

PHYSICAL INTERNET, CONVENTIONAL, AND HYBRID LOGISTIC

SYSTEMS: AN OPTIMIZATION BASED COMPARISON

by

Mehran Fazili

Submitted in partial fulfilment of the requirements

for the degree of Master of Applied Science

at

Dalhousie University

Halifax, Nova Scotia

April 2014

© Copyright by Mehran Fazili, 2014

ii

This thesis is dedicated to

my father and mother, Morteza Fazili, and Simin Mirkhani

 for their constant support and unconditional love.

iii

TABLE OF CONTENTS

LIST OF TABLES .. vii

LIST OF FIGURES ... viii

ABSTRACT .. x

LIST OF ABBREVIATIONS USED .. xi

ACKNOWLEDGEMENTS .. xii

Chapter 1: Introduction ... 1

1.1 Thesis Objectives ... 2

1.2 Thesis Organization.. 2

Chapter 2: Literature Review .. 3

2.1 Physical Internet (PI) .. 3

2.2 Vehicle Routing Problems ... 7

2.2.1 Formulation of VRPB Problems ... 10

2.2.1.1 TSPCB and VRPCB Extensions.. 12

2.2.1.2 TSPMB and VRPMB Extensions .. 13

2.2.1.3 TSPDDP and VRPDDP Extensions .. 14

2.2.1.4 TSPSDP and VRPSDP Extensions.. 14

2.2.2 Transportation between Customers... 15

Chapter 3: Network Structure and Logistic Systems .. 16

3.1 Eastern Canada Road Network .. 16

3.2 Conventional (Door-to-Door) Logistics Policy.. 18

3.3 PI Logistic Policy Flows .. 18

3.4 Hybrid Logistic Policy ... 21

3.5 Request Sizes and Physical Characteristics of Containers ... 22

Chapter 4: Three-Phase Optimization Framework ... 25

iv

4.1 Optimization Methodology .. 25

4.2 Model Assumptions.. 26

4.3 Elements of the Optimization Framework ... 27

4.4 Phase 1: Packing Model (PO) .. 29

4.4.1 Packing MIP - Calling Algorithm ... 31

4.5 Phase 2: Routing Model (RO) .. 32

4.5.1 Routing MIP.. 33

4.5.2 Loop Elimination on Tree Shaped Networks.. 36

4.6 Phase 3: Assignment and Cost Model .. 39

4.6.1 Operational Cost ... 39

4.6.2 Social Cost .. 41

4.6.3 Fixed Costs.. 42

4.6.4 Assignment and Cost MIP .. 43

Chapter 5: Data Generation and Optimization .. 46

5.1 Data Generation Module .. 47

5.2 Designed of Experiments and Loading Scenarios .. 49

5.2.1 Low, Medium, and High Traffic Levels Experiments .. 49

5.2.2 High Traffic and Small Loads Experiment ... 50

5.2.3 High Traffic and Large Loads Experiment ... 51

5.2.4 Random Traffic Experiment ... 51

Chapter 6: Results ... 52

6.1 Model 1 Results – Counting Packing/ Unpacking Instances ... 52

6.1.1 Low Traffic Experiment ... 52

6.1.2 Moderate Traffic Experiment ... 54

6.1.3 High Traffic Experiment ... 55

v

6.1.4 High Traffic Small Loads Experiment .. 56

6.1.5 High Traffic Large Loads Experiment .. 57

6.1.6 Random Traffic Experiment ... 58

6.2 Model 2 Results - Route Driving Time Criteria ... 60

6.2.1 Low Traffic Network .. 60

6.2.2 Moderate Traffic Experiment ... 61

6.2.3 High Traffic Experiment ... 63

6.2.4 High Traffic Small Loads Experiment .. 64

6.2.5 High Traffic Large Loads Experiment .. 65

6.2.6 Random Traffic Experiment ... 66

6.3 Model 2: Driving Time Trends .. 67

6.3.1 Traffic Level Trend ... 67

6.3.2 Model 2: Load Size Trend .. 68

6.4 Model 3 Results .. 70

6.4.1 Values of the Key Performance Indicators ... 71

6.5 Costs ... 73

6.5.1 Low Traffic Experiment ... 74

6.5.2 Moderate Traffic Experiment ... 76

6.5.3 High Traffic Experiment ... 77

6.5.4 High Traffic Small Loads Experiment .. 79

6.5.5 High Traffic Large Loads Experiment .. 80

6.5.6 Random Traffic Experiment ... 82

Chapter 7: Conclusions ... 84

7.1 Direction for Future Studies ... 84

REFERENCES ... 87

vi

APPENDICES .. 92

Appendix A: Conventional Arcs Dictionary... 92

Appendix B: PI Arcs Dictionary ... 98

Appendix C: Hybrid Arcs Dictionary ... 104

Appendix D: Parameters File .. 110

Appendix E: Data Generator File ... 111

Appendix F: GLPK Code of Packing MIP ... 116

Appendix G: Packing Model Calling Algorithm .. 117

Appendix H: Calculation of Flow Lower Bond .. 124

Appendix I: GLPK Code of Routing MIP .. 129

Appendix J: Calculation of the Jobs Enroute Time in Python ... 134

Appendix K: GLPK Code of Assignment MIP .. 142

Appendix L: One-Way ANOVA Test .. 145

vii

LIST OF TABLES

Table 1- Number of Requests in CO Logistic System .. 50

Table 2 - Number of Requests to Simulate PI Logistic System ... 50

Table 3 - Number of Requests to Simulate HY Logistic System ... 50

Table 4 - Driving Time of Logistic Systems with Different Traffic Level 68

Table 5 - Driving Time of Logistic Systems with Different Load Size Distributions 69

Table 6 - Driving Time of Logistic Systems with Random Traffic .. 69

Table 7 - Percentage Difference in Driving Time of HY and CO with Respect to PI 70

Table 8 - Logistic Systems KPI values with Difference Traffic Levels 71

Table 9 - Logistic Systems KPI values with Different Load Size Distributions 72

Table 10 - Social, Operational, and Fix Costs in Low Traffic Experiment 74

Table 11 - Total Cost as a function of Cost Ratio in Low Traffic Experiment 75

Table 12 - Social, Operational, and Fix Costs in Moderate Traffic Experiment 76

Table 13 - Total Cost as a function of Cost Ratio in Moderate Traffic Experiment 76

Table 14 - Social, Operational, and Fix Costs in High Traffic Experiment 78

Table 15 - Total Cost as a function of Cost Ratio in High Traffic Experiment 78

Table 16 - Social, Operational, and Fix Costs in High Traffic Small Loads Experiment 79

Table 17 - Total Cost as a function of Cost Ratio in High Traffic Small Loads Experiment 79

Table 18 - Social, Operational, and Fix Costs in High Traffic Large Loads Experiment 81

Table 19 - Total Cost as a function of Cost Ratio in High Traffic Large Loads Experiment 81

Table 20 - Social, Operational, and Fix Costs in Random Traffic Experiment 82

Table 21 - Total Cost as a function of Cost Ratio in Random Traffic Experiment 82

Table 22 - Analysis of Variance - One-Way ANOVA ... 146

viii

LIST OF FIGURES

Figure 1 - PI on Time line ... 3

Figure 2 - Pick-up and Delivery Problems [17] .. 8

Figure 3 - VRPB Sub-Classes ... 9

Figure 4 - Candidate Cities in Road Network ... 17

Figure 5 - Logical Connection of the Nodes ... 17

Figure 6 - Example Flows in CO Logistic Policy ... 18

Figure 7 - PI Road Network .. 19

Figure 8 - Example Flows in PI Logistic Policy ... 20

Figure 9 - Isometric View of the Proposed Layout for PI Hubs [31] ... 20

Figure 10 - Example Flows in HY Logistic Policy... 22

Figure 11 - Conventional Pallets Loaded in Container [33] ... 23

Figure 12 - Packed PI-Container [33] ... 23

Figure 13 - PI-Boxes and a PI-Container .. 24

Figure 14 - Three Phase Optimization Framework... 26

Figure 17 - Illustration of the Flows in the Network .. 37

Figure 18 - Illustration of the Equivalent Flows in the Network .. 38

Figure 20 - Short and Long Haul Trucks [43] .. 42

Figure 21 - Monte Carlo Simulation Instances ... 46

Figure 22 - Data Generation Module .. 47

Figure 23 - Packing / Unpacking Instance in Low Traffic Network .. 53

Figure 24 - Packing / Unpacking Instance in Moderate Traffic Network 54

Figure 25 - Packing / Unpacking Instance in High Traffic Network .. 55

Figure 26 - Packing / Unpacking Instance in High Traffic Small Loads Network 56

Figure 27 - Packing / Unpacking Instance in High Traffic Large Loads Network 57

Figure 28 - Packing / Unpacking Instance in Random Traffic Network 59

Figure 29 - Optimal Routing Time in Low Traffic Network .. 60

Figure 30 - Optimal Routing Time in Moderate Traffic Network .. 62

Figure 31 - Optimal Routing Time in High Traffic Network ... 63

Figure 32 - Optimal Routing Time in High Traffic Small Loads Network 64

ix

Figure 33 - Optimal Routing Time in High Traffic Large Loads Network 65

Figure 34 - Optimal Routing Time in Random Traffic Network.. 66

Figure 35 - Overall Comparison of Routing Time of Logistic Systems 70

Figure 36 - Comparison of Total Cost of Logistic Systems in Low Traffic Experiment 76

Figure 37 - Comparison of Total Cost of Logistic Systems in Low Traffic Experiment 77

Figure 38 - Comparison of Total Cost of Logistic Systems in High Traffic Experiment 79

Figure 39 - Comparison of Total Cost of Logistic Systems in High Traffic Small Loads

Experiment .. 80

Figure 37 - Comparison of Total Cost of Logistic Systems in High Traffic Large Loads

Experiment .. 82

Figure 38 - Comparison of Total Cost of Logistic Systems in Random Traffic Experiment 83

x

ABSTRACT

The purpose of this thesis is to compare the performance of the Conventional (CO), Physical

Internet (PI), and Hybrid (HY) logistics systems in a road network in order to understand and

quantify the advantages and disadvantages of PI.

The comparison presented in this work is carried out through Monte-Carlo simulation in which

loads are generated randomly and a sequential three phase optimization framework to optimize

the CO, PI, and HY logistical networks.

By applying the methodology to the CO, PI, and HY logistic systems for the example road

network, differences are observed in the total number of the instances containers requiring

loading and unloading and total driving time to carry all the loads to their final destination.

Finally, the total cost of each logistic policy is calculated and the most economical logistical

policy is identified for different scenarios.

xi

LIST OF ABBREVIATIONS USED

ILP Integer Linear Programming

TTD Total Travel Distance

ADR Average Duration of Routes

TDC Total Delivery Cost

CO Conventional Logistic Policy or System

PI Physical Internet Logistic Policy or System

HY Hybrid Logistic Policy or System

LTNL Low Traffic Normal Loads Network

MTNL Moderate Traffic Normal Loads Network

HTNL High Traffic Normal Loads Network

HTLL High Traffic Large Loads Network

HTSL High Traffic Small Loads Network

RD Random Traffic Network

k Thousand

m Million

xii

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to Dr. Uday Venkatadri for giving me vision,

continuous encouragement, and expert guidance throughout this research. This thesis would not

have been possible without his invaluable comments and advice in all stages of the work.

I would like to extend my sincerest thanks and appreciation to Dr. M.Mahdi Tajbakhsh, for co-

supervising and funding this project. His support and feedback was extremely valuable to enrich

this work.

A special thanks goes to Dr. Pemberton Cyrus, for his guidance, valuable comments, and great

collaboration during this research.

Thanks are due to Dr. Ahsan Habib for serving on my defense committee, and to Dr. Alireza

Ghasemi for moderating my defense session.

Special appreciation is due to my dear brother, Yashar Fazili for providing expert

recommendations on selecting the right tools I needed for computation. Special thanks also goes

to my dear sister Mehrnaz Fazili for her continuous kindness and support.

I do not know how to thank Nazanin Hooshmandi, my soul mate and companion who always

believed in me and encouraged me. She made this chapter of my life a very fine and

unforgettable one.

I want to also thank my dear friend Sina Raeisi, without whom my graduate studies at Dalhousie

University would not have been even half as fun.

Last but not least, I would like to thank all the staff and graduate students of department of

Industrial Engineering at Dalhousie University and wish them all the best.

1

Chapter 1: Introduction

Physical Internet (PI) is the way physical objects are moved, stored, realized, supplied and used,

aiming towards greater efficiency and sustainability [1]. PI has the potential of introducing

ground breaking improvements notable to fields of material handling, logistics, and facility

design. The drive for PI is from the claim that “the way physical objects are moved handled,

stored, realized, supplied, and used throughout the world is not sustainable economically,

environmentally, and socially” [2].

The term “Physical Internet” was first used on the front page of The Economist magazine, in

June 2006 [3]. PI refers to transportation of physical goods using data transmission analogy to

Internet. The vision for PI is on thirteen characteristics that build the PI logistic model [1]. Most

of these characteristics are inspired from data transmission protocols that are shaping Internet.

In PI, goods are encapsulated in globally standard, smart, green, and modular containers. The

PI-containers are different from the conventional containers currently used in conventional

logistic system. The concept of encapsulation of goods into PI-containers is similar to

transmission of data by means of data packets in data networks.

Current logistic systems have number of unsustainability symptoms, such as: shipping large

amounts of air and packaging, large amount of empty travel or dead-heads, slow response to

incidental products demand, poor utilization of logistic resources, and etc [1]. It is believed that

PI can alleviate some of these unsustainable logistics practices.

2

1.1 Thesis Objectives

The purpose of this thesis is to compare the performance of Conventional (CO), PI, and a Hybrid

(HY) logistic systems within a road network using an optimization framework. As we will see in

the literature review in the next chapter, there is a need to build an optimization framework to

support research in PI and help understand its advantages and limitations.

1.2 Thesis Organization

The remainder of this thesis is organized as follows: A literature review relevant to the theme of

the research is presented in Chapter 2. This includes an introduction to PI and an overview of

models in vehicle routing that are pertinent to this research. In Chapter 3, the structure of the

logistics network and routing systems for the three systems are being compared (PI, CO, and

HY). In Chapter 4, a three-phased optimization framework is presented to enable the

performance comparison. The load generation Monte-Carlo simulation is discussed in Chapter 5.

The numerical results of the thesis are presented in Chapter 6. In Chapter 7 the main

contributions of this thesis are summarized, and areas for future research are suggested.

3

Chapter 2: Literature Review

The literature review in this thesis first focuses on literature related to the Physical Internet.

Since field of Physical Internet is fairly recent, the number of published papers in the domain are

relatively low. The second part of this literature review focuses on literature of the Vehicle

Routing Problem (VRP).

2.1 Physical Internet (PI)

The PI project (or initiative) has an official and dedicated website [4] accessible at

“http://www.physicalinternetinitiative.org”. This website contains a complete list of publications

in this field. Active projects, events, and news of Physical Internet are also reported in this

website. Figure 1, shows a brief overview of PI on a timeline.

W.P

W.P

W.P

W.P

W.P

Concept

Design

Prototype

Evaluation

Early

Implementation

2009 2010 2011 2012 2013

3 papers on

Supply-Web

7 papers on PI

vision and design

3 papers on

Functional Design

2014

Technical

Reports

1 paper on Simulation

Based Assessment

Figure 1 - PI on Time line

The Supply Web is described in [5], as a network of interconnected supply chain networks. In

the traditional system, supply chain networks of various organizations do not share much

information or infrastructure with each other. In PI, much of the logistic infrastructure such as PI

hubs or PI transit centers are open for use to every agent who is willing to sign up for the service.

4

The concept of an integrated supply web, which brings together disparate supply chain networks,

is one of the most important building blocks of the PI.

An overview of the physical aspects of PI is provided in [6]. The physical elements of the PI are

listed as: containers, movers, and nodes. The containers used in PI are named PI-containers and a

number of standard sizes are proposed for these containers. Movers are grouped into PI-

transporters, PI-conveyors, and PI-handlers. For the nodes, PI-hubs and PI-transit centers are

introduced. This forms the backbone of PI. PI logistics system can be described as follows: when

a shipment is made from A to B, the PI container used to make the shipment may be routed

through one or more PI-hubs or PI-transit centers where they are handled by PI-transporters, PI-

conveyors, and PI-handlers. The PI-containers themselves are modular and may fit within or

alongside other PI-containers. Since the PI logistics system is shared, the expected advantage of

such a system comes from sharing and pooling resources.

In [7], a supply chain visualization software called the Supply Web Mapper is introduced. This

software enables parties and organizations using the supply web to get live information on status

of the Supply Web in several multi-dimensional synthetic forms and diagrams. Also, a generic

objective of the Supply Web Mapper is to obtain a representation of the existing relationship

between several selected actors, resources and products within the Supply Web. This prototype

software consists of three main interfaces “Conceptual Map Viewer”, “Geographical Map

Viewer”, and “Data Mining viewer” to achieve this goal.

In [8], an agent based simulation platform to simulate the complex scenarios that could occur on

supply web is introduced. The motive behind creation of such simulation environment was to

5

develop an inexpensive, yet effective method of assessing dynamics of supply chain behaviour of

an organization with shared resources.

A global sustainability grand challenge issue is presented in [1] with statistics showing the weak

performance of current global logistics systems. This paper also lists a number of global

unsustainability symptoms and the PI vision is introduced through 13 points. Encapsulating

merchandise in standard PI-container sizes, and moving from point to point transportation to

distributed multi segment transportation are among the 13 points related to this thesis.

The first study on the impact of network topology on the performance of PI is shown in [9]. In

this research, which does not involve an optimization framework, the performance of the

conventional logistic vs. PI enabled networks are described using parameters for transportation

throughput requirements, flow travel, and total cost.

The design and development phases of a simulation tool for a future comprehensive study of the

PI are explained in [10]. In this research, the mechanism for capturing and quantifying the

impact of PI in terms of economic, environmental, and social efficiency is shown.

Finally, proposals for functional design of the PI facilities for road based transit centers, road-rail

hubs, and road based cross-docking hub are presented in [11], [12], and [13]. Each of these

studies show the facility components, introduce a set of key performance indicators, and

graphical simulation models built to evaluate operations. At the end of these studies,

performance results under various conditions are reported.

It has been hypothesized that an interconnected logistics network is better than a fragmented

logistics network. A simulation platform is developed in [14] to evaluate the performance of an

interconnected logistic network. The goal of the platform is to evaluate the efficiency of an

6

interconnected logistic network in terms of delivery times, carbon emission levels, and travel

times. To carry out the demonstration, data obtained from corporations for fast moving items in

the consumer goods sector in France is used. The performance measures from the simulation

for the PI logistics system are compared against standard industry KPI’s. The conclusion in this

paper is that PI does not compromise operational efficiency of the logistics system while

significantly reducing the carbon foot print and logistics costs.

In summary, the PI literature consists of two parts: the development of the conceptual PI

framework and the development of infrastructural concepts for the realization for PI. The

predominant methodology is to build simulation environments. For example, the simulation

environments in [8], [11], [12], and [13] were designed to show the expected performance of

various logistic activities within a PI facility. The simulation platform shown in [14] has a

slightly broader mandate and looks at the performance of a broader interconnected logistic

network (of which PI is a good example).

The PI literature is in a very nascent stage. There are several opportunities within PI for cross-

discipline research which includes research in several areas of OR such as supply chain

management, logistics and operations planning, and transportation. Other potential areas of

research include mechanical design, social sciences, information technology, etc.

From the literature, it appears that the PI logistics system has both advantages and disadvantages.

The advantage appears to be that through consolidation and deconsolidation at PI hubs,

transportation is more efficient. This is because transport occurs through modular containers and

PI hubs offer better opportunities to mix and match loads for easier routing. Moreover, the PI

hubs themselves can be automated for efficiency in handling. From a social point of view,

7

drivers are generally not required to travel long distances from their home base. On the other

hand, the disadvantage of the PI logistics system seems to be that a greater level of material

handling is required inside the PI hubs, which adds to both cost and lead time.

It is believed that more research is needed to understand the above trade-offs. There is no

optimization framework in the literature that can help decision makers quantify the advantages

and disadvantages of PI over the traditional logistics system. This gap provides the motivation

for this thesis.

2.2 Vehicle Routing Problems

Since the objective of this thesis is to compare PI, CO, and HY, it is important to understand how

logistics networks are optimized. The Vehicle Routing Problem (VRP) and its variants is the

basic building block to optimize transportation in a logistics network.

A VRP is defined as a set of routes or sequences that start from one or several locations, and visit

a number of geographically scattered points to minimize total travel distance or time [15]. There

are several classifications of the VRP and comprehensive literature reviews on the subject. For

example [16] provides a classification of VRP according to the number of pick-up and delivery

locations.

An overall division in literature is between the exact algorithmic approaches, and approximate or

meta-heuristic approaches to solve variations of the VRP. The literature on both is

comprehensive. Each division again has a number of subdivisions.

The exact algorithms are classified in three broad categories of: (i) direct tree search methods,

(ii) dynamic programming, and (iii) integer linear programming [17]. The meta-heuristic

approaches are classified according to the heuristic algorithms used to solve the VRP. Among

8

the most popular approximation approaches, the solution methods built using Tabu Search and

Simulated Annealing have received extensive attention from several researchers.

As linear integer programming is the methodology applied in this thesis, the literature in integer

programming is the focus of this literature review.

VRP is a specific form of a more general problem set called Pick-up and Delivery Problems

(PDP). For PDP two problem classes can be distinguished. These classes are: (i) Vehicle

Routing Problems with Backhaul (VRPB), and (ii) Pick-up and Delivery Vehicle Routing

Problem (PDVRP) [18]. The first class deals with transportation of goods from number of depots

or central locations to a set of linehaul customers, and from backhaul customers to the depots.

The second class refers to scenarios where goods are picked up at customer’s location and

directly delivered to other customers. Figure 2, illustrates an overall presentation of these two

problem classes and their subclasses.

General Pick up and Delivery

Problem (GPDP)

Transportation between Customers

(VRPPD)

Transportation to / from Depot

(VRPB)

PDTSP

PDVRP

SPDP

PDP

SDARP

DARP

TSPCB

VRPCB

TSPMB

VRPMB

TSPDDP

VRPDDP

TSPSDP

VRPSDP

Figure 2 - Pick-up and Delivery Problems [18]

VRPB can be divided into four subclasses. Each of the four subclasses in the VRPB are shown

with a prefix – VRP or TSP. When the notation starts with “TSP”, the problem only involves

9

one vehicle (TSP refers to the travelling salesman problem). When a subclass has the “VRP”

prefix, there are several vehicles. In Vehicle Routing Problem with Clustered Backhaul (VRPCB)

and Vehicle Routing Problem with Mixed Backhaul (VRPMB), customers are either pick-up

customers or delivery customers, but cannot be both. In VRPCB problems, the requirement is to

visit all the delivery customers or delivery cluster before the first customer in the pick-up group

is served. However, in the mixed backhaul case (VRPMB), drop-off and pickup customers could

be mixed.

In the last two subclasses, Vehicle Routing Problem with Divisible Delivery and Pickup

(VRPDDP), and Vehicle Routing Problem with Simultaneous Delivery and Pickup (VRPSDP),

customers may need both delivery and pick up. In the VRPDDP each customer can be visited

twice, one for delivery, and one for pick up. However, in the VRPSDP, a customer can only be

visited once.

A graphical illustration of these subclasses is presented in Figure 3.

1
0 2

3

4

7
5

6

D
D D

D

P

P

P

1
0 2

3

4

7
5

6

D
P P

D

D

P

D

1
0

2
3

4
7

5

2

D

D

PD
P

P

1
0 2

3

4

7
5

6

PDPD

PD

6

PD

PD
PD

PD

PD

PD

PD

Depot
Depot

Depot

Depot

TSPCB/

VRPCB
TSPMB/

VRPMB

TSPDDP/

VRPDDP TSPSDP/

VRPSDP

Figure 3 - VRPB Sub-Classes

10

2.2.1 Formulation of VRPB Problems

The mathematical formulation of the VRPB problems are introduced and explained in this

section. First, using a consistent notation, a general form of single vehicle and multi vehicle

formulation will be introduced and explained. Second, the modification required to show any of

the four subclasses of the problem will be introduced. The notations and formulations used in

this section are adopted from [18].

Sets:

𝑃 = {1,… , 𝑛} Set of Pick up Customers

𝐷 = {𝑛 + 1,…𝑛 + 𝑛̃} Set of Delivery Customers

K Set of vehicles

Parameters:

𝑛 Number of pick up nodes.

𝑛̃ Number of delivery nodes.

𝑞𝑖 Demand or supply quantity at node i. Supply quantity is shown by

positive value and demand quantity with negative value. Demand and

supply at the start or the end deport is set to 0

𝑒𝑖 Earliest time to begin service at node i

𝑙𝑖 Latest time to begin service at node i

𝑑𝑖 Service duration at node i

𝑐𝑖𝑗
𝑘 Cost of traveling from node i to node j by vehicle k

𝑟𝑖𝑗
𝑘 Travel time from node i to node j by vehicle k

𝐶𝑘 Capacity of vehicle k

𝑇𝑘 Maximum route duration of vehicle / route k

Variables:

𝑥𝑖𝑗
𝑘 Binary, 1 if arc (i, j) is used by vehicle k, 0 otherwise

𝑄𝑖
𝑘 Load of vehicle k when leaving node i

𝐵𝑖
𝑘 Beginning of service of vehicle k at node i

Note that in a single vehicle formulation of the problems, the subscript k can be omitted.

11

The single vehicle formulation of the pick-up and delivery problems is based on Traveling

Salesman (TSP) problem and is formulated as follows:

 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝑐𝑖𝑗 ∙ 𝑥𝑖𝑗
(𝑖,𝑗) ∈𝐴

Subject to:

(L1)

∑ 𝑥𝑖𝑗 = 1

𝑖:(𝑖,𝑗) ∈𝐴

∀i ϵ V \ {0}

(L2)

∑ 𝑥𝑖𝑗 = 1

𝑗:(𝑖,𝑗) ∈𝐴

∀i ϵ V \ {n + 𝑛̃ +1}

(L3)

𝑥𝑖𝑗 ∈ 0,1 ∀(i, j) ϵ A (L4)

∑ 𝑥𝑖𝑗 ≥ 1

(𝑖,𝑗)∈𝐴(𝑆,𝑆̃)

 ∀S ⊆ V \ {n + 𝑛̃ +1} , S ≠ 0 (L5)

𝑥𝑖𝑗 = 1 ⇒ 𝐵𝑗 ≥ 𝐵𝑖 + 𝑑𝑖 + 𝑡𝑖𝑗 ∀(i, j) ϵ A (L6)

𝑠𝑖 − 𝑠𝑗 + 1 ≤ 𝑀 ∙ (1 − 𝑥𝑖𝑗) ∀ 𝑛 ⊆ V \ {n + 𝑛̃ +1} (L7)

In the single vehicle formulation of the VRPB, the objective function L1 minimizes the total

routing cost. L2 and L3 enforce that each node is visited exactly once. Constraints L5, L6, and

L7 are the three optional methods used for sub tour elimination. Therefore presence of only one

of them in the formulation is sufficient. In constraint L5 at least one route has to leave every non-

empty subset S ⊆ V \ {n + 𝑛̃ +1}. Constraint L6 is used as a time window constraint to

eliminate the sub tours. Another option for sub tour elimination is constraint L7 (Miller, Tucker,

and Zemlin (MTZ) constraint [19]).

The following is the general formulation of the multi-vehicle VRP adopted from [20]:

12

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ ∑ 𝑐𝑖𝑗
𝑘 ∙ 𝑥𝑖𝑗

𝑘
(𝑖,𝑗) ∈𝐴

𝑘∈𝐾

Subject to:

(L8)

∑ ∑ 𝑥𝑖𝑗
𝑘 = 1

𝑖:(𝑖,𝑗) ∈𝐴𝑘∈𝐾

∀i ϵ P ∪ D (L9)

∑ 𝑥0𝑗
𝑘 = 1

𝑗:(0,𝑗) ∈𝐴

 ∀𝑘 ∈ 𝐾 (L10)

∑ 𝑥𝑖,𝑛+𝑛̃+1
𝑘 = 1

𝑖:(𝑖,𝑛+𝑛̃+1) ∈𝐴

 ∀𝑘 ∈ 𝐾 (L11)

∑ 𝑥𝑖𝑗
𝑘 −

𝑖:(𝑖,𝑗) ∈𝐴

∑ 𝑥𝑗𝑖
𝑘 = 0

𝑗:(𝑖,𝑗) ∈𝐴

 ∀S ⊆ V \ {n + 𝑛̃ +1} , S ≠ 0 (L12)

𝑥𝑖𝑗 = 1 ⇒ 𝐵𝑗
𝑘 ≥ 𝐵𝑖

𝑘 + 𝑑𝑖 + 𝑡𝑖𝑗
𝑘 ∀(i, j) ∈A, 𝑘 ∈ 𝐾 (L13)

𝑠𝑖 − 𝑠𝑗 + 1 ≤ 𝑀 ∙ (1 − 𝑥𝑖𝑗) ∀ 𝑛 ⊆ V \ {n + 𝑛̃ +1} (L14)

𝑥𝑖𝑗 = 1 ⇒ 𝑄𝑗
𝑘 = 𝑄𝑖

𝑘 + 𝑞𝑗 ∀(i, j) ∈A, 𝑘 ∈ 𝐾 (L15)

max {0, 𝑞𝑖} ≤ 𝑄𝑖
𝑘 ≤ min {𝐶𝑘, 𝐶𝑘 + 𝑞𝑖} ∀i ∈ V, 𝑘 ∈ 𝐾 (L16)

𝑥𝑖𝑗 ∈ 0,1 ∀(i, j) ϵ A (L17)

The objective function L8 minimizes the routing cost over all the vehicles. Constraint L9

enforces that each node is visited exactly once. Constraints L10, and L11 ensure that all vehicles

begin their routes from the depot and return to the depot at the end of their routes. Constraint L12

is for vehicle flow conservation. Constraint L18 is the time window constraint, used for sub tour

elimination. As the single vehicle case, the MTZ constraint in L14 can be used instead of L13 for

sub tour elimination. Constraints L15 and L16 ensures that vehicle capacity is not exceeded at

any time in the route.

2.2.1.1 TSPCB and VRPCB Extensions

One can formulate this TSPCB as a double-cluster problem: one for a pickup and one for a

delivery customer. An additional condition is needed to enforce that no pickup customer is

visited until all delivery customers are visited. This can be achieved by the following constraint:

13

∑∑𝑥𝑖𝑗

𝑗𝑖

= 1 ∀i ϵ P, ∀j ϵ D (L18)

Constraint L18 guides the model to use only one arc connecting pick-up and delivery customers.

For this to work, the cost of an arc from j to i is assigned to a high value so that no arc from a

delivery customer to a pickup customer is chosen.

A similar approach can be used in the case of VRPCB. Since in the VRPCB there are multiple

number of vehicles to be routed, constraint L18 is modified to constraint L19 as shown below:

 ∑∑𝑥𝑖𝑗
𝑘

𝑗𝑖

= 1 ∀i ϵ P, ∀j ϵ D ∀k ϵ K (L19)

A number of papers deal with these problem subclasses. For example, [21] and [22] use exact

algorithms, while [23] uses a Tabu Search based heuristic to solve VRPCB problems.

2.2.1.2 TSPMB and VRPMB Extensions

For TSPMB the order of delivery and pick up customers is only restricted by the vehicle

capacity. So to formulate the TSPMB problem, the following constraints are added to the general

formulation.

 Q0 = −∑𝑞𝑖

𝑖∈𝐷

 (L20)

𝑥𝑖𝑗 = 1 ⟹ 𝑄𝑗 ≥ 𝑄𝑖 + 𝑞𝑗 ∀(i, j) ϵ P, ∀j ϵ D (L21)

max{0, 𝑞𝑖} ≤ 𝑄𝑖 ≤ min{𝐶, 𝐶 + 𝑞𝑖} ∀i ϵ V (L22)

Constraint L20 ensures that vehicle leaves the depot with load equal to the total amount of

deliveries. Constraint L21, and L22 ensure that vehicle capacity is not exceeded at any node

through the route.

A similar concept is used in the VRPMP case. In this form of problem, one has to ensure that

every vehicle leaves the depot with no more than total amount of deliveries to nodes enroute.

This is achieved by L23.

 𝑄0
𝑘 = −∑𝑞𝑖

𝑗∈𝐷

∑𝑥𝑖𝑗
𝑘

𝑖∈𝑉

∀k ϵ K (L23)

14

There are papers in the literature that deal with the VRPMB. For the exact case, an example is

[24]. A heuristic approach to deal with the VRPMB is shown in [25].

2.2.1.3 TSPDDP and VRPDDP Extensions

The TSPDDP, and VRPDDP can use the same formulations introduced for TSPMB and

VRPMB. The only difference is that each customer is visited twice, once for delivery and once

for pick up. To enforce this in the model, each customer node can be entered twice in the model.

This subclass of the VRP problem is also known as the “Lasso” or “Double Path” VRP, in

literature.

2.2.1.4 TSPSDP and VRPSDP Extensions

In this subclass, each customer can be only visited once. Each customer requires both delivery

and pick at the same time. Therefore, at each node i, the difference between pick-up and delivery

amount can be shown as: 𝑞𝑖 = (𝑞𝑖
+ − 𝑞𝑖

−). 𝑞𝑖
+ denotes the pickup amount and 𝑞𝑖

− is the

delivery amount at node i. If the amount of delivery to node i is larger than the amount to be

picked up, 𝑞𝑖 becomes a negative number.

In addition, L24 and L25, are used for TSPSDP and VRPSDP cases respectively, to ensure that

the load that vehicle(s) carry when leaving a depot is equal to the total amount to be delivered to

all customers in the route.

For the TSPSDP case:

 Q0 = ∑𝑞𝑖
−

𝑖∈𝐷

 (L24)

For the VRPSDP case:

𝑄0
𝑘 = ∑𝑞𝑗

−

𝑗∈𝑝

∑𝑥𝑖𝑗
𝑘

𝑖∈𝑉

 ∀k ϵ K (L25)

In addition to the extension introduced for the subclasses above, time window constraints and

maximum route length constraints may be added to the general form of the TSP or VRP model to

achieve custom requirements. For example, one can use the maximum route length constraint to

enforce a cap on the allowed driving time of a driver. VRPSDP is also known as the

15

“Hamiltonian” VRP in literature. An exact algorithm for VRPSDP is introduced in [26]. For

Tabu Search heuristic approaches, the reader may refer to [27] and [28].

2.2.2 Transportation between Customers

In VRPDP problems, a set of vehicles have to satisfy a set of transportation request. Each

transportation request specifies a load size and has a distinctive origin, where it has to be picked

up, and destination, where it has to be delivered [29]. VRPDP has three categories shown in

Figure 2. Similar to the classification presented in the previous section, subclasses of VRPDP

can be shown with extension to a general pick-up and delivery model. As these classification are

not distinctively different from VRPB problems, their mathematical formulations s are not

shown here. A reader may refer to general PDP formulation available in the literature. It should

be noted that Dial a Ride Problem (DARP) is different from Pickup and Delivery Vehicle

Routing Problem (PDVRP) and Pickup and Delivery Problem (PDP), as in DARP the loads are

passengers and therefore consideration is given to level of convenience in travel. Taxi, or any

charter service provider companies use variations of DARP models. An exact algorithm of

DARP is presented in [30]. For a comprehensive review of PDP models a reader is encouraged

to refer to [29].

To summarize, the VRP is a very mature research area. There are several optimization

algorithms and heuristic approaches to solve this broad area of problems. Since the objective of

this thesis is to compare the PI, CO, and HY logistics systems, there are plenty of tools and

techniques to model these systems within an optimization framework. The ideas discussed in

this review will be used extensively in the remainder of this thesis.

16

Chapter 3: Network Structure and Logistic Systems

In this section, the road network used for this thesis will be introduced since it is important to

study the road network topology and its physical characteristics. In order to understand the PI,

CO, and HY logistics systems, we describe a simplified road network in Eastern Canada in

section 3.1. This road network will also be used in our computational case studies. The three

logistic systems are discussed in detail in sections 3.2-3.4. For a better understanding of these

logistic polices, routes created with each of these logistic polices for two example container

flows will be illustrated.

3.1 Eastern Canada Road Network

This thesis focuses on transportation within a simplified Eastern Canadian road network. As

shown in Figure 4, 11 cities in Eastern Canada are the nodes in the network. Being a large urban

area, and for better simulation of traffic flows, Montreal is represented by two nodes: Montreal

East and Montreal West. Figure 5 shows only the logical connection of the nodes in the network

and is not to scale. The network shown in Figure 5 is a tier 4 Intra-Country Inter-State Network

according to the PI network classification in [1].

The Canada West node represents the rest of the Canadian road network to West. Similarly,

Ontario North, and Ontario South nodes represent the northern and southern Ontario road

networks as one single node. The traffic going to and from Canada West, Ontario North, and

Ontario South will pass through these three nodes. In the same fashion, the traffic to and from

United States will pass from three nodes called US Border Gate 1, 2, and 3.

17

Figure 4 - Candidate Cities in Road Network

(Dots placed after retrieving map from maps.Google.com – retrieved on September 20, 2013)

The network shown below, has a tree structure, with the exception to the connection between

Fredericton, Moncton, and Saint John. As will be shown, logistics decision making can get very

complicated even on tree networks, especially when there are a large number of loads to be

transported. Without the proper tools and routing optimization algorithms, drawing a clear

conclusion on the true performance of the logistics systems will not be possible.

Halifax

Moncton

Yarmouth

Sydney

FrederictonMontreal East

Saint John

Charlottetown

Riviere Du LoupQuebec City

US Border Gate 2

Ontario North

US Border Gate 1US Border Gate3Ontario South

Canada West

Truro

Montreal West

Halifax

Moncton

Yarmouth

Sydney

FrederictonMontreal East

Saint John

Charlottetown

Riviere Du LoupQuebec City

US Border Gate 2

Ontario North

US Border Gate 1US Border Gate3Ontario South

Canada West

Truro

Figure 5 - Logical Connection of the Nodes

Since there are 7 network tiers in the PI logistic system [1], logical connections between the

nodes in the network is sufficient to define the tier 4 Intra-country inter-state network in Figure

5. However, to study other network tiers, such as a tier 3 Intra-City Inter Facility Network,

http://www.maps.google.com/

18

factors such as urban congestion, routes capacity, and routes availability should be considered in

the network definition. Such issues are beyond the scope of this thesis.

