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Abstract

A delta method approximation is utilized to produce the variance formula of the

correlation measure of Linkage Disequilibrium for four types of genetic data. These

data types include gametic and genotypic counts, with different assumptions used to

simplify the analysis of the genotypic counts. In each case the variance formula is

derived and plotted for several choices of the allele frequencies and for all feasible

values of ρ. Simulations are carried out to compare the variance of simulated Linkage

Disequilibrium correlation values to the theoretical variance formula. Results indicate

that the variance formulae are good approximations for each type of genetic data.

Fisher’s transformation improved the approximation in some cases.
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Chapter 1

Introduction

This thesis is concerned with the development of variance formulae for measures of

association in genetics. To assist with understanding the genetic terminology, some

definitions are given in Table 1.1.

1.1 Linkage Disequilibrium

Linkage disequilibrium (LD), also referred to as gametic disequilibrium, is the

statistical association between the alleles at two genetic loci. LD occurs when the

presence of a particular allele at one locus affects the probability of an allele at a

second locus. This thesis is concerned with finding variance formulae for correlation

measures of LD.

LD can exist because of a number of factors, as described in Weir (1996). LD

may occur due to random factors in reproduction across time when relative

frequencies of different genotypes will be affected by chance disappearance of other

genotypes within the population (genetic drift). A population may be founded by a

small set of individuals in which two alleles frequently occur together. Their

descendants will also exhibit this allelic association (founder effects). Paticular

genes may allow subjects to better adapt and thrive in unique and evolving

environments. These genes allow for better survival rates and therefore are more

prominent in future generations (biological selection). If a population consists of two

or more subpopulations with different allele frequencies, then the overall population

can exhibit LD even if each subpopulation has no LD (admixture). A mutation at

one locus will occur with a particular allele at a nearby locus and this haplotype is

passed on largely intact to future generations, which exhibit strong LD.

Recombination erodes the initial haplotype combination and eventually reduces the

LD.

Two approaches have been used to find the location of genes which predispose

1



2

Term Definition
Linkage Disequilibrium The statistical association between the alleles

at two genetic loci.
gene An inherited sequence of nucleotides that form

chromosomes and determine an individual’s
genetic make up.

allele A unique variation of a gene.
locus The specific location or position of an allele

on a chromosome.
haplotype The composition of alleles on a single

chromosome.
genotype The composition of alleles resulting from

sexual reproduction.
phase The alleles that occur together on the two

chromosomes in genotypic data.
heterozygote The presence of two different alleles on a

particular gene, which may or may not affect
the variation of inherited traits.

gamete A fully developed haploid cell capable of
uniting with another haploid cell for the
process of sexual reproduction.

in-replusion Double heterozygote alleles occur in pairing
as Ab/aB.

in-coupling Double heterozygote alleles occur in pairing
as AB/ab.

chromosome The genetic make-up of a cell.
random mating Mating under the assumption that the

genotypic probabilities are a product of
the haplotype probabilities.

Hardy-Weinberg equilibrium The result of mating where there are no effects
of digenic disequilibrium and allele frequencies
will remain constant form one generation to
the next.

Hardy-Weinberg disequilibrium Mating under significant effects of digenic
disequilibrium, which will affect allele
frequencies from one generation to the next.

Table 1.1: Definitions of some genetic terminology.
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subjects to disease. Linkage analysis uses pedigree data to determine the

recombination rate, and therefore genetic distance, between a disease susceptibility

locus, and a set of known marker loci. In this approach the actual alleles present at

the loci are unimportant, only the recombination rate or distance between them.

With LD mapping, the strength of association is determined between the disease

status and the alleles at a set of loci. A large association is taken to imply

proximity. Interest in LD has risen with the understanding that there is greater

power for mapping common disease genes with association studies than for

traditional linkage studies (Ardlie et al., 2002; Risch and Merikangas, 1996).

Genome wide association studies typically look for LD at a very large number of

single nucleotide polymorphisms, and have been widely used in recent years.

1.2 Measures of Linkage Disequilibrium

This thesis considers the case of two bi-allelic loci, locus A with its alleles A and a,

with probabilities pA and pa = 1− pA, and the locus B with alleles B and b, with

probabilities pB and pb = 1− pB.

