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ABSTRACT 

Condition-based maintenance (CBM) is becoming increasingly important because it 

performs more efficient diagnoses and prognoses based on equipment condition compared 

to time-based methods. CBM models greatly inform maintenance decisions. This thesis 

examines three CBM fault prognostics models: artificial neural networks (ANNs), logical 

analysis of data (LAD), and Proportional Hazard Models (PHM). ANNs are layered models 

that imitate the human brain. LAD is a non-statistical pattern recognition technique. PHM 

statistically relates equipment age, condition, and hazard rate. A methodology is developed 

to apply and compare these models, and used on NASA’s Turbofan Engine Degradation 

Simulation Dataset and the structural health monitoring dataset from Halifax’s A. Murray 

MacKay Bridge. Results are evaluated using three metrics: error, half-life error, and a cost 

score. This thesis concludes that the LAD and feedforward ANN models compares 

favourably to the PHM. However, the feedback ANN has lower performance because of 

large variability in predictions.  
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CHAPTER 1 INTRODUCTION 

A long history of catastrophic failures demonstrates the importance of reliability in industry. 

For example, in 1946, a Lockheed Constellation aircraft crashed after generator faults 

triggered a fire during its training flight. Five of its six crew members were killed and the 

entire fleet was grounded. In 1979, improper maintenance procedures caused the engine of 

a DC-10 aircraft to break away during take-off. A total of 273 people were killed in the 

subsequent crash. In 1986, NASA’s space shuttle, Challenger, exploded at take-off when 

O-ring failures led to burning gas leakages from the booster rockets. The accident killed 

the shuttle’s entire crew and cost NASA over $4 billion (Ebeling, 1997). A range of impacts 

are evident from these examples. Maintenance is one method for ensuring acceptable 

reliability and efficiently managing both failures and their impacts over an equipment’s 

lifetime. Maintenance can be defined as a set of activities necessary for preserving and 

restoring system function, in a cost effective manner, so that a certain operational level can 

be maintained (Ebeling, 1997; Tsang, 1995).  

Traditionally, industries utilize run-to-failure maintenance policies (Li, Tse, Tu, & Yam, 

2001; Tsang, 1995), a reactive management strategy in which an equipment is operated 

until it fails and then is repaired or replaced. This means that failures can still cause 

debilitating consequences by obstructing or disrupting the system. As a result, many 

industries now use time-based maintenance (TBM) policies (Banjevic, Jardine, Ennis, & 

Makis, 2001). TBM policies schedule maintenance actions at a certain age or at fixed time 

intervals, determined by the minimal expected cost per unit time. However, TBM has a 

limited ability to optimize the equipment’s costs and utilization because little is known 

about the equipment’s actual condition. In other words, maintenance can be completed too 

early or too late and in doing so, cost the company and sometimes causing the unintended 

degradation of the equipment’s remaining useful life (Abu-Elanien & Salama, 2007). 

These limits and higher reliability needs have led many industries (Bunks, McCarthy, & 

Al-Ani, 2000; Li, et al., 2001), such as aviation, manufacturing, and automobile, to 

consider other maintenance options. Condition-based maintenance (CBM) is one of these 

increasingly popular solutions (Baruah & Chinnam, 2005). CBM is a maintenance program 

that makes diagnoses or prognoses using the equipment’s age, current health, and past 
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condition information (Jardine, Lin, & Banjevic, 2006; Tsang, 1995). In CBM, a model is 

constructed based on known information and its quality is tested on additional data. In this 

way, system reliability is evaluated and assessed in an efficient manner. 

1.1 MOTIVATION AND OBJECTIVES 

A critical part of CBM’s application and use is model building for diagnostics and 

prognostics. Many different approaches can be used for constructing these models, 

including, but not limited to, statistical approaches, artificial intelligence approaches, and 

model-based approaches (Jardine, et al., 2006). With this abundance of options open to the 

industry, the question arises of which model is best. 

The objective of this research is to assess the application and performance of three CBM 

prognostic models. These models are the logical analysis of data (LAD), artificial neural 

networks (ANN), and proportional hazards model (PHM). The methodology for comparing 

the models, in this thesis, will be presented in detail and applied to two industrial problems.  

1.2 THESIS LAYOUT 

This thesis begins with an introduction to the key concepts and literature relating to the 

CBM prognostics models used in this work. In Chapter 3, the methodology for the 

application and comparison of the three model is outlined, which includes information on 

data preprocessing and experimental design for each model. Chapter 4 discusses the results, 

obtained from the experiments, for two datasets. The first dataset is the Turbofan Engine 

Degradation Simulation Data Set, provided by the NASA Ames Prognostics Data 

Repository (Saxena & Goebel, 2008). To illustrate the methodology’s applicability in 

industry, experimental results using data from the structural health monitoring of the A. 

Murray MacKay Bridge (MacKay Bridge), in Halifax, is used as the second dataset. This 

dataset is provided by Clarke (2014). Finally, Chapter 5 presents the conclusions and 

recommendations of this research. 
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CHAPTER 2 LITERATURE REVIEW AND BACKGROUND 

IN CBM 

Over the last few decades, the growths in demand, cost, and amount of aging equipment in 

various industries have led to an increased need for reliability in industrial systems (Jardine, 

et al., 2006; Li, et al., 2001; Lin, Banjevic, & Jardine, 2006). As a result, common 

maintenance policies have evolved from run-to-failure maintenance to time-based 

preventive maintenance (TBM) to condition-based maintenance (CBM).  

This chapter will outline the basic elements, applications, and literature relating to CBM 

and the key techniques examined in this thesis. 

2.1 CONDITION-BASED MAINTENANCE 

CBM uses both the equipment’s past operating history and current condition to make 

optimized maintenance decisions for specific criteria, such as risk, cost, reliability, and 

availability (Banjevic, et al., 2001; Bunks, et al., 2000; Jardine, et al., 2006). CBM’s ability 

to help make optimized maintenance decisions benefits industries because it can reduce 

maintenance costs, limit probabilities of catastrophic failure, decrease the severity of 

failure, identify root cause of failures, and provide information on the equipment life cycle 

to improve asset management (Abu-Elanien & Salama, 2007; Baruah & Chinnam, 2005; 

Yacout, 2010). 

2.1.1 General Concepts 

In order to apply CBM, a system for observing the equipment’s current condition must 

exist. This is called condition monitoring (CM). CM can be defined as the extraction and 

integration of data into useful information for fault diagnostics and prognostics, 

maintenance decision making, and optimization support (Ghasemi, Yacout, & Ouali, 2010; 

Li, et al., 2001). A system of sensors, inspections, and other methods are used by CM to 

collect the equipment’s condition information so that CBM can make maintenance 

decisions. 

The need to integrate all CM information into decision making means that the proper 

implementation of a CBM policy is not simple. An effective CBM policy consists of three 

key steps (Jardine, et al., 2006; Lee, Abujamra, Jardine, Lin, & Banjevic, 2004): 
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1. Data acquisition; which collects and stores information about the equipment, 

2. Data processing; which manages and analyzes the collected information, and 

3. Maintenance decision making; which provides diagnostic and prognostic 

information for maintenance decision making. 

For this thesis, interest lies in the third step. Information provided in this step can be divided 

into two categories: diagnostic and prognostic. Diagnostics is the process of detecting, 

isolating, and identifying faults that have already occurred in the equipment (Baruah & 

Chinnam, 2005; Bunks, et al., 2000; Jardine, et al., 2006; Mortada, Yacout, & Lakis, 2014). 

Prognostics, on the other hand, looks to the future and aims to predict the occurrence of 

incipient faults (Baruah & Chinnam, 2005; Bunks, et al., 2000; Jardine, et al., 2006). 

Diagnostic and prognostic information allow decision makers to make informed decisions, 

such as when to best schedule repairs and replacements. In this way, maintenance can be 

completed as close as possible to when it is needed, which is when the current equipment 

condition indicates that it is nearing failure.  The questions then are: what types of models 

are best for providing diagnostic and prognostic information? And how are these applied 

to real world cases? 

2.1.2 Methods and Techniques 

Approaches to diagnostic and prognostic modeling can generally be divided into three 

categories (Jardine, et al., 2006): model-based approaches, statistical approaches, and 

artificial intelligence (AI) approaches.  

Model-based approaches are typically made up of two components (Esmaeili, 2012): a 

mathematical model and a residual generation method. The mathematical model imitates 

and describes the equipment’s underlying mechanics and physics. While the residual 

generation method obtains residual signals that indicate the presence of faults. Common 

modeling techniques (Jardine, et al., 2006) include mathematical modeling and computer 

simulation and common residual generation methods include Kalman filtering and 

parameter estimation. Various industries have applied model-based approaches to their 

diagnostic and prognostic problems. For example, electric utilities have found model-based 

approaches extremely useful for predicting equipment’s internal temperature (Tallam, et 

al., 2007). In certain large electrical assets, this is important because the internal 
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temperature, although very difficult to measure directly, is indicative of abnormal operation. 

In civil engineering, structures and materials can be modeled using finite element analysis. 

Particularly, a computerized finite element analysis program is used to observe the failure 

behaviour of a bridge deck and aid in fault diagnosis (Clarke, 2014). These and other 

applications show that model-based approaches are usually more effective than other 

approaches when the constructed model is extremely accurate and the modeled system is 

not extremely complex (Jardine, et al., 2006; Stanek, Morari, & Frohlich, 2001). 

Statistical approaches, as its name implies, use statistical concepts to identify and predict 

faults. Common statistical approaches, for CBM diagnostics and prognostics, include 

hypothesis testing, statistical process control (SPC) methods, proportional hazards models 

(PHM) and hidden Markov models (HMM). Hypothesis testing (Ma & Li, 1995) is used to 

detect the presence of a fault in a bearing, with a null hypothesis testing the difference 

between the probability density function of the bearing vibration signal when faults are 

present and when faults are absent (normal working condition). Similar to this hypothesis, 

null hypotheses for CBM typically include the presence of a fault or the equipment’s ability 

to survive up to a certain period (Jardine, et al., 2006). SPC (Jardine, 2002; Jardine, et al., 

2006; Liu, Ma, Yu, & Tu, 2014) diagnose faults by studying the deviation of the current 

condition value from a baseline ‘normal’ value. For example, an X-bar control chart (Liu, 

et al., 2014), constructed for the production output, is used to predict the failure state of a 

two-unit production system. When the production output deviates from the norm, one or 

both of the units in the production system is near failure. The PHM (Banjevic, et al., 2001; 

Jardine, et al., 2006) is a model that relates an underlying hazard (failure) rate function 

with age and condition variables. HMMs, using a finite-state Markov chain to model the 

equipment’s observed and hidden states, are widely applied in the diagnosis and prognosis 

of equipment (Baruah & Chinnam, 2005; Bunks, et al., 2000; Jardine, et al., 2006; Xu & 

Ge, 2004), such as gearboxes, pumps, and manufacturing machinery. 

Artificial intelligence (AI) approaches are models which enable a computer system to 

imitate intelligent decision making. Two common AI approaches include artificial neural 

networks (ANN) and expert systems. ANNs (Jardine, et al., 2006) are based off the human 

brain and its learning capabilities. Using processing elements, which are connected in a 
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layered network, and adjustable weights, the ANN learns the trends in the data. Expert 

systems (Jardine, 2002; Jardine, et al., 2006; Stanek, et al., 2001) perform diagnosis and 

prognosis by combining an expert’s knowledge with a computer program that automates 

different reasoning and problem solving methods. In electric utilities, expert systems have 

been applied to diagnose equipment faults in large assets such as circuit breakers (Stanek, 

et al., 2001). Another AI technique is logical analysis of data (LAD) (Boros, et al., 2000), 

which extracts fault-characterizing patterns directly from the condition data. Jardine et al. 

(2006) performs an in-depth comparison and review of multiple independent studies on 

CBM techniques. From the results of these independent studies, the paper reaches the 

conclusion that it is typically harder to implement AI models, because of difficulties in data 

procurement, but these approaches offer improved performance as compared to the more 

traditional model-based and statistical approaches.  

2.2 LOGICAL ANALYSIS OF DATA 

The first type of AI approach that will be examined in this thesis is logical analysis of data 

(LAD). LAD studies the condition indicators and finds information that reveals equipment 

failure and survival signs (Abramson, Alexe, Hammer, & Kohn, 2005). In studying this 

hidden knowledge, LAD extracts patterns from the data. For this reason, LAD can be used 

as a pattern classifier. LAD, as a classifier, has been shown to outperform other 

classification methods (Yacout, 2010). In addition, LAD modeling does not require 

statistical analysis (Mortada, Yacout, & Lakis, 2011; Yacout, 2010). These two advantages 

are among some of the reasons that make LAD a good prognostics solution. 

2.2.1 Basic Stages 

First introduced in 1988 (Crama, Hammer, & Ibaraki), LAD is a combinatorics, 

optimization, and Boolean logic approach that can be used in diagnostic and prognostic 

problems (Abramson, et al., 2005; Alexe, et al., 2004; Gubskaya, et al., 2011). One of the 

most important concepts behind LAD is the identification of a pattern. A pattern is a set of 

literals that discriminates between a certain set of effects or a class of effects (Boros, et al., 

2000; Crama, et al., 1988). Literals are either attributes or their negations. Attributes can 

be defined as the binarized values of the causes that lead to those certain effects (Boros, et 

al., 2000). In CBM, attributes are the condition indicators that can differentiate between 
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the equipment’s failure and survival. Negations are the absence or the complement of the 

attributes (Boros, et al., 2000). In other words, if a certain binary attribute has the value of 

1, then its negation will have the value of 0. Sets of literals that are reflected in one or more 

observations of failure and in little or no observations of survival are known as positive 

patterns. Sets of literals that have the opposite behaviour are known as negative patterns 

(Boros, et al., 2000; Ryoo & Jang, 2009). Using these patterns, LAD can classify new 

observations. 

LAD models are constructed following four basic steps: data binarization, pattern 

generation, theory formation, survival function estimation. For CBM application, this 

means that: 

 Data binarization transforms condition monitoring data into binary values, 

representing the failure and survival of the equipment 

 Pattern generation generates condition-characterizing patterns through 

mathematical models 

 Theory formation defines a discriminant function for weighting patterns and 

classifying observations, and 

 Survival function estimation provides information, such as survival probabilities 

and mean residual life (MRL), for equipment prognosis. 

Originally designed to process only Boolean inputs, LAD has since seen development to 

process non-Boolean data because many condition monitoring variables (and similar data) 

are numeric (Boros, et al., 2000). A method, called data binarization, has been developed 

to deal with this pitfall. Binarization changes numeric value data into several binary values 

by comparing data values to thresholds, called cut-points (Boros, et al., 2000). An example 

of this process is given later in Section 3.2. Two types of binary variables can be generated 

based on the cut-points: level attribute variables and interval attribute variables.  

Level attribute variables generate one binary variable for every cut-point, as defined by 

Equation 1 (Boros, et al., 2000; Mortada, et al., 2014),  

𝑏𝑎,𝑐 = {
1          ; 𝑖𝑓 𝑎 ≥ 𝑐
0          ; 𝑖𝑓 𝑎 < 𝑐

  (1) 
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Where a is the variable’s numeric value, b is the variable’s binary value, and c is the cut-

point value. Interval attribute variables associate one binary variable for pairs of cut-points, 

as defined by Equation 2 (Boros, et al., 2000).  

𝑏𝑎,𝑐′,𝑐′′ = {
1          ; 𝑖𝑓 𝑐′ ≤ 𝑎 ≤ 𝑐′′

0          ; 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒        
  (2) 

Where a and b are again the variable’s numeric value and the variable’s binary value, 

respectively, and c’ and c’’ are two consecutive cut-point values.  

Efficient binarization depends largely on identifying the appropriate cut-points. In his work, 

Esmaeili (2012) describes three methods for identifying cut-points. The most basic method 

is the custom definition of cut-points, where cut-points are customized and placed by users. 

Another method is the sensitive discriminating method, which defines cut points at the 

boundaries between different classes. The third method is the equipartitioning method, 

where cut-points are placed with equal frequency or equal width between them. 

