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3.3 Some y’s and ŷ’s of three methods on Y30 . . . . . . . . . . . . 34

3.4 RSS and JSD permutation histogram of Y49 for the three methods 35

3.5 RSS and JSD permutation histogram of Y30 for the three methods 36

3.6 The number of positive coefficients of all 100 matches for three
methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.7 Heatmap of the ordered coefficients for the MJSD . . . . . . . 40

v



Abstract

A hierarchical Bayesian model called BiomeNet can be used to identify the functional

units of metabolic reactions, subnetworks and community-level metabolic networks.

The framework models metabolic structures by assuming each sample consists of

many tightly connected subnetworks, which in turn are comprised of different reac-

tions. When applying the method the number of subnetworks L must be pre-specified

When L is set larger in BiomeNet, the inferred structures of the subnetwoks are ex-

pected to come out in a more trivial form. Three methods, LASSO, NNLS and a

new method, MJSD, are applied to match a subnetwork in one analysis (say, when

L=100) with several subnetworks when L is increased (say, L=200). RSS and JSD are

applied as matching criteria to conduct multiple tests to judge the significance of the

matches. From the results, I am able to identify those “predominant” subnetworks

and give a reasonable conjecture that those “predominant” subnetworks always come

out as unbroken blocks for any larger L values.
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Chapter 1

Introduction

1.1 Background

From protists to humans, all plants and animals live in close association with microbial

organisms. These microbes are believed to play a critical role in a wide variety of set-

tings, from globally significant nutrient cycling to influencing human physiology [16].

The ecological community of commensal, symbiotic and pathogenic microorganisms

that literally share the human body space have a profound effect on human health [11].

For this reason, in human microbiomics , research is focused on the relationship of the

microbial communities to both health and disease status. In late 1990s, researchers

found that the microbiome in the gut played a role in the development and mainte-

nance of the human immune system, and the human microbiome is now implicated

in a variety of autoimmune diseases like diabetes [10] [22]. A poor mix of microbes in

the gut may also aggravate common conditions such as obesity [20]. The consensus

opinion is that although the mammalian immune system seems to be designed to

control microorganisms, it is in fact controlled by microorganisms [12].

Most microbes in most environments are not cultivatable, so studies of microbial

communities must be made based on DNA sampled directly from the environment, al-

though RNA, protein and metabolite based studies may also be performed [6]. There

are two ways to use environmental DNA to study microbial communities. One is

targeted amplicon studies (e.g., 16S SSU rDNA), which focuses on a known marker

gene and is primarily informative about taxonomy [21]. The other that appeared

more recently is shotgun metagenomics, which can be used to study the functional

potential of the community [21]. Shotgun sequencing of total environmental DNA

proceeds by randomly cutting the total DNA within a sample, and sequencing the

many short fragments that are produced [14]. The resulting collection of DNA se-

quences represents the genomes of all the microbes in the sample, and is referred

to as the “metagenome” of the sampled microbiota. The function of some of those

1
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sequences can be inferred via homology to reference sequence with known functions

(e.g., through the KEGG database) [14]. However, only a fraction of the gene se-

quences can be assigned a function; the function of a very large number of sequences,

will remain unknown [14]. Of particular interest are those sequences that encode a

known enzyme, as they can be used to infer the community-level metabolic potential

of the microbiota.

The complete set of metabolic and physical processes of a cell, called a metabolic

network, determines the physiological and biochemical properties of the bacterium.

The fundamental units of a metabolic network are its chemical reactions. The essen-

tial components of a reaction are the substrates (chemical compounds), the enzyme (a

protein encoded by DNA) that will act upon the substrates, and the products that are

produced by the action of the enzyme on its substrates (other chemical compounds).

It is important to note that the products of one enzyme-mediated reaction can serve

as the substrate for a different enzyme-mediated reaction. Such chemical reactions are

organized into subnetworks (functional modules), which are themselves organized into

the higher-level structures that biologists refer to as the metabolic network. In the

field of microbiomics, the notion of the metabolic network is extended to include the

full metabolic capacity, and the full set of interactions, carried out by a community

of microbes.

In order to infer differential usage of metabolic networks among ecologically di-

vergent microbial communities, a Bayesian modeling approach called BiomeNet was

developed by Shafiei et al. [16]. The modeling framework differs from previous ap-

proaches [e.g., PCA and its variants] in attempting to capture the hierarchical nature

of real metabolic networks [22]. Specifically, sets of reactions (related by exploit-

ing a shared pool of substrates and products) are modeled as a metabolic subnet-

work, and over-lapping mixtures of such metabolic subnetworks are used to model

the full metabolic network [16]. When such networks are inferred from the model (as

opposed to being defined solely according to biochemical expertise) they are called

metabosystems [16]. Metabosystems are intended to represent hypothetical metabolic

phenotypes, and samples are permitted to consist of overlapping mixtures of meta-

bosystems.
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Currently, the most widely used method to analyze community metabolic net-

works, and metagenomic variation in general, is Principle Component Analysis (PCA)

and it variants [16]. BiomeNet is fundamentally different from such methods, in pro-

viding a framework to take advantage of dependencies between reactions encoded

by metabolic networks without any transformation and reduction. This means that

results obtained under BiomeNet offer biologists a direct functional interpretation.

Thus, BiomeNet contributes a valuable addition to PCA [16].

BiomeNet has been applied to a variety of datasets, including marine water sam-

ples, mammalian gut microbiomes and the gut microbiomes of inflammatory bowel

disease (IBD) patients [16]. The case of IBD illustrates why a direct functional inter-

pretation of the results is critical to microbiome researchers. IBD is a human disease

characterized by chronic immune dysregulation in the gut. Using BiomeNet, Shafiei

et al [16] found that IBD patients differed from healthy individuals according to the

mixture of metabosystems found in their gut. Interestingly, the metabosystem having

a greater prevalence among IBD patients was characterized by metabolic reactions

associated with (i) close association with the human gut epithelium, (ii) resistance

to dietary intervention, and (iii) interference with uptake of antioxidants connected

to IBD [16]. IBD is a serious disease; it can cause severely disruptive pain, require

surgery, and even cause increased mortality. Even more pressing is that it is on the

increase worldwide, with Canada having among the highest rates. Thus, it is im-

portant that BiomeNet produces results that have a direct relationship to microbial

metabolic capacity, and the posterior mixture weights have a straightforward inter-

pretation. Inference under BiomeNet will be focus of this thesis, and the framework

is described in more detail in the next section.

1.2 BiomeNet

BiomeNet is a hierarchical mixed-membership Bayesian model similar to Latent Dirich-

let Allocation (LDA). LDA employs a mixture of Dirichlet priors to facilitate cluster-

ing, or classification. Standard LDA, however, cannot be used to resolve the under-

lying structure of a metabolic network in terms of easily interpretable parts such as

metabolic pathways or subnetworks. In the metagenomic setting, the observed data

(produced by shotgun sequencing) is the abundance of enzyme-encoding sequence
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reads in each sample; but, for input into BiomeNet the data must be converted to

counts of substrate-product pairs. To do this, where possible, each enzyme-encoding

sequence is assigned to its enzyme within the EC database. The EC database provides

information about the biochemical reaction that the enzyme catalyzes, including all

of the substrates and products for that reaction. Each reaction is decomposed into all

possible substrates and products (this leads to a mini hyper-graph for each reaction),

and all pairs of compounds are assigned the abundance of the associated enzyme-

encoding sequence within the sample. As mammalian gut metagenomes can encode

thousands of unique enzymes, the input data for BiomeNet is rich in information

relevant to metabolic interactions.