3.2 Conventional (Door-to-Door) Logistics Policy

Loads at each source node with identical final destinations are packed into a container in the

Door-to-Door (DTD) logistics system. This container is then transported to the final destination

without any en-route loading and unloading. In other words, transshipment is not allowed in

Conventional logistics (CO). As an example, a container carrying loads from Yarmouth to US

Border Gate 2 will be loaded in Yarmouth and only unloaded when it arrives at its final

destination. Similarly a container from Sydney to US Border Gate 2 will have a non-stop trip to

this node. These two container flows are illustrated in Figure 6, with orange and green arrows

respectively.

Halifax

Moncton

Yarmouth

Sydney

FrederictonMontreal East

Saint John

Charlottetown

Riviere Du LoupQuebec City

US Border Gate 2

Ontario North

US Border Gate 1US Border Gate3Ontario South

Canada West

Truro

Montreal West

Figure 6 - Example Flows in CO Logistic Policy

Appendix A: Conventional Arcs Dictionary shows, in dictionary form, the list of nodes from any

source node to any destination node. Elements of this dictionary will be explained in detail in

Chapter 5: Data Generation and .

3.3 PI Logistic Policy Flows

The PI Logistic system one the same road network uses five road based PI transit centers, as

described in [11]. These are located in Truro, Fredericton, Quebec City, Montreal East, and

Montreal West. Selection of these nodes to host the PI Transit Centers is because of population

19

or due to their strategic location. For example, although Truro is a small town, it is located on a

Trans-Canada highway split.

Each of these PI transit centers represents a cluster of nodes as shown in Figure 7. In this

logistics system, at the source node, loads are packed into a container. A container then is

transported to a PI node with a road based PI transit center. The loads are therefore transported

from an origin to one or more PI transit centers (or PI hubs) before reaching their final

destination through the PI hub of the destination cluster.

In the PI logistics system, loads with different sources but the same final destination could be

packed into the same container at any of the en-route PI nodes. As an example, a container going

from Yarmouth to US Border Gate 2 will be packed in Yarmouth, and unpacked in Truro. Since

Truro is the PI hub of cluster 1, all the other containers arriving to Truro from the other nodes in

cluster 1 (such as Sydney) will be also unpacked in Truro. Loads with the final destination

beyond the neighbour PI hub (ex. Fredericton) will be packed into other containers and

transported to Fredericton. The same process will repeat in Fredericton until loads arrive to

Quebec City where they are packed into containers with the final destination of US Border Gate

2.

Figure 7 - PI Road Network

Figure 8 is a representation of how loads from Sydney and Yarmouth could be packed in the

same container in Truro and travel together for the rest of their journey using PI logistic systems.

20

Appendix B: PI Arcs Dictionary shows a dictionary form of the list of nodes allowed for

transshipment from any source node to any destination node when PI Logistics is used. Elements

of this dictionary will be explained in detail in Chapter 5: Data Generation and Optimization.

Figure 8 - Example Flows in PI Logistic Policy

Figure 9 shows a proposed layout for PI Hub. Trucks enter the facility from the gates at the

bottom left and park in the designated load switching area in the center of the facility. When

loaded, trucks leave the facility from the gates at the bottom right side of the facility.

Figure 9 - Isometric View of the Proposed Layout for PI Hubs [31]

21

3.4 Hybrid Logistic Policy

The Hybrid Logistics policy is a combination of CO and PI. Packing and unpacking is done

according to the PI policy inside the PI transit centers of source and destination clusters. In

contrast, the containers transiting between PI hubs are not packed and unpacked at every

intermediate PI hub in the network.

Therefore, the loads are packed into a container at a source node. The container is then

transported to the source cluster’s PI Hub. At the PI Hub, the request is packed with all the other

requests going to the same final cluster destination. The container is then transported to the

destination cluster’s PI Hub, where the loads are unloaded and loaded with all other loads going

to the same final destination node.

As an example, a load going from Yarmouth to US Border Gate 2 will be loaded into a container

going from Yarmouth to Truro. In Truro, all the loads arriving from the other nodes in cluster 1

(ex.Sydney) are unloaded. Loads with the final destination node in Cluster 3 are then packed into

container going to Quebec City. In Quebec City loads with final destination of US Border Gate 2

are packed into a container going to this node.

Figure 10 is a representation of how loads from Sydney and Yarmouth could be packed in the

same container in Truro and travel together for the rest of their journey using the HY logistic

policy.

22

Appendix C: Hybrid Arcs Dictionary, shows a dictionary form of a list of nodes allowed for

transshipment from any source node to any destination node when HY Logistics is used.

Elements of this dictionary will be explained in detail in Chapter 5: Data Generation and

Optimization.

Figure 10 - Example Flows in HY Logistic Policy

3.5 Request Sizes and Physical Characteristics of Containers

The modularity of containers is a very important element of the PI vision [1], [6]. In [6] the

standard modules used to encapsulate goods are called π containers. In this thesis, the term PI-

container is switched with PI-box. Therefore, PI-boxes are the actual boxes that encapsulate

merchandise. The term PI-containers will refer to the containers that encapsulate PI- boxes.

Conventional containers have only one door at the back of the container to load and unload. This

implies that merchandise is unloaded in Last in First out (LIFO) fashion. The size of the

containers varies from 20 feet to 53 feet depending on the mode of transportation and

geographical region of use [32]. Figure 11 shows a 53-foot container widely used in North

America.

23

Figure 11 - Conventional Pallets Loaded in Container [33]

The load (or request) sizes introduced in this thesis are the sizes used for PI-boxes. PI-boxes are

placed in a conceptual PI-containers. The conceptual PI-containers introduced in this thesis can

be loaded and unloaded from the side. Loading and unloading a PI-container from side reduces

the time spent to pack and unpack containers at PI Hubs. It should be noted that the mechanical

design and proof of concept of PI- containers is not within the scope of this thesis. The standard

size of a PI-container is assumed to be 40 feet.

Figure 12 and Figure 13 show PI-boxes and PI-containers. Figure 12 shows how a fully packed

PI-container looks like with four 0.125 (5 feet) and two 0.25 (10 feet) PI-boxes.

Figure 12 - Packed PI-Container [33]

24

For the sake of consistency in this thesis, all logistic systems use PI-containers for transportation

of the loads. Using PI-containers to investigate performance of logistic systems ensures that

factors such as difference in the shape of the loads, container packing and unpacking methods,

and container space utilization, have no effect.

Figure 13 - PI-Boxes and a PI-Container

25

Chapter 4: Three-Phase Optimization Framework

In this chapter, we develop an optimization framework to compare and contrast the PI, CO, and

HY logistics networks. Once a set of container transportation requests (with load sizes and

origin-destination information) is received, a typical logistics operator needs to consolidate these

requests and build routes with existing assets (trucks) to realize the shipments. We assume that

the logistics operator of any of the three network types will use optimization to come up with an

operations plan.

4.1 Optimization Methodology

The comparison presented in this work is carried out through Monte-Carlo simulation in which

loads are generated randomly and a sequential three phase optimization framework optimizes

CO, PI, and HY logistical networks.

The comparison begins with generating a list of loads using Monte-Carlo simulation to be

shipped from each source to each destination. The operations plan for container movements is

developed by solving optimization models for packing and consolidation, routing, and truck

assignment. While the packing/consolidation strategy varies depending on the logistics system

(PI, CO, HY), this part of the logistics operations plan deals with creating container shipments.

A set of routes are then developed to transport containers through the network to satisfy the

requests. Finally, trucks (drivers) are assigned to routes in order execute the operations plan and

make sure that trucks (drivers) return to their home base. Figure 14, is a graphical illustration of

the work done at each step in the optimization framework.

By applying the three phase optimization framework methodology to CO, PI, and HY logistic

systems, differences are observed in the total number of the instances containers requiring

loading and unloading and total driving time to carry all the loads to their final destination. The

complete list of KPI used to make the comparisons is as follows:

1. Number of container packing and unpacking instances

2. Total hours of container routing

3. Number of trucks in service

4. Average hours worked per truck

26

5. Percentage drivers back home at the end of the day

6. Total system cost as function of operation, social, material handling, and a fix cost

Figure 14 - Three Phase Optimization Framework

These three steps (or optimization phases) are applied across the various logistics systems

studied in this thesis using the optimization framework presented below to compare PI, CO, and

HY for the set of KPI’s discussed.

4.2 Model Assumptions

The following assumptions are made in this thesis:

 A set of discrete load sizes are generated. All loads need to be transported by the end of

the planning period.

 The number containers at each node is unlimited.

27

 Trucks (drivers) have home bases. All trucks (drivers) need to be return to their home

bases by the end of the planning period.

 For the PI logistics policy, consolidation and deconsolidation occurs at all nodes (source,

destination, and PI-transit centers). For the CO logistics policy, consolidation and

deconsolidation occurs only at source and destination nodes.

 The three optimization models described below are all single-period models. This means

there is no load movement requests carried over from one period to the next. In other

words, the entire systems resets to its initial state at the beginning of each period.

4.3 Elements of the Optimization Framework

The three optimization are models written using the GLPK (GNU Linear Programming Kit)

package. The GLPK models are converted to .MPS or .LP format and executed by Gurobi

Optimizer© Version 5.6. These optimization models work in the following fashion:

1) Packing Optimization (PO) - Phase 1

PO reads the generated requests and packs them into containers. The purpose of this

optimization step is to find the minimum number of the containers required to transport

all the requests from their initial location or source to their destination node. This

depends on the number and size of requests and also the type of logistical network (CO,

PI, or HY).

2) Routing Optimization (RO) - Phase 2

RO reads the result of PO and finds a series of node sequences to determine the order in

which a truck can transport containers so that all the containers reach their final

destination. The sequence of nodes visited by a truck carrying different containers is

called a route. Routes are created such that first and last node visited by a truck coincide.

In other words, each route created by the RO is a loop.

3) Scheduling Optimization (SO) - Phase 3

SO model reads the list of the routes created by RO and associates each route as a unique

job that should be assigned to a truck. The scheduling models works similar to an

assignment problem to find the minimized cost of performing all the routes with the

28

given set trucks in a given delivery time span. This optimization model is executed three

times with different delivery time spans to find the minimum number of the trucks

required at each node location.

An auxiliary module for loop elimination uses a property specific to tree networks to reduce the

volume of the data transferred from PO to RO. Reducing the volume of the data entering RO

reduces the solution time of RO model significantly without affecting the value of optimal

solution.

Figure 15 shows the data flows in the optimization framework and how the optimization models

are connected to each other. Load movement requests (from node to node in the network) are

generated by the data generation module. They are then passed on to the PO model in the first

phase of the optimization. The output of the PO model is passed on to the RO model the result of

which is then passed on to the SO. Once SO is run, the results are stored in a database and the

comparison KPIs evaluated.

29

Figure 15 - Data Module and the Optimization Framework

4.4 Phase 1: Packing Model (PO)

The PO model is a one dimensional Bin-Packing Problem (BPP). In the BPP a list of items with

fractional volumes are given. The objective is to find the minimum number of the bins to fit

these items such that total volume of the items assigned to a bin is less or equal to one [34]. In

the PO model, the generated requests are the items (or PI-boxes) and the 40 foot PI-containers

are the bins.

In the PO model, two sets Request and Container are defined. Data in the Request set is

generated in the Data Generation Module. In contrast, number of containers in the Container set

30

is fixed at an arbitrary large integer number k. This number defines the maximum number of the

containers that could be used to solve an instance of the BPP. Setting too small a value for k

could result in infeasibility, and too large a value will increase solution time. An appropriate

value for k can be set by investigating the number of elements in Request set. Obviously, this

model is always feasible when the value of k is any large enough.

In the PO model, request sizes are stored in 𝑅𝐸𝑄_𝑆𝐼𝑍𝐸𝑟. This parameter is defined over the set of

requests. Parameter Capacity is defined as a constant value set to 1. Binary assignment variable

𝑎𝑠𝑟𝑐 captures the assignment of request r to container c. No partial assignment of request r to

container c is not allowed in the model. Finally 𝑐𝑜𝑛_𝑛𝐶 variable counts the minimum number of

conatiners required to transport all the requests.

The following are the sets, parameters, and variables of this model:

Sets:

𝑅𝑒𝑞 = {1…𝑞} Set of Requests. q: integer

𝐶𝑜𝑛𝑡 = {1…𝑘} Set of Containers parked at each node. k: integer

Parameters:

𝑅𝐸𝑄_𝑆𝐼𝑍𝐸𝑟 Fractional size of request r from node i to node j.

Set of fractional sizes to choose from. Available Sizes are: {0.125, 0.25, 0.5,

0.75, 1, 0}

𝐶𝐴𝑃𝐴𝐶𝐼𝑇𝑌 Capacity of each container. Default = 1.

Variables:

𝑎𝑠𝑟𝑐 Binary, 1 if request r is assigned to container c, 0 otherwise

𝑐𝑜𝑛_𝑛𝐶 Binary, 1 if container c is used

Mixed Integer Linear Model:

 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍1 = ∑𝑐𝑜𝑛_𝑛𝑐

𝑘

𝑐=1

Subject to:

(1)

31

∑𝑎𝑠𝑟𝑐 = 1

𝑘

𝑐=1

 r ϵ Req

(2)

∑𝑎𝑠𝑟𝑐 ∙ 𝑅𝐸𝑄_𝑆𝐼𝑍𝐸𝑟

𝑞

𝑟=1

≤ 𝑐𝑜𝑛_𝑛𝑐 ∙ 𝐶𝐴𝑃𝐴𝐶𝐼𝑇𝑌

c ϵ Cont

(3)

Objective function minimizes the total number of the containers required. Constraint 2 assigns

every request r to a container. Constraint 3 ensures the total volume of the requests assigned to

container c is less than or equal to the capacity of the container.

This model minimizes the number of container for each source and destination pair. Therefore,

PO model should be called and executed for every possible source destination pair determined by

the CO, PI, and HY logistic system. Appendix F: GLPK Code of Packing MIP shows the GLPK

code for the Packing MIP.

Depending on the number of loads generated, instances of this model can have between 4 to

approximately 300K integer and binary variables. The time required to reach 0.005% MIP gap

depends on the number of variables and varies from a fraction of a second for a 4 variable

instance to approximately 20 seconds for a 300K instance on an Intel Xeon processor with 8

logical cores, 16 GB (ECC) memory, and a processing speed of 3.4 Ghz.

4.4.1 Packing MIP - Calling Algorithm

The PO model is called for each source and destination pair to minimize the number of

containers required for transportation across the entire network. One may ask what the valid

source and destination pairs are in each of the logistic systems. The valid source-destination pairs

Active Arcs are the arcs that directly connect a source node to a destination node. Each active arc

is a dictionary key in the logistic dictionaries.

For example, in the CO logistic system Halifax-Quebec City is an active arc. In PI and HY

logistic systems, there is no direct flow between Halifax and Quebec City, therefore this arc is

not present in these two logistic systems but is replaced by three active arcs in PI: Halifax-Truro,

Truro-Fredericton, and Fredericton-Quebec City.

32

The number of active arcs (or number of dictionary rows) in CO, PI, and HY are 308, 80, and 68

respectively. There are 18 nodes in the network used in this thesis. Since the active arcs in CO

are from any node to any other node, there are 18*17, i.e., 308 active arcs. The number of arcs

in PI and HY are fewer, and are a function of the number of arcs and transit nodes. The PO

model should be called and executed these many times as there are active arcs.

The PO calling algorithm is written in Python 2.7. The PO model is also written in Python using

standard code in a Python library called “Gurobipy”. This library enables user to call Gurobi

optimization within the Python environment and feeds the MIP model to the optimizer directly

[35]. The following, is the pseudo code of the calling algorithm used in this thesis. Appendix G:

Packing Model Calling Algorithm, contains the actual Python code of this part.

Read List of Loads from the Request Array Database
Read List of Active Arcs from the Logistics Policy dictionaries

 For i in Node:
 For j in Node:

 If ((i,j) pair exist in the logistics policy dictionary):
 Loads_array  Request Array Database

 Create PO Model sets, parameters, variables
 Create constraint set 1 (assignment constraint)
 Create constraint set 2 (capacity constraint)
 Define the objective function
 Call model.optimize()
 Read the solution variable values from the optimizer
 Write solution into results database

4.5 Phase 2: Routing Model (RO)

The heart of the optimization framework is the routing optimization model (RO). The Routing

model reads the number of containers on each active arc and finds sets of sequences called

Routes of minimum total length. The logical constraints in RO are on Demand, Flow

Conservation, and Subtour elimination. There are also optional constraints that could be added to

RO such as Vehicle Capacity, and Routing Policy constraints. Routing policy constraints could

include constraints on the total routing time or the number of routes generated.

33

4.5.1 Routing MIP

The RO MIP uses the reduced flows on an active arc as the number of the times that arc could be

used in routing. In the RO model, two sets of Routes and Nodes are defined. The nodes set

contains the list of the 18 nodes defined in the network.

Routes set contains m elements defined as the maximum number of the routes that could be

created to solve an instance of the RO problem. Setting too small a value for m could result in

infeasibility. An appropriate value for m can be set by investigating the number of reduced flows

to be routed. This model is always feasible for any large enough value of m.

If an arc is used to transport a full container, the time required to travel over this arc is shown

by 𝐹𝑇𝑇𝐼𝑀𝐸. However, as the speed of commute increases while deadheading, deadheading over

the same arc requires 𝐸𝑇𝑇𝐼𝑀 time. M is an auxiliary parameter used in the model for subtour

elimination. The value of M can be also used as a maximum number of the stops in a route if

variable 𝑠𝑖𝑘 is set to be integer. Variable 𝑟𝑘 is used to capture the total duration of a route, and

𝑠𝑖𝑘 is used as an auxiliary variable in sub tour elimination. All the variables, parameters, and sets

used in RO model are shown in the table below:

Sets:

Nodes = {1…n} Set of nodes in the network

Route = {1…m} Set of empty routes

Parameters:

𝑅𝐸𝐷_𝐶𝑂𝑁𝑇𝑖𝑗 Reduced Flow or number of containers to be sent from node i to node j

𝐹𝑇𝑇𝐼𝑀𝐸𝑖𝑗 Loaded (or full) travel time from node i to node j

𝐸𝑇𝑇𝐼𝑀𝐸𝑖𝑗 Deadhead (or empty) travel time from node i to node j

M Auxiliary parameter set at an arbitrary large value

Variables:

𝑓𝑎𝑖𝑗𝑘 Binary, 1 if route k includes the loaded arc from node i to node j, 0 otherwise

𝑒𝑎𝑖𝑗𝑘 Binary, 1 if route k includes the deadhead arc from node i to node j, 0

otherwise

𝑟𝑘 Total duration (or length) of route k

𝑠𝑖𝑘 Auxiliary positive integer variable used for sub tour elimination

34

Mixed Integer Linear RO Model:

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍2 = ∑ 𝑟𝑘

𝑚

𝑘=1

Subject to:

(7)

∑ 𝑓𝑎𝑖𝑗𝑘 = 𝑅𝐸𝐷_𝐶𝑂𝑁𝑇𝑖𝑗

𝑚

𝑘=1

∀ i, j ϵ Node

(8)

∑∑(𝐹𝑇𝑇𝐼𝑀𝐸 ∙ 𝑓𝑎𝑖𝑗𝑘 + 𝐸𝑇𝑇𝐼𝑀𝐸 ∙

𝑛

𝑗=1

𝑒𝑎𝑖𝑗𝑘) = 𝑟𝑘

𝑛

𝑖=1

∀ k ϵ Route

(9)

∑(𝑓𝑎𝑖𝑝𝑘 + 𝑒𝑎𝑖𝑝𝑘) = ∑(𝑓𝑎𝑝𝑗𝑘 + 𝑒𝑎𝑝𝑗𝑘)

𝑛

𝑗=1

𝑛

𝑖=1

∀ p ϵ Node, ∀ k ϵ Route

(10)

∑(𝑓𝑎𝑖𝑝𝑘 + 𝑒𝑎𝑖𝑝𝑘) + ∑(𝑓𝑎𝑝𝑗𝑘 + 𝑒𝑎𝑝𝑗𝑘) ≤ 2

𝑛

𝑗=1

𝑛

𝑖=1

 ∀ p ϵ Node, ∀ k ϵ Route (11)

∑ 𝑒𝑎𝑖𝑗𝑘 ≤ 1

𝑚

𝑘=1

∀ i, j ϵ Node, ∀ k ϵ Route (12)

𝑠𝑖𝑘 − 𝑠𝑗𝑘 + 1 ≤ 𝑀 ∙ (1 − 𝑓𝑎𝑖𝑗𝑘)

∀ i, j ϵ Node, ∀ k ϵ Route (13)

𝑠𝑖𝑘 ≥ 1, 𝑠𝑖𝑘 ≤ 𝑀 ∀ i ϵ Node, ∀ k ϵ Route (14)

The objective function of the RO model in (7) minimizes the total duration of the routes created.

Constraint 8 is the demand constraint. As explained, number of the times an arc can be used for

transportation of containers should be equal to the reduced flow. Constraint 9 is used to capture

the total duration of a route k. In constraint 10, sum of all the full and deadhead flows in to a

node should be equal to the sum of full and deadhead flows out of the same node. Constraint 11

ensures that a flow is either full (with a container) or deadhead but not both at the same time.

Constraints 10 and 11 together are used to force flow conservation in the model. Constraints 12,

13, 14 are used for sub tour elimination. 13 and 14 are the MTZ constraints described in [19] and

discussed in the VRP literature review. These constraints assign an auxiliary value to node j if

35

node j is immediately visited after node i in route k. Using this method, nodes are visited in just

one single and fully integrated sequence. Constraints 13, and 14 impose sub tour elimination on

the container flows (𝑓𝑎𝑖𝑝𝑘) but not on the deadhead flows (e𝑎𝑖𝑝𝑘). Constraint 12 sets the number

of deadhead flows per route to maximum of one. A single flow cannot create a sub tour by itself,

so sub tour elimination constraints are not required for this type of flow. With use of flow

conservation constraints in 10 and 11, a single deadhead flow is assigned such that it connects

the very last node visited by route k to the very first node in route k. Therefore every route

created in RO model is a loop starting at an arbitrary node and ending at the same node. Having

loops as the routes is very beneficial and reduces the complexity of the resource scheduling in

the next optimization phase. Appendix I: GLPK Code of Routing MIP, shows the GLPK code of

RO model.

In addition to the standard set of constraints just described, auxiliary constraints may also be

added to RO to restrict route durations, lengths, number of routes, maximum allowed deadhead

length, etc. The following parameters and a new binary variable may be introduced through

optional constraints 15 to 19 in the RO model to accomplish this.

Binary variable 𝑎𝑐𝑡_𝑟𝑘 is used to indicate whether a route is active or not. An active route is a

route that has a duration greater than zero.

𝑇𝑇𝑇𝐼𝑀𝐸 Maximum allowed duration (or length) for each route

𝑀𝐼𝑇𝐼𝑀𝐸 Minimum allowed duration (or length) for each route

𝐴𝑉𝐺_𝑅_ 𝐿𝐸𝑁 Average duration (or length) of each route

𝑀𝐴𝑋_𝐷𝐸 Max allowed deadhead length as percentage of rk

𝑁𝑈𝑀_𝐴𝐶𝑇_𝑅 Max number of the routes allowed to be created to serve all the requests

𝑎𝑐𝑡_𝑟𝑘 Binary, 1 if rk > 0, 0 otherwise

∑∑(𝑒𝑎𝑖𝑗𝑘 ∙ 𝐸𝑇𝑇𝐼𝑀𝐸) / 𝑀𝐴𝑋_𝐷𝐸

𝑛

𝑗=1

≤ 𝑟𝑘

𝑛

𝑖=1

 ∀ k ϵ Route (15)

∑(𝑟𝑘)

𝑚

𝑘=1

/ 𝐴𝑉𝐺_𝑅_ 𝐿𝐸𝑁 ≤ ∑ 𝑎𝑐𝑡_𝑟𝑘

𝑚

𝑘=1

 (16)

∑ 𝑎𝑐𝑡_𝑟𝑘

𝑚

𝑘=1

≤ 𝑁𝑈𝑀_𝐴𝐶𝑇_𝑅 (17)

36

𝑟𝑘 ≥ 𝑎𝑐𝑡_𝑟𝑘 ∙ 𝑀𝐼𝑇𝐼𝑀𝐸 ∀ k ϵ Route (18)

𝑟𝑘 ≤ 𝑎𝑐𝑡_𝑟𝑘 ∙ 𝑇𝑇𝑇𝐼𝑀𝐸 ∀ k ϵ Route (19)

Constraint 15 sets an upper limit on the maximum duration of deadhead allowed in a route as a

percentage of total route length. Constraint 16 sets an average route length for all the routes. This

constraint enforces RO model to only build such routes that together produce an average route

length of not greater than the fixed Average Route Length parameter. Constraint 17 sets a cap on

the number of routes that could be activated by the RO model, enforcing the model to perform all

routing activities with a pre specified number of routes. Constraints 18 and 19 set the minimum

and maximum duration on the length of the generated routes.

Unfortunately, RO is unable to find a set of minimum length routes (with 0.005% MIP gap on an

Intel® Xeon® E3 @ 3.4 GHz) in a reasonable amount of time. Since the vehicle routing problem

on tree is a NP-hard problem [36] and it is not surprising to observe very long solution times for

the instances of the problems in this thesis. To reduce the solution time a routing property on

trees is used. This property is explained in the section 4.5.2.

4.5.2 Loop Elimination on Tree Shaped Networks

It is well known that a reasonably sized VRP instance is very difficult to solve [37]. A common

approach to solving the VRP is column generation [38]. In this approach, a set of feasible routes

which satisfy the routing constraints are generated in a separate model. The main model then

selects and combines these routes in a feasible and optimal manner till an optimal solution is

found.

Column generation is the one approach to deal with the complexity of VRP models. However,

the strategy used in the thesis to solve the RO model relies on a property that tree networks could

benefit from, and therefore is specific to the unique network structure of the routing network

considered in this thesis. This strategy involves elimination of loops in VRP for trees and is

explained in [39].

As mentioned, PO model finds the minimum number of the containers on each active arc. This

number determines the number of instances a loaded travel from source to destination on that

37

active arc is possible. These container flows are shown with solid lines in Figure 15. Empty

travel is also permitted on the active arcs. There might be situations where there is no container

to be carried from a source to a destination, but a truck has to still use that active arc to be able to

complete a route, or go back to a home location. The empty flows hij (deadheads hereafter) are

shown with dashed lines in Figure 15. If node i can be connected to node j by an active arc, four

distinctive flows are generated. Full or empty travel out of node i towards node j and full and

empty travel out of node j towards node i.

con_nMF hST

hTS
hTC

Halifax

Moncton

Charlottetown

Truro

Sydney

Fredericton

Saint John

con_nSF

con_nFS

hFS

hSF

con_nSM

con_nMS

hMS

hSM

hMF

hFMcon_nFM

con_nHT

hHT

con_nTH

hTH

con_nTS

con_nST

con_nTC

con_nCT

hCT

 . . . con_nSH

con_nHS

hHS

hSH

Node i

Node j

con_nji

con_nij

hij

hij
 . . .

Example

Figure 15 - Illustration of the Flows in the Network

To visualize this strategy, the deadhead flows are eliminated and container flows in and out of

nodes i and j are shown with only one solid line in Figure 16.

Node i

Node j

con_nji, con_nij

Node i

Node j

con_nji

con_nij

hij

hij =

con_nFM, con_nMF

Halifax

Moncton

Charlottetown

Truro

Sydney

Fredericton

Saint John

con_nSF, con_nFS con_nMS, con_nSM

con_nHT, con_nTH

con_nST ,con_nTS

con_nCT, con_nTC

 . . .
con_nSH, con_nHS

Example

38

Figure 16 - Illustration of the Equivalent Flows in the Network

Since the network has a tree structure except for the part of the network creating a loop among

Moncton, Fredericton, and Saint John. These nodes can be connected to each other with more

than one distinctive routes. However, since the shortest path between any two nodes is a unique

path, there is only one logical route to go to node i from node j and vice versa and our network

therefore can benefit from the loop elimination property for trees.

Note that 𝑐𝑜𝑛_𝑛𝑖𝑗 is the number of containers to be transported from source i to destination j and

𝑐𝑜𝑛_𝑛𝑗𝑖 is the number of containers to be transported from source j to destination i. Therefore the

smaller of these two values are the number of complete loops created between node i and node j.

 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝐿𝑜𝑜𝑝𝑖𝑗 = 𝑚𝑖𝑛(𝑐𝑜𝑛_𝑛𝑖𝑗 , 𝑐𝑜𝑛_𝑛𝑗𝑖)

(5)

Since there is only one feasible arc to go from i to j, and the length of this arc is equal to the

lower bound on the travel distance from i to j, complete loops must be a subset of the optimal

route set and therefore may be eliminated for optimization purposes (however, the cost of these

loops are recorded to calculate total logistics costs).

The absolute difference between 𝑐𝑜𝑛_𝑛𝑖𝑗 and 𝑐𝑜𝑛_𝑛𝑗𝑖 is called the reduced flow (rfij) between

node i and node j and its direction and magnitude are calculated below:

𝑟𝑓⃗⃗⃗⃗ 𝑖𝑗 = 𝑚𝑎𝑥 (𝑐𝑜𝑛_𝑛⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ 𝑖𝑗 , 𝑐𝑜𝑛_𝑛⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ 𝑗𝑖), 𝑟𝑓𝑖𝑗 = |𝑐𝑜𝑛_𝑛𝑖𝑗 − 𝑐𝑜𝑛_𝑛𝑗𝑖| (6)

The direction of the reduced flow is the same as the direction of the larger

of 𝑐𝑜𝑛_𝑛⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ 𝑖𝑗 , and 𝑐𝑜𝑛_𝑛⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ 𝑗𝑖.

In loop elimination, only the reduced flows are entered in RO. The value of the total duration of

the eliminated loops is then added to the optimal solution of RO to report the result of the routing

optimization phase.

Appendix H: Calculation of Flow Lower Bond shows the Python program written to find the

loops created after running the PO model. This program calculates the total duration of each

loop, calculates the cumulative duration of all routes, and in the end, eliminates these loops from

the data set sent to RO.

39

Depending on the number of routes and number of containers to be routed, various instances of

this model (without auxiliary constraints 15-19) can have between 80K to approximately 400K

integer and binary variables combined. The time required to reach a 0.005% MIP gap depends on

number of variables. As explained, if loop elimination is performed, the number of variables

entered into the routing model significantly decreases. If the loop elimination step is performed,

the solution time of a problem instance with 400K variables is reduced to approximately 50

minutes in the worst case. On average, the solution time is approximately 25 minutes on an

Intel® Xeon® E3 @ 3.4 GHz.

With auxiliary constraints, the solutions performance is sometimes faster because they act as

valid inequalities and constrain the search space of the MIP. The reader is referred to [37] to see

examples of integer programs that are solved more easily when additional constraints are used.

In grid shaped networks there are more than one route connecting nodes to each other. Flows

between any two nodes could be assigned to different routes connecting the two nodes arbitrarily

or according to other considerations such as route capacity, route congestions, and etc. Loop

elimination in grid type networks therefore is a multi-step process. In the first step, (among all

the route options available) flows between a source-destination pair should be assigned to a

specific route. In the second step, the net flow on each route should be calculated. Finally, in

third step loop elimination can be performed when the net flows of any source destination pair on

each route is known.

4.6 Phase 3: Assignment and Cost Model

Assignment model is the third and the last phase in the optimization framework. It uses the

identified loops and the generated routes in the RO model as input, and assigns these routes to a

set of available vehicles. The assignments of the routes (jobs hereafter) to the vehicles are such

that the total cost of logistic system is minimized. The total cost in this model consists of three

components: operational, social, and fixed costs.

4.6.1 Operational Cost

The operational cost is the most significant component of the total cost functions. This cost is

incurred when a tractor truck (truck hereafter) is driven from one node to another node. A

research report [40] presented to Transport Canada is used to extract the operational cost of truck

40

driving activities. The following is a summary of the factors considered in calculation of the

operation cost:

1) Labour Cost of Drivers: Drivers cost include hourly wage for all the time a driver is on

duty (ex. driving, loading, unloading time) with an additional percentage added to include

any expected medical insurance or pension payments.

2) Average Fuel Cost: Fuel cost is an average fuel consumption rate of a truck per kilometer

or per hour multiplied by the fuel price. Some logistics companies have long term fuel

purchase contract with fuel suppliers in Canada. Although the exact terms of these

contracts are confidential, an expected bulk fuel price is used in calculation of the fuel

cost of a truck.

3) Repair and Tire Cost: repair costs are incurred to maintain a vehicle operable over its life

span. Repair cost includes, vehicle maintenance costs, cleaning, and miscellaneous costs.

Tires are the significant contributors to operational cost of trucks and need very frequent

change and maintenance. Estimated tire wear rate and average price of tires across

Canadian provinces are used to calculate the tire costs of vehicle.

4) Registration and Licence Fee: This is a fixed annual cost for registration a commercial

truck in Canada. Provincial and territorial charges slightly vary in Canada. A complete

hand book of territorial charges, regulations, and the taxes can be found in [41].

5) Cost of Capital: This includes all the costs associated with the amortization of a vehicle

such as interest rate and opportunity cost of the money. An average truck market price

and an average residual value of trucks at the end of their life is used in this calculation.

6) Vehicle Insurance Cost: Insurance cost is historically calculated as roughly 3% of the

revenue generated by a truck with full annual utilization.

7) Average Toll Charges: The extent to which toll charges effect the truck’s operational cost

depends on usage frequency of such toll facilities for transportation. In Canada there are

17 toll facilities in total: MacDonald, and MacKay bridges, and Highway 104 in NS,

Confederation Bridge in PEI, Saint John Harbour Bridge in NB, Coquihalla Highway in

BC, Highway 407, and 10 Canada US border bridges in Ontario. The total revenue from

these toll facilities is approximately $206 million dollars [40]. This number divided by

the total number of the trucks used toll facilities can be used as an estimate of the average

toll charges in operational cost of a truck.

41

Congestion is calculated to increase the truck operational costs on average by 15% [40]. An

average of $3.15 per kilometer is calculated as the operational cost of a truck. This value

increases to $3.58 cents per kilometer for operation in congested areas. Since the network road

network in this thesis excludes congested urban areas, the $3.58 cents per kilometer was not used

in this thesis. Therefore, for an average truck speed of 65 kilometers per hour (used in this

thesis), the hourly operational cost of truck is approximately $200.

4.6.2 Social Cost

According to Transport Canada’s regulation no driver shall exceed 14 hours of on duty (or

driving) time per day. After each 14 hours of driving, a driver should take 8 hours of rest time

[42]. Therefore a driver has to park in a designated road side park and sleeps areas or stops at a

bed and breakfast overnight if not going back home in 14 hours. The social cost is defined as the

cost incurred per night if a truck driver has to take rest while on duty. An average cost of park

and sleep or economy bed and breakfast for truck drivers is approximately $60 per night. The

effect of seasonality or weather condition is not considered in this cost. Moreover, truck drivers

struggle with number of common occupational health and safety issues such as sleep disorders,

spine and lumbar problems due to continuous sitting, etc [43]. Due to the complexity and lack of

universal data for cost of such treatments, these costs are hard to measure and were not included

in this thesis.

Jobs with driving duration longer than 14 hours will therefore result in a social cost on top of the

operation cost. Also these jobs will require a longer completion time because a driver needs rest

while enroute. A job completion time is called “enroute time” in this thesis. For example, if a job

has driving time of 30 hours its social cost and total enroute time can be calculated as follows:

𝑇𝑜𝑡𝑎𝑙 𝑆𝑜𝑐𝑖𝑎𝑙 𝐶𝑜𝑠𝑡 = ⌊
 𝐷𝑟𝑖𝑣𝑖𝑛𝑔 𝑡𝑖𝑚𝑒

𝐷𝑎𝑖𝑙𝑦 𝐷𝑟𝑖𝑣𝑖𝑛𝑔 𝐿𝑖𝑚𝑖𝑡
⌋ ∙ (𝑆𝑜𝑐𝑖𝑎𝑙 𝐶𝑜𝑠𝑡) → ⌊

30

14
⌋ ∙ $60 = $120

𝐸𝑛𝑟𝑜𝑢𝑡𝑒 𝑡𝑖𝑚𝑒 = 𝐷𝑟𝑖𝑣𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 + ⌊
𝐷𝑟𝑖𝑣𝑖𝑛𝑔 𝑡𝑖𝑚𝑒

𝐷𝑎𝑖𝑙𝑦 𝐷𝑟𝑖𝑣𝑖𝑛𝑔 𝐿𝑖𝑚𝑖𝑡
⌋ ∙ (𝑅𝑒𝑠𝑡 𝑇𝑖𝑚𝑒) → 30 + ⌊

30

14
⌋ ∙ 8 = 46 ℎ𝑟𝑠

Jobs created in Model 2 have a maximum duration of 72 hours. Jobs with required driving time

between 14 to 72 hours are called “Long Jobs” and jobs with required driving time of less than

42

14 hours are called “Short Jobs”. Appendix J: Calculation of the Jobs Enroute Time in Python

includes the Python code used to calculate the enroute time of each job.

4.6.3 Fixed Costs

As explained in the social cost section, jobs can be divided into two major categories: day jobs

and multiple day jobs. Trucks that are assigned to serve multiple day jobs require a sleeper

compartment. Trucks with and without sleeper compartments are called “Long Haul” and “Short

Haul” trucks respectively. Figure 17 uses the objects available in 3D Warehouse [33] of Google

SketchUp™ to display a sample short haul and a sample long haul truck used for one day and

multiple day job assignments respectively.

