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ABSTRACT 

 

In an effort to provide an analyst with the fundamental knowledge required to 

successfully predict dynamic structural response, a detailed summary of dynamic 

stresses, review of dynamic pulse buckling and verified numerical examples are 

provided.  The dynamic stress wave characteristics described herein, including strain-rate 

sensitivity, are reviewed within the literature with respect to dynamic pulse buckling. 

Many numerical studies within the literature utilize experimental studies to verify their 

approach to the dynamic pulse buckling problem. Several of the experimental studies 

utilized in the literature, were numerically analyzed herein and post-processed to provide 

a detailed investigation of stress wave propagation characteristics in impact problems of 

simple structures. The characteristics of stress wave propagation within a complex (ship 

double bottom) structure were investigated numerically. Several variations were observed 

between stress wave propagation within simple and complex plated structures. 
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CHAPTER 1 INTRODUCTION 

 

 

Marine and offshore structures are complex systems subject to dynamic and extreme 

loading environments. The level of dynamic or extreme loading is specific to the platform 

or ship type, as a design requirement or accidental limit state. Some examples of extreme 

loads include: wave slamming, ship-platform impact, ice impact, air blast and underwater 

explosions, as well as hurricane force wind and wave loads. Although operational safety 

procedures and international design requirements are implemented to reduce the level of 

damage, and increase the likelihood of surviving such events, accidents occur causing 

structural damage. The level of damage is a function of the ship or platform type, 

structural configuration and loading event. Predicting the dynamic response of marine 

and offshore structures under dynamic loading events requires a broad knowledge 

specific to each structure type and loading environment. A common factor shared by 

structures is the behavior and response of the material undergoing the dynamic loading 

event.  

 

Some dynamic structural problems are commonly analyzed as an equivalent static 

problem. This is an adequate simplification when considering the modal response of the 

structure and quasi-static material characteristics. For dynamic structural problems 

governed by the stress wave propagation behavior and strain-rate sensitivity, the 

structural dynamics cannot be simplified. Accordingly, an understanding of dynamic 

stress and its application to structural stability, particularly under dynamic pulse buckling 

conditions are essential for analysts to properly determine structural response. 

 

A detailed summary of dynamic stresses, together with a review of dynamic pulse 

buckling and few verified numerical examples are provided in an effort to provide an 

analyst with the fundamental knowledge required to predict dynamic structural response. 

Stress wave propagation and its influence on structural response of simple examples are 

discussed in Chapters 2 and 3. The numerical examples in Chapter 4 provide a review of 

stress wave propagation to better explain the concepts discussed in the theory and 

literature.  
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The dynamic behavior of ductile materials was reviewed to investigate the influence it 

may have on material dynamic stress, how stresses propagate, and how to empirically 

predict the behavior of a particular material under dynamic loading conditions. 

 

Dynamic structural response governed by the dynamic material behaviour cannot be 

simplified as an equivalent static problem.  The analyst is required to understand the 

dynamic stress characteristics and their influence on structural stability. This includes the 

understanding and proper representation of dynamic stress wave propagation behaviour, 

strain rate sensitivity, geometric and loading imperfections, stability criteria and physical 

mechanics (momentum and kinetic energy) of the problem.  
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CHAPTER 2 BACKGROUND 

 

 

Evaluating the response of a structure subject to dynamic loading events is a complex 

problem with additional challenges specific to the loading environment. A commonality 

amongst dynamic problems is the material stress wave behavior. Stress wave propagation 

characteristics are directly related to the medium material properties. The following 

sections discuss stress wave propagation in detail in addition to the material testing 

methodology required to determine the material characteristics.  

 

The ability of a material to resist dynamic loads is shown to be characterized by the 

dynamic yield strength of the material. The dynamic yield strength is a function of the 

material strain rate sensitivity. Materials that exhibit a high sensitivity to strain rate have 

correspondingly higher dynamic yield strengths than the quasi-static yield strength. The 

strain rate sensitivity of a material can be determined at various loading rates can be 

studied using a number of techniques that include: the Split Hopkinson Bar [42], Taylor 

[79] and Flyer Plate [25] tests. 

 

Elastic stress wave mechanics are implemented during the Split Hopkinson Bar test to 

extract the stress, strain and strain rate time functions for strain rates between 10
2
-10

4
 s

-1
. 

For strain rate sensitivities at rates above 10
4 

s
-1

 and high plastic strain levels, the Taylor 

test is implemented. To determine the equation of state (EOS) of a material in a shocked 

state and the spallation stress, the Flyer Plate test is used. Such experimental tests may be 

used to determine the material characteristics at high strain rates and based on the 

resulting material characteristics, the suitability of a tested material may be determined 

for a particular application.   

 

Once its characteristics are known, the dynamic yield strength of the material at various 

strain rates may then be approximated using a constitutive equation. The Cowper-

Symonds [19] and Johnson-Cook [33] constitutive equations are presented to provide 

examples of simple (Cowper-Symonds) and relatively complicated (Johnson-Cook) 

equations. The application of either equation depends on the available material 
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parameters and analysis requirements. The Johnson-Cook equation requires more 

material parameters than Cowper-Symonds; however, it accounts for and is sensitive to 

the instantaneous stress, strain rate and temperature. The Cowper-Symonds equation 

requires two material parameters and does not account for temperature.  

 

The response of an unknown material to dynamic loads may be empirically estimated by 

determining the dynamic yield strength experimentally or by approximating the stress-

strain behavior using a constitutive equation.  The experimental test must be chosen to 

reflect the strain rates expected during the dynamic loading application. The experimental 

testing procedure, stress wave mechanics and post processing calculations have been 

presented for strain rates above 10
2 

s
-1

.  

 

 

2.1 STRESS WAVE PROPAGATION 

A review of ductile material dynamic behavior has been conducted to investigate the 

influencing factors on material dynamic strength, stress propagation behavior and 

empirical prediction methods for a particular material under dynamic loading conditions. 

To understand the dynamic stress propagation within a material, the general 

characteristics of elastic, plastic and shock waves are discussed. Specifically, the stress 

wave interaction and specific material properties that govern the elastic, plastic and shock 

stress wave propagation are investigated. More specifically, the material sonic 

impedance, strain rate sensitivity, dynamic yield strength, Hugoniot [69], shock 

impedance, spallation and Equation of State (EOS) are presented.  

 

Experimental tests were developed to characterize the material response to each dynamic 

stress wave type. The material response to elastic stress waves is evaluated using the Split 

Hopkinson Bar test, and for the plastic stress wave response, the experimental Taylor test 

is applied. To evaluate the material shock impedance, Hugoniot and EOS of shock waves, 

the Flyer Plate Test is used.   
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The stress wave, corresponding material characteristics and experimental tests are 

presented in order of stress wave magnitude, following a brief description of dynamic 

stress. The elastic stress wave propagation and interaction characteristics, strain rate 

sensitivity, dynamic yield strength and Split Hopkinson Bar test are presented first. 

Constitutive equations follow the elastic stress waves to expand on strain rate effects. 

Thirdly, the plastic stress wave propagation characteristics, Taylor test and its 

corresponding calculations are discussed and finally shock stress wave propagation and 

interaction as well as shock wave material characteristics are explained.  

 

 

2.2   DYNAMIC STRESS 

The response of a material to a particular loading is a function of the material 

characteristics and the specific loading application. In general, a structure may be loaded 

statically or dynamically. The characteristics of the stress state developed from a static 

load are different from a dynamic load. If the loading is considered static, the unit cube in 

static equilibrium in Figure 1 is used to present the stresses on each face. For each stress �௜௝, ݅ is the axis of stress, and  ݆ is the direction of stress normal to ݅. For the unit cube 

under directional forces F1, F2 and F3 in static equilibrium, the three-dimensional stress 

state is expressed as: 

 ��௫భ��ଵ + ��௫భమ��ଶ + ��௫భయ��ଷ + ௫భܨ = Ͳ ��௫మ��ଶ + ��௫భమ��ଵ + ��௫మయ��ଷ + ௫మܨ = Ͳ 

��ೣయ�௫య + ��ೣభయ�௫భ + ��ೣభమ�௫మ + ௫యܨ = Ͳ       [1] 
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Figure 1 Unit stress cube at static equilibrium (reproduced from [57]). 

 

The details of elastic, plastic and shock wave dynamic stress wave propagation 

characteristics are explained in the sections to follow. A detailed derivation of the 

dynamic unit stress equations are provided in Meyers [57]. For the general dynamic stress 

discussion, it is important to understand that a dynamic stress has a direction and velocity 

with varying stress amplitude with time. The unit cube of a dynamic stress state in Figure 

2 presents the stresses propagating from the origin along X1. The cube is in a dynamic 

state. The stresses acting on opposite faces are not equal and one must account for the 

variation in stresses across a small parallelepiped with the sides parallel with coordinate 

system displayed in Figure 2. The normal stresses in Figure 2, similar to Figure 1 are 

presented as �ଵଵ and shear stresses �ଵଶ and �ଵଷ. The stress components on each face, 

expressed in tensorial notation, of the dynamic unit stress cube are: �௜௝ ± ��೔ೕ�௫ೕ ∙ భమߜ�௝         [2] 

where ± ��೔ೕ�௫ೕ ∙ భమߜ�௝ is the change in �௜௝ as one moves from the cube origin O, to a face 

perpendicular to ܱܺͳ. From Newton’s second law, the force on each face of the unit cube 

can be expressed as a function of cube mass (m) and directional acceleration (ai):  ܨ௫ଵ = ݉�ଵ     ܨ௫ଶ = ݉�ଶ    ܨ௫ଷ = ݉�ଷ      [3] 

Or if we consider a single direction along X1:  ∑ ௫ଵܨ = ሺ� ��ଵ��ଶ��ଷሻ �మ௨భ�௧మ         [4] 
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where 
�మ௨భ�௧మ = ா� �మ௨భ�௫మ , is the differential equation for the stress wave; a function of strain, �௨�௫. 

If one considers the resultant forces acting on the faces in the direction of X1 as the stress 

acting on a face multiplied by the area of the face, the expressions to calculate the forces 

on each face of the dynamic cube are: ��ଵଵ��ଵ + ��ଵଶ��ଶ + ��ଵଷ��ଷ = � �ଶݑଵ�ݐଶ  ��ଶଵ��ଵ + ��ଶଶ��ଶ + ��ଶଷ��ଷ = � �ଶݑଶ�ݐଶ  

��యభ�௫భ + ��యమ�௫మ + ��యయ�௫య = � �మ௨య�௧మ        [5] 

 

 

Figure 2 Unit dynamic stress cube (reproduced from [57]). 

 

When a structure is loaded dynamically, the induced stresses travel through the structural 

material in the form of a wave, analogous to the transfer of momentum and kinetic energy 

between colliding billiard balls.  An example of a dynamic load is an explosive shock 

wave hitting a vessel or a hammer striking a plate or bar. The induced stress wave 

propagation can be broken down and illustrated atomically. The stress wave propagates 

through an atom interaction by transferring the stress amplitude to the neighbouring 

atoms and then onto the next and so forth as the stress wave propagates throughout the 

continuum. From mechanics of materials, one understands that depending on the stress 
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level and the material characteristics, a material may deform elastically or plastically. 

Once the amplitude of a stress wave exceeds the elastic limit, the wave will decompose 

into an elastic and plastic wave. At high loading rates, shock or projectile impact loading 

for example, stress shock waves propagate through the material. The stress wave 

characteristics, material properties that govern the stress wave propagation, and 

experimental tests to determine material behaviour at specific loading rates are discussed 

in the following sections. 

 

2.3 ELASTIC STRESS WAVE 

The behaviour of dynamic stress waves propagating through a continuum are a function 

of the stress amplitude and may be elastic or plastic. An elastic stress wave is developed 

when the induced stress amplitude is below the dynamic yield stress. The dynamic yield 

stress, similar to the static yield stress, is material dependent. In order to predict the 

dynamic response of a structure, it is important to determine the dynamic yield strength 

of a material for a given loading application. Commonly, the Split Hopkinson Bar test is 

used to determine the dynamic yield strength of materials. In order to understand the 

mechanics of the Split Hopkinson Bar test, one must first understand the mechanics of an 

elastic stress wave; more specifically, the elastic wave types, wave velocity, wave 

interaction and strain rate sensitivity. To conclude this section, the Split Hopkinson Bar 

test and the test post-processing calculations will be presented. 

 

2.3.1 Elastic Stress Wave Types 

There are different elastic wave types. The type of wave depends on the solid particle 

motion relative to the stress wave propagation direction and associated boundary 

conditions. The different types of elastic waves include [57]:  

1. Longitudinal or dilatational waves.  

2. Distortional or shear/transverse waves.   

3. Surface or Rayleigh waves.  

4. Interfacial or Stoneley waves.  

5. Bending or flexural waves.  
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Each wave type is characterized by the particle motion in the solid with respect to the 

direction of the propagating stress wave. Longitudinal stress wave particle motion is in 

the direction of wave propagation with particle velocity (ܷ�) parallel to the wave velocity 

(ܷ). The compressive or tensile particle velocity directionality is a function of the stress 

amplitude in the material. That is if the stress wave is compressive the particle velocity is 

in the direction of the stress. If the stress wave is tensile, the particle velocity opposes the 

direction of the tensile stress wave. This effect will be revisited during the stress wave 

interaction discussion. An example of a longitudinal stress wave is provided in Figure 3. 

The slender bar is struck with a hammer and the compressive longitudinal stress wave 

travels from left to right as the particle momentum and energy is transferred from left to 

right as well.  

 

Figure 3 Hammer striking bar (top), longitudinal stress wave with velocity (U) 

(bottom) (reproduced from [57]). 

 

The example of a hammer striking an infinitely thick plate in Figure 4 illustrates the 

different dynamic stress waves propagating from an impact load. The particle motions of 

a distortional/shear wave are perpendicular to the stress wave direction of travel. The 

density of the material does not change and the longitudinal or normal strains 

 are zero for distortional/shear stress waves. The particle motion of (ଷଷߝ ,ଶଶߝ ,ଵଵߝ)

surface/Rayleigh waves is similar to the motion of a small object floating on a water 

surface. As the wave propagates past the object, the object/particle moves in an elliptical 

pattern (up and down, back and forth). The Rayleigh wave shown in Figure 4 is in the 

surface region close to the struck area with an exponentially decaying particle velocity. 

Rayleigh waves are the slowest of the three waves and decay exponentially as they 
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propagate away from the source. Interfacial or Stoneley waves are unique waves that 

form at the interface of two semi-infinite media with different material properties during 

contact. The propagation of a flexural wave normally occurs in bars or plates.  

 

The longitudinal waves are the fastest of the three waves with a varying decay rate 

similar to shear waves. At the plate surface, the longitudinal and distortional waves decay 

at a rate of 
ଵ௥మ and 

ଵ௥ , respectively, away from the free surface. The radial distance r from 

the impact is the distance to the stress wave peak amplitude.  

 

Figure 4  Hammer striking infinitely thick plate with wave formations displayed 

(reproduced from [57]). 

 

The velocity of the elastic stress wave is a function of the material characteristics and the 

shape of impacted media. For elastic waves propagating in a continuum, the longitudinal 

wave velocity ܥ௟ is expressed as:  ܥ௟ = [ఒ+ଶఓ� ]భమ
         [6] 

where � is the continuum density and from elastic theory, ߣ and ߤ  are the Lamé 

constants, expanded as:  ߣ = ఔா[ሺଵ+ఔሻሺଵ−ଶఔሻ]   and  ߤ = ா[ଶሺଵ+ఔሻ]       [7] 

where E and Ȟ are the Young’s modulus and Poisson’s ratio, respectively.  

For an elastic wave traveling through a thin bar with uniaxial stress, analogous to the 

Split Hopkinson Bar, the longitudinal wave velocity ܥ଴ is expressed as:  
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଴ܥ = √ா�          [8] 

For an elastic distortional or shear wave through a continuous media, the wave velocity ܥ௦ is:  ܥ௦ = √ఓ�          [9] 

 

2.3.2  Elastic Wave Interaction 

The elastic stress waves propagating through a media reflect and refract at the interface 

between two different media. The stress wave reflection and refraction is explained with 

the aid of Figure 5. The longitudinal stress wave (marked with an arrow) is initially 

propagating through media A at velocity, ܥଵ. The longitudinal wave reaches the interface 

between media A and B, where each media has different sonic impedances (product of 

media density and wave velocity). At the media interface, the longitudinal wave is 

reflected back into media A as a longitudinal wave and transverse wave as well as 

refracted into media B. The longitudinal stress wave is refracted into media B as 

longitudinal and transverse waves with velocities ܥଵ′  and  ܥଶ′  respectively. The refraction 

and reflection angles in Figure 5 are calculated by the relationship:  

 sin �భ஼భ = sin �మ஼మ = sin �య஼య = sin �ర஼భ′ = sin �ఱ஼మ′       [10] 

 

Figure 5 Interface between medium A (wave speeds ܥଵ and ܥଶ) and medium B (with 

wave speeds ܥଵ′ and ܥଶ′ሻ (reproduce from [57]). 
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The slender bar in Figure 6 is composed of two different materials A and B. The bar is 

struck by a hammer, which generates an incident uniaxial longitudinal stress wave in the 

bar. At the interface of the two materials, the incident longitudinal stress wave (��) is 

transmitted (�்) and reflected (��). The relative amplitudes of the transmitted and 

reflected stress waves developed at the interface are a function of material A and B’s 

sonic impedance expressed as:  ��்� = ʹ�஻ܥ஻�஻ܥ஻ + �஺ܥ஺ 

���� = �ಳ஼ಳ−�ಲ஼ಲ�ಳ஼ಳ+�ಲ஼ಲ         [11] 

where �஺ and �஻ are the densities for material A and B, respectively, and ܥ஺ and ܥ஻ are  

the longitudinal stress wave velocities for material A and B, respectively.  