Lewontin’s 1964 measure of LD

DAB = pAB − pApB (1.1)

is the difference between the joint probability of alleles A and B (pAB) and the

product of the individual probabilities (pA and pB), and therefore is a measure of

the alleles’ divergence from statistical independence (Lewontin, 1964). Table 1.2

relates the gametic joint probabilities to the value of DAB and the probabilities of

the product of the alleles A and B.

B b Total

A pAB = pApB +DAB pAb = pApb −DAB pA
a paB = papB −DAB pab = papb +DAB pa

Total pB pb 1

Table 1.2: The gametic probabilities.

The range of DAB depends on the allele probabilities. Since all of the

probabilities in Table 1.2 must be positive, DAB is bounded by
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[max(−pApB,−papb),min(pApb, papB)], or DABmin = max(−pApB,−papb) and

DABmax = min(pApb, papB).

The greatest range DAB occurs with pA = pB = 0.5 when DABmin = −0.25 and

DABmax = 0.25. The maximum DAB occurs with pAB = pA = 0.5 and the minimum

occurs with pAB = 0.

To facilitate comparison between two populations with differing allele

frequencies, Lewontin (1964) suggests standardizing the value of DAB to D′
AB, where

D′
AB =

⎧⎨⎩DAB/DABmax, if DAB > 0

DAB/|DABmin|, if DAB ≤ 0.

The transformed D′
AB is a value between -1 and 1.

A second standardization of DAB is the correlation measure. If we define binary

random variables X and Y to be indicators of the major alleles A and B, then

E(XY ) = pAB, E(X) = pA and E(Y ) = pB, so DAB is the covariance between X

and Y . Then, using the facts that V ar(X) = pA(1− pA) and V ar(Y ) = pB(1− pB),

the correlation is

ρ =
DAB√

pApapBpb
.

The range of this measure is smaller than (-1,1) unless pA = pB = 0.5.

Weir (1996) provides a composite measure of LD to be used with genotypic

data. The composite measure is the sum

∆AB = DAB +DA/B (1.2)

of the gametic disequilibrium, DAB, and the non-gametic disequilibrium,

DA/B = pA/B − pApB, (1.3)

which measures departure from independence of the A allele on one chromosome to

the B allele on the other.

The composite measure can be standardized as

∆′ =

⎧⎨⎩∆/∆max

∆/|∆min|

where the bounds ∆min and ∆max are provided in Hamilton and Cole (2004).
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To obtain the correlation standardization for the composite measure, define the

random variables X and Y to have values

X =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−1 if genotype AA

0 if genotype Aa

1 if genotype aa

Y =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−1 if genotype BB

0 if genotype Bb

1 if genotype bb

Zaykin (2004) showed that

∆ =
Cov(X, Y )

2
.

Using the facts that

V ar(X) = 2[pApa +DA] and V ar(Y ) = 2[pBpb +DB].

It follows that

ρC = Cor(X, Y ) =
∆√

(pApa +DA)(pBpb +DB)
.

where the coefficients

DA = PA
A − p2A and DB = PB

B − p2B

are measures of Hardy-Weinburg (HWD) disequilibrium, with PA
A the probability of

allele A on both chromosomes and PB
B the probability of allele B on both

chromosomes.

For two bi-allelic loci, A and B, there are ten different combinations of alleles

from the two separate loci resulting in the following genotypes: ABAB, ABAb,

AbAb, ABaB, ABab, AbaB, Abab, aBaB, aBab, and abab. For eight of these ten

genotypes the phase is clear, that is which alleles occur together on the two

chromosomes. Note that the double heterozygotes ABab and AbaB are comprised

of the same component alleles but in different pairings, the in-coupling phase

(AB/ab) and the in-repulsion phase (Ab/aB). In-coupling indicates that A and B

occur together on the same chromosome, whereas in-repulsion implies A and B are

on different chromosomes. It is usually not possible to determine the phase of the

double heterozygotes, that is whether they are in-coupling or in-repulsion, unless

genotypic data from relatives can provide phase determination.

