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ABSTRACT 

 

The human microbiome is the collection of bacteria living in and on the human 

body. Several studies have demonstrated that the gut microbiome can alter the 

metabolism of commonly used medications. However, there has yet to be a broad-scope 

analysis to determine the presence and variance of microbial genes with drug 

metabolizing potential. The aim of this study is to survey the drug metabolising potential 

of the human microbiome, particularly in the gut. We examine what drug metabolising 

functions are present in these microbes, and how the abundance of these genes changes 

based on various factors. 

A collection of 225 microbial genes with the potential to metabolize drugs were 

manually curated from the Kyoto Encyclopedia of Genes and Genomes. Two previously 

published and one unpublished study were used to relate these possible microbial drug 

metabolizing genes (MDMGs) in relation to several factors including body site, sex, age, 

frailty and medication use.  

Nearly all MDMGs were found to be present in the human microbiome, with 

large amounts of interpersonal variation. Although there were no significant differences 

based on sex, we identified 146 functions that were different in proportion within the gut 

compared to other body sites, 63 functions that were significantly correlated with an 

individual’s age, 24 functions correlated with frailty index score, and 40 functions that 

had different abundance based on certain medication use.  

The ability of the human microbiome to alter drug metabolism is diverse and 

variable across the population. Several factors have been identified that influence the 

abundance of these functions, but this only represents a small proportion of the observed 

variation. Future studies will test other factors that could alter the drug metabolising 

potential of the gut microbiome, as well as the biological significance of these functions. 

This knowledge could then be incorporated into personalized medicine treatment. 
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CHAPTER 1:  INTRODUCTION 

 

1.1  PERSONALIZED MEDICINE 

 

 The term ‘personalized medicine’ refers to a medical model of tailoring a 

treatment regimen to a patient’s specific need (Bates, 2010). Conceptually, this is an 

appropriate way of treating patients since every individual is different, and it does not 

make sense for everyone to receive the same treatment in every situation. The sequencing 

of the human genome represented a major turning point, advancing personalized 

medicine out of just theoretical possibilities into using an individual’s genetic make up 

for clinical applications such as modified drug treatments and identification of disease 

susceptibility (Burke & Psaty, 2007; J. M. Meyer & Ginsburg, 2002; Venter, 2001). 

 There has been skepticism regarding personalized medicine, in both the biological 

significance it will have as well as our ability to analyse the vast amount of information 

in the human genome (Fernald, Capriotti, Daneshjou, Karczewski, & Altman, 2011; 

Lesko, 2007). Nonetheless, the use of personalized medicine has been crucial in our 

understanding of certain diseases and medical conditions. The identification of mutations 

in the BRCA gene have been linked to certain types of breast and ovarian cancers 

(Olopade, Grushko, Nanda, & Huo, 2008). Several genetic markers have been found 

related to the diagnosis and pathogenesis of Alzheimer’s disease via genome-wide 

association studies (GWAS) (Kim et al., 2014). Further GWAS have found genetic 

relationships to several other diseases such as inflammatory bowel disease (IBD), 

schizophrenia, bipolar disorder, and coronary heart disease (Cardno & Owen, 2014; Chen 

et al., 2014; den Hoed et al., 2015). These studies highlight the fact that as our abilities in 

genetic analysis grow, a deeper understanding of several diseases and conditions on the 

molecular level will be established.  

The term personalized medicine can be expanded beyond just human genome 

markers to include other aspects that make an individual unique. In the case of obesity 

and nutrition, a personalized treatment would not only look at genetics, but take into 
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consideration the dietary patterns of an individual, as well as anthropometry and levels of 

physical activity (Gibney & Walsh, 2013).  

Advances in medical technology also aid in personalized medical treatments. This 

is especially true in complex conditions like Crohn’s disease. The exact cause of this 

disease is unknown, and those suffering from Crohn’s experience a wide and variable 

range of symptoms that may change as the disease progresses (Baumgart & Sandborn, 

2012). In cases such as this, identifying the stage and nature of the disease is crucial for 

effective treatment. Development and improvement of techniques such as 

ultrasonography, computed tomography, and molecular endoscopy allow physicians to 

get a better idea of what aspects of Crohn’s are present in a particular individual 

(Neurath, 2015). From there, a treatment can be prescribed that best fits the patient’s 

current need.  

 Identifying genetic markers and other factors related to disease susceptibility is an 

important aspect of personalized medicine. However, identification of these factors is 

only the first step. In order for this information to be helpful for a patient, an effective 

medical treatment must be initiated, which often requires some type of drug regimen. 

This brings up another broad area of personalized medicine. Drugs are not all ‘one-size-

fits-all’, and our uniqueness may actually change the way our bodies process different 

drugs.  

 

1.2  DRUG METABOLISM 

 

 A compound moving through the human body does so in four major steps: 

absorption, distribution, metabolism and excretion. All steps are essential and 

interconnected, but the step most interesting in the field of personalized medicine is 

metabolism. Drug metabolism is the process by which drugs (or xenobiotics) are 

modified by the body. These modifications often make a compound more hydrophilic, 

making it more readily eliminated from the body, thus preventing potentially toxic 

buildup (Remmer, 1970). Drugs are a critical aspect of modern medicine, and detailed 
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understanding of what is happening to drugs as they move through our bodies is essential 

for the health and wellbeing of the population. 

 Our understanding of drug metabolism starts by taking a step back and examining 

differences based off the route of administration. Major routes include inhalation, 

injection, oral, topical, and sublingual, each with their own pros and cons (Rowland, 

1972). The most common route of administration is oral, as it is convenient and 

production of drugs usually costs less than with other routes. One major issue with oral 

formulation of drugs is their susceptibility to the effect known as ‘first-pass metabolism’ 

(Pond & Tozer, 1984). This is a process by which a drug is metabolised between its site 

of entry into the body, and its target site (or the site at which concentration is measured). 

With oral drugs, the liver is the major site for this first pass effect, but other sites such as 

the gastrointestinal tract also contribute. As a result the bioavailability of oral drugs, the 

proportion reaching systemic circulation, is reduced below 100%. On the other hand, 

drugs administered via intravenous (IV) injections have 100% bioavailability as they are 

injected directly into circulation and show no first-pass effect. First-pass metabolism is 

closely related to drug dose, as a treatment is beneficial only when the intended amount 

of drug is entering the system.   

 As mentioned previously, the liver is crucial organ for drug metabolism. This is 

because the liver contains many diverse enzymes utilized in xenobiotic metabolism 

(Remmer, 1970). These metabolism enzymes are broken up into two main categories, 

phase I and phase II, although some phase III modifications are sometimes included when 

discussing xenobiotic metabolism. In phase I metabolism, a compound is modified via 

oxidation, reduction, or hydrolysis, making the target more hydrophilic and easier to 

excrete. In phase II metabolism, enzymes such as methyltransferase, sulfotransferase, 

acetyltransferase, glucuronosyltransferase, glutathione S-transferase, and acetyl CoA are 

used to further reduce activity and increase water solubility of a xenobiotic compound. 

(Liston, Markowitz, & DeVane, 2001; Sheweita, 2000). Phase III includes modifications 

not present in the other two classes, including beta-glucuronidase, beta-glucosidase, and 

azoreductase (Haiser & Turnbaugh, 2013).  
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 A major family of enzymes involved in phase I metabolism are the cytochrome 

P450s (CYPs). These enzymes are broken down into families, subfamilies and individual 

genes, all of which play different roles in drug metabolism. The primary CYP enzyme in 

humans is CYP3A4, where some studies predict this enzyme metabolizes over half of all 

drugs (Smith, 2009). Interestingly, it has been found that aspects of our diet such as 

grapefruit juice contain active compounds known as furanocoumarins which strongly 

inhibit the CYP3A4 enzyme, leading to increased bioavailability for drugs normally 

metabolized by CYP3A4 (He et al., 1998; Paine et al., 2006). This highlights the fact that 

interactions with the metabolic systems in our bodies must be taken into account, as 

unknowingly altering them may disrupt a medical treatment and result in harm. 

 Other enzymes in the CYP family have important clinical significance. CYP2D6 

and CYP2C9 are abundant enzymes in the liver (Zhou, Liu, & Chowbay, 2009; Zhou, 

Zhou, Yang, & Cai, 2009). What is interesting amount these particular enzymes is the 

amount of polymorphism, the presence of multiple different forms, and gene copy 

number across the population. While many individuals contain the normal number of 

genes for these enzymes, some individuals may lose one or two alleles for a CYP, 

causing them to be classified as poor metabolisers. Along the same line, an individual 

may have a duplication in the gene for one of these CYPs, classifying them as an 

ultrarapid metabolizer. Race is one of the principle factors behind these polymorphisms 

with, for example, 5-14% of Caucasians lacking CYP2D6 activity, and less than 1% of 

Asians classified as poor metabolizers for this enzyme (Zhou, Liu, et al., 2009). This has 

enormous biological consequences. If an individual with an unknown genotype is taking 

a drug metabolized primarily by one of these CYPs the drug could be cleared too quickly 

to have an effect (in the case of an ultrarapid metaboliser), or the drug could build up in 

the system leading to harmful side effects (in the case of a poor metaboliser) (Teh & 

Bertilsson, 2012). These genes illustrate the importance of identifying internal differences 

in drug metabolism functions, and adjusting treatment so the patient receives the intended 

level of drug in their system.  

 These metabolizing enzymes, along with many others, are present to protect the 

body against foreign toxins. However, they also serve as a roadblock for effectively 
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getting a drug, particularly through the oral route, into systemic circulation. The dose of a 

drug must be large enough so that it is not completely metabolized and eliminated before 

causing its desired effect, but no so large that an excessive amount can result in toxicity. 

The ratio of the dose that would cause toxicity over the dose that produces an effect is 

called the therapeutic index (Muller & Milton, 2012). By understanding how a drug is 

metabolized, a dose can be prescribed so that the amount in systemic circulation remains 

within the window of being effective without hitting toxicity. 

In some situations, body’s metabolism enzymes can be used advantageously. This 

is the case for drugs like codeine, where the metabolites of the drug (in this case, 

morphine) are actually more pharmacologically active than the parent form (Haffen et al., 

2000). Drugs in this category are defined as prodrugs. The relationship between prodrugs 

and metabolic polymorphisms is essentially opposite to that of normal drugs. If a prodrug 

is given to a poor metabolizer, the prodrug will not be readily converted to its active 

form, therefore it may not hit effective therapeutic levels. However, a prodrug given to an 

ultrarapid metabolizer would be rapidly converted to its active form, potentially hitting 

toxic levels faster than a normal metabolizer taking the same dose.  

 The circulation systems adds an increased layer of complexity to drug 

metabolism. The liver’s main role in drug metabolism is to modify drugs for elimination. 

However, in a process known as enterohepatic circulation, certain drugs may be moved 

from the liver to the bile, deposited in the intestine, and then transported back to the liver 

instead of being excreted (M. S. Roberts, Magnusson, Burczynski, & Weiss, 2002). As a 

result, these drugs may have a longer duration of action, increased pharmacological 

effect, or result in toxicity especially in the liver.    

Taking a broader look, several factors are connected to the process of drug 

metabolism in the body. Lifestyle factors such as diet were previously mentioned to 

impact drug metabolism, but several other physiological factors are also important. In 

elderly individuals, physiological functions begin to deteriorate resulting in the inability 

to clear drugs as effectively. This could be tied to a reduction of functioning liver cells, 

decreased cardiovascular function and therefore a lower circulation rate of compounds 

through the body, or even decrease in nephrons in the kidney impacting the clearance of 
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xenobiotics. As a result a lower dosage is often needed to avoid toxicity (Turnheim, 

2004). The same is true for patients with diseases effecting the liver or blood flow, as the 

rate of drug metabolism clearance will be reduced which may result in increasing 

concentrations of an un-metabolized drug (Thomson, 1973). Obesity has been linked to 

direct changes in enzyme activity, as well as changes in hepatic and renal function that 

could alter the metabolism and elimination of a drug (Hanley, Abernethy, & Greenblatt, 

2010). Taking all of these factors into consideration is essential in providing proper 

medical treatment that suits an individual’s unique situation.  

 

1.3  MICROBES 

 

 Breaking down xenobiotics is not an ability unique to humans. In fact, these 

functions were around long before humans ever evolved on this planet. In the infancy of 

Earth when life was just emerging, there exists microbes. These tiny creatures have spent 

the last 3 billion years learning how to survive and spread across the planet to countless 

niches (Visscher et al., 2000). Although the vast majority of these organisms are not 

visible with the naked eye, it has been estimated that collectively, the biomass of all 

microbes is larger than that of plants and animals combined (Hogan, 2011). The term 

‘microbes’ encompasses many things, including archaea, bacteria, eukaryota, and in some 

sense viruses. However, within this thesis I will be using the term microbe primarily in 

reference to the domain of bacteria unless otherwise stated.  

 These microbes are tiny, but they are also extraordinarily complex. Like humans, 

their genetic information is encoded into DNA, and that DNA is used for their 

development and to carry out various functions. When humans reproduce, their progeny 

in most cases gets 23 chromosomes of DNA from each parent. Alternatively microbes 

often undergo a process called binary fission, where a parent cell replicates its DNA and 

splits into two daughter cells (although other reproductive methods are known) (Angert, 

2005). Some of the tools microbes have to process their DNA are remarkably similar to 

humans. For example, the ribosome, a cellular organelle responsible for protein synthesis, 

is found in both humans and microbes. In both groups, the ribosome acts in very similar 
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fashion; reading mRNA and using that information to join together amino acids. On the 

other hand, the different subunits of the ribosome are slightly different between humans 

and microbes. In the small subunit of a human ribosome there is the 18S rRNA (the S 

standing for Svedberg units, a type of ‘size’ measurement), whereas the equivalent match 

in bacteria and archaea the small subunit is 16S rRNA (Janda & Abbott, 2007). 

 In certain situations, microbes appear to be even more complex than humans. One 

such example of this is the operon. In human’s, every gene is regulated by its own 

promotor and terminator. However, many microbes make use of an operon, a cluster of 

genes regulated by a single promotor (Blumenthal, 2004). There is an obvious functional 

benefit to this type of organization. If one particular pathway requires several different 

proteins, it would make sense to produce all those proteins at the same time in one 

‘assembly line’ rather than having multiple different processing centers for each required 

piece.  

 Microbes are also more complex than humans in the way their genes are inherited. 

Outside of gene therapy and viral infections, every human acquires all of their DNA from 

their parents (Flotte & Carter, 1995). This straightforward path is why it is so easy to use 

DNA in order to trace family trees. Additionally, this means that, in general, humans will 

have many features and functions similar to their parents. Microbes on the other hand, are 

able to undergo a process called lateral gene transfer (LGT). In addition to getting DNA 

from the division of their ‘parent’ cell, microbes are able to take in genes from other 

microbes (Ochman, Lawrence, & Groisman, 2000). The consequences of this process are 

significant, as depending on what genes are transferred, a microbe could have many 

functional capabilities their parent did not possess leading to an adaptive advantage. For 

example, LGT of particular genes are known to allow microbes to gain resistance to 

particular antibiotics (Stokes & Gillings, 2011). Bacteria with this newly acquired 

function would survive and be selected for in an environment with antibiotics, whereas 

other cells with identical DNA except the portion that was transferred would not survive. 

Gene transfer is an incredible adaptive advantage as it does not require microbes to wait a 

generation to acquire different DNA, and critical functions may be able to quickly spread 

to an entire microbial population.  



8 

 

 Microbes have an enormous array of functions they can use for their own benefit, 

as well as inadvertently benefitting every other organism on this planet. Over three billion 

years ago in the early years of life on planet Earth, microbes were responsible for a 

crucial processes called nitrogen fixation, where normally unreactive nitrogen in the 

atmosphere (N2) was converted to ammonia (NH3) (Dixon & Kahn, 2004). This allowed 

nitrogen to be available for other organism, and since it is an essential compound for 

building DNA and proteins, many living organisms would never have existed if it weren’t 

for these microbes. Microbes are able to break down previously-living plants and 

animals, utilizing some dissolved organic matter for themselves, but also releasing carbon 

compounds back into the environment (Amon & Benner, 1996). They are able to degrade 

compounds that are often viewed as harmful to the environment such as plastics and oils 

(Leahy & Colwell, 1990; Mergaert, Webb, Anderson, Wouters, & Swings, 1993). Other 

environmental threats, such as aromatic pollutants, are not safe from microbes. Due to the 

speed of adaptation, many microbes are able to acquire genes allowing them to break 

down these toxins and use them for sustenance (Díaz, 2004). It has also been found that 

microbes are able to break down other human-made compounds such as therapeutic drugs 

(Goldman, 1978).  

 These microbes and their corresponding functions make them a valuable tool for 

human utilization. Microbes with specific genes can be enriched in areas of 

environmental concern to harness their ability to degrade toxins as mentioned above. In 

addition, microbes have been used in sewage treatment to break down particular 

compounds such as ammonia (Wagner, Rath, Koops, Flood, & Amann, 1996), while 

nitrogen fixation by microbes is often used to increase production of agriculture by 

providing valuable nitrogen to growing plants (Kahindi et al., 1997). Manipulation of 

microbe metabolism has been conducted using microbes in order to produce ethanol fuel 

(Ingram et al., 1999). Microbes also play a fundamental role in the fermentation process 

for various foods such as bread, cheese, wine, and beer (Hutkins, 2006).  

 In addition to the diverse range of functions, microbes have a variable range of 

habitats.  In the soil, and in the ocean, billions of microbes can be found breaking down 

compounds and using them as nutrients (Hellweger, van Sebille, & Fredrick, 2014; Van 
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Der Heijden et al., 2006). They can also be found in the sky, being carried by the winds 

or in clouds and may even influence weather patterns (DeLeon-Rodriguez et al., 2013). 

Many microbes can stick closely together to form biofilms (Donlan, 2002). In some 

situations, a microbe can be found in very low numbers, but suddenly explode in 

population size after the right trigger (Shade et al., 2014). This implies that even rare 

microbial species might be capable of producing dynamic effects under the correct 

conditions. 

 Many microbes are known as extremophiles, meaning they live in extreme 

conditions. They can be found on hydrothermal vents in the ocean, or even in the 

Marianas Trench (Emerson & Moyer, 2002; Takami, Inoue, Fuji, & Horikoshi, 1997). 

They can be found growing on rocks, in hot springs, and in tar lakes (Bott & Brock, 

1969; Kim & Crowley, 2007; Walker & Pace, 2007). Some microbes can even survive on 

radioactive waste (Makarova et al., 2001). In these situations, unique genes allow 

microbes to survive and proliferate in these exotic environments. 

 In addition to environmental factors, community collaboration also play a role in 

where bacteria can survive. In some situations there exists see commensal relationships, 

where microbes live in an environment with the assistance of other organisms, without 

(normally) causing harm (Tlaskalová-Hogenová et al., 2004). In other situations 

symbiosis occurs, where one species of microbes is benefiting from, but also assisting 

another microbe or organism (Van Der Heijden et al., 2006). These relationships indicate 

that when studying microbial behavior, looking at one species at a time may not be 

sufficient. Instead, collections of microbes should be as a functional community and their 

capabilities should be assessed as a whole.  

 There have been hundreds of studies performed, characterizing the microbes in 

the environments listed. The functions of these microbes are closely linked to the location 

they are found in, and studying these microbes often provides new information about 

their habitat. However, one particular ecosystem that microbes have settled in is quickly 

rising to the forefront of human health research.  
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 1.4  THE MICROBIOME 

 

 Microbes are found throughout the world in all different biomes, which are 

usually large areas classified based on geography and climate. Microbes also have the 

capability to make their homes in a much less stationary habitat; inside living organisms 

(NIH HMP Working Group et al., 2009). The collection of microbial cells living inside 

an organism is known as the organism’s microbiome. The term microbiome may also be 

used to reference all the genomes present in the microbes living in a host. Some older 

estimates put the number of microbial cells an order of magnitude higher than the number 

of cells in their host, but now that ratio is predicted to be closer to 1:1 (Savage, 1977; 

Sender, Fuchs, & Milo, 2016). In addition to the vast number of microbial cells, the total 

number of genes found in the microbiome is extensive. This work is currently ongoing, 

but some large-scale studies have characterized over three million unique genes in the 

human microbiome (Qin et al., 2010), a stark contrast to the approximately 23 thousand 

genes within the entire human genome. Analogous to microbes living in large ecosystems 

like the ocean or in soils, the microbes living within organisms carry out many different 

functions that can have immense impacts on their hosts.  

 Based on the majority of previous research in infectious diseases, microbes 

residing in and on the human body have been given negative connotations. However, the 

microbes inhabiting living organisms are, for the most part, non-harmful (Martin J. 

Blaser, 2014). In fact, the microbiome is critical for the daily functioning of many 

species. In animals with rumen such as cows and sheep, microbes are able to break down 

large plant fibre such as cellulose, providing nutrients to the animal (Weimer, 1992). In a 

similar sense, termites are able to beneficially consume wood because microbes inside of 

them break down the cellulose and the termite utilizes the end products (Ikeda-Ohtsubo 

& Brune, 2009). In some insects such as aphids, particular microbes seem to have co-

evolved with their host. These endosymbionts provide essential nutrients that the aphids 

have stopped consuming from their diets (Baumann, Moran, & Baumann, 1997).  