 

Figure 6 Hammer striking bar composed of materials A and B (reproduced and 

modified from [57]). 

 

If the cylindrical bar’s cross-sectional area, AA and AB changes at the interface between 

material A and B, the relative transmitted and reflected longitudinal stresses are 

expressed as:  ��்� = ஻ܥ஻�஻ܣ஻ܥ஺�஻ܣʹ + ���� ஺ܥ஺�஺ܣ = ஺ಳ�ಳ஼ಳ−஺ಲ�ಲ஼ಲ஺ಳ�ಳ஼ಳ+஺ಲ�ಲ஼ಲ        [12] 

The relative incident, reflected and transmitted particle velocities (ܷ��, ܷ��, and ܷ�் 

respectively) are expressed as:  ܷ�்ܷ�� = ʹ�஺ܥ஺�஻ܥ஻ + �஺ܥ஺ 
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௎��௎�� = �ಲ஼ಲ−�ಳ஼ಳ�ಳ஼ಳ+�ಲ஼ಲ         [13] 

From the above sets of equations, the relative transmitted and reflected stress wave 

amplitudes and particle velocities are directly related to the sonic impedance of the two 

materials. To illustrate the effect of impedance on the transmitted and reflected stress 

wave and particle velocity amplitudes, the extreme impedance values (�஻ܥ஻ = ∞, for a 

rigid surface and �஻ܥ஻ = Ͳ, for a free surface) are considered for materials A and B. For 

an incident stress wave propagating in A toward a free surface where �஻ܥ஻ = Ͳ, the ���� = Ͳ and 
���� = −ͳ. The incident stress wave is reflected opposite the incident stress 

wave tense and no stress is transmitted. For the particle velocity at the free surface 

interface, the 
௎��௎�� = ʹ and 

௎��௎�� = ͳ. The transmitted particle velocity is double the 

incident particle velocity and the reflected particle velocity is the same tense and 

magnitude as the incident particle velocity. When the incident stress wave approaches a 

rigid interface such that �஻ܥ஻ = ∞, the 
���� = ʹ and 

���� = ͳ, the transmitted wave is 

doubled and reflected wave is the same tense and magnitude as the incident stress wave. 

The particle velocity of the transmitted wave is effectively eliminated ( ௎��௎�� = Ͳ) and the 

reflected wave particle velocity has the opposite sign ( 
௎��௎�� = −ͳ) as when the incident 

wave approaches a rigid surface. The magnitude of the uniaxial incident stress wave (��) 
developed in a thin bar is derived from the conservation of momentum and presented as: �� =  [14]          �ܷܥ�

The particle velocity corresponding to the incident stress wave is a function of the striker 

impact velocity V. Through the conservation of momentum, the particle velocity is 

expressed as:  ܷ� = ௏ଶ          [15] 

For the impacted slender bar in Figure 3, one may calculate the theoretical incident, 

transmitted, and reflected uniaxial longitudinal stress wave magnitudes from the known 

impacted bar geometric and material parameters and the striker velocity. The slender bar 

elastic wave propagation theory is used by the Split Hopkinson bar experimental test to 

establish the strain rate characteristics of a particular material. Material strain rate is 
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briefly explained in the following section and the experimental setup, mechanical 

processes and results processing of the Split Hopkinson bar test are discussed as well.  

 

2.4  STRAIN RATE 

An important factor on the yield strength of material during dynamic loading, or the 

dynamic yield strength, is strain rate. The strain rate is the rate of change of strain with 

respect to time: ̇ߝ = ���௧  ଵ          [16]−ݏ

The strain rate experienced by a material is a function of the loading rate, such as the 

shock or projectile velocity at impact. A graph of strain rates, loading methods and 

dynamic testing considerations is presented in Figure 7. The lower strain rates between 

10
-5

 and 0 s
-1

 result from constant static loads or creep. The quasi-static strain rates 

between 0.1 and 10
-5

 s
-1

 are typical of strain rates experienced during a classical material 

coupon test used to determine the quasi-static stress-strain behavior of the material free of 

strain rate effects. The experimental testing and material data presented in the following 

sections will focus on the material behavior at high and very high strain rates.  

 

Figure 7 Tabulated strain rates with corresponding loading method and dynamic test 

considerations (reproduced from [12]). 
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The influence of strain rate on the dynamic yield strength of a material varies. This 

variation is referred to as strain rate sensitivity. The stress-strain curves in Figure 8 

present the strain rate sensitivities of 7075-T6 aluminum (left) and titanium-aluminum 

alloy (right). The yield stress of 7075-T6 aluminum remains constant with increasing 

strain rate and is considered insensitive to strain rate. The contrary to aluminum is the 

titanium-aluminum alloy, which is strain rate sensitive and experiences an increase in 

yield strength with increased strain rate. This increase in yield strength with strain rate is 

the dynamic yield strength at a given strain rate. The dynamic yield strength at a 

particular strain rate is an important aspect to consider when predicting the structural 

response to dynamic loads. At very large strain rates the loaded material may deform 

elastically although the stresses may be beyond the quasi-static elastic limit.  

 

Figure 8 Stress-strain curves at multiple strain rates for 7075-T6 aluminum (left) and 

titanium-aluminum alloy (right) (reproduced from [57]). 

 

2.4.1 Split Hopkinson Bar Test 

In order to establish the dynamic yield strength of a material and the strain rate 

sensitivity, one must test the material experimentally. One such test is the Split 

Hopkinson bar test, which applies the elastic stress wave principles to calculate the strain 

rate sensitivity and dynamic yield strength of a material for strain rates between 10
2
-10

4
 s

-

1
. The experimental test in Figure 9 uses the measured incident, reflected and transmitted 
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strain time histories to calculate the specimen stress, strain and strain rate as a function of 

time.  

 

A compressive wave is generated by the striker bar colliding with the incident bar. The 

axial compressive wave travels through the incident bar to the specimen and into the 

transmitter bar. The incident, reflected and transmitted elastic compressive stress waves 

are measured by the strain gauges fixed to the incident and transmitter bars. 

  

 

Figure 9 Split Hopkinson bar experimental setup (reproduced from [57]). 

 

The stress, strain and strain rate in the specimen can be calculated from the recorded 

strain gauge data. The procedure to calculate the specimen stress, strain and strain rate 

follows. The strain rate as a function of time is presented as:  ̇ߝ = ���௧ = ሺ௏భሺ௧ሻ−௏మሺ௧ሻሻ�         [17] 

where, ଵܸ and ଶܸ are the velocities measured at the specimen interfaces between the 

incident and transmitted bars, respectively, and � is the length of the specimen. The 

interface velocities are computed from the measured strains in the incident and 

transmitter bars. The stress is expressed as a function of density �, elastic stress wave 

velocity ܥ and particle velocity ܷ�: � =  [18]          �ܷܥ�

Since:  �ா =  [19]           ߝ

The particle velocity, as per the derivation in [57], can be expressed as: ߝܥ = ܷ�          [20] 
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So generally, the velocity interfaces are:  ଵܸ = and   ଶܸ    �ߝ଴ܥ =  [21]        ்ߝ଴ܥ

where ߝ� and ்ߝ are the incident and transmitted strains respectively. Since the incident 

bar cross section is greater than the specimen cross section and a change in impedance 

occurs, some of the stress wave is transmitted to the transmitter bar and the rest is 

reflected back into the incident bar. The interface velocity must be expressed as:  ଵܸ = �ߝ଴ሺܥ −  ሻ         [22]�ߝ

The strain rate equation becomes: ���௧ = ஼బሺ��−��ሻ−஼బ���         [23] 

where εR, εI and εT are the reflected, incident and transmitted strain amplitudes, 

respectively.  

The strain rate in the specimen is expressed as: ̇ߝሺݐሻ = ஼బ� ሺߝ� − �ߝ −  ሻ        [24]்ߝ

The strain in the specimen is calculated by integrating the strain rate from 0 s to time t, 

where t corresponds to the instantaneous strain of interest.  ߝሺݐሻ = ஼బ� ∫ ሻݐሺ�ߝ] − ሻݐሺ�ߝ − ሻ]௧଴ݐሺ்ߝ  [25]      ݐ�

If equilibrium is assumed, the stress in the specimen is a function of the interface forces 

at 1 and 2 (P1 and P2, respectively):  � = �భሺ௧ሻ+�మሺ௧ሻଶ஺          [26] 

Since stress is a function of strain and the stress waves propagating through the bars is 

elastic, the forces at interfaces 1 and 2 are: ଵܲሺݐሻ = �ߝ଴ሺܧ଴ܣ + ሻݐሻ ଶܲሺ�ߝ =  [27]         ்ߝ଴ܧ଴ܣ

So, the stress in the specimen/bar interface, as a function of time, can be presented by: �ሺݐሻ = ஺బாబଶ஺ ሻݐሺ�ߝ] + ሻݐሺ�ߝ +  ሻ]      [28]ݐሺ்ߝ

An example of the strain gauge measurement from a Split Hopkinson bar test is in Figure 

10. The strain gauge voltage will be converted to strain or micro-strain and used to 

calculate the specimen stress, strain and strain rate during the test. The transmitted and 

reflected strain time histories are offset to display the shape of the reflected and 
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The stress-strain material response characteristics of the specimen in the Split Hopkinson 

bar test are commonly applied in constitutive equations to numerically predict the stress-

strain behavior of the specimen material under varying stain rates. The formulation of the 

Cowper-Symonds and Johnson-Cook constitutive equations are discussed in the 

following section.  

 

2.4.2 Constitutive Equations 

The structural response of a naval vessel to an UNDEX event is often predicted using the 

finite element methods. To include strain rate effects in the simulation, the vessel 

material definition applies a constitutive equation or multiple constitutive equations 

depending on the available material data and simulation objectives. The function of a 

constitutive equation is to compress the stress-strain curves for each strain rate of a given 

material (similar to the stress-strain curves for titanium-aluminum alloy in Figure 8) and 

expressed using a single constitutive equation. There are many constitutive equations that 

work well for particular applications. The two most common constitutive equations 

applied in engineering applications are the Johnson-Cook and Cowper-Symonds 

equations. A brief discussion of the Johnson-Cook and Cowper-Symonds equation 

formulations are to follow.   

 

The Cowper-Symonds constitutive equation effectively scales the yield strength of a 

material to calculate the dynamic yield strength at a particular strain rate based on a 

minimal amount of material data. The Cowper-Symonds equation is expressed as:  �௬�(ߝ�̇) = �௬ (ͳ + ቀ�̇�஽ ቁ)భ�
        [29] 

where �௬� is the dynamic yield strength as a function of the quasi-static yield strength �௬, 

instantaneous strain rate ߝ�̇ and material constants ܦ and ܲ. The Cowper-Symonds 

constitutive equation is a power law function and relatively simple in comparison to other 

constitutive equations. The Cowper-Symonds equation is ideal when an approximation of 

material behavior is required since the Cowper-Symonds equation has relatively few 

material constants. A more sensitive constitutive equation to material characteristics is 

the Johnson-Cook model, which accounts for the material stress, strain rate and 
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temperature. The dynamic stress as a function of the instantaneous strain ߝ�, strain rate ߝ�̇, and temperature ܶ is  calculated by the Johnson-Cook constitutive equation and 

expressed as:  ��(ߝ�, ,̇�ߝ ܶ) = ሺ�଴ + ௡ሻ�ߝܤ (ͳ + ݈݊ܥ (଴̇ߝ̇�ߝ [ͳ − ሺܶ∗ሻ௠] 
in which, ܶ∗ = ቀ ்− �்�்− �்ቁ         [30] 

where ௠ܶ is the material melting temperature and ௥ܶ is the reference temperature at which 

the reference yield stress �଴ and strain rate ߝ଴̇ are measured. The material constants ,  ݊, ܥ, and  ݉ are experimentally determined values, thus making the Johnson-Cook equation 

sensitive to many material parameters. The sensitivity of the material parameters is 

compounded by multiplication of the stress, strain rate and temperature effects. Even 

though the Johnson-Cook equation is highly sensitive to material parameters, stress, 

strain rate and temperature, it is the most frequently applied constitutive equation. 

 

2.5 PLASTIC STRESS WAVE 

If the stress wave propagating through a media has an amplitude greater than the elastic 

yield limit, a portion of the stress wave is considered to be a plastic stress wave. The 

elastic yield limit varies with strain rate sensitivity, which indicates that the portion of the 

stress wave considered as plastic, will also vary with strain rate. The differentiating 

characteristics between elastic and plastic stress waves are the stress amplitude and the 

propagating wave velocity. The plastic wave is slower than the elastic wave since stress 

wave speed is proportional to the slope of the stress-strain relationship. Similar to the 

longitudinal elastic wave speed for longitudinal waves in equation [8], the longitudinal 

plastic stress wave speed may be expressed as: 

�ܸ = √�� ��⁄�           [31] 

A general stress-strain curve illustrated in Figure 12 presents the change in the slope of 

the stress-strain relationship at different stress levels in the plastic and elastic regimes. In 

the elastic regime, Young’s modulus defines the slope of the stress-strain curve; however, 

in the plastic regime the slope of the stress-strain curve varies with stress and strain level. 
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As stress and strain increase in the plastic regime, the plastic wave velocity decreases. As 

a result of the decreased plastic wave velocity, wave dispersion occurs. The wave 

dispersion is presented in Figure 13. The two graphs are plotting stress with respect to 

distance traveled along the uniaxial stress direction. At early time t1, in the left graph, the 

wave dispersion is less than at time t2, right. As the elastic and plastic waves propagate 

through the media the dispersion increases with propagation distance.  

 

 

Figure 12 General stress-strain curve with slope of the curve presented at different 

stress levels (reproduced from [57]). 

 

 

Figure 13 Stress wave dispersion between elastic stress and plastic stress wave 

velocities at two instances in time: early (left) and late (right) (reproduced 

from [57]). 

 

The Split Hopkinson bar test is limited to the elastic stress wave propagation within the 

bars. For higher strain rates which include plastic deformation and plastic stress, the 

Taylor test is required to calculate the dynamic yield strength of an unknown material.  
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2.5.1  Taylor Test and Dynamic Yield Strength  

The elastic wave propagation during the Split Hopkinson bar test is measured using strain 

gauges to obtain the material strain rate sensitivity and dynamic yield strength for strain 

rates between 10
2
-10

4
 s

-1
. For strain rates between 10

4 
-10

5
 s

-1 
and high plastic strains 

between 50-150%, the Taylor test is used to calculate the dynamic yield strength. The 

Taylor test in Figure 14 consists of a specimen rod, shot from a gun or launcher, colliding 

with a rigid wall.  

 

 

Figure 14 Taylor test experimental setup (reproduced from [57]). 

 

The elastic and plastic wave dynamics are described well in the Taylor test deformation 

series in Figure 15. Initially a projectile with length � is travelling with a velocity ܷ 

towards a rigid wall. Upon impact with the rigid surface, an elastic wave travels into the 

rod propagating at velocity ܥ with a plastic wave following at velocity v. The distance 

from the rigid interface and the plastic front is denoted as ℎ. The elastic wave has a 

greater velocity than the plastic wave and propagates until it encounters the free surface 

of the rod end. The free surface interaction with the elastic wave front reduces the rod 

free end velocity by 
ଶ�೤�஼�బ . Once the projectile comes to rest, the final deformed length �௟ 

is composed of elastic region ܺ, and deformed plastic region  �௟ − ܺ.  
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Figure 15 Taylor’s test deformation series early to late times (top to bottom) 

(reproduced from [57]). 

 

The dynamic yield strength, �௬�, can be calculated from the initial and final shape of the 

Taylor test specimen rod by solving:  �భ�బ = ቀͳ − ℎ�బቁ exp (− �బ௎మଶ�೤�) + ℎ�బ       [32] 

where �ଵ and �଴ are the final and initial specimen rod lengths respectively, ℎ is the 

distance from impact interface to plastic front, �଴ is the initial density of the specimen 

and ܷ is the specimen velocity.  

 

At very high strain rates and stress wave magnitudes, the dynamically loaded material 

behaves in accordance to the specific properties associated with the shocked state of the 

material. The parameters defining the material behavior in a shocked state, as well as 

shock experimental tests, and calculations are discussed in the following section.  
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2.6 SHOCK WAVES 

A shock wave forms in a material when the amplitude of the stress wave is greater than 

the dynamic flow strength of the material at strain rates at or above 10
5
 s

-1
. This 

commonly occurs when instantaneous pressure loads are in gigapascal range [56]. The 

development of a shock front and the shock wave propagation are explained using the 

piston example illustrated in Figure 16. The piston is initially at rest within a cylinder of 

gas at pressure ଴ܲ, density �଴ and energy ܧ଴. The piston is moved into the compressible 

gas with velocity, ܷ�, compressing the gas immediately in front of the piston. This 

compression of the gas atoms creates a shock front travelling at a velocity, ௦ܷ. Between 

the shock front and the piston face is a dense region with increased pressure. The length 

of the compressed region is defined simply as the difference in shock front and piston 

velocity multiplied by the shock duration time ݐଵ, ሺ ௦ܷ − ܷ�ሻݐଵ.  

 

 

Figure 16 Gas and piston in a cylinder. Piston is initially at rest in a), with velocity ܷ� 

in b) and with velocity ܷ� distance travelled ܷ�ݐଶ in c) (reproduced from 

[57]). 
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At high levels of dynamic flow stress, it can be assumed that the solid material has no 

resistance to shear and the Rankine-Hugoniot conservation equations may be applied to 

calculate the shock wave parameters [56]. Generally, the conservation of mass, 

momentum and energy equations are: 

Mass,   �଴ ௦ܷ = �ሺ ௦ܷ − ܷ�ሻ       [33] 

Momentum,  ܲ − ଴ܲ = �଴ ௦ܷܷ�       [34] 

Energy,  ܧ௡ − ௡଴ܧ = భమሺܲ + ଴ܲሻሺ ଴ܸ − ܸሻ     [35] 

where ଴ܸ and ܸ are the media specific volume immediately before and after the shock 

front, respectively, while the energy, density and wave velocity naming convention 

remains consistent with that shown in Figure 16. The Rankine-Hugoniot conservation 

equations can be used to solve for the pressure or energy in the system. In order to use the 

Rankine-Hugoniot conservation equations, the shock velocity, ௦ܷ, must be calculated as a 

function of the material characteristics the shock wave is travelling through.  

