
Deletion Without Rebalancing in Non-Blocking Self-Balancing Binary
Search Trees

by

Mengdu Li

Submitted in partial fulfillment of the requirements
for the degree of Master of Computer Science

at

Dalhousie University
Halifax, Nova Scotia

April 2016

c� Copyright by Mengdu Li, 2016

Table of Contents

List of Tables . iv

List of Figures . v

Abstract . vii

List of Abbreviations and Symbols Used viii

Acknowledgements . xi

Chapter 1 Introduction . 1

1.1 Our Work . 3

Chapter 2 Related Work . 6

2.1 Lock-Based BSTs . 7

2.2 Lock-Free BSTs . 7

Chapter 3 Preliminaries . 9

3.1 LLX and SCX Operations . 9

3.2 Tree Update Template . 11

Chapter 4 Sequential External Ravl Trees 16

4.1 The Structures of Sequential External Ravl Trees 16

4.2 Operations in Sequential External Ravl Trees 17

4.3 Bounding the Tree Height . 21

Chapter 5 Non-Blocking Ravl Trees 28

5.1 The Structures and Algorithms of Non-Blocking Ravl Trees 28

5.2 Correctness of Non-Blocking Ravl Trees 41

ii

5.3 Progress Properties of Non-Blocking Ravl Trees 50

5.4 Bounding the Tree Height . 53

Chapter 6 Experimental Evaluation 67

6.1 Compared Data Structures . 67

6.2 Implementation Details . 68

6.3 Random Data Set . 69

6.4 Data Sequence with Di↵erence Degrees of Presortedness 77

Chapter 7 Discussion . 84

Bibliography . 86

iii

List of Tables

6.1 Average tree heights using sequences with existing order under

di↵erent values of m. 82

iv

List of Figures

3.1 An example of a tree update operation following the template

in [7]. 12

4.1 The structures of an empty and a non-empty sequential external

ravl tree. 16

4.2 Operations in sequential external ravl trees. The number beside

each edge indicates the rank di↵erence between the parent and

the child. 18

5.1 Operations in non-blocking ravl trees. 29

6.1 Experimental results comparing lf-ravl and lf-ravl3 against self-

balancing concurrent BSTs using randomly generated data within

key range (0, 2⇥ 104]. 70

6.2 Experimental results comparing lf-ravl and lf-ravl3 against self-

balancing concurrent BSTs using randomly generated data within

key range (0, 2⇥ 105]. 71

6.3 Experimental results comparing lf-ravl and lf-ravl3 against self-

balancing concurrent BSTs using randomly generated data within

key range (0, 2⇥ 106]. 72

6.4 Experimental results comparing lf-ravl and lf-ravl3 against un-

balanced concurrent BSTs using randomly generated data within

key range (0, 2⇥ 104]. 74

6.5 Experimental results comparing lf-ravl and lf-ravl3 against un-

balanced concurrent BSTs using randomly generated data within

key range (0, 2⇥ 105]. 75

6.6 Experimental results comparing lf-ravl and lf-ravl3 against un-

balanced concurrent BSTs using randomly generated data within

key range (0, 2⇥ 106]. 76

v

6.7 Experimental results comparing lf-ravl and lf-ravl3 against self-

balancing concurrent BSTs using sequences of size 226 with dif-

ferent degrees of presortedness (32 threads). 80

6.8 Experimental results comparing lf-ravl and lf-ravl3 against un-

balanced concurrent BSTs using sequences of size 226 with dif-

ferent degrees of presortedness (32 threads). 81

vi

Abstract

We present a provably linearizable and lock-free relaxed AVL tree called the non-
blocking ravl tree. At any time, the height of a non-blocking ravl tree is bounded
by log

�

(2m) + c, where � = 1+
p
5

2 is the golden ratio, m is the total number of suc-
cessful INSERT operations performed so far and c is the number of active concurrent
processes performing INSERT operations at this time. The most significant feature of
the non-blocking ravl tree is that it does not rebalance itself after DELETE operations.
Compared to other self-balancing Binary Search Trees (BSTs), which typically intro-
duce a large number of rebalancing cases after DELETE operations, the non-blocking
ravl tree has much fewer rebalancing cases, which makes it much simpler to imple-
ment in practice. Our experimental studies show that our solution is potentially the
best candidate for many real-world applications.

vii

List of Abbreviations and Symbols Used

F
N

Set of nodes composed of children of nodes in set N in the tree

update template.

F
R

Set of nodes composed of children of nodes in set R in the tree update

template.

F
i

The ith Fibonacci number.

F
�

Set of nodes composed by child of nodes in �.

G
N

Graph induced by nodes in N [F
N

in the tree update template.

G
R

Graph induced by nodes in R [F
R

in the tree update template.

G
�

Graph induced by � [F
�

.

Inv The number of pairs of numbers of the sequence in which the first

item is larger than the second in a data sequence.

N Set of new nodes added into the tree by a update operation following

the tree update template.

R A sequence of Data-record removed by an SCX operation.

V A sequence of Data-record that cannot be modified by other pro-

cesses during an SCX operation.

� The golden ratio 1+
p
5

2 .

� Set of nodes visited by a update operation following the tree update

template.

fld A pointer pointing to the mutable field of a Data-record to be mod-

ified by an SCX operation.

new The value to be stored in the field pointed to by fld.

viii

parent The node whose child pointer field is changed in the tree update

template.

BST Binary Search Tree.

BTS Bit-Test-and-Set.

CAS Compare-And-Set.

lc-cast The unbalanced internal lock-based BST proposed by Ramachan-

dran et al. [30].

lc-citr the unbalanced internal lock-based BST proposed by Arbel et al. [2].

lc-davl The concurrent AVL tree proposed by Drachsler et al. [12].

lf-chrm The chromatic tree proposed by Brown et al. [7].

lf-chrm6 The chromatic tree proposed by Brown et al. [7] allowing at most

three violations on each search path.

lf-ebst The unbalanced external non-blocking BST proposed by Ellen et

al. [15].

lf-ibst The unbalanced internal non-blocking BST proposed by Ramachan-

dran et al. [30].

lf-nbst The unbalanced external non-blocking BST proposed by Natarajan

et al. [24].

lf-ravl The non-blocking ravl tree.

lf-ravl3 The non-blocking ravl tree allowing at most three violations on each

search path.

LLX Load-Linked Extended.

ix

RCU Read Copy Update.

SCX Store-Condition Extended.

STM Software Transactional Memory.

x

Acknowledgements

I would like to express my sincere appreciation to my supervisor, Dr. Meng He, for

his generous guidance and support during my research. This work would not have

been possible without his valuable suggestions. It has been a pleasure working with

him.

In addition, I am grateful to my thesis committee, Dr. Andrew Rau-Chaplin and

Dr. Alex Brodsky, for their insightful comments and constructive criticisms.

Finally, I would like to give special thanks to my parents and friends for their

support and encouragements.

xi

Chapter 1

Introduction

Concurrent data structures play an important role in modern multi-core and multi-

processor systems, and extensive research has been done to design data structures that

support e�cient concurrent operations. As BSTs are fundamental data structures,

many researchers have studied the problem of designing concurrent BSTs that store

uniquely identifiable data items by keys to support the following operations: GET

which returns the value stored in the node identified by a given search key or NULL

if the key is not in the tree, INSERT which inserts a new item identified by a given key

into the tree if the key is not in the tree, and DELETE which removes an existing item

identified by a given key from the tree if the key is in the tree. Lock-based BSTs are

the most intuitive solutions and have been shown to be e�cient [2, 4, 10, 12, 21, 29].

There is, however, a potential issue: if a process holding a lock on an object is halted

by the operating system, all other processes requiring access to the same object will

be prevented from making any further progress. Non-blocking (lock-free) BSTs have

thus been proposed in recent years to overcome this limitation [7, 8, 13, 15, 22, 24, 30].

Despite the extensive work on lock-based and non-blocking BSTs, only a few sup-

port self-balancing [4, 7, 10, 12, 21]. Self-balancing BSTs are important in both the-

ory and practice: In theory, they have better bounds on query and update time than

BSTs that do not support self-balancing; for real-world applications, studies [26] have

shown that self-balancing BSTs outperform BSTs without self-rebalancing greatly in

sequential settings. However, the current status of the research on concurrent BSTs is

that there is much less work that provides non-trivial bounds on access time than the

1

2

research on the sequential counterparts. In addition, for experimental evaluations,

almost all existing empirical studies [2, 4, 7, 12, 20, 22, 24, 29, 30] are performed

using randomly generated data under uniform distribution. This approach, how-

ever, has some drawbacks. As mentioned in [2, 7, 26], such experimental settings

favor BSTs without self-balancing greatly as they are balanced with high probability.

Studies [26] have also shown that it is common that in real-world applications, keys

of data elements in an access sequence are partially sorted (some degree of presorted-

ness) instead of randomly. As an example, when entering student grades of a course

into a database, the data are likely to be entered in the order of the student IDs or

names. Thus, random data do not simulate these scenarios well. Therefore, work

is needed to provide more theoretical results on concurrent self-balancing BSTs, and

better designed experimental studies are also needed to evaluate their performance.

While many researchers are designing concurrent BSTs, some significant progress

has also been made recently on the study of self-balancing BSTs in sequential settings.

In particular, Sen and Tarjan [32] proposed a solution to address the issue that self-

balancing BSTs introduce so many cases when performing rebalancing after DELETE

operations that many developers resort to alternative solutions. These alternative

solutions, however, may have inferior performance. Indeed, in [32], they highlighted

an incident in which a company, in order to avoid the development time required to

make each rebalancing case robust, relied on a solution that rebuilt the tree structure

when the tree was higher than a threshold value. However, some time after the

software product was deployed, it crashed and went o✏ine for an extended period of

time because of an issue in the rebuilding process. To provide developers a viable self-

balancing BST solution for the fast development required in industry, Sen and Tarjan

came up with a relaxed AVL tree called the ravl tree. A ravl tree only rebalances itself

after INSERT operations, while its height is still bounded by O(logm), where m is the

number of INSERT operations performed so far. The total number of rebalancing cases

3

in the ravl tree is incredibly few, posing a great advantage in software development.

Based on the state of the art of the research on concurrent and sequential BSTs

as described above, we study the problem of designing a non-blocking self-balancing

BST that only rebalances itself after INSERT operations, while still providing a non-

trivial provable bound on its height in terms of the total number of successful INSERT

operations performed so far and the number of active concurrent processes. As in

sequential settings, such a solution will decrease the development time greatly in

practice. Furthermore, it may even potentially improve throughput in concurrent

settings: If threads performing DELETE operations do not rebalance the tree after

removing items, they can terminate sooner so that there are fewer concurrent threads

in the system.

1.1 Our Work

We design a concurrent self-balancing BST called non-blocking ravl tree that only

rebalances itself after INSERT operations. The number of rebalancing cases introduced

is thus much fewer than other non-blocking self-balancing BSTs such as the non-

blocking chromatic tree proposed by Brown et al. [7]. More precisely, it need only

consider 5 rebalancing cases, while 22 cases have to be considered for the non-blocking

chromatic tree. We prove the linearizability and progress property of a non-blocking

ravl tree, and bound its height. The theoretical results of our research are summarized

in the following theorem:

Theorem 1. The non-blocking ravl tree is linearizable and lock-free, and it only rebal-

ances itself after INSERT operations. For a non-blocking ravl tree built via a sequence

of arbitrarily intermixed INSERT and DELETE operations from an empty tree, at any

time during the execution, the height of the tree is bounded by log
�

(2m) + c, where �

4

= 1+
p
5

2 is the golden ratio, m is the number of INSERT operations that have success-

fully inserted new keys into the tree so far and c is the number of INSERT operations

that have inserted a new item but not yet terminated at this time.

This data structure is designed for asynchronous systems where shared memory

locations can be accessed by multiple processes.

We conducted experimental studies to evaluate the performance of our solution by

comparing it against other state-of-the-art concurrent BSTs. In these experiments,

we also implemented a variant of the non-blocking ravl tree which rebalances the

tree less frequently to reduce the total number of rebalancing steps. We first use

randomly generated data under uniform distribution. Results show that our solu-

tion outperforms other concurrent self-balancing BSTs in every case. It is, however,

outperformed by some concurrent BSTs without self-balancing. This is consistent

with well-known facts in sequential settings: in theory, the expected heights of ran-

domly built BSTs without self-balancing are O(log n) [9] where n is the number of

nodes in the tree, and they outperform self-balancing BSTs in experimental studies

with randomly generated data, as they avoid the overhead introduced in rebalanc-

ing processes [26]. Even though BSTs without self-balancing have advantages under

these experimental settings, our solution still outperforms the RCU-based CITRUS

tree proposed by Arbel et al. [2] significantly under operation sequences with a high

update ratio, and has comparable performance to the non-blocking external tree pro-

posed by Ellen et al. [15] under low contention level. We then conducted experiments

using data sequences with di↵erent degrees of presortedness to simulate real-world

applications. Experimental results show that our solution achieves the best perfor-

mance in all cases when the data sequences have enough degree of presortedness so

that the average heights of BSTs without self-balancing are approximately 4-5 times

greater than the average heights of self-balancing BSTs. Considering that studies [26]

have shown that, when implemented in system software products, it is very common

5

that BSTs without self-balancing are more than five times higher than self-balancing

BSTs, we believe that our solution is the best candidate for many real-world appli-

cations.

To achieve these results, we first design a sequential external ravl tree in Section 4,

which is a variant of the ravl tree proposed by Sen and Tarjan [32]. The original ravl

tree is an internal tree, in which all nodes store values. The sequential external ravl

tree is an external tree, in which only leaves store values, and internal nodes are used

for routing only. We make this change to achieve maximum concurrency for non-

blocking implementation to be designed later. As new conflict cases are introduced

by these modifications, we carefully design new algorithms, prove correctness and

bound the tree height. We then combine the sequential external ravl tree and the

tree update template proposed by Brown et al. [7] to design the non-blocking ravl tree,

and carefully prove all its properties summarized in Theorem 1. Finally, experimental

results are given and analyzed in Section 6.

Chapter 2

Related Work

In this chapter, we introduce some state-of-the-art concurrent BSTs proposed recently.

We first introduce the following terminologies uses throughout this thesis:

1. Linearizability: a linearizable operation should appear to take e↵ect instanta-

neously at some point between its invocation and termination. Such a point is

called a linearization point. In a linearizable data structure, the sequence of op-

eration calls that appears to take e↵ect should be consistent with the sequence of

their linearization points executed sequentially. We can prove the linearizability

of an operation by identifying the linearization point of its method calls.

2. Lock-based: a lock-based data structure uses locks for synchronization.

3. Non-blocking or lock-free: a non-blocking data structure is always guaran-

teed to make progress, and it will not be a↵ected by failure or suspension of

some threads.

4. Wait-free: in a wait-free data structure, each thread is guaranteed to make

progress.

A number of lock-based and non-blocking BSTs have been designed to achieve

di↵erent goals in concurrent systems, such as increasing overall throughput, improving

memory e�ciency, and adapting to contentions to reduce conflicts between processes.

In the rest of the paper, we say that a BST is unbalanced if it does not support

self-balancing.

6

7

2.1 Lock-Based BSTs

Bronson et al. [4] proposed a lock-based variant of AVL trees based on hand-over-

hand optimistic validation adapted from Software Transactional Memory (STM). It

reduces the complexity of deleting a node with two children by simply setting the value

stored in this node to NULL without physically removing it from the data structure.

Drachsler et al. [12] proposed a partially non-blocking BST supporting lock-free GET

operations and lock-based update operations via logic ordering. This technique ap-

plies to both unbalanced BSTs and AVL trees. The CITRUS tree proposed by Arbel

et al. [2] is an unbalanced internal BST o↵ering wait-free GET operations and lock-

based update operations. It allows concurrent update operations on BSTs based on

Read Copy Update (RCU) synchronization and fine-grained locking. Ramachandran

et al. [29] proposed the CASTLE tree, an unbalanced lock-based internal BST which

locks edges instead of nodes to achieve higher concurrency.

2.2 Lock-Free BSTs

The first non-blocking BST that has been theoretically proven to be linearizable and

non-blocking was proposed by Ellen et al. [15]. It is an unbalanced external BST

which uses Compare-And-Set (CAS) to perform update operations. A CAS operation

atomically compares the value stored at a memory location to a given value, and if

these two values are equal, it stores a given new value at this memory location. In

this non-blocking BST, each process marks or flags related nodes by storing extra

information fields into these nodes to indicate its intended update operation. If a

process intends to update some nodes that have been marked or flagged by some

other processes, it will perform the update operation stored in these nodes first, and

then retry its intended update operation. This way, all processes can make progress

without waiting for other processes. Ellen et al. [13] also proposed a variant of [15],

8

which improves the performance by avoiding recursive helping. In this non-blocking

BST, the amortized cost of an update operation, op, is O(h(op)+ ċ(op)), where h(op)

is the height of the tree when op is invoked, and ċ(op) is the maximum number of

active processes during the execution of op.

An unbalanced internal non-blocking BST was proposed by Howley et al. [22], in

which both processes performing GET and processes performing update operations

help other processes by performing the update operations stored in the information

fields of related nodes. In the unbalanced non-blocking external BST proposed by

Natarajan et al. [24], each process performing update operations operates on edges

by marking their end nodes. It implements Bit-Test-and-Set (BTS) to test if the

end nodes of an edge have been marked, and CAS to perform update operations.

Ramachandran et al. [30] proposed an unbalanced lock-free BST by combining ideas

from [22] and [24].