After numeric data is binarized into a new set of binary variables, patterns for 

characterizing each observation’s state are generated. Pattern generation uses mathematical 

models to identify and generate patterns hidden in the historical data. One important type 

of pattern that can be generated is the prime pattern (Boros, et al., 2000; Crama, et al., 

1988), which is a pattern that can no longer be shortened. In other words, if even one literal 

in the pattern is removed, the set of variables can no longer be called a pattern. Two popular 

methods for prime pattern generation is the set covering mixed integer linear programming 

model (MILP)   and the hybrid greedy enumeration approach. In the set covering MILP 

(Crama, et al., 1988; Mortada, et al., 2011; Ryoo & Jang, 2009), a pattern is generated by 

minimizing the number of uncovered observations of a specific class. During optimization 

certain design parameters, such as the number of covered observations of the opposite class, 

are still respected in order to ensure that the good patterns are generated. The hybrid greedy 

method (Boros, et al., 2000; Crama, et al., 1988) uses a combination of the top-down and 

bottom-up enumeration approaches to generate patterns. The first step is a bottom-up 

approach, which generates short prime patterns by starting with one literal and adding more 

literals until the design parameters are satisfied. Design parameters are constraints such as 

the number of covered observations in a specific class. This step is repeated until the 
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stopping criteria is met before it proceeds to the second step. The second step generates 

patterns using a top-down approach to cover any remaining uncovered observations. In this 

approach, literals from an existing uncovered observation are removed one at a time until 

it is no longer a pattern. These two approaches constitutes the hybrid greedy heuristic. 

Using the generated patterns, new observations can be classified based on the historical 

information. Theory formation, which can be quantified by a discriminant function (Boros, 

et al., 2000), is necessary to classify the observation as a failure or a survival instance. If a 

new observation is covered only by patterns associated with failures then it is a failure 

observation, and vice versa (Crama, et al., 1988). Additional considerations must be made 

to classify observations that are covered by both failing and surviving patterns. These 

concerns are considered by weighting the patterns in the discriminant function in Equation 

3 (Boros, et al., 2000). 

∆= ∑ 𝑤𝑘
+𝑃𝑘

𝑟
𝑘=1 + ∑ 𝑤𝑙

−𝑁𝑙
𝑠
𝑙=1   (3) 

Where the P1, P2, …, Pk are the positive generated patterns, N1, N2, …, Nl are the negative 

generated patterns, and wk
+ and wl

- are the non-negative weights for the positive patterns 

and non-positive weights for the negative patterns, respectively. These weights can be 

determined by considering (Boros, et al., 2000) the number of covered observations, the 

normalized inverse of the pattern’s degree, or the optimal value solved with linear 

programming. When the discriminant value is positive, the new observation is of the 

positive class, and vice versa. 

To perform prognostics on the equipment observations, the survival function is needed. 

This allows the user to make informed maintenance decisions because knowledge on the 

MRL and reliability performance of the equipment is provided. In 2002 (Lauer, et al.), a 

method is proposed using Kaplan-Meier (KM) estimators (Kaplan & Meier, 1958) to 

determine the conditional survival probabilities. Through those conditional survival 

probabilities, the survival function can also be determined because of the relationship 

described by Equation 4. 

𝑀𝑅𝐿 = ∑ 𝑖∆ × 𝑃(𝜏 > 𝑇0 + 𝑖∆|𝜏 > 𝑇0)
∞
𝑖=1   (4) 
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Where iΔ is the number of extra periods that the equipment will survive up to, given that it 

has already survived up to T0. 

2.2.2 Application 

LAD’s potential for better classification has allowed it to become widely applied in several 

industries and fields. Fields such as medicine and biotechnology have seen the presence of 

LAD (Abramson, et al., 2005; Alexe, et al., 2004; Boros, et al., 2000; Gubskaya, et al., 

2011; Lauer, et al., 2002). In medicine, LAD is used to identifying the risk level of patients 

referred for exercise electrocardiography (Lauer, et al., 2002). To diagnose ovarian cancer 

patients, a LAD model applied to mass spectroscopy data inputs is used (Alexe, et al., 

2004). LAD has also been applied in predicting the cell growth of polymeric biomaterials 

(Abramson, et al., 2005; Gubskaya, et al., 2011). 

As for the field of CBM, there have been various developments. LAD models have been 

used for the diagnostic of various equipment such as power transformers (Mortada, et al., 

2014; Yacout, 2010), aircraft (Mortada, Carroll III, Yacout, & Lakis, 2012), and bearings 

(Mortada, et al., 2011). In one case, LAD is used to identify ‘rogue’ faults in a fleet of 

aircraft turbo compressor components (Mortada, et al., 2012). ‘Rogue’ faults develop from 

faults that are allowed to continue growing because regular repair and maintenance bypass 

them. Mortada et al. (2014) uses an extended version of LAD to classify multiple power 

transformer fault types from dissolved gas data. Recently, Esmaeili (2012) applied LAD in 

a CBM prognostics problem. 

2.3 NEURAL NETWORKS 

As previously mentioned, artificial neural networks (ANN) are one commonly used AI 

approach. First introduced in 1943 (McCulloch & Pitts), it is designed to make up for 

limitations in traditional computational approaches. Development of the concept peaks 

around the 1980s with Werbos’ (1974) presentation of the backpropagation learning 

algorithm. Since then, ANNs now have the standard structure illustrated by Figure 1. ANNs 

layers and connects processing units, inputs and outputs in a way that mimics the human 

brain structure (Jardine, et al., 2006). 
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Figure 1: Standard ANN Configuration 

Like the human brain, ANNs employ a learning ability to remember patterns it has 

observed in historical data (Jain, Mao, & Mohiuddin, 1996). Using these patterns, the ANN 

is able to solve problems that are otherwise difficult or impossible to solve with more 

traditional computing methods (Jain, et al., 1996). This advantage makes ANNs an 

attractive alternative to other diagnostic and prognostic approaches. 

2.3.1 Basic Components and Architecture 

ANNs are characterized by several basic components that can be arranged in different ways 

to carry out specific applications (Drew & Monson, 2000; Jain, et al., 1996). The first 

component is the network architecture, which refers to how the processing elements (inputs, 

outputs, nodes, and connections) are layered and arranged. The second component, the 

activation function, dictates how each node alters the input(s) into an intermediate output(s). 

Finally, the training algorithm defines how the weights between each node change to fit 

the patterns observed in the data. 

The most basic unit in the ANN architecture is the node. Nodes are processing units 

designed to represent the human brain’s biological neuron (Farrar & Worden, 2013; Jain, 

et al., 1996; McCulloch & Pitts, 1943). The biological neuron uses its nucleus (which 

contains information on its behaviour), axons and dendrites (which are channels for 

information transportation between neurons), and synapses (which are information signals 
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that are passed through the axons and dendrites) to learn and adjust to the external input 

the body receives. In the same way, the nodes also learn input information. The activation 

function acts like the nucleus and determines how information is processed as it passes 

through the node. The connections between nodes are like the axons and dendrites. Then 

the training algorithm, adjusting the axons and dendrite connections, learn the data patterns 

like the synapses. 

The basic node can be arranged in various ways. The arrangement of these nodes is known 

as the architecture. The most basic ANN architecture consists of an input layer, one or more 

hidden layers, and an output layer (Figure 1). Viewing from another perspective, ANNs 

can be described as weighted directed graphs (Jain, et al., 1996). Based on the direction of 

the connections (or edges), ANNs can be classified as one of two general architectures. 

The first basic architecture is the feedforward neural network (FFNN) (Jain, et al., 1996; 

Jardine, et al., 2006). The FFNN contains only forward-directed edges. As a result, FFNN 

can be considered memoryless because its outputs are independent of previous outputs. 

The second basic architecture is the feedback or recurrent neural network (FBNN) (Jain, et 

al., 1996). The FBNN is characterized by backward-directed edges or feedback 

connections. In most cases, the output of the previous iteration is fed back into the ANN 

as an input. 

As a weighted graph, weights wij
 are associated with each connection. In a standard 

feedforward network, each node i is connected to each node j in the preceding layer. 

Therefore, weighted sums are performed at each node i for all input signals xj
(k-1) before it 

is passed through an activation function f to become the output xi
(k) to the next layer. In 

mathematical terms, this can be represented by Equation 5 (Farrar & Worden, 2013). 

𝑥𝑖
(𝑘) = 𝑓(∑ 𝑤𝑖𝑗

(𝑘)𝑥𝑗
(𝑘−1)𝑛

𝑗=1 )  (5) 

Where k is the layer in which node i resides and n is the number of nodes in the preceding 

layer k-1 to which node i is connected. 

The activation function in Equation 5 defines how inputs transform within each node. 

Activation functions can be discrete, with binary outputs, or continuous, with continuous 
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outputs (Sibi, Jones, & Siddarth, 2013). The most popular type of activation function is the 

sigmoid activation function, described by Equation 6  (Jain, et al., 1996), 

𝑆(𝑥) =  
1

1+𝑒−𝛽𝑥
 , 𝑓𝑜𝑟 0 < 𝑆(𝑥) < 1  (6) 

Where β is a slope parameter. Using this function as a basis, a family of activation functions 

has been developed that exhibit sigmoidal characteristics (Sibi, et al., 2013). Mathematical 

functions with sigmoidal characteristics are functions having an “S” shaped curve. 

Examples of this family of functions are the sigmoid stepwise activation function and the 

sigmoid symmetric activation function. Other activation functions (Jain, et al., 1996; Sibi, 

et al., 2013) include the threshold activation function, linear activation function, the 

stepwise activation function, and the Gaussian activation function. 

In order to take full advantage of an ANN’s brain-like structure, a training algorithm is 

needed to guide the network’s learning. The training algorithm specifies how weights 

between the nodes are adjusted. Given a set of data, a subset is partitioned into a training 

dataset, so that the ANN can learn the historical data patterns. To better illustrate this 

concept, consider the backpropagation algorithm. The backpropagation algorithm (Drew 

& Monson, 2000; Farrar & Worden, 2013; Werbos, 1974) is one of the most popular 

training algorithms for ANNs. It first sets initial weight values then uses training data 

values to calculate the output signal for the network. After, each pass, the error between 

the outputs are calculated. If the error is above the set threshold, the errors are propagated 

backwards through the network so that the weights between the nodes can be adjusted to a 

new value. When the magnitude of the errors falls below the threshold, the backpropagation 

algorithm has successfully determined the weights of the ANN. 

Training algorithms can be classified into two main categories: supervised and 

unsupervised. Supervised learning algorithms (Jain, et al., 1996; Jardine, et al., 2006) use 

a priori knowledge of the expected or targeted output to learn. Unsupervised learning 

algorithms (Jain, et al., 1996; Jardine, et al., 2006) do not use the direct input-output 

relationships to adjust the network weights. Instead, reoccurring trends and patterns in the 

data are used for training. Some examples of training algorithms include the 

backpropagation algorithm, perceptron algorithm, and the Hebbian learning rule. In the 
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perceptron algorithm (Jain, et al., 1996), weights are adjusted for each node individually in 

a process that minimizes the error for each node. The Hebbian learning rule (Hebb, 1949) 

weights nodes that show more activity and persistent correlation. 

Using these components, an ANN can be trained to directly predict the residual life (RL) 

of a piece of equipment. Unlike LAD, if an ANN is structured to fit prognostics needs, 

there is no need to estimate a survival distribution for determining the MRL or related 

reliability of the equipment. 

2.3.2 Application 

As a result of its learning abilities and its potential for solving different problems, ANNs 

have been applied to a variety of problems and industries. These problems include pattern 

recognition, clustering, categorization, function approximation, forecasting, optimization, 

and memory restoration (Jain, et al., 1996). Industries that have seen ANN applications 

include the fields of medicine (Azimi, et al., 2014), supply chain optimization (Al-Saba & 

El-Amin, 1999; Carbonneau, Laframboise, & Vahidov, 2008), and food science (Cimpoiu, 

Cristea, Hosu, Sandru, & Seserman, 2011). In supply chain optimization, ANNs are used 

to forecast demand in two separate occasions. Al-Saba and El-Amin (1999) design a 

backpropagation ANN (BPNN), a FFNN using the backpropagation algorithm, to forecast 

the demand of a power distribution supply chain. A FFNN and a FBNN model (Carbonneau, 

et al., 2008) are developed and applied to forecast the demands in a typical supply chain 

network. In this work, the FBNN shows better accuracy but under statistical analysis, the 

two techniques are not statistically different. In food sciences, a multilayer FFNN (Cimpoiu, 

et al., 2011) is used to quantify the antioxidant potential of tea leaves. 

In CBM diagnostics and prognostics, there have been several ANN applications. The most 

widely used ANN architecture is the FFNN. One example of a FFNN application is in 

electric utilities, where a power transformer’s oil insulation faults are diagnosed with a 

BPNN (Huang & Huang, 2002). Other types of ANNs have also seen applications in CBM. 

For example, a 3-layer FBNN (Li, et al., 2001) is applied to track and predict the 

deterioration rate of a gear train. Wang and Too (2002) developed a self-organizing map 

(SOM) (Kohonen, 1990), which is a network trained with an unsupervised algorithm to 

group nodes into neighborhoods for different outputs, to use vibration signal input data for 
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motor fault diagnosis. Combinations of ANNs with other techniques for CBM purposes 

have also been used. Silva, Reuben, Baker and Wilcox  (1998) use an expert system with 

two ANNs, an adaptive resonance theory network (ART2) and a SOM, to estimate tool 

wear. An ART2 network (Carpenter & Grossberg, 1987), addresses ANNs weakness in 

learning new things, by introducing initially unused output units for later use with new 

patterns. New categories of outputs are created by the network when data that do not match 

existing data patterns are presented to the network.  

Despite the popularity of ANNs, there are several limitations. First, it is difficult to 

determine the optimal architecture (Jardine, et al., 2006; Yacout, 2010). Second, there is a 

lack of efficient procedures for obtaining the necessary data and knowledge for training the 

ANNs (Azimi, et al., 2014; Jardine, 2002; Jardine, et al., 2006). Third, it is often difficult 

to associate physical explanations to ANNs (Jardine, et al., 2006).  

2.4 PROPORTIONAL HAZARDS MODEL 

The proportional hazards model (PHM) is one of the most popular statistical modeling 

approaches in CBM. PHM (Cox, 1972; Jardine, et al., 2006) can describe the equipment’s 

underlying statistical behaviour and relate the equipment’s age and condition to its failure 

rate. 

2.4.1 Definitions and Concepts 

PHM’s popularity lies in its ability to relate both the age and condition information to the 

equipment’s failure rate. In many real applications of CBM, failure and maintenance 

depend not only on age but also on other factors, like condition and operational settings 

(Johnson, 1998). These additional factors are known as covariates in reliability modelling. 

The PHM method determines the equipment’s hazard rate or failure rate, which is the 

equipment’s instantaneous rate of failure at time t. Using this function, the conditional 

probability of failure and the reliability of the equipment can be determined. In PHMs, 

covariate hazard rates are proportional to each other. According to this rule, a general 

PHM’s hazard function can be described with the following Equation 7 (Cox, 1972; Jardine, 

et al., 2006),  

ℎ(𝑡, 𝑍(𝑡)) =  ℎ0(𝑡)𝜓(𝑍(𝑡))  (7) 
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Where h0 is the baseline hazard function describing the failure rate caused by aging, ψ(Z(t)) 

is the hazard rate relating to the covariates, and Z(t) is a vector describing the covariates at 

time t. By varying this baseline hazard function or the covariate hazard functions, this 

general PHM can be extended for different equipment behaviours. In 1972, Cox (1972) 

developed a PHM which assumes (1) that the condition indicators directly point to the 

equipment’s state, (2) that the covariate hazard function is time dependent, and (3) that the 

baseline hazard can be modeled as a semi-parametric function (Lin, et al., 2006), which is 

a function that does not follow a specified distribution. Another extension is the Weibull 

PHM, which is often used in CBM. This model uses a Weibull baseline hazard rate and 

Cox’s covariate hazard rate (Banjevic, et al., 2001; Jardine, et al., 2006; Lin, et al., 2006). 

The Weibull PHM is described by Equation 8,  

ℎ(𝑡, 𝑍(𝑡);  𝛽, 𝜂, 𝛾) = (
𝛽

𝜂
) (

𝑡

𝜂
)
𝛽−1

exp(∑ 𝛾𝑖𝑍𝑖(𝑡) 
𝑚
𝑖 )  (8) 

Where β and η are the Weibull distribution’s shape and scale parameters, respectively, and 

γi are the coefficients of the covariates Z(t). 