 The microbiome is also essential in humans. It has been termed the ‘forgotten 

organ’ due to its importance in our health and development (O’Hara & Shanahan, 2006). 
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The species of microbes that make up our microbiome is unique from person to person 

(M. J. Blaser, 2010).  It was initially thought that microbes first colonized human bodies 

as babies exited their mother womb, but some evidence suggests that placental microbes 

may begin this process even earlier (Aagaard et al., 2014). Microbes then proceed to 

cover most of our bodies, including our skin, armpits, mouths, groins, lungs and most 

abundantly throughout our gastrointestinal tract. Comparable to microbes inhabiting 

different ecosystems, the microbes found in different parts of our bodies have some 

unique and distinct functions. (The Human Microbiome Project Consortium, 2012).  

In early years, the microbiome is chaotic and changing, but during adulthood, it 

becomes relatively stable (Faith et al., 2013; Koenig et al., 2011). Over longer time 

periods, there is evidence of noticeable shifts in the microbiome (Yatsunenko et al., 

2012). In addition to age, frailty may also be important in the composition of the 

microbiome (M. G. Langille et al., 2014). One major factor that alters the microbiome is 

diet (David et al., 2013). Use of antibiotics can wipe out many of the microbes living in 

our bodies, causing drastic shifts in microbial composition (Francino, 2016). Other drugs 

have been shown to alter the microbiome such as proton pump inhibitors, but this is more 

subtle shift in composition rather than an elimination of microbes that occurs with 

antibiotics (Zhernakova et al., 2016). 

Human health relies on our microbiome. The microbes in the gut break down 

foods that are indigestible by our own systems (D’Argenio & Salvatore, 2015). Humans 

are unable to make certain essential vitamins on our own. These vitamins can be taken in 

through our diets, but the microbes in our gut are capable of synthesizing many of these 

vitamins for us (LeBlanc et al., 2013). This is particularly important in cases like vitamin 

K2, where we rely strongly on our microbiome to produce this compound to avoid 

deficiency (Conly & Stein, 1992). The microbiome may impact physiological factors 

such as blood pressure (Holmes et al., 2008), and the gut microbiome may play a role in 

influencing and regulating the brain and nervous system (Carabotti, Scirocco, Maselli, & 

Severi, 2015).  

The immune system is closely linked to the human microbiome. The role of the 

immune system is to prohibit invading pathogens. During development the immune 
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system must learn to recognize and distinguish between the beneficial or non-harmful 

bacteria inhabiting the human body, and potentially dangerous pathogens trying to attack 

it. The gut microbiome does not just sit idly by. It actively mediates and assists our 

immune system in fighting off unwanted microbes (Round & Mazmanian, 2009). 

Dysregulation of this cooperation may cause severe problems due to the immune system 

not functioning properly. 

The microbiome has been linked to several diseases. Diseases such as asthma, 

diabetes, and particular cardiovascular diseases have all been associated with the human 

microbiome (M. J. Blaser, Chen, & Reibman, 2008; Qin et al., 2010; Wang et al., 2011). 

Other conditions appear to have much stronger connections to ‘dysbiosis’ or irregularity 

in the microbiome. 

Microbes in the gut have been strongly linked to inflammatory bowel disease 

(IBD). There are many different types of IBD with Crohn’s disease and ulcerative colitis 

being the two principle diseases, each with slightly different symptoms (Gophna, 

Sommerfeld, Gophna, Doolittle, & Veldhuyzen van Zanten, 2006). In most cases of IBD 

there is dysbiosis in the microbiome, reduced diversity of microbes present, and an 

unhealthy response by the immune system to the gut microbes (Aleksandar D Kostic, 

Xavier, & Gevers, 2014). Since there appears to be an improper balance between the 

microbiome and the immune system, it has been speculated that the use of probiotics 

containing ‘beneficial’ microbes may be able to restore the microbiome to a state more 

similar to non-IBD patients (Jonkers, Penders, Masclee, & Pierik, 2012).  

Obesity is a major health concern, especially in North America. Studies have 

shown that particular microbes are reduced in obese individuals (Ley, Turnbaugh, Klein, 

& Gordon, 2006). Additionally, particular functions of the gut microbiome appear to be 

responsible for translating the consumption of a ‘Western’ diet into increased levels of 

obesity (Bäckhed, Manchester, Semenkovich, & Gordon, 2007). Evidence from mouse 

models supports the connection between the gut microbiome and obesity, as researcher 

have demonstrated that transferring a microbiome associated with obesity to a mouse will 

result in increased fat gain compared to a non-obesity associated microbiome (Turnbaugh 

et al., 2006).  
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Many studies above highlight how the microbiome (or disruptions in it) can be 

linked to several disease conditions. Another side to this story is how the microbiome 

may play a role in recovery from unhealthy states. This is especially true when it comes 

to therapeutic drug treatment in patients.   

Drug metabolism is influenced by the microbiome. This is not a new idea, as even 

in the 1970’s researchers began noticing that the reactions performed by the microbes 

found in our gut could modify and break down drugs (Goldin, Peppercorn, & Goldman, 

1973). For several decades this area was not explored in greater detail, presumably due to 

the complexity and variety of the microbiome. More recently, advancements in our 

sequencing technology and our computing power have allowed us to analyse the 

microbiome in a much more effective way than what was done 40 years ago. As a result, 

massive databases have been established such as the Human Microbiome Project (HMP) 

and the MetaHIT project, in order to try and catalogue all genes found in the human 

microbiome (Qin et al., 2010; The Human Microbiome Project Consortium, 2012). With 

this information, the field of pharmacomicrobiomics, or microbiome-drug interactions, is 

growing quickly and in the near future will likely play a large role in therapeutic 

treatment and personalized medicine (ElRakaiby et al., 2014).  

  

1.5  PHARMACOLOGICAL IMPACT OF THE MICROBIOME  

 

As previously outlined, one significant function of the human microbiome in 

regards to health is its ability to modify drugs. The microbes, mainly in our gut, may be 

modifying drugs so they are no longer as effective or potentially causing them to be toxic. 

Additionally, some drugs may actually rely on the microbiome for activity in humans. It 

is becoming increasingly clear that inclusion of the gut microbiome is a necessary 

component of studying drug metabolism in individuals (Nicholson, Holmes, & Wilson, 

2005). This section outlines several microbiome-drug interactions. 
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1.5.1  DIRECT MODIFICATION BY THE MICROBIOME 

 

This section provides evidence of the microbiome directly modifying drugs or 

particular compounds.  

 

1.5.1.1 DIGOXIN 

 

 Digoxin is a cardiac glycoside that is extracted and purified from the plant 

Digitalis lanata. Digoxin works by inhibition of the Na/K-ATPase membrane pump, 

leading to increased intracellular levels of calcium and activation of contractile proteins 

(Haiser, Seim, Balskus, & Turnbaugh, 2014). Its use dates back to the 18th century, and 

although it is no longer a front-line drug, it may still be used to treat irregular heart beat 

as well as heart failure when these symptoms cannot be managed with other medication 

(Gheorghiade, 2006). One of the major issues concerning Digoxin is its narrow 

therapeutic window. Although Digoxin is dangerous when serum levels are above the 

therapeutic window, this case study arose from situations where Digoxin was actually 

below its therapeutic window. 

 Researchers studying Digoxin found that in about 10% of patients, the level of the 

drug in the body was greatly reduced (Lindenbaum, Rund, Butler, Tse-Eng, & Saha, 

1981). Additionally, an inactive metabolite was found in this subset of patients that was 

not found in the others. When these researchers treated some of these patients 

experiencing reduced Digoxin levels with antibiotics, the inactive metabolite was greatly 

reduced or eliminated, and serum concentration of Digoxin rose, in some cases as high as 

double the Digoxin levels before antibiotics. Lindenbaum et al. concluded that it must be 

the gut microbes responsible for Digoxin metabolism. 

 Three decades later, researchers took another look into Digoxin in order to try and 

illustrate some of the mechanisms of action behind drug metabolism in the gut bacteria 

(Haiser et al., 2013). They were able to identify that one particular bacteria, Eggerthella 

lenta, was responsible for reducing the drug to its inactive metabolite. This bacteria was 
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successfully grown in culture, and it was found that in the presence of Digoxin, a newly 

discovered operon containing two genes was substantially upregulated. These two genes 

were named cardiac glycoside reductase (cgr) 1 and 2, and it was found that these genes 

respond to a broad range of cardiac glycosides, not only Digoxin. Finally, Haiser et al. 

also determined that an arginine-rich diet suppressed the cgr genes and therefore 

decreased the extent Digoxin was reduced, further highlighting the importance of diet on 

the composition and function of the gut microbiome. 

 

1.5.1.2 L-DOPA 

 

 Parkinson’s disease is a neurodegenerative disorder affecting over 50 million 

people worldwide and responsible for over 100 000 deaths annually (Global Burden of 

Disease Study 2013 Collaborators, 2015). Currently, the most effective and well tolerated 

drug for treating Parkinson’s disease is L-DOPA (Vlaar, Hovestadt, van Laar, & Bloem, 

2011). L-DOPA is orally administered, and it works by entering the body, crosses the 

blood brain barrier, and is converted to dopamine (Goole & Amighi, 2009). The increase 

of dopamine in the central nervous system relieves some of the symptoms of Parkinson’s 

disease in these patients.  

 The crucial part of L-DOPA treatment is getting an acceptable level of dopamine 

in the brain, without increasing it to the point of causing schizophrenic symptoms 

(Swerdlow & Koob, 1987). As a result, doses of L-DOPA are kept relatively low to 

prevent these side effects. Unfortunately, an even smaller amount of L-DOPA might be 

crossing the blood brain barrier than initially expected. Researchers found that L-DOPA 

was metabolized when incubated with rat feces (Goldin et al., 1973). Therefore, it could 

be hypothesized that the gut microbiome could be capable of metabolizing L-DOPA 

before it can cross the blood-brain barrier, therefore reducing the amount of converted 

dopamine, and hindering the effectiveness of L-DOPA treatment.  
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1.5.1.3 AZO COMPOUNDS 

 

 Sulfasalazine is a prodrug used to treat arthritis and IBD (Sousa et al., 2008). The 

anti-inflammatory portion of the prodrug, 5-ASA, is linked to a sulfapyridine molecule 

by an azo bond. Researchers observed the two separated sulfasalazine metabolites in the 

feces of rats and when examining antibiotic-treated or germ-free rats, only the unchanged 

version of the drug remained (Peppercorn & Goldman, 1972). They concluded that 

azoreductases in the gut microbiome were responsible for reducing sulfasalazine. This 

finding was leveraged to ultimately create a prodrug called olsalazine, consisting of two 

5-ASA molecules connected via azo bond (Wadworth & Fitton, 1991). This allowed the 

prodrug to be delivered to the gut, activated locally at the site of inflammation via 

microbial azoreductase, and avoided the side effects associated with the sulfapyridine 

portion of sulfasalazine.  

Unfortunately, this azoreductase activity can also be harmful. Azo dyes are used 

for their vivid colours, but can enter the body by ingestion in inhalation. Researchers 

found that the gut microbiome was responsible for reducing these azo dyes into toxic 

aromatic amines (Xu, Heinze, Chen, Cerniglia, & Chen, 2007).  

 

1.5.1.4 BERBERINE 

 

 Berberine (BBR) is a drug used to effectively treat high cholesterol by increasing 

low-density lipoprotein receptor expression levels (Kong et al., 2004). Initially, its 

mechanism of absorption was unknown as it was found to have poor solubility. 

Researchers found that incubation BBR in vitro with several different bacteria resulted in 

the production of an absorbable metabolite, dhBBR (Feng et al., 2015). From this finding, 

they suggested that the gut microbiota could be converting BBR to dhBBR in the 

intestine, allowing it to be absorbed by the body and then converted back to BBR in the 

blood and tissue. Further experiments using mice treated with BBR help support this 

claim. Mice given antibiotics showed a decrease in the conversion of BBR to dhBBR, as 
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well as a reduction of BBR in the blood stream compared to the control group not on 

antibiotics (Feng et al., 2015).  

 

1.5.1.5 LEVAMISOLE 

 

 Levamisole is a now withdrawn drug that was previously used to treat parasitic 

worm infections as well as colon cancer (Dillman, 2011; Keiser & Utzinger, 2008). 

Several thiazole ring-opened metabolites were detected in the feces of patients on 

levamisole (Shu, Kingston, Van Tassell, & Wilkins, 1991). Through culturing 

experiments, Shu et al. demonstrated several bacteria found in the human gut were shown 

to have this ring-opening capability. Additionally, mixtures of bacterial strains were more 

effective at metabolising levamisole than any one strain in isolation.  

 

1.5.1.6 SORIVUDINE 

 

 Sorivudine is an antiviral drug potent at treating infections by varicella-zoster 

virus and herpes simplex virus type 1. Drug-drug interactions are a concern when using 

sorivudine due to the metabolite of the drug, (E)-5-(2-bromovinyl)uracil (BVU). BVU 

has been shown to inhibit the breakdown of particular anticancer drugs such as 5-

fluorouracil, resulting in accumulation and toxicity (Nakayama et al., 1997).  

 Nakayama et al. were interested in the conversion of sorivudine to BVU, as 

studies in rats showed very little enzymatic metabolism of this drug, even in the liver. 

They suspected the gut microbes were responsible, and measured phosphorolytic 

enzymes (the enzymes behind sorivudine metabolism) in several gut bacteria strains. It 

was discovered that many anaerobic strains had high levels of these enzymes. To 

strengthen their findings, they compared sorivudine metabolism in rats on general 

antibiotics versus rats on selective aerobic antibiotics. Rats given general antibiotics had 

reduced levels of BVU in their serum compared to untreated controls. On the other hand, 
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rats on aerobic antibiotics had an increase in BVU relative to the controls, highlighting 

that select anaerobic bacteria were metabolizing sorivudine into BVU (Nakayama et al., 

1997).   

 

1.5.1.7 CHOLINE 

 

 Choline is a nutrient that is essential for many functions in the human body 

(Zeisel & da Costa, 2009). Choline is ingested through normal diet, and it is also 

available as a supplement (Ueland, 2011). Unfortunately, high levels of choline is a risk 

factor for cardiovascular complications, especially atherosclerosis or the accumulation of 

plaques on the walls of arteries. Researchers discovered that gut microbes were capable 

of converting this dietary choline into trimethyl amine (TMA) via microbial TMA lyase 

(Wang et al., 2015). TMA is converted in the body to trimethylamine-N-oxide (TMAO), 

which is a compound strongly associated with cardiovascular events (Tang et al., 2013).  

 Researchers then wanted to decrease the risk of cardiovascular events caused by 

dietary choline without using antibiotics to wipe out the gut microbiota. Instead, their 

goal was non-lethal inhibition of these gut microbial enzymes. They discovered that a 

compound, 3,3-dimethyl-1-butanol (DMB), was able to inhibit TMA formation via 

microbial TMA lyase (Wang et al., 2015). This resulted in decreased TMA and TMAO 

production and was able to counter the increased risk of atherosclerosis in a choline-rich 

diet.  

 

1.5.1.8 EQUOL 

 

 Another dietary compound of interest associated with the microbiome is equol. 

This compound is derived from the isoflavonoids in soy, and it has been linked to several 

health benefits such as prevention of prostate cancer and antioxidant activity (Akaza et 

al., 2004; Rüfer & Kulling, 2006). Studies comparing germ-free rats and rats containing 
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bacteria found in the human gastrointestinal tract have demonstrated that the gut bacteria 

are responsible for the conversion of isoflavonoids to equol (Matthies, Loh, Blaut, & 

Braune, 2012). Researchers were able to identify and isolate a novel gene in a particular 

strain of Lactococcus that is responsible for this metabolic production of equol (Shimada 

et al., 2010). 

 

1.5.2   INDIRECT MODIFICATION BY THE MICROBIOME 

 

 The microbiome may influence drug metabolism without being exposed to the 

drug initially. This section discusses the actions of the microbiome involved with altering 

the course of a drug’s movement through the body via enterohepatic circulation. 

 

1.5.2.1  CPT-11 

 

 CPT-11 (also called irinotecan) is a drug used for the treatment of cancer, 

particularly colon cancer (Wallace et al., 2010). CPT-11 works by inhibiting 

topoisomerase 1, thereby preventing DNA from unwinding. CPT-11 is a prodrug given 

intravenously, which gets converted in the serum via carboxylesterase enzymes to its 

active form called SN-38. This active form eventually undergoes glucuronidation in the 

liver via UGT1A1, resulting in inactive SN-38G. Although this drug is listed on the 

WHO Model List of Essential Medicines, many patients experience debilitating side 

effects including severe nausea and diarrhea.  

 Wallace et al. were able to identify a major contributor to this toxicity. They 

discovered that microbial beta-glucuronidases in the gastrointestinal tract were targeting 

the inactive SN-38G, and reactivating it back into SN-38. The active form then re-entered 

circulation, causing increased serum levels and exacerbating the toxic side effects 

experienced by patients. (Wallace et al., 2010). 
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 From this point, a simple suggestion might have been to co-administer antibiotics 

with CPT-11 to reduce toxicity. However, researches wanted to reduce the side effects of 

the drug without completely disrupting the bacteria in the gut and to demonstrate that 

they understood the precise mechanism of action. To do this, they performed high-

throughput screening of potential bacterial beta-glucuronidase inhibitors, to identify ones 

that had no impact on the human form of the enzyme. They tested these inhibitors to 

show that they were effective at targeting bacterial beta-glucuronidase without killing 

other bacteria or human cells. Finally, they used a mouse model to show that oral 

administration of an inhibitor was able to prevent CPT-11 toxicity (A. B. Roberts, 

Wallace, Venkatesh, Mani, & Redinbo, 2013).  

 

1.5.3  MICROBIOME-HOST INTERACTIONS    

 

 In addition to modification of drugs, the microbiome is also able to influence its 

host. These changes in the host may precipitate changes in the host’s ability to metabolize 

drugs. This section explores two documented cases of microbiome-host interactions. 

 

1.5.3.1 IMPACT ON HOST GENES 

 

 As discussed in Chapter 1.2, the human liver has a wide range of genes that play a 

role in xenobiotic metabolism. The abundance and expression of these genes may vary 

from person to person based on genetic factors such as polymorphisms, but it has also 

been documented that the gut microbiome may also influence the expression of these 

genes (Björkholm et al., 2009). In a study of hepatic gene expression comparing germ 

free and control mice, it was found that 112 genes related to xenobiotic metabolism were 

differentially expressed between the two groups. This finding implies that the gut 

microbiota may be able to influence drug metabolism indirectly by altering host gene 

expression.  
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1.5.3.2 IMPACT ON HOST METABOLISM PATHWAYS 

 

 Other researchers have investigated the impact the gut microbiome may have on 

particular human xenobiotic metabolism pathways. One study in particular looked at the 

metabolism of acetaminophen (Clayton, Baker, Lindon, Everett, & Nicholson, 2009). 

Acetaminophen undergoes phase II metabolism primarily via O-sulfonation and 

glucuronidation, resulting in acetaminophen sulfate and acetaminophen glucuronide, 

respectively. An interesting correlation was discovered between low levels of the sulfate 

metabolite, and high levels of a microbial metabolite called p-Cresol. Microbial p-Cresol 

is also metabolized through the hepatic O-sulfonation pathway (Gamage et al., 2006). 

Researchers proposed that p-Cresol was competing with acetaminophen for hepatic 

sulfotransferase activity, therefore reducing the amount of acetaminophen sulfate 

produced. This finding has implications not solely for acetaminophen metabolism, but 

any xenobiotic that O-sulfonation pathway, as well as promoting further investigation 

into potentially competitive microbial metabolites.  

 

1.6  ANALYSING THE MICROBIOME  

 

1.6.1  MOUSE MODELS 

 

 Mouse models can be used to analyse aspects of the microbiome on a much larger 

scale than in humans, with more flexibility and control of the variables in question. At 

first glance, one might assume the gastrointestinal structure of a mouse is vastly different 

from a human based off differences in size and obviously species. Although there are 

noted differences, generally speaking mouse physiology, anatomy, and even genetics are 

quite similar to humans (Nguyen, Vieira-Silva, Liston, & Raes, 2015) This, combined 

with the diversity of models available make mice an attractive candidate for studying the 

importance of the microbiome, although other animal models have been used 

successfully (A. D. Kostic, Howitt, & Garrett, 2013).  These mouse models can be 

divided into three general groupings. 
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 The first type of mouse model involves treating mice with drugs. Often times, 

researchers use antibiotics in order to eradicate the majority of bacteria in the 

gastrointestinal tract (Feng et al., 2015). From there, they can compare antibiotic-treated 

animals to the controls, providing strong evidence that the microbiome is responsible for 

differences observed between these two groups. In addition to antibiotic treatments, mice 

may be given inhibitors of specific bacterial enzyme (Wallace et al., 2010). These studies 

are beneficial as the majority of the microbiome’s function remains intact, and 

researchers can analyse differences caused only by the inhibited enzyme.  