Brown et al. [7] proposed a general technique for developing lock-free BSTs us-

ing non-blocking primitive operations [6]. They not only presented a framework for

researchers to design new non-blocking BSTs from existing sequential or lock-based

BSTs, but also provided guidelines to prove the correctness and progress properties

of the new solutions. To further demonstrate the usefulness of the framework, they

provided a non-blocking implementation of chromatic trees [25]. At any time during

any execution, the height of a non-blocking chromatic tree is bounded by O(log n+ ċ),

where n is the number of nodes in the tree, and ċ is the number of active concurrent

processes at this time.

Chapter 3

Preliminaries

In this chapter, we describe the previous results that are used in our solution.

3.1 LLX and SCX Operations

Non-blocking ravl trees implement primitive operations Load-Linked Extended (LLX)

and Store-Condition Extended (SCX) proposed by Brown et al. [6] to carry out up-

date steps. LLX and SCX operations are performed on Data-records consisting of

mutable and immutable user-defined fields. Immutable fields of a Data-record cannot

be further changed after initialization. A Data-record is finalized if it is removed from

the data structure, and its mutable fields cannot be further changed afterwards.

A successful LLX operation performed on a Data-record r reads r’s mutable fields

and returns the values stored in these fields at the linearization point of this LLX

operation. An SCX operation requires the following arguments: a sequence of Data-

records V , a sequence of Data-records R which is a subset of V , a pointer fld pointing

to a mutable field of a Data-record in V , and a new value new. A successful SCX

operation atomically stores new into the mutable field pointed to by fld and finalizes

all Data-records in R.

An LLX operation performed on a non-finalized Data-record r returns fail if it is

concurrent with any SCX operation that modifies r. An LLX operation performed on

a finalized Data-record returns finalized. To perform an SCX operation, a process

must first perform LLX operations on all Data-records in V , and the last LLX oper-

ation performed on each Data-record must not return fail or finalized. Such LLX

9

10

operations are linked to the corresponding SCX operation. An SCX operation will

fail if it is concurrent with any other SCX operation performed by another process

that modifies the Data-records in V .

To implement LLX and SCX operations, two fields are added to each Data-record:

a marked bit, which indicates if this Data-record has been finalized, and an info

pointer, which points to an SCX-record storing the following information of the last

SCX operation performed on this Data-record:

1. V,R, fld, new: The required arguments passed to the corresponding SCX oper-

ation.

2. old: The value stored in the mutable field pointed to by fld before the corre-

sponding SCX operation takes place.

3. state: The current status of the corresponding SCX operation. State InProgress

indicates that this SCX is active; state Committed indicates that this SCX has

completed; and state Aborted indicates that this SCX has failed.

4. allFrozen: true if all Data-records in R have been removed from the tree; false

otherwise.

5. infoF ields: The list of pointers pointing to the info fields of the set of Data-

records in V .

An LLX operation on a Data-record r first reads r’s marked bit and info field

to determine the status of r. If the marked bit is true, the LLX operation returns

finalized. If themarked bit is false and the state of r’s info field is not InProgress,

the LLX operation returns the values of r’s mutable fields. If the SCX operation

associated with the SCX-record pointed to by r’s info fields is active, the LLX

operation helps this SCX operation, and then returns finalized if this SCX operation

removes r, or fail otherwise.

11

To perform an SCX operation, S, we first create an SCX-record, r
s

, which contains

all the information required to perform the desired update. We also set the state of

r
s

to be InProgress, and the allFrozen bit of r
s

to be false. Next, we perform a

sequence of CAS operations attempting to store the address of r
s

into the info fields

of all Data-records in V . If one of these CAS operation on a Data-record r in V fails,

we perform one of the following:

1. If r’s info field points to r
s

, some other processes must have helped S. In this

case, we move on to the next Data-record in V .

2. If the allFrozen field of r
s

is true, some other processes must have completed

S. In this case, S returns success.

3. In all other cases, S cannot be accomplished. We then set r
s

’s state to be

Aborted, and S will return fail afterwards.

If these CAS operations all succeed, we set the allFrozen bit of r
s

to be true. S

then sets the marked bit of each Data-record in R to be true, and performs a CAS

operation to store new into the mutable field pointed to by fld to update the tree.

We the set the state field of r
s

to be Committed. Finally, S returns success.

Lemma 2 shows the linearizability and non-blocking property of LLX and SCX

operations.

Lemma 2 ([6]). Successful LLX and SCX operations are linearizable. If LLX and

SCX operations are invoked infinitely often, they succeed infinitely often, and are thus

non-blocking.

3.2 Tree Update Template

Non-blocking ravl trees use the template proposed by Brown et al. [7] to perform

update operations. This template provides a framework to design non-blocking down

12

trees, which are directed acyclic graphs of indegree one. An update operation using

this template atomically removes a subtree from the data structure and replaces it

with a newly created subtree using LLX and SCX operations. Figure 3.1 gives an ex-

ample of such an update operation. We define R to be the set of nodes in the removed

subtree, N to be the set of nodes in the newly added subtree, F
R

= {x|parent of x 2

R and x /2 R} before the update, and F
N

= {x|parent of x 2 N and x /2 N} after

the update. Thus, the subgraph G
R

induced by nodes in R [F
R

before the update

is replaced by the subgraph G
N

induced by nodes in N [F
N

after the update. G
R

and G
N

are both down trees. Let parent be the parent of the root node in G
R

.

The update operation modifies the corresponding child pointer of parent so that the

pointer points to the root of G
N

after the update.

Figure 3.1: An example of a tree update operation following the template in [7].

Algorithm 1 gives the detailed implementation of the update template. An up-

date operation op performing TEMPLATE takes an argument, args, which contains the

information needed to perform the desired update. op traverses the down tree until it

reaches parent in line 1. op then performs an LLX operation on parent and stores the

values of the mutable and immutable fields of parent in r
p

and r0
p

in line 2 and line 5,

respectively. If this LLX operation returns fail or finalize, op returns fail in line 4.

Between line 7 and line 15, op performs an LLX operation on each node visited, and

stores the values of its mutable fields and immutable fields in r
i

and r0
i

in line 8 and

line 11, respectively. If any of these LLX operations returns fail or finalized, op

13

Algorithm 1 TEMPLATE(args)[7]

1: Perform a top-down traversal starting from the root of the tree until parent is

reached

2: r
p

 LLX(parent)

3: if r
p

2 {fail, finalized} then

4: return fail

5: r0
p

 the immutable fields of parent

6: i 0

7: while true do

8: r
i

 LLX(n
i

)

9: if r
i

2 {fail, finalized} then

10: return fail

11: r0
i

 the immutable fields of n
i

12: if CONDITIONMET(r
p

, r0
p

, r0, r
0
0, r1, r

0
1, . . . , ri, r

0
i

, args) then

13: break out of the loop

14: i i+ 1

15: n
i

 NEXTNODE(r
p

, r0
p

, r0, r
0
0, r1, r

0
1, . . . , ri, r

0
i

, args)

16: if SCX(SCXARGUMENT(r
p

, r0
p

, r0, r
0
0, r1, r

0
1, . . . , ri, r

0
i

, args) then

17: return RESULT(r
p

, r0
p

, r0, r
0
0, r1, r

0
1, . . . , ri, r

0
i

, args)

18: else

19: return fail

returns fail in line 10. If some conditions determined by a user-provided function

named CONDITIONMET are met in line 12, op breaks out of the loop. Note that these

conditions must be met eventually. op determines which node to visit next via a user-

provided function named NEXTNODE in line 15. Let � = {parent, n0, n1, . . .} be the

sequence of nodes visited by op. We also define F
�

= {x|parent of x 2 � and x /2 �}

before the update, and the down tree G
�

to be the subgraph induced by � [F
�

.

Finally, op updates the data structure via an SCX operation in line 16. If this

14

SCX operation succeeds and returns true, op returns the results computed by a user-

provided function named RESULT in line 17. Otherwise, op returns fail in line 19.

The required arguments of the SCX operation, V , R, fld and new, are constructed

by a user-provided function named SCXARGUMENT. Lemma 3 gives the requirements

on these arguments, and update operations using this template are linearizable and

non-blocking if these requirements are met.

Lemma 3 ([7]). Consider a down tree structure on which concurrent update opera-

tions are performed following the tree update template. Suppose that when construct-

ing SCX arguments in this template, the following conditions are always met:

1. V is a subset of �.

2. R is a subset of V .

3. fld points to a child pointer of parent, and parent is in V .

4. new is a pointer pointing to the root of G
N

, and G
N

is a non-empty down tree.

5. Let old be the value of the child pointer pointed by fld before the update. If

old = NULL before the update operation, R = ; and F
N

= ;.

6. If old 6= NULL and R = ;, F
N

only contains the node pointed to by old.

7. All nodes in N must be newly created.

8. If a set of concurrent update operations take place entirely during a period of

time when no successful SCX operations are performed, the nodes in the sequence

V constructed by each of these operations must be ordered in the same tree

traversal order.

9. If R 6= ; and G
�

is a down tree, then G
R

is a non-empty down tree whose root

is pointed to by old, and F
N

= F
R

.

15

Then, successful tree update operations are linearized at the linearization points of

their SCX steps. If tree update operations are performed infinitely often, they succeed

infinitely often, and are thus non-blocking.

Chapter 4

Sequential External Ravl Trees

In this chapter, we describe the sequential external ravl tree, which is a variant of Sen

and Tarjan’s ravl tree [32]. We first introduce external ravl trees in Section 4.1 and

describe how operations are performed on those trees in Section 4.2. We then bound

the height of a sequential external ravl tree in Section 4.3.

4.1 The Structures of Sequential External Ravl Trees

(a) An empty sequential ravl tree. (b) A non-empty sequential ravl tree.

Figure 4.1: The structures of an empty and a non-empty sequential external ravl tree.

We first introduce the notation used throughout this chapter. Each node x in an

external ravl tree maintains two child pointers, x.left and x.right. If either one of

x’s children is missing, we conceptually add missing node(s) as its child/children. If

both of x’s children are missing, x is a leaf; otherwise, x is an internal node. We

define the height of x, h(x), to be the length of the longest node-to-leaf path starting

from x. The height of a tree rooted at node rt is then h(rt). x contains key, value

and rank fields, denoted by x.k, x.v and x.r, respectively. If x is an internal node,

x.v = NULL. The rank of x is used by rebalancing operations. As to be shown

16

17

later, we compute this value depending on the operation to be performed on x, and

determine if rebalancing is required and which rebalancing step to take based on the

rank di↵erence among related nodes. If x is a missing node, x.r = �1. Otherwise, x.r

is a non-negative integer. Let z be x’s parent. x is called an i-node if z.r � x.r = i.

x is an i, j-node if one of x’s children is an i-node and the other is a j-node. If x

is a 0-node, we call it a violation, and the edge (z, x) is called a violating edge. In

this case, we also say that x is z’s 0-child, and z is a 0-parent. No violation exists in

external ravl trees after their rebalancing processes have terminated.

To avoid special cases in the concurrent version of this data structure to be de-

scribed in Chapter 5, we introduce the entry node, which is the entry point of an

external ravl tree. Figure 4.1(a) illustrates the structure of an empty tree which con-

tains an entry node with a single leaf left child. We call these two nodes sentinel

nodes. In a non-empty tree, as shown in Figure 4.1(b), the leftmost grandchild of the

entry node is the actual root of the external ravl tree, and its height is defined to be

the height of the tree. The sentinel nodes in a non-empty tree are the entry node, its

left child and its left child’s right child. We define the keys, values and ranks of the

sentinel nodes to be 1, NULL and 1, respectively. If a node is neither a missing

node nor a sentinel node, we call it an original node. Note that in all figures of this

thesis, we use squares to represent sentinel nodes, circles to represent original nodes

and triangles to represent subtrees, and we do not show missing nodes.

4.2 Operations in Sequential External Ravl Trees

Sequential external ravl trees support GET operations by standard BST searches. To

insert an item with key key and value value, we first search for key and get a leaf l and

its parent p. If l.k = key, the INSERT operation returns false. Otherwise, it replaces l

with a newly created subtree composed of a node new and its two leaf children new k

and new l as shown in Figure 4.2(a). We define new.k = max(l.k, key), new.r = l.r,

18

(a) INSERT key. (b) DELETE key.

(c) Case 1 PROMOTE on node z. (d) Case 2 PROMOTE on node z.

(e) Case 1 ROTATE on node x. (f) Case 2 ROTATE on node x.

(g) DOUBLEROTATE on node y.

Figure 4.2: Operations in sequential external ravl trees. The number beside each
edge indicates the rank di↵erence between the parent and the child.

and new.v = NULL. new k contains key and value, and we define new k.r to be 0.

new l stores l.k and l.v, and we define new l.r to be1 if l was a sentinel node before

the INSERT operation, or 0 otherwise. If new k.k < new.k, we set new k to be new’s

left child, and new l to be new’s right child, and vice versa. In the sequential case, a

more e�cient solution is to reuse node l and update its rank instead of creating a new

19

node new l. However, to support concurrent updates in Chapter 5, it is necessary to

create new l. Thus, to be consistent with the description in Chapter 5, we do the

same in sequential case. Violations might be created after inserting a new item into

the tree, so the INSERT operation starts a rebalancing process (to be described later)

after inserting the new item, and returns after the rebalancing process terminates and

all violations have been resolved.

To delete an item identified by key, we search for key and get a leaf l, its parent

p and its grandparent gp. If l.k 6= key, the DELETE operation returns false. Oth-

erwise, it removes l and p, and sets l’s sibling s to be gp’s child by modifying the

corresponding child pointer as shown in Figure 4.2(b). Violations cannot be created

by DELETE operations. Since DELETE operations in sequential external ravl trees are

not concurrent with INSERT operations, there is no violation in the tree during the

execution of a DELETE operation.

Violations can be created by both INSERT and rebalancing operations. We re-

solve all potential violations via case 1 and 2 PROMOTE, case 1 and 2 ROTATE and

DOUBLEROTATE operations illustrated in Figures 4.2(c) - (g). Let x be a 0-node in an

external ravl tree, z be its parent, and x
s

be its sibling. Without loss of generality,

assume that x is z’s left child. Let y be x’s right child, and y
s

be x’s left child. To

resolve the violation on x, we perform one of the following rebalance operations:

1. Case 1 PROMOTE: If z was a 0,0-node before this rebalancing step, we pro-

mote z by increasing its rank by 1 as illustrated in Figure 4.2(c). If the rank

di↵erence between z and its parent was greater than 1 before the promotion,

no new violation is created in this step, and the rebalancing process terminates.

Otherwise, z has become a 0-node, and we perform another rebalancing step to

resolve the violation on z.

2. Case 2 PROMOTE: If z was a 0,1-node before this rebalancing step, we promote

20

z as illustrated in Figure 4.2(d). What happens next after this step is similar

to a case 1 PROMOTE operation.

3. Case 1 ROTATE: If z was a 0,i-node before this rebalancing step, where i � 2,

x was a 1,2-node, and y was a 2-node before the rotation, we perform a case

1 ROTATE operation on x as illustrated in Figure 4.2(e). We also demote z by

reducing its rank by 1. The rebalancing process terminates after this step.

4. Case 2 ROTATE: If z was a 0,i-node before this rebalancing step, where i � 2,

and x was a 1,1-node, we perform a case 2 ROTATE operation on x and promote

x as illustrated in Figure 4.2(f). If the rank di↵erence between z and its parent

was greater than 1 before the rotation, no new violation is created in this step,

and the rebalancing process terminates. Otherwise, x is still a 0-node after the

rotation, and we perform another rebalancing step to resolve the violation on

x.

5. DOUBLEROTATE: If z was a 0,i-node before this rebalancing step, where i � 2,

x was a 1,2-node, and y was a 1-node, we perform a DOUBLEROTATE operation

on y as shown in Figure 4.2(g). We set x to be y’s left child and z to be y’s

right child after the rotation. To restore the BST property, we set y’s previous

left child and right children, y
l

and y
r

, to be x’s right child and z’s left child

after the rotation, respectively. We also demote x and z and promote y. The

rebalancing process terminates after this step.

If a rebalancing step does not introduce a new violation after resolving the old

one, we say that it is terminating; otherwise, it is non-terminating. The rebalancing

operations above explicitly cover all violation cases except the case in which the

parent of a 0-node in a external ravl tree is a 0,i-node, where i � 2, and this 0-node

is neither a 1,1-node, nor a 1,2-node. Lemma 4 proves that such a case does not exist

in external ravl trees.

21

Lemma 4. If the parent of a 0-node in an external ravl tree is a 0,i-node, where

i � 2, then this 0-node must be a 1,1-node or a 1,2-node.

Proof. Assume to the contrary that this lemma is not true. Initially in an empty tree,

there is no violation. Let S be the first operation such that after S, there exists a

0-node x, which is neither a 1,1-node nor a 1,2-node, and its parent p(x) is a 0,i-node,

where i � 2. By Figure 4.2, only a PROMOTE operation or a case 2 ROTATE operation

performed on x can make p(x) a 0,i-node, where i � 2. If S is a case 1 PROMOTE

operation, x was a 0,0-node before S, and it becomes a 1,1-node after S, which is a

contradiction. If S is a case 2 PROMOTE operation, x was a 0,1-node before S, and it

becomes a 1,2-node after S, which contradicts the assumption. If S is a case 2 ROTATE

operation, x was a 1,1-node before S, and it becomes a 1,2-node after S, which is a

contradiction as well. This completes the proof.

Now we have shown that our rebalancing operations can resolve all possible vi-

olation cases. Since we have defined the ranks of sentinel nodes to be 1, the rank

di↵erence between the root of an external ravl tree and its parent is always positive.