Figure 17 - Short and Long Haul Trucks [33]

The fixed cost of entering a short haul and a long haul truck into service is approximately $10,

and $100 respectively. This cost includes administration, dispatching agent’s time, paper work

and other costs that may be incurred if a driver needs to carry any special equipment (such as the

rental cost for auxiliary power generation units, safety gear for special loads, etc.) while enroute.

These fixed costs were inferred from an interview with two logistic coordinators of at a logistics

company in Halifax, Nova Scotia.

43

There are three sets (nodes, jobs, and trucks) in the Assignment model. The route information is

entered into the jobs sets. Jobs are identified by their starting node location, driving time, and

enroute duration. These values are stored in JL, JDD and JD parameters. As mentioned, each job

is a loop, therefore only the starting node of a job is sufficient to identify a job.

Each job can be served with only one truck. Similar to the jobs, each truck is identified by its

home node. Also each truck is either a short haul or long haul truck. Model 3 assumes that both

types of trucks are available at each node; therefore the problem is never infeasible due the lack

of required trucks. If truck i at node n1 is assigned to serve job j at node n2, the deadhead duration

incurred because of this assignment is the round trip duration between node n1 and n2. Parameter

DDUR in Model 3 calculates the deadhead durations.

4.6.4 Assignment and Cost MIP

Model 3 calculates the minimum number of truck required to serve all the jobs in a 72 hour time

window. Finding the minimum number of trucks to serve the jobs is equal to minimizing the

total assignment cost. The model objective function minimizes the operation, social, and fix costs

of assignment.

Sets:

Node Set of nodes in the network

Job = {1…m} Set of jobs

Truck = {1…n} Set of trucks. Trucks are either short haul or long haul.

Parameters:

𝑇𝐿𝑖 Location node of truck i

𝐽𝐿𝑗 Location node of job j

𝐷𝐼𝑆𝑇𝑛1,𝑛2 Distance in time from node 𝑛1 to node 𝑛2

𝐷𝐷𝑈𝑅𝑖𝑗 Round trip distance in time from location node of truck i to location node of

job j

𝐽𝐷𝐷𝑗 Driving time required to serve job j.

𝐽𝐷𝑗 Total time required to serve job j.

𝐷𝐸𝐿𝑉𝑆𝑃𝐴𝑁𝑖 Maximum driving time allowed per day (set to 14 hours per day for short

haul and 72 hours total for long haul trucks).

𝐷𝐴𝑌𝐷𝑅𝐼𝑉𝐸𝑖 Maximum on duty time allowed per day (set to 14 hours).

44

𝐹𝐼𝑋𝐶 Fixed cost of entering a new short haul truck into service

𝐻𝑂𝑈𝑅𝐶 Average hourly operational cost of a short haul truck (set to $220 /hour)

𝑆𝑂𝐶𝐼𝐴𝐿𝐶 Social cost per day per truck driver when away from home (set to $50 /day)

Variables:

𝑥𝑖𝑗 Binary, 1 if truck i is assigned to serve job j

𝑓𝑖𝑥𝑖 Binary, 1 if truck i enters service, 0 otherwise

𝑒𝑛𝑟𝑜𝑢𝑡𝑒𝑡𝑖 Total working time of truck i

𝑜𝑝𝑟_𝑐𝑜𝑠𝑡𝑖 Total operational cost incurred by truck i.

𝑠𝑜𝑐_𝑐𝑜𝑠𝑡𝑖 Total social cost incurred by truck i

𝑓𝑖𝑥_𝑐𝑜𝑠𝑡𝑖 Fixed cost of entering truck i into service

Objective Function:

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍3 = ∑(𝑜𝑝𝑟_𝑐𝑜𝑠𝑡𝑖 + 𝑠𝑜𝑐_𝑐𝑜𝑠𝑡𝑖 + 𝑓𝑖𝑥_𝑐𝑜𝑠𝑡𝑖)

𝑛

𝑖=1

Subject to:

(20)

∑(𝐷𝐷𝑈𝑅𝑖𝑗 + 𝐽𝐷𝑗) ∙ 𝑥𝑖𝑗

𝑚

𝑗=1

= 𝑒𝑛𝑟𝑜𝑢𝑡𝑒𝑡𝑖

∀i ϵ Truck

(21)

∑𝑥𝑖𝑗

𝑛

𝑖=1

= 1

∀ j ϵ Job

(22)

𝑒𝑛𝑟𝑜𝑢𝑡𝑒𝑡𝑖 ≤ 𝐷𝐸𝐿𝑉𝑆𝑃𝐴𝑁𝑖 ∙ 𝑓𝑖𝑥𝑖 ∀i ϵ Truck (23)

∑(𝐷𝐷𝑈𝑅𝑖𝑗 + 𝐽𝐷𝐷𝑗) ∙ 𝐻𝑂𝑈𝑅𝐶𝑖 ∙ 𝑥𝑖𝑗

𝑚

𝑗=1

= 𝑜𝑝𝑟_𝑐𝑜𝑠𝑡𝑖

∀i ϵ Truck

(24)

∑
𝐽𝐷𝐷𝑗 ∙ 𝑥𝑖𝑗

𝐷𝐴𝑌𝐷𝑅𝐼𝑉𝐸
∙ 𝑆𝑂𝐶𝐼𝐴𝐿𝐶 = 𝑠𝑜𝑐_𝑐𝑜𝑠𝑡𝑖

𝑛

 ∀𝑗 𝜖 𝐽𝑜𝑏 | 𝐽𝐷𝐷𝑗≥ 𝐷𝐴𝑌𝐷𝑅𝐼𝑉𝐸

∀i ϵ Truck

(25)

𝐹𝐼𝑋𝐶 ∙ 𝑓𝑖𝑥𝑖 = 𝑓𝑖𝑥_𝑐𝑜𝑠𝑡𝑖 ∀i ϵ Truck (26)

In the model, constraint 21 calculates the total duration of truck i (job duration and deadhead

travel). Constraint 22 ensures that each job is done by one and only one truck. Constraint 23

45

ensures that the enroute time of each truck remains less than the allowed delivery span.

Constraint 24 calculates the operational cost incurred by the operation of truck i. Constraint 25

calculates the social cost of performing a job considering only jobs that require a duty duration of

longer than 14 hours. Constraint 26 calculates the fixed cost of assignment.

Instances of the model solved in this thesis have between 400K and 3M variables. The solution

times to generate 0.005 % MIP gap varied from 10 minutes to 6 hours on an 8 core Intel®

Xeon® E3 @ 3.4 Ghz. Appendix K: GLPK Code of Assignment MIP.

46

Chapter 5: Data Generation and Optimization

This chapter describes how data is generated for the PI, CO, and HY logistics systems for

comparison purposes.

Data is generated randomly using Monte-Carlo simulation and stored in the Request Array

Database. The basic data consists of a move request from a source node to a destination node

with a load size specified in terms of PI-container capacities.

This is done for each of the three logistic polices. Therefore to complete an experiment instance,

the three phase optimization framework is performed on each of the CO, PI, and HY loads.

Figure 18 is a conceptual representation of the application of the three phase optimization

framework applied to the simulation instances. The results generated from CO, PI and HY

logistic systems are shown in red, green, and blue respectively. These results are investigated and

discussed in detail in Chapter 6: Results, of this report.

CO
PI

HY

CO
PI

HY

CO
PI

HY

...

HY ResultsHY Results

PI ResultsPI Results

CO ResultsCO Results

HY ResultsHY Results

PI ResultsPI Results

CO ResultsCO Results

HY ResultsHY Results

PI ResultsPI Results

CO ResultsCO Results

Monte Carlo Simulation Instance

Figure 18 - Monte Carlo Simulation Instances

The data used in this thesis is generated using the parameters below:

 The average speed of trucks set to 80 km per hour

 A set of five different load sizes with the following probability distribution

𝑃(0.125) =
8

15
 , 𝑃(0.25) =

4

15
 , 𝑃(0.5) =

2

15
 , 𝑃(1) =

1

15
 , 𝑃(0) =

1

15

47

 The nodes in the Eastern Canada road network as used with actual distances in

kilometers.

 The number of loads to be generated (explained in section 5.2)

The data generation module uses Monte-Carlo simulation generate an array of loads. Each line in

this array is called a “request”. Each request therefore is identified by its row number, source

node, destination node, and load size.

5.1 Data Generation Module

Data generation module has four parts, all of which are written in the Python programming

language (Figure 19). The set of parameters is recorded in a python file called “param.py”. The

python code in this file is given in Appendix D: Parameters File. This file is kept as a reference

and is read by the data generator every time a new loads array is required.

Request Array

Database

Request Array

Database

Parameters

Data Generator

Dijikstra

Algorithm

Shortest Path Database

(Arcs Dictionary)

Shortest Path Database

(Arcs Dictionary)

Figure 19 - Data Generation Module

Python code implementing the Dijkstra algorithm [44] is used to find the shortest paths between

each node in the network. This algorithm finds the shortest route (or path with the lowest cost)

between a node and all the other nodes in the network. The solution time complexity of this

algorithm can be shown to be 𝑂|𝑉2| where V is the number of vertices or nodes in the network

[44]. Dijkstra’s algorithm has to be executed V times to find the complete set of shortest paths

among all the nodes in the network. This implies that finding the shortest paths using the Dijkstra

algorithm has a complexity of 𝑉 ∙ 𝑂|𝑉2|. There are other shortest path algorithms such as Floyd

Warshall [45] with a solution time complexity of 𝑂|𝑉3|. Floyd-Warshall is required to run only

48

once to get the full set of shortest paths among all the nodes in the network. While we

implemented the Dijkstra algorithm, it should be noted that this is done only once. The network

in this study does not have any dynamic or changing features such as variation in availability of

source-destination arcs or varying route capacity. Therefore, it is sufficient to find the shortest

paths among the nodes in the network once and store the results in a database.

The solution time required for the Dijkstra Algorithm to find the shortest paths in the road

network was between 30 seconds in CO, to approximately 2 minutes in PI. This solution time

varied because each logistic system permitted different sets of source-destination arcs to be used.

After execution of the Dijikstra algorithm, a Shortest Path Dictionary was generated for each

logistic system. Each line in Shortest Path Dictionary is called a recordset. A recordset itself

consists of a key pair and an array element. The key pair consists of a unique combination of a

source and a destination node. The array element presents the arcs in the shortest path of the key

pair. Elements of these dictionaries presented in Appendix A: Conventional Arcs Dictionary,

Appendix B: PI Arcs Dictionary, and Appendix C: Hybrid Arcs Dictionary.

Since each of the CO, PI, and HY systems use different routing policies, the array elements for

each identical key pair varies in each Shortest Path Dictionary. For example, the key pair of

(Yarmouth, Ontario South) will have the following array elements in CO, PI, and HY

dictionaries respectively:

('Yar','Ots'): [['Yar','Ots']]

('Yar','Ots'): [['Yar','Tru'],['Tru','Frd'],['Frd','Qbc'],['Qbc','Mte'],['Mte','Mtw'],['Mtw','Ots']]

('Yar','Ots'): [['Yar','Tru'],['Tru','Mtw'],['Mtw','Ots']]

The top row from the CO dictionary shows no nodes visited enroute. The second row (from the

PI dictionary) shows multiple arcs in the array element due to transshipment nodes

corresponding to the PI Hubs. The HY dictionary has only two transhipment nodes, one at the

source cluster and the other at the destination cluster.

The actual data generation occurs by executing the code in “Generator.py”. This code consists of

a number of data connection handles to read data from inputs and a number of nested loops to

49

generate the loads array. Appendix E: Data Generator File, shows the Python code of the data

grantor file. The pseudo code for the data generation mechanism is as follows:

Read Parameters file

Read Policy Dictionary  CO, PI, HY

For r in Req:

 For k in Node:

 For j in Node:

 Size = randomly choose a size from the list of available load sizes

 For i in range (Dictionary_keys()):

 If (Dictionary_keys[i][0] = Node[k] and Dictionary_keys[i][0] = Node [j]) :

 For l in range (Dictionary_array_element):

For counter in range(Policy_node_counter[counter][0] = Dictionary_array_element[i][l][0] and

Policy_node_counter[counter][1] = Dictionary_array_element[i][l][1]):

 Policy_node_counter[counter][2] = Policy_node_counter[counter][2] +1

 Policy_Loads_array = (Dictionary_array_element[i][l][0], Dictionary_array_element[i][l][1],

size)

Import Policy_Loads_array into Request Array Database

5.2 Designed of Experiments and Loading Scenarios

In this section, the experimental design to investigate the performance of the logistic systems is

explained. There are four types of experiments as explained in the following four sub-sections.

5.2.1 Low, Medium, and High Traffic Levels Experiments

In these experiments, two load requests are assigned for every (source, destination) pair. This

scenario is to simulate a network with consistently low traffic across all nodes. For example, the

total number of the requests in this scenario is:

18 𝑆𝑜𝑢𝑟𝑐𝑒𝑠 ∙ 17 𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠 ∙ 2
𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑠

𝑆𝑜𝑢𝑟𝑐𝑒 − 𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑃𝑎𝑖𝑟
= 612 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑠

This number is then set to five to simulate consistently moderate traffic across all the nodes in

the network.

Finally, ten requests for every source-destination pair is generated to simulate a network with

high traffic. Table 1, Table 2, and Table 3 show number of the requests and number of the

implied requests for each logistic policy in each scenario. The implied requests are generated

according to the array elements of the dictionaries. For example a generated request from

Moncton to Montreal West would imply one request in CO policy, four requests in PI, (Moncton

50

to Fredericton to Quebec City to Montreal East, to Montreal West) and two requests in HY

(Moncton to Fredericton to Montreal West. Six instances of each scenario was generated using

Monte Carlo simulation. Therefore, 18 set of results were generated through this experiment.

Table 1- Number of Requests in CO Logistic System

Low Traffic

Experiment

Moderate Traffic

Experiment

High Traffic

Experiment

Generated

Requests
612 1530 3060

Total Implied

Requests
612 1530 3060

Table 2 - Number of Requests to Simulate PI Logistic System

Low Traffic

Experiment

Moderate Traffic

Experiment

High Traffic

Experiment

Generated

Requests
612 1530 3060

Total Implied

Requests
1700 4250 8500

Table 3 - Number of Requests to Simulate HY Logistic System

Low Traffic

Experiment

Moderate Traffic

Experiment

High Traffic

Experiment

Generated

Requests
612 1530 3060

Total Implied

Requests
1250 3125 6250

5.2.2 High Traffic and Small Loads Experiment

This experiment is similar to the consistent traffic level experiment with ten loads for each

source-destination pair. The only change is in the probability distribution of the load sizes. This

51

experiment is designed to investigate the performance of the logistic systems when sizes of the

requests in the network tend to be small. The following is the probability distribution of the loads

in this experiment:

𝑃(0.125) =
8

15
 , 𝑃(0.25) =

4

15
 , 𝑃(0.5) =

3

15
 , 𝑃(0) =

1

15

Similar to the consistent traffic level experiment, six instances of this experiment type were

generated using Monte Carlo simulation.

5.2.3 High Traffic and Large Loads Experiment

This experiment is designed to investigate the performance of the logistic systems when the sizes

of the requests in the network tend to be large. The following is the probability distribution of the

loads in this experiment:

𝑃(0.125) =
1

15
 , 𝑃(0.25) =

2

15
 , 𝑃(0.5) =

4

15
 , 𝑃(1) =

8

15

Six instances of this experiment type were generated using Monte Carlo simulation.

5.2.4 Random Traffic Experiment

In this experiment the probability distribution of the load sizes are returned to the original as

follows:

𝑃(0.125) =
8

15
 , 𝑃(0.25) =

4

15
 , 𝑃(0.5) =

2

15
 , 𝑃(1) =

1

15
 , 𝑃(0) =

1

15

The difference in this experiment with previous five experiments is that the number of loads

generated for each source-destination pair is set to a normally distributed non-negative value

with mean of 10 and standard deviation of 3. This experiment is designed to investigate the

performance of the logistic systems when number of loads in the various parts of the network is

not consistent and therefore network could have a high traffic in some areas and low traffic in

other areas. Once again, six instances of this experiment type were generated using Monte Carlo

simulation.

52

Chapter 6: Results

This section provides the results gathered from each optimization model for each scenario.

Graphs of results and the result of a one way ANNOVA test [46] are provided for each

experiment. A reader may refer to Appendix L: One-Way ANOVA Test to review the statistical

method used in the one way ANNOVA test.

The only factor affecting the difference in the results generated from solution of all optimization

models is the routing polices (CO, PI, and HY) used. Routing systems are applied on identical

data ensuring that no other source of variation effects the quality of the results. As there is only

one factor affecting the results gathered, one can conclude that we have a one factor statistical

problem [46]. The one way ANNOVA test is sufficient to build the confidence intervals around

the mean values of results generated in a one factor problem.

Minitab™ 16 is used to perform the ANNOVA test and graph the confidence intervals (CI)

around the mean values of the results.

6.1 Model 1 Results – Counting Packing/ Unpacking Instances

Model 1 was used to calculate the minimum number of containers trips from one node to any

other node. As each container needs one loading and one unloading per trip, the total number of

containers in the system also refers to the total number of container packing and unpacking (i.e.

loading and unloading) instances. Investigating the number of packing and unpacking is

important as it captures the resources required in material handling. The logistic system which

results in lower number of packing and unpacking is superior to other systems for this criteria.

The following six sections present the results generated for Criteria 1.

6.1.1 Low Traffic Experiment

In the low traffic experiment, CO resulted in the smallest number of packing and unpacking

instances. PI logistic has the largest number of packing and unpacking instances. As expected,

the number of packing and unpacking instances in HY is in between. Figure 20 shows the

number of packing and unpacking in CO, HY, and PI logistics in this experiment.

53

Figure 20 - Packing / Unpacking Instance in Low Traffic Network

Statistical Analysis

The ANNOVA result shows that the generated 95% CIs do not overlap. This means that

statistically, the three logistic systems perform differently in terms of number of packing and

unpacking required. CO performers better than HY, and HY performs better than PI in the low

traffic experiment.

One-way ANOVA: Cont CO, Cont HY, Cont PI

Source DF SS MS F P

Factor 2 61511.4 30755.7 458.81 0.000

Error 15 1005.5 67.0

Total 17 62516.9

S = 8.187 R-Sq = 98.39% R-Sq(adj) = 98.18%

 Individual 95% CIs For Mean Based on

 Pooled StDev

Level N Mean StDev ------+---------+---------+---------+---

Cont CO 6 343.67 5.43 (-*-)

Cont HY 6 364.67 7.76 (-*-)

Cont PI 6 476.83 10.55 (-*-)

 ------+---------+---------+---------+---

 360 400 440 480

Pooled StDev = 8.19

339 342 339 342 353 347
360 374

357 357 373 367

469
489

470 467
491

475

0

100

200

300

400

500

600

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6

P
a

ck
in

g
 /

 U
n

p
a

ck
in

g

In
st

a
n

ce
s

Monte Carlo Experiment Number

Cont CO Cont HY Cont PI

54

6.1.2 Moderate Traffic Experiment

In the moderate traffic experiment, CO performed best followed by HY and PI. Figure 21 shows

the results for this experiment.

Figure 21 - Packing / Unpacking Instance in Moderate Traffic Network

Statistical Analysis

The ANNOVA result shows that the generated 95% CIs do not overlap implying that the three

logistic systems perform differently in terms of the number of packing and unpacking instances

required.

One-way ANOVA: Cont CO, Cont HY, Cont PI

Source DF SS MS F P

Factor 2 1203588 601794 1075.40 0.000

Error 15 8394 560

Total 17 1211982

S = 23.66 R-Sq = 99.31% R-Sq(adj) = 99.22%

 Individual 95% CIs For Mean Based on

 Pooled StDev

Level N Mean StDev -----+---------+---------+---------+----

Cont CO 6 529.0 10.6 (*)

Cont HY 6 865.0 22.9 (*)

Cont PI 6 1162.0 32.3 (*)

 -----+---------+---------+---------+----

519 547 526 534 519 529

847
906

865 858 842 872

1130
1205

1169 1173
1118

1177

0

200

400

600

800

1000

1200

1400

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6

P
a

ck
in

g
 /

 U
n

p
a

ck
in

g

In
st

a
n

ce
s

Monte Carlo Experiment Number

Cont CO Cont HY Cont PI

55

Pooled StDev = 23.7

6.1.3 High Traffic Experiment

In the high traffic experiment, CO performed best followed by HY and PI. Figure 22, shows the

number of packing and unpacking in CO, HY, and PI logistics in this experiment.

Figure 22 - Packing / Unpacking Instance in High Traffic Network

Statistical Analysis

The ANNOVA result shows that the generated 95% CIs do not overlap once again and the

results are statistically significant.

One-way ANOVA: Cont CO, Cont HY, Cont PI

Source DF SS MS F P

Factor 2 5433418 2716709 2186.86 0.000

Error 15 18634 1242

Total 17 5452052

S = 35.25 R-Sq = 99.66% R-Sq(adj) = 99.61%

 Individual 95% CIs For Mean Based on

 Pooled StDev

Level N Mean StDev -------+---------+---------+---------+--

Cont CO 6 944.0 15.1 (*

Cont HY 6 1700.5 34.3 (*

Cont PI 6 2286.2 48.2 (*)

950 972 932 936 940 934

1704
1765

1673 1703 1676 1682

2283
2367

2239
2317

2253 2258

0

250

500

750

1000

1250

1500

1750

2000

2250

2500

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6

P
a

ck
in

g
 /

 U
n

p
a

ck
in

g

In
st

a
n

ce
s

Monte Carlo Experiment Number

Cont CO Cont HY Cont PI

56

 -------+---------+---------+---------+--

 1200 1600 2000 2400

Pooled StDev = 35.2

6.1.4 High Traffic Small Loads Experiment

In the High Traffic Small Loads Experiment, ten loads of random sizes from each node to every

other node are packed into containers. The load size probability distribution and the total number

of loads in the experiment was shown in section 5.2.2.

CO resulted in the smallest number of packing and unpacking instances. PI logistic has the

largest number of packing and unpacking. Number of packing and unpacking in HY logistics

was between the results for CO and PI. Figure 23, shows the number of packing and unpacking

in CO, HY, and PI logistics in this experiment.

Figure 23 - Packing / Unpacking Instance in High Traffic Small Loads Network

Statistical Analysis

The ANNOVA result shows that the generated 95% CI do not overlap. This means that

statistically speaking, the three logistic systems perform differently in terms of number of

packing and unpacking required. CO performs better than HY, and HY performs better than PI in

814 789 818 794 791 805

1417 1378 1429 1389 1372 1403

1904 1861
1923

1865 1835
1901

0

250

500

750

1000

1250

1500

1750

2000

2250

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6

P
a

ck
in

g
 /

 U
n

p
a

ck
in

g

In
st

a
n

ce
s

Monte Carlo Experiment Number

Cont CO Cont HY Cont PI

57

High Traffic Small Loads Experiment. The following is the result of ANNOVA test generated in

Minitab.

One-way ANOVA: Cont CO, Cont HY, Cont PI

Source DF SS MS F P

Factor 2 3509734 1754867 3015.12 0.000

Error 15 8730 582

Total 17 3518464

S = 24.13 R-Sq = 99.75% R-Sq(adj) = 99.72%

 Individual 95% CIs For Mean Based on

 Pooled StDev

Level N Mean StDev ----+---------+---------+---------+-----

Cont CO 6 801.8 12.4 (*

Cont HY 6 1398.0 22.4 (*

Cont PI 6 1881.5 33.1 (*

 ----+---------+---------+---------+-----

 900 1200 1500 1800

6.1.5 High Traffic Large Loads Experiment

The results for the High Traffic Large Load Experiment follow the same pattern as for the High

Traffic Small Loads Experiment. Figure 24, shows the number of packing and unpacking in CO,

HY, and PI logistics in this experiment.

Figure 24 - Packing / Unpacking Instance in High Traffic Large Loads Network

2197 2196 2198 2161 2197 2181

4251 4237 4251 4273 4271
3971

5783 5714 5781
5971

5786 5773

0

1000

2000

3000

4000

5000

6000

7000

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6

P
a

ck
in

g
 /

 U
n

p
a

ck
in

g

In
st

a
n

ce
s

Monte Carlo Experiment Number

Cont CO Cont HY Cont PI

58

Statistical Analysis

The ANNOVA result shows that the generated 95% CI do not overlap. This means that

statistically, the three logistic systems perform differently in terms of number of packing and

unpacking required. The following is the result of ANNOVA test generated in Minitab.

One-way ANOVA: Cont CO, Cont HY, Cont PI

Source DF SS MS F P

Factor 2 39344776 19672388 2727.21 0.000

Error 15 108201 7213

Total 17 39452977

S = 84.93 R-Sq = 99.73% R-Sq(adj) = 99.69%

 Individual 95% CIs For Mean Based on

 Pooled StDev

Level N Mean StDev ---------+---------+---------+---------+

Cont CO 6 2188.3 14.9 (*)

Cont HY 6 4209.0 117.4 (*)

Cont PI 6 5801.3 87.4 (*)

 ---------+---------+---------+---------+

 3000 4000 5000 6000

Pooled StDev = 24.1

6.1.6 Random Traffic Experiment

In the Random Traffic Experiment, the number of loads from any node to other nodes is

normally distributed with mean of ten and standard deviation of four.

In the Random Traffic Experiment, CO logistic resulted in smallest number of packing and

unpacking instances. PI logistic has the highest number of packing and unpacking. Number of

packing and unpacking in HY logistics was between the results in CO and PI. Figure 25, shows

the number of packing and unpacking in CO, HY, and PI logistics in this experiment.

59

Figure 25 - Packing / Unpacking Instance in Random Traffic Network

Statistical Analysis

The ANNOVA result shows that the generated 95% CI do not overlap. This means that

statistically, the three logistic systems perform differently in terms of number of packing and

unpacking required. The following is the result of ANNOVA test generated in Minitab.

One-way ANOVA: Cont CO, Cont HY, Cont PI

Source DF SS MS F P

Factor 2 4776536 2388268 3005.46 0.000

Error 15 11920 795

Total 17 4788456

S = 28.19 R-Sq = 99.75% R-Sq(adj) = 99.72%

 Individual 95% CIs For Mean Based on

 Pooled StDev

Level N Mean StDev -----+---------+---------+---------+----

Cont CO 6 915.2 9.2 (*)

Cont HY 6 1630.8 18.7 (*

Cont PI 6 2173.0 44.2 (*)

 -----+---------+---------+---------+----

 1050 1400 1750 2100

Pooled StDev = 28.2

901 914 927 911 923 915

1615 1617 1651 1621 1623 1658

2190 2175 2228 2173 2179
2093

0

250

500

750

1000

1250

1500

1750

2000

2250

2500

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6

P
a

ck
in

g
 /

 U
n

p
a

ck
in

g

In
st

a
n

ce
s

Monte Carlo Experiment Number

Cont CO Cont HY Cont PI

60

6.2 Model 2 Results - Route Driving Time Criteria

Model 2 was used to calculate the minimum driving time of routes required to transport all the

containers from their sources to their destinations. Minimizing the total duration of routes is

important as it has direct effect on transportation cost. The amount of CO2 emission due to

transportation is also correlated with the driving time of the routes.

The logistic system with the lowest route duration is superior to the other systems for this

criteria. The following six sections present the results generated from the Model 2.

6.2.1 Low Traffic Network

The routing result of the Low Traffic Experiment shows a clear gap between PI and HY

compared to CO. The PI and HY results are very close to each other. These results indicate that

PI and HY are more efficient in terms of driving time required. However, the gap between PI and

HY is very small. Figure 26 shows the total routing time in hours for each of the logistic

systems.

Figure 26 - Optimal Routing Time in Low Traffic Network

1, 1718 2, 1745 3, 1735 4, 1703 5, 1825 6, 1717

1, 1773 2, 1807 3, 1756 4, 1749

5, 1873
6, 1769

1, 3201
2, 3267

3, 3339

4, 3249

5, 3419
6, 3326

1200

1450

1700

1950

2200

2450

2700

2950

3200

3450

3700

1 2 3 4 5 6

T
o

ta
l

R
o

u
te

 D
u

ra
ti

o
n

 i
n

 H
o

u
rs

Monte Carlo Experiment Number

PI HY CO

61

Statistical Analysis

Result of the ANNOVA test indicates that PI and HY are not statistically different for this

criteria, as the 95% Confidence Interval (CI) of systems overlap, although the mean value of PI

is slightly less than the mean value of HY. On the other hand, the CI of both PI and HY are

significantly different from CO. The following is the result of ANNOVA test generated in

Minitab.

One-way ANOVA: Hours PI, Hours HY, Hours CO

Source DF SS MS F P

Factor 2 9442174 4721087 1406.28 0.000

Error 15 50357 3357

Total 17 9492531

S = 57.94 R-Sq = 99.47% R-Sq(adj) = 99.40%

 Individual 95% CIs For Mean Based on

 Pooled StDev

Level N Mean StDev ------+---------+---------+---------+---

Hours PI 6 1740.6 43.9 (*)

Hours HY 6 1788.0 46.3 (*)

Hours CO 6 3300.2 77.4 (*)

 ------+---------+---------+---------+---

 2000 2500 3000 3500

Pooled StDev = 57.9

6.2.2 Moderate Traffic Experiment

The routing result of the Moderate Traffic Experiment follows a similar pattern. Figure 27

shows the total routing time in hours for each of the logistic systems.

62

Figure 27 - Optimal Routing Time in Moderate Traffic Network

Statistical Analysis

Result of the ANNOVA test indicates that PI and HY are not statistically different as the 95% CI

of systems overlap. PI and HY are statistically different from CO. The following is the result of

ANNOVA test generated in Minitab.

One-way ANOVA: Hours PI, Hours HY, Hours CO

Source DF SS MS F P

Factor 2 4213616 2106808 123.81 0.000

Error 15 255253 17017

Total 17 4468869

S = 130.4 R-Sq = 94.29% R-Sq(adj) = 93.53%

 Individual 95% CIs For Mean Based on

 Pooled StDev

Level N Mean StDev -----+---------+---------+---------+----

Hours PI 6 4147.9 142.9 (---*--)

Hours HY 6 4163.2 117.2 (--*--)

Hours CO 6 5181.8 130.0 (--*--)

 -----+---------+---------+---------+----

 4200 4550 4900 5250

Pooled StDev = 130.4

1, 4027

2, 4225

3, 4340

4, 4170

5, 3941

6, 4184

1, 4055

2, 4285

3, 4241

4, 4192

5, 3985

6, 4221

1, 5027

2, 5261
3, 5298

4, 5246

5, 5005

6, 5254

3250

3500

3750

4000

4250

4500

4750

5000

5250

5500

1 2 3 4 5 6

T
o

ta
l

R
o

u
te

 D
u

ra
ti

o
n

 i
n

 H
o

u
rs

Monte Carlo Experiment Number

PI HY CO

63

6.2.3 High Traffic Experiment

The routing result of the High Traffic Experiment follows a similar pattern. Figure 28 shows the

total routing time in hours for each of the logistic systems.

Figure 28 - Optimal Routing Time in High Traffic Network

Statistical Analysis

Result of the ANNOVA test indicates that PI and HY are not statistically different as the 95% CI

of systems overlap. PI and HY are statistically different from CO. The following is the result of

ANNOVA test generated in Minitab.

One-way ANOVA: Hours PI, Hours HY, Hours CO

Source DF SS MS F P

Factor 2 3395088 1697544 58.23 0.000

Error 15 437319 29155

Total 17 3832407

S = 170.7 R-Sq = 88.59% R-Sq(adj) = 87.07%

 Individual 95% CIs For Mean Based on

 Pooled StDev

Level N Mean StDev ----+---------+---------+---------+-----

Hours PI 6 8051.7 172.4 (---*---)

Hours HY 6 8083.3 163.5 (---*---)

Hours CO 6 8988.3 176.1 (---*---)

 ----+---------+---------+---------+-----

1, 8056

2, 8329

3, 7859

4, 8168

5, 7951 6, 7947

1, 8154

2, 8328

3, 7892

4, 8176

5, 7972
6, 7978

1, 9087

2, 9215

3, 8827

4, 9119

5, 8902

6, 8780

7500

7700

7900

8100

8300

8500

8700

8900

9100

9300

9500

1 2 3 4 5 6

T
o

ta
l

R
o

u
te

 D
u

ra
ti

o
n

 i
n

 H
o

u
rs

Monte Carlo Experiment Number

PI HY CO

64

 8050 8400 8750 9100

Pooled StDev = 170.7

6.2.4 High Traffic Small Loads Experiment

The routing result of the High Traffic Small Loads Experiment follows a similar pattern. Figure

29 shows the total routing time in hours for each of the logistic systems.

Figure 29 - Optimal Routing Time in High Traffic Small Loads Network

Statistical Analysis

Result of the ANNOVA test indicates that PI and HY are not statistically different as the 95% CI

of systems overlap. PI and HY are statistically different from CO. The following is the result of

ANNOVA test generated in Minitab.

One-way ANOVA: Hours PI, Hours HY, Hours CO

Source DF SS MS F P

Factor 2 1474647 737324 67.88 0.000

Error 15 162943 10863

Total 17 1637591

S = 104.2 R-Sq = 90.05% R-Sq(adj) = 88.72%

 Individual 95% CIs For Mean Based on Pooled StDev

Level N Mean StDev -+---------+---------+---------+--------

Hours PI 6 5308.3 101.0 (--*---)

1, 6677

2, 6862

3, 6722

4, 6497

5, 7000

6, 6599

1, 6713

2, 6508

3, 6726

4, 6498

5, 6500

6, 6632

1, 7788

2, 7511

3, 7670

4, 7422

5, 7544

6, 7667

6000

6250

6500

6750

7000

7250

7500

7750

8000

1 2 3 4 5 6

T
o

ta
l

R
o

u
te

 D
u

ra
ti

o
n

 i
n

 H
o

u
rs

Monte Carlo Experiment Number

PI HY CO

65

Hours HY 6 5355.8 97.9 (--*---)

Hours CO 6 5937.8 113.2 (---*--)

 -+---------+---------+---------+--------

 5250 5500 5750 6000

Pooled StDev = 104.2

6.2.5 High Traffic Large Loads Experiment

The routing result of the High Traffic Large Loads Experiment follows a similar pattern. Figure

30 shows the total routing time in hours for each of the logistic systems.

Figure 30 - Optimal Routing Time in High Traffic Large Loads Network

Statistical Analysis

Result of the ANNOVA test indicates that PI and HY are not statistically different as the 95% CI

of systems overlap. PI and HY are statistically different from CO. The following is the result of

ANNOVA test generated in Minitab.

One-way ANOVA: Hours PI, Hours HY, Hours CO

Source DF SS MS F P

Factor 2 16552020 8276010 11.06 0.001

Error 15 11225698 748380

Total 17 27777718

S = 865.1 R-Sq = 59.59% R-Sq(adj) = 54.20%

1, 17628

2, 19830

3, 17316

4, 20479

5, 17933

6, 17487

1, 20196

2, 19877

3, 19965

4, 20658

5, 20389

6, 18891

1, 20854
2, 20541 3, 20656

4, 20844

5, 21023

6, 20574

15000

16000

17000

18000

19000

20000

21000

22000

1 2 3 4 5 6

T
o

ta
l

R
o

u
te

 D
u

ra
ti

o
n

 i
n

 H
o

u
rs

Monte Carlo Experiment Number

PI HY CO

66

 Individual 95% CIs For Mean Based on

 Pooled StDev

Level N Mean StDev ---+---------+---------+---------+------

Hours PI 6 18445 1355 (------*-------)

Hours HY 6 19996 612 (-------*------)

Hours CO 6 20749 189 (------*-------)

 ---+---------+---------+---------+------

 18000 19000 20000 21000

Pooled StDev = 865

6.2.6 Random Traffic Experiment

The routing result of the Random Traffic Experiment shows approximately equal gaps in the

means for PI, HY, and CO. Figure 31 shows the total routing time in hours for each of the

logistic systems.

Figure 31 - Optimal Routing Time in Random Traffic Network

Statistical Analysis

The result of the ANNOVA test indicates that all the logistic systems are statistically different as

none of the 95% CI of the systems overlap each other. The mean value for PI logistic is less than

the mean value of the HY. Therefore, PI is the most efficient logistic policy in a random traffic

network. The second most efficient policy is HY with a lower mean value compared to CO.

1, 7772

2, 6766
3, 7202

4, 7608 5, 6778
6, 6842

1, 7824

2, 7728

3, 8267

4, 7636
5, 7667

6, 7956

1, 8636

2, 8666

3, 9253

4, 8605
5, 8684 6, 8476

5000

5500

6000

6500

7000

7500

8000

8500

9000

9500

1 2 3 4 5 6

T
o

ta
l

R
o

u
te

 D
u

ra
ti

o
n

 i
n

 H
o

u
rs

Monte Carlo Experiment Number

PI HY CO

67

One-way ANOVA: Hours PI, Hours HY, Hours CO

Source DF SS MS F P

Factor 2 7324606 3662303 33.76 0.000

Error 15 1627129 108475

Total 17 8951735

S = 329.4 R-Sq = 81.82% R-Sq(adj) = 79.40%

 Individual 95% CIs For Mean Based on

 Pooled StDev

Level N Mean StDev -----+---------+---------+---------+----

Hours PI 6 7161.2 442.6 (---*----)

Hours HY 6 7846.3 236.6 (----*----)

Hours CO 6 8719.9 271.2 (---*----)

 -----+---------+---------+---------+----

 7200 7800 8400 9000

Pooled StDev = 329.4

6.3 Model 2: Driving Time Trends

The six experiments introduced in the previous sections creates two general trends for analysis.

6.3.1 Traffic Level Trend

In the Traffic Level Trend Analysis, the number of loads generated for each source, destination

pair is increased, but the probability distribution of the loads selected for simulation stays

unchanged. In other word, traffic trend only investigated the effect of increasing traffic level on

the overall routing performance of the individual logistic systems.

Side by side comparison of the results generated from Model 2 indicates that the highest gap

between the average performance of the logistic systems is in a low traffic network. This gap

decreases as the traffic level increases. When traffic level increases, regardless of the routing

system used, the likelihood of full or close to full container movements greatly increases.