  Another group of mouse models involves using germ-free mice. These mice are 

grown in a sterile enclosure in order to prevent them from being exposed to any and all 

bacteria (Grover & Kashyap, 2014). This avoids the step of treating mice with antibiotics, 

and simply allows comparison between mice that have bacteria in their bodies, and mice 

that do not. This model is important as it avoids potential drug-drug interactions between 

antibiotics and the drug being studied. It also avoids the risk of antibiotic-resistant strains 

of bacteria resettling the gastrointestinal tract for antibiotic treated mice, making them no 

longer bacteria-free. However, there have been criticisms of using germ-free mice since 

there early life without microbes have been shown to alter development (Williams, 2014). 

These mice often have altered immune systems, organ function, and even reproductive 

capability and therefore differences observed between germ-free and control mice might 

not be due to treatment, but instead due to these underlying developmental differences 

(Williams, 2014).  

 The final group of mouse models used to study the microbiome is gnotobiotic 

models. These are mouse models in which only certain known microbial species are 

present (Williams, 2014). Technically speaking, germ-free mice are considered 

gnotobiotic mice as their microbial community is also ‘known,’ being void of species. 

This group also consist of mouse models in which known bacterial species from the 

human gut microbiome are introduced into the mice (Goodman et al., 2011). This allows 

the study of functional properties of specific microbes in a living system, while to some 

extent also controlling for the physiological complications present in germ-free mice.  
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1.6.2  SEQUENCING 

 

 Investigations into the microbiome began as early as the 1960’s (Scheline, 1968). 

However, sequencing technology at this time was slow, expensive, and often focused on 

one cultured species at a time (Morgan & Huttenhower, 2012; Soleim & Scheline, 1972). 

There are major issues with this analysis, as it is estimated that upwards of 99% of 

bacteria cannot be grown in lab cultures (Pham & Kim, 2012). In the past decade, the 

development of ‘next-generation’ high-throughput sequencing techniques have 

revolutionized the field of microbial sequencing (Reis-Filho, 2009). Analogues to human 

genomic studies for personalized medicine, the microbiome can be sequenced in order to 

identify critical differences between individuals.  

 Previously, the most common technique used was Sanger sequencing, which used 

DNA chain-terminating inhibitors (Sanger, Nicklen, & Coulson, 1977). Although this 

was the most effective method at the time, it was clearly outclassed by next-generation 

sequencing methods. One of the earliest forms of next-generation sequencing was 454 

pyrosequencing (Ronaghi, Uhlén, & Nyrén, 1998). From there, there was rapid 

progression in the development of these sequencing techniques, with pyrosequencing 

being overtaken by more accurate, less costly methods such as Illumina sequencing 

(Rodrigue et al., 2010). These advanced sequencing techniques enable analysis of the 

vast amounts of DNA in microbiome samples at an incredibly fast rate.   

 Sequencers such as the ones produced by Illumina use a process called 

sequencing by synthesis. This method starts with a flow cell containing adaptors (specific 

nucleotide sequences) bound to the cell. A single-stranded DNA fragment being 

sequenced is run through the flow cell, with adaptor regions of the fragment binding to 

complementing adaptors on the flow cell. A complementary strand of DNA is created 

from the DNA fragment and is therefore bound to the flow cell. This double-strand is 

then denatured so the original fragment can be washed away, leaving one single-strand of 

DNA bound to the flow cell. This strand is then amplified via ‘bridge-amplification’ 

where the strand folds over, and its end connects to a different adaptor on the flow cell. 

Then the complimentary strand is generated, and the bridge is denatured, resulting in two 
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single-stands of DNA attached to the cell. This process of folding over, is repeated many 

times creating a cluster of the DNA fragment. The reverse strands are removed leaving 

only forward strands, all identical to the initial DNA fragment. At this point, the 

‘sequencing by synthesis’ begins. A primer is attached to the single strand, and 

fluorescently tagged nucleotides are used to create the complementary strand of DNA. 

After the correct nucleotide is added, the clusters are excited by light, and a fluorescent 

signal is produced, with each nucleotide having its own unique signal. Hence, the 

sequencer can read the light source coming from the cluster of identical strands to 

determine what nucleotide is added. This process continues until the desired length of the 

forward read (ie: the number of base pairs) is reached. The cluster then folds over, and 

the reverse strand is synthesised. The strands are separated, the forward strands are 

washed away, and the reverse strand is then sequenced by synthesis, in identical fashion 

to the forward strand sequencing. This provides both forward and reverse reads for the 

fragment at the desired read length (Illumina Inc., 2014).  

 Depending on the size of the DNA fragments and the read length, there may be 

overlap between the forward and reverse reads. These reads can be aligned so their 

paired-ends overlap resulting in a longer fragment that can provide more information for 

identifying matches in reference databases.  

This process can be performed on vast numbers of DNA fragments 

simultaneously, allowing rapid sequencing of all DNA fragments obtained from a 

sample. Additionally, ‘barcodes’ or small sequences of nucleotides can be attached to 

DNA from a sample. With these barcodes, many samples can be pooled together, 

sequenced simultaneously, and sorted afterwards in a process called ‘multiplexing’. This 

further increases the efficiency of DNA sequencing.  

When sequencing microbiome samples, researchers are generally trying to 

determine either what microbes are there, or what those microbes are doing. For the 

former, sequencing for determining taxonomic composition is often done via 16S 

sequencing. The 16S gene encodes for a distinct part of the bacterial ribosome, 16S 

rRNA. This gene is useful for taxonomy as it contains both conserved and variable 

regions. As microbes become more distinct from each other, there will be more changes 
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in the variable regions. Based on the similarity of these variable regions, microbes can be 

grouped in to operational taxonomic units (OTUs). Hence, it can be determine how 

diverse the microbiome is based on the number and proportion of OTUs detected 

(Bartram, Lynch, Stearns, Moreno-Hagelsieb, & Neufeld, 2011).  

To examine function, metagenomic sequencing can be performed. Unlike 16S 

sequencing which only examines one particular region of microbial DNA, metagenomics 

looks at all the DNA in a sample regardless of who or where it comes from. After 

sequencing, DNA reads can be matched to a reference database, in order to determine 

what genes are present in the microbiome sample. These genes then give us an idea of the 

functional capabilities of the microbes present.  

 

1.6.3  REFERENCE DATABASES 

 

 References databases are an important tool in metagenomic analysis. From 

metagenomic sequencing millions of short reads of DNA can be obtained. However, this 

is essentially just a list of letters, and alone tells us nothing about what the DNA 

sequences actually do. References databases are essential in bridging the gap between 

raw sequences and biological analysis. 

 Many different reference databases exist, including eggNOG, COG, TIGRFAM, 

and KEGG (Haft, Selengut, & White, 2003; Huerta-Cepas et al., 2016; Kanehisa, Goto, 

Kawashima, Okuno, & Hattori, 2004; Tatusov, Galperin, Natale, & Koonin, 2000). Each 

can be used to functionally annotate metagenomic data, but each of these databases may 

have differences in the way they operate. To further explain how these databases work, 

the Kyoto Encyclopedia of Genes and Genomes (KEGG) database will be used as an 

example.  

Within KEGG, there are several different categories which metagenomic DNA 

can be related to, including information about pathways, reactions, and full genomes. One 

particularly useful section of KEGG is KEGG Orthology. Within this section, molecular-

level functions are classified as KEGG Orthologs, or KOs. One, or several genes that are 
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thought to carry out a specific function may be categorized under a particular KO. That 

function is given a KO identifier, which is the letter K followed by five numbers. KEGG 

also provides information regarding what species a KO has been experimentally 

identified in. 

Depending on the nature of the function, the genes, and the specific targets or 

pathways, multiple KO identifiers may be linked for one particular function. For 

example, some genes that have the general function ‘alcohol dehydrogenase’ are grouped 

together under the KO identifier of K00001. However, other genes with the ‘alcohol 

dehydrogenase’ function that act in different ways are grouped together in K00002, and 

others still can be grouped into K00055 and K00114. All of these KOs represent the 

function of alcohol dehydrogenase, but the gene(s) placed under each KO will depend on 

more specific information. 

 

1.6.4  BIOINFORMATICS 

 

 With the advancement of high-throughput sequencing techniques came massive 

datasets, orders of magnitude larger than what biological researchers were analysing 

previously. In addition to these sequencing tools, bioinformatic tools have been 

developed to process these large amounts of data in an efficient and accurate manner. 

 Within metagenomic datasets such as the HMP dataset, there is an enormous 

amount of information and nearly limitless ways to manipulate and examine the data in 

order to identify biological information. For efficient examination, data must be available 

for multiple research groups to obtain and study. Servers such as MG-RAST are crucial 

in this process, as they contain thousands of publicly available metagenomic datasets 

with accompanying metadata files (F. Meyer et al., 2008).  

Many pipelines have been developed to analyze bioinformatic data such as 

QIIME and Microbiome Helper (Caporaso et al., 2010; Comeau, Langille, & Douglas, 

2016). These pipelines allow users to work through standard operating procedures (SOPs) 

in an operating system such as Linux. By running particular scripts, a user is able to 
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converts files of raw sequencing data into desired biological information by, for example, 

matching sequences to reference database in order to determine taxonomy or function.  

 Throughout these pipelines, specific bioinformatic programs are used to 

manipulate the dataset in a particular way. When trying to determine function from raw 

sequences, a tool known as DIAMOND can be used. Similar to BLAST, DIAMOND 

takes files of raw sequences (in particular, Illumina reads 100-150bp in length), and 

aligns them to a protein reference database (Buchfink, Xie, & Huson, 2014). The reason 

DIAMOND is used for metagenomic sequences instead of BLAST is because it is able to 

run up to 20 000 times faster while maintaining high accuracy of matching. Taking this 

one step further, a program called HUMAnN can be used in order to take the output from 

DIAMOND and match it to the KEGG Orthology database, thereby identifying the 

presence and abundance of functions found in the raw sequences from microbiome 

samples (Abubucker et al., 2012).  

 Another useful tool for functional annotation is PICRUSt. In many studies, 16S 

sequencing is performed to identify taxonomy in a sample, but this type of sequencing 

provides no direct information on function. PICRUSt is able to take the 16S information 

regarding what OTUs are present and, using a database of reference genomes, predict 

what functions are present based on the OTUs (M. G. I. Langille et al., 2013) without 

having to do metagenomic sequencing.  

 Once metagenomic data has been generated, visualization of the data allows for 

quick comparisons and analysis. Looking at the entire dataset as a whole, there are two 

commonly used methods to generate plots that show relationships within microbiome 

data. The first method is a principle component analysis (PCA) plot. The function of a 

PCA plot is to take complex data such as the abundance of many OTUs or KOs across 

many samples, and transform it into a new coordinate system. In this system, there are a 

series of principle components (PCs) which are used as axes in the coordinate system. 

Each PC is generated by manipulating the data down to a single point along an axis. 

These PCs are uncorrelated, and their function is to summarize the variation present in 

the dataset. The first PC is the one that explains the most amount of variation within the 

dataset, while the second PC explains the second most amount of variation, and so on. 
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With this transformation, the complex associations within the data can be plotted on a 2D 

axis showing (usually) PC1 vs PC2, or a 3D axis with the first three PCs. Thus, samples 

are plotted based on the variation between them. Samples clustered together indicate low 

levels of variation between the measured factor (OTU or KO abundance) in those 

samples. Samples far apart on the PCA plot indicate there is much more variation 

between those samples based on the measured factor.  

 To generate several visualizations including PCA plots, a program called STAMP 

can be used (Parks, Tyson, Hugenholtz, & Beiko, 2014). STAMP is able to accept a 

program file like the output from HUMAnN. This file is essentially a massive table, 

listing all samples sequenced as well as a particular factor of the dataset. When analyzing 

the microbiome, this factor could be the OTUs found in each sample, or the KOs found in 

each sample. This file is used by STAMP to generate a PCA plot showing the 

relationship and clustering of the samples based on the factor being analyzed. STAMP 

can then be provided with a metadata file containing information about samples such as 

what location they came from or if the sample came from a female or male. With this, 

STAMP is able to identify samples based on the categories provided in order to observe 

potential trends and associations. STAMP is also able to analyze each ‘variable’ 

individually. For example, STAMP can generate box plots showing the abundance of one 

particular KO across all samples, separating them based on what category each sample 

came from.  

Statistical evaluation can also be performed in STAMP. If only two categories are 

present, a Welch’s two-sided t-test can be performed to see if the mean value of the 

categories are equal or if they are statistically significantly different (p<0.05). For 

multiple categories, ANOVA is used to see if the mean value of multiple groups are 

equal. With such a large volume of data, there is a high chance that data will be found 

statistically significant just due to chance. To reduce the amount of these ‘false 

discoveries’, STAMP is able to calculate a modified p value using Benjamini-Hochberg 

false discovery rate (FDR) multiple test correction (MTC). This allows more confidence 

in significance values identified when using large datasets such as metagenomic sample 

sequences.  
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The second form of visualization is principle coordinate analysis (PCoA) plot. In 

general, a PCoA plot is very similar to a PCA plot. It takes complex data and tries to 

manipulate it so that large amounts variation between samples can be explained on a few 

axis. The major difference with PCoA is that axis are not calculated based on the raw 

data of OTU or KO abundance in each sample. Instead, a distance matrix is generated, 

and that is used to produce the PC axis. One way of generating this matrix is an 

ecological method called Bray-Curtis. This method was initially developed for ecological 

data, looking at the (dis)similarity of species between different sites based on the number 

of counts. However, it functions just the same for metagenomic data by calculating a 

distance between samples based on the relative abundance of OTUs or KOs. This Bray-

Curtis matrix can then be used to generate PCs via PCoA. When samples are plotted 

along these PCs, points closer together are more similar in terms of OTU or KO 

abundance. Samples that are farther apart means there is more variation between those 

samples, just like the visualization of PCA plots.  

For visualizing PCoA plots in 3D space, a program called Emperor can be used 

(Vázquez-Baeza, Pirrung, Gonzalez, & Knight, 2013). This program was initially 

designed to examine microbial communities in the environment to determine how 

samples varied by taxa. However, it functions the same way when the input is 

microbiome sample data based on the abundance of KOs. Emperor is especially useful 

when dealing with metadata containing multiple groups such as age. It is able to colour 

samples in a PCoA plot based on a gradient, so for example samples coloured from light 

to dark as they increase in age from young to old. This makes viewing the PCoA plot to 

identify clusters based on age much easier than if each individual age had its own unique, 

unrelated colour.  

Statistical significance of the Bray-Curtis distance matrix can be calculated using 

a QIIME script called Adonis (Anderson, 2001). This method looks at the variation 

present in a distance matrix and determines how strong and significant a particular 

metadata variable is at determining said variation. Adonis is a non-parametric method, 

which means it does not assume the data (the abundance of OTUs or KOs for instance) 

fits a particular distribution. Additionally it can be used with both discrete and continuous 
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variables, making it useful when looking at metadata such as age across samples. Adonis 

will output an r2 value indicating how well the variable correlates with the distribution of 

samples in the Bray-Curtis distance matrix, as well as a p value indicating if this 

correlation is statistically significant.   

  

1.7  OBJECTIVES  

  

 This project’s main objective was to explore the drug metabolism potential of the 

human microbiome. Although the case studies in Chapter 1.5 are informative, they only 

give specific targeted findings and do not provide information about the microbial drug 

metabolizing gene presence, prevalence, variability, and associations with host factors 

within the human microbiome. The first objective was to catalog functions that could be 

present in the human microbiome which are related to drug metabolism. The second 

objective was to determine the presence and abundance of these drug metabolism 

functions in the human microbiome including variance between body site and within the 

population, as well as identify how the abundance of particular functions may shift from 

person to person. The third objective was to determine if factors such as sex, age, frailty, 

and the use of certain medication could be correlated with trends in microbial drug 

metabolism functions.  

 This was an exploratory study, so we did not anticipate any of our results having 

immediate clinical significance. Instead, we hoped to identify many different microbial 

functions that display trends in abundance based on the factors we examined. This survey 

could then serve as a starting point for future studies by highlighting the most promising 

trends related to drug metabolism functions in the microbiome. 

 We hypothesized that there would be many functions identified in the human 

microbiome that could play a role in drug metabolism. We also hypothesized that the 

abundance of a subset of these functions would be correlated with the explored factors 

(body site, sex, age, frailty, and medication use), however due to this being an 



31 

 

exploratory study, we could not say for sure what particular functions would be affected, 

or in what direction their abundance would shift.   
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CHAPTER 2:  MATERIALS AND METHODS 

 

2.1  MANUAL SELECTION OF POSSIBLE DRUG METABOLIZING KEGG 

ORTHOLOGS  

 

 The investigation of the drug metabolism potential of the human microbiome was 

conducted with the use of the Kyoto Encyclopedia of Genes and Genomes (KEGG) 

database (Kanehisa et al., 2004). The area of KEGG utilized was the KEGG Orthology 

section (accessed in October-November of 2014 at http://www.genome.jp/kegg/ko.html). 

Particular functions are organized into different KEGG Orthologs (KOs). Sequences of 

DNA can be matched to particular genes, which in turn, would be placed under a KO 

category.  

 The functions, or KOs, known to be present in microbes that potentially played a 

role in drug metabolism were identified. A list of general drug metabolism categories in 

humans was established (Table 1). These consisted of phase I and phase II enzymes, as 

well as additional phase III functions associated with modifying drugs. 

Table 1 List of drug metabolism function categories.  

Drug metabolism categories 

Cytochrome P450 monooxygenase  Flavin-containing monooxygenase 

Alcohol dehydrogenase Aldehyde dehydrogenase 

Monoamine oxidase Cytochrome P450 reductase 

Esterase Amidase 

Epoxide hydrolase Methyltransferase 

Sulfotransferase N-acetyltransferase 

UDP-glucuronosyltransferase Glutathione S-transferase  

Acetyl CoA Azoreductase 

Beta-glucosidase Beta-glucuronidase 
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 One by one, each of the categories in Table 1 was searched for in the KEGG 

database. This generated a list of several KOs associated with that category. For every 

KO found in the category, the taxonomy this KO was biologically found in was 

examined. If there was evidence of that KO being found in bacteria, the KO was 

recorded. This process was repeated for each category. The end result was a list of 225 

KOs known to be found in microbes which could potentially play a role in drug 

metabolism based on their human homologues. This collection of KOs will be referred to 

as microbial drug metabolizing genes (MDMGs).  

 

2.2  DATASET AND SAMPLE INFORMATION 

 

 In this study three separate datasets were used for different areas of analysis. This 

section outlines information about the samples in each dataset. 

 

2.2.1  HUMAN MICROBIOME PROJECT DATASET  

 

 The Human Microbiome Project (HMP) collected non-invasive microbiome 

samples from 242 individuals at one or two time points from up to 18 different body site 

locations (The Human Microbiome Project Consortium, 2012). These individuals ranged 

in age from 18-40 years old (mean age 27. They were clinically screened for absence of 

disease. In total, 749 samples were sequenced using 101bp paired-end Illumina shotgun 

metagenomic reads The HMP did extensive quality controls on these samples, resulting 

in a final set of 531 metagenomic samples. The 18 body sites were sorted into 5 general 

body sites: airways (62 samples), gastrointestinal tract (118 stool samples), oral (289 

samples), skin (20 samples), and urogenital tract (42 samples). In this collection, 224 

samples came from females, and 307 samples came from males.  

 The HMP set up inclusion criteria in order to be eligible to take part in the study. 

The individuals could be male or female subjects at least 18 years old, but not more than 
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40 years old at the time of enrollment. They must be able to provide informed consent. 

They must be healthy subjects, and must be willing and able to provide blood, oral cavity, 

skin, nasal cavity and stool specimens. Female subjects must be willing to provide 

vaginal specimens, and must also have a regular menstrual cycle (between 21-35 days) or 

for subjects on hormonal contraception, have a history of regular menstrual cycles before 

initiating contraception. Important exclusion criteria included antibiotic use within the 

last 6 months and females who were pregnant or on combination hormone vaginal ring 

contraception.  

The metagenomic DNA sequences from the 531 HMP samples were made 

publically available and downloaded via the HMP website (http://hmpdacc.org/).  

 

2.2.2  CHINESE DATASET 

 

The second publicly available dataset used in this study was a collection of 368 

stool samples from Chinese individuals, from here on out referred to as the Chinese 

dataset (Qin et al., 2012). These individuals ranged in age from 13 to 86 years old. For 

these samples, 157 came from female individuals, and 211 came from male individuals. 

Illumina GAIIx and HiSeq 2000 paired-end metagenomic sequencing was performed, 

with 75bp-90bp read length. These individuals had not received any antibiotic treatment 

within two months before sample collection. All individuals signed informed consent 

forms. 

The metagenomic DNA sequences from the 368 stool samples were made 

publicly available and downloaded from MG-RAST.  

 

2.2.3  NORTHWOOD DATASET 

 

The third dataset used in this study came from researchers in collaboration with 

Dr. Langille who were studying the microbiome of individuals at Northwood, an assisted 
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care facility located in Halifax, Nova Scotia. This study looked at a total of 47 individuals 

(30 females, 17 males) and collected 216 stool samples to investigate the gut 

microbiome. Eleven samples were discarded after quality control, leaving 205 samples 

available for analyses.   