Thus, the rebalancing process in an external ravl tree can eventually terminate at its

root via performing a PROMOTE operation on the root, a ROTATE operation on one of

the root’s children or a DOUBLEROTATE operation on one of the root’s grandchildren.

4.3 Bounding the Tree Height

To bound the heights of sequential ravl trees, we first show the relationship between

the heights and ranks of original nodes in Lemma 5.

Lemma 5. In an external ravl tree, the height of each original node is no greater

than its rank.

Proof. We prove this by induction on the heights of nodes. The height of any leaf

node in an external ravl tree is 0, and its rank is greater than or equal to 0. Thus, the

22

statement holds in the base case. For the inductive case, assume that this property

holds for all nodes with heights no greater than h, and we prove that this statement

holds for any node u whose height is h+1. Let v and w be u’s children. Without loss

of generality, we assume that height(w)  height(v) = h. Therefore, height(u) =

h+ 1 = height(v) + 1  v.r + 1  max(v.r + 1, w.r + 1)  u.r. Thus, the induction

goes through.

We are now ready to bound the tree height in Lemma 6:

Lemma 6. For an external ravl tree built via a sequence of arbitrarily intermixed

INSERT and DELETE operations from an empty tree, the height of the tree is bounded

by log
�

(2m), where � = 1+
p
5

2 is the golden ratio and m is the total number of INSERT

operations executed.

Proof. We apply a modified version of the potential functions used in [32] to prove

this lemma. In our analysis, F
i

denotes the ith Fibonacci number, i.e., F0 = 0, F1 = 1,

and F
i

= F
i�1 + F

i�2 where i � 2. We also use the inequality F
i+2 � �i. We define

the potential of an original node x in an external ravl tree, whose rank is k, as follows:

1. If x is a 0,0-node, we define its potential to be F
k+3.

2. If x is a 0,1-node, we define its potential to be F
k+2.

3. If x is a 0,i-node, where i � 2, we define its potential to be F
k+1.

4. If x is a 1,1-node, we define its potential to be F
k

.

5. For all other cases, we define the potential of x to be 0.

We also define the potential of an external ravl tree to be the sum of the potentials

of all its original nodes. Thus, the potential of the tree is always non-negative. The

potential of an empty tree is 0. INSERT, DELETE, and rebalancing operations change

the potential of the tree as follows:

23

1. INSERT: Inserting a new item into the tree will increase the potential of the

tree by at most 2. An INSERT operation replaces a leaf l with a newly created

node new with two leaf children, where new.r = l.r. By the potential functions

defined above, the potentials of leaves are 0. Therefore, removing l will not

change the potential of the tree. If l.r was 0 before the insertion, new is a 0,0-

node, whose rank is 0, and inserting new into the tree increases the potential of

the tree by F3 = 2. If l.r was 1 before the insertion, new is a 1,1-node, whose

rank is 1, and inserting new into the tree increases the potential of the tree by

F1 = 1. If l.r was greater than 1 before the insertion, then this insertion does

not change the potential of the tree.

2. DELETE: Deleting an item identified by a given key from the tree does not

increase the potential of the tree. Let l be the leaf identified by the given key,

and p be its parent. The DELETE operation removes l and p by making the

corresponding child pointer of p’s parent gp point to l’s sibling s. Since the

potentials of l and p are non-negative, removing them from the tree does not

increase the potential of the tree. Since there is no violation in the tree during

the execution of a DELETE operation, p, s, l and p’s sibling are not 0-nodes. Let

the rank of p be k. If gp was a 1,1-node before the deletion, the potential of

gp was F
k+1. Otherwise, the potential of gp was 0. Since gp.r � p.r � 1 and

p.r � s.r � 1, the rank di↵erence between gp and s is greater than or equal

to 2. Thus, gp is not a 1,1-node after the update. Since a DELETE operation

cannot create violations, gp cannot have any 0-child after the deletion. Thus,

the potential of gp becomes 0 after the deletion, and the total potential of the

tree is not increased.

3. Case 1 PROMOTE: Let z be the 0,0-node on which a case 1 PROMOTE operation

24

is performed, and let k be its rank. If this case 1 PROMOTE operation is non-

terminating, it does not change the potential of the tree; otherwise, it decreases

the potential of the tree by at most F
k+2. After a case 1 PROMOTE operation,

z becomes a 1,1-node, its rank becomes k + 1, and its potential changes from

F
k+3 to F

k+1. Thus, the potential of z is decreased by F
k+2. Let p(z) be z’s

parent. In the non-terminating case, if p(z) was a 1,1-node, whose rank was

k + 1 before the promotion, it becomes a 0,1-node after the promotion, and

its potential changes from F
k+1 to F

k+3. If p(z) was a 1,i-node, where i � 2,

whose rank was k + 1, before the promotion, it becomes a 0,i-node after the

promotion, and its potential changes from 0 to F
k+2. In either case, the potential

of p(z) is increased by F
k+2, and the potential of the tree is not changed. In

the terminating case, if p(z) was a 1,2-node, whose rank was k + 2, before the

promotion, it becomes a 1,1-node after the promotion, and its potential changes

from 0 to F
k+2. In this case, the potential of p(z) is increased by F

k+2, and the

potential of the tree is not changed. Otherwise, this promotion does not change

the potential of p(z), and the potential of the tree is decreased by F
k+2. If z is

the root of the tree, since the potential of the tree is the sum of the potentials

of its original nodes only, it is decreased by F
k+2.

4. Case 2 PROMOTE: Let z be the 0,1-node on which a case 2 PROMOTE operation

is performed, and let k be its rank. If this case 2 PROMOTE operation is non-

terminating, it does not change the potential of the tree; otherwise, it decreases

the potential of the tree by at most F
k+2. After a case 2 PROMOTE operation,

z becomes a 1,2-node, its rank becomes k + 1, and its potential changes from

F
k+2 to 0. Thus, the potential of z is decreased by F

k+2. Other than z, the

only node whose potential can possibly be changed is p’s parent p(z), and using

the same analysis in the case 1 PROMOTE operation, we claim the following: in

25

the the non-terminating case, the potential of p(z) is increased by F
k+2, and

the potential of the tree is not changed; in the terminating case, if p(z) was a

1,2-node before the promotion, the potential of p(z) is increased by F
k+2, and

the potential of the tree is not changed; otherwise, the potential of p(z) is not

changed, and the potential of the tree is decreased by F
k+2. If z is the root of

the tree, the potential of the tree is decreased by F
k+2.

5. Case 1 ROTATE: A case 1 ROTATE operation does not increase the potential

of the tree. Let x be the 1,2-node on which this case 1 ROTATE operation is

performed, and let k be its rank. After this rotation, x becomes a 1,1-node,

and its potential changes from 0 to F
k

. Thus, the potential of x is increased by

F
k

. Let z be x’s parent. If z was a 0,2-node before the rotation, its potential

changes from F
k+1 to F

k�1. Thus, the potential of z is decreased by F
k

, and

the potential of the tree is not changed. Otherwise, the potential of z changes

from F
k+1 to 0, and the potential of the tree is decreased.

6. Case 2 ROTATE: Let x be the 1,1-node on which a case 2 ROTATE operation

is performed, and let k be its rank. If this case 2 ROTATE operation is non-

terminating, it does not change the potential of the tree; otherwise, it decreases

the potential of the tree by at most F
k+2. Let z be x’s parent, and without loss

of generality, assume that x is z’s left child. After this rotation, the potentials

of x and z change from F
k

to 0 and from F
k+1 to 0, respectively. Thus, the

potential of z is decreased by F
k+2. Other than z, the only node whose potential

can possibly be changed is p’s parent p(z), and using the same analysis in the

case 1 PROMOTE operation, we claim the following: in the non-terminating case,

the potential of p(z) is increased by F
k+2, and the potential of the tree is not

changed; in the terminating case, if p(z) was a 1,2-node before the promotion,

the potential of p(z) is increased by F
k+2, and the potential of the tree is not

26

changed; otherwise, the potential of p(z) is not changed, and the potential of

the tree is decreased by F
k+2. If z is the root of the tree, the potential of the

tree is decreased by F
k+2.

7. DOUBLEROTATE: A DOUBLEROTATE operation does not increase the potential

of the tree. Let x be the parent of the node on which this DOUBLEROTATE

operation is performed. Then x was a 1,2 node before the rotation. Let z be

x’s parent, and without loss of generality, assume that x is z’s left child, and y

is x’s right child. This DOUBLEROTATE operation is performed on y. If y was a

1,1-node before the rotation, the potentials of x and y change from 0 to F
k�1

and from F
k�1 to F

k

, respectively. If z was a 0,2-node before the rotation, the

potential of z changes from F
k+1 to F

k�1. Otherwise, the potential of z changes

from F
k+1 to 0. In either case, the potential of the tree is not increased. If y was

not a 1,1-node before the rotation, the potential of y changes from 0 to F
k

after

the rotation. The potentials of x and z were 0 and F
k+1 before the rotation,

respectively. If y’s left child was a 1-node before the rotation, the potentials of

x and z change to F
k�1 and 0, respectively. Otherwise, if y’s right child was a

1-node before the rotation, the potentials of x and z change to 0 and at most

F
k�1. If none of y’s children was a 1-node before the rotation, the potentials

of x and z become 0 after the rotation. Thus, the potential of the tree is not

increased.

Initially, the potential of an empty tree is 0. Based on the analysis above, the potential

of the tree can only be increased by at most 2 after each INSERT operation. The

first INSERT operation, where we insert the root of the external ravl tree, rt, into

the empty tree, does not change the potential of the tree. Thus, after m INSERT

operations, the potential of the tree is at most 2(m � 1). Since the initial rank of

rt is 0, the number of terminating case 1 and 2 PROMOTE operations performed on

27

rt plus the number of case 2 ROTATE operations performed on one of rt’s children is

equal to rt.r. As analyzed above, each time one of these operations changes the rank

of rt from k to k + 1, the potential of the tree is decreased by F
k+2. Therefore, these

operations decrease the potential of the tree by
P

rt.r�1
i=0 F

i+2 =
P

rt.r+1
i=2 F

i

= F
rt.r+3�2.

Since the potential of the tree is always non-negative, 2(m � 1) � F
rt.r+3 � 2, and

2m � F
rt.r+3 > F

rt.r+2 � �rt.r. Finally, by Lemma 5, h(rt)  rt.r < log
�

2m.

Chapter 5

Non-Blocking Ravl Trees

In this chapter, we present the non-blocking ravl tree, which is a lock-free implemen-

tation of the sequential external ravl tree in concurrent settings. As in Chapter 4, we

define the root of of a non-blocking ravl tree to be the root of the subtree formed by

all original nodes in the tree. Also, we use the same definitions of V , fld, old, new,

R, N , F
R

and F
N

from Section 3.2 in this chapter.

5.1 The Structures and Algorithms of Non-Blocking Ravl Trees

The composition and structure of a non-blocking ravl tree are the same as those of a

sequential external ravl tree. Each node x in a non-blocking ravl tree is represented by

a Data-record< x.left, x.right, x.k, x.v, x.r >, where x.left and x.right are mutable

fields, and the other fields are immutable. We conceptually add missing nodes to

newly created leaves as their children. Algorithm 2 describes the INIT operation,

which initializes an empty non-blocking ravl tree consisting of the entry node with

a single left child. Figure 5.1 illustrates the update operations in non-blocking ravl

trees using the same notation in Figure 4.2.

Algorithm 2 INIT

1: s pointer to a new Data-Record< missing,missing,1, NULL,1 >

2: entry pointer to a new Data-Record< s,missing,1, NULL,1 >

Algorithm 3 presents the algorithm for a SEARCH operation in a non-blocking ravl

tree, which performs a regular BST search starting from the entry node, and returns

the last three nodes visited, n0, n1 and n2, where n2 is a leaf, n1 is n2’s parent, and

28

29

(a) INSERT key. (b) DELETE key.

(c) Case 1 PROMOTE on node z. (d) Case 2 PROMOTE on node z.

(e) Case 1 ROTATE on node x. (f) case 2 ROTATE on node x.

(g) DOUBLEROTATE on node y.

Figure 5.1: Operations in non-blocking ravl trees.

in the leaf in line 13; otherwise, it returns NULL.

An INSERT operation described in Algorithm 5 attempts to insert a new item

consisting of key and value into a non-blocking ravl tree. It returns true if the

insertion succeeds, or false if key already exists in the dictionary that the non-

blocking ravl tree represents. An INSERT operation first calls SEARCH(key), which

30

Algorithm 3 SEARCH(key)

3: n0 NULL; n1 entry; n2 entry.left

4: while n2 is internal do

5: n0 n1; n1 n2

6: if key < n1.k then

7: n2 n1.left

8: else

9: n2 n1.right

10: return < n0, n1, n2 >

Algorithm 4 GET(key)

11: < �,�, l > SEARCH(key)

12: if l.k = key then

13: return l.v

14: else

15: return NULL

Algorithm 5 INSERT(key, value)

16: repeat

17: < �, p, l > SEARCH(key)

18: if l.k = key then

19: return false

20: result TRYINSERT(p, l, key, value)

21: until result 6= fail

22: if result then

23: CLEANUP(key)

24: return true

returns a leaf l and its parent p in line 17. If l.k is equal to key, the INSERT operation

returns false in line 19, which indicates that it does not insert a new item into the tree.

Otherwise, it invokes TRYINSERT(p, l, key, value) (Algorithm 6), which carries out the

31

Algorithm 6 TRYINSERT(p, l, key, value)

25: if LLX(p) 2 {fail, finalized} then

26: return fail

27: if l = p.left then

28: fld &p.left

29: else

30: if l = p.right then

31: fld &p.right

32: else

33: return fail

34: if LLX(l) 2 {fail, finalized} then

35: return fail

36: new k pointer to a new Data-Record< missing,missing, key, value, 0 >

37: if l = entry.left then

38: new l pointer to a new Data-Record< missing,missing, l.k, l.v,1 >

39: else

40: new l pointer to a new Data-Record< missing,missing, l.k, l.v, 0 >

41: if key < l.k then

42: new pointer to a new Data-Record< new k, new l, l.k, NULL, l.r >

43: else

44: new pointer to a new Data-Record< new l, new k, key, NULL, l.r >

45: if SCX({p, l}, {l}, f ld, new) then

46: return (new.r = 0)

47: else

48: return fail

actual insertion by following the tree update template summarized in Section 3.2.

If the TRYINSERT step returns fail, the INSERT operation retries this process from

scratch.

32

A TRYINSERT operation performs the update shown in Figure 5.1(a). It first per-

forms an LLX operation on p in line 25. If this LLX operation returns fail or

finalized, the TRYINSERT operation returns fail in line 26. We then determine if l is

p’s left child or right child in line 27 or line 30, and we let pointer fld point to the

correct child pointer field of p. If the structure of the related portion of the tree has

been changed since the corresponding SEARCH operation returns, and l is not a child

of p anymore when we perform the check above, the TRYINSERT operation returns fail

in line 33. Then we perform an LLX operation on l in line 34, and the TRYINSERT

operation returns fail if this LLX operation returns fail or finalized. We create

a new subtree rooted at the node pointed by pointer new from line 36 to line 44.

Similar to an INSERT operation in a sequential external ravl tree, we define the key,

value and rank of the root of the new subtree to be max(l.k, key), NULL and l.r,

respectively. We also create two new leaf nodes pointed to by pointer new k and

new l, respectively. The key, value and rank of the leaf node pointed to by new k

are key, value and 0, respectively. If l was not a sentinel node before the insertion,

we define the key, value and rank of the leaf node pointed to by new l to be l.k,

l.v and 0, respectively. Otherwise, we define the rank of this new leaf to be 1. If

key < l.k, we let the leaf node pointed to by new k be the left child of the root

of the new subtree, and the leaf node pointed to by new l be the root’s right child,

and the other case is symmetric. We construct the SCX arguments in line 45, where

we define V = {p, l} and R = {l}. The TRYINSERT operation then calls SCX with

the constructed arguments and attempts to atomically store new in the child field

of p pointed to by fld while finalizing l. If this SCX operation fails, the TRYINSERT

operation returns fail. Otherwise, if the rank of the root of the newly inserted sub-

tree is 0, the TRYINSERT operation returns true to indicate that a new violation has

been created after a successful insertion. If no new violation has been created, the

TRYINSERT operation returns false.

33

The corresponding INSERT operation stores the returned value of its TRYINSERT

subroutine in result. If result is true, a new violation has been created by this

insertion, and the INSERT operation calls CLEANUP (Algorithm 7) to rebalance the

tree. Finally, the INSERT operation returns true to indicate that a new item has been

inserted into the tree.

Algorithm 7 CLEANUP(key)

49: while true do

50: gp NULL; p entry; l entry.left; l
s

 entry.right

51: while true do

52: if l is a leaf then

53: return

54: if key < l.k then

55: gp p; p l; l l.left; l
s

 l.right

56: else

57: gp p; p l; l l.right; l
s

 l.left

58: if p.r = l.r + 1 and p.r = l
s

.r then

59: TRYREBALANCE(gp, p, l
s

)

60: break out of the inner loop

61: if p.r = l.r then

62: TRYREBALANCE(gp, p, l)

63: break out of the inner loop

A CLEANUP operation resolves the new violation created by the corresponding

INSERT operation, as well as all potential new violations created by the rebalancing

steps during the process. Starting from the entry node (line 50), it performs a BST

search for key and keeps track of the last three consecutive nodes visited, gp, p and l,

as well as l’s sibling, l
s

. If p is a 0,1-node, and l
s

is p’s 0-child (line 58), the CLEANUP

operation calls TRYREBALANCE(gp, p, l
s

) (Algorithm 8) to resolve the violation on l
s

.

