated

that this botnet has infected more that nine million systems and has cost advertisers

millions of dollars. Exploit packs and social engineering have been the most common

methods for spreading the ZeroAccess botnet.

Virut: This botnet came to existence in 2006 and has been used for various mali-

cious activities such as DDoS attacks, spam, identity theft and pay-per-install activ-

ities. In 2013, Symantec estimated that the botnet had control of over 300,000 com-

puters worldwide [34] whereas Kaspersky reported Virut as the fifth-most widespread

threat in the third quarter of 2012 which was responsible for 6.8% of botnet infections

[30]. As reported [74], Virut is an HTTP-based botnet given that it takes advantage

of the HTTP protocol for communication.

Rbot: As previously discussed in this chapter, the IRC protocol is designed for

real time chat communication based on client-server architecture. There are two

basic levels of access to IRC channels: users and operators. The operator is the user

who creates the channel and has more privileges compared to regular users. In an

IRC botnet, the botmaster (attacker) controls the bots by sending commands to its

own created malicious channel while switching channels to avoid being taken down.

The advantage of an IRC botnet as opposed to HTTP botnets, for example, is that

IRC allows for the interactive control of the bots. That means an attacker can send

custom commands to a specific bot. In other words, IRC botnets have a much higher

degree of control over the botnet network with a comparably low effort. However,

this structure only works well for a relatively small bot network. This type of botnet

has been used for for coordinating DDoS attacks and spam campaigns.

2.3 Related Work

Over time, botnets have employed different protocols, topologies and techniques to

implement the aforementioned five phases of the lifecycle while avoiding detection.

Hence, an arms race has started between the botnets and the detection systems. There

are various techniques proposed for botnet detection due to the wide range of botnet

21

methodologies. From the data perspective, while some techniques focus on malware

source/binary analysis, others use host and/or network-based data. Given that this

thesis is focussed on data analysis/behaviour extraction-based systems, this section

focuses on the two main host-based and network-based detection systems proposed

in the literature.

2.3.1 Host-based detection approaches

A host-based detection approach monitors and analyzes the internal behaviour of a

computer system to detect anomalies and malicious botnet behaviour.

Masud et al. proposed a detection system which recognizes bot activities in the

host machine using the temporal correlation of two host-based log files [117]. The

approach uses data mining to learn temporal correlations between an incoming packet

and outgoing packets, new outgoing connections and application startups. An incom-

ing packet which correlates with one of these events would be flagged as a possible

botnet packet. Connection features are then generated by the aggregation of the

packet-based features. Finally, the system classifies the connections as botnet or

normal based on the connection features. The system is trained on a combination

of normal log files and botnet log files generated in a testbed and then tested on

unbalanced new log files. The system showed an accuracy of 99% in the evaluations.

Stinson et al. proposed a host-based botnet detection system called BotSwat

[137]. The system identifies potential botnet programs by focussing on the way these

programs respond to data received on the network. It is claimed that a program shows

external or remote control when it uses data received from an untrusted source on

the network in a trusted system call argument. The system first scans the execution

status of the Win32 library and monitors the runtime system calls created by a

processor. It then tries to discover bots with generic properties despite the particular

C&C architecture, communication protocols, or botnet structure. The system was

evaluated on variants of the agobot, DSNXbot, evilbot, G-SySbot, sdbot, and Spybot

botnets . The results suggest that the presence of network packet contents in selected

system call arguments is an effective indicator for malicious Win32 bots.

Liu et al. [111] suggested that a typical botnet-infected host goes through three

phases: startup, preparation and attack. In the startup phase, the bot program

22

is launched without any user input. In the preparation phase, the bot makes a

connection to the botmaster through C&C channels. Finally, the bot executes local

or remote attacks. With such an assumption, BotTracer is proposed to track and

detect these phases in order to determine whether a host is infected. To detect these

phases, the system takes advantage of a virtual machine with the same image as

the host and the known characteristics of the botnet communication channels and

malicious behaviours. Evaluations on several bots such as Nugache, Graybird and

variants of IRC bots like Agobot4 and Forbot showed that BotTracer is an effective

detection system.

Szymczyk proposed a multi-agent botnet detection system (MABDS) which is

made up of a user agent, an administrative agent, a central database of knowledge

and collections of system analysis, network analysis, and honeypot agents [141]. These

agents work collectively to analyze the events occurring in the operating system and

network environment to detect bots. The database of knowledge holds the signa-

tures derived from the analysis of the various types of malicious software that create

bots. Szymczyk claimed that the evaluation confirmed the effectiveness of MABDS

in detecting bots but no evaluation results were provided.

DeWare is a host-based malware detection system proposed by Xu et al. [148].

The system identifies dependencies between the system events and the corresponding

user action that initiates them. As well, It uses policies to control how file systems

are accessed in a host and how processes are created. In regards to botnet detection,

DeWare can be used in detecting drive-by-download exploits used by botnets such

as Torpig. Evaluating the system, it generated less than a 1% false positive rate

separating legitimate user downloads from malicious downloads.

Moreover, there are several host-based intrusion detection systems proposed in

the literature which are not specifically designed for botnets or evaluated on botnets

such as [65, 120].

23

2.3.2 Network-based detection approaches

Network packets include two main parts: (i) the packet header, which includes the

control information of the protocols used on the network, and (ii) the packet pay-

load, which includes the application information used on the network. Some sys-

tems/approaches require both the payload and the header sections of the packets to

extract the necessary analytic features while others only need the header of the pack-

ets (e.g. flow-based systems). On the other hand, some systems focus on per-packet

analysis while others use aggregated packets of connections (i.e. flows).

Gu et al. proposed and developed two botnet detection frameworks called BotH-

unter and BotMiner[86, 85]. BotHunter is a botnet detection system based on Snort

IDS alerts and bot activities correlation. Basically, a combination of Snort and a

network data clustering approach forms the basis of this framework. The tool is de-

signed based on the assumption that all botnet infection processes are similar and

can be illustrated by a lifecycle model explained in the previous section. On the other

hand, BotMiner is a botnet detection framework based on group behaviour analysis

[85]. BotMiner uses a clustering approach to find similar C&C communication be-

haviours, which form clusters, and then employs Snort to find the type of activity

in the detected clusters. Flow features such as the number of packets per flow, the

average number of bytes per packet and the average number of bytes per second are

extracted and employed for the detection. BotMiner was evaluated on several traffic

data sets. These data sets included their campus network traffic, which represented

the normal behaviour. Moreover, it included the Honeynet traffic and traffic captured

by running bot binaries in a sandbox environment. Their results showed that Bot-

Miner could detect botnets with detection rates between 75% and 100% on different

types of botnets.

Strayer et al. developed an IRC botnet detection system that made use of ma-

chine learning techniques (classification and clustering) [139]. First, a classification

technique is used to filter the chat type of traffic and then a clustering technique is

applied to find the group activities in the filtered traffic. Finally, a topology analyzer

is utilized on the clusters to detect the botnets. In this three layer approach, they

employed flow-based features extracted from packet headers. Data employed in this

work was gathered from a controlled testbed running bot binaries. They employed

24

and evaluated Naive-Bayes, C4.5 and Bayesian Networks as the classifiers against a

multi-Dimensional flow correlation technique that was designed and proposed.

Wurzinger et al. proposed an approach to detect botnets based on the correlation

of commands and responses in the monitored network traces [147]. The two base

assumptions in designing the approach were: bots receive commands from botmas-

ters and then carry out actions in response to those commands. To identify traffic

responses, the corresponding commands in the preceding traffic are located. Known

content-based specifications (i.e. signatures) were utilized to identify the commands

and responses. Then, using the command and response pairs, the detection model

was built focussing on IRC, HTTP and P2P botnets. Data sets used in this work

were collected by running bot binaries in a controlled environment. Traffic features

such as the number of non-ASCII bytes in the payload were analyzed to characterize

bot behaviour.

Zeidanloo et al. proposed a detection framework with a focus on P2P and IRC

based botnets [151]. The framework is based on finding similar communication pat-

terns and behaviours among the group of hosts that are performing at least one

malicious activity. In the first phase, filters are applied to the traffic to filter out the

irrelevant traffic flows in order to reduce the workload. By investigating the content

of packets IRC, HTTP and P2P traffic is separated and forwarded to the malicious

activity detector module in the second phase. Finally, a traffic monitoring module is

used to detect the group of hosts that have similar behaviours. To analyze the traffic

over the three phases, a flow-based approach was utilized while payload inspection

was employed for traffic filtering.

Celik et al. proposed a flow-based botnet C&C activity detection system [61].

Specifically, they investigated the effect of the calibration of time-based flow features.

In other words, they explored to what extent the presence of timing artifacts in

botnet traces will affect the results of timing features-based classifiers. They employed

machine learning algorithms such as C4.5, Naive-Bayes and logistic regression. For

the evaluation, Lawrence Berkeley National Laboratory (LBNL) traces represents the

normal traffic and IRC-based simulated botnet traffic represents the attack traffic.

The results of four different time calibration scenarios showed some performance

changes in the Naive-Bayes and Logistic Model Tree (LMT) overall accuracy but no

25

notable change in the logistic regression and C4.5 classifiers. The best performing

classifier in this work was C4.5 with an overall accuracy of 99%.

Francois et al. proposed a NetFlow monitoring framework to detect P2P botnets

leveraging a simple host dependency model to track communication patterns. The

system first creates a dependency graph between hosts by monitoring their interac-

tions. Then, linkage and clustering algorithms are employed to identify similar botnet

traffic patterns (i.e. identifying hosts that are highly linked together) [71]. The traf-

fic data for evaluation was obtained from an Internet operator company in addition

to synthetically-generated botnet flow records. In addition to the traffic flows, the

Google web search engine was employed for linkage analysis. The results showed a

TPR of up to 96%

Wang et al. proposed a fuzzy pattern recognition approach (called BBDP) to

detect HTTP and IRC botnets behavioural patterns [145]. The traffic traces were

first passed through a filtering process to narrow the search scope. The system ana-

lyzed the features of DNS queries (such as the number of failed DNS responses) and

TCP flows of the filtered traffic to detect botnet malicious domain names and IP

addresses. To evaluate the proposed approach, malicious bot binaries where collected

using Honeytrap and were run in a controlled environment to generate bot traffic.

The results showed up to a 95% detection rate.

Lu et al. proposed a two-phase botnet detection system [113]. In the first phase

the system classifies the network traffic using traffic payload signatures and then a

decision tree model is used in the second phase to classify the unknown traffic by

the payload content of the first phase. Basically, the second phase takes advantage

of clustering based on n-gram features selected and extracted from the content of

the network flows. To evaluate the system, traffic traces had been collected on three

networks including an indoor testbed network, a honeynet through a public Internet

connection and a public network (a free wireless fidelity (WiFi) network).

Kirubavathi et al. designed an HTTP-based botnet detection system using a

multilayer Feed-Forward Neural network [106]. Given that HTTP-based botnets do

not maintain a connection with the C&C server but periodically make a request to

the C&C server (over the HTTP) to download the instructions, the system extracts

features related to TCP connections in specific time intervals based on the packet

26

headers. The features are then normalized and used to train a multilayer feed-forward

neural network. To collect data for evaluation purposes, botnets were simulated in

the lab. The system showed a higher performance (99% accuracy) compared to other

ML algorithms (such as decision tree and random forest) using the same feature set.

Guerid et al. proposed a collaborative and inter-domain botnet detection system

which enables real-time analysis for large scale networks [87]. The system has several

connected probes in which each probe correlates the information gathered from its

network and the anonymized data received from other probes. The probe then uses

two layers of analysis: (i) a community structure layer and (ii) a C&C server detection

layer. The first layer detects the infected bots and groups them into communities

with the same botnet behaviour. This detection is based on participation in the

same ongoing attacks or in the similarity of their abnormal network traffic. The

second layer receives the communities from the first layer and identifies the associated

malicious servers. Finally, the system is evaluated on domain-flux botnets such as

Conficker, Pushdo and Zeus. Given the known behaviour of such botnets, the first

layer analyzes the behaviour of DNS requests and replies. The results demonstrated

that collaboration architecture improves the detection rate.

Zhao et al. investigated a botnet detection system based on flow intervals [156].

Flow features of traffic packets were extracted based on several time intervals and

utilized by several ML algorithms to find the best combination of flow features, time

interval and ML algorithm. Accordingly, decision tree classifier was finally selected

as the preferred classifier to detect botnets with a proposed feature set using a time

interval of 180 seconds. The authors focussed on P2P botnets (such as Waledac) which

employ the HTTP protocol and a fast-flux based DNS technique. Furthermore, based

on the proposed approach, a web-based detection system was implemented to be used

both in offline detection as well as live detection. To evaluate their proposed approach

and web-based detection system, they employed a combination of normal and attack

traffic some of which was generated in the lab, some was from Honeynet project traces

and some was from the Lawrence Berkeley National Laboratory (normal traffic) data

sets. Although their proposed detection approach resulted in up to 99% detection

rates with a false positive rate of around 2%, they also tested their system with unseen

botnet data and obtained detection rates of up to 100% while having a false positive

27

rate of about 80% in some cases.

Dietrich et al. presented an approach (CoCoSpot) to detect botnet C&C channels

based on traffic analysis features [64]. In this approach, flow features of TCP and UDP

traffic are extracted from the packet header and payload. A hierarchical clustering

technique is applied to the flows to form the clusters which are then labeled manually

by the authors as malicious or normal. Using the clusters and cluster centroids, a

classifier is trained to be used for classifying the unknown test traffic. The result

indicated that CoCoSpot can detect more than 88% of the C&C flows at a false

positive rate below 0.1%.

Beigi et al. investigated the effectiveness of flow-based feature sets employed

in previous botnet detection studies and evaluated them using a proposed feature

selection algorithm [54]. The results indicated that the byte-based group of features

has less effect while the packet-based group has more impact. In the evaluation, IRC,

HTTP and P2P botnet data sets were utilized. Beigi et al. obtained DRs between

75% and 99% on different combinations of data sets including ISOT (Uvic), Virut

(CVUT), ZeroAccess (CVUT) and NSIS (CVUT) [54].

Yan et al. proposed PeerClean as a three layer peer-to-peer botnet detection sys-

tem which investigates the traffic flow statistics and network connection patterns for

this purpose [150]. The first layer clusters the hosts based on similar traffic patterns

using the flow features. This layer was determined not robust enough to distinguish

botnet behaviour from benign behaviour given the dynamic Internet traffic. Hence,

the second layer applies a dynamic group behaviour analysis (DGBA) on the first

layer clusters to extract the group-level aggregated connection features. An SVM

classifier is then used to reveal the botnet clusters. Finally the third layer identifies

the botnet types of the detected botnet clusters. Data collected on the edge router

of a campus network that consists of traffic from known p2p applications, and botnet

data collected from a controlled environment running botnet samples are employed in

this work to evaluate the proposed system. The results showed TPRs between 95%

and 100%.

Stevanovic et al. proposed three traffic analysis methods to detect botnet be-

haviours using the TCP, UPD and DNS protocol as the main carrier of botnet C&C

communication [136]. After extracting features for each of these protocols, a random

28

forest classifier is utilized to generate the detection models. For the TCP and UDP-

based methods conversation features (flow features) are extracted from the packet

headers without using the IP addresses while for the DNS-based method, features

are extracted from the DNS queries and responses. The novel idea of extracting the

conversation features is to calculate the features based on a sub-sample of the packets

in each conversation. Forty botnet sample data sets were used for the evaluation of

the proposed methods. The TCP classifier performed with up to 98% precision by

using only ten packets per conversation while the UDP classifier was less sensitive

to the number of packets analyzed and resulted in up to 99% precision. Finally, the

DNS classifier showed an overall precision of 98.9%.

Wang et al. proposed a two-stage approach to detect botnets [144]. The first stage

detects network anomalies which are linked to the botnet presence in the network

while the second stage detects the infected machines (bots) based on these anomalies.

Two anomaly detection methods were used for the first stage: (i) a flow-level anomaly

detection method which quantifies the flow data and monitors the histograms of data

and (ii) a graph-based packet-level anomaly detection method which aggregates the

packet-level data into graphs and then monitors the distribution degree. In the second

stage, highly interactive nodes and their relationships are identified by constructing

a Social Correlation Graph. This type of analysis is based on the assumption that

the botmaster and bots are highly interactive nodes and the interactions correspond

to C&C communication. The proposed approach was evaluated on the CTU-13 and

CAIDA 2007 DDoS data sets and compared against BotHunter and showed promising

results.

To identify specifically DNS-based botnets which use DNS for either locating their

C&C server or as the information carrier, many works employ DNS network traffic

analysis and/or use domain name textual characteristics [100, 122, 116, 135].

Holz et al. implemented a heuristics-based malicious fast-flux service network

(FFSN) detection system based on recursive DNS traffic analysis [100]. Fluxiness

and Flux-Score measures are introduced into the system which is based on features

such as Time-to-Live (TTL), multiple Address records (A records) and the number

of unique Autonomous Systems. The system performed well in detecting Fast-Flux

traffic. However, an enhanced version of this system was introduced [121] in which

29

ten features (similar to the previous effort [100]) and their corresponding boundaries

were introduced and analyzed to measure the Fluxiness of DNS traffic. Some of these

features are a Time-to-Live (TTL) shorter than 900 seconds, more than five unique

IP addresses in the Address record (A record) queries and more than two distinct

Autonomous Systems (ASNs) highlighted by the A record. If more than four of these

features are flagged, the traffic is marked as ’fluxy’. Moreover, a domain whitelist is

then checked to ensure that legitimate operations using fast-flux techniques for load

balancing are not falsely detected. The system identified over 900 fast-flux domain

names from early- to mid-2008 and monitored their behaviour across the Internet.

Perdisci et al. developed a FFSN detection system by passively analyzing the

recursive DNS traces [122]. The same features introduced previously [100] such as

a short TTL and a set of resolved IP addresses returned at each query were also

identified in this work. By collecting the recursive DNS traces passively from multiple

large networks, filtering the traces to gather the suspicious traffic and clustering based

on the related domain names, a system was built to identify the fast-flux domain

names.

Manasrab et al. proposed a botnet detection framework (a.k.a BDM) based on the

fact that bots query the DNS server as a group of hosts periodically [116]. Monitoring

and capturing the DNS traffic at different time intervals and using the Jaccard index

to measure the similarity, the system was developed to detect the malicious DNS

behaviours of botnets. The results of the evaluation on the NAv6 network showed an

average DR of 89% and average FPR and FNR of approximately 11%.

Ma et al. employed supervised learning techniques (i.e. Naive-Bayes, SVM) to

detect malicious web sites from suspicious URLs [105]. To characterize the URLs,

two categories of features are used: lexical features (the length of a domain name, the

number of dots, etc.) and host-based features (IP address properties, WHOIS prop-

erties, etc.). For normal URLs, DMOZ Open Directory Project [16] and random URL

selector for Yahoos directory1. On the other hand, PhishTank [18] and Spamscatter

[52] are used to collect malicious URLs. The evaluation resulted in a performance

accuracy of 95% to 99%.

Antonakakis et al. presented a dynamic reputation system, Notos [53]. Notos

1http://random.yahoo.com/bin/ryl

30

builds models of legitimate and malicious domain names using DNS query information

as well as the zone-based (e.g. the occurrence frequency of different characters) and

network-based (e.g. the total number of IPs associated historically with a domain)

features of the domain names. Models were built in an off-line mode using a clustering

approach and then reputation scores were assigned to label the online mode data as

malicious or legitimate. Data from two ISP-based sensors were collected and used for

evaluation in this work. The evaluation indicated a 96.8% TPR and 0.38% FPR.

Dietrich et al. presented a technique that distinguishes between DNS-based C&C

and real-world normal DNS communication DNS traffic [62]. They discovered a mal-

ware family, Feederbot, which uses DNS sub-domain labels and DNS response packet

payloads to exfiltrate and infiltrate malicious data. The detection technique extracts

several features from the DNS response payload data such as the number of ASCII

digits in a DNS message and utilizes k-Means clustering and a Euclidean Distance-

based classifier to detect the C&C channels. The result showed the system was able to

correctly classify more than 14 million DNS transactions of 42,143 malware samples.

Stalmans et al. developed a system to detect fast-flux domain names using DNS

queries [135]. Analyzing the DNS query responses, two groups of features were

extracted to identify legitimate and malicious queries: DNS features (i.e. unique

Autonomous System Numbers (ASNs) and TTL) and Textual features (i.e. alpha

numeric character frequency distributions). Given the extracted features, C5.0 and

Bayesian classifiers were employed to identify fast-flux queries. The legitimate do-

main data was obtained from the Google Doubleclick ad planner top-1000 most vis-

ited sites list and malicious data was collected from multiple sources, including the

fast-flux trackers for Zeus, SpyEye and other botnets. The system could detect the

malicious DNS queries with 82% to 87% accuracy.

Yadav et al. proposed a methodology to detect malicious algorithmically-generated

domain names, addressing the domain fluxing mechanism [149]. To this end they

used several methods and features to group the DNS queries. Then for each group,

metrics which characterized the distribution of alphanumeric characters– such as the

Kullback-Leibler divergence and the Levenshtein edit distance– as well as bigrams in

all domains which are mapped to the same set of IP-addresses were computed and

31

used to identify domain names with structural anomalies. Data obtained from a Tier-

1 ISP in Asia, a crawling IPv4 address space with the corresponding domains and

campus DNS traces are utilized in this work. The performance of the system varies

based on the distance metric and the characteristics of data such as the number of

domains per TLD and the type of botnet. In this case, the system performed with

an accuracy of up to 100%.

Futai et al. proposed an approach for detecting fast-flux domain names by process-

ing the recursive DNS server traffic in real time in addition to a long-term monitoring

phase [73]. Using the extracted features from the DNS response packets, a decision

tree-based classifier is created to detect the fast-flux domain names. Next, a pre-

defined heuristic rule set is used to label the domain names as malicious. The rule

set reflects botnet behaviours on the extracted features of the previous phase (e.g.

applying thresholds on the features) as well as defining additional rules like specify-

ing commonly-used Top Level Domains (TLDs) by botnets. Finally, the long term

monitoring phase monitors the domain names flagged as suspicious in the previous

phase for 48 hours to make the final decision. The evaluation of 180 days of deploy-

ment on the university’s DNS servers showed a higher detection rate compared to the

flux-score-based algorithms proposed by Holz et al. [100].

Schiavoni et al. proposed Phoenix for classifying DGA- and non-DGA-generated

domains apart using a combination of lexical (e.g. meaningful character ratio and n-

gram normality score) and IP-based features [129]. In the first phase, lexical features

are extracted and analyzed by statistical measures and thresholds. In the second

phase, IP-based features and a DBSCAN clustering algorithm are used to group the

domains that are resolved into similar sets of IP addresses. The cluster features are

analyzed to characterize the DGAs and their respective botnets. The system could

distinguish the automatically-generated domain names from the non-automatic ones

with 94.8% accuracy on the Conficker A, B and C, Torpig and Bamital botnet domain

names.

Bilge et al. proposed a system called Exposure to detect malicious botnet domain

names in real time, by applying 15 complex features grouped in four categories: time-

based features (e.g. Short life), dns-answer-based features (e.g. Number of domains

32

sharing the IP with), TTL-based features (e.g Number of TTL changes), and domain-

name-based features (e.g. percentage of numerical characters) [56]. These complex

features are formed by 26 atomic features. To train the initial classifier model, the

C4.5 classifier is employed. The benign data set consists of domain names from Alexa

and a number of servers that provide detailed WHOIS data while reported malicious

domain names in malwaredomains.com, Phishtank and Anubis are employed to rep-

resent malicious data samples. The initial model could perform with a 99% accuracy.

Exposure was deployed in a real-time network for seventeen months with an initial

model while the model was retrained every day. The results showed the system could

perform well in a real-time network as well.

2.4 Summary

In short, botnets use different protocols such as HTTP and DNS for communication.

Two main categories of botnet detection systems are proposed in the literature: host-

based and network-based systems.

One advantage of host-based detection approaches is that they are very effec-

tive in drive-by-download attacks. However, these approaches are complex, costly,

non-scalable and cannot detect the group-based behaviour of botnets. In this case,

network-based detection approaches are more effective. This is why most recent bot-

net detection approaches proposed in the literature are based on network data anal-

ysis. For the same reason, the early warning system in this thesis is not a host-based

system.

Network-based detection systems can be categorized in different ways: (i) some

use group behaviour analysis [85, 139, 87] while others are focussed on single user

behaviour and not on finding behaviours that are shared between a group of users.

Using group behaviour analysis limits the applicability of the detection approach to

the large networks which are being monitored. In other words, if the network under

investigation/monitoring does not include multiple infected bots, group-based mon-

itoring approaches might not be very useful. However, the approaches that are not

focussed on group behaviour analysis can be effective regardless of the number of

infected hosts on the network. This is why the early warning system in this the-

sis is not a group behaviour analysis-based system. (ii) From the data perspective,

33

some of the systems use the packet payload and/or header information [145, 147],

while others employ only the packet header information (e.g. flow-based systems)

[154, 156, 64]. The importance of the approaches in the second group can be under-

stood better knowing that the most recent aggressive botnets employ encryption to

hide themselves and their information from the detection systems. Moreover, there

are several studies on flow-based botnet detection systems in which each has proposed

a different set of features [154, 156]. Some studies have analyzed the feature selec-

tion algorithms to extract the most effective feature sets [54]. Such feature selection

processes can cause the models to be focussed on specific type(s) of botnet(s) which

may not be very effective for other types. This is why this research has proposed two

complimentary approaches to cover all forms of data even encrypted. (iii) While some

of the approaches are focussed on botnets with specific communication structures or

protocols [71, 106, 150], there are approaches which can be applied to various botnet

structures and protocols [85, 153, 144]. (iv) Most of the DNS analysis-based systems

employ some sort of DNS traffic analysis with/without domain name lexical analysis

[100, 149, 73].

In summary, a pure domain name analysis-based system is proposed in this re-

search. The idea is that DNS traffic analysis can be covered in a general network

data analysis approach. Two methods are suggested and evaluated for this purpose.

The first one is a lexical domain name analysis which extracts features from domain

names and then uses ML algorithms to detect the malicious domain names. The

second approach uses the domain name characters as the features and employs a ML

evolutionary technique to classify the domain names. It appears that the lexical do-

main analysis approach has the most comprehensive feature set compared to similar

works in the literature. Most importantly, no work in the literature has investigated

only using the characters of the domain names (without any other network-based

analysis) to classify legitimated domain names from malicious ones. By contrast, a

flow-based network analysis system is proposed. The approach does not use group

behaviour analysis, but packet header information which makes the approach effective

for botnets which use encryption. Moreover, to detect botnets with various structures

and communication protocols, a wide range of flow features are introduced. By using

an ML algorithm which has the ability to perform attribute selection as an implicit

34

property of constructing, it should be possible to develop a better way to approach

feature selection while utilizing all the possible extracted flow features. Unlike most

of the works in the literature, the proposed system in this thesis is evaluated on a

wide range of botnets data sets, from centralized IRC botnets to decentralized P2P

botnets.

Chapter 3

Learning Algorithms and Tools

In this thesis, eight well-known machine learning algorithms are employed: C4.5, SBB,

SVM, ANN, KNN, Bayesian Networks, Adaboost and Naive Bayes. These algorithms

have been selected because they have been widely used in the literature ([139, 61, 156,

153, 134]) for network traffic analysis. The use of machine learning algorithms requires

that network traffic be represented in ways these algorithms can work on them. Hence,

five flow exporters are employed in this research to extract different feature sets to

represent traffic, namely Maji [10], YAF [24], Softflowd [21], Tranalyzer [22] and

Netmate [13]. YAF was introduced by the known Network Situational Awareness

(NetSA) group at CERT from Carnegie Mellon University which has also developed

other known open source tools for monitoring large-scale networks, such as SiLK. Maji

was introduced by the WAND Network Research Group from Waikato University

which is known for its Weka machine learning framework. Tranalyzer and Netmate

are widely used for network traffic analysis in the literature [70, 51, 84, 49, 132]. All

of these flow exporters support extended and custom netflow features while Softflowd

performs as a basic netflow exporter. Hence, using Softflowd as a base for evaluation

would be very useful. Finally, two publicly available malicious behaviour detection

systems, Snort and BotHunter, were used for evaluation purposes.

3.1 Machine learning algorithms

The machine learning algorithms employed throughout the different chapters of this

thesis are described bellow.

3.1.1 C4.5

C4.5 is a decision tree algorithm which is an extension of the earlier ID3 algorithm

developed by Quinlan [50]. This supervised learning method aims to find the small

35

36

decision trees (using pruning) and then generate an if-then rule set based of the

trained tree which can be used for classification.

Applying the Information Entropy concept, C4.5 constructs the decision trees

based on a training data set. Each record of the set has the same structure consisting

of a number of attributes in which one of them represents the class of the record. The

algorithm employs a normalized information gain criterion to select attributes from

a given set of attributes to determine the splitting point. In other words, the feature

with the highest information gain value is chosen as the splitting point.

Let pi be the probability that an arbitrary sample in data set D belongs to class

Ci:

pi =
|Ci,D|
|D|

(3.1)

Then, the amount of information (entropy) required to classify an instance in D,

where m is the number of unique instances of the data set:

Entropy(D) = −
m∑
i=1

pi log2 pi (3.2)

Expected information needed to classify the objects of the data set D in all v

sub-trees (after using attribute A to split D into v partitions) is:

EntropyAD = −
v∑

j=1

|Dj|
D
× Entropy(Dj) (3.3)

and finally, information gained by branching on attribute A is:

Gain(A) = Entropy(D)− EntropyA(D) (3.4)

A decision node is created based on the selected splitting node with the highest

information gain. The same procedure applies recursively to the corresponding sub-

lists obtained by the splitting process until all of the data samples associated with the

leaf nodes are of the same class or the classifier runs out of training samples. More

detailed information on the C4.5 learning algorithm can be found in [50].

37

Figure 3.1: SVM hyperplane and support vectors [99]

3.1.2 Support Vector Machine (SVM)

SVM is a binary classification algorithm that can be used for classification and rule

regression. The goal of this classification algorithm is to build an N -dimensional

hyperplane that separates the samples of data optimally into two classes with maximal

margin. The data points that form the hyperplane are called support vectors which

are shown with cycles in Fig. 3.1. The classifier can be extended easily to a K -class

classification by constructing k two-class (binary) classifiers.

In order to use an SVM to solve a classification problem on non-linearly separable

data, a non-linear mapping of input data into a high dimensional feature space is

required. Then, an optimal hyperplane for separating the high dimensional features

of input data can be constructed which maximizes the separation margin. Finally,

a linear mapping from the feature space to the output space is required. Gener-

ally, mapping the non-linearly separable data explicitly into a high dimension feature

space has a very high computational cost. Therefore, to handle the problem, kernel

functions are utilized to map the data points implicitly to the feature space. Math-

ematically, for any mapping φ : D → F the function K : K(x1, x2) = (φ(x1), φ(x2))

is a kernel function where (., .) denotes the dot product. Several kernels have been

introduced so far such as Polynomial, Gaussian and Hyperbolic tangent.

38

3.1.2.1 SVM with string kernel (SSK)

Lodhi et al. proposed a string kernel, called SSK (String Subsequence Kernel), for

the purpose of text classification [112]. The idea is to define the dot product of two

text data points by means of their sub-strings. The more sub-strings they have in

common, the more similar they are. Note that the sub-strings do not need to be

contiguous. However, the subsequences are weighted by an exponentially decaying

factor of their length, emphasizing on the sub-strings that are close to contiguous. In

other words, the contiguity degree of a sub-string determines its effectiveness (weight)

in the comparison.

The main parameters of SSK are n (subsequence length), and λ (decay factor).

The kernel maps the input string data into a feature space F implicitly for every

subsequence u of n characters using the following formula:

φu(s) =
∑

i: u=s[i]

λl(i) (3.5)

φu(i) is the overall result for all the occurrences of u in a string s. λl is the value

of each occurrence of u where l denotes the length of that subsequence in s (length

of u plus interior gaps of the occurrence). The Kernel function result for two strings

s and t is the dot product of their features mapping:

Kn(s, t) =
∑
u∈

∑n

(φu(s).φu(t)) =
∑
u∈

∑n

λl(i)
∑

i: u=s[i]

∑
j: u=s[j]

λl(j) =
∑
u∈

∑n

∑
i: u=s[i]

∑
j: u=s[j]

λl(i)+l(j)

(3.6)

Given that even for a small substring size (i.e. four) and an average-sized text,

the direct computation of feature space is impractical. Thus, SSK utilizes an efficient

recursive formulation using dynamic programming techniques with the complexity of

O(n|s||t|).

3.1.2.1.1 SSK- Lambda Pruning (SSK-LP)

Seewald et al. introduced SSK-LP to decrease SSK computational time and memory

consumption along with a little loss in accuracy. In SSL-LP, the recursion is stopped

as soon as it gets to an acceptable result in the current branch. This approach

39

decreases the computational effort required for the SKK. A detailed explanation of

the algorithm can be found in [130].

3.1.3 Artificial Neural Networks (ANN)

The ANN algorithm is inspired by the structure of the biological neural network. It is

composed of neurons and the connections between them. Backpropagation network is

the most frequently used version of this algorithm organized in layers which consists

of an input layer, an output layer and at least one hidden layer. All the neurons of

each layer (except the output layer) are connected to all the neurons of the next layer

by an axon associated with a weight factor where they signal forward, and then the

errors are propagated backwards. The supervised backpropagation algorithm uses

the inputs and outputs to compute the error (the difference between the actual and

the expected results). Starting with random weights, each training iteration adjusts

the neurons’ weights in order to minimize the error rate. The training process stops

after reaching the maximum epoch (time step) or meeting a specific stopping criterion

(e.g. error rate increases). Detailed information on ANN can be found in [50].

3.1.4 Naive Bayes

A Naive-Bayes classifier is a simple probabilistic classifier based on the Bayes theorem,

which assumes that the presence of an attribute in a given class is independent of other

attributes. The classifier uses the method of maximum likelihood (probability) for

parameter estimation. Given a training set (X, Y) where for each sample (x, y), x is an

n-dimensional vector and y is the class label out of k number of classes, C1, C2...Ck,

the classifier predicts that the sample belongs to the class Ci having the highest

posteriori, conditioned on x:

P (Ci | x) > P (Cj | x)for1 ≤ j ≤ k, j 6= i

Where:

P (Ci) = P (Ci)P (x|Ci)
P (x)

Which equals to

40

Posterior = Priori∗likelihood
evidence

in plain English. All classifier parameters (i.e. class priori) can be calculated using

different assumptions (i.e. prioris = 1
k

where k is the number of classes). A more

detailed explanation of the algorithm can be found in [50].

3.1.5 Bayesian Networks

Given a set X of discrete attributes, Bayesian Networks are graphical representa-

tions for probabilistic relationships among the variables of the set. In other words, a

Bayesian network is a directed acyclic graph which represents the probability distri-

bution over X. The graph nodes that are associated with the attributes, are connected

through the links that correspond to the direct influence from one attribute to the

other. Given the Bayesian network structure (with nodes and direct influence links),

the conditional probability distribution of the graph is then computed. The learning

process aims to find a Bayesian Network structure that describes the training data

in the best possible way. To this end, two categories of approaches are proposed:

score and search-based and greedy-based approach. A more detailed explanation of

the algorithm can be found in [50].

3.1.6 Adaboost

Machine learning techniques’ goal is to generate a rule which can predict the new test

samples with a high accuracy. Creating a highly accurate rule is a difficult task but

on the other hand, generating a set of rough rules of thumb with moderate accuracy is

not that hard. Based on this observation, the boosting method starts with finding the

rules of thumb called weak learner. Given the training set, AdaBoost, an acronym for

Adaptive Boosting, calls the weak learning algorithm repeatedly, each time feeding it

with a different distribution over the training data to build a complex classifier.

Given the training examples (xi, yi) where xi is the feature vector from domain X,

and yi ∈ 1,+1 is the label, in each round t, a given weak learning algorithm is used

to find a weak hypothesis ht : X → −1,+1 using a distribution of the training data

(Di). The goal here is to find a weak hypothesis with a low weighted error over the

41

Di. Finally, the combined/final hypothesis is created based on the sign of a weighted

combination of weak hypotheses:

H(X) = Sign(
∑
tT

(αi ∗ ht(X))) (3.7)

This is equivalent to saying that H is computed as a weighted majority vote of

the weak hypotheses ht where each is assigned weight αt.

3.1.7 K Nearest Neighbour (KNN)

KNN is a non-parametric lazy learning algorithm. This means it does not make any

assumption about data distribution and does not use the training data samples to do

any generalization. Hence, this classifier has no explicit training phase and requires

the keeping of all training data for classification. Defining a training data sample

with a set of vectors and a class label, the classifier basically tries to find the K near-

est neighbour and perform a majority voting for the testing phase. The Euclidean

distance is the most commonly used distance measurement to find the nearest neigh-

bours in this classifier. A more detailed explanation of the KNN algorithm can be

found in [50].

3.1.8 SBB

The Symbiotic Bid-Based (SBB) algorithm is a form of genetic programming (GP).

Although this is an open source algorithm, it is not one of the routine highly-employed

machine learning algorithms in the literature. SBB will be explained in more details as

this algorithm is used as basis for the proposed application data-based early warning

system design.

This form of genetic programming algorithm builds teams of programs co-operatively

while simultaneously identifying useful exemplars to learn from [67]. To do so, three

distinct populations are utilized: a point population, a team population and a learner

population. The learner population represents a set of symbionts (learners) which

associate a GP-bidding behaviour with an action. The team population identifies

subsets of learners to define team membership under a variable length representation;

the implication of the latter is that team size as well as composition evolves. Finally,

42

the point population denotes a subset of training data exemplars.