 

The equation that characterizes the shock velocity as a function of the propagation media 

and particle velocity is called the equation of state (EOS), which has a polynomial form:  

௦ܷ = ଴ܥ + ܵଵܷ� + ܵଶܷ�ଶ + ⋯        [36] 

where ܥ଴ is the sound velocity of the media, and empirical parameters ܵଵ and ܵଶ 

characterize the media. For most metals [56],  ܵଶ = Ͳ, thus the polynomial is reduced to:  ௦ܷ = ଴ܥ + ܵଵܷ�         [37] 

Using the EOS and Rankine-Hugoniot conservation equations, one can calculate the ܲ − ܷ�, ܲ − �, ܲ − ܸ ଴ܸ⁄ ܧ , − ௦ܷ, and other relationships, assuming the material does 

not undergo phase transformations.  An example of an experimentally measured EOS for 

multiple materials is provided in Figure 17, proving the shock wave velocity is a linear 

function of particle velocity. 
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Figure 17 Experimentally determined EOS for multiple materials (reproduced from 

[57]). 

 

Important shock front and material properties can be derived from the ܲ − � relationship 

immediately behind the shock front. The shocked state of the material in this region is 

defined by the Rankine-Hugoniot equation or “Hugoniot”, which is based on the ܲ − � 

relationship. An example of the Hugoniot is presented in the pressure-specific volume 

plot shown in Figure 18 as the curved line, which describes the shocked state material 

properties. The straight line in Figure 18, joining ሺ ଴ܲ, ଴ܸሻ to ( ଵܲ, ଵܸ), is called the 

Rayleigh Line and defines the shock state at ଵܲ. It is important to note that the pressure in 

a shock front increases  as a function of the specific volume from ଴ܲ to ଵܲ. The pressure 

does not increase along the Hugoniot, ܲ − ܸ ଴ܸ⁄ ,but discontinuously, defined by the slope 

of the Rayleigh line.  
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Figure 18 Pressure-specific volume Hugoniot and Rayleigh line (reproduced from [57]). 

 

The Hugoniot and EOS of shocked media are applied in scientific and engineering 

applications.  Using the impedance matching technique, the material EOS can be 

determined and subsequently used to represent the material response subject to shock 

loading. The impedance matching technique is discussed in the following sections as well 

as the applications of the technique in the flyer plate test. 

 

2.6.1 Impedance Matching 

A common application of a material Hugoniot and EOS is in the impedance matching 

technique used to determine the EOS of an unknown material during a Flyer Plate test. 

Generally, the impedance matching technique plots the inverse Hugoniot at a given 

particle velocity to determine the pressure during the shock event. To explain the 

technique, a planar impact example will be used. In this example, a tungsten-carbide 

(WC) projectile is impacting an iron target at 1200m/s. The impact pressure and 

reduction in impact velocity of the projectile is determined.  

 

Since the tungsten carbide and iron Hugoniots are known, they will be used graphically 

to calculate the pressure and velocity. The two Hugoniot material pressure-particle 

velocity curves are plotted together in Figure 19. The impacting WC projectile Hugoniot 

is inverted and shifted so ଴ܲ has a particle velocity of 1200m/s. The resulting particle 
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velocity and impact pressure is determined by the intersection of the two Hugoniot 

curves. For this example, the impacting pressure is 32GPa and particle velocity reduction 

of 400m/s. The Flyer Plate test, explained in the following section, uses the impedance 

matching technique to determine the EOS of a particular material. 

 

Figure 19 Impedance matching technique for 1200m/s WC projectile colliding with Iron 

target (reproduced from [57]). 

  

2.6.2 Flyer Plate Test 

The Flyer Plate test is used to determine the material EOS from the impact response 

characteristics using the impedance matching technique. The test consists of a flyer plate 

of known EOS, propelled by a gas-gun and colliding with a target plate of unknown EOS. 

The Flyer Plate test setup in Figure 20 shows the components of the Flyer Plate test. A 

plastic sabot is used to keep the flyer plate planar as it travels down the gas gun barrel. 

The ring around the flyer plate is used to calculate the particle velocity of the flyer plate 

by triggering the shorting pin as it leaves the barrel and colliding with the Time-of-arrival 

pins as the flyer plate collides with the target plate held in a spall ring. The Flyer Plate 

test uses the particle velocity of the flyer plate prior to impact and target plate shock or 

particle velocity at impact to determine the EOS of the target plate. The flyer plate 

velocity prior to impact is measured from the shorting pin and time-of-arrival pins. The 

free surface velocity of the back of the target plate is measured using laser interferometry. 
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Figure 20 Flyer plate test experimental setup (reproduced from [57]). 

 

Since the flyer plate velocity, EOS, target plate density and shock wave velocity are 

known, the EOS of the target plate may be calculated using the impedance matching 

technique. The pressure-particle velocity graph in Figure 21 presents the application of 

the impedance matching technique to calculate the EOS for the target plate for three 

different flyer plate impact velocities. The ܲ − ܷ� curve for the unknown target plate 

material can be constructed by connecting the intersecting points between the Rayleigh 

line (with slope=�଴ ௦ܷ) and inverted shock Hugoniot at each flyer plate particle velocity. 

Using the shock parameter relationships and the ܲ − ܷ� curve, the EOS of the target 

plate can be determined. 
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Figure 21 Impedance matching technique to calculate EOS of the target plate unknown 

material (reproduced from [57]). 

 

2.6.3 Shock Wave Interaction  

The pressure, density and wave velocity change when a shock wave propagates from one 

medium to another. The magnitude of the change is a function of the shock impedance 

(�଴ ௦ܷ) of the two mediums. To calculate the change in pressure, density, etc. one may 

apply the impedance matching technique.  

 

For the case in which a shock wave is transmitted from material A with low impedance to 

material B with high impedance, the impedance matching technique in Figure 22 shows 

the magnitude of the pressure and particle velocity propagating in each medium. The 

Hugoniot of medium A is inverted and shifted such that the inverted Hugoniot intersects 

Hugoniot A and the Rayleigh line or shock impedance. This provides the analyst with the 

initial pressure travelling in medium A of ଵܲ and at particle velocity ܷ�ଵ. As the shock 

front propagates into medium B, the pressure increases and particle velocity decreases 

corresponding to the pressure and particle velocity at the medium B Hugoniot 

intersection with inverted medium A Hugoniot. The transmitted and reflected pressure in 

each medium at ݐ଴, ݐଵ, ݐଶ, ݐଷ and ݐସ correspond with the impedance matching technique 

pressures and particle velocities. The pressure wave is transmitted and reflected as a 

compressive wave at the interface.  
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Figure 22 Impedance matching to determine pressure �ଶ and particle velocity UPଶ in 

material B (top) and resulting pressure time history in low impedance 

material A and high impedance material B (bottom) (reproduced from [57]). 

 

For the case in which a shock wave is transmitted from material A with a high impedance 

to material B with a low impedance, the impedance matching technique and 

corresponding pressure profile are presented in Figure 23. Similar to the low-high 

impedance reaction, the Hugoniot for medium A is inverted and shifted such that it is 

mirrored at ଵܲ. The pressure transmitted into medium B is reduced and travels at a greater 

velocity. The reduction in pressure produces a reflected tensile pulse in medium A which 

follows the compressive pulse into medium B. If the tensile pulse is large enough, a spall 

will generate. 
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Figure 23 Impedance matching to determine pressure �ଶ and particle velocity UPଶ in 

material B (top) and resulting pressure time history in high impedance 

material A and low impedance B (bottom) (reproduced from [57]). 

 

The formation of a spall occurs when the tensile pulse is greater than the spall stress. The 

spall stress is defined as the highest tensile stress that exists prior to material rupture, 

which may be obtained experimentally using the Flyer Plate test. The spall stress 

corresponds with the highest flyer plate impact velocity without spallation occurring. The 

tensile pulse generated in the flyer plate test is an extreme example of a shock wave 

transmitted from medium A with high impedance to medium B with low impedance. The 

impedance matching technique and pressure profile for the case with impedance in 

material B of zero is presented in Figure 24. The Hugoniot is inverted and reflected about 

the intersection at ଵܲ. Since material B has impedance of zero, the reflected pressure 

wave is 0 and once the duration of the initial pressure pulse in medium A has been 

reduced to 0, a tensile wave is created. The maximum magnitude of the tensile wave that 

does not cause rupture in the target plate is the spallation stress of the target plate 

material.   
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Figure 24 Free surface impedance matching (top) and resulting pressure time history 

(bottom) (reproduced from [57]). 

 

2.7 STRESS WAVE PROPAGATION SUMMARY  

The dynamic behavior of ductile materials has been reviewed to investigate the 

influences on material dynamic stress, how stress propagates, and how to empirically 

predict the behavior of a particular material under dynamic loading conditions. 

 

The resistance of a material to dynamic loads is characterized by the dynamic yield 

strength of the material. The dynamic yield strength is a function of the material strain 

rate sensitivity. The materials that exhibit a high sensitivity to strain rate have 

correspondingly higher dynamic yield strengths than quasi-static yield strength. In order 

to determine the strain rate sensitivity of a material, the Split Hopkinson Bar, Taylor and 

Flyer Plate tests may be used to investigate material response at different strain rate 

ranges.  
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The elastic stress wave mechanics are utilized to process the specimen strain rate 

characteristic when using the Split Hopkinson Bar for strain rates between 10
2
-10

4
 s

-1
. 

For strain rate sensitivities at strain rates above 10
4 

s
-1

 and high plastic strain levels, the 

Taylor test is used. To determine the EOS of a material in a shocked state and the 

spallation stress, the Flyer Plate test is used. The experimental tests may be used to 

determine the material characteristics at high strain rates. Based on the material 

characteristics, the suitability of the tested material for a particular application may be 

determined.   

 

The dynamic yield strength of the material at various strain rates may be approximated 

using a constitutive equation. The Cowper-Symonds and Johnson-Cook constitutive 

equations are presented to provide an example of a simple (Cowper-Symonds) and 

relatively complicated (Johnson-Cook) equations. The application of either equation is a 

function of the available material parameters and analysis requirements. The Johnson-

Cook equation requires more material parameters than Cowper-Symonds however it 

accounts for and is sensitive to the instantaneous stress, strain rate and temperature. The 

Cowper-Symonds equation requires two material parameters and does not account for 

temperature.  

 

The response of an unknown material to dynamic loads may be empirically estimated by 

determining the dynamic yield strength experimentally or by approximating the stress-

strain behavior using a constitutive equation.  The experimental test must be chosen to 

reflect the strain rates expected during the dynamic loading application. The experimental 

testing procedure, stress wave mechanics and post processing calculations have been 

presented for strain rates above 10
2
s

-1
.  
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CHAPTER 3 LITERATURE REVIEW 

 

A structural response highly sensitive to elastic and plastic stress wave propagation is 

dynamic pulse buckling and may occur during impact or high pressure loading scenarios. 

Dynamic pulse buckling may be elastic or plastic; however, it is distinguished from 

dynamic vibrational buckling, in which the short duration high amplitude load pulse 

causes the buckling response. A literature review is also included in this chapter to 

outline the solution methodologies used to predict dynamic pulse buckling as well as the 

validating experimental and numerical studies. 

 

Early literature provides a brief history or description of structural response subject to 

dynamic loading with respect to the stability of the loaded structure. Most of the studies 

used experimental methods to verify their theoretical findings. A trend found in the early 

literature is the transition from understanding the general behaviour of structures to 

predicting their response using mathematical formulations. Few studies correlate stress 

wave propagation with dynamic pulse buckling. As numerical methods advanced, the 

development of computer software has enabled the analyst a capability for solving finite 

difference problems quickly and efficiently. Once highly efficient finite element software 

became available, stress wave propagation behaviour could be used to characterize the 

buckling phenomena. The following sections present a summary from available literature 

describing early dynamic structural response, numerical prediction methods and the 

correlation between stress wave propagation and dynamic pulse buckling.  

 

 

3.1 DYNAMIC STRUCTURAL RESPONSE  

The earliest reference to dynamic buckling was by Koning and Taub [43] in 1934, who, 

investigated the dynamic stability of a curved bar (in a half sine shape) under a constant 

axial shock load with finite duration. By solving the partial differential equations for 

shock loads below, equal to and above the Eulerian static buckling load, Koning and 

Taub [42]found that the shock load required to induce buckling may be larger than the 

Eulerian static buckling load if the duration of the shock load is sufficiently short. The 
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effect of shock amplitude and duration on the dynamic stress state was compared to the 

static stress state under the Eulerian static load. For shock load durations equivalent to the 

fundamental period of free vibration, the dynamic shock load limit was found to be a 

fraction (0.97) of the Eulerian static buckling load. The effect of impulse on dynamic 

stress was also investigated by Koning and Taub since prior theory suggested that 

dynamic stress is independent of shock amplitude and duration but a function of shock 

impulse only. As a result of the study, it was shown that the dynamic stress is dependent 

on shock load amplitude and duration. 

 

The work of Davidson [20] followed that of Koning and Taub by investigating the 

behaviour of a curved strut struck by a mass. The assumption that the stress waves and 

bending displacements act independently, presented by Koning and Taub [43], was 

evaluated. In Davidson’s work, he developed and solved the equations of motion for the 

curved strut system, as well as experimentally testing an axially impacted strut. The 

experimental test results suggested that the axial load in the strut was constant, verifying 

Koning and Taub’s theory. The test results also verified the accuracy of the equations of 

motion, which had indicated that a larger peak load could have been endured if the load 

had a sinusoidal load time history rather than a rectangular variation. The findings by 

Davidson are admissible to the elastic regime and a strut subject to a single strike.  

 

The field of dynamic buckling was evaluated further by the experimental and theoretical 

investigations conducted by Bodner [14], who investigated the assumptions inherent in 

the theory of rigid plasticity. The theory of rigid plasticity ignores the elastic strain, 

elastic vibrations, shear deformation, changes in geometry, strain rate and strain-

hardening, by assuming that the plastic deformation develops under constant yield stress. 

Bodner conducted an experiment in which a cantilevered beam with a mass fixed to the 

free end of the beam system was subject to acceleration applied to the base of the system. 

Bodner found that the theory of rigid plasticity was an adequate first-order theory, given 

that the ratio of input kinetic energy to maximum elastic energy is greater than three. 

Bodner further stated the theory of rigid plasticity was adequate for estimating the 

damage to complex structural systems to blast loads, where the energy ratio was greater 
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than 10. As for the effects that are ignored by the theory, it was found that the variation in 

dynamic and static yield stresses, due to the strain-rate effect, was the primary factor in 

the discrepancy found between theoretical predictions and experimental results. To 

account for the strain-rate effects, Bodner [14] applied the Cowper-Symonds strain-rate 

law to the material constitutive model, and found excellent agreement with his 

experimental results.  

 

3.2 DYNAMIC LOAD FACTOR 

The initial work of Budiansky and Hutchinson [15] is an effort to relate the dynamic 

buckling load to the static buckling load for the design of imperfection-sensitive 

structures. By solving the equilibrium equations for a simplified structural system (i.e., an 

axially loaded three-hinge beam model with a nonlinear spring), Budiansky and 

Hutchinson developed a set of analytical expressions to calculate the dynamic buckling 

load factor (DLF). Each expression may be approximated using: 

         [38] 

where  ,  and are the dynamic (imperfect), static (imperfect) and static (perfect) 

buckling loads, respectively. This expression is, however, limited to elastic buckling, 

where the same dynamic and static buckling mode shapes develop. It is also important to 

note that the expression has been developed assuming the system is subject to a suddenly 

applied axial load that is held at a constant value. Due to the limitations, the expression is 

inherently conservative. The later work by Budiansky and Hutchinson [32] considers the 

same simple 3-hinge model. However, the axial load had a finite duration and a particular 

load pulse shape. The dynamic (imperfect), static (imperfect) and static (perfect) buckling 

loads were calculated under axial rectangular and triangular pulse loads with varying 

duration. The influence of pulse shape was found to have little significance on the critical 

dynamic buckling impulse. The varying duration of the pulse load was evaluated with 

respect to the period of free vibration of the unloaded structure. Budiansky and 

Hutchinson found that the dynamic buckling load increased with a decrease in load 

duration that was less than the fundamental period of vibration. 
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Several other DLF criteria have been suggested since; examples are those developed by 

Volmir, Budiansky-Hutchinson, Ari-Gur and Simonetta, and Petry-Fahlbusch 

summarized in [46]. The Volmir criterion is based on a series of experimental tests in 

which a simply supported rectangular plate was subjected to rectangular and 

exponentially decaying pulse load. To determine the critical dynamic load, Volmir 

assumed the buckling mode (sine and half sine) was the critical mode if the dynamic 

plate response increased in deflection over the shortest time for particular pulse 

amplitude. Volmir then suggested that the loss of dynamic stability would occur when the 

out of plane deflection of the plate reaches an assumed critical value (usually equal to the 

plate thickness or half thickness).  

 

The criterion developed by Budiansky and Hutchinson is based on tests performed on 

cylindrical shells and axially loaded rods. This criterion is based on displacement 

criterion and is intended for structures, which exhibit an unstable post buckling path and 

geometric imperfections. An example of a structure with an unstable post buckling path is 

a thin shell or arch. These structures have a snap-through type of buckling path. 