34

This step is required to avoid livelocks which will be explained in Section 5.3. Oth-

erwise, if l is a 0-node (line 61), the CLEANUP operation calls TRYREBALANCE(gp, p, l)

to resolve the violation on l. Once the TRYREBALANCE subroutine returns, the corre-

sponding CLEANUP operation retries this process in case that a new violation has been

created by the previous TRYREBALANCE call. The CLEANUP operation returns when l

reaches a leaf in line 52. At this point, the violation created by the corresponding

INSERT operation has been resolved.

A TRYREBALANCE operation takes three consecutive nodes pz, z and x, which cor-

respond to the nodes with same names in Figures 5.1(c) - (g). These figures illustrate

case 1 and case 2 PROMOTE, case 1 and case 2 ROTATE and DOUBLEROTATE operations

in non-blocking ravl trees. They are very similar to the corresponding rebalancing

operations in sequential external ravl trees, except in concurrent settings, we modify

the rank of a node by replacing it with a newly created node with the updated rank,

and we perform update operations by following the tree update template. In addi-

tion, since rebalancing operations are concurrent with INSERT and DELETE operations

in concurrent settings, the rank di↵erence between x and its children could be arbi-

trarily large, and y can have 0-children, while in sequential settings, x can only be

a 1,1-node or a 1,2-node when z is a 0,i-node, where i � 2, and y cannot have any

0-child.

A TRYREBALANCE operation attempts to resolve the violation on x. It first per-

forms a sequence of LLX operations on pz, z and x in line 64, line 73 and line 89. If

any of these LLX operations returns fail or finalized, this TRYREBALANCE operation

returns without attempting to update the tree. We then determine if z is pz’s left

child or right child, and let pointer fld point to the correct child pointer field of pz in

line 67 or line 70. If z is not a child of pz anymore when we perform the check above,

the TRYREBALANCE operation returns. We also perform the same check in line 75 and

line 78 to verify that x is still a child of z and to store x’s sibling in x
s

.

35

Algorithm 8 TRYREBALANCE(pz, z, x)

64: if LLX(pz) 2 {fail, finalized} then

65: return

66: if z = pz.left then

67: fld &pz.left; z
s

 pz.right

68: else

69: if z = pz.right then

70: fld &pz.right; z
s

 pz.left

71: else

72: return

73: if LLX(z) 2 {fail, finalized} then

74: return

75: if x = z.left then

76: x
s

 z.right

77: else

78: if x = z.right then

79: x
s

 z.left

80: else

81: return

82: if z.r 6= x.r then

83: return

84: if x
s

.r = z.r or x
s

.r = z.r � 1 then

85: if pz.r = z.r + 1 and pz.r = z
s

.r then

86: return

87: PROMOTE(pz, z, x, x
s

, f ld)

Next, the TRYREBALANCE operation examines the ranks of pz, z, z’s sibling z
s

, x

and x’s sibling x
s

to determine which rebalancing step to take. If x is not a 0-node

anymore (line 82), some other process must have resolved the violation on x, and

36

88: if z.r > x
s

.r + 1 then

89: if LLX(x) 2 {fail, finalized} then

90: return

91: if x = z.left then

92: y x.right; y
s

 x.left

93: else

94: y x.left; y
s

 x.right

95: if x.r � y.r + 2 or y is a missing node then

96: ROTATE1(pz, z, x, x
s

, y, y
s

, f ld)

97: if x.r = y.r + 1 and x.r = y
s

.r + 1 then

98: if pz.r = z.r + 1 and pz.r = z
s

.r then

99: return

100: ROTATE2(pz, z, x, x
s

, y, y
s

, f ld)

101: if x.r = y.r + 1 and x.r � y
s

.r + 2 then

102: if LLX(y) 2 {fail, finalized} then

103: return

104: DOUBLEROTATE(pz, z, x, x
s

, y, y
s

, y.left, y.right, f ld)

this TRYREBALANCE operation returns without further changes. Otherwise, if z is a

0,0-node or 0,1-node (line 84), we check if promoting z will make pz a 0,0-node in

line 85. If the condition in this line is true, the TRYREBALANCE operation returns

without attempting to modify the tree structure. This check is required for bounding

the tree height in Section 5.4. If z can be promoted, the TRYREBALANCE operation

calls PROMOTE (Algorithm 9) in line 87, which perform a case 1 or case 2 PROMOTE

operation on z as illustrated in Figure 5.1(c) or Figure 5.1(d), respectively. If z is a

0,i-node, where i � 2, there are three subcases. Without loss of generality, assume

that x was z’s left child. Let y be x’s right child, and y
s

be x’s left child before

the update. Before we decide which rebalancing step to take, we perform an LLX

37

operation on x, and the corresponding TRYREBALANCE operation returns if this LLX

operation returns fail or finalized. The three subcases are as follows:

1. If x.r � y.r+2 or y is a missing node (line 95), the TRYREBALANCE operation calls

ROTATE1 (Algorithm 10) in line 96, which performs a case 1 ROTATE operation

on x as illustrated in Figure 5.1(e).

2. If x.r = y.r + 1 and x.r = y
s

.r + 1 (line 97), we perform the same check

performed before calling PROMOTE in line 98 to avoid making pz a 0,0-node. If

the condition in this line is false, the TRYREBALANCE operation calls ROTATE2

(Algorithm 11) in line 100, which performs a case 2 ROTATE operation on x as

illustrated in Figure 5.1(f).

3. If x.r = y.r + 1 and x.r � y
s

.r + 2 (line 101), the TRYREBALANCE operation

performs an LLX operation on y in line 102. If this LLX operation returns fail

or finalized, the corresponding TRYREBALANCE operation returns. We then call

DOUBLEROTATE (Algorithm 12) in line 104, which performs a DOUBLEROTATE

operation on y as illustrated in Figure 5.1(g).

Algorithm 9 PROMOTE(pz, z, x, x
s

, f ld)

105: if x = z.left then

106: new z pointer to a new Data-Record< x, x
s

, z.k, z.v, z.r + 1 >

107: else

108: new z pointer to a new Data-Record< x
s

, x, z.k, z.v, z.r + 1 >

109: SCX({pz, z}, {z}, f ld, new z)

Algorithms 9 - 12 describe the implementations of case 1 and case 2 PROMOTE,

case 1 and case 2 ROTATE and DOUBLEROTATE operations in non-blocking ravl trees

corresponding to update operations illustrated in Figures 5.1(c) - (g), respectively. All

nodes in these algorithms correspond to the nodes with the same names in Figure 5.1.

38

Algorithm 10 ROTATE1(pz, z, x, x
s

, y, y
s

, f ld)

110: if x = z.left then

111: new z pointer to a new Node-record< y, x
s

, z.k, z.v, z.r � 1 >

112: new x pointer to a new Node-record< y
s

, new z, x.k, x.v, x.r >

113: else

114: new z pointer to a new Node-record< x
s

, y, z.k, z.v, z.r � 1 >

115: new x pointer to a new Node-record< new z, y
s

, x.k, x.v, x.r >

116: SCX({pz, z, x}, {z, x}, f ld, new x)

Algorithm 11 ROTATE2(pz, z, x, x
s

, y, y
s

, f ld)

117: if x = z.left then

118: new z pointer to a new Node-record< y, x
s

, z.k, z.v, z.r >

119: new x pointer to a new Node-record< y
s

, new z, x.k, x.v, x.r + 1 >

120: else

121: new z pointer to a new Node-record< x
s

, y, z.k, z.v, z.r >

122: new x pointer to a new Node-record< new z, y
s

, x.k, x.v, x.r + 1 >

123: SCX({pz, z, x}, {z, x}, f ld, new x)

Algorithm 12 DOUBLEROTATE(pz, z, x, x
s

, y, y
s

, y
l

, y
r

, f ld)

124: if x = z.left then

125: new x pointer to a new Node-record< y
s

, y
l

, x.k, x.v, x.r � 1 >

126: new z pointer to a new Node-record< y
r

, x
s

, z.k, z.v, z.r � 1 >

127: new y pointer to a new Node-record< new x, new z, y.k, y.v, y.r + 1 >

128: else

129: new x pointer to a new Node-record< y
r

, y
s

, x.k, x.v, x.r � 1 >

130: new z pointer to a new Node-record< x
s

, y
l

, z.k, z.v, z.r � 1 >

131: new y pointer to a new Node-record< new z, new x, y.k, y.v, y.r + 1 >

132: SCX({pz, z, x, y}, {z, x, y}, f ld, new y)

A PROMOTE operation promotes z by replacing it with a newly created node pointed

by pointer new z (line 106 or line 108). The rank of this new node is z.r + 1. If x

39

was z’s left child before the promotion, we make x new z’s left child, and x’s sibling

x
s

becomes new z’s right child. The other case is symmetric. We construct SCX

arguments in line 109, where we define V = {pz, z}, R = {z} and new = new z. We

then perform an SCX operation attempting to atomically store new z in the child field

pointed to by pointer fld while finalizing z. ROTATE1, ROTATE2 and DOUBLEROTATE

operations in non-blocking ravl trees use the same strategy as PROMOTE operations.

Algorithm 13 DELETE(key)

133: repeat

134: < gp, p, l > SEARCH(key)

135: if l.k 6= key then

136: return false

137: result TRYDELETE(gp, p, l, key)

138: until result 6= fail

139: return true

Finally, Algorithm 13 describes a DELETE operation in a non-blocking ravl tree,

which attempts to remove key from the dictionary that the non-blocking ravl tree

represents. It returns true if the deletion succeeds, or false if key does not exist in

the dictionary. A DELETE operation first calls SEARCH(key), which returns a leaf l, its

parent p and its grandparent gp in line 134. If l.k is not equal to key, the DELETE

operation returns false in line 136, which indicates that it does not remove any item

from the tree. Otherwise, it then invokes TRYDELETE(gp, p, l, key) (Algorithm 14),

which carries out the actual deletion by following the tree update template summa-

rized in Section 3.2 as shown in Figure 5.1(b). If the TRYDELETE step returns fail,

the DELETE operations retries this process from scratch. As in a TRYINSERT operation,

a TRYDELETE operation performs a sequence of LLX operations on gp, p and l, and

it returns fail if any of these LLX operations returns fail or finalized. We also

make sure that the related tree structure has not been modified by other processes

40

Algorithm 14 TRYDELETE(gp, p, l, key)

140: if LLX(gp) 2 {fail, finalized} then

141: return fail

142: if p = gp.left then

143: fld &gp.left

144: else

145: if p = gp.right then

146: fld &gp.right

147: else

148: return fail

149: if LLX(p) 2 {fail, finalized} then

150: return fail

151: if l = p.left then

152: s pointer to p.right

153: else

154: if l = p.right then

155: s pointer to p.left

156: else

157: return fail

158: if LLX(l) 2 {fail, finalized} then

159: return fail

160: if SCX({gp, p, l}, {p, l}, f ld, s) then

161: return success

162: else

163: return fail

by verifying if p is a child of gp, and l is a child of p. We let pointer fld point to

the left child pointer field of gp if p was gp’s left child before the deletion (line 143);

otherwise, fld points to the right child field of gp (line 146). We construct the SCX

41

arguments in line 160, where we define V = {gp, p, l}, R = {p, l} and new to be

s which is a pointer to l’s sibling. The corresponding SCX operation attempts to

atomically store s into the child field of gp pointed to by fld while finalizing p and l.

If this SCX operation succeeds, the TRYDELETE operation returns success; otherwise,

it returns fail. The corresponding DELETE operation returns true after a successful

TRYDELETE call.

5.2 Correctness of Non-Blocking Ravl Trees

We prove the correctness of non-blocking ravl trees by showing the following proper-

ties:

1. All violations can be resolved using rebalancing operations in non-blocking ravl

trees.

2. A non-blocking ravl tree remains a BST at any time.

3. All operations in non-blocking ravl trees are linearizable.

We first prove that rebalancing operations in non-blocking ravl trees can resolve

all possible violation cases. TRYREBALANCE described in Algorithm 8 explicitly covers

all possible violation cases except the case in which the 0-child of a 0,i-node, where

i � 2, has at least one 0-child. Thus, it su�ces to prove that such a case does not

exist in concurrent settings, as shown in the following lemma.

Lemma 7. If a 0-node in a non-blocking ravl tree has at least one 0-child, then this

node’s parent is either a 0,0-node or a 0,1-node.

Proof. Assume to the contrary that this lemma is not true. Initially in an empty

tree, there is no violation. Let S be the first operation such that after S, there exists

a 0-node that has at least one 0-child, and this 0-node’s parent is a 0,i-node, where

i � 2. We examine the following cases:

42

1. S is an INSERT operation which replaces a leaf l with a new subtree rooted at

node new. Let p be l’s parent before S. By the definition of S, S must make a

node become a 0-node whose parent is a 0,i-node, where i � 2, and this node

must also have at least one 0-child. By Algorithm 6 and Figure 5.1(a), this node

can only be new, and it must be a 0-child after S is performed. S must also

make p a 0,i-node, where i � 2. If l was not a 0-node before S, new cannot be

p’s 0-child after S, which is a contradiction. Therefore, l was a 0-node before

S. There are two subcases:

(a) If l.r was not 0 before S, new does not have any 0-child after S, which

contradicts the assumption.

(b) If l.r was 0 before S, new is a 0,0-node after S. However, since l was a

0-node before S, p.r is 0, and p cannot be a 0,i-node, where i � 2, which

is a contradiction.

2. S is a DELETE operation which removes leaf l and its parent p. Let gp be p’s

parent, and s be l’s sibling before S. In this case, by Algorithm 14, Figure 5.1(b)

and the definition of S, S must make gp a 0,i-node, where i � 2. In addition,

after S is performed, s becomes gp’s 0-child, and s has at least one 0-child.

There are two subcases:

(a) If p was a 0-node before S, s must not have been a 0-node before S.

Otherwise, gp would have been a 0,i-node, where i � 2, and p would have

had a 0-child before S, which contradicts the assumption that S is the first

operation that creates such a case. Thus, S cannot make s gp’s 0-child,

which contradict the assumption.

(b) If p was not a 0-child before S, since gp.r > p.r and p.r � s.r, S cannot

make s gp’s 0-child, which is a contradiction.

43

3. If S is a rebalancing operation, by Figures 5.1(c) - (g) and Algorithms 9 - 12,

S cannot be a case 1 ROTATE operation or a DOUBLEROTATE operation. We

consider the following subcases:

(a) S is a PROMOTE operation which promotes a node z by replacing it with

a newly created node new z whose rank is z.r + 1. Let pz be z’s parent

before S. In this case, by Figure 5.1(c), Figure 5.1(d) and the definition

of S, S must make pz a 0,i-node, where i � 2. In addition, after S is

performed, new z becomes pz’s 0-child. However, new z does not have

any 0-child after S, which is a contradiction.

(b) S is a case 2 ROTATE operation performed on a 0-node x. Let z be x’s

parent, new x and new z be the newly created nodes that replace x and

z, respectively, and pz be x’s grandparent before S. In this case, by Fig-

ure 5.1(f) and the definition of S, S must make pz a 0,i-node, where i � 2.

In addition, after S is performed, new x becomes pz’s 0-child after S.

However, new x does not have any 0-child after S, which contradicts the

assumption.

Thus, no such S exists. This completes the proof.

Using the conclusion in Lemma 7, we have now shown that rebalancing operations

in non-blocking ravl trees can resolve all possible violation cases. We next prove that

a non-blocking ravl tree remains a BST at any time during any execution, which

guarantees that BST operations are always performed correctly. Lemma 8 shows

that all original nodes in a non-blocking ravl tree always form a subtree rooted at the

leftmost grandchild of the entry node, which is the actual root of a non-blocking ravl

tree.

Lemma 8. An empty non-blocking ravl tree always consists of an entry node with

a single left child, which are the sentinel nodes of the tree. In a non-empty tree,

44

all original nodes in the tree form a subtree that is always rooted at the left-most

grandchild of the entry node. In this case, the sentinel nodes of the tree are the entry

node, its left child and its left child’s right child. The key, value and rank of sentinel

nodes are always 1, NULL and 1, respectively.

Proof. We prove this by induction on the number of SCX operations that have been

performed successfully in a non-blocking ravl tree. The base case holds for an empty

tree. In the inductive case, assume that this lemma holds before a successful SCX

operation S. If S inserts a new key into an empty tree, by Algorithm 6, S replaces

the left child of the entry node with a newly created subtree rooted at node x that has

two leaf children. x.left is the only original node in the tree. It contains the newly

inserted key, and it is the leftmost grandchild of the entry node. In addition, the key,

value and rank of x and x.right are 1, NULL and 1, respectively. Thus, inserting

the first item into an empty tree does not not a↵ect the correctness of this lemma.

If S removes the last original node x from the tree, by Algorithm 14, S replaces x

and its parent with x’s sibling, whose key, value and rank are 1, NULL and 1,

respectively. Thus, deleting the last original node from the tree does not a↵ect the

correctness of this lemma. By Algorithm 6 and Algorithm 14, if S is performed by an

INSERT operation in a non-empty tree or a DELETE operation that does not remove the

last original node from the tree, S does not change the sentinel nodes and thus, it does

not a↵ect the correctness of this lemma either. If S is performed by a rebalancing step,

since the ranks of the sentinel nodes are 1, the root will never become a violation.

Thus, S can only be performed on original nodes, and thus it does not a↵ect the

correctness of this lemma. This completes the proof for the inductive case.

Next, we show that SEARCH operations in non-blocking ravl trees are always per-

formed correctly. We define the search path [7] for a key k to be the root-to-leaf path

formed by the original nodes that a SEARCH operation for k visits as if this operation

45

finishes instantaneously at the time when it is invoked. In other words, if we take a

snapshot of the tree structure at time t, the search path for k at t is the root-to-leaf

path that a BST search for k follows in the snapshot. Using this definition, Lemma 9

proves the correctness of SEARCH operations by showing that if a node was on the

search path for some key at some time, it remains on the search path for this key at

any time later as long as it is still in the tree.