To apply PHM to real world problems, it is necessary to completely specify the hazard rate 

model. Parameter estimation can be used to make estimates of the unknown parameters of 

PHM’s hazard rate model based on historical data. Bayes estimation (Danish & Aslam, 

2012) and maximum likelihood estimation (Cox, 1972; Ding & He, 2011; Ghasemi, et al., 

2010; Lin, et al., 2006) are common parameter estimation techniques that have been used 

in parameter estimation for PHMs. Danish and Aslam (2012) use Bayes estimation to 

determine the parameters for a PHM applied in the prediction of Primary Biliary Cirrhoisis 

patients’ time of death. In a machine tool wear prediction problem, Ding and He (2011) 

estimate the parameters in a lognormal PHM using maximum likelihood estimation. 

Using the hazard rate function, the equipment’s reliability function can be calculated based 

on the relationship in Equation 9 (Ebeling, 1997): 

𝑅(𝑡) =  ∫ 𝑓(𝜏)𝑑𝜏 
∞

𝑡
  (9) 

Where, R(t) is the reliability function and f(τ) is the lifetime probability density function. 

Equation 9 can then be substituted into Equation 10 to determine the MRL (Ebeling, 1997): 
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𝑀𝑅𝐿 = 
1

𝑅(𝑇0)
∫ 𝑅(𝑡)𝑑𝑡
∞

𝑇0
  (10) 

Where T0 is the current survival time of the equipment. With these relationships, 

prognostics information can be provided to maintenance decisions makers using PHM. 

2.4.2 Application 

PHM’s ability to map age and condition onto a hazard rate has made it popular in survival 

analysis. Various industries, like medicine, farming, and manufacturing, have seen PHM 

applied. Sankaran and Sreeja (2012) use PHM to diagnose the survival probability of AIDS 

patients. Not only has it been used for seriously ill patients, PHM has also been used to 

estimate patient survival probabilities in hospital populations (Miladinovic, et al., 2012). 

In farming, the survival and production life of Holstein cows (Zavadilová, Němcová, & 

Štípková, 2011) has been modeled using PHM, so that the best cattle management strategy 

could be determined. The study is also able to differentiate between characteristics 

associated to two different Holstein cow populations (in Canada and in Czech). 

As stated before, the Weibull PHM is one of the most widely used PHM models for CBM. 

A CBM decision support tool (Jardine, 2002; Banjevic, et al., 2001), EXAKTTM, uses the 

Weibull PHM in its failure rate calculations and to quantify the decision making risk. Other 

uses in industry include modelling of the failure rates in a multiple component bearing 

system (Tian & Liao, 2011) and in military vehicle engines (Lorna Wong, Jefferis, & 

Montgomery, 2010). CBM applications are not limited to the Weibull PHM. For example, 

a PHM with a lognormal baseline hazard is used to predict the wear of a lathe machine 

(Ding & He, 2011). 
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CHAPTER 3 METHODOLOGY 

The following chapter will outline the steps for examining, within the context of CBM, the 

three models identified earlier; the artificial neural network (ANN), the logical analysis of 

data (LAD) and the proportional hazards model (PHM). Figure 2 summarizes these steps: 

step 1 is described in Section 3.1, step 2 is outlined in Section 3.2, 3.3, and 3.4, and step 3 

is presented in Chapter 4. 

 

Figure 2: Flowchart for Research Methodology 

3.1 DATA PREPROCESSING 

In the context of CBM, the dataset under study includes information on the equipment’s 

age and multiple condition indicators. Condition indicators are measures of the 

equipment’s health and differ according to the equipment under observation. 
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Datasets of this nature are often large, which means that one challenge of CBM modeling 

is the dataset size. In some cases, large datasets require greater processing power and longer 

processing time. In order to complete the experiment in a reasonable time, it is necessary 

to decrease the size of the dataset under study. The data preprocessing stage is summarized 

in Figure 3: 

 

Figure 3: Flowchart for Step 1: Data Preprocessing of Research Methodology 

First, every nth data value is extracted from the dataset under study. The extraction of every 

nth data value follows the data preprocessing step that is used by Esmaeili (2012). For 

example, instead of using all data values, analysis is completed on every 100th data value. 

In some cases, a new variable is created to describe the data located in between the 

extracted data value. In other words, instead of using every 100th data value, the mean and 

standard deviation over those 100 data values is used for analysis. 

If the number of condition indicators in the dataset is greater than two, the dataset is further 

reduced by using principal component analysis (PCA), in this thesis. PCA (Johnson, 1998; 

Pearson, 1901) is a multivariate analysis method that can be used to identify outliers, create 

new variables, analyze clusters, and determine the true dimensionality of a dataset. In many 

cases, variables in a dataset are highly correlated, so using them in analysis will not provide 

additional information. The dataset’s true dimensionality will be identified when PCA is 

used. Often the true dimensionality is less than the original dimensions of the dataset, 

which reduces the original dataset dimensions (Johnson, 1998; O'Rourke, Hatcher, & 

Stepanski, 2005). Many use PCA as a dimension reduction technique because of its ability 
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to determine a dataset’s true dimensionality (Jardine, et al., 2006; Lin, et al., 2006; 

O'Rourke, et al., 2005).  

Orthogonal transforms (Pearson, 1901) are used to convert a correlated set of variables into 

a new set of linearly uncorrelated variables called principal components (PC). Eigen 

decomposition is used in orthogonal transforms. In Eigen decomposition (Johnson, 1998; 

Pearson, 1901), the covariance or correlation matrix is factorized into two matrices known 

as the eigenvalues and the eigenvectors. Each vector in the eigenvector matrix corresponds 

to an eigenvalue, which acts like a scaling factor during multiplication. This means that the 

higher the eigenvalue, the more variability is accounted for by the corresponding 

eigenvector. When sorted in decreasing order of importance, PCs are (Johnson, 1998; 

O'Rourke, et al., 2005): 

1. Uncorrelated 

2. Decreasing in the amount of accountable variability in the data. In other words, the 

first PC accounts for the most variance in the data. 

3. Accounting for as much of the remaining variability as possible. This means that if 

the first PC accounts for 75% variance, the second PC will try to account for as 

much of the remaining 25% variance as possible, as will the succeeding PCs, if the 

second PC cannot cover the remaining 25%. 

PCs, created by the product of the eigenvector and the original data value, can be used 

directly in subsequent analysis (Johnson, 1998; Lin, et al., 2006). However, PCA creates 

the same amount of PCs as there are original variables. Therefore, it is necessary to 

determine how many PCs should be used to truly represent the dataset. Three methods are 

typically used (Johnson, 1998; O'Rourke, et al., 2005): a scree plot, the amount of 

acceptable cumulative variance, and an eigenvalue greater than one. 

In the scree plot method, PCs’ eigenvalues are plotted against their PC number (Figure 4). 

Significant PCs occur before the point at which trend starts to level off in the scree plot and 

are chosen to represent the dataset. For example, Figure 4, shows eigenvalues leveling off 

at the 4th PC.  The 3rd PC is not as high as the first and second PCs but not entirely level 

with PC 4 to 21. However, the 3rd PC is much closer to the eigenvalue of PC 4 than to PC 
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2. Therefore, PC 1 and PC 2 are chosen as the significant PCs according to the scree plot 

method. 

 

Figure 4: Scree Plot for CMAPSS Data 

The amount of acceptable cumulative variance method involves choosing a value for the 

acceptable amount of total variance in the original dataset. PCs are chosen if the cumulative 

variance for that PC does not exceed this threshold. As soon as the cumulative variance in 

the PCs pass this value, no further PCs are kept. 

The eigenvalue greater than one method applies only to PCs determined with the 

correlation matrix. If the PCs are determined using the correlation matrix method, PCs can 

be kept when their eigenvalue is greater than one. 

In this thesis, the amount of acceptable cumulative variance method is used to determine 

the number of significant PCs. The scree plot method is discarded because of possible 

subjectivity in identifying the point at which the trend levels off. The eigenvalue greater 

than one method is not used because it is dependent on the use of the correlation matrix 

and cannot be easily generalized in applications. Using the amount of acceptable 

cumulative variance method, an acceptable cumulative variance threshold is defined at 

95%. 
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After size reduction, the dataset is partitioned into several training sets, a validation set, 

and a test set. The training set allows the experimental models to learn the patterns within 

the data. The validation set is used only in the training of ANNs. Finally, the test set is used 

for evaluating the trained models and for calculating performance metrics. 

3.2 LAD FORMULATION 

The LAD formulation in this thesis is taken from the methodology described in 

Development of Equipment Failure Prognostic Model Based on Logical Analysis of Data 

(LAD) (Esmaeili, 2012). The LAD components deemed most effective by Esmaeili (2012) 

are used in this experiment. A brief outline of the LAD formulation is given by Figure 5. 

 

Figure 5: Flowchart for Step 2a: LAD Formulation of Research Methodology 
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Before training the LAD models, the data is further processed using normalization (Kim, 

1999). That is, data values are constrained between 0 and 1 in order to compress the range 

of values. This is necessary to reduce the number of cut-points used to binarize the data. 

In the first stage of LAD, binarization of the data is completed. The sensitive discriminating 

method (Esmaeili, 2012) is used to define the cut-points needed for data binarization. 

Although, Esmaeili (2012) does not compare the performance between the sensitive 

discriminating method and the equipartitioning method, the sensitive discriminating 

method is more logically sound than the equipartitioning method. As previously described, 

the sensitive discriminating method defines cut-points where changes occur between 

classes, where differences between information are expected to occur. This means that cut-

points should be defined only where it is needed and the pattern generated from the 

resulting binary data is at its minimal length. An introduction of more cut-points would 

result in longer patterns. As such, this thesis uses the sensitive discriminatory method. In 

this method, cut-points are defined between the values of two different classes. For 

example, consider a dataset (Table 1) with several pieces of equipment, their various 

observation moments, and the corresponding condition. 

Table 1: Sample Set of Monitored Data (Esmaeili, 2012) 

Observations Attributes 

Equipment ID Observation 

Time 

Class Age Condition 

Indicator 

1 0 - 0 14 

1 1 - 1 16 

1 2 - 2 20 

1 3 - 3 18 

1 4 + 4 20 

2 0 - 0 12 

2 1 - 1 18 

2 2 + 2 22 

3 0 - 0 16 

3 1 - 1 18 

3 2 - 2 20 

3 3 + 3 22 
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In Table 1, each row belongs to one observation moment in the equipment’s lifetime. The 

first and second columns identify the piece of equipment and the observation moment. The 

third column shows the class of each observation. The negative class means that the 

equipment is still surviving at that observation moment. The positive class, which is further 

highlighted by the darker background, means that the equipment has failed at that 

observation moment. Finally the last two columns display the condition information, which 

in this case are the age and one condition indicator. 

The first step in the sensitive discriminating method is sorting the data and their associated 

classes (negative for survival and positive for failure) in ascending order. Then, cut-points 

are defined at places where the changes in class are observed (marked by the dark 

background). Table 2 shows the cut-points for the condition indicator data shown in Table 

1. In the case of this example, cut-points are defined between 18 and 20, and between 20 

and 22.   

Table 2: Sorted Condition Attribute and its Corresponding Class (Esmaeili, 2012) 

Sorted Attribute 

Condition Indicator Class 

12 - 

14 - 

16 - 

18 - 

20 -, + 

22 + 
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Using these cut-points and Equation 1, the condition indicator data is now transformed into 

the binary data shown in Table 3.  

Table 3: Binary Transformation of Condition Indicator Values (Esmaeili, 2012) 

Observations Condition Indicator Attributes 

Equipment ID Observation Time 19 21 

1 0 0 0 

1 1 0 0 

1 2 1 0 

1 3 0 0 

1 4 1 0 

2 0 0 0 

2 1 0 0 

2 2 1 1 

3 0 0 0 

3 1 0 0 

3 2 1 0 

3 3 1 1 

 

After obtaining the binarized data, an MILP optimization is used to generate patterns. 

According to Esmaeili (2012) both the greedy heuristic method and the MILP optimization 

shows similar performance. However, the solution time for the MILP is much shorter than 

that of the greedy heuristic (Esmaeili, 2012). Therefore, the MILP method for pattern 

generation is used in this thesis. The MILP model’s objective is to generate a pattern that 

minimizes the number of uncovered observations of a certain class. Given a set of 

observations in a certain class S and a set of observations in the opposite class S-,  yi is the 

binary decision variable for the coverage of observation i that can be solved with the 

following set covering MILP formulation, used by Esmaeili and introduced by Ryoo and 

Jang (2009): 

Minimize∑ 𝑦𝑖𝑖∈𝑆∗   

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:  

∑ 𝑎𝑖𝑗𝑤𝑗 + 𝑞𝑦𝑖
2𝑞
𝑗=1 ≥ 𝑑          ∀𝑖 ∈ 𝑆∗  (11) 

∑ 𝑎𝑖𝑗𝑤𝑗
2𝑞
𝑗=1 ≤ 𝑑 − 1          ∀𝑖 ∈ 𝑆∗−  (12) 
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𝑤𝑗 + 𝑤𝑞+𝑗 ≤ 1          𝑗 = 1, 2, … , 𝑞  (13) 

∑ 𝑤𝑗
2𝑞
𝑗=1 = 𝑑  (14) 

1 ≤ 𝑑 ≤ 𝑞  (15) 

𝑤1, …𝑤2𝑞 ∈ {0, 1}  

𝑦1, … 𝑦𝑁∗ ∈ {0, 1}  

Where, aij is a binary variable for whether attribute j exists in observation i, q is the number 

of binarized values, wj is the binarized variable for whether attribute j is present in the 

pattern, wq+j is the negation of attribute j, and d is the degree (or number of literals) in the 

pattern. In the formulation, the first constraint (Equation 11) ensures that the observations 

in a certain class (S) are covered by the generated pattern. The second constraint (Equation 

12) ensures that the observations in the opposite class (S-) are not covered by the generated 

pattern. The next constraint (Equation 13) holds true for all q attributes and states that a 

pattern cannot be formed by both the attribute and its negation. The last constraint 

(Equation 14) counts the degree of the pattern that is generated. 

After a pattern is generated, the model can be modified to generate patterns one at a time 

until all the observations are covered by at least one pattern. The model is modified by 

adding an additional constraint (Equation 16) (Mortada, 2010) representing the generated 

pattern and then optimizing the problem without the observations that have already been 

covered by previously generated patterns. 

𝑟𝑖,𝑗 = {
1          ; 𝑖𝑓     𝑤𝑖,𝑗 = 1

−1          ; 𝑖𝑓     𝑤𝑖,𝑗 = 0 
  (16) 

Using the generated patterns, the LAD model classifies observations based on the 

discriminant function in Equation 3 (Boros, et al., 2000). In this thesis, the weights for the 

discriminant function are determined by the relative significance of the generated patterns. 

This means that equal weights are given to each of the two classes of patterns and individual 

generated patterns within each class divide the total weight between them. For example, 

consider a pattern generation approach that has generated three patterns. Two of these 

patterns belong to the negative class and one to the positive class. The total weight for each 
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class is 1, so the weights for the negative patterns are 0.5 and the weight for the positive 

pattern is 1. 

Further work is done by the LAD to enable it to perform prognosis. Using the Kaplan-

Meier (1958) estimator, two types of conditional survival probabilities are calculated. The 

first conditional survival probability is associated with the generated patterns and is defined 

as the ratio of observations covered by pattern P whose equipment survive up to i periods 

after coverage to the total observations covered by pattern P. This is represented by 

Equation 17 (Esmaeili, 2012): 

𝑆𝑃𝑝(𝑖) =  
#(𝑃∩𝑆; 𝜏>𝜏0+𝑖∆)

#(𝑃∩𝑆; 𝜏>𝜏0)
  (17) 

Where SPp is the pattern condition survival probabilities and S is the set of observations 

covered by pattern P. 