BiomeNet is used to model metabolic interactions at the community-level. The

model assumes that each microbiome sample is a mixture of K metabosystems, where

K is assumed to be known and fixed. However, the contribution of the K metabosys-

tems is permitted to differ between samples. Each metabosystem is itself viewed as

a mixture of a fixed number (L) of metabolic subnetworks. Hence, metabosystems

differ according to their particular mixture of subnetworks, with the subnetworks

viewed as a mixture of metabolic reactions. Because reactions within a subnetwork

are linked through shared chemical compounds, the subnetworks are actually modeled

as a subset of compounds that are converted to another subset of compounds. This is

why each enzymatic reaction must be decomposed into substrate-product pairs (S-R

pairs), with each subnetwork having its own substrates and products. The lower lev-

els of the hierarchy (e.g., reactions) can always contribute to any of the higher levels

(e.g., to different subnetworks, metabosystem and samples) to different degrees [16].

The set of S-R pairs for each reaction in a sample is the only observable variable,

with other variables (the subnetwork (Y ) and metabosystem assignments (Z) of the

reactions) being latent variables.

In order to capture the dependence among the many variables more concisely,

a plate diagram is shown in Figure 1.1 with the mathematical definitions given in

Table 1.1. The outer plate represents the total data, the middle plate represents

samples, and the inner plate represents reactions within a sample. The relative con-

tribution of each metabosystem to the nth microbiome sample is modeled via the

variable θn, which is a probability vector of K values that sum to one. Typically, a
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Figure 1.1: Plate diagram for the BiomeNet model. This model specifies a generative
process; coupling between substrate-product pairs is enforced by conditioning their
generation on a single subnetwork membership [16].
Note: Adapted from BiomeNet, A bayesian model for inference of metablic divergence
among mibrobial communities by Mahdi Shafei, Katherine A Dunn. PLoS Comput
Biol, 10(11):e1003918, 2014.

sparse symmetric Dirichlet priori is placed on θ.

θ ∼ Dirichlet(αθ)

The unique mixture of L subnetworks for each metabosystem is modeled with a

probability vector, ϕk, of mixing probabilities that sum to one. Thus, given K meta-

bosystems, a K × L matrix called ϕ is used to represent the relative contribution of

the lth subnetwork to the kth metabosystem. Typically, a sparse symmetric Dirichlet

prior is placed on ϕ.

ϕk ∼ Dirichlet(αϕ)
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Because reactions are linked through shared chemical compounds, each subnet-

work has its own substrate (S) and product (R) groups. Note that the products of one

reaction can serve as the substrate of another reaction (i.e., the intermediary com-

pounds in a metabolic pathway), and the membership of compounds to the S and R

groups must be “soft” (probabilistic) rather than discrete. Thus, for L subnetworks,

there will be L substrate and products groups. Each subnetwork has a vector of C

compounds for its own substrate and products, denoted by δl and γl respectively,

summing to one. For L subnetworks, there will be an L× C matrix, δ, for substrate

compounds and another L × C matrix, γ, for product compounds. A value in row

l and column c of one of these matrices gives the contribution of compound c to a

subnetwork (as either a substrate or product, depending on the matrix). As above, a

sparse symmetric Dirichlet prior is placed on δl and γl.

δl ∼ Dirichlet(αδ)

γl ∼ Dirichlet(αγ)

Variable Type Meaning
N integer number of microbiome sample(e.g 38)
K integer number of metabosystems (e.g 3)
L integer number of subnetworks (e.g 100)
C integer number of compounds (e.g 2713)
θ probability prior distribution of metabosystems in a sample
ϕ probability prior distribution of subnetworks in metabosystems
δ probability prior distribution of substrate compounds in subnetworks
γ probability prior distribution of product compounds in subnetworks
α probability concentration parameter of the Dirichlet distribution
n integer index of a sample
i integer index of a reaction
j integer index of a substrate-product pairs
Zni vector metabosystem assignment for the ith reaction in the nth sample
Yni vector subnetwork assignment for the ith reaction in the nth sample
Snij vector substrate compounds assigned for the Jin S-R pairs
Rnij vector product compounds assigned for the Jin S-R pairs

Table 1.1: Mathematical definition of the plate diagram
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While the prior probabilities are in the Dirichlet distributions, the posterior dis-

tributions are in a multinomial distribution. The relative contribution of each meta-

bosystem and subnetwork to the sample n is modeled as

Zni|θn ∼Multi(θn)

Yni|Zni ∼Multi(ϕzni
)

Where Zni and Yni denote the metabosystem and subnetwork assignments for re-

action i in sample n. Inference under BiomeNet involves sampling the posterior dis-

tribution of the subnetwork and metabosystem assignments for each reaction in the

data and integrating out all other latent variables. Specifically, collapsed Gibb sam-

pling is used to sample from the conditional distribution P (Z, Y |R, S, αθ, αϕ, αδ, αγ),
with the latent variable θ, ϕ, δ, γ integrated out. The subnetwork and metabosys-

tem assignments are sampled for a single reaction in a single sample, P (Z, Y |S,R),

given the set of subnetwork and metabosystem assignment for all other reactions in

all other samples except only reaction i in sample n (Y−ni and Z−ni respectively).

Each iteration of Gibb sampling not only provides a joint posterior distribution sam-

pling point on P (Z, Y |S,R), but also provide a sampling point from all marginal

distribution P (Zni, Yni|S,R). Based on the posterior distribution of metabosystems

and subnetworks assignments, P (Z|S,R) and P (Y |S,R), the posterior distribution

of θ and ϕ, and their means, can be directly inferred if sufficient iterations of Gibbs

sampling have been carried out [16].

1.3 The challenge of applying BiomeNet to real data

The strength of BiomeNet is that it provides a method to learn the community-level

structure of the data in terms of subnetworks and metabosystems, rather than accord-

ing to curated pathways, or some other biology-centered definitions. Model-derived

structures help researchers to investigate the latent metabolic structure of any mi-

crobial community, and to understand microbial community ecology, without having

to assume that metabolic pathways have been previously defined and annotated in

a way that is suitable to the communities under study. However, BiomeNet does

have limitations, and further development of the analytical framework is warranted.

The number of metabosystems K in each sample, and the number of subnetworks L
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must be pre-specified [16]. Without strong biological criteria of selecting the values

of K and L, the user of BiomeNet must either (i) try different number of K and L

and compare the discrepancy to choose a reasonable values, or (ii) choose arbitrarily

high values for K and L and set the concentration parameter of the Dirichlet priors

close to zero as a means of pushing BiomeNet to characterize metabosystems by a

relatively few “predominant” subnetworks and reactions. The latter is a strategy for

minimizing variance and maximizing interpretability in the face of high values for

K and L. The problem with both strategies is that there is no objective means of

assessing which, if any, subnetworks within a metabosystem, or reactions within a

subnetwork, warrant “predominant” status and further biological interpretation.

A metagenomic dataset comprised of 38 mammalian gut microbiomes [16] provides

both a good illustration of the challenges, as well as a good test case of future method

development. This dataset is rich in metabolic information, having 2824 unique

reactions involving 2713 compounds. In the original study, Shafiei et al [16], set K=

3 metabosystems, to match the number of dietary niches (carnivore, omnivore and

herbivore) represented by the sampled mammals. However, the authors found that

they could only separate the carnivores from the herbivores, and concluded that the

there was strong signal for 2 metabosystems, and only weak signal for a third. Shafiei

et al. [16] had no a priori basis to select a good value for L, so they experimented

with different numbers of subnetworks (i.e., L=50, 100, 150, 200) and assessed the

robustness of the reaction composition of the metabosystems to L. [14]. Although

their results suggested that a good value of L was likely somewhere between 100 and

150, they provided no means of objectively assessing which were the most important

subnetworks.

When L is larger than needed, there will be redundant subnetworks in BiomeNet.