The genotypic probabilities are shown in Table 1.3 with the middle cell

containing both types of double heterozygotes. For example, PAb
aB indicates that
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BB Bb bb Total

AA PAB
AB 2PAB

Ab PAb
Ab PA

A

Aa 2PAB
aB 2PAB

ab + 2PAb
aB 2PAb

ab PA
a

aa P aB
aB 2P aB

ab P ab
ab P a

a

Total PB
B PB

b P b
b 1

Table 1.3: Genotypic probabilities.

alleles Ab occur together on one chromosome and aB occur on the other. By

convention, probabilities for genotypes with different haplotypes are multiplied by

two to account for the two possible parentages.

The AB haplotype probability is

pAB = PAB
AB + PAB

Ab + PAB
aB + PAB

ab (1.4)

which depends on the in-coupling double heterozygote probability PAB
ab . This term

cannot be estimated when only the total number of double heterzygotes is observed.

Similarly the probability of allele A on one chromosome and B on the other is

pA/B = PAB
AB + PAB

Ab + PAB
aB + P aB

Ab (1.5)

which depends on the in-repulsion double heterozygote probability PAb
aB . The

composite measure is based on the sum

∆ = pAB + pA/B − 2pApB

= 2PAB
AB + PAB

Ab + PAB
aB +

1

2
(PAB

ab + PAb
aB)− 2pApB

and the term in parentheses is the total probability of double heterozygotes, which

can be estimated by the observed proportion. Note that pA = PA
A + PA

a and

pB = PB
B + PB

b so the composite measure can be estimated from genotypic counts as

described below.

Although a number of other LD measures exist, we focus on the standardized

versions of Lewontin’s (1964) DAB measure.
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1.3 Estimates of LD Measures

Estimates of LD measures are obtained in four scenarios. The first is when we have

counts of a random sample of gametes. The remaining cases are for data in the form

of genotypic counts when various assumptions are made.

1.3.1 Using Gametic Counts

Gametic count data is the most basic genetic data case for assessing potential allelic

association between two loci. Gametic data may be available if individual

chromosomes have been sampled from a population or if applicable haplotypes can

be inferred from family members’ genotypic information and random mating is

assumed. Table 1.4 displays gametic counts for the two bi-allelic loci A and B.

B b Total

A nAB nAb nA

a naB nab na

Total nB nb N

Table 1.4: The gametic counts for two bi-allelic loci A and B.

The multinomial probabilities that apply to the gametic case are displayed in

Table 1.2. The haplotype probabilities are estimated by their observed proportions,

so p̂AB = nAB/N . Allelic probabilities are the sum of two haplotype probabilities, so

p̂A = p̂AB + p̂Ab, and p̂B = p̂AB + p̂aB. The maximum likelihood estimate of DAB

with gametic data is therefore

D̂AB,g = p̂AB − p̂Ap̂B.

Similarly, estimates of the standardized measures are

D̂′
AB,g =

⎧⎨⎩
D̂AB,g

D̂ABmax
, if D̂AB,g > 0

D̂AB,g

|D̂ABmin|
, if D̂AB,g ≤ 0

where D̂ABmax and D̂ABmin are obtained by substituting observed proportions for

probabilities, and the correlation ρ is estimated by

rg =
D̂AB√

p̂Ap̂ap̂B p̂b
.
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1.3.2 Using Genotypic Counts

Information on gametes is not readily available in most instances. Instead, data are

often provided in the form of genotypic counts. The data usually appear as

genotypic counts as shown in Table 1.5.

Two assumptions can be made to simplify the analysis of these counts. These

are the assumptions of random mating and of knowledge of phase. Without either

assumption DAB cannot be estimated and the composite measure ∆AB must be

used.

Random Mating Assumption

Under this assumption the genotypic probabilities are a product of the haplotype

probabilities. For example, PAB
ab = pABpab.

The data consists of nine genotypic counts, with the indistinguishable double

heterozygotes counted together, as in Table 1.5. These counts are assumed to be

multinomially distributed, with index n equal to the number of subjects and

probabilities as shown in Table 1.3.

BB Bb bb Total

AA nAB
AB nAB

Ab nAb
Ab nA

A

Aa nAB
aB nAaBb nAb

ab nA
a

aa naB
aB naB

ab nab
ab na

a

Total nB
B nB

b nb
b n

Table 1.5: Genotypic counts, with phase unknown.