A second conditional survival probability is estimated in relation to the survival function 

based on age. According to the Kaplan-Meier estimator, this probability can be defined as 

the ratio of pieces of equipment that survive up to i periods to the total number of equipment 

in the training dataset. This baseline conditional survival probability is defined by Equation 

18 (Esmaeili, 2012) 

𝑆𝑃𝑏(𝑖) =  
#(𝐸; 𝜏>𝑖∆)

#(𝐸)
  (18) 

Where SPb is the baseline conditional survival probability and E is the set of equipment in 

the training dataset. Combining these two types of condition survival probabilities, each 

observation’s conditional survival probability (SPobs) of the equipment covered by n 

number of patterns during the ith period is described by the Equation 19 (Esmaeili, 2012):  

𝑆𝑃𝑜𝑏𝑠(𝑖) =

{
 
 

 
 

∑ 𝑆𝑃𝑝(𝑖)
𝑛
𝑝=1

𝑛
+𝑆𝑃𝑏(𝑖)

2
     ; 𝑖𝑓 𝑡 = 0

∑ 𝑆𝑃𝑝(𝑖)+𝑆𝑃𝑓𝑜𝑟𝑚𝑒𝑟(𝑖+1)
𝑛
𝑝=1

𝑛+1
+𝑆𝑃𝑏(𝑖)

2
     ; 𝑖𝑓 𝑡 < 0

 (19) 

The survival probabilities of each observation (SPobs) are then transformed into the MRL 

using Equation 4. 
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The LAD model follows these steps to train using the training dataset. Once the LAD model 

is trained, to determine the patterns, discriminant function, and survival probabilities, the 

testing dataset results are calculated to compare model performance. 

3.3 NEURAL NETWORK DESIGN 

As previously mentioned, ANN components can be arranged in many combinations, 

meaning that there are many possible architectures that can be applied to a problem. In 

order to employ ANNs, an effective architecture for the dataset under study should be 

determined. Consequently, the first step in employing an ANN model is the development 

of an optimal ANN structure design method. The method, designed to determine the best 

ANN architecture, uses a combination of k-fold cross validation (Schneider, 1997) and 

Taguchi methods (Peace, 1993; Taguchi & Konishi, 1987). 

Cross validation (Alexe, et al., 2004; Gubskaya, et al., 2011; Peace, 1993) is used to 

evaluate a learning method’s performance on new predictions. The most basic cross 

validation method is called the holdout method (Schneider, 1997). In it, a dataset is divided 

into a training set and a testing set. The model is trained using the training set but evaluated 

using the test set. In k-fold cross validation (Schneider, 1997), the dataset is divided into k 

subsets and then the holdout method is applied k times, each time using a different subset 

for evaluation and the remaining subsets for training. This method eliminates the variation 

from specific characteristics of the samples making up the training or testing dataset. In 

ANN training, an additional subset of data is used for validation, which optimizes the 

network’s ability to generalize. In this case, two different subsets are used for evaluation 

and validation, respectively, while the remaining subsets are used for training during the k 

times in which the holdout method is applied for k-fold cross validation.  

Taguchi methods (Taguchi & Konishi, 1987) have been introduced by Dr. Genichi Taguchi 

to reduce the size of experiments. Orthogonal arrays (Taguchi & Konishi, 1987) are used 

to determine optimal experimental parameters. Orthogonal arrays are advantageous 

because they can relate the parameters and their levels in a balanced way without testing 

all combinations. Once the experiments are completed, signal-to-noise (S/N) ratios 

(Taguchi & Konishi, 1987) can be calculated to evaluate each parameter’s performance. 

S/N ratios relate experimental noise with the expected signal. In ideal cases, the signal from 
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the system is much stronger than the noise. This means that a high S/N value is preferred. 

Different S/N functions can be calculated depending on the experiment’s objective. In this 

case, the objective is to minimize the mean squared error of the ANN design. The smaller-

the-better S/N ratio used. This is described by Equation 20 (Peace, 1993; Taguchi & 

Konishi, 1987): 

𝑆 𝑁⁄ = −10 log (
∑ 𝑦𝑖

2𝑛
𝑖=1

𝑛
)  (20) 

Where yi is the performance metric that is measured and n is the number of experiments. 

In this case the performance metric is the mean squared error of the testing subset in the 

dataset under study. 

Taking the requirements of k-fold cross validation and the Taguchi method into account, 

the method for determining the ANN’s optimal architecture is designed. The steps for this 

method is generally described in Figure 6. 

 

Figure 6: Flowchart for Step 2b: Neural Network Design of Research Methodology 
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In the first step of the ANN design method, key design parameters are identified. Key 

parameters are components that can change the architecture of the ANN, such as the 

number of nodes, the number of hidden layers, and the training algorithm. The second step 

requires setting levels for each of the design parameters in a way that fits into a Taguchi 

orthogonal array. Levels that correspond to the design parameters are limited to sensible 

values for the parameters. For example, the number of nodes is limited to an integer value 

that is greater than zero. The next step is to determine the number of folds used in cross 

validation, which doubles up as the number of trials completed for the Taguchi experiment. 

This occurs because k-fold cross validation cycles through the partitioned data k times. 

After these decisions are made, the Taguchi experiments can be run to determine the 

performance metric output. In this case, the experiment is evaluated on the mean-squared 

error (MSE). The outputs from the Taguchi experiment are used to calculate the S/N ratio 

and evaluate the optimal level of each parameter. In this way, the optimal ANN is 

determined for the dataset. 

Using the method described, two separate experiments are completed to design a 

feedforward ANN (FFNN) and a feedback ANN (FBNN). These are designed separately 

because the design parameters in these two types of ANNs are not the same and the absence 

of certain parameters cannot be factored into the Taguchi orthogonal matrix (like the 

absence of the different time delayed feedback connections in the FFNN). Matlab scripts 

for these two ANN designs can be found in APPENDIX A. The FFNN experiments with 

two 4-level parameters and one 2-level parameter (Table 4). The parameters are the training 

algorithm, the number of nodes, and the number of hidden layers. The L16 orthogonal 

matrix (Taguchi & Konishi, 1987) of the Taguchi method is used. The entries in Table 4 

and Table 5 for the training algorithm are in Matlab code, where trainlm = Levenberg-

Marquardt, trainbfg = BFGS Quasi-Newton, traingdx = Variable Learning Rate 

Backpropagation, and trainrp = Resilient Backpropagation. A further explanation for these 

algorithms can be found in APPENDIX B. 
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Table 4: Design Parameters and Corresponding Levels for Feedforward ANN Design 

Feedforward ANN Training Algorithm Number of Nodes 
Number of Hidden 

Layers 

Level 1 trainlm 5 1 

Level 2 trainbfg 10 2 

Level 3 traingdx 18 N/A 

Level 4 trainrp 30 N/A 

 

The FBNN is a special class of ANNs that have feedback loops. It is often used in time-

series forecasting, where the inputs can be considered the current and past conditions of 

the time series and the output can provide n-step ahead predictions based on the past values 

of the time-series (Jain, et al., 1996; Li, et al., 2001). This means that the input time-delays 

in the network are a parameter that affects the network’s performance. Therefore, the 

FBNN experiments with the three 4-level parameters shown in Table 5. The number of 

hidden layers for the ANN is not a parameter in the design table because there are some 

difficulties involved in the implementation of multiple hidden layers for this type of ANN. 

That is, when creating a custom Matlab FBNN, the connections between the nodes must to 

manually-coded for each case. Therefore, a general code for the FBNN is extremely 

difficult to generate for all cases and a case-specific code is infeasible as the network gets 

large. Like the FFNN design, a L16 orthogonal matrix (Taguchi & Konishi, 1987) is used 

in the Taguchi experiment. 

Table 5: Design Parameters and Corresponding Levels for Feedback ANN Design 

Feedback ANN Number of Delays Number of Nodes Training Algorithm 

Level 1 1 5 trainlm 

Level 2 2 10 trainbfg 

Level 3 3 18 traingdx 

Level 4 4 30 trainrp 

 

Using the optimal architecture determined with the methodology described previously, the 

ANNs can be trained to directly predict the RL for prognostics purposes. Data inputs are 

used directly in the optimal ANN to train the ANNs and determine the results for the testing 

data used in evaluation. 
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3.4 PHM TESTING 

The last approach that is studied in this thesis is the PHM. This thesis uses the Weibull 

PHM formulation, which is commonly used in CBM applications (Banjevic, et al., 2001; 

Jardine, et al., 2006; Lin, et al., 2006). The Weibull distribution (Ebeling, 1997) is an 

extremely useful probability distribution because it can be used to model increasing or 

decreasing failure rates. Changes in the shape parameter, β, changes the distribution’s skew 

and can cause it to become like other known distributions. When β < 1, the probability 

density function is similar to an exponential distribution with a decreasing hazard rate. 

When β ≥ 3, the probability density function is like a symmetrical normal distribution with 

an increasing hazard rate. When 1< β < 3, the probability density function is skewed with 

an increasing hazard rate. Finally, when β = 1, the probability density function takes on the 

characteristic of the exponential distribution with constant failure rate. 

As in the case of the LAD model but not in the ANN models, the data inputs are normalized 

(Kim, 1999) before training. Normalization is used to reduce the size of the vector of 

covariates, which can also decrease the number of covariate hazard rate parameters. 

The normalized data is partitioned for training and testing. The training of the Weibull 

PHM involves determining the unknown parameters of the Weibull baseline hazard rate 

and the unknown parameters of the covariate hazard rate. Maximum likelihood estimation 

(Ebeling, 1997) is used to completely specify the unknown parameters in this function. In 

this method, the unknown parameters are determined by maximizing the value of the 

likelihood function in Equation 21 for given values of t1, t2, …, tn (Ebeling, 1997).  

𝐿(𝜃1, … , 𝜃𝑘) =  ∏ 𝑓(𝑡𝑖|𝜃1, … , 𝜃𝑘)
𝑛
𝑖=1   (21) 

Where, f(t) is the probability density function with the unknown parameters θk. However, 

depending on the function f(t) and number of unknown parameters, this problem is not 

necessarily easy to solve. Instead, the maximum of the logarithm of Equation 21 is often 

easier to solve. As a result, the PHM’s parameters in this thesis are estimated using the log 

likelihood estimator.  
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Using the hazard rate, whose parameters are estimated using the log likelihood estimator, 

the MRL is calculated using Equation 9 and Equation 10. The remaining portion of data, 

the testing dataset, is applied to this Weibull PHM and its results are compared to the other 

models baseline for model comparison.  
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CHAPTER 4 EXPERIMENTAL RESULTS AND ANALYSIS 

The methodology outlined in Chapter 3 is applied on the Turbofan Engine Degradation 

Simulation dataset (Saxena & Goebel, 2008). This dataset is made available by NASA and 

is a run-to-failure CM set created by simulating aircraft gas turbofan engines using the C-

MAPSS (Commercial Modular Aero Propulsion System Simulation) tool (Saxena, Goebel, 

Simon, & Eklund, 2008). This dataset will be referred to as the CMAPSS dataset. Four 

subsets of data are provided with different combinations of operational settings and failure 

types. The subset with the most operational settings and failure types is selected for analysis. 

Information on the equipment’s age, operational settings, and 21 condition variables are 

available. 

4.1 RESULTS 

The CMAPSS dataset (Saxena & Goebel, 2008) consists of 249 pieces of equipment that 

have run to failure. There are approximately 60,000 data points. During data preprocessing, 

every 10th data value is extracted resulting in approximately 6,000 data values. Every 10th 

data value is extracted because this thesis follows the methodology outlined by Esmaeili 

(2012). For further justification of this value please refer to Esmaili (2012). Since the 

CMAPSS dataset has more than two condition indicators (21 condition indicators), PCA  

is completed on the condensed dataset to reduce the dataset dimensions further. Table 6 

displays the eigenvalues, variability, and cumulative variability results of the first ten PCs 

for the CMPASS dataset. Note that these eigenvalues are also used in Figure 4. 

Table 6: Eigenvalues, Variability, and Cumulative Variability 

 PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 

Eigenvalue 16.827 3.643 0.400 0.056 0.042 0.015 0.009 0.003 0.002 0.001 

Variability 0.801 0.174 0.019 0.003 0.002 0.001 0.000 0.000 0.000 0.000 

Cumulative 

Variability 
0.801 0.975 0.994 0.996 0.998 0.999 1.000 1.000 1.000 1.000 

 

As the table demonstrates, the first and second PCs accounts for 80.1% and 17.4% of the 

total variance, respectively. As stated before, this thesis uses the amount of acceptable 

cumulative variance method (Johnson, 1998; O'Rourke, et al., 2005) for determining the 

number of PCs to keep. The cumulative variance threshold is 95%. The first two PCs are 
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chosen to represent the data because they account for 97.5% of the total variance which 

fulfills the given cut-off criteria. 

The PCs (Johnson, 1998; Lin, et al., 2006), which are the product of the eigenvector and 

original data value, are generated and used as inputs for the three models under study. A 

sample of the transformed CMAPSS data is displayed in Table 7, showing one piece of 

equipment with 23 consecutive observations. Each observation is described by the age and 

two PCs. The last observation, which is shown in a darker background, is the failure 

observation. This means that the last observation belongs to the failure (positive) class 

while the remaining observations belong to the survival (negative) class. 

Table 7: Set of Condition Data for a Test Equipment 

Observations Attributes 

Equipment ID Observation Time Age PC1 PC2 

1 0 0 6.82 -1.40 

1 1 1 1.73 0.13 

1 2 2 -5.87 -3.69 

1 3 3 1.72 0.13 

1 … ... … … 

1 19 19 -2.55 1.96 

1 20 20 3.68 -0.15 

1 21 21 3.69 -0.16 

1 22 22 -2.52 1.92 

 

From this size-reduced dataset, sets of training data, validation data, and test data are 

extracted for use in the training and analysis of the three models. First, 15 pieces of the 249 

pieces of equipment are randomly chosen for the test dataset. Then, another 15 pieces of 

equipment are randomly partitioned to the validation dataset. Afterwards, 10 training 

datasets consisting of 70 pieces of equipment each are randomly extracted from the 

remaining 219 pieces of equipment. Six pieces of equipment are not partitioned to any of 

the 10 training datasets and are, therefore, not used in the analysis because of the random 

nature of the partitioning method. 

Using the 10 training sets, 10 models instances are trained for each prognostics method. 

The predicted MRL of the test set data is used for evaluating the approaches.  
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4.1.1 LAD 

The proposed LAD methodology is carried out using Esmaeili’s (2012) Python-

programmed LAD model with minor coding adjustments to the sensitive discriminating 

method for cut-point definition (though not to the algorithm). The data and results are 

interfaced through Excel and the MILP is solved using the CPLEX Python API. 

Table 8 shows a sample of the LAD approach’s best prognostics results that correspond to 

the data in Table 7. For each observation, the table includes information on the MRL 

prediction (column 4), the actual RL (column 3), and the difference between these two 

values (column 5). It is noted that although the example shows all positive errors, errors 

can be negative. 

Table 8: Set of CMAPSS Prognostics Results (from LAD) for a Test Equipment 

Observations Residual Life 

Equipment ID Observation Time Actual RL 
Predicted 

MRL 
Error 

1 0 22 20.41 -1.59 

1 1 21 20.13 -0.87 

1 2 20 19.56 -0.44 

1 3 19 19.17 0.17 

1 … … … … 

1 13 3 11.32 8.32 

1 14 2 8.63 6.63 

1 15 1 10.08 9.08 

1 16 0 6.43 6.43 

 

In Table 8 the MRL is calculated by the Python-LAD model following the relationship 

outlined by Equation 4. The actual RL is the time difference between the failure moment 

and the current observed moment. The difference between the two residual life values 

(Predicted MRL – Actual RL), or the error, is used for performance evaluation. The same 

prognostics information are generated for each of the modeling approaches, which can be 

found in APPENDIX C. 

As an indicator of the model’s performance, the relationship between the actual residual 

life and the errors are studied. This relationship can be observed in Figure 7, where the 

error is given on the y-axis and the actual RL, in units of 10s of cycles, is given on the x-
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axis. It is noted that for higher residual life values, the model makes more early predictions 

and underestimates the residual life (negative error). However, as the equipment 

approaches failure, the predictions tend to overestimate the residual life (positive error). It 

can also be seen that the number of predictions that have negative error is greater than the 

number of predictions that have positive error. 

 

Figure 7: Error as a function of the Actual RL for LAD CMAPSS Results 

4.1.2 Neural Networks 

The ANN methodology described in Chapter 3 is implemented using the neural network 

toolbox provided in Matlab 2015b. A Matlab script (APPENDIX A) for the feedforward 

ANN’s (FFNN) and the feedback ANN’s (FBNN) model design are written to perform k-

fold cross validation instead of using the neural network user interface. 

Using the parameters and levels described in Table 4, a 10-fold cross validation structure, 

and the Matlab script for FFNN design, the Taguchi experiment is performed to determine 

the optimal architecture for the FFNN. S/N ratios for the first, second, third, and fourth 

level of the training algorithm parameter are calculated to be -32.04, -33.61, -36.45, and -

34.19 respectively. The S/N ratios for the first, second, third, and fourth level of the number 

of nodes parameter are -34.85, -34.13, -33.61, -33.70, respectively. -34.15 and -34.00 are 
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the S/N ratios obtained for the remaining parameter’s (number of hidden layers) first and 

second levels. These values are presented in Table 9. APPENDIX D contains full Taguchi 

experiment results. 