The redundant subnetworks will carry very small weight for many of the metabosys-

tems and their reactions will have only a trivial impact in composition of each meta-

bosystem. Even when the concentration parameter of the Dirichlet priors are close

to zero, and BiomeNet has been encouraged to use relatively few predominant sub-

networks and reactions, it remains unclear how to decide at what point the mixture

weight of a given metabosystem should be considered “trivial”. Thus the motivation

of my research is to address this challenge.
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I employed the mammal dataset described above to develop and investigate several

alternative methods for discriminating the so-called “predominant” subnetworks from

those making only trivial contributions to a metabosystem. The logic that underpins

my approach is that the informative subnetworks should make consistent contribu-

tions to each metabosystem across alternative values of L (as long as L is not too

small), and that matching the components (i.e., reactions) of subnetworks can be used

to identify them. However, comparison of results across alternative values of L is far

from straightforward. First, subnetworks are unlikely to be labeled in the same way.

For example, subnetwork 10 under L=100 might correspond to subnetwork 33 under

L=150. Second, the signal for a subnetwork in one analysis (say, when L=100) could

be split among several subnetworks when the value for L is increased (say, when L =

200). Thus, I investigated model-based methods for matching subnetworks from one

case as linear combinations of subnetworks derived from another case. This strategy

overcomes the problem of potentially complex relationships between the components

of subnetworks derived from different analyses, and it has no requirements about

labeling of subnetworks among the different analyses.

To achieve this, I summarize the information about the components of each sub-

network in a N ×L reaction matrix. Here, N is the number of unique reaction in the

dataset, which is 2824 for the 38 mammalian gut metagenomes. Each column in the

N ×L matrix represents a reaction’s posterior mixing probability to the correspond-

ing subnetwork [16] (detailed desciption of the reaction matrix in Chapter 2). In the

thesis, I first evaluate two classical methods, LASSO (least absolute shrinkage and

selection operator) and NNLS (non-negative least squares) regression, for “match-

ing” results structured as described above. I then describe a new method similar to

forward selection for matching the components of subnetworks. The effectiveness of

these three methods are compared, and I show that the new method is more suitable

in the case of the 38 mammalian gut metagenomes.

1.4 Structure of the thesis

This thesis is comprised of four chapters. The next two chapters (2 and 3) are devoted

to method development and application to real data, In Chapter 2, I introduce two

classical methods (LASSO and NNLS) and the new method, and describe how they
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can be applied to the problem of matching the metabolic components of complex

microbial communities. As an example, I match one subnetwork from the analysis of

L=100 to the subnetworks from that of L=200 using the three methods. In Chapter

3, these three methods are applied to all the 100 subnetworks in the L = 100 run

of BiomeNet to match the subnetworks in the L= 200 run. I use RSS and JSD as

criteria to rank the good matches and give examples of a good and a bad match

according to those criteria. I then discriminate those well matched subnetworks by

using permutation test and present the estimated coefficient matrices to find the

features of the good matches. Chapter 4 concludes with the strengths and weaknesses

of all three methods and provides directions for future research.



Chapter 2

Methods for matching the metabolic components of complex

microbial communities

As introduced in Chapter 1, the strength of BiomeNet is that it provides a method to

learn the community-level structure of the data in terms of subnetworks and meta-

bosystems. One way to find if BiomeNet output is consistent with the information on

the true community-level structure is to match the subnetworks to find whether the

informative subnetworks always can be identified across alternative values of L when

K is fixed. Here K is fixed at 3 as this was the value employed in the original study of

Shafiei.et.al [16]. If BiomeNet works well, the signal for a subnetwork in one analysis

(say, when L=100) could be either the same or split among several subnetworks when

the value for L is increased (say, L=200). Because subnetworks are unlikely to be

labeled in the same way, some method is needed to identify the relationships between

subnetworks derived from different applications of BiomeNet to the same data. The

relationships could be either a one to one correspondence, or a subnetwork from one

case being split into several subnetworks in another case.

Each subnetwork is represented by a column of the posterior mixing probabilities

in the N × L reaction matrix, where N=2824 is the number of unique reactions

for the 38 mammalian gut metagenomic data and L is the number of subnetworks.

Denote the N ×L1 reaction matrix from one run of BiomeNet as Y , and the N ×L2

reaction matrix from different run of BiomeNet as X, the matching problem that one

subnetwork in Y corresponds to one or more subnetworks in X can be represented

mathematically as follows:

Y = Xβ = β1X1 + β2X2 + · · ·+ βL2XL2

Thus the matching problem naturally can be formulated as a regression without

intercept, in which case minimization of the sum of squared residuals can be used

as the criterion to achieve the best fit. Matching subnetworks from one case as

11
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linear combinations of another case should perform well because the expectation is

that a large subnetwork in L=100 will be split into several smaller (and largely non-

overlapping) subnetworks when L=200. Thus the linear regression model is chosen

to represent the relationship between subnetworks. Usually, the least square linear

regression coefficient vector is not sparse. However, in this application one subnetwork

is expected to be matched by either one or only a few subnetworks, i.e. the consistency

of the subnetwork outputs from BiomeNet is associated to the sparsity and the quality

of the matches.

So, a regularized version of the least squares solution may be preferable to satisfy

the sparsity of β. Naturally, LASSO regression is a good candidate method since it

can result in a good regression model with a smaller subset of predictors for LASSO

fitting. A modified LARS algorithm [11] can be used to return a full LASSO path,

and a sparse solution can be achieved with a proper model selection criterion.

If a subnetwork in Y is split into several subnetworks in X, then ideally the regres-

sion coefficients should be non-negative which means β ≥ 0. LASSO regression only

satisfies the requirement of sparsity of β, but not the non-negativity of β. Thus an-

other good candidate method is the NNLS regression which assures the non-negativity

of the coefficients. The NNLS solution is not only non-negative, it can also be sparse

to some extent, and further sparsity can be achieved by a proper thresholding algo-

rithm.

Furthermore, since each column in matrices X and Y represents the posterior

mixing probability over all reactions, the sum of all elements in a column should be

1. If one column can be represented by a linear combination of several other columns,

i.e., Y=Xβ, thus 1 = 1TY = 1TXβ = 1Tβ. This implies another constraint on

β. Both LASSO and NNLS don’t necessarily output the solution that strictly satisfy

this third constraint for β.

As a measure of the quality of matching of two multinomial probability distribu-

tions, residual sum of squares is not the most proper criterion. A natural criterion for

this purpose is the Jensen-Shannon Divergence. Thus a new method is developed by

directly optimizing the Jensen-Shannon divergence between the target vector Y and

a sparse non-negative linear combination of X such that the coefficients sum to 1.

In the rest of this chapter, I first review the methods of LASSO and NNLS and
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then describe our newly developed method which is more suitable for this applica-

tion. Following the review of each method, I show an example of its performance on

matching a subnetwork from L = 100, denoted as Y1, with subnetworks from L=200

obtained from the mammalian metagenomics data by using BiomeNet.

2.1 LASSO Regression

2.1.1 Review of the method

Given a set of input measurements X1, X2, . . . , XL and an outcome measurement Y ,

the LASSO [4] regression fits a linear model

Y = β1X1 + β2X2 + . . . βLXL = Xβ

with a constraint on |β|, the L1 norm of the parameter vector, not greater than a

given value.

The criterion is:

argmin
β

N∑
i=1

(yi −
L∑
j=1

xijβj)
2

subject to
L∑
j=1

|βj| ≤ s

The bound s is a tuning parameter [2]. Of course when s is large enough, the

constraint has no effect, and the solution of LASSO regression is just the same as the

least square linear regression.

The problem can be equivalently represented as an unconstrained minimization

problem with the L1 norm penalty λ|β| added as following:

argmin
1

2

N∑
i=1

(yi −
L∑
j=1

xijβj)
2 + λ

L∑
j=1

|βj|

An alternative regularized version of least squares is Ridge regression [4], which

uses the constraint that ||β||2, the L2-norm of the parameter vector, is no greater than

a given value. Here, LASSO regression is preferred to Ridge regression, since with

the penalty λ increasing, all parameters of Ridge regression are shrunk towards 0, but

not exactly equal to 0; while in LASSO more parameters are shrunk to zero which
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results in a sparse solution [2]. Since our purpose is to find several subnetworks that

exhibit the strongest linear relation with the target subnetwork, sparsity is desirable.