Lemma 9. In a non-blocking ravl tree, if at time t1, an original node v is on the

search path for a key k, and at a later time t2, v is still in the tree, then v is still on

the search path for k at t2.

Proof. From the update operations defined in concurrent settings, we claim that the

nodes removed from a non-blocking ravl tree are finalized and not reachable from the

tree. Since all nodes added to a tree by SCX operations are newly created, removed

nodes cannot be added back to the tree. Since v is in a non-blocking ravl tree at time

t1 and t2, it must be in the tree at anytime between t1 and t2.

Let S be a successful SCX operation performed between t1 and t2, which changes a

child of some node from old child to new child. If v was not a descendant of old child

before S, v is not a↵ected by S, and thus is not removed from the search path for

k. If v was a descendant of old child before S, since v is not removed from the tree,

v is either a member of F
R

, or a descendant of some nodes in F
R

. In the latter

case, let f be v’s lowest ancestor in F
R

, and f was on the search path for k at the

time immediately before S is performed. Following all possible tree transformations

described in Figure 5.1, if a node in F
R

was on the search path for some keys before

S, it remains in the tree in set F
N

, and it is on the search path for the same set of

keys after S. Thus, in the former case, where v was a member of F
R

before S, v is

still on the search path for k after S. In the latter case, all nodes on the path from f

up to v are not a↵ected by S. Therefore, after S is performed, f is still on the search

46

path for k after S, so is v. To conclude, if v was on the search path for k at time t1,

SCX operations cannot remove it from the search path for k at any time after t1 as

long as v is still in the tree. Since no other operation can change the tree structure

and invalidate this statement, we have completed the proof.

We have shown that if some original nodes are in a non-blocking ravl tree at some

time, they preserve the BST property at any time later as long as they are still in

the tree. It remains to show that nodes newly added into the tree by SCX operations

preserve the BST property as well. Lemma 10 completes the proof and shows that

the BST property is preserved in a non-blocking ravl tree at any time.

Lemma 10. The subtree composed of all original nodes in a non-blocking ravl tree is

a BST at any time.

Proof. We prove this by induction on the number of SCX operations that have been

performed successfully. In the base case, the tree is empty, thus the statement is

true. In the inductive case, assume that the statement holds before a successful SCX

operation S. If S is performed by an INSERT operation that inserts the first key into

an empty tree or a DELETE operation that removes the last key from the tree, then, by

Lemma 8, this statement holds after S. Otherwise, we consider the following cases:

1. If S is not an SCX step performed by an INSERT operations, by Algorithms 9

- 12 and 14, F
R

was not empty before S, and F
N

= F
R

after S. In addition,

nodes in set N preserve the BST property, i.e., for each node x in N , x.left.k <

x.k  x.right.k. By Lemma 9, if nodes in F
R

and their descendants were on

the search paths for some set of keys, s
k

, they remain in the tree and are on the

search paths for keys in s
k

after S. Since nodes in N are ancestors of nodes in

F
N

, the nodes in F
N

are on the search paths for keys in s
k

after S as well, and

thus the BST property is preserved.

47

2. If S is an SCX step invoked by an INSERT operation that does not insert the first

key into an empty tree, let k be the inserted key, l be the leaf node removed by

S, and new be the root of the newly added subtree. By Algorithm 6, l is the

leaf node on the search path for k when the corresponding SEARCH operation

executes line 7 or line 9. Since S succeeds, S is not concurrent with any other

SCX operation performed by another process that modifies the child pointer

fields of p. Therefore, l is still a child of p and is in the tree immediately before

S, and by Lemma 9, it is still on the search path for k. After S replaces l

with new, new is on the search path for k as well. By Algorithm 6, the BST

property preserves in the newly created subtree. Thus, the BST property of the

non-blocking ravl tree is preserved after S.

This completes the proof for the inductive case.

We then show that non-blocking ravl trees are linearizable in the next two lemmas.

Ideally, we want to define the linearization point of a SEARCH operation to be the time

when it reaches a leaf node, which is in the tree when it is visited. It is, however,

non-trivial to show that such a definition works. This is because a SEARCH operation

for a given key in non-blocking ravl trees does not check the status of nodes visited,

and by the time when it reaches a leaf in line 7 or line 9, or when it returns the leaf

node in line 10, this leaf might not be in the tree anymore. Thus, it is important to

prove that this leaf was in the tree and on the search path for the given key at some

time earlier during this SEARCH operation, and thus it is the correct node to return in

line 10. If the leaf returned by a SEARCH operation is a sentinel node, by Algorithm 3,

the tree is empty, and it is the correct node to return. Lemma 11 shows that SEARCH

operations in non-empty non-blocking ravl trees returns the correct leaf as well.

Lemma 11. If an original node x is visited by a SEARCH operation for a given key, x

was on the search path for this key at some earlier time during this SEARCH operation,

48

no matter whether x is still in the tree when it is visited or not. Thus, the leaf node

visited and returned by the SEARCH operation is correct.

Proof. We prove this by induction on the number of nodes visited during the SEARCH

operation. For the base case, since the SEARCH operation starts from the root of a

non-blocking ravl tree, this claim holds. For the inductive case, assume that this

claim holds when the SEARCH operation visits node v on the search path for k, and v

was in the tree at time t before it is visited. Without loss of generality, assume that

k < v.k, and let v0 be v’s left child when the SEARCH operation visits v0 at time t0.

To prove that this statement holds for the inductive case, we show that there exists

a time t00 between t and t0 when v0 is on the search path for k.

If at t0, v is in the tree, we define t00 to be the time immediately before the SEARCH

operation reads v0 from v.left. This happens after the SEARCH operation visits v at

time t and before it visits v0 at time t0. Since v is in the tree at t and t0, by Lemma 9,

v is on search path for k at time t00. Finally, since v0 is chosen to be the next node to

visit because k < v.k, v0 is on the search path for k at t00.

If at t0, v is not in the tree, then we consider the following two subcases: 1) if at

time t, v0 is v’s left child, then v0 was in the tree before t; 2) otherwise, there exists a

successful SCX operation that set v’s left child to be v0 after t. In either case, there

exists a time at or after t when v0 is in the tree, and it is v’s left child. Since v is not

in the tree at time t0, there exists a successful SCX operation S between t and t0 that

removes v from the tree. We define t00 to be the time immediately before S. Since v

is still in the tree at time t00, by Lemma 9, it is still on the search path for k. Since

we define t00 to be the time immediately before S, the child pointers of v cannot be

changed by any other SCX operation between t00 and S. After S, the child pointers

of v cannot be further changed as v has been finalized. Since v0 is v’s left child at

time t0 after S, it must have been v’s left child at time t00. To conclude, at time t00,

v is on the search path to k, v0 is the left child of v, and v0 is chosen to be the next

49

node to visit because k < v.k. Thus v0 is on the search path to k at this time. This

completes the proof for the inductive case.

Finally, we prove the linearizability of non-blocking ravl trees by defining the

linearization points of their operations in Lemma 12.

Lemma 12. A non-blocking ravl tree is linearizable, and the linearization points of

its operations are defined as follows:

1. A SEARCH operation is linearized when n2 reaches a leaf in line 7 or line 9.

2. A GET operation is linearized at the linearization point of its SEARCH step.

3. If an INSERT operation returns true, it is linearized at the linearization point of

the SCX step performed by its TRYINSERT step.

4. If an INSERT operation returns false, it is linearized at the linearization point

of its SEARCH step.

5. If a DELETE operation returns true, it is linearized at the linearization point of

the SCX step by its TRYDELETE step.

6. If a DELETE operation returns false, it is linearized at the linearization point of

its SEARCH step.

Proof. By Lemma 11, it can be concluded that the leaf that a SEARCH operation stores

in n2 at its linearization point was in the tree and on the search path for the search

key at some time during this SEARCH operation. Thus, this SEARCH operation returns

the correct leaf node in line 10, regardless if this node is still in the tree or not.

A GET operation in a non-blocking ravl tree is linearized when its SEARCH step

reaches a leaf in line 7 or line 9. By Lemma 10, since the original nodes in the non-

blocking ravl tree always form a BST, if the leaf contains the search key, this key is

50

in the dictionary that the tree represents at this time; otherwise, the key is not in

the dictionary. In either case, this GET operation always returns the correct result in

line 13 or line 15. The same analysis applies to INSERT and DELETE operations that

return false without performing SCX operations.

If an INSERT operation or a DELETE operation returns true after perform an suc-

cessful SCX operation, we claim that it follows the tree update template summarized

in Section 3.2. From the pseudocode in Algorithms 6, 9 - 12 and 14, we observe

that all the update operations in non-blocking ravl trees performing SCX operations

meet the requirements specified in Lemma 3. In addition, observe that rebalancing

operations do not change keys stored in the dictionary that a non-blocking ravl tree

represents. Thus, by Lemma 3, an INSERT operation or a DELETE operation that re-

turns true is linearized at the linearization point of the SCX step performed by the

corresponding TRYINSERT or TRYDELETE step, respectively.

5.3 Progress Properties of Non-Blocking Ravl Trees

We now prove the progress properties for non-blocking ravl trees. We first prove that

if update operations are invoked infinitely often, they follow the tree update template

summarized in Section 3.2 infinitely often. It is obvious that this statement holds for

TRYINSERT operations, TRYDELETE operations and TRYREBALANCE operations that do

not return in line 86 or line 99. It remains to show that if TRYREBALANCE is invoked

infinitely often, conditions in line 85 or line 98 (Algorithm 8) for these invocations

will eventually return false. Thus, TRYREBALANCE follows the tree update template

infinitely often.

Lemma 13. If TRYREBALANCE is invoked infinitely often, it follows the tree update

template infinitely often.

51

Proof. Assume to the contrary that the lemma is not true. To derive a contradic-

tion, assume that TRYREBALANCE is invoked infinitely often, but only a finite number

of these invocations follow the tree update template. Since TRYINSERT operations,

TRYDELETE operations and TRYREBALANCE operations that do not return in line 86 or

line 99 (Algorithm 8) always follow the tree update template, by Lemma 3, if they are

invoked infinitely often, they succeed infinitely often. Since an INSERT operation or a

DELETE operation can perform one successful TRYINSERT or TRYDELETE, respectively,

and according to the assumption, only a finite number of tree updates are performed

by TRYREBALANCE operations, there exists a time T when only TRYREBALANCE oper-

ations that return in line 86 or line 99 without following the tree update template

remain active, while all other operations have terminated. Since these TRYREBALANCE

operations do not perform any SCX operation, they cannot change the tree structure.

Thus the tree structure remains stable after T .

Consider the following set of nodes S: node x is in this set if and only if, after T ,

there exists a process for which the invoked TRYREBALANCE keeps returning in line 86

or line 99 because it cannot perform a PROMOTE operation on x, or cannot perform

a case 2 ROTATE operation on x’s 0-child. Among the nodes in S, let z be the node

with the minimum depth, and let P be the process whose calls to TRYREBALANCE

keep failing to perform a PROMOTE operation on z or to perform a case 2 ROTATE

operation on z’s 0-child. Let pz be z’s parent, z
s

be z’s sibling. Since the conditions

in line 86 or line 99 are true from all nodes in S, pz.r = z.r + 1 and pz.r = z
s

.r.

After an invoked TRYREBALANCE operation returns in line 86 or line 99, P will start

another attempt in line 50 (Algorithm 7). Since the tree is stable, P will follow the

same search path and visit the same set of nodes on the search path as in the last

attempt. Thus, when P visits pz and z again, it will discover that pz is a 0,1-node,

and z
s

is pz’s 0-child in line 58. P will then invoke TRYREBALANCE to resolve the

violation on z
s

by promoting pz. Since z is the node with the minimum depth among

52

the set of nodes in S, pz is not in S. Therefore, this time the TRYREBALANCE invoked

by P will not return in line 86 or line 99, and it will follow the tree update template.

This contradicts the assumption that only TRYREBALANCE operations that return in

line 86 or line 99 without following the tree update template are active after T .

Finally, we show that non-blocking ravl trees are non-blocking in the next lemma:

Lemma 14. All operations in non-blocking ravl trees are non-blocking.

Proof. Assume to the contrary that the lemma is not true. Consider a non-blocking

ravl tree built via a sequence of arbitrarily intermixed GET, INSERT and DELETE oper-

ations. To derive a contradiction, assume that starting from a certain time T1, active

processes are still executing instructions, but none of them completes any operation.

We now discuss the following subcases:

If none of these operations is an INSERT operation or a DELETE operation, no SCX

operation is performed after T1, and the tree structure cannot be changed. Thus, GET

operations will eventually terminate, which contradicts the assumption.

If some of these operations are INSERT or DELETE operations, then TRYINSERT,

TRYDELETE and TRYREBALANCE are repeatedly invoked. Based on the assumption,

Lemma 3 and Lemma 13, these operations are invoked infinitely often, and an infinite

number of these invocations are successful. An INSERT operation can only perform

one successful TRYINSERT operation before it terminates or starts the rebalancing

process. Thus, at most one successful TRYINSERT operation is performed by each

active process after T1. After a successful TRYDELETE operation, the corresponding

DELETE operation will terminate after a constant number of steps. Thus, by the

definition of T1, all DELETE operations have terminated before T1. Therefore, there

must be an infinite number of successful TRYREBALANCE operations after T1.

Let T2 be the time when all successful TRYINSERT operations have terminated.

After T2, the tree can only be modified by TRYREBALANCE operations. Let m be the

53

number of INSERT calls in total. As described in Algorithm 5, an INSERT operation

can add at most 2 violations into the tree. Thus, at most 2m violations are added by

INSERT operations. Each successful terminating PROMOTE operation, case 1 ROTATE

operation, terminating case 2 ROTATE operation and DOUBLEROTATE operation reduce

the number of violations by 1. Thus, the total number of successful invocations of

these operations are at most 2m. Therefore, there must be an infinite number of

successful non-terminating operations that are either PROMOTE operations or case 2

ROTATE operations after T2.

Let T3 be the time when all other operations have terminated, and there are

infinitely many invocations of non-terminating operations that are either PROMOTE

operations or case 2 ROTATE operations. Consider a process P which attempts to

resolve a violation x via a PROMOTE operation or a case 2 ROTATE operations. In

either case, as illustrated in Figure 5.1(c), Figure 5.1(d) and Figure 5.1(f), such

transformation will remove the violation x from the tree, and replace x’s previous

parent with a new violation x0. P will then repeat this process on x0. Eventually, P

will make the root of the tree a 0-parent. Since the rank di↵erence between root and

its parent is always positive, to resolve the violation on the root’s 0-child, P can only

perform a terminating PROMOTE operation, a case 1 ROTATE operation, a terminating

case 2 ROTATE operation or a DOUBLEROTATE operation. However, this contradicts

the assumption that all these update operations have terminated before T3. This

completes the proof.

5.4 Bounding the Tree Height

As in Section 4.3, we define the height of a non-blocking ravl tree to be the height of

the subtree composed of all original nodes in the tree. We take the following steps to

bound the tree height of a non-blocking ravl tree T :

54

1. We bound the height of tree T 0 build via eliminating all violations in T .

2. We bound the number of violating edges on each root-to-leaf path in T .

3. We show the relationship between the height of T and the height of T 0.

4. Using the conclusion above, we bound the height of T .

We first bound the height of a balanced non-blocking ravl tree after all violations

have been resolved using the same potential functions defined in Lemma 6. Note that

these potential functions will not apply if a rebalancing step creates a new 0,0-node.

By Figures 5.1(c) - (g) and Algorithms 9 - 12, only a non-terminating operation that is

either a PROMOTE operation or a case 2 ROTATE operation can create a new violation.

The next lemma shows that these two operations cannot create 0,0-nodes.

Lemma 15. A non-terminating operation that is either a PROMOTE operation or a

case 2 ROTATE operation cannot create a new 0,0-node.

Proof. Assume to the contrary that this lemma is not true. Initially in an empty tree,

there is no violation. Let S be the first SCX step performed by a non-terminating

operation that is either a PROMOTE operation or a case 2 ROTATE operation that creates

a new 0,0-node. Let x be the violation that S resolves, whose parent was z before the

transformation. Let pz be z’s parent, and z
s

be z’s sibling before S. In either case,

by Figure 5.1(c), Figure 5.1(d) and Figure 5.1(f), S replaces z with a new node whose

rank is z.r+1, and makes pz a 0-parent. Based on the assumption, pz is the new 0,0-

node that S creates. Therefore, before S, pz was a 0,1-node where pz.r = z.r+1 and

pz.r = z
s

.r. However, in this case, the conditions in line 85 or line 98 would have been

true before S, and the corresponding TRYREBALANCE operation would have returned

in line 86 or line 99. As a result, S cannot be performed. This contradicts the

assumption.

55

From Figure 5.1(g), the node y on which a DOUBLEROTATE is performed can have

0-children. The next lemma shows that y can have at most one 0-child in such a case.

Lemma 16. Consider a DOUBLEROTATE operation as shown in Figure 5.1(g). The

node y on which this operation is performed on can have at most one 0-child.

Proof. Assume to the contrary that y is a 0,0-node, and we are going to perform a

DOUBLEROTATE on y. By Lemma 15 and Figure 5.1, only INSERT operations can create

new 0,0-nodes. Thus, the last update operation that modifies y’s rank is an INSERT

operation, which makes y a 0,0-node. However, in this case, the rank of x is 1 since

y is a 1-node, and the rank di↵erence between x and y
s

cannot be greater than or

equal to 2. Thus, the corresponding TRYREBALANCE will not call DOUBLEROTATE to

resolve the violation on x, which contradicts the assumption that the DOUBLEROTATE

is performed on y.