Table 9: S/N Ratios for Optimal FFNN Architecture Taguchi Experiment 

Parameter Level 1 Level 2 Level 3 Level 4 

Training -32.04 -33.61 -36.45 -34.19 

Nodes -34.85 -34.13 -33.61 -33.7 

Layers -34.15 -34.00 N/A N/A 

 

Comparing the S/N ratios between each parameter finds that training algorithm has the 

largest effect on the performance of the FFNN. Further comparing the S/N ratio values 

between each level finds the optimal FFNN architecture. The largest S/N ratios are 

associated with the best parameter levels. The optimal FFNN has 2 hidden layers and 18 

nodes in each layer (Figure 8) and is trained with the Levenberg-Marquradt algorithm. The 

Levenberg-Marquradt algorithm (trainlm, 2016) is a supervised backpropagation algorithm 

that interpolates between the gradient descent method and Newton’s method. It is 

suggested by Matlab as a first choice supervised training algorithm. 

 

Figure 8: Optimal Feedforward ANN Architecture for CMAPSS Data 
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A second Taguchi experiment is done to determine the optimal architecture of a FBNN for 

the CMAPSS dataset. The parameters and corresponding levels described in Table 5, a 10-

fold cross validation structure, and the Matlab script (APPENDIX A) for FBNN design are 

used to complete the experiment. Presented in ascending order of the levels, the following 

S/N ratio values are obtained for the parameters. The S/N ratios for the number of delays 

are -22.61. -20.44, -23.86, and -23.33. The S/N ratios for the number of nodes are -22.33, 

-21.43, -24.07, and -22.40. The S/N ratios for the final parameter, the training algorithm, 

are -8.53, -23.00, -32.63, and -26.06. These ratios are also presented in Table 10 (further 

results in APPENDIX D). 

Table 10: S/N Ratios for Optimal FFNN Architecture Taguchi Experiment 

Parameter Level 1 Level 2 Level 3 Level 4 

Delay -22.61 -20.44 -23.86 -23.33 

Nodes -22.33 -21.43 -24.07 -22.40 

Training -8.53 -23.01 -32.63 -26.06 

 

By comparing the S/N ratios between parameters, it can be concluded again that the 

training algorithm parameter has the most effect on the ANN performance. Comparing 

between parameter levels, the optimal architecture is found to feature a 2-unit time delay 

with 10 nodes in the hidden layer (Figure 9). The training algorithm used to train this 

network is the Levenberg–Marquardt algorithm (trainlm, 2016). It is of interest to notice 

that this is the algorithm that Matlab recommends. 
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Figure 9: Optimal Feedback ANN Architecture for CMAPSS Data 

Using these optimal architectures, prognostics results (found in APPENDIX C), in the 

same format as the sample provided in Table 8 for the LAD model, are obtained. However, 

unlike the LAD model, residual is obtained directly from the trained ANN rather than 

calculated using a MRL equation (Equation 4 and Equation 10). Plotting the actual RL and 

error reveals their relationship. Figure 10 shows the FFNN’s prediction errors (y-axis) as a 

function of actual RL (x-axis), in units of 10s of cycles. The graph shows that the error 

increases negatively with residual life. In other words, when the equipment is still in good 

condition, the model tends to make early predictions of failure. On the other hand, as the 

residual life decreases, the error becomes closer to zero. The error near failure (zero 

residual life) is also consistently positive, which means that the model overestimates the 

failure time. 
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Figure 10: Error as a function of the Actual RL for Feedforward ANN CMAPSS Results 

A similar relationship is observed between the actual RL and the error for the FBNN, which 

can be seen in Figure 11. In the figure, the FBNN’s prediction errors are on the y-axis and 

the actual RL, in units of 10s of cycles, is on the x-axis. As the residual life increases and 

the equipment is farther from failure, the error is more negative. As the residual life 

decreases and the equipment is close to failure, the error is more positive. However, the 

number of negative and positive error observations are more evenly distributed. In other 

words, based on the Figure 11, it appears that there are almost as many positive error 

observations as there are negative error observations.  
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Figure 11: Error as a function of the Actual RL for Feedback ANN CMAPSS Results 

4.1.3 PHM 

The application of the Weibull PHM is performed using Esmaeili’s (2012) Python-coded 

PHM. The log likelihood estimator (Ebeling, 1997) is optimized using Python’s SciPy 

library. As with the LAD model, the data and results are processed using Excel. 

Using the log likelihood estimator, the parameters for 10 model instances are determined. 

The specified Weibull PHM, with now known parameter values, is used to obtain 

prognostics results (found in APPENDIX C) in the same format as those shown in Table 

8. The MRL is obtained using the hazard rate function, according to Equation 9 and 

Equation 10. The relationship between the actual RL (x-axis), in units of 10s of cycles, and 

the error for those prognostics results (y-axis) are shown in Figure 12. Negative error for a 

large residual life and positive error for a small residual life tendencies can again be 

observed in this relationship. Looking at the proportion of positive to negative error 

observations, it is observed that the number of positive error observations seems less than 

the number of negative error observations, just like the models before. 
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Figure 12: Error as a function of the Actual RL for PHM CMAPSS Results 

4.2 COMPARISON OF EXPERIMENTAL RESULTS 

The performance of these CBM approaches are evaluated based on three metrics. These 

metrics are the error, the half-life error, and the cost score, which are explained further in 

this section. The Friedman matched-pair test (Friedman, 1940) and the Wilcoxon signed 

rank test (Wilcoxon, 1945), from Minitab, are used to evaluate the statistical differences 

between the approaches. These statistics are calculated based on the testing subset. 

For each model, 10 instances are trained for comparison and statistical testing. The results 

displayed in the following sections are results from the best performing model instance. 

The best performing model instance is determined according to the lowest mean squared 

error between instances. This means that only one model instance from each of the four 

models are displayed in the following results. 

4.2.1 Evaluation over Error 

First, performance is measured by the difference between the predicted MRL and the actual 

RL. The purpose of this metric is to evaluate the distance between the prediction and the 

actual failure time. Differences in this distance may affect maintenance decision making, 

which is why the direction of the distance is taken into account and absolute error is not 
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considered. The impacts between different distances (or error) of predictions will be 

considered later in Section 4.2.3.  

Table 11 compares the performance of the four models based on error. More information 

on the models’ error performance is found in APPENDIX C. As observed from the table, 

the LAD and PHM approaches have the least variance, with a standard deviation of 9.47 

and 9.57, respectively. In addition to this, these two models also have the best performance 

as the mean and median are closest to zero. The LAD model has the better median at -0.04 

(vs. 0.17 in the PHM) but the PHM model has the better mean at -2.14 (vs. -2.70 in the 

LAD). Between the FFNN and the FBNN, the FFNN has the lower variance while the 

FBNN has mean and median closer to zero. 

Table 11: CMAPSS Error Summary 

 LAD PHM FFNN FBNN 

Minimum -33.31 -28.90 -32.08 -47.14 

25% Percentile -8.51 -8.70 -10.00 -8.48 

Median -0.04 0.17 -0.96 -0.33 

75% Percentile 4.50 5.97 4.67 5.53 

Maximum 10.60 11.21 12.29 16.14 

Mean -2.70 -2.14 -3.46 -2.48 

Std. Deviation 9.47 9.57 9.90 10.50 

Range 43.91 40.11 44.38 63.28 

 

Observing the comparison visually in Figure 13 some of the earlier conclusions are 

confirmed. LAD and PHM have a median that is closest to zero and FFNN has a median 

farthest from zero. It can also be seen, that there are outliers in the error for the LAD, FFNN, 

and FBNN approaches. Overall, the PHM and the FFNN have the least outliers. The 

outliers occurring for LAD and FBNN are in the negative error direction. Looking further 

into these outliers, it is found that these outliers occur when the residual life of the 

equipment is large. Negative and positive error can have different impacts on failure 

consequences. In the case where failure costs are greater than the replacement cost, outliers 

in the negative direction have less impact on the maintenance decision making than if the 

outliers had occurred in the positive direction. This is because it is more beneficial to have 

forewarning about failure than to have a late warning about failure for this situation. The 
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impacts of negative and positive error (and by extension negative outliers) will be further 

investigated by the cost score later on. 

 

Figure 13: Box Plot Comparison of CMAPSS Errors between Models 

The Friedman matched-pair test is applied to test the performance differences of these four 

models. The results from statistical testing for this and other metrics is provided in 

APPENDIX C. The resulting p-value is 0.293, which shows that the four models are not 

statistically different. However, as the Wilcoxon signed rank test is easily calculable, the 

models are further tested for differences in performance. Comparing LAD to PHM, FFNN, 

and FBNN obtains p-values of 0.221, 0.683, and 0.154, respectively. The p-values from 

comparing the PHM to FFNN and FBNN are 0.308 and 0.019, respectively. The 

comparison of the FFNN and the FBNN has a p-value of 0.359. The only test that shows 

significantly different performance is between the PHM and the FBNN, having a p-value 

of 0.019 which is less than the critical value of 0.05 for a 95% confidence interval. 

Considering model performance based on the difference between the predicted MRL and 

the actual RL from another perspective, percent error can be calculated. This measure can 

provide further insights into the accuracy of each model. Table 12 displays the percent 
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error summary for the four models. The table reveals that the LAD model is the best 

performing in terms of lowest percent error on average and that the FFNN model has the 

lowest standard deviation. 

Table 12: CMPASS Percent Error Summary 

 

LAD PHM FFNN FBNN 

Minimum 0% 0% 0% 0% 

25% Percentile 23% 29% 29% 27% 

Median 42% 44% 47% 45% 

75% Percentile 951% 1081% 862% 1338% 

Maximum 951% 1081% 862% 1338% 

Mean 81% 83% 82% 97% 

Std. Deviation 137% 139% 127% 174% 

Range 10% 11% 9% 13% 

 

From earlier results, it is noted that negative errors tend to occur when the residual life is 

large and positive errors tend to occur when the residual life is small. The question arises 

of how the error metric performs for each residual life value. Table 13 shows the average 

(avg. error) and standard deviation (std. dev.) of the error metric for actual RLs. Only one 

instance is observed for actual RL values greater than 37, therefore, the table does not 

display these results. From the table, it is confirmed that positive error occurs when the 

residual life is small (positive averages) and that negative error occurs when the residual 

life is large (negative averages).  

Table 13: CMAPSS Error Summary by Actual RL 

  ACTUAL RL 0 1 2 3 4 5 6 7 

  No. of 
Instances 

15 15 15 15 15 15 15 15 

LAD Avg. Error 5.48 6.44 5.65 4.92 4.37 4.28 4.26 3.91 

Std. Dev. 2.41 2.47 3.00 3.26 3.20 3.25 3.83 3.80 

PHM Avg. Error 6.74 6.22 5.61 5.03 4.49 3.96 3.51 3.05 

Std. Dev. 2.94 3.04 3.35 3.55 3.74 3.97 4.29 4.49 

FFNN Avg. Error 5.41 3.77 4.41 3.80 3.26 2.45 2.61 1.48 

Std. Dev. 2.80 5.39 4.31 4.23 4.10 4.89 4.04 5.47 

FBNN Avg. Error 10.31 8.11 6.35 6.11 5.72 4.85 4.24 4.02 

Std. Dev. 3.38 3.85 5.91 5.17 3.94 4.14 4.69 4.04 
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  ACTUAL RL 8 9 10 11 12 13 14 15 

  No. of 
Instances 

15 15 15 15 15 15 15 15 

LAD Avg. Error 3.31 2.78 2.31 1.62 0.95 0.57 -0.02 -0.60 

Std. Dev. 3.87 5.22 4.23 4.43 4.62 4.60 4.53 4.73 

PHM Avg. Error 2.70 2.28 1.90 1.46 1.16 0.88 0.57 0.27 

Std. Dev. 4.62 5.40 5.20 5.49 5.81 6.04 6.27 6.61 

FFNN Avg. Error 0.63 0.56 0.26 -0.43 0.34 0.02 -1.25 -0.82 

Std. Dev. 6.39 5.70 5.82 7.15 5.96 6.72 7.62 6.22 

FBNN Avg. Error 2.69 3.13 2.24 1.87 0.67 0.38 -0.62 0.42 

Std. Dev. 5.82 4.33 5.07 4.27 5.11 5.44 5.72 6.54 

             

  ACTUAL RL 16 17 18 19 20 21 22 23 

  No. of 
Instances 

15 14 14 11 10 10 10 8 

LAD Avg. Error -0.85 -1.92 -2.78 -4.61 -5.52 -6.37 -6.61 -8.53 

Std. Dev. 4.58 4.90 5.17 4.95 4.38 4.83 5.07 4.08 

PHM Avg. Error 0.06 -0.83 -1.00 -3.57 -4.78 -4.95 -5.27 -7.57 

Std. Dev. 6.83 6.86 7.02 6.62 6.34 6.45 7.12 5.80 

FFNN Avg. Error -0.95 -1.58 -2.38 -4.80 -6.18 -6.64 -6.38 -8.82 

Std. Dev. 6.96 7.18 8.84 6.43 6.13 8.55 7.06 5.62 

FBNN Avg. Error -1.01 -1.53 -4.55 -4.87 -5.82 -5.89 -7.42 -8.42 

Std. Dev. 6.21 7.71 5.40 5.26 4.75 3.98 5.61 6.02 

             

  ACTUAL RL 24 25 26 27 28 29 30 31 

  No. of 
Instances 

8 8 6 6 6 6 5 5 

LAD Avg. Error -8.48 -8.94 -11.44 -12.15 -12.64 -12.94 -13.93 -14.56 

Std. Dev. 3.75 4.01 4.12 4.21 4.34 4.28 3.56 3.56 

PHM Avg. Error -7.67 -7.98 -10.94 -11.15 -11.35 -11.49 -13.21 -13.35 

Std. Dev. 6.20 6.60 5.36 5.59 5.82 6.05 5.56 5.76 

FFNN Avg. Error -9.37 -9.08 -12.39 -12.64 -12.61 -12.97 -13.94 -14.71 

Std. Dev. 8.26 6.78 4.90 5.10 6.19 5.39 5.43 5.27 

FBNN Avg. Error -8.65 -12.75 -11.35 -11.53 -12.65 -14.62 -13.40 -12.72 

Std. Dev. 7.36 5.04 5.31 5.12 4.10 3.47 3.09 4.23 

             

  ACTUAL RL 32 33 34 35 36 37 >37   

  No. of 
Instances 

5 5 5 4 4 3 1   

LAD Avg. Error -14.97 -15.64 -16.14 -18.10 -17.94 -19.27 N/A   

Std. Dev. 3.52 4.00 3.82 5.51 4.39 4.94 N/A   

PHM Avg. Error -13.50 -13.52 -13.67 -15.07 -15.18 -16.75 N/A   
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Std. Dev. 6.03 6.02 6.33 7.02 7.25 8.40 N/A   

FFNN Avg. Error -14.81 -14.34 -15.09 -16.72 -11.05 -18.08 N/A   

Std. Dev. 5.85 7.28 6.70 6.47 15.14 8.06 N/A   

FBNN Avg. Error -13.13 -16.04 -15.82 -19.09 -13.76 -25.73 N/A   

Std. Dev. 4.17 6.08 7.72 4.27 7.08 2.90 N/A   

 

Some general conclusions can be drawn for the maintenance decision maker based on these 

results. LAD and PHM are the preferred models because they have the lowest variance and 

average error performance. This is especially true for cases where the equipment under CM 

requires high reliability and the impacts of inaccurate predictions are large, LAD and PHM 

are preferred models because of their low variance and range of error. These models also 

do well in terms of percent error. On the other hand, when this is less of a concern and 

accuracy of the predictions has more weight, the FFNN and LAD are preferred since they 

have one of the lowest average percent error and variance. However, the FFNN has a lower 

performance in terms of error. 