Host evaluation takes the following form. Each symbiont (sj) consists of a pro-

gram, sj.p, and an action (class), sj.a ∈ {1, ..., C} where C denotes the maxi-

mum number of classes. All symbionts are a member of the target host h, and

have their program evaluated on the same training exemplar, xk, (from the point

population). The symbiont with the maximum output is identified or sym∗ =

argsymj∈h max(sj.p(xk)). It is this symbiont which has ‘won’ the right to present

its corresponding action, sym∗.a as the class label on exemplar xk. Any form of GP

could be assumed for symbiont programs. In this thesis, a linear GP representation is

employed [59]. Each program consists of a sequence of binary instructions represent-

ing one- and two-operand operations with function set {cos, exp, log,+, ∗,−,÷,%}.
To standardize the bid values between zero and one, the sigmoid function f(y) =

(1 + exp−y)−1 is applied to the real valued program output y.

Fitness evaluation is only conducted against the current content of the point pop-

ulation, thus decoupling fitness evaluation from the cardinality of the entire training

partition. The interaction between point and team population takes the form of

Pareto archiving [66]. Thus, if an individual is not dominated by any other individ-

ual, it is set to be a part of Pareto-front. This relation is used by the SBB training

algorithm to determine the points and the teams that survive to the next generation.

At each generation, Pgap new points are generated by sampling the training data

while enforcing a heuristic to ensure all classes see equal representation in the point

population. Conversely, Hgap new teams are generated through variation operators

(add, delete, swap and mutate) as applied to the existing teams. Potentially, new

symbiont programs appear through mutation alone, resulting in a variable size sym-

biont population. That is to say, there is no symbiont ‘fitness’ as such, however,

should a symbiont not see any host index, it is deleted. After fitness evaluation the

point and team population content is deterministically ranked with Pgap points and

Hgap teams deleted before a new generation commences.

The above ranking process utilizes Pareto archiving, thus the Pareto non-dominated

teams with the highest ranks are selected. Likewise, the non-dominated points are also

preserved. Meanwhile, if a point/team ranking is required in these non-dominated

subsets, a form of competitive fitness sharing is employed in order to introduce a bias

43

Figure 3.2: SBB team-based mechanism [110]

in favour of the points/teams that exhibit non-overlapping behaviour. Algorithm 1

describes the SBB training algorithm. A more detailed explanation of the algorithm

can be found in [67].

3.1.9 Performance criteria

In data classification, two metrics are typically used in order to quantify the perfor-

mance of the classifier: Detection Rate (DR) and False Positive Rate (FPR). In this

thesis, DR reflects the number of correctly classified specific botnet exemplars in a

given traffic file/domain name list and is calculated using DR = TP
TP+FN

; whereas TP

(True Positive) is the number of botnet exemplars that are classified correctly and

FN (False Negative) is the number of botnet exemplars that are classified incorrectly

(as normal). FPR, on the other hand, shows the number of normal exemplars that

are classified incorrectly as botnets and is calculated using TPR = FP
FP+TN

; whereas

TN (True Negative) is the number of normal exemplars that are classified correctly.

Although typically, classifiers are evaluated using the DR, given an unbalanced

data set or a multi-class data set, this metric can be misleading. In this regard, a

classwise detection rate is defined as: DETc = TPc

FNc+TPc
; where DETc is the class

c detection rate and TPc and FNc are the True-Positive and False-Negative counts

for class c. Finally, to summarize the classwise detection rates of a classifier over all

44

Algorithm 1 Overview of SBB traning algorithm

1: procedure

2: t = 0

3: P t = INITPOINTS(Psize)

4: (M t, Lt) = INITTEAMS(Msize)

5: while t ≤ tmax do

6: P t = GENPOINTS(P t)

7: (M t) = GENTEAMS(M t, Lt)

8: for all mi ⊆M t do

9: for all Pk ⊆ P t do

10: EV ALUATE(mi, pk)

11: end for

12: end for

13: P t+1 = SELPOINTS(P T)

14: (M t+1, Lt+1) = SELTEAMS(M t, Lt)

15: t = t+ 1

16: end while

17: return BEST (M t)

18: end procedure

45

classes [110], the average DR criteria is defined by:

Score =
1

|C|
∑
c∈C

DETc (3.8)

Moreover, classifier complexity can be measured by different criteria such as mem-

ory consumption and the training time of the learned model by the learning algo-

rithms. In this work, three complexity criteria are utilized.

1) Training (computation) time is employed where this is estimated on a common

computing platform.

2) Solution complexity. A direct comparison between solutions from different

representations is impractical since the underlying units of measurement are different.

However, the solution complexity can be compared using a correct set of measurement

units for each algorithm if these units have the same interpretation for complexity.

The tree size for C4.5 and the program size of the solution team for SBB can be

considered as the units of measurement. These units can be interpreted as a rule or

an if-else statement. Hence, the complexity of C4.5 and SBB are comparable.

3) Feature complexity reflects the number of unique attributes employed per so-

lution and potentially gives additional knowledge regarding botnet communication.

3.2 Publicly Available Tools Employed

As mentioned at the beginning of this chapter, network traffic should be presented

to the machine learning algorithms in a meaningful way. Five publicly available flow

exporters are used in this thesis. As well, Snort and BotHunter are utilized for the

comparison and evaluation purposes of the proposed early warning system.

3.2.1 Flow exporters

Flow generation tools (flow exporters) summarize traffic utilizing the network packet

headers. These tools collect packet information with common characteristics such as

IP addresses and port numbers, aggregate them into flows and then calculate statistics

such as the number of packets per flow, etc. In RFC 2722, a traffic flow is defined

as a logical equivalent for a call or a connection in association with a user-specified

group of elements [126]. The most common way to identify a traffic flow is to use a

46

Figure 3.3: Flow exporting mechanism

combination of five properties from the packet header including the Network and the

Transport layer headers of the TCP/IP network protocol stack. These are: Source

IP address, Destination IP address, Source Port Number, Destination Port Number

and Protocol which will be referred to as the 5-tuple information.

Companies producing and managing network equipment such as routers and switches

provide different types of flow exporters to summarize network traffic in terms of flows

using the 5-tuple information. As well, they provide flow analysis tools for analyzing

the flow streams. Some examples of COTS (commercial off the shelf) flow exporter

and analysis techniques are: Cisco systems’ NetFlow [3], Juniper systems’ J-Flow [8]

and InMon systems’ S-Flow [19]. As well, there are some open source exporters such

as Maji [10] by the WAND research group from Waikato University or YAF [24] by

the Cert NetSA research group.

However, over time different versions of NetFlow were developed and the very

recent version is now the IETF standard for flow exporters as IPFIX (RFC 5101). To

collect and analyze traffic flow data the three network elements should work together.

Fig. 3.3 illustrates the three components: (i) the flow exporter which generates

the flow data, (ii) the flow collector which collects (stores) the flow data from the

exporter, and finally, (iii) the flow analyzer which analyzes the collected data. A

variety of network devices (e.g. routers and switches) support different versions of

flow data. Therefore, in this research different open source flow exporters and collec-

tors are employed with the pre-captured data sets to extract the flow features with

the objective of exploring the effect of the flow exporter and collector tools on the

performance of the analyzers.

The exporters employed in this work are listed bellow.

47

(i) Maji [10] is an open source implementation of IPFIX supported by the WAND

research group at Waikato University. This tool exports uni-directional flows from

live PCAP interfaces as well as the more common trace file formats. Maji is designed

to support custom template definitions and can relay the IPFIX information to TCP,

UDP and SCTP collectors. Additionally, it has a simple exporting method that

outputs the flow information in the standard output. Therefore, no IPFIX collector

was employed for this tool.

(ii) YAF (Yet Another Flow Sensor) [24] is a bi-directional flow exporter designed

by the Network Situational Awareness (NetSA) group at CERT. This tools collects

and exports IPFIX-based flows. Similar to Maji, YAF can process packet data from

pre-captured traffic files or live captures from an interface to export flows. Although

the YAF package comes with a YAF-Ascii that outputs NetFlow packet information

in an ASCII format (which is employed in this work); any other NetFlow collector

can be used for this purpose, as well.

(iii) Softflowd [21] is a light-weight uni-directional flow exporter that supports

different versions of the NetFlow. This tool exports NetFlow data using the traffic on

a simple device interface or a pre-captured traffic file (pcap format). In this work, once

the network packets are exported into flows using Softflowd, NfDump was employed

as the flow collector. NfDump is an open source flow collector tool. NfDump supports

different versions of NetFlow, too [17].

(iv) Tranalyzer [22] is a light weight uni-directional flow exporter and analyzer

that employs an extended version of NetFlow feature set. This tool exports both

the binary and ASCII formats and therefore does not require any collector (such as

NfDump). Two versions of Tranalyzer have been used in this research, Tranalyzer

v. 0.5.8 and Tranalyzer v. 0.5.9 since the later version became available after the

first analysis was conducted in this research. These versions will be referred to as

Tranalyzer-1 and Tranalyzer-2 hereafter. Tranalyzer-2 has five additional features

compared to Tranalyzer-11.

(v) Netmate (Network Measurement and Accounting System) [13] is a bi-directional

flow exporter and analyzer. This exporter can process live captures and pre-captured

traffic and uses different rule sets to control the exported flow format. One of the

1Additional Features are: ICMP Status, TCP Ack Trip Jitter Average, TCP Ack Round trip
average Jitter, Subnet number of source IPv4, Subnet number of destination IP.

48

Table 3.1: The properties of the flow exporters employed.

Exporter Standard Flow Input Collector # of
features

Maji IPFIX uni-direction live/pre-captured included 59
YAF IPFIX bi-direction live/pre-captured included 46
Softflowd NetFlow uni-direction live/pre-captured NfDump 41

(V. 5, 7, 9)
Tranalyzer-1 - uni-direction live/pre-captured embedded 93
Tranalyzer-2 - uni-direction live/pre-captured embedded 98
Netmate - bi-direction live/pre-captured embedded 44

Argus NetFlow
uni-directional

live/pre-captured included 126
bi-directional

former NIMS lab members has developed “Netmate-flowcalc” which is a bundle in-

cluding Netmate v.0.9.5 packaged with NetAI modules from v0.1 [14]. Not only does

this open source program ease the installation process but also the NetAI module

has been extended for additional output features which have been employed in this

research.

Table 3.1 summarizes the properties of the flow exporters employed in this re-

search. The third column indicates whether the exporter requires a collector (if so,

does the tool provide it in the package) or it exports the flow information directly in

a human readable format. In this column of the table, “included” means a collector

is included in the package which, however, can be replaced with another one if de-

sired. In contrast, “embedded” means a collector is embedded in the exporter and

no external collector can be used. Table 3.2 shows whether the tool supports specific

categories of features. These categories are defined based on the features that are

used frequently in the literature [85, 156, 153]. The “Time” category refers to those

features indicating start-time, end-time and duration of the flow. The time-based

category is important when flow aggregation or window-based analysis is employed.

The “Inter-arrival” category refers to the statistics calculated over a flow such as

the average inter-arrival time which represents the average number of milliseconds

between consecutive packets of a flow. The “Packets&Bytes” category refers to the

features computed based on the number of packets which form the flow and their size

(in bytes) such as the average number of bytes per packet. The “Flags” category

refers to any feature related to the packet header flags such as the TCP SYN flag.

49

Table 3.2: The feature categories of the flow exporters employed.

Exporter Time Inter-arrival Packets&Bytes Flags

Maji 3 7 3 3

YAF 3 3 3 3

Softflowd 3 7 3 3

Tranalyzer (1 and 2) 3 3 3 3

Netmate duration only 3 3 3

Argus 3 3 3 3

3.2.2 Malicious behaviour detection systems

In order to understand how well the proposed early warning system in this thesis

would perform, two publicly available malicious behaviour detection system were

chosen: Snort and BotHunter. These two systems were selected specifically because

that BotHunter is the botnet detection system used in the literature [83, 152] for

performance evaluation purposes and Snort is a highly employed malicious behaviour

detection system in literature as well as in industry [152, 63].

3.2.2.1 Snort

Snort is an intrusion detection and prevention system that analyzes packet payloads

as well as packet header data to detect any evidence of harmful actions which match

predefined signatures (rule sets) [20]. Some of these pre-defined rules/signatures take

advantage of payload information while others require only the header features to be

analyzed. Snort has been supported by two rule sets: VRT (Vulnerability Research

Team), which is the official rule set for Snort, and ET (Emerging Threat), which

is published by emergingthreats.com. As discussed in more detail in Section 7, the

VRT rule set was used. These two main rule sets have come with many rules which

aim to cover all possible network conditions. Users should be careful to enable only

those rules that fit their network conditions and alert priority settings and disable

the others. Since 1998, Snort has been known and used in the network security area

given that it is a cross-platform open source IDS/IPS which can be modified to fit

the network security challenges and needs as shown by the BotHunter research.

50

3.2.2.2 BotHunter

Gu et al. introduced BotHunter as a botnet detection system and made it publicly

available. This tool uses the combination of Snort and a clustering approach to detect

botnet infections. BotHunter is based on the idea that all botnet infection processes

are similar and can be illustrated by a lifecycle model explained in Section 2. Hence,

it uses a modified version of Snort with its plugins to detect the specific bot actions

of the lifecycle and then correlates the Snort alerts to detect the botnets’ behaviour

and infected machines. The developers have modified and selected the botnet-related

Snort rules, developed many additional rules and inserted IP address checking into

the Snort rules to make BotHunter’s Snort sensors work more efficiently. The initial

version of BotHunter used two plugins: SLADE and SCADE, which are designed for

anomalous traffic pattern and payload detection. Recently, these plugins have been

replaced by three new plugins: (i) bhDNS for malicious DNS analysis, (ii) bhSD for

scanning detection; and (iii) Con-P2P for Conficker-C P2P detection and ethernet

tracking. All the new plugins use existing information like DNS lists, IP lists, port

lists and so on to detect malicious (botnet) behaviour. It should be noted here that

to be able to detect new botnets, BotHunter relies on Snort signature updates of new

malicious behaviours where the signatures use header and payload information.

3.2.2.3 Performance Criteria

Both BotHunter and Snort use Snort rule sets to generate alarms. BotHunter, how-

ever, goes a step further and aggregate those alarms to form a profile. In both of

these tools alarms are raised on the IP addresses with/without supporting information

(e.g. the protocol or port number). To evaluate the performance of these tools, the

percentage of detected infected bots (with the corresponding IP addresses) is usually

used. However, other approaches in this thesis use either the percentage of detected

malicious flows or packets which is much more detailed compared to IP addresses. To

have a better performance evaluation and comparison, the detected IP addresses by

Snort and BotHunter are used to label the data samples (e.g. flows) as detected and

then the detection rate is calculated. The detail of this relabelling and evaluation

method are explained in Chapter 7.

51

3.3 Summary

The tools and algorithms which have been used throughout the different chapters

of this research were introduced in this chapter. From the wide range of machine

learning algorithms available, SVM, SBB, C4.5, ANN, KNN, Bayesian Networks, and

Naive Bayes have been selected and employed. These are algorithms used widely in

the literature for network traffic analysis. To apply these machine learning algorithms

to the network traffic traces the data should be represented in a feature-based format.

Using flow exporters is one of the methods used in this research for such represen-

tation. In this case, Maji, Netmate, YAF, Tranalyzer and Softflowd are the tools

introduced here. Finally, the proposed botnet detection system is evaluated against

four different detection systems, two of which are the publicly available systems called

Snort and BotHunter. These two systems were introduced as well in this chapter.

Chapter 4

Data Sets

Botnet data can be analyzed in different forms. The type of data and specific part

of the data for behaviour analysis should be defined based on the approach. In other

words, different forms of analysis require different types and fractions of data. Hence,

in this chapter, the data sets that are used in this thesis and their characteristics are

described.

For analyzing botnet behaviours in application-based data such as domain name

data analysis, in Chapter 5, lists of malicious and legitimate domain names are re-

quired. For this purpose, several domain name lists have been collected from legit-

imate resources. The ZeusTracker site [25] and the DNS-BH site [7] are monitoring

the Zeus and the Citadel botnets actively. Hence, the C&C domain name lists repre-

senting the Zeus and Citadel botnets are downloaded from these two web sites. The

Conficker C&C domain name lists published by the Bonn university [5] and DNS-BH

[7] websites are collected as a representative of Conficker domain names. As well,

the C&C domain name lists published by Twitter API and DNS-BH for the Torpig

botnet are employed [142, 7]. Finally, for the Kraken (Bobax) botnet, domain name

lists published by the Damballa [103], DNS-BH [7], DV lab [27] and ThreatExpert

blog [26] web sites are collected and employed in this thesis. All of these domain

name lists represent the botnet lists. In addition to these botnet domain name lists,

some of the most frequently requested domain names from the Alexa lists are used

to represent the legitimate domain names. Alexa Internet Inc. [2] ranks the websites

based on their page views and unique site users. This ranking is then published as the

list of the most popular websites. Given that even Alexa lists might have malicious

domain names [127], 500 benign domain names from the Alexa lists were extracted

manually to represent the legitimate domain names.

On the other hand, for analyzing botnet behaviours in network-based data (such

as traffic flows or packets, in Chapter 6), network log file traces are required.

52

53

4.1 Data Sets Employed

What follows is an introduction to the different categories of data sets employed

based on the capturing/generation methods and/or the public sources which provide

the data sets.

4.1.1 Public log files

Although there were only a few small botnet data sets available publically before

2014, since then different research centers have started publishing their data sets for

research evaluation purposes. What follows is a list of the public data sets employed

in this research. These data sets are categorized by the source of data.

4.1.1.1 Snort Sourcefire VRT lab repository

The snort Sourcefire vulnerability research team lab has provided three sample traffic

log files for the Zeus botnet in 2010 [1]. Information regarding the log files as well

as the manner in which they should be analyzed and labeled is also provided by the

research team. Two of them are very small (only 110 and 1105 packets) and therefore

could not be used in these experiments. Hence, “Sample 1” is the only Zeus traffic

file utilized from the Snort archive in this research. This data is referred to as Zeus

(Snort) hereafter.

4.1.1.2 NETRESEC repository

The NETRESEC repository provides sample traffic log files for the Citadel, Cutwail,

Kelihos and Zeus botnets. There are no detailed descriptions of these log files available

in this repository and the sample log files have captured the botnet traffic (behaviour)

for a very limited period of time.

4.1.1.3 CVUT malware captures facility repository

The Malware Capture Facility Project is a research project defined by the Czech

Technical University Agent Technology Center (ATG) for capturing, analyzing and

publishing malware traffic [82]. The goals of this project are to execute real malware

for long periods of time, to monitor and capture the traffic during execution and

54

finally, the analyzing and publishing of the captured traffic. Since 2013 more than

one hundred botnet captures have been published by ATG . However, not all of the

captures and their corresponding botnet executables are linked to known botnets, so

only the captures that are named properly and linked to known botnets have been

selected. In this way the analysis results and the extracted behaviours of the botnets

can be analyzed as well by the published information. Zeus [80], Kelihos [78], Neris

[79], NSIS [81], Rbot [75], ZeroAccess [77] and Virut [76] are the botnets selected

from this repository.

4.1.1.4 University of Victoria repository

In 2013, the University of Victoria made a data set publicly available [128]. This data

set has combined two separate data sets of malicious botnet traffic from the French

chapter of Honeynet project on the Strom and Waledac botnets. This combination

represents the malicious side of the data set. Unlike other data captures employed in

this dissertation, this log file also has a legitimate side which consists of two traffic log

files: one log file from the Traffic Lab at Ericsson Research in Hungary and another log

file from the Lawrence Berkeley National Laboratory (LBNL) in the U.S. Hereafter,

this data set will be referred to as ISOT (UVic). Information published on this data

set by the University of Victoria was used for labelling and analysis.

4.1.1.5 Center of Applied Internet Data Analysis (CAIDA) repository

The CAIDA organization has captured and made publicly available a Conficker botnet

data set [60]. This traffic log,captured over three days, was collected by the CAIDA

UCSD network telescope when the Conficker botnet was active in 2008. The first

and the second day covers the Conficker-A botnet infection while during the third

day Conficker-A and B were active. This data set has been anonymized, the payload

has been removed from the packets and the CAIDA network addresses have been

masked (destination IP addresses) and Hereafter, will be referred to as the Conficker

(CAIDA).

55

4.1.1.6 Lawrence Berkeley National Lab (LBNL) repository

The LBNL enterprise Tracing Project was focussed on collecting and characterizing

internal enterprise traffic [9]. The data was captured in the medium-sized enterprise

network of the research institute from October, 2004 to January, 2005. There is a

variety of network activities included in this traffic capture such as web, email and

media streaming. In the literature, this data is widely used as the non-malicious

traffic trace which is a good representative of day-to-day enterprise network usage.

4.1.1.7 Wireless and Secure Networks Research Lab (WiSNet)

repository

The WiSNet research lab at the National University of Sciences and Technology

(NUST) has published several benign traffic log files [23]. Among those data sets, the

ISP data set is the biggest data set with a wide range of communication types (e.g.

HTTP communication). Hence, in this research the ISP data set is used to represent

a legitimate log file. This data set was collected from the edge routers of an Internet

Service Provider (ISP).

4.1.2 Dalhousie University NIMS lab repository

In addition to the publicly available log files, several botnet traffic traces were gener-

ated in the NIMS lab at Dalhousie University. These log files can be categorized into

two major types: Sandbox log files and Domain-based HTTP log files.

4.1.2.1 Sandbox log files

Many researchers in the literature [147, 122, 145] have generated botnet traffic in

a sandbox environment using the public botnet binaries and toolkits. Therefore, in

addition to the public data sets, the Zeus toolkit (version 1.2.7.19 and 2.1.0.1) and

Citadel toolkit (version 1.3.5.1) have been to generate botnet data samples. The

Zeus toolkit version 1.2.3.19 is analyzed and employed by Binsalleeh et al. [57]. The

newer version of the Zeus botnet and Citadel botnet are both improved versions

of that toolkit with some enhanced capabilities. Twelve bots were set up in the

testbed (machines infected with Zeus and Citadel botnets) as well as two C&C servers

56

Table 4.1: The sandbox configuration.

Data set No. of bots No. of servers Server type Description

Zeus-T1 (NIMS) 12 Windows machines 2 Linux and Windows Zeus botnet version 1.2.7.19

Zeus-T1-W (NIMS) 12 Windows machines 2 Linux and Windows
Zeus botnet version 1.2.7.19
Web Injection enabled

Zeus-T2 (NIMS) 12 Windows machines 2 Linux and Windows Zeus botnet version 2.1.0.1

Zeus-T2-W (NIMS) 12 Windows machines 2 Linux and Windows
Zeus botnet version 2.1.0.1
Web Injection enabled

Citadel-T1 (NIMS) 12 Windows machines 2 Linux and Windows Zeus botnet version 1.3.5.1

Citadel-T1-W (NIMS) 12 Windows machines 2 Linux and Windows
Zeus botnet version 1.3.5.1
Web Injection enabled

(a Windows server and/or a Linux server). Table 4.1 shows the different testbed

configurations used for generating botnet data sets in this category. As mentioned in

the table, in some of the configurations, the Zeus/Citadel web injection capability is

activated. Web injection refers to injecting rouge content in the web pages (usually

bank websites) in order to steal sensitive information. For this purpose, the web

injection plugin is installed on the bot which is then used to trick the browser for

injecting information into specific web pages. Given that the sandbox environment

is isolated from the outside world (not connected to the Internet), an HTTP server

was set up and a fake bank website created. This website is then used as the target

for the web injection attack of the Zeus and Citadel botnets. The generated network

traces in this sandbox will be used as representative of the Citadel and Zeus botnet

behaviour. Hereafter, these data sets will be referred to by the names used in the

first column of Table 4.1.

4.1.2.2 Domain-based HTTP log files

In this category, the focus is on the botnets, which employ the HTTP protocol as their

communication protocol. Rather than running botnet binaries in sandbox environ-

ments, publicly available lists (from legitimate resources) of C&C domain names that

are used as the data sets for chapter 5, were employed for generating the represen-

tative botnet/legitimate traffic. Although using sandbox environments with botnet

binaries and toolkits would create close to real world data samples, this approach

would not result in up-to-date botnet data samples. This is because these toolkits

are usually not accessible while they are recent/new. Basically, botmasters attempt

to sell their toolkits after they are done using them for their purposes. Moreover,

these toolkits can be found in underground blogs and black-hat websites usually one

or two years after being used for the botnet attacks.

57

A new method for creating botnet data samples was developed using the newly

employed domain names (specifically for the botnets). This approach ensures that

the generated traffic is a good representative of up-to-date traffic and avoids the

possibility of representing old botnet behaviour when old binaries are used. To this

end, a program was developed to establish HTTP connections with the domain names

(both botnet C&C servers and legitimate web servers) from the aforementioned lists to

generate the traffic. First, the program sends DNS queries for the domain names in the

lists. Then, if it receives a proper DNS response indicating that the domain name is

registered and is associated with a valid IP address, it attempts to establish an HTTP

connection with that IP address. The traffic generated in this approach represents

the botnet communication of the communication phase of the botnet lifecycle. As

discussed earlier, botnet domain name lists (such as Conficker and Zeus) were obtained

from the Bonn University, ZeusTracker, Damballa and DNS-BH project blocklists [7,

5, 25, 103] which represent the botnet lists. All the NIMS-generated log files using the

above domain name lists are purely malicious. However, the systems based on various

data mining techniques (similar to the proposed network data analysis-based system)

require legitimate traffic (to represent normal behaviour) for training purposes as

well. The Alexa most common domain names list was used to represent the legitimate

domain names. Using the Alexa domain name list, a legitimate log file was generated

using the same method as the domain-based botnet data samples. All generated

traffic was captured while the program was attempting to establish connections with

the domain names and no sampling rate was used. Hereafter, all the generated log

files in the NIMS lab will be referred to as the NIMS log files. Specifically, the domain-

based generated data sets will be named with a “-D” extension: e.g. like “Alexa-D

(NIMS)”.

4.1.3 Data evaluation

All the data types employed in this research can be grouped into three main categories:

(i) string format domain names, (ii) publicly available traffic traces (iii) traffic traces

generated and/or captured at the NIMS lab. These are made publicly available as

well at: http://web.cs.dal.ca/∼haddadi/data-analysis.htm.

In the first group, domain name lists were collected from the ZeusTracker [25],

58

Bonn University [5], DNS-BH [7] websites and Damballa Inc. [103]. Given that these

are all known legitimate resources, no additional analysis has been done regarding

the provided domain name lists and their labels. However, since even the Alexa lists

may have malicious domain names [127], 500 benign domain names were extracted

from the Alexa list for the data employed in this thesis.

For the second group data was obtained from the Snort VRT lab [1], the NE-

TRESEC repository [15], the CVUT malware repository [82], the University of Vic-

toria [128], the LBNL research lab [9], the WiSNet research lab [23] and the CAIDA

organization [60]. Snort provides a report describing the sample traffic log files and

therefore the files are not analyzed any further. NETRESEC, on the other hand,

provides the Citadel, Cutwail, Kelihos and Zeus botnet traffic log files (one for each)

but does not provide any information regarding these files. Although this is also a

legitimate repository, investigations were done on the protocols employed, the domain

names (if available) and the communication patterns in these traffic log files, matched

them with the published characteristics of these botnets and verifiying that the data

was correct. As discussed in Section 4, seven botnet traffic traces were employed in

this research from the CVUT malware repository, namely ZeroAccess, NSIS, Rbot,

Zeus, Neris, Virut and Kelihos. In addition to the log files, CVUT has published

explanatory information as well for each botnet sample such as log file analysis, a

protocol analysis and the infected hosts IP range. From a research group at the

University of Victoria, Saad et al. have combined several botnet log files and legiti-

mate log files which are published as the ISOT data set. Information regarding the

scenarios which were used to combine the log files and the IP address mapping is

provided by this research team. ISP (WisNet) and ETP (LBNL) are both employed

in the literature as legitimate log files. Information such as the IP address ranges and

the point of capture (at the enterprise level) is provided by these two organizations.

Finally, since the UCSD telescope carries no legitimate traffic and given that there is

other malicious background traffic than the Conficker infections in their captures, the

information provided by CAIDA was used as the ground truth for this data set. This

includes a two-day capture of the UCSD telescope network prior to the Conficker in-

fection captures. In the end, all of these botnet traffic files were used in this research.

All of the aforementioned information provided by the corresponding organizations

59

for each of these log files were used for data set labelling and protocol analysis in this

thesis.

In the third group, there are two subcategories of log files: (i) domain-based log

files captured through HTTP communication of the NIMS machines and the botnet

C&C domain names (mentioned in the first group); and (ii) toolkit-based log files

captured while infected machines in the NIMS testbed were communicating with the

configured C&C servers on the same testbed. For the first subcategory, the domain

names, their corresponding IP addresses (if available) and the NIMS machine IP

addresses were used for analyzing and labelling the data. Moreover, in the second

subcategory, different scenarios and configurations were used to setup the botnet

sandbox which resulted in six different log file captures. The IP address range used

in the testbed was utilized for labelling the resulted data sets. It should noted that

no legitimate application was running in the background of the infected machines.

4.1.3.1 Verifying the generated data

Section 4.1.2.2, a systematic approach was proposed for generating botnet traffic data

representing the communication phase of the botnet lifecycle. The generated data ex-

plained in this section forms the first subcategory of the third group of data. Prior to

using these log files, evaluations were conducted to confirm that the data generated

by the proposed approach represents behaviour similar to the botnet traffic that is

captured in the wild and the botnet traffic that is generated in a controlled envi-

ronment based on publicly available bot binaries and toolkits. In order to do this,

two steps were followed to evaluate and confirm the data after it is generated: (i) a

visualization of the flow features of the generated traffic vs. the flow features of the

traffic captured in the wild and the controlled environment; and (ii) the employing

a decision tree based learning classifier (rule-based) for post-classification analysis of

both the generated and the collected traffic. It should be noted that this data evalua-

tion can be applied only to those botnets with the corresponding samples captured in

the wild and controlled environments. Hence, the evaluation is confined to the Zeus

and Citadel botnets.

In the first step, the data sets are compared based on the key features of the traf-

fic. These features are highly employed in the literature for botnet behaviour analysis

60

[147, 139, 156, 90]. To extract these features, IP-flow technology is utilized, through

which the network traffic is summarized into flow features. Specifically, Softflowd is

employed [21], which is an open source tool based on the NetFlow standard [3] fo-

cussing on the main flow features (such as flow duration and number of bytes) and not

detailed statistics. In the second step, the C4.5 learning technique is employed [50],

which is a decision tree-based (rule-based) classifier, for post-classification analysis.

This classifier has shown to perform very well in network traffic analysis and is also

the best performing classifier in this thesis.

4.1.3.1.1 First Step for Confirming the Data Generated – Visualization

of Flow Characteristics

As a first step it will be beneficial to analyze the data sets on some of the more

important features of a flow used by other researchers [147, 139, 156, 90] to understand

the data sets better. As discussed earlier, given the wide range of HTTP usage on

the Internet, many recent botnets employ the HTTP protocol to hide their malicious

activities among the normal web traffic [32]. Citadel and Zeus fall under this category,

too. They utilize the HTTP protocol to communicate with their bots. To analyze

and compare the aforementioned data sets, the non-HTTP flows of the data sets are

filtered out. This way all the background information is removed from the data and

the data sets can be compared on their fundamental properties.

Figure 4.1 shows the frequency graph of the flow durations for the Zeus botnet

data sets. As shown in the figure, the majority of flow durations (96%, 70%, 91%

in Zeus-D (NIMS), Zeus (Snort) and Zeus (NETRESEC), respectively) are less than

50 seconds long (placed in the first bucket). However, 20% of Zeus (Snort) and 67%

of Zeus-T1 (NIMS) flows last longer than the other two Zeus data sets. Figure 4.2

and Fig. 4.3 show that Zeus-T1 (NIMS), Zeus (Snort) and Zeus (NETRESEC) have

more flows with a higher number of transmitted packets (30 packets or more) and

more bytes, respectively. The main cause of this type of difference between the Zeus-

D-generated data and the other Zeus data is that the connection between the system

and the botnet C&C servers could not be kept open longer in the program. That

is because botnet communication is based on a client-server command and response

pattern but not all of the correct responses for the commands and requests sent by

61

the C&C servers available.

Figure 4.4 shows that the pattern for the duration of the flows for the Citadel-D

(NIMS) botnet is different from the pattern of the duration of the flows for Citadel

(NETRESEC) but it is similar to the pattern of Citadel-T1 (NIMS). Moreover, Fig.

4.6 shows that the data sets are similar in terms of the number of packets. However,

no obvious similarity is shown in Fig. 4.5 regarding the number of packets per flow

in these data sets. Although Citadel-D (NIMS) and Citadel-T1 (NIMS) tend to

send and receive more packets during communication, the size of the data being

transferred does not seem to be very different. With these observations, it can be

concluded that the Citadel C&C connections in the NETRESEC data were kept

open without any actual client-server command and response communication while

in Citadel-D (NIMS) and Citadel-T1 (NIMS) the connections were terminated after

the communication was finished. Since keeping a connection open for a long time is

one of the signs of malicious activity, botnets tend to close the connection when the

necessary information is sent/received and open a new connection for the next round

when needed. This may indicate that the Citadel-D (NIMS) and Citadel-T1 (NIMS)

data sets are closer to normal behaviour. However, a high number of connections

also raises flags for malicious behaviour. Therefore, a trade-off between these two

parameters is necessary for the botnets to hide their malicious activity. With regard

the connection termination setup, it was decided to keep the program developed for

communicating with the C&C servers in the Citadel-D (NIMS) capture the same,

because it gives a good balance for the aforementioned trade-offs.

4.1.3.1.2 Second Step for Confirming the Data Generated– Post-Classification

Analysis by Using a Decision Tree Classifier

To investigate further how similar the data generated by the proposed approach is

to the data captured in the wild and the sandbox data, a post-classification analysis

was employed using a decision tree. To this end, a C4.5 classifier was trained on the

domain-based NIMS data and the trained model tested on the botnet data from the

NETRESEC and Snort web sites (captured in the field) and the sandbox Zeus-T1

(NIMS) and Citadel-T1 (NIMS) data. Table 4.2 presents the features that are utilized

in this evaluation. These features are extracted by Softflowd and are the basic netflow

62

(a) Zeus-D (NIMS)

(b) Zeus-T1 (NIMS)

(c) Zeus (Snort)

(d) Zeus (NETRESEC)

Figure 4.1: The frequencies of the flow durations in the Zeus data sets. The X-axis
denotes the buckets of 10 seconds.

63

(a) Zeus-D (NIMS)

(b) Zeus-T1 (NIMS)

(c) Zeus (Snort)

(d) Zeus (NETRESEC)

Figure 4.2: The frequencies of the number of packets per flow in the Zeus data sets.
The X-axis denotes the number of packets per flow.

64

(a) Zeus-D (NIMS)

(b) Zeus-T1 (NIMS)

(c) Zeus (Snort)

(d) Zeus (NETRESEC)

Figure 4.3: The frequencies of the number of bytes per flow in the Zeus data sets.
The X-axis denotes the number of bytes per flow.

65

(a) Citadel-D (NIMS)

(b) Citadel-T1 (NIMS)

(c) Citadel (NETRESEC)

Figure 4.4: The frequencies of the flow durations in the Citadel data sets. The X-axis
denotes the buckets of 10 seconds.

66

(a) Citadel-D (NIMS)

(b) Citadel-T1 (NIMS)

(c) Citadel (NETRESEC)

Figure 4.5: The frequencies of the number of packets per flow in the Citadel data
sets. The X-axis denotes the number of packets per flow.

(a) Citadel-D (NIMS)

(b) Citadel-T1 (NIMS) (c) Citadel (NETRESEC)

Figure 4.6: The frequencies of the number of bytes per flow in the Citadel data sets.
The X-axis denotes the number of bytes per flow.

67

Table 4.2: Softflowd feature set definition

Softflowd Features

Duration Flow duration
Src-AS Source AS number
Dst-AS Destination AS number
In-If Input interface
Out-If Output interface
Total-Pkt Total number of packets
F-Pkt Forward number of bytes
B-Pkt Backward number of bytes
Total-Byte Total number of bytes
F-Byte Forward number of bytes
B-Byte Backward number of bytes
Flows Number of aggregated flows (if any)
ToS Type-of-Service
Src-ToS Source Type-of-Service
Dst-ToS Destination Type-of-Service
Src-Msk Source mask
Dst-Msk Destination mask
FWD Forwarding Status
Src-Vlan Source Vlan label
Dst-Vlan Destination Vlan label
bps Bits per second
pps Packets per second
Bpp Bytes per packet

features (highly employed in the literature). For the legitimate side of these data sets,

Alexa-D (NIMS) is used in this experiment. Table 4.3 shows the results of this step.

Detailed definitions of all the features can be found on the NfDump project web site

[17].