Therefore, in a scenario in which, every single container sent from a source to a destination is

completely full, the routing performance gap among these logistic systems is minimized. Table

4, provides a summary of the logistic systems routing times under different traffic levels.

68

Table 4 - Driving Time of Logistic Systems with Different Traffic Level

 Total Driving Time

Low Traffic

Total Driving Time

Moderate Traffic

Total Driving Time

High Traffic

Exp PI HY CO PI HY CO PI HY CO

1 1718 1773 3201 4027 4055 5027 8056 8154 9087

2 1745 1807 3267 4225 4285 5261 8329 8328 9215

3 1735 1756 3339 4340 4241 5298 7859 7892 8827

4 1703 1749 3249 4170 4192 5246 8168 8176 9119

5 1825 1873 3419 3941 3985 5005 7951 7972 8902

6 1717 1769 3326 4184 4221 5254 7947 7978 8780

Avg 1740.6 1788.0 3300.2 4147.9 4163.2 5181.8 8051.7 8083.3 8988.3

Diff Base +2.72% +89.60% Base +0.37% +24.93% Base +0.39% +11.63%

6.3.2 Model 2: Load Size Trend

In the Load Size Trend Analysis, the number of loads generated for each source, destination pair

remains unchanged, but the probability distribution of the loads selected for simulation changes

according to the discrete distributions described in section 5.2.

The highest gap in the routing performance of the logistic systems occurs when large loads are

transported over the network. The size of this gap decreases as size of the loads decrease. When

large loads are transported, utilizing different logistic systems results in large differences in

routing time. It is believed that when loads are large, the packing efficiency of CO, for example,

compared to PI may not be very good. Therefore, a large gap is observed. However, in the case

of smaller average loads, the packing efficiency of CO improves and therefore, the performance

gap between CO and PI decreases.

Table 5 provides a summary of the logistic systems routing times with different load size

distributions.

69

Table 5 - Driving Time of Logistic Systems with Different Load Size Distributions

 Total Driving Time

High Traffic Large Loads

Total Driving Time

High Traffic Normal Loads

Total Driving Time

High Traffic Small Loads

Exp PI HY CO PI HY CO PI HY CO

1 14268 16370 17428 6540 6653 7575 6677 6713 7788

2 15966 16074 17278 6766 6769 7561 6862 6508 7511

3 13949 16128 17349 6366 6437 7328 6722 6726 7670

4 17924 17215 17284 6630 6645 7611 6497 6498 7422

5 14592 16579 17805 6453 6525 7366 7322 6500 7544

6 20315 22565 24676 6464 6527 7099 6599 6632 7667

Avg 16169.2 17488.5 18636.8 6536.5 6592.6 7423.3 6779.7 6596.2 7600.4

Diff Base +8.16% +15.26% Base +0.86% +13.57% Base -2.71% +12.11%

The random traffic experiment was performed to test the routing performance of each logistic

scenario with varying traffic levels in the network. PI resulted in the lowest driving time once

again, followed by HY, and CO. Table 5 provides a summary of driving times in the three

logistic systems for the Random Traffic Network.

Table 6 - Driving Time of Logistic Systems with Random Traffic

Random Traffic Experiment

Exp PI HY CO

1 7772 7824 8636

2 6766 7728 8666

3 7202 8267 9253

4 7608 7636 8605

5 6778 7667 8684

6 6842 7956 8476

Avg 7161 7846 8720

Diff Base +9.57% +21.77%

Figure 32 shows the driving time of all logistic systems across all the experiments performed in

this thesis.

70

Figure 32 - Overall Comparison of Routing Time of Logistic Systems

The average difference in driving time across all six experiments is shown in Table 7. As can be

seen, CO has a gap of approximately 27% in driving hours compared to PI. It can be seen that

the performance of HY is much closer to PI.

Table 7 - Percentage Difference in Driving Time of HY and CO with Respect to PI

PI HY CO

Base +2.77% +26.98%

6.4 Model 3 Results

The numerical values for the rest of the KPIs in this thesis are calculated after phase three of the

optimization framework. The results are presented in the next two sections. The KPI values are

1741

4148

8052

16169

6537 6780

1788

4163

8083

17489

6593 6596

3300

5182

8988

18637

7423 7600

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

LTNL MTNL HTNL HTLL HTSL RD

T
o

ta
l

R
o

u
te

 D
u

ra
ti

o
n

 i
n

 H
o

u
rs

PI HY CO

71

shown and discussed first, and then a method to calculate the total cost of the logistic systems is

proposed.

6.4.1 Values of the Key Performance Indicators

The number of trucks in service, average hours worked per truck, percentage of drivers back

home at the end of the day, and the total hours of operation are the rest of the KPIs calculated for

the three systems.

PI needs the largest number of trucks for service. Most of the jobs created in PI policy are short

jobs and can be completed in one day. Therefore, a large number of short haul trucks enter into

service. The average work time per truck is also low in PI. Percentage of drivers that can return

home at the end of the day is also highest in PI (it should be noted that not all the drivers can go

back home at the end of the day as a number of routes have a duration of longer than 14 hours).

Table 8, and Table 9 list the numerical values of the KPIs. The effect of increase in traffic level

on the KPIs is shown in Table 8 and the effect of changing the load size distribution on the KPIs

is shown in Table 9.

Table 8 - Logistic Systems KPI values with Difference Traffic Levels

 Low Traffic Moderate Traffic High Traffic

Policy PI HY CO PI HY CO PI HY CO

Trucks in

Service
102 64 64 183 136 92 528 371 227

 Long Haul 6 21 52 19 41 75 11 86 140

 Short Haul 96 43 12 164 95 17 517 285 87

Total Enroute

Hours
1,434.6 1,797.2 3,510.7 3,205.0 3,830.2 5,051.5 6,661.8 7,948.8 10,206.2

Total Driving

Hours
1,402.6 1,469.2 2,743.2 3,191.1 3,256.6 4,212.1 6,525.8 6,636.8 7,574.2

Avg Hours on

Duty
14.06 28.08 54.85 17.51 28.16 54.91 12.62 21.43 44.96

Avg Hours

Driving
13.75 22.96 42.86 17.44 23.95 45.78 12.36 17.89 33.37

% Drivers

Back Home
94.12% 67.19% 18.75% 89.62% 69.85% 18.48% 97.92% 76.82% 38.33%

72

Table 9 - Logistic Systems KPI values with Different Load Size Distributions

 High Traffic, Small Loads Random Traffic High Traffic, Large Loads

Policy PI HY CO PI HY CO PI HY CO

Trucks in

Service
413 224 168 428 322 210 529 477 429

 Long Haul 20 66 116 18 86 138 153 242 233

 Short Haul 393 158 52 410 236 72 376 235 196

Total Enroute

Hours
5,579.1 6,375.7 8,487.7 5,682.7 7,715.5 9,877.8 14,837 18,916 22,596

Total Driving

Hours
5,443.1 5,319.7 6,319.7 5,506.7 6,339.5 7,269.8 14,637 15,556 16,868

Avg Hours on

Duty
13.51 28.46 50.52 13.28 23.96 47.04 28.05 39.66 52.67

Avg Hours

Driving
13.18 23.75 37.62 12.87 19.69 34.62 27.67 32.61 39.32

% Drivers

Back Home
95.16% 70.54% 30.95% 95.79% 73.29% 34.29% 71.08% 49.27% 45.69%

The number of drivers who can go back home at the end of a work day remains consistently high

in PI, regardless of the traffic level.

In CO, when the traffic level is low, Model 3 may find it efficient to assign some of the short

jobs to long haul trucks because if long haul truck is needed anyway for a job, it can be used to

serve other short haul jobs. Therefore, for lower traffic levels, the number of the drivers who can

go back home in CO is low. However as the network gets busier and long haul trucks get

enough work, the shorter jobs are done mostly with short haul trucks and therefore, the number

of drivers who go back home at the end of a work day increases.

Change in load size values does not seem to create a visible change in the pattern of KPI values.

As shown in Table 9, the PI again remains the best logistics policy in terms of a truck driver’s

social life. This is followed by HY and CO.

73

6.5 Costs

The cost of the logistic systems are calculated by considering the results generated from Model 1

and Model 3. Model 2 has no direct effect on the costs:

𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡 = (𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝐻𝑎𝑛𝑑𝑙𝑖𝑛𝑔, 𝑓𝑟𝑜𝑚 𝑀𝑜𝑑𝑒𝑙 1) + (𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝐶𝑜𝑠𝑡 + 𝑆𝑜𝑐𝑖𝑎𝑙 𝐶𝑜𝑠𝑡

+ 𝐹𝑖𝑥𝑒𝑑 𝐶𝑜𝑠𝑡, 𝑎𝑙𝑙 𝑓𝑟𝑜𝑚 𝑀𝑜𝑑𝑒𝑙 3)

While all cost components from Model 3 have been already discussed, the Material Handling

cost is incurred within the PI transit centers. It is assumed that the measurement unit for Material

Handling cost is in dollars per container. Although there are a number of functional designs and

detailed simulations of PI transit centers in [12], [13], [31], it is difficult to infer the realistic

material handling cost incurred inside these type of facilities.

Therefore, a cost ratio analysis is performed to calculate the total logistic policy cost. The cost

ratio is calculated as follows:

𝐶𝑜𝑠𝑡 𝑅𝑎𝑡𝑖𝑜 =
𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝐻𝑎𝑛𝑑𝑙𝑖𝑛𝑔 𝐶𝑜𝑠𝑡

𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝐶𝑜𝑠𝑡

Since the main difference between PI, and CO is the trade-off between the level of material

handling and driving activities, this can be quantified using the cost ratio.

Current Material Handling Costs

Many logistic companies charge a flat rate fee to pack and unpack containers regardless of the

weight and size of the load inside the container. However, material handling cost differs

according to the handling process used. For example, on pallet movement of load from a 40 foot

container to another container of the same size, called a “Pallet to Pallet” movement, costs

approximately $150 for a 40-foot container. The “Pallet to Floor” process removes skids from

the incoming load and puts the loads in the floor of the outgoing container. Finally, “Floor to

Floor” process is movement of loads from the floor of incoming containers to the floor of the

outgoing containers. The Pallet to Floor process costs $250, and the Floor to Floor movement

process costs $350.

74

In this thesis, $150 is used as the packing/ unpacking cost of a PI container. This is a

conservative estimate or the worst case scenario cost of the actual material handling cost that

could be incurred in future PI transit centers for the following two reasons:

1) Conventional containers are loaded from the rear, meaning only one or two forklifts can

pack a container at once due to the limited working space. Hence the loading and

unloading process of conventional containers capture the warehouse resources for long

periods of time. Also load placed in a container are accessible in the first in last out order.

Therefore accessing the load placed into the container first requires removal of the entire

load. Whereas PI containers can be loaded from the sides making loading and unloading

process very quick. Also, removal of a specific PI load from a container does not require

movement of other loads.

2) Future innovations in material handling processes can potentially reduce the cost of

container loading/ unloading in transit centers. Automated material handling equipment

such as PI-conveyer, PI-sorters, and PI-composers [6] will be used in PI-transit centers,

which could result in lower cost material handling processes.

Sections 6.5.1 to 6.5.5 present the results of the total cost analysis. The dashed line on the cost

ratio value of 0.75 in the charts shows the point where the material handling cost is $150.

6.5.1 Low Traffic Experiment

The summary of the results required for calculation of the total cost in the Low Traffic

Experiment is shown in Table 10.

Table 10 - Social, Operational, and Fix Costs in Low Traffic Experiment

Policy
Packing /

Unpacking

Social

Cost

Operational

Cost

Fix

Cost

PI 475 $3.23k $280.5k $1.6k

HY 367 $3.3k $293.8k $2.5k

CO 347 $9.2k $548.6k $5.3k

75

13 instances of the total cost for each of the logistic systems were calculated using the cost ratio

introduced in the previous section. Table 11 lists the total cost of each logistics system for each

cost ratio.

Table 11 - Total Cost as a function of Cost Ratio in Low Traffic Experiment

Figure 33, illustrates the grow rate of the total cost of logistic systems as the cost ratio increases

in the Low Traffic Experiment. From Table 11, and Figure 33, one can conclude that PI is the

most cost efficient logistics system if the material handling cost remains less than $200 per

container. HY has the lowest total cost between cost ratios of approximately 1 to 40. CO

becomes the most cost efficient logistics system for cost ratio of approximately 40 and higher.

PI and HY have a lower total cost compared to CO on a wide cost ratio range. This implies that

in a low traffic networks, the efficiency of PI transit centers can vary widely without affecting

the best performing logistic policy. At the cost ratio of 0.75, both PI and HY logistics systems

are superior to CO.

Policy
Total

Cost 1

 Total

Cost 2

 Total

Cost 3

 Total

Cost 4

 Total

Cost 5

 Total

Cost 6

 Total

Cost 7

 Total

Cost 8

 Total

Cost 9

 Total

Cost 10

 Total

Cost 11

 Total

Cost 12

 Total

Cost 13

PI $328.3k $375.8k $470.8k $565.8k $660.8k $755.8k $850.8k $945.8k $1m $1.1m $1.2m $2.2m $4.1m

HY $333.9k $370.6k $444k $517.4k $590.8k $664.2k $737.6k $811k $884.4k $957.8k $1m $1.8m $3.2m

CO $592.6k $627.3k $696.7k $766.1k $835.5k $904.9k $974.3k $1m $1.1m $1.2m $1.3m $1.9m $3.3m

Ratio 0.5 1 2 3 4 5 6 7 8 9 10 20 40

Packing Cost 100 200 400 600 800 1000 1200 1400 1600 1800 2000 4000 8000

Driving Cost 200 200 200 200 200 200 200 200 200 200 200 200 200

76

Figure 33 - Comparison of Total Cost of Logistic Systems in Low Traffic Experiment

6.5.2 Moderate Traffic Experiment

The summary of the results required for calculation of the total cost in the Moderate Traffic

Experiment is shown in Table 12.

Table 12 - Social, Operational, and Fix Costs in Moderate Traffic Experiment

Policy
Packing /

Unpacking

Social

Cost

Operational

Cost

Fix

Cost

PI 1118 559 $638.2k $3.5k

HY 842 $7.1k $651.3k $5.1k

CO 519 $14.2k $842.4k $7.7k

Table 13 lists the total cost of each logistics system for each cost ratio.

Table 13 - Total Cost as a function of Cost Ratio in Moderate Traffic Experiment

 -

 200

 400

 600

 800

 1,000

 1,200

 1,400

0 1 2 3 4 5 6 7 8 9 10 11

T
O

T
A

L
 L

O
G

IS
IT

IC
 P

O
L

IC
Y

 C
O

S
T

IN
 T

H
O

U
S

A
N

D
S

 $

PACKING COST / DRIVING COST

PI HY CO

Policy
Total

Cost 1

 Total

Cost 2

 Total

Cost 3

 Total

Cost 4

 Total

Cost 5

 Total

Cost 6

 Total

Cost 7

 Total

Cost 8

 Total

Cost 9

 Total

Cost 10

 Total

Cost 11

 Total

Cost 12

 Total

Cost 13

PI $754.1k $865.9k $977.7k $1.1m $1.2m $1.3m $1.4m $1.5m $1.6m $1.8m $1.9m $2m $2.1m

HY $747.6k $831.8k $916k $1m $1.1m $1.2m $1.3m $1.3m $1.4m $1.5m $1.6m $1.7m $1.8m

CO $916.2k $968.1k $1m $1.1m $1.1m $1.2m $1.2m $1.3m $1.3m $1.4m $1.4m $1.5m $1.5m

Ratio 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5

Packing Cost 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300

Driving Cost 200 200 200 200 200 200 200 200 200 200 200 200 200

77

Figure 34 illustrates the grow rate of the total cost of logistic systems as the cost ratio increases

for the Moderate Traffic Experiment. From Table 13 and Figure 34, one can conclude that PI is

the most cost efficient logistic policy if the material handling cost remains less than $110 per

container. In other words, the cost ratio should stay below 0.55 for PI to be the least cost logistic

policy. HY has the lowest total cost between cost ratios of approximately 0.55 up to 3.1. CO

becomes the most cost efficient logistic policy for cost ratio of approximately 3.1 and higher.

In other words, there is a shift towards the left of all break even points in the lines representing

total costs.

Figure 34 - Comparison of Total Cost of Logistic Systems in Low Traffic Experiment

6.5.3 High Traffic Experiment

The summary of the results required for calculation of the total cost in the High Traffic

Experiment is shown in Table 14.

 500

 750

 1,000

 1,250

 1,500

 1,750

 2,000

 2,250

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

T
O

T
A

L
 L

O
G

IS
IT

IC
 P

O
L

IC
Y

 C
O

S
T

IN
 T

H
O

U
S

A
N

D
S

 $

PACKING COST / DRIVING COST

PI HY CO

78

Table 14 - Social, Operational, and Fix Costs in High Traffic Experiment

Policy
Packing /

Unpacking

Social

Cost

Operational

Cost

Fix

Cost

PI 2283 $1.3k $1.3m $6.3k

HY 1704 $14k $1.3m $11.5k

CO 950 $25.8k $1.5m $14.9k

Table 15 lists the total cost of each logistic system for each cost ratio.

Table 15 - Total Cost as a function of Cost Ratio in High Traffic Experiment

Figure 35 illustrates the grow rate of the total cost of logistic systems as the cost ratio increases

in the High Traffic Experiment. From Table 15 and Figure 35, one can conclude that PI is the

most cost efficient logistics system if the material handling cost remains less than $80 per

container. In other words, the cost ratio should stay below 0.4 for PI to be the least cost logistics

system. HY has the lowest total cost between cost ratios of approximately 0.4 and 1.3. CO

becomes the most cost efficient logistics system for cost ratios of approximately 1.3 and higher.

In other words, there is once again a shift towards the left of all break even points in the lines

representing total costs.

Policy
Total

Cost 1

 Total

Cost 2

 Total

Cost 3

 Total

Cost 4

 Total

Cost 5

 Total

Cost 6

 Total

Cost 7

 Total

Cost 8

 Total

Cost 9

 Total

Cost 10

 Total

Cost 11

 Total

Cost 12

 Total

Cost 13

PI $1.4m $1.4m $1.4m $1.5m $1.5m $1.6m $1.6m $1.7m $1.7m $1.8m $1.8m $1.9m $1.9m

HY $1.4m $1.4m $1.5m $1.5m $1.5m $1.6m $1.6m $1.6m $1.7m $1.7m $1.7m $1.8m $1.8m

CO $1.6m $1.6m $1.6m $1.6m $1.7m $1.7m $1.7m $1.7m $1.7m $1.7m $1.8m $1.8m $1.8m

Ratio 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

Packing Cost 20 40 60 80 100 120 140 160 180 200 220 240 260

Driving Cost 200 200 200 200 200 200 200 200 200 200 200 200 200

79

Figure 35 - Comparison of Total Cost of Logistic Systems in High Traffic Experiment

6.5.4 High Traffic Small Loads Experiment

The summary of the results required for calculation of the total cost in the High Traffic Small

Loads Experiment is shown in Table 16.

Table 16 - Social, Operational, and Fix Costs in High Traffic Small Loads Experiment

Policy
Packing /

Unpacking

Social

Cost

Operational

Cost

Fix

Cost

PI 1904 $1.3k $1.1m $5.9k

HY 1417 $11.2k $1.1m $8.2k

CO 814 $21.3k $1.3m $12.1k

Table 17 lists the total cost of each logistics systems for each cost ratio.

Table 17 - Total Cost as a function of Cost Ratio in High Traffic Small Loads Experiment

 1,200

 1,300

 1,400

 1,500

 1,600

 1,700

 1,800

 1,900

 2,000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

T
o

ta
l

L
o

g
is

it
ic

 P
o

li
cy

 C
o

st
 i

n

T
h

o
u

sa
n

d
s

$

Packing cost / Driving Cost

PI HY CO

Policy
Total

Cost 1

 Total

Cost 2

 Total

Cost 3

 Total

Cost 4

 Total

Cost 5

 Total

Cost 6

 Total

Cost 7

 Total

Cost 8

 Total

Cost 9

 Total

Cost 10

 Total

Cost 11

 Total

Cost 12

 Total

Cost 13

PI $1.1m $1.2m $1.3m $1.4m $1.4m $1.5m $1.6m $1.7m $1.7m $1.8m $1.9m $2m $2m

HY $1.1m $1.2m $1.2m $1.3m $1.3m $1.4m $1.5m $1.5m $1.6m $1.6m $1.7m $1.7m $1.8m

CO $1.3m $1.3m $1.4m $1.4m $1.4m $1.5m $1.5m $1.5m $1.6m $1.6m $1.6m $1.7m $1.7m

Ratio 0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5

Packing Cost 20 60 100 140 180 220 260 300 340 380 420 460 500

Driving Cost 200 200 200 200 200 200 200 200 200 200 200 200 200

80

Figure 36 illustrates the growth rate of the total cost of logistic systems as the cost ratio increases

in the High Traffic Small Loads Experiment. From Table 17 and Figure 36 one can conclude that

PI has the lowest total cost below cost ratios of approximately 0.12. HY is the most cost efficient

logistics system if the cost ratio is between 0.12 and 1.7. CO becomes the most cost efficient

logistic policy for cost ratio of approximately 1.7 and higher.

In a High Traffic Small Loads Network, the HY logistics system is the cheapest for a relatively

wide range.

Figure 36 - Comparison of Total Cost of Logistic Systems in High Traffic Small Loads Experiment

6.5.5 High Traffic Large Loads Experiment

The summary of the results required for calculation of the total cost in the High Traffic Large

Loads Experiment is shown in Table 18.

 900

 1,100

 1,300

 1,500

 1,700

 1,900

 2,100

 2,300

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75

T
o

ta
l

L
o

g
is

it
ic

 P
o

li
cy

 C
o

st
 i

n

T
h

o
u

sa
n

d
s

$

Packing cost / Driving Cost

PI HY CO

81

Table 18 - Social, Operational, and Fix Costs in High Traffic Large Loads Experiment

Policy
Packing /

Unpacking

Social

Cost

Operational

Cost
Fix Cost

PI 5773 $1.9k $2.9m $19.1k

HY 3971 $35.8k $3.1m $26.6k

CO 2181 $56.5k $3.4m $25.3k

Table 19 lists the total cost of each logistics system for each cost ratio.

Table 19 - Total Cost as a function of Cost Ratio in High Traffic Large Loads Experiment

Figure 37 illustrates the growth rate of the total cost of the logistic systems as the cost ratio

increases. From Table 19 and Figure 37, one can conclude that PI is the most cost efficient

logistic policy if the material handling cost remains less than $120 per container. In other words,

the cost ratio should stay below 0.6 for PI to be the least cost logistics system. HY has the lowest

total cost between cost ratios of approximately 0.6 and 0.8. CO becomes the most cost efficient

logistics system for cost ratios of approximately 0.8 and higher.

Policy
Total

Cost 1

 Total

Cost 2

 Total

Cost 3

 Total

Cost 4

 Total

Cost 5

 Total

Cost 6

 Total

Cost 7

 Total

Cost 8

 Total

Cost 9

 Total

Cost 10

 Total

Cost 11

 Total

Cost 12

 Total

Cost 13

PI $3.1m $3.2m $3.3m $3.4m $3.5m $3.6m $3.8m $3.9m $4m $4.1m $4.2m $4.3m $4.4m

HY $3.3m $3.3m $3.4m $3.5m $3.6m $3.7m $3.7m $3.8m $3.9m $4m $4m $4.1m $4.2m

CO $3.5m $3.5m $3.6m $3.6m $3.7m $3.7m $3.8m $3.8m $3.8m $3.9m $3.9m $4m $4m

Ratio 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

Packing Cost 20 40 60 80 100 120 140 160 180 200 220 240 260

Driving Cost 200 200 200 200 200 200 200 200 200 200 200 200 200

82

Figure 37 - Comparison of Total Cost of Logistic Systems in High Traffic Large Loads Experiment

6.5.6 Random Traffic Experiment

The summary of the results required for calculation of the total cost in the Random Traffic

Experiment is shown in Table 20.

Table 20 - Social, Operational, and Fix Costs in Random Traffic Experiment

Policy
Packing /

Unpacking

Social

Cost

Operational

Cost

Fix

Cost

PI 2175 $1.7k $1.1m $5.9k

HY 1617 $14.2k $1.3m $11k

CO 914 $24.9k $1.5m $14.5k

Table 21 lists the total cost of each logistics system for each cost ratio.

Table 21 - Total Cost as a function of Cost Ratio in Random Traffic Experiment

 2,900

 3,100

 3,300

 3,500

 3,700

 3,900

 4,100

 4,300

 4,500

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

T
o

ta
l

L
o

g
is

it
ic

 P
o

li
cy

 C
o

st
 i

n

T
h

o
u

sa
n

d
s

$

Packing cost / Driving Cost

PI HY CO

Policy
Total

Cost 1

 Total

Cost 2

 Total

Cost 3

 Total

Cost 4

 Total

Cost 5

 Total

Cost 6

 Total

Cost 7

 Total

Cost 8

 Total

Cost 9

 Total

Cost 10

 Total

Cost 11

 Total

Cost 12

 Total

Cost 13

PI $1.1m $1.2m $1.3m $1.4m $1.5m $1.5m $1.6m $1.7m $1.8m $1.8m $1.9m $2m $2.1m

HY $1.3m $1.4m $1.4m $1.5m $1.5m $1.6m $1.7m $1.7m $1.8m $1.8m $1.9m $1.9m $2m

CO $1.5m $1.5m $1.6m $1.6m $1.6m $1.7m $1.7m $1.7m $1.8m $1.8m $1.8m $1.9m $1.9m

Ratio 0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5

Packing Cost 20 60 100 140 180 220 260 300 340 380 420 460 500

Driving Cost 200 200 200 200 200 200 200 200 200 200 200 200 200

83

Figure 38 illustrates the growth rate of the total cost of logistic systems as the cost ratio

increases. From Table 21 and Figure 38, one can conclude that PI is the most cost efficient

logistics policy if the material handling cost remains less than $300 per container. In other

words, the cost ratio should stay below 1.5 for PI to be the least cost logistics systems. The least

cost logistics system changes very quickly from PI to CO, leaving a very small optimal range for

HY. Very quickly after a cost ratio of 1.5, CO becomes the most cost efficient logistic policy.

Figure 38 - Comparison of Total Cost of Logistic Systems in Random Traffic Experiment

 900

 1,100

 1,300

 1,500

 1,700

 1,900

 2,100

 2,300

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75

T
o

ta
l

L
o

g
is

it
ic

 P
o

li
cy

 C
o

st
 i

n

T
h

o
u

sa
n

d
s

$

Packing cost / Driving Cost

PI HY CO

84

Chapter 7: Conclusions

The three phase optimization framework has shown to be an effective method of investigating

the overall performance of the three logistic systems in this thesis. By comparing the CO, PI, and

HY logistic systems using the three phase optimization methodology, a major trade-off was

observed between the total number of instances containers requiring loading and unloading and

total required driving time to carry loads from source to final destination.

Compared to CO and HY, PI benefits from lower total driving time required to transfer loads

from sources to destinations across the introduced road network. However, number of the

instances containers require loading and unloading is higher in PI and HY compared to CO. In

other words, PI and HY decreases the work done by drivers and increases the work done in the

PI transit centers.

The cost performance of each of these logistic systems varies under various traffic and load

selection scenarios. In networks with low ratio of packing to driving costs, PI seems to be the

superior logistics system followed by HY and CO. As this ratio increases, HY and CO become

increasingly attractive. For intermediate values of this ratio, HY is the most attractive while for

very high values of this ratio, CO is the most attractive.

From an environmental point of view, PI shows substantial decrease in the logistic systems’

carbon foot print from driving and reduces truck traffic on the roads. Another major benefit of

PI is that it reduces the social costs associated with truck driving. It should be noted that success

of PI logistic system highly depends on the efficiency of PI transit center. Without efficient PI

transit centers, PI logistics policy will not reduce the total cost of logistic activities.

7.1 Direction for Future Studies

This thesis is one of the early analytical studies on the subject of PI. Further research is required

to fully understand the capabilities and shortcoming of PI logistic systems. Some areas for

potentially fruitful research are:

85

Extension to Grid Networks

This research mainly focussed on the Eastern Canada road network, which is practically

speaking, a tree. This framework can be used to investigate these logistic systems on other

network topologies such as grid networks.

Extension to City Level Delivery

The effect of urban area congestion and road network capacity were not addressed in this

research. One of the reasons why PI may succeed in denser topographies (such as Europe) is that

packing/unpacking may become required for delivery inside urban cores due to environmental

regulations. If the cost of packing/unpacking is already paid for, the PI or HY logistics systems

might become much more attractive. Therefore, it worth investigating this issue in realistic urban

or dense population settings.

Effect of Loads Sizes

As explained in [9], the global standard PI container and load sizes are still not determined. In

this thesis, it is shown than the load sizes is one of the main factors effecting the cost

performance of PI. However, the combination of load sizes that could result in the optimal

performance of PI is unknown and requires research.

Improvement of Packing Model

Model 1 of this thesis uses a one dimensional bin packing MIP to calculate the minimum number

of the containers needed to be transported from sources to destinations. Load sizes chosen in this

thesis made a one dimensional bin packing MIP sufficient to calculate the optimal number of

bins in Model 1. However, if smaller load sizes are introduced, two or three dimensional bin

packing will be required to calculate the minimum number of containers required. The effect of

this should be considered

Delivery Times and Queuing

In this research, we do not look at delivery lead times or queues at PI centers which increase the

total transit time. Investigating the effect of each logistic policy on delivery times and queuing

behaviour in the PI transit centers can be very beneficial. In a simulation environment, the

86

average effect of delays, and queues on the total cost of a PI logistic system can be examined and

compared to other logistic systems.

Relaxation of the Reset Assumption and Effect of Uncertainty

This thesis only dealt with static loads. Load information is assumed to be available at the time

of optimization. A one period planning horizon assumed with a state reset at the end of the

period. However, in real-life, containers and trucks move constantly as demand evolves.

Dynamic optimization approaches can be developed and tested to investigate the cost

performance of these logistic systems in real-time. There is also the effect of uncertainty that

could be taken into account.

Multi-agent simulation models can be a means to evaluate the performance of real-time PI

systems to understand the complex interplay involved in the presence of multiple decision

makers systems with uncertainty in the logistics system. As discussed in section 2, and in [8], a

multi-agent simulation of PI was shown to be effective methods to simulate supply webs. These

types of simulation studies will potentially provide a more accurate evaluation of the logistic

systems’ behaviour when dealing with networks with complex demand, capacity, and routing

constraints.

87

REFERENCES

[1] B. Montreuil, "Toward a Physical Internet: Meeting the Global Logisitcs Sustainability

Grand Challenge," CIRRELT - Interuniversity Rsearch Center on Enterprise Networks,

Logistics and Transportation, Quebec, 2011.

[2] B. Montreuil, "Physical Internet Manifesto," 2 April 2010. [Online]. Available:

www.physicalinternetinitiative.org. [Accessed 12 March 2013].

[3] "Physical Internet: A survey of Logisitcs," The Economist Newspaper, 17 June 2006.

[4] "Physical Internet," CIRRLET, March 2010. [Online]. Available:

http://www.physicalinternetinitiative.org/. [Accessed 20 January 2014].

[5] D. HAKIMI, M. Benoit and O. LABARTHE, "Supply Web: Concept and Technology," in

Seventh Annual International Symposium , Toronto, 2009.

[6] B. Montreuil, R. D. Meller and E. Ballot, "Innovation, Toward a Physical Internet: The

Impact on Logistics Facilities and Material Handling Systems Design and," 2010.

[7] B. Montreuil, O. Labarthe, D. Hakimi, A. Larcher and M. Audet, "Supply Web Mapper," in

International Conference on Industrial Engineering and Systems Management , Montreal ,

2009.

[8] D. Hakimi, B. Montreuil and O. Labarthe, "Supply Web Agent-Based Simulation Platform,"

in 3rd International Conference on Information Systems, Logistics and Supply Chain.

Creating value through green supply chains, Casablanca, 2010.

[9] E. Ballot, B. Montreuil and F. Fontane, "Topology of the Logistic Networks and the

Potential of Physical Internet," CIRRELT, Quebec City, 2010.

[10] D. HAKIMI, B. MONTREUIL, R. SARRAJ, E. BALLOT and S. PAN, "SIMULATING A

PHYSICAL INTERNET ENABLED MOBILITY WEB: THE CASE OF MASS

88

DISTRIBUTION IN FRANCE," in 9th International Conference of Modeling, Optimization

and Simulation , Bordeaux, 2012.

[11] R. D. Meller, B. Montreuil, C. Thivierge and Z. Montreuil, "Functional Design og Physical

Internet Facilities: A Road Based Transit Center," in Progress in Material Handling

Research , Charlotte, MHIA, 2012.

[12] E. Ballot, M. Benoit and C. Thivierge, "FUNCTIONAL DESIGN OF PHYSICAL

INTERNET FACILITIES: A ROAD-RAIL HUB," in Progress in Material Handling

Research 2012, Charlotte, MHIA, 2012.

[13] B. Montreuil, R. D. Meller, C. Thivierge and Z. Montreuil, "Functional Design of Physical

Internet Facilities: A Road-Based Crossdocking hub," in Progress in Material Handling

Research 2012’, Charlotte, MHIA, 2012.

[14] R. Sarraj, E. Ballot, S. Pan, D. Hakimi and B. Montreuil, "Interconnected logistic networks

and protocols: simulation-based efficiency assessment," International Journal of Production

Research, vol. 52, no. 11, pp. 3185-3208, 2013.

[15] G. Laporte, "Vehicle Routing Problem: An overview of exact and approximate algorithms,"

European Journal of Operational Research, pp. 345-358, 1992.

[16] L. Bodin, B. Golden, A. Assad and M. Ball, "Routing and scheduling of vehicles and crews.

The state of the art," Computers and Operations Research, pp. 69-211, 1983.

[17] G. Laporte and Y. Nobert, "Exact algorithms for the vehicle routing problem," in Surveys in

Combinatorial Optimization, Amsterdam, North-Holland, 1987, pp. 147-184.

[18] S. N. Parragh, K. F. Doerner and R. F. Hartl, "A survey on pickup and delivery problems.

Part I: Transportation between customers and depots," Wein, Springer, 2008, pp. 21-51.

[19] C. E. Miller, A. W. Tucker and R. A. Zemlin, "Integer Programming Formulation of

Traveling," JACM, vol. 7, no. 4, pp. 326-329, 4 October 1960.

89

[20] G. Laporte, "The vehicle routing problem: An overview of exact and approximate

algorithms," European Journal of Operational Research, vol. 59, no. 3, p. 345–358, 1992.

[21] M. Goetschalckx and C. J.-B. Jacobs-Blecha, "The vehicle routing problem with

backhauls," European Journal of Operational Research, vol. 42, no. 1, p. 39–51, 1989.

[22] P. Toth and D. Vigo, "An Exact Algorithm for the Vehicle Routing Problem with

Backhauls," Transportation Science, vol. 31, no. 4, pp. 372 - 385, 1997.

[23] D. Duhamel, J.-Y. Potvin and J.-M. Rousseau, "A Tabu Search Heuristic for the Vehicle

Routing Problem with Backhauls and Time Windows," Transportation Science, vol. 31, no.

1, pp. 49 - 59, 1997.

[24] G. Mosheiov, "The Travelling Salesman Problem with pick-up and delivery," European

Journal of Operational Research, vol. 79, no. 2, p. 299–310, 1994.

[25] S. Salhi and G. Nagy, "A Cluster Insertion Heuristic for Single and Multiple Depot Vehicle

Routing Problems with Backhauling," The Journal of the Operational Research Society,

vol. 50, no. 2, pp. 1034-1042, 1999.

[26] H. Min, "The multiple vehicle routing problem with simultaneous delivery and pick-up

points," Transportation Research Part A: General, vol. 23, no. 5, p. 377–386, 1989.

[27] F. Alfredo, T. Montané and G. R. Diéguez, "A tabu search algorithm for the vehicle routing

problem with simultaneous pick-up and delivery service," Computers & Operations

Research, vol. 33, no. 3, p. 595–619, 2006.

[28] N. Bianchessi and G. Righini, "Heuristic algorithms for the vehicle routing problem with

simultaneous pick-up and delivery," Computers & Operations Research, vol. 34, no. 2, p.

578–594, 2007.

[29] M. V. P. Savelsbergh and M. Sol, "The General Pickup and Delivery Problem,"

Transportation Science, vol. 29, no. 1, pp. 17 - 29 , 1995.

90

[30] J.-F. Cordeau and G. Laporte, "The dial-a-ride problem: models and algorithms," Annals of

Operations Research, vol. 153, no. 1, pp. 29 - 46, 2007.

[31] R. D. Meller, B. Montreuil, C. Thivierge and Z. Montreuil, "FUNCTIONAL DESIGN OF

PHYSICAL INTERNET FACILITIES: A ROAD-BASED TRANSIT CENTER," in

Progress in Material Handling Research 2012, Charlotte, MHIA, 2012.

[32] World Shipping Council, "CONTAINERS," 8 February 2014. [Online]. Available:

http://www.worldshipping.org/about-the-industry/containers.

[33] "3D Warehouse," Trimble Navigation Limited, [Online]. Available:

https://3dwarehouse.sketchup.com/. [Accessed 12 January 2014].

[34] W. d. l. V. Frenandez and G. S. Lueker, "Bin Packing can be solved within 1 + e in Linear

Time," Combinatorica, pp. 349-355, 22 May 1981.

[35] Gurobi Optimization Inc., "The Gurobi Python Interface for Python Users," 5 September

2012. [Online]. Available: http://www.gurobi.com/documentation/5.5/quick-start-

guide/node39. [Accessed 10 June 2013].

[36] M. Labbe, G. Laporte and H. Mercure, "Capacitated vehicle routing on trees," Operations

Research, pp. 39: 616 - 622, 1991.

[37] H. P. Williams, "Building Integer Programming Models II," in Model Building in

Mathmatical Programming, London, Wiley, Sons, Ltd, 2013, pp. 199 - 211.