We are now ready to bound the height of the non-blocking ravl tree after all

violations have been resolved as follows:

Lemma 17. For a non-blocking ravl tree built via a sequence of arbitrarily intermixed

INSERT and DELETE operations from an empty tree, the height of the tree after all

violations have been resolved is bounded by log
�

(2m), where � = 1+
p
5

2 is the golden

ratio and m is the number of INSERT operations that have successfully inserted new

keys into the tree.

Proof. We use the same potential functions defined in Lemma 6. The analysis for

INSERT operations in non-blocking ravl trees is the same as in sequential ravl trees,

where an INSERT operations increases the potential of the tree by at most 2. In

concurrent settings, we replace the existing nodes with newly created nodes with

updated ranks, and we use SCX operations to update the tree structure; while in

sequential settings, we directly modify the ranks and child pointers of related nodes.

56

These di↵erences do not a↵ect the potential analysis. The reasons are as follows: 1)

replacing an existing node with a new node with updated rank has the same impact

on the potential of the tree as directly changing the rank of the existing node; 2) the

tree structure and rank di↵erences between nodes are not depend on how the tree

is updated, either via SCX operations or modifying child pointers directly. For the

same reason, the analysis for PROMOTE operations and case 2 ROTATE operations in

non-blocking ravl trees are the same as in sequential ravl trees, which are summarized

as follows:

1. A non-terminating operation that is either a PROMOTE operation or a case 2

ROTATE operation does not change the potential of the tree.

2. A terminating PROMOTE operation or a terminating case 2 ROTATE operation

performed on a node whose rank was k before this operation decreases the

potential of the tree by at most F
k+2. If either of these two operations changes

the rank of the root of the tree from k to k + 1, the potential of the tree is

decreased by F
k+2.

We now show the impact of DELETE, case 1 ROTATE and DOUBLEROTATE operations

on the potential of the tree in concurrent settings.

1. DELETE: Deleting an item identified by a given key from the tree does not

increase the potential of the tree. Let l be the leaf identified by the given key,

and p be its parent. The DELETE operation removes l and p by making the

corresponding child pointer of p’s parent gp point to l’s sibling s. Since the

potentials of l and p are non-negative, removing them from the tree does not

increase the potential of the tree. By Figure 5.1(b), we observe the following

cases: 1) if both p and s are 1-nodes, the potential of gp is decreased; 2) if p and

s were both 0-nodes, or p was not a 0-node before the deletion, the potential of

57

gp does not change; 3) for all other cases, the potential of gp is decreased. In

either case, the total potential of the tree is not increased.

2. Case 1 ROTATE: A case 1 ROTATE operation does not increase the potential of

the tree. Let x be the node on which this case 1 ROTATE operation is performed,

and let k be its rank. Let z be x’s parent before the rotation, and without loss of

generality, assume that x is z’s left child. The potentials of x and z were 0 and

F
k+1 before the rotation, respectively. Let new x and new z be the newly added

nodes that replace x and z, respectively. The potential of new x is at most F
k

(it is F
k

if x was a 1,2-node before rotation), and the potential of new z is at

most F
k�1 (it is F

k�1 if z was a 0,2-node and x was a 1,2-node before rotation)

after the rotation. Thus, the potential of the tree cannot be increased.

3. DOUBLEROTATE: A DOUBLEROTATE operation does not increase the potential

of the tree. Let x be the parent of the node y on which this DOUBLEROTATE

operation is performed. Let k be x’s rank. Let z be x’s parent, and without

loss of generality, assume that x is z’s left child, and y is x’s right child. Let

new x, new y and new z be the newly added nodes that replace x, y and z,

respectively. The potentials of x and z were 0 and F
k+1 before the rotation,

respectively. If y was a 1,1-node before the rotation, the potential of y was

F
k�1. In this case, the potentials of new x, new y and new z are at most F

k�1

(F
k�1 if x was a 1,2-node before rotation), F

k

and at most F
k�1 (F

k�1 if z was

a 0,2-node before the rotation), respectively. Thus, the potential of the tree

cannot be increased in this case. If y was not a 1,1-node, and it did not have

any 0-child before the rotation, the potential of y was 0. If one of y’s children

was a 1-node before the rotation, there are two subcases: 1) if y’s left child was

the 1-node, the potentials of new x, new y and new z are at most F
k�1 (F

k�1

if x was a 1,2-node before rotation), F
k

and 0, respectively; 2) if y’s right child

58

was the 1-node, the potentials of new x, new y and new z are 0, F
k

and at

most F
k�1 (Fk�1 if z was a 0,2 node before the rotation), respectively. In either

case, the potential of the tree cannot be increased. If neither of y’s children was

a 1-node before the rotation, the potentials of new x, new y and new z are 0,

F
k

and 0, respectively. The potential of the tree cannot be increased in this

case, either.

By Lemma 16, y cannot be a 0,0-node before the rotation. If y had exactly one

0-child before the rotation, we first discuss the case in which y’s left child was

the 0-child. If y was a 0,1-node before the rotation, the potential of y was F
k+1.

In this case, the potentials of new x, new y and new z are at most F
k+1 (if x

was a 1,2-node before rotation), F
k

and at most F
k�1 (if z was a 0,2-node before

the rotation), respectively. Thus, the potential of the tree cannot be increased

in this case. If y was a 0,i-node before the rotation, where i � 2, the potential

of y was F
k

. In this case, the potentials of new x, new y and new z are at most

F
k+1 (if x was a 1,2-node before rotation), F

k

and 0, respectively. Thus, the

potential of the tree cannot be increased in this case. The analysis for the case

in which y’s right child was the 0-child is similar, and this case cannot increase

the potential of the tree.

As analyzed above, the impact of each update operation on the potential of a

non-blocking ravl tree is exactly the same as in sequential settings. The rest of the

analysis is the same as in Lemma 6, and the height of the tree after all violations

have been resolved is bounded by log
�

(2m).

Next, we borrow the idea from [7] to bound the number of 0-parents in a non-

blocking ravl tree. As described in Algorithm 5, an INSERT operation can create at

most one 0-parent after inserting a new key into a non-blocking ravl tree, and it will

not terminate until its call to CLEANUP returns. A successful rebalancing step invoked

59

by the CLEANUP operation does not increase the number of 0-parents. Intuitively, each

0-parent has an injective mapping to a process performing an INSERT operation that

has already inserted the new key, but its CLEANUP call has not yet returned. We say

that such a process is in its cleanup phase [7]. Thus, the number of 0-parents in the

tree is bounded by the number of processes that are in their cleanup phases. Lemma 18

and Lemma 19 formally define this injective mapping and prove the correctness of

this statement.

Lemma 18. If a node in a non-blocking ravl tree is not a 0-node at some time, it can

never become a 0-node at any time in the future. Otherwise, if a node is a 0-node at

some time, it has always been a 0-node since it was first added to the tree.

Proof. To prove the first statement, assume to the contrary that this statement is not

true. To derive a contradiction, consider a node v that is not a 0-node at some time,

but it becomes a 0-node at some later time. Since the rank fields are immutable,

there exists a successful SCX operation S such that after S, v becomes a 0-node. By

Algorithms 6, 9 - 12 and 14, we observe that no such SCX operation exists, which

contradicts the assumption. The correctness of the second statement follows directly

from the first.

Lemma 19. The number of 0-parents in a non-blocking ravl tree is bounded by the

number of processes that are in their cleanup phases.

Proof. Given a process P , we define location(P) to be the local variable l if P is

performing the inner loop of CLEANUP (between line 51 and line 63 in Algorithm 7).

If P performs a successful SCX step, we define location(P) to be the root of the tree

after this SCX step. If P is executing instructions outside of the inner loop, we define

location(P) to be the root of the tree. We prove this lemma by arguing that at any

time during in a non-blocking ravl tree, there exists an injection, ⇢, which maps each

60

0-parent x to a process ⇢(x) that is in its cleanup phase, and ⇢ always satisfies the

following invariants for each 0-parent x in the tree:

1. ⇢(x) is in its cleanup phase;

2. x is on the search path from the root of the tree to the leaf, k
⇢(x), which contains

the key inserted by ⇢(x);

3. One of the following three statements holds:

(a) x is on the search path from location(⇢(x)) to k
⇢(x); or

(b) location(⇢(x)) is a 0-node; or

(c) location(⇢(x)) is a 0-parent which has been finalized, and it was on the

search path for k
⇢(x) before it is removed from the tree.

We prove this claim by induction on the number of steps that have been carried

out. The base case holds for an empty tree. In the inductive case, assume that there

exists a mapping function ⇢ that satisfies all the invariants above immediately before

a process P carries out a step S. We show that there exists a mapping function ⇢0

such that the invariants above are still satisfied immediate after S. We discuss all

possible S that can a↵ect the claim as follows:

1. If S is the execution of line 52 where location(P) is a leaf, P will return after

S, and we define ⇢0 = ⇢ immediately after S. In this case, P did not satisfy

invariant 3(a) or invariant 3(c) before S as location(P) was a leaf.

We now show that P did not satisfy invariant 3(b) before S, i.e., location(P)

was not a 0-node before S. If S is carried out in the first iteration of CLEANUP’s

inner loop, location(P) is the left child of the entry node. In this case, the

tree is empty, and there is no 0-node in the tree. Therefore, this statement is

true. Otherwise, assume to the contrary that location(P) was a 0-node before

61

S. By Lemma 18, location(P) has been a 0-node since it was first added to the

tree. Since in the previous iteration of CLEANUP’s inner loop when location(P) is

stored in l, it has already been in this data structure, location(P) was a 0-node

at this time as well. However, in this case, P would have called TRYREBALANCE

instead. As a result, location(P) would have been removed from the tree, and

it is no longer reachable when S is carried out. Therefore, location(P) cannot

be not a 0-node before S.

As analyzed above, no violation can be mapped to P under ⇢. Thus, after S,

⇢0 = ⇢ is still an injection satisfying invariant 1, 2 and 3.

2. If S is the execution of line 60 or line 63, we define ⇢0 = ⇢ immediately after

S. S does not a↵ect any 0-parent mapped to a process that is not P under

⇢. If there was a 0-parent x where ⇢(x) = P before S, then, since location(P)

becomes the root of the tree immediately after S, ⇢0(x) satisfies invariant 1, 2

and 3(a). Thus, ⇢0 = ⇢ is still an injection satisfying invariant 1, 2 and 3.

3. If S is the execution of line 55, where S changes location(P) from node v to

v.left, we define ⇢0 = ⇢ immediately after S. S does not a↵ect any 0-parent

mapped to a process that is not P under ⇢. If there was a 0-parent x where

⇢(x) = P before S, ⇢0(x) satisfies invariants 1 and 2 after S.

We first show that P did not satisfy invariant 3(b) before S, i.e., v was not a

0-node. If S is carried out in the first iteration of CLEANUP’s inner loop, v is

the left child of the entry node. Therefore, this statement is true. Otherwise,

assume to the contrary that v was a 0-node before S. By Lemma 18, v has

been a 0-node since it was first added to the tree. Therefore, v was a 0-node

in the previous iteration. However, in this case, the corresponding CLEANUP

operation would have called TRYREBALANCE to resolve the violation on v. As a

result, v would have been removed from the tree, and it is no longer reachable

62

in the iteration of CLEANUP’s inner loop when S is carried out. Thus, v was not

a 0-node before S.

If P satisfied invariant 3(a) immediately before S, there are two subcases: 1)

if x = v before S, ⇢0(x) satisfies invariants 3(b) after S; 2) if x 6= v before S,

⇢0(x) satisfies invariants 3(a) after S. If P satisfied invariant 3(c) immediately

before S, ⇢0(x) satisfies invariants 3(b) after S. Thus, ⇢0 = ⇢ is still an injection

satisfying invariant 1, 2 and 3.

4. If S is the execution of line 57, where S changes location(P) from node v to

v.right, we define ⇢0 = ⇢ immediately after S. The analysis for this case is

similar to that for the previous case, and ⇢0 = ⇢ is still an injection satisfying

invariant 1, 2 and 3.

5. If S is a successful SCX operation, we define ⇢0 for each 0-parent. For an existing

0-parent x that is still in the tree after S, we define ⇢0(x) = ⇢(x). S does not

a↵ect these 0-parents. Next, consider an existing 0-parent x that is removed

from the tree by S. If S is invoked by a terminating PROMOTE operation, a case

1 ROTATE operation, a terminating case 2 ROTATE operation, it removes x from

the tree without adding a new 0-parent. Thus, we need not define ⇢0(x). If S is

invoked by a TRYDELETE operation, it does not add any new 0-parent into the

tree, and it removes at most one existing 0-parent from the tree. Thus, in this

case, if an existing 0-parent x is removed from the tree by S, we need not define

⇢0(x) either. If a new 0-parent is created by S, we define its mapped process as

follows:

(a) If S is an SCX operation performed by an INSERT operation which adds a

new 0-parent, new p, into the tree, we define ⇢0(new p) to be P . Invariant

1 holds in this case since P has just finished inserting a new key, and its

63

call to CLEANUP has not yet returned, i.e., P is in its cleanup phase. Since

new p is the root of the newly added subtree, which is the parent of the

leaf containing the key inserted by P , it is on the search path for k
⇢

0(new p).

Thus, invariant 2 is satisfied. Since P has not yet entered the inner loop

of CLEANUP, location(P) is the root of the tree. Thus, invariant 3(a) is

satisfied. Thus, ⇢0 is still an injection satisfying invariant 1, 2 and 3.

(b) If S is an SCX operation performed by a non-terminating PROMOTE opera-

tion on a 0-parent p, S makes p’s previous parent, new p, a new 0-parent.

In this case, we define ⇢0(new p) = ⇢(p). If P = ⇢(p), since S has cre-

ated a new violation, P will continue its rebalancing process. Otherwise,

⇢(p) is not a↵ected. In either case, ⇢0(new p) satisfies invariant 1. Since

⇢(p) satisfies invariant 2 immediately before S, p is on the search path

for k
⇢(p). Thus, new p is on the search path for k

⇢

0(new p) after S, which

satisfies invariant 2. Since location(⇢0(new p)) is the root of the tree after

S, invariant 3(a) is always satisfied after S. Thus, ⇢0 is still an injection

satisfying invariant 1, 2 and 3.

(c) If S is an SCX operation performed by a non-terminating case 2 ROTATE

operation on the 0-child of an existing 0-parent p, S makes p’s previous

parent, new p, a new 0-parent. In this case, we define ⇢0(new p) = ⇢(p).

The rest of the analysis for this case is similar to the previous case, and ⇢0

is still an injection satisfying invariant 1, 2 and 3.

(d) If S is an SCX operation performed by a DOUBLEROTATE operation, we

have two subcases. Let x be the 0-node that S resolves. Let z be x’s

parent. Then, z is a 0,i-node, where i � 2. Without loss of generality,

assume that x is z’s left child. Let y be x’s right child, and y
s

be x’s left

child. As shown in Figure 5.1(g), we replace x, y and z by newly created

64

node new x, new y and new z, respectively. By Lemma 16, y can only

have at most 1 0-child. We consider the following:

i. If y does not have any 0-child, then S removes the 0-parent z from the

tree without adding a new one. Thus, we need not define ⇢0(z), and

⇢0 is still an injection satisfying invariant 1, 2 and 3.

ii. If y has one 0-child, we first consider the case that y’s left child, y
l

,

is the 0-child. In this case, S removes 0-parents z and y and makes

new x a new 0-parent. In this case, we define ⇢0(new x) = ⇢(y), and

we need not define ⇢0(z). Similar to the analysis in case 5(c), ⇢0(new x)

satisfies invariant 1 and 3(a) after S. In addition, since y
l

is on the

search path to k
⇢(y), and y

l

is a child of new x, new x is on the search

path to k
⇢

0(new x), which satisfies invariant 2. The analysis for the case

that y’s right child is the 0-child is similar. Thus, ⇢0 is still an injection

satisfying invariant 1, 2 and 3.

We have now shown that after S, the mapping function ⇢0 still satisfies the invari-

ants. This completes the proof for the inductive case.

Using the conclusions in Lemma 17 and Lemma 19, we are now ready to bound

the height of a non-blocking ravl tree in the next two lemmas:

Lemma 20. Consider a non-blocking ravl tree T rooted at rt which contains n nodes

and c 0-parents. Let T 0 be the balanced ravl tree constructed by eliminating all vio-

lations in T , and let rt0 be its root. Let h(rt) and h(rt0) be the heights of T and T 0,

respectively. Then h(rt)  h(rt0) + c.

Proof. For a node v in a non-blocking ravl tree, we defined its weight height wh(v)

as follows:

1. If v is a leaf, wh(v) = 0.

65

2. If v.left is not a 0-node and v.right is a 0-node, wh(v) = max(wh(v.left) +

1, wh(v.right)).

3. If v.left is a 0-node and v.right is not a 0-node, wh(v) = max(wh(v.left),

wh(v.right) + 1).

4. If both of v’s children are 0-nodes, wh(v) = max(wh(v.left), wh(v.right)).

5. Otherwise, wh(v) = max(wh(v.left) + 1, wh(v.right) + 1).

We define the weight heights of T and T 0 to be wh(rt) and wh(rt0), respectively.

Using these definitions, we prove the following:

1. h(rt)  wh(rt) + c: h(rt) equals to the length of the longest root-to-leaf path

in T , which is the sum of number of non-violating edges and the number of

violating edges on this path. As defined in weight height functions, each root-to-

leaf path has at most wh(rt) non-violating edges. Also, the number of violating

edges on each root-to-leaf path equals to the number of 0-parents on that path,

which is no large than c. Thus, this inequality holds.