 These individuals ranged in age from 65 to 99 years old. A frailty index (FI) score 

was calculated for each of these individuals, based off clinical assessment of 70 physical, 

mental, and behavioral criteria (Rockwood, 2005). Scores were reported on a scale of 0 to 

1, with 0 representing no signs of frailty, and 1 represent maximum frailty in every 

assessed aspect. The individuals sampled had FI scores ranging from 0.305 to 0.758.  

The list of all medication and dosing information for each individual was 

recorded. In total, the 47 patients were on 291 different drug treatments. Each patient was 

on said treatment for at least one month in order to be included. No patients were on 

antibiotics in the month prior to the study. The clinician in the Northwood study noted 20 

specific drug treatments that were thought to alter the microbiome (referred to as 

‘microbiome-altering drugs’). In total, 159 samples came from individuals on at least one 

microbiome-altering drug, and 46 samples came from individuals not on any 

microbiome-altering drugs. 

 Sequencing was done on the 205 samples using Illumina MiSeq paired end 300bp 

with 16S V6-V8 region primers through the Integrated Microbiome Resource (Comeau et 

al., 2016).  

 

2.3  METAGENOMIC ANNOTATION 

 

 For the 531 Human Microbiome Project samples and the 368 Chinese samples, 

metagenomic functional annotation was performed in order to match DNA sequences to 

particular MDMGs. Within the Chinese data, the number of reads per sample were 

approximately 10 times the size of the HMP dataset average reads per sample. In order to 

process these sequences in a timely manner, the Chinese dataset was randomly 

subsampled to reduce it down to 10% its original size.  
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The metagenomic standard operating procedure (SOP) found on the Microbiome 

Helper GitHub (https://github.com/mlangill/microbiome_helper) was utilized for 

functional annotation. The datasets used paired-end Illumina sequencing, which means 

for a given fragment of DNA, both ends get sequenced. By combining these paired-ends 

together the quality of that sequenced fragment is improved, which makes it easier to 

align the fragment to a reference database. PEAR version 0.9.6 was used in order to stitch 

these paired-end reads together (Zhang, Kobert, Flouri, & Stamatakis, 2014). All samples 

are coming from human hosts, but only the sequences of microbial origin are of interest. 

As a result, all human DNA sequences must be screened out. A tool called Bowtie2 was 

used to align reads to reference sequence (Langmead, Trapnell, Pop, & Salzberg, 2009). 

In particular, Bowtie2 checks if any reads align to the human genome, and if so, those 

reads were discarded. The microbial sequences were then mapped to a protein reference 

database in order to identify what functions were present. For this a tool called 

DIAMOND was used, which is a high-throughput search tool that aligns short reads to a 

protein database (Buchfink et al., 2014). Finally, the output from DIAMOND was then 

run on HUMAnN version 0.99. HUMAnN takes the protein alignment information, and 

annotates them with the KEGG Orthology (KO) database (Abubucker et al., 2012). The 

end result is a file consisting of the relative abundance all annotated KOs in all samples. 

The relative abundance of our MDMGs could then be extracted from this file. The names 

and IDs of all annotated MDMGs can be found in Table 4 in the appendix.  

 

2.4  16S ANNOTATION  

 

Unlike the HMP and Chinese dataset, which contained metagenomic sequence 

data, the Northwood dataset initially performed 16S sequencing on the samples to 

generate an OTU table. From there, followed the 16S microbiome SOP found on the 

Microbiome Helper GitHub to identify OTUs in the samples.  

 This gave the taxonomy of the microbes present in the sampled gut microbiomes. 

However, this investigation was only interested in function, not taxonomy. In order to 

assess the functions present in these microbiome samples without having metagenomic 
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sequences available, a tool called PICRUSt is used. PICRUSt takes 16S information and 

accurately predict functional composition of a microbiome based on the taxonomy 

present (M. G. I. Langille et al., 2013). The PICRUSt workflow is also documented on 

Microbiome Helper. Following the workflow, the OTU table was converted into the 

proper format for PICRUSt. The table was then normalized by 16S copy number. 

PICRUSt was then run in order to predict the KOs found in the samples. The KOs were 

normalized for each sample and the file was converted to STAMP format, resulting in a 

table of (predicted) relative abundance for every annotated KO in all 205 samples. This 

table was copied and edited down to only consist of the abundance of the MDMGs in 

each sample. The names and IDs of all annotated MDMGs can be found in Table 4 in the 

appendix. 

 

2.5  STATISTICAL METHODS 

 

The annotated tables were used in order to compare trends in the relative 

abundance of MDMGs across several different variables in the dataset. Statistical 

evaluations and data visualizations for body site, sex, and medication use were done in 

STAMP version 2.0.9 (Parks et al., 2014). STAMP requires a profile file as well as a 

metadata file. The output from HUMAnN was reformatted so it could be used as the 

profile file, containing the relative abundance of all KOs or just our MDMGs in every 

sample. Metadata files for the HMP dataset indicated body site and sex of each sample, 

the Chinese dataset indicated the sex of each sample, and the Northwood dataset 

indicated medication use in each sample.   

The first aspect of the HMP dataset examined was body site. The profile file 

containing the relative abundance of all annotated KOs from all 531 samples as well as 

the metadata file listing the body site where each sample came from was loaded into 

STAMP. A PCA plot was generated for the comparison between body sites based off the 

abundance of all KOs across the samples. The analysis was then performed using only 

our MDMGs. The same metadata file was used, but the profile file contained the relative 

abundance of only the MDMGs in all 531 samples. A PCA plot was generated for the 



38 

 

comparison between body sites based on the abundance of MDMGs across the samples. 

STAMP also generated box plots for the individual MDMGs, showing the relative 

abundance in the five body site locations. STAMP calculated the mean relative 

abundance of each MDMG in all five body sites, as well as the standard deviation.  A 

Welch’s two-sided t-test was performed with Benjamini-Hochberg FDR MTC to 

calculate if the mean relative abundance of each MDMG in the gut was significantly 

different (p<0.05) from the mean relative abundance of that MDMG in all four other 

body sites with a cut-off set at 0.05 to reduce false-positive correlations.   

Next, the differences between the microbiomes of females and males was 

analyzed, in both the HMP dataset and the Chinese dataset. The profile file containing 

our MDMGs in all 531 HMP samples and the metadata file containing the sex of the 

samples were loaded into STAMP. This generated comparisons based on all 5 general 

body sites. Additionally, sex differences just in the gut microbiome was examined. For 

the HMP dataset, a profile file containing our MDMGs but only the 118 samples coming 

from the GI tract was loaded into STAMP. For the Chinese dataset, the profile file 

containing our MDMGs in all 368 gut samples and the metadata file containing the sex of 

the samples were loaded into STAMP. PCA plots were generated for the comparison 

between females and males separately for each dataset, as well as box plots for the 

relative abundance of individual MDMGs between females and males. A Welch’s two-

sided t-test was performed with Benjamini-Hochberg FDR MTC to calculate if the mean 

relative abundance of each MDMG was significantly different (p<0.05) between females 

and males. 

 The final variable examined using STAMP was medication use in the Northwood 

dataset. A metadata file was created which listed the samples into two groups. The 159 

samples from patients on a microbiome-altering drug were placed in one group, and the 

46 samples from individuals not taking any of the 20 microbiome-altering drugs were 

placed in the second group. The profile file containing the relative abundance of all the 

predicted KOs in all 205 samples, as well as the metadata file separating samples into the 

two drug groups were loaded into STAMP. Separately, the profile file containing the 

relative abundance of our MDMGs in all 205 samples, as well as the metadata file were 
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loaded into STAMP. PCA plots were generated for the comparison between ‘taking’ vs 

‘not taking’ a microbiome altering drug. Box plots were also created in STAMP to 

compare relative abundance of individual MDMGs between these two groups. For each 

KO, a Welch’s two-sided t-test was performed with Benjamini-Hochberg FDR MTC to 

calculate if the mean relative abundance was significantly different (p<0.05) between the 

two groups. 

Next statistical evaluation and data visualization was performed for trends in age 

in the Chinese dataset, and trends in age and frailty in the Northwood dataset. A Bray-

Curtis distance matrix was generated based on the relative abundance of MDMGs 

between samples in each dataset using the Microbiome Helper 16S SOP. This matrix was 

used to generate a PCoA plot, visualized in Emperor. Samples were coloured in Emperor 

as a gradient based on age or frailty index (FI) score. Adonis was implemented through 

QIIME to determine how strongly age or frailty correlated with the overall variation in 

the abundance of MDMGs across samples (as indicated by the calculated r2 value), and to 

determine if this correlation was statistically significant (p<0.05). 

 For individual MDMGs, R was used to examine correlations between abundance 

and age or frailty (R Development Core Team, 2013). Using the R statistics package, 

corr.test was run. This generated scatterplots of relative abundance vs age or FI score for 

each MDMG, as well as calculated the strength of the correlation (r2 values) and 

significance (Benjamini-Hochberg FDR p-values). 

 It is often difficult to identify the most appropriate statistical test for analyzing 

these complex datasets. Since this was an exploratory study, the focus was primarily on 

hypothesis generation, as opposed to explicit hypothesis testing. Therefore, the selection 

of statistical tests was based on what was built into the programs and pipelines, as long as 

it provided some indication on how particular variables were correlated with MDMG 

abundance trends.  
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CHAPTER 3: MICROBIAL DRUG METABOLIZING GENES WITHIN THE 

HUMAN MICROBIOME PROJECT SAMPLES  

 

3.1  MANUAL SURVEY OF MICROBIAL DRUG METABOLIZING GENES  

 

 A total of 225 microbial drug metabolizing genes (MDMGs), were found in the 

manual surveying of the KEGG database. Although KEGG has over 19 000 KOs in the 

database, HUMAnN was only able to annotate 13 328 KOs. This means that out of our 

225 total MDMGs, 174 were annotated. The acronym MDMG will henceforth be used to 

represent only the annotated microbial drug metabolizing KOs. The full list of annotated 

MDMGs can be found in the appendix (Table 4). The number of annotated MDMGs 

belonging to each metabolism category is listed below (Table 2).  

 

Table 2 Number of microbial drug metabolizing genes (MDMGs) annotated by HUMAnN in each metabolism 

category. 

Category Number of 

MDMGs 

Category Number of 

MDMGs 

Cytochrome P450 

monooxygenase  

2 Flavin-containing 

monooxygenase 

0 

Alcohol dehydrogenase 15 Aldehyde dehydrogenase 1 

Monoamine oxidase 1 Cytochrome P450 reductase 1 

Esterase 0 Amidase 19 

Epoxide hydrolase 2 Methyltransferase 111 

Sulfotransferase 0 N-acetyltransferase 11 

UDP-glucuronosyltransferase 1 Glutathione S-transferase  2 

Acetyl CoA 0 Azoreductase 2 

Beta-glucosidase 5 Beta-glucuronidase 1 
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3.2  PRESENCE AND VARIABILITY OF MICROBIAL DRUG 

METABOLZING GENES ACROSS HUMAN MICROBIOME PROJECT 

SAMPLES 

 

To determine if any of the MDMGs were present within the human gut 

microbiome, 531 metagenomic samples from the Human Microbiome Project were 

screened (The Human Microbiome Project Consortium, 2012). Of the 174 MDMGs that 

were annotatable, the presence of 168 MDMGs were identified within one or more 

samples (Figure 1). These ranged in average relative abundance from K05349: beta-

glucosidase (9.47% of all annotated MDMG reads) to K13317: NDP-4-keto-2,6-

dideoxyhexose 3-C-methyltransferase (6.14 x 10-6 %). The variability of each MDMG 

across samples ranged tremendously from K13317 (0.0000478 SD/0.0000614 mean = 

7.79 CV) to K00783: 23S rRNA (pseudouridine1915-N3)-methyltransferase (0.197 

SD/2.35 mean= 0.0838 CV) 
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Figure 1 Average relative abundance of the 168 MDMGs found in the HMP microbiome gut samples. MDMGs 

are listed along the x-axis from highest average sequence proportion (K05349) to lowest average sequence proportion 

(K13317). Error bars represent one standard deviation.  
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3.3  VARIATION OF MICROBIAL DRUG METABOLIZING GENES 

ACROSS MULTIPLE BODY SITE MICROBIOMES  

  

To examine if MDMGs existed within other human microbiomes besides the gut, 

MDMGs were screened for within other body sides sampled by the HMP. The HMP 

dataset contains samples from five distinct general body sites: airways (62 samples), GI 

tract (118 stool samples), oral (289 samples), skin (20 samples), and urogenital tract (42 

samples, females only). As a baseline, body sites were compared using all 13 328 KOs. A 

principal component analysis showed general separation of all body sites with the 

exception of some overlap between skin and airways (Figure 2).  
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Figure 2 The gut microbiome is distinct from other body sites based on the abundance of all KOs. PCA plot 

based off the abundance of all 13 328 KOs showing all 531 HMP samples. Samples are coloured based on body site: 

airways (blue circles, 62 samples), GI tract (orange squares, 118 samples), oral (pale green triangles, 289 samples), skin 

(purple diamonds, 20 samples) and urogenital tract (teal circles, 42 samples).  

  

Next body sites were compared using only the MDMGs. It was found that the GI tract 

was still very distinct from the other body sites being separated by PC1 representing 

47.4% variation, while the other body sites were less distinct (Figure 3). The urogenital 

tract is the one exception, with samples from this body site being clearly distinguishable 

from the rest by PC2 representing 15.4% of the variation.  
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Figure 3 The gut microbiome is distinct from other body sites based on the abundance of MDMGs. PCA plot 

based off the abundance of MDMGs showing all 531 HMP samples. Samples are coloured based on body site: airways 

(blue circles, 62 samples), GI tract (orange squares, 118 samples), oral (pale green triangles, 289 samples), skin (purple 

diamonds, 20 samples) and urogenital tract (teal circles, 42 samples). 

 

In addition to examining differences in body sites based off the collective set of 

MDMGs, the differences in individual MDMGs across body sites was investigated. Since 

the gastrointestinal tract was the primary focus, statistical comparisons were performed to 

see if the abundance of a MDMG in the GI tract microbiome was significantly different 

than the abundance in all four other body sites. Out of the 168 MDMGs identified in 

these samples, 148 showed significantly different (p<0.05) sequence proportion in the gut 

vs the other body sites after Benjamini-Hochberg FDR MTC. 54/148 of these MDMGs 

showed a higher average relative sequence proportion in the gut, and 94/148 had a lower 

average relative sequence proportion in the gut vs all other body sites (Table 4).  

The most abundant and variable MDMG within the gut, K05349: beta-

glucosidase, is also present in all other body sites but with significantly less relative 

abundance (p < 1e-15, ANOVA with Benjamini-Hochberg FDR) (Figure 4).   
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Figure 4 Average relative abundance of K05349: beta-glucosidase is significantly higher in the GI tract. Box plot 

showing relative abundance of K05349: beta-glucosidase amongst MDMGs (labeled as Proportion of sequences (%) on 

Y-axis). White stars in the box plots represent the average relative sequence proportion in each of the five body sites. 

Significance value of p < 1e-15 calculated using ANOVA with Benjamini-Hochberg FDR MTC.  

  

K06442: 23S/16S rRNA-methyltransferase is an example of a MDMG that is 

found in lower relative abundance within the gut compared to other body sites (p < 1e-15, 

ANOVA with Benjamini-Hochberg FDR). Again this MDMG is present in all body sites 

ranging in relative abundance from approximately 0-4.5% (Figure 5).  
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Figure 5 Average relative abundance of K06442: 23S/16S rRNA-methyltransferase is significantly lower in the 

GI tract. Box plot showing relative abundance of K06442: 23S/16S rRNA-methyltransferase amongst MDMGs 

(labeled as Proportion of sequences (%) on Y-axis). White stars in the box plots identify the average relative sequence 

proportion in each of the five body sites. Significance value of p < 1e-15 calculated using ANOVA with Benjamini-

Hochberg FDR MTC.  

Lastly, K01195: beta-glucuronidase represents the gene family that has been 

implicated in metabolism of CPT-11 (see Chapter 1.5.2.1). The mean relative abundance 

of K01195 varied significantly across body sites ((p < 1e-15, ANOVA with Benjamini-

Hochberg FDR) with 0.3-1.8% in the gut and even higher levels on the skin, 0.1-2.7%.  
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Figure 6 Average relative abundance of K01195: beta-glucuronidase is moderate in the GI tract. Box plot 

showing relative abundance of K01195: beta-glucuronidase amongst MDMGs (labeled as Proportion of sequences (%) 

on Y-axis). White stars in the box plots identify the average relative sequence proportion in each of the five body sites. 

Significance value of p < 1e-15 calculated using ANOVA with Benjamini-Hochberg FDR MTC.  

 

3.4  MICROBIAL DRUG METABOLIZING GENES DO NOT VARY BY SEX 

IN THE HMP DATASET 

 

The MDMGs within all body sites except those from urogenital (female only) 

were compared between males and females from which the samples originated. There 
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were no significant differences (p<0.05) between females and males in terms of MDMG 

abundance.  

 Additionally, sex differences within the 118 GI tract samples were tested on their 

own (Figure 7) which did not identify any distinct clustering between female and male 

samples. Looking at individual MDMGs, none showed a significant difference (p<0.05) 

between the two groups (using Welch’s two-sided t-test, with Benjamini-Hochberg FDR 

MTC).  

 

Figure 7 No differences in MDMGs between females and males in the HMP gut samples. PCA plot based on the 

abundance of 174 drug metabolism MDMGs. Only the 118 HMP samples coming from the GI tract ae included. 

Female samples (48) are shown as blue circles, male samples (70) are shown as orange squares.  

 

3.5  SUMMARY 

From the Human Microbiome Project dataset, we confirmed that nearly all of our 

microbial drug metabolizing genes (168/174) were found in the human microbiome. We 

also discovered there is a wide spread in terms of relative sequence abundance between 

MDMGs, and large differences from person to person for the relative abundance of an 

individual MDMG. The gastrointestinal tract was shown to be distinct not only across all 

KOs, but across the MDMGs as well. For individual MDMGs, the microbiome of the GI 
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tract was also shown to have higher average relative abundance for 54 MDMGs 

compared to the other four body sites, and a lower average relative abundance for 94. 

When comparing females and males, we found that no MDMGs were significantly 

different between these two groups in the gut microbiome.   
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CHAPTER 4: MICROBIAL DRUG METABOLIZING GENES WITHIN THE 

GUT MICROBIOME OF CHINESE INDIVIDUALS 

 

4.1  PRESENCE AND VARIABILITY OF MICROBIAL DRUG 

METABOLZING GENES ACROSS CHINESE SAMPLES 

 

 Out of the 174 MDMGs annotated by HUMAnN, 163 of them were found in the 

microbiome stool samples from the Chinese dataset. The 11 not found were: K01432: 

Arylformamidase, K03183: ubiquinone/menaquinone biosynthesis methyltransferase, 

K05882: aryl-alcohol dehydrogenase, K13042: dimethylglycine N-methyltransferase, 

K13317: NDP-4-keto-2,6-dideoxyhexose 3-C-methyltransferase, K13602: 

bacteriochlorophyll C12 methyltransferase, K13604: bacteriochlorophyll C20 

methyltransferase, K13955: zinc-binding alcohol dehydrogenase, K14369: erythromycin 

3''-O-methyltransferase, K14372: cytochrome P450 hydroxylase, and K14374: 

avermectin B 5-O-methyltransferase. Interestingly, last 3 were also missing from the 

HMP samples. The remaining 3 MDMGs missing from the HMP samples (K14080, 

K14338, and K14568) were found in the Chinese samples.  

 The mean relative abundance and standard deviation was calculated for each of 

these 163 MDMGs (Figure 8).  They ranged in average relative abundance from K05349: 

beta-glucosidase (7.13% of all annotated MDMG reads) to K05929: 

phosphoethanolamine N-methyltransferase (1.38 x 10-6 %). The variability of each 

MDMG across samples ranged tremendously from K09846: hydroxyneurosporene 

methyltransferase (0.0000562 SD/0.00000293 mean = 19.2 CV) to K03501: glucose 

inhibited division protein B (0.356 SD/2.56 mean= 0.139 CV).  
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Figure 8 Average relative abundance of 163 MDMGs found from the Chinese microbiome gut samples. MDMGs 

are listed along the x-axis from highest average sequence proportion (K05349) to lowest average sequence proportion 

(K05929). Error bars represent one standard deviation.  
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4.2  MICROBIAL DRUG METABOLIZING GENES DO NOT VARY BY SEX 

IN THE CHINESE DATASET 

 

 This dataset collected 157 gut microbiome samples from females and 211 gut 

microbiome samples from males. Differences in MDMGs between the sexes were 

examined. There was no distinct clustering between female and male samples (Figure 9). 

Looking at individual MDMGs, none were found to have a significant difference in 

relative abundance (p<0.05) between the two groups (using Welch’s two-sided t-test, 

with Benjamini-Hochberg FDR MTC). 

 

Figure 9 No differences in MDMGs between females and males in the Chinese samples. PCA plot showing 368 

Chinese GI tract samples, based off MDMG abundance. Female samples (157) are shown as blue circles, male samples 

(211) are shown as orange squares. 
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4.3  AGE INFLUENCES THE ABUNDANCE OF MICROBIAL DRUG 

METABOLZING GENES IN THE CHINESE DATASET 

 

 The metadata for the Chinese dataset also included the age of each individual 

sampled and contained a large comprehensive range in age from 13 to 86 years old 

(Figure 10). Trends in MDMGs found in the microbiome related to the age of the 

individual were examined.   