Because the LASSO loss function is not quadratic, the optimization problem can

not be solved using general convex optimization methods. Here the entire LASSO

path is calculated by a modified form of the LARS (least angle regression) algo-

rithm [2]. The R package “lars” is used to solve the LASSO fitting. By default in

the package, each variable is standardized to have unit L2-norm. In this applica-

tion, the variables are multinomial probabilities that sum to 1; so, it’s not proper to

standardize the variables.

The solution path is piecewise linear – there are a finite number of the points at

which the regression projection changes its direction [2]. The sparsity of the solu-

tion is controlled by the regularization parameter λ, which in general is chosen by a

cross-validation procedure on training data. In our application, it is not proper to

perform the cross-validation, because both responses and predictors are multinomial

distribution probabilities. The sparsity of these vectors makes the variance of the

cross-validation results very large and it is not proper to ignore the property that the

sum of these vectors are all 1’s. An alternative method to cross-validation for choos-

ing the tuning parameter is to use Mallow’s Cp as the model selection criterion [2].

A smaller Cp value indicates a better model. The Cp criterion is defined as.

Cp =
SSEk

MSEp

− n+ 2k

where

SSEk =
n∑
i=1

(yi − ŷi(k))2 is the sum of squares for the model with k predictors.

ŷi(k) is the predicted value of the ith observation yi from the model with k regres-

sors.

MSEp is the mean square error on the complete set of p regressors. n is the sample

size.

The complexity of the models in the LASSO path can be represented by their

degrees of freedom. The number of degrees of freedom for a linear model is defined

as the true dimension of the linear subspace in which the predictors of the model lie.

However defining the number of predictors in the LASSO model is only an approxi-

mation because each dimension shouldn’t be counted as a full degree of freedom due
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to the shrinkage applied [2]. The approximation works due to a useful conclusion

in [19] that when fitting a linear model via LASSO stopping at some number of steps

k < p, the df of the modified LAR procedure at any stage, is approximately equal to

the number of predictors in the model. Thus if the selected model includes k non-zero

coefficients, I define the degrees of freedom (d.f.) as k.

2.1.2 An example of LASSO fitting

As an example, I use one subnetwork from the L = 100 case, denoted as Y1, to

illustrate the LASSO fitting. Note that the same Y1 variable is also used as illustration

example for the NNLS and our newly developed method.
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Figure 2.1: Profiles of LASSO coefficients. A vertical line is drawn at df=11, the
value chosen by smallest Cp criterion. The profiles are piece-wise linear, and so are
computed only at the first 15 steps of LASSO path. βj is the coefficients of the
predictor Xj . With the increase of df, the predictor is added into the model one by
one.

In this particular LASSO regression, there are 153 steps in the whole LASSO path
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which means that 153 variables are added into the model at the end of LASSO. Df

is used to denote the number of variables that are already selected into the model at

each step.

df index Cp RSS λ
1 19 441.7240109 0.0513347 0.0899638
2 107 331.2993961 0.0495664 0.0519204
3 51 232.4238521 0.0479797 0.0425626
4 73 7.6186055 0.0444123 0.0357959
5 72 -1.3932404 0.0442391 0.0196929
6 1 -119.2749048 0.0423535 0.0187911
7 164 -120.7537535 0.0422988 0.0061926
8 124 -119.9081055 0.0422807 0.0055229
9 151 -126.6824536 0.0421426 0.0053128

10 2 -130.3282597 0.0420538 0.0035695
11 149 -130.6962969 0.0420166 0.0019435
12 6 -128.8005140 0.0420150 0.0006002
13 38 -126.9147353 0.0420132 0.0004717
14 75 -124.9477789 0.0420126 0.0002889
15 192 -122.9586742 0.0420125 0.0002141
16 17 -120.9757184 0.0420122 0.0001849
17 109 -118.9774784 0.0420122 0.0001306
18 26 -116.9820573 0.0420121 0.0001240
19 179 -114.9826678 0.0420121 0.0001062
20 93 -112.9835537 0.0420121 0.0001037
21 70 -110.9861158 0.0420120 0.0001002
22 101 -108.9870484 0.0420120 0.0000899
23 99 -106.9874792 0.0420120 0.0000860
24 31 -104.9894883 0.0420120 0.0000842
25 65 -102.9904490 0.0420120 0.0000759
26 47 -100.9914000 0.0420120 0.0000717
27 48 -98.9939734 0.0420119 0.0000674
28 184 -96.9943649 0.0420119 0.0000549
29 178 -94.9949087 0.0420119 0.0000528
30 177 -92.9981477 0.0420119 0.0000499

Table 2.1: The first 30 steps of the LASSO path on Y1. Df denotes degrees of freedom
of the model. Index indicates which predictor is included in the model at each step.

Table 2.1 shows the first 30 steps of the LASSO path. From Table 2.1, the smallest

Cp value corresponds to df=11, which means 11 variables are selected by this model.

The LASSO path is dispalyed in Figure 2.1, where a vertical line is drawn at df=11
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whichisthebestmodelselectedbyMallow’sCpcriterion.

ThecoefficientsoftheselectedmodelareplottedinFigure2.2.Fromtheplot,

X19rankshighestinmatchingYandisfollowedbyX107andX51. Meanwhile,X2,

X149andX124playatrivialroleinmatchingY
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Figure2.2: ProfilesofLASSOcoefficientsoftheselectedbestmodelonY1.Among
the200estimatedcoefficients,11variablesareselectedintomodel,allwithpositive
coefficients.Theindexnumbersofthepredictorsaremarkednexttoeachpoint.
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2.2 NNLS Regression

2.2.1 Review of the method

Given X1, X2, . . . , XL in XN×L matrix as the predictor variables and a column vector

Y as the response variable, the criterion of NNLS regression is [18]:

argmin
β

||Y −Xβ||2

subject to βj ≥ 0, j = 1, . . . , L.

The NNLS optimization problem is a quadratic programming problem [18],

argmin
β≥0

||Y −Xβ||2 = argmin
β≥0

(βTXTXβ − Y TXβ − βTXTY + Y TY )

= argmin
β≥0

(βTXTXβ − 2Y TXβ + Y TY )

= argmin
β≥0

(
1

2
βTXTXβ − Y TXβ)

There are many similar algorithms to solve the NNLS optimization problem, of

which the first widely used algorithm is an active set method published by Lawson

and Hanson in their 1974 book [18]. The R package “nnls” is used to solve the NNLS

fitting in this study.

The NNLS regression could result in many positive coefficients in the model, which

is not convenient for selecting the most important predictors. In our example most

of the estimated coefficients are extremely small and can be neglected without much

increase in RSS. Therefore, thresholding these small positive coefficients has little

influence on the precision of the matching.

Here, hard-thresholding is used in model selection of NNLS. The hard-thresholding

works by setting the threshold limit t equal to a sequence of increasing numbers. To

calculate the corresponding RSS, all the coefficients that are less than or equal to

the threshold t are set to zero. Hence I obtain a sequence of RSS corresponding to

the sequence of thresholds. Our thresholding criterion is to choose the maximum

threshold such that the difference in RSS before and after thresholding is less than

10−5.
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2.2.2 AnexampleofNNLSfitting

Asanexample,IagainuseY1toillustratetheNNLSfitting.Amongthe200predic-

torvariablesNNLSanalysisresultedin71positivecoefficientswiththerestofthe

coefficientsallzerocoefficients.