Budiansky and Hutchinson define the dynamic loss of stability of the plate by the point in 

which a small increase in pulse amplitude results in a rapid increase in plate’s maximum 

deflection. This DLF can be determined by plotting the load versus displacement of a 

node in the buckled region and establishing the inflection point on the curve. Two 

examples of the inflection point, at the dynamic critical buckling load are illustrated in 

Figure 25 for plates with different degrees of geometric imperfections. 

 

Figure 25 Budiansky-Hutchinson critical dynamic buckling load of plates with (a) large 

and (b) small geometric imperfections (reproduced from [46]). 
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The criterion developed by Ari-Gur and Simonetta is based on theoretical and 

experimental investigations of a plate, clamped on all edges, under a half-sine pulse load. 

The applied load F, and measured length shortening U, of the experimental tests are 

shown in Figure 26. The four critical dynamic load criteria defined are determined based 

on the deflection in the middle of the plate, ௠ܹ, load intensity, �௠, and pulse amplitude, ܨ௠ , or shortening, ܷ௠.  

 

Figure 26 Applied forces F, length shortening U, deflection Wm (left) and applied load 

pulse (right) (reproduced from [46]). 

The first of four criteria, which is based on deflection ௠ܹ and pulse intensity, states that 

dynamic buckling occurs when a small increase in load intensity results in a large 

increase in deflection. This criterion is quite similar to the criterion proposed by 

Budiansky and Hutchinson for structures with unstable post buckling paths. The 

deflection load intensity plot shown in Figure 27 (a) is the graphical representation of the 

first criterion.  

 

Ari-Gur and Simonetta also found that the pulse duration and amplitude will change the 

deflection mode. This leads to the second dynamic buckling criterion, which states that 

dynamic buckling occurs when a small pulse load amplitude increase results in a decrease 

in deflection. The graphical representation of this criterion is plotted in Figure 27 (b).  

 

The third criterion developed by Air-Gur and Simonetta is with respect to the force pulse 

and shortening, which is based on the reduction of stiffness due to large deflections. In 

the event, a small increase in force pulse results in a sudden increase in the shortening of 
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the loaded edges, dynamic buckling has occurred. This criterion is plotted in Figure 27 

(c).  

 

The fourth criterion is a function of the displacement impulse and shortening. This 

criterion states that dynamic buckling occurs when a small increase in shortening results 

in a change in the sign of the reaction ܴ௠, at the edge of the plate. The loaded plate 

reaction distribution (Figure 28) is a sinusoidal shape with tensile forces resulting in the 

middle of the deformed plate. The resultant tensile force may be larger than the 

compressive resultant force which would indicate the occurrence of dynamic buckling.  

 

Figure 27 Graphical representation of the Ari-Gur and Simonetta criteria (reproduced 

from [46]). 

 

 

Figure 28 Plate edge reaction load distribution (reproduced from [46]). 
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The criterion developed by Petry and Fahlbusch is based on the theory that the 

Budiansky-Hutchinson criterion is overly conservative, since the full capacity of the plate 

structure is not used.  According to the Petry-Fahlbusch criterion, structures with a stable 

post-buckling path should have a critical dynamic load determined by the stress state. A 

structure under pulse loading is considered dynamically stable if the equivalent stress is 

less than or equal to the limit of stress at any time and location. As for the choice of limit 

stress, Petry and Fahlbusch suggested the material yield strength.  

 

A detailed summary of the works of Petry and Fahlbusch is described in [66], which 

investigated the application of a stress failure criterion to determine the DLF of isotropic 

plates subject to in-plane impact loads. In that work, the criterion was used to determine 

the effects of limit stress, shock function, geometric imperfections and dimensions on the 

DLF. A FORTRAN code was developed to solve the plate differential equations of 

motion using a fourth order Runge-Kutta method.  The transverse deflection of the plate 

midpoint was used to evaluate the critical buckling load. Petry and Fahlbusch found that 

dynamic loads significantly higher than the static buckling load may be experienced, if 

the duration of the applied load was sufficiently short. For their investigation, Petry and 

Fahlbusch [66] consider a dynamic response as stable if the effective stress in the plate 

does not exceed the material yield stress. Using this failure stress criterion, it was 

determined that a wide range of load durations, near the period of transverse motion, 

result in a DLF less than unity. The influence of shock pulse shape was also evaluated for 

sinusoidal, rectangular and triangular pulse shapes. It was found that the DLF was 

sensitive to the rise-time of the pulse shape, so long as the total impulse remained 

constant. An increase in load rise-time results in a shift of lowest DLF to a lower pulse 

duration.  

 

The size of the geometric imperfection was found to directly influence the DLF. An 

increase in imperfection amplitude resulted in lower DLF for short pulse durations. The 

effect of plate thickness on DLF was found to be minimal for longer pulse durations; 

however, an increased sensitivity to plate thickness was observed at short pulse durations. 

The limit stress of the loaded plate had very little influence on the DLF. To assess the 
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influence of stability criterion on the DLF, the Budiansky and Hutchinson criterion (i.e., 

the maximum gradient of deflection with respect to load), and the proposed stress 

criterion were applied to a plate with a pulse duration equivalent to the transverse 

vibration period. The failure stress criterion applied in the study suggests a critical DLF 

approximately twice the DLF determined by the Budiansky and Hutchinson criterion. 

 

 

3.3 EARLY STRESS WAVE INTERACTION AND DYNAMIC BUCKLING  

The experimental and theoretical work of Abrahamson and Goodier [1] focused on how 

the axial compressive stress wave and material stress-strain relationship influences the 

dynamic buckling behaviour of axially loaded rods. The mild steel solid and hollow rods 

were loaded axially by a high velocity impactor which caused the rods to buckle and 

develop a thickened proximal end. Through high speed photography, Abrahamson and 

Goodier were able to determine the stress wave interaction during the pre-buckling, 

buckling and post-buckling phases. It was found that due to the sustained plastic flow, 

axial strains (up to several percent) developed in the proximal end up to a length 

equivalent to the time taken for the elastic wave to travel the length of the rod to the free 

end and reflect back to the loaded end as an elastic unloading wave. The wavelength of 

the plastic flow stress was observed in the thickened proximal end. The thickened 

proximal end proved to be a result of the lower plastic strain-hardening modulus at the 

high strain values experienced during plastic axial compression. Abrahamson and 

Goodier also found that the flexural motion of the impacted bar is developed as a result of 

the stress and strain amplitude along the bar at position B’ (see Figure 29), lagged behind 

stress and strain amplitude of position C’. Position B’ and C’ represent the inside and 

outside diameter of the impacted rod, respectively. Due to their relative positions on the 

impacted rod position C’ develops larger strains, and thus, creates more displacement 

than in the inner surface B’ of the buckled column.  
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Figure 29 Stress-strain diagram for an impacted bar inside position B’ and outside 

position C’ (reproduced from [1]). 

 

In addition to the experimental investigation, Abrahamson and Goodier [1]  developed 

and solved the differential equations of motion. The number of buckled half waves and 

amplitudes were in good agreement with the experimental observations. They also noted 

that difficulty was encountered in the determination of the buckling waves within the 

plastic flow zone.  

 

Experimental tests were conducted by Florence and Goodier [24] to confirm their 

numerical response using number of buckling half waves and percent longitudinal 

compression. The experimental tests projected 6016-T6 and 2024-T3 Aluminum 

cylinders against a rigid plate and measured the cylinder shortening and number of half 

waves developed. By assuming a constant impact velocity, the dependence of 

displacement and velocity perturbation amplitude on the harmonic number was 

determined by solving the equations of motion with and without inclusion of strain-

hardening modulus. The harmonic number resulting in the largest displacement or 

velocity perturbation amplification was considered as the mode of buckling. The buckling 

mode determined from the velocity perturbation amplification was found to have better 

agreement with experimental results. The strain-hardening modulus was found to have 

little effect on the number of developed half waves. This was presented as a result of a 
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restoring moment that was present in the column, even though the strain-hardening 

modulus was 0 MPa.  

 

3.4 FINITE DIFFERENCE METHOD 

The research conducted by Hayashi and Sano [29], [30] evaluated the accuracy of the 

beam equations of motion to determine the dynamic buckling behaviour of initially bent 

(half-sine wave) elastic bars subject to low and high velocity impact. In the first report by 

Hayashi and Sano [29], the experimental mid-span axial force was compared to the 

calculated values by solving the Bernoulli-Euler beam equations (using the finite 

difference method) for low impact velocities (3.1 cm/s). The experimental tests were 

conducted on different beam slenderness ratios, imperfection amplitudes, striking masses 

and striking velocities. For each of the tests, the mass was free to rebound after initial 

contact and strike repeatedly until coming to rest. The repeated striking behaviour was 

also included in the numerical calculation and yielded good agreement for the first five 

impacts. In the second report by Hayashi and Sano [30], good agreement was found 

between the experimental and numerical deflected shapes of the impacted bar that were 

subjected to high velocity impacts (2.45 to 10.0 m/s). The variation in experimental tests 

was in the impactor velocity with the slenderness ratio and impacted mass remaining 

constant. The deflected shape was calculated numerically by solving the Timoshenko 

beam equations of motion using the finite difference method. Some observations from the 

experimental tests included:  

- High velocity impacts develop higher buckling modes. 

- Higher buckling modes are a result of the bars axial inertia. 

- Local buckling at the proximal end quickly reduces axial force in the bar and 

develops a tensile wave towards the distal end.  

- Increase in impact velocity decreases the buckled wave length.  

 

The 1982 experimental and theoretical work by Ari-Gur et al. [10]  was intended to 

determine the parameters and their effects on the dynamic buckling load of slender 

columns. The experimental tests included the axial impact of thin rectangular bars with 

varying initial imperfection and slenderness. Analytically, the bar deformation was 
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calculated by solving the Rayleigh-type beam equations of motion using the finite 

difference method with the assumption that the material remained elastic. Several 

observations were made as a result of the analytical and experimental studies, which 

include:  

- The maximum axial strain in the bar is inversely proportional to the magnitude of 

the initial imperfection.  

- There is a significant decrease in static buckling strain for slender columns 

relative to the moderate decrease in dynamic buckling strain, which results in an 

increase in DLF with increased slenderness. 

- For all loading durations, the DLF is always greater than or equal to unity.  

- It is important to include inertial effects in dynamic problems.  

- A change in material density may result in a change in dynamic buckling strain.  

- The stress wave propagation velocity, material density and bending stiffness of 

columns have a secondary effect on DLF.  

 

The perturbation method was applied by Pedron and Combescure [65] to evaluate its 

application to submerged stiffened cylindrical shells subject to transverse shock loading. 

The cylinder was considered to be infinitely long, stiffened circumferentially and axially. 

The shock wave was assumed to be planar with amplitude equivalent to the sum of the 

incident and radiant pressure which included fluid-structure interaction effects. The 

perturbation method was used to determine the critical buckling mode. The study was 

limited to impulsive loads similar to the duration of shell modal period. It was observed 

that the impulse and peak pressure directly influenced dynamic buckling. The study was 

limited to the elastic response of a cylindrical shell. 

 

The dynamic pulse buckling of composite rectangular plates was investigated by Ari-Gur 

and Simonetta [11]. The goal of their research was to determine how the anisotropic 

material properties would affect the DLF. Similar to the previous studies, a lateral initial 

geometric imperfection was applied in the longitudinal and transverse directions, with a 

half-sine pulse shape. The loaded plate was 1 m square with initial geometric 

imperfection amplitude of 25% of the plate thickness. The dynamic equations of motion 
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were solved using the finite difference method for multiple load durations ranging from 5 

– 160 ms. This range in load duration covers the impulsive, dynamic and quasi-static load 

durations since the plate fundamental periods ranged between 40-60 ms. The study found 

that the deformation of the plate, relative to the peak loading was different for the 

different load durations. The peak deflection is obtained after the load peak is reached for 

small amplitude pulses. For long duration loading (quasi-static), the peak displacement 

and load arrive at roughly the same time. The peak deflection under dynamic pulse 

durations occurs before the load is released. The study found that at low pulse loads the 

lateral deflection increases as the stiffness of the plate decreases. This is contrary to what 

was discovered under high pulse loads. The plate tends to stiffen non-linearly due to in-

plane tension until the dynamic buckling load is reached and the lateral displacement 

increases suddenly. The buckling load for loading durations greater than the fundamental 

loading period and less than the quasi-static duration is lower than the static buckling 

load. The findings of the finite difference method were compared to those determined 

from a finite element analysis using ANSYS and were within 15%.  

 

3.5 APPLICATION OF GALERKIN METHOD 

The Galerkin-type solution to the equations of motion was used to investigate the effects 

of axial stress waves on dynamic buckling of axially loaded elastic-plastic beams by 

Lepik [47]. The numerical study evaluated the dynamic buckling of a beam loaded 

instantaneously with infinite duration. The Galerkin-type of solution was applied to solve 

the following cases: elastic wave propagation and reflection, elastic wave propagation 

and part elastic part plastic reflection, and elastic propagation and plastic reflected. The 

result of numerical analyses revealed that the stress waves have a negligible effect on the 

final buckling form.   

 

The Galerkin method was also employed by Bich et al. [13] to solve the equations of 

motion of an axially loaded stiffened functionally graded cylindrical shell. The load was 

applied as a step loading within an infinite duration. For this type of loading, the critical 

load was considered to be the amplitude of the step load to cause dynamic buckling. Bich 

et al.. found that the load-displacement curve for imperfect shells did not clearly define 
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the dynamic buckling load however the contrary was found for perfect shells. The axially 

loaded cylindrical shell in that study was stiffened with rings and stringers and analysed 

for different combinations of each. The study found that by increasing either the number 

of stringers or rings, the DLF increased. By combining stringers and ring stiffeners, a 

greater increase in DLF was achieved. The study also investigated the relative influence 

of the geometric parameters, radius and shell thickness. For thin cylindrical shells, the 

stiffeners had an increased effect on the DLF and could have been characterised by a 

steeper load-displacement slope in the unstable region of the curve.  

 

3.6 FINITE ELEMENT METHOD 

Prior to the 1989 research of Weller et al. [84], the structural dynamic buckling behaviour 

under finite load duration was exclusively investigated with respect to beam and column 

response. Weller et al. numerically evaluated plates and beams subject to in-plane half 

sine wave load pulses using the ADINA finite element code. The study evaluated the 

influence of initial geometric imperfections and impact duration. For this study, the initial 

plate imperfections were modeled as a half sine wave in the longitudinal and transverse 

directions and the dynamic load had a half sine pulse shape. The in-plane buckling load 

of the thin plate was compared to the experimental tests by measuring the central lateral 

displacement. The application of the modified Donnell technique to the in-plane plate 

buckling DLF calculations was also investigated and found that the required imperfection 

magnitude was too high. As a result, a modified Southwell method was employed to 

determine the DLF. The numerical and experimental studies revealed that the reduction 

in load duration, less than the fundamental period of free vibration, increased the DLF. 

For load durations longer than the fundamental period, the DLF was less than unity. In 

terms of the initial geometric imperfection, the DLF is reduced to less than unity at large 

imperfection magnitudes.  

 

Further studies on the application of the Modified Donnell Technique were completed by 

Abramovich et al. [2] in 1989. Their study evaluated the Donnell and Southwell 

techniques for calculating the DLF from experimental and analytical tests of in-plane 

dynamically loaded composite plates.  The ADINA finite element code was used to carry 
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out a parametric study to evaluate the influence of initial geometric imperfection, gravity 

and boundary condition effects on the critical buckling load. A result of the Abramovich 

et al. work was the development of a consistent method of determining the DLF where 

the initial imperfections were large and unknown. The technique has also been shown to 

accurately determine the DLF where boundary conditions are poorly defined. The 

parametric study revealed that small geometric imperfections (20% plate thickness) were 

found to be similar to modelling the plate as a shallow shell, however at large (70% plate 

thickness) imperfections the plate can no longer be represented as a shallow shell.  

 

The application of the modified Donnell technique was extended to the calculation of 

DLF of dynamically loaded in-plane composite plates by Abramovich and Grunwald [4]. 

Their study used the bending and membrane compressive strain relationship in the plate 

to determine the critical DLF for various plate aspect ratios, boundary conditions, load 

amplitudes and load durations. The bending and membrane strains were determined by 

bonding two strain gauges to either side of the plate at the same location. Before the 

dynamic tests were carried out, the static buckling load was experimentally determined 

by applying a quasi-static increasing load until elastic bifurcation occurred. The natural 

frequency was also determined before the axial impact tests by striking the plate and 

measuring the elastic strain response. The dynamic test impact load amplitude was varied 

by increasing the mass drop height and the load duration was modified by changing the 

impactor mass and applying a rubber layer at mass impact position. The experimental 

dynamic tests found that when the loading duration matched the fundamental period of 

lateral vibration, a DLF of less than unity was observed for one series of composite 

plates. By decreasing the load duration, the DLF increased above unity as expected.  

 

The works completed by Su et al. [76] [77] use a simplified four-hinge, four 

compressible bar model to determine the effects of strain-rate, inertia and elasticity on the 

impact energy absorbing properties of a structure. The simple model represents a simply 

supported column impacted axially by a lumped mass. The structure responds in bending 

at the hinges and in axial compression in the bars. The equations of motion were solved 

to determine the axial force and bending moment during the dynamic response (loading, 
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unloading and reversed loading) using the 5
th

 order Runge-Kutta method. For this study, 

the material model was assumed to be elastic-perfectly plastic. The dynamic behaviour of 

the model was different than the static behaviour with and without strain-rate effects. The 

model is considered inertia sensitive since it was found to be more sensitive to impacting 

mass than initial velocity, initial imperfection size or effective hinge length. The 

numerical studies were found to agree well with experimental data for strain-rate 

insensitive materials and disagree with strain-rate sensitive models. The rate-dependence 

study [77] applied the same elastic perfectly-plastic, four-beam four-hinge simplified 

model as the inertia and elasticity [76] study. The strain-rate effects were accounted for 

by applying the Cowper-Symonds rate law to the material constitutive model. The study 

found that the peak load on the system increased, and the structural response time 

decreased when rate-effects were included. The strain-rate dependence increased the 

elastic contribution to the energy partition, which directly influences the early model 

response. The work of Su et al. [76] found that strain-rate dependence and inertia are 

equally significant in the dynamic response of the structure. Although the strain-rate 

dependence and inertia are equally significant, the influence of mass on the final 

displacement of strain-rate dependent and independent models is greater than the 

influence of initial velocity. The initial velocity was found to affect the peak force more 

than the mass. By adjusting the mild steel Cowper-Symonds coefficients to D=300s
-1

 and 

q=2.5, better agreement with experimental tests were achieved. 