[38] J. Desrosiers, F. Soumis and M. Desrochers, "Networks," in Routing with time windows by

column generation, vol. 14, London, UK: Wiley Periodicals, 1984, pp. 545 - 565.

[39] B. Chandran and S. Raghavan, "Modeling and Solving the Capacitated Vehicle Routing

Problem on Trees," in Vehicle Routing Problem , Springer Science, 2008, pp. 243 - 244.

[40] RAY BARTON & ASSOCIATES, "Estimation of Costs of Heavy Vehicle Use per Vehicle-

Kilometer in Canada," Transport Canada, Ottawa, 2006.

91

[41] J. J. Keller and Associates, "Hours of Service Canada: A Driver's Guide - DVD Training,"

2006.

[42] "Commercial Vehicle Drivers Hours of Service Regulations (SOR/2005-313)," 17 February

2014. [Online]. Available: http://laws-lois.justice.gc.ca/eng/regulations/SOR-2005-

313/page-3.html#h-9. [Accessed 3 March 2014].

[43] G. M. Saltzman and M. H. Belzer, "Truck Driver Occupational Safety and Health," NIOSH

- Publications Dissemination, Cincinnati, OH, 2007.

[44] E. Dijkstra, "A Note on Two Problems in Connexion with Graphs," Numerische

Mathematik, pp. 269-271, 1959.

[45] R. W. Floyd, "Algorithm 97: shortest path.," Communications of the ACM, vol. 5, no. 6, p.

345, 1962.

[46] R. E. Walpole, R. H. Myers, S. L. Myers and K. Ye, Probability & Statistics for Engineers

& Scientists, 8th, Ed., San Antonio, Texas: Prentice Hall, 2006, p. 510.

[47] J. Francois Cordeau and G. Laporte, "Static pickup and delivery problems: a classification

scheme and survey," TOP, vol. 15, no. 1, pp. 1 - 31, 2007.

[48] E. Angelelli and M. Renata, "The Vehicle Routing Problem with Time Window and

Simultaneous Pick-up and Delivery," in Quantitative Approaches to Distribution Logistics

and Supply Chain Management, Berlin Heidelberg, Springer, 2002, pp. 249 - 267.

92

APPENDICES

Appendix A: Conventional Arcs Dictionary

route_co = {
 ('Yar','Hal'): [['Yar','Hal']],
 ('Yar','Tru'): [['Yar','Tru']],
 ('Yar','Syd'): [['Yar','Syd']],
 ('Yar','Mon'): [['Yar','Mon']],
 ('Yar','Cht'): [['Yar','Cht']],
 ('Yar','Stj'): [['Yar','Stj']],
 ('Yar','Frd'): [['Yar','Frd']],
 ('Yar','Gt1'): [['Yar','Gt1']],
 ('Yar','Riv'): [['Yar','Riv']],
 ('Yar','Qbc'): [['Yar','Qbc']],
 ('Yar','Gt2'): [['Yar','Gt2']],
 ('Yar','Mte'): [['Yar','Mte']],
 ('Yar','Gt3'): [['Yar','Gt3']],
 ('Yar','Caw'): [['Yar','Caw']],
 ('Yar','Mtw'): [['Yar','Mtw']],
 ('Yar','Otn'): [['Yar','Otn']],
 ('Yar','Ots'): [['Yar','Ots']],

 ('Hal','Yar'): [['Hal','Yar']],
 ('Hal','Tru'): [['Hal','Tru']],
 ('Hal','Syd'): [['Hal','Syd']],
 ('Hal','Mon'): [['Hal','Mon']],
 ('Hal','Cht'): [['Hal','Cht']],
 ('Hal','Stj'): [['Hal','Stj']],
 ('Hal','Frd'): [['Hal','Frd']],
 ('Hal','Gt1'): [['Hal','Gt1']],
 ('Hal','Riv'): [['Hal','Riv']],
 ('Hal','Qbc'): [['Hal','Qbc']],
 ('Hal','Gt2'): [['Hal','Gt2']],
 ('Hal','Mte'): [['Hal','Mte']],
 ('Hal','Gt3'): [['Hal','Gt3']],
 ('Hal','Caw'): [['Hal','Caw']],
 ('Hal','Mtw'): [['Hal','Mtw']],
 ('Hal','Otn'): [['Hal','Otn']],
 ('Hal','Ots'): [['Hal','Ots']],

 ('Syd','Yar'): [['Syd','Yar']],
 ('Syd','Tru'): [['Syd','Tru']],
 ('Syd','Hal'): [['Syd','Hal']],
 ('Syd','Mon'): [['Syd','Mon']],
 ('Syd','Cht'): [['Syd','Cht']],
 ('Syd','Stj'): [['Syd','Stj']],
 ('Syd','Frd'): [['Syd','Frd']],
 ('Syd','Gt1'): [['Syd','Gt1']],
 ('Syd','Riv'): [['Syd','Riv']],
 ('Syd','Qbc'): [['Syd','Qbc']],
 ('Syd','Gt2'): [['Syd','Gt2']],
 ('Syd','Mte'): [['Syd','Mte']],
 ('Syd','Gt3'): [['Syd','Gt3']],
 ('Syd','Caw'): [['Syd','Caw']],
 ('Syd','Mtw'): [['Syd','Mtw']],
 ('Syd','Otn'): [['Syd','Otn']],
 ('Syd','Ots'): [['Syd','Ots']],

93

 ('Tru','Yar'): [['Tru','Yar']],
 ('Tru','Syd'): [['Tru','Syd']],
 ('Tru','Hal'): [['Tru','Hal']],
 ('Tru','Mon'): [['Tru','Mon']],
 ('Tru','Cht'): [['Tru','Cht']],
 ('Tru','Stj'): [['Tru','Stj']],
 ('Tru','Frd'): [['Tru','Frd']],
 ('Tru','Gt1'): [['Tru','Gt1']],
 ('Tru','Riv'): [['Tru','Riv']],
 ('Tru','Qbc'): [['Tru','Qbc']],
 ('Tru','Gt2'): [['Tru','Gt2']],
 ('Tru','Mte'): [['Tru','Mte']],
 ('Tru','Gt3'): [['Tru','Gt3']],
 ('Tru','Caw'): [['Tru','Caw']],
 ('Tru','Mtw'): [['Tru','Mtw']],
 ('Tru','Otn'): [['Tru','Otn']],
 ('Tru','Ots'): [['Tru','Ots']],

 ('Mon','Yar'): [['Mon','Yar']],
 ('Mon','Syd'): [['Mon','Syd']],
 ('Mon','Hal'): [['Mon','Hal']],
 ('Mon','Tru'): [['Mon','Tru']],
 ('Mon','Cht'): [['Mon','Cht']],
 ('Mon','Stj'): [['Mon','Stj']],
 ('Mon','Frd'): [['Mon','Frd']],
 ('Mon','Gt1'): [['Mon','Gt1']],
 ('Mon','Riv'): [['Mon','Riv']],
 ('Mon','Qbc'): [['Mon','Qbc']],
 ('Mon','Gt2'): [['Mon','Gt2']],
 ('Mon','Mte'): [['Mon','Mte']],
 ('Mon','Gt3'): [['Mon','Gt3']],
 ('Mon','Caw'): [['Mon','Caw']],
 ('Mon','Mtw'): [['Mon','Mtw']],
 ('Mon','Otn'): [['Mon','Otn']],
 ('Mon','Ots'): [['Mon','Ots']],

 ('Cht','Yar'): [['Cht','Yar']],
 ('Cht','Syd'): [['Cht','Syd']],
 ('Cht','Hal'): [['Cht','Hal']],
 ('Cht','Tru'): [['Cht','Tru']],
 ('Cht','Mon'): [['Cht','Mon']],
 ('Cht','Stj'): [['Cht','Stj']],
 ('Cht','Frd'): [['Cht','Frd']],
 ('Cht','Gt1'): [['Cht','Gt1']],
 ('Cht','Riv'): [['Cht','Riv']],
 ('Cht','Qbc'): [['Cht','Qbc']],
 ('Cht','Gt2'): [['Cht','Gt2']],
 ('Cht','Mte'): [['Cht','Mte']],
 ('Cht','Gt3'): [['Cht','Gt3']],
 ('Cht','Caw'): [['Cht','Caw']],
 ('Cht','Mtw'): [['Cht','Mtw']],
 ('Cht','Otn'): [['Cht','Otn']],
 ('Cht','Ots'): [['Cht','Ots']],

 ('Stj','Yar'): [['Stj','Yar']],
 ('Stj','Syd'): [['Stj','Syd']],
 ('Stj','Hal'): [['Stj','Hal']],
 ('Stj','Tru'): [['Stj','Tru']],
 ('Stj','Cht'): [['Stj','Cht']],
 ('Stj','Mon'): [['Stj','Mon']],
 ('Stj','Frd'): [['Stj','Frd']],

94

 ('Stj','Gt1'): [['Stj','Gt1']],
 ('Stj','Riv'): [['Stj','Riv']],
 ('Stj','Qbc'): [['Stj','Qbc']],
 ('Stj','Gt2'): [['Stj','Gt2']],
 ('Stj','Mte'): [['Stj','Mte']],
 ('Stj','Gt3'): [['Stj','Gt3']],
 ('Stj','Caw'): [['Stj','Caw']],
 ('Stj','Mtw'): [['Stj','Mtw']],
 ('Stj','Otn'): [['Stj','Otn']],
 ('Stj','Ots'): [['Stj','Ots']],

 ('Frd','Yar'): [['Frd','Yar']],
 ('Frd','Syd'): [['Frd','Syd']],
 ('Frd','Hal'): [['Frd','Hal']],
 ('Frd','Tru'): [['Frd','Tru']],
 ('Frd','Cht'): [['Frd','Cht']],
 ('Frd','Mon'): [['Frd','Mon']],
 ('Frd','Stj'): [['Frd','Stj']],
 ('Frd','Gt1'): [['Frd','Gt1']],
 ('Frd','Riv'): [['Frd','Riv']],
 ('Frd','Qbc'): [['Frd','Qbc']],
 ('Frd','Gt2'): [['Frd','Gt2']],
 ('Frd','Mte'): [['Frd','Mte']],
 ('Frd','Gt3'): [['Frd','Gt3']],
 ('Frd','Caw'): [['Frd','Caw']],
 ('Frd','Mtw'): [['Frd','Mtw']],
 ('Frd','Otn'): [['Frd','Otn']],
 ('Frd','Ots'): [['Frd','Ots']],

 ('Gt1','Yar'): [['Gt1','Yar']],
 ('Gt1','Syd'): [['Gt1','Syd']],
 ('Gt1','Hal'): [['Gt1','Hal']],
 ('Gt1','Tru'): [['Gt1','Tru']],
 ('Gt1','Cht'): [['Gt1','Cht']],
 ('Gt1','Mon'): [['Gt1','Mon']],
 ('Gt1','Stj'): [['Gt1','Stj']],
 ('Gt1','Frd'): [['Gt1','Frd']],
 ('Gt1','Riv'): [['Gt1','Riv']],
 ('Gt1','Qbc'): [['Gt1','Qbc']],
 ('Gt1','Mte'): [['Gt1','Mte']],
 ('Gt1','Gt2'): [['Gt1','Gt2']],
 ('Gt1','Gt3'): [['Gt1','Gt3']],
 ('Gt1','Caw'): [['Gt1','Caw']],
 ('Gt1','Mtw'): [['Gt1','Mtw']],
 ('Gt1','Otn'): [['Gt1','Otn']],
 ('Gt1','Ots'): [['Gt1','Ots']],

 ('Riv','Yar'): [['Riv','Yar']],
 ('Riv','Syd'): [['Riv','Syd']],
 ('Riv','Hal'): [['Riv','Hal']],
 ('Riv','Tru'): [['Riv','Tru']],
 ('Riv','Cht'): [['Riv','Cht']],
 ('Riv','Mon'): [['Riv','Mon']],
 ('Riv','Stj'): [['Riv','Stj']],
 ('Riv','Frd'): [['Riv','Frd']],
 ('Riv','Gt1'): [['Riv','Gt1']],
 ('Riv','Qbc'): [['Riv','Qbc']],
 ('Riv','Mte'): [['Riv','Mte']],
 ('Riv','Gt2'): [['Riv','Gt2']],
 ('Riv','Gt3'): [['Riv','Gt3']],
 ('Riv','Caw'): [['Riv','Caw']],

95

 ('Riv','Mtw'): [['Riv','Mtw']],
 ('Riv','Otn'): [['Riv','Otn']],
 ('Riv','Ots'): [['Riv','Ots']],

 ('Qbc','Yar'): [['Qbc','Yar']],
 ('Qbc','Syd'): [['Qbc','Syd']],
 ('Qbc','Hal'): [['Qbc','Hal']],
 ('Qbc','Tru'): [['Qbc','Tru']],
 ('Qbc','Cht'): [['Qbc','Cht']],
 ('Qbc','Mon'): [['Qbc','Mon']],
 ('Qbc','Stj'): [['Qbc','Stj']],
 ('Qbc','Frd'): [['Qbc','Frd']],
 ('Qbc','Gt1'): [['Qbc','Gt1']],
 ('Qbc','Riv'): [['Qbc','Riv']],
 ('Qbc','Mte'): [['Qbc','Mte']],
 ('Qbc','Gt2'): [['Qbc','Gt2']],
 ('Qbc','Gt3'): [['Qbc','Gt3']],
 ('Qbc','Caw'): [['Qbc','Caw']],
 ('Qbc','Mtw'): [['Qbc','Mtw']],
 ('Qbc','Otn'): [['Qbc','Otn']],
 ('Qbc','Ots'): [['Qbc','Ots']],

 ('Gt2','Yar'): [['Gt2','Yar']],
 ('Gt2','Syd'): [['Gt2','Syd']],
 ('Gt2','Hal'): [['Gt2','Hal']],
 ('Gt2','Tru'): [['Gt2','Tru']],
 ('Gt2','Cht'): [['Gt2','Cht']],
 ('Gt2','Mon'): [['Gt2','Mon']],
 ('Gt2','Stj'): [['Gt2','Stj']],
 ('Gt2','Frd'): [['Gt2','Frd']],
 ('Gt2','Gt1'): [['Gt2','Gt1']],
 ('Gt2','Riv'): [['Gt2','Riv']],
 ('Gt2','Qbc'): [['Gt2','Qbc']],
 ('Gt2','Mte'): [['Gt2','Mte']],
 ('Gt2','Gt3'): [['Gt2','Gt3']],
 ('Gt2','Caw'): [['Gt2','Caw']],
 ('Gt2','Mtw'): [['Gt2','Mtw']],
 ('Gt2','Otn'): [['Gt2','Otn']],
 ('Gt2','Ots'): [['Gt2','Ots']],

 ('Mte','Yar'): [['Mte','Yar']],
 ('Mte','Syd'): [['Mte','Syd']],
 ('Mte','Hal'): [['Mte','Hal']],
 ('Mte','Tru'): [['Mte','Tru']],
 ('Mte','Cht'): [['Mte','Cht']],
 ('Mte','Mon'): [['Mte','Mon']],
 ('Mte','Stj'): [['Mte','Stj']],
 ('Mte','Frd'): [['Mte','Frd']],
 ('Mte','Gt1'): [['Mte','Gt1']],
 ('Mte','Riv'): [['Mte','Riv']],
 ('Mte','Qbc'): [['Mte','Qbc']],
 ('Mte','Gt2'): [['Mte','Gt2']],
 ('Mte','Gt3'): [['Mte','Gt3']],
 ('Mte','Caw'): [['Mte','Caw']],
 ('Mte','Mtw'): [['Mte','Mtw']],
 ('Mte','Otn'): [['Mte','Otn']],
 ('Mte','Ots'): [['Mte','Ots']],

 ('Gt3','Yar'): [['Gt3','Yar']],
 ('Gt3','Syd'): [['Gt3','Syd']],
 ('Gt3','Hal'): [['Gt3','Hal']],

96

 ('Gt3','Tru'): [['Gt3','Tru']],
 ('Gt3','Cht'): [['Gt3','Cht']],
 ('Gt3','Mon'): [['Gt3','Mon']],
 ('Gt3','Stj'): [['Gt3','Stj']],
 ('Gt3','Frd'): [['Gt3','Frd']],
 ('Gt3','Gt1'): [['Gt3','Gt1']],
 ('Gt3','Riv'): [['Gt3','Riv']],
 ('Gt3','Qbc'): [['Gt3','Qbc']],
 ('Gt3','Gt2'): [['Gt3','Gt2']],
 ('Gt3','Mte'): [['Gt3','Mte']],
 ('Gt3','Caw'): [['Gt3','Caw']],
 ('Gt3','Mtw'): [['Gt3','Mtw']],
 ('Gt3','Otn'): [['Gt3','Otn']],
 ('Gt3','Ots'): [['Gt3','Ots']],

 ('Caw','Yar'): [['Caw','Yar']],
 ('Caw','Syd'): [['Caw','Syd']],
 ('Caw','Hal'): [['Caw','Hal']],
 ('Caw','Tru'): [['Caw','Tru']],
 ('Caw','Cht'): [['Caw','Cht']],
 ('Caw','Mon'): [['Caw','Mon']],
 ('Caw','Stj'): [['Caw','Stj']],
 ('Caw','Frd'): [['Caw','Frd']],
 ('Caw','Gt1'): [['Caw','Gt1']],
 ('Caw','Riv'): [['Caw','Riv']],
 ('Caw','Qbc'): [['Caw','Qbc']],
 ('Caw','Gt2'): [['Caw','Gt2']],
 ('Caw','Mte'): [['Caw','Mte']],
 ('Caw','Gt3'): [['Caw','Gt3']],
 ('Caw','Mtw'): [['Caw','Mtw']],
 ('Caw','Otn'): [['Caw','Otn']],
 ('Caw','Ots'): [['Caw','Ots']],

 ('Mtw','Yar'): [['Mtw','Yar']],
 ('Mtw','Syd'): [['Mtw','Syd']],
 ('Mtw','Hal'): [['Mtw','Hal']],
 ('Mtw','Tru'): [['Mtw','Tru']],
 ('Mtw','Cht'): [['Mtw','Cht']],
 ('Mtw','Mon'): [['Mtw','Mon']],
 ('Mtw','Stj'): [['Mtw','Stj']],
 ('Mtw','Frd'): [['Mtw','Frd']],
 ('Mtw','Gt1'): [['Mtw','Gt1']],
 ('Mtw','Riv'): [['Mtw','Riv']],
 ('Mtw','Qbc'): [['Mtw','Qbc']],
 ('Mtw','Gt2'): [['Mtw','Gt2']],
 ('Mtw','Mte'): [['Mtw','Mte']],
 ('Mtw','Gt3'): [['Mtw','Gt3']],
 ('Mtw','Caw'): [['Mtw','Caw']],
 ('Mtw','Otn'): [['Mtw','Otn']],
 ('Mtw','Ots'): [['Mtw','Ots']],

 ('Otn','Yar'): [['Otn','Yar']],
 ('Otn','Syd'): [['Otn','Syd']],
 ('Otn','Hal'): [['Otn','Hal']],
 ('Otn','Tru'): [['Otn','Tru']],
 ('Otn','Cht'): [['Otn','Cht']],
 ('Otn','Mon'): [['Otn','Mon']],
 ('Otn','Stj'): [['Otn','Stj']],
 ('Otn','Frd'): [['Otn','Frd']],
 ('Otn','Gt1'): [['Otn','Gt1']],
 ('Otn','Riv'): [['Otn','Riv']],

97

 ('Otn','Qbc'): [['Otn','Qbc']],
 ('Otn','Gt2'): [['Otn','Gt2']],
 ('Otn','Mte'): [['Otn','Mte']],
 ('Otn','Gt3'): [['Otn','Gt3']],
 ('Otn','Caw'): [['Otn','Caw']],
 ('Otn','Mtw'): [['Otn','Mtw']],
 ('Otn','Ots'): [['Otn','Ots']],

 ('Ots','Yar'): [['Ots','Yar']],
 ('Ots','Syd'): [['Ots','Syd']],
 ('Ots','Hal'): [['Ots','Hal']],
 ('Ots','Tru'): [['Ots','Tru']],
 ('Ots','Cht'): [['Ots','Cht']],
 ('Ots','Mon'): [['Ots','Mon']],
 ('Ots','Stj'): [['Ots','Stj']],
 ('Ots','Frd'): [['Ots','Frd']],
 ('Ots','Gt1'): [['Ots','Gt1']],
 ('Ots','Riv'): [['Ots','Riv']],
 ('Ots','Qbc'): [['Ots','Qbc']],
 ('Ots','Gt2'): [['Ots','Gt2']],
 ('Ots','Mte'): [['Ots','Mte']],
 ('Ots','Gt3'): [['Ots','Gt3']],
 ('Ots','Caw'): [['Ots','Caw']],
 ('Ots','Mtw'): [['Ots','Mtw']],
 ('Ots','Otn'): [['Ots','Otn']]
 }

98

Appendix B: PI Arcs Dictionary

route_pi = {
 ('Yar','Hal'): [['Yar','Hal']],
 ('Yar','Tru'): [['Yar','Tru']],
 ('Yar','Syd'): [['Yar','Syd']],
 ('Yar','Mon'): [['Yar','Tru'],['Tru','Mon']],
 ('Yar','Cht'): [['Yar','Tru'],['Tru','Cht']],
 ('Yar','Stj'): [['Yar','Tru'],['Tru','Stj']],
 ('Yar','Frd'): [['Yar','Tru'],['Tru','Frd']],
 ('Yar','Gt1'): [['Yar','Tru'],['Tru','Frd'],['Frd','Gt1']],
 ('Yar','Riv'): [['Yar','Tru'],['Tru','Frd'],['Frd','Riv']],
 ('Yar','Qbc'): [['Yar','Tru'],['Tru','Frd'],['Frd','Qbc']],
 ('Yar','Gt2'): [['Yar','Tru'],['Tru','Frd'],['Frd','Qbc'],['Qbc','Gt2']],
 ('Yar','Mte'): [['Yar','Tru'],['Tru','Frd'],['Frd','Qbc'],['Qbc','Mte']],
 ('Yar','Gt3'): [['Yar','Tru'],['Tru','Frd'],['Frd','Qbc'],['Qbc','Mte'],['Mte','Gt3']],
 ('Yar','Caw'): [['Yar','Tru'],['Tru','Frd'],['Frd','Qbc'],['Qbc','Mte'],['Mte','Caw']],
 ('Yar','Mtw'): [['Yar','Tru'],['Tru','Frd'],['Frd','Qbc'],['Qbc','Mte'],['Mte','Mtw']],
 ('Yar','Otn'): [['Yar','Tru'],['Tru','Frd'],['Frd','Qbc'],['Qbc','Mte'],['Mte','Mtw'],['Mtw','Otn']],
 ('Yar','Ots'): [['Yar','Tru'],['Tru','Frd'],['Frd','Qbc'],['Qbc','Mte'],['Mte','Mtw'],['Mtw','Ots']],

 ('Hal','Yar'): [['Hal','Yar']],
 ('Hal','Tru'): [['Hal','Tru']],
 ('Hal','Syd'): [['Hal','Syd']],
 ('Hal','Mon'): [['Hal','Tru'],['Tru','Mon']],
 ('Hal','Cht'): [['Hal','Tru'],['Tru','Cht']],
 ('Hal','Stj'): [['Hal','Tru'],['Tru','Stj']],
 ('Hal','Frd'): [['Hal','Tru'],['Tru','Frd']],
 ('Hal','Gt1'): [['Hal','Tru'],['Tru','Frd'],['Frd','Gt1']],
 ('Hal','Riv'): [['Hal','Tru'],['Tru','Frd'],['Frd','Riv']],
 ('Hal','Qbc'): [['Hal','Tru'],['Tru','Frd'],['Frd','Qbc']],
 ('Hal','Gt2'): [['Hal','Tru'],['Tru','Frd'],['Frd','Qbc'],['Qbc','Gt2']],
 ('Hal','Mte'): [['Hal','Tru'],['Tru','Frd'],['Frd','Qbc'],['Qbc','Mte']],
 ('Hal','Gt3'): [['Hal','Tru'],['Tru','Frd'],['Frd','Qbc'],['Qbc','Mte'],['Mte','Gt3']],
 ('Hal','Caw'): [['Hal','Tru'],['Tru','Frd'],['Frd','Qbc'],['Qbc','Mte'],['Mte','Caw']],
 ('Hal','Mtw'): [['Hal','Tru'],['Tru','Frd'],['Frd','Qbc'],['Qbc','Mte'],['Mte','Mtw']],
 ('Hal','Otn'): [['Hal','Tru'],['Tru','Frd'],['Frd','Qbc'],['Qbc','Mte'],['Mte','Mtw'],['Mtw','Otn']],
 ('Hal','Ots'): [['Hal','Tru'],['Tru','Frd'],['Frd','Qbc'],['Qbc','Mte'],['Mte','Mtw'],['Mtw','Ots']],

 ('Syd','Yar'): [['Syd','Yar']],
 ('Syd','Tru'): [['Syd','Tru']],
 ('Syd','Hal'): [['Syd','Hal']],
 ('Syd','Mon'): [['Syd','Tru'],['Tru','Mon']],
 ('Syd','Cht'): [['Syd','Tru'],['Tru','Cht']],
 ('Syd','Stj'): [['Syd','Tru'],['Tru','Stj']],
 ('Syd','Frd'): [['Syd','Tru'],['Tru','Frd']],
 ('Syd','Gt1'): [['Syd','Tru'],['Tru','Frd'],['Frd','Gt1']],
 ('Syd','Riv'): [['Syd','Tru'],['Tru','Frd'],['Frd','Riv']],
 ('Syd','Qbc'): [['Syd','Tru'],['Tru','Frd'],['Frd','Qbc']],
 ('Syd','Gt2'): [['Syd','Tru'],['Tru','Frd'],['Frd','Qbc'],['Qbc','Gt2']],
 ('Syd','Mte'): [['Syd','Tru'],['Tru','Frd'],['Frd','Qbc'],['Qbc','Mte']],
 ('Syd','Gt3'): [['Syd','Tru'],['Tru','Frd'],['Frd','Qbc'],['Qbc','Mte'],['Mte','Gt3']],
 ('Syd','Caw'): [['Syd','Tru'],['Tru','Frd'],['Frd','Qbc'],['Qbc','Mte'],['Mte','Caw']],
 ('Syd','Mtw'): [['Syd','Tru'],['Tru','Frd'],['Frd','Qbc'],['Qbc','Mte'],['Mte','Mtw']],
 ('Syd','Otn'): [['Syd','Tru'],['Tru','Frd'],['Frd','Qbc'],['Qbc','Mte'],['Mte','Mtw'],['Mtw','Otn']],
 ('Syd','Ots'): [['Syd','Tru'],['Tru','Frd'],['Frd','Qbc'],['Qbc','Mte'],['Mte','Mtw'],['Mtw','Ots']],

 ('Tru','Yar'): [['Tru','Yar']],
 ('Tru','Syd'): [['Tru','Syd']],
 ('Tru','Hal'): [['Tru','Hal']],

99

 ('Tru','Mon'): [['Tru','Mon']],
 ('Tru','Cht'): [['Tru','Cht']],
 ('Tru','Stj'): [['Tru','Stj']],
 ('Tru','Frd'): [['Tru','Frd']],
 ('Tru','Gt1'): [['Tru','Frd'],['Frd','Gt1']],
 ('Tru','Riv'): [['Tru','Frd'],['Frd','Riv']],
 ('Tru','Qbc'): [['Tru','Frd'],['Frd','Qbc']],
 ('Tru','Gt2'): [['Tru','Frd'],['Frd','Qbc'],['Qbc','Gt2']],
 ('Tru','Mte'): [['Tru','Frd'],['Frd','Qbc'],['Qbc','Mte']],
 ('Tru','Gt3'): [['Tru','Frd'],['Frd','Qbc'],['Qbc','Mte'],['Mte','Gt3']],
 ('Tru','Caw'): [['Tru','Frd'],['Frd','Qbc'],['Qbc','Mte'],['Mte','Caw']],
 ('Tru','Mtw'): [['Tru','Frd'],['Frd','Qbc'],['Qbc','Mte'],['Mte','Mtw']],
 ('Tru','Otn'): [['Tru','Frd'],['Frd','Qbc'],['Qbc','Mte'],['Mte','Mtw'],['Mtw','Otn']],
 ('Tru','Ots'): [['Tru','Frd'],['Frd','Qbc'],['Qbc','Mte'],['Mte','Mtw'],['Mtw','Ots']],

 ('Mon','Yar'): [['Mon','Tru'],['Tru','Yar']],
 ('Mon','Syd'): [['Mon','Tru'],['Tru','Syd']],
 ('Mon','Hal'): [['Mon','Tru'],['Tru','Hal']],
 ('Mon','Tru'): [['Mon','Tru']],
 ('Mon','Cht'): [['Mon','Cht']],
 ('Mon','Stj'): [['Mon','Stj']],
 ('Mon','Frd'): [['Mon','Frd']],
 ('Mon','Gt1'): [['Mon','Frd'],['Frd','Gt1']],
 ('Mon','Riv'): [['Mon','Frd'],['Frd','Riv']],
 ('Mon','Qbc'): [['Mon','Frd'],['Frd','Qbc']],
 ('Mon','Gt2'): [['Mon','Frd'],['Frd','Qbc'],['Qbc','Gt2']],
 ('Mon','Mte'): [['Mon','Frd'],['Frd','Qbc'],['Qbc','Mte']],
 ('Mon','Gt3'): [['Mon','Frd'],['Frd','Qbc'],['Qbc','Mte'],['Mte','Gt3']],
 ('Mon','Caw'): [['Mon','Frd'],['Frd','Qbc'],['Qbc','Mte'],['Mte','Caw']],
 ('Mon','Mtw'): [['Mon','Frd'],['Frd','Qbc'],['Qbc','Mte'],['Mte','Mtw']],
 ('Mon','Otn'): [['Mon','Frd'],['Frd','Qbc'],['Qbc','Mte'],['Mte','Mtw'],['Mtw','Otn']],
 ('Mon','Ots'): [['Mon','Frd'],['Frd','Qbc'],['Qbc','Mte'],['Mte','Mtw'],['Mtw','Ots']],

 ('Cht','Yar'): [['Cht','Tru'],['Tru','Yar']],
 ('Cht','Syd'): [['Cht','Tru'],['Tru','Syd']],
 ('Cht','Hal'): [['Cht','Tru'],['Tru','Hal']],
 ('Cht','Tru'): [['Cht','Tru']],
 ('Cht','Mon'): [['Cht','Mon']],
 ('Cht','Stj'): [['Cht','Stj']],
 ('Cht','Frd'): [['Cht','Frd']],
 ('Cht','Gt1'): [['Cht','Frd'],['Frd','Gt1']],
 ('Cht','Riv'): [['Cht','Frd'],['Frd','Riv']],
 ('Cht','Qbc'): [['Cht','Frd'],['Frd','Qbc']],
 ('Cht','Gt2'): [['Cht','Frd'],['Frd','Qbc'],['Qbc','Gt2']],
 ('Cht','Mte'): [['Cht','Frd'],['Frd','Qbc'],['Qbc','Mte']],
 ('Cht','Gt3'): [['Cht','Frd'],['Frd','Qbc'],['Qbc','Mte'],['Mte','Gt3']],
 ('Cht','Caw'): [['Cht','Frd'],['Frd','Qbc'],['Qbc','Mte'],['Mte','Caw']],
 ('Cht','Mtw'): [['Cht','Frd'],['Frd','Qbc'],['Qbc','Mte'],['Mte','Mtw']],
 ('Cht','Otn'): [['Cht','Frd'],['Frd','Qbc'],['Qbc','Mte'],['Mte','Mtw'],['Mtw','Otn']],
 ('Cht','Ots'): [['Cht','Frd'],['Frd','Qbc'],['Qbc','Mte'],['Mte','Mtw'],['Mtw','Ots']],

 ('Stj','Yar'): [['Stj','Tru'],['Tru','Yar']],
 ('Stj','Syd'): [['Stj','Tru'],['Tru','Syd']],
 ('Stj','Hal'): [['Stj','Tru'],['Tru','Hal']],
 ('Stj','Tru'): [['Stj','Tru']],
 ('Stj','Cht'): [['Stj','Cht']],
 ('Stj','Mon'): [['Stj','Mon']],
 ('Stj','Frd'): [['Stj','Frd']],
 ('Stj','Gt1'): [['Stj','Frd'],['Frd','Gt1']],
 ('Stj','Riv'): [['Stj','Frd'],['Frd','Riv']],
 ('Stj','Qbc'): [['Stj','Frd'],['Frd','Qbc']],

100

 ('Stj','Gt2'): [['Stj','Frd'],['Frd','Qbc'],['Qbc','Gt2']],
 ('Stj','Mte'): [['Stj','Frd'],['Frd','Qbc'],['Qbc','Mte']],
 ('Stj','Gt3'): [['Stj','Frd'],['Frd','Qbc'],['Qbc','Mte'],['Mte','Gt3']],
 ('Stj','Caw'): [['Stj','Frd'],['Frd','Qbc'],['Qbc','Mte'],['Mte','Caw']],
 ('Stj','Mtw'): [['Stj','Frd'],['Frd','Qbc'],['Qbc','Mte'],['Mte','Mtw']],
 ('Stj','Otn'): [['Stj','Frd'],['Frd','Qbc'],['Qbc','Mte'],['Mte','Mtw'],['Mtw','Otn']],
 ('Stj','Ots'): [['Stj','Frd'],['Frd','Qbc'],['Qbc','Mte'],['Mte','Mtw'],['Mtw','Ots']],

 ('Frd','Yar'): [['Frd','Tru'],['Tru','Yar']],
 ('Frd','Syd'): [['Frd','Tru'],['Tru','Syd']],
 ('Frd','Hal'): [['Frd','Tru'],['Tru','Hal']],
 ('Frd','Tru'): [['Frd','Tru']],
 ('Frd','Cht'): [['Frd','Cht']],
 ('Frd','Mon'): [['Frd','Mon']],
 ('Frd','Stj'): [['Frd','Stj']],
 ('Frd','Gt1'): [['Frd','Gt1']],
 ('Frd','Riv'): [['Frd','Riv']],
 ('Frd','Qbc'): [['Frd','Qbc']],
 ('Frd','Gt2'): [['Frd','Qbc'],['Qbc','Gt2']],
 ('Frd','Mte'): [['Frd','Qbc'],['Qbc','Mte']],
 ('Frd','Gt3'): [['Frd','Qbc'],['Qbc','Mte'],['Mte','Gt3']],
 ('Frd','Caw'): [['Frd','Qbc'],['Qbc','Mte'],['Mte','Caw']],
 ('Frd','Mtw'): [['Frd','Qbc'],['Qbc','Mte'],['Mte','Mtw']],
 ('Frd','Otn'): [['Frd','Qbc'],['Qbc','Mte'],['Mte','Mtw'],['Mtw','Otn']],
 ('Frd','Ots'): [['Frd','Qbc'],['Qbc','Mte'],['Mte','Mtw'],['Mtw','Ots']],

 ('Gt1','Yar'): [['Gt1','Frd'],['Frd','Tru'],['Tru','Yar']],
 ('Gt1','Syd'): [['Gt1','Frd'],['Frd','Tru'],['Tru','Syd']],
 ('Gt1','Hal'): [['Gt1','Frd'],['Frd','Tru'],['Tru','Hal']],
 ('Gt1','Tru'): [['Gt1','Frd'],['Frd','Tru']],
 ('Gt1','Cht'): [['Gt1','Frd'],['Frd','Cht']],
 ('Gt1','Mon'): [['Gt1','Frd'],['Frd','Mon']],
 ('Gt1','Stj'): [['Gt1','Frd'],['Frd','Stj']],
 ('Gt1','Frd'): [['Gt1','Frd']],
 ('Gt1','Riv'): [['Gt1','Riv']],
 ('Gt1','Qbc'): [['Gt1','Qbc']],
 ('Gt1','Mte'): [['Gt1','Qbc'],['Qbc','Mte']],
 ('Gt1','Gt2'): [['Gt1','Qbc'],['Qbc','Gt2']],
 ('Gt1','Gt3'): [['Gt1','Qbc'],['Qbc','Mte'],['Mte','Gt3']],
 ('Gt1','Caw'): [['Gt1','Qbc'],['Qbc','Mte'],['Mte','Caw']],
 ('Gt1','Mtw'): [['Gt1','Qbc'],['Qbc','Mte'],['Mte','Mtw']],
 ('Gt1','Otn'): [['Gt1','Qbc'],['Qbc','Mte'],['Mte','Mtw'],['Mtw','Otn']],
 ('Gt1','Ots'): [['Gt1','Qbc'],['Qbc','Mte'],['Mte','Mtw'],['Mtw','Ots']],

 ('Riv','Yar'): [['Riv','Frd'],['Frd','Tru'],['Tru','Yar']],
 ('Riv','Syd'): [['Riv','Frd'],['Frd','Tru'],['Tru','Syd']],
 ('Riv','Hal'): [['Riv','Frd'],['Frd','Tru'],['Tru','Hal']],
 ('Riv','Tru'): [['Riv','Frd'],['Frd','Tru']],
 ('Riv','Cht'): [['Riv','Frd'],['Frd','Cht']],
 ('Riv','Mon'): [['Riv','Frd'],['Frd','Mon']],
 ('Riv','Stj'): [['Riv','Frd'],['Frd','Stj']],
 ('Riv','Frd'): [['Riv','Frd']],
 ('Riv','Gt1'): [['Riv','Gt1']],
 ('Riv','Qbc'): [['Riv','Qbc']],
 ('Riv','Mte'): [['Riv','Qbc'],['Qbc','Mte']],
 ('Riv','Gt2'): [['Riv','Qbc'],['Qbc','Gt2']],
 ('Riv','Gt3'): [['Riv','Qbc'],['Qbc','Mte'],['Mte','Gt3']],
 ('Riv','Caw'): [['Riv','Qbc'],['Qbc','Mte'],['Mte','Caw']],
 ('Riv','Mtw'): [['Riv','Qbc'],['Qbc','Mte'],['Mte','Mtw']],
 ('Riv','Otn'): [['Riv','Qbc'],['Qbc','Mte'],['Mte','Mtw'],['Mtw','Otn']],
 ('Riv','Ots'): [['Riv','Qbc'],['Qbc','Mte'],['Mte','Mtw'],['Mtw','Ots']],