Figure2.3showsthechangeinthevaluesofRSSversusthreshold.Thethreshold

tissetfrom0to0.05withanincrementof0.001. Theverticallineisthemodel

indicatingthatthethresholdis0.009.Thecoefficientssmallerthan0.009arethresh-

oldedtozero.Beforeapplyingforanythresholding,theRSSis0.04201208,andafter

thresholdingat0.009theRSSis0.04201267with11nonzerocoefficientsleft. The

differencebeforeandafterthresholdingisnomorethan10−5
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Figure2.3: ChangeofRSSwithincrementofthresholdinNNLSregressionofY1.
ThevaluesofRSSareplottedversesthevaluesofthethresholds.Theverticallineis
themodelchosenwhenthresholdis0.009.



l

l

llllllllllllllll

l

lllllllllllllllllllllllllllllll

l

llllllllllllllllllll

l

l

lllllllllllllllllllllllllllllllll

l

llllllllllllllll

l

llllllllllllllllllllllll

l

l

l

llllllllllll

l

llllllllllllllllllllllllllllllllllll

0 50 100 150 200

0.
0
0 

0.
0
5 

0.
1
0 

0.
1
5 

0.
2
0 

0.
2
5 

0.
3
0 

0.
3
5

The Coefficients of the Model seleted

Index of βj
^

c
o
ef
fi
ci
e
nt
s

1

2

19

51

72

73

107

124 149
151 164

20

Figure2.4:ThecoefficientsoftheNNLSmodelofY1afterthresholding.Amongthe
200estimatedcoefficients,11variablesremaininthemodel.Theindexnumbersof
nonzeroβjaremarkednexttothepoints.

ThebestmodelafterthresholdingisplottedinFigure2.4.Fromtheplot,X19

rankshighestinmatchingYandisfollowedbyX107andX51. Meanwhile,X2,X149

andX124playatrivialroleinmatchingYsincethecorrespondingcoefficientsarevery

small. TheresultsareverysimilartotheLASSOprofile(bycomparingFigure2.4

andFigure2.2).

2.3 A methodbasedon minimizingJSD

DifferentfromLASSOandNNLSregression,ourproposed methodusesJensen-

ShannonDivergence(JSD)insteadofRSSastheoptimizationcriterion.JSDisa

widelyusedmethodofmeasuringthesimilaritybetweentwoprobabilitydistributions,

anditiswidelyappliedinbioinformaticsandgenomecomparisons[9].

TheJensen-ShannonDivergencebetweentwomultinomialprobabilityvectorsx=

(x1,···,xn)andy=(y1,···,yn)isdefinedas[9]:
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JSD(x||y) =
1

2
(
n∑
i=1

xi log
xi
hi

+
n∑
i=1

yi log
yi
hi

) (2.1)

where h = x+y
2

is the mean vector of x and y.

From the definition, it is clear that JSD is a modified version of Kullback-Leibler

divergence. The direct application of Kullback-Leibler divergence is not possible to

measure two multinomial distributions with many zero probability categories.

Often the logarithm in the JSD definition uses 2 as its base, in which case JSD

has the property: 0 ≤ JSD ≤ 1. Thus when the logarithm uses e as its base, it has

the property: 0 ≤ JSD ≤ ln(2).

In this thesis, e is used as the logarithm base. Jensen-Shannon Distance is defined

as the square root of Jensen-Shannon Divergence [7]. As a distance measure, Jensen-

Shannon Distance satisfies all three properties required of a distance [9].

2.3.1 The method

Given a set of multinomial probability vectors X1, X2, ..., Xp in the matrix X and a

target multinomial probability vector Y selected from the matrix Y, the aim is to find

a linear combination of several X variables which has smallest JSD with the variable

Y . i.e.

Ŷ = β1X1 + β2X2 + · · ·+ βLXL

with the coefficients satisfying
L∑
j=1

βj = 1, βj ∈ [0, 1]. This guarantees that Ŷ is a

multinomial probability vector too.

The objective function for finding the β is

min
β

JSD(Y ||Ŷ )

Directly optimizing this function is challenging. At first several optimization al-

gorithms such as gradient descent and Newton’s methods with constraints [13] were

tried to solve the problem directly. But the Jacobian or Hessian is unavailable analyt-

ically and too expensive to compute numerically at every iteration. Then I considered

an alternative method to Newton’s methods (i.e., Quasi-Newton methods) without
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requiring the Jacobian in order to search for zeros [13] [3]. However, Quasi-Newton

methods often find a local maximum and minimum of a function and the solution

is highly dependent on the initial values [3]. Since different sets of initial values can

result in different local maximum and minimum, the need to set the 200 initial values

became a big problem. The output of 200 coefficients are not sparse at all if the in-

put numbers are not sparse. The challenge posed by directly optimizing this function

leads us to consider other methods.

A heuristic searching strategy which is similar in nature to the forward variable

selection procedure is proposed. First, I calculate the JSD between Y and each Xj

variable, JSD(Y ||X1), JSD(Y ||X2),. . . , JSD(Y ||XL), which are then ordered in an

increasing order. Thus, the X variables are ordered as X[1], . . . , X[L], so that the

variables in X which are more similar to Y will be considered first. I first assign the

best match of Y as X[1] and calculate the JSD, then I consider whether X[2] should

be added into the model. If the linear combination of X[1] and X[2] lead to a smaller

JSD with Y variable, then X[2] is added into the model, otherwise the procedure

is stopped. Adding X variables according to this procedure ensures that the linear

combination satisfy the constraints on the coefficients while the JSD to Y is decreased

at each step. The optimization criterion at first step is following:

min
β

JSD(Y ||(β1X[1] + β2X[2]))

subject to β1 + β2 = 1, β1 ∈ [0, 1], β2 ∈ [0, 1]

The R package named “General-purpose Optimization” is used to solve the opti-

mization problem with constraint.

The procedure stops when adding another variable will no longer reduce the JSD

(i.e., the coefficient for the newly added variable is zero). The details of this forward

variable selection procedure are summarized in the following algorithm:

Note that MJSD might not find the optimum result for all the coefficients. This

could happen when the selected subnetworks overlap each other. However, when

one subnetwork is split into almost non-overlapping several smaller subnetworks (as

we expect will be a common case), the MJSD method will provide nearly optimum

results. In the next section I give an example showing that the selected X variables

are non-overlapping subnetworks.
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Algorithm 1: A forward selection procedure to sequentially minimize JSD

1. Initialization

(a) Calculate the JSD between Y to each X variable, order X variables

according to their JSD from smallest to largest.

(b) Set an set P = ∅∅∅, set R = [X[1], . . . , X[p]]. Move X[1] from set R to set P,

set Ŷ = X[1], β
∗ = 1.

2. At the ith step (i=2,. . . p):

(a) Move X[i] variable from set R to set P: calculate β∗ that minimize

JSD(Y ||β∗Ŷ + (1− β∗)X[i]).

(b) If 1− β∗ > 0, update Ŷ = β∗Ŷ + (1− β∗)X[i]. Go back to step 2(a).

Else if 1− β∗ = 0, the recursive procedure stops, output Ŷ .

2.3.2 An example of JSD minimization method

I again use Y1 as an example to illustrate the method’s ability in finding the best

matching set of variables in X.

The JSD of each of the 200 X variables with Y1 are shown in Figure 2.5. Here the

smallest one is JSD(Y1||X19), the second smallest one is JSD(Y1||X73). In Figure 2.5,

most of the 200 X variables have JSD near the upper bound of ln(2). The X variable

with smallest JSD values will be selected by the model at first.

When β∗ converges to 1, it shows that the program adds all the 11 smallest Xj

variables to the linear combination resulting in the final optimal JSD as 0.3511393.