 

The work by Kounadis et al. [45] presented a lower and upper bound limit of dynamic 

buckling load. The method was developed for a multi degree of freedom system subject 

to impact by a lumped mass with transverse and axial inertia included by applying the 

law of impulse momentum.  

 

Abramovich and Jones [3] experimentally examined the influence of geometric and 

material parameters on the transition from global buckling to progressive collapse. Their 

work focused on the buckling of stocky (D/t>=40) and slender (D/t>=100) tubular 

columns (square and cylindrical) under static and dynamic axial loads. The global 

bucking refers to the classical three-hinge bending response and progressive folding 
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refers to the local rippling effect. The graph in Figure 30 maps the regions governed by 

global bending, progressive folding and combined (transition) global and progressive 

collapse as a function of column length (L), side wall height (C) and wall thickness (t) 

under equivalent impact loading.  

 

 

Figure 30 Relationship between dynamic buckling behaviour (reproduced from [3]). 

 

The high speed footage of the drop hammer tests were used to determine the dynamic 

buckling process which was described as a function of stress wave interaction. The stress 

wave interaction produces a high-impact pressure that leads to plasticity of the cross 

section. This plastic cross-section is what develops the collapse mechanism at the 

proximal end of the column. The influence of lateral inertia forces was found to be 

negligible for local progressive collapse; however, the inertia may not be neglected under 

global bending. Generally, an increase in impact velocity resulted in a transition from 

global buckling to progressive collapse.  

 

The dynamic shear loading of cylindrical shells as a result of seismic events was 

investigated by Michel et al. [58]. In their study, a shell with radius to thickness ratio of 

450 and radius to height of one was experimentally tested using a shaker table, and 

numerically analysed using axisymmetric solid elements with ABAQUS. The stiffness of 

the cylindrical shell was evaluated with varying levels of geometric imperfection 
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amplitude when subject to shear, pressure and axial compression loading. The geometric 

imperfection shape was affine to buckling modes 1 to 10. It was found that shear 

buckling was less imperfection sensitive than buckling due to pressure or axial loading. 

The shear load from the experimental tests was plotted with respect to displacement to 

determine the static buckling load. The dynamic experimental tests and numerical 

analyses confirmed that combined buckling and vibration modes resulted in a critical 

dynamic buckling load at 70% of the static buckling load. This study provides an 

example of the impact of closely spaced buckling and vibration modes on the DLF.  

 

The application of the perturbation method in dynamic elastic pulse buckling was 

analysed using finite element and finite difference modelling by Kenny et al. [41]. The 

study verified the requirement of geometric imperfections in order for dynamic buckling 

to occur in an axially loaded beam. The finite difference evaluation of the buckling 

problem assumed a constant axial stress state and the effects of axial inertia and 

deformation were neglected. The finite element method, however, accounted for the axial 

inertia and deformation while determining the stress wave propagation during the impact 

event. The study compared the analytical characteristic transverse deflections with those 

calculated by the finite difference and finite element methods of an axially loaded beam 

with a half sine global imperfection. The theoretical transverse deflections were 3-5 

orders of magnitude larger than the numerical finite difference and finite element 

methods. The influence of random geometric imperfections was also evaluated by 

numerical methods and found to have a larger effect on the buckling response than the 

global deformations. The FE analysis evaluated the application of 2D axisymmetric solid 

elements and the Euler-Bernoulli beam element formulation to determine the unbounded 

growth of transverse displacements. This parametric study found that the 2D solid 

elements required a significant level of discretization, as well as the inclusion of 

geometry and material non-linearity in order to replicate the transverse deflection. The 

beam element formulation was limited to the plane sections remaining plane after 

deformation.   
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The dynamic buckling behaviour of an axially impacted 2-plate system was numerically 

investigated by Webb et al. [81] using the finite element method. Their study compared 

the experimental and theoretical work of Tam and Calladine [78] with the numerical 

analysis of the same axial impact experimental tests using 2D-plane strain elements. The 

numerical analyses results agreed well with the experimental results using Cowper-

Symonds strain rate law with coefficients D=40 s
-1

 and P=5. The finite element study by 

Webb et al. proposed dividing the plate buckling behaviour into phases governed by the 

stress state and deformation. A phase diagram is shown in Figure 31 to illustrate the 

velocity and deformation characteristics associated with each phase. The “stress wave 

zone” is considered pre-phase I, which accounts for the elastic wave propagation and 

reflection. The reflected stress wave is a function of the impacted mass and velocity and 

may be beyond the yield strength. Once the stress wave has travelled the length of plate 

and reflected, phase I begins with the “squashing zone” and ends at the arrival of the 

“transition zone”. The “transition zone”, “zone of work” and “elastic recovery zone” are 

lumped into phase II, where the bulk of the energy dissipation occurs during rotation of 

plastic hinges. The numerical results were in good agreement with the findings of Tam 

and Calladine [78]. 

 

Figure 31 Phase diagram relating striker velocity with out-of-plane deformation 

(reproduced from [81]).   
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The dynamic buckling response of fluid-solid slamming of plates was experimentally 

investigated by Cheong et al. [16]. The experimental test axially loaded the mild steel 

plate by dropping the test fixture from height to a pool which loaded the rigid bottom 

plate of the fixture. The fixture had a large mass above the plate, fixed top and bottom 

boundary conditions with variable (fixed, pinned and free) plate side conditions. After the 

plates buckled, they were continually loaded with varying impulse loads to determine 

their post-buckled capacity with varying plate side boundary conditions. The post-

buckled plate transverse bending was found to increase with increased impulse loads, 

resulting in increased lateral membrane strain and reduced longitudinal strain. A plastic 

collapse criterion was developed from this behaviour as follows: when the transverse 

maximum effective bending strain sharply increases while the lateral effective membrane 

strain rapidly decreases as impulse increases. The numerical study found that different 

side boundary conditions induced different plastic collapse mechanisms. The 

strengthening of the boundary conditions of the plate was found to have a significant 

influence in increasing the critical buckling impulse.  

 

The dynamic buckling of stiffened cylindrical shells under axial load was numerically 

and experimentally investigated by Yaffe and Abramovich [86]. The purpose of their 

study was to determine if a DLF below unity would develop in complex stiffened 

structures when the load pulse duration would become equivalent to the fundamental 

period of vibration. The experimental set up consisted of an externally stiffened 

cylindrical shell (length 200 mm and radius 120 mm) clamped between two loading 

plates with a dropped mass loading the upper plate. The dynamic response was measured 

using three pairs of strain gauges placed in the inside and outside of the shell plating. The 

numerical model was analysed using the ADINA code and consisted of a quarter 

symmetric cylindrical shell with two rows of shell elements between stiffeners and beam 

elements representing the stiffeners. Prior to the drop tests, the cylindrical shell was 

lightly impacted to determine the lowest bending frequency and a static elastic buckling 

test was performed to measure the static buckling strain. The experimental tests were not 

performed as expected due to a lack of repeatability in determining the load pulse 

duration. The numerical study found that the DLF was greater than unity at the period of 
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fundamental vibration. However DLF <1 occurred when the load period was normalized 

as:  

          [39] 

where c is the sound speed in the cylinder material, T is the half sine-wave pulse duration, 

and a is the length of the cylinder. The study also found that the geometric imperfections 

had a significant influence on the dynamic buckling response.  

 

The local buckling of circular tubes under bending was numerically investigated by 

Corona et al. [18] to accurately calculate the axial wrinkling wavelength which is directly 

used to determine the critical curvature of a member. The bifurcation modes historically 

over-predicted the buckling wavelength in experimental comparisons when using 

isotropic plasticity constitutive models. The work introduced Hill’s quadratic anisotropic 

yield function, which had been shown to facilitate accurate calculation of the local axial 

buckling wavelengths and determination of the critical curvature of the section. In order 

to apply Hill’s function, the user must experimentally determine the anisotropic constants 

(Sθ, Sr, Sxθ) from axial, circumferential and hydrostatic pressure buckling tests. The stress-

strain relationship should overlap in each test; however, if one assumes isotropic 

plasticity, a variation in the level of plastic strain may develop. The magnitude of the 

variation is the level of plastic anisotropy. By varying the anisotropic constants, the 

plastic variation will be eliminated, and the three stress-strain behaviours will overlap. A 

numerical parametric study was conducted to determine the influence of variations to Sθ, 

and Sr. The study found that the buckling wavelength increased when Sθ <1 and Sr>1 and 

decreased for Sθ>1 and Sr<1. The limit was found to have been directly influenced by the 

ovality of the member; it increased when Sr<1 and decreased when Sr>1. The paper 

concluded by suggesting that yield anisotropy, when present, should be incorporated in 

the bifurcation and post buckling calculations.  

 

The elastic buckling of imperfection sensitive shells under uniform lateral pressure is 

numerically investigated by Sosa et al. [74], using the finite element code, ABAQUS 

standard. Their study applied a reduced energy approach to calculating the lower-bound 

elastic buckling loads. To determine the lower-bound buckling load, the membrane 

acTT 2/'
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energy contribution to the shell stability had been removed, since imperfection sensitive 

structures may lose membrane energy contribution when local imperfections are present. 

The classical bifurcation analysis included the membrane energy contribution, and 

therefore, had been labelled as an upper bound buckling load.  

 

An experimental and numerical study was conducted by Lu et al. [53] on the response of 

liquid-filled cylindrical shells under impact loading. The intention of the study was to 

investigate the influence of material yield strength, wall thickness, length, and impact 

velocity on the energy absorbing characteristics. The study investigated impact test on 

aluminum, galvanized iron and stainless steel cylinders. The experimental test was setup 

such that a drop hammer impacted a load cell located on the top of the cylinder, with the 

load measured by the loading cell and water pressure measured by a pressure gauge fixed 

to the cylinder bottom. Generally, the tests suggested that the fluid pressure absorbed the 

majority of the impact force, thus, raising the impact resistance of the cylinder. The 

experimental tests were characterised in the deformation process by three stages: 

dynamic loading, dynamic buckling and elastic unloading. The sudden loading of the 

cylindrical shell caused oscillation of the impact force and internal pressure during the 

dynamic loading phase. The dynamic buckling and elastic unloading phases were 

associated with the development of buckling waves and a sharp drop in load and 

pressure, respectively. The buckling mode, impact force and pressure time histories from 

the experimental tests were used to verify the numerical model constructed in an LS-

Dyna environment. The constitutive model used for the cylinder was linear elastic-plastic 

with Belytschko-Tsay shell element formulation. The water in the cylinder was 

represented using hexahedral elements defined as an ideal fluid with volume modulus of 

1.37 GPa. The parametric study found that the impact force and internal pressure remain 

consistent for each impact velocity when the linear strain-hardening modulus is low. The 

loading duration, however, increased with an increase in impact velocity. For linear 

strain-hardening modulus greater than 1% of the elastic modulus, the internal pressure 

and impact force increased with an increase in impact velocity. The developed buckle 

wavelength was found to be independent of the impact velocity and yield strength. The 

number of buckling waves was found to increase with an increase in hardening modulus. 
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Lu et al. study [53] found that an increase in material hardening modulus increased the 

fluid pressure developed in the cylinder and impact force, however, the load duration 

subsequently decreases. Generally, the tests suggest that the water inside the cylindrical 

shell increases the stability of the structure and reduces the imperfection sensitivity.  

 

The numerical study of Mania [55] investigated the influence of a viscoplastic 

constitutive model on the critical dynamic buckling behaviour of axially loaded plate 

columns. The critical buckling behaviour was evaluated using the axial pulse load 

amplitude to cause buckling.  The study evaluated plate columns with closed sections 

using the finite element code, ANSYS. The isotropic and orthotropic material constitutive 

models were applied to columns with geometric imperfections. The geometric 

imperfection was applied as a fraction of the wall thickness (0.01, 0.05 and 0.1) in the 

shape of the first static buckling mode. The closed plate sections were represented using 

shell elements and subjected to a load in the form of a half-sine wave and a rectangular 

pulse load with duration equivalent to the fundament period of flexural vibrations. 

Mania’s study assumed the column was constructed of either bi-linear isotropic and 

orthotropic mild steel (σy=100 MPa, E=200 GPa, Eh=2 GPa) with the dynamic response 

described by the Perzyna constitutive model.  By including strain rate sensitivity, the 

DLF significantly increased for isotropic (29%) and orthotropic (40-60%) columns. The 

Budiansky-Hutchinson and Air-Gur Simonetta criterion were applied with similar strain 

rate sensitivity behaviours however the Air-Gur Simonetta criteria found marginally 

increased strain rate sensitivity when compared to the Budiansky-Hutchinson criterion.  

The orthotropic material model was found to be more strain-rate sensitive.  

 

The work of Less and Abramovich [48] determined the dynamic buckling load of a 

stringer stiffened curved laminate composite panel. Using the ANSYS FE code, the 

curved composite panel (modelled using 8-noded shell elements) was loaded axially on 

the curved edge. The paper lists the steps for determining the dynamic load factor for 

different half-sine load amplitudes and durations. Firstly, the static buckling load was 

calculated using an eigenvalue buckling analysis. Then a modal analysis was carried out 

to determine the fundamental mode of vibration. Following the natural frequency 
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analysis, the equations of motion were solved using FE for the different load durations 

and amplitude. A geometric imperfection of 10% of the panel shell thickness in the shape 

of the static buckling mode was included in the panel model. The critical buckling load 

was then determined by plotting the lateral deflection of the shell (at the mid-span 

between stringers) as a function of the axial load. The DLF criterion of Hutchinson-

Budiansky (i.e., when a small increment in load results in a large increase in lateral 

deflection) was used in this study. This study found that load durations near the 

fundamental local shell bending mode (in the shell section between stringers) resulted in 

a DLF less than unity.  

 

Dynamic buckling of axially impacted cylindrical shells was investigated by Wei et al. 

[83] to determine the influence of material parameters on the buckled shape. The 

perturbation method was employed to determine the wavelength of the buckled shape, 

while varying the material density, specific heat, strain hardening modulus, strain-rate 

sensitivity, thermal effects, strain rate, mean shell radius and shell thickness. In addition 

to using the perturbation method, the finite element method (using MSC Dytran) was 

used to investigate the influence of imperfections on the low speed buckling behaviour of 

aluminum cylindrical shells. The authors explained the perturbation comprehensively as 

the method of determining the buckling modes by perturbing the deformed cylindrical 

shell by a very small amount. The deformed state was considered buckled if the 

superimposed perturbations grew as a function of time. Using this method, the wave 

number and initial perturbation growth rate were found to increase when the initial axial 

stress increased and hardening modulus decreased. The initial perturbation growth rate 

also increased when mass density decreased; however, the wave number and mass 

density varied independently. The maximum perturbation growth rate and wave number 

were dependent on the axial velocity and length of the cylindrical shell. 

 

In their study, the shell buckling was not affected by the length to radius aspect ratio for 

the nominal axial strain rate. An increase in the strain hardening exponent, shell wall 

thickness and shell radius found to monotonically increase the half wavelength. A 

decrease in the half wavelength occurred when the applied strain rate, mass density and 
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thermal softening exponent were increased. The analytical perturbation method was 

compared to the experimental data of Florence and Goodier [24]; they found that the half 

wave number differed by less than 33%. This discrepancy between their calculated and 

the experimental wave number was attributed to simplification made to the perturbation 

terms, neglecting the geometric initial imperfections, assuming geometric axisymmetry 

and neglecting high-order strain terms.  

 

The 3D shell-element model used to investigate the influence of geometric imperfections 

(30% thickness reduction) on the buckling behaviour assumed frictionless contact 

between the developed folds. By varying the random imperfections, the buckling mode 

remained the same; however, the deformed shape changed. The average axial load during 

the buckling action remained the same for 5 or 50 geometric imperfections (thickness 

variations). The peak axial load was larger for the model with 5 imperfections. Wei et al. 

[83] therefore, claimed that the energy absorbed by axial strain remained the same for 

different geometric imperfections.  

 

Wei and Batra [82] continued the application of the perturbation method to determine the 

wave number and initial growth rate of thermo-viscoplastic cylindrical shells subject to 

impulsive radial loads. In that study the half wave lengths observed in the experimental 

work of Lindberg and Florence [49] was compared to those calculated by the perturbation 

method with good agreement. The analyses in the study used the Litonski-Batra thermo-

viscoplastic relation to calculate the stresses for radially prescribed impulsive velocity 

where elastic deformations are considered negligible, and no strain-rate reversal was 

assumed to have occurred until the buckling modes had fully developed. The study 

investigated the strain hardening and strain-rate hardening independently. An increase in 

the strain hardening modulus was found to decrease the initial perturbation growth rate 

and the number of developed half waves. The initial perturbation growth rate and number 

of half waves tended to increase quickly when the material viscosity increased from a 

small value; however, they increased slowly when the viscosity was initially large. 

Strain-rate hardening materials were determined to increase the perturbation growth rate 

and wavelength at a lower rate than the strain hardening only materials. Since the 
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buckling mode may change throughout the deformation process, the perturbation method 

is not recommended to be used for computing the energy absorbed in post-buckling 

deformations. This method also ignores the thickening effect, which provides additional 

stability at high prescribed velocities. By neglecting the thickening effect, the computed 

buckling loads are considered highly conservative.  