 

Figure 10 Age distribution of individuals sampled in the Chinese dataset. Individuals ranged from 13 to 86 years 

old. The number of individuals of each specific age are counted along the Y-axis. 

  

First the relationship between the MDMGs and age was examined as a whole 

(Figure 11). Using the statistical method Adonis, the trend between age and MDMG 

abundance was calculated to have an r2=0.018 and a p-value of p=0.001. This tells us that 

there is a statistically significant correlation between age and the abundance of MDMGs, 

but it is weak in terms of explaining all the variation within MDMGs across samples. 
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Figure 11 Age correlates weakly but significantly with variation of MDMGs in the Chinese samples. PCoA plot 

showing 368 Chinese GI tract samples, based off similarities in MDMGs. Samples are coloured from the youngest 

individual (13 y/o) as white, to the oldest individual (86 y/o) as the darkest green. Adonis calculations determine 

r2=0.018 and p=0.001 

  

 The impact of age is more pronounced when examining MDMGs individually. 

From this, 36 MDMGs show statistically significant correlation in abundance with age. 

Specifically, 19 show a positive trend in relative abundance as age increases, and 17 

show a downward trend. Table 4 in the appendix details all significant MDMGs. Figures 

12 through 16 highlight these trends in some particular MDMGs of interest. 

K03743: nicotinamide-nucleotide amidase had the strongest correlation with age 

(r2=0.0611 and FDR p=0.0001) out of all MDMGs. Interestingly, many samples have 

similar relative abundances for this MDMG (just below 1x10-4). However, once 
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individuals hit around 40 years old, quite a few samples show dramatic increase in 

abundance (Figure 12). 

 

Figure 12  Relative abundance of K03743: nicotinamide-nucleotide amidase is positively correlated with age in 

the Chinese samples. Scatterplot showing the relative abundance of K03743 in all Chinese dataset samples. R2=0.0611 

and FDR p=0.001 calculated in R. Plot generated in R. 

  

Following this, K01448: N-acetylmuramoyl-L-alanine amidase was examined 

(Figure 13). There is a great deal of variation for this MDMG from person to person 

(r2=0.0475), but there is a statistically significant decrease in relative abundance as 

individuals get older (FDR p=0.0006).  
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Figure 13  Relative abundance of K01448: N-acetylmuramoyl-L-alanine amidase is negatively correlated with 

age in the Chinese samples. Scatterplot showing the relative abundance of K01448 in all Chinese dataset samples. 

R2=0.0475 and FDR p=0.0006 calculated in R. Plot generated in R. 

  

K00001: alcohol dehydrogenase had the second strongest correlation out of all 

MDMGs examined (r2=0.0602) (Figure 14), with K03743 being the only MDMG with a 

higher r2 value. There is a large amount of variation in relative abundance between 

samples, but the trend with age is statistically significant (FDR p=0.0001).  
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Figure 14 Relative abundance of K00001: alcohol dehydrogenase is negatively correlated with age in the Chinese 

samples. Scatterplot showing the relative abundance of K00001 in all Chinese dataset samples. R2=0.0602 and FDR 

p=0.0001 calculated in R. Plot generated in R. 

  

K00600: serine hydroxymethyltransferase (SHMT) was the 3rd most abundant 

MDMG in the Chinese dataset (4.02% mean relative abundance), and the most abundant 

MDMG shown to be statistically significant (FDR p=0.036). The abundance of SHMT 

from person to person is quite variable (r2=0.0197), but overall there is a trend in 

increased abundance as age increases (Figure 15).  
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Figure 15 Relative abundance of K00600: SHMT is positively correlated with age in the Chinese samples. . 

Scatterplot showing the relative abundance of K00600 in all Chinese dataset samples. R2=0.0197 and FDR p=0.036 

calculated in R. Plot generated in R.  

 

The final MDMG examined in this chapter is K04042: UDP-N-acetylglucosamine 

pyrophosphorylase / glucosamine-1-phosphate N-acetyltransferase. The abundance of 

this MDMG is positively correlated with age (r2=0.0481, p=0.0008) (Figure 16).  
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Figure 16 Relative abundance of K04042: UDP-N-acetylglucosamine pyrophosphorylase / glucosamine-1-

phosphate N-acetyltransferase is positively correlated with age in the Chinese samples. Scatterplot showing the 

relative abundance of K04042 in all Chinese dataset samples.  R2=0.0481 and FDR p=0.0008 calculated in R. Plot 

generated in R. 

 

4.4  SUMMARY 

 

 From the Chinese dataset, we found that 163/174 of our MDMGs were actually 

present in the gut microbiome in these samples. Three of these were also absent in the 

Human Microbiome Project dataset, but also the Chinese dataset had three MDMGs that 

were not found in the HMP samples. There were large amounts of variation within 

MDMGs, especially the ones found in lower abundances. Overall, age had a small but 
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statistically significant impact on the abundance of MDMGs. The abundance of 36 

MDMGs were significantly correlated with age, 19 displaying positive trends, and 17 

with negative trends.   
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CHAPTER 5:  MICROBAL DRUG METABOLIZING GENES WITHIN THE 

GUT MICROBIOME OF NORTHWOOD RESIDENTS 

 

5.1  PRESENCE AND VARIABILITY OF MICROBIAL DRUG 

METABOLZING GENES ACROSS NORTHWOOD SAMPLES 

 

 The Northwood dataset contained 205 stool samples coming from 47 individuals. 

16S sequencing was performed on these samples to identify OTUs. PICRUSt was then 

used to predict what functions were present in the samples. From all the KOs in KEGG, 

PICRUSt was able to annotate 6909 KOs. A total of 4912 KOs were predicted to be in 

the Northwood samples. Out of our initial list of 225 potential MDMGs, PICRUSt was 

able to successfully annotate 174 KOs. This list is not exactly the same as the one that 

HUMAnN was able to annotate. PICRUSt was unable to annotate three MDMGs that 

HUMAnN annotated. They were K01202: Galactosylceramidase, K02295: gentamicin 3'-

N-acetyltransferase, or K14568: rRNA small subunit pseudouridine methyltransferase. 

On the other hand, PICRUSt was able to annotate K14681: argininosuccinate lyase, 

K14682: mino-acid N-acetyltransferase, and K15023 5- iron sulfur protein 

methyltransferase, all of which were unannotated by HUMAnN.  

 From the 16S sequencing data of the Northwood samples, PICRUSt predictions 

found 139/174 MDMGs present amongst these samples. Figure 17 below shows the 

average relative abundance of each detected MDMG as well as its standard deviation. 

K05349: beta-glucosidase was the most prevalent (6.54% average relative abundance) 

and K13955: zinc-binding alcohol dehydrogenase/oxidoreductase was the least abundant 

(0.000364%). When looking at variability, K00144: alcohol dehydrogenase is the most 

variable (0.0161 SD/0.00125 mean = 12.9 CV) and K00600: SHMT is the least variable 

(0.186 SD/2.01 mean = 0.0928 CV). 
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Figure 17 Average relative abundance of 139 MDMGs found from the Northwood microbiome gut samples after 

PICRUSt annotation. MDMGs are listed along the X-axis from highest average sequence proportion (K05349) to 

lowest average sequence proportion (K13955). Error bars represent one standard deviation. 

 

5.2  AGE INFLUENCES THE ABUNDANCE OF MICROBIAL DRUG 

METABOLZING GENES IN THE NORTHWOOD DATASET 

 

 The age of each person sampled was also recorded in Northwood dataset. These 

individuals ranged in age from 65 to 99 years old (Figure 18).  
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Figure 18 Age distribution of samples in the Northwood dataset.  

 

First, the relationship between age and the overall abundance of MDMGs in the 

Northwood samples was investigated (Figure 19). Adonis calculations result in r2=0.0228 

and p=0.005. This tells us that age does explain a statistically significant proportion of 

the variation in the abundance of MDMGs, but the correlation is weak as there is a lot of 

variation not attributed to age.  
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Figure 19 Age correlates weakly but significantly with variation of MDMGs in the Northwood samples. PCoA 

plot showing 205 Northwood samples based off similarities in MDMGs from PICRUSt predictions. Samples are 

coloured from the youngest individual (65 y/o) as white, to the oldest individual (99 y/o) as the darkest blue. Adonis 

calculations determine r2=0.0228 and p=0.005 

  

Examining individual MDMGs, the abundance of 39 are significantly correlated 

with age in this dataset (FDR p<0.05). Out of these, 24 MDMGs show a positive 

correlation of their abundance vs age, and 15 MDMGs show a negative correlation with 

age. Interestingly, three MDMGs that showed positive correlations were also found to be 

positively correlated with age in the Chinese dataset, and seven of the negatively 

correlated MDMGs in this dataset were also found to be negatively correlated with age in 

the Chinese dataset. Furthermore, the abundance of K00554 and K07442 (both listed as 

tRNA methyltransferases) were found to be positively correlated with age in the 

Northwood samples, but negatively correlated with age in the Chinese samples. Table 4 

in the appendix details all significant MDMGs. Figures 20 through 23 highlight some 

MDMGs of interest.   

 The first MDMG examined in this dataset was K01195: beta-glucuronidase 

(Figure 20). This MDMG does not have the strongest correlation with r2=0.0401, as there 

is significant amounts of variation across ages. The slope of this correlation is not 
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drastically steep, however, it was still found to be a statistically significant correlation 

(FDR p=0.018).  

 

Figure 20 Relative abundance of K01195: beta-glucuronidase is negatively correlated with age in the Northwood 

samples. Scatterplot showing the relative abundance of K01195 in all Northwood dataset samples R2=0.0401 and FDR 

p=0.018 calculated in R. Plot generated in R.  

  

K01118: FMN-dependent NADH-azoreductase was interesting as it was one of 

the only functionally annotated azoreductase (Figure 21). This MDMG had a moderate 

correlation with age (r2=0.0707, FDR p=0.002). This is another situation where many 

samples have similar abundances (close to 0.00005%) but particular individuals, 
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especially around 80 years and older, have a substantial increase in the abundance of this 

MDMG, driving the positive trend.  

 

Figure 21 Relative abundance of K01118: FMN-dependent NADH-azoreductase is positively correlated with age 

in the Northwood samples. Scatterplot showing the relative abundance of K01118 in all Northwood dataset samples 

R2=0.0707 and FDR p=0.002 calculated in R. Plot generated in R.  

  

Our last analysis in this section looks at a few MDMGs. K03218: RNA 

methyltransferase (TrmH family) is examined first (Figure 22). This MDMG has the 

strongest negative correlation out of all our Northwood age plots, with r2 = 0.1352 and an 

FDR p value of p=0.000008.  

 Another MDMG found to be significantly correlated with age was K03214: RNA 

methyltransferase (TrmH family), (FDR p= 0.002) (Figure 23). This MDMG is less 
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statistically significant than K03218, but still had a moderate correlation with age 

(r2=0.0639). Unlike K03218 which displayed a negative correlation, K03214 actually 

shows a positive correlation in abundance vs age.  

In fact, there is even a third significant MDMG, K03437, also classified as RNA 

methyltransferase (TrmH family). This one, which showed a downward trend in 

abundance vs age, had a weaker correlation than the others (r2 = 0.0378) but was still 

statistically significant (FDR p=0.02).  

 

Figure 22 Relative abundance of K03218: RNA methyltransferase, TrmH family is negatively correlated with 

age in the Northwood dataset. Scatterplot showing the relative abundance of K03218 in all Northwood dataset 

samples. R2 = 0.1352 and FDR p=0.000008 calculated in R. Plot generated by R. 
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Figure 23 Relative abundance of K03214: RNA methyltransferase, TrmH family is positively correlated with age 

in the Northwood dataset. Scatterplot showing the relative abundance of K03214 in all Northwood dataset samples. 

R2=0.0639 and FDR p=0.002 calculated in R. Plot generated by R. 

 

5.3  FRAILTY INFLUENCES THE ABUNDANCE OF MICROBIAL DRUG 

METABOLZING GENES IN THE NORTHWOOD DATASET 

 

 In the Northwood dataset, frailty of individuals was also assessed using a frailty 

index (FI) scoring system (Rockwood, 2005). In this system, individuals are evaluated on 

several physical, mental, and behavioral factors. Scores are represented on a scale from 0 

to 1, with 0 being the least frail, and 1 being the frailest in all categories. The Northwood 
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individuals had FI scores ranging from 0.305 to 0.758 (Figure 24). Additionally, the age 

of an individual and their frailty are not strongly correlated, with an r2=0.004 (Figure 25).  

 

Figure 24 Frailty Index score distribution of samples in the Northwood dataset. 

 

 

Figure 25 No correlation between age and FI score in the Northwood dataset. Scatterplot representing the age and 

FI score of the 47 individuals in the Northwood dataset. R2=0.004, p>0.05. 

 

Using the frailty index score calculated for each individual, changes in MDMG 

abundance can be explored to see if the correlated with frailty (Figure 26). The Adonis 

calculation for this dataset based on frailty gives us r2=0.01379 and p=0.033. This 

suggests that frailty explains a small, yet statistically significant proportion of the 

variation in MDMGs between samples. However, this correlation had a lower r2 value 

and a higher p value than the Adonis calculation with age on this dataset (r2=0.0228 and 

p=0.005 based off age). 
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Figure 26 Frailty correlates weakly but significantly with variation of MDMGs in the Northwood samples. PCoA 

plot showing 205 Northwood samples based off similarities in MDMGs from PICRUSt predictions. Samples are 

coloured from the individual with the lowest frailty index score (0.305) as white, to the individual with the highest 

frailty index score (0.758) as the darkest purple. Adonis calculations determine r2=0.01379 and p=0.033. 

  

Examining individual MDMGs, 24 were found to be significantly correlated with 

FI score (FDR p<0.05). Out of these significant MDMGs, 11 show a positive correlation 

in their abundance vs frailty, and 13 show a negative correlation with frailty. 

Interestingly, only one MDMG that was significantly correlated with frailty was also 

significantly correlated with age. Table 4 in the appendix details all significant MDMGs. 

Figures 27 through 29 highlight some MDMGs of interest. 

 The first MDMG examined was K01424: L-asparaginase. The correlation 

between this MDMG and FI score had an r2=0.0559, and FDR p=0.0095 (Figure 27). 

There is a large amount of variation in abundance of this MDMG for all FI scores, but 

overall there is a positive trend in abundance as FI score increases.  

 K01424 was the only MDMG that was significant in both age and frailty. 

Interestingly, the abundance decreased as individuals got older. With age, the correlation 
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was weaker than the frailty correlation (r2=0.0317 in the age correlation), and it was only 

just barely classified as statistically significant based on age (FDR p=0.039).  

 

Figure 27 Relative abundance of K01424: L-asparaginase is positively correlated with FI score in the Northwood 

samples. Scatterplot showing the relative abundance of K01424 in all Northwood dataset samples. R2=0.0559 and FDR 

p=0.0095 calculated by R. Plot generated in R.  

  

K02654: prepilin peptidase had an r2=0.0827, making it the strongest correlation 

based on frailty, as well as an FDR p=0.004 (Figure 28). Once again there is lots of 

variation in abundance, particularly in the mid-range of frailty. However, there is a clear 

downward trend in abundance as FI score increases. 
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Figure 28 Relative abundance of K02654: prepilin peptidase is negatively correlated with FI score in the 

Northwood samples. Scatterplot showing the relative abundance of K02654 in all Northwood dataset samples. 

R2=0.0827 and FDR p=0.004 calculated by R. Plot generated in R.  

  

K08325: NADP-dependent alcohol dehydrogenase had the strongest positive 

correlation between abundance and frailty with r2=0.0746, and FDR p=0.005 (Figure 29). 

There is a lot of variation in abundance of this MDMG, but there is a notable clustering 

of points at high abundance for individuals with FI scores greater than 0.5. The relative 

abundance for K08325 is quite low overall compared to the others analysed in this 

section, but it was still found to some extent across all Northwood samples.  
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Figure 29 Relative abundance of K08325: NADP-dependent alcohol dehydrogenase is positively correlated with 

FI score in the Northwood samples. Scatterplot showing the relative abundance of K08325 in all Northwood dataset 

samples. R2=0.0746 and FDR p=0.005 calculated by R. Plot generated in R. 

 

5.4  MEDICATION INFLUENCES THE ABUNDANCE OF MICROBIAL 

DRUG METABOLZING GENES IN THE NORTHWOOD DATASET 

 

 The Northwood study also collected information on what drugs each patient was 

taking with a total of 291 different drugs being taken across one or more patients. Drugs 

that would likely affect the gut microbiome through GI related treatments were identified 

(Table 3). 
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Table 3 List of drugs thought to alter the microbiome. Daily dose of each drug is listed. A * after the dose indicates 

a generic version of the drug was used. The probiotic Bacid and the laxative Lax-A Day were also included as drugs 

thought to alter the microbiome.  

Drug name Dose 

Ferrous Gluconate 300mg, 300mg* 

Ferrous Sulfate 300mg, 300mg* 

Omeprazole 20mg* 

Pantoprazole 40mg* 

Prednisone 5mg, 5mg* 

Bacid N/A (probiotic) 

Ranitidine 150mg*, 300mg* 

Feramax 150mg 

Gaviscon 200mg 

Lax-A Day N/A (laxative/powder) 

Magnesium Oxide 420mg 

Tecta 40mg 

Rabeprazole EC 20mg* 

 

 In total, 159 samples came from patients on at least one of the ‘microbiome-

altering drugs’ and 46 samples came from patients not on any of these drugs. The 

samples were split into two groups to examine if these microbiome-altering drugs change 

the abundance of KOs in general and for our MDMGs. 

 First all KOs predicted by PICRUSt in these samples were examined. PICRUSt 

was able to annotate a total of 6909 KOs, with 4912 KOs being predicted in the actual 

Northwood samples (Figure 30).  Overall the two groups do not show distinct separation. 

Testing for individual KO differences between the drug groups resulted in the 

identification of 24.6% (1206/4912) significant KOs (p< 0.05, Welch’s two-sided t-test, 

with Benjamini-Hochberg FDR MTC). 
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Figure 30 Microbiome differences between individuals on vs off microbiome-altering drugs based off all KOs 

annotated by PICRUSt from Northwood samples. PCA plot showing 205 Northwood samples based off similarities 

in all 4912 KOs from PICRUSt predictions. It compares samples from individuals not on any identified microbiome-

altering drug (purple circles, 46 samples) vs samples from individuals on at least one identified microbiome-altering 

drug (green squares, 159 samples).  

  

 Next, only the 139 MDMGs in the Northwood samples were examined (Figure 

31). Once again, most of the samples both groups are intertwined and there is no distinct 

clustering. 
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Figure 31 Microbiome differences between individuals on vs off microbiome-altering drugs based off MDMGs 

annotated by PICRUSt from Northwood samples. PCA plot showing 205 Northwood samples based off similarities 

in MDMG abundance from PICRUSt predictions. It compares samples from individuals not on any identified 

microbiome-altering drug (purple circles, 46 samples) vs samples from individuals on at least one identified 

microbiome-altering drug (green squares, 159 samples). 

  

Individually, 40 MDMGs out of the 139 are statistically different (p<0.05) 

between the two groups after MTC, representing 28.8% of the MDMGs predicted in 

these samples. Although this is a higher percent of KOs affected when compared to the 

full KO list, a chi-squared test tells us that this increase is not statistically significant.  

 Out of the 40 MDMGs that are statistically different between the two groups, only 

five have a higher average relative abundance in the group not on microbiome-altering 

drugs: K12251: N-carbamoylputrescine amidase, K05349: beta-glucosidase, K03438: S-

adenosyl-methyltransferase, K03394: precorrin-2 C20-methyltransferase, and K00620: 

glutamate N-acetyltransferase. The remaining 35 MDMGs show a significant increase in 

average relative abundance in the group on microbiome-altering drugs.  
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Comparing significant MDMGs in the Northwood samples, 15 of the MDMGs 

that are higher abundance in the drug group are also positively correlated with age. 

Additionally, four MDMGs with increased abundance in the drug group are also 

positively correlated with frailty, and one of the MDMGs with decreased relative 

abundance in the drug group was also negatively correlated with frailty. Table 4 in the 

appendix details all significant MDMGs. The box plots in Figure 32 and Figure 33 

compare the abundance of MDMGs between the two groups.  

 K12251: N-carbamoylputrescine amidase was one of the five to show a decreased 

relative abundance in the group on microbiome-altering drugs (Figure 32). Even though 

the mean relative abundance for this amidase is significantly lower in the group on 

microbiome altering drugs, there is an extensive amount of overlap across the two 

groups. Most of the samples in the microbiome-altering drug group fall within the box of 

the non-drug group. Only portion samples appear to be ‘dragging down’ the average 

abundance. This pattern of extensive overlap is also seen in the other four MDMGs 

where the mean relative abundance is lower in the group on microbiome-altering drugs.  
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Figure 32 K12251: N-carbamoylputrescine amidase has decreased average relative abundance in individuals on 

microbiome altering drugs. The green box represents individuals taking at least 1 microbiome altering drug, and the 

purple box represents individuals not on any microbiome-altering drugs. White stars in the boxes indicate mean relative 

abundance for the group. p=0.00007 calculated using Welch’s two-sided t-test with Benjamini-Hochberg FDR MTC. 