2. wh(rt)  wh(rt0): Consider a rebalancing step S performed in T . Let wh(rt)0

and wh(rt)00 be the weight heights of T immediately before and after S, respec-

tively. If S is a terminating PROMOTE operation, a case 1 ROTATE operation, a

terminating case 2 ROTATE operation or a DOUBLEROTATE operation, it increases

wh(rt)0 by at most 1 by eliminating one violating edge and adding a new non-

violating edge on the same root-to-leaf path. If S is a non-terminating PROMOTE

operation or a non-terminating case 2 ROTATE operation, it replaces an existing

violating edge with a newly created one on the same root-to-leaf path and thus,

wh(rt)0 is not changed. In either case, wh(rt)0  wh(rt)00. Assume that k rebal-

ancing steps are performed to transform T to T 0. The initial weight height of T

is wh(rt). After the ith rebalancing step, we define the weight height of T to be

66

wh(rt)
i

. Therefore, wh(rt)  wh(rt)1  wh(rt)2  . . .  wh(rt)
n

= wh(rt0).

The inequality holds.

3. wh(rt0) = h(rt0): Since no violation exists in T 0, all edges on each root-to-leaf

path in T 0 are non-violating. Thus, wh(rt0) = h(rt0).

As analyzed above, h(rt)  wh(rt) + c  wh(rt0) + c = h(rt0) + c. The inequality

holds.

Lemma 21. For a non-blocking ravl tree built via a sequence of arbitrarily intermixed

INSERT and DELETE operations from an empty tree, at any time t during the execution,

the height of the tree is bounded by log
�

(2m
t

)+c
t

, where � = 1+
p
5

2 is the golden ratio,

m
t

is the number of INSERT operations that have successfully inserted new keys into

the tree by t and c
t

is the number of INSERT operations that are in their cleanup phases

at t.

Proof. Let T be such a non-blocking ravl tree, and we bound the height of T at time

t. We define rt, T 0 and rt0 the same way as in Lemma 20. By Lemma 17, the height

of T 0, h(rt0), is less than log
�

(2m
t

). Moreover, by Lemma 19, the number of 0-parents

in T is at most c
t

. Finally, by Lemma 20, h(rt) < log
�

(2m
t

) + c
t

. This completes the

proof.

Chapter 6

Experimental Evaluation

In this chapter, we conducted experimental studies to evaluate the performance of

the non-blocking ravl tree by comparing it against other state-of-the-art lock-free and

lock-based BSTs.

6.1 Compared Data Structures

We compared the non-blocking ravl tree, lf-ravl, against the following concurrent

BSTs:

1. lf-chrm, the non-blocking chromatic tree proposed by Brown et al. [7] which is

a lock-free relaxed red-black tree. It uses the tree update template summarized

in Section 3.2.

2. lf-chrm6, a variant of lf-chrm in which the rebalancing process is only invoked

by an INSERT or a DELETE operation if the number of violations on the corre-

sponding search path exceeds six [7]. Compared to lf-chrm, this variant achieves

superior performance since it reduces the total number of rebalancing steps.

3. lc-davl, the concurrent AVL tree proposed by Drachsler et al. [12] which sup-

ports wait-free GET operations and lock-based update operations.

4. lf-nbst, the unbalanced external non-blocking BST proposed by Natarajan et

al. [24] which operates on edges instead of nodes.

67

68

5. lf-ebst, the unbalanced external non-blocking BST proposed by Ellen et al. [15]

which uses separate objects for process coordination.

6. lf-ibst, the unbalanced internal non-blocking BST proposed by Ramachandran

et al. [30].

7. lc-cast, the unbalanced internal lock-based BST proposed by Ramachandran

et al. [30].

8. lc-citr, the unbalanced internal lock-based BST proposed by Arbel et al. [2]

which is based on RCU synchronization.

Borrowing the idea from lf-chrm6, we also implemented a variant of the non-

blocking ravl tree in which CLEANUP is only invoked by INSERT if the number of viola-

tions on the corresponding search path exceeds three. We call this variant lf-ravl3.

We allow at most three violations on search paths since experiments showed that

the tree achieved the best performance under this setting. We did not consider other

concurrent BSTs [4, 21, 22] as they were outperformed by some other BSTs compared

here in previous studies.

6.2 Implementation Details

The original source code for lf-chrm [5], lf-ebst [14] and lc-davl [11] was written in Java,

and we re-implemented them in C. We used the source code for other concurrent BSTs

developed by their original authors [19, 23, 27, 28], except that, to ensure fairness

in experimental studies, we made some minor changes to all source code so that

they perform atomic CAS operations using the APIs provided by libatomic_ops [3].

We also used jemalloc [18] for memory allocations to achieve optimal results. For

lock-based data structures, we used mutex locks and APIs provided by pthread.

libatomic_ops
jemalloc
pthread

69

We used the framework Synchrobench developed by Gramoli et al. [20] to test the

performance. We made some necessary modifications to support more user settings

and to use the gsl [1] library to generate synthetic data sets, since it provides stable

and thread-safe random number generation functions.

All experiments were conducted on a computer with two Intel R� Xeon R� E5-2650

v2 processors (20M Cache, 2.60 GHz) supporting 32 hardware threads in total. It

operates on CentOS 6.7. All implementations were compiled using gcc-4.4.7 with

-O3 optimization.

6.3 Random Data Set

In this section, we conduct experiments using random numbers as operation keys.

All keys are positive integers within a user-specified range generated under uniform

distribution. We used key ranges (0, 2 ⇥ 104], (0, 2 ⇥ 105] and (0, 2 ⇥ 106] to test

di↵erent contention levels. For example, under a smaller key range, conflicts are

more likely to occur among processes. We also used di↵erence operation mixes. An

operation mix xr-yi-zd represents x% GET operations, y% INSERT operations and z%

DELETE operations. Similar to the experimental studies in [12], we used operation

mixes 90r-9i-1d, 70r-20i-10d and 50r-25i-25d for read-dominant, mixed and write-

dominant operation sequences, respectively. For each concurrent BST, under each

key range and using each operation mix, we ran its program with 1, 2, 4, 8, 16 and

32 threads for 5 seconds as one trial, and we computed its average throughput (the

number of operations that the BST finishes per second). We ran 5 trials for each

concurrent BST, and we used the average of these trials as the final result. To ensure

stable performance, before each trial, we prefilled each data structure using randomly

generated keys until 50% of the keys in the key range are inserted into the tree. We

did not measure the performance of concurrent BSTs during the prefilling phase.

Figures 6.1 - 6.3 show the experimental results comparing lf-ravl and lf-ravl3

gsl
gcc-4.4.7
-O3

70

0 10 20 30
0

5 · 107

1 · 108

Number of Threads

T
h
ro
u
gh

p
u
t

(a) Throughput Under Operation Mix: 90r-9i-1d

0 10 20 30
0

2 · 107

4 · 107

6 · 107

Number of Threads

T
h
ro
u
gh

p
u
t

(b) Throughput Under Operation Mix: 70r-20i-10d

0 10 20 30
0

2 · 107

4 · 107

6 · 107

Number of Threads

T
h
ro
u
gh

p
u
t

(c) Throughput Under Operation Mix: 50r-25i-25d

lf-ravl lf-ravl3 lf-chrm lf-chrm6 lc-davl

Figure 6.1: Experimental results comparing lf-ravl and lf-ravl3 against self-balancing
concurrent BSTs using randomly generated data within key range (0, 2⇥ 104].

71

0 10 20 30
0

2 · 107

4 · 107

6 · 107

Number of Threads

T
h
ro
u
gh

p
u
t

(a) Throughput Under Operation Mix: 90r-9i-1d

0 10 20 30
0

2 · 107

4 · 107

6 · 107

Number of Threads

T
h
ro
u
gh

p
u
t

(b) Throughput Under Operation Mix: 70r-20i-10d

0 10 20 30
0

2 · 107

4 · 107

Number of Threads

T
h
ro
u
gh

p
u
t

(c) Throughput Under Operation Mix: 50r-25i-25d

lf-ravl lf-ravl3 lf-chrm lf-chrm6 lc-davl

Figure 6.2: Experimental results comparing lf-ravl and lf-ravl3 against self-balancing
concurrent BSTs using randomly generated data within key range (0, 2⇥ 105].

72

0 10 20 30
0

1 · 107

2 · 107

3 · 107

Number of Threads

T
h
ro
u
gh

p
u
t

(a) Throughput Under Operation Mix: 90r-9i-1d

0 10 20 30
0

1 · 107

2 · 107

3 · 107

Number of Threads

T
h
ro
u
gh

p
u
t

(b) Throughput Under Operation Mix: 70r-20i-10d

0 10 20 30
0

1 · 107

2 · 107

Number of Threads

T
h
ro
u
gh

p
u
t

(c) Throughput Under Operation Mix: 50r-25i-25d

lf-ravl lf-ravl3 lf-chrm lf-chrm6 lc-davl

Figure 6.3: Experimental results comparing lf-ravl and lf-ravl3 against self-balancing
concurrent BSTs using randomly generated data within key range (0, 2⇥ 106].

73

against other self-balancing concurrent BSTs. The x-axis of each study shows the

number of threads, and the y-axis shows the average throughput.

lf-ravl3 almost always outperforms lf-ravl, except in case 90r-9i-1d under key

ranges (0, 2 ⇥ 104] and (0, 2 ⇥ 105] where lf-ravl performs slightly better. Since lf-

ravl3 has a slightly larger average search path length than lf-ravl, GET operations in

lf-ravl are faster than lf-ravl3. This gives lf-ravl advantages under read-dominant op-

eration sequences and in smaller trees. In cases 70r-20i-10d and 50r-25i-25d, lf-ravl3

achieves superior performance. This is because lf-ravl3 reduces the total number of

rebalancing steps, and it introduces less overhead in update operations.

lf-ravl outperforms lf-chrm in every case. Under read-dominant operation se-

quences (90r-9i-1d), their performance is comparable; while under mixed and write-

dominant operation sequences (70r-20i-10d and 50r-25i-25d), their di↵erence in per-

formance becomes more noticeable. Though lf-chrm6 outperforms lf-ravl in case 50r-

25i-25d, lf-ravl3 still outperforms lf-chrm6 in every case. This shows that lf-ravl and

lf-ravl3 indeed improve performance by avoiding rebalancing after DELETE operations.

lf-ravl3 and lf-chrm6 both outperform lc-davl in every case. This di↵erence is

more noticeable under key range (0, 2⇥104] and in cases 70r-20i-10d and 50r-25i-25d.

This is likely because in lc-davl, processes waste more time trying to acquire locks

under higher contention levels. Under key range (0, 2 ⇥ 106] and in case 90r-9i-1d,

lc-davl achieves comparable performance to lf-ravl and lf-chrm. This is because lc-

davl supports wait-free GET operations, and under lower contention levels, update

operations in lf-davl waste less time waiting for locks.

Figures 6.4 - 6.6 show the experimental results comparing lf-ravl and lf-ravl3

against unbalanced concurrent BSTs. In these studies, unbalanced concurrent BSTs

have better performance than lf-ravl and lf-ravl3. This is because in the current

experimental settings, where all keys are randomly generated under uniform distribu-

tion, unbalanced BSTs are balanced with high probability. Therefore, they are likely

74

0 10 20 30
0

5 · 107

1 · 108

Number of Threads

T
h
ro
u
gh

p
u
t

(a) Throughput Under Operation Mix: 90r-9i-1d

0 10 20 30
0

5 · 107

1 · 108

Number of Threads

T
h
ro
u
gh

p
u
t

(b) Throughput Under Operation Mix: 70r-20i-10d

0 10 20 30
0

2 · 107
4 · 107
6 · 107
8 · 107

Number of Threads

T
h
ro
u
gh

p
u
t

(c) Throughput Under Operation Mix: 50r-25i-25d

lf-ravl lf-ravl3 lf-nbst lf-ebst
lf-ibst lc-cast lc-citr

Figure 6.4: Experimental results comparing lf-ravl and lf-ravl3 against unbalanced
concurrent BSTs using randomly generated data within key range (0, 2⇥ 104].

75

0 10 20 30
0

5 · 107

1 · 108

Number of Threads

T
h
ro
u
gh

p
u
t

(a) Throughput Under Operation Mix: 90r-9i-1d

0 10 20 30
0

2 · 107
4 · 107
6 · 107
8 · 107

Number of Threads

T
h
ro
u
gh

p
u
t

(b) Throughput Under Operation Mix: 70r-20i-10d

0 10 20 30
0

2 · 107

4 · 107

6 · 107

Number of Threads

T
h
ro
u
gh

p
u
t

(c) Throughput Under Operation Mix: 50r-25i-25d

lf-ravl lf-ravl3 lf-nbst lf-ebst
lf-ibst lc-cast lc-citr

Figure 6.5: Experimental results comparing lf-ravl and lf-ravl3 against unbalanced
concurrent BSTs using randomly generated data within key range (0, 2⇥ 105].

76

0 10 20 30
0

2 · 107

4 · 107

Number of Threads

T
h
ro
u
gh

p
u
t

(a) Throughput Under Operation Mix: 90r-9i-1d

0 10 20 30
0

2 · 107

4 · 107

Number of Threads

T
h
ro
u
gh

p
u
t

(b) Throughput Under Operation Mix: 70r-20i-10d

0 10 20 30
0

2 · 107

4 · 107

Number of Threads

T
h
ro
u
gh

p
u
t

(c) Throughput Under Operation Mix: 50r-25i-25d

lf-ravl lf-ravl3 lf-nbst lf-ebst
lf-ibst lc-cast lc-citr

Figure 6.6: Experimental results comparing lf-ravl and lf-ravl3 against unbalanced
concurrent BSTs using randomly generated data within key range (0, 2⇥ 106].

77

to have better performance as self-balancing BSTs introduce additional overheads

during their rebalancing processes.

Even though self-balancing BSTs are not cost-e�cient in the current experimental

settings, lf-ravl and lf-ravl3 still outperform some unbalanced BSTs. They scale much

better for operation sequences with a higher update ratio (70r-20i-10d and 50r-25i-

25d) compared to lc-citr (RCU-based). This is due to the synchronization mechanism

of RCU where update operations can only be carried out after all existing read opera-

tions finish their critical sections and release locks. Also, under key range (0, 2⇥106],

lf-ravl and lf-ravl3 outperform lf-ebst in case 90r-9i-1d; while in cases 70r-20i-10d and

50r-25i-25d, their performance is comparable. The main performance bottleneck of

lf-ravl, lf-ravl3 and lf-ebst compared to other fast concurrent BSTs is that they all

allocate new objects when initiating new updates or retrying failed updates. Under

higher contention levels, lf-ravl and lf-ravl3 introduce more overhead during the re-

balancing process as conflicts are more likely to occur among processes and thus, they

allocate a lot more objects than lf-ebst when retrying failed rebalancing steps. Under

lower contention levels, lf-ravl and lf-ravl3 allocates a lot fewer new objects during

their rebalancing processes. Also, as the tree grows, the height di↵erence between

lf-ravl, lf-ravl3 and lf-ebst becomes larger. As a result, GET operations in lf-ravl and

lf-ravl3 are faster than those in lf-ebst, and thus they have better performance under

read-dominant operation sequences.

6.4 Data Sequence with Di↵erence Degrees of Presortedness

As data generated from uniform distributions favors unbalanced BSTs, we further test

the performance using operation sequences with special properties. In particular,

we use synthetic sequences in which keys are partially sorted, i.e., with a certain

degree of presortedness. This is motivated by applications in which the data sequence

being processed have certain degrees of presortedness. Presortedness has indeed been

78

extensively studied in adaptive sorting algorithms [16, 17, 31], and we apply this

concept to the context of studying concurrent binary search trees.

The presortedness of a sequence is measured by the number of inversions, which is

the number of pairs of numbers of the sequence in which the first item is larger than

the second. In our study, we generate sequences using the algorithm in [17, 31], which

produces larger numbers of inversions e�ciently. To create inversions in a sorted data

sequence of size n, this algorithm first divides the sequence into dn/me approximately

equal-sized blocks, where m is a user-specified block size between 0 and n to control

the degree of presortedness. Then, the numbers in each block are permuted into

random order. Next, the algorithm divides the sequence into m approximately equal-

sized blocks, picks one random number from each block and permutes these numbers

into random order. As a result, this algorithm is expected to generatemn/2 inversions

on average. Here, the smaller the value of m is, the higher degree of presortedness

that the sequence has.

We constructed data sequences with presortedness in the following way: start-

ing from a sorted sequence of unique positive integers of size n = 226, we generated

sequences with di↵erent levels of presortedness by creating inversions using the algo-

rithm above with the following values of m: 29, 213, 217, 221 and 225. We did not show

results for m less than 29 because of the huge amount of time for unbalanced BSTs

to finish the operation sequences. We used the operation mixes 90r-9i-1d, 70r-20i-10d

and 50r-25i-25d. For each data structure, using each data sequence and under each

operation mix, we ran the program with 32 threads as one trial. Before each trial, we

prefilled the data structure using the first half of each data sequence to ensure stable

performance. During each trial, to preserve the presortedness of the data sequences

as much as possible, we inserted items in the following way: the thread whose ID is i

(i 2 [0, 31)) starts by inserting the item located at index i of the data sequence, and

it keeps inserting items located at index i+ 32, i+ 64, . . . , until the entire sequence

79

is finished. For instance, the thread whose ID is 0 inserts items located at index 0,

32, 64, . . . , etc. We also randomly selected keys within range (0, 226] to perform GET

and DELETE operations. Each trial terminated after all numbers in the data sequence

had been inserted into the tree. We then counted the total number of operations

performed and divided it by the duration of each trial in seconds to compute the

average throughput per second. We ran 10 trials for each concurrent BST, and we

used the average of these trials as the final results.