101

 ('Qbc','Yar'): [['Qbc','Frd'],['Frd','Tru'],['Tru','Yar']],
 ('Qbc','Syd'): [['Qbc','Frd'],['Frd','Tru'],['Tru','Syd']],
 ('Qbc','Hal'): [['Qbc','Frd'],['Frd','Tru'],['Tru','Hal']],
 ('Qbc','Tru'): [['Qbc','Frd'],['Frd','Tru']],
 ('Qbc','Cht'): [['Qbc','Frd'],['Frd','Cht']],
 ('Qbc','Mon'): [['Qbc','Frd'],['Frd','Mon']],
 ('Qbc','Stj'): [['Qbc','Frd'],['Frd','Stj']],
 ('Qbc','Frd'): [['Qbc','Frd']],
 ('Qbc','Gt1'): [['Qbc','Gt1']],
 ('Qbc','Riv'): [['Qbc','Riv']],
 ('Qbc','Mte'): [['Qbc','Mte']],
 ('Qbc','Gt2'): [['Qbc','Gt2']],
 ('Qbc','Gt3'): [['Qbc','Mte'],['Mte','Gt3']],
 ('Qbc','Caw'): [['Qbc','Mte'],['Mte','Caw']],
 ('Qbc','Mtw'): [['Qbc','Mte'],['Mte','Mtw']],
 ('Qbc','Otn'): [['Qbc','Mte'],['Mte','Mtw'],['Mtw','Otn']],
 ('Qbc','Ots'): [['Qbc','Mte'],['Mte','Mtw'],['Mtw','Ots']],

 ('Gt2','Yar'): [['Gt2','Qbc'],['Qbc','Frd'],['Frd','Tru'],['Tru','Yar']],
 ('Gt2','Syd'): [['Gt2','Qbc'],['Qbc','Frd'],['Frd','Tru'],['Tru','Syd']],
 ('Gt2','Hal'): [['Gt2','Qbc'],['Qbc','Frd'],['Frd','Tru'],['Tru','Hal']],
 ('Gt2','Tru'): [['Gt2','Qbc'],['Qbc','Frd'],['Frd','Tru']],
 ('Gt2','Cht'): [['Gt2','Qbc'],['Qbc','Frd'],['Frd','Cht']],
 ('Gt2','Mon'): [['Gt2','Qbc'],['Qbc','Frd'],['Frd','Mon']],
 ('Gt2','Stj'): [['Gt2','Qbc'],['Qbc','Frd'],['Frd','Stj']],
 ('Gt2','Frd'): [['Gt2','Qbc'],['Qbc','Frd']],
 ('Gt2','Gt1'): [['Gt2','Qbc'],['Qbc','Gt1']],
 ('Gt2','Riv'): [['Gt2','Qbc'],['Qbc','Riv']],
 ('Gt2','Qbc'): [['Gt2','Qbc']],
 ('Gt2','Mte'): [['Gt2','Mte']],
 ('Gt2','Gt3'): [['Gt2','Mte'],['Mte','Gt3']],
 ('Gt2','Caw'): [['Gt2','Mte'],['Mte','Caw']],
 ('Gt2','Mtw'): [['Gt2','Mte'],['Mte','Mtw']],
 ('Gt2','Otn'): [['Gt2','Mte'],['Mte','Mtw'],['Mtw','Otn']],
 ('Gt2','Ots'): [['Gt2','Mte'],['Mte','Mtw'],['Mtw','Ots']],

 ('Mte','Yar'): [['Mte','Qbc'],['Qbc','Frd'],['Frd','Tru'],['Tru','Yar']],
 ('Mte','Syd'): [['Mte','Qbc'],['Qbc','Frd'],['Frd','Tru'],['Tru','Syd']],
 ('Mte','Hal'): [['Mte','Qbc'],['Qbc','Frd'],['Frd','Tru'],['Tru','Hal']],
 ('Mte','Tru'): [['Mte','Qbc'],['Qbc','Frd'],['Frd','Tru']],
 ('Mte','Cht'): [['Mte','Qbc'],['Qbc','Frd'],['Frd','Cht']],
 ('Mte','Mon'): [['Mte','Qbc'],['Qbc','Frd'],['Frd','Mon']],
 ('Mte','Stj'): [['Mte','Qbc'],['Qbc','Frd'],['Frd','Stj']],
 ('Mte','Frd'): [['Mte','Qbc'],['Qbc','Frd']],
 ('Mte','Gt1'): [['Mte','Qbc'],['Qbc','Gt1']],
 ('Mte','Riv'): [['Mte','Qbc'],['Qbc','Riv']],
 ('Mte','Qbc'): [['Mte','Qbc']],
 ('Mte','Gt2'): [['Mte','Gt2']],
 ('Mte','Gt3'): [['Mte','Gt3']],
 ('Mte','Caw'): [['Mte','Caw']],
 ('Mte','Mtw'): [['Mte','Mtw']],
 ('Mte','Otn'): [['Mte','Mtw'],['Mtw','Otn']],
 ('Mte','Ots'): [['Mte','Mtw'],['Mtw','Ots']],

 ('Gt3','Yar'): [['Gt3','Mte'],['Mte','Qbc'],['Qbc','Frd'],['Frd','Tru'],['Tru','Yar']],
 ('Gt3','Syd'): [['Gt3','Mte'],['Mte','Qbc'],['Qbc','Frd'],['Frd','Tru'],['Tru','Syd']],
 ('Gt3','Hal'): [['Gt3','Mte'],['Mte','Qbc'],['Qbc','Frd'],['Frd','Tru'],['Tru','Hal']],
 ('Gt3','Tru'): [['Gt3','Mte'],['Mte','Qbc'],['Qbc','Frd'],['Frd','Tru']],
 ('Gt3','Cht'): [['Gt3','Mte'],['Mte','Qbc'],['Qbc','Frd'],['Frd','Cht']],
 ('Gt3','Mon'): [['Gt3','Mte'],['Mte','Qbc'],['Qbc','Frd'],['Frd','Mon']],

102

 ('Gt3','Stj'): [['Gt3','Mte'],['Mte','Qbc'],['Qbc','Frd'],['Frd','Stj']],
 ('Gt3','Frd'): [['Gt3','Mte'],['Mte','Qbc'],['Qbc','Frd']],
 ('Gt3','Gt1'): [['Gt3','Mte'],['Mte','Qbc'],['Qbc','Gt1']],
 ('Gt3','Riv'): [['Gt3','Mte'],['Mte','Qbc'],['Qbc','Riv']],
 ('Gt3','Qbc'): [['Gt3','Mte'],['Mte','Qbc']],
 ('Gt3','Gt2'): [['Gt3','Mte'],['Mte','Gt2']],
 ('Gt3','Mte'): [['Gt3','Mte']],
 ('Gt3','Caw'): [['Gt3','Caw']],
 ('Gt3','Mtw'): [['Gt3','Mtw']],
 ('Gt3','Otn'): [['Gt3','Mtw'],['Mtw','Otn']],
 ('Gt3','Ots'): [['Gt3','Mtw'],['Mtw','Ots']],

 ('Caw','Yar'): [['Caw','Mte'],['Mte','Qbc'],['Qbc','Frd'],['Frd','Tru'],['Tru','Yar']],
 ('Caw','Syd'): [['Caw','Mte'],['Mte','Qbc'],['Qbc','Frd'],['Frd','Tru'],['Tru','Syd']],
 ('Caw','Hal'): [['Caw','Mte'],['Mte','Qbc'],['Qbc','Frd'],['Frd','Tru'],['Tru','Hal']],
 ('Caw','Tru'): [['Caw','Mte'],['Mte','Qbc'],['Qbc','Frd'],['Frd','Tru']],
 ('Caw','Cht'): [['Caw','Mte'],['Mte','Qbc'],['Qbc','Frd'],['Frd','Cht']],
 ('Caw','Mon'): [['Caw','Mte'],['Mte','Qbc'],['Qbc','Frd'],['Frd','Mon']],
 ('Caw','Stj'): [['Caw','Mte'],['Mte','Qbc'],['Qbc','Frd'],['Frd','Stj']],
 ('Caw','Frd'): [['Caw','Mte'],['Mte','Qbc'],['Qbc','Frd']],
 ('Caw','Gt1'): [['Caw','Mte'],['Mte','Qbc'],['Qbc','Gt1']],
 ('Caw','Riv'): [['Caw','Mte'],['Mte','Qbc'],['Qbc','Riv']],
 ('Caw','Qbc'): [['Caw','Mte'],['Mte','Qbc']],
 ('Caw','Gt2'): [['Caw','Mte'],['Mte','Gt2']],
 ('Caw','Mte'): [['Caw','Mte']],
 ('Caw','Gt3'): [['Caw','Gt3']],
 ('Caw','Mtw'): [['Caw','Mtw']],
 ('Caw','Otn'): [['Caw','Mtw'],['Mtw','Otn']],
 ('Caw','Ots'): [['Caw','Mtw'],['Mtw','Ots']],

 ('Mtw','Yar'): [['Mtw','Mte'],['Mte','Qbc'],['Qbc','Frd'],['Frd','Tru'],['Tru','Yar']],
 ('Mtw','Syd'): [['Mtw','Mte'],['Mte','Qbc'],['Qbc','Frd'],['Frd','Tru'],['Tru','Syd']],
 ('Mtw','Hal'): [['Mtw','Mte'],['Mte','Qbc'],['Qbc','Frd'],['Frd','Tru'],['Tru','Hal']],
 ('Mtw','Tru'): [['Mtw','Mte'],['Mte','Qbc'],['Qbc','Frd'],['Frd','Tru']],
 ('Mtw','Cht'): [['Mtw','Mte'],['Mte','Qbc'],['Qbc','Frd'],['Frd','Cht']],
 ('Mtw','Mon'): [['Mtw','Mte'],['Mte','Qbc'],['Qbc','Frd'],['Frd','Mon']],
 ('Mtw','Stj'): [['Mtw','Mte'],['Mte','Qbc'],['Qbc','Frd'],['Frd','Stj']],
 ('Mtw','Frd'): [['Mtw','Mte'],['Mte','Qbc'],['Qbc','Frd']],
 ('Mtw','Gt1'): [['Mtw','Mte'],['Mte','Qbc'],['Qbc','Gt1']],
 ('Mtw','Riv'): [['Mtw','Mte'],['Mte','Qbc'],['Qbc','Riv']],
 ('Mtw','Qbc'): [['Mtw','Mte'],['Mte','Qbc']],
 ('Mtw','Gt2'): [['Mtw','Mte'],['Mte','Gt2']],
 ('Mtw','Mte'): [['Mtw','Mte']],
 ('Mtw','Gt3'): [['Mtw','Gt3']],
 ('Mtw','Caw'): [['Mtw','Caw']],
 ('Mtw','Otn'): [['Mtw','Otn']],
 ('Mtw','Ots'): [['Mtw','Ots']],

 ('Otn','Yar'): [['Otn','Mtw'],['Mtw','Mte'],['Mte','Qbc'],['Qbc','Frd'],['Frd','Tru'],['Tru','Yar']],
 ('Otn','Syd'): [['Otn','Mtw'],['Mtw','Mte'],['Mte','Qbc'],['Qbc','Frd'],['Frd','Tru'],['Tru','Syd']],
 ('Otn','Hal'): [['Otn','Mtw'],['Mtw','Mte'],['Mte','Qbc'],['Qbc','Frd'],['Frd','Tru'],['Tru','Hal']],
 ('Otn','Tru'): [['Otn','Mtw'],['Mtw','Mte'],['Mte','Qbc'],['Qbc','Frd'],['Frd','Tru']],
 ('Otn','Cht'): [['Otn','Mtw'],['Mtw','Mte'],['Mte','Qbc'],['Qbc','Frd'],['Frd','Cht']],
 ('Otn','Mon'): [['Otn','Mtw'],['Mtw','Mte'],['Mte','Qbc'],['Qbc','Frd'],['Frd','Mon']],
 ('Otn','Stj'): [['Otn','Mtw'],['Mtw','Mte'],['Mte','Qbc'],['Qbc','Frd'],['Frd','Stj']],
 ('Otn','Frd'): [['Otn','Mtw'],['Mtw','Mte'],['Mte','Qbc'],['Qbc','Frd']],
 ('Otn','Gt1'): [['Otn','Mtw'],['Mtw','Mte'],['Mte','Qbc'],['Qbc','Gt1']],
 ('Otn','Riv'): [['Otn','Mtw'],['Mtw','Mte'],['Mte','Qbc'],['Qbc','Riv']],
 ('Otn','Qbc'): [['Otn','Mtw'],['Mtw','Mte'],['Mte','Qbc']],
 ('Otn','Gt2'): [['Otn','Mtw'],['Mtw','Mte'],['Mte','Gt2']],
 ('Otn','Mte'): [['Otn','Mtw'],['Mtw','Mte']],

103

 ('Otn','Gt3'): [['Otn','Mtw'],['Mtw','Gt3']],
 ('Otn','Caw'): [['Otn','Mtw'],['Mtw','Caw']],
 ('Otn','Mtw'): [['Otn','Mtw']],
 ('Otn','Ots'): [['Otn','Ots']],

 ('Ots','Yar'): [['Ots','Mtw'],['Mtw','Mte'],['Mte','Qbc'],['Qbc','Frd'],['Frd','Tru'],['Tru','Yar']],
 ('Ots','Syd'): [['Ots','Mtw'],['Mtw','Mte'],['Mte','Qbc'],['Qbc','Frd'],['Frd','Tru'],['Tru','Syd']],
 ('Ots','Hal'): [['Ots','Mtw'],['Mtw','Mte'],['Mte','Qbc'],['Qbc','Frd'],['Frd','Tru'],['Tru','Hal']],
 ('Ots','Tru'): [['Ots','Mtw'],['Mtw','Mte'],['Mte','Qbc'],['Qbc','Frd'],['Frd','Tru']],
 ('Ots','Cht'): [['Ots','Mtw'],['Mtw','Mte'],['Mte','Qbc'],['Qbc','Frd'],['Frd','Cht']],
 ('Ots','Mon'): [['Ots','Mtw'],['Mtw','Mte'],['Mte','Qbc'],['Qbc','Frd'],['Frd','Mon']],
 ('Ots','Stj'): [['Ots','Mtw'],['Mtw','Mte'],['Mte','Qbc'],['Qbc','Frd'],['Frd','Stj']],
 ('Ots','Frd'): [['Ots','Mtw'],['Mtw','Mte'],['Mte','Qbc'],['Qbc','Frd']],
 ('Ots','Gt1'): [['Ots','Mtw'],['Mtw','Mte'],['Mte','Qbc'],['Qbc','Gt1']],
 ('Ots','Riv'): [['Ots','Mtw'],['Mtw','Mte'],['Mte','Qbc'],['Qbc','Riv']],
 ('Ots','Qbc'): [['Ots','Mtw'],['Mtw','Mte'],['Mte','Qbc']],
 ('Ots','Gt2'): [['Ots','Mtw'],['Mtw','Mte'],['Mte','Gt2']],
 ('Ots','Mte'): [['Ots','Mtw'],['Mtw','Mte']],
 ('Ots','Gt3'): [['Ots','Mtw'],['Mtw','Gt3']],
 ('Ots','Caw'): [['Ots','Mtw'],['Mtw','Caw']],
 ('Ots','Mtw'): [['Ots','Mtw']],
 ('Ots','Otn'): [['Ots','Otn']]
 }

104

Appendix C: Hybrid Arcs Dictionary

route_hy = {
 ('Yar','Hal'): [['Yar','Hal']],
 ('Yar','Tru'): [['Yar','Tru']],
 ('Yar','Syd'): [['Yar','Syd']],
 ('Yar','Mon'): [['Yar','Tru'],['Tru','Mon']],
 ('Yar','Cht'): [['Yar','Tru'],['Tru','Cht']],
 ('Yar','Stj'): [['Yar','Tru'],['Tru','Stj']],
 ('Yar','Frd'): [['Yar','Tru'],['Tru','Frd']],
 ('Yar','Gt1'): [['Yar','Tru'],['Tru','Frd'],['Frd','Gt1']],
 ('Yar','Riv'): [['Yar','Tru'],['Tru','Frd'],['Frd','Riv']],
 ('Yar','Qbc'): [['Yar','Tru'],['Tru','Qbc']],
 ('Yar','Gt2'): [['Yar','Tru'],['Tru','Qbc'],['Qbc','Gt2']],
 ('Yar','Mte'): [['Yar','Tru'],['Tru','Mte']],
 ('Yar','Gt3'): [['Yar','Tru'],['Tru','Mte'],['Mte','Gt3']],
 ('Yar','Caw'): [['Yar','Tru'],['Tru','Mte'],['Mte','Caw']],
 ('Yar','Mtw'): [['Yar','Tru'],['Tru','Mtw']],
 ('Yar','Otn'): [['Yar','Tru'],['Tru','Mtw'],['Mtw','Otn']],
 ('Yar','Ots'): [['Yar','Tru'],['Tru','Mtw'],['Mtw','Ots']],

 ('Hal','Yar'): [['Hal','Yar']],
 ('Hal','Tru'): [['Hal','Tru']],
 ('Hal','Syd'): [['Hal','Syd']],
 ('Hal','Mon'): [['Hal','Tru'],['Tru','Mon']],
 ('Hal','Cht'): [['Hal','Tru'],['Tru','Cht']],
 ('Hal','Stj'): [['Hal','Tru'],['Tru','Stj']],
 ('Hal','Frd'): [['Hal','Tru'],['Tru','Frd']],
 ('Hal','Gt1'): [['Hal','Tru'],['Tru','Frd'],['Frd','Gt1']],
 ('Hal','Riv'): [['Hal','Tru'],['Tru','Frd'],['Frd','Riv']],
 ('Hal','Qbc'): [['Hal','Tru'],['Tru','Qbc']],
 ('Hal','Gt2'): [['Hal','Tru'],['Tru','Qbc'],['Qbc','Gt2']],
 ('Hal','Mte'): [['Hal','Tru'],['Tru','Mte']],
 ('Hal','Gt3'): [['Hal','Tru'],['Tru','Mte'],['Mte','Gt3']],
 ('Hal','Caw'): [['Hal','Tru'],['Tru','Mte'],['Mte','Caw']],
 ('Hal','Mtw'): [['Hal','Tru'],['Tru','Mtw']],
 ('Hal','Otn'): [['Hal','Tru'],['Tru','Mtw'],['Mtw','Otn']],
 ('Hal','Ots'): [['Hal','Tru'],['Tru','Mtw'],['Mtw','Ots']],

 ('Syd','Hal'): [['Syd','Hal']],
 ('Syd','Tru'): [['Syd','Tru']],
 ('Syd','Yar'): [['Syd','Yar']],
 ('Syd','Mon'): [['Syd','Tru'],['Tru','Mon']],
 ('Syd','Cht'): [['Syd','Tru'],['Tru','Cht']],
 ('Syd','Stj'): [['Syd','Tru'],['Tru','Stj']],
 ('Syd','Frd'): [['Syd','Tru'],['Tru','Frd']],
 ('Syd','Gt1'): [['Syd','Tru'],['Tru','Frd'],['Frd','Gt1']],
 ('Syd','Riv'): [['Syd','Tru'],['Tru','Frd'],['Frd','Riv']],
 ('Syd','Qbc'): [['Syd','Tru'],['Tru','Frd'],['Frd','Qbc']],
 ('Syd','Gt2'): [['Syd','Tru'],['Tru','Qbc'],['Qbc','Gt2']],
 ('Syd','Mte'): [['Syd','Tru'],['Tru','Mte']],
 ('Syd','Gt3'): [['Syd','Tru'],['Tru','Mte'],['Mte','Gt3']],
 ('Syd','Caw'): [['Syd','Tru'],['Tru','Mte'],['Mte','Caw']],
 ('Syd','Mtw'): [['Syd','Tru'],['Tru','Mtw']],
 ('Syd','Otn'): [['Syd','Tru'],['Tru','Mtw'],['Mtw','Otn']],
 ('Syd','Ots'): [['Syd','Tru'],['Tru','Mtw'],['Mtw','Ots']],

 ('Tru','Hal'): [['Tru','Hal']],

105

 ('Tru','Tru'): [['Tru','Frd']],
 ('Tru','Syd'): [['Tru','Syd']],
 ('Tru','Mon'): [['Tru','Mon']],
 ('Tru','Cht'): [['Tru','Cht']],
 ('Tru','Stj'): [['Tru','Stj']],
 ('Tru','Frd'): [['Tru','Frd']],
 ('Tru','Gt1'): [['Tru','Frd'],['Frd','Gt1']],
 ('Tru','Riv'): [['Tru','Frd'],['Frd','Riv']],
 ('Tru','Qbc'): [['Tru','Qbc']],
 ('Tru','Gt2'): [['Tru','Qbc'],['Qbc','Gt2']],
 ('Tru','Mte'): [['Tru','Mte']],
 ('Tru','Gt3'): [['Tru','Mte'],['Mte','Gt3']],
 ('Tru','Caw'): [['Tru','Mte'],['Mte','Caw']],
 ('Tru','Mtw'): [['Tru','Mtw']],
 ('Tru','Otn'): [['Tru','Mtw'],['Mtw','Otn']],
 ('Tru','Ots'): [['Tru','Mtw'],['Mtw','Ots']],

 ('Mon','Yar'): [['Mon','Tru'],['Tru','Yar']],
 ('Mon','Syd'): [['Mon','Tru'],['Tru','Syd']],
 ('Mon','Hal'): [['Mon','Tru'],['Tru','Hal']],
 ('Mon','Tru'): [['Mon','Tru']],
 ('Mon','Cht'): [['Mon','Cht']],
 ('Mon','Stj'): [['Mon','Stj']],
 ('Mon','Frd'): [['Mon','Frd']],
 ('Mon','Gt1'): [['Mon','Frd'],['Frd','Gt1']],
 ('Mon','Riv'): [['Mon','Frd'],['Frd','Riv']],
 ('Mon','Qbc'): [['Mon','Frd'],['Frd','Qbc']],
 ('Mon','Gt2'): [['Mon','Frd'],['Frd','Qbc'],['Qbc','Gt2']],
 ('Mon','Mte'): [['Mon','Frd'],['Frd','Mte']],
 ('Mon','Gt3'): [['Mon','Frd'],['Frd','Mte'],['Mte','Gt3']],
 ('Mon','Caw'): [['Mon','Frd'],['Frd','Mte'],['Mte','Caw']],
 ('Mon','Mtw'): [['Mon','Frd'],['Frd','Mtw']],
 ('Mon','Otn'): [['Mon','Frd'],['Frd','Mtw'],['Mtw','Otn']],
 ('Mon','Ots'): [['Mon','Frd'],['Frd','Mtw'],['Mtw','Ots']],

 ('Cht','Yar'): [['Cht','Tru'],['Tru','Yar']],
 ('Cht','Syd'): [['Cht','Tru'],['Tru','Syd']],
 ('Cht','Hal'): [['Cht','Tru'],['Tru','Hal']],
 ('Cht','Tru'): [['Cht','Tru']],
 ('Cht','Mon'): [['Cht','Mon']],
 ('Cht','Stj'): [['Cht','Stj']],
 ('Cht','Frd'): [['Cht','Frd']],
 ('Cht','Gt1'): [['Cht','Frd'],['Frd','Gt1']],
 ('Cht','Riv'): [['Cht','Frd'],['Frd','Riv']],
 ('Cht','Qbc'): [['Cht','Frd'],['Frd','Qbc']],
 ('Cht','Gt2'): [['Cht','Frd'],['Frd','Qbc'],['Qbc','Gt2']],
 ('Cht','Mte'): [['Cht','Frd'],['Frd','Mte']],
 ('Cht','Gt3'): [['Cht','Frd'],['Frd','Mte'],['Mte','Gt3']],
 ('Cht','Caw'): [['Cht','Frd'],['Frd','Mte'],['Mte','Caw']],
 ('Cht','Mtw'): [['Cht','Frd'],['Frd','Mtw']],
 ('Cht','Otn'): [['Cht','Frd'],['Frd','Mtw'],['Mtw','Otn']],
 ('Cht','Ots'): [['Cht','Frd'],['Frd','Mtw'],['Mtw','Ots']],

 ('Stj','Yar'): [['Stj','Tru'],['Tru','Yar']],
 ('Stj','Syd'): [['Stj','Tru'],['Tru','Syd']],
 ('Stj','Hal'): [['Stj','Tru'],['Tru','Hal']],
 ('Stj','Tru'): [['Stj','Tru']],
 ('Stj','Cht'): [['Stj','Cht']],
 ('Stj','Mon'): [['Stj','Mon']],
 ('Stj','Frd'): [['Stj','Frd']],
 ('Stj','Gt1'): [['Stj','Frd'],['Frd','Gt1']],

106

 ('Stj','Riv'): [['Stj','Frd'],['Frd','Riv']],
 ('Stj','Qbc'): [['Stj','Frd'],['Frd','Qbc']],
 ('Stj','Gt2'): [['Stj','Frd'],['Frd','Qbc'],['Qbc','Gt2']],
 ('Stj','Mte'): [['Stj','Frd'],['Frd','Mte']],
 ('Stj','Gt3'): [['Stj','Frd'],['Frd','Mte'],['Mte','Gt3']],
 ('Stj','Caw'): [['Stj','Frd'],['Frd','Mte'],['Mte','Caw']],
 ('Stj','Mtw'): [['Stj','Frd'],['Frd','Mtw']],
 ('Stj','Otn'): [['Stj','Frd'],['Frd','Mtw'],['Mtw','Otn']],
 ('Stj','Ots'): [['Stj','Frd'],['Frd','Mtw'],['Mtw','Ots']],

 ('Frd','Yar'): [['Frd','Tru'],['Tru','Yar']],
 ('Frd','Syd'): [['Frd','Tru'],['Tru','Syd']],
 ('Frd','Hal'): [['Frd','Tru'],['Tru','Hal']],
 ('Frd','Tru'): [['Frd','Tru']],
 ('Frd','Cht'): [['Frd','Cht']],
 ('Frd','Mon'): [['Frd','Mon']],
 ('Frd','Stj'): [['Frd','Stj']],
 ('Frd','Gt1'): [['Frd','Gt1']],
 ('Frd','Riv'): [['Frd','Riv']],
 ('Frd','Qbc'): [['Frd','Qbc']],
 ('Frd','Gt2'): [['Frd','Qbc'],['Qbc','Gt2']],
 ('Frd','Mte'): [['Frd','Mte']],
 ('Frd','Gt3'): [['Frd','Mte'],['Mte','Gt3']],
 ('Frd','Caw'): [['Frd','Mte'],['Mte','Caw']],
 ('Frd','Mtw'): [['Frd','Mtw']],
 ('Frd','Otn'): [['Frd','Mtw'],['Mtw','Otn']],
 ('Frd','Ots'): [['Frd','Mtw'],['Mtw','Ots']],

 ('Gt1','Yar'): [['Gt1','Frd'],['Frd','Tru'],['Tru','Yar']],
 ('Gt1','Syd'): [['Gt1','Frd'],['Frd','Tru'],['Tru','Syd']],
 ('Gt1','Hal'): [['Gt1','Frd'],['Frd','Tru'],['Tru','Hal']],
 ('Gt1','Tru'): [['Gt1','Frd'],['Frd','Tru']],
 ('Gt1','Cht'): [['Gt1','Frd'],['Frd','Cht']],
 ('Gt1','Mon'): [['Gt1','Frd'],['Frd','Mon']],
 ('Gt1','Stj'): [['Gt1','Frd'],['Frd','Stj']],
 ('Gt1','Frd'): [['Gt1','Frd']],
 ('Gt1','Riv'): [['Gt1','Riv']],
 ('Gt1','Qbc'): [['Gt1','Qbc']],
 ('Gt1','Mte'): [['Gt1','Qbc'],['Qbc','Mte']],
 ('Gt1','Gt2'): [['Gt1','Qbc'],['Qbc','Gt2']],
 ('Gt1','Gt3'): [['Gt1','Qbc'],['Qbc','Mte'],['Mte','Gt3']],
 ('Gt1','Caw'): [['Gt1','Qbc'],['Qbc','Mte'],['Mte','Caw']],
 ('Gt1','Mtw'): [['Gt1','Qbc'],['Qbc','Mtw']],
 ('Gt1','Otn'): [['Gt1','Qbc'],['Qbc','Mtw'],['Mtw','Otn']],
 ('Gt1','Ots'): [['Gt1','Qbc'],['Qbc','Mtw'],['Mtw','Ots']],

 ('Riv','Yar'): [['Riv','Frd'],['Frd','Tru'],['Tru','Yar']],
 ('Riv','Syd'): [['Riv','Frd'],['Frd','Tru'],['Tru','Syd']],
 ('Riv','Hal'): [['Riv','Frd'],['Frd','Tru'],['Tru','Hal']],
 ('Riv','Tru'): [['Riv','Frd'],['Frd','Tru']],
 ('Riv','Cht'): [['Riv','Frd'],['Frd','Cht']],
 ('Riv','Mon'): [['Riv','Frd'],['Frd','Mon']],
 ('Riv','Stj'): [['Riv','Frd'],['Frd','Stj']],
 ('Riv','Frd'): [['Riv','Frd']],
 ('Riv','Gt1'): [['Riv','Gt1']],
 ('Riv','Qbc'): [['Riv','Qbc']],
 ('Riv','Mte'): [['Riv','Qbc'],['Qbc','Mte']],
 ('Riv','Gt2'): [['Riv','Qbc'],['Qbc','Gt2']],
 ('Riv','Gt3'): [['Riv','Qbc'],['Qbc','Mte'],['Mte','Gt3']],
 ('Riv','Caw'): [['Riv','Qbc'],['Qbc','Mte'],['Mte','Caw']],
 ('Riv','Mtw'): [['Riv','Qbc'],['Qbc','Mtw']],

107

 ('Riv','Otn'): [['Riv','Qbc'],['Qbc','Mtw'],['Mtw','Otn']],
 ('Riv','Ots'): [['Riv','Qbc'],['Qbc','Mtw'],['Mtw','Ots']],

 ('Qbc','Yar'): [['Qbc','Tru'],['Tru','Yar']],
 ('Qbc','Syd'): [['Qbc','Tru'],['Tru','Syd']],
 ('Qbc','Hal'): [['Qbc','Tru'],['Tru','Hal']],
 ('Qbc','Tru'): [['Qbc','Tru']],
 ('Qbc','Cht'): [['Qbc','Frd'],['Frd','Cht']],
 ('Qbc','Mon'): [['Qbc','Frd'],['Frd','Mon']],
 ('Qbc','Stj'): [['Qbc','Frd'],['Frd','Stj']],
 ('Qbc','Frd'): [['Qbc','Frd']],
 ('Qbc','Gt1'): [['Qbc','Gt1']],
 ('Qbc','Riv'): [['Qbc','Riv']],
 ('Qbc','Mte'): [['Qbc','Mte']],
 ('Qbc','Gt2'): [['Qbc','Gt2']],
 ('Qbc','Gt3'): [['Qbc','Mte'],['Mte','Gt3']],
 ('Qbc','Caw'): [['Qbc','Mte'],['Mte','Caw']],
 ('Qbc','Mtw'): [['Qbc','Mtw']],
 ('Qbc','Otn'): [['Qbc','Mtw'],['Mtw','Otn']],
 ('Qbc','Ots'): [['Qbc','Mtw'],['Mtw','Ots']],

 ('Gt2','Yar'): [['Gt2','Qbc'],['Qbc','Tru'],['Tru','Yar']],
 ('Gt2','Syd'): [['Gt2','Qbc'],['Qbc','Tru'],['Tru','Syd']],
 ('Gt2','Hal'): [['Gt2','Qbc'],['Qbc','Tru'],['Tru','Hal']],
 ('Gt2','Tru'): [['Gt2','Qbc'],['Qbc','Tru']],
 ('Gt2','Cht'): [['Gt2','Qbc'],['Qbc','Frd'],['Frd','Cht']],
 ('Gt2','Mon'): [['Gt2','Qbc'],['Qbc','Frd'],['Frd','Mon']],
 ('Gt2','Stj'): [['Gt2','Qbc'],['Qbc','Frd'],['Frd','Stj']],
 ('Gt2','Frd'): [['Gt2','Qbc'],['Qbc','Frd']],
 ('Gt2','Gt1'): [['Gt2','Qbc'],['Qbc','Gt1']],
 ('Gt2','Riv'): [['Gt2','Qbc'],['Qbc','Riv']],
 ('Gt2','Qbc'): [['Gt2','Qbc']],
 ('Gt2','Mte'): [['Gt2','Mte']],
 ('Gt2','Gt3'): [['Gt2','Mte'],['Mte','Gt3']],
 ('Gt2','Caw'): [['Gt2','Mte'],['Mte','Caw']],
 ('Gt2','Mtw'): [['Gt2','Mte'],['Mte','Mtw']],
 ('Gt2','Otn'): [['Gt2','Mte'],['Mte','Mtw'],['Mtw','Otn']],
 ('Gt2','Ots'): [['Gt2','Mte'],['Mte','Mtw'],['Mtw','Ots']],

 ('Mte','Yar'): [['Mte','Tru'],['Tru','Yar']],
 ('Mte','Syd'): [['Mte','Tru'],['Tru','Syd']],
 ('Mte','Hal'): [['Mte','Tru'],['Tru','Hal']],
 ('Mte','Tru'): [['Mte','Tru']],
 ('Mte','Cht'): [['Mte','Frd'],['Frd','Cht']],
 ('Mte','Mon'): [['Mte','Frd'],['Frd','Mon']],
 ('Mte','Stj'): [['Mte','Frd'],['Frd','Stj']],
 ('Mte','Frd'): [['Mte','Frd']],
 ('Mte','Gt1'): [['Mte','Qbc'],['Qbc','Gt1']],
 ('Mte','Riv'): [['Mte','Qbc'],['Qbc','Riv']],
 ('Mte','Qbc'): [['Mte','Qbc']],
 ('Mte','Gt2'): [['Mte','Gt2']],
 ('Mte','Gt3'): [['Mte','Gt3']],
 ('Mte','Caw'): [['Mte','Caw']],
 ('Mte','Mtw'): [['Mte','Mtw']],
 ('Mte','Otn'): [['Mte','Mtw'],['Mtw','Otn']],
 ('Mte','Ots'): [['Mte','Mtw'],['Mtw','Ots']],

 ('Gt3','Yar'): [['Gt3','Mte'],['Mte','Tru'],['Tru','Yar']],
 ('Gt3','Syd'): [['Gt3','Mte'],['Mte','Tru'],['Tru','Syd']],
 ('Gt3','Hal'): [['Gt3','Mte'],['Mte','Tru'],['Tru','Hal']],

108

 ('Gt3','Tru'): [['Gt3','Mte'],['Mte','Tru']],
 ('Gt3','Cht'): [['Gt3','Mte'],['Mte','Frd'],['Frd','Cht']],
 ('Gt3','Mon'): [['Gt3','Mte'],['Mte','Frd'],['Frd','Mon']],
 ('Gt3','Stj'): [['Gt3','Mte'],['Mte','Frd'],['Frd','Stj']],
 ('Gt3','Frd'): [['Gt3','Mte'],['Mte','Frd']],
 ('Gt3','Gt1'): [['Gt3','Mte'],['Mte','Qbc'],['Qbc','Gt1']],
 ('Gt3','Riv'): [['Gt3','Mte'],['Mte','Qbc'],['Qbc','Riv']],
 ('Gt3','Qbc'): [['Gt3','Mte'],['Mte','Qbc']],
 ('Gt3','Gt2'): [['Gt3','Mte'],['Mte','Gt2']],
 ('Gt3','Mte'): [['Gt3','Mte']],
 ('Gt3','Caw'): [['Gt3','Caw']],
 ('Gt3','Mtw'): [['Gt3','Mtw']],
 ('Gt3','Otn'): [['Gt3','Mtw'],['Mtw','Otn']],
 ('Gt3','Ots'): [['Gt3','Mtw'],['Mtw','Ots']],

 ('Caw','Yar'): [['Caw','Mte'],['Mte','Tru'],['Tru','Yar']],
 ('Caw','Syd'): [['Caw','Mte'],['Mte','Tru'],['Tru','Syd']],
 ('Caw','Hal'): [['Caw','Mte'],['Mte','Tru'],['Tru','Hal']],
 ('Caw','Tru'): [['Caw','Mte'],['Mte','Tru']],
 ('Caw','Cht'): [['Caw','Mte'],['Mte','Frd'],['Frd','Cht']],
 ('Caw','Mon'): [['Caw','Mte'],['Mte','Frd'],['Frd','Mon']],
 ('Caw','Stj'): [['Caw','Mte'],['Mte','Frd'],['Frd','Stj']],
 ('Caw','Frd'): [['Caw','Mte'],['Mte','Frd']],
 ('Caw','Gt1'): [['Caw','Mte'],['Mte','Qbc'],['Qbc','Gt1']],
 ('Caw','Riv'): [['Caw','Mte'],['Mte','Qbc'],['Qbc','Riv']],
 ('Caw','Qbc'): [['Caw','Mte'],['Mte','Qbc']],
 ('Caw','Gt2'): [['Caw','Mte'],['Mte','Gt2']],
 ('Caw','Mte'): [['Caw','Mte']],
 ('Caw','Gt3'): [['Caw','Gt3']],
 ('Caw','Mtw'): [['Caw','Mtw']],
 ('Caw','Otn'): [['Caw','Mtw'],['Mtw','Otn']],
 ('Caw','Ots'): [['Caw','Mtw'],['Mtw','Ots']],