As shown in Table 4.3, the model trained on the Citadel-D (NIMS) could detect

all of the Citadel (NETRESEC) and Citadel-T1 (NIMS) exemplars of the test data (a

100% TP rate). This observation shows how similar these data sets are in terms of the

basic netflow features exported by Softflowd that the C4.5 classifier employed to create

the training model. Our post-classification analysis shows that the main features the

C4.5 decision tree classifier employs for the Citadel-D (NIMS)-trained model are:

Duration, Total-Pkt, Total-Byte, bps, pps and Bpp (from Table 4.2). In the first

step of the analysis the duration feature of a flow presented the most discrepancy

68

Training Testing
DR

Botnet Legitimate
data set data set TPR FPR TNR FNR

Citadel-D Citadel
100% 100% 0 0 0

(NIMS) (NETRESEC)

Citadel-D Citadel-T1
100% 100% 0 0 0

(NIMS) (NIMS)

Zeus-D Zeus
81% 81% 0 0 19%

(NIMS) (Snort)
Zeus-D Zeus

79% 79% 0 0 21%
(NIMS) (NETRESEC)
Zeus-D Zeus-T1

88% 88% 0 0 12%
(NIMS) (NIMS)

Zeus-D Zeus-D
84% 84% 0 0 16%

(NIMS) (NIMS-unseen)

Table 4.3: The C4.5 decision tree classification results.

between the NIMS botnet data set and that captured in the wild (the NETRESEC

data set). However, the classification results indicate that this discrepancy does not

seem to have a negative effect on the identification of Citadel botnet behaviour in the

given traffic traces. This might be because of the importance of the other features

employed or the relationships between the thresholds of these features (revealed by

the C4.5-trained model). This implies that Citadel-D (NIMS) data set is similar to

the real-life Citadel (NETRESEC) and Citadel-T1 (NIMS) data sets. Therefore, it

can be confirmed that the proposed approach generates realistic Citadel botnet traffic.

Table 4.3 presents the classification results on the Zeus botnet trafficas well.

Again, a C4.5 decision tree classifier was trained on the Zeus-1 (NIMS) data set and

the trained model tested against the Zeus-T1 (NIMS) and Zeus data sets from Snort

and NETRESEC [i.e. Zeus (NETRESEC) and Zeus (Snort)]. As the results indicate,

the DRs of the Zeus-T1 (NIMS), Snort and NETRESEC data sets are from 79% to

88% which are less than the DR for Citadel, but it is still a promising performance.

However, in previous work [90] where a C4.5 classifier trained and tested solely on

the Zeus-D (NIMS) data set, the performance of the classifier could be pushed up

to 86% DR. This indicates that Zeus botnet behaviour is more complicated than

Citadel botnet behaviour and seems to hide within legitimate HTTP behaviour very

well. This makes it more difficult to differentiate Zeus traffic from legitimate traffic,

69

hence the lower DR (compared to Citadel’s case).

To analyze whether this lower DR is caused by the discrepancies (indicated in

4.1.3.1.1) between the Zeus-D (NIMS) traffic captures vs. the other Zeus traffic

captures, another experiment was done. Since the Zeus-D (NIMS)-generated traffic

was bigger than the Alexa legitimate data (and therefore had more flows), only a

fraction of the Zeus HTTP traffic was used to build a balanced Zeus-Alexa training

data set for the second step of the analysis. Hence, there were some unseen Zeus flows

that were not included in the training process. Thus for further analysis of Zeus-

generated traffic, the trained Zeus model was tested on these unseen Zeus-generated

flows. As the result shows, an almost identical DR was obtained (84%), Table 4.2.

This seems to indicate the complicated behaviour of the Zeus botnet and confirms

that the results are not a side effect of generated data, but rather that the classifier

performs the same on both the generated data and the data captured in the wild for

the Zeus botnet.

In short, the two-step analysis indicates that the domain name-based NIMS gen-

erated traffic captures are valid and comparable to botnet data simulated and/or

captured in the wild. In other words, these generated data sets can be employed

in botnet behaviour analysis as representing real data. It appears that there is no

data generation and validation work in the literature similar to the methods dis-

cussed in this section. The importance of this data generation-validation method is

two-fold: (i) The same data generation method can be used to create new data sets

for benchmarking purposes which represent real data, (ii) The two-step validation

method (principal feature-based analysis and machine learning-based analysis) can

be applied to any generated data for confirmation and validation purposes. To this

end, this is considered as one of the main contributions of this research.

4.1.3.2 Properties of the traffic log files employed

Table 4.4 shows the number of domain names for each of the botnets in addition to

the legitimate Alexa. The aforementioned domain name lists employed in this thesis

are available publically1.

Table 4.5 shows the properties of the log files introduced in this chapter as well. It

1http://web.cs.dal.ca/∼haddadi/data-analysis.htm

70

Table 4.4: The number of domain names in the data sets.

data set No. of Domain names

Alexa-D (NIMS) 500
Citadel-D (NIMS) 42

Zeus-D (NIMS) 684
Conficker-D (NIMS) 1537546
Kraken-D (NIMS) 5739
Torpig-D (NIMS) 130

should be noted that different combinations of these log files were formed and features

extracted from them in order to create the data sets in this thesis. The data sets

were then employed for the evaluation of the proposed approaches.

4.2 Summary

This chapter reviewed the data sets and the data sources utilized in this research.

Some of the data sets were collected from public repositories while some were gener-

ated/captured in sandbox-controlled environments in the Dalhousie University NIMS

lab. Table 4.5 shows the main characteristics of these data sets. Some of the gen-

erated data sets were evaluated and compared to public data sets to show how the

behaviours represented by these data sets are similar/different from the public data

sets. Data generation and validation process is one of the contributions of this thesis

which not only discusses two methods to generate more botnet traffic for benchmark-

ing purposes but also provides a mechanism to analyze and validate the generated

data.

71

T
ab

le
4.

5:
T

h
e

d
at

a
sp

ec
ifi

ca
ti

on
.

D
a
t
a

s
e
t

T
y
p

e
–
S
u
b
T

y
p

e
S
iz

e
N

o
.

o
f

P
a
c
k
e
t
s

Y
e
a
r

S
o
u
r
c
e

D
e
s
c
r
ip

t
io

n

K
ra

k
e
n
-D

(N
IM

S
)

M
a
li

c
io

u
s

2
2
.3

M
B

1
1
9
8
6
5

2
0
1
3

N
IM

S
la

b
D

o
m

a
in

-b
a
se

d
T

o
rp

ig
-D

(N
IM

S
)

M
a
li

c
io

u
s

1
.4

7
M

B
1
6
2
7
7

2
0
1
3

N
IM

S
la

b
D

o
m

a
in

-b
a
se

d
C

it
a
d
e
l-

D
(N

IM
S
)

M
a
li

c
io

u
s

9
.5

3
M

B
7
9
5
1
6

2
0
1
3

N
IM

S
la

b
D

o
m

a
in

-b
a
se

d
Z

e
u
s-

D
(N

IM
S
)

M
a
li

c
io

u
s

1
9
.7

M
B

1
0
8
9
4
7

2
0
1
3

N
IM

S
la

b
D

o
m

a
in

-b
a
se

d
C

o
n
fi

c
k
e
r-

D
(N

IM
S
)

M
a
li

c
io

u
s

1
.4

9
G

B
1
5
7
1
3
6
6
2

2
0
1
3

N
IM

S
la

b
D

o
m

a
in

-b
a
se

d
A

le
x
a
-D

(N
IM

S
)

B
e
n
ig

n
2
.1

1
M

B
2
1
2
1
0

2
0
1
3

N
IM

S
la

b
D

o
m

a
in

-b
a
se

d

Z
e
u
s-

T
1

(N
IM

S
)

M
a
li

c
io

u
s

1
0
4
M

B
5
2
5
3
5
4

2
0
1
4

N
IM

S
la

b
Z

e
u
s

to
o
lk

it
(v

.
1
.2

.7
.1

9
)

Z
e
u
s-

T
1
-W

(N
IM

S
)

M
a
li

c
io

u
s

6
.3

9
M

B
5
0
2
0
2

2
0
1
4

N
IM

S
la

b
Z

e
u
s

to
o
lk

it
(v

.
1
.2

.7
.1

9
)

Z
e
u
s-

T
2

(N
IM

S
)

M
a
li

c
io

u
s

1
8
.7

M
B

9
1
1
8
9

2
0
1
4

N
IM

S
la

b
Z

e
u
s

to
o
lk

it
(v

.
2
.1

.0
.1

)
Z

e
u
s-

T
2
-W

(N
IM

S
)

M
a
li

c
io

u
s

7
.9

6
M

B
6
5
5
5
1

2
0
1
4

N
IM

S
la

b
C

it
a
d
e
l

to
o
lk

it
(v

.
2
.1

.0
.1

)
C

it
a
d
e
l-

T
1

(N
IM

S
)

M
a
li

c
io

u
s

4
0
.4

M
B

1
6
7
3
0
3

2
0
1
4

N
IM

S
la

b
C

it
a
d
e
l

to
o
lk

it
(v

.
1
.3

.5
.1

)
C

it
a
d
e
l-

T
1
-W

(N
IM

S
)

M
a
li

c
io

u
s

2
0
.5

1
1
2
9
5
4

2
0
1
4

N
IM

S
la

b
C

it
a
d
e
l

to
o
lk

it
(v

.
1
.3

.5
.1

)

Z
e
u
s

(S
n
o
rt

)
M

a
li

c
io

u
s

5
.8

5
6
9
9
5

2
0
1
0

S
n
o
rt

V
R

T
la

b
–

Z
e
u
s

(N
E

T
R

E
S
E

C
)

M
a
li

c
io

u
s

5
.3

4
M

B
7
4
5
3

2
0
1
2

N
E

T
R

E
S
E

C
re

p
o
si

to
ry

–
C

it
a
d
e
l

(N
E

T
R

E
S
E

C
)

M
a
li

c
io

u
s

1
.6

1
M

B
1
5
2
3
9

2
0
1
2

N
E

T
R

E
S
E

C
re

p
o
si

to
ry

–
C

u
tw

a
il

(N
E

T
R

E
S
E

C
)

M
a
li

c
io

u
s

6
.1

6
M

B
2
4
3
2
8

2
0
1
2

N
E

T
R

E
S
E

C
re

p
o
si

to
ry

–
K

e
li

h
o
s

(N
E

T
R

E
S
E

C
)

M
a
li

c
io

u
s

1
.2

1
M

B
1
3
9
6
1

2
0
1
3

N
E

T
R

E
S
E

C
re

p
o
si

to
ry

–
C

o
n
fi

c
k
e
r

(C
A

ID
A

)
M

a
li

c
io

u
s

1
8
3
G

B
3
9
3
8
4
8
7
2

2
0
0
8
-2

0
0
9

C
A

ID
A

C
o
n
fi
c
k
e
r

v
e
rs

io
n

A
a
n
d

B
IS

O
T

(U
v
ic

)
M

a
li

c
io

u
s

a
n
d

B
e
n
ig

n
1
0
.6

G
B

5
5
9
1
6
7
1
0

2
0
1
0

U
n
iv

e
rs

it
y

o
f

V
ic

to
ri

a
–

IS
P

(W
iS

N
e
t)

B
e
n
ig

n
2
.1

7
G

B
2
8
1
5
2
4
7
6

2
0
1
1

W
iS

N
e
t

re
se

a
rc

h
la

b
–

E
T

P
(L

B
N

L
)

B
e
n
ig

n
1
0
.3

G
B

5
6
0
7
6
2
2
8

2
0
0
4
-2

0
0
5

L
B

N
L

la
b

–

K
e
li

h
o
s

(C
V

U
T

)
M

a
li

c
io

u
s

4
0
9
M

B
1
9
3
0
9
8
7

2
0
1
3

C
V

U
T

m
a
lw

a
re

re
p

o
si

to
ry

B
o
tn

e
t-

3
c
a
p
tu

re
Z

e
u
s

(C
V

U
T

)
M

a
li

c
io

u
s

4
2
2
M

B
2
6
6
1
2
1
4

2
0
1
3

C
V

U
T

m
a
lw

a
re

re
p

o
si

to
ry

B
o
tn

e
t-

5
c
a
p
tu

re
N

e
ri

s
(C

V
U

T
)

M
a
li

c
io

u
s

1
.1

3
G

B
2
6
2
9
1
6
7

2
0
1
1

C
V

U
T

m
a
lw

a
re

re
p

o
si

to
ry

B
o
tn

e
t-

4
2
,

4
3
,

a
n
d

5
0

c
a
p
tu

re
s

Z
e
ro

A
c
c
e
ss

(C
V

U
T

)
M

a
li

c
io

u
s

5
9
.2

M
B

2
0
6
4
9
4

2
0
1
3

C
V

U
T

m
a
lw

a
re

re
p

o
si

to
ry

B
o
tn

e
t-

2
8

c
a
p
tu

re
N

S
IS

(C
V

U
T

)
M

a
li

c
io

u
s

2
8
1
M

B
3
5
2
2
6
6

2
0
1
1

C
V

U
T

m
a
lw

a
re

re
p

o
si

to
ry

B
o
tn

e
t-

5
3

c
a
p
tu

re
V

ir
u
t

(C
V

U
T

)
M

a
li

c
io

u
s

1
0
9
M

B
4
4
0
6
2
5

2
0
1
1

C
V

U
T

m
a
lw

a
re

re
p

o
si

to
ry

B
o
tn

e
t-

5
4

R
b

o
t

(C
V

U
T

)
M

a
li

c
io

u
s

7
4
.9

2
G

B
7
5
8
6
1
1
7
0

2
0
1
1

C
V

U
T

m
a
lw

a
re

re
p

o
si

to
ry

B
o
tn

e
t-

4
4
,

4
5
,

5
1
,

a
n
d

5
2

c
a
p
tu

re
s

Chapter 5

Application Data Analysis: Feature extraction

Monitoring network traffic at the application level, specifically the DNS level, provides

a suitable solution for detecting botnet attacks because, in addition to its many

legitimate uses, DNS can be used by botnets as well for managing their infrastructure.

In a typical botnet, for example, the infected computer may locate the C&C server

by querying a list of domain names which are supplied at the time of the infection or

after. The C&C server will instruct the infected host to engage in malicious activities,

such as data ex-filtration, denial of service attacks or serving spam, without user’s

knowledge. The list of domain names provided to the victim host is large enough so

that it cannot be blacklisted manually or at the firewall level. Thus, to create a long

list of domain names, attackers usually generate a list of algorithmically built domain

names which exhibit structural and syntactical anomalies compared to regular domain

names. Therefore, it is possible to detect botnet C&C activity by monitoring high

volume access to unusually-structured domain names.

Most of the existing works in this field employ DNS network analysis [100, 122,

116], and some works combine such an approach with domain name lexical analysis

[135, 149, 53, 105]. The traffic analysis approaches require a considerable amount of

traffic in order to identify specific behaviours, which is a resource consuming process.

In contrast, it appears that all of the lexical analysis approaches employ the specific

pre-defined features of the domain names for classification purposes. This thesis

explores the possibility of detecting botnets domain names with two methods, one

based on a priori information and the other one with no a priori information in order

to determine what would be gained and/or missed with either of the methods. In

doing so, the first method employs the features of the domain names extracted from

the a priori information while the second method investigates the possibility of using

the raw domain names as an option for detection purposes.

In the first method, specific features of the domain names are defined based the

72

73

1 Domain starts with ’www’
2 Total sub-domain length: number of characters in all sub-domains (minus the

dots)
3 Number of sub-domains: number of sub-domain blocks.
4 Maximum sub-domain length: the largest sub-domain block length
5 10+ character sub-domain count: number of sub-domains longer than 10 chars
6 1 character sub-domain count: number of sub-domains with one char
7 Contains IP: A Boolean flag. Whether there exists four sub-domain blocks

between 0-255, following each other.
8 Alphabetic ratio: Num. of alphabetic characters in all sub-domains divided

by the character count
9 Hexadecimal ratio: Num. of hexadecimal digits (A-F, a-f, 0-9) divided by the

character count
10 Standard deviation of sub-domain lengths
11 Non-alphanumeric ratio: Number of non-alphanumeric characters
12 Contains imbedded TLD, if the sub-domains contain any items in the Mozilla

suffix list
13 Contains imbedded file extension
14 Number of alphabetic to non-alphabetic and vs. transitions
15 Core-domain length
16 Core-domain alphabetic character ratio
17 Core-domain alpha to non-alpha and vs. transition count

Table 5.1: The Domain name’s feature set definition.

on a priori information. Heuristics-based feature extraction was employed on the

components of a given domain name. Each domain name has three components: (i)

a top level domain (TLD), (ii) a core domain, and (iii) a sub-domain. For exam-

ple, in mail.google.com, com is the TLD, google is the core domain, and mail is the

sub-domain. Given that the TLD names are distinctive and fixed, the other two

components (core domain and sub-domain) are used only in feature extraction. Con-

sequently, in this work, for each domain name, a set of 17 features is extracted (Table

5.1). The first 14 features are based on the sub-domain component and the last three

are based on the core-domain component. Overall, the features aim to highlight the

structural anomalies in the domain names (as seen in the literature)– in other words,

those domain names that are not likely to have been typed by a person. To detach the

top-level domain and to extract feature # 12, the Mozilla suffix list is employed [119].

Appendix A shows some samples of botnet domain names and legitimate domain

names.

74

However, identifying the correct set of attributes which represent the domain name

characteristics is challenging, specially given that the DGAs are moving targets. The

second method proposed here is an evolutionary computation technique based on SBB

[67]. As discussed in Section 3.1.8, SBB is a form of linear GP with a co-evolutionary

architecture. Three populations are co-evolved in this algorithm: A point population,

a team population and a learner population. The learner population represents a

set of learners, which associate a GP-bidding behaviour with an action. The team

population comprises a set of learners and finally the point population denotes a

subset of training data exemplars. Evaluating a team on the points, all of the teams

learner programs are executed while only the learner with the highest bid suggests its

action as the team’s action. The bidding procedure employs linear GP in addition to

a sigmoid function to standardize the bid values between zero and one.

The second method employs a modified version of SBB, called Stateful-SBB

(Stateful Symbiotic Bid-Based Genetic Programming), to classify malicious vs. non-

malicious domain names by using only the string sequence (raw) of a domain name.

In other words, it is exploration of how far classification performance can be pushed

without any a priori knowledge about the characteristics of the domain names, i.e.

without any lexical features or packet level features. Hence, in this case the input

exemplars would be variable length character-based domain names.

In the original SBB classifier bids are based on all the attributes of the points

as with the known classifiers such as C4.5, while the exemplars should all have the

same number of attributes. However, given a dataset of variable length domain

names, neither the original SBB nor most of the other known classifiers can be used.

Therefore, for this approach, the SBB interface is changed to bid based on each

character of a domain name. The new model keeps the state information for each

exemplar, hence it is being called the Stateful-SBB. Figure 5.1 summarizes the team-

learner interaction mechanism in the Stateful-SBB. Data set exemplars in the new

layout are the variable length domain names. Features are the ASCII codes of the

domain names’ characters. A team receives a complete domain name but it passes

the domain name to its team of learners character by character. Each learner then

provides a bid per character as opposed to per exemplar. The learner’s action that

outbids the others is assigned as the team output for that specific character. Domain

75

name characters are related to each other and are not independent. To achieve the

correlation of characters reflected in the bidding process, learners reset their registers

only at the beginning of each specific domain name, not for every bid process on every

character in a domain. At the end of each domain name (when all the learners bid on

the entire domain name characters), a team will have a sequence of the best learner

actions as the team output sequence. Finally, the team will decide on its final action

for that specific domain name.

Given that the domain names are a composition of related characters in a mean-

ingful order, there are some important questions that need to be answered. Is it

necessary to use all the domain name characters in the learning process to have a

relatively good output label? Should the combination of all actions in the sequence

be considered or just the last one? The answer to these questions can result in differ-

ent policies for the final action selection of a team, which are discussed in a previous

analysis [89]. Hence, seven different final action selection policies were evaluated. The

methods are summarised briefly below.

• The last-best action in the action sequence which returns the learner’s

action on the last character of the input domain name that out bids other

learners of the team learner set, called ’Last-best’. As the learners would not

reset their registers during the biding process of a domain name, the last action

of the sequence is affected by all the actions in the sequence in which all the

domain characters are considered.

• The most frequent action in the action sequence of a team on all

characters of a domain name. As the ’Last-best’ heuristic team might not

always reflect all the best actions of the bidding process, this selection method,

called ’Most-freq’, chooses the most frequent action of a team action sequence

to be the team final decision.

• Last output action of a team after 50% of the domain characters are

used in training. A meaningful sequence of characters forms a domain name.

So, a team might be able to gather enough information about a domain name

and select its action after being trained with some part of the domain name. In

this experiment, the team’s last action of the action sequence is selected after

76

it has been trained with half of the domain name.

• Last output action of the best learner after 60%, 70%, 80% and 90%

of domain name characters are used in the learning process. As with

the previous approach, 60%, 70%, 80% and 90% of the domain characters were

tested.

As expected, the method that bids only on the first half of the domain names

(50% method) had the lowest training time (because it uses fewer characters for the

training). The 60%, 70%, 80% and 90% had lower training times, and after those, the

two other methods (’Last-best’ and ’Most-freq’) had the highest training time. Based

on the results in [89], the ’Last-best’ method has been employed for action selection

in this thesis.

5.1 Pruned Stateful-SBB

Post evolution, all the generated teams in the learning procedure are evaluated on the

training data set and the one with the best performance selected as the ‘champion’

solution. The performance metric assumed for this purpose takes the form of the

class-wise average detection rate (Eqn. (3.8) Section 3.1.9). The solution team is a

combination of a set of learners with their corresponding GP instructions. In these

evaluations, the maximum program size is set to 48. Thus, each learner in the solution

can have a maximum of 48 instructions including the non-effective code, called introns.

Given that introns were found to count for between 60% to 90% of instructions in a

linear GP [59], intron removal is employed to reduce the complexity of SBB [93]. A

more detailed explanation of the algorithm can be found in [89, 93].

5.2 Domain name lists employed

In this approach in which the focus is on detecting botnets’ malicious domain names,

publicly available lists (from legitimate resources) of C&C domain names are collected,

representing various botnets and legitimate domain names. The Conficker, Zeus and

Citadel domain name lists are obtained from the Bonn University [5], ZeusTracker [25]

and DNS-BH project [7] blocklists. Moreover, Kraken and Torpig domain name lists

77

Figure 5.1: The Stateful-SBB mechanism.

are collected from DVLabs [27], DNS-BH [7], Damballa [103] and Twitter [142]. These

domain name lists are representatives of botnets’ malicious automatically-generated

domain names. To represent legitimate domain names, 500 Alexa legitimate domain

names were selected and used [2].

5.3 Empirical evaluation and Results

As demonstrated in this chapter, two methods are proposed for the application data

analysis approach. The first method detects the botnets’ malicious domain names

based on a pre-defined feature set while the second method employs raw string format

domain names (using the characters of the domain names as features). To evaluate

the proposed approach, three classifiers were employed: string kernel SVM (SSK and

SSK-LP), Stateful-SBB and C4.5. The reasons behind choosing the aforementioned

classifiers are: (i) the C4.5 classifier was the best performer for detecting malicious

automatically-generated domain names from legitimate ones using the first method

in a previous analysis (compared to Naive Bayes, AdaBoost, SBB) [89] and (ii) string

kernel SVM can be a good baseline given that it can be applied to the same string-

based dataset as Stateful-SBB.

78

Classifier Score
Kraken Conficker Alexa Complexity

TPR FPR TPR FPR TPR FPR Time (sec) Solution

Stateful-SBB 98.3% 98.4% 0.4% 99.3% 0.1% 97.3% 1.5% 2227.64 674
Pruned Stateful-SBB 98.3% 98.4% 0.4% 99.3% 0.1% 97.3% 1.5% 2227.64 116

SSK 99.6% 100% 0% 98.9% 0% 100% 0.1% 431.53 1094
SSK-LP 99.4% 100% 0% 98.9% 0.1% 99.3% 0.1% 166.2 805

C4.5 93.7% 100% 1.4% 96.4% 1.0% 84.7% 0.4% 0.06 19

Table 5.2: Domain name-based analysis results of the Conficker, Kraken and Alexa:
unbalanced datasets.

For the C4.5 classifier, seventeen features are extracted from each domain name

(defined in Table 5.1) and then a domain name label is added to the set as the last

feature. By contrast, SSK, SSK-LP and Stateful-SBB can use raw domain names in

string format without requiring any a priori known feature set. Hence, for SKK and

SKK-LP each testing and training data exemplar has two attributes: domain name

(string format) and a class label. Stateful-SBB, however, requires the characters of

the domain names to be presented in their ASCII code in addition to their class labels.

For the first experiment, 5739, 934, and 500 domain names were chosen from

the Kraken, Conficker and Alexa domain name lists, respectively. The Kraken and

Conficker domain names were selected from the lists that are generated based on one

version of the DGA algorithms of these botnets from [7, 27]. In other words, the

domain names of each class are generated by one DGA algorithm, and therefore by a

specific version of botnet. After creating the this unbalanced dataset, it is then divided

into two parts (training and testing) based on: (i) an almost 30-70% breakdown for

testing and training, respectively. This breakdown is specifically used here given

that all classifiers should have been provided with the same data sets and SBB only

accepts separate testing and training input files. It should be noted that in cases

SBB and Stateful-SBB are not included in the experiments and evaluations, 10-fold

cross validation is used instead; and (ii) keeping enough samples of each class in both

of the datasets. C4.5, SSK, SSK-LP, Stateful-SBB and pruned Stateful-SBB were

run several times, changing different parameters (C parameter and pruning option

for C4.5, Lambda and subsequence length for SSK and SSK-LP and finally maximum

team and point population sized for Stateful-SBB). Table 5.2 presents the best result

for each classifier on the unbalanced data sets. Given that the goal is to have a low

complexity with a high Score which, most of the time are conflicting, the decision as

to the best run needs to be taken in consideration of trade-offs between these two

criteria.

79

To prevent any changes to the individuals in the learner population during evo-

lution, the non-effective instructions were removed after the training. Therefore, the

training times of Stateful-SBB and Pruned Stateful-SBB are the same, as is indi-

cated in Table 5.2. Given that only the introns were removed from the learners’

instruction set, the TP and FP rates are also not changed, hence the Score. Since

training is a one time process but the solution will be used several times, the goal of

pruning Stateful-SBB was to reduce the solution complexity which will speed up the

botnet malicious domain name detection process in real-time. The results indicate

that using the pruned version of Stateful-SBB reduces the complexity by 83% which

is a significant improvement. As well, the SSK-LP reduces the complexity of SSK

by 27%. These results suggest that Pruned Stateful-SBB is a promising classifier as

an automatically-generated malicious domain name detector, which can achieve high

accuracy with no a priori feature set.

To analyze the classifiers further, another set of experiments was performed. For

this round, 130, 642, 684, 16007, 17043 and 500 domain names were selected from the

Torpig, Citadel, Zeus, Kraken, Conficker and Alexa domain name lists, respectively.

In this case, the domain names of the Conficker, Citadel and Zeus botnets were from

different version of the botnets’ DGA but Torpig and Kraken were still generated

with one version of DGA. Using these domain names, binary datasets were created in

order to classify the botnet DGA-generated domain names from the Alexa legitimate

domain names. The datasets were then divided into two parts (training and testing)

based on the criteria mentioned earlier in this section. Given the different number

of domain names for each botnet, these datasets are unbalanced. Table 5.3 shows

the classification results of this experiment. Although, pruned Stateful-SBB still out-

performed the other classifiers based on the Score and FPR, the average Score is

around 80% which is not as good as the 98% in Table 5.2. Looking into the Kraken

and Conficker botnets specifically, the results show that pruned Stateful-SBB, SSK

and SSK-LP could still detect the Kraken domain names very well while the Conficker

results dropped in the second experiment. This is caused likely by the fact that the

Kraken domain names are only increased by the number but the DGA behind the

scene is still the same. In contrast, Conficker has evolved from version A to versions

B and C over time and therefore the domain names included in the new Conficker list

80

Data Set DR Score
Botnet Legitimate Complexity

TPR FPR TNR FNR Time (sec) Solution

C4.5

Citadel 79.86% 79.65% 81.5% 22.2% 77.8% 18.5% 0.11 9
Conficker 97.75% 60.9% 100% 78.2% 21.8% 0% 0.48 11
Kraken 68.675% 98.15% 100% 60.8% 39.2% 0% 0.38 7
Zeus 77.45% 78.05% 74.1% 18% 82% 25.9% 0.13 17

Torpig 84.13% 67.5% 39.2% 4.2% 95.8% 60.8% 0.08 9

Pruned Stateful-SBB

Citadel 88% 88.48% 84.3% 7.3% 92.7% 15.7% 6188.53 110
Conficker 92.5% 85.95% 92.9% 21% 79% 7.1% 4989.38 122
Kraken 100% 100% 100% 0% 100% 0% 4386.06 31
Zeus 81.4% 81.7% 79.5% 16% 84% 20.5% 8286.9 111

Torpig 85.7% 81.5% 74.4% 11.3% 88.7% 25.6% 6083.75 93

SSK

Citadel 81.88% 83% 73.8% 7.8% 92.2% 26.2% 48.27 827
Conficker 98.24% 69.7% 100% 60.6% 39.4% 0% 1695.68 1196
Kraken 100% 100% 100% 0% 100% 0% 3594.98 1089
Zeus 77.45% 77.7% 76.2% 20.8% 79.2% 23.8% 49.6 859

Torpig 83.97% 61.15% 22.3% 0% 100% 77.7% 2.56 385

SSK-LP

Citadel 81.09% 82.25% 72.5% 8% 92% 27.5% 6.6 802
Conficker 97.83% 62.1% 100% 75.8% 24.2% 0% 138.12 1188
Kraken 100% 100% 100% 0% 100% 0% 482.8 998
Zeus 83.65% 60.4% 20.8% 0% 100% 79.2% 0.58 352

Torpig 76.35% 76.65% 74.7% 21.4% 78.6% 25.3% 0.58 362

Table 5.3: Classification results of the botnet domain name-based datasets: unbal-
anced.

are generated by different DGAs. There are different possibilities for lower detection

rate in the second experiment.

(i) Through botnet evolution, DGAs have evolved and therefore, newer botnets

are better capable of generating more legitimate domain names. In other word, newer

botnets like Citadel, Zeus and Conficker B/C are performing better in terms of the

DGAs.

(ii) The datasets are unbalanced and there might not be enough samples in the

legitimate and/or botnet classes of these botnets. Hence, the classifiers overlook the

minority class in favour of the majority class.

(iii) It is possible that 130 domain names for a botnet like Torpig is just not

enough to detect the classification patterns by the classifiers. Unfortunately, since

the Torpig botnet discontinued and did not evolve and grow into newer botnets,

more data samples are not available.

In this regard, a third set of experiments with balanced datasets was created to

investigate the effect of unbalanced datasets. The Table 5.4 results for the balanced

binary datasets indicate three conclusions.

(i) C4.5, SSK and SSK-LP showed increased performance when the datasets were

changed to balanced. However, pruned Stateful-SBB still outperformed the other

three classifiers.

(ii) In contrast, the pruned Stateful-SBB performed slightly better on unbalanced

datasets (except for the Conficker botnet). This shows that Stateful-SBB can do

81

Data Set Score
Botnet Legitimate Complexity

TPR FPR TNR FNR Time (sec) Solution

C4.5

Citadel 81.9% 78.6% 15.4% 84.6% 21.4% 0.1 7
Conficker 64.9% 78.6% 48.8% 51.2% 21.4% 0.11 15
Kraken 86.9% 78% 4.2% 95.8% 22% 0.1 7
Zeus 77.9% 72.6% 16.8% 83.2% 27.4% 0.12 13

Torpig 71.15% 71.5% 29.2% 70.8% 28.5% 0.07 7

Pruned Stateful-SBB

Citadel 87.3% 86% 11.3% 88.6% 14% 4592.2 96
Conficker 87.7% 84% 8.6% 91.4% 16% 5423.9 133
Kraken 100% 100% 0% 100% 0% 6982.17 24
Zeus 81.7% 86.7% 23.3% 76.7% 13.3% 4521.53 69

Torpig 74.4% 64.1% 15.4% 84.6% 35.9% 149.151 37

SSK

Citadel 80.4% 97.2% 6.4% 93.6% 32.8% 44.78 771
Conficker 87.5% 97.6% 22.6% 77.4% 2.4% 17.48 738
Kraken 100% 100% 0% 100% 0% 24.64 419
Zeus 77.3% 73.6% 19% 81% 26.4% 38.6 764

Torpig 73.46% 65.4% 18.5% 81.5% 34.6% 0.63 240

SSK-LP

Citadel 78.4% 62.8% 6% 94% 37.2% 8.39 757771
Conficker 87% 97.8% 23.8% 76.2% 2.2% 3.92 707
Kraken 100% 100% 0% 100% 0% 4.21 388
Zeus 75.2% 70.8% 20.4% 79.6% 29.2% 6.59 755

Torpig 73.08% 64.6% 18.5% 81.5% 34.5% 0.19 238

Table 5.4: Classification results of botnet the domain name-based datasets: balanced.

better when it gets to choose the point pareto-front from the larger pool of data

samples in the unbalanced datasets.

(iii) In both the balanced and unbalanced experiments, Statefull-SBB showed an

overall better performance in terms of FPR. FPR is specifically important in malicious

domain name detection systems since mis-classifying legitimate domain names as

malicious ones (which ends in a blocking the domain names) can interfere with a

genuine website activity.

5.3.1 Summary

The domain name system (DNS) is an essential component of the Internet. On a

daily basis, many Internet users utilize this protocol to be able to connect to the

destination machine. As it is expected to be used by all legitimate users and appli-

cations, generally there are fewer inspections, restrictions and filters on it. Botnets

have been taking advantage of this open component to accomplish their malicious op-

erations since 2008. To overcome the single point of failure of static C&C servers and

evade static blacklists and firewalls, botnets employ DNS-based methods frequently

to generate new automatic domain names. As reviewed in this chapter, several ap-

proaches for the early detection of botnet Command and Control (C&C) activity

were investigated by monitoring the DNS traffic. In other words, the investigated

approaches can differentiate malicious automatically-generated domain names from

legitimate domain names in a very early stage. Therefore, instead of monitoring user

behaviour to flag any abnormal communication, these systems can predict whether

82

a queried domain name is suspicious and not generated by human users. Hence, not

only the infected machines which query such domain names can be detected, but also

the communication can be blocked at the first attempted access.

In this chapter the possibility of detecting botnet domain names with two methods

was explored, one based on a priori information and the other one with no a priori

information. Stateful-SBB is an evolutionary computation-based solution that was

designed to reveal the malicious automatically-generated domain names without a

priori knowledge. As well, SVM String Kernel classifier (SSK and SSK-LP) was

used for comparison. Stateful-SBB and the SSK classifier investigate the possibility

of using the raw domain names as an option for detection purposes while the other

approach focuses on extracting useful features from the domain names in order to

highlight the abnormality.

The preliminary results show that the Stateful-SBB-based system performs as well

as the other classification approaches when the dataset consists of the domain names

generated by one DGA (with a Score of 99%), without a priori knowledge. However,

botnet DGAs have evolved over time and as its result, the collected domain name

list of a specific botnet may include different types of domain names. Although all of

these domain names are malicious, some are more similar to legitimate domain names

given a more complex and enhanced DGA. In a secondary evaluation based on more

complex domain names, Stateful-SBB outperformed the other methods. However, the

Score dropped to about 80%. Considering the fact that botnets can generate huge

numbers of C&C server domain names every day (e.g. Conficker C generated 50,000

domain names each day), early detection rate of 80% can narrow the search scope of

malicious behaviour significantly.

Given that the approach suggested in this chapter is applicable only to botnets

which utilize DNS as a part of their structure, a generic network data analysis-based

system would be a better choice for detecting botnet malicious behaviour. Hence, in

the upcoming chapters other tools and approaches are investigated in order to design

an early warning botnet detection system based on network data analysis.

Chapter 6

Network Data Analysis: Feature extraction

Although the proposed application data analysis early warning system in the previous

chapter could limit the search scope of detecting botnet malicious behaviours by

detecting the C&C server domain names, there are scenarios in which this system

cannot be used: (i) the botnet does not use DNS for communication (e.g. IRC

botnets), (ii) the botnet may use IP-fluxing or fixed IP addresses rather than domain-

fluxing, (iii) the traffic being analyzed does not include DNS traffic or the payload

information is not accessible (where the domain name is located) and (iv) the traffic

is encrypted (for example when botnets use methods similar to DNScrypt to encrypt

the DNS communication). Hence, for this approach an early warning network data

analysis-based system is proposed. Among the traffic analysis-based systems in the

literature, some focus on specific types of botnets while others attempt to build a

general model for more than one botnet. In early 2000, most of the proposed systems

were focussed specifically on botnets utilizing IRC (e.g. [139]) while recent research

has focussed more on P2P- and HTTP-based botnets [106, 156, 90]. Hence, the aim

in this thesis is to cover several types of botnet.

Given that botnets use automatic update mechanisms, botnet monitoring and de-

tection approaches need to be active and continuous as well. Potentially, this could

enable them to learn new patterns and adapt to changes in botnet evolution. Hence,

machine learning techniques (i.e. classification and clustering) are among the highly

employed techniques in this field. The clustering and classification techniques used

for traffic analysis require the network traffic to be represented in a meaningful way

to enable automatic pattern recognition. Thus, an important component for such

systems is extracting those features (attributes) from the network traffic. However,

feature extraction has always been a challenge. To this end, different botnet detec-

tion and analysis systems have come up with their own sets of features to represent

the network traffic consisting of network packets. Network packets include two main

83

84

parts: (i) a packet header, which includes the control information of the protocols

used on the network and (ii) a packet payload, which includes the application in-

formation used on the network. In this case, some detection and analysis systems

only use network packet headers as the basis for their features [61, 156, 90] while

others take advantage of packet payloads [118, 147, 151]. Among the group using

packet headers, flow-based feature extraction methods are highly employed according

to the recent literature [153, 61, 71, 145]. In such methods, communication packets

are aggregated into flows and then statistics are calculated. Systems that generate

flows and extract such features are called flow exporters. Given that botnets employ

encryption techniques to avoid the detection systems that analyze the communication

information embedded in the packet payload, flow exporters can be very effective since

they summarize the traffic utilizing only network packet headers. In this approach a

flow-based botnet detection system was developed focussing on the critical phase of

such approaches which is feature extraction and investigating the magnitude of the

effect of flow exporters in botnet traffic detection and analysis systems. Thus, six

open source flow exporters (Maji, YAF, Softflowd, Tranalyzer, Argus and Netmate)

along with several highly employed machine learning techniques are utilized [C4.5,

SVM, Naive-Bayes, Bayesian Networks and Artificial Neural Networks (ANN)].