 

Examining the 35 MDMGs that were increased in the microbiome-altering drug 

group there is a similar pattern. Using K00799: glutathione S-transferase as an example, 

the drug group does have a higher average relative abundance than those not on 

microbiome altering drugs (Figure 33). However, a large portion of these two boxes 

overlap, and it is clear that around 20 samples with much higher abundances are the 

driving force behind the increased average abundance in the drug group.  
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Figure 33 Figure 30 K00799: glutathione S-transferase has increased average relative abundance in individuals 

on microbiome altering drugs. The green box represents individuals taking at least 1 microbiome altering drug, and 

the purple box represents individuals not on any microbiome-altering drugs. White stars in the boxes indicate mean 

relative abundance for the group. p=0.008 calculated using Welch’s two-sided t-test with Benjamini-Hochberg FDR 

MTC. 

 

5.5  SUMMARY 

 

 Out of the 174 MDMGs annotatable by PICRUSt, 139 were predicted to be 

present within the Northwood samples. The individuals in this study ranged in age from 

65-99 years old, and we found the abundance of 39 MDMGs correlated with age. Frailty 
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index scores were calculated for these individuals, ranging from 0.305-0.758, and 24 

MDMGs were found to be significantly correlated with FI score. We also divided the 

samples into two groups: those on drugs thought to alter the microbiome and those not on 

drugs known to alter the microbiome. We find overall the abundance of 1206 KOs out of 

the 4912 predicted in the dataset are significantly different between these two groups. 

Examining only MDMGs, we find that 40 out of 139 have significantly different 

abundances between the two groups. However, it appears only a subset of the 

microbiome-altering drug group is responsible for driving this difference in abundance.  
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CHAPTER 6:  DISCUSSION 

 

6.1  VARIABILITY OF MICROBIAL DRUG METABOLIZING GENES 

THROUGHOUT THE HUMAN MICROBIOME 

 

 One key finding in all three datasets that may have been overshadowed 

throughout the results section is the number and types of MDMGs found in the 

microbiome. It is important to remember that the MDMGs are all functions related to 

drug metabolism in humans. The fact that we were able to identify nearly all investigated 

functions in the microbiome highlights its versatility in relation to metabolizing 

xenobiotic compounds. Reviews on microbiome-drug interactions such as the one by 

Haiser and Turnbaugh is informative as it directly links the microbiome to the 

metabolism of particular compounds (Haiser & Turnbaugh, 2013), yet these reviews 

contain a relatively small amount of functions carried out by the microbiome. Our 

research here indicates that there are far more microbiome-drug interactions than 

previously described through other microbial pathways that have yet to be investigated.   

 Another thing that is important about our findings is the amount of variation from 

person to person. Each person has a unique microbiome with altered abundances of 

MDMGs. Take K00543: acetylserotonin N-methyltransferase in the HMP dataset as an 

example. Most samples have a relative abundance close to the mean for this MDMG 

(which was 0.0004%), but relative abundance in one sample was approximately 0.03%, 

nearly 100x the mean. Biologically, this variability could mean loss of efficacy (as 

demonstrated with Digoxin and cgr genes (Haiser et al., 2013)) or increased activity 

pushing levels over the therapeutic window into toxicity (like with CPT-11 and beta-

glucosidase (Wallace et al., 2010)). Although we may be able to find trends in particular 

functions, individual assessment will still be necessary in many situations if clinicians 

want to incorporate these trends into treatment modifications. 

 The abundance graphs at the beginning of each chapter (Figures 1, 8, and 17) also 

show that there is a gradual change in relative abundance from the most to least abundant 

MDMG. This may seem like an obvious result, but identifying that all MDMGs are not 
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found in similar proportions is important. The most reasonable approach for future 

research could be to focus on the most abundant MDMGs; however, even MDMGs with 

small relative abundances could be pharmacologically relevant.  

 Take K01195: beta-glucuronidase as an example. In the gut microbiome, K01195 

represents less than 1% of sequences amongst all MDMGs (Figure 1 and 6). Yet this 

MDMG has very notable clinical implications in its ability to re-activate glucuronidated 

compounds in enterohepatic circulation (Chapter 1.5.2.1). Therefore, we can speculate 

that any MDMG in the gut microbiome with a sequence proportion similar to or above 

K01195 should be abundant enough to cause a noticeable biological effect if a drug or 

compound vulnerable to that MDMG was encountered by the gut microbiome. This is 

assuming that all else remains equivalent, which of course in not the case. There may be 

differences in how readily certain MDMGs are transcribed, or perhaps the beta-

glucuronidases produced by the gut microbes are more efficient at metabolizing their 

targets than other MDMGs. This MDMG at least gives us a point of reference for the 

abundance required to cause some clinical impact. Functional studies are required to 

determine the level of raw/transcribed sequences required in order to produce a response 

on vulnerable drug to an extent that is biologically significant. 

 

6.2  MICROBIAL DRUG METABOLIZING GENES ACROSS BODY SITES 

 

 As expected, the gut microbiome was unique from the other four body sites 

examined in relation to the relative abundance of MDMGs. Nearly all MDMGs were 

identified in the gut. Samples from the gastrointestinal tract are clustered away from the 

samples coming from the other four body sites (Figure 3). This reveals that the drug 

metabolism functions present in the gut microbiome are distinct from other areas in the 

body. Also, the GI samples are not tightly clustered themselves, but quite spaced out. 

This emphasizes the interpersonal differences in the abundances of drug metabolism 

functions across the population.  



84 

 

 Our initial rational for examining drug metabolism functions across different body 

sites was that there might be some type of selection occurring. In theory, gut microbes 

with particular genes would respond better when they encountered particular compounds, 

for example, by being able to break them down and use them for their own cellular 

purpose, or by degrading toxic drug metabolites. As a result, those bacteria as well as 

those genes would increase in relative abundance. This explanation seems to fit the 

pattern for K05349: beta-glucosidase. The relative abundance is highest compared to all 

other MDMGs in all three of our datasets, and it is also far more abundant in the gut than 

the other body sites in the HMP dataset. It appears the gut bacteria are using this function 

to break down carbohydrates, possibly large carbohydrates that are indigestible by 

humans such as cellulose, for their own benefit.   

 

6.3  MICROBIAL DRUG METABOLIZING GENES DO NOT VARY BY SEX  

 

 There have been documented differences in drug metabolism between females 

and males (O’Malley, Crooks, Duke, & Stevenson, 1971). Additionally, there has been 

some studies that suggest a difference in the gut microbiome between these two sexes, 

but other studies have found no significant differences between them (Markle et al., 

2013; The Human Microbiome Project Consortium, 2012). However, within our research 

we found no significant differences in the abundance of MDMGs between females and 

males.  

It could be hypothesized that a hormonal difference between the two groups might 

cause a shift in the bacteria present and also would influence the abundance of particular 

functions. The microbiome is known to shift during pregnancy (Koren et al., 2012). 

However, the datasets examined excluded females on many types of hormonal birth 

controls as well as those who were pregnant or recently gave birth. While this is useful 

for eliminating variables in an initial study, it does not represent the situation in the 

general population, as many women would fall in these categories. Further investigation 

with less exclusion criteria might demonstrate that in a less controlled subset of the 

population, there are noticeable differences in MDMGs between females and males. 
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6.4  AGE AND FRAILTY CORRELATE WITH MICROBIAL DRUG 

METABOLIZING GENE ABUNDANCE 

 

 It has been documented for several decades that aging may alter drug metabolism 

(O’Malley et al., 1971). Furthermore, it has been found that the microbiome shifts with 

age and frailty (M. G. Langille et al., 2014). This suggested that particular microbial 

genes may be altered in old or frail individuals, thereby impacting drug metabolism.  

In the Chinese dataset and Northwood dataset, 36 and 39 MDMGs respectively 

were identified that had statistically significant correlations between their relative 

abundance and the age of the sampled individual. Only 12 of these overlap between the 

datasets (two of which showed opposite trends). In the Northwood dataset, 24 MDMGs 

were correlated with frailty index score. 

K03743: nicotinamide-nucleotide amidase, and K01448: N-acetylmuramoyl-L-

alanine amidase were both correlated with age. Amidase enzymes catalyse the hydrolysis 

of an amide and although the specific classifications of these MDMGs are different, they 

are both still amidases and therefore may both be able to target drugs with vulnerable 

amide groups. Although K03743 has a stronger positive correlation with age, the relative 

abundance of K01448 seems higher for the vast majority of samples. As a result, if a drug 

susceptible to metabolism via amidase was introduced to a person’s gut microbiome, we 

would predict that an older individuals’ microbiome would metabolise less of this drug 

compared to a younger individual. Whether this difference would have biologically 

significant impacts is not obvious, as many other factors would be involved in said drug’s 

metabolism. These first MDMGs also show that the correlations between age and 

abundance are very weak. As a result, there is still a vast amount of unexplained variation 

that could be explored in more detail regarding the abundance trends of MDMGs. 

 Alcohol dehydrogenase (K00001) catalyses the oxidation of alcohol functional 

groups to aldehydes or ketones and was found to decrease in the gut microbiome with 

age. It was shown to be negatively correlated with age. As previously discussed in 

Chapter 1.5.1.7 the gut microbiome may increase risk of atherosclerosis and other 

cardiovascular conditions by metabolising dietary choline into TMAO and that the 
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compound DMB could be used to block microbial TMA lyase (Wang et al., 2015). 

However, Wang et al. also reported DMB to be rapidly metabolized by alcohol 

dehydrogenase. Based on our findings, DMB could possibly be metabolized by the gut 

microbiome resulting in differential efficacy of DMB to inhibit TMAO production. This 

inhibition could be less for older individuals as microbes with alcohol dehydrogenase 

decline, but large individual variability would require metagenomic profiling.  

There are two other statistically significant alcohol dehydrogenase MDMGs 

correlated with age in the Chinese dataset (K04072 and K13953). Unlike K00001, these 

other two show positive correlations in abundance vs age. However, these two MDMGs 

were found to be some of the few positively associated with T2D (Qin et al., 2012). As a 

result, the upward trend observed in these other alcohol dehydrogenases might just be 

resulting from the number of T2D patients in this collection of samples. In order to make 

any definitive statements about these MDMGs in the general population, it would be best 

to analyse samples from disease-free individuals, or have the proportion of individuals 

sampled with T2D be representative of the incidence of T2D in the population. 

K08325: NADP-dependent alcohol dehydrogenase was also a significant MDMG, 

except it was correlated with FI score. In contrast to K00001 which had a negative 

correlation with age, K08325 had a positive correlation with frailty. This example is 

another point of caution around the complexity of the microbiome. Using DMB treatment 

as an example, although the age studies suggest older individuals would need a lower 

dose of DMB since they have less alcohol dehydrogenase breaking it down, the frailty 

data suggests more frail individuals would need a higher dose. 

K00600: SHMT had a relatively weak but significant positive correlation with age 

and was one of the most abundant MDMGs across datasets. The known function of 

SHMT is to transfer a hydroxymethyl group to tetrahydrofolate in order to form 5, 10-

methylene-tetrahydrofolate (Renwick, Snell, & Baumann, 1998). This is an important 

biological function as this ‘one-carbon unit’ is a major source of carbon for certain cells. 

Moreover, increase in SHMT activity has been linked to cells rapidly proliferating, 

namely in the case of tumors (Locasale, 2013). Reducing or inhibiting the activity of 

SHMT has thus become an attractive option for treating cancer patients. The results 
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presented in this study suggest that the gut microbiome has the potential via microbial 

SHMT activity to interact with the growth rate of tumor cells, especially in nearby areas 

such as the gastrointestinal tract and the colon. No research has been done on the impact 

this microbial function has compared to human SHMT, but incorporating the microbiome 

into anti-cancer treatments could result in increased efficacy. Additionally, if selective 

targeting to microbial genes could be done and demonstrate efficacy, the side-effects that 

stem from targeting human cells in cancer therapy could be greatly reduced.   

K01195: beta-glucuronidase was another significant MDMG that decreased in 

relative abundance as individuals got older. This function has documented biological 

relevance in the gut microbiome as it plays a role in enterohepatic circulation, and 

inhibitors have been developed to reduce their activity (Wallace et al., 2010). 

Consequently, middle-aged individuals may benefit more from these inhibitors as they, 

on average, had higher relative abundance of this function. However, there is significant 

variation throughout all ages, and so use of microbial beta-glucuronidase inhibitors might 

be utilized even in the most elderly patients depending on an individual’s unique 

microbiome. 

K01118: FMN-dependent NADH-azoreductase, had increased abundance with 

age in the Northwood dataset. This was also the only azoreductase function identified in 

both the Chinese and Northwood samples (although in the HMP samples, K03206: 

azobenzene reductase was detected). Azoreductase enzymes catalyse the breakdown of 

nitrogen double-bonds, also called azo bonds. Chapter 1.5.1.3 discussed the functional 

implications of azoreductase activity, in a beneficial sense for prodrugs like sulfasalazine, 

as well as in a negative context through its role in creating toxic metabolites from azo 

dyes. While situations like inhaling dyes should be avoided regardless of a person’s 

microbial composition, the abundance of this function in the microbiome could affect 

dose and response in elderly individuals. If testing for azo bond prodrugs was done on 

younger individuals, there might be a marked increase of the active form of the drug in 

older patients.  

One very interesting MDMG found to be positively associated with frailty was 

K01424: L-asparaginase. This MDMG was negatively correlated with age. It is intriguing 
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to see an example of age suggesting functionality in one direction, while frailty suggests 

functionality in the opposite direction. K01424 has very important biological 

significance, as it is used to break down circulating asparagine into aspartic acid. As a 

result, it can be used as a drug so certain cancer cells like acute lymphoblastic leukemia 

cells that cannot make their own asparagine, are depleted of this amino acid which leads 

to cell death (Broome, 1981). This gene in the microbiome may therefore have some 

protective effect when it comes to more frail individuals.  

K02654: prepilin peptidase had the strongest correlation based on FI score. This 

MDMG was interesting for several reasons. First, this enzyme is found on the surface of 

bacteria with its primary function is to cleave specific regions of exported proteins. This 

function in itself may play a role in how the gut microbiome can impact drugs, depending 

on what proteins are released and how cleaving these proteins affects their functions 

(Dalbey, 1991). In addition to this, it also has documented function as an N-

methyltransferase. Since its action is nonspecific, this MDMG might, for example, work 

as an amine N-methyltransferase. As a result, an amine drug could be methylated by this 

enzyme, subsequently affecting the function of that drug. 

In Northwood, the individuals were aged 65 to 99 whereas in the Chinese 

samples, individuals ranged in age from 13 to 86 years old. This may indicate that 

significant functions in the Chinese dataset are ones that shift throughout life, whereas 

MDMGs in the Northwood dataset shift in the later stages of life. Additionally, 

Northwood individuals all lived at the same location. People living in assisted care 

facilities could be under environmental factors that change the microbiome besides age. 

In regards to frailty, although there was a wide range in FI scores, even the lowest scoring 

individual was still reasonably frail. Further exploration into populations with a larger 

separation in frailty might bring forth additional MDMGs not identified in the Northwood 

dataset.  

 There are many possible explanations as to why there are shifts in the abundance 

of MDMGs as people age or get frailer. It has been documented that the microbiome 

overall shifts in composition over longer time periods. With that, changes in the functions 

present are likely to occur. This may or may not be related to lifestyle shifts as people get 
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older. A person’s body as a whole slows down in terms of functional capabilities. Since 

the microbiome is closely linked to our own health, this may drive some of the changes in 

functions present. Furthermore, elderly people may be on more drugs or treatments in 

order to help maintain good health. It is possible that these medical practices are altering 

the microbiome and influencing the abundance of particular functions. Old and frail 

individuals may have changes in diet, exercise, or living situations, which would alter the 

environment in the gut and therefore change the microbes present.   

 

6.5  MEDICATION USE IMPACTS MICROBIAL DRUG METABOLIZING 

GENE ABUNDANCE 

 

 Many studies have examined how drugs (mostly antibiotics) alter the general 

composition of the microbiome (Francino, 2016). Other drugs related to the 

gastrointestinal tract have been shown to affect the genes present in the microbiome 

(Zhernakova et al., 2016). We investigated the impact particular drugs related to the GI 

tract had on the abundance of drug metabolizing genes in the microbiome. The 

abundance of several MDMGs were found to be significantly associated with the use of 

these drugs. 

 K12251: N-carbamoylputrescine amidase, was one of the five MDMGs that 

showed a lower average relative abundance in the microbiome-altering drug group. We 

have previously discussed how this function may be able to metabolize drugs with amide 

groups. The other MDMG examined was K00799: glutathione S-transferase, which was 

one of the 35 MDMGs with a higher average relative abundance in the microbiome-

altering drug group. The mammalian version of this gene functions by detoxifying 

electrophilic xenobiotics, and this reduction of this function is linked to susceptibility to 

carcinogens and disease states (Hayes, Flanagan, & Jowsey, 2005). If the microbial 

version of this function remains the same, microbes in the gut would be able to reduce 

toxic impact of particular compounds, thus benefiting the human host.  



90 

 

 It is important to remember that all the microbiome-altering drugs were grouped 

together in this study. This was done to provide statistical power to determine if certain 

drugs were correlated to changes in drug metabolism functions, given the limited number 

of patients compared to the vast amount of different drugs. If a large enough group could 

be analysed with more people on one particular treatment and less overlap of drugs, 

functional changes in the microbiome might be more accurately assessed.  

 

6.6  LIMITATIONS 

 

6.6.1 SELECTION OF MICROBIAL DRUG METABOLIZING GENES  

 

 In this study, our assessment of the functional capabilities of the microbiome is 

determined by our selection of KOs (that we label as MDMGs). While this approach is 

useful for getting a general understanding of drug metabolism potential, there are also 

obvious setbacks.  

  The first issue appears when looking at the categories of functions these KOs fall 

into. Throughout the results section, the number of MDMGs showing significant 

differences or trends based on the variable being assessed was stated. These numbers 

should not be taken to directly represent how important a particular variable is in terms of 

drug metabolism functional abundance. Each particular function may not be equally 

important when it comes to drug metabolism. For example, there are only a handful of 

beta-glucuronidase MDMGs but over 100 methyltransferase MDMGs. There has been 

direct documentation of microbial beta-glucuronidase interfering with drug metabolism 

(see Chapter 1.5.2.1), but as of yet there are no case studies directly tying microbial 

methyltransferase to drug modifications. The actual number of abundant MDMGs 

correlated with individual variables should not be ignored, but these numbers alone 

cannot be used to determine what variables are ‘most important’ in terms of microbiome-

drug interactions. 
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 Along that same line, there is a bit of caution surrounding the methyltransferase 

KOs. To be inclusive, every methyltransferase KO that had evidence of being found in 

bacteria was included in our drug metabolism list. Some of these KOs were given general 

names, but there are also many ones like K00590: site-specific DNA-methyltransferase. 

The name of KOs such as this indicate they are known to act on specific targets. Since it 

is possible that the genes responsible for this function may also target other xenobiotic 

compounds, we chose to leave them in the dataset. However, based on classification 

alone, some KOs may have more broad applications and as such are more important in 

terms of significant drug metabolism functions.  

 There is an additional issue with using KOs to represent functional capacity of the 

microbiome. We only looked at functions that are known to play a role in drug 

metabolism in humans and that were also found in bacteria. However, the microbes in our 

gut have 100 times the genes of humans. Some, perhaps many of these genes play a role 

in xenobiotic metabolism. These genes may have human homologs in the KEGG 

database, but if there was no documentation of these genes found in bacteria they were 

excluded from our study. Therefore, our current findings are just giving a general 

overview of the drug metabolism potential. With increased classification of microbial 

genes we will be able to update this overview into a more complete picture.  

 

6.6.2  ANNOTATION 

 

 This study is also relies on particular sequences being annotated to functions in 

the KEGG database, which creates some limitations. First of all, HUMAnN cannot 

annotate a sequence as a particular KO if that function does not have an associated KO. 

This seems like an obvious statement but an important one to keep in mind. Rare or 

unclassified functions without a KO would be invisible in our current approach. Genes 

like the cgr genes found in E. lenta are not represented in the KEGG and would therefore 

remain unexamined in this analysis. Only the functions present in a reference database 

can be studied, but this represents just a portion of the many functions present in the 

microbiome.  
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 An example of this problem is found when discussing CYP enzymes. As 

discussed in Chapter 1.2, these enzymes play a critical role in human drug metabolism in 

the liver. Yet, these enzymes were not well represented when searching the KEGG 

database for metabolism functions found in microbes. Does this mean that the 

microbiome lacks CYP450s? Not necessarily. Microbial CYP enzymes have been 

researched and identified, just not to the extent of their human counterparts (McLean et 

al., 2006). In the millions of genes in the microbiome, it is very possible that some of 

these genes carry out functions similar to human CYP450s. However, with these 

functions largely absent in the KEGG database, there is no way of annotating sequences 

to these functions, even if those sequences do encode for microbial CYP-like enzymes.  