 

3.6.1 Stress Wave Propagation 

The local (short wave) and global (long wave) dynamic buckling of axially impacted 

cylindrical shells was analytically and numerically investigated by Xu et al. [85]. The 

study focused on the influence of the longitudinal stress wave propagation, prior to end 

reflection, on the dynamic buckling behaviour. The dynamic buckling load and shape 

were determined by calculating the eigenvalues and eigenvectors of the Hamiltonian 

system of equations. The global modes were characterised by bending and ovalization of 

the shell, while local modes exist as axial ripples in the cylinder shell. By calculating the 

normalized critical buckling load for several wave propagation times, the local, global 

and combined buckling modes may be determined from Figure 32. The three curves, 

which do not converge at early stage wave propagation times, are the global buckling 

modes and the curves corresponding to the short propagation times which are the local 

modes. Time, T, where the two sets of curves intersect corresponds to the wave 

propagation time at which the combined global and local buckling mode is developed. 

From Figure 32 one may conclude that local modes typically developed at short wave 

propagation times, and global modes develop at later propagation times.  
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Figure 32 Critical buckling loads as a function of wave propagation time (reproduced 

from [85]). 

 

Elastic buckling of rings subject to high loading rates of a hydrostatic pressure pulse was 

investigated by Putelat and Triantafyllidis [67] using the Hamiltonian method. The study 

also briefly employs the frozen coefficient analysis method to determine the quasi-static 

buckling modes. The analysis calculated the hoop, bending and shear potential energy 

components for multiple rings with different slenderness values. By plotting the potential 

energy components as a function of time, the onset of instability is indicated by the peak 

hoop potential energy. The study found that small pressure loading rates resulted in the 

global modes governing the deformed shape, and the local modes governing the 

deformed shape under large loading rates. In terms of stress wave propagation, Putelat 

and Triantafyllidis determined that the global buckling mode occurred after the axial and 

shear stress waves traveled around the circumference of the ring under small loading 

rates. Under large loading rates, localized buckling developed. Axial stresses traveled at 

the longitudinal wave speed with the shear and bending stress waves travelled at the 

bending wave speed.  

 

The collective works of Karagiozova and Jones [34] heavily relate the dynamic buckling 

of axially loaded cylindrical shells to the stress wave propagation characteristics. 
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Karagiozova and Jones numerically investigated the influence of elastic and plastic stress 

waves on buckling initiation. The numerical study analysed axially impacted cylindrical 

shells with different geometric characteristics, impact velocities and impact methods. A 

discretized axisymmetric model of the cylinder was utilized in that study. The material 

constitutive equations used the Tresca yield criterion, since the von Mises yield criterion 

predicted higher critical loads than those observed in experimental tests. Since the Tresca 

yield criterion was used, there were three stress wave propagation speeds: one elastic and 

two plastic (fast and slow). The fast and slow plastic wave speeds corresponded to small 

and large plastic deformations respectively. The numerical calculations were verified by 

comparing the axial deformation and deformation duration with those from experimental 

tests of Florence and Goodier [24] and Murase and Jones [61]. The verification analyses 

included low (6.26 m/s) and high (125.3 m/s) speed events as well as stationary cylinder 

and projected cylinder impact tests with good agreement. The analysis of the projected 

cylinder found that buckling developed in zones of sustained plastic flow, where the slow 

plastic wave propagated. This buckling lasted until partial elastic unloading occurred with 

the development of a wrinkle (radial displacement). The stationary cylinder analyses 

found that a uniaxial stress state developed from the propagation of the faster plastic 

wave along the length of the cylinder. The wrinkling at the impacted end was resisted by 

the cylinder radial inertia; however, the stationary end buckled from the reflected elastic 

wave (created a slow plastic wave). These numerical studies have shown that at early 

times, the deformation is governed by the stress wave propagation and on structural 

response at later times.  If the cylinder is thick enough, the lateral inertia would suppress 

the development of a wrinkle. Thin cylinders would wrinkle due to the lack of radial 

inertia. If the cylinder is moderately thick the small wrinkles developed by the elastic and 

faster plastic waves would be amplified by the slower plastic waves.  

 

The influence of stress waves on the buckling type of axially loaded cylindrical shells is 

investigated numerically by Karagiozova and Jones [35]. The stress waves developed in 

the axisymmetric models are analysed for different cylinder geometric characteristics 

(thickness-radius and radius-length ratios) and material properties (steel and aluminum). 

A bilinear stress-strain relationship is assumed for steel and aluminum materials. The 
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strain-rate sensitivity in steel cylinders was accounted for using the Cowper-Symonds 

equation (D=16,640 s
-1

, q=3.53). The strain-rate sensitivity in aluminum cylinders was 

effectively ignored. The study represents the cylindrical shell using solid axisymmetric 

elements employed in the ABAQUS Standard. The dynamic buckling behaviour of the 

cylindrical shell is characterized by dynamic plastic buckling and dynamic progressive 

buckling. Dynamic plastic buckling is developed when small wrinkles are observed along 

the length of the cylinder. The development of shell folds is considered as dynamic 

progressive buckling. The dynamic buckling response of the aluminum cylindrical shells 

suggests that a decrease in thickness and radial force will increase the likelihood of 

dynamic progressive buckling. It has also been shown by Karagiozova and Jones that 

dynamic buckling type is directly dependent on the strain hardening modulus and shell 

geometric parameters. A decrease in the slope of the strain hardening modulus decreases 

the plastic wave speed subsequently increasing the time to travel across the length of the 

shell.  

 

Cylindrical shells with a low hardening modulus value allow for radial displacements to 

increase in the region of plastic flow, and develop progressive buckling, which in turn 

results in elastic unloading and stopping the propagation of the plastic wave resulting in 

dynamic progressive buckling. The aluminum impact analyses verified that the decrease 

in radial inertia decreases the buckling resistance and leads to dynamic progressive 

buckling where elastic unloading halts the plastic wave propagation. The axial impact 

analyses of steel cylindrical shells revealed that progressive buckling developed without 

the presence of elastic unloading, which typically occurs during progressive buckling of 

aluminum cylinders. Generally, dynamic plastic buckling of strain-rate insensitive shells 

occurs when there is sufficient radial inertia to sustain the plastic flow throughout the 

length of the cylinder and avoid elastic unloading. Dynamic plastic buckling, however, 

does not occur in strain rate sensitive shells due to the propagation of plastic strains at the 

elastic wave speed. An effect inherent to strain-rate sensitive materials is the increase in 

plastic strain, although the stress may be decreasing. This causes multiple plastic strain 

wave magnitudes to propagate along the cylinder and localize, thus, causing local 

buckling. The axial impact of aluminum and steel cylinders, insensitive to strain-rate 



63 

 

effects, identical geometric properties and equivalent Eh/E ratios were analysed. It was 

found that the increased radial inertia of the steel cylinder developed plastic buckling and 

the aluminum cylinder with lower radial inertia developed progressive buckling. For 

dynamic plastic buckling to develop, it requires sustained axial plastic flow without strain 

localization. The localization of strain results in dynamic progressive buckling. The 

influence of loading type on the type of dynamic buckling was also assessed by 

Karagiozova and Jones [35] by impacting a stationary cylinder with a mass and also by 

projecting a cylinder with a fixed mass into a rigid wall. The test results suggested that 

the buckled shape of the cylindrical shell was dependent on the initial kinetic energy of 

the system and not on the mass of the impactor.   

 

The sensitivity of the bucking response to inelastic material properties and 

approximations was numerically assessed by Karagiozova and Jones [37]. It is important 

to note that the complexity of the dynamic buckling response is generally beyond 

analytical solutions. The focus of the aforementioned publication was to determine the 

influence of plastic material property approximation and axial inertia on the initiation, 

development and pattern of dynamic buckling. Several different hardening modulus 

approximations were investigated including low slope, high slope, piecewise linear and 

strain-rate sensitive. The Cowper-Symonds expression was used to approximate the 

strain-rate sensitivity with aluminum constants of D = 1,288,000 s
-1

 and q=4. An 

axisymmetric, 8 node solid element representation of the stationary impacted column, 

without geometric imperfections, was analysed using the ABAQUS Standard. The study 

found that the hardening modulus approximation had an influence on buckling shapes 

with an increase in impact velocity.  In terms of the plastic wave speed, the von Mises 

stress wave was found to be the fastest, followed by Tresca and then uniaxial. The study 

results suggest that axial inertia also has a significant influence on the dynamic buckling 

response of axially impacted cylindrical shells. Impacted cylindrical shells with a high 

strain hardening modulus resulted in a faster plastic wave propagation reaching the 

cylinder end, before the lateral deflection could develop. This was contrary to the 

findings observed when a lower hardening modulus was considered, which resulted in the 
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development of dynamic progressive buckling before the plastic wave reached the distal 

end.  

 

The piecewise hardening modulus resulted in two plastic wave propagation speeds with 

larger strains propagating the slowest. Axially impacted cylindrical shells with strain-rate 

sensitive hardening modulus were characterized by plastic strains travelling at elastic 

wave speeds, increasing with time and varying in magnitude. This plastic strain 

propagation behaviour resulted in strain localization, thereby developing dynamic 

progressive buckling. The numerical study also suggested that progressive buckling 

would always occur unless there is sufficient energy (lateral inertia) to provide buckling 

resistance. Axial inertia effects on the dynamic buckling response were investigated by 

impacting cylindrical shells of different lengths. The analysis results proved that the 

number of cylinder folds did not depend on the cylinder length; however, they would be 

dependent on the material properties. It has been noted that the peak impact load 

develops as a result of the stress discontinuity at t=0 and is directly dependent on the 

initial kinetic energy. The study findings suggested that the critical dynamic load is 

directly dependent on the shell radial inertia and the capacity of the cylinder to absorb the 

kinetic energy through compression and folding.  

 

Karagiozova [36] extended the aforementioned stress wave propagation works on 

cylindrical shells [34], [35] to include the axial impact of square tubes. The stress wave 

propagation of square tubes must consider a plane stress state (include shear stress wave) 

instead of a biaxial stress state, which assumes shear stress can be ignored. Additional 

restraint provided by the corners of the square tubes generates the shear stress waves. 

This study assumes the square tube is constructed of a material which is strain-rate 

insensitive, has isotropic hardening and follows the von Mises yield criterion. 

Karagiozova [36] describes a single elastic and two plastic wave speeds (i.e., one fast and 

the other slow), which are dependent on the stress state and propagation direction. Fast 

plastic waves can propagate near the elastic wave speeds, while slow waves are directly 

related to the ratio between the hardening and elastic moduli. A decrease in the ratio leads 

to a decrease in the slow plastic wave propagation speed. The shear stress wave, 
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however, behaves in a more complex manner. An increase in the shear stress always 

decreased the slow plastic wave speed. It may or may not, however, increase or decrease 

the fast plastic wave speed.  

 

The intention of the study in [36] is to understand plastic zone propagation speeds. By 

varying the plane stress state, it was shown that the slow plastic waves propagate in an 

elastic-plastic medium at speeds higher than the uniaxial stress wave. The study also 

suggests, based on theoretical calculations, which lower plastic stress wave propagation 

speeds result from high impact velocities. To verify the findings, a numerical analysis of 

an aluminum plate fixed at one end with rotational edge constraints (to replicate a square 

tube) and impacted at the other was completed using shell elements. The analysis results 

also found that the plastic wave speed propagated faster than the uniaxial plastic wave in 

a non-uniform fashion (caused by the shear stress along the edge boundary). The 

numerical studies also agreed with the theoretical slow and fast plastic wave propagation 

speeds. By analysing the buckling behaviour numerically, it was found that the plastic 

zone propagation was directly related to the buckling deformation initiation. This implies 

that understanding stress wave propagation is crucial to the analysis of the buckling 

deformation pattern of structures subject to in-plane dynamic loads.  

 

The work completed by Karagiozova [36] on theoretical elastic and plastic stress wave 

propagation speeds in axially impacted square tubes is investigated experimentally and 

numerically by Karagiozova and Jones [37] in the second part of the two part publication. 

A quarter symmetric shell model of the square tube was analysed using ABAQUS 

Standard with a bilinear plastic aluminum material definition. To initiate axisymmetric 

buckling behaviour, 0.1 mm out-of-plane geometric imperfections were modelled along 

the square face edges. An identical set of impact analyses were performed on 

geometrically equivalent (length and cross sectional area) cylindrical shells to understand 

the influence of shape. At low impact velocities local deformations developed with the 

rest of the tube undeformed. In contrast, the higher impact velocities developed dynamic 

plastic buckling with small wrinkles throughout the square tube. An axial compression 

phase and a bending phase characterized the dynamic buckling of the tubes. The 
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compression phase is of particular importance to the buckling behaviour of small b/h 

ratios and high strain hardening materials since the bending rigidity is low in the 

remaining elastic portion of the tube. Similar to part one of the publication, the numerical 

study found a strong correlation between the shear stress in small hardening ratio and 

slow plastic wave speed. Several square tubes with varying b/h (where b is the side face 

width and h is the face thickness) ratios were subject to axial impact and analysed 

numerically. The results of the study suggest that the axial and lateral inertia of the shell 

influence the initial wrinkle location.  

 

A common buckling pattern, when subject to high impact velocities, is wrinkling at the 

proximal end due to large initial plastic strains, followed by wrinkling at the distal end 

due the reflection of the fast plastic stress wave. The magnitude of the shear stress wave 

slowed the slow plastic wave speed and resulted in strain localization which, under 

sustained plastic flow, deformed and buckled. An increase in lateral inertia resulted in 

small strains propagating at high speeds. Once a square tube region buckled, plastic 

reverse loading occurred, therefore stabilizing the section. The only way dynamic 

buckling could occur in each test was if plastic flow was sustained in the entire shell wall. 

It has been found that elastic unloading would occur during buckling deformation and 

interrupt plastic wave propagation. Regardless of the strain hardening characteristics, the 

shear stresses could significantly affect the plastic wave speeds. The study has also 

shown that a shell can absorb a larger kinetic energy if the mass is applied with a higher 

velocity. This is due to the proportion of kinetic energy that is absorbed during the 

compression and bending/folding phases. Smaller impact mass results in a larger portion 

of energy absorbed during the compression phase and small wrinkles are observed under 

large impact masses with the same initial velocity. The force displacement graph 

illustrates the initial compression phase as the flat initial part of the curve. If the force 

displacement graph shows an initial peak and an immediate decrease, it suggests the tube 

is under a force beyond the elastic limit with wrinkles forming under sustained plastic 

flow. A similar set of impact analyses was conducted using equivalent cylindrical shells 

and it was found that the length reduction was independent of impact velocity. The 

square and cylindrical shells may be buckling differently since the slow and fast plastic 
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stress waves travel at different speeds. Wave speeds in cylindrical shells are slower than 

those in square tubes due to the small radial inertia of the equivalent cylindrical section. 

Buckling characteristics of slow plastic waves are large folds developing from strain 

localisation and faster plastic waves develop quickly over a large portion of the shell.  

  

The observations from the numerical and experimental tests of axially impacted 

cylindrical shells are reported in part one of Karagiozova and Alves publication [38]. The 

purpose of the study is to investigate the effective length and material properties that 

govern the transition from a progressive collapse to global buckling. Progressive collapse 

is considered local wrinkling or folding, contrary to global buckling, which is 

characterized by local denting and global bending. The experimental tests included quasi-

static and dynamic axial loads on aluminum cylindrical shells with varying lengths. By 

varying the lengths, the critical length indicating a progressive or global buckling could 

be determined. From the quasi-static tests, the critical length to cause progressive or 

global collapse was found within 1 mm. Multiple cylinder lengths were also loaded 

dynamically using a drop hammer to determine the critical transition length from global 

to progressive buckling under dynamic loads. The test findings suggest that the critical 

transition length is sensitive to the impact velocity with the dynamic critical length more 

than doubling the static critical length. The increase in buckling transition length is due to 

inertial effects.  

 

Numerically, the cylindrical shells were modelled using shell elements with a point mass 

on a rigid plane representing the impactor. To initiate asymmetric buckling, geometric 

imperfections in the shape of the first two buckling modes were included in the shell 

model. In order to achieve good agreement with experimental tests, an imperfection 

magnitude of 0.0005L was used. The numerical tests investigated the influence of yield 

and hardening modulus on buckling transition by analysing identical cylinders with 

various yield strength and hardness modulus. The kinetic energy of each test was kept 

constant by varying the impact velocity and mass. Resulting buckling behaviour for the 

three cylinder materials agreed with experimental findings suggesting that progressive 

collapse is sensitive to the impact velocity. The tests also found that the buckling 
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response was sensitive to the material properties as well. For materials with low 

hardening modulus, progressive collapse developed at lower velocities with more rapid 

local bending deformation growth. The reduced yield strength subsequently reduced the 

amount of energy absorbed during initial compression and thus reducing the critical 

buckling length. Generally, an increase in impact velocity was found to increase the 

critical buckling length. This, however, is not a rule since the numerical study found 

several increased velocities reduced stability when progressive buckling occurred at the 

distal end.  

 

Numerical studies, including strain-rate effects, were also conducted and their results 

suggested an increase in impact velocity (compared to strain-rate insensitive cylinders) 

was required to cause progressive buckling of strain-rate sensitive cylinders. Karagiozova 

and Alves extended the dynamic buckling theory to include energy absorption phases. A 

large proportion of the kinetic energy is absorbed in the compression phase with the 

remainder of the energy absorbed through folding or bending. The development speed of 

local wrinkles has been shown to stabilize the cylinder response. Materials with similar 

strain hardening modulus were found to have similar available energy for global buckling 

after the initial compression phase. The lower strain hardening modulus was found to 

absorb more energy through folding due to quick wrinkle forming. Therefore, the 

proportion of the absorbed initial kinetic energy and the speed of local wrinkle 

deformation influence the critical buckling length. In conclusion, materials with high 

yield strengths and low hardening modulus are better energy absorbers than low yield 

strengths and high hardening modulus. This is due to the high energy absorbed during the 

initial compression phase, and increased speed of wrinkling due to low hardening 

modulus.  