Other important aspects which should be investigated and analyzed while design-

ing and evaluating a traffic analysis-based early warning system include the following.

1. Type of network traffic to be analyzed. As discussed in Section 2, botnets

employ different protocols and techniques which are part of their signatures.

Hence, it is the effect of these protocol filters which are studied. For this pur-

pose, the focus is on HTTP botnets given that the availability of a good number

of data sets in this category. Three sets of experiments are conducted: the first

set of experiments studies the analysis and classification of botnet traffic using

all of the traffic flows; the second set performs the same study using only the

HTTP traffic flows (employing an HTTP protocol filter); and the third set uses

only the DNS traffic flows utilizing a DNS protocol filter.

2. Feature representation. Most of the known ML algorithms (e.g C4.5, KNN

and SVM) accept only attribute sets with numeric types. Therefore, almost

all of the classification works in the literature employ specifically numeric flow

85

features. Flow exporters, however, have non-numeric representation for some

of the features. In this category, for instance, all of the eight TCP flags (which

have binary values) are usually combined and presented as a hexadecimal TCP

flag feature by the flow exporters. By contrast, implementations of the classifiers

(like the implementations in Weka) usually interpret this feature (Hexadecimal

type) as a string or nominal value. Therefore, it is usually removed from the

feature set. Having said this, TCP flags were shown to be used by malware

in ways that were not intended for legitimate use [108]. Consequently, the ef-

fect of three different TCP flag representations were investigated (numerical,

nominal and binary). In the numerical representation the hexadecimal TCP

flag value was converted into a numerical (integer) value whereas in the binary

representation the hexadecimal value is broken down into eight separate flag

values in binary format. These flags are: Congestion Window Reduced (CWR),

ECN-Echo (ECE), Urgent (URG), Acknowledgement (ACK), Push (PSH), Re-

set (RST), Synchronize (SYN) and Finish (FIN) flags. Finally, in the nominal

representation a set of hexadecimal flag values utilized in a data set is prepared

and used as a nominal set of possible values for the TCP flag feature.

3. Time generalization– the effect of botnet behaviour evolution. Based

on the fifth phase of the botnet lifecycle (i.e. maintenance and update phase)

it is clear that botnets upgrade their methodology to defeat detection systems.

Designing a botnet detection system that can cope with such changes is chal-

lenging. On one hand, using ML-based detection systems for this purpose has

the advantage of being able to re-train on a new botnet setting with minor

human expert involvement. On the other hand, it is important to know how

effective an older trained classifier can perform facing the same botnet with the

new setting or behaviour. Therefore, the performance of the ML-based botnet

early warning systems was investigated over a period of time.

4. Normal behaviour representation. To build a classifier which can differ-

entiate normal behaviour from botnet malicious behaviour, the ML algorithms

require data samples from both classes. For this purpose, several public normal

data sets have been used in the literature. The question is, how does the choice

86

of a normal data set and the way we represent normal behaviour to the classifier

affect the performance evaluation (if at all)? It would appear that no research

has been done on this issue. This chapter will investigate the effect of normal

behaviour representation.

6.1 Empirical evaluation

As discussed earlier, the proposed approach develops an early warning network data

analysis botnet detection system using flow-based features. Although, this approach

has been explored by other researchers in the literature, none of them seems to have

investigated the effect (if any) of flow exporters on the representation of network

traffic in botnet detection while they have all introduced the preferred flow-based

feature set for specific type(s) of botnets. Hence, the goal in this approach is not to

introduce a network data analysis-based detection system but to investigate the effect

of the flow features extraction process and the type of network traffic employed (e.g.

HTTP flows only). To achieve this, five open source flow exporters were employed

on eight different botnet traces using five different machine learning algorithms. In

this section the effect of five flow exporters (Maji, YAF, Softflowd, Netmate and

Tranalyzer) was explored using C4.5, SVM, ANN, Bayesian Networks, and Naive

Bayes as the classifiers for the botnet traffic identification. Eight different traffic

traces for the Citadel, Zeus, Conficker, Kelihos and Cutwail botnets were used for

this analysis.

The aforementioned classification algorithms were selected in this analysis, be-

cause of their high performances as reported in the literature regarding network traf-

fic classification, specifically in botnet detection [139, 61, 156, 153, 90, 134]. The

Weka [146] implementation of these classification techniques was used since it is a

well-known open source tool in this field. In general, a machine learning classifier

requires a number of steps. First, a matrix of instances (in this chapter, instances

are flows) versus features (attributes) is needed to describe the data set. A vector of

features describes each instance (flow) in a given traffic file. The features are used as

values to quantify different characteristics of a flow such as the average packet size

or the minimum inter-arrival time. Second, a label (ground truth) is provided for

each flow, which is the class description. Given that for the analysis in this section

87

Alexa-D (NIMS) is employed as a representative of legitimate data, the label for a

flow in the Alexa traffic file is ’normal’ whereas the botnet traffic files are labelled

’botnet’. Finally, a classifier needs to be trained using a data set. This is called the

training phase. This phase produces a solution as the output. Then this solution

can be verified on a test data set (unseen instances). To evaluate these classifiers on

the traffic flows, first a balanced training data set is formed by selecting randomly

(uniform random selection) from the non-malicious flow data set as well as from each

of the malicious data sets. Then classifiers are run on each balanced training data

set using 10-fold cross-validation to avoid any data set biases that might affect the

results.

Although selecting a suitable feature set and a proper machine learning algorithm

is the principal phase of designing a flow network analysis-based system, there are

other factors to be considered. The next phases of the evaluation further analyze the

performance of the designed system and its effects of feature representation, the time

generalization issue and biases cased by the normal data set selection (if any).

6.1.1 Results

After analyzing the domain-based NIMS-generated traffic, it was observed that suc-

cessful DNS responses were received from 95% of the Alexa, 75% of the Zeus-D

(NIMS), 25% of the Citadel-D (NIMS) and 1% of the Conficker-D (NIMS) domain

names. In a real-life botnet communication, a bot queries the C&C domain names

provided by the DGA (or the botmaster) and only one of them is resolved as the live

C&C server at the time of the communication. In Section 4.1.3.1 the generated data

was confirmed using such an approach. Therefore, the combination of these resolved

and unresolved domain names in the list employed by this analysis can be considered

as representation of real botnet behaviour.

In the first step, the aforementioned five flow exporters are applied to the traffic

captures. Figure 6.1 presents the number of extracted flows by each of the tools on all

of the traffic log files. However, since the Conficker-D (NIMS) data (approximately 15

million packets) is much bigger than the other log files, only 0.5% of it was presented

(about 10,000 flows for Softflowd) in order to have a readable Fig. 6.1. As shown in

Fig. 6.1, the Tranalyzer, Maji and Softflowd tools export almost the same number of

88

flows for all of the log files. Also, they provide the highest number of flows for any

given log file. This is not surprising since all three of these tools are uni-directional

flow exporters. On the other hand, YAF and Netmate did not show any consistent

behaviour over the log files. This might be caused by the rules defined by the tools.

For example, Netmate did not export any flow for Kelihos (NETRESEC) because

in this log file, the number of out of order packets was higher than the acceptable

threshold defined in Netmate. A comparison between the number of flows exported

by uni-directional and bi-directional exporters shows that the number of exported

flows by uni-directional exporters is almost twice as higher as the number of flows

by bi-directional exporters for all of the log files except for Citadel-D (NIMS) and

Zeus-D (NIMS). This shows that Citadel-D (NIMS) and Zeus-D (NIMS) have more

one-way communications than the other files which can be caused by the number of

unsuccessful connection requests or long (un-closed) connections that are split into

multiple flows by the exporters according to the maximum lifetime threshold.

Table 3.1 shows the number of features supported by each of the exporters. All

of features provided by the exporters/collectors were employed as inputs to the ma-

chine learning classifiers except the IP addresses, port numbers and any non-numeric

features. The reason for this is that IP addresses can be anonymized whereas port

numbers can be assigned dynamically. Employing such features may decrease the

generalization abilities of the detection systems for unseen behaviours. Moreover, the

presentation of non-numeric features may introduce other biases into the classifiers

[115] which might effect the performance in a positive/negative way. More analysis

is done on one of these features (the ’TCP-flag’) in Section 6.1.1.2.

Figure 6.2 shows the classification results of the five classifiers on the traffic flows

generated by the five flow exporters. These results demonstrate that the performance

of a classifier does indeed change depending on which flow exporter is used. For

example, on these data sets, it seems that each classifier works better if the flow

exporter is Tranalyzer or Maji. In particular, the performance of C4.5 and ANN on

Maji and Tranalyzer indicates that ANN did perform better (but not statistically

significantly better) than C4.5. However, the C4.5 decision tree-based classifier per-

forms not only competitively but also with considerable low time complexity, Table

6.1. Therefore, if the time criteria is an important factor in an environment, the C4.5

89

Figure 6.1: Number of Extracted Flows

classifier has an advantage over ANN. Moreover, the C4.5 classifier has the ability

of choosing the most appropriate features from all the features given to it. Such an

ability enriches any analysis that can be done post classification. This enables the

human expert (security analyst/system administrator) employing this system to have

a better understanding of the solution and the botnet behaviour. These properties of

the decision tree classifier along with the results imply that the C4.5 classifier seems

to be is a better choice in terms of the performance metrics used and the data sets

employed in this experiment.

While detection systems with high DR are important in understanding and iden-

tifying the behaviour of interest (in this case the specific botnet), the effect of FPR

can be very important as well. In the case of botnet classification (detection), any

normal behaviour that is mistakenly identified as botnet increases not only the false

(a) C4.5

Figure 6.2: DR of all classifiers on the five flow exporters

90

(b) SVM

(c) Naive-Bayes

(d) Bayesian Networks

(e) ANN

Figure 6.2: DR of all classifiers on the five flow exporters (Cont.)

91

(a) C4.5

(b) SVM

(c) Naive-Bayes

(d) Bayesian Networks

Figure 6.3: FPR of all classifiers on the five flow exporters

92

(e) ANN

Figure 6.3: FPR of all classifiers on the five flow exporters (Cont.)

Table 6.1: Average training time (in seconds)

Flow Exporters C4.5 ANN

Netmate 1.42 0.82
Softflowd 0.30 21.60

Tranalyzer 1.42 156.68
YAF 0.06 4.1
Maji 0.82 75.88

positive (alarm) rate but also decreases the trust in the detection system. Therefore,

the FPR of the five classifiers was analyzed as well as the effect (if any) of the flow

exporters on this performance metric. Figure 6.3 shows the FPR of the five classifiers.

As shown in the figure, the trend is the same for all classifiers in terms of FPR. The

C4.5 and ANN classifiers were also the best performers in terms of minimizing the

FPR among all the classifiers employed in this research on all the exporters and data

sets. These results demonstrate that the flow exporter used also has an effect on

the FPR rate obtained for all classifiers. On these data sets, the lowest FPRs were

provided by ANN using Maji as the exporter (2% lower FPRs on average, compared

to C4.5). However, even when using the Maji feature set, some of the FPR obtained

is still too high to accept in practice. What follows is a further examination of this

phenomenon.

93

6.1.1.1 Type of network traffic to be analyzed– On the effect of protocol

filtering

In the evaluations presented above all the network packets available in the networks

traces were utilized to convert them to flows. Thee next step analyzes how the

performance of the aforementioned systems would change (if at all) when traffic filters

are in place on a given network. In practice, almost all network operation centers

run packet filters to analyze and shape their traffic according to their organizational

needs and policies. To this end, the data should first be analyzed in order to form a

link between the type of data and the filter. A series of experiments was conducted

applying HTTP and DNS filters to the selected data sets before classifying them for

botnet detection. The logic behind these filters is explained in the corresponding

sections.

6.1.1.1.1 HTTP filtering

Given the wide range of HTTP usage on the Internet, most recent botnets employ

the HTTP protocol to hide their malicious activities within the normal web traffic

[43], easily bypassing firewalls and avoiding botnet detection mechanisms. Thus,

the botnets employed in the above evaluation also utilize the HTTP protocol to

communicate with their bots. In short, to investigate the effect of protocol filtering

on botnet detection via machine learning approaches using different flow exporters,

just the HTTP traffic flows were filtered and forwarded to the botnet classifiers. Then,

The above approach was repeated train the classifiers and evaluate them again.

Figure 6.4 shows the botnet classification results versus normal traffic using the

HTTP filter. As with the traffic classification without packet filtering, C4.5 and

ANN outperformed the other classifiers. The results also support the observations

that the classifiers could differentiate botnet behaviour with higher performances

when a specific flow exporter is used as opposed to the others. Almost all of the

five classifiers showed performance increases in terms of average DR and FPR when

Tranalyzer and Maji were in use on all botnets except one. In this case, the classifiers

showed a decrease in DR on the Zeus data sets when using Maji while an average

2% increase was observed with Tranalyzer on the Zeus data sets. Therefore, in these

experiments in which the HTTP filter is used, there is a clear winner in terms of

94

the flow exporters used, and the winner is Tranalyzer. Tranalyzer performs better

than Maji on these data sets. This observation might imply that HTTP traffic could

be presented more clearly by Taranalyzer flow features rather than the other flow

exporter features. A close look at the features that the C4.5 classifier employed using

Tranalyzer demonstrates that inter-arrival-based features are the ones that are highly

employed in the decision tree solutions while such features are not available in Maji.

It would appear that the features supported by Tranalyzer are very useful in terms

of representing HTTP traffic.

As discussed earlier, DR is not the only parameter which should be analyzed to

evaluate the performance of a classifier. Figure 6.5 shows the FPR of the best two

classifiers, C4.5 and ANN. Compared to Fig. 6.3, both classifiers showed at least

a 1% reduction in the FPR on all data sets. Moreover, these results indicate that

although the DR of the classifiers might not change significantly when traffic filtering

is in place, the FPR (misclassification) can change significantly (lowered false alarm

rates). This shows how useful traffic filtering can be when employed to refine the data

on a very specific area which could be the center of focus specifically for challenging

botnet detection research. To investigate the effect of protocol filtering on botnet

detection further, a series of experiments on DNS filtering was run, given that DNS

is another essential protocol in botnet communication.

95

(a) C4.5

(b) SVM

(c) Naive-Bayes

(d) Bayesian Networks

Figure 6.4: DR of all classifiers on the five flow exporters using HTTP traffic only

96

(a) C4.5

(b) ANN

Figure 6.5: FPR of C4.5 and ANN classifiers on the five flow exporters using HTTP
traffic only

97

6.1.1.1.2 DNS filtering

In addition to its many legitimate uses, DNS is also used by botnets to manage their

infrastructures. Botnets employ the DNS protocol along with fluxing techniques to

solve the single point of failure problem on their C&C servers and to achieve mobility

[102]. Many botnets (such as Zeus, Conficker and Pushdo) use the legitimate DNS

infrastructure to locate their C&C servers to avoid static configuration of C&C servers

IP addresses.

Consequently, the aforementioned systems are evaluated using only the DNS traffic

flows via the DNS filters applied the captured traffic. In this case, some of the data

sets are very short traces (Cutwail, Kelisos and Zeus from Snort and NETRESEC)

and do not have enough DNS packets to generate enough DNS flows when the filters

are in process. Thus, in Fig. 6.6 where the results of this evaluation are presented,

there are no performance indicators for these data sets. On the rest of the data sets

though, all of the classifiers showed some level of improvement in their performance

when DNS filters were set compared with the classification performance of the traffic

without filtering, Fig. 6.2. As shown in Figs. 6.6 and 6.7, C4.5 performance (as

the best performing classifier in this experiment) is improved by DNS filtering by

an average of 3% in terms of DR and 4% in terms of FPR using all five exporters.

However, these results suggest again that Tranalyzer seems to be the winner when

DNS filtering is in use with better DR and an acceptable FPR.

98

(a) C4.5

(b) SVM

(c) Naive-Bayes

(d) Bayesian Networks

Figure 6.6: DR of all classifiers on the five flow exporters using DNS traffic only

99

(a) C4.5

(b) ANN

Figure 6.7: FPR of C4.5 and ANN classifiers on five flow exporters using DNS traffic
only

100

6.1.1.1.3 Highlights:

The highlights of the evaluation results presented above are summarized bellow.

(i) Although some of the flow exporters in this work are based on the same stan-

dard (IPFIX), the number of features they support varies (e.g. Maji has 59 whereas

YAF has 46 features). Some of these features are the ones employed in the machine

learning solutions. For example, “MinimumIPTotalLength” is utilized by C4.5 on the

Maji feature set while YAF does not support such a feature.

(ii) Since flow exporters have different mechanisms to generate flows (based on

the standard they follow), these tools export a different number of flows for a given

traffic file. In this case, not only is the number of exported flows different, but also

sometimes the exporter may not generate any flows due to its pre-defined rules (e.g.

Netmate on Kelihos traffic trace).

(iii) For the five flow exporters, all of the classifiers performed better when Trana-

lyzer and Maji were employed; third place belongs to Netmate. This confirms that the

tool employed for flow exporting analysis does have an effect on traffic classification

performance.

(iv) In contrast, the protocol filtering experiments show that such filtering im-

proves botnet classification by focussing on a specific portion of the traffic in more

detail (e.g. HTTP connections only). As indicated by the results in the two sets of

filtering experiments, the Tranalyzer flow exporter and the C4.5 classifier are the win-

ners with almost no exception. ANN follows as the second best performing classifier.

(v) Comparing HTTP filtering with DNS filtering shows that the FPRs and DRs

did not change significantly in terms of focussing on one filtering versus the other.

However, HTTP filtering seems to increase performance more than DNS filtering.

This might be because all of the botnets included in the evaluations employed HTTP

as their communication protocol whereas the DNS protocol was used only to find

the C&C servers by the botnets employed in this research. Table 6.2 and Table 6.3

show the classification results and the features employed by C4.5 on all of the eight

botnet data sets while using HTTP filtering. These 50 features are the automatically

selected features by C4.5 based on the information gain criterion from the complete

feature set given to it. As shown in the table, C4.5 could obtain a DR of up to 99.9%

and an FPR of up to 0.1% by using only 50 features out of the 93 features of the

101

Table 6.2: The C4.5 classification results using the Tranalyzer feature set with the
HTTP filter.

Data Set Score
Botnet Legitimate

TPR FPR TPR FPR

C4.5

Citadel (NIMS) 98% 98% 1% 99% 2%
Citadel (NETRESEC) 99% 100% 1% 99% 0%
Cutwail (NETRESEC) 100% 100% 0% 100% 0%
Kelihos (NETRESEC) 100% 100% 0% 100% 0%

Zeus-D (NIMS) 98% 99% 3% 97% 1%
Zeus (NETRESEC) 97% 99% 6% 94% 1%

Zeus (Snort) 99% 99% 1% 99% 1%
Conficker-D (NIMS) 99% 98% 1% 99% 2%

Table 6.3: The Tranalyzer features employed by C4.5 for botnet classification– all
botnets.

Flow Features

AvePktSize BytAsm Bytps ConnDst TcpS-SA/SA-ATrip connSrcDst
Duration ExcIat ExcPl ipMaxdIPID ipMaxTTL ipMinTTL
ipTTLchg IqdIat LowQuartileIat MaxIat MaxPktSz MeanIat
MedianIat MinIat minPktSz ModeIat NumBytesRcvd NumBytesSnt
NumPktsRcvd NumPktsSnt PktAsm Pktps RobStdIat SkewIat
SkewPl StdIat TcpAveWinSz TcpInitWinSz TcpMaxWinSz TcpMinWinSz
TcpMSS TcpRTTAckTripMax TcpOptPktCnt TcpPAckCnt TcpPseqcnt TcpRTTAckTripAve
TcpOptCnt TcpRTTAckTripMin TcpRTTSseqAA ConnSrc TcpSeqSntBytes TcpWinSzDwnCnt

TcpWS UppQuartileIat

complete Tranalyzer feature set on the HTTP-filtered traffic. The performance of the

proposed combination is higher (e.g. [122, 147]) or similar (e.g. [106, 155, 85]) to

the results reported on the HTTP-based botnets in the literature (not necessarily the

botnets or even the data sets employed in this work), Table 6.4.

The bold features in Table 6.3 show the highly utilized features indicating the

importance of the inter-arrival and Packets&Bytes feature categories which are also

supported by other works in the literature [155, 61]. Tranalyzer has combined the

most important features that are required for detecting various types of botnets re-

ported in the literature [155, 61, 151, 85]. The conclusion is that the proposed feature

set by Tranalyzer can be useful for other types of botnets as well and can be used for

a real time detection system.

6.1.1.2 Feature representation– the effect of non-numeric features

As demonstrated in the previous sections, the choice of flow-based feature sets can

have great impact on the performance of the machine learning-based botnet detection

102

Table 6.4: Performances reported in the literature.

Proposed systems DR FPR

Kirubavathi et al. [106] up to 99% 1%
Zhao et al. [155] 99% 0.01%
Rerdisci et al. [122] up to 79% ∼ 0%
Wurzinger et al. [147] 88% 11%
Gu et al. [85] up to 100% ∼ 0%

system. Although in the aforementioned analysis all usable flow features exported by

the five various flow exporters were employed for detection purposes, non-numeric

features were left out due to the format issues. Various methods have been inves-

tigated regarding the methods that can be used to introduce such features to the

machine learning techniques and the biases they might cause [115]. This section ex-

plores the effects of non-numeric feature representation. The ’TCP-flag’ was chosen

for the study since these flags have been shown to be used by malware [108]. Two

ML algorithms were employed: the C4.5 decision tree and the symbiotic bid-based

(SBB) framework for evolving teams of programs to detect botnet behaviour. Both

of these learning algorithms generate solutions (models) that are in human readable

format and therefore enable the analysis of the learned models.

It has been shown that TCP flags are employed by the Torpig botnet for com-

munication but not by the Conficker botnet [92]. The analysis was done using basic

Netflow features exported by Softflowd. The evaluation and results are available in

Appendix B. However, given that in the previous section Tranalyzer was the best

performing flow exporter, this exporter is specifically used in this section to explore

the effect of non-numeric feature representation. As discussed previously, Tranalyzer

extracts 93 features for each flow. All of the features provided by Tranalyzer were

employed as inputs to the machine learning classifiers except the IP addresses and

port numbers because IP addresses can be spoofed or anonymized and port numbers

can be assigned dynamically. Hence, such features may decrease the generalization

abilities of the detection systems for unseen behaviours. In summary, without using

the TCP flag as part of the feature set, the size of the feature set is 71. However, once

the numerical, the nominal and the binary TCP flag representations are introduced,

103

the feature set size changes to 72, 72 and 79, respectively. After extracting the rele-

vant feature set for each of the experiments, a balanced data set is formed by selecting

randomly (uniform random selection) from the non-malicious flow data set as well as

from each of the malicious data sets. For this experiment, ETP (LBNL) is employed

to represent the non-malicious side. This data set has been used to represent normal

behaviour in the literature [153, 61].

It should be noted that the Weka decision tree implementation accepts ’nominal’

as a type for the features. Having a feature with the nominal type, the first string

value is assigned index 0. This means that internally, this specific string value is

stored as a 0 in the data set for the training/testing purposes. For consistency, the

same index-based interpretation was used for the features of this type in SBB. The

C4.5 classifier is run on each balanced data set using 10-fold cross-validation to further

avoid any data set biases that might affect the results. However, SBB requires the

training and testing data sets to be provided separately. Hence, the data set was

divided into two parts (training and testing) based on an almost 30-70% breakdown

for testing and training, respectively.

Figure 6.8 shows the Score of the C4.5 and SBB classifiers on all 25 data sets

without utilizing the TCP flag data (indicated as No Flag in the figure) as well as

using the flag information with the Nominal, Numerical and Binary representations.

Since the Scores are all higher that 90% and very close to each other, the figure

is zoomed into the [90%-100%] range. Although the results demonstrate changes

(increase and decrease) in the performance, neither the C4.5 classifier nor the SBB

classifier could display a winner among the four representations. Hence, adding the

TCP flags in any form (representation) is not beneficial in designing early warning

botnet detection systems but may result is some pre-processing overhead in some

cases. Detailed results of this analysis are attached to Tables C.1, C.2, C.3 and C.4

of Appendix C.

Figures 6.9, 6.10, 6.11 and 6.12 show the results of the C4.5 and SBB classifiers on

the data sets without the TCP flag. As the Figures 6.9 indicates C4.5 outperformed

the SBB classifier based on Score. However, in general, SBB performed better in terms

of solution complexity (obtaining smaller solutions), as shown in Figures 6.10 and

6.11. This difference is more noticeable for bigger data sets such as Conficker (CAIDA)

104

(a) C4.5

(b) SBB

Figure 6.8: Score analysis of the C4.5 and SBB classifiers based on TCP flags repre-
sentations.

105

Figure 6.9: Score analysis of C4.5 vs. SBB– without TCP flags.

and Zeus (CVUT). The lower solution complexity enables SBB to implement solutions

more efficiently. Given that such solutions need to operate at network flow speeds,

simpler solutions are more advantageous because the early warning detection system

can perform faster with fewer number of rules/signatures. By contrast, the C4.5 time

complexity (for training) was usually lower than the SBB except for five data sets,

Figure 6.12. Given that training is a one time off-line process, the indication is that

SBB is the winner in terms of the complexity criterion between the two classifiers.

However, C4.5 outperformed SBB by up to 8% of the Score in some cases. In this case,

given that an early warning detection with better accuracy is more desirable (specially

with the observed gap) compared to a less complex system, the C4.5 classifier with

Tranalyzer feature set is the winner combination in this experiment.

6.1.1.3 Time generalization– On the effect of botnet behaviour evolution

Based on the botnet lifecycle/structure and the different versions of botnets being

reported, it is evident that botnets evolve over time. Hence this section investigates

how effective the C4.5, ANN, KNN and SBB-trained botnet detection models can

perform facing newer/different versions of the same botnet behaviour. In other words,

this section investigated the robustness of the relatively older trained detection model

on a newer version of the corresponding botnet. For this purpose, three robustness

scenarios are tested: (i) Time robustness when the test data set is from a different

time window. (ii) Location robustness when test data sets are captured in a different

106

Figure 6.10: Solution complexity analysis of C4.5 vs. SBB– without TCP flags.

Figure 6.11: Zoomed solution complexity analysis of C4.5 vs. SBB– without TCP
flags.

107

Figure 6.12: Time complexity analysis of C4.5 vs. SBB– without TCP flags.

location (i.e. a different network). (iii) Objective robustness when the objective of

the test data set is different (e.g. Zeus botnet with web injection). The C4.5, ANN

and SBB were chosen for this section given their good performances in the previous

sections of this chapter. In addition to these classifiers, KNN is used as well in this

section given its reported high performance in the literature on network traffic analysis

[55, 133]. Regarding the data set for the analysis in this section, Zeus and Citadel

were the only botnet available with several version of traffic traces over a period of

time. Therefore, these were the only botnets that are studied. For this experiment,

ETP (LBNL) represents normal behaviours in all of the data sets.

Regarding the Zeus botnet, the data sets were collected/generated over a period

of four years. Among them, Zeus (NETRESEC) and Zeus (Snort) are small data sets.

The Zeus-D (NIMS) data set was generated based on the C&C domain name list and

hence, is a good representative of the communication phase of the botnet lifecycle.

It was decided to use these as the testing data sets and use Zeus-T1-1 (NIMS) as

the training data set. Zues-T1-1 is the oldest data set in the collection (excluding

the Zeus-D (NIMS), Zeus (NETRESEC) and Zeus (Snort) data sets). Table 6.5 and

Figure 6.13 show the results of these experiments. As expected, all of the classifiers

could detect the legitimate side of the data sets with a high performance (TNRs of

up to 100%) given that all of the data sets used the ETP (LBNL) traffic traces for

this purpose. The classifiers are compared bellow.

(i) C4.5 and SBB were the best performing algorithms based on Score and TPR.

108

(ii) In both of these classifiers the trained model was very successful detecting the

Zeus-T1-2 (NIMS), Zeus-T2 (NIMS), Zeus-T1-W (NIMS) and Zeus-T2-W (NIMS).

This indicates that although there were toolkit, configuration and version changes

between these data sets, the underlying behaviour of Zeus detected by the trained

model is very similar to the older version of the data [Zeus-T1-1 (NIMS)].

(iii) None of the classifiers performed well when tested on the Zeus (CVUT) data

set. In the Zeus (CVUT) read-me file, this data set’s probable name is considered to

be ’Zeus’. The read-me file also suspected that this data set may be a P2P version

of the Zeus botnet. The experimental results confirm that Zeus (CVUT) data set

behaviour is not similar to the C&C HTTP-based version of the Zeus botnet by any

means. Hence, it more likely represents a P2P HTTP-based Zeus botnet behaviour,

if it is a Zeus botnet at all.

(iv) The results indicate as well that the Zeus botnet behaviour presented by Zeus-

T1-1 (NIMS) is different from the behaviour presented by the Zeus-D (NIMS) data

set. This might be caused by the fact that Zeus-D (NIMS) is only a representative of

one of the phases of the botnet lifecycle (C&C communication). Another set of tests

was done with an HTTP filter for the experiments with low performance. Given that

Zeus is an HTTP-based botnet, this filter only keeps the core botnet communication

of the data set which was proven to increase performance [94]. Table 6.6 and Figure

6.14 show that the trained model on the Zeus-T1-1 (NIMS) performed much better

in Zeus-D (NIMS) and Zeus (NETRESEC) detection but the performance did not

change for the Zeus (CVUT) data set. These results indicate that even when different

samples of the Zeus botnet do not seem to be similar [e.g. 32.73% TPR for detecting

the Zeus (NETRESEC) sample with a model trained on Zeus-T1-1 (NIMS) using the

SBB classifier], the core botnet communication behaviours are in fact similar [e.g.

75% TPR for the Zeus (NETRESEC)]. Overall, C4.5 performed better using the

HTTP filter on Zeus-D (NIMS) and Zeus (CVUT) but not on Zeus (NETRESEC) in

this experiment.

A similar experiment was conducted for the Citadel botnet. In this case, the

classifiers trained on Citadel-T1 (SBB, ANN, KNN and C4.5) were tested against

Citadel-D (NIMS), Citadel (NETRRESEC) and Citadel-T1-W (NIMS). The results

of this experiment are shown in Table 6.7 and Figure 6.15. The resulting conclusions

109

Figure 6.13: The Zeus botnet score analysis of C4.5, ANN, KNN and SBB using a
model trained on Zeus-T1-1.

Figure 6.14: The Zeus botnet score analysis of C4.5 and SBB using a model trained
on Zeus-T1-1– with and without HTTP filtering

110

Table 6.5: Classification Results.

Data Set Score
Botnet Legitimate

TPR FPR TNR FNR

C4.5

Zeus (CVUT) 49.79% 0% 0.4% 99.6% 100%
Zeus-D (NIMS) 54.79% 10% 0.4% 99.6% 90.0%

Zeus-T1-2 (NIMS) 99.79% 100% 0.4% 99.6% 0%
Zeus-T1-W (NIMS) 97.75% 96% 0.5% 99.5% 4%

Zeus-T2 (NIMS) 99.53% 99.5% 0.4% 99.6% 0.5%
Zeus-T2-W (NIMS) 98.5% 97.4% 0.4% 99.6% 2.6%
Zeus (NETRESEC) 81.53% 63.3% 0.2% 99.8% 36.7%

Zeus (Snort) 93.75% 88.2% 0.7% 99.3% 11.8%

ANN

Zeus (CVUT) 49.54% 1% 1.9% 98.1% 99%
Zeus-D (NIMS) 50.82% 3.5% 1.8% 98.2% 96.5%

Zeus-T1-2 (NIMS) 75.55% 53% 1.9% 98.1% 47%
Zeus-T1-W (NIMS) 88.26% 78.8% 2.3% 97.7% 21.2%

Zeus-T2 (NIMS) 69.95% 42.1% 2.2% 97.8% 57.9%
Zeus-T2-W (NIMS) 87.3% 76% 1.4% 98.6% 24%
Zeus (NETRESEC) 53.12% 8% 1.7% 98.3% 92%

Zeus (Snort) 21.73% 4.9% 1.4% 98.6% 95.1%

KNN

Zeus (CVUT) 48.87% 0.5% 2.7% 97.3% 9.5%
Zeus-D (NIMS) 49.1% 1.1% 2.9% 97.1% 98.9%

Zeus-T1-2 (NIMS) 49.59% 2.2% 3% 97% 97.8%
Zeus-T1-W (NIMS) 92.54% 88% 3.3% 96.7% 11.7%

Zeus-T2 (NIMS) 68.78% 40.5% 3% 97% 59.5%
Zeus-T2-W (NIMS) 93.43% 90.1% 3.2% 96.8% 9.9%
Zeus (NETRESEC) 54.36% 11.5% 2.7% 97.3% 88.5%

Zeus (Snort) 55.90% 13.9% 2.1% 97.9% 86.1%

SBB

Zeus (CVUT) 50.26% 0.54% 0.02% 99.98% 99.46%
Zeus-D (NIMS) 62.07% 24.14% 0% 100% 75.67%

Zeus-T1-2 (NIMS) 99.98% 99.97% 0% 100% 0.03%
Zeus-T1-W (NIMS) 98.83% 97.67% 0% 100% 2.33%

Zeus-T2 (NIMS) 99.97% 99.93% 0% 100% 0.07%
Zeus-T2-W (NIMS) 98.9% 97.9% 0% 100% 2.2%
Zeus (NETRESEC) 86.66% 32.73% 0% 100% 26.68%

Zeus (Snort) 100% 100% 0% 100% 0%

111

Table 6.6: Classification Results– with an HTTP filter.

Data Set Score
Botnet Legitimate

TPR FPR TNR FNR

C4.5
Zeus (CVUT) 49.95% 0.1% 0.2% 99.8% 100%

Zeus-D (NIMS) 81.53% 63.3% 0.2% 99.8% 36.7%
Zeus (NETRESEC) 84.62% 69.2% 0% 100% 30.8%

SBB
Zeus (CVUT) 50.26% 0.54% 0.02% 99.98% 99.46%

Zeus-D (NIMS) 91.28% 82.76% 0.19% 99.81% 17.24%
Zeus (NETRESEC) 87.5% 75.0% 0% 100% 25.0%

Figure 6.15: The Citadel botnet score analysis of C4.5, ANN, KNN and SBB using a
model trained on Citadel-T1.

are listed below. (i) Like the Zeus experiment, SBB and C4.5 outperformed the other

classifiers.

(ii) The trained model could detect Citadel-T1-W (NIMS) with high performance

rate. This shows the principal botnet behaviour extracted by the classifiers is similar

for botnets with one toolkit even when the configuration and therefore the target

approach of the botnet is different (referring to the web injection method used in

Citadel-T1-W).

(iii) Given the lower performance on Citadel-D (NIMS), Citadel (NETRRESEC),

the effect of HTTP filtering was investigated. In this case, C4.5 could increase the

performance by up to 28% with an HTTP filter whereas SBB was not very useful.

????

112

Figure 6.16: The Citadel botnet score analysis of C4.5 and SBB using a model trained
on Citadel-T1– with and without an HTTP filtering.

Table 6.7: Classification Results.

Data Set Score
Botnet Legitimate

TPR FPR TNR FNR

C4.5
Citadel-D (NIMS) 63.63% 27.4% 0.1% 99.9% 72.6%

Citadel-T1-W (NIMS) 99.66% 99.5% 0.2% 99.8% 0.5%
Citadel (NETRESEC) 63.61% 27.3% 0% 100% 72.7%

ANN
Citadel-D (NIMS) 50.03% 0.7% 0.7% 99.3% 99.3%

Citadel-T1-W (NIMS) 81.9% 64.3% 0.5% 99.5% 35.7%
Citadel (NETRESEC) 57.36% 15.4% 0.6% 99.4% 84.6%

KNN
Citadel-D (NIMS) 50.09% 0.5% 0.4% 99.6% 99.5%

Citadel-T1-W (NIMS) 79.11% 58.5% 0.2% 99.8% 41.5%
Citadel (NETRESEC) 49.78% 0% 0.4% 99.6% 100%

SBB
Citadel-D (NIMS) 65.49% 30.98% 0% 100% 69.02%

Citadel-T1-W (NIMS) 99.85% 99.7% 0% 100% 0.3%
Citadel (NETRESEC) 63.61% 27.26% 0% 100% 72.74%

Table 6.8: Classification Results– with an HTTP filter.

Data Set Score
Botnet Legitimate

TPR FPR TNR FNR

C4.5
Citadel-D (NIMS) 91.96% 84% 0% 100% 16%

Citadel (NETRESEC) 84.63% 69.3% 0% 100% 30.7%

SBB
Citadel-D (NIMS) 56.57% 13.22% 0.01% 99.9% 86.78%

Citadel (NETRESEC) 50% 0% 0% 100% 100%

113

In conclusion, it was observed that an older version of the Zeus and citadel botnet-

trained models can detect other versions of the same botnet with the same topology

with up to a 100% TPR showing the robustness of the trained models. Having said

this, filters might be useful in order to increase the performance by making the focus

of the analysis on the core part of the botnet communication when necessary. Not

only the results show that the trained classifiers were robust enough to detect similar

botnet behaviours, but they also showed that the models could be very good in

pointing out the major changes of behaviour for a given botnet (i.e. showing that

Zeus (CVUT) does indeed have a different botnet topology from the others).