 ('Mtw','Yar'): [['Mtw','Tru'],['Tru','Yar']],
 ('Mtw','Syd'): [['Mtw','Tru'],['Tru','Syd']],
 ('Mtw','Hal'): [['Mtw','Tru'],['Tru','Hal']],
 ('Mtw','Tru'): [['Mtw','Tru']],
 ('Mtw','Cht'): [['Mtw','Frd'],['Frd','Cht']],
 ('Mtw','Mon'): [['Mtw','Frd'],['Frd','Mon']],
 ('Mtw','Stj'): [['Mtw','Frd'],['Frd','Stj']],
 ('Mtw','Frd'): [['Mtw','Frd']],
 ('Mtw','Gt1'): [['Mtw','Qbc'],['Qbc','Gt1']],
 ('Mtw','Riv'): [['Mtw','Qbc'],['Qbc','Riv']],
 ('Mtw','Qbc'): [['Mtw','Qbc']],
 ('Mtw','Gt2'): [['Mtw','Mte'],['Mte','Gt2']],
 ('Mtw','Mte'): [['Mtw','Mte']],
 ('Mtw','Gt3'): [['Mtw','Gt3']],
 ('Mtw','Caw'): [['Mtw','Caw']],
 ('Mtw','Otn'): [['Mtw','Otn']],
 ('Mtw','Ots'): [['Mtw','Ots']],

 ('Otn','Yar'): [['Otn','Mtw'],['Mtw','Tru'],['Tru','Yar']],
 ('Otn','Syd'): [['Otn','Mtw'],['Mtw','Tru'],['Tru','Syd']],
 ('Otn','Hal'): [['Otn','Mtw'],['Mtw','Tru'],['Tru','Hal']],
 ('Otn','Tru'): [['Otn','Mtw'],['Mtw','Tru']],
 ('Otn','Cht'): [['Otn','Mtw'],['Mtw','Frd'],['Frd','Cht']],
 ('Otn','Mon'): [['Otn','Mtw'],['Mtw','Frd'],['Frd','Mon']],
 ('Otn','Stj'): [['Otn','Mtw'],['Mtw','Frd'],['Frd','Stj']],
 ('Otn','Frd'): [['Otn','Mtw'],['Mtw','Frd']],
 ('Otn','Gt1'): [['Otn','Mtw'],['Mtw','Qbc'],['Qbc','Gt1']],
 ('Otn','Riv'): [['Otn','Mtw'],['Mtw','Qbc'],['Qbc','Riv']],

109

 ('Otn','Qbc'): [['Otn','Mtw'],['Mtw','Qbc']],
 ('Otn','Gt2'): [['Otn','Mtw'],['Mtw','Mte'],['Mte','Gt2']],
 ('Otn','Mte'): [['Otn','Mtw'],['Mtw','Mte']],
 ('Otn','Gt3'): [['Otn','Mtw'],['Mtw','Gt3']],
 ('Otn','Caw'): [['Otn','Mtw'],['Mtw','Caw']],
 ('Otn','Mtw'): [['Otn','Mtw']],
 ('Otn','Ots'): [['Otn','Ots']],

 ('Ots','Yar'): [['Ots','Mtw'],['Mtw','Tru'],['Tru','Yar']],
 ('Ots','Syd'): [['Ots','Mtw'],['Mtw','Tru'],['Tru','Syd']],
 ('Ots','Hal'): [['Ots','Mtw'],['Mtw','Tru'],['Tru','Hal']],
 ('Ots','Tru'): [['Ots','Mtw'],['Mtw','Tru']],
 ('Ots','Cht'): [['Ots','Mtw'],['Mtw','Frd'],['Frd','Cht']],
 ('Ots','Mon'): [['Ots','Mtw'],['Mtw','Frd'],['Frd','Mon']],
 ('Ots','Stj'): [['Ots','Mtw'],['Mtw','Frd'],['Frd','Stj']],
 ('Ots','Frd'): [['Ots','Mtw'],['Mtw','Frd']],
 ('Ots','Gt1'): [['Ots','Mtw'],['Mtw','Qbc'],['Qbc','Gt1']],
 ('Ots','Riv'): [['Ots','Mtw'],['Mtw','Qbc'],['Qbc','Riv']],
 ('Ots','Qbc'): [['Ots','Mtw'],['Mtw','Qbc']],
 ('Ots','Gt2'): [['Ots','Mtw'],['Mtw','Mte'],['Mte','Gt2']],
 ('Ots','Mte'): [['Ots','Mtw'],['Mtw','Mte']],
 ('Ots','Gt3'): [['Ots','Mtw'],['Mtw','Gt3']],
 ('Ots','Caw'): [['Ots','Mtw'],['Mtw','Caw']],
 ('Ots','Mtw'): [['Ots','Mtw']],
 ('Ots','Otn'): [['Ots','Otn']],
 }

110

Appendix D: Parameters File

avg_speed = 80

debug = 'No'

--
Load sizes based in the simulation ((Fraction of 40 foot container)

load_size = [0.125,0.125,0.125,0.125,0.125,0.125,0.125,0.125,0.25,0.25,0.25,0.25,0.5,0.5,1]
#Regular loads distribution

#load_size = [0,0.125,0.125,0.125,0.125,0.125,0.125,0.125,0.125,0.25,0.25,0.25,0.25,0.5,0.5,0.5]
#for small loads

#load_size = [1,1,1,1,1,1,1,1,0.5,0.5,0.5,0.5,0.25,0.25,0.125,0.125]
#for large loads

--

if debug == 'No':
 # Nodes in the entire network
 Node = ['Hal','Tru','Syd','Yar','Cht','Mon','Frd','Stj','Gt1','Riv','Qbc','Gt2','Mte','Gt3','Caw','Mtw','Otn','Ots']

if debug == 'Yes':
 # Nodes in the network
 Node = ['Hal','Tru','Syd','Yar','Cht','Mon','Frd','Stj','Gt1','Riv','Qbc']

--
Number of requests from each node to each destination

Req = 10

111

Appendix E: Data Generator File

from CO_TA import *
from HY_TA import *
from PI_TA import *
from Param import *
from random import *

import csv

--
The follwoing key and values are used to call the route_pi dictionary

General form of the python dictionary dict = { 'key' : value }
Form of dictionary used in the program route_xx = { ('key m',key n'): [[Node m, Node q],...,[Node r, Node n] }

key_pi = route_pi.keys()
key_hy = route_hy.keys()
key_co = route_co.keys()
Puts all the dictionary keys in the key list. There is no need to iterate over the dictionary and collect all the keys

value_pi = route_pi.values()
value_hy = route_hy.values()
value_co = route_co.values()
Puts all the dictionary values int the value list.There is no need iterate over the dictionary and collect all the
values

--
Thses list are created to count the number of loads between each source and destination in the pi, hy , and co
network
First list is temp list used at each iteration

temp_count_pi = []
count_pi = []

temp_count_hy = []
count_hy = []

temp_count_co = []
count_co = []

--
Following two for loops create the empty counter list
General form of the counter list
count_xx[i][0] --> Source
count_xx[i][1] --> Destination
count_xx[i][2] --> Counter

for p in range(len(Node)):
 for q in range(len(Node)):
 temp_count_pi = []
 temp_count_pi.append(Node[p])
 temp_count_pi.append(Node[q])
 temp_count_pi.append(0)
 count_pi.append(temp_count_pi)

for p in range(len(Node)):
 for q in range(len(Node)):
 temp_count_hy = []
 temp_count_hy.append(Node[p])
 temp_count_hy.append(Node[q])

112

 temp_count_hy.append(0)
 count_hy.append(temp_count_hy)

for p in range(len(Node)):
 for q in range(len(Node)):
 temp_count_co = []
 temp_count_co.append(Node[p])
 temp_count_co.append(Node[q])
 temp_count_co.append(0)
 count_co.append(temp_count_co)

--
First list is temp list used at each iteration. 2nd list is complete list of all the loads.

temp_pi = []
list_pi = []

temp_hy = []
list_hy = []

temp_co = []
list_co = []

--

new_counter = 1
for r in range(Req):
#The entire process will repeat accroding to the number of requets

 for k in range(len(Node)):

 # General for loops to iterate over the set of nodes in the network
 for j in range(len(Node)):

 new_counter +=1

 # size of loads randomly chosen from the load size list in the topo.py
 size = choice(load_size)

 for i in range(len(route_pi)):

 new_counter = 1

 # --
 # Generation of list of loads for PI senario
 if key_pi[i][0] == Node[k] and key_pi[i][1]== Node[j]:

 mehran = 0
 for l in range(len(value_pi[i])):

 # --
 # Generate counter values
 # when there is a load from spesific source to specific destination,
 # the value of the counter for that source and destination is incremented

 for pi in range(len(count_pi)):
 if count_pi[pi][0] == value_pi[i][l][0] and count_pi[pi][1] == value_pi[i][l][1]:
 count_pi[pi][2] = count_pi[pi][2]+1

113

 # --
 # Insertion of values in to the PI load list
 mehran =3
 if (mehran%2==1):
 temp_pi = []
 temp_pi.append(value_pi[i][l][0])
 temp_pi.append(value_pi[i][l][1])
 temp_pi.append(count_pi[pi][2])
 temp_pi.append(size)
 list_pi.append(temp_pi)

 temp_pi = []

 # --
 # Generation of list of loads for Hybrid senario
 if key_hy[i][0] == Node[k] and key_hy[i][1]== Node[j]:

 mehran = 0
 for l in range(len(value_hy[i])):

 # --
 # Generate counter values
 # when there is a load from spesific source to specific destination,
 # the value of the counter for that source and destination is incremented

 for hy in range(len(count_hy)):
 if count_hy[hy][0] == value_hy[i][l][0] and count_hy[hy][1] == value_hy[i][l][1]:
 count_hy[hy][2] = count_hy[hy][2]+1
 # --
 # Insertion of values in to the Hybrid load list
 mehran =3
 if (mehran%2==1):
 temp_hy = []
 temp_hy.append(value_hy[i][l][0])
 temp_hy.append(value_hy[i][l][1])
 temp_hy.append(count_hy[hy][2])
 temp_hy.append(size)
 list_hy.append(temp_hy)
 temp_hy = []

 # --
 # Generation of list of loads for Conventional senario
 if key_co[i][0] == Node[k] and key_co[i][1]== Node[j]:

 mehran = 0
 for l in range(len(value_co[i])):

 # --
 # Generate counter values
 # when there is a load from spesific source to specific destination,
 # the value of the counter for that source and destination is incremented

 for co in range(len(count_co)):
 if count_co[co][0] == value_co[i][l][0] and count_co[co][1] == value_co[i][l][1]:
 count_co[co][2] = count_co[co][2]+1
 # --
 # Insertion of values in to the conventional load list
 mehran +=1
 if (mehran%2==1):

114

 temp_co = []
 temp_co.append(value_co[i][l][0])
 temp_co.append(value_co[i][l][1])
 temp_co.append(count_co[co][2])
 temp_co.append(size)
 list_co.append(temp_co)
 temp_co = []

--

arc_pi_size = []

for i in range(len(count_pi)):
 if count_pi[i][2] >= 1:
 arc_pi_size.append(count_pi[i])

arc_hy_size = []
for i in range(len(count_hy)):
 if count_hy[i][2] >= 1:
 arc_hy_size.append(count_hy[i])

arc_co_size = []
for i in range(len(count_co)):
 if count_co[i][2] >= 1:
 arc_co_size.append(count_co[i])

b = open('C:/Users/usr1/Desktop/Loads/Arc_PI_size.csv', 'wb')
a = csv.writer(b)
a.writerows(arc_pi_size)
b.close()

b = open('C:/Users/usr1/Desktop/Loads/Arc_HY_size.csv', 'wb')
a = csv.writer(b)
a.writerows(arc_hy_size)
b.close()

b = open('C:/Users/usr1/Desktop/Loads/Arc_CO_size.csv', 'wb')
a = csv.writer(b)
a.writerows(arc_co_size)
b.close()

arc_pi = []
temp_arc_pi = []

for i in range(len(count_pi)):
 if count_pi[i][2] >= 1:
 temp_arc_pi = []
 temp_arc_pi.append(count_pi[i][0])
 temp_arc_pi.append(count_pi[i][1])
 arc_pi.append(temp_arc_pi)

arc_hy = []
temp_arc_hy = []
for i in range(len(count_hy)):
 if count_hy[i][2] >= 1:
 temp_arc_hy = []
 temp_arc_hy.append(count_hy[i][0])
 temp_arc_hy.append(count_hy[i][1])

115

 arc_hy.append(temp_arc_hy)

arc_co = []
temp_arc_co = []
for i in range(len(count_co)):
 if count_co[i][2] >= 1:
 temp_arc_co = []
 temp_arc_co.append(count_co[i][0])
 temp_arc_co.append(count_co[i][1])
 arc_co.append(temp_arc_co)

b = open('C:/Users/usr1/Desktop/Loads/Act_arc_PI.csv', 'wb')
a = csv.writer(b)
a.writerows(arc_pi)
b.close()

b = open('C:/Users/usr1/Desktop/Loads/Act_arc_HY.csv', 'wb')
a = csv.writer(b)
a.writerows(arc_hy)
b.close()

b = open('C:/Users/usr1/Desktop/Loads/Act_arc_CO.csv', 'wb')
a = csv.writer(b)
a.writerows(arc_co)
b.close()

b = open('C:/Users/usr1/Desktop/Loads/Req_PI.csv', 'wb')
a = csv.writer(b)
a.writerows(list_pi)
b.close()

b = open('C:/Users/usr1/Desktop/Loads/Req_HY.csv', 'wb')
a = csv.writer(b)
a.writerows(list_hy)
b.close()

b = open('C:/Users/usr1/Desktop/Loads/Req_CO.csv', 'wb')
a = csv.writer(b)
a.writerows(list_co)
b.close()

116

Appendix F: GLPK Code of Packing MIP

set Node := {'Hal','Tru','Syd','Yar','Cht','Mon','Frd','Stj','Gt1','Riv','Qbc','Gt2','Mte','Gt3','Caw','Mtw','Otn','Ots'};
param q, integer, >=1;
set Req := {1..q};

param k, integer, >=1;
set Cont := {1..k};

set Req_Set, dimen 3;

#set Req_Set:= setof{ i in Node, j in Node, r in Req} (i,j,r);

#------------------------- Parameters------------------------------------
ax_req_pi
var total;
#------------------------- Obj function------------------------------------

minimize ObjZ:sum{i in Node, j in Node, c in Cont}con_n[i,j,c];

#------------------------- Constraints------------------------------------

con1{i in Node, j in Node, r in Req: i <> j }: sum{c in Cont}as[i,j,r,c] = 1;

con2{i in Node, j in Node, c in Cont: i <> j }: sum{r in Req}as[i,j,r,c]*REQ_SIZE[i,j,r] <= CAPACITY*con_n[i,j,c];

con3{i in Node, j in Node}:sum{c in Cont}con_n[i,j,c] = cont[i,j];

con4: sum{i in Node, j in Node}cont[i,j] = total;

solve;

#for {i in Node, j in Node, r in Req, c in Cont}{

for {{0}: as[i,j, r, c] == 1} {
 #printf"\n %s %s %s %s %s %d %s %d ","From " ,i," to ",j," req ",r," in cont ",c ;
 #}}
#printf{i in Node, j in Node, r in Req, c in Cont} "\n %s %d %s %d %s %d %s %d %d "," From " ,i," to ",j," req ",r," in
cont ",c, as[i,j, r, c];
printf "\n\n";

printf{i in Node, j in Node}" \n Num cont from %s %s %s %s %d",i," to ",j, " -->", sum{c in Cont}con_n[i,j,c];
printf "\n\n";
#printf{i in Node, j in Node, r in Req , c in Cont}REQ_SIZE[i,j,r];
printf " %d \n\n", total;
data;

param q := 66;
param k := 30;

end;

117

Appendix G: Packing Model Calling Algorithm

from gurobipy import *
from random import *
import csv

Nodes in the entire network
Node = ['Hal','Tru','Syd','Yar','Cht','Mon','Frd','Stj','Gt1','Riv','Qbc','Gt2','Mte','Gt3','Caw','Mtw','Otn','Ots']

#from Generator2 import *

#Model 1 --> Consolidation Model

#------------------------------- Data----------------------------------

LP_Debug = "NO"

Set of Containes
Cont_pi = 95
Cont_hy = 30
Cont_co = 5

#create a new model for PI senario
mpi = Model("model1")

#create a new model for HY senario
mhy = Model("model1")

#create a new model for CO senario
mco = Model("model1")

#create variables
assign = {}

cont_pi = {}
cont_hy = {}
cont_co = {}

#Capacity of the containers
CAPACITY = 1

#----------------Reads DATA from the lists------------------------------

arc_pi = []

with open('Act_arc_PI.csv', 'rb') as f:
 reader = csv.reader(f)
 for row in reader:
 arc_pi.append(row)

arc_hy = []

with open('Act_arc_HY.csv', 'rb') as f:
 reader = csv.reader(f)
 for row in reader:
 arc_hy.append(row)
arc_co = []

118

with open('Act_arc_CO.csv', 'rb') as f:
 reader = csv.reader(f)
 for row in reader:
 arc_co.append(row)

list_pi = []

with open('Req_pi.csv', 'rb') as f:
 reader = csv.reader(f)
 for row in reader:
 source = row[0]
 des = row[1]
 req = float(row[2])
 si = float(row[3])
 p = (source, des, req, si)
 list_pi.append(p)

REQ_SET_PI = list_pi

list_hy = []
with open('Req_hy.csv', 'rb') as f:
 reader = csv.reader(f)
 for row in reader:
 source = row[0]
 des = row[1]
 req = float(row[2])
 si = float(row[3])
 p = (source, des, req, si)
 list_hy.append(p)

REQ_SET_HY = list_hy

list_co = []

with open('Req_co.csv', 'rb') as f:
 reader = csv.reader(f)
 for row in reader:
 source = row[0]
 des = row[1]
 req = float(row[2])
 si = float(row[3])
 p = (source, des, req, si)
 list_co.append(p)

REQ_SET_CO = list_co
#---

Final result for calculated number of containers for each senario
Final_Cont_PI = []
Final_Cont_HY = []
Final_Cont_CO = []

#--------------------------------PI Section ---------------------------

L_SIZE = []

def loads_pi (i,j):
 s_d_loads = []
 for p in range(len(REQ_SET_PI)):
 if REQ_SET_PI[p][0] == i and REQ_SET_PI[p][1] == j:

119

 s_d_loads.append(REQ_SET_PI[p][3])
 #print s_d_loads
 return s_d_loads

#--------------Calling the optimizer inside the nested loops---------------
num_optimization = 1
for i in Node:
 for j in Node:
 if [i,j] in arc_pi:
 print ""
 print ""
 print "PI Senario"
 print "Optimization number", num_optimization, " of ", len(arc_pi)
 print ""
 print "###"
 print "Min number of containers problem between", i ," to ", j
 print "###"
 L_SIZE = []
 L_SIZE = loads_pi (i,j)
 #print "Here is the list of loads :", L_SIZE

 print L_SIZE
 #------------------------- Variables---------------------------

 mpi.update()
 # Asignment of request r to container c from node i to node j
 assign = {}

 var1 =0
 for r in range(len(L_SIZE)):
 for c in range(Cont_pi):
 assign[r,c] = mpi.addVar(ub = 1, lb = 0 , vtype=GRB.BINARY, name= 'var1')
 var1 += 1
 mpi.update()

 cont_pi = {}

 var2 =1
 for c in range(Cont_pi):

 cont_pi[c] = mpi.addVar(ub = 1, lb = 0 , vtype=GRB.BINARY, name='var2')
 var2 +=1

 mpi.update()

 #------------------------- Constraints--------------------------
 counter1 = 0
 for r in range(len(L_SIZE)):
 for c in range(Cont_pi):

 mpi.addConstr(quicksum(assign[r,c] for c in range(Cont_pi)), GRB.EQUAL , 1, name = 'counter1')
 counter1 +=1
 #print 'cont_1_%s_%s' % (r,c)

 mpi.update()
 # setting the arc sizes

 counter2 = 0
 for r in range(len(L_SIZE)):
 for c in range(Cont_pi):

120

 mpi.addConstr(quicksum(assign[r,c]* L_SIZE[r] for r in range(len(L_SIZE))),GRB.LESS_EQUAL,
CAPACITY* cont_pi[c], name ='counter2')
 counter2 +=1
 #print counter2

 mpi.update()

 #------------------------- ObjZ---------------------------------
 mpi.setObjective(quicksum(cont_pi[c] for c in range(Cont_pi)) , GRB.MINIMIZE)
 mpi.optimize()

 #print "Value of the objective function: ",mpi.objval
 Final_Cont_PI = []
 obj = mpi.objval
 p=(i,j,obj)
 Final_Cont_PI.append(p)

 #------------------Model Clean up Section------------------

 mpi.update()
 num_optimization +=1

 import csv
 b = open('C:/Users/Mehran/Dropbox/Masters/Physical Internet/Simulation Models/Data/Static/M1_PI.csv',
'ab')
 a = csv.writer(b)
 a.writerows(Final_Cont_PI)
 b.close()

#-------------------------Hybrid Section ---------------------------------

L_SIZE = []

def loads_hy (i,j):
 s_d_loads = []
 for p in range(len(REQ_SET_HY)):
 if REQ_SET_HY[p][0] == i and REQ_SET_HY[p][1] == j:
 s_d_loads.append(REQ_SET_HY[p][3])
 #print s_d_loads
 return s_d_loads

#--Calling the optimizer for Hybrid senario inside the nested loops------
num_optimization = 1
for i in Node:
 for j in Node:
 if [i,j] in arc_hy:

 print ""
 print "Hybrid Senario"
 print "Optimization number", num_optimization, " of ", len(arc_hy)
 print ""
 print "###"
 print "Min number of containers problem between", i ," to ", j
 print "###"
 L_SIZEP = L_SIZE
 L_SIZE = []

121

 L_SIZE = loads_hy (i,j)
 #print "Here is the list of loads :", L_SIZE

 #------------------------- Variables---------------------------
 #for i in range(Cont):
 # for j in range(len(L_SIZEP)):
 # mhy.remove(mhy.getConstrs()[0])

 mhy.update()
 # Asignment of request r to container c from node i to node j
 assign = {}

 var1 =0
 for r in range(len(L_SIZE)):
 for c in range(Cont_hy):
 assign[r,c] = mhy.addVar(ub = 1, lb = 0 , vtype=GRB.BINARY, name='var1')
 var1 +=1
 mhy.update()

 var2 =0
 cont_hy = {}
 for c in range(Cont_hy):
 cont_hy[c] = mhy.addVar(ub = 1, lb = 0 , vtype=GRB.BINARY, name='var2')
 var2 +=1

 mhy.update()

 #------------------------- Constraints--------------------------

 counter1 = 0
 for r in range(len(L_SIZE)):
 for c in range(Cont_hy):
 mhy.addConstr(quicksum(assign[r,c] for c in range(Cont_hy)), GRB.EQUAL , 1, name='counter1')
 counter1 +=1
 #print 'cont_1_%s_%s' % (r,c)

 mhy.update()
 # setting the arc sizes

 counter2 = 0
 for r in range(len(L_SIZE)):
 for c in range(Cont_hy):
 mhy.addConstr(quicksum(assign[r,c]* L_SIZE[r] for r in range(len(L_SIZE))),GRB.LESS_EQUAL,
CAPACITY* cont_hy[c], name='counter2')
 counter2 +=1
 #print 'cont_2_%s_%s'% (r,c)

 mhy.update()

 #------------------------- ObjZ---------------------------------
 mhy.setObjective(quicksum(cont_hy[c] for c in range(Cont_hy)) , GRB.MINIMIZE)
 mhy.optimize()

 #print "here is the value of the objective function: ",mhy.objval
 obj = mhy.objval
 Final_Cont_HY = []
 p=(i,j,obj)
 Final_Cont_HY.append(p)

122

 #------------------Model Clean up Section------------------
 mhy.update()
 num_optimization +=1

 import csv
 b = open('C:/Users/Mehran/Dropbox/Masters/Physical Internet/Simulation
Models/Data/Static/M1_HY.csv', 'ab')
 a = csv.writer(b)
 a.writerows(Final_Cont_HY)
 b.close()

#-------------------------Conventional Section ---------------------------

L_SIZE = []

def loads_co (i,j):
 s_d_loads = []
 for p in range(len(REQ_SET_CO)):
 if REQ_SET_CO[p][0] == i and REQ_SET_CO[p][1] == j:
 s_d_loads.append(REQ_SET_CO[p][3])
 #print s_d_loads
 return s_d_loads

#--Calling the optimizer for Hybrid senario inside the nested loops------
num_optimization = 1
for i in Node:
 for j in Node:
 if [i,j] in arc_co:

 print ""
 print "Conventional Senario"
 print "Optimization number", num_optimization, " of ", len(arc_co)
 print ""
 print "###"
 print "Min number of containers problem between", i ," to ", j
 print "###"
 L_SIZEP = L_SIZE
 L_SIZE = []
 L_SIZE = loads_co (i,j)
 #print "Here is the list of loads :", L_SIZE

 #------------------------- Variables---------------------------
 #for i in range(Cont):
 # for j in range(len(L_SIZEP)):
 # mco.remove(mco.getConstrs()[0])

 mco.update()
 # Asignment of request r to container c from node i to node j
 assign = {}

 var1 =0
 for r in range(len(L_SIZE)):
 for c in range(Cont_co):
 assign[r,c] = mco.addVar(ub = 1, lb = 0 , vtype=GRB.BINARY, name='var1')
 var1 +=1

123

 mco.update()

 cont_co = {}
 var2 = 0
 for c in range(Cont_co):
 cont_co[c] = mco.addVar(ub = 1, lb = 0 , vtype=GRB.BINARY, name='var2')
 var2 +=1

 mco.update()

 #------------------------- Constraints--------------------------

 counter1 = 0
 for r in range(len(L_SIZE)):
 for c in range(Cont_co):
 mco.addConstr(quicksum(assign[r,c] for c in range(Cont_co)), GRB.EQUAL , 1, name = 'counter1')
 counter1 +=1
 #print 'cont_1_%s_%s' % (r,c)

 mco.update()
 # setting the arc sizes

 for r in range(len(L_SIZE)):
 for c in range(Cont_co):
 mco.addConstr(quicksum(assign[r,c]* L_SIZE[r] for r in range(len(L_SIZE))),GRB.LESS_EQUAL,
CAPACITY* cont_co[c], name = 'counter2')
 #print 'cont_2_%s_%s'% (r,c)

 mco.update()

 #------------------------- ObjZ---------------------------------
 mco.setObjective(quicksum(cont_co[c] for c in range(Cont_co)) , GRB.MINIMIZE)
 mco.optimize()

 #print "here is the value of the objective function: ",mco.objval
 obj = mco.objval
 Final_Cont_CO = []
 p=(i,j,obj)
 Final_Cont_CO.append(p)

 #------------------Model Clean up Section------------------

 num_optimization +=1
 mco.update()

 import csv
 b = open('C:/Users/Mehran/Dropbox/Masters/Physical Internet/Simulation
Models/Data/Static/M1_CO.csv', 'ab')
 a = csv.writer(b)
 a.writerows(Final_Cont_CO)
 b.close()

124

Appendix H: Calculation of Flow Lower Bond

import csv
from Distance import *
from Param import *

key = Distance.keys()
Puts all the dictionary keys in the key list. There is no need to iterate over the dictionary and collect all the keys

value = Distance.values()
Puts all the dictionary values int the value list.There is no need iterate over the dictionary and collect all the values

Model_1_PI_LOADS = []
Model_1_HY_LOADS = []
Model_1_CO_LOADS = []

Optimal_Jobs_PI = []
Optimal_Jobs_HY = []
Optimal_Jobs_CO = []

source = []
dest = []

Read Section
#---
with open('M1_PI.csv', 'rb') as f:

 reader = csv.reader(f)

 for row in reader:
 Model_1_PI_LOADS_TEMP = []

 Model_1_PI_LOADS_TEMP.append(row[0])
 Model_1_PI_LOADS_TEMP.append(row[1])
 Model_1_PI_LOADS_TEMP.append(float(row[2]))
 Model_1_PI_LOADS.append(Model_1_PI_LOADS_TEMP)

Loads_PI = []

#---
with open('M1_HY.csv', 'rb') as f:

 reader = csv.reader(f)

 for row in reader:
 Model_1_HY_LOADS_TEMP = []

 Model_1_HY_LOADS_TEMP.append(row[0])
 Model_1_HY_LOADS_TEMP.append(row[1])
 Model_1_HY_LOADS_TEMP.append(float(row[2]))
 Model_1_HY_LOADS.append(Model_1_HY_LOADS_TEMP)

Loads_HY = []

#---
with open('M1_CO.csv', 'rb') as f:

 reader = csv.reader(f)

125

 for row in reader:
 Model_1_CO_LOADS_TEMP = []

 Model_1_CO_LOADS_TEMP.append(row[0])
 Model_1_CO_LOADS_TEMP.append(row[1])
 Model_1_CO_LOADS_TEMP.append(float(row[2]))
 Model_1_CO_LOADS.append(Model_1_CO_LOADS_TEMP)

Loads_CO = []
#---

PI Calculation Section
#---
for pass1 in range(len(Model_1_PI_LOADS)):
 for pass2 in range(len(Model_1_PI_LOADS)):
 if Model_1_PI_LOADS[pass1][0] == Model_1_PI_LOADS[pass2][1] and Model_1_PI_LOADS[pass1][1] ==
Model_1_PI_LOADS[pass2][0]:

 loads = 0
 loads = Model_1_PI_LOADS[pass1][2] - Model_1_PI_LOADS[pass2][2]
 min = 0
 min = Model_1_PI_LOADS[pass1][2]
 if Model_1_PI_LOADS[pass1][2] > Model_1_PI_LOADS[pass2][2]:
 min = Model_1_PI_LOADS[pass2][2]
 if loads > 0:
 p = (Model_1_PI_LOADS[pass1][0], Model_1_PI_LOADS[pass1][1], loads)
 s = (Model_1_PI_LOADS[pass1][0], Model_1_PI_LOADS[pass1][1], min)
 Optimal_Jobs_PI.append(s)
 Loads_PI.append(p)

 if loads == 0:
 source.append(Model_1_PI_LOADS[pass1][0])
 dest.append(Model_1_PI_LOADS[pass1][1])
 if Model_1_PI_LOADS[pass1][1] in source and Model_1_PI_LOADS[pass1][0] in dest:
 q = (Model_1_PI_LOADS[pass1][0], Model_1_PI_LOADS[pass1][1], loads)
 s = (Model_1_PI_LOADS[pass1][0], Model_1_PI_LOADS[pass1][1], min)
 Optimal_Jobs_PI.append(s)
 Loads_PI.append(q)

total_hours_pi = 0

for i in range(len(Optimal_Jobs_PI)):
 s = Optimal_Jobs_PI[i][0]
 d = Optimal_Jobs_PI[i][1]
 for k in range(len(Distance)):
 if s == key[k][0] and d == key[k][1]:

 total_distance = 2 * value[k]* Optimal_Jobs_PI[i][2]
 job_hours = total_distance/avg_speed

 # Claculation of the total hours of driving for the optimal portion of the PI senario
 total_hours_pi = total_hours_pi + job_hours

 # Test to ensure all the values are read correctly
 #print i , "distance from ", s, " to ", d, " is ", value[k],". Number of jobs ", Loads_PI[i][3], " total job hours ",
job_hours

source = []
dest = []

126

HY Calculation Section
#---
for pass1 in range(len(Model_1_HY_LOADS)):
 for pass2 in range(len(Model_1_HY_LOADS)):
 if Model_1_HY_LOADS[pass1][0] == Model_1_HY_LOADS[pass2][1] and Model_1_HY_LOADS[pass1][1] ==
Model_1_HY_LOADS[pass2][0]:

 loads = 0
 loads = Model_1_HY_LOADS[pass1][2] - Model_1_HY_LOADS[pass2][2]
 min = 0
 min = Model_1_HY_LOADS[pass1][2]
 if Model_1_HY_LOADS[pass1][2] > Model_1_HY_LOADS[pass2][2]:
 min = Model_1_HY_LOADS[pass2][2]
 if loads > 0:
 p = (Model_1_HY_LOADS[pass1][0], Model_1_HY_LOADS[pass1][1], loads)
 s = (Model_1_HY_LOADS[pass1][0], Model_1_HY_LOADS[pass1][1], min)
 Optimal_Jobs_HY.append(s)
 Loads_HY.append(p)
 if loads == 0:
 source.append(Model_1_HY_LOADS[pass1][0])
 dest.append(Model_1_HY_LOADS[pass1][1])
 if Model_1_HY_LOADS[pass1][1] in source and Model_1_HY_LOADS[pass1][0] in dest:
 q = (Model_1_HY_LOADS[pass1][0], Model_1_HY_LOADS[pass1][1], loads)
 s = (Model_1_HY_LOADS[pass1][0], Model_1_HY_LOADS[pass1][1], min)
 Optimal_Jobs_HY.append(s)
 Loads_HY.append(q)
total_hours_hy = 0

for i in range(len(Optimal_Jobs_HY)):
 s = Optimal_Jobs_HY[i][0]
 d = Optimal_Jobs_HY[i][1]
 for k in range(len(Distance)):
 if s == key[k][0] and d == key[k][1]:

 total_distance = 2 * value[k]* Optimal_Jobs_HY[i][2]
 job_hours = total_distance/avg_speed

 # Claculation of the total hours of driving for the optimal portion of the PI senario
 total_hours_hy = total_hours_hy + job_hours

 # Test to ensure all the values are read correctly
 #print i , "distance from ", s, " to ", d, " is ", value[k],". Number of jobs ", Loads_HY[i][3], " total job hours ",
job_hours

source = []
dest = []

CO Calculation Section
#---

for pass1 in range(len(Model_1_CO_LOADS)):
 for pass2 in range(len(Model_1_CO_LOADS)):
 if Model_1_CO_LOADS[pass1][0] == Model_1_CO_LOADS[pass2][1] and Model_1_CO_LOADS[pass1][1] ==
Model_1_CO_LOADS[pass2][0]:

 loads = 0
 loads = Model_1_CO_LOADS[pass1][2] - Model_1_CO_LOADS[pass2][2]
 min = 0
 min = Model_1_CO_LOADS[pass1][2]
 if Model_1_CO_LOADS[pass1][2] > Model_1_CO_LOADS[pass2][2]:
 min = Model_1_CO_LOADS[pass2][2]

127

 if loads > 0:
 p = (Model_1_CO_LOADS[pass1][0], Model_1_CO_LOADS[pass1][1], loads)
 s = (Model_1_CO_LOADS[pass1][0], Model_1_CO_LOADS[pass1][1], min)
 Optimal_Jobs_CO.append(s)
 Loads_CO.append(p)

 if loads == 0:
 source.append(Model_1_CO_LOADS[pass1][0])
 dest.append(Model_1_CO_LOADS[pass1][1])
 if Model_1_CO_LOADS[pass1][1] in source and Model_1_CO_LOADS[pass1][0] in dest:
 q = (Model_1_CO_LOADS[pass1][0], Model_1_CO_LOADS[pass1][1], loads)
 s = (Model_1_CO_LOADS[pass1][0], Model_1_CO_LOADS[pass1][1], min)
 Optimal_Jobs_CO.append(s)
 Loads_CO.append(q)

total_hours_co = 0

for i in range(len(Optimal_Jobs_CO)):
 s = Optimal_Jobs_CO[i][0]
 d = Optimal_Jobs_CO[i][1]
 for k in range(len(Distance)):
 if s == key[k][0] and d == key[k][1]:

 total_distance = 2 * value[k]* Optimal_Jobs_CO[i][2]
 job_hours = total_distance/avg_speed

 # Claculation of the total hours of driving for the optimal portion of the PI senario
 total_hours_co = total_hours_hy + job_hours

 # Test to ensure all the values are read correctly
 #print i , "distance from ", s, " to ", d, " is ", value[k],". Number of jobs ", Loads_CO[i][3], " total job hours ",
job_hours

source = []
dest = []

#---

Write Section
#---

b = open('M1_PI_REDUCED.csv', 'wb')
a = csv.writer(b)
header = ['s','d','c']
a.writerow(header)
a.writerows(Loads_PI)
b.close()

b = open('M1_PI_JOBS.csv', 'wb')
a = csv.writer(b)
header = ['s','d','jobs']
a.writerow(header)
a.writerows(Optimal_Jobs_PI)
b.close()

b = open('M1_HY_REDUCED.csv', 'wb')
a = csv.writer(b)
header = ['s','d','c']
a.writerow(header)
a.writerows(Loads_HY)

128

b.close()

b = open('M1_HY_JOBS.csv', 'wb')
a = csv.writer(b)
header = ['s','d','jobs']
a.writerow(header)
a.writerows(Optimal_Jobs_HY)
b.close()

b = open('M1_CO_REDUCED.csv', 'wb')
a = csv.writer(b)
header = ['s','d','c']
a.writerow(header)
a.writerows(Loads_CO)
b.close()

b = open('M1_CO_JOBS.csv', 'wb')
a = csv.writer(b)
header = ['s','d','jobs']
a.writerow(header)
a.writerows(Loads_CO)
b.close()

b = open('Optimal_Hours.csv', 'wb')
optimals = [["Hours PI", total_hours_pi],["Hours HY", total_hours_hy],["Hours CO", total_hours_co]]
a = optimals
a = csv.writer(b)
a.writerows(optimals)
b.close()

129

Appendix I: GLPK Code of Routing MIP

Written By Mehran Fazili
Last modified 8 November 2013

/* Set of nodes*/
set Node := {'Hal','Tru','Syd','Yar','Cht','Mon','Frd','Stj','Gt1','Riv','Qbc','Gt2','Mte','Gt3','Caw','Mtw','Otn','Ots'};

param m, integer, >1;
Number of routes

set Route := {1..m};
#Set of routes

set Cont_Set, dimen 2;

###############################
########## Parameters ##############
###############################

param FIX_RO_CO{i in Route}, default 20;
#To be investigated - used to calculate the fixed cost of a route

param CONT{i in Node, j in Node}, default 0;
Number of loads to be transferred from node i to node j

table ara IN "CSV" "M1_CO_REDUCED.csv" :
Cont_Set <- [s, d] , CONT ~ c;

param FTTIME{i in Node, j in Node};
Loaded travel time from node i to node j

param ETTIME{i in Node, j in Node};
Deadhead travel time from node i to node j

param TTTIME, default 50;
Maximum duration (length) of each route (Set to a large value to relax the corresponding constraint)

param MITIME, default 2;
Minimum duration (length) of each route (Set to zero to relax the corresponding constraint)

param AVG_R_LEN, default 160;
Maximum allowed length for average route length (Set to a large value to relax the corresponding constraint)

param NUM_ACT_ROUTE, default 100 ;
Maximum number of routes allowed to serve the entire demand (Set to a large value to relax the corresponding
constraint)

param MAX_PER_DAED , default 0.4;
Maximum percentage of deadhead travel length to the total route length (Set to a fractional value close to one to
relax the corresponding constraint)

param M , default 12;
Auxiliary parameter used in sub tour elmination

###############################
########## Variables ###############

130

###############################

var f_a{i in Node, j in Node, k in Route}, binary;
Binary, 1 if route k includes the loaded arc from node i to node j, 0 otherwise

var e_a{i in Node, j in Node, k in Route}, binary;
Binary, 1 if route k includes the deadhead arc from node i to node j, 0 otherwise

var route{k in Route}, >=0;
Total duration (or length) of route k

var s{i in Node, k in Route} ;
Auxiliary positive integer variable used for sub tour elimination

var act_route{k in Route}, binary ;
Binary, 1 if rk > 0, 0 otherwise

###############################
######### Objective Function ##########
###############################
minimize obj:sum{i in Node, j in Node, k in Route}(f_a[i,j,k]*FTTIME[i,j] + e_a[i,j,k]*FTTIME[i,j]) + sum{k in
Route}10*act_route[k];
#Minimizes the total route duration (length)

#minimize obj:sum{k in Route}(route[k]);
#Minimizes the total route duration (length)

###############################
######### Technical Const #########
###############################

Con1{i in Node, j in Node}: sum{k in Route}f_a[i,j,k] = CONT[i,j];
Ensures each full travel between source i and destination j is equal to the number of loads from i to j (Determined in
model 1)

Con2{k in Route}:sum{i in Node, j in Node}(f_a[i,j,k]*FTTIME[i,j] + e_a[i,j,k]*ETTIME[i,j]) = route[k];
Total duration of full and empty assignment of travels to route k is equal to the route duration (length)

Con3{p in Node, k in Route}:sum{i in Node}(f_a[i,p,k] + e_a[i,p,k]) = sum{j in Node}(f_a[p,j,k] + e_a[p,j,k]);
(Conservation of flow). at each node and for each route, total full and empty entry to a node should be equal to the
total full and empty exit.

con34{k in Route, i in Node}:sum{j in Node}(f_a[i,j,k] + e_a[i,j,k]) <= act_route[k];
#Con37{p in Node, k in Route}:sum{i in Node}(f_a[i,p,k] + e_a[i,p,k]) + sum{j in Node}(f_a[p,j,k] + e_a[p,j,k]) <= 2;
Every Node is visited only once by each route

#Con31{p in Node, k in Route}:sum{i in Node}(f_a[i,p,k] + e_a[i,p,k]) <= 1;

#Con32{p in Node, k in Route}: sum{j in Node}(f_a[p,j,k] + e_a[p,j,k]) <= 1 ;

Con4{i in Node, j in Node, k in Route}:s[i,k] - s[j,k] + 1 <= M*(1- f_a[i,j,k]);
Together with cont 5, 6, and 7 is used for sub-tour elimination.