 This limitation also holds true for PICRUSt predictions. PICRUSt can only 

predict functions if they are actually found in the KEGG database. Additionally, 

PICRUSt relies on an additional database to relate taxa with functions. This leaves the 

predictions vulnerable to missing rare and unclassified functions as previously stated, but 

also opens up slightly more room for error. If a function is newly acquired by a particular 

taxa, say via LGT, the reference database would not be able to associate that function 

with that taxa. Hence in our analysis this function would be missing. The idea of studying 

metagenomic samples without using a reference genome has been investigated, but it has 

not advanced to the forefront of the field (Nielsen et al., 2014). 

 There is also an issue with the annotation process in general. Many different 

genes man be grouped together under one function. These genes may all carry out the 

same general function, but there may be detailed factors that distinguish these genes from 

one-another such as the specific structure of compounds they are able to act on. As a 

result we cannot claim with certainty that all microbiomes containing a particular MDMG 

will be able to modify a drug in the same way.  
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6.6.3  BIOLOGICAL IMPACT OF FUNCTIONS  

 

 The objective of this study was to survey drug metabolism functions across the 

microbiome. This is useful for getting an overview of what is happening in the 

microbiome, but is lacking in terms of clinical significance. We have identified that the 

abundance of certain MDMGs change based on several variables. It is important to 

remember that we are just looking at DNA sequences. This does not provide us with any 

information about how quickly or in what situations these gene would be transcribed and 

translated. The level of mRNA and protein production are not necessarily correlated 

(Greenbaum, Colangelo, Williams, & Gerstein, 2003). Even if they were all translated 

into proteins at the same rate, we cannot say for sure that the amount translated would 

cause clinically significant effects. Further biological work must be done in order to 

determine if these differences and correlations actually have an impact on bioavailability 

of drugs in patients.  

 

6.6.4.  RELATIVE ABUNDANCE 

 

 Another issue related to interpretation of the results is relative abundance. 

Relative abundance is a useful way of looking at data to identify particular trends. The 

problem with using relative abundance is that it may hide some important information. 

Particular studies have commented on this issue and proposed new statistical methods to 

examine microbial samples, but these methods are still in development (Olesen et al., 

2016).  

As an example, consider metagenomic samples from different body sites. The gut 

microbiome contains a MDMG with a very high relative proportion across all samples 

(K05349). As a result, every other MDMG in the gut will make up a smaller proportion 

of the drug metabolism sequences. Due to this, other MDMGs might have smaller 

relative abundances in the gut compared to their relative abundance in the other body 

sites which do not have a MDMG making up such a large proportion of the sequences. 
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We can speculate that for some (possibly many) of these functions, it is not the case that 

they are being downregulated in the gut microbiome, but their proportion is being 

overshadowed by the highly abundant K05349. 

Furthermore, we are looking at relative abundance of these functions in a sample, 

not the raw number of sequences found for each MDMG. Therefore, we cannot say for 

sure if the MDMGs found with lower relative abundances in the gut actually have lower 

number of sequences compared to the other body sites, or if some MDMGs are more 

abundant in the gut, but appear small due to MDMGs with an even higher amount of 

sequences present. This limits our ability to speculate biological consequences between 

groups based on the relative abundance of MDMGs.  

This is likely less of an issue comparing similar environments like the gut across 

multiple people. However, the issue is still present. Take K00600: SHMT as an example, 

whose abundance was positively correlated with age. It can be said that overall, SHMT 

makes up a larger proportion of drug metabolism functions in these individuals as they 

get older. However, the actual number of genes in the microbiome may decrease with 

age. As a result even though older individuals may have a higher relative proportion of 

these genes, the raw number of sequences could be lower.  

Relative abundance is a simple and effective way to compare certain aspects of 

data. However, to translate these findings into therapeutics, further analysis would require 

quantitative levels of these functions in the microbiome.  

 

6.6.5  CROSS-COMPARABILITY 

 

 Each of the datasets utilized in this study provided important information 

regarding the individuals sampled. Unfortunately, one major limitation is the inability to 

directly compare findings across different datasets. This is not just an issue with this 

study but with metagenomics in general. Ideally, all methods of analysis would yield the 

same results but rarely does this occur. Slight differences in sequencing procedures may 

create particular biases. Most of the times if you were to plot two different datasets on a 
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PCA plot, they would cluster primarily based on datasets regardless of any other variable 

being assessed.  

 This problem is made even more difficult as individuals between studies grow 

more separate. Different environments, diets, and genetic backgrounds will introduce 

variation between datasets that overpowers any other factor. Additionally, different 

annotation methods (such as HUMAnN vs PICRUSt) make comparisons across datasets 

even less appropriate. HUMAnN is based off metagenomic data whereas PICRUSt, 

although accurate, are still predictions based off 16S sequences. Therefore, trends within 

our datasets can be examined, but directly comparing MDMG abundance between the 

datasets cannot be justified.  

 

6.6.6  GLOBAL EXTRAPOLATION 

 

 Our findings in this study apply to the specific population examined. The question 

then becomes: how wide do these trends extend? Take the Northwood samples as an 

example. Would the same trends exist if a population outside of Northwood was 

examined? What about throughout all of Nova Scotia, or across all Canada? 

Geographical location plays a major role in shaping the microbiome, with changes in diet 

being likely responsible for a large portion of the changes (David et al., 2013). For any of 

these trends to translate into clinical significance, identifying what population(s) they are 

consistently found in is critical. At the point where these trends disappear, determining 

what specific factors caused the changes in the microbiome may also provide valuable 

insight.  

 

6.6.7  DRUG METABOLISM DATABASE 

 

 In this study, many different functions present in the microbiome that could 

potentially play a role in drug metabolism were identified. Unfortunately, even with 
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databases containing thousands of functions, there is no well-established database 

surrounding drug metabolism. Currently, one of the only ways to determine how a drug is 

metabolized is to look up the individual drug’s profile and look to see if the metabolism 

pathway is listed in its pharmacokinetics. For some drugs, the exact method of their 

elimination is unknown. With the remaining drugs, we had hoped that there would be 

some collection put together detailing, at least in a broad sense, how drugs our primarily 

metabolized. With this information we could look at the MDMGs identified in our 

samples, and quickly establish a shortlist of drugs that may be vulnerable to metabolism 

by the microbiome. Since such a system does not currently exists, we are left with an 

extremely inefficient process of identifying drugs that interact with the microbiome.  

 

6.7 FUTURE WORK 

 

6.7.1  DRUG IDENTIFICATION 

 

 With several metabolism functions identified in the microbiome, the next step 

would be to identify drugs whose metabolism are affected by the gut microbes. As 

mentioned in the previous chapter, there is no well-established database classifying drugs 

based on how they are metabolized. As a result, individual drugs could be researched on 

known pathways that cause their metabolism. If that function is one documented in the 

microbiome, it would be a candidate for testing. This process could be tedious. 

 A more efficient way of performing the task would be large scale screening. Since 

we have only got a glimpse of the drug metabolism potential of the microbiome, it is 

likely that many other functions currently unknown in the microbiome can modify drugs. 

Performing large-scale screening experiments would illuminate what functions appear to 

be most relevant in modifying drugs. 

 There are many different approaches to performing these large scale screenings. 

One could start by introducing as many drugs as possible through two mouse groups, a 

control normal mouse and a germ free group. The blood, urine, and/or feces could be 
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screened for metabolites in order to assess the impact of the gut microbiome in modifying 

drugs based on the differences between the two groups. 

 This would be a relatively fast and efficient initial comparison, but there are a few 

problems with this approach. First, the metabolites of the drug being studied must be 

known or there must be some way of detecting it. If the microbes are breaking down the 

drug in a new way creating different metabolites, they may be missed.  

One way around this issue would be looking at the actual physiological impact of 

drugs. This would only be measurable for certain drugs. If testing a drug that for example 

lowers blood pressure, you could compare the reduction in blood pressure between the 

two groups. If there are significant changes between the groups, microbial metabolism is 

likely the cause. Unfortunately, germ free mice are developmentally different than 

normal mice and that difference may alter the internal drug metabolism potential of the 

mice. To resolve this issue, the two groups could be germ free mice, and initially germ 

free mice colonized by human gut microbes. This process would be a little more 

laborious, but would reduce the amount of noise from physiological differences between 

the two groups while also giving a closer representation of what is the human 

microbiome is capable of.  

 

6.7.2  FUNCTIONAL ANALYSIS 

 

 Identifying MDMGs, and finding changes in the abundance of these functions is 

important in understanding the microbiome. However, simply pointing out differences is 

not enough. From a clinical perspective, we must be able to determine if changes in these 

MDMGs produce biologically significant impacts.  

 In regards to functional significance, there are two general situations to consider. 

The easier situation is a comparison between individuals that have a particular 

metabolism function in their microbiome versus people without that function. This is 

similar to the case of Digoxin, where individuals who had a particular microbial function 

breaking down had serum digoxin levels reduced to as low as half (Haiser et al., 2013). If 
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we are able to identify microbial functions such as this, that break down a particular drug 

but is not found in all individuals, then the clinical relevance of this function should be 

easily assessed.   

 The second situation is much more complicated. With many of the MDMGs 

identified, there are differences or trends in the abundance of these functions. The 

question we then need to investigate is if these differences in abundance cause 

biologically noticeable changes. 

 One step that could be performed would be using metatranscriptomics or 

metaproteomics to get a better functional representation of what is happening. These 

processes are more complicated than metagenomics, and also have issues associated with 

them. With metatranscriptomics, the turnover rate of mRNA might mean that the 

functions assessed are very time sensitive and may not represent the microbiome as a 

whole. Metaproteomics is also troublesome as identifying and classifying proteins is 

more complicated that looking at DNA sequences. However, with improved mass 

spectrometry methods, this method has recently been used to identify microbial proteins 

(Grassl et al., 2016). 

 Another form of functional analysis is simply testing drugs on microbial 

communities with known amounts of particular MDMGs. Using gnotobiotic mice, you 

can set up several ‘concentrations’ of functions in their microbiomes. It would then be 

possible see if the differences in functional abundances cause significant difference in 

physiological response or the metabolites produced.  

 

6.7.3   KEY MICROBES 

 

 Throughout or study we focused on functional capabilities of the microbiome 

rather than studying particular taxa or OTUs. Many different research groups have found 

that even with changes in diversity and composition in the microbiome, the abundance of 

general functional categories remain quite stable (Zhernakova et al., 2016). For an initial 
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survey we decided that looking at the abundance of functions as a whole would give us 

more insight than looking at OTU composition. 

 This does not mean individual taxa are not important in shaping the drug 

metabolism potential of the microbiome. As with Digoxin in Chapter 1.5.1.1, one species, 

E. lenta, was responsible for carrying the genes that metabolised the drug. This may be a 

very rare and unique case, but we cannot rule out the possibility that other species of 

microbes have unique genes that have not been shared via LGT. If such microbes are 

identified, it will make clinical assessment of drug metabolism far easier, as we would 

simply need to identify particular taxa to predict a drug will be altered by the 

microbiome. 

 There is also a case to be made for conditionally rare taxa (CRT) (Shade et al., 

2014). As the name suggests, these taxa are normally in very low abundance compared to 

the number of other microbes. However, occasionally CRT will bloom to an abundance 

orders of magnitude larger than their baseline. If these CRT carry unique, or even 

common genes related to drug metabolism, their peaks in abundance could alter how the 

microbiome processes drugs as a whole. These taxa would become even more relevant if 

the conditions that dictate their blooming phase were related to particular disease 

conditions or treatments.  

 If key microbes were suspected of playing a role in drug metabolism, drug testing 

could be done on them. If culturable, these microbes could be grown, introduced to a 

drug, and analysed for the extent of drug metabolism occurring. If taxa were not 

culturable but the specific gene(s) thought to be related to drug metabolism were known, 

these genes cloned and tested into a model organism such as E. coli. This would not be a 

perfect representation of what’s occurring in the microbiome, as interactions with other 

microbes and human cells would likely impact the taxa being studied. However, it might 

provide some early estimates regarding how effective that taxa is in modifying a 

particular drug.  
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6.7.4  DRUG USE VS TIME PROFILE 

 

 Our studies exploring the impacts drugs had on the microbiome yielded some 

interesting results. However, many areas of this study could be explored in greater detail. 

Aside from having a larger patient group, and more patients on the same drug treatment, 

a profile of drug use over time would be a critical investigation. This type of analysis 

could be done for drugs already on the market, as well as drugs in ongoing clinical trials. 

The Northwood study looked at medication use retrospectively, and therefore had no 

information on patients before starting particular drug treatments. The problem with this 

is that an individual might have had a very distinct microbiome before treatment began. If 

an individual was examined only after drug treatment and compared them to the rest of 

the population, it cannot be determined whether the changes are a result of the drugs, or 

just baseline differences in the individual. Since the Northwood study was only 

exploratory, this type of information was not a primary concern. In the future, a study 

analyzing how microbial functions shift throughout a drug treatment would provide a 

more precise insight on how the microbiome adapts to medication use.  

 

6.7.5  ADDITIONAL FACTORS INFLUENCING FUNCTIONAL ABUNDANCE 

 

 In this study, we explored many factors and their connection to changes in the 

abundance of drug metabolism functions. As the results from this investigation showed, 

many of these factors were significant but only explained a small proportion of the 

variation observed. Further studies done in the same fashion could help tease out 

additional variation.  

 It would be interesting to examine many different disease states, to determine if 

the functional capabilities of the microbiome is altered compared to healthy individuals. 

It would also be interesting to see how the microbiome shifts as the disease progresses. 

Many diseases such as autoimmune disease, cardiovascular disease, neurological 

diseases, and cancer have many contributing factors associated with them, the 
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microbiome being one. Changes in the drug metabolism functions in the microbiome as a 

result of these diseases may influence the effectiveness of treatment. 

 The pediatric population is another area of interest. There has been much debated 

surrounding the microbiome of babies born naturally versus caesarean section (Neu & 

Rushing, 2011). Some researcher have even tried swabbing C-section babies with their 

mother’s vaginal microbes in order to establish a more ‘natural’ microbial community 

(Dominguez-Bello et al., 2016). The long-term differences in these two birthing methods 

are still unclear. In the short-term, it would be intriguing to see if these methods cause 

differences in the genes, particularly drug metabolism functions, we observe in these 

children.  

Antibiotics are another major category. In the datasets we examined, all patients 

had been free of antibiotics for several months as they cause chaos in the microbial 

environment of the gut. For initial investigations, avoiding this chaos is helpful as we are 

able to investigate drug metabolism functions in a more stable environment. However, 

antibiotic use in the real world is not something that is easily avoided. It will be important 

to investigate how antibiotic use alters the functional capabilities of the microbiome as 

well. 

  These studies should not be restricted to the gut microbiome either. Although this 

environment is the one most often studied, other areas of the human body contain 

microbes that may play a role in drug metabolism. Take the lung microbiome for 

example. Respiratory conditions such as asthma are often treated by drugs in inhalers. 

The microbes in the lungs may contain functions that can modify these drugs before they 

reach their target. Classifying the impact of these functions would allow for better dosing 

of patients using inhalers.  

 

6.7.6  PROBIOTICS 

 

 Probiotics have been used for many years with claims of improved health and a 

‘better’ gut bacteria. As our knowledge of the microbiome grows, the role probiotics can 
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play in human health will be better understood. A potential avenue for probiotics in the 

future is their use to complement a drug treatment. These probiotics may contain 

microbes enriched with particular functions depending on the treatment. These functions 

could help metabolize slowly-absorbed drugs so toxic accumulation does not occur in the 

GI tract. They could also be used in combination with prodrugs, to improve the rate of 

conversion to the active compound thus increasing bioavailability. This type of 

implementation into medicine is probably many years away, but it is still important to 

consider actively manipulating the microbiome as a treatment strategy.  

 

6.7.7  DRUG-MICROBIOME INTERACTION DATABASE 

 

 The results presented throughout this study show a first-pass exploration of the 

drug metabolism potential of the human microbiome. With continued research in this 

field comes a better understanding of how the microbes in our bodies interact with drug 

treatments. This research could contribute to the establishment of a database of drugs 

vulnerable to metabolism by the microbiome, and particular microbial genes responsible 

for said metabolism. Ideally, this information would be gathered together in a 

comprehensive drug-microbiome interaction database. In a similar fashion to how human 

genes are screened to find genetic predispositions that may alter treatment, a person’s 

microbiome may also be sequenced. These sequences could be screened through the 

microbiome database to identify any potential treatments that may be influenced by the 

microbiome. From there, the treatment could be altered by dosing adjustments or use of 

different drugs to ensure maximum therapeutic benefit.  

 This database would also be useful in the process of drug development. If early 

pharmacokinetic studies identify that a candidate drug is metabolized primarily by a 

particular function, that function can be researched in the database to determine how 

abundant it is in the microbiome, both in general and specific populations. During clinical 

trials, the microbiome of participants can be sequenced and screened through the 

database. Based off drugs of similar structure or specific metabolic pathways, it could be 
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possible to determine if microbial metabolism may be linked increased or decreased 

bioavailability of the drug.  

 This could also extend beyond in-vivo analysis. Programs like Simcyp use 

previously generated experimental data to simulate the processes of absorption, 

distribution, metabolism and excretion for a compound in a given population (Jamei et 

al., 2009). By incorporating a drug-microbiome database into Simcyp, this program 

would be able to identify particular microbial functions that would impact a certain drug. 

As a result, it would be able to more accurately simulate how a drug is likely to move 

through the body in a given population.   

 Although this database would be useful in drug treatment modifications, the 

incorporation of the microbiome into personalized medicine shares similar challenges as 

human genetic information. Some of these problems include confidentiality of microbial 

makeup, discrimination by physicians and insurance companies, reduced access to 

particular treatment based on microbial gene abundance, and the rate at which research 

can be translated into the clinic (Joly, Saulnier, Osien, & Knoppers, 2014). There is no 

easy solution to these problems. It is therefore a necessity that regulatory agencies such 

as the FDA become more involved in microbiome-drug interactions to insure that this 

information is able to benefit patients in an effective and ethical manner.  
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6.8  CONCLUSIONS 

 

 The human microbiome is a fascinating and complex system. The functional 

composition of the microbiome varies from person to person, with many factors 

contributing to its uniqueness. In this study, we have explored several of these factors and 

their connection to drug metabolism functions in the microbiome. This process has 

illuminated many potential pathways the microbiome has at its disposal to alter drugs. 

Importantly, this is only an initial exploration. There is still much work to do in order to 

translate the functions present in the microbiome into useful clinical applications. With 

increased exploration of the capabilities of the microbiome, we move closer and closer to 

its incorporation into personalized medical treatment.  
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APPENDIX 

 

Table 4 Microbial drug metabolizing gene master list. The first column contains all annotated MDMG IDs and 

names between HUMAnN and PICRUSt, along with Enzyme Commission (EC) numbers if applicable. The ‘Gut vs 

All’ column indicates if the mean relative abundance of a particular MDMG was increased (up) or decreased (down) in 

the gut compared to the four other body sites in the HMP dataset. The ‘China Age’ column indicates if the relative 

abundance of a MDMG was positively correlated (up) or negatively correlated (down) with age in the Chinese dataset. 

The ‘NW Age’ column indicates if the relative abundance of a MDMG was positively correlated (up) or negatively 

correlated (down) with age in the Northwood dataset. The ‘NW FI’ column indicates if the relative abundance of a 

MDMG was positively correlated (up) or negatively correlated (down) with FI score in the Northwood dataset. The 

‘NW Med’ column indicates if the mean relative abundance of a MDMG was increased (up) or decreased (down) in the 

samples of individuals on microbiome-altering drugs compared to the samples of individuals not on microbiome-

altering drugs in the Northwood Samples. In all columns, ‘nosig’ indicates that the difference or correlation for a KO’s 

relative abundance in the given analysis was not statistically significant. Blank spaces indicate that the MDMG was not 

found at all in the dataset, or the MDMG was not annotated.  