6.1.1.4 Normal behaviour representation

In order to model botnet behaviour against normal behaviour, machine learning algo-

rithms require data for both classes. In such circumstances, the abnormal behaviour

is usually a specific type of behaviour that is under investigation. Malware behaviour

detection is one type of such analysis. Normal behaviour is not usually presented in

a case-specific way. In other words, normal behaviour should represent the normal

activity of legitimate users. This can range from normal users’ web browsing (HTTP

communication), banking and E-commerce (encrypted HTTP communication), file

transfer (FTP communication) to torrent (P2P communication) activities.

In the literature, various traffic log files have been used by researchers as being

representatives of normal behaviour. However, it appears that no research has been

done to show whether the choice of normal data would cause any biases, good or bad,

in the evaluation of the systems. The effect of normal behaviour representation is

investigated in this section. As for the choice of normal traffic log file, ETP (LBNL),

ISP (WiSNet) and Alexa-D (NIMS) are the publicly available logs which have been

utilized. ETP (LBNL) has been frequently used by researchers to represent normal

behaviour [61, 156] whereas ISP (WiSNet) has been recently employed by several

network data analysis-based systems such as [58]. Given the use of Alexa-D (NIMS)

in the analysis of the previous section, this log file was added to the set as well. It

should be noted that balanced data sets are used for this section.

Table 6.10 and Figure 6.17 show the result of this evaluation. In this experiment

a combination of Tranalyzer-1 and the C4.5 classifier were used. As the figure shows,

114

Table 6.9: Normal behaviour representation– TTest result.

P-value
ETP (LBNL) vs. ISP (WiSNet) 0.826
ETP (LBNL) vs. Alexa-D (NIMS) 0.306
ISP (WiSNet) vs. Alexa-D (NIMS) 0.273

the Score results of all of the evaluated systems are similar and above 90%. To have a

clearer view, Figure 6.18 is zoomed in above 90% which reveals the information listed

below. (i) For the NIMS domain-based generated botnet data sets, the classifier

performed lower with Alexa-D (NIMS). This is expected as all of these data sets are

generated using the same approach, focussing of the botnet communication phase.

(ii) The performance on Zeus (Snort) and Zeus (NETRESEC) are also lower than

the other data sets. This might be caused by the small size of these data sets. There

might not be enough records and information to extract detailed botnet behaviour.

(iii) In 17 botnet data sets, the classifiers performed very similarly using either

ETP (LBNL), ISP (WiSNet) or Alexa-D (NIMS). This may suggest that choosing a

specific data set to represent normal behaviour may not cause any significant perfor-

mance change on the results. However, to investigate whether the performance of the

classifiers is statistically significantly different when using these three normal data

sets. Table 6.9 shows the TTest results performed on all experiments demonstrated

in Figure 6.17. As the TTest results indicate, the performance of the classifier had

no statistically significant difference when using these three normal data sets.

Complexity is another criterion that can be analyzed in this evaluation. As claimed

in [140], the cost of constructing a C4.5 decision tree (a Weka implementation of C4.5

with out subtree raising) is O(mnlogn) where m is the number of features and n is

the number of training data samples. The Tranalyzer-1 feature set is used for all

of the data sets. Hence, the training data sample size should be analyzed. Given

that the three normal log files have different numbers of packets (i.e. different sizes),

the number of flows exported by Tranalyzer-1 is different for them. In this case,

to create balanced data sets, under-sampling was applied for the major class to re-

sample the data for some of the data sets. For example, given the small size of the

Alexa-D (NIMS) log file compared to larger log files like Zeus (CVUT) and Conficker

(CAIDA), the botnet data was re-sampled. To this end, time complexity analysis

115

Figure 6.17: Normal behaviour representation– Detection analysis of botnets on three
different legitimate data sets.

Figure 6.18: Normal behaviour representation– Detection analysis of botnets on three
different legitimate data sets.

116

Figure 6.19: Normal behaviour representation– Solution complexity analysis.

Figure 6.20: Normal behaviour representation– Solution complexity analysis
(zoomed).

117

Table 6.10: Normal behaviour representation– Classification Results.

Data Set Score
Botnet Legitimate Complexity

TPR FPR TNR FNR Time (sec) Solution

ETP (LNBL)

Zeus-D (NIMS) 99.7% 99.7% 0.3% 99.7% 0.3% 39 477
Citadel-D (NIMS) 99.55% 99.6% 0.5% 99.5% 0.4% 2.05 125
Torpig-D (NIMS) 98.15% 98.2% 1.9% 98.1% 1.8% 0.85 119

Conficker-D (NIMS) 100% 100% 0% 100% 0% 4570.8 739
Zeus-T1-1 (NIMS) 99.85% 100% 0.3% 99.7% 0% 0.24 9
Zeus-T1-2 (NIMS) 100% 100% 0% 100% 0% 19.72 43
Zeus-T1-W (NIMS) 99.8% 99.9% 0.3% 99.7% 0.2% 0.29 19

Zeus-T2 (NIMS) 99.95% 99.9% 0% 100% 0.1% 2.28 41
Zeus-T2-W (NIMS) 99.85% 99.8% 0.2% 99.8% 0.2% 0.34 21
Citadel-T1 (NIMS) 99.9% 99.9% 0.1% 99.9% 0.1% 1.06 31

Citadel-T1-W (NIMS) 99.85% 99.9% 0.2% 99.8% 0.1% 0.83 39
Zeus (CVUT) 99.95% 100% 0.1% 99.9% 0% 2779.2 1185

Kelihos (CVUT) 99.9% 99.9% 0.1% 99.9% 0.1% 1149.57 849
Neris (CVUT) 99.8% 99.8% 0.2% 99.8% 0.2% 612.05 1129
NSIS (CVUT) 99.25% 99.3% 0.8% 99.2% 0.7% 5.38 275
Virut (CVUT) 99.9% 99.9% 0.1% 99.9% 0.1% 215 481
Rbot (CVUT) 99.6% 99.6% 0.4% 99.6% 0.4% 61.89 487

ZeroAccess (CVUT) 99.95% 100% 0.1% 99.9% 0% 94.85 135
Zeus (Snort) 100% 100% 0% 100% 0% 0.05 3

Zeus (NETRESEC) 97.5% 98% 3.0% 97.0% 2.0% 0.15 27
Kelihos (NETRESEC) 99.8% 99.8% 0.2% 99.8% 0.2% 0.52 25
Cutwail (NETRESEC) 99.65% 99.8% 0.5% 99.5% 0.2% 1.08 57
Citadel (NETRESEC) 98.7% 99.6% 2.2% 97.8% 0.4% 0.24 21

Conficker (CAIDA) 99.95% 100% 0.1% 99.9% 0% 7454.18 1317

ISP (WiSNet)

Zeus-D (NIMS) 99.75% 99.8% 0.3% 99.7% 0.2% 50.53 333
Citadel-D (NIMS) 99.8% 99.8% 0.2% 99.8% 0.2% 21.94 211
Torpig-D (NIMS) 98.45% 99.1% 2.2% 97.8% 0.9% 0.7 63

Conficker-D (NIMS) 99.95% 99.9% 0% 100% 0.1% 135.51 151
Zeus-T1-1 (NIMS) 99.9% 99.9% 0.1% 99.9% 0.1% 0.24 5
Zeus-T1-2 (NIMS) 100% 100% 0% 100% 0% 13.48 11
Zeus-T1-W (NIMS) 99.87% 100% 0.3% 99.7% 0% 0.3 11

Zeus-T2 (NIMS) 99.9% 99.9% 0.1% 99.9% 0.1% 0.43 15
Zeus-T2-W (NIMS) 99.95% 100% 0.1% 99.9% 0% 0.28 11
Citadel-T1 (NIMS) 99.95% 100% 0.1% 99.9% 0% 0.92 11

Citadel-T1-W (NIMS) 100% 100% 0% 100% 0% 0.39 5
Zeus (CVUT) 100% 100% 0% 100% 0% 72.17 15

Kelihos (CVUT) 100% 100% 0% 100% 0% 60.11 15
Neris (CVUT) 99.8% 99.8% 0.2% 99.8% 0.2% 167.38 641
NSIS (CVUT) 99.19% 99.5% 1.1% 98.9% 0.5% 4.94 175
Virut (CVUT) 99.9% 99.9% 0.1% 99.9% 0.1% 195.78 317
Rbot (CVUT) 99.80% 99.8% 0.2% 99.8% 0.2% 54.55 317

ZeroAccess (CVUT) 100% 100% 0% 100% 0% 87.4 39
Zeus (Snort) 96.88% 99.3% 5.6% 94.4% 0.7% 0.1 9

Zeus (NETRESEC) 97.6% 97.9% 2.7% 97.3% 2.1% 0.18 35
Kelihos (NETRESEC) 99.95% 99.9% 0% 100% 0.1% 0.39 9
Cutwail (NETRESEC) 100% 100% 0% 100% 0% 0.49 9
Citadel (NETRESEC) 99.85% 99.9% 0.2% 9.8% 0.1% 0.47 23

Conficker (CAIDA) 99.85% 99.9% 0.2% 99.8% 0.1% 149.92 365

Alexa-D (NIMS)

Zeus-D (NIMS) 91.76% 97.2% 13.7% 86.3% 2.8% 2.62 493
Citadel-D (NIMS) 93.38% 98.7% 11.9% 88.1% 1.3% 1.95 241
Torpig-D (NIMS) 99.95% 100% 0.1% 99.9% 0% 0.16 11

Conficker-D (NIMS) 98.27% 97.3% 0.7% 99.3% 2.7% 0.99 145
Zeus-T1-1 (NIMS) 99.67% 99.8% 0.5% 99.8% 0.2% 0.18 25
Zeus-T1-2 (NIMS) 100% 100% 0% 100% 0% 0.42 9
Zeus-T1-W (NIMS) 99.75% 99.9% 0.4% 99.6% 0.1% 0.2 15

Zeus-T2 (NIMS) 99.85% 99.9% 0.2% 99.8% 0.1% 0.33 21
Zeus-T2-W (NIMS) 99.85% 99.9% 0.2% 99.8% 0.1% 0.17 19
Citadel-T1 (NIMS) 99.95% 100% 0.1% 99.9% 0% 0.62 17

Citadel-T1-W (NIMS) 99.9% 100% 0.2% 99.8% 0% 0.39 19
Zeus (CVUT) 100% 100% 0% 100% 0% 0.46 11

Kelihos (CVUT) 100% 100% 0% 100% 0% 0.15 73
Neris (CVUT) 100% 100% 0% 100% 0% 0.79 15
NSIS (CVUT) 99.9% 99.9% 0.1% 99.9% 0.1% 0.69 17
Virut (CVUT) 100% 100% 0% 100% 0% 0.64 21
Rbot (CVUT) 99.95% 100% 0.1% 99.9% 0% 1.14 25

ZeroAccess (CVUT) 100% 100% 0% 100% 0% 0.65 5
Zeus (Snort) 97.91% 97.2% 1.4% 98.6% 2.8% 0.01 9

Zeus (NETRESEC) 98.85% 98.5% 2% 98% 1.5% 0.03 21
Kelihos (NETRESEC) 99.85% 99.9% 0.2% 99.8% 0.1% 0.31 13
Cutwail (NETRESEC) 99.9% 99.9% 0.1% 99.9% 0.1% 0.32 23
Citadel (NETRESEC) 99.81% 100% 0.4% 99.6% 0% 0.04 7

Conficker (CAIDA) 99.95% 100% 0.1% 99.9% 0% 0.5 97

118

would not be useful in this section.

On the other hand, a solution complexity analysis was completed. Figures 6.19 and

6.20 show the results. As demonstrated by these figures, the solution complexities

were very close for smaller data sets like Zeus (Snort) and Citadel-D (NIMS). For

larger data sets, ISP (WiSNet) and ETP (LBNL) had higher complexities. The

complexity difference between the data sets with Alexa-D (NIMS) and the other two

normal data sets might be affected by the number of data samples. In other words, it is

possible that data sets with more data samples demonstrate more complex behaviours

(even though Weka random spread subsampling was used to minimize such an effect).

However, the complexities of the CVUT data sets cannot be justified this way. Except

for Rbot (CVUT), ISP (WiSNet) and ETP (LBNL), normal log files (not the botnet

log files) were sampled to create the final CVUT data sets. This means sample counts

for these data sets are almost the same. In this case, the solution complexities of these

data sets cannot be justified by the size of the data sets. Hence, it appears that ETP

(LBNL) is a more complex data set representing a more diverse range of normal

behaviours which has caused the C4.5 classifier to create more complex solutions.

In summary, the evaluations in this section indicate that the choice of normal log

files (to represent normal behaviour) would not cause any statistically significant per-

formance shift (positive or negative). However, the choice may cause direct/indirect

complexity changes. To this end, the type of analysis and the performance criteria

should be considered when answering the question on whether the choice of normal

behaviour representation would affect the analysis.

6.1.1.5 Exploring further flow feature sets

Feature set and classification algorithm selection has been the main focus of the above

sections in this chapter. So far, different combinations of feature sets and algorithms

have been evaluated with various botnet and normal data sets over different scenarios

and the Tranalyzer-1/C4.5 team has proven to be the best performing combination.

However, Tranalyzer has published a newer version, introduced as Tranalyzer-2 in

Section 3.2. Moreover, Garcia et al. employed Argus basic flow features for a system

design in [83]. Based on this research, most of the CVUT data sets have the Argus uni-

directional and/or bi-directional Netflow flows included for download. Tranalyzer-1

119

Figure 6.21: Argus vs. Tranalyzer Score performance results

and the Argus basic and extended feature sets (the latest version) have been evaluated

and compared [91]. Argus with the extended feature set outperformed the basic

feature set while it performed as well as the the Tranalyzer-1 feature set. It is likely

that this is caused by the fact that Argus has included features of the Inter-arrival

and Packets&Bytes categories in its extended, third version. These features are shown

to be very effective in network traffic analysis and specifically botnet detection [94,

61, 155]. To have a more comprehensive analysis and comparison the Tranalyzer-

1, Tranalyzer-2 and Argus v. 3.0.8 feature sets were used in this section with ISP

(WiSNet) as the normal behaviour representative. Moreover, C4.5 was selected as

the classifier with balance data set scheme.

Table 6.12 shows the detailed classification results of this experiment while Figure

6.21 is a visual view of the Score performance. Given the very close Scores shown in

this figure, a zoomed version of the figure is drawn over the range of 90% to 80% in

Figure 6.22. As the results indicate, in terms of Score, Tranalyzer-1 and Tranalyzer-2

have basically the the same Scores. Argus v. 3.0.8 performed similarly to the other

two feature sets with less than a maximum 5% increase or decrease. This analysis

is consistent with the previous evaluations [91]. To check if the performance of the

C4.5 is statistically different when using any of these feature sets a TTest was run.

The TTest result in Table 6.11 demonstrates that there is no statistically significant

difference between the performance of the classifier (in terms of Score) in this case.

In a further comparison of the classification results of these feature sets FPR and

120

Figure 6.22: Argus vs. Tranalyzer Score performance results (zoomed).

Table 6.11: TTest results of Tranalyzer vs. Argus Score performance.

P-value
Tranalyzer-1 vs. Tranalyzer-2 0.989
Tranalyzer-1 vs. Argus 0.912
Tranalyzer-2 vs. Argus 0.949

solution complexity were analyzed. Figures 6.23 and 6.24 show the FPRs. As demon-

strated by these figures, Tranalyzer-1 and Tranalyzer-2 performed similarly while Ar-

gus did not show any pattern (underperforming or outperforming Tranalyzer). In

terms of solution complexity however, Argus resulted in less complex solutions. This

gives the early warning systems employing Argus flow features an advantage while

being used as detection systems in real-time.

6.1.1.6 How similar or different are botnet behaviours?

In summary, various flow feature exporters, feature sets and machine learning algo-

rithms were evaluated in order to design a botnet early warning detection system in

this chapter. The analysis, evaluation and results show that a combination of the

Tranalyzer and Argus feature sets with the C4.5 classifier is effective for detecting

different botnets from IRC botnets to P2P botnets. Thus, the new research question

to answer is: How would these combinations handle a traffic log file that consists of

various botnets (such as IRC, HTTP, and P2P) and Normal traces? In other words,

121

Figure 6.23: Argus vs. Tranalyzer FPRs.

Figure 6.24: Argus vs. Tranalyzer FPRs (zoomed).

Figure 6.25: Argus vs. Tranalyzer solution complexity analysis.

122

Figure 6.26: Argus vs. Tranalyzer solution complexity analysis (zoomed).

can these combinations differentiate botnet behaviours in general from legitimate be-

haviours? To this end, a new balanced data set was generated combining the botnet

data sets employed in this chapter, labelled as ’botnet’ and the ISP (WiSNet) legit-

imate data set labelled as ’legitimate’. This data set is referred to as BvL (Botnet

vs. Legitimate). BvL is a balanced data set with over 2.5 million instances. Table

6.13 shows the results of this classification indicating that C4.5 can differentiate bot-

net behaviour from legitimate behaviour using Tranalyzer-2 and Argus feature sets.

Similar to the conclusion reached in the previous section, both of the feature sets

resulted in similar performances (in terms of Score and FPR) while Argus formed a

less complex solution.

These results indicate as well that different types and versions of botnets do have

some similarities since C4.5 can put them all together as one class. This can be

because of the similar automated nature of botnet behaviour in general. In order to

understand whether these botnets have enough distinct behaviours that can be used

to differentiate them despite the similarities, another experiment was run. In this new

experiment, a multi-class data set was generated (called BvL-multiClass) which has

twenty-four classes: one legitimate class and the twenty-three botnet classes utilized

in the analysis of this chapter. Since some of the data sets used in this work are

much larger than the others (such as the Conficker-D and CVUT data sets), the new

multi-class data set was kept unbalanced, consisting of all of the flow samples used

in Section . The results of this experiment, shown in Figure 6.27 and Table 6.14, are

123

Table 6.12: Argus vs. Tranalyzer classification Results.

Data Set Score
Botnet Legitimate Complexity

TPR FPR TNR FNR Time (sec) Solution

Tranalyzer-1

Zeus-D (NIMS) 99.75% 99.8% 0.3% 99.7% 0.2% 50.53 333
Citadel-D (NIMS) 99.8% 99.8% 0.2% 99.8% 0.2% 21.94 211
Torpig-D (NIMS) 98.45% 99.1% 2.2% 97.8% 0.9% 0.7 63

Conficker-D (NIMS) 99.95% 99.9% 0% 100% 0.1% 135.51 151
Zeus-T1-1 (NIMS) 99.9% 99.9% 0.1% 99.9% 0.1% 0.24 5
Zeus-T1-2 (NIMS) 100% 100% 0% 100% 0% 13.48 11
Zeus-T1-W (NIMS) 99.87% 100% 0.3% 99.7% 0% 0.3 11

Zeus-T2 (NIMS) 99.9% 99.9% 0.1% 99.9% 0.1% 0.43 15
Zeus-T2-W (NIMS) 99.95% 100% 0.1% 99.9% 0% 0.28 11
Citadel-T1 (NIMS) 99.95% 100% 0.1% 99.9% 0% 0.92 11

Citadel-T1-W (NIMS) 100% 100% 0% 100% 0% 0.39 5
Zeus (CVUT) 100% 100% 0% 100% 0% 72.17 15

Kelihos (CVUT) 100% 100% 0% 100% 0% 60.11 15
Neris (CVUT) 99.8% 99.8% 0.2% 99.8% 0.2% 167.38 641
NSIS (CVUT) 99.2% 99.5% 1.1% 98.9% 0.5% 4.94 175
Virut (CVUT) 99.9% 99.9% 0.1% 99.9% 0.1% 195.78 317
Rbot (CVUT) 99.80% 99.8% 0.2% 99.8% 0.2% 54.55 317

ZeroAccess (CVUT) 100% 100% 0% 100% 0% 87.4 39
Zeus (Snort) 96.88% 99.3% 5.6% 94.4% 0.7% 0.1 9

Zeus (NETRESEC) 97.6% 97.9% 2.7% 97.3% 2.1% 0.18 35
Kelihos (NETRESEC) 99.95% 99.9% 0% 100% 0.1% 0.39 9
Cutwail (NETRESEC) 100% 100% 0% 100% 0% 0.49 9
Citadel (NETRESEC) 99.85% 99.9% 0.2% 9.8% 0.1% 0.47 23

Conficker (CAIDA) 99.85% 99.9% 0.2% 99.8% 0.1% 149.92 365

Tranalyzer-2

Zeus-D (NIMS) 99.75% 99.8% 0.3% 99.7% 0.2% 43.23 357
Citadel-D (NIMS) 99.8% 99.8% 0.2% 99.8% 0.2% 27.19 215
Torpig-D (NIMS) 98.55% 99.1% 2% 98% 0.9% 0.74 81

Conficker-D (NIMS) 99.95% 99.9% 0% 100% 0.1% 152.81 151
Zeus-T1-1 (NIMS) 99.9% 99.9% 0.1% 99.9% 0.1% 0.25 5
Zeus-T1-2 (NIMS) 100% 100% 0% 100% 0% 14.29 11
Zeus-T1-W (NIMS) 99.85% 100% 0.3% 99.7% 0% 0.29 11

Zeus-T2 (NIMS) 99.9% 99.9% 0.1% 99.9% 0.1% 0.48 15
Zeus-T2-W (NIMS) 99.95% 100% 0.1% 99.9% 0% 0.28 11
Citadel-T1 (NIMS) 99.95% 99.9% 0% 100% 0.1% 0.99 11

Citadel-T1-W (NIMS) 100% 100% 0% 100% 0% 0.41 5
Zeus (CVUT) 100% 100% 0% 100% 0% 72.02 15

Kelihos (CVUT) 100% 100% 0% 100% 0% 66.32 15
Neris (CVUT) 99.8% 99.8% 0.2% 99.8% 0.2% 208.46 677
NSIS (CVUT) 99.2% 99.5% 1.1% 98.9% 0.5% 5.33 177
Virut (CVUT) 99.9% 99.9% 0.1% 99.9% 0.1% 214.48 301
Rbot (CVUT) 99.8% 99.8% 0.2% 99.8% 0.2% 56.45 313

ZeroAccess (CVUT) 100% 100% 0% 100% 0% 89.09 39
Zeus (Snort) 96.88% 99.3% 5.6% 94.4% 0.7% 0.09 9

Zeus (NETRESEC) 97.6% 97.9% 2.7% 97.3% 2.1% 0.2 33
Kelihos (NETRESEC) 99.95% 99.9% 0% 100% 0.1% 0.39 9
Cutwail (NETRESEC) 100% 100% 0% 100% 0% 0.5 9
Citadel (NETRESEC) 99.85% 99.9% 0.2% 99.8% 0.1% 0.5 23

Conficker (CAIDA) 99.85% 99.9% 0.2% 99.9% 0.1% 163.41 365

Argus

Zeus-D (NIMS) 99.8% 99.8% 0.2% 99.8% 0.2% 12.87 79
Citadel-D (NIMS) 99.95% 99.8% 0.1% 99.9% 0.2% 10.5 61
Torpig-D (NIMS) 99.55% 99.4% 0.3% 99.7% 0.6% 0.37 11

Conficker-D (NIMS) 99.95% 99.9% 0% 100% 0.1% 104.51 81
Zeus-T1-1 (NIMS) 99.8% 100% 0.4% 99.6% 0% 0.12 5
Zeus-T1-2 (NIMS) 100% 100% 0% 100% 0% 3.38 9
Zeus-T1-W (NIMS) 99.7% 99.7% 0.3% 99.7% 0.3% 0.15 7

Zeus-T2 (NIMS) 99.95% 100% 0.1% 99.9% 0% 0.59 7
Zeus-T2-W (NIMS) 99.7% 99.7% 0.3% 99.7% 0.3% 0.14 5
Citadel-T1 (NIMS) 99.95% 99.9% 0% 100% 0.1% 0.35 7

Citadel-T1-W (NIMS) 99.85% 99.9% 0.2% 99.8% 0.1% 0.26 7
Zeus (CVUT) 100% 100% 0% 100% 0% 258.01 29

Kelihos (CVUT) 100% 100% 0% 100% 0% 49.65 19
Neris (CVUT) 99.9% 99.9% 0.1% 99.9% 0.1% 115.49 149
NSIS (CVUT) 98.8% 99.7% 1.1% 98.9% 1.3% 1.15 107
Virut (CVUT) 99.95% 99.9% 0% 100% 0.1% 16.45 43
Rbot (CVUT) 99.9% 99.9% 0.1% 99.9% 0.1% 279.03 203

ZeroAccess (CVUT) 100% 100% 0% 100% 0% 7.2 19
Zeus (Snort) 97.33% 96% 1.3% 98.7% 4% 0.05 5

Zeus (NETRESEC) 98.5% 99.5% 1.5% 98.5% 1.5% 0.09 7
Kelihos (NETRESEC) 99.9% 100% 0.2% 99.8% 0% 0.23 7
Cutwail (NETRESEC) 99.9% 99.9% 0.1% 99.9% 0.1% 0.26 11
Citadel (NETRESEC) 99.1% 99.1% 0.9% 99.1% 0.9% 0.07 3

Conficker (CAIDA) 99.5% 99.5% 0.5% 99.5% 0.5% 86.21 137

highlighted below.

(i) C4.5 performed well while being able to differentiate twenty-three different

botnet behaviours from legitimate behaviours with an overall DR of 92%. However,

124

Table 6.13: Botnet versus legitimate behaviour using the C4.5 classifier.

Data Set Score
Botnet Legitimate Complexity

TPR FPR TNR FNR Time Solution
Tranalyzer-2 BvL 99.95% 99.9% 0% 100% 0.1% 2013.02 3025

Argus BvL 99.95% 99.9% 0% 100% 0.1% 1986.68 573

given that this is an unbalanced multi-class classification, Score (a classwise average

DR) can demonstrate the performance better. Based on Score, C4.5 could differen-

tiate the behaviour of twenty-three botnet data sets and one normal data set by an

overall maximum accuracy of 88.6% (using the Tranalyzer feature set). This is a good

performance given the result of the previous experiment in this section. That showed

how the basic/underlying behaviour of botnets can be similar.

(ii) Tranalyzer (with an overall Score of 88.6%) outperformed Argus (with an

overall Score of 82.11%). Unlike the results of the previous experiments, the solu-

tion complexity of C4.5 with Tranalyzer-2 and Argus was similar in this experiment.

Specifically, the size of the tree for Tranalyzer-2 was 19325 and for Argus it was 19463.

(iii) Neither the Tranalyzer nor the Argus feature sets could cause the C4.5 classi-

fier to perform better in detecting Citadel-D (NIMS) and Torpig-D (NIMS). Looking

into the confusion matrix, almost all of the misclassified samples of these two bot-

nets are between the NIMS domain name-generated data sets (data sets with the

’-D (NIMS)’ extension). This was expected as the main focus of all of the data sets

in this category is on the communication phase of the botnet lifecycle. It is likely

this low performance is caused by the small sample size of these two botnets in the

BvL-MultiClass data set as well as how these data sets are generated in a different

way (a domain based data generation method).

(iv) The confusion matrix of both of the feature sets indicated that almost all of

the miss-classification of botnet classes are within the botnet classes. In other words,

almost all of the botnet misclassifications are classified as another type of botnet, not

as legitimate behaviour. This result is consistent with the conclusion made in the

previous experiment of this section which indicates that C4.5 (using the Tranalyzer

of Argus feature set) can successfully differentiate the botnet behaviour in general

from normal behaviours.

Finally, a TTest was run on the FPRs shown in Table 6.14. The P-value of

0.027 indicates that the FPR performance of the C4.5 classifier has a statistically

125

Figure 6.27: Multi-Class Classification results– TPR.

significant difference using Tranalyzer-2 vs. Argus. Hence, considering all of the

above observations, the conclusion is that Tranalyzer-2 outperformed Argus in the

botnet multiClass classification experiment.

6.1.2 Summary

Network traffic analysis is a well investigated method for detecting malicious be-

haviour. This type of analysis has been employed widely as well for botnet behaviour

detection in the literature. Most of the works in the literature have concentrated

on specific types of botnets, come up with their own feature sets for analyzing the

network data and have evaluated the proposed systems in specific situations. In

this chapter various feature sets were explored using several public feature extraction

tools and different machine learning algorithms to design a flow-based early warning

botnet detection system. The first phase used Maji, YAF, Netmate, Softflowd, two

versions of Tranalyzer and two versions of the Argus flow exporters in combination

with the C4.5, KNN, ANN, SBB, Naive Bayes, Bayesian Networks classifiers. Eval-

uating the flow exporters under various circumstances such as binary, multi-botnet

binary and multi-class multi-botnet classifications demonstrated that the combina-

tion of the Tranalyzer-2 flow feature set with the C4.5 classifier is the best perform-

ing combination. Therefore, this combination is proposed as the final network traffic

analysis-based early warning botnet detection system for this thesis.

126

Table 6.14: BvL-MultiClass classification results.

Data Set
Tranalyzer V.2 Argus
TPR FPR TPR FPR

Zeus-D (NIMS) 93.8% 1% 34.8% 0.2%
Citadel-D (NIMS) 31.1% 0.1% 17.4% 0.1%
Torpig-D (NIMS) 34.7% 0% 23.3% 0%

Conficker-D (NIMS) 97.8% 0% 99.4% 1.4%
Zeus-T1-1 (NIMS) 93.9% 0% 88.8% 0%
Zeus-T1-2 (NIMS) 99.6% 0% 99.9% 0%
Zeus-T1-W (NIMS) 81.2% 0% 85.5% 0%

Zeus-T2 (NIMS) 95% 0% 90.2% 0%
Zeus-T2-W (NIMS) 83.2% 0% 84.7% 0%
Citadel-T1 (NIMS) 97.2% 0% 87.1% 0%

Citadel-T1-W (NIMS) 96.4% 0% 96.8% 0%
Zeus (CVUT) 90.6% 0.5% 88.5% 3.7%

Kelihos (CVUT) 92.1% 0.6% 72.9% 2.3%
Neris (CVUT) 97.4% 0.1% 94.6% 0.7%
NSIS (CVUT) 95.4% 0% 91.4% 0%
Virut (CVUT) 98.3% 0.1% 74.2% 0.1%
Rbot (CVUT) 97.7% 0.1% 96.5% 0.3%

ZeroAccess (CVUT) 100% 0% 99.7% 0%
Zeus (Snort) 75.7% 0% 85.3% 0%

Zeus (NETRESEC) 80.8% 0% 79.7% 0%
Kelihos (NETRESEC) 99.2% 0% 95.6% 0%
Cutwail (NETRESEC) 96.9% 0% 95.4% 0%
Citadel (NETRESEC) 98.5% 0% 88.9% 0%

ISP (WiSNeT) 100% 0.1% 100% 0.1%
DR = 97.32% DR = 92.26%
Score = 88.6% Score = 82.11%

In addition to the performance analysis of feature sets and machine learning algo-

rithms, some of the research questions that have not been investigated in the literature

such as the following are addressed.

(i) How can focussing on a specific part of botnet communication be effective in

detecting botnet behaviours?

(ii) How might the presentation of non-numeric features affect the performance of

the system?

(iii) How would the choice of normal behaviour reflect on the performance of the

system?

127

(iv) Given the botnet evolution, how would a trained early warning system per-

form/generalize over time?

The results indicate that presenting a rich feature set with a wide range of features

to a classifier that is capable of choosing the most informative features based on the

provided data (C4.5) is the key design element of the proposed early warning system.

Given the dynamic nature of such a system (feature wise), this design can be used in

various situations and would perform well in detecting various botnet behaviours. The

evaluation suggests that inter-arrival based features are the most important features

that are selected and used by the C4.5 to detect botnets. It appears that even recent

botnets like de-centralized HTTP-based and P2P botnets have not been able to mimic

temporal characteristics of normal user behaviour.

Chapter 7

Evaluations Using State-of-the-art Systems

As discussed previously, network packets include two main parts: (i) the packet

header, and (ii) the packet payload. The per-packet analysis can use either of these

two parts while per-flow analysis utilizes only network packet headers. This chapter

examines how much could be gained (lost) in terms of performance when a system

employs payload analysis (flow analysis). To this end, not only are data mining tech-

niques employed but also publicly available intrusion/botnet detection systems to

measure performance for both the payload and the traffic flow analysis.

Five detection systems are evaluated and compared. The first two systems are

Snort and BotHunter, as the rule-based detection systems. Snort is a popular in-

trusion detection and prevention system (IDS/IPS). It is open source and therefore

its rule set can be customized easily. BotHunter, which is another publicly available

system, utilizes the Snort sensors and customizes the Snort rule set to specifically

detect botnets. Two botnet detection systems have been implemented based on

the the research proposed in [118] and [156]. The first one is a machine learning

packet payload-based system and the second one is a machine learning flow-based

(packet header-based) detection system. Finally, the flow-based detection system

proposed in Chapter 6 is employed. The aim in this chapter is to analyze, evaluate

and compare the following systems for botnet detection: (i) a packet payload-based

system; (ii) the proposed early warning flow-based system in this thesis; (iii) a flow

aggregation/fraction-based system; (iii) Snort intrusion detection system; and (iv)

BotHunter botnet detection system. For data mining-based approaches, C4.5 de-

cision tree is employed in this section as it was the best performing classifier in the

previous chapter. Furthermore, the C4.5 classifier’s output is in the form of rules that

makes it easier to be used by a human expert for understanding what this technique

models on a given data set.

128

129

7.1 Systems Employed

Snort and BotHunter are two publically available intrusion/botnet detection systems

which were introduced in Section 3.2.2 as the publicly available tools employed in

this thesis. Among the approaches that use packet headers information only, flow-

based feature extraction methods have been highly employed in the recent literature

[61, 94, 145]. A flow-based detection system was proposed, developed and evaluated

in Section 6. The Tranalyzer was shown to be the best performing flow exporter when

compared with Maji, YAF, Softflowd, Netmate and Argus. Hence, in this chapter

Tranalyzer-2 is employed for exporting the flows and as in Section 6, all of the exported

features are used as inputs for the data mining techniques except the IP addresses,

port numbers and any non-numeric features. In addition to these systems, two other

detection system proposed in the literature were implemented for the analysis and

evaluations in this chapter.

7.1.1 Packet payload-based System:

Some of the works in the literature proposed specific packet analysis methods to

detect botnet behaviour [89, 145]. These systems have focussed on specific packets

and features from the header and/or payload sections of these packets to identify the

type of malware they are interested in. For example, Haddadi et al. [89] extracted

the domain name from the DNS packets to detect automatically generated malicious

domain names while Mohaisen et al. [118] introduced a set of features focussing on

the Zeus botnet. The features introduced by Mohaisen et al. are employed in the

evaluations of the proposed packet payload-based system. Table 7.1 presents the

selected features for this approach.

Since some of the data mining techniques employed in this work can be applied to

only numeric features, string to numeric feature conversions are performed and the

quartile object sizes are calculated for each of the data sets. Detailed information of

the features can be found in [118]. Once the features are extracted from each data

set, C4.5 is applied for classification.

130

Table 7.1: Packet-based approach– network features.

Feature set

Port Source and destination port numbers
Connections TCP, UDP, RAW
Request type GET, HEAD, POST
Response type Response code 200–599
Object Size Categorised quartiles (1–4)
DNS MX, NS, A records, PTR, SOA, CNAME

7.1.2 Flow aggregation/fraction-based System

Zhao et al. proposed a botnet detection system based on flow intervals [156]. De-

pending on the value used for the flow interval, this system can cause flow aggregation

or flow fraction. In other words, if the interval value is greater than the duration of

a flow, corresponding flows (based on the 5-tuple information) will be aggregated.

Otherwise, the flow will be divided into smaller chunks. In Zhao’s system, a set

of Flow features were utilized with several ML algorithms in which a decision tree

classifier was selected as the preferred classifier for detecting botnets. The authors

focussed on P2P botnets (such as Waledac) that employ the HTTP protocol and a

fast-flux-based DNS technique. Furthermore, based on their proposed approach, a

web-based detection system was implemented to be used both in offline detection as

well as live detection. To evaluate their proposed approach and web-based detection

system, they employed a combination of normal and attack traffic, some of which was

generated in the lab, some was from Honeynet project traces and some was from the

Lawrence Berkeley National Laboratory (normal traffic) data sets. In this thesis, this

data set is referred to as ISOT (Uvic). Although their proposed detection approach

resulted in up to 99% detection rates with a false positive rate around 2%, they also

tested their system with unseen botnet data and obtained detection rates up to 100%

while having a false positive rate of about 80% in some cases.

As discussed in Chapter 2, most of the flow-based botnet detection systems have

introduced their own set of features which are evaluated mostly on specific types of

botnet. Although Zhao et al. have introduced their preferred set of features, they

have also evaluated the effect of flow aggregation and flow fraction. Table 7.2 shows

the feature set used by Zhao et al. Therefore, their system was chosen as one of

131

Table 7.2: Selected feature set in [153].

Feature Description

SrcIP Flow source IP address
SrcPort Flow source port number
DstIP Flow destination IP address
DstPort Flow destination port number
Protocol Transport layer protocol or mixed
APL Average payload packet length for time interval
PV Variance of payload packet length for time interval
PX Number of packets exchanged for time interval
PPS Number of packets exchanged per second in time interval T
FPS The size of the first packet in the flow
TBP The average time between packets in time interval T
NR The number of reconnects for a flow
FPH Number of flows from this address over the total number of flows generated per hour

Table 7.3: Classification Results– with a flow interval of 300.