4.2.2 Evaluation over Half-Life Error 

In addition to the error, the performance comparison also considers what this thesis terms 

the half-life error. This metric evaluates the model’s behaviour as the engine approaches 

failure. In literature, the concept of half-life is used to measure the time it takes for a 

specimen to reach half of its initial useful life. This concept can be used to measure a 

specimen’s rate of decay. This thesis takes advantage of this concept to evaluate model 

performance when the equipment has deteriorated. The half-life error is the error calculated 

from the half-life of the longest surviving equipment in the dataset. Consider an example 

where the longest survival time for a set of equipment is 10 units of time. In this case, the 

half-life interval is 5 units of time and the half-life error is calculated over this interval. In 

the CMAPSS dataset, the equipment with the longest observed lifetime survives up to 50 

time units. Therefore, the half-life is defined as 25 time units.   

The performance of the half-life error metric for the four models are displayed in Table 14. 

Further half-life error results are found in APPENDIX C. Like the results for the error 

metric, the LAD and PHM have the least variance, with a standard deviation of 5.74 and 

6.38, respectively. However, under this metric, the FFNN which is previously worst 



49 
 

performing under the error metric, now has the best performance with a mean and median 

closest to zero is the FFNN. The FFNN has a mean and median of -0.11 and 1.52, 

respectively. The LAD model, which performed well for the error metric, performs the 

second best for the half-life error metric.  

Table 14: CMAPSS Half-Life Error Summary 

 LAD PHM FFNN FBNN 

Minimum -16.13 -18.17 -25.88 -22.28 

25% Percentile -2.91 -3.19 -4.80 -4.04 

Median 1.79 2.76 1.52 1.88 

75% Percentile 5.26 7.10 5.37 6.55 

Maximum 10.60 11.21 12.29 16.14 

Mean 0.89 1.21 -0.11 1.26 

Std. Deviation 5.74 6.38 6.98 7.00 

Range 26.73 29.37 38.17 38.42 

 

Comparing the half-life error visually (Figure 14), it can be noted that the PHM has a 

median that is farthest from zero. The remaining models have similar medians that are 

closer to zero compared to the PHM. The number of outliers observed in the half-life error 

box plot is less than the number of outliers observed under the error metric. The outliers 

occur for the LAD, FFNN, and FBNN. Diving into the outliers, it is found that these are 

associated with observations occurring when the residual life is large. Just as with the 

negative outliers identified when evaluating the error metric, these negative-errored 

outliers have less impact than if the outliers were positive in some cases. This is because 

knowing about failure before it occurs is advantageous in these cases. This observation is 

evaluated in the cost score metric. 
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Figure 14: Box Plot Comparison of CMAPSS Half-Life Errors between Models  

Testing the half-life error results with the Friedman matched-pair test (p-value = 0.01) 

shows that at least one of the four models is statistically different from the others. The 

Wilcoxon signed rank test is used to identify the model (s) that are statistically different. 

The p-values for the comparison of LAD to PHM, FFNN, and FBNN are 0.126, 0.541, and 

0.032, respectively. The comparison of PHM to FFNN and FBNN are 0.185 and 0.006, 

respectively. Comparing the FFNN and the FBNN produces a p-value of 0.126. These 

statistical results conclude that the FBNN is statistically different from the LAD and PHM.  

If the error for different decreasing intervals, like half the maximum residual life (half-life), 

a quarter of the maximum residual life (quarter-life), and an eighth of the maximum 

residual life (eighth-life) is calculated for the models, the behaviour of the models as the 

equipment approaches even closer to failure can be observed. Figure 15 shows the trends 

in the error performance at these three intervals. Studying the figure, it is noted that as the 

residual life interval gets smaller, the median values for all the models get farther from zero 

in the positive direction. This means that as the equipment approaches failure, the models 

tend to predict failure after it has already failed. Although it may be hard to differentiate, 

the median of the FFNN is actually closest to zero in all cases. However, the FFNN also 
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has the most outliers. Again these outliers lie in the negative direction. For the other models, 

outliers also lie in the negative direction. Overall, the number of outliers decrease as the 

residual life interval becomes smaller and gets closer to failure for all approaches. 

 

Figure 15: Box Plot Comparison of CMAPSS Interval Errors between Models  

From this study of model performance as the equipment nears failure, the maintenance 

decision maker can refine their decision for prognostics models. In some cases, the cost of 

failure is much greater than the cost of replacement. For these cases, predicting failure in 

advance can benefit the decision maker, especially as the equipment approaches the end of 

its lifetime. In this instance, the FFNN is recommended as the prognostics model because 

it has the best average performance when the residual life interval is smaller. However, 

LAD can also be considered because its average half-life error performance follows closely 

behind the FFNN and its variance is the lowest between the models.  

4.2.3 Evaluation over Cost Score 

In addition to the performance closer to failure, a metric that considers the consequence  of 

predicting failure before or after the failure actually occurs is also of interest. Consequences 

of inaccurate predictions of failure include, but are not limited to, monetary losses (costs), 

safety, and loss of life. The consequences of predicting failure before or after the failure 
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actually occurs have different impacts. For example, if the cost of failure is much greater 

than the cost of replacement, then it is more beneficial to have forewarning about the failure 

than a late warning. This holds true especially as the equipment approaches failure. For 

this case, negative error, which indicates that failure is predicted before its occurrence, is 

more beneficial than positive error, which indicates that failure is predicted for a time point 

after the failure actually occurs. This means that negative and positive error can have 

different effects on maintenance decision making. The cost score takes into account one 

kind of consequence for these two types of error by assigning a monetary value to the error 

between the predicted MRL and the actual RL. 

Whenever a failure occurs after the predicted failure time (negative error), an early 

replacement cost is incurred. This early replacement cost refers to the portion of the 

replacement cost (C) that remains unused because the equipment has already been replaced 

or repaired. For the opposite case, where the failure occurs before the predicted failure time 

has passed (positive error), a missed failure cost is sustained. This cost is the failure cost 

(K) that is much greater than the replacement cost (C). Taking these costs into account for 

the case with m pieces of equipment, each having nj number of observations, Equation 22 

is formulated and called the cost score. 

𝐶𝑜𝑠𝑡 =  {
∑ ∑ 𝐾 × |𝑑𝑖𝑗|

𝑎𝑛𝑗
𝑖=1

𝑚
𝑗=1           , 𝑖𝑓 𝑑𝑖𝑗 > 0

∑ ∑
|𝑑𝑖𝑗|𝐶

𝑇𝑗

𝑛𝑗
𝑖=1

𝑚
𝑗=1           , 𝑖𝑓 𝑑𝑖𝑗 ≤ 0

  (22) 

Where K is the failure cost, C is the replacement cost, Tj is the survival time of equipment 

j, a is an arbitrary value for weighting value, and dij is the error for observation i of 

equipment j. In the cost score equation, a is used to differentiate between the monetary 

impacts of positive error. For instance, a prediction that indicates failure occurring 10 

periods after the actual failure will have different costs than a prediction that indicates 

failure occurring 2 periods after the actual failure.  

The cost score’s general behaviour is illustrated more clearly in Figure 16, which shows 

the function under different criteria for certain values of error. Note that the y-axis scales 

for the functions with negative and positive error are not the same, the missed failure cost 

is larger than the early replacement cost. On the left of the zero (blue solid line) is the early 
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replacement cost for negative error, calculated with C = 100. On the right of the zero 

(various dashed lines) is the missed failure cost for positive error, calculated with K = 200. 

Different values of a are investigated to demonstrate how different error weights can affect 

the cost score’s behaviour. The a values of 0.5, 1, 1.5, and 3 are shown in Figure 16.  

 

Figure 16: Cost Score Example Illustrated (Not to Scale) 

As illustrated, the cost score penalizes the positive error more than the negative error. For 

different values of a, the cost score for the positive error behaves differently. In the case 

where the a value is lower than zero (a = 0.5), the cost score penalizes smaller errors more 

than larger errors. For a = 1, the cost score function is linear with time. For weights that 

are greater than one (a = 1.5, a = 3), the cost score considers larger errors to have more 

impact while smaller errors have less impact. As the a value gets larger, the cost score’s 

slope gets steeper. Since the cost score for the negative error does not depend on a, it 

remains constantly linear. 

Using K = 200 units of cost, C = 100 units of cost, and comparing various values of a (0.5, 

1, 1.5, 3), the cost score is calculated for data results of each model. Shown in Table 15, 

the cost score results reveal how the different models behave under different values of a. 

For a = 0.5, the FFNN has the lowest cost score, followed by LAD, PHM, and finally, 

FBNN. However, this holds true only until the half-life interval. After the half-life, as the 

equipment gets closer to failure, the PHM improves in performance and becomes better 

than LAD. For the cases where a = 1 and a = 1.5, LAD always outperforms PHM with the 
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lower cost score. In addition, the FFNN has the lowest cost score and FBNN has the highest 

cost score. When a = 3, LAD starts out with the best performance, followed by FFNN, 

PHM, then FBNN. As the residual life decreases, this behaviour changes. At the 

equipment’s half-life, the FFNN overtakes LAD in performance.  

Table 15: CMAPSS Cost Scores 

  a = 0.5 

Interval LAD PHM FFNN FBNN 

Entire Life 92,859 100,327 88,364 101,160 

Half Life 87,706 95,585 82,520 95,884 

Quarter Life 70,610 68,843 59,794 76,803 

Eighth Life 44,294 43,251 37,336 49,443 

  a = 1 

Interval LAD PHM FFNN FBNN 

Entire Life 202,073 233,678 194,981 251,514 

Half Life 196,919 229,022 187,771 246,239 

Quarter Life 167,802 171,461 139,733 205,592 

Eighth Life 107,639 109,636 89,670 142,181 

  a = 1.5 

Interval LAD PHM FFNN FBNN 

Entire Life 479,450 592,378 468,553 691,021 

Half Life 474,296 587,748 457,269 685,745 

Quarter Life 420,937 450,252 346,523 585,432 

Eighth Life 276,134 293,255 228,227 429,451 

  a = 3 

Interval LAD PHM FFNN FBNN 

Entire Life 8,314,361 12,036,947 8,466,354 19,473,993 

Half Life 8,309,207 12,032,329 8,287,844 19,468,718 

Quarter Life 7,889,769 9,670,215 6,516,788 16,932,972 

Eighth Life 5,531,776 6,653,126 4,594,162 14,060,827 

 

Statistical testing is performed for the case of a = 1.5. Results using the Friedman matched-

pair test, show that there is significant difference between the model behaviour (p-value = 

0). The Wilcoxon signed rank test results of this metric show more pronounced differences 

between model performances. The p-values for the comparison of LAD to PHM, FFNN, 

and FBNN are 0.541, 0.011, and 0.006, respectively. The ones for the comparison of PHM 

to FFNN and FBNN are 0.067 and 0.006, respectively. The final p-value, comparing the 
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FFNN and the FBNN is 0.103. To summarize, this statistics test found that there are 

significant differences between two pairs of approaches. First, LAD is significantly 

different from both the FFNN and the FBNN. Second, PHM is significantly different from 

FBNN. 

Taking into consideration the results from this metric, the maintenance decision maker can 

add another layer to their decision making. Recall, that negative outliers are observed in 

both the error and half-life error metric. It is noted that in some cases, negative outliers 

have less impact than positive outliers. As seen from the cost score, negative errors have 

much less monetary impact than positive error for the case where failure cost is much 

greater than the replacement cost. This means that the negative errors observed previously 

will not have much impact on maintenance decisions and the conclusions draw before. 

Considering models from the cost score perspective, in situations where the failure cost is 

much greater than the replacement cost and where the impacts of predicting failure after it 

has already occurred are great, then the FFNN and LAD are preferred. In most cases of a, 

these two models perform the best with the lowest cost score, even as the residual life 

interval decreases. Recall that outliers in the negative direction (and large residual life) are 

observed in the earlier results. Since the positive error has a much larger cost than the 

negative error, these outliers in the negative direction have less impact on the maintenance 

decision making than if the outliers had occurred in the positive direction. It is important 

to note the cost score is not tested for the case where K is less than C (K/C < 0), therefore, 

no conclusions can be drawn for this case. 

4.2.4 Discussion of Results 

A sample of the overall prognostics results is shown in Figure 17, which illustrates the 

predicted MRL’s general behaviour for each model. The prognostics results (APPENDIX 

C) corresponding to the data presented in Table 7 are plotted against the lifetime of the 

equipment (with units of 10s of cycles). The figure shows that the FBNN has the most 

variable predictions and that the LAD and PHM is generally the most stable. 
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Figure 17: Comparison of Predicted MRL between the Models for a Test Equipment 

In addition to the performance of the predictions, another thing that is often considered 

when choosing a model is the run time. A snapshot of the run time performance is given 

by Table 16. The run time (in minutes) during the 10-trial training for each approach is 

compared. The ANN methods solve much faster than the other two methods. In comparison, 

LAD takes the most time for training (1000 times the fastest training time). It is important 

to take note that the LAD and PHM modelling are completed using non-commercial 

programs while the ANNs are modelled in Matlab. In addition, the run time shown is for 

the training stage of the model. If new data is introduced to the models, different 

approaches to updating the model will use different run times. For models that require re-

training in order to update the model, these run times still hold true. This is the case for the 

PHM and the ANN approaches. In the case of LAD, if the new data observation is already 

covered by an existing pattern, there is no need to update the model. If the new data 

observation is not covered by an existing pattern, the MILP is run once to obtain a new 

pattern. This means that LAD does not need to be retrained. 

Table 16: Run Time (in Minutes) for Each Approach 

LAD PHM FFNN FBNN 

3928.73 224.83 6.37 3.81 
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This additional information can further aid the maintenance decision maker. In the case 

where new data is continually introduced to the model by CM, updates to the model may 

be done often to increase the prediction ability of the model as more information is 

collected. This means that a short run time is needed during updating. As such, the ANN 

approaches or LAD is preferred because the ANN approaches have the shortest training 

run time between the approaches and the LAD does not require retraining of the entire 

model. 

Taking into consideration the prediction results, the run time results, and the results 

discussed for the three metrics, the following points can be made to summarize the 

conclusions obtained from the application of the four models to the CMAPSS dataset: 

 The error, for all models, between the predicted MRL and the actual residual life 

tends to be negative when the residual life is greater and positive when the residual 

life shorter. 

 Based on the overall accuracy of the model, measured by error, the LAD and PHM 

are the best performing models. 

 The models slowly become more accurate as the equipment approaches failure, 

with the FFNN being the best performing as this occurs. 

 Considering different error weights for the case where the failure cost is much 

greater than the replacement cost, the FFNN and LAD show best performance in 

the most cases. 

 In terms of training run time, the ANNs have the faster time. 

 The LAD model has the least variance in results. In both the error and half-life error 

metrics, the LAD model has the lowest standard deviation. 

 The overall statistical testing results show that the PHM is statistically different 

from FBNN. In two of the metrics, half-life error and cost score, the LAD is 

statistically different from FBNN. It can be concluded from these results that the 

FBNN is most statistically different. 
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4.3 INDUSTRIAL APPLICATION 

Given the interesting results obtained on the CMAPSS data, the methodology is applied to 

another real-world problem. For this endeavor, data is obtained from a structural health 

monitoring (SHM) project of the Halifax MacKay Bridge (Clarke, 2014). 

4.3.1 The MacKay Bridge Problem and Background 

Starting in 2015, Halifax has seen Halifax Harbour Bridges (HBB) re-deck the Angus L. 

Macdonald Bridge (Macdonald Bridge) in a project known as the Big Lift (Halifax Harbour 

Bridges, n.d.). Soon, the A. Murray MacKay Bridge (MacKay Bridge) will require a similar 

re-decking. First opened in 1970, the MacKay Bridge (Clarke, 2014; Halifax Harbour 

Bridges, n.d.) has been servicing all types of vehicles, including those over 3200kg, for the 

last 45 years. Currently, approximately 65,000 vehicle crossings occur on the MacKay 

Bridge during the average workday. 

In 2010, Dalhousie University (DAL) was contracted by HHB and Buckland & Taylor Ltd. 

to supply and install a structural health monitoring system on the deck of the MacKay 

Bridge and evaluate the integrity of specimens extracted from the bridge’s deck through 

fatigue testing. Structural health monitoring (SHM) is a non-destructive process for 

investigating a structure’s health using sensors to provide condition information (Farrar & 

Worden, 2013). In other words, SHM is a structural equivalent to CBM’s CM. Recently, 

the problem of aging infrastructure has made field applications of SHM systems more 

important (Clarke, 2014; Farrar & Worden, 2013) because it allows maintenance policies 

to incorporate real-time condition information. 