 

The second part of Karagiozova and Alves’s [39] two part publication theoretically 

evaluated the critical buckling length, defining the transition from progressive buckling to 

global bending. The same bi-linear material characteristics in part one [38] were 

investigated in this paper as well, however, no attempt is made to associate modal 

interaction with the critical buckling length. During the low speed global bending and 
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high speed progressive buckling, a 1.0 ms compression phase was observed to exist. 

Following the compression phase, a maximum lateral displacement velocity was 

observed at the tip of a wrinkle (i.e., at the location of the buckling hinge). Lower bound 

estimation, Euler mode, of the critical transition length was analytically presented as:  

        [40] 

where R is the cylinder radius, Ȝ is the hardening to elastic modulus ratio, and  is the 

material yield strength. The Euler buckling is applicable to global bending about a single 

hinge; however, for a three rod two hinge mechanism, the critical transition lengths may 

be determined as follows:  

        [41] 

 

and,  

 (reproduced from [39])          [42] 

The total theoretical shortening of the model, at the end of the compression phase, is the 

area between the intersection of V1 and V and below curve V, eq(25), shown in Figure 33 

where: 

,      (reproduced from [39])   [43] 

are a function of time, t, shell cross sectional area, A, material flow stress, σ0, initial 

lateral displacement, w0, initial impact velocity, V0, impacting mass, G, and factor γ 
expressed as: � = ૜� √��૙� √૚ − ૜૙���૛�૙ሺ૚+√�ሻ૛�૛         [44] 
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Figure 33 Striker velocity as a function of time used in the analytical and numerical 

solutions (reproduced from [39]). 

 

Shells with low yield strength were found to remain in the compression phase longer than 

geometrically identical shell with a higher yield strength and equivalent hardening 

modulus. The impacted tube (with lower yield strength) requires increased impact 

velocity to stabilize the response and transition to progressive buckling. A two beam 

single hinge model was used to theoretically evaluate the impact problem for progressive 

buckling with material properties represented by spring stiffness attached to the rod ends 

and hinge. Using this theoretical representation, it was shown that the low strain 

hardening modulus contributes to high velocity buckling. The influence of axial inertia 

provided by the impacting mass was also evaluated and found that the increased impact 

mass increased the buckling velocity. For this set of analyses, the mass was increased 

with a corresponding decrease in velocity to keep a constant kinetic energy.  

 

Empirical approximations of the critical transition buckling length from purely 

progressive buckling to purely global bending are developed in Karagiozova and Jones 

[40]. The approximations were derived from axial impact experimental tests followed by 

numerical analyses to verify the mechanics of each collapse. Numerically, the ratio of 

hardening modulus to the yield stress was evaluated for its influence on the critical 

length. The numerical studies also evaluated the influence of impact mass and velocity as 
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well as cylinder geometric characteristics such as length, diameter and wall thickness. 

Generally, the buckling patterns can be split into global bending (development of local 

plastic hinges), progressive buckling (local shell folding) and a combination of bending 

and buckling. The buckling behaviour is characterized by a compression and a bending 

phase which may be de-coupled. The compression phase is largely compression 

combined with small lateral displacement. The bending phase, however, has minimal 

compression combined with large lateral displacements and rotations. Semi-empirical 

approximations of the global hinge (V1,glob), striker (Vstr) and progressive buckling fold 

(V1, progr) were developed using simplified representations of the bending and folding 

deformation behaviour. By correlating the time of buckling (t
*
glob or t

*
progr) from the finite 

element analysis, the earlier time to initiate buckling was found to dominate the 

deformation behaviour. This theory is shown graphically in Figure 34 with the 

corresponding deformed finite element mesh next to the graph. This is not the rule, 

however, since global buckling can develop after several folds have generated. As 

presented previously, low velocities lead to global buckling and higher velocities will 

develop progressive folding.  
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Figure 34 Transition from global to local collapse (reproduced from [40]). 

 

In accordance with the graphs, it has been seen that an increase in local fold formation is 

the stabilisation mechanism when increasing the impact velocity. By varying the yield 

strength, it was found that global collapse develops quicker for low yield strength 
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materials due to the lower bending rigidity. The hardening modulus has been found to 

have a larger effect on progressive buckling which requires a larger hardening modulus to 

initiate buckling transition from global to progressive. An increase in the transition 

velocity does not relate to an increase in the compression phase duration. A higher yield 

stress has been shown to increase the global mode development speed during the 

compression phase causing a higher impact velocity requirement to achieve progressive 

buckling. A lower strain hardening modulus will result in a lower progressive buckling 

velocity than a cylinder with a higher strain hardening modulus. A material with a lower 

yield strength or cylinder with a thinner wall requires more folds to absorb the kinetic 

impactor energy. 

  

3.6.2 Advanced Element Formulations  

The local and global Euler buckling of stiffened plates and cylindrical shells was 

numerically investigated by Sridharan and Zeggane [75] using an element formulation 

embedded with the local buckling deformation. An amplitude modulation function was 

employed in the element formulation, which accounts for local modes and deformation 

with respect to the local element coordinates and neighbour elements using additional 

degrees of freedom. By using the novel element formulation one may account for the 

local and global buckling modes with a relatively coarse mesh. The study investigated the 

modal interaction of stiffened panels which have a reduced imperfection-sensitivity due 

to the resistance of the stiffeners to radial movement and the cancellation of plate 

buckling modes with stiffeners along nodal lines. To evaluate the element formulation, a 

5-bay stiffened cylindrical shell modelled using eight second order elements. The 

buckling response using the novel element formulation (8 elements) was compared to the 

buckling response 16x24 8-noded element mesh in ABAQUS and found good agreement 

for global and local buckling modes. Sridharan and Zeggane [75] also investigated the 

global and local buckling modes of several beam section types with excellent agreement 

with the similar ABAQUS results.  

 

 

 



74 

 

3.7 SUMMARY  

The collection of reviewed literature focused on the structural response of impacted bars, 

plates and cylindrical shells to provide examples of dynamic material characteristics and 

their influence on structural response. Several general concepts are emphasized including 

dynamic load factor (DLF), strain rate, elastic and plastic wave propagation as well as 

numerical analysis techniques to predict and characterize the dynamic pulse buckling.  

 

The dynamic load factor has been utilized by many researchers to compare the dynamic 

response of the structure with the static Euler buckling load. The DLF varies as a function 

of load pulse shape and duration. It is generally at a minimum when considering the load 

duration is equal to the fundamental mode of vibration. Dynamic load factors which are 

less than unity suggest that the dynamic structural response may be less stable than the 

static response. The majority of the literature reviewed herein provides examples of DLF 

greater than unity suggesting the dynamic response of the impacted structure is improved 

over the static response. The same theory applied to naval platforms subject to short 

duration high pressure shock loads suggests the evaluation of the structure may be best 

evaluated as a function of the dynamic load duration, amplitude and modal response of 

the structure.  

 

The effect of strain rate on the dynamic yield strength has generally been applied to 

cylindrical shell pulse buckling utilizing the Cowper-Symonds methodology. Several 

studies suggest strain-rate sensitivity will make a difference in the pulse buckling 

behavior and damaged state of the impacted object. Strain-rate effects are highly material 

and loading (compression, tension or triaxial) specific and may or may not govern the 

dynamic yield strength of the material of the loaded structure. The material and loading 

specific strain rate effects are observed in the variation in Cowper-Symonds coefficients 

used throughout the literature. In terms of applying strain rate effects to dynamically 

loaded structures, it is important to understand the material characteristics at the loading 

rates in question. Otherwise, an accurate approximation of the structural dynamic 

response may not be realized.  
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Elastic and plastic stress wave propagation has been used in many examples to describe 

and characterize the pulse buckling performance of structures subject to impact loads. 

The deformation of the impacted structures is a direct function of the material 

characteristics. Strain rate sensitivity and hardening modulus representation may alter the 

deformed state of the numerical prediction in terms of global response and local buckled 

regions. The sensitivity of the structural response to changes in hardening modulus or 

strain-rate sensitivity is a function of the impact momentum and energy as well as the 

structural configuration. Therefore, it is important to consider the dynamic problem 

(impacting and struck structures), material formulations and analysis requirements when 

predicting dynamic pulse buckling. The level of conservatism inherent in the analysis 

may be adjusted by the material constitutive model and modeling assumptions.  
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CHAPTER 4 NUMERICAL INVESTIGATION 

 

Ship structures are required to remain operational following dynamic impact loads from 

wave slamming, ice crushing, or weapons effects, including underwater shock or air blast 

events. The structural response of the vessel subject to dynamic impact loads is legislated 

to remain elastic up to a prescribed design load limit. Under extreme dynamic loading 

conditions, the structural response may be well beyond the elastic yield limit for some 

sustained period of time. The duration of the load, loading rate and material properties of 

the loaded structure will determine the level of plasticity developed in the structure. 

Additional factors that may influence the level of plasticity in the structure include the 

global and local mass and stiffness of the loaded structure. The mass and stiffness at the 

global structure level will influence the modal response, thus increasing the amplitude of 

the structural response when the loading duration and natural frequency modes align. At a 

local structure level, the structural response may be influenced by local modes; however, 

stress wave propagation and reflection have been shown in the literature to govern the 

dynamic pulse buckling of impacted objects.  

 

The following sections present numerical evaluations showing the response of structures 

that were considered in some published experimental studies, as well as a stress wave 

propagation investigation for a double bottom ship structure subject to a rectangular 

pressure pulse. Numerical simulations of experimental examples are used to present 

stress wave behaviour of elastic stress waves for stress wave loading and unloading 

problems. The simulations are validated using experimental data. Axial and shear stress 

wave propagation and interaction behaviour within a ship double bottom structure is 

presented. There are several different structural details within the double bottom structure 

and each has an effect on the stress wave behaviour. These include transverse floors with 

cut-outs and vertical stiffeners as well as transverse frames; which are discussed in detail 

in the following sections.  
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4.1 FE EXAMPLE OF ELASTIC UNLOADING 

Consider two long slender bars struck by a hammer with the distal end of one bar free 

and the other bar fixed. The longitudinal stress wave propagates along the length of the 

bar and reflects at the end. In the fixed end condition, the reflected stress wave amplitude 

is the same as the incident wave amplitude. The reflected stress wave amplitude for the 

free end condition is opposite in sign. This theoretical stress wave behaviour will be 

evaluated numerically using published experimental test data. A common methodology to 

analyse the structural response of ships is through the use of finite element (FE) methods.  

 

Starting with the initial works of Koning and Taub [43], dynamic pulse buckling of 

impacted structures was characterized using stress wave propagation. The experimental 

work of Abrahamson and Goodier [1] used high speed photography to observe the stress 

wave interaction in axially impacted bars. The tests impacted a long slender aluminum 

alloy bar into a steel plate with varying velocity, cross-section and length. Impacted ends 

of the bars sustained plastic flow until the elastic unloading wave arrives at the proximal 

end. The deformed shape of the impacted bar is generally characterized by a shortening 

and thickened impacted end however, at higher impacted velocities, a buckled region of 

the bar develops. The experimental results for a 457 mm long, 11.5 mm diameter rod of 

aluminum 6061-T6 are shown in Figure 35.   
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Figure 35 Impacted thick aluminum bars with varying impact velocity (reproduced from 

[49]). 

 

The experimental test in Figure 35 is a relatively simple problem that can be replicated 

numerically. By doing so, one may evaluate how well numerical methods idealize stress 

wave propagation and predict the rod shortening amplitude. Impacted slender rods were 

analysed using LS Dyna’s [52] explicit finite element solver.  The rods were modeled 

without imperfections using 1.5 mm hex8 solid elements. This refinement level was 

sufficiently refined to capture the elastic and plastic stress front as it propagated along the 

bar. The rod material was represented using an isotropic and kinematic hardening 

constitutive material model with hardening modulus and yield strength of 1,240 MPa and 

310 MPa, respectively. Strain rate effects were ignored in the analysis since the bars are 

made up of low strain rate sensitive aluminum. The rod is considered unrestrained, 

loaded using an initial velocity and impacts a fixed steel plate; contact algorithms have 

been defined to replicate the impacting action.  

 

The axial stress contours are plotted in Figure 36 at six different time instances showing 

the early impact time on the left and progressively later times on the right. The impacted 
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end is the bottom of the plot with the free end at the top of the rod where time is labelled.  

Initial impact is shown at time instance 1 with axial stress propagating from the bottom to 

the top of the figure. The elastic unloading wave reflects off the free distal end of the rod 

between time instances 3 and 4. Time instances 5 and 6 show the unloading wave 

propagation from the free distal end to the impacted proximal end of the rod. The 

experimental tests published in [49] used high speed photography to capture the stress 

wave propagation and elastic unloading. Figure 36 presents similar stress wave 

propagation characteristics with an elastic unloading wave reflecting from the free distal 

end of the impacted rod. 

 

Figure 36 Axial stress contours along AR-4 from initial impact (left) through elastic 

unloading (right) (MPa). 

 

The longitudinal/axial stress wave propagation is properly simulated using finite element 

analysis; however, it is also important to replicate the deformed shape of the impacted 

rod. Table 1 presents the test specimen, impact velocity and rod compression magnitude. 

The numerical and experimental compression magnitudes compare well for specimens 

AR-4, AR-5 and AR-9. The variation in the numerical and experimental compression 

amplitude may be a result of small strain-rate sensitivities in the material as well as the 

nonlinear characteristic of the material stress-strain curve at stress amplitudes above 

dynamic yield.  At impact velocity of 158.6 m/s, the numerical and experimental 

compression magnitudes begin to diverge. The deformed shape of the experimental 
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impacted rod AR-8 includes a half sinusoid buckle at approximately the mid-length of the 

rod. The numerical analysis, however, does not compute a similar deformed shape. A 

thick impacted end of the impacted rod is developed in the numerical analysis and is the 

extent of the plastic deformation. In order to predict the buckled condition in Figure 35, 

an initial imperfection in the numerical model is required.  

Table 1 Numerical (LS-Dyna) and experimental compression amplitude. 

Specimen 
Impact Velocity  Compression (mm)  

ft/s  m/s Numerical  Experimental 

AR-4 200 61.00 5.86 5.588 

AR-5 275 83.88 11.30 11.684 

AR-9 458 139.69 28.15 28.448 

AR-8 520 158.60 34.80 38.608 

 

 

4.2 FE EXAMPLE OF STRESS WAVE REFLECTION 

The deformed slender bars in Figure 35 have a free distal end opposite the impacted 

proximal end. The stress wave propagation characteristics of an impacted bar with a fixed 

distal end are different than a bar with a free distal end. The capability of the FE methods 

to predict the stress wave propagation characteristics has been shown throughout the 

literature. Parameters of the numerical analysis published in the literature may not be 

applicable to all dynamic problems. To study the dynamic stress wave propagation in a 

fixed ended impact problem, the works by Hayashi [29] are replicated using LS-Dyna 

[52]. Hayashi [29] experimentally and numerically analysed a curved slender bar of 

rectangular cross section subject to low [29]  and high [30] speed impact loads with a 

fixed distal end. The Hayashi [29] low speed experimental setup is shown in Figure 37 

with mass M impacting the slender bar along a motion guide G. The motion guide 

ensures the motion of the impacting mass is purely axial. The distal end of the slender bar 

resists translational motion as well as rotation about the axial and out of plain (y) axis. 

The bar is considered free to rotate in the y-x plane about the z axis.  
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Figure 37 Experimental test setup for low impact dynamic buckling showing plan view 

(top) and elevation view (bottom) (reproduced from [29]). 

 

The numerical analysis in [29] solved a series of partial differential equations to 

approximate the lateral deflection and central axial force of the impacted bar. Validation 

of the numerical analysis is presented by Hayashi [29] as a comparison between the 

numerical and experimental force time history.  The mid-column normalized numerical 

displacement (blue dashed), and experimental force (green dashed) are plotted in Figure 

38 as a function of normalized time. Five impacts between the impacting mass and beam 

are indicated by the five positive pressure peaks. The Normalized experimental and 

numerical force amplitudes are similar for the first impact between 0t  and 20t . The 

numerical force amplitudes of Hayashi [29] deviate from the measured experimental 

forces for the following four impacts.  

 

The experimental setup in Figure 37 was numerically analysed using LS-Dyna [52] 

explicit solver without additional imperfections included in the numerical model. The 

sinusoidal out-of-plane imperfection was the only form of imperfection included in the 

numerical model. To replicate the physical response of the experimental test, the 

impacted end of the slender beam was restrained to out-of-plane translation such that it is 

free to translate axially. The opposite end is restrained in five degrees of freedom with the 

beam free to rotate about the z-axis, in the y-x plane. The impacting mass was 

represented by an unrestrained thick plate with an initial velocity and contact defined 

between the mass and beam end using a LS-Dyna [52] contact algorithm.  
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reflection, the stress amplitude increases to approximately 2.0 MPa. A doubling of the 

stress wave amplitude is observed in the stress contours at the fixed end.  

 

Figure 39 Axial stress wave propagation of from early impact (bottom) to post 

reflection (top) (s) (MPa). 

 

A detailed observation of the stress wave propagation can be determined by plotting the 

mid-surface axial membrane stress as a function of time. Figure 40 and Figure 41 present 

the axial normal XX stress for the full analysis and early stress-time history, respectively. 

The full stress-time history in Figure 40 describes how the stress develops in the beam 

during the impact event with a relatively consistent mid-surface elemental axial stress 

throughout the impact event.  