#Con41{i in Node, j in Node, k in Route}:-s[i,k] + s[j,k] - 1 >= -(M*(1- e_a[i,j,k]));
Together with cont 5, 6, and 7 is used for sub-tour elimination.

Con5{i in Node, k in Route}: s[i,k] <= M;
Used for sub-tour elimination

Con6{i in Node, k in Route}: s[i,k] >= 1;

131

Used for sub-tour elimination

#Con7{k in Route}: sum{i in Node, j in Node}f_a[i,j,k] <= 4;

con12{k in Route}:sum{i in Node, j in Node}e_a[i,j,k] = 1;
#con121{k in Route}:sum{i in Node, j in Node : i = j}e_a[i,j,k] = 0;

#con121{k in Route}:sum{i in Node, j in Node : i = j}e_a[i,j,k] = 0;
#con121{k in Route}:sum{i in Node, j in Node : i = j}e_a[i,j,k] = 0;

Sets maximum duration of the deadhead as fraction of the total route duration (length).
#con38{i in Node, j in Node, k in Route}:f_a[i,j,k]+ e_a[i,j,k] + f_a[j,i,k] + e_a[j,i,k] <= 1;

#con39{k in Route}:sum{i in Node, j in Node}(f_a[i,j,k]) <=4;

###############################
########## Policy Constraints ##########
###############################

#con8{k in Route}: route[k] >= act_route[k]*MITIME;
Sets min route duration (length)

#con81{k in Route}: route[k] <= act_route[k]*100;
Sets min route duration (length)

cont9{k in Route}: route[k] <= act_route[k]*TTTIME;
Sets max route duration (length)

#con10: sum{k in Route}route[k] / AVG_R_LEN <= sum{k in Route}act_route[k];
Sets max average route duration (length)

#con11:sum{k in Route}act_route[k] <= NUM_ACT_ROUTE;
Sets maximum number of allowed routes

#con12{k in Route}:(sum{i in Node, j in Node}(e_a[i,j,k])*ETTIME[i,j]) / MAX_PER_DAED <= route[k];
Sets maximum duration of the deadhead as fraction of the total route duration (length).

solve;

printf "\n\nLoaded Arcs and Routes\n\n";
for {i in Node, j in Node, k in Route}{
 for {{0}: f_a[i,j,k] == 1 } {

printf " %s %d %s %d %s %d \n"," Route", k ," goes from node ",i," to node ",j ;
}}

printf "\n\nDeahead Arcs and veh\n\n";
for {i in Node, j in Node, k in Route}{
for {{0}: e_a[i,j,k] == 1 } {

 printf " %s %d %s %d %s %d \n","Route", k ," goes from node ",i," to node ",j ;
}}

printf "\n\nDuration of Each Route\n\n";
for {k in Route}{
 for {{0}: route[k] >= 1 } {
 printf " Route %d %s %f \ Hours \n", k, " is ", route[k];
}}

132

printf "\n\n";
data;

param m := 200;

param FTTIME :Hal Tru Syd Yar Mon Frd Stj Cht Gt1 Riv Qbc
 Gt2 Mte Gt3 Caw Mtw Otn Ots :=
Hal 0.5 1.39 4.49 3.54 3.12 4.86 4.63 3.76 5.77 8.66 10.67
 12.73 12.91 13.3 13.91 13.31 14.85 15.82
Tru 1.39 0.5 3.6 4.43 2.23 3.97 3.74 2.87 4.88 7.77 9.78
 11.84 12.02 12.42 13.02 12.42 13.96 14.93
Syd 4.49 3.6 0.5 7.48 5.26 6.86 6.71 5.83 7.88 10.72 12.7
 14.83 15.06 15.44 16.06 15.46 16.93 17.89
Yar 3.54 4.43 7.48 0.5 5.99 7.72 7.49 6.58 8.81 7.2 13.53
 15.7 15.82 16.06 16.82 16.22 13.38 14.35
Mon 3.12 2.23 5.26 5.99 0.5 2.3 2.08 2.13 3.15 6.11 8.09
 10.2 10.37 10.81 11.37 10.77 12.29 13.28
Frd 4.86 3.97 6.86 7.72 2.3 0.5 1.59 3.81 1.41 4.39 6.33
 8.46 8.76 9.06 9.76 9.16 10.6 11.57
Stj 4.63 3.74 6.71 7.49 2.08 1.59 0.5 3.92 2.53 5.31 7.23
 9.46 9.56 9.96 10.56 9.96 11.54 12.5
Cht 3.76 2.87 5.83 6.58 2.13 3.81 3.92 0.5 4.85 7.63 9.59
 11.74 11.9 12.43 12.9 12.3 13.86 14.79
Gt1 5.77 4.88 7.88 8.81 3.15 1.41 2.53 4.85 0.5 3.44 5.25
 7.46 7.49 8.12 8.49 7.89 9.64 10.62
Riv 8.66 7.77 10.72 7.2 6.11 4.39 5.31 7.63 3.44 0.5 2.45
 6.25 4.74 5.22 5.74 5.14 6.79 7.62
Qbc 10.67 9.78 12.7 13.53 8.09 6.33 7.23 9.59 5.25 2.45 0.5
2.72 2.94 3.45 3.94 3.34 5.02 6.08
Gt2 12.73 11.84 14.83 15.7 10.2 8.46 9.46 11.74 7.46 6.25 2.72
 0.5 2.02 2.39 3.02 2.42 4.09 4.94
Mte 12.91 12.02 15.06 15.82 10.37 8.76 9.56 11.9 7.49 4.74 2.94
 2.02 0.5 1.22 1.5 0.9 2.5 3.4
Gt3 13.3 12.42 15.44 16.06 10.81 9.06 9.96 12.43 8.12 5.22 3.45
 2.39 1.22 0.5 2.45 1.45 3.24 3.85
Caw 13.91 13.02 16.06 16.82 11.37 9.76 10.56 12.9 8.49 5.74 3.94
 3.02 1.5 2.445 0.5 1.5 3.5 4.4
Mtw 13.31 12.42 15.46 16.22 10.77 9.16 9.96 12.3 7.89 5.14 3.34
 2.42 0.9 1.445 1.5 0.5 2.1 3
Otn 14.85 13.96 16.93 13.38 12.29 10.6 11.54 13.86 9.64 6.79 5.02
 4.09 2.5 3.24 3.5 2.1 0.5 2.42
Ots 15.82 14.93 17.89 14.35 13.28 11.57 12.5 14.79 10.62 7.62 6.08
 4.94 3.4 3.85 4.4 3 2.42 0.5
;

param ETTIME :Hal Tru Syd Yar Mon Frd Stj Cht Gt1 Riv Qbc
 Gt2 Mte Gt3 Caw Mtw Otn Ots :=
Hal 0.00 0.89 3.99 3.04 2.62 4.36 4.13 3.26 5.27 8.16 10.17
 12.23 12.41 12.80 13.41 12.81 14.35 15.32
Tru 0.89 0.00 3.10 3.93 1.73 3.47 3.24 2.37 4.38 7.27 9.28
 11.34 11.52 11.92 12.52 11.92 13.46 14.43
Syd 3.99 3.10 0.00 6.98 4.76 6.36 6.21 5.33 7.38 10.22 12.20
 14.33 14.56 14.94 15.56 14.96 16.43 17.39
Yar 3.04 3.93 6.98 0.00 5.49 7.22 6.99 6.08 8.31 6.70 13.03
 15.20 15.32 15.56 16.32 15.72 12.88 13.85
Mon 2.62 1.73 4.76 5.49 0.00 1.80 1.58 1.63 2.65 5.61 7.59
 9.70 9.87 10.31 10.87 10.27 11.79 12.78
Frd 4.36 3.47 6.36 7.22 1.80 0.00 1.09 3.31 0.91 3.89 5.83
 7.96 8.26 8.56 9.26 8.66 10.10 11.07

133

Stj 4.13 3.24 6.21 6.99 1.58 1.09 0.00 3.42 2.03 4.81 6.73
 8.96 9.06 9.46 10.06 9.46 11.04 12.00
Cht 3.26 2.37 5.33 6.08 1.63 3.31 3.42 0.00 4.35 7.13 9.09
 11.24 11.40 11.93 12.40 11.80 13.36 14.29
Gt1 5.27 4.38 7.38 8.31 2.65 0.91 2.03 4.35 0.00 2.94 4.75
 6.96 6.99 7.62 7.99 7.39 9.14 10.12
Riv 8.16 7.27 10.22 6.70 5.61 3.89 4.81 7.13 2.94 0.00 1.95
 5.75 4.24 4.72 5.24 4.64 6.29 7.12
Qbc 10.17 9.28 12.20 13.03 7.59 5.83 6.73 9.09 4.75 1.95 0.00
 2.22 2.44 2.95 3.44 2.84 4.52 5.58
Gt2 12.23 11.34 14.33 15.20 9.70 7.96 8.96 11.24 6.96 5.75 2.22
 0.00 1.52 1.89 2.52 1.92 3.59 4.44
Mte 12.41 11.52 14.56 15.32 9.87 8.26 9.06 11.40 6.99 4.24 2.44
 1.52 0.00 0.72 1.00 0.40 2.00 2.90
Gt3 12.80 11.92 14.94 15.56 10.31 8.56 9.46 11.93 7.62 4.72 2.95
 1.89 0.72 0.00 1.95 0.95 2.74 3.35
Caw 13.41 12.52 15.56 16.32 10.87 9.26 10.06 12.40 7.99 5.24 3.44
 2.52 1.00 1.95 0.00 1.00 3.00 3.90
Mtw 12.81 11.92 14.96 15.72 10.27 8.66 9.46 11.80 7.39 4.64 2.84
 1.92 0.40 0.95 1.00 0.00 1.60 2.50
Otn 14.35 13.46 16.43 12.88 11.79 10.10 11.04 13.36 9.14 6.29 4.52
 3.59 2.00 2.74 3.00 1.60 0.00 1.92
Ots 15.32 14.43 17.39 13.85 12.78 11.07 12.00 14.29 10.12 7.12 5.58
 4.44 2.90 3.35 3.90 2.50 1.92 0.00
;

end;

134

Appendix J: Calculation of the Jobs Enroute Time in Python

import csv

from Distance import *
from Param import *

key = Distance.keys()
Puts all the dictionary keys in the key list. There is no need to iterate over the dictionary and collect all the keys

value = Distance.values()
Puts all the dictionary values int the value list.There is no need iterate over the dictionary and collect all the values

Model_1_PI_JOBS = []
Model_1_PI_DUR = []
Model_1_PI_LOC = []

Model_1_HY_JOBS = []
Model_1_HY_DUR = []
Model_1_HY_LOC = []

Model_1_CO_JOBS = []
Model_1_CO_DUR = []
Model_1_CO_LOC = []

Model_1_PI_DDUR = []
Model_1_HY_DDUR = []
Model_1_CO_DDUR = []

driving_limit = 14
sleep_time = 8

Read Section
#---

with open('M1_PI_JOBS.csv', 'rb') as f:

 reader = csv.reader(f)

 for row in reader:
 Model_1_PI_JOBS_TEMP = []
 Model_1_PI_JOBS_TEMP.append(row[0])
 Model_1_PI_JOBS_TEMP.append(row[1])
 Model_1_PI_JOBS_TEMP.append(float(row[2]))
 Model_1_PI_JOBS.append(Model_1_PI_JOBS_TEMP)

with open('M1_HY_JOBS.csv', 'rb') as f:

 reader = csv.reader(f)

 for row in reader:
 Model_1_HY_JOBS_TEMP = []
 Model_1_HY_JOBS_TEMP.append(row[0])
 Model_1_HY_JOBS_TEMP.append(row[1])
 Model_1_HY_JOBS_TEMP.append(float(row[2]))
 Model_1_HY_JOBS.append(Model_1_HY_JOBS_TEMP)

with open('M1_CO_JOBS.csv', 'rb') as f:

 reader = csv.reader(f)

135

 for row in reader:
 Model_1_CO_JOBS_TEMP = []
 Model_1_CO_JOBS_TEMP.append(row[0])
 Model_1_CO_JOBS_TEMP.append(row[1])
 Model_1_CO_JOBS_TEMP.append(float(row[2]))
 Model_1_CO_JOBS.append(Model_1_CO_JOBS_TEMP)

#---
PI Section
#---
Jobs from M1 file
job_row = 0
for i in range(len(Model_1_PI_JOBS)):
 s = Model_1_PI_JOBS[i][0]
 d = Model_1_PI_JOBS[i][1]
 for k in range(len(Distance)):
 if s == key[k][0] and d == key[k][1]:

 job_hours = 0
 drive_hours = 0
 total_distance = 0
 total_distance = 2 * value[k]
 #print total_distance
 job_hours = (float(total_distance)/avg_speed)
 drive_hours = job_hours
 number_of_nights = int (job_hours / driving_limit)

 job_hours = job_hours + number_of_nights * sleep_time
 print s,d, drive_hours, number_of_nights, job_hours

 # print s,d,job_hours
 counter = int(Model_1_PI_JOBS[i][2])

 for j in range(counter):
 job_row +=1

 LOC = (job_row, s)
 Model_1_PI_LOC.append(LOC)

 DUR = (job_row, job_hours)
 Model_1_PI_DUR.append(DUR)

 DUR_DRIVE = (job_row, drive_hours)
 Model_1_PI_DDUR.append(DUR_DRIVE)

b = open('jobs_info/JOB_LOC_PI.csv', 'wb')
a = csv.writer(b)
header = ['number','node']
a.writerow(header)
a.writerows(Model_1_PI_LOC)
b.close()

b = open('jobs_info/JOB_DUR_PI.csv', 'wb')
a = csv.writer(b)
header = ['number','dur']
a.writerow(header)
a.writerows(Model_1_PI_DUR)

136

b.close()

b = open('jobs_info/JOB_DRIVE_DUR_PI.csv', 'wb')
a = csv.writer(b)
header = ['number','dur']
a.writerow(header)
a.writerows(Model_1_PI_DDUR)
b.close()

#---
Reading the jobs created in RO optimizer

M2_RAW = []

with open('M2_prep/M2_inventory_pi.csv', 'rb') as f:

 reader = csv.reader(f)

 for row in reader:
 Model_2_TEMP = []
 Model_2_TEMP.append(row[0])
 Model_2_TEMP.append(row[1])
 Model_2_TEMP.append(float(row[2]))
 Model_2_TEMP.append(float(row[3]))
 Model_2_TEMP.append(float(row[4]))
 M2_RAW.append(Model_2_TEMP)

Location = []
Duration = []
DDuration = []

for i in range(len(M2_RAW)):
 for j in range(len(M2_RAW)):
 pass1 = M2_RAW[i][2]
 pass2 = M2_RAW[j][3]
 if pass1 == pass2:
 #print M2_RAW[i][0],M2_RAW[i][1],M2_RAW[i][2],M2_RAW[j][3],M2_RAW[j][4]

 #Entering a social cost into jobs with duration longer than 14 hours
 drive_hours = 0
 job_dur = 0
 job_dur = M2_RAW[j][4]
 drive_hours = job_dur
 #print job_dur
 number_of_nights = int (job_dur / driving_limit)
 #print number_of_nights
 job_dur = job_dur + number_of_nights * sleep_time

 job_row+=1

 loc = (job_row , M2_RAW[i][0])
 Location.append(loc)

 dur = (job_row , job_dur)
 Duration.append(dur)

 ddur = (job_row, drive_hours)
 DDuration.append(ddur)

b = open('jobs_info/JOB_LOC_PI.csv', 'ab')
a = csv.writer(b)

137

a.writerows(Location)
b.close()

b = open('jobs_info/JOB_DUR_PI.csv', 'ab')
a = csv.writer(b)
a.writerows(Duration)
b.close()

b = open('jobs_info/JOB_DRIVE_DUR_PI.csv', 'ab')
a = csv.writer(b)
a.writerows(DDuration)
b.close()

#---
Hybrid Section

#---
Jobs from M1 file
job_row = 0
for i in range(len(Model_1_HY_JOBS)):
 s = Model_1_HY_JOBS[i][0]
 d = Model_1_HY_JOBS[i][1]
 for k in range(len(Distance)):
 if s == key[k][0] and d == key[k][1]:

 job_hours = 0
 total_distance = 0
 total_distance = 2 * value[k]
 #print total_distance
 job_hours = (float(total_distance)/avg_speed)
 drive_hours = job_hours
 number_of_nights = int (job_hours / driving_limit)
 #print s,d,number_of_nights, job_hours
 job_hours = job_hours + number_of_nights * sleep_time

 # print s,d,job_hours
 counter = int(Model_1_HY_JOBS[i][2])

 for j in range(counter):
 job_row +=1

 LOC = (job_row, s)
 Model_1_HY_LOC.append(LOC)

 DUR = (job_row, job_hours)
 Model_1_HY_DUR.append(DUR)

 DUR_DRIVE = (job_row, drive_hours)
 Model_1_HY_DDUR.append(DUR_DRIVE)

b = open('jobs_info/JOB_LOC_HY.csv', 'wb')
a = csv.writer(b)
header = ['number','node']
a.writerow(header)
a.writerows(Model_1_HY_LOC)
b.close()

b = open('jobs_info/JOB_DUR_HY.csv', 'wb')
a = csv.writer(b)

138

header = ['number','dur']
a.writerow(header)
a.writerows(Model_1_HY_DUR)
b.close()

b = open('jobs_info/JOB_DRIVE_DUR_HY.csv', 'wb')
a = csv.writer(b)
header = ['number','dur']
a.writerow(header)
a.writerows(Model_1_HY_DDUR)
b.close()

#---
Reading the jobs created in RO optimizer

M2_RAW = []

with open('M2_prep/M2_inventory_hy.csv', 'rb') as f:

 reader = csv.reader(f)

 for row in reader:
 Model_2_TEMP = []
 Model_2_TEMP.append(row[0])
 Model_2_TEMP.append(row[1])
 Model_2_TEMP.append(float(row[2]))
 Model_2_TEMP.append(float(row[3]))
 Model_2_TEMP.append(float(row[4]))
 M2_RAW.append(Model_2_TEMP)

Location = []
Duration = []
DDuration = []

for i in range(len(M2_RAW)):
 for j in range(len(M2_RAW)):
 pass1 = M2_RAW[i][2]
 pass2 = M2_RAW[j][3]
 if pass1 == pass2:
 #print M2_RAW[i][0],M2_RAW[i][1],M2_RAW[i][2],M2_RAW[j][3],M2_RAW[j][4]

 #Entering a social cost into jobs with duration longer than 14 hours
 job_dur = 0
 job_dur = M2_RAW[j][4]
 drive_hours = job_dur
 #print job_dur
 number_of_nights = int (job_dur / driving_limit)
 #print number_of_nights
 job_dur = job_dur + number_of_nights * sleep_time

 job_row+=1
 loc = (job_row , M2_RAW[i][0])
 Location.append(loc)

 dur = (job_row , job_dur)
 Duration.append(dur)

 ddur = (job_row, drive_hours)
 DDuration.append(ddur)

b = open('jobs_info/JOB_LOC_HY.csv', 'ab')

139

a = csv.writer(b)
a.writerows(Location)
b.close()

b = open('jobs_info/JOB_DUR_HY.csv', 'ab')
a = csv.writer(b)
a.writerows(Duration)
b.close()

b = open('jobs_info/JOB_DRIVE_DUR_HY.csv', 'ab')
a = csv.writer(b)
a.writerows(DDuration)
b.close()

#---
Conventional Section

#---
Jobs from M1 file
job_row = 0
for i in range(len(Model_1_CO_JOBS)):
 s = Model_1_CO_JOBS[i][0]
 d = Model_1_CO_JOBS[i][1]
 for k in range(len(Distance)):
 if s == key[k][0] and d == key[k][1]:

 job_hours = 0
 total_distance = 0
 total_distance = 2 * value[k]
 #print total_distance
 job_hours = (float(total_distance)/avg_speed)
 drive_hours = job_hours
 number_of_nights = int (job_hours / driving_limit)
 #print s,d,number_of_nights, job_hours
 job_hours = job_hours + number_of_nights * sleep_time

 # print s,d,job_hours
 counter = int(Model_1_CO_JOBS[i][2])

 for j in range(counter):
 job_row +=1

 LOC = (job_row, s)
 Model_1_CO_LOC.append(LOC)

 DUR = (job_row, job_hours)
 Model_1_CO_DUR.append(DUR)

 DUR_DRIVE = (job_row, drive_hours)
 Model_1_CO_DDUR.append(DUR_DRIVE)

b = open('jobs_info/JOB_LOC_CO.csv', 'wb')
a = csv.writer(b)
header = ['number','node']
a.writerow(header)
a.writerows(Model_1_CO_LOC)
b.close()

b = open('jobs_info/JOB_DUR_CO.csv', 'wb')

140

a = csv.writer(b)
header = ['number','dur']
a.writerow(header)
a.writerows(Model_1_CO_DUR)
b.close()

b = open('jobs_info/JOB_DRIVE_DUR_CO.csv', 'wb')
a = csv.writer(b)
header = ['number','dur']
a.writerow(header)
a.writerows(Model_1_CO_DDUR)
b.close()

#---
Reading the jobs created in RO optimizer

M2_RAW = []

with open('M2_prep/M2_inventory_co.csv', 'rb') as f:

 reader = csv.reader(f)

 for row in reader:
 Model_2_TEMP = []
 Model_2_TEMP.append(row[0])
 Model_2_TEMP.append(row[1])
 Model_2_TEMP.append(float(row[2]))
 Model_2_TEMP.append(float(row[3]))
 Model_2_TEMP.append(float(row[4]))
 M2_RAW.append(Model_2_TEMP)

Location = []
Duration = []
DDuration = []

for i in range(len(M2_RAW)):
 for j in range(len(M2_RAW)):
 pass1 = M2_RAW[i][2]
 pass2 = M2_RAW[j][3]
 if pass1 == pass2:
 #print M2_RAW[i][0],M2_RAW[i][1],M2_RAW[i][2],M2_RAW[j][3],M2_RAW[j][4]

 #Entering a social cost into jobs with duration longer than 14 hours
 job_dur = 0
 job_dur = M2_RAW[j][4]
 drive_hours = job_dur

 #print job_dur
 number_of_nights = int (job_dur / driving_limit)
 #print number_of_nights
 job_dur = job_dur + number_of_nights * sleep_time

 job_row+=1
 loc = (job_row , M2_RAW[i][0])
 Location.append(loc)

 dur = (job_row , job_dur)
 Duration.append(dur)

 ddur = (job_row, drive_hours)
 DDuration.append(ddur)

141

b = open('jobs_info/JOB_LOC_CO.csv', 'ab')
a = csv.writer(b)
a.writerows(Location)
b.close()

b = open('jobs_info/JOB_DUR_CO.csv', 'ab')
a = csv.writer(b)
a.writerows(Duration)
b.close()

b = open('jobs_info/JOB_DRIVE_DUR_CO.csv', 'ab')
a = csv.writer(b)
a.writerows(DDuration)
b.close()
#---

142

Appendix K: GLPK Code of Assignment MIP

Developed by Mehran Fazili
Created on Jan 14, 2014
Last Updated on Feb 27, 2014
#--

set Node := {'Hal','Tru','Syd','Yar','Cht','Mon','Frd','Stj','Gt1','Riv','Qbc','Gt2','Mte','Gt3','Caw','Mtw','Otn','Ots'};
/* Set of nodes*/

param K, integer;
set Truck := {1..K} ;

param Q, integer;
set Job :={1..Q};

#---Parameters---

param T_L {i in Truck}, symbolic ;
Location of the truck
set Truck_Set, dimen 1;
table ara IN "CSV" "LP_INFO/TR_LOC.csv" :
Truck_Set <-[trk_num], T_L ~ home;

param J_L {j in Job}, symbolic;
Location of a job
set Job_Set, dimen 1;
table ara IN "CSV" "JOBS_INFO/JOB_LOC_CO.csv" :
Job_Set <-[number], J_L ~ node;

param J_DUR {j in Job};
Duration of a job
set JobD_Set, dimen 1;
table ara IN "CSV" "JOBS_INFO/JOB_DUR_CO.csv" :
JobD_Set <-[number], J_DUR ~ dur;

param J_DRIVE_DUR {j in Job};
Duration of a job
set JobDD_Set, dimen 1;
table ara IN "CSV" "JOBS_INFO/JOB_DRIVE_DUR_CO.csv" :
JobDD_Set <-[number], J_DRIVE_DUR ~ dur;

param FIX_COST{i in Truck};
Fix cost of entering a new truck into the service
set Truck_Fix_Cost_Set, dimen 1;
table ara IN "CSV" "LP_INFO/FIX_COST.csv" :
Truck_Fix_Cost_Set <-[trk_num], FIX_COST ~ f_cost;

param DELV_SPAN{i in Truck};
Maximum work time assigned to truck i. 14 for short haul trucks, 72 hours for long haul trucks.
set Del_Span_Set, dimen 1;
table ara IN "CSV" "LP_INFO/DEL_SPAN.csv" :
Del_Span_Set <-[trk_num], DELV_SPAN ~ span;

param DIST{n1 in Node, n2 in Node};
Distance from one node to other node

param D_DUR {i in Truck , j in Job } := 2*DIST[T_L[i], J_L[j]] ;
Distance in hours from node the location of truck i to location of job j

param DAYDRIVE, default 14;
on duty time allowed per day

param HOUR_COST{i in Truck}, default 200;
Averge hourly operational cost of a truck - from Goverment of Canada $3.15/ km cost of operation

param SOCIAL_COST, default 60;

143

Average cost of a bed and breakfast, parking by highway. per night.
#---Variables---

var x{i in Truck, j in Job}, binary;
Binary variable, 1 if truck i is assigned to perform job j

var fix_x{i in Truck}, binary;
Binary variable, 1 if truck i enter service

var enroute_time{i in Truck}, >=0 ;
time truck i is away from home

var fix_cost{i in Truck}, >= 0;
Fix cost of entering truck i into service

var opr_cost{i in Truck}, >= 0;
Operation cost of truck i

var soc_cost{i in Truck}, >= 0 ;
Social cost of truck i

#---------------------------------

var total_soc, >= 0 ;

var total_opr, >= 0 ;

var total_fix, >= 0;

var total_enroute, >=0;

var total_driving_hours, >=0;
#---Obj Func---

minimize obj: sum{i in Truck }(opr_cost[i] + soc_cost[i] + fix_cost[i]);

#--Constraints--

con1{i in Truck}:sum{j in Job}((D_DUR[i,j] + J_DUR[j])* x[i,j]) = enroute_time[i] ;

con2{j in Job}:sum{i in Truck}x[i,j] = 1;

con3{i in Truck}: enroute_time[i] <= DELV_SPAN[i]*fix_x[i] ;
Delivery Span for Short Haul Trucks

con4{i in Truck}:sum{j in Job}((D_DUR[i,j] + J_DRIVE_DUR[j])* x[i,j])*HOUR_COST[i] = opr_cost[i] ;
#Operational cost of Short Haul Trucks

cont5{i in Truck}: FIX_COST[i] * fix_x[i] = fix_cost[i];
#Fix cost of Short Haul Trucks

cont6{i in Truck}: sum{j in Job: J_DRIVE_DUR[j] >=14 }((J_DRIVE_DUR[j]* x[i,j]) / DAYDRIVE) * SOCIAL_COST = soc_cost[i] ;

#cona1{i in Truck: i = 1}: enroute_time[i] <= 93*fix_x[i] ;
Delivery Span for Short Haul Trucks

#--

Following are the help constriant for purpose of collecting statistics. They have nothing to do with the solution of the model.

contax1: sum{i in Truck}soc_cost[i] = total_soc;

contax2: sum{i in Truck}opr_cost[i] = total_opr;

contax3: sum{i in Truck}fix_cost[i] = total_fix;

contax4: sum{i in Truck}enroute_time[i] = total_enroute;

contac5: sum{i in Truck}opr_cost[i]/ HOUR_COST[i] = total_driving_hours;

144

#--
solve;

for {i in Truck} printf "\n\n %s %d %s %f \n", "Driving time of truck ", i ," is ", enroute_time[i];

printf "\n\nLoaded Arcs and Routes\n\n";
for {i in Truck , j in Job}{
for {{0}: x[i,j] == 1 } {
printf " %s %d %s %d \n\n"," truck ", i ," servce job ",j;
}}
#--
data;

param K := 2790;
Number of trucks in the system

param Q := 451;
Number of jobs for CO

#param Q := 847;
Number of jobs for HY

#param Q := 2755;
Number of jobs for PI

param DIST :Hal Tru Syd Yar Mon Frd Stj Cht Gt1 Riv Qbc
 Gt2 Mte Gt3 Caw Mtw Otn Ots :=
Hal 0.00 1.61 5.49 4.30 3.78 5.95 5.66 4.58 7.09 10.70
 13.21 15.79 16.01 16.50 17.26 16.51 18.44 19.65
Tru 1.61 0.00 4.38 5.41 2.66 4.84 4.55 3.46 5.98 9.59
 12.10 14.68 14.90 15.40 16.15 15.40 17.33 18.54
Syd 5.49 4.38 0.00 9.23 6.45 8.45 8.26 7.16 9.73 13.28
 15.75 18.41 18.70 19.18 19.95 19.20 21.04 22.24
Yar 4.30 5.41 9.23 0.00 7.36 9.53 9.24 8.10 10.89 8.88
 16.79 19.50 19.65 19.95 20.90 20.15 16.60 17.81
Mon 3.78 2.66 6.45 7.36 0.00 2.75 2.48 2.54 3.81 7.51
 9.99 12.63 12.84 13.39 14.09 13.34 15.24 16.48
Frd 5.95 4.84 8.45 9.53 2.75 0.00 1.86 4.64 1.64 5.36
 7.79 10.45 10.83 11.20 12.08 11.33 13.13 14.34
Stj 5.66 4.55 8.26 9.24 2.48 1.86 0.00 4.78 3.04 6.51
 8.91 11.70 11.83 12.33 13.08 12.33 14.30 15.50
Cht 4.58 3.46 7.16 8.10 2.54 4.64 4.78 0.00 5.94 9.41
 11.86 14.55 14.75 15.41 16.00 15.25 17.20 18.36
Gt1 7.09 5.98 9.73 10.89 3.81 1.64 3.04 5.94 0.00 4.18
 6.44 9.20 9.24 10.03 10.49 9.74 11.93 13.15
Riv 10.70 9.59 13.28 8.88 7.51 5.36 6.51 9.41 4.18 0.00
 2.94 7.69 5.80 6.40 7.05 6.30 8.36 9.40
Qbc 13.21 12.10 15.75 16.79 9.99 7.79 8.91 11.86 6.44 2.94
 0.00 3.28 3.55 4.19 4.80 4.05 6.15 7.48
Gt2 15.79 14.68 18.41 19.50 12.63 10.45 11.70 14.55 9.20 7.69
 3.28 0.00 2.40 2.86 3.65 2.90 4.99 6.05
Mte 16.01 14.90 18.70 19.65 12.84 10.83 11.83 14.75 9.24 5.80
 3.55 2.40 0.00 1.40 1.75 1.00 3.00 4.13
Gt3 16.50 15.40 19.18 19.95 13.39 11.20 12.33 15.41 10.03 6.40
 4.19 2.86 1.40 0.00 2.93 1.68 3.93 4.69
Caw 17.26 16.15 19.95 20.90 14.09 12.08 13.08 16.00 10.49 7.05
 4.80 3.65 1.75 2.93 0.00 1.75 4.25 5.38
Mtw 16.51 15.40 19.20 20.15 13.34 11.33 12.33 15.25 9.74 6.30
 4.05 2.90 1.00 1.68 1.75 0.00 2.50 3.63
Otn 18.44 17.33 21.04 16.60 15.24 13.13 14.30 17.20 11.93 8.36
 6.15 4.99 3.00 3.93 4.25 2.50 0.00 2.90
Ots 19.65 18.54 22.24 17.81 16.48 14.34 15.50 18.36 13.15 9.40
 7.48 6.05 4.13 4.69 5.38 3.63 2.90 0.00;

end;

145

Appendix L: One-Way ANOVA Test

Analysis of variance or One-Way ANOVA is used [46] to investigate the population mean of a

one factor problem where there are more than two samples to be compared.

The calculation procedure is explained as follows, however a reader shall refer to [46] for a

detailed explanation of the steps. Minitab™16 is used to perform the actual calculation in this

thesis.

One-Way ANOVA

Assumption and Hypothesis in One-Way ANOVA

The initial hypothesis in One-Way ANOVA test is shown below. If every observation j form

every sample

𝐻0 ∶ 𝜇1 = 𝜇2 = ⋯ = 𝜇𝑘

𝐻1 = 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑡𝑤𝑜 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑒𝑎𝑛𝑠 𝑎𝑟𝑒 𝑛𝑜𝑡 𝑒𝑞𝑢𝑎𝑙

i is shown by Yji , then one can show each observation in the form of:

𝑌𝑖𝑗 = 𝜇 + 𝛼𝑖 + 𝜖𝑖𝑗

Where 𝜇, is the overall mean across all samples, 𝛼𝑖 is the effect of the treatment i (ex. the effect

of policy variation D2D, PI, HY), and 𝜖𝑖𝑗 is the random error and plays the same role as the error

term in regression analysis. Therefore the above hypothesis can be written in the following form:

𝐻0 ∶ 𝛼1 = 𝛼2 = ⋯ = 𝛼𝑘 = 0

𝐻1 = 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑜𝑓 𝑡ℎ𝑒 𝛼𝑖 𝑖𝑠 𝑛𝑜𝑡 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 𝑧𝑒𝑟𝑜

The notations are adopted from [46].

 𝐾 − 1 Degree of freedom

146

𝑛 Number of observations in a sample

𝑦𝑖𝑗 The j-th observation of the i-th sample

 𝑦𝑖.̅ The mean value of the i-th sample

𝑦..̅
Overall mean value across of all

samples

𝑆𝑆𝑇 = ∑∑(𝑦𝑖𝑗 − 𝑦..̅

𝑛

𝑗=1

𝑘

𝑖=1

)2 Total sum of squares

𝑆𝑆𝐴 = 𝑛 ∑(𝑦𝑖.̅

𝑘

𝑖=1

− 𝑦..̅)
2

Treatment sum of squares

𝑆𝑆𝐸 = ∑∑(𝑦𝑖𝑗 − 𝑦𝑖.̅

𝑛

𝑗=1

𝑘

𝑖=1

)2

Error sum of squares

Table 22 - Analysis of Variance - One-Way ANOVA

Source of

Variation

Sum of

Squares

Degree of

Freedom

Mean

 Square

Computed

f

Treatments

(Systems)
SSA 𝐾 − 1 𝑠1

2 =
𝑆𝑆𝐴

𝐾 − 1
 𝑓 =

𝑠1
2

𝑠2

Error SSE 𝐾(𝑛 − 1) 𝑠2 =
𝑆𝑆𝐸

𝐾(𝑛 − 1)

Total SST 𝐾𝑛 − 1