Using the facts that pA = pAB + pAb and pB = pAB + paB it is possible to write

all the genotypic probabilities in terms of pA, pB, and pAB and obtain the log
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likelihood as

l(pA, pB, pAB) = 2nAB
ABlog(pAB) + nAB

Ab [log(pAB) + log(pAb)] + 2nAb
Ablog(pAb)

+ nAB
aB [log(pAB) + log(paB)] + nAaBblog(pABpab + pAbpaB)

+ nAb
ab [log(pAb) + log(pab)] + 2naB

aBlog(paB)

+ naB
ab [log(paB) + log(pab)] + 2nab

ablog(pab)

= [2nAB
AB + nAB

Ab + nAB
aB ]log(pAB) + [nAB

Ab + 2nAb
Ab + nAb

ab ]log(pAb)

+ [nAB
aB + 2naB

aB + naB
ab ]log(paB) + [nAb

ab + naB
ab + 2nab

ab]log(pab)

+ nAaBblog(pABpab + pAbpaB)

= [2nAB
AB + nAB

Ab + nAB
aB ]log(pAB) + [nAB

Ab + 2nAb
Ab + nAb

ab ]log(pA − pAB)

+ [nAB
aB + 2naB

aB + naB
ab ]log(pB − pAB)

+ [nAb
ab + naB

ab + 2nab
ab]log(1− pA − pB − pab)

+ nAaBblog(pAB(1− 2pA − 2pB) + p2AB + pApB).

(1.6)

Once the maximum likelihood estimates (MLEs) for pA, pB and pAB are

obtained numerically, the LD measures are estimated as before,

D̂AB,rm = p̂AB − p̂Ap̂B, (1.7)

D̂′
AB,rm =

⎧⎨⎩
D̂AB,rm

D̂ABmax
, if D̂AB,rm > 0

D̂AB,rm

|D̂ABmin|
, if D̂AB,rm ≤ 0

and

rrm =
D̂AB,rm√
p̂Ap̂ap̂B p̂b

. (1.8)

Phase Known Assumption

For phase known genotypic data the phase of the double heterzygotes is known to

be either AB/ab, in-coupling, or Ab/aB, in-repulsion.

There are ten genotypes with counts as shown in Table 1.6. The counts are

multinomially distributed with the genotypic probabilities listed in Table 1.7.
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BB Bb bb Total

AA nAB
AB nAB

Ab nAb
Ab nA

A

Aa nAB
aB nAB

ab

⏐⏐⏐⏐ nAb
aB nAb

ab nA
a

aa naB
aB naB

ab nab
ab na

a

Total nB
B nB

b nb
b n

Table 1.6: Genotypic counts when the phase of the double heterozygotes is known.

BB Bb bb Total

AA PAB
AB 2PAB

Ab PAb
Ab PA

A

Aa 2PAB
aB 2PAB

ab

⏐⏐⏐⏐ 2PAb
aB 2PAb

ab PA
a

aa P aB
aB 2P aB

ab P ab
ab P a

a

Total PB
B PB

b P b
b 1

Table 1.7: Genotypic probabilities when the phase of the double heterozygotes is
known.

The genotypic probabilities are estimated using observed proportions, and the

haplotype probability pAB is estimated in the sum

p̂AB = P̂AB
AB + P̂AB

Ab + P̂AB
aB + P̂AB

ab

.

Similar expressions follow for p̂Ab, p̂aB, and p̂ab

p̂Ab = P̂Ab
Ab + P̂AB

Ab + P̂Ab
aB + P̂Ab

ab

p̂aB = P̂ aB
aB + P̂AB

aB + P̂Ab
aB + P̂ aB

ab

p̂ab = P̂ ab
ab + P̂AB

ab + P̂Ab
ab + P̂ aB

ab

allowing for the calculation of estimates of pA, and pB using p̂A = p̂AB + p̂Ab and

p̂B = p̂AB + p̂aB. The LD estimate is
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D̂AB,pk = p̂AB − p̂Ap̂B,

and the standardized measures are

D̂′
AB,pk =

⎧⎨⎩
D̂AB,pk

D̂ABmax
, if D̂AB,pk > 0

D̂AB,pk

|D̂ABmin|
, if D̂AB,pk ≤ 0

and

rpk =
D̂AB,pk√
p̂Ap̂ap̂B p̂b

. (1.9)

Estimating the Composite Measure of LD

When neither assumptions from the previous two cases can be made we use the

composite measure (1.2). These genotypic counts in Table 1.5 are multinomially

distributed with index n equal to the number of subjects and the probabilities listed

in Table 1.5. The genotype probabilities are estimated by the observed proportions.