Figure 6.7 shows the experimental results of comparing lf-ravl and lf-ravl3 against

other self-balancing concurrent BSTs. The x-axis of each subfigure shows the value of

logm, and the y-axis shows the average throughput. lf-ravl3 and lf-chrm6 outperform

lf-ravl and lf-chrm in all cases, respectively. However, unlike the results from the

previous studies, where lf-ravl and lf-ravl3 always outperform lf-chrm and lf-chrm6,

respectively, the current results show that the performance of lf-ravl3 and lf-chrm6

is very similar, and lf-chrm always outperforms lf-ravl slightly. We believe that this

is caused by the high success rate of INSERT operations achieved with the current

experimental settings. In previous experiments, the expected success rate of INSERT

operations is at most 50% (in case 50r-25i-25d); while in the current experimental

settings, the success rate is always 100%. Since lf-ravl and lf-ravl3 only rebalance

the tree after successful INSERT operations, more rebalancing steps are performed in

the current experiments, which a↵ects their performance. lf-ravl3 outperforms lc-davl

in all cases. lf-davl has slightly better performance compared to lf-ravl. Since the

contention level is lower than the previous experiments (current key range is 226),

update operations in lc-davl waste less time waiting to acquire locks, which improves

the performance of this data structure. To conclude, in more cases, lf-ravl3 achieves

the best performance among all self-balancing concurrent BSTs. Though lf-ravl is

slightly outperformed by others, the performance is still very comparable.

Figure 6.8 shows the experimental results comparing lf-ravl and lf-ravl3 against

80

10 15 20 25
1.6 · 107

1.7 · 107

1.8 · 107

logm

T
h
ro
u
gh

p
u
t

(a) Throughput Under Operation Mix: 90r-9i-1d

10 15 20 25

1.5 · 107

1.6 · 107

1.7 · 107

1.8 · 107

logm

T
h
ro
u
gh

p
u
t

(b) Throughput Under Operation Mix: 70r-20i-10d

10 15 20 25

1.4 · 107

1.6 · 107

logm

T
h
ro
u
gh

p
u
t

(c) Throughput Under Operation Mix: 50r-25i-25d

lf-ravl lf-ravl3 lf-chrm lf-chrm6 lc-davl

Figure 6.7: Experimental results comparing lf-ravl and lf-ravl3 against self-balancing
concurrent BSTs using sequences of size 226 with di↵erent degrees of presortedness
(32 threads).

81

10 15 20 25

0

1 · 107

2 · 107

logm

T
h
ro
u
gh

p
u
t

(a) Throughput Under Operation Mix: 90r-9i-1d

10 15 20 25

0

5 · 106

1 · 107

1.5 · 107

2 · 107

logm

T
h
ro
u
gh

p
u
t

(b) Throughput Under Operation Mix: 70r-20i-10d

10 15 20 25

0

5 · 106
1 · 107

1.5 · 107
2 · 107

logm

T
h
ro
u
gh

p
u
t

(c) Throughput Under Operation Mix: 50r-25i-25d

lf-ravl lf-ravl3 lf-nbst lf-ebst
lf-ibst lc-cast lc-citr

Figure 6.8: Experimental results comparing lf-ravl and lf-ravl3 against unbalanced
concurrent BSTs using sequences of size 226 with di↵erent degrees of presortedness
(32 threads).

82

Table 6.1: Average tree heights using sequences with existing order under di↵erent
values of m.

logm lf-ravl lf-ravl3 lf-chrm lf-chrm6 lc-davl Unbalanced BSTs
9 30 32 42 47 35 41445
11 30 32 40 46 35 10333
13 30 33 40 45 35 1083
15 31 33 39 43 34 177
17 31 33 37 42 36 86
19 31 33 36 40 36 78
21 32 33 34 39 36 70
23 32 33 33 37 35 70
25 32 34 32 37 35 67

other unbalanced concurrent BSTs. To explain these results, we also show the average

heights of self-balancing BSTs and unbalanced BSTs under di↵erent values of m in

Table 6.1. We computed these tree heights by taking the average tree heights under

all operation sequences for each data structure for each value of m.

When m is no greater than 29 and the data sequences have a high degree of

presortedness, the heights of unbalanced BSTs are notably larger than the heights of

self-balancing tree, and traversal in unbalanced BSTs takes much longer. Thus, lf-

ravl and lf-ravl3 outperform unbalanced BSTs significantly in this case. The average

tree heights of unbalanced BSTs decrease drastically when m changes from 29 to 217

(from 41445 to 86), which explains their rapid performance improvement. When m

is equal to 215, where unbalanced BSTs are approximately 4 - 5 times higher than

self-balancing BSTs, unbalanced BSTs start to have better performance. When m

is larger than 217, the average heights of unbalanced BSTs barely change as the

value of m increases (approximately twice of the average heights of self-balancing

BSTs). Thus, the data sequences can be considered random, and unbalanced BSTs

outperform our solution as in previous studies.

Studies [26] have shown that, in real-world applications, it is very common for

data to be accessed in some sorted order, and unbalanced BSTs are likely to be more

83

than five times higher than self-balancing BSTs when implemented in system software

products. In addition, if the comparisons between keys require more time (e.g., the

keys are strings), the smaller heights of self-balancing BSTs will potentially be even

more attractive. From the results and analysis above, we believe that concurrent self-

balancing BSTs are more suitable for real-world applications compared to unbalanced

concurrent BSTs. Considering the fact that lf-ravl3 has the best performance among

all self-balancing BSTs, and it introduces only 5 rebalancing cases which makes it

extremely easy to implement, we believe that it is the best candidate for many real-

world applications.

Chapter 7

Discussion

We present the non-blocking ravl tree, a lock-free relaxed AVL tree that does not

rebalance itself after DELETE operations, while still providing a provable non-trivial

bound on its height. Our solution introduces a lot fewer rebalancing cases compared

to other self-balancing BSTs, which makes it extremely easy to implement in practice.

We also conduct experimental studies to compare our solution against other state-of-

the-art concurrent BSTs. Experimental results show that our solution is potentially

the best candidate for many real-world applications.

When designing and implementing the non-blocking ravl tree, we noticed that

it allocates a new object to store coordinating information whenever it initiates a

new update attempts. As a result, it allocates more objects compared to other non-

blocking BSTs that do not require explicit objects to store information for coor-

dinating among processes, especially under high contention level where the update

failure rate is high. Since memory allocations are expensive in concurrent settings,

this could be a potential performance bottleneck of the non-blocking ravl tree. The

lock-free external BST proposed by Natarajan et al. [24] and the lock-free internal

BST proposed by Ramachandran et al. [30] avoid using explicit coordinating objects

by not helping INSERT operations and borrowing a few bits of child addresses to store

coordinating information. These two solutions are both unbalanced BSTs in which

helping is only performed for DELETE operations. Since their coordinating scheme is

simple, a few extra bit fields are su�cient for storing all required information. This

approach, however, does not directly apply to the non-blocking ravl tree. This is

84

85

because our solution introduces several rebalancing operations, and these operations

often involve more than one node. Thus, a more complicated coordinating scheme is

required. We still think it would be interesting to develop a more memory e�cient

framework to perform complicated tree update operations using some optimization

techniques introduced in [24, 30]. For example, we could potentially reduce the size

of the node or information objects by borrowing bits from addresses instead of using

extra fields inside of these objects.

In our experimental studies using data sequences with existing order, we also

noticed that the performance of self-balancing BSTs decreases slightly as the data

sequences become more random (when the value of m gets larger) in Figure 6.7.

When the data sequences are nearly completely random (when the value ofm is larger

than 17), we observed the same behavior in unbalanced BSTs in Figure 6.8. This is

consistent with the results from the study by Elmasry et al. [16], who proposed an

adaptive sorting algorithm which sorts data sequences by inserting their items into

AVL trees. They proved that the number of comparisons required to sort a data

sequence X is n log Inv(X)
n

+ O(n), where Inv (X) is the number of inversions in X

and n is the number of items in X, and their experimental results showed that the

running time of their algorithm increases as the data sequences become more random

(the number of inversions increases). Since inserting items into a self-balancing BST

shares many similarities with Elmasry’s algorithm, we believe that the decrease in

performance of concurrent self-balancing BSTs is related to the increase in the number

of inversions in the data sequences. However, since inserting items into BSTs is not

exactly an adaptive sorting algorithm, and the data structures tested in our studies

are concurrent instead of sequential, we are not able to provide a rigorous proof to

bound the running time in terms of the number of inversions in data sequences. In

the future, it would be interesting to borrow the idea from [16] or other adaptive

sorting algorithms to formally explain this phenomenon.

Bibliography

[1] Gsl - gnu scientific library. http://www.gnu.org/software/gsl/.

[2] Maya Arbel and Hagit Attiya. Concurrent updates with rcu: Search tree as an ex-
ample. In Proceedings of the 2014 ACM Symposium on Principles of Distributed
Computing, PODC ’14, pages 196–205, New York, NY, USA, 2014. ACM.

[3] Hans Boehm. http://www.hpl.hp.com/research/linux/atomic_ops/.

[4] Nathan G. Bronson, Jared Casper, Hassan Chafi, and Kunle Olukotun. A prac-
tical concurrent binary search tree. SIGPLAN Not., 45(5):257–268, January
2010.

[5] Trevor Brown, Faith Ellen, and Eric Ruppert. A general technique for non-
blocking trees. http://www.cs.toronto.edu/~tabrown/chromatic/.

[6] Trevor Brown, Faith Ellen, and Eric Ruppert. Pragmatic primitives for non-
blocking data structures. In Proceedings of the 2013 ACM Symposium on Prin-
ciples of Distributed Computing, PODC ’13, pages 13–22, New York, NY, USA,
2013. ACM.

[7] Trevor Brown, Faith Ellen, and Eric Ruppert. A general technique for non-
blocking trees. SIGPLAN Not., 49(8):329–342, February 2014.

[8] Bapi Chatterjee, Nhan Nguyen, and Philippas Tsigas. E�cient lock-free bi-
nary search trees. In Proceedings of the 2014 ACM Symposium on Principles of
Distributed Computing, PODC ’14, pages 322–331, New York, NY, USA, 2014.
ACM.

[9] Thomas H.. Cormen, Charles Eric Leiserson, Ronald L Rivest, and Cli↵ord Stein.
Introduction to algorithms, volume 6. MIT press Cambridge, 2001.

[10] Tyler Crain, Vincent Gramoli, and Michel Raynal. A contention-friendly binary
search tree. In Proceedings of the 19th International Conference on Parallel Pro-
cessing, Euro-Par’13, pages 229–240, Berlin, Heidelberg, 2013. Springer-Verlag.

[11] Dana Drachsler, Martin Vechev, and Eran Yahav. Practical concurrent bi-
nary search trees via logical ordering. https://github.com/logicalordering/
trees.

[12] Dana Drachsler, Martin Vechev, and Eran Yahav. Practical concurrent binary
search trees via logical ordering. SIGPLAN Not., 49(8):343–356, February 2014.

86

http://www.gnu.org/software/gsl/
http://www.hpl.hp.com/research/linux/atomic_ops/
http://www.cs.toronto.edu/~tabrown/chromatic/
https://github.com/logicalordering/trees
https://github.com/logicalordering/trees

87

[13] Faith Ellen, Panagiota Fatourou, Joanna Helga, and Eric Ruppert. The amor-
tized complexity of non-blocking binary search trees. In Proceedings of the 2014
ACM Symposium on Principles of Distributed Computing, PODC ’14, pages 332–
340, New York, NY, USA, 2014. ACM.

[14] Faith Ellen, Panagiota Fatourou, Eric Ruppert, and Franck van Breugel. Non-
blocking binary search trees. http://www.cs.toronto.edu/~tabrown/ksts/

StaticDictionary5.java.

[15] Faith Ellen, Panagiota Fatourou, Eric Ruppert, and Franck van Breugel. Non-
blocking binary search trees. In Proceedings of the 29th ACM SIGACT-SIGOPS
Symposium on Principles of Distributed Computing, PODC ’10, pages 131–140,
New York, NY, USA, 2010. ACM.

[16] Amr Elmasry. Exploring New Frontiers of Theoretical Informatics: IFIP 18th
World Computer Congress TC1 3rd International Conference on Theoretical
Computer Science (TCS2004) 22–27 August 2004 Toulouse, France, chapter
Adaptive Sorting with AVL Trees, pages 307–316. Springer US, Boston, MA,
2004.

[17] Amr Elmasry and Abdelrahman Hammad. Experimental and E�cient Algo-
rithms: 4th International Workshop, WEA 2005, Santorini Island, Greece, May
10-13, 2005. Proceedings, chapter An Empirical Study for Inversions-Sensitive
Sorting Algorithms, pages 597–601. Springer Berlin Heidelberg, Berlin, Heidel-
berg, 2005.

[18] Jason Evans. A scalable concurrent malloc (3) implementation for freebsd. In
Proc. of the BSDCan Conference, Ottawa, Canada, 2006.

[19] Vincent Gramoli. More than you ever wanted to know about synchronization:
Synchrobench, measuring the impact of the synchronization on concurrent algo-
rithms. https://github.com/gramoli/synchrobench.

[20] Vincent Gramoli. More than you ever wanted to know about synchronization:
Synchrobench, measuring the impact of the synchronization on concurrent al-
gorithms. In Proceedings of the 20th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, PPoPP 2015, pages 1–10, New York, NY,
USA, 2015. ACM.

[21] Philip W. Howard and Jonathan Walpole. Relativistic red-black trees. Concur-
rency and Computation: Practice and Experience, 2013.

[22] Shane V. Howley and Jeremy Jones. A non-blocking internal binary search tree.
In Proceedings of the Twenty-fourth Annual ACM Symposium on Parallelism in
Algorithms and Architectures, SPAA ’12, pages 161–171, New York, NY, USA,
2012. ACM.

http://www.cs.toronto.edu/~tabrown/ksts/StaticDictionary5.java
http://www.cs.toronto.edu/~tabrown/ksts/StaticDictionary5.java
https://github.com/gramoli/synchrobench

88

[23] Aravind Natarajan and Neeraj Mittal. Fast concurrent lock-free binary search
trees. https://github.com/anataraja/lfbst.

[24] Aravind Natarajan and Neeraj Mittal. Fast concurrent lock-free binary search
trees. In Proceedings of the 19th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, PPoPP ’14, pages 317–328, New York, NY,
USA, 2014. ACM.

[25] Otto Nurmi and Eljas Soisalon-Soininen. Chromatic binary search trees. a struc-
ture for concurrent rebalancing. Acta Inf., 33(6):547–557, 1996.

[26] Ben Pfa↵. Performance analysis of bsts in system software. In Proceedings of
the Joint International Conference on Measurement and Modeling of Computer
Systems, SIGMETRICS ’04/Performance ’04, pages 410–411, New York, NY,
USA, 2004. ACM.

[27] Arunmoezhi Ramachandran and Neeraj Mittal. Castle: Fast concurrent internal
binary search tree using edge-based locking. https://github.com/arunmoezhi/
castle.

[28] Arunmoezhi Ramachandran and Neeraj Mittal. A fast lock-free internal binary
search tree. https://github.com/arunmoezhi/lockFreeIBST.

[29] Arunmoezhi Ramachandran and Neeraj Mittal. Castle: Fast concurrent internal
binary search tree using edge-based locking. In Proceedings of the 20th ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming, PPoPP
2015, pages 281–282, New York, NY, USA, 2015. ACM.

[30] Arunmoezhi Ramachandran and Neeraj Mittal. A fast lock-free internal binary
search tree. In Proceedings of the 2015 International Conference on Distributed
Computing and Networking, ICDCN ’15, pages 37:1–37:10, New York, NY, USA,
2015. ACM.

[31] Riku Saikkonen and Eljas Soisalon-Soininen. Experimental Algorithms: 8th In-
ternational Symposium, SEA 2009, Dortmund, Germany, June 4-6, 2009. Pro-
ceedings, chapter Bulk-Insertion Sort: Towards Composite Measures of Presort-
edness, pages 269–280. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.

[32] Siddhartha Sen and Robert E. Tarjan. Deletion without rebalancing in balanced
binary trees. In Proceedings of the Twenty-first Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA ’10, pages 1490–1499, Philadelphia, PA, USA,
2010. Society for Industrial and Applied Mathematics.

https://github.com/anataraja/lfbst
https://github.com/arunmoezhi/castle
https://github.com/arunmoezhi/castle
https://github.com/arunmoezhi/lockFreeIBST

	Title Page
	Table of Contents
	List of Tables
	List of Figures
	Abstract
	List of Abbreviations and Symbols Used
	Acknowledgements
	Introduction
	Our Work

	Related Work
	Lock-Based BSTs
	Lock-Free BSTs

	Preliminaries
	LLX and SCX Operations
	Tree Update Template

	Sequential External Ravl Trees
	The Structures of Sequential External Ravl Trees
	Operations in Sequential External Ravl Trees
	Bounding the Tree Height

	Non-Blocking Ravl Trees
	The Structures and Algorithms of Non-Blocking Ravl Trees
	Correctness of Non-Blocking Ravl Trees
	Progress Properties of Non-Blocking Ravl Trees
	Bounding the Tree Height

	Experimental Evaluation
	Compared Data Structures
	Implementation Details
	Random Data Set
	Data Sequence with Difference Degrees of Presortedness

	Discussion
	Bibliography