KO ID and Name 

Gut vs 

All 

China 

Age 

NW 

Age 

NW 

FI 

NW 

Med  

K00001: alcohol dehydrogenase [EC:1.1.1.1] down down nosig nosig nosig 

K00002: alcohol dehydrogenase (NADP+) [EC:1.1.1.2] down nosig nosig nosig nosig 

K00055: aryl-alcohol dehydrogenase [EC:1.1.1.90] down nosig nosig nosig nosig 

K00114: alcohol dehydrogenase (acceptor) [EC:1.1.99.8] or 

alcohol dehydrogenase (cytochrome c) [EC:1.1.2.8] up nosig nosig nosig nosig 

K00121: S-(hydroxymethyl)glutathione dehydrogenase / 

alcohol dehydrogenase [EC:1.1.1.284 1.1.1.1] down nosig up nosig up 

K00274: monoamine oxidase [EC:1.4.3.4] down nosig nosig nosig nosig 

K00485: dimethylaniline monooxygenase (N-oxide forming) 

[EC:1.14.13.8] down nosig    

K00542: guanidinoacetate N-methyltransferase [EC:2.1.1.2] nosig nosig    

K00543: acetylserotonin N-methyltransferase [EC:2.1.1.4] down nosig    

K00544: betaine-homocysteine S-methyltransferase 

[EC:2.1.1.5] down nosig    

K00545: catechol O-methyltransferase [EC:2.1.1.6] down nosig    

K00547: homocysteine S-methyltransferase [EC:2.1.1.10] down nosig nosig nosig nosig 

K00548: 5-methyltetrahydrofolate--homocysteine 

methyltransferase [EC:2.1.1.13] up nosig nosig nosig nosig 

K00549: 5-methyltetrahydropteroyltriglutamate--homocysteine 

methyltransferase [EC:2.1.1.14] down nosig nosig nosig nosig 

K00554: tRNA (guanine-N1-)-methyltransferase [EC:2.1.1.31] down up down nosig nosig 

K00555: tRNA (guanine-N2-)-methyltransferase [EC:2.1.1.32] down nosig    

K00556: tRNA (guanosine-2'-O-)-methyltransferase 

[EC:2.1.1.34] down nosig nosig up up 

K00557: tRNA (uracil-5-)-methyltransferase [EC:2.1.1.35] down nosig up nosig up 

K00558: DNA (cytosine-5-)-methyltransferase [EC:2.1.1.37] up nosig nosig nosig nosig 

K00559: sterol 24-C-methyltransferase [EC:2.1.1.41] down nosig    

K00561: 23S rRNA (adenine2085-N6)-dimethyltransferase 

[EC:2.1.1.184] or rRNA (adenine-N6-)-methyltransferase 

[EC:2.1.1.48] up down nosig nosig nosig 
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K00563: 23S rRNA (guanine745-N1)-methyltransferase 

[EC:2.1.1.187] or rRNA (guanine-N1-)-methyltransferase 

[EC:2.1.1.51] down nosig nosig nosig up 

K00564: ribosomal RNA small subunit methyltransferase C 

[EC:2.1.1.172] or ribosomal RNA small subunit 

methyltransferase C [EC:2.1.1.52] down nosig nosig nosig up 

K00567: methylated-DNA-[protein]-cysteine S-

methyltransferase [EC:2.1.1.63] nosig nosig nosig down nosig 

K00568: 3-demethylubiquinone-9 3-methyltransferase 

[EC:2.1.1.- 2.1.1.64] down nosig up nosig up 

K00569: thiopurine S-methyltransferase [EC:2.1.1.67] down nosig nosig nosig nosig 

K00570: phosphatidyl-N-methylethanolamine N-

methyltransferase [EC:2.1.1.71] up nosig nosig nosig up 

K00571: site-specific DNA-methyltransferase (adenine-

specific) [EC:2.1.1.72] up nosig nosig nosig nosig 

K00573: protein-L-isoaspartate(D-aspartate) O-

methyltransferase [EC:2.1.1.77] down nosig nosig nosig nosig 

K00575: chemotaxis protein methyltransferase CheR 

[EC:2.1.1.80] up nosig up nosig nosig 

K00577: tetrahydromethanopterin S-methyltransferase subunit 

A [EC:2.1.1.86] nosig nosig    

K00584: tetrahydromethanopterin S-methyltransferase subunit 

H [EC:2.1.1.86] up nosig nosig nosig up 

K00587: protein-S-isoprenylcysteine O-methyltransferase 

[EC:2.1.1.100] down nosig    

K00588: caffeoyl-CoA O-methyltransferase [EC:2.1.1.104] up nosig nosig nosig nosig 

K00590: site-specific DNA-methyltransferase (cytosine-N4-

specific) [EC:2.1.1.113] up nosig nosig nosig nosig 

K00595: precorrin-6Y C5,15-methyltransferase / precorrin-8W 

decarboxylase [EC:2.1.1.132 1.-.-.-] up down nosig nosig nosig 

K00598: trans-aconitate 2-methyltransferase [EC:2.1.1.144] up up up nosig nosig 

K00600: glycine hydroxymethyltransferase [EC:2.1.2.1] down up nosig nosig nosig 

K00605: aminomethyltransferase [EC:2.1.2.10] up up nosig up nosig 

K00606: 3-methyl-2-oxobutanoate hydroxymethyltransferase 

[EC:2.1.2.11] up nosig nosig nosig nosig 

K00619: amino-acid N-acetyltransferase [EC:2.3.1.1] down up nosig up nosig 

K00620: glutamate N-acetyltransferase / amino-acid N-

acetyltransferase [EC:2.3.1.35 2.3.1.1] down nosig nosig down down 

K00621: glucosamine-phosphate N-acetyltransferase 

[EC:2.3.1.4] up nosig    

K00622: arylamine N-acetyltransferase [EC:2.3.1.5] down nosig    

K00657: diamine N-acetyltransferase [EC:2.3.1.57] up nosig nosig up nosig 

K00676: ribosomal-protein-alanine N-acetyltransferase 

[EC:2.3.1.128] up nosig nosig nosig nosig 
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K00783: 23S rRNA (pseudouridine1915-N3)-methyltransferase 

[EC:2.1.1.177] rlmH nosig nosig down nosig nosig 

K00799: glutathione S-transferase [EC:2.5.1.18] down nosig up nosig up 

K01118: FMN-dependent NADH-azoreductase [EC:1.7.-.-] down nosig up nosig up 

K01195: beta-glucuronidase [EC:3.2.1.31] up nosig down nosig nosig 

K01201: glucosylceramidase [EC:3.2.1.45] Up nosig down nosig nosig 

K01202: Galactosylceramidase (GALC) [EC:3.2.1.46] nosig nosig    

K01210: glucan 1,3-beta-glucosidase [EC:3.2.1.58] nosig nosig nosig nosig nosig 

K01222: 6-phospho-beta-glucosidase [EC:3.2.1.86] down nosig up nosig nosig 

K01223: 6-phospho-beta-glucosidase [EC:3.2.1.86] down up nosig nosig nosig 

K01253: microsomal epoxide hydrolase [EC:3.3.2.9] down nosig nosig nosig nosig 

K01424: L-asparaginase [EC:3.5.1.1] up nosig down up nosig 

K01426: amidase [EC:3.5.1.4] down nosig nosig nosig nosig 

K01432: arylformamidase [EC:3.5.1.9] down     

K01434: penicillin amidase [EC:3.5.1.11] down nosig nosig nosig nosig 

K01446: N-acetylmuramoyl-L-alanine amidase [EC:3.5.1.28] down nosig nosig nosig up 

K01448: N-acetylmuramoyl-L-alanine amidase [EC:3.5.1.28] up down nosig nosig nosig 

K01449: N-acetylmuramoyl-L-alanine amidase [EC:3.5.1.28] up nosig nosig down nosig 

K01455: formamidase [EC:3.5.1.49] down nosig nosig nosig nosig 

K01460: glutathionylspermidine amidase/synthetase 

[EC:3.5.1.78 6.3.1.8] down nosig up nosig nosig 

K02169: biotin synthesis protein BioC or malonyl-CoA O-

methyltransferase [EC:2.1.1.197] up nosig nosig up nosig 

K02188: cobalamin biosynthesis protein CbiD or cobalt-

precorrin-5B (C1)-methyltransferase [EC:2.1.1.195] up down nosig nosig nosig 

K02191: precorrin-8W decarboxylase [EC:1.-.-.-] or cobalt-

precorrin-7 (C15)-methyltransferase [EC:2.1.1.196] down nosig nosig nosig nosig 

K02236: leader peptidase (prepilin peptidase) / N-

methyltransferase [EC:3.4.23.43 2.1.1.-] down nosig nosig nosig up 

K02295: gentamicin 3'-N-acetyltransferase [EC:2.3.1.60] down nosig    

K02302: uroporphyrin-III C-methyltransferase / precorrin-2 

dehydrogenase / sirohydrochlorin ferrochelatase [EC:2.1.1.107 

1.3.1.76 4.99.1.4] down nosig up nosig up 

K02303: uroporphyrin-III C-methyltransferase [EC:2.1.1.107] down up nosig nosig nosig 

K02427: ribosomal RNA large subunit methyltransferase E 

[EC:2.1.1.-] down nosig up nosig nosig 

K02493: methyltransferase [EC:2.1.1.-] down down down nosig nosig 

K02496: uroporphyrin-III C-methyltransferase [EC:2.1.1.107] down nosig up nosig up 

K02528: 16S rRNA (adenine1518-N6/adenine1519-N6)-

dimethyltransferase [EC:2.1.1.182] or dimethyladenosine 

transferase [EC:2.1.1.-] down down down nosig nosig 

K02533: tRNA/rRNA methyltransferase [EC:2.1.1.-] down nosig up nosig nosig 

K02654: leader peptidase (prepilin peptidase) / N-

methyltransferase [EC:3.4.23.43 2.1.1.-] down nosig nosig down nosig 

K02687: ribosomal protein L11 methyltransferase [EC:2.1.1.-] up down nosig nosig nosig 
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K03183: ubiquinone/menaquinone biosynthesis 

methyltransferase [EC:2.1.1.163 2.1.1.-] or 

ubiquinone/menaquinone biosynthesis methyltransferase 

[EC:2.1.1.-] up down nosig up nosig 

K03206: azobenzene reductase [EC:1.7.1.6] down     

K03212: RNA methyltransferase, TrmA family [EC:2.1.1.-] down nosig up nosig up 

K03214: RNA methyltransferase, TrmH family [EC:2.1.1.-] down nosig up nosig up 

K03215: RNA methyltransferase, TrmA family [EC:2.1.1.-] down nosig up nosig up 

K03216: RNA methyltransferase, TrmH family, group 2 

[EC:2.1.1.-] or tRNA (cytidine/uridine-2'-O-)-methyltransferase 

[EC:2.1.1.207] down nosig nosig down nosig 

K03218: RNA methyltransferase, TrmH family [EC:2.1.1.-] down nosig down nosig nosig 

K03394: precorrin-2 C20-methyltransferase / cobalt-factor-2 

C20-methyltransferase [EC:2.1.1.130 2.1.1.151] or precorrin-

2/cobalt-factor-2 C20-methyltransferase [EC:2.1.1.130 

2.1.1.151] up down nosig nosig down 

K03399: precorrin-6Y C5,15-methyltransferase [EC:2.1.1.132] down nosig nosig nosig nosig 

K03418: N,N-dimethylformamidase [EC:3.5.1.56] nosig nosig    

K03428: magnesium-protoporphyrin O-methyltransferase 

[EC:2.1.1.11] nosig nosig    

K03437: RNA methyltransferase, TrmH family down down down nosig nosig 

K03438: S-adenosyl-methyltransferase [EC:2.1.1.-] or 16S 

rRNA (cytosine1402-N4)-methyltransferase [EC:2.1.1.199] nosig nosig nosig nosig down 

K03439: tRNA (guanine-N7-)-methyltransferase [EC:2.1.1.33] down down down nosig nosig 

K03500: ribosomal RNA small subunit methyltransferase B 

[EC:2.1.1.-] down nosig nosig down nosig 

K03501: glucose inhibited division protein B [EC:2.1.-.-] or 

ribosomal RNA small subunit methyltransferase G 

[EC:2.1.1.170] down nosig nosig nosig nosig 

K03743: None up up nosig nosig up 

K03789: ribosomal-protein-alanine N-acetyltransferase 

[EC:2.3.1.128] down nosig nosig down nosig 

K03790: ribosomal-protein-alanine N-acetyltransferase 

[EC:2.3.1.128] down nosig nosig nosig up 

K04022: alcohol dehydrogenase up nosig up nosig nosig 

K04042: bifunctional UDP-N-acetylglucosamine 

pyrophosphorylase / Glucosamine-1-phosphate N-

acetyltransferase [EC:2.7.7.23 2.3.1.157] or bifunctional protein 

GlmU [EC:2.7.7.23 2.3.1.157] down up nosig nosig up 

K04072: acetaldehyde dehydrogenase / alcohol dehydrogenase 

[EC:1.2.1.10 1.1.1.1] down up nosig nosig nosig 

K04094: methylenetetrahydrofolate--tRNA-(uracil-5-)-

methyltransferase [EC:2.1.1.74] or glucose inhibited division 

protein Gid down nosig nosig nosig nosig 

K04097: glutathione S-transferase [EC:2.5.1.18] down nosig nosig nosig up 
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K04480: methanol---5-hydroxybenzimidazolylcobamide Co-

methyltransferase [EC:2.1.1.90] up nosig nosig nosig nosig 

K04711: dihydroceramidase [EC:3.5.1.-] down nosig    

K05303: macrocin O-methyltransferase [EC:2.1.1.101] up nosig nosig nosig nosig 

K05349: beta-glucosidase [EC:3.2.1.21] up nosig nosig nosig down 

K05350: beta-glucosidase [EC:3.2.1.21] down nosig nosig nosig nosig 

K05822: tetrahydrodipicolinate N-acetyltransferase 

[EC:2.3.1.89] nosig nosig nosig nosig up 

K05882: aryl-alcohol dehydrogenase (NADP+) [EC:1.1.1.91] up down nosig nosig nosig 

K05889: polyvinyl alcohol dehydrogenase (cytochrome) 

[EC:1.1.2.6] or polyvinyl-alcohol dehydrogenase (acceptor) 

[EC:1.1.99.23] nosig nosig    

K05928: tocopherol O-methyltransferase [EC:2.1.1.95] up  nosig nosig nosig 

K05929: phosphoethanolamine N-methyltransferase 

[EC:2.1.1.103] nosig nosig    

K05934: precorrin-3B C17-methyltransferase [EC:2.1.1.131] up nosig nosig down nosig 

K05936: precorrin-4 C11-methyltransferase [EC:2.1.1.133] up nosig nosig down nosig 

K06219: S-adenosylmethionine-dependent methyltransferase down nosig up nosig up 

K06442: putative hemolysin down nosig nosig down nosig 

K06941: ribosomal RNA large subunit methyltransferase N 

[EC:2.1.1.-] up down down nosig nosig 

K06967:  or tRNA (adenine-N(1)-)-methyltransferase 

[EC:2.1.1.36] down nosig nosig down nosig 

K06968: ribosomal RNA large subunit methyltransferase M 

[EC:2.1.1.-] down nosig nosig nosig nosig 

K06969: putative SAM-dependent methyltransferase or 

ribosomal RNA large subunit methyltransferase I [EC:2.1.1.-] up down nosig nosig nosig 

K06970: ribosomal RNA large subunit methyltransferase F 

[EC:2.1.1.181] or ribosomal RNA large subunit 

methyltransferase F [EC:2.1.1.48] up nosig nosig up up 

K07056:  or 16S rRNA (cytidine1402-2'-O)-methyltransferase 

[EC:2.1.1.198] up nosig down nosig nosig 

K07115: 23S rRNA (adenine2030-N6)-methyltransferase 

[EC:2.1.1.266] rlmJ down nosig nosig up up 

K07130: arylformamidase [EC:3.5.1.9] (kynB) down nosig nosig nosig nosig 

K07316: adenine-specific DNA-methyltransferase 

[EC:2.1.1.72] down nosig nosig nosig up 

K07317: adenine-specific DNA-methyltransferase 

[EC:2.1.1.72] down down down nosig up 

K07318: adenine-specific DNA-methyltransferase 

[EC:2.1.1.72] nosig nosig nosig nosig nosig 

K07319: putative adenine-specific DNA-methyltransferase 

[EC:2.1.1.72] up nosig nosig nosig nosig 

K07320: putative adenine-specific DNA-methyltransferase 

[EC:2.1.1.72] down nosig up nosig up 
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K07442: tRNA (adenine-N1-)-methyltransferase [EC:2.1.1.36] 

or tRNA (adenine-N1-)-methyltransferase catalytic subunit 

[EC:2.1.1.36] down up down nosig nosig 

K07443: methylated-DNA-protein-cysteine methyltransferase 

related protein up nosig nosig nosig nosig 

K07446: N(2),N(2)-dimethylguanosine tRNA 

methyltransferase [EC:2.1.1.32] or putative methyltransferase up nosig nosig nosig nosig 

K08281: nicotinamidase/pyrazinamidase [EC:3.5.1.19 3.5.1.-] down up nosig nosig nosig 

K08316: ribosomal RNA small subunit methyltransferase D 

[EC:2.1.1.171] or ribosomal RNA small subunit 

methyltransferase D [EC:2.1.1.52] down nosig nosig down nosig 

K08325: NADP-dependent alcohol dehydrogenase [EC:1.1.-.-] up nosig nosig up up 

K08687: N-carbamoylsarcosine amidase [EC:3.5.1.59] up nosig nosig up nosig 

K09761: ribosomal RNA small subunit methyltransferase E 

[EC:2.1.1.-] nosig down down nosig nosig 

K09846: hydroxyneurosporene methyltransferase [EC:2.1.1.-] down nosig    

K10533: limonene-1,2-epoxide hydrolase [EC:3.3.2.8] nosig nosig    

K10617: p-cumic alcohol dehydrogenase nosig nosig    

K10778: AraC family transcriptional regulator, regulatory 

protein of adaptative response / methylated-DNA-[protein]-

cysteine methyltransferase [EC:2.1.1.63] up up up nosig up 

K11066: N-acetylmuramoyl-L-alanine amidase [EC:3.5.1.28] down nosig up nosig up 

K11391: ribosomal RNA large subunit methyltransferase G 

[EC:2.1.1.174] or ribosomal RNA large subunit 

methyltransferase G [EC:2.1.1.52] nosig nosig up nosig nosig 

K11392: ribosomal RNA small subunit methyltransferase F 

[EC:2.1.1.-] up nosig up nosig nosig 

K11434: protein arginine N-methyltransferase 1 [EC:2.1.1.-] down nosig    

K12251: N-carbamoylputrescine amidase [EC:3.5.1.53] up nosig nosig nosig down 

K12297: ribosomal RNA large subunit methyltransferase L 

[EC:2.1.1.52] or ribosomal RNA large subunit 

methyltransferase L [EC:2.1.1.173] down up up nosig up 

K12957: uncharacterized zinc-type alcohol dehydrogenase-like 

protein [EC:1.-.-.-] down nosig nosig nosig nosig 

K13018: UDP-D-GlcNAc3NA acetyltransferase [EC:2.3.1.-] up up    

K13042: dimethylglycine N-methyltransferase [EC:2.1.1.161] nosig     

K13317: NDP-4-keto-2,6-dideoxyhexose 3-C-

methyltransferase nosig     

K13486: chemotaxis protein methyltransferase WspC nosig nosig nosig nosig nosig 

K13530: AraC family transcriptional regulator, regulatory 

protein of adaptative response / methylphosphotriester-DNA 

alkyltransferase methyltransferase [EC:2.1.1.-] up up nosig nosig nosig 

K13531: methylated-DNA-[protein]-cysteine S-

methyltransferase [EC:2.1.1.63] down nosig nosig nosig nosig 
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K13540: precorrin-2 C20-methyltransferase / precorrin-3B 

C17-methyltransferase [EC:2.1.1.130 2.1.1.131] down nosig    

K13541: cobalamin biosynthesis protein CbiG / precorrin-3B 

C17-methyltransferase [EC:2.1.1.131] or cobalt-precorrin 5A 

hydrolase / precorrin-3B C17-methyltransferase [EC:3.7.1.12 

2.1.1.131] up up nosig nosig nosig 

K13542: uroporphyrinogen III methyltransferase / synthase 

[EC:2.1.1.107 4.2.1.75] down nosig nosig down nosig 

K13543: uroporphyrinogen III methyltransferase / synthase 

[EC:2.1.1.107 4.2.1.75] down nosig    

K13601: bacteriochlorophyll C8 methyltransferase [EC:2.1.1.-] down nosig    

K13602: bacteriochlorophyll C12 methyltransferase [EC:2.1.1.-

] down     

K13604: bacteriochlorophyll C20 methyltransferase [EC:2.1.1.-

] up     

K13953: alcohol dehydrogenase, propanol-preferring 

[EC:1.1.1.1] down up nosig nosig up 

K13954: alcohol dehydrogenase [EC:1.1.1.1] up up nosig nosig nosig 

K13955: zinc-binding alcohol dehydrogenase/oxidoreductase down  nosig nosig nosig 

K13979: uncharacterized zinc-type alcohol dehydrogenase-like 

protein [EC:1.-.-.-] down nosig nosig nosig nosig 

K14080: methylcobalamin:coenzyme M methyltransferase 

[EC:2.1.1.-]  nosig    

K14082: methylcobamide:CoM methyltransferase [EC:2.1.1.-] down nosig nosig nosig up 

K14083: trimethylamine methyltransferase [EC:2.1.1.-] up nosig nosig nosig nosig 

K14338: cytochrome P450 / NADPH-cytochrome P450 

reductase [EC:1.14.14.1 1.6.2.4]  nosig nosig nosig nosig 

K14369: O-methyltransferase [EC:2.1.1.-]      

K14372: cytochrome P450 hydroxylase [EC:1.14.-.-]      

K14374: avermectin B 5-O-methyltransferase [EC:2.1.1.-]      

K14568:   nosig    

K14681: argininosuccinate lyase / amino-acid N-

acetyltransferase [EC:4.3.2.1 2.3.1.1]      

K14682: amino-acid N-acetyltransferase [EC:2.3.1.1]   nosig nosig nosig 

K15023: 5-methyltetrahydrofolate corrinoid/iron sulfur protein 

methyltransferase   nosig nosig up 

 

 