A bridge’s deck is one of four main components in a suspension bridges (Harazaki, Suzuki, 

& Okukawa, 2000), of which the MacKay Bridge is one. Other key components include 

the cable system (that support the deck), the pylon (or towers that support the cable system), 

and the anchorages (that support the cable system). The deck forms the surface that is 

directly in contact with traffic and directly supports the traffic load that acts on a bridge. 

This means that fatigue, which can be defined as the development and growth of cracks 

that are a result of repetitive actions and varying loads (Clarke, 2014), is likely to cause 

failure at the deck. Therefore, the SHM of the MacKay Bridge deck is extremely important 

for monitoring its condition. 
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The MacKay Bridge deck is constructed out of a thin steel plate and stiffening ribs. This 

type of deck is classified as an orthotropic deck (Mangus & Sun, 2000). Fatigue is more 

likely to occur in three locations. The first two locations are two of the most common 

fatigue locations for orthotropic decked bridges (Clarke, 2014). These are known as the 

rib-to-deck welded joint (Figure 18a) and the rib-to-floor beam joint (Figure 18b). The 

third location is a result of removing the stiffeners between adjacent ribs (Clarke, 2014), as 

shown in Figure 18c. 

 

Figure 18: Fatigue Locations for the MacKay Bridge: (a) rib-to-deck joint, (b) rib-to-floor beam joint, (c) 
former stiffener between adjacent stiffening ribs (Clarke, 2014) 

As a result of data availability, this study only considers the first type of failure location. 

This type of location will be referred to as Type A, which corresponds to the Type A 

locations in Clarke (2014). 

4.3.2 Laboratory vs. Field Data 

During the 2010 project, two types of data were collected. First, laboratory data was 

collected from fatigue testing, then, field data from the SHM system on the MacKay Bridge. 

As part of the project, panels from the MacKay Bridge deck were removed and replaced. 

The 29 specimens, removed in 2010, were brought to the DAL laboratory for fatigue testing 

(Clarke, 2014). In fatigue testing (Clarke, 2014), a load is placed on the specimen to cause 

stress and the observed strain value is collected until the specimen fails. A total of 10 Type 

A specimens were tested in the laboratory. In the initial testing, one specimen was not 

tested and four specimens did not fail, while the remaining five specimens ran to failure. 

The four surviving specimens and the untested specimen were retested at a later time. At 

the end of the testing, all ten specimens had been observed until failure. 
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The laboratory data is used to train the three models, the LAD, the PHM, and the ANNs. 

Laboratory data that is received from this project is incomplete (insufficient data for sample 

A1 and A7). Therefore, only 8 Type A specimens are used in this thesis. Table 17 shows 

the number of cycles and available data from the laboratory-tested specimens. 

Table 17: MacKay Bridge Laboratory Data Summary 

ID Load (kN) Retest 
Reported 

Cycles 

Gathered 

Cycles 

Average 

Strain 

Compressed 

Cycles (9400) 

A1 79  145,761 --- --- --- 

A5 83  120,677 120,906 1566.19 13 

A7 74  146,472 128,512 --- --- 

A8 77  90,211 90,136 1522.38 10 

A6 52 (63) Y 2,019,221 1,764,352 
1052.37 

(1081.70) 
189 

A2 57 (73) Y 1,815,820 1,815,853 
938.75 

(1282.11) 
194 

A3 41  682,160 725,868 865.73 78 

A11 45 (55) Y 3,585,617 2,003,336 
1078.26 

(1147.84) 
214 

A21 25 (29) Y 7,631,929 6,317,027 
1071.98 

(1108.82) 
673 

A27 34 Y 1,669,980 733,197 784.57 78 

 

In the second phase of the project (Clarke, 2014), A SHM system was installed on the 

MacKay Bridge deck to collect real-time data. A section of the bridge was outfitted with 

82 strain gauges, 16 of which monitored Type A fatigue locations. Gauges were installed 

in pairs, with one on each side of the location detail. Type A gauges were installed at the 

locations shown in Figure 19 (Clarke, 2014).  

 

Figure 19: Gauge Positions for Type A Fatigue Locations (Clarke, 2014) 
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In 2012, several calibration and parameter estimation experiments were completed to set 

up data collection from the field. In January 2013, the SHM system started data collection 

for a 12 month period. It is important to note that the field data is collected for the year 

2013, three years after the laboratory data is collected in 2010. Therefore, traffic 

adjustments are made to account for this three year difference before it is used.  

Field data is collected using a standard Campbell Scientific Rainflow Counting Program 

(CampbellScientific, 2012). The program sorts and counts strain values into bins based on 

its mean and amplitude to produce an output called the Rainflow Histogram. First, strain 

data is reduced to a series of peaks and valleys. Then, half cycles of strain are defined and 

sorted based on its mean and amplitude. A histogram is created using the half cycle counts 

of strain falling into specific mean and amplitude ranges. An example of the Rainflow 

output of the SHM system is shown in Figure 20. In the figure, the mean (z-axis) and the 

amplitude (x-axis) defines the different bins in the Rainflow Histogram. As strain values 

are measured from the traffic, the number of cycles within each bin (y-axis) are counted 

into the columns, identified by different colors according to the mean bin number. 

 

Figure 20: Sample Rainflow Histogram Output for MacKay Bridge Field Data (Clarke, 2014) 

Hourly histograms were collected for each Type A channel. All Rainflow histograms have 

10 mean bins and 40 amplitude bins for defining the strain cycle value. Data from these 

histograms, already processed with outlier detection and noise filtering (Clarke, 2014), is 
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made available for analysis. This field data is used for prognostics predictions after the 

models are trained. Three Type A gauges are excluded from this thesis because of 

abnormalities in cycle counts and in the data distribution. The number of cycles collected 

from the field is shown in Table 18. 

Table 18: MacKay Bridge Field Data Summary 

Channel Total cycles Channel Total cycles 

1 833725 9 242833 

2 326087 10 68544 

3 93337 11 10160 

4 1334456 12 1583 

5 96952 13 852868 

6 40606 14 1700825 

7 84867 15 407 

8 618611 16 1180844 

 

4.3.3 Experimental Analysis 

The differences between the laboratory data formats and the field data formats raises an 

obstacle with regards to the data inputs. Since, new data values must have the same input 

as the training dataset in order for the model to apply it for prediction, the data formats had 

to be the same. The laboratory data is in actual strain values while the field data is in a 

Rainflow histogram (as explained in Section 4.3.2). Using the same bins that is used to sort 

the field data, the laboratory data is converted into a Rainflow histogram. The converted 

data for one specimen is shown in Figure 21. It is seen, however, that the histogram shows 

counts only in one or two bins. The other laboratory specimens also show similar 

distributions. In the laboratory data, one or two bins dominate the values of the strain 

observed. This is notably different from the field data histogram shown in Figure 20, which 

has counts in a lot more bins and strain variations.  
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Figure 21: Sample Data of Laboratory Data Rainflow Histogram 

These differences are expected because in the field, structures undergo variable amplitude 

loading rather than the constant amplitude loading that is observed in the laboratory 

environment. Based on these results, this format conversion method option is disregarded. 

Instead, another method to summarize the strain, as explained below, is investigated. 

Since varying loads can occur in the field, some strain cycles can cause more damage than 

others. In literature, this difference in damage is commonly accounted for using Palmgren-

Miner’s rule (Miner’s rule) (Miner, 1945; Palmgren, 1924). Miner’s rule relates the number 

of cycles under various stress ranges in a linear function described by Equation 23: 

𝐷 =  ∑
𝑛𝑖

𝑁𝑖

𝑘
𝑖=0   (23) 

Where Ni is the expected failure age under stress range i, ni is the number of observed 

cycles under stress range i, and k is the number of different stress ranges that the equipment 

has undergone. However, a lack of knowledge on the unknown parameters made this rule 

hard to apply. 

As an alternative, this thesis experiments with several types of strain-summarizing inputs 

for accumulating damage. These inputs include various combinations of these measures: 

age in cycles, instantaneous strain (measured), average strain, cumulative strain, maximum 

strain, minimum strain, standard deviation of the strain, and cumulative instantaneous 

strain. To determine the combination of metrics that will produce the most accurate residual 

life predictions overall, an experiment is completed using three standard ANN architectures: 

the single-layer feedforward ANN (FF), the single-delay feedback ANN (FB1), and the 

Number of 
Cycles 

Amplitude Bin 

Mean Bin 

Mean Bin: 
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two-delay feedback ANN (FB2). In the experiment, 10 model instances (or trials) are 

trained for each of the standard ANN architectures. The training, validation, and testing 

subsets used in training are randomly partitioned. The best overall performance between 

the different inputs and different architectures is determined by the average mean-squared 

error (MSE) over the 10 trials. 

The results from experimenting with the inputs are displayed in Table 19. The overall best 

performing input is the cumulative strain input in the single-delay feedback ANN, which 

obtained a MSE value of 4.85E+08. However, the best average results (average MSE = 

1.24E+10) over all three models is the input consisting of the average strain and the age. 

This combination of inputs is used as the input for the bridge models because it performs 

well in the most cases. 

Table 19: Inputs Experiment Results 

Combinations of Inputs Average Mean Squared Error (over 10 trials) 

 FF FB1 FB2 

Actual and Age 4.67E+10 7.72E+08 8.56E+08 

Actual 1.08E+11 6.22E+08 9.10E+08 

Average 1.19E+11 8.43E+08 6.15E+08 

Average and Age 3.54E+10 6.79E+08 1.03E+09 

Max, Min, Std. Deviation, Average, and Age 5.47E+10 5.95E+08 1.01E+09 

Sum 6.69E+10 1.32E+09 8.71E+08 

Sum and Age 9.51E+10 1.01E+09 1.10E+09 

Cumulative 1.82E+11 4.85E+08 1.42E+09 

Cumulative and Age 1.53E+11 7.60E+08 6.24E+08 

 

As previously mentioned, the traffic during the three years between the laboratory and field 

data collection periods should be considered. To account for past traffic, this work makes 

two assumptions: (1) the number of cycles collected during 2013 is representative of strain 

patterns in all previous years, and (2) the traffic increases by 2% each year (Clarke, 2014). 

Under these two assumptions, the number of traffic cycles observed during 2010-2012 are 

estimated. For example, if the number of cycles collected in period 1 of 2013 is 100, then 

the number of cycles for the first period of 2012 is estimated to be 98, which is 2% less 

than the traffic of 2013. By adding the estimated number of cycles from the previous years 

to the observed number of traffic cycles on the field, the total number of cumulated traffic 
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cycles can be calculated to account for the time difference between the laboratory and field 

data collection periods. The field data that underwent this transformation is traffic-adjusted. 

The methodology in Chapter 3 is applied to the data with average strain and age inputs that 

is traffic-adjusted. Laboratory data is used to train the CBM prognostics approaches. Since 

the residual life of the laboratory data is known, this data is also used to evaluate model 

performance, with results being compared over the metrics presented for the CMAPSS data. 

Afterwards, the trained models are used to predict the residual life of the MacKay Bridge 

based on the field data. 

Using the parameters and levels described in Table 4, an 8-fold cross validation structure, 

and the Matlab script for FFNN design (APPENDIX A), the Taguchi experiment is 

performed to determine the optimal architecture for the FFNN using the bridge data 

(APPENDIX D). The Taguchi experiment for determining an optimal FBNN is not 

completed because the FBNN introduced before requires an initial estimate of the residual 

life before it can accurately perform residual life predictions. In a realistic application, as 

in this case, this estimate is hard to obtain. As a result, the FBNN is not tested on this 

dataset. S/N ratios for the training parameter in the FFNN design are -92.96, -92.01, -96.53, 

and -94.64 for the first, second, third, and fourth levels, respectively. The first, second, 

third, and fourth levels of the number of nodes parameters had S/N ratios of -92.91, -93.84, 

-94.63, and -94.78, respectively. The last parameter, the number of hidden layers, had S/N 

ratios for the first and second levels of -95.97 and -92.11, respectively. These results are 

summarized in Table 20. 

Table 20: S/N Ratios for Optimal FFNN Architecture Taguchi Experiment with MacKay Bridge Data 

Parameter Level 1 Level 2 Level 3 Level 4 

Training -92.96 -92.01 -96.53 -94.65 

Nodes -92.91 -93.84 -94.63 -94.78 

Layers -95.97 -92.11 N/A N/A 

 

A comparison of the S/N ratios between parameters shows that the training algorithm 

parameter has the largest effect on performance just like it is for the CMAPSS dataset. 

Between parameter levels, the S/N ratios reveal that the optimal FFNN architecture (Figure 
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22) for the bridge data has 2 hidden layers, 5 nodes in each hidden layer, and is trained 

with the Levenberg–Marquardt backpropagation algorithm (trainlm, 2016). 

 

Figure 22: Optimal Feedforward ANN Architecture for Bridge Data 

Firstly, the performance of the three models are compared based on error. The statistics 

calculated to compare the error metric is displayed in Table 21. Like with the CMAPSS 

data, LAD and PHM have the least variance, with a standard deviation of 49.03 and 50.36, 

respectively. Unlike the CMAPSS data results, PHM and FFNN have the best performance 

based on the error metric, with the mean (-25.78 and -1.11, respectively) and median  

(-16.46 and 3.24, respectively) closest to zero. Between the three models, LAD has the 

mean and median farthest from zero. 

Table 21: Bridge Error Summary  

 LAD PHM FFNN 

Minimum -4.22 -138.34 -212.30 

25% Percentile 43.24 -60.36 -39.93 

Median 111.84 -16.46 3.24 

75% Percentile 135.54 8.67 34.91 

Maximum 180.15 60.41 110.52 

Mean 98.35 -25.78 -1.11 

Std. Deviation 49.03 50.36 54.01 

Range 184.37 198.75 322.82 
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Comparing the error metric results visually for the bridge data in Figure 23 shows that the 

LAD does indeed perform the worst, with the median farthest from zero. The FFNN’s 

median is very close to zero while PHM’s median leans toward the negative direction. 

Some outliers can be observed for the FFNN. These outliers are in the negative direction, 

and, as discussed before, in some cases have less impact than outliers in the positive 

direction.  

 

Figure 23: Box Plot Comparison of Bridge Errors between the Models  

Statistical testing using the Friedman matched-pair test shows that there is statistical 

difference between these three models (p-value = 0.007). Further investigations into the 

difference uses the Wilcoxon signed rank test. Comparing the LAD to PHM and FFNN 

finds p-values of 0.006 and 0.126, respectively. A comparison of the PHM to FFNN obtains 

a p-value of 0.76. A review of these p-values concludes that the LAD and PHM are 

statistically different from each other.   

A comparison of the model performance on the half-life error metric reveals statistics that 

are exactly the same as that of the error metric results discussed previously. In the bridge 

data, the component with the longest observed lifetime underwent approximately 660 time 
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units, meaning that the half-life for the bridge data is 330 time units. The testing subset, 

which is used for statistical testing, does not have any bridge components that survive up 

to the half-life. In other words, the components all fail before 330 time units. As a results, 

no comparisons can be made based on the half-life error for the bridge data. 

The cost score metric is not considered because the magnitude of the cost for the bridge is 

very big. As a result, the differences between each model’s cost score may not be truly 

indicative of the consequences of predicting failure before or after it actually fails. In 

addition, the failure costs associated with the failure of the bridge will logically dwarf the 

costs of replacement. 

4.3.4 Discussion and Comparison of Results 

After training, the models instances are used in the prediction of MRL for actual working 

components represented by the field data. The best performing models instances for each 

approach predicts the MRLs shown in Table 22 for each of the 13 components monitored 

on the bridge. 

Table 22: Residual Life Predictions of Bridge Field Components 

 Months (9400 Cycles) Years 

Component LAD PHM FFNN LAD PHM FFNN 

C1 259.37 652.57 -69.82 21.61 54.38 -5.82 

C2 176.71 603.18 13.66 14.73 50.27 1.14 

C3 172 563.11 50.49 14.33 46.93 4.21 

C4 104.12 684.58 -56.78 8.68 57.05 -4.73 

C5 171 564.28 49.6 14.25 47.02 4.13 

C6 183 547.76 54.88 15.25 45.65 4.57 

C7 173.5 561.31 50.98 14.46 46.78 4.25 

C8 265.1 634.81 -51 22.09 52.9 -4.25 

C9 193.71 591.53 28.36 16.14 49.29 2.36 

C10 177 556.8 55.13 14.75 46.4 4.59 

C11 176.61 535.1 60.14 14.72 44.59 5.01 

C14 6.5 702.94 -52.85 0.54 58.58 -4.4 

C16 151.37 675.85 -58.41 12.61 56.32 -4.87 

Average 170.00 605.68 5.72 14.17 50.47 0.48 
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These results in Table 22 reveal that the practical application of the LAD and ANN models 

seem to be lacking. For the FFNN, some components are projected to have failed 

approximately four years ago at around 2006. The PHM shows the steadiest predictions. 