Table 2.2 shows the updated parameters of β∗ and JSD at each step. Xj is the

variable added into the model in each step. At the beginning the initial β∗ is equal

to 1, and then it becomes a value between 0 and 1 with more variables selected into

the model. The β∗ stops at 0.9957691 as shown in Table 2.2. β∗ is 1 at the 12 step.
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Xj β∗ JSD(Y||̂Y)
1 X19 1.0000000 0.4572171
2 X73 0.7081007 0.4019348
3 X51 0.7652943 0.3733276
4 X107 0.9293715 0.3700184
5 X1 0.8874797 0.3557269
6 X72 0.9648953 0.3524371
7 X151 0.9987738 0.3524122
8 X164 0.9980228 0.3523677
9 X2 0.9857460 0.3513407
10 X149 0.9984250 0.3513016
11 X124 0.9957691 0.3511393

Table2.2: Theupdatedparametersβ∗forMJSDmethodonY
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Figure2.5: ProfileofJSDofY1toall200Xvariables.JSDvaluesareplottedverses
theindexof200Xvariables.TheindexnumberofsomeXvariablesarealsomarked
nexttothepoints.

β̂jareplottedinFigure2.6.β̂jstandsforthecoefficientofXjthathasbeen

selectedintothemodelafterthewholeprocedurestops. β̂j=1. X19stillranks
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highestinmatchingY,buttheweightcalculatedbythismethodisevenlargerthan

LASSOandNNLSmethods. Thesamesetofvariablesareselectedbyallthree

methods,whichincludeX19,X51,X73,X107,X1,X72,X2,X124,X149,X124,X164
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Figure2.6:CoefficientsofthevariablesresultedfromtheMJSDmethod.Amongthe
200estimatedcoefficients,11Xvariablesareselectedintomodelwithcorresponding
positivecoefficients. Theindexnumbersofthepredictorsaremarkednexttothe
points.

Next,Iinvestigatedtheoverlapinthereactioncompositionofthe11subnetworks

withpositivecoefficientsthatwereaddedintothemodelbyMJSD.Figure2.7shows

allthenonzeroreactionsinthe11selectedXvariables.Forthisplot,reactionswere

reorderedasfollows.First,thenonzeroreactionsofX19wereorderedfromlargest

tosmallest.Then,anyremainingnonzeroreactionsofX51wereorderedfromlargest

tosmallestandaddedtothesequencederivedfromX19.Thisprocesswasrepeated

untilallthenonzeroreactionsofallthe11X variableswerereordered. Thedis-

tributionofreactionsinFigure2.7showsthattheselectedsubnetworksarelargely
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non-overlappingatthereactionlevel(i.e.,theyarecomprisedofdifferentreactions).

ThusthetheMJSDmethodshouldprovideverysimilarresultstothosethatwould

beobtainedbydirectlyoptimizingthelinearcombinationofthose11X
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Figure2.7:Thepositivereactionsofallthe11Xvariables.Thelegendindicatesthe
indexofthe11Xvariablesandtheircorrespondingpointtypes.

2.4 Summary

LASSOregressionresultssatisfytherequirementofsparsityofβ̂,throughaproper

modelselectioncriteriontoselectthebestmodelfromafullLASSOpath.Inour

example,thebestmodelalreadysatisfiesthenon-negativityrequirementofthecoef-

ficients.Thenon-negativitywasnaturallysatisfiedin93%ofallthe100subnetwork
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matchings when using Cp-statistics for model selection. For the remaining 7% of

subnetworks, some very small negative coefficients result from LASSO fitting among

their matching X variables. By changing these small negative coefficients to zero, the

RSS is not much changed.

NNLS regression results naturally satisfy the non-negativity constraints of the

coefficients. The NNLS solution is not only non-negative, but also sparse to some

extent. However, there are still too many very small positive coefficients in the NNLS

regression results. Hence, further sparsity has to be achieved through an appropriate

thresholding algorithm without much increase in the final RSS.

The new method, named as MJSD, uses a forward variable selection procedure to

simplify the optimization problem. It is based on directly minimizing JSD to obtain

the positive and sparse coefficients that sum to 1, without the model selection step

in LASSO or the hard-thresholding in NNLS. Note that since LASSO and NNLS

don’t necessarily output a solution satisfying β̂1=1, the resulting Ŷ from LASSO

and NNLS are not probability vectors.

In order to compare the results, I listed all the final coefficients from these three

methods in Table 2.3. The three methods have selected the same subset of variables

in X to match Y1, but the coefficients are different. The LASSO and NNLS results are

more similar in this case. To compare the fitting of these three methods, both RSS

and JSD on Y1 are used as the criteria. RSS for the three methods can be directly

calculated from RSS =
N∑
i=1

(yi− ŷi)2. However, before calculating the JSD for LASSO

and NNLS matches, I need to normalize the vector Ŷ to sum to 1. The normalized

vector is denoted as Ŷ ′ = [ŷ′1, . . . , ŷ
′
N ]T , where ŷ′i=ŷi/

N∑
i=1

ŷi. Then the JSD(Y ||Ŷ ′) is

used as criterion for LASSO and NNLS.

JSD and RSS for the three methods on Y1 are also shown in Table 2.3. When

using JSD as the criterion, the matching of MJSD is better than LASSO and NNLS,

and NNLS is a little better than LASSO. However, when using RSS as criterion, the

matching of LASSO and NNLS are better than MJSD, and NNLS is still a little

better than LASSO. This outcome is reasonable because LASSO and NNLS use RSS

as optimization criterion, while MJSD use JSD as optimization criterion.
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LASSO NNLS MJSD

β̂19 0.3235519 0.3256803 0.4213065

β̂107 0.1631789 0.1654160 0.0590834

β̂51 0.1371404 0.1387444 0.1824729

β̂73 0.1067218 0.1085419 0.1736745

β̂72 0.0496812 0.0512407 0.0496812

β̂1 0.0446626 0.0461363 0.1060616

β̂164 0.0184734 0.0204525 0.0184734

β̂151 0.0159389 0.0179019 0.0159389

β̂124 0.0081506 0.0091444 0.0081506

β̂2 0.0076767 0.0092262 0.0076767

β̂149 0.0072906 0.0105463 0.0072906∑
β̂j 0.8824671 0.9030308 1

JSD 0.3636888 0.3650386 0.3511393
RSS 0.04201496 0.04201208 0.04487792

Table 2.3: β̂j, RSS, JSD of three methods on Y1

To view the fitting of these three methods more intuitively, I plot the matching

of some y’s and ŷ’s in Figure 2.8. All the 2824 reactions are too many to plot, with

most of them being zeros. Thus only those reactions which have either positive y’s

or positive ŷ’s are plotted in the Figure 2.8. The index of reactions are ordered from

largest y’s to smallest y’s. On the whole the matching results of these three methods

are similar, except for some small differences. It can be seen that large reactions are

matched slightly better in MJSD, while small reactions are matched slightly better

in LASSO and NNLS.

The above is just an example of one matching. The other 99 column vectors in the

2824 × 100 reaction matrix can be matched by the same methods that were applied

to Y1. In fact, this example is not a relatively good match among all the 100 matches

because Ŷ1 has quite large deviation from Y1, as shown in Figure 2.8. The results

for all the 100 matchings of three methods are shown in Chapter 3, including several

more examples of both good and bad matches.
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y and ŷ of NNLS on Y1

index of some reactions

y 
a
n
d 
ŷ
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Figure2.8:Comparisonofsomeyi’sandŷi’softhreemethods.Blackdotsdenotey’s
andreddotsdenoteŷ’s.Ofall2824reactions,thosewhichhaveeitherpositivey’sor
positiveŷ’sareplottedinthefigure.Theindexofreactionsareorderedaccordingto
thedecreasingvaluesfory’s.



Chapter 3

Results for matching the metabolic components of complex

microbial communities

In Chapter 2, a single subnetwork was used as an example to show the performance

of three methods. I compared the results of the three methods and found that all of

them can achieve the goal of matching the subnetworks to some extent.