 

A detailed inspection of the axial normal stress amplitudes along the bar early in the 

beam response time is plotted in Figure 41. The theoretical initial and reflected stress 

wave arrival times are plotted as vertical dashed lines. The location of the elements along 

the length of the beam are also plotted in Figure 41 with increasing element number 

corresponding to further position from the impacted end of the bar. In Figure 41, the 

arrival of the stress wave is observed at each element along the length and indicated by a 

rise in membrane stress to roughly -1 MPa over 0.044ms. Each element experiences a rise 

in membrane stress to roughly -1 MPa followed by a period of sustained stress amplitude 
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The study by Lu et al. investigated the buckling behaviour of the cylinder subject to 

different impact velocities and impacting masses for variations in cylinder length, 

material type and wall thickness. The experimental test and numerical analyses are 

presented in [53] with excellent agreement in displaced shape, pressure time history and 

force time history for several examples of specimen configurations and impact scenarios. 

The numerically replicated the fluid-structure interaction of the dynamic buckling 

problem using the arbitrary Eulerian-Lagrangian (ALE) method employed by LS-Dyna.  

The Lu et al. analysis [53] used ALE elements to represent the fluid and the study herein 

simplifies the problem by using Lagrangian elements to represent the fluid. The analysis 

included contact definition between the hammer tup and cylinder top as well as cylinder 

wall self-contact. The cylinder is considered fixed at the base with no representation of 

the gasket or loading cell.  

 

Figure 42 Experimental dynamic impact test setup (replicated from [53]). 

 

The test case analysed was a 244mm long aluminum cylindrical shell with radius of 

75.5mm, 1mm wall thickness and impacted by a 56kg mass at 6.26m/s impact velocity. 

The model consists of 2976 shell elements representing the cylinder wall with 7 through 

thickness integration points and 14,400 hexahedral solid elements representing the fluid. 

The cylinder wall material model is represented using an isotropic hardening constitutive 

model with hardening modulus of 1% of the elastic modulus. The fluid material model 

utilized MAT_ELASTIC_FLUID with a bulk modulus of 1.93 GPa.  
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The displaced shape from the experimental tests of Lu et al. [53] and the current study 

are shown in Figure 43 with generally good agreement. The flattened region near the top 

of the cylinder and buckling modes along the length of the cylinder match the 

experimental test well. The amplitude of the buckled modes are slightly greater in the 

experimental analysis. This may be due to the limitations in assuming a single hardening 

modulus for the cylinder wall material, application of Lagrangian fluid elements and an 

imperfection-free model. In addition to the displaced shape of the impacted cylinder, the 

impulse measured at the bottom of the cylinder was also compared and shown in Figure 

44. Excellent agreement is observed in the impulse time history throughout the analysis. 

Based on the agreement between displaced shape and impulse time history, it can be 

concluded that using the simplified Lagrangian fluid model can adequately represent the 

physical effects of the internal fluid.  

 

Figure 43 Lu et al. experimental displaced shape (left), Lagrangian fluid model 

displaced shape (right). 
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Figure 44 Impulse time history comparison between Lu et al. [53] and Lagrangian fluid 

model. 

 

Several elements along the length of the cylinder wall (plotted in Figure 45 at deformed 

and undeformed states) were chosen to display the stress wave behaviour. Elements near 

the impacted and fixed ends of the cylinder (5046, 5574 and 7110, respectively) are in the 

pulse buckling region with significant plastic deformation while elements in the mid-

region of the cylinder (6054 and 6678) are outside buckled zones and deform under radial 

expansion. By plotting the initial and reflected stress wave arrival times, one may observe 

the change in stress amplitude with respect to elastic and plastic stress wave 

characteristics. The initial and reflected stress wave arrival times are plotted in Figure 46 

as vertical solid and dashed lines, respectively. Each line colour is associated with each 

element along the length of the cylinder wall. By plotting the von Mises stress amplitude 

as a function of time along with the stress arrival times, conclusions about the stress wave 

behaviour may be drawn. 

 

The initial and reflected stress wave arrival time plotted in Figure 46 is computed using 

the von Mises stress wave velocity in the numerical analysis (approximately 4,250 m/s). 
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Analytical approximations of the axial stress wave (equation [8]) in the aluminum 

cylinder shell overestimate the stress wave velocity (5,200 m/s). The over-prediction in 

stress wave velocity may be due to the Lagrangian approximation of the fluid. Consider a 

single element on the cylinder wall, each node of that element is connected to the 

neighbouring aluminum cylinder shell elements and solid fluid elements. By simplifying 

the cylinder wall and water interaction as fully connected systems, this may have resulted 

in the slowed stress wave propagation. However, the deformation of the cylinder and 

impulse matches well with the experimental measurements, therefore, the reduced stress 

wave velocity is representative of the structural system and adequate for this evaluation.  

 

 

Figure 45 Cylinder shell elements used for stress wave analysis of undeformed (left) 

and deformed (right) cylinder. 

 

The initial and reflected longitudinal elastic stress arrival times in Figure 46 align well 

with several of the positions along the length. However, there are some anomalies in the 

stress behaviour that may not be solved purely by the elastic stress wave. The von Mises 

stress amplitudes of elements 7110, 6678 and 6054 are characterised well by the 

longitudinal stress wave response. A doubling of the von Mises stress amplitude is 

initiated by the arrival of the reflected longitudinal stress wave. The von Mises stress 
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behaviour cannot be purely characterized by the longitudinal stress wave in elements 

5046 and 5574. The von Mises stress in element 5574 does increase at the arrival of the 

reflected longitudinal stress wave, however, the stress amplitude marginally increases 

prior to the stress wave arrival. By plotting the arrival time of the longitudinal plastic 

stress with the von Mises stress amplitude in Figure 47, one may observe the stress wave 

characteristics of element 5046 near the impacted end of the cylinder. The von Mises 

stress amplitude of element 5046 increases initially through the elastic wave 

(approximately 95 MPa), and then continues to increase as the plastic wave arrives soon 

after the elastic wave amplitude is reached. Element 5574, however, is not directly 

influenced by the plastic stress wave,  since the elastic wave has enough time to reflect at 

the end of the cylinder and double the initial stress amplitude in the element.  

 

The elastic and plastic stress wave characteristics are shown in the element von Mises 

stress amplitudes in Figure 46 and Figure 47. This indicates the elastic and plastic stress 

wave propagation characteristics discussed in Chapter 2 and 3 are applicable to this 

problem. It also indicates that the deformed shape of the cylinder in Figure 45 can be 

correlated with the plastic and elastic wave propagation characteristics. The plastic 

folding zone occurs in the region governed by the plastic wave. Similarly, buckled 

regions along the cylinder length developed at regions which are governed by reflected 

elastic stress wave.  
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4.4 STRESS WAVE INTERACTION IN SHIP DOUBLE BOTTOM STRUCTURE 

The previous examples verified the theoretical stress wave propagation behaviour in 

axially impacted bars. A significant influence on the stress wave behaviour is observed as 

the fixity/stiffness of the impacted bar increases positively. The literature and theory 

considers simple examples when describing stress wave propagation behaviour. Ship 

structures, however, are complex systems with varying stiffness positioned 

longitudinally, vertically and transversely. As the complexity of the structural stiffness 

increases, a more detailed description of stress wave propagation behaviour may be 

required when considering pulse buckling response of such systems.  

 

An example of a complex ship structure arrangement is the double bottom section of an 

icebreaking vessel. Figure 49 shows the port side numerical model of the symmetrical 

icebreaker double bottom structure. Several different regions of stiffness are found in this 

section, including: transverse deck and hull stiffeners, cut-outs and stiffeners in the 

transverse floors, flanged and free-edged brackets, as well as unstiffened longitudinal 

plating between transverse frames. The modelled structure in the double bottom section is 

fully welded together with sniped bracket flanges and web stiffeners to accurately 

represent the stress propagation in a similar structure. The double bottom depth at the 

centreline is 1830 mm, with 406 mm transverse stiffener spacing. The section is loaded 

by a step-wise rectangular pressure pulse shown in Figure 48 with 1.0 ms duration and 

constant amplitude applied to the hull plating. The boundary conditions applied to the 

numerical model include; symmetrical conditions along the centreline as well as the 

forward and aft longitudinal plating nodes. The boundary conditions idealize a 

symmetrical, continuous/infinitely long section subject to the same pressure loading 

representation. Further verification of the symmetrical boundary condition accuracy to 

represent an infinitely long system is required. The symmetrical boundary conditions are 

sufficient for this study of stress wave propagation. The furthest port edge of the model 

(at the end of deck and bracket) was pinned. This was done to simplify the model and 

remaining structure outboard and above the double bottom structure.  
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Figure 51 Longitudinal extensions of hole openings or shadow regions (reproduced 

from [51]). 

 

Similar to the global ZZ stress plots in Figure 50, global YZ (transverse-vertical shear) 

directional stress contours are plotted in Figure 52 at 5 instances in time (for t=0.069 ms 

to t=0.398 ms). The stress contours in time instances 1, 2, 3 and 4 are fixed (-5 MPa to 5 

MPa) in an effort to display the stress wave propagation behaviour. Shear YZ stress in 

time instance 4 and 5 are the same, however, the stress contour range in 5 is adjusted to (-

50 MPa to 50 MPa) to display the stress amplitude at this instance in time. The shear 

stress contours in item 6 of Figure 52 are the same as item 5 to show how the stress 

propagates at this amplitude.  

 

The shear stress wave propagation in the transverse floor is influenced by the shape of the 

hull and web stiffeners resisting the transverse (-Y) component of the pressure load. One 

may observe this by comparing the stress developed in the longitudinal girder nearest the 

centreline and the web stiffeners port of the centreline. The plating near the centreline is 

loaded with a small transverse component, and as a result, has low shear stress wave 

amplitude. Several YZ shear stress characteristics are observed in Figure 52 including 

stress concentrations developed at cut-out corners upon stress wave arrival and web 

stiffener influence on the floor web shear stress at early phases of stress wave 
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the ZZ stress states are shown most clearly in the hull stiffener web at time instance 2. 

The stress amplitude varies as a result of the stiffness above the flange of the transverse 

hull stiffener. Higher stress amplitude is measured in the web plate stiffened sections than 

the unstiffened open sections. The stress variation suggests there may be a change in 

stress wave behaviour in the stiffener web of the open section and stiffened web section. 

To investigate the stiffener web stress wave interaction behaviour, the stiffened web and 

open sections near the centreline were refined to 10mm. The global ZZ (vertical) 

directional stress is plotted in Figure 55 for several elements through the depth of the hull 

stiffener web shown in Figure 54Error! Reference source not found.. Directional 

stresses in the stiffener web of the open section and stiffened plate section as well as 

initial stress wave arrival and reflected wave arrival times are paired by colour. Element 

177,660 (solid line) and 181,067 (dashed line) are near the flange of the hull stiffener and 

plotted in black. The black solid and dotted vertical lines represent the initial and 

reflected stress wave arrival times of element 177,660, respectively. Similar stress 

amplitude and stress wave arrival pairs are also plotted in Figure 55 for other element 

pairs through the depth of the hull stiffener.  

 

Although the element pairs are not precisely positioned at the same elevation above the 

hull plating, a general pattern is observed between the reflected stress wave arrival and 

stress amplitude. The stress rate remains constant until the reflected stress wave arrives. 

At the arrival of the reflected stress wave, the stress rate begins to deviate, reduce and 

become non-linear. The stress rate deviation is a function of the stiffness of the structure 

above the stiffener flange. A decrease in stress rate is observed in the open section upon 

arrival of the reflected wave, and a constant stress state remains in the stiffened web plate 

above the stiffener.  
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not have plating above the flange, the stress amplitude is reduced by the elastic stress 

wave reflection off of the flange surface. Based upon the stress wave interaction within 

the double bottom transverse floor and frames, the early stress wave interaction may not 

be used to characterize the structural response. The local structural details within the 

double bottom structure provide the structural stability required to prevent dynamic pulse 

buckling.  
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CHAPTER 5 SUMMARY AND CONCLUSION 

 

5.1 DYNAMIC MATERIAL CHARACTERISTICS 

Elastic and plastic stress wave propagation characteristics and theory are utilized in the 

context of this study to provide a general background of the stress state developed in 

structures subject to dynamic loading events. The amplitude and duration of the elastic 

and plastic stress wave is a function of the loading environment and shall interact or 

propagate as a function of the structural configuration. In order to determine the presence 

of plasticity during a dynamic event, one may be required to understand the strain rate 

characteristics of the material at the strain rate levels of interest. There are several 

physical testing methodologies required to characterize the strain rate sensitivity, each 

facilitating a range of strain rates. Strain rate sensitivity is typically measured to assess 

the effect of strain rate on the yield strength of a particular material. The adjustment in 

yield strength as a function of strain-rate can be included in numerical strength 

predictions by using constitutive material formulations. Application of constitutive 

material models to a particular dynamic event may require specific knowledge of the 

expected material effects, including sensitivities of the material to temperature.  

 

Most of the commonly used pulse buckling prediction methodologies are highly sensitive 

to the material and structural representation of the dynamic event. In terms of the material 

representation, the analyst must ensure that an appropriate hardening modulus is defined, 

and strain rate sensitivities are properly accounted for. The hardening modulus directly 

influences the plastic wave propagation speed and therefore, changes the extent of the 

plastic zone. Predicting the dynamic yield strength and presence of plasticity during the 

loading event may be directly related to the strain rate sensitivity included in the material 

constitutive model. An oversensitivity to strain rate may result in an overly stiff material 

representation at strain rates of interest and an under sensitivity to strain rate may result 

in premature buckling. Proper material constitutive models and representation of the 

impacting event are required to accurately predict the deformation behavior of the loaded 

structure.  
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5.2 DYNAMIC STRESS WAVE PROPAGATION 

The influence of stress wave propagation on structural response may vary between 

structures and dynamic loading events. A specific structural response that may be directly 

influenced by stress wave propagation is dynamic pulse bulking. The historical and 

present dynamic pulse buckling characteristics and prediction methodologies have been 

reviewed. Many studies simplified the dynamic pulse buckling experimental test by 

considering a rod or cylindrical shell subject to impact loading. The effect of stress wave 

propagation in the reviewed examples was most greatly influenced by the structural 

arrangement and stiffness of the boundary conditions. Upon impact, an axial elastic stress 

wave propagates until it reflects as an unloading or loading stress wave, depending on the 

impedance of the boundary condition at the distal end of the impacted structure. 

Unloading stress waves are a result of free end or low impedance boundary conditions 

and may reduce the extent of the plastic zone. Fixed end or high impedance boundary 

conditions result in a doubling of the stress wave and may result in dynamic pulse 

buckling of the distal end of the impacted structure.  

 

5.3  GEOMETRIC IMPERFECTIONS 

The presence of geometric imperfections within the numerical model may be required to 

accurately predict the dynamic response of the loaded structure. The shape and amplitude 

of the imperfection varies with the structural configuration and loading scenario. Rod and 

fluid-filled cylindrical shell impact examples reviewed in Chapter 3 were modeled 

without inclusion of imperfections. A comparison with the experimental tests showed that 

imperfections were required to predict the deformation of the rod at high impact 

velocities; however, an accurate representation of the fluid-filled cylinder did not require 

geometric imperfections. This suggests that the amplitude and shape of geometric 

imperfections are specific to the structure and dynamic loading scenario of interest.  

 

5.4 STRESS WAVE INTERACTION IN SIMPLE AND COMPLEX STRUCTURES 

Stress wave propagation and interaction behavior for fixed and free impacted structures 

have been numerically evaluated in Chapter 3 along with a brief investigation into stress 
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wave behavior in ship double bottom structure. These examples have shown that the 

stress amplitude experienced early in a dynamic event can be attributed to directional 

stress wave interaction. In simple problems, the early stress wave interaction may be 

enough to characterize the global response of the structure. For complex structures such 

as the ship double bottom evaluated herein, the global response of the structure cannot be 

determined through directional stress wave propagation characteristics. Stress wave 

propagation may be well suited for characterizing the response of simple structural 

configurations such as a lattice mast. The plated structure of a ship double bottom is 

complex and structural stability is provided through local structural details.  

 

5.5 ANALYST GUIDANCE FOR DYNAMIC PULSE BUCKLING PROBLEMS  

There are multiple items to consider when evaluating a dynamic problem sensitive to 

stress wave propagation and dynamic material characteristics. A decision tree is provided 

in Figure 57 to summarize the considerations required when evaluating such a dynamic 

problem. The analyst must first consider the complexity of the loaded structure and the 

loading duration. If the structure is similar to the ship double bottom structure considered 

earlier, it may be sufficiently stiffened that stress wave propagation would not influence 

the structural stability. For simple structural systems, the FE numerical model would 

likely require inclusion of geometric imperfections. The types of imperfections include 

variations in thickness, extent and shape amplitude specific to the loaded structural 

system. Along with the geometric imperfections, the analyst must also accurately model 

the dynamic material behaviour using an appropriate constitutive model. Depending on 

the strain and loading rate, the constitutive model may need to include strain rate 

dependency or material’s equation of state. For load pulse durations (Ts) longer than the 

buckling mode periods of interest (Tp), the elastic buckling or plastic progressive collapse 

may be considered adequate for the evaluation. For load pulse durations shorter than the 

buckling mode period (Tp), the mass and velocity should be properly represented such 

that the momentum and kinetic energy are accurately accounted for in the numerical 

simulation.  
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 Multiple wave type interaction (shear, flexural and longitudinal) and their 

combined influence on dynamic pulse buckling behaviour. 

 High strain rate structural response (including spallation) using material EOS. 

 Use of solid elements to evaluate through thickness stress propagation 

characteristics in plated structures.  

 Establishment of the limit of structural complexity that can still be considered 

simple enough to be governed by stress wave propagation characteristics.  

 Benchmarking a simple pulse buckling problem analysis using implicit analysis 

methods to determine appropriate implicit time step size and control parameters.  
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