System DR
Botnet Legitimate

TPR FPR TNR FNR

C4.5
Zhao et al. [156] - 98.3% 0.1% 99.9% 1.7%

FlowAF (balanced) 99.9% 99.9% 0.1% 99.9% 0.1%
FlowAF (unbalanced) 99% 98% 0.4% 99.6% 2.0%

the systems for the evaluations in this chapter. Based on the information given in

[155] and [156], a program was created to implement the flow extraction using flow

intervals, referred to as FlowAF hereafter. First, FlowAF was evaluated on the same

ISOT (Uvic) data set that was used and published by Zhao et al. Given that the

RepTree classifier with 10-fold cross-validation and a flow interval of 300 sec was

used for the evaluation of this approach at [153], the same setting is utilized in this

evaluation. Table 7.3 shows the results of FlowAF and the original implementation

in [156]. Given that the published results of the original implementation did not

mention whether the data set was balanced or unbalanced, FlowAF was run with

both of the configurations. It is likely the authors employed the unbalanced setting

since they only mentioned using the ISOT (Uvic) data set (which is an unbalanced

data set). The results of Table 7.3 demonstrate that FlowAF did perform similarly to

the original implementation– specially with the unbalanced setting. Hence, Flow-AF

will likely be a good representative of the system proposed by Zhao et al. [156] for

the evaluations and comparisons in this chapter.

132

7.2 Evaluations and Results

The evaluation and results of the aforementioned five botnet detection systems are

summarized below.

Packet payload-based and Flow-based systems. The Weka [146] implemen-

tation of C4.5 was employed for the evaluation of the packet payload-based and the

two flow-based systems in this section. Twenty-four balanced data sets were used

in this evaluation with ISP (WiSNet) representing the normal behaviour. Table 7.4

shows the detailed classification results of these three systems. Figure 7.1 displays the

Score performance specifically. As discussed in Chapter 6, the IP addresses and Port

numbers of the flow features were removed in order to design the Tranalyzer-2-based

early warning system. This should increase the generalization abilities of the detec-

tion systems for unseen behaviour. Hence, two versions of the FlowAF system were

included in this section, one using all of the features introduced in [156] (referred to

as FlowAF Original here) and another excluding the IP addresses and Port numbers

(referred to as FlowAF here). FlowAF would be a better base of comparison for the

proposed early warning system using the Tranalyzer-2 feature set.

The results in Figures 7.1 and 7.2 and Table 7.4 demonstrate the following.

(i) The packet-based detection system is the worst performing system among

the four. The main draw back of this approach is that it cannot be used when

the packet payload data is not accessible, which is the case for Conficker (CAIDA)

here. Moreover, packet-based detection systems performed very well and showed

very promising results in terms of FPRs in comparison with the flow-based system

in [88]. However, this is not the case in with the evaluations here as well as in

[91]. This is because these payload features are more focussed on the botnets that

use HTTP as their communication protocol. Hence, they should be crafted and

modified when being applied to other types of botnets given that packet payloads

hold specific information based on the packet communication protocol. However,

the flow features being analyzed in the flow-based detection systems use the packet

headers. These features are generated based on the aggregation of several packets

forming a connection and are more focussed on the general characteristics of the

traffic (packets) being sent/received (such as size and timing) rather than the details

of each packet. Hence, they could be generalized and utilized in various scenarios.

133

Figure 7.1: Score classification results

Figure 7.2: Score classification results (zoomed)

(ii) FlowAF Original performed slightly better than the Tranalyzer-2-based system

and FlowAF. This can be justified by the additional IP address and port number infor-

mation that is utilized by FlowAF Original given that the FlowAF and Tranalyzer-2-

based system performances are very similar as shown in Figure 7.2. The FPR analysis

in Figure 7.3 confirms that the Tranalyzer-2-based system and FlowAF have a similar

performance while FlowAF Original performed better.

In order to understand how the two FlowAF systems would perform in differentiat-

ing several botnet behaviours from normal behaviour, the systems were tested on the

BvL data set introduced in Chapter 6. Table 7.5 shows the result of this experiment.

Based on this result, FlowAF Original still out performed FlowAF. However, this time

134

Figure 7.3: FPR classification results

Table 7.4: Classification Results

Data Set Score
Botnet Legitimate Complexity

TPR FPR TNR FNR Time (sec) Solution

Packet-based

Zeus-D (NIMS) 97% 97.8% 3.8% 96.2% 2.2% 0.19 57

Citadel-D (NIMS) 94.64% 95.2% 5.9% 94.1% 4.8% 0.12 95

Torpig-D (NIMS) 97.8% 97.8% 2.2% 97.8% 2.2% 0.08 31

Conficker-D (NIMS) 99.28% 98.9% 0.3% 99.7% 1.1% 0.44 37

Zeus-T1-1 (NIMS) 100% 100% 0% 100% 0% 0.01 5

Zeus-T1-2 (NIMS) 98.5% 98.5% 1.5% 98.5% 1.5% 0.01 5

Zeus-T1-W (NIMS) 98.88% 99.6% 1.8% 98.2% 0.4% 0.03 5

Zeus-T2 (NIMS) 98.45% 99.8% 2.9% 97.1% 0.2% 0.06 11

Zeus-T2-W (NIMS) 95.8% 99.8% 8.2% 91.8% 0.2% 0.05 9

Citadel-T1 (NIMS) 98.7% 99.9% 2.4% 97.6% 0.1% 0.07 7

Citadel-T1-W (NIMS 100% 100% 0% 100% 0% 0.04 3

Zeus (CVUT) 96.7% 95.6% 2.2% 97.8% 4.4% 6.03 259

Kelihos (CVUT) 97.7% 97.2% 1.7% 98.3% 2.8% 1.3 75

Neris (CVUT) 88.8% 82.5% 4.7% 95.3% 17.5% 1.35 73

NSIS (CVUT) 99.53% 99.5% 0.5% 99.5% 0.5% 0.07 9

Virut (CVUT) 90.4% 88% 7.2% 92.8% 12% 0.21 65

Rbot (CVUT) 95.6% 93.3% 2.2% 97.8% 6.7% 0.01 5

ZeroAccess (CVUT) 99.85% 99.7% 0% 100% 0.3% 0.08 5

Zeus (Snort) 98.6% 98.1% 1% 99% 1.9% 0.02 5

Zeus (NETRESEC) 96.4% 96.4% 3.6% 96.4% 3.6% 0.03 11

Kelihos (NETRESEC) -% -% -% -% -% - -

Cutwail (NETRESEC) 96.6% 98.9% 2.8% 97.2% 4.1% 0.08 19

Citadel (NETRESEC) 98.2% 98.2% 1.8% 98.2% 1.8% 0.02 7

Conficker (CAIDA) - - - - - - -

Tranalyzer-2 Flow-based

Zeus-D (NIMS) 99.75% 99.8% 0.3% 99.7% 0.2% 43.23 357

Citadel-D (NIMS) 99.8% 99.8% 0.2% 99.8% 0.2% 27.19 215

Torpig-D (NIMS) 98.55% 99.1% 2% 98% 0.9% 0.74 81

Conficker-D (NIMS) 99.95% 99.9% 0% 100% 0.1% 152.81 151

Zeus-T1-1 (NIMS) 99.9% 99.9% 0.1% 99.9% 0.1% 0.25 5

Zeus-T1-2 (NIMS) 100% 100% 0% 100% 0% 14.29 11

Zeus-T1-W (NIMS) 99.85% 100% 0.3% 99.7% 0% 0.29 11

Zeus-T2 (NIMS) 99.9% 99.9% 0.1% 99.9% 0.1% 0.48 15

Zeus-T2-W (NIMS) 99.95% 100% 0.1% 99.9% 0% 0.28 11

Citadel-T1 (NIMS) 99.95% 99.9% 0% 100% 0.1% 0.99 11

Citadel-T1-W (NIMS) 100% 100% 0% 100% 0% 0.41 5

Zeus (CVUT) 100% 100% 0% 100% 0% 72.02 15

Kelihos (CVUT) 100% 100% 0% 100% 0% 66.32 15

Neris (CVUT) 99.8% 99.8% 0.2% 99.8% 0.2% 208.46 677

135

NSIS (CVUT) 99.2% 99.5% 1.1% 98.9% 0.5% 5.33 177

Virut (CVUT) 99.9% 99.9% 0.1% 99.9% 0.1% 214.48 301

Rbot (CVUT) 99.8% 99.8% 0.2% 99.8% 0.2% 56.45 313

ZeroAccess (CVUT) 100% 100% 0% 100% 0% 89.09 39

Zeus (Snort) 96.88% 99.3% 5.6% 94.4% 0.7% 0.09 9

Zeus (NETRESEC) 97.6% 97.9% 2.7% 97.3% 2.1% 0.2 33

Kelihos (NETRESEC) 99.95% 99.9% 0% 100% 0.1% 0.39 9

Cutwail (NETRESEC) 100% 100% 0% 100% 0% 0.5 9

Citadel (NETRESEC) 99.85% 99.9% 0.2% 99.8% 0.1% 0.5 23

Conficker (CAIDA) 99.85% 99.9% 0.2% 99.9% 0.1% 163.41 365

FlowAF Original

Zeus-D (NIMS) 99.95% 99.9% 0% 100% 0.1% 2.06 47

Citadel-D (NIMS) 99.9% 99.9% 0.1% 99.9% 0.1% 79 1.24

Torpig-D (NIMS) 99.9% 99.8% 0% 100% 0.2% 0.14 9

Conficker-D (NIMS) 100% 100% 0% 100% 0% 45 15.02

Zeus-T1-1 (NIMS) 99.8% 99.6% 0% 100% 0.4% 0.1 9

Zeus-T1-2 (NIMS) 100% 100% 0% 100% 0% 0.34 5

Zeus-T1-W (NIMS) 100% 100% 0% 100% 0% 0.07 5

Zeus-T2 (NIMS) 100% 100% 0% 100% 0% 0.08 5

Zeus-T2-W (NIMS) 100% 100% 0% 100% 0% 0.07 5

Citadel-T1 (NIMS) 100% 100% 0% 100% 0% 0.12 5

Citadel-T1-W (NIMS) 100% 100% 0% 100% 0% 0.11 5

Zeus (CVUT) 99.9% 99.9% 0.1% 99.9% 0.1% 24.95 165

Kelihos (CVUT) 99.95% 100% 0.1% 99.9% 0% 19.01 225

Neris (CVUT) 99.9% 99.9% 0.1% 99.9% 0.1% 8.31 99

NSIS (CVUT) 99.8% 99.9% 0% 100% 0.1% 0.24 5

Virut (CVUT) 99.9% 99.9% 0.1% 99.9% 0.1% 1.47 45

Rbot (CVUT) 99.95% 99.9% 0% 100% 0.1% 2.38 45

ZeroAccess (CVUT) 100% 100% 0% 100% 0% 1.57 9

Zeus (Snort) 100% 100% 0% 100% 0% 0.02 5

Zeus (NETRESEC) 98.86% 98.6% 0.9% 99.1% 1.4% 0.05 13

Kelihos (NETRESEC) 99.8% 99.8% 0.2% 99.8% 0.2% 0.11 9

Cutwail (NETRESEC) 99.8% 99.7% 0.1% 99.9% 0.3% 0.15 13

Citadel (NETRESEC) 99.7% 100% 0.5% 99.5% 0% 0.08 11

FlowAF

Zeus-D (NIMS) 99.7% 99.7% 0.3% 99.7% 0.3% 1.34 11

Citadel-D (NIMS) 99.8% 99.8% 0.2% 99.8% 0.2% 1.26 41

Torpig-D (NIMS) 99% 99% 0.1% 99% 0.1% 0.112 11

Conficker-D (NIMS) 99.94% 99.9% 0% 100% 0.1% 9.31 13

Zeus-T1-1 (NIMS) 99.8% 99.6% 0% 100% 0.4% 0.09 5

Zeus-T1-2 (NIMS) 100% 100% 0% 100% 0% 0.08 5

Zeus-T1-W (NIMS) 100% 100% 0% 100% 0% 0.07 5

Zeus-T2 (NIMS) 100% 100% 0% 100% 0% 0.31 5

Zeus-T2-W (NIMS) 100% 100% 0% 100% 0% 0.7 5

Citadel-T1 (NIMS) 99.95% 100% 0.1% 99.9% 0% 0.1 5

Citadel-T1-W (NIMS) 100% 100% 0% 100% 0% 0.1 5

Zeus (CVUT) 99.67% 100% 0.6% 99.4% 0% 17.51 75

Kelihos (CVUT) 99.65% 99.8% 0.5% 99.5% 0.2% 16.81 131

Neris (CVUT) 97.38% 99.8% 5% 95% 0.2% 6.8 129

NSIS (CVUT) 99.95% 99.9% 0% 100% 0.1% 0.19 11

Virut (CVUT) 99.85% 99.7% 0% 100% 0.3% 0.89 25

Rbot (CVUT) 99.9% 99.9% 0.1% 99.9% 0.1% 1.34 25

ZeroAccess (CVUT) 100% 100% 0% 100% 0% 1.61 7

Zeus (Snort) 98% 98% 2% 98% 2% 0.03 5

Zeus (NETRESEC) 98% 98% 2% 98% 2% 0.07 11

Kelihos (NETRESEC) 99.8% 99.8% 0.2% 99.8% 0.2% 0.1 9

Cutwail (NETRESEC) 99.8% 99.8% 0.1% 99.8% 0.2% 0.12 7

Citadel (NETRESEC) 99.74% 100% 0.5% 99.5% 0% 0.6 7

Conficker (CAIDA) 99% 99% 1% 99% 1% 124.2 218

the Tranalyzer-2-based system performed better than FlowAF and had a performance

more similar to FlowAF Original. This is an advantage for the Tranalyzer-2-based

system which can achieve the same performance as FlowAF Original without using

136

Table 7.5: Botnet versus legitimate behaviour using the c4.5 classifier.

Data Set Score
Botnet Legitimate Complexity

TPR FPR TNR FNR Time Solution
FlowAF original BvL 99.95% 99.9% 0% 100% 0.1% 228.26 1109

FlowAF BvL 98.9% 98.1% 0.4% 99.6% 1.9% 176.7 491
Tranalyzer-2 BvL 99.95% 99.9% 0% 100% 0.1% 2013.02 3025

Figure 7.4: Multi-Class classification results.

the IP addresses and port numbers which would create a more generalized system.

In the next step, the FlowAF systems were run against the BvL-MultiClass data

set (introduced in Chapter 6) to test how these systems would perform on a botnet

multi-class data set. Table 7.6 and Figure 7.4 present the results of this experiment.

The results indicate the Tranalyzer-2-based system outperformed the two FlowAF

systems with an overall Score result of 88.6%.

In short, using specific and confined payload feature sets can only be useful in

specific scenarios (in this case specific types of botnets) for which they are actually

designed, and therefore, they should be modified when facing different situations.

This can be the case as well when dealing with a limited number of features in the

flow-based systems. However, the advantage of the proposed early warning flow-based

detection system is that it provides a wide range of features and then uses a classifier

which can chose the proper set of features for each scenario. This is the main reason

behind the consistency of good performance in the proposed Tranalyzer flow-based

detection system which has been evaluated under numerous scenarios.

BotHunter. This botnet detection tool provides Snort installation with a cus-

tomized malware rule set from the ET (Emerging Threats) and DNS/IP blacklist.

137

Table 7.6: BvL-MultiClass classification results.

Data Set
Tranalyzer V.2 FlowAF Original FlowAF
TPR FPR TPR FPR TPR FPR

Zeus-D (NIMS) 93.8% 1% 91.7% 1.8% 87.8% 1.8%
Citadel-D (NIMS) 31.1% 0.1% 16.3% 0.1% 11.0% 0.1%
Torpig-D (NIMS) 34.7% 0% 14.1% 0% 1.5% 0%

Conficker-D (NIMS) 97.8% 0% 94.1% 0.2% 93.6% 0.2%
Zeus-T1-1 (NIMS) 93.9% 0% 55.2% 0% 46.1% 0%
Zeus-T1-2 (NIMS) 99.6% 0% 98.9% 0% 98.6% 0%
Zeus-T1-W (NIMS) 81.2% 0% 50.2% 0% 38.1% 0%

Zeus-T2 (NIMS) 95% 0% 83.4% 0% 82.0% 0%
Zeus-T2-W (NIMS) 83.2% 0% 57.3% 0% 56.0% 0%
Citadel-T1 (NIMS) 97.2% 0% 93.9% 0.1% 93.1% 0.1%

Citadel-T1-W (NIMS) 96.4% 0% 86.8% 0% 85.6% 0%
Zeus (CVUT) 90.6% 0.5% 85.5% 3.3% 85.0% 4.3%

Kelihos (CVUT) 92.1% 0.6% 72.2% 1.9% 67.8% 2.2%
Neris (CVUT) 97.4% 0.1% 98.1% 0.7% 61.8% 0.9%
NSIS (CVUT) 95.4% 0% 97.5% 0% 91.8% 0%
Virut (CVUT) 98.3% 0.1% 56.1% 0.1% 59.3% 0.3%
Rbot (CVUT) 97.7% 0.1% 99.1% 0% 73.0% 0.6%

ZeroAccess (CVUT) 100% 0% 99.9% 0% 99.9% 0%
Zeus (Snort) 75.7% 0% 62.5% 0% 12.5% 0%

Zeus (NETRESEC) 80.8% 0% 74.9% 0% 38.8% 0%
Kelihos (NETRESEC) 99.2% 0% 98.2% 0% 98.5% 0%
Cutwail (NETRESEC) 96.9% 0% 87.9% 0% 69.1% 0%
Citadel (NETRESEC) 98.5% 0% 91.8% 0% 67.8% 0%

ISP (WiSNeT) 100% 0.1% 100% 0.1% 99.7% 1.9%
DR = 97.32% DR = 92.46% DR = 89.37%
Score = 88.6% Score = 77.73% Score = 67.43%

138

BotHunter should be run in batch mode when the data is in the form of pre-capture

traffic log files. In this mode, two output files are created: BotHunter’s Snort alert

file (used as input for the BotHunter correlator), and bot profiles. As for the config-

uration, the trusted network/monitored network should be set for each run. Indeed,

such a requirement necessitates the users to have information about the data set or

the monitored network (if using BotHunter in live mode). In this research, the infor-

mation provided by the sources of the log files was used to set the trusted network.

Table 7.7 shows the results of BotHunter on the twenty five data sets. The “#

infected hosts” column in the table shows the number of infected machines with

the bot program. The “# remote hosts” shows the malicious remote machines that

the infected hosts communicate with in the captured data sets. Although finding

the infected host in the network is important, it is only one phase of the detection.

Finding the source of the attacks or at least the remote hosts that are utilized by

the C&C servers is another important phase of detection. Therefore, the remote host

analysis is included in this table as well. These remote machines can be the malicious

C&C servers or new targets of the botnet that the infected machine aims to infect. In

order to develop the bot profiles, BotHunter correlates the Snort alerts (shown in the

second column) and finally generates the bot profiles revealing the malicious hosts.

In Table 7.7, the cells which two numbers are separated by “/” shows the count of IP

addresses detected vs. the total number of IP addresses in each column. Moreover,

the DR of each cell is provided in parentheses while the overall detection rate of

BotHunter, including the infected hosts and the remote hosts, is presented in Table

7.9. This table consists of two sets of overall DR: IP-based and Flow-based. The

IP-based set (shown in the ’IP-based’ column) is based on the IP addresses detected

from Table 7.7. However, to have a better understanding of how the detected IP

addresses by BotHunter might reflect on the traffic flows, the flow-based overall DR

results have been included. In this case, the botnet flows exported by Tranalyzer-2

were labelled as ’detected’ based on the IP addresses detected by BotHunter as shown

in Table 7.7. The ’Flow-based’ column of Table 7.9 demonstrates the results of this

analysis.

Based on the performance of BotHunter presented in Tables 7.7 and 7.9, the

observations listed below can be made.

139

(i) BotHunter output is dependent to the Snort-generated alerts. This dependency

causes the BotHunter performance to be affected by the Snort performance. Moreover,

the Snort sensor that is utilized by BotHunter is a customized version of Snort. Hence,

its rule set will not get updated automatically once a new version of the Snort rule

set is made publicly available. In this experiment, the Snort sensor did not generate

any alerts for four of the data sets and therefore, no infected machine was detected

by BotHunter.

(ii) No alert or bot profile was raised for the Conficker (CAIDA) data set. That

is because the payload part of the traffic was not provided by CAIDA. Given that

BotHunter and its Snort sensors use the payload of the traffic (packets) for detecting

the botnets, they could not perform well on this data set.

(iii) BotHunter could detect all the infected machines successfully as well as the

remote hosts of the NIMS sandbox-generated data sets such as Zeus-T1-1 (NIMS).

That is because the payload is provided and all the phases of the botnet lifecycle are

present in these data sets.

(iv) Although Snort did create high severity alarms on Zeus (Snort) (such as

“E4[rb] TROJAN Zeus POST Request to CnC”), BotHunter did not report any bot

profile. This shows that even when Snort does a good job of raising alerts on the

anomalies, BotHunter may still not be able to create a profile for the infected machine.

This could be because a correlation of the different types of alerts (representing the

different phases of the lifecycle) is required by BotHunter in order to form a bot

profile.

(v) Overall, BotHunter did not performed well in detecting the remote hosts. This

makes sense because the focus of this tool is on collecting evidence to find the infected

machines in a known trusted network.

(vi) Given the overall flow-based detection performance in Table 7.9, the proposed

early warning flow-based system outperformed BotHunter by a considerable gap.

Snort. As discussed in Section 3.2.2, Snort supports two public rule sets: VRT

and ET. To run Snort, the first thing required is to determine the rule set that will

be used. In this section, the VRT rule set was used because: (1) it is the official

rule set for Snort which gets updated frequently, and (2) ET, is the one used by

BotHunter. In this evaluation, Snort version 2.9.7.3 with the VRT rule set update

140

Table 7.7: Detailed BotHunter detection results.

Data Set # Snort alerts # Bot profiles # Infected hosts # Remote hosts

Zeus-D (NIMS) 11 0 0/1 (0%) 0/369 (0%)
Citadel-D (NIMS) 0 0 0/1 (0%) 0/87 (0%)
Torpig-D (NIMS) 0 0 0/1 (0%) 0/60 (0%)

Conficker-D (NIMS) 8 0 0/1 (0%) 0/1920 (0%)
Zeus-T1-1 (NIMS) 486 77 12/12 (100%) 2/2 (100%)
Zeus-T1-2 (NIMS) 29984 24 12/12 (100%) 2/2 (100%)
Zeus-T1-W (NIMS) 847 181 12/12 (100%) 2/2 (100%)

Zeus-T2 (NIMS) 8914 64 12/12 (100%) 1/1 (100%)
Zeus-T2-W (NIMS) 802 85 12/12 (100%) 1/1 (100%)
Citadel-T1 (NIMS) 32939 24 12/12 (100%) 1/1 (100%)

Citadel-T1-W (NIMS) 3363 22 12/12 (100%) 1/1 (100%)
Zeus (CVUT) 26076 0 0/3 (0%) 0/9392 (0%)

Kelihos (CVUT) 9935 0 0/1 (0%) 0/25671 (0%)
Neris (CVUT) 3006 526 10/10 (100%) 69/18369 (0.4%)
NSIS (CVUT) 96 6 3/3 (100%) 10/5364 (0.2%)
Virut (CVUT) 171 6 1/1 (100%) 8/1798 (0.5%)
Rbot (CVUT) 40521 8 1/10 (10%) 42/30046 (0.1%)

ZeroAccess (CVUT) 0 0 0/2 (0%) 0/15495 (0%)
Zeus (Snort) 26 0 0/1 (0%) 0/35 (0%)

Zeus (NETRESEC) 23 1 1/1 (100%) 7/28 (63.6%)
Kelihos (NETRESEC) 2 0 0/1 (0%) 0/268 (0%)
Cutwail (NETRESEC) 416 0 0/1 (0%) 0/162 (0%)
Citadel (NETRESEC) 216 0 0/1 (0%) 0/1 (0%)

Conficker (CAIDA) 0 0 0/360191 (0%) 0/80380 (0%)
ISOT (Uvic) 831 16 4/5 (80%) 40/15000 (0.3%)

on July 2, 2015 was used. Tables 7.8 and 7.9 show the performance of Snort on

the twenty-four data sets. Similar to the previous observations [88], Snort raises a

lot of alerts for big data sets that contain considerable numbers of malicious traffic.

This makes any post-analysis of the results very complicated. Hence, SnortSnarf was

used to produce HTML output from Snort alerts. Tools like this are intended for

diagnostic inspection and tracking down problems given the high number of Snort

alerts. SnortSnarf selected/filtered any alert with a high priority that was raised

on botnet-related classes of alerts (such as [Classification: A Network Trojan was

detected) Priority 1]).

In Table 7.8, column ’# Snort alerts’, ’# Infected hosts’ and ’# Remote hosts’

present the number of Snort alerts generated, the number of detected infected hosts

(based on the IP address) and the number of detected remote hosts, respectively.

Additionally, a description of the major Snort Alert that highlighted the botnet be-

haviour is provided in the ’Description’ column. Conficker-D (NIMS) is the only data

set for which a very specific botnet behaviour rule was not triggered by Snort. The

results are summarized below.

(i) Snort performed really well in detecting the infected hosts. Specifically, it has

a 100% DR for tewenty-two data sets out of the twenty-five.

(ii) The C&C DNS-based behaviour of the domain-based generated data sets (with

the ’-D (NIMS)’ extension) were detected by Snort for three data sets out of four in

141

this category.

(iii) The NIMS sandbox-generated data sets [such as Zeus-T1-2 (NIMS)] were all

detected as a ’Zeus botnet variant’ by Snort. Although there are Citadel data sets in

that category, given that Citadel is in fact a variant of the Zeus botnet, Snort could

very well detect the type of botnet behaviour in these data sets. In this regard, Snort

could as well recognize the type of botnet behaviour for Zeus (CVUT), Rbot (CVUT),

ZeroAccess (CVUT), Zeus (Snort), Zeus (NETRESEC), Cutwail (NETRESEC) and

Citadel (NETRESEC). It should be noted that Cutwail and Pushdo can be considered

to be the same botnet type. By contrast, there are some of the botnets for which the

type is not identified correctly (e.g. detecting Kelihos (CVUT) as Zeus or Pushdo

botnets). However, recognizing the torjan behaviour of these data sets is still a

promising result.

(iv) The Snort performance in detecting the remote hosts is much better than

the BotHunter’s since in some of the data sets there was a 100% detection rate.

However, it underperformed the two flow-based detection systems in this section

(namely, Tranalyzer-2-based system and FlowAF) given the overall flow-based DR

shown in Table 7.9.

7.2.1 Discussion and Highlights

In conclusion, automatic pattern discovery in large traffic data sets is the main ad-

vantage of the packet payload-based and flow-based systems. Regardless of whether

a packet payload-based system or a flow-based system is used, having a specific fea-

ture set might only limit the good performance of a system into a certain scenarios

or situations for which it is actually designed. Hence, it should be modified when

facing different situations. This is the case for the packet payload-based approach

and FlowAF in this chapter. Providing a wide range of features to a pattern discov-

ery algorithm (in this case C4.5), would enable the algorithm to select the proper

set of features based on the scenario. Presumably, this is the main reason behind

the consistency of good performance in the proposed Tranalyzer flow-based detection

system.

BotHunter correlates Snort alerts corresponding to the botnet lifecycle to find

the profiles of the infected machines. Hence, in case in which the Snort rule set is

142

Table 7.8: Detailed Snort detection results.

Data Set
Snort # Infected # Remote

Description
alerts hosts hosts

Zeus-D 2265 1/1 55/369 INDICATOR-COMPROMISE Suspicious .cc dns query
(NIMS) (100%) (14.9%) (classification: A Network Trojan was detected)

Citadel-D 1298 1/1 44/87 INDICATOR-COMPROMISE Suspicious .cc dns query
(NIMS) (100%) (50.6%) (classification: A Network Trojan was detected)

Torpig-D 156 1/1 13/60 INDICATOR-COMPROMISE Suspicious .cc dns query
(NIMS) (100%) (21.7%) (classification: A Network Trojan was detected)

Conficker-D 4064 0/1 143/1920 –
(NIMS) (0%) (7.5%)

Zeus-T1-1 789 12/12 2/2 MALWARE-CNC Win.Trojan.Zeus variant outbound
(NIMS) (100%) (100%) connection (classification: A Network Trojan was detected)

Zeus-T1-2 19199 12/12 2/2 MALWARE-CNC Win.Trojan.Zeus variant outbound
(NIMS) (100%) (100%) connection (classification: A Network Trojan was detected)

Zeus-T1-W 756 12/12 2/2 MALWARE-CNC Win.Trojan.Zeus variant outbound
(NIMS) (100%) (100%) connection (classification: A Network Trojan was detected)
Zeus-T2 6064 12/12 2/2 MALWARE-CNC Win.Trojan.Zeus variant outbound
(NIMS) (100%) (100%) connection (classification: A Network Trojan was detected)

Zeus-T2-W 766 12/12 2/2 MALWARE-CNC Win.Trojan.Zeus variant outbound
(NIMS) (100%) (100%) connection (classification: A Network Trojan was detected)

Citadel-T1 29845 12/12 1/1 MALWARE-CNC Win.Trojan.Zeus variant outbound
(NIMS) (100%) (100%) connection (classification: A Network Trojan was detected)

Citadel-T1-W 1623 12/12 1/1 MALWARE-CNC Win.Trojan.Zeus variant outbound
(NIMS) (100%) (100%) connection (classification: A Network Trojan was detected)

Zeus 155763 3/3 2800/9392 MALWARE-CNC Win.Trojan.Zeus v3 DGA DNS query
(CVUT) (100%) (29.8%) detected, MALWARE-CNC Win.Trojan.Zeus outbound

connection (classification: A Network Trojan was detected)
Kelihos 79839 1/1 9888/25671 MALWARE-CNC Win.Trojan.Zeus outbound connection,
(CVUT) (100%) (38.5%) MALWARE-CNC Win.Trojan.Pushdo variant outbound

connection (classification: A Network Trojan was detected)
Neris 76590 10/10 2184/18369 MALWARE-CNC Possible Zeus User-Agent - Download,

(CVUT) (100%) (11/.9%) INDICATOR-OBFUSCATION potential Javascript unescape
obfuscation attempt detected, PROTOCOL-DNS TMG
Firewall Client long host entry exploit attempt
(classification: A Network Trojan was detected)

NSIS 3390 3/3 577/5364 BLACKLIST URI request for known malicious URI
(CVUT) (100%) (10.8%) (classification: A Network Trojan was detected)

Virut 6149 1/1 175/1798 PROTOCOL-DNS TMG Firewall Client long host
(CVUT) (100%) (9.7%) entry exploit attempt, MALWARE-CNC Possible Zeus

User-Agent - Download, MALWARE-CNC Win.Trojan.Bulknet
variant outbound connection (classification: A Network
Trojan was detected)

Rbot 367899 10/10 3404/30046 INDICATOR-COMPROMISE IRC message on non-standard
(CVUT) (100%) (11.3%) port, MALWARE-OTHER generic IRC botnet connection,

POLICY-SOCIAL IRC message (classification: A Network
Trojan was detected)

ZeroAccess 176374 2/2 15481/15495 MALWARE-CNC Win.Trojan.ZeroAccess outbound
(CVUT) (100%) (99.9%) communication (classification: A Network Trojan was detected)

Zeus 37 1/1 7/14 MALWARE-CNC Win.Trojan.Zeus variant outbound
(Snort) (100%) (50%) connection (classification: A Network Trojan was detected)

Zeus 163 1/1 7/11 MALWARE-CNC Win.Trojan.Zeus outbound connection,
(NETRESEC) (100%) (63.6%) MALWARE-CNC Win.Trojan.FareIt variant outbound

connection (classification: A Network Trojan was detected)
Kelihos 30 1/1 9/268 MALWARE-CNC Win.Trojan.Fareit variant outbound

(NETRESEC) (100%) (3.4%) connection (classification: A Network Trojan was detected)
Cutwail 3823 1/1 162/162 MALWARE-CNC Win.Trojan.Pushdo variant outbound

(NETRESEC) (100%) (100%) connection (classification: A Network Trojan was detected)
Citadel 225 1/1 1/1 MALWARE-CNC Win.Trojan.Zeus variant outbound

(NETRESEC) (100%) (100%) connection (classification: A Network Trojan was detected)
Conficker 7244 6457/360191 430/80380 (Classification: Potential Corporate Privacy Violation)
(CAIDA) (1.8%) (0.5%)

ISOT 102755 2/5 2326/15000 INDICATOR-COMPROMISE Suspicious .cc dns query,
(Uvic) (40%) (15.5%) PROTOCOL-DNS TMG Firewall Client long host entry

exploit attempt (Classification: Attempted User Privilege
Gain)

143

Table 7.9: BotHunter and Snort overall performance on botnet data samples.

Dataset
Overall Detection

IP-based Flow-based

BotHunter

Zeus-D (NIMS) 0% 0%
Citadel-D (NIMS) 0% 0%
Torpig-D (NIMS) 0% 0%

Conficker-D (NIMS) 0% 0%
Zeus-T1-1 (NIMS) 100% 100%
Zeus-T1-2 (NIMS) 100% 100%
Zeus-T1-W (NIMS) 100% 100%

Zeus-T2 (NIMS) 100% 100%
Zeus-T2-W (NIMS) 100% 100%
Citadel-T1 (NIMS) 100% 100%

Citadel-T1-W (NIMS) 100% 100%
Zeus (CVUT) 0% 0%

Kelihos (CVUT) 0% 0%
Neris (CVUT) 0.4% 19.63%
NSIS (CVUT) 0.2% 0.7%
Virut (CVUT) 0.5% 0.47%
Rbot (CVUT) 0.14% 1.56%

ZeroAccess (CVUT) 0% 0%
Zeus (Snort) 0% 0%

Zeus (NETRESEC) 66.6% 12%
Kelihos (NETRESEC) 0% 0%
Cutwail (NETRESEC) 0% 0%
Citadel (NETRESEC) 0% 0%

Conficker (CAIDA) 0% 0%
ISOT (Uvic) 2.9% 60.3%

Snort

Zeus-D (NIMS) 15.1% 30.1%
Citadel-D (NIMS) 51.1% 27.9%
Torpig-D (NIMS) 23% 43.4%

Conficker-D (NIMS) 7.5% 0.07%
Zeus-T1-1 (NIMS) 100% 100%
Zeus-T1-2 (NIMS) 100% 100%
Zeus-T1-W (NIMS) 100% 100%

Zeus-T2 (NIMS) 100% 100%
Zeus-T2-W (NIMS) 100% 100%
Citadel-T1 (NIMS) 100% 100%

Citadel-T1-W (NIMS) 100% 100%
Zeus (CVUT) 29.8% 80.8%

Kelihos (CVUT) 38.5% 73.6%
Neris (CVUT) 11.9% 44.13%
NSIS (CVUT) 10.8% 17.8%
Virut (CVUT) 9.8% 6.75%
Rbot (CVUT) 11.4% 19.63%

ZeroAccess (CVUT) 99.9% 99.8%
Zeus (Snort) 53.3% 52.8%

Zeus (NETRESEC) 66.6% 20%
Kelihos (NETRESEC) 3.7% 2.4%
Cutwail (NETRESEC) 100% 100%
Citadel (NETRESEC) 100% 100%

Conficker (CAIDA) 1.6% 1.3%
ISOT (Uvic) 15.5% 26.1%

144

not updated properly based on the type of botnet or when the specific phases of the

botnet lifecycle are not presented in the data, BotHunter is not able to detect the

bots. However, BotHunter seems to be successful when a specific network is under

constant monitoring and the goal is to detect the infected machines of a trusted

network. Having said this, if the pre-defined customized Snort rules cannot detect

the botnet behaviour, BotHunter would not be able to work properly.

On the other hand, Snort rule sets are updated more frequently and they are

not not just focussed on detecting the infected hosts based on tracing the existence

of the botnet lifecycle. Instead, it monitors all network communications and flags

any suspicious communication that matches its pre-defined rules (using the VRT rule

set). Hence, the performance of Snort depends on the quality of the rules. In the

evaluations, Snort outperformed BotHunter in the detection of the bot machines as

well as the remote hosts but it did not perform better than the flow-based systems.

7.3 Malware/Botnet Detection Analysis in Cellular Networks

Studies have shown that the Malware, specifically botnet, infection rate is increasing

exponentially and this growth is not limited to wired networks. Malware have become

more aggressive in wireless and cellular networks as well.

The term ’Mobile botnet’ refers to a group of compromised mobile phones that are

remotely controlled by botmasters via C&C channels. Although these botnets are not

as popular as the PC-based botnets given the Internet access limits and the limited

resource and battery issues, their popularity is on the rise given that mobile phones

are now being used widely and their resources and computing ability are enhancing as

well. Mobile botnets exploit the Short Message Service (SMS) and Bluetooth features

of the mobile phones. Bluetooth and SMS can both be utilized by a botmaster as the

C&C channel to control the bots. A Bluetooth-based C&C channel manages the bot

network by transmitting the commands between the Bluetooth-enabled devices. This

is a faster and a simpler method of communication compared to SMS. On the other

hand, commands and scripts can be transmitted by SMS between the mobile devices.

This communication method requires a list of nodes in order to be able to operated

on infected phones. Although SMS and Bluetooth are the primary communication

channels, wireless Internet access channel can be used as well to transfer commands

145

between a PC-based C&C server and infected bots.

Eslahi et al. surveyed the available mobile botnet samples and data sets and also

proposed a data collection approach to generate mobile botnet traffic for detection

analysis [68]. Based on this survey, the Genome Malware [28] and M0driod [33] pro-

vide a huge collection of malware application (apk files) which can be used directly

for static analysis. Static analysis refers to the examination and evaluation of a mo-

bile application without execution. Dynamic analysis refers to the evaluation of an

application during its execution. In this case, the applications are executed in virtual

environments such as Android Emulator and Android-x86 [35]. The MDC [109] and

D4D [107] data sets are the most comprehensive mobile behavioural data collections

that can be used as a normal pattern for comparing with the malicious behaviour of

mobile Botnets. These data sets consists of location, calls, SMS, video/audio data

transfer records, but not the traffic traces. Moreover, Anubis [40], CopperDroid [6]

and SandDroid [41] are the known resources for executing the applications and per-

form dynamic behavioural analysis. The authors proposed a framework for creating

a testbed environment that consists of two networks: one for infected botnet devices

and the other one for real normal mobile devices. The data generated in the testbed

is collected, cleaned, labelled and aggregated to form a data set that has both normal

and malicious traffic.