In this chapter, these three methods are applied on all the 100 subnetworks in

the L = 100 run of BiomeNet to match the subnetworks in the L = 200 run. First I

calculate RSS and JSD for all the 100 matches on three methods as criteria to rank

the good matches and give examples of a good and a bad match according to those

criteria. Then I test all the matches using all of the three methods, with the null

distributions generated by permuting each variable in the X matrix a thousand times

to discriminate those significantly well matched Y variables. Finally I present the

estimated coefficient matrices of the three methods to find the features of the good

matches.

3.1 RSS and JSD of all the matches

Among all the 100 matches for each method, I still use RSS and JSD as criteria to

rank matches between subnetworks.

The RSS and JSD of all 100 matches by each method are plotted in Figure 3.1.

When using RSS as criterion, most of the black and red points are overlapping with

each other and lower than the green points, which shows that LASSO and NNLS

perform equally well on most of the 100 matches, and a little better than MJSD.

When using JSD as criterion, most of the green points are lower than the black and

red points which shows that MJSD performs better than LASSO and NNLS on most

of the 100 matches. Between NNLS and LASSO, which is better depends on the

particular matches.

The scatter distributions of RSS and JSD show that not all 100 Y variables are

30
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matched equally well by the same criterion. Some subnetworks are matched very well

from all the three methods while some subnetworks can not be matched well by any

of the three methods. Some subnetworks can be matched a little better by one or

two methods.

I give an example of a good match on Y49 in Figure 3.2, and an example of a

bad match on Y30 in Figure 3.3. Y49 has both smallest RSS and JSD among 100 Y

variables. All the large yi’s are matched well by ŷi’s, and those zero yi’s are matched

by zero ŷi’s as shown in Figure 3.2. y and ŷ of Y30 are shown in Figure 3.3. Although

the match of large yi’s are better in MJSD than LASSO and NNLS, the deviation on

the zero weight elements are larger by MJSD as well. In general, Y30 is not matched

well by any of the three methods.

The quality of the matches ranked by RSS and JSD are not exactly the same, but

not far from each other. For example, one variable which ranks as 30th in JSD might

rank 35th by RSS.
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Figure3.1:RSSandJSDofall100matchesforthreemethods.Blackcirclepoints
indicatevaluesofLASSO,redcrosspointsindicatevaluesofNNLS,andgreenplus
pointsindicatevaluesofMJSD.Y49andY30aremarkedbyblueverticallines.
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Figure3.2:Comparisonofsomeyi’sandŷi’softhreemethodsonY49. Blackdots
denotey’sandreddotsdenoteŷ’s. Ofall2824reactions,thosewhichhaveeither
positivey’sorpositivêy’sareplottedinthefigure.Theindexofreactionsareordered
accordingtothedecreasingvaluesfory’s.
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Figure3.3: Comparisonofsomeyi’sandŷibythreemethodsonY30. Blackdots
denotey’sandreddotsdenoteŷ’s. Ofall2824reactions,thosewhichhaveeither
positivey’sorpositivêy’sareplottedinthefigure.Theindexofreactionsareordered
accordingtothedecreasingvaluesfory’s.
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3.2 Quality of the matches

The quality of the matches can be judged by whether they are much better than

random matches and how sparse the matches are. In this section I first describe a

permutation test and apply it to each match to find those which are significantly

better than the random matches, then I compare the sparsity of the matches.

First, the elements of each column in the X matrix are permuted to obtain a

permuted X matrix of which the columns are still probability vectors that sum to 1

but the weights for reactions in a column are different from the original X matrix.

Then all the three methods are applied to match the permuted X matrix with each

column in the Y matrix, and calculate the JSD and RSS of the new 100 matches. I

repeat the permutation and matching process 1000 times, and obtain 1000 RSS and

1000 JSD values from each of the 100 matches for each of the three methods.
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Figure 3.4: RSS and JSD permutation histogram of Y49 for three methods. The red
vertical lines indicate the JSD values of the original matches.

Here I still use the Y49 and Y30 as examples. As shown in Figure 3.4 and Figure 3.5,
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there are six permutation histograms for each Y variable, for two criteria and three

methods. Y49 is a good match thus the RSS and JSD values of original matches seem

significantly smaller than permuted ones, while that of Y30 are not so significant. For

all the 100 matches, P-values are used to decide how many matches are significantly

better than random matches.
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Figure 3.5: RSS and JSD permutation histogram of Y30 for three methods. The red
vertical lines indicate the RSS and JSD values of the original matches.

The rank percentage is used as the nonparametric P-value for each test. For

example, if the rank of the original JSD among all 1000 JSD values from the randomly

permuted data is i, then the P-value is i
1000

.

Usually when the P-value is smaller than 0.05, the match is judged as significantly

better than random matches. But when conducting multiple comparisons, a more

proper procedure in this situation is to control the FDR (false discovery rate) [1].

The BH (Benjamin-Hochberg) procedure is applied to control the FDR as follows:

1. Rank all the 100 P-values from smallest to largest as P(1), P(2),. . . , P(100);
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2. For a given α (0.05), find the largest k such that P(k) ≤ k
m
α. Here m=100 which

is the number of independent tests.

3. Reject the null hypothesis for all H(i) for i = 1, . . . , k.

Thus k stands for the number of the significant matches among all the 100 after

controlling the FDR. The k values for the three methods under two criteria are shown

in Table 3.1.

k RSS JSD
LASSO 56 66

NNLS 56 72
MJSD 89 95

Table 3.1: The number of the significant matches among all the 100 matches
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Figure 3.6: The number of positive coefficients of all 100 matches for three methods.
Blue lines indicate the number of positive coefficients of all 100 matches for LASSO,
red lines indicate that for NNLS and green lines indicate that for MJSD.
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Table 3.1 shows that more significant matches are found by MJSD than LASSO

and NNLS. This is because MJSD gives different estimates from that of LASSO and

NNLS (although only slightly).

In spite of the permutation test, the sparsity is another important property to

judge if a method is good in achieving the matching purpose. Figure 3.6 shows the

number of positive coefficients of all 100 matches for the three methods. The green

lines are obviously lower than the red and blue lines, indicating that that the most

of matches from MJSD are more sparse than the matches from LASSO and NNLS.

The indices of Y variables are ordered in the same sequence as that in Figure 3.7.

Based on the results of the MJSD method and the JSD criterion that 95 matches

are judged significantly better than random matches, and the sparsity of MJSD is

better than LASSO and NNLS, I will use MJSD and JSD to find the features of those

best matches in the next section.

3.3 Heatmaps of the estimated coefficient matrix

In order to find some features of those best matched subnetworks based on the results

from MJSD, I present the estimated coefficients in the heatmap. The estimated

coefficients can be displayed in a form of 200 × 100 matrix since each of the 200

X variables has an estimated coefficient in matching each of the 100 Y variables.

However, the heatmap of the estimated coefficient matrix in its original order is

irregular and uninformative. Thus I order the labels of Y variables according to

their quality of the matching so that the better matched variables ranked first, and

the labels of X are also ordered so that lower ranks of the X variables are mostly

corresponding to the lower ranks of the Y variables.

The indexes of Y and X variables are ordered as follows:

1. Initialization:

(a) Order the 100 Y variables according to their JSD from the corresponding

Ŷ in an increasing order. Then Y1, Y2, . . . , Y100 are in a new sequence

Y[1], Y[2], . . . , Y[100].

(b) Order 200 X variables according to the sequence of Y variables one by

one. Select those X variables which have positive coefficients in matching
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Y[1]. Then order the selected X variables according to their estimated

coefficients from largest to smallest.

2. At the ith step (i=2, . . . , 100):

(a) Select from the remaining X variables which have positive coefficients in

matching Y[i].

(b) Order the selected X variables according to their coefficients from largest

to smallest. Add the sequence of ordered X variables for Y[i] behind the

sequence of the ordered X variables for Y[i−1].

The Heatmaps of the reordered estimated coefficient matrix of the MJSD method is

shown in Figure 3.7. Because the heatmaps of the NNLS and LASSO are extremely

similar to Figure 3.7, they are not shown.