The composite measure of LD is estimated by

∆̂ = p̂AB + p̂A/B − 2p̂Ap̂B

= 2P̂AB
AB + P̂AB

Ab + P̂AB
aB +

1

2
( ˆPAB

ab + PAb
aB)− 2p̂Ap̂B

The term in parenthesis is (one half) the total double heterozygote probability,

which is estimated using the observed proportion of double heterozygotes.

The HWD coefficients are estimated as

D̂A = P̂A
A + p̂2A and D̂B = P̂B

B + p̂2B

so the standardized measures are estimated as

∆̂′ =

⎧⎨⎩∆̂/∆̂max

∆̂/|∆̂min|,

and

r̂C =
∆̂√

(p̂Ap̂a + D̂A)(p̂B p̂b + D̂B)
. (1.10)
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1.4 Approximate Variance for LD Measures

Approximate variance formulas for the D̂AB measures of LD can be found in the

literature. All formulae for the four cases of genetic data are collected here before

continuing with the approximate variance formulae for the correlation LD estimates

in the following chapters. The following notation is used for simplification:

πA = pApa, πB = pBpb, τA = 1− 2pA and τB = 1− 2pB.

Brown (1975) and Weir (1996) both give the variance formula for the D̂AB,g

estimate of LD for gametic data

V (D̂AB,g) = (πAπB +DABτAτB −D2
AB)/N. (1.11)

Brown (1975) provides the variance of D̂AB,rm for the case of genotypic data

with the assumption of random mating

V (DAB,rm) =
8n3(det(I))−1 +D2

AB[πA(pb − pB)
2 + πB(pa − pA)

2]− 2D3
AB(pb − pB)(pa − pA)

2n(πAπB −D2
AB)

(1.12)

where I is the information matrix for pAB, pA and pB, and

det(I) =
8n3[pABpab(pAB + pab) + pAbpaB(pAb + paB)]

(pABpab + pAbpaB)pABpAbpaBpab
.

Weir and Cockerham (1989) give the approximate variance of D̂AB,pk for

genotypic data with the phase known assumption

V (D̂AB,pk) = [πAπB + τAτBDAB +DADB −D2
AB +D2

AB +DAB
AB ]/2n. (1.13)

Weir and Cockerham (1989) provide the approximate variance formula for the

estimate of the composite measure

V (∆̂) = [(πA +DA)(πB +DB) + τAτB∆AB/2 + τADABB + τBDAAB +∆AABB]/n.

Zapata (1997) derived the approximate variance for the standardized measure

of LD, D′
AB,

V (D̂′
AB) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 if DAB = −1

X if − 1 < DAB ≤ 0

Y if 0 < DAB < 1

0 if DAB = 1
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X =

[
1

n(|DABmin|)2

][
(1− |D′

AB|){nV ar(DAB)− |D′
AB| |DABmin|(pApB + papb − 2|DAB|)}

+|D′
AB|xi(1− xi)

]

where xi = pApB, or papb when |DABmin| is pApB or papb, and

Y =

[
1

n(DABmax)2

][
(1− |D′

AB|){nV ar(DAB)− |D′
AB|DABmax(pApb + papB − 2|DAB|)}

+|D′
AB|yi(1− yi)

]

where yi = pApb, or papB when DABmax is pApb or papB.

Hamilton et al. (2006) give an approximate variance for the standardized

composite measure displayed in Tables 1.8, 1.9, and 1.10. Their variance formula

was given for three cases: I (PA
A ≤ PB

B , P a
a ≥ P b

b , and P a
a + PB

B ≤ 1), II (PA
A ≤ PB

B ,

P a
a ≥ P b

b , and P a
a + PB

B > 1), and III (PA
A ≤ PB

B and P a
a ≤ P a

a ). The three cases are

based on the bounds for ∆′ used in the standardization of the composite measure.

Many of these variance formulae depend on higher order disequilibrium

coefficients DAAB, DABB, D
AB
AB and ∆AABB (Weir, 1996).

1.5 Outline of Thesis

The purpose of this thesis is to obtain the approximate