Given the frequent change of IP addresses during mobility, many existing group-

based botnet detection approaches cannot be applied to mobile Botnets. Although

the proposed system is focussed on botnet detection systems on wired networks,

potentially it could be employed for mobile botnet detection. This is because the

proposed system does not use any IP-based features such as IP-based group behaviour

analysis. Hence, the proposed early warning system in this research is evaluated on

a limited set of malware samples on cellular networks, as well. For this purpose, four

publicly available malware log files were selected from the Contagio (also was used

as a data source for Chapter 6) and CopperDroid (introduced previously as a known

data source [68]) and malware-traffic-analysis websites [12, 6, 11]. These log files are

related to Android malware. Therefore, an Android Application-based log file was

obtained from the Crawdad repository to represent the non-malicious data in this

Section [131], called AppLegit (CRAWDAD) hereafter. In [131], there are several

146

categories of Android application traces. The “Other” category consists of trace files

collected from hosts with non-video and non-audio applications running on it such as

Gmail, Facebook, and Dropbox. Hence, to make the AppLegit (CRAWDAD) log file

a better representative of Android non-malicious data, a trace file was added from the

YouTube application and another trace file from the GoogleHangouts application to

the ’Other’ trace file. Moreover, one trace file of a Windows malware which attempts

to infect the Android devices of the network is included in this section. Table 7.11

shows the description of these log files.

Given that the combination of Tranalyzer-2 feature set and C4.5 classifier is shown

to perform good in detection botnet behaviour in wired networks. In this section, I

aim to evaluate the performance of this approach for botnet behaviours in cellular

networks. For this purpose, balanced data sets are generated for the AndroidMal-1,

AndroidMal-2, AndroidMal-3, AndroidMal-4 and AndroidMal-5 log files where Ap-

pLegit (CRAWDAD) represent the non-malicious side of the data sets. On the other

hand, ISP (WiSNet) is utilized as the legitimate representative of WindowsAndroid-

Mal data set. Table 7.10 shows the classification results of this experiment. As shown

in the table, my proposed early warning system also performed very good on cellular

related data sets (in both Android and Windows data sets) with the score of up to

100%.

Table 7.10: Classification Results.

Data Set Score
Malware Legitimate Complexity

TPR FPR TNR FNR Time (sec) Solution
AndroidMal-1 100% 100% 0% 100% 0% 0.02 5
AndroidMal-2 99.67% 100% 0.7% 99.3% 0% 0.03 7
AndroidMal-3 98.55% 97.1% 0% 100% 2.9% 0.02 5
AndroidMal-4 98.82% 97.6% 0% 100% 2.4% 0.02 9
AndroidMal-5 100% 100% 0% 100% 0% 0.04 7

WindowsAndroidMal 96.48% 97.2% 4.2% 95.8% 2.8% 0.04 9

7.4 Summary

The aim of this chapter was to further evaluate the performance of the proposed

botnet early warning system proposed in Chapter 6. For this purpose, the proposed

systems’ performance was compared to four other malicious detection systems. This

entailed the implementation of a previously introduced packet payload-based system

147

[118] and a flow aggregation/fraction-based system [156]. The first system uses fea-

tures extracted from the header and the payload of packets and the second is a per

flow basis system that extract flows from a collection of packets involved in a connec-

tion and uses an interval to aggregate or break the flows. The later system is called

FlowAF in this chapter. Moreover, two publicly available malicious behaviour detec-

tion systems, Snort and BotHunter, were used as the representatives of rule-based

detection systems.

The evaluation of all five systems on twenty-five publicly available data sets showed

that the proposed flow-based system and FlowAF outperformed the other three sys-

tems. Further analysis of the the performance of these two systems under binary-

class and multi-class scenarios was done as well as excluding the IP addresses and

port numbers from the FlowAF feature sets. The results showed that the proposed

Tranalyzer-2-based system outperformed the original FlowAF system (using the IP

address and port number information) in a complicated multi-class scenario without

even using the IP address and port number information. It appears that not using

such information for botnet detection purposes also may increase the generalization

capability of the proposed system in this thesis.

As discussed in Chapter 1, the main focus of this research is on botnets over wired

networks. However, to further investigate the performance of the proposed system,

the system was evaluated on several cellular (wireless) network botnet data sets, as

well. The evaluations demonstrate a promising performance for such botnets (a Score

of up to 100%) while there is still space for improvement and further evaluations.

148

T
ab

le
7.

11
:

D
at

a
sp

ec
ifi

ca
ti

on

D
a
t
a

s
e
t

T
y
p

e
–
S
u
b
T

y
p

e
S
iz

e
N

o
.

o
f

P
a
c
k
e
t
s

Y
e
a
r

S
o
u
r
c
e

D
e
s
c
r
ip

t
io

n

A
n
d
ro

id
M

a
l-

1
[3

6
]

M
a
li

c
io

u
s

2
4
1
K

B
2
3
0
1

2
0
1
4

C
o
p
p

e
rD

ro
id

L
is

te
d

a
s

G
e
w

p
e
w

,
F
a
k
e
B

a
n
k

a
n
d

B
a
n
k
B

o
t

in
V

ir
u
sT

o
ta

l1

A
n
d
ro

id
M

a
l-

2
[3

7
]

M
a
li

c
io

u
s

1
.5

5
M

B
2
5
7
4

2
0
1
4

C
o
p
p

e
rD

ro
id

L
is

te
d

a
s

G
id

ix
a
n
d

S
m

S
b

o
t

in
V

ir
u
sT

o
ta

l2

A
n
d
ro

id
M

a
l-

3
[3

8
]

M
a
li

c
io

u
s

2
2
K

B
2
2
7

2
0
1
4

C
o
p
p

e
rD

ro
id

L
is

te
d

a
s

K
a
is

h
i

in
V

ir
u
sT

o
ta

l3
a
n
d

in
S
tr

a
to

sp
h
e
re

4

A
n
d
ro

id
M

a
l-

4
[3

9
]

M
a
li

c
io

u
s

1
2
2
K

B
3
7
2

2
0
1
4

M
a
lw

a
re

tr
a
ffi

c
a
n
a
ly

si
s

w
e
b
si

te
S
p
re

a
d

b
y

e
m

a
il

sp
a
m

s,
L

is
te

d
a
s

N
io

S
e
rv

in
V

ir
u
sT

o
ta

l5

a
n
d

A
n
a
ly

z
e
d

in
m

a
lw

a
re

-t
ra

ffi
c
-a

n
a
ly

si
s.

n
e
t

[3
9
]

A
n
d
ro

id
M

a
l-

5
[2

9
]

M
a
li

c
io

u
s

4
2
6
K

B
3
3
2
5

2
0
1
2

C
o
n
ta

g
io

L
is

te
d

a
s

S
m

sB
o
t

a
n
d

S
p
a
m

b
o
t

in
V

ir
u
sT

o
ta

l6

W
in

d
o
w

sA
n
d
ro

id
M

a
l

[4
2
]

M
a
li

c
io

u
s

4
5
K

B
3
3
1
0

2
0
1
3

C
o
n
ta

g
io

W
in

d
o
w

s
m

a
lw

a
re

w
h
ic

h
a
tt

e
m

p
ts

to
in

fe
c
t

a
n
d
ro

id
d
e
v
is

e
s,

a
n
a
ly

z
e
d

b
y

S
y
m

a
n
te

c
7

A
p
p
L

e
g
it

(C
R

A
W

D
A

D
)

[1
3
1
]

N
o
n
-M

a
li

c
io

u
s

1
2
9
M

B
1
8
5
5
2
1

2
0
1
5

C
R

A
W

D
A

D
N

o
n
-m

a
li

c
io

u
s

A
n
d
ro

id
a
p
p
li

c
a
ti

o
n

d
a
ta

Chapter 8

Conclusion and Future Works

Botnets are considered to be one of the main security threats on the Internet due

to their reported high infection rate and extensive range of malicious activities with

active update capability. Hence, the need for botnet detection approaches that can

adapt to botnet evolution is very important. To this end, several automatic botnet

detection approaches applying network traffic analysis are proposed in the literature.

Each of these systems utilizes particular network traffic features in their analysis of

the traffic in which some took advantage of packet payloads to extract the features

and others used only packet headers. Since a packet payload contains detailed in-

formation about the data being transferred over the network, using this information

might be useful in developing a detection system with higher performance and lower

complexity. However, packet payloads might not be always available due to privacy

issues or encryption. Hence, this thesis proposes two different approaches based on

the information available for traffic analysis: (i) application data analysis; and (ii)

Network data analysis.

Since legitimate users are not the only ones that use DNS to communicate and

botnets also take advantage of this protocol, the first proposed approach is based on

DNS application data analysis. Modern botnets avoid hardcoding the address of the

C&C server because if the C&C server is identified, they can be blocked at the firewall

level. DNS provides a scalable solution for botnets since a list of domain names can be

passed to the victim host as possible C&C servers. As long as the victim manages to

connect to the server using one of the domains in the list, it will download the malware

and join the botnet. However, all the domains on the list (whether they resolve to

an IP address or not) need to be blacklisted to be able to mitigate the attack fully.

Fortunately for the defenders, botnet DNS traffic exhibits abnormal properties that

can be detected. The most important property is the structure of the domains that

are being queried, e.g. being long with many sub-domains and seemingly random

149

150

set of characters. Thus, a suitable solution is to monitor the communications at the

DNS level to detect abnormal query patterns, specifically queries that a human would

not possibly be able to type, based on temporal, structural and syntactic properties.

Hence, in the first approach, two solutions are investigated: a priori -knowledge-based

DNS analysis system and an evolutionary computation-based solution. For the first

solution, a priori-knowledge domain name-based feature set is defined. Exploring

different machine learning classifiers to detect the malicious domain names using

this feature set, C4.5 was found to be the best performing classifier in this solution.

For the second solution, the Stateful-SBB classifier was designed and developed to

support variable length inputs. In addition to providing a very high accuracy for

classifying and generating signatures automatically, Stateful-SBB identifies the set of

attributes to be used in classification automatically without requiring any a priori

knowledge, whereas the typical classifiers evaluated require a fixed set of features

extracted based on a priori knowledge. The results show that the Stateful-SBB

based solution performs comparably to other classification methods without requiring

a feature set to be determined a priori.

For cases with no access to application data (i.e. the packet payload where the

domain name is located) or having the payload (application data) encrypted, a sec-

ond approach was designed and developed. This approach explored the possibility

of botnet detection using only the features extracted from the packet header, i.e.

the flow features. However, detailed analysis has been done on various possible flow-

based feature sets, machine learning algorithms and protocol filters for the purpose

of understanding the effect of such parameters in finding a solution with the high-

est performance. This thesis explored six different feature sets extracted by open

source flow exporters and investigated the effect of these packet header based-flow

features in botnet detection. To this end, several machine learning classifiers that

are frequently used in network traffic classification were employed. Given that botnet

communication can be divided into different parts (such as locating the C&C server

and establishing a connection) and that for each of these parts different protocols are

utilized based on the type of botnets, the effect of protocol filters was investigated

with the main focus on HTTP-based botnets. As the results show, the choice of

feature set and protocol filter is very important and can affect the performance of

151

the botnet detection system greatly. Moreover, the issues of botnet evolution over

time, normal behaviour representation, non-numeric feature representation, general

botnet behaviour recognition (botnet vs. normal classification) and specific botnet

type detection (multi-botnet type classification) are all investigated in this approach.

The results suggest that the Tranalyzer open source flow exporter enables the classi-

fiers to identify different botnet behaviours with higher performances on all the data

sets employed. For the evaluations performed in this research, the combination of

the Tranalyzer-2 tool with the C4.5 classifier gives the best performance on all the

botnet data sets employed given the different scenarios explored. Moreover, the re-

sults suggest that inter-arrival based features are the most important features that

are selected and used by the C4.5 to detect botnets. It appears that even recent bot-

nets like de-centralized HTTP-based and P2P botnets have not been able to mimic

temporal characteristics of normal user behaviour.

Furthermore, to investigate how the network analysis-based early warning sys-

tem proposed in this thesis would perform compared to the other systems publicly

available or proposed in the literature, four systems introduced/employed in the lit-

erature were explored. These systems include a packet payload based system, a flow

aggregation-based system, plus BotHunter and Snort. The results demonstrate that

the proposed early warning system outperformed the other systems given the different

scenarios that were investigated.

As well, the proposed early warning system was tested for botnets in cellular

networks. It appears that none of the proposed botnet detection systems that were

designed for wired networks have been evaluated on wireless (Cellular) data sets. The

results of this evaluation demonstrate that the performance of the proposed system

was promising and seemed to generalize well to the wireless/cellular network data.

8.1 Future research directions

Given the results obtained in this thesis, there are several future research directions

which can be pursued. These are listed below.

1. Obtaining botnet network traces for research purposes requires lots of time

and effort. The publicly available log files are limited and mostly out-dated.

This is a great concern when botnets have shown to grow and evolve over

152

time. To investigate how a detection system would perform over time and

how the approach and the solution would generalize, researchers need to have

access to the log file of the same botnet over a period of time. Different data

generation methods have been explored as well as a good number of public data

sets collected for the evaluations in this thesis. However, there is always room

to collect more data sets in order to continue to evaluate the robustness of the

proposed approach.

2. In this thesis, balanced data sets have been used mostly for the evaluations.

However, usually botnet communications are temporal minor classes. Another

area of interest might be to explore the effect of unbalanced data sets. This

effect was briefly displayed in the multi-class botnet evaluation section of this

thesis. Further analysis is required to improve the performance of the system

in such situations.

3. Finally, there is always the potential for additional evaluation of the proposed

approach on wireless and cellular networks.

Bibliography

[1] https://labs.snort.org/papers/zeus.html.

[2] Alexa. http://www.alexa.com/topsites.

[3] Cisco ios netflow. http://www.cisco.com/en/US/products/ps6601/products ios
protocol group home.html.

[4] Citadel zeus bot. https://www.botnets.fr/index.php/Citadel ZeuS bot.

[5] Conficker domain list. http://net.cs.uni-bonn.de/uploads/media/c domains
april2009.zip.

[6] Copperdroid: dynamic behavioral analysis of android malware.
http://copperdroid.isg.rhul.ac.uk/copperdroid/.

[7] DNS-BH- malware domain blocklist. http://www.malwaredomains.com/.

[8] Juniper j-flow. http://www.juniper.net/techpubs/software/erx/junose82/swconfig-
ip-services/html/ip-jflow-stats-config2.html.

[9] LBNL enterprise trace repository. http://www.icir.org/enterprise-tracing/.

[10] Maji. http://research.wand.net.nz/software/maji.php.

[11] Malware-traffic-analysis.net. http://malware-traffic-analysis.net/.

[12] Mobile malware mini dump. http://contagiominidump.blogspot.ca/.

[13] Netmate. http://ipmeasurement.org/index.phpoption=com content&view=article
&id=10&Itemid=9.

[14] Netmate flowcalc. http://dan.arndt.ca/nims/calculating-flow-statistics-using-
netmate/.

[15] NETRESEC repository: publicly available pcap files.
http://www.netresec.com/?page=PcapFiles.

[16] Netscape, dmoz open directory project. http://www.dmoz.org.

[17] Nfdump. http://nfdump.sourceforge.net/.

[18] Opendns: Phishtank. http://www.phishtank.com.

[19] S-flow. http://www.inmon.com/technology/index.php.

[20] Snort. https://www.snort.org/.

153

154

[21] Softflowd. http://www.mindrot.org/projects/softflowd/.

[22] Tranalyzer. http://tranalyzer.com/.

[23] Wireless and secure networks research lab.
http://wisnet.seecs.nust.edu.pk/index.php.

[24] YAF. http://tools.netsa.cert.org/yaf/index.html.

[25] Zeus tracker. https://zeustracker.abuse.ch/.

[26] Kraken is finally cracked. http://blog.threatexpert.com/2008/04/kraken-is-
finally-cracked.html, 2008.

[27] Owning kraken zombies, a detailed dissection.
http://dvlabs.tippingpoint.com/blog/2008/04/28/owning-kraken-zombies,
2008.

[28] Android malware genome project. Http://www.malgenomeproject.org/, 2012.

[29] Androidmal-5 log file. http://contagiominidump.blogspot.ca/2012/12/
spamsoldier-sms-botnet-sample.html, 2012.

[30] Kaspersky security bulletin 2012: The overall statistics for 2012.
https://securelist.com/analysis/kaspersky-security-bulletin/36703/kaspersky-
security-bulletin-2012-the-overall-statistics-for-2012/#7, 2012.

[31] The zeroaccess botnet mining and fraud for massive financial gain.
https://www.sophos.com/en-us/medialibrary/PDFs/technical2012.

[32] HTTP-Botnets: the dark side of an standard protocol.
http://securityaffairs.co/wordpress/13747/cyber-crime/http-botnets-the-
dark-side-of-an-standard-protocol.html, 2013.

[33] M0droid. Http://m0droid.uni.me/, 2013.

[34] Snapshot of virut botnet after interruption.
http://www.symantec.com/connect/blogs/snapshot-virut-botnet-after-
interruption, 2013.

[35] Android-x86 project-run android on your pc. Http://www.android-x86.org/,
2014.

[36] Androidmal-1 log file. http://copperdroid.isg.rhul.ac.uk/copperdroid/
view.php?id=5900, 2014.

[37] Androidmal-2 log file. http://copperdroid.isg.rhul.ac.uk/copperdroid/
view.php?id=5993, 2014.

155

[38] Androidmal-3 log file. http://copperdroid.isg.rhul.ac.uk/copperdroid/
view.php?id=5998, 2014.

[39] Androidmal-4 log file. http://malware-traffic-
analysis.net/2014/03/06/index.html, 2014.

[40] Anubis-malware analysis for unknown binaries. Http://anubis.iseclab.org/,
2014.

[41] Sanddroid-an automatic android program analysis sandbox.
http://sanddroid.xjtu.edu.cn/, 2014.

[42] Windowsandroidmal log file. http://contagiominidump.blogspot.ca/2014/01/
windows-droidpak-and-android-fakebankb.html, 2014.

[43] Http-botnets: the dark side of an standard protocol.
http://securityaffairs.co/wordpress/13747/cyber-crime/http-botnets-the-
dark-side-of-an-standard-protocol.html, April 2013.

[44] Infiltering pushdo part 2. http://www.fireeye.com/blog/technical/botnet-
activities-research/2010/08/infiltrating-pushdo-part-2-2.html, August 2010.

[45] It’s (already) baaack: Kelihos botnet rebounds with new variant.
http://www.darkreading.com/attacks-breaches/its-already-baaack-kelihos-
botnet-reboun/232700540, March 2012.

[46] Pushdo botnet is evolving, becomes more resilient to takedown at-
tempts. http://www.pcworld.com/article/2038893/pushdobotnetisevolving-
becomesmoreresilienttotakedownattempts.html, May 2013.

[47] Zeus/zbot malware shapes up in 2013. http://blog.trendmicro.com/trendlabs-
security-intelligence/zeuszbot-malware-shapes-up-in-2013/, May 2013.

[48] Citadel makes a comeback, targets japan users.
http://blog.trendmicro.com/trendlabs-security-intelligence/citadel-makes-
a-comeback-targets-japan-users/, September 2013.

[49] Hassan Alizadeh, Abdolrahman Khoshrou, and Andre Zuquete. Traffic classifi-
cation and verification using unsupervised learning of gaussian mixture models.
In Measurements Networking (MN), 2014.

[50] E. Alpaydin. Introduction to Machine Learning. MIT Press, 2004.

[51] Riyad Alshammari and A. Nur Zincir-Heywood. How robust can a machine
learning approach be for classifying encrypted voip? Network and Systems
Management, 23, 2015.

156

[52] D. S. Anderson, C. Fleizach, S. Savage, and G. M. Voelker. Spamscatter: Char-
acterizing internet scam hosting infrastructure. In the USENIX Security Sym-
posium, 2007.

[53] M. Antonakakakis, R. Perdisci, D. Dagon, W. Lee, and N. Feamster. Building
a dynamic reputation system for dns. In USENIX Security, 2010.

[54] Elaheh Biglar Beigi, H.H. Jazi, N. Stakhanova, and A.A. Ghorbani. Towards ef-
fective feature selection in machine learning-based botnet detection approaches.
In Communications and Network Security (CNS), 2014.

[55] Pavani Bharathula and N. Mridula Menon. Equitable machine learning algo-
rithms to probe over p2p botnets. In Frontiers in Intelligent Computing: Theory
and Applications (FICTA), 2015.

[56] Leyla Bilge, Sevil Sen, Dacide Balzarotti, Engin Kirda, and Christopher Krugel.
Exposure: A passive dns analysis service to detect and report malicious do-
mains. Information and System Security (TISSEC), 16, 2014.

[57] H. Binsalleeh, T. Ormerod, A. Boukhtouta, P. Sinha, A. Youssef, M. Debbabi,
and L. Wang. On the analysis of the zeus botnet crimeware toolkit. In Eighth
Annual International Conference on Privacy, Security and Trust, 2010.

[58] Amine Boukhtouta, Serguei A. Mokhov, Nour-Eddine Lakhdari, Mourad Deb-
babi, and Joey Paquet. Network malware classification comparison using dpi
and flow packet headers. Computer Virology and Hacking Techniques, 12:69–
100, 2016.

[59] M. Brameier and W. Banzhaf. A comparison of linear genetic programming and
neural networks in medical data mining. IEEE Transaction on Evolutionary
Computation, 5:17–26, 2001.

[60] CAIDA Conficker. http://www.caida.org/data/passive/telescope-3days-
conficker dataset.xml.

[61] Z. B. Celik, J. Raghuram, G. Kesidis, and D. J. Miller. Salting public traces
with attack traffic to test flow classifiers. In Cyber Security Experimentation
and Test (CSET), 2011.

[62] Ch. Rossow Ch. J. Dietrich and F. C. Freiling. On botnets that use dns for
command and control. In European Conference on Computer Network Defense
(EC2ND), 2011.

[63] Youksamay Chanthakoummane, Saiyan Saiyod, Nunnapus Benjamas, and Nat-
tawat Khamphakdee. Improving intrusion detection on snort rules for botnets
detection. In Information Science and Applications (ICISA), 2016.

157

[64] Christian Rossow Christian J. Dietrich and Norbert Pohlmann. Cocospot: Clus-
tering and recognizing botnet command and control channels using traffic anal-
ysis. Computer Networks, 57, 2013.

[65] Gideon Creech and Jiankun Hu. A semantic approach to host-based intru-
sion detection systems using contiguous and discontiguous system call patterns.
IEEE Transactions on Computers, 63:807–819, 2014.

[66] E. D. de Jong. A monolithic archive for pareto-coevolution. Evolutionary Com-
putation, 15(1):61–93, 2007.

[67] J. Doucette, A.R. McIntyre, P. Lichodzijewski, and M. I. Heywood. Symbi-
otic coevolutionary genetic programming: A benchmarking study under large
attribute spaces. Genetic Programming and Evolvable Machines, 13:71–101,
2012.

[68] Meisam Eslahi, Mohammad Reza Rostami, H. Hashim, N. M. Tahir, and
Maryam Naseri. A data collection approach for mobile botnet analysis and
detection. In IEEE Symposium on Wireless Technology and Applications
(ISWTA), 2014.

[69] M. Feily and A. Shahrestani. A survey of botnet and botnet detection emerging
security information. In Systems and Technologies, 2009.

[70] Vahid Aghaei Foroushani and A. Nur Zincir-Heywoood. A proxy identifier based
on patterns in traffic flows. In International Symposium on High Assurance
Systems Engineering, 2015.

[71] J. Francois, Sh. Wang, R. State, and Th. Engel. Bottrack: tracking botnets
using netflow and pagerank. Networking, 6640:1–14, 2011.

[72] K. Fu and J. Blum. Inside risk controlling for cyberscurity risks of medical
device software, October 2013.

[73] Zou Futai, Zhang Siyu, and Rao Weixiong. Hybrid detection and tracking of
fast-flux botnet on domain name system traffic. China Communications, 10,
2013.

[74] S. Garcia. Malware capture facility project, cvut university– ctu-13 data
set. http://mcfp.weebly.com/the-ctu-13-dataset-a-labeled-dataset-with-botnet-
normal-and-background-traffic.html, 2011.

[75] S. Garcia. Malware capture facility project, cvut university– ctu-malware-
capture-botnet-44, 45, 51 and 52. https://mcfp.felk.cvut.cz/publicDatasets/,
2011.

[76] S. Garcia. Malware capture facility project, cvut university– ctu-malware-
capture-botnet-54. https://mcfp.felk.cvut.cz/publicDatasets/, 2011.

158

[77] S. Garcia. Malware capture facility project, cvut university– ctu-malware-
capture-botnet-28. https://mcfp.felk.cvut.cz/publicDatasets/CTU-Malware-
Capture-Botnet-28/, 2013.

[78] S. Garcia. Malware capture facility project, cvut university– ctu-malware-
capture-botnet-3. https://mcfp.felk.cvut.cz/publicDatasets/CTU-Malware-
Capture-Botnet-3/, 2013.

[79] S. Garcia. Malware capture facility project, cvut university– ctu-malware-
capture-botnet-42, 43 and 50. https://mcfp.felk.cvut.cz/publicDatasets/, 2013.

[80] S. Garcia. Malware capture facility project, cvut university– ctu-malware-
capture-botnet-5. https://mcfp.felk.cvut.cz/publicDatasets/CTU-Malware-
Capture-Botnet-5/, 2013.

[81] S. Garcia. Malware capture facility project, cvut university– ctu-malware-
capture-botnet-53. https://mcfp.felk.cvut.cz/publicDatasets/CTU-Malware-
Capture-Botnet-53/, 2013.

[82] S. Garcia. Malware capture facility project, cvut university.
https://agents.fel.cvut.cz/malware-capture-facility, February 2013.

[83] S. Garcia, M. Grill, J. Stiborek, and A Zunino. An empirical comparison of
botnet detection methods. Computers and Security, 45:100–123, 2014.

[84] Timothy Glennan, Christopher Leckie, and Sarah M. Erfani. Improved clas-
sification of known and unknown network traffic flows using semi-supervised
machine learning. In Australasian Conference on Information Security and
Privacy (ACISP), 2016.

[85] G. Gu, R. Perdisci, J. Zhang, and W. Lee. Botminer: clustering analysis of
network traffic for protocol- and structure- independent botnet detection. In
17th USNIX Security symposium, 2008.

[86] G. Gu, Ph. Porras, V. Yegneswaran, M. Fong, and W. Lee. Bothunter: detect-
ing malware infection through ids-driven dialog correlation. In 16th USENIX
Security Symposium on USENIX Security Symposium, 2007.

[87] Hachem Guerid, Karel Mittig, and Ahmed Serhrouchni. Collaborative approach
for inter-domain botnet detection in large-scale networks. In Collaborative Com-
puting: Networking, Applications and Worksharing (Collaboratecom), 2015.

[88] F. Haddadi, , D. L. Cong, L. Porter, and A. N. Zincir-Heywood. On the ef-
fectiveness of different botnet detection approaches. In Information Security
Practice and Experience (ISPEC), 2015.

[89] F. Haddadi, H.G. Kayacik, A.N. Zincir-Heywood, and M.I. Heywood. Mali-
cious automatically generated domain name detection using stateful-sbb. In
EvoApplication, 2012.

159

[90] F. Haddadi, J. Morgan, E. G. Filho, and A. Nur Zincir-Heywood. Botnet
behaviour analysis using ip flows with http filters using classifiers. In Seventh
International Workshop on Bio and Intelligent Computing (AINA-BiCOM),
2014.

[91] F. Haddadi, Duong-Tien Phan, and A. N. Zincir-Heywood. How to choose
from different botnet detection systems? In Analytics for Network and Service
Management (AnNet), 2016.

[92] F. Haddadi, D. Runkel, A.N. Zincir-Heywood, and M.I. Heywood. On botnet
behaviour analysis using GP and C4.5. In Genetic and Evolutionary Computa-
tion Conference (Gecco) comp., 2014.

[93] F. Haddadi and A. N. Zincir-Heywood. Analyzing string format-based classi-
fiers for botnet detection: GP and SVM. In IEEE Congress on Evolutionary
Computation (CEC), 2013.

[94] F. Haddadi and A. N. Zincir-Heywood. Benchmarking the effect of flow ex-
porters and protocol filters on botnet traffic classification. IEEE Systems jour-
nal, 2014.

[95] F. Haddadi and A. N. Zincir-Heywood. Data confirmation for botnet traffic
analysis. In Foundations Practice of Security (FPS), 2014.

[96] F. Haddadi and A. N. Zincir-Heywood. Botnet detection system analysis on
the effect of botnet evolution and feature representation. In Genetic and Evo-
lutionary Computation Conference (Gecco) comp., 2015.

[97] F. Haddadi and A. N. Zincir-Heywood. A closer look at the http and p2p based
botnets from a detector’s perspective. In Foundations Practice of Security
(FPS), 2015.

[98] F. Haddadi and A. N. Zincir-Heywood. Data confirmation for botnet traffic
analysis. https://www.cs.dal.ca/research/techreports/cs-2014 -01, May 2014.

[99] S. Haykin. Neural Networks and Learning Machines. United States of America:
Pearson Education Inc., 2009.

[100] Ch. Holz, Ch. Gorecki, K. Rieck, and F.C. Freiling. Measuring and detecting
fast-flux service networks. In Network and Distributed System Security Sympo-
sium (NDSS), 2008.

[101] Damballa Inc. Top 10 botnet threats. http://www.damballa.com, 2010.

[102] Open DNS Inc. The Role of DNS in Botnet Command and Control. Witrpaper,
2012.

[103] P. Royal: Damballa Inc. On kraken and bobax botnets. Whitepaper, 2008.

160

[104] Internet Engineering Task Force (IETF): RFC 2616.
http://www.ietf.org/rfc/rfc2616.txt, 1999.

[105] S. Savage J. Ma, L. K. Saul and G. Voelker. Beyond blacklists: Learning to
detect malicious web sites from suspecious urls. In ACM KDD, 2009.

[106] V. Kirubavathi and R.A. Nadarajan. Http botnet detection using adaptive
learning rate multilayer feed-forward neural network. In Information Security
Theory and Practice: security, privacy and trust in computing systems and
ambient intelligent ecosystems, 2012.

[107] N. Kiukkonen, J. Blom, O. Dousse, D. Gatica-Perez, and J. Laurila. Towards
rich mobile phone datasets: Lausanne data collection campaign. In Pervasive
Services (ICPS), 2010.

[108] V. Krmicek and T. Plesnik. Detecting botnets with netflow. In Cert Flocon: :
An Open Forum for Large-Scale Network Analytics, 2011.

[109] J. K. Laurila, D. Gatica-Perez, I. Aad, J. Blom, O. Bornet, T.-M.-T. Do,
O. Dousse, J. Eberle, and M. Miettinen. The mobile data challenge: Big data
for mobile computing research. In Mobile Data Challenge Workshop (MDC) in
conjunction with Pervasive, 2012.

[110] P. Lichodzijewski and M. I. Heywood. Coevolutionary bid-based genetic pro-
gramming for problem decomposition in classification. Genetic Programming
and Evolvable Machines, 9:331–365, 2008.

[111] Lei Liu, Songqing Chen, Guanhua Yan, and Zhao Zhang. Bottracer: Execution-
based bot-like malware detection. In Information Security, 2008.

[112] H. Lodhi, C. Saunders, J. Shawe-Tylor, Nello Cristianini, and Ch.J.C.H.
Watkins. Text classification using string kernels. Machine Learning Research,
2:419–444, 2002.

[113] W. Lu, G. Rammidi, and A. Ghorbani. Clustering botnet communication traffic
based on n-gram feature selection. Computer Communications, 34:502–514,
2011.

[114] F. Jahanian Y. XU M. Bailey, E. Cooke and M. Karir. A survey of botnet
technology and defenses. In Cybersecurity Applications Technology CATCH,
2009.

[115] A. Makanju, A. N. Zincir-Heywood, and E. Milios. Robust learning intru-
sion detection for dos attacks on wireless networks. Intelligent Data Analysis,
15:801823, 2011.

[116] A. Manasrab, A. Hasan, O.A. Abouabdalla, and S. Ramadass. Detecting botnet
activities based on abnormal dns traffic. Computer Science and Intelligent
Computing (IJCSIC), 6:97–104, 2009.

161

[117] Mohammad M. Masud, Tahseen Al-Khateeb, Latifur Khan, Bhavani Thurais-
ingham, and Kevin W. Hamlen. Flow-based identification of botnet traffic by
mining multiple log files. In Distributed Framework and Applications (DFmA),
2008.

[118] A. Mohaisen and O. Alrawi. Unveiling zeus. In International World Wide Web
Conference Committee (IW3C2), 2013.

[119] Mozilla. Top level domain names. http://mxr.mozilla.org/mozilla-
central/source/netwerk/dns/effective tld names.dat?raw=1.

[120] S. Murugan and K. Kuppusamy. System and methodology for unknown malware
attack. In Sustainable Energy and Intelligent Systems (SEISCON), 2011.

[121] Jose Nazario and Thorsten Holz. As the net churns: Fast-flux botnet observa-
tions. In Malicious and Unwanted Software (MALWARE), 2008.

[122] R. Perdisci, I. Corona, D. Dagon, and W. Lee. Detecting malicious flux service
networks through passive analysis of recursive dns traces. In ACSAC, 2009.

[123] Ph. Porras, H. Saidi, and V. Yegneswaram. An analysis of conficker’s logic and
rendezvous points. http://mtc.sri.com/conficker, 2009.

[124] McAfee Labs 2014 Threats Predictions. https://blogs.mcafee.com/mcafee-
labs/2014-threats-predictions-botnets-spam-explore-new-avenues-to-steal-data-
money/, 2014.

[125] McAfee Labs Threat Reports. http://www.mcafee.com/us/apps/view-
all/publications.aspx?tf=aaae16480sz=10, 2013.

[126] RFC 2722. http://tools.ietf.org/html/rfc2722, October 1999.

[127] P. Royal. Maliciousness in top-ranked alexa domains.
https://www.barracudanetworks.com/blogs/labsblog?bid=2438.

[128] S. Saad, I. Traore, A. Ghorbani, B. Sayed, D. Zhao, , W. Lu, J. Felix, and
P. Hakimian. Detecting p2p botnets through network behaviour analysis and
machine learning. In Privacy, Security and Trust (PST), 2011.

[129] Stefano Schiavoni, Federico Maggi, Lorenzo Cavallaro, and Stefano Zanero.
Phoenix: Dga-based botnet tracking and intelligence. In Detection of Intrusions
and Malware Vulnerability Assessment (DIMVA), 2014.

[130] A.K. Seewald and F. Kleedorfer. Lambda pruning: an approximation of the
string subsequence kernel for practical svm classification and redundancy clus-
tering. ADAC, 1:221–239, 2007.

162

[131] Satadal Sengupta, Harshit Gupta, Niloy Ganguly, Bivas Mitra, Pradipta De,
and Sandip Chakraborty. Crawdad dataset iitkgp/apptraffic (v. 2015-11-26).
http://crawdad.org/iitkgp/apptraffic/20151126/, November 2015.

[132] Khalid Shahbar and A. Nur Zincir-Heywood. Traffic flow analysis of tor plug-
gable transports. In Network and Service Management (CNSM), 2015.

[133] Chakchai So-In, Nutakarn Mongkonchai, Phet Aimtongkham, Kasidit Wijit-
sopon, and Kanokmon Rujirakul. An evaluation of data mining classification
models for network intrusion detection. In Digital Information and Communi-
cation Technology and it’s Applications (DICTAP), 2014.

[134] M. Soysal and E. G. Schmidt. Machine learning algorithms for accurate flow-
based network traffic classification: Evaluation and comparison. Performance
Evaluation, 67:451.467, 2010.

[135] E. Stalmans and B. Irwin. A framework for dns based detection and mitigation
of malware infections on a network. In Information Security South Africa, 2011.

[136] Matija Stevanovic and Jens Myrup Pedersen. An analysis of network traffic clas-
sification for botnet detection. In Cyber Situational Awareness, Data Analytics
and Assessment (CyberSA), 2015.

[137] Elizabeth Stinson and John C. Mitchell. Characterizing bots remote control be-
havior. In 4th international conference on Detection of Intrusions and Malware,
and Vulnerability Assessment, 2007.

[138] B. Stone-gross, M. Cova, L. Cavallaro, B. Gilbert, M. Szydlowski, R. Kemmerer,
Ch. Kruegel, and G. Vigna. Your botnet is my botnet: Analysis of a botnet
takeover. 16th ACM conference on Computer and communications security,
2009.

[139] W. T. Strayer, D. Lapsely, R. Walsh, and C. Livadas. Botnet detection based
on network behavior. Advances in Information Security, 36:1–24, 2008.

[140] Quan Sun. Sampling-based prediction of algorithm runtime. The University of
Waikato, 2009.

[141] Miroslaw Szymczyk. Detecting botnets in computer networks using multi-agent
technology. In Fourth International Conference on Dependability of Computer
Systems, 2009.

[142] Twitter API. http://blog.unmaskparasites.com/2009/12/09/twitter-api-still-
attracts-hackers/.

[143] S. T. Vuong and M. S. Alam. Advanced methods for botnet intrusion detection
systems. In Intrusion Detection Systems, 2011.

163

[144] Jing Wang and Ioannis Ch. Paschalidis. botnet detection based on anomaly
and community detection. IEEE Transactions on Control of Network Systems,
PP, 2016.