The labels of 100 Y variables are ordered by JSD, so the best matched Y variables

are on the left side. The blue background indicates that most estimated coefficients

are zeros. The red lumps represent large coefficients.

The yellow lines indicate the matches that are not significantly better than random

matches. All the insignificant matches are also the ones with large JSD values. From

the heatmap it also can be found that the best matches (on the left side) are one to

one matches.
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that are not significantly better than random matches. The indexes of Y variables
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Chapter 4

Discussion and suggestions for future work

The BiomeNet analytical framework has many strengths, and chief among them is

that its model-derived structures have a direct interpretation in terms of community

metabolic function [16]. This makes BiomeNet an important addition to the exiting

tools, such as PCA, that are widely used in metagenomics [22]. However, BiomeNet

also has limitations. The number of community-level metabolic structures (the K

metabosystems and L subnetworks within the model) must be fixed beforehand. The

typical approach is to select very large values for K and L, and employ sparse and

symmetric Dirichlet priors to encourage BiomeNet to concentrate the signal into rela-

tively a few structures. However, there is no framework for judging which structures,

if any, obtained in this way are better than random, and thereby warrant further

biological interpretation. The purpose of my thesis was to address this issue.

To meet this challenge, I investigated three methods (LASSO, NNLS, and a new

method called MJSD) to match the subnetworks obtained under one case for L as

a linear combination of subnetworks derived from a different case. The basic idea

is that those subnetworks that represent the real signal within a complex micro-

bial community should make consistent contributions to the overall structure of the

community. I then developed a permutation-based method to infer which structures

(at the subnetwork level) are better than random. In this way, I have extended

the value of the BiomeNet framework by providing biologists with the tools to infer

(i) how much structure to include within the BiomeNet model for community-level

metabolism (i.e., how to determine the proper choice for L for the data in hand), and

(ii) which subnetworks are significant and thus warrant further biological attention.

All three methods identified the same subnetworks via the criterion that they can

be matched across analyses as a linear combination. The LASSO and NNLS methods

required model selection and thresholding, respectively, to satisfy the sparsity and

non-negativity requirements. Alternatively, the MJSD method directly results in

41
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positive and sparse coefficients that sum to 1. Using JSD as criterion in MJSD, instead

of RSS in LASSO or NNLS, improved the match of the larger weight subnetworks to

some extent; however, it also tended to increase the deviation on matching the zero

weight elements. Thus, the RSS of MJSD is larger than that of LASSO and NNLS

for some matches.

Usually R2 is used to estimate how well data fits a linear model. However R2 is not

a good criterion in our case because matching larger elements in a Y variable is our

focus instead of the total variance in Y being explained by the regression. Measuring

the similarity of two probability vectors Y and Ŷ is our purpose. Thus, RSS and

JSD were chosen as criterion instead of R2. After multiple tests, it was shown that

JSD is a more proper criterion than RSS to assess the similarity of two probability

distributions, and MJSD is a more suitable method in this application than LASSO

and NNLS.

The benefits to biologists are illustrated by my application of these methods to

the 38 Mammalian gut metagenomes introduced in Chapter 1. The results for these

data show that the predominant subnetworks (i.e., those that have the best matches)

may not be much separated with larger L. The reason may be that a well-matched

subnetwork consists of reaction groups that really do function together as a unit.

Although I have not examined more than two values for L (100 and 200), my results

suggest that the best value should be 100 or slightly less than 100 by the permutation

test. Additional analyses of these, and other data, are required to determine if it is

generally the case that predominant subnetworks are not much separated by larger

L (or if datasets with less signal are more sensitive to the value of L). Regardless,

Shafiei et al. [16] were largely unaware of this property of the mammal dataset, as

they had no way to match the results they had obtained under different values of L.

Shafiei et al. [16] suggested that a single subnetwork (subnetwork 49 when L=100)

was critical to the divergence between the gut communities found in carnivores and

herbivores. It is noteworthy this subnetwork was the same one that I inferred as

having the strongest signal within the data. However, Shafiei et al. [16] had no

means of assessing if their results were any better than chance. This is important,

because Shafiei et al. [16] uncovered a potentially informative metabolic signal within

this subnetwork; it is prevalent in carnivores, and it is rich in reactions related to
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importation of extracellular saccharides (N-acetylmuramic acid, N-acetylglucosamine,

fucose, glucose and mannose). This metabolic capacity gives carnivores greater ability

exploit endogenous carbohydrate sources (the cell walls of the gut bacteria, whose

outer membranes are composed of N-acetylmuramic acid and N-acetylglucosamine,

and the fucosylated mucins secreted by the hosts’ large intestine). My results are

important because they revealed that the association of these reactions within a

single subnetwork is highly significant. Furthermore, my results indicate that other

subnetworks which differ between carnivores and herbivores (e.g., subnetwork 17 and

subnetwork 72) also are significant, and warrant further biological investigation, even

though they were not investigated by Shafiei et al. [16].

Although the above examples reveal that the well matched subnetworks are most

possibly biologically meaningful reaction groups, further investigation is needed to

demonstrate that these matched subnetworks are not correlated noise grouped to-

gether by two times of BiomeNet running. An important future work will be to

develop the permutation test by permuting the input data directly and then run the

BiomeNet on the permuted data. For example our input data include the E.C. abun-

dance counts for 38 mammalian gut samples, which is in a form of C × N matrix,

where C is the number of E.C. abundance counts and N is the number of samples.

By randomly permuting the elements of each column, the biological connections be-

tween different reactions will be lost. The obtained matrix includes mainly random

noises. Running BiomeNet on such permuted data twice and comparing the resulted

subnetworks by the methods proposed in this thesis, we expect to find very few or no

significantly matched subnetworks. Such results will demonstrate that the matched

subnetworks from real data are biologically meaningful to some extend.

There are several other areas in which further work is warranted. The methods

described in this thesis should be extended to the level of metabosystems within

BiomeNet. Second, further analysis of other real datasets is required to determine if

additional improvement of the methods might be needed. Third, there is a critical

need to be able to build predictive models based on the metabolic structures (subnet-

works and metabosystem) uncovered by BiomeNet. Recall the example of IBD that

was introduced in Chapter 1; tools are needed to infer which metabolic structures

might be predictive a particular IBD disease phenotype, or which might be predictive



44

of response to certain IBD therapies. One possibility would be to use the methods

described in this thesis to select significant subsystems as features to be input into

classic methods for supervised training of predictive models [22]. Fourth, the methods

can be extended to the problem of matching the structures obtained from a similar

modeling framework called BioMiCo [15] designed for the taxonomic components

(rather than the metabolic components) of microbial community structure.

The methods developed in this thesis can be either directly applied or extended

in many more general matching problems. For example, matching the subnetworks

derived from two or more different data sets can help to reveal the common metabolic

structures for different groups of samples; matching the components that are derived

on similar subjects but from different labs or locations can help to remove the un-

wanted variance and pool the resource for the same study. With the accumulation

of large microbial or metagenomics data from different resources, the ability to pool

data together for more informative inference is fundamentally important. In addition,

the methods can also be extended for matching other types of vectors than sparse

multinomial probabilities. Since PCA is still widely applied on all kinds of high di-

mensional data reduction, one possibility is to apply the developed methods in this

thesis to match the PCA components. In different applications, which of the three

methods can lead to a better result will depend on the nature of the problem, it is

possible that LASSO or NNLS can work better than MJSD when matching PCA

components.
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frey, José C Clemente, Dirk Gevers, and Rob Knight. Experimental and an-
alytical tools for studying the human microbiome. Nature Reviews Genetics,
13(1):47–58, 2012.

[7] Jianhua Lin. Divergence measures based on the shannon entropy. Information
Theory, IEEE Transactions on, 37(1):145–151, 1991.

[8] Brian D Muegge, Justin Kuczynski, Dan Knights, Jose C Clemente, Antonio
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