This thesis compares these predictions to the results of the original Civil Engineering 

project (Clarke, 2014). In the original project with HBB, a novel approach for assessing 

the MacKay Bridge fatigue reliability is presented by combining laboratory tested stress-

life (S-N) curves, SHM, finite element modeling, and limit state equations (Clarke, 2014). 

S-N curves (CAN/CSA, 2006), which relate a certain stress range to the number of cycles 

in a failure curve, are often used in industry to predict the number of cycles until failure by 

treating all strains as elastic. Limit state equations mathematically represent the threshold 

of predefine limits of satisfactory behaviour in structures. Prognostics results are presented 

in terms of a reliability index, for the years 2012 to 2030. According to various evaluation 

standards, the failure threshold (Clarke, 2014) for this reliability index ranges from 0.5 

(Bowman, 2012) to 1.0 (AASHTO, 2011). If the reliability index falls under this threshold, 

the component or structure is considered to have failed because it has passed the acceptable 

performance limits. After applying this threshold, it is found that Type A components 

should not fail until after 2030 (20 years later). A sample of how prognostics results 

compare between the three models studied in this thesis and the original project is shown 

in Figure 24. Comparisons of the remaining components are included in APPENDIX E. 

The component, whose results are displayed in the Figure 24, is the component with the 

reliability index closest to the failure threshold. In this example, the FFNN has the worst 

prediction and predicts failure occurring at around 2006. LAD predicts failure between 

2010 and 2011 and PHM predicts failure occurring near 2060. 
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Figure 24: Comparison of Prognostics Results for Component C14 (modified from Clarke, 2014) 

There are several possible reasons for this large difference in results. First, the assumptions 

made for considering the time difference between the laboratory and field data may not 

hold true. In this case, the estimated aging during the three years can cause the age 

parameter to be misrepresented for the field components. Second, the training set may not 

be representative of the population’s behaviour. If the training dataset is not representative 

of the population, the model may actually do better or worse depending on the proportion 

of new and old behaviours in the new dataset. The second reason is more likely because of 

the large differences between the strains variations observed in the field data and in the 

laboratory (Figure 20 vs. Figure 21). The LAD and FFNN would, theoretically, be the most 

highly affected because these approaches depend on learning about historical data patterns 

for prediction. If certain behaviours have not been previously observed, these approaches 

will find it hard to make accurate predictions of that behaviour. 

These results mean that the type of training data also plays a large role for the maintenance 

decision maker. If the training data is not representative of the population’s behaviour, 

PHM is the preferred model, because its statistical dependencies and age-based hazard rate 

will make up for deficiencies in the CM data. 
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To summarize the prediction results, the error metric results, and the field-predicted MRLs, 

the following points can be made for the bridge data results: 

 Like the CMAPSS results, the LAD model has the lowest variance. 

 In terms of statistical difference, there is only one instance where the p-value is 

unacceptable. This instance, calculated based on the error metric, showed that the 

LAD and PHM approaches are different. 

 In terms of practical application, the predictions for the field data residual life 

shows a lot of variability between models Compared to the original project (Clarke, 

2014), the FFNN and LAD predicts failure occurring much earlier but the PHM 

predicts failure occurring later. 

  



72 
 

CHAPTER 5 CONCLUSIONS 

In this thesis, the application of two artificial intelligence (AI) approaches and one 

statistical approach to condition-based maintenance (CBM) prognostics is evaluated. 

Logical analysis of data (LAD), artificial neural networks (ANN), and the proportional 

hazards model (PHM) are applied to the Turbofan Engine Degradation Simulation Data 

Set (CMAPSS) and to the MacKay Bridge dataset. 

The following conclusions can be made from the application of the methodology, 

developed in this thesis: 

 Overall the models predict failure after it has already occurred (negative error) 

when the residual life is large and predict failure before it has already occurred 

(positive error) when the residual life is small. In addition, the model errors get 

more accurate as failure is approached. 

 The LAD approach shows comparable performance to the PHM and has the least 

variance. This behaviour is interesting because adjustments to the error can be 

completed to improve prediction accuracy more easily than any other model. 

 The PHM, as it compares to the other three models studied in this thesis, has the 

most stable behaviour. In most cases, its variance and performance is very good. In 

addition, in cases where there is not enough representative training data, PHM still 

performs well. 

 The FFNN also shows performance that is comparable to the PHM. In addition, it 

shows slight better performance, as compared to the other three approaches, when 

the residual life decreases and failure approaches. However, this approach has the 

worst performance when the training dataset is not representative of the population. 

 The FBNN has the most variability and is statistically different from the other 

models. There is also a difficulty in applying it practically because of the need to 

have an initial estimate of the residual life. In real-world problems, the residual life 

is often hard to estimate. 

Using these conclusions, the maintenance decision maker can determine a good 

prognostics model for CBM. Results from this thesis can be condensed into three main 
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considerations: accuracy, run time, and data type. When accuracy is a main concern, as in 

the case where impacts of failure are large, LAD and FFNN are preferred models. The 

preferred model changes when run time is considered. If data can be easily collected and 

updating the model is performed often, the ANNs and LAD is preferred.  On the other hand, 

if CM data is not easily collectable and existing data is not representative of the 

population’s behaviour, data type comes into play. In this case, PHM is preferred. 

Based on these observations, two possible research directions are recommended for 

improving the accuracy of the residual life predictions. The first suggested research 

direction is to investigate hybrid artificial intelligence models. One proposal in this 

direction is a LAD-ANN hybrid, in which the LAD method is used to make an initial 

prediction and then the ANN is used to adjust the prediction. The second research direction 

works with adjusting the residuals after the initial model prediction. In this case, special 

interest is placed on working with the LAD’s residuals because the model exhibits the least 

variance between the models under study. This characteristic, as mentioned previously, 

makes the residuals more easily adjustable.  

In addition, this thesis recommends that testing should be performed to confirm the results 

observed from applying the methodology to the MacKay Bridge dataset. This may be 

possible by compiling a non-presentative dataset from the CMAPSS dataset and evaluating 

model performance on the entire CMAPSS dataset. In other words, the question of how the 

models will perform when the training dataset is not representative of the population’s 

behaviour should be answered.  
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APPENDIX A Neural Network Matlab Design Script 
 

A.1 Feedfoward ANN Matlab Design Script 

function [t, p1, p2, p3, p4] = kfoldnnet2(fold, sets, layers, nodes, 

training, Indicators, Survival) 

  
tic 

  
k = fold; 

  
trainP = zeros([1, k]); 
validP = zeros([1, k]); 
testP = zeros([1, k]); 
allR = zeros([1, k]); 

  
% define architecture of neural network 
net = fitnet(nodes, training); 

  
net.numLayers = layers; 

  
for i = 1:layers 
    for j = 1:layers 

    
        if i > 1 
            net.biasConnect(i) = 1; 
            net.layerConnect(i, i-1) = 1; 
        else 
            net.biasConnect(i) = 1; 
            net.layerConnect(i, j) = 0; 
        end 
    end 

     
    if i == layers 
        net.outputConnect(i) = 1; 
        net.layers{i}.transferFcn = 'purelin'; 
    else 
        net.outputConnect(i) = 0; 
        net.layers{i}.size = nodes; 
        net.layers{i}.transferFcn = 'tansig'; 
    end 

     
end 

  
net = configure(net, Indicators, Survival); 

     
for a = 1:k 
% k-fold cross validation 

  
    % create training, validating, testing indices list 
    if a == 1 
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        trInd = find(sets <= k-2).'; 
        valid = find(sets == k-1).'; 
        test = find(sets == k).'; 
    elseif a == 2 
        trInd = find(sets <= k-1 & sets >= a).'; 
        valid = find(sets == k).'; 
        test = find(sets == 1).'; 
    elseif a ==3 
        trInd = find(sets <= k & sets >= a).'; 
        valid = find(sets == 1).'; 
        test = find(sets == 2).'; 
    else 
        trInd1 = find(sets <= k & sets >= a).'; 
        trInd2 = find(sets <= a-3 & sets >= 1).'; 
        trInd = horzcat(trInd1, trInd2); 
        valid = find(sets == a-2).'; 
        test = find(sets == a-1).'; 
    end  

     
    % define network parameters 
    net.divideFcn = 'divideind'; 
    net.divideParam.trainInd = trInd; 
    net.divideParam.valInd = valid; 
    net.divideParam.testInd = test; 

     
    net = init(net); 

     
    % run network 
    [net, tr] = train(net, Indicators, Survival); 
    [r] = regression(Survival, net(Indicators)); 

  

     
    % save performance values for run 
    trainP(a) = tr.best_perf; 
    validP(a) = tr.best_vperf; 
    testP(a) = tr.best_tperf; 
    allR(a) = r; 

    
end 

  
p1 = trainP; 
p2 = validP; 
p3 = testP; 
p4 = allR; 
t = toc; 

 

A.2 Feedback ANN Matlab Design Script 

function [t, p1, p2, p3, p4] = kfoldnnet5(fold, sets, delay, nodes, 

training, Indicators, Survival) 

  
tic 
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k = fold; 

  
trainP = zeros([1, k]); 
validP = zeros([1, k]); 
testP = zeros([1, k]); 
allR = zeros([1, k]); 

  
% define architecture of neural network 
net = narxnet(1:delay, 1:delay, nodes); 

  
% prepare time series data 
[Xs, Xi, Ai, Ts] = preparets(net, Indicators, {}, Survival); 

  
net = configure(net, Xs, Ts); 

     
for a = 1:k 
% k-fold cross validation 

  
    % create training, validating, testing indices list 
    if a == 1 
        trInd = find(sets <= k-2).'; 
        valid = find(sets == k-1).'; 
        test = find(sets == k).'; 
    elseif a == 2 
        trInd = find(sets <= k-1 & sets >= a).'; 
        valid = find(sets == k).'; 
        test = find(sets == 1).'; 
    elseif a ==3 
        trInd = find(sets <= k & sets >= a).'; 
        valid = find(sets == 1).'; 
        test = find(sets == 2).'; 
    else 
        trInd1 = find(sets <= k & sets >= a).'; 
        trInd2 = find(sets <= a-3 & sets >= 1).'; 
        trInd = horzcat(trInd1, trInd2); 
        valid = find(sets == a-2).'; 
        test = find(sets == a-1).'; 
    end 

     
    for b = 1:delay 
        trInd = trInd(trInd~=b); 
        valid = valid(valid~=b); 
        test = test(test~=b); 
    end 

     
    trInd = trInd - delay; 
    valid = valid - delay; 
    test = test - delay; 

  
    % define network parameters 
    net.divideFcn = 'divideind'; 
    net.divideParam.trainInd = trInd; 
    net.divideParam.valInd = valid; 
    net.divideParam.testInd = test; 
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    net.trainFcn = training; 

     
    net = init(net); 

     
    % run network 
    [net, tr] = train(net, Xs, Ts, Xi, Ai); 
    [r] = regression(Ts, net(Xs, Xi, Ai)); 

     
    % save performance values for run 
    trainP(a) = tr.best_perf; 
    validP(a) = tr.best_vperf; 
    testP(a) = tr.best_tperf; 
    allR(a) = r; 

    
end 

  
p1 = trainP; 
p2 = validP; 
p3 = testP; 
p4 = allR; 
t = toc; 
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APPENDIX B Matlab Training Algorithms 
Four training algorithms are tested for the ANN models. In Matlab code these are: trainlm 

(Levenberg-Marquardt), trainbfg (BFGS Quasi-Newton), traingdx (Variable Learning 

Rate Backpropagation), and trainrp (Resilient Backpropagation). This appendix briefly 

describes these algorithms. 

The Levenberg-Marquardt training algorithm is a supervised backpropagation algorithm 

that Matlab recommends as a first choice supervised training algorithm. To speed up its 

learning rate, this method is designed to approximate the Hessian matrix by interpolating 

between the Gradient Descent Method and Newton’s Method. 

The BFGS Quasi-Newton training algorithm is a supervised training algorithm that can be 

used as an alternative to Newton’s method. Otherwise known as the Broyden-Fletcher-

Goldfarb-Shanno Quasi-Newton algorithm, it is a good substitute for Newton’s method 

when the cost of calculating the Jacobian or Hessian matrix is too expensive. 

The Variable Learning Rate Backpropagation training algorithm, is a backpropagation 

training algorithm which uses the gradient descent momentum and an adaptive learning 

rate methods for updating the network’s weights. The learning rate in the gradient descent 

with momentum equation is adjusted according to the improvements made in the weights 

towards the goal. 

The Resilient Backpropagation training algorithm is suitable for networks which use the 

sigmoid activation functions and a steepest descent algorithm. In some cases, problems 

may arise during training because the gradient will be very small and cause small changes 

in the weights, although the weights are far from optimal. This algorithm tries to eliminate 

these effects caused by the magnitudes of the partial derivatives by basing the weight 

changes not only on the magnitude but also the sign of the partial derivatives. 
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APPENDIX C Model Results 
The following electronic supplement is available at Dalspace. 

C.1 Prognostic Results 

Excel files containing the model outputs and metric calculations are included in this 

appendix for each dataset (CMAPSS and Bridge). In each file, data are divided into 

worksheets for each of the four modeling approaches: Logical Analysis of Data (LAD), 

Proportional Hazards Method (PHM), Feedfoward Neural Network (FFNN), and Feedback 

Neural Network (FBNN). In each worksheet, model outputs and metric calculations are 

included for each of the 10 training trials and for the average case. 

In the case of the Bridge dataset results, the FBNN is not tested and there are no results. In 

addition, additional worksheets are provided with the field prediction results. 

C.2 Metric Performance Results 

Excel files summarizing the performance of the models on each metric are provided in this 

appendix. Worksheets in each file are categorized by the dataset and includes the summary 

and boxplots for that specific metric. Outliers are also identified. 

C.3 Minitab File for Statistical Testing Results 

A Minitab file is provided with the full Friedman matched-pair test and the Wilcoxon 

signed rank test data and results. Each worksheet in the file is for a different dataset.  
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APPENDIX D Neural Network Design Taguchi Results 
The following electronic supplement is available at Dalspace. 

Excel files summarizing the Taguchi design, Taguchi experimental model outputs, and 

signal-to-noise (S/N) ratios are provided in appendix. Files are differentiated by the type 

of neural network and the dataset. Four worksheets are available in each file, showing the 

different data results. The “Taguchi Design” worksheet presents the Taguchi orthogonal 

matrix that is used for the design experiment. The “MSE Results” worksheet has the model 

output results that are used to calculate the S/N ratios used to determine the optimal 

network design. “Other Results” provide other model outputs that can be used for further 

analysis of the model performance. Finally, the “Taguchi Analysis” worksheet presents the 

calculated S/N ratio that is used to determine the optimal levels in the network design 

parameters.  
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APPENDIX E Bridge Field Results Comparison Graphs 
 

 

Figure E-1: Comparison of Prognostics Results for Component C1 (modified from Clarke, 2014) 

 

 

Figure E-2: Comparison of Prognostics Results for Component C2 (modified from Clarke, 2014) 
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Figure E-3: Comparison of Prognostics Results for Component C3 (modified from Clarke, 2014) 

 

 

Figure E-4: Comparison of Prognostics Results for Component C4 (modified from Clarke, 2014) 
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Figure E-5: Comparison of Prognostics Results for Component C5 (modified from Clarke, 2014) 

 

 

Figure E-6: Comparison of Prognostics Results for Component C6 (modified from Clarke, 2014) 
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Figure E-7: Comparison of Prognostics Results for Component C7 (modified from Clarke, 2014) 

 

 

Figure E-8: Comparison of Prognostics Results for Component C8 (modified from Clarke, 2014) 
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Figure E-9: Comparison of Prognostics Results for Component C9 (modified from Clarke, 2014) 

 

 

Figure E-10: Comparison of Prognostics Results for Component C10 (modified from Clarke, 2014) 
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Figure E-11: Comparison of Prognostics Results for Component C11 (modified from Clarke, 2014) 

 

 

Figure E-12: Comparison of Prognostics Results for Component C14 (modified from Clarke, 2014) 
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Figure E-13: Comparison of Prognostics Results for Component C16 (modified from Clarke, 2014) 