[145] K. Wang, Ch. Huang, Sh. Lin, and Y. Lin. A fuzzy pattern-based filtering
algorithm for botnet detection. Computer Networks, 55:3275–3286, 2011.

[146] Weka. http://www.cs.waikato.ac.nz/ml/weka/.

[147] P. Wurzinger, L. Bilge, Th. Holz, J. Goebel, Ch. Kruegel, and E. Kirda. Auto-
matically generating models for botnet detection. In 14th European conference
on research in computer security (ESORICS), 2009.

[148] Kui Xu, Danfeng Yao, Qiang Ma, and Alexander Crowell. Detecting infection
onset with behavior-based policies. In 5th International Conference on Network
and System Security (NSS), 2011.

[149] S. Yadav, A. K. K. Reddy, A. L. N. Reddy, and S. Ranjan. Detecting algorith-
mically generated domain-flux attacks with dns traffic analysis. IEEE/ACM
Transaction on Networking, 20:1663–1677, 2012.

[150] Qiben Yan, Yao Zheng, Tingting Jiang, Wenjing Lou, and Y. Thomas Hou.
Peerclean: Unveiling peer-to-peer botnets through dynamic group behavior
analysis. In Computer Communications (INFOCOM), 2015.

[151] H. R. Zeidanloo, A. Bt Manaf, P. Vahdani, F. Tabatabaei, and M. Zamani.
Botnet detection based on traffic monitoring. In Networking and Information
Technology (ICNIT), 2010.

[152] Han Zhang and Christos Papadopoulos. Bottalker: Generating encrypted, cus-
tomizable c&c traces. In Symposium on Technologies for Homeland Security
(HST), 2015.

[153] J. Zhang, Ch. Chen, Y. Xiang, W. Zhou, and A. Vasilakos. An effective net-
work classification method with unknown flow detection. IEEE Transactions
on Network and Service Management, 10, 2013.

[154] J. Zhang, R. Perdisci, U. Sarfaraz W. Lee, and Z. Luo. Detecting stealthy
p2p botnets using statistical traffic fingerprints. In Dependable Systems and
Networks (DSN), 2011.

[155] D. Zhao, I. Traore, A. Ghorbani, B. Sayed, S. Saad, and W. Lu. Peer-to-peer
botnet detection based on flow intervals. In IFIP international information
security and privacy, 2012.

[156] D. Zhao, I. Traore, B. Sayed, W. Lu, andA. Ghorbani S. Saad, and D. Garant.
Botnet detection based on traffic behavior analysis and flow intervals. Comput-
ers and Security, 39, 2013.

Appendix A

Domain name samples

A.1 Malicious samples

1. iemvirtual.com.ar (Citadel)

2. secretgate.igg.biz (Citadel)

3. pcjwa.com (Conficker)

4. itmsl.co.uk (Conficker)

5. blindry.com (Torpig)

6. aztecinternational.com.au (Torpig)

7. liceobilinguejuvenil.edu.co (Zeus)

8. www.andra.com.br (Zeus)

A.2 Legitimate samples

1. google.com.br

2. wordpress.com

3. livejournal.com

4. search-results.com

5. guardian.co.uk

6. cj.com

7. commentcamarche.net

8. adjuggler.com

164

Appendix B

Softflowd detailed feature representation analysis

Although in Section 6.1 the effect of feature representation was investigated for the

Tranalyzer flow exporter (as the choice of exporter in this thesis), a brief evaluation

was done on Softflowd as well because it represents the basic netflow features which

are more commonly used in the literature.

Two feature sets, namely Softflowd set.1 and Softflowd set.2, are extracted and

analyzed in this section. To prepare the data sets, Softflowd is used to provide 14

flow attributes with the default parameters. All of the numeric attributes that can be

employed directly by the ML classifiers are used to form the Softflowd set.1 (except the

5-tuple). The binary representation of the ’TCP-flag’ is used to introduce Softflowd

set.2. Table B.1 summarizes the attributes that are utilized. A detailed definition of

the attributes can be found on the Softflowd project web site [21]. Since the traffic

generated/collected for each of the data sets is different, after extracting the flows,

the data sets were then divided into two parts (Training and Testing) based on: (i) a

≈ 30(70)% breakdown for the testing (training) respectively; and (ii) keeping enough

samples of each class in both of the data sets. In this case, four sets of botnet data on

conficker, Zeus and Torpig botnets were employed. Table B.2 indicates the number

of flow samples employed in this analysis for each data set.

Table B.1: The Softflowd features employed.

Softflowd set.1 & 2 Softflowd set.2 only

Duration Flag-A
Total number of packets (Pkts) Flag-P
Total number of bytes (Byts) Flag-R
Flows Flag-S
Type of Service (TOS) Flag-F
Bits per second (bps) Flag-U
Packets per second (pps)
Bytes per packet (Bpp)

165

166

Table B.2: The number of flows in each data set employed.

Data Set
Training Testing

Legit Botnet Legit Botnet

Zeus-D (NIMS) 6099 6099 2614 2614
Zeus-T1 (NIMS) 611 611 262 262

Zeus
252 252 108 108

(NETRESEC)
Zeus (Snort) 100 100 43 43

Conficker-D (NIMS) 28951 28921 12386 12416
Torpig-D (NIMS) 1864 1856 794 800

In this section, C4.5 and the SBB machine learning algorithm were selected as the

classifiers because: (i) both of them generate solutions (models) that are in human

readable format, enabling the analysis of the learned models, and (ii) both approaches

share an ability to perform attribute selection which will be used later to gain insight

on how botnets are communicating using HTTP.

Tables B.3 and B.4 present the classification results of C4.5 and SBB employing

the two different feature sets. The first feature set (Softflowd set.1) consists of the

default numerical flow features exported by Softflowd whereas the second feature set

(Softflowd set.2) augments the default numerical flow features with the numerically

encoded TCP-Flag attributes. As shown in Table B.3, some of the FPRs are high

when using Softflowd set.1 with C4.5 and SBB. Having said this, both of the classifiers

performed equally well on Zeus-T1 (NIMS), Zeus (NETRESEC), Zeus (Snort) and

Conficker (NIMS) while using Softflowd set.1. However, the performance results on

Torpig-D (NIMS) and Zeus-D (NIMS) are much lower than the others when Softflowd

set.1 is employed as the feature set. This observation indicates that the Torpig and

Zeus-D (NIMS) botnet characteristics cannot be well represented by the features of

Softflowd set.1.

The Softflowd set.2 feature set was tested to investigate if ’TCP-flag’ would be

beneficial for improving classification performance for Torpig-D (NIMS) and Zeus-

D (NIMS) specifically. Table B.4 shows the results of these additional experiments

which indicate that the performance of almost all of the botnets [except for Zeus

(NETRESEC)] increased by at least 1% indicating that providing the TCP flags

as features to botnet classifiers can be beneficial. Surprisingly, the Torpig (NIMS)

167

Table B.3: Classification Results Using Softflowd set.1 Feature Set

Data Set Score
Legitimate Botnet Complexity

TPR FPR TPR FPR Time (sec) Solution Feature

C4.5

Zeus-D (NIMS) 84% 86% 17% 83% 14% 0.26 485 8
Zeus-T1 (NIMS) 97% 96% 1% 99% 4% 0.01 29 5

Zeus (NETRESEC) 97% 97% 3% 97% 3% 0.04 43 8
Zeus (Snort) 93% 98% 12% 88% 2% 0 13 4

Conficker-D (NIMS) 92% 91% 7% 93% 9% 2.71 411 6
Torpig-D (NIMS) 68% 91% 55% 45% 9% 0.07 49 6

SBB

Zeus-D (NIMS) 77% 80% 27% 73% 20% 185.56 27 5
Zeus-T1 (NIMS) 97% 96% 1% 99% 4% 176.98 42 6

Zeus (NETRESEC) 90% 93% 13% 87% 7% 29.57 6 3
Zeus (Snort) 98% 98% 2% 98% 2% 6.39 53 5

Conficker-D (NIMS) 90% 89% 9% 91% 11% 178.10 81 7
Torpig-D (NIMS) 65% 92% 63% 37% 8% 186.12 20 4

Table B.4: Classification Results Using Softflowd set.2 Feature Set

Data Set Score
Legitimate Botnet Complexity

TPR FPR TPR FPR Time (sec) Solution Feature

C4.5

Zeus-D (NIMS) 87% 90% 16% 84% 10% 0.24 457 9
Zeus-T1 (NIMS) 97% 97% 3% 97% 3% 0.01 35 9

Zeus (NETRESEC) 96% 97% 6% 94% 3% 0.01 29 8
Zeus (Snort) 98% 97% 1% 99% 3% 0 11 5

Conficker-D (NIMS) 94% 93% 5% 95% 7% 3.41 365 10
Torpig-D (NIMS) 99% 99% 1% 99% 1% 0.04 17 5

SBB

Zeus-D (NIMS) 78% 73% 18% 82% 27% 188.252 51 8
Zeus-T1 (NIMS) 97% 94% 0% 100% 6% 161.87 14 6

Zeus (NETRESEC) 90% 87% 7% 93% 13% 36.80 48 8
Zeus (Snort) 100% 100% 0% 100% 0 8.22 41 8

Conficker-D (NIMS) 91% 90% 9% 91% 10% 192.44 41 9
Torpig-D (NIMS) 100% 100% 0% 100% 0% 109.23 60 11

results were improved by more than 30% when traffic was represented using the

Softflowd set.2 feature set, implying that the six flag features of Softflowd set.2 were

particularly effective at characterizing the Torpig botnet. Moreover, there appears to

be no disadvantage in using the Softflowd set.2 attributes.

Comparing the results on complexity criteria (Table B.4) there is not much differ-

ence between the solutions based on feature complexity (i.e. the number of features

used from the given set). However, there are significant differences in terms of time

and solution complexities. In this regard, the C4.5 training time is much less than the

SBB training time. By contrast, SBB obtained smaller solutions (e.g. 88% smaller

for the Conficker data set) based on the solution complexity. This enables SBB to

implement the solutions more efficiently. Given that such solutions need to operate at

network flow speeds, simpler solutions are more advantageous because the detection

system can perform faster with fewer rule/signatures. Although, in some cases low

complexity is caused by an under-performing solution, in others it is an indicator of

a good solution with low complexity.

To understand to what degree introducing the ’flag’-based features has effected

the solutions presented by the classifiers, they have been analyzed in detail. This type

168

of analysis should provide some insights on the Zeus, Conficker and Torpig botnet

behaviours.

B.1 C4.5 solution analysis

The C4.5 solution (after training using Softflowd set.2) for the Conficker botnet is a

very complex tree (365 rules). By contrast, the C4.5 solution (after training using

Softflowd set.2) for the Torpig botnet resulted in a very small tree with a very high

performance. As 65% of the nodes in the decision tree of the Torpig botnet utilized

the flag-based features (which were not included in Softflowd set.1), it appears that

Torpig employs these flags to tag its packets in a non-routine way.

Additionally, the C4.5 solutions were analyzed for the various Zeus botnet data

sets employed in this work. Due to the high complexity of Zeus-1 (NIMS), no distinct

rule could be observed other than the very limited usage of flag-based features versus

the highly used features related to the number of bytes and packets (such as ’Pkts’

and ’bps’). By contrast, analysis of the other three Zeus botnet data sets shows that

’Pkts’ (the total number of packets in a flow), ’Byts’ (’the total number of bytes in a

flow), ’Flag-S’ (indicating the status of the TCP SYN flag in the communication) and

’Flag-F’ (the status of the TCP FIN flag in the communication) are utilized widely.

To this end, in Zeus (NETRESEC), 15% of the botnet training samples were labelled

using ’Flag-R’ (when the TCP reset flag is set in the communication) or in Zeus

(Snort), 80% of the training data set is labeled based on ’Pkts’ and ’Byts’ (Fig. B.1).

Although the flag-based features are used by C4.5 to build the classification models

for the Zeus botnets, comparing the C4.5 results of Softflowd set.1 and set.2 shows

that there are some fluctuations in the performance of the classifier from one Zeus

data set to another when flag features are employed. It seems that these features do

help in the identification of the Zeus botnet traffic downloaded from the Snort web

site as well as the Zeus-1 traffic. However, it seems as though it does not help in the

identification of the Zeus botnet traffic downloaded from the NETRESEC site nor the

Zeus-2 traffic. However, in both of these cases, the decrease in DR is compensated by

the improvement in the FPR. This observation indicates that not all versions of the

Zeus botnet utilize the TCP flags in their communication (considering that different

data sets may belong to different versions of this botnet).

169

Figure B.1: Part of the Zeus (Snort) C4.5 decision tree

B.2 SBB solution Analysis

In SBB, the champion team on the training dataset is selected as the final solution,

which is then applied to the test dataset for performance evaluation. Under SBB the

champion classifier takes the form of a team of programs. Each program is associated

only with a single class label. This provides a level of task decomposition that is not

possible under C4.5.

Figure B.2 shows an example of a Torpig class-1 learner’s instruction set which is

part of SBB’s solution for the Torpig botnet i.e., a subset of the SBB solution shown

in Table B.4. The program’s instruction count is reduced to 2 from 7 by pruning (cf.,

intron removal). The pruned instruction set indicates that the learner multiplies the

’Bpp’ (Bytes per packet) value by 0.54 if ’Flag-U’ (indicating the urgent TCP flag)

is set, returning the ’Bpp’ value otherwise. Knowing that if this learner wins the bid

over a data sample, it labels the sample as a botnet implies that samples with the

’Flag-U’ set look more suspicious and are labelled as a botnet.

The use of flag bits in malware communication has already been suspected by

other research [139]. Observation supports this hypothesis for the Torpig botnet on

the data sets analyzed. SBB used the ’Pkts’ and ’bps’ (stands for bits per seconds)

features the most for all of the botnets while for the Torpig botnet, it also utilized

the ’Flag-S’ and ’Flag-U’ frequently. When SBB solutions using Softflowd set.1 and

Softflowd set.2 are compared against each other, similar trends are observed in the

behaviour of the C4.5 classifier. There are some fluctuations in the performance of

the SBB classifier from one Zeus data set to another when flag features are employed.

SBB’s solutions indicate that the versions of the Zeus botnet seem to be different from

one Zeus traffic file to another. For SBB flag features improve solution performance,

specially for Zeus Snort and Torpig botnets. As well, in most cases it introduces an

improvement in the false alarm rates for SBB.

170

Figure B.2: SBB- a sample learner instruction set with botnet label on the Torpig–
Softflowd set.2 set.

In summary, the Softflowd set.2 feature set performed better in terms of a higher

Score and a lower FPR. In other words, using the ’TCP-flag’ binary representation

does have an effect when using basic netflow features (exported by Softflowd). This

is not consistent with the results in Section 6.1. This might be caused by the wide

range of features provided by Tranalyzer, very well representing the botnet traffic,

which have reduced the effect of ’TCP-flag’ usage and representation.

Furthermore, analysis of both the SBB and C4.5 decision tree could help us to

recognize the most important features of the attribute set and also the direct/indirect

relationships between these features. Table B.5 shows all of the features employed

by each of the classifiers on each of the botnet data sets. As the table indicates,

SBB and C4.5 use different feature sets from one botnet to another. This implies

that the classifiers are learning different behaviours. There are some obvious similar-

ities/differences between the features employed by the classifiers such as those listed

below.

(i) Almost all of the classifiers used ’Pkts’ and ’bps’. This shows the importance

of these features in botnet detection.

(ii) C4.5 did not use the ’ToS’ and ’Flows’ features at all while SBB used at least

one of them in all types of botnet classification.

(iii) The features employed by C4.5 and SBB for the Zeus (Snort) classification are

almost complementary while SBB’s selected feature set could obtain a 100% detection

171

Table B.5: Feature Matrix.

Zeus-D Zeus-T1 Zeus Zeus Conficker-D Torpig-D
(NIMS) (NIMS) (NETRESEC) (Snort) (NETRESEC) (NIMS)

Feature C4.5 SBB C4.5 SBB C4.5 SBB C4.5 SBB C4.5 SBB C4.5 SBB

Duration X X X - X - - X X - - X
Packets X X X X X X X - X X - X
Bytes X - X - X X X - X X - X
Flows - - - X - X - X - - - X
ToS - X - X - X - - - X - X
bps X X X X X X - X X X X X
pps X - - - X X X X X X - X
Bpp X X X - X - - X X - X X
Flag-A X X X - - - X - X X X X
Flag-P - X - X - - - - X X - -
Flag-R - - X X X - - X - X - -
Flag-S X - X - X - - X X X X X
Flag-F X - X - - X X X X - X -
Flag-U - X - - - X - - - - - X

rate with a zero FPR.

(iv) In the Zeus-1 (NIMS) data set where the performance is lower than expected,

the features selected by the two classifiers do not overlap much. This raises the ques-

tion of whether the performance would increase by finding a solution that combines

these two different solutions with complementary feature sets.

Appendix C

Non-numeric Feature Representation

Below are listed the detailed results of the non-numeric feature representation analysis

in Section 6.1.1.2.

Table C.1: Non-numeric feature representation– classification results with no TCP
flag.

Data Set Score
Botnet Legitimate Complexity

TPR FPR TNR FNR Time (sec) Solution

C4.5

Zeus-D (NIMS) 99.7% 99.7% 0.3% 99.7% 0.3% 39 477
Citadel-D (NIMS) 99.55% 99.6% 0.5% 99.5% 0.4% 2.05 125
Torpig-D (NIMS) 98.15% 98.2% 1.9% 98.1% 1.8% 0.85 119

Conficker-D (NIMS) 100% 100% 0% 100% 0% 4570.8 739
Zeus-T1-1 (NIMS) 99.85% 100% 0.3% 99.7% 0% 0.24 9
Zeus-T1-2 (NIMS) 100% 100% 0% 100% 0% 19.72 43
Zeus-T1-W (NIMS) 99.8% 99.9% 0.3% 99.7% 0.2% 0.29 19

Zeus-T2 (NIMS) 99.95% 99.9% 0% 100% 0.1% 2.28 41
Zeus-T2-W (NIMS) 99.85% 99.8% 0.2% 99.8% 0.2% 0.34 21
Citadel-T1 (NIMS) 99.9% 99.9% 0.1% 99.9% 0.1% 1.06 31

Citadel-T1-W (NIMS) 99.85% 99.9% 0.2% 99.8% 0.1% 0.83 39
Zeus (CVUT) 99.95% 100% 0.1% 99.9% 0% 2779.2 1185

Kelihos (CVUT) 99.9% 99.9% 0.1% 99.9% 0.1% 1149.57 849
Neris (CVUT) 99.8% 99.8% 0.2% 99.8% 0.2% 612.05 1129
NSIS (CVUT) 99.25% 99.3% 0.8% 99.2% 0.7% 5.38 275
Virut (CVUT) 99.9% 99.9% 0.1% 99.9% 0.1% 215 481
Rbot (CVUT) 99.6% 99.6% 0.4% 99.6% 0.4% 61.89 487

ZeroAccess (CVUT) 99.95% 100% 0.1% 99.9% 0% 94.85 135
Zeus (Snort) 100% 100% 0% 100% 0% 0.05 3

Zeus (NETRESEC) 97.5% 98% 3.0% 97.0% 2.0% 0.15 27
Kelihos (NETRESEC) 99.8% 99.8% 0.2% 99.8% 0.2% 0.52 25
Cutwail (NETRESEC) 99.65% 99.8% 0.5% 99.5% 0.2% 1.08 57
Citadel (NETRESEC) 98.7% 99.6% 2.2% 97.8% 0.4% 0.24 21

Conficker (CAIDA) 99.95% 100% 0.1% 99.9% 0% 7454.18 1317
ISOT (Uvic) 99.8% 99.8% 0.2% 99.8% 0.2% 82.57 525

SBB

Zeus-D (NIMS) 98.6% 97.41% 0.21% 99.79% 2.39% 205.282 36
Citadel-D (NIMS) 99.55% 99.3% 0.2% 99.8% 0.7% 653.621 69
Torpig-D (NIMS) 97.4% 95.6% 0.7% 99.2% 4.3% 1296.15 78

Conficker-D (NIMS) 98.5% 98.5% 1.5% 98.5% 1.5% 1321 75
Zeus-T1-1 (NIMS) 100% 100% 0% 100% 0% 217.272 33
Zeus-T1-2 (NIMS) 99.99% 99.98% 0% 100% 0.02% 261.93 24
Zeus-T1-W (NIMS) 100% 100% 0% 100% 0% 383.501 43

Zeus-T2 (NIMS) 99.97% 99.94% 0% 100% 0.06% 279.6 36
Zeus-T2-W (NIMS) 100% 100% 0% 100% 0% 428.962 44
Citadel-T1 (NIMS) 100% 100% 0% 100% 0% 295.55 30

Citadel-T1-W (NIMS) 99.9% 99.8% 0% 100% 0.2% 346.11 12
Zeus (CVUT) 98.06% 99.89% 3.77% 96.23% 0.11% 1280.79 56

Kelihos (CVUT) 97.74% 99.19% 3.71% 96.29% 0.81% 295.55 30
Neris (CVUT) 93.19% 97.21% 10.84% 89.16% 2.79% 240.611 31
NSIS (CVUT) 94.09% 92.11% 3.93% 96.07% 7.89% 235.439 58
Virut (CVUT) 98.29% 98.25% 1.67% 98.33% 1.75% 214.754 17
Rbot (CVUT) 97% 95.5% 1.5% 98.5% 4.5% 453 41

ZeroAccess (CVUT) 99.39% 99.63% 0.84% 99.16% 0.37% 279.6 38
Zeus (Snort) 100% 100% 0% 100% 0% 157.42 4

Zeus (NETRESEC) 99.17% 99.17% 0.8% 99.17% 0.8% 221.14 28
Kelihos (NETRESEC) 99.95% 100% 0.1% 99.9% 0% 430.918 37
Cutwail (NETRESEC) 99.8% 99.7% 0.1% 99.9% 0.3% 479.436 43
Citadel (NETRESEC) 99.15% 100% 1.7% 98.3% 0% 406.614 27

Conficker (CAIDA) 99.07% 99.01% 0.88% 99.12% 0.99% 235.439 58
ISOT (Uvic) 93.12% 97.36% 11.1% 88.89% 2.6% 214.76 17

172

173

Table C.2: Non-numeric feature representation– classification results for numerical
representation.

Data Set Score
Botnet Legitimate Complexity

TPR FPR TNR FNR Time (sec) Solution

C4.5

Zeus-D (NIMS) 99.8% 99.8% 0.2% 99.8% 0.2% 26.97 399
Citadel-D (NIMS) 99.6% 99.6% 0.4% 99.6% 0.4% 1.94 97
Torpig-D (NIMS) 98.1% 98.3% 2.1% 97.9% 1.7% 0.84 121

Conficker-D (NIMS) 99.85% 99.8% 0.1% 99.9% 0.2% 4752.02 751
Zeus-T1-1 (NIMS) 99.85% 100% 0.3% 99.7% 0% 0.23 9
Zeus-T1-2 (NIMS) 100% 100% 0% 100% 0% 12.2 43
Zeus-T1-W (NIMS) 99.8% 99.9% 0.3% 99.7% 0.1% 0.33 19

Zeus-T2 (NIMS) 99.95% 99.9% 0% 100% 0.1% 2.21 41
Zeus-T2-W (NIMS) 99.8% 99.8% 0.2% 99.8% 0.2% 0.31 21
Citadel-T1 (NIMS) 99.9% 99.9% 0.1% 99.9% 0.1% 1.07 31

Citadel-T1-W (NIMS) 99.85% 99.9% 0.2% 99.8% 0.1% 0.82 39
Zeus (CVUT) 99.95% 100% 0.1% 99.9% 0% 2620.01 1199

Kelihos (CVUT) 99.9% 99.9% 0.1% 99.9% 0.1% 1321.3 847
Neris (CVUT) 99.8% 99.8% 0.2% 99.8% 0.2% 666.7 1119
NSIS (CVUT) 99.25% 99.3% 0.8% 99.2% 0.7% 5.88 279
Virut (CVUT) 99.9% 99.9% 0.1% 99.9% 0.1% 233.98 479
Rbot (CVUT) 99.65% 99.6% 0.3% 99.7% 0.4% 68.34 485

ZeroAccess (CVUT) 99.95% 100% 0.1% 99.9% 0% 97.28 135
Zeus (Snort) 100% 100% 0% 100% 0% 0.06 5

Zeus (NETRESEC) 97.65% 98.0% 2.7% 97.3% 2.0% 0.15 25
Kelihos (NETRESEC) 99.8% 99.8% 0.2% 99.8% 0.2% 0.52 25
Cutwail (NETRESEC) 99.65% 99.8% 0.5% 99.5% 0.2% 1.07 57
Citadel (NETRESEC) 98.7% 99.6% 2.2% 97.8% 0.4% 0.25 21

Conficker (CAIDA) 99.9% 99.9% 0.1% 99.9% 0.1% 7605.13 1354
ISOT (Uvic) 99.8% 99.8% 0.2% 99.8% 0.2% 110.04 515

SBB

Zeus-D (NIMS) 98.58% 97.26% 0.1% 99.9% 2.73% 372.256 47
Citadel-D (NIMS) 99.65% 99.35% 0.15% 98.5% 0.65% 667.2 73
Torpig-D (NIMS) 97.5% 96% 1% 99% 4% 1118.265 75

Conficker-D (NIMS) 98.3% 98.3% 1.6% 98.4% 1.7% 1221 79
Zeus-T1-1 (NIMS) 100% 100% 0% 100% 0% 229.486 26
Zeus-T1-2 (NIMS) 99.99% 99.98% 0% 100% 0.2% 197.21 17
Zeus-T1-W (NIMS) 100% 100% 0% 100% 0% 397.1 29

Zeus-T2 (NIMS) 99.98% 100% 0% 99.97% 0% 327.256 67
Zeus-T2-W (NIMS) 100% 100% 0% 100% 0% 452.65 39
Citadel-T1 (NIMS) 100% 100% 0% 100% 0% 325.584 36

Citadel-T1-W (NIMS) 99.8% 99.8% 0.2% 99.8% 0.2% 346.11 15
Zeus (CVUT) 98.66% 99.29% 1.97% 98.03% 0.71% 1047.53 23

Kelihos (CVUT) 97.74% 99.38% 3.59% 96.51% 0.62% 338 71
Neris (CVUT) 92.5% 96.9% 10.88% 90.12% 3.1% 301.25 42
NSIS (CVUT) 94.09% 91.9% 4% 96% 8.1% 343 29
Virut (CVUT) 98.29% 98.12% 1.5% 98.5% 1.88% 237.12 26
Rbot (CVUT) 97% 95.67% 2.5% 97.5% 4.33% 433 47

ZeroAccess (CVUT) 99.27% 99.53% 1% 99% 0.37% 195.5 34
Zeus (Snort) 100% 100% 0% 100% 0% 147.017 2

Zeus (NETRESEC) 99.17% 98.33% 0% 100% 1.67% 378.048 74
Kelihos (NETRESEC) 99.21% 99.52% 1.1% 98.9% 0.48% 179.89 29
Cutwail (NETRESEC) 100% 100% 0% 100% 0% 445.1 51
Citadel (NETRESEC) 99.4% 100% 1.2% 98.8% 0% 422.33 40

Conficker (CAIDA) 99% 99% 1% 99% 1% 264.29 76
ISOT (Uvic) 92.95% 96% 11.1% 89.9% 4% 218.22 70

174

Table C.3: Non-numeric feature representation– classification results for Nominal
representation.

Data Set Score
Botnet Legitimate Complexity

TPR FPR TNR FNR Time (sec) Solution

C4.5

Zeus-D (NIMS) 99.75% 99.7% 0.2% 99.8% 0.3% 35.33 531
Citadel-D (NIMS) 99.6% 99.6% 0.4% 99.6% 0.4% 2.31 97
Torpig-D (NIMS) 98.1% 98.3% 2.1% 97.9% 1.7% 0.87 121

Conficker-D (NIMS) 99.5% 99.5% 0.5% 99.5% 0.5% 4856.54 849
Zeus-T1-1 (NIMS) 99.85% 100% 0.3% 99.7% 0% 0.26 9
Zeus-T1-2 (NIMS) 99.95% 99.9% 0% 100% 0.1% 16.64 21
Zeus-T1-W (NIMS) 99.8% 99.9% 0.3% 99.7% 0.1% 0.32 19

Zeus-T2 (NIMS) 99.95% 99.9% 0% 100% 0.1% 2.49 41
Zeus-T2-W (NIMS) 99.85% 99.8% 0.2% 99.8% 0.2% 0.33 21
Citadel-T1 (NIMS) 99.9% 99.9% 0.1% 99.9% 0.1% 1.17 31

Citadel-T1-W (NIMS) 99.85% 99.9% 0.2% 99.8% 0.1% 0.88 39
Zeus (CVUT) 100% 100% 0% 100% 0% 2876.16 1401

Kelihos (CVUT) 99.9% 99.9% 0.1% 99.9% 0.1% 1296.13 847
Neris (CVUT) 99.8% 99.8% 0.2% 99.8% 0.2% 515.11 1119
NSIS (CVUT) 99.25% 99.3% 0.8% 99.2% 0.7% 5.49 279
Virut (CVUT) 99.85% 99.9% 0.1% 99.8% 0.1% 243.85 479
Rbot (CVUT) 99.65% 99.6% 0.3% 99.7% 0.4% 65.25 485

ZeroAccess (CVUT) 99.95% 100% 0.1% 99.9% 0% 119.09 135
Zeus (Snort) 100% 100% 0% 100% 0% 0.06 3

Zeus (NETRESEC) 97.4% 98% 3.2% 96.8% 2.0% 0.15 27
Kelihos (NETRESEC) 99.8% 99.8% 0.2% 99.8% 0.2% 0.55 25
Cutwail (NETRESEC) 99.6% 99.8% 0.5% 99.5% 0.2% 1.15 57
Citadel (NETRESEC) 98.7% 99.6% 2.2% 97.8% 0.4% 0.24 21

Conficker (CAIDA) 99% 99% 1% 99% 1% 8011 1319
ISOT (Uvic) 99.8% 99.8% 0.2% 99.8% 0.2% 105.19 515

SBB

Zeus-D (NIMS) 98.75% 97.57% 0.06% 99.94% 2.4% 206.171 72
Citadel-D (NIMS) 99.2% 99.3% 0.9% 99.1% 0.7% 645.2 85
Torpig-D (NIMS) 97% 97% 3% 97% 3% 1005 73

Conficker-D (NIMS) 98.6% 98.7% 1.5% 98.5% 1.3% 1400.1 90
Zeus-T1-1 (NIMS) 100% 100% 0% 100% 0% 220.4 13
Zeus-T1-2 (NIMS) 99.99% 99.98% 0% 100% 0.02% 365.879 75
Zeus-T1-W (NIMS) 99.9% 99.9% 0.1% 99.9% 0.1% 448 66

Zeus-T2 (NIMS) 99.97% 99.98% 0% 100% 0.02% 305.67 30
Zeus-T2-W (NIMS) 100% 100% 0% 100% 0% 428.962 44
Citadel-T1 (NIMS) 100% 100% 0% 100% 0% 326.5 37

Citadel-T1-W (NIMS) 99.9% 99.8% 0% 100% 0.2% 330.85 19
Zeus (CVUT) 98.52% 9.78% 2.8% 97.25% 0.2% 1558.73 43

Kelihos (CVUT) 98% 99% 3% 97% 1% 366 69
Neris (CVUT) 93.05% 98% 11.9% 88.1% 2% 300 32
NSIS (CVUT) 94.09% 92.11% 3.93% 96.07% 7.89% 370.917 32
Virut (CVUT) 98.28% 98.2% 1.65% 98.35% 1.8% 210.33 27
Rbot (CVUT) 97% 95.5% 1.5% 98.5% 4.5% 511 60

ZeroAccess (CVUT) 99% 99% 1% 99% 1% 191.835 25
Zeus (Snort) 100% 100% 0% 100% 0% 195.313 12

Zeus (NETRESEC) 98.75% 98.33% 0.8% 99.12% 1.7% 331.286 44
Kelihos (NETRESEC) 99.95% 100% 0.1% 99.9% 0% 519.62 59
Cutwail (NETRESEC) 99.8% 99.8% 0.2% 99.8% 0.2% 617.39 72
Citadel (NETRESEC) 99.1% 99.3% 1.1% 98.9% 0.7% 595.6 33

Conficker (CAIDA) 99.05% 99% 0.9% 99.1% 1% 399.3 56
ISOT (Uvic) 93% 96% 10% 90% 4% 573.66 85

175

Table C.4: Non-numeric feature representation– classification results for binary rep-
resentation.

Data Set Score
Botnet Legitimate Complexity

TPR FPR TNR FNR Time (sec) Solution

C4.5

Zeus-D (NIMS) 99.8% 99.8% 0.2% 99.8% 0.2% 29.78 411
Citadel-D (NIMS) 99.57% 99.6% 0.5% 99.5% 0.4% 2.3 97
Torpig-D (NIMS) 98.2% 98.4% 2% 98% 1.6% 0.86 119

Conficker-D (NIMS) 100% 100% 0% 100% 0% 5167.55 837
Zeus-T1-1 (NIMS) 99.85% 100% 0.3% 99.7% 0% 0.25 9
Zeus-T1-2 (NIMS) 100% 100% 0% 100% 0% 15.92 45
Zeus-T1-W (NIMS) 99.8% 99.9% 0.3% 99.7% 0.1% 0.3 19

Zeus-T2 (NIMS) 99.95% 99.9% 0% 100% 0.1% 2.28 41
Zeus-T2-W (NIMS) 99.85% 99.8% 0.2% 99.8% 0.2% 0.33 21
Citadel-T1 (NIMS) 99.9% 99.9% 0.1% 99.9% 0.1% 1.15 31

Citadel-T1-W (NIMS) 99.85% 99.9% 0.2% 99.8% 0.1% 0.83 39
Zeus (CVUT) 100% 100% 0% 100% 0% 3562.22 1239

Kelihos (CVUT) 99.95% 99.9% 0.1% 99.9% 0.1% 14.56 845
Neris (CVUT) 99.8% 99.8% 0.2% 99.8% 0.2% 587.1 1089
NSIS (CVUT) 99.3% 99.3% 0.7% 99.3% 0.3% 5.64 275
Virut (CVUT) 99.9% 99.9% 0.1% 99.9% 0.1% 221.73 481
Rbot (CVUT) 99.65% 99.6% 0.4% 99.6% 0.4% 48.55 499

ZeroAccess (CVUT) 99.95% 100% 0.1% 99.9% 0% 102.01 135
Zeus (Snort) 100% 100% 0% 100% 0% 0.06 3

Zeus (NETRESEC) 97.26% 97.5% 3.0% 97.0% 2.5% 0.11 5
Kelihos (NETRESEC) 99.8% 99.8% 0.2% 99.8% 0.2% 0.57 25
Cutwail (NETRESEC) 99.6% 99.8% 0.5% 99.5% 0.2% 1.08 57
Citadel (NETRESEC) 98.66% 99.6% 2.3% 97.7% 0.4% 0.25 21

Conficker (CAIDA) 99.9% 99.9% 0.1% 99.9% 0.1% 7756.66 1498
ISOT (Uvic) 99.85% 99.8% 0.1% 99.9% 0.2% 94.04 521

SBB

Zeus-D (NIMS) 98.55% 97.42% 0.32% 99.68% 2.6% 303.291 39
Citadel-D (NIMS) 99.5% 99.5% 0.5% 99.5% 0.5% 721.5 109
Torpig-D (NIMS) 98.5% 98.5% 2.5% 98.5% 2.5% 1109 185

Conficker-D (NIMS) 98.5% 98.5% 1.5% 98.5% 1.5% 1400.1 128
Zeus-T1-1 (NIMS) 100% 100% 0% 100% 0% 198.039 25
Zeus-T1-2 (NIMS) 99.99% 99.98% 0% 100% 0.02% 286.251 41
Zeus-T1-W (NIMS) 99.9% 99.9% 0.1% 99.9% 0.1% 448 69

Zeus-T2 (NIMS) 99.97% 99.94% 0% 100% 0.06% 331.573 14
Zeus-T2-W (NIMS) 99.9% 99.9% 0.1% 99.9% 0.1% 598.78 81
Citadel-T1 (NIMS) 99.9% 99.9% 0.1% 99.9% 0.1% 465.38 66

Citadel-T1-W (NIMS) 99.9% 99.8% 0% 100% 0.2% 485.22 31
Zeus (CVUT) 98.46% 99.90% 2.99% 97.01% 0.01% 1231.87 60

Kelihos (CVUT) 98.1% 99.1% 2.9% 97.1% 0.9% 359 73
Neris (CVUT) 93% 98% 12% 88% 2% 372 38
NSIS (CVUT) 94.17% 92.1% 3.93% 96.24% 7.89% 335 41
Virut (CVUT) 98.4% 98.2% 1.4% 98.6% 1.8% 256.2 45
Rbot (CVUT) 97.5% 96.7% 1.7% 98.3% 3.3% 496.82 90

ZeroAccess (CVUT) 98.95% 98.9% 1% 99% 1.1% 248.368 74
Zeus (Snort) 100% 100% 0% 100% 0% 130.715 6

Zeus (NETRESEC) 99.17% 98.33% 0% 100% 1.67% 347.745 38
Kelihos (NETRESEC) 100% 100% 0% 100% 0% 553.2 81
Cutwail (NETRESEC) 99.79% 99.8% 0.22% 99.78% 0.2% 663 87
Citadel (NETRESEC) 99% 99% 1% 99% 1% 568.898 62

Conficker (CAIDA) 99.1% 99.1% 0.9% 99.1% 0.9% 455.71 110
ISOT (Uvic) 94% 96% 9% 91% 4% 722.95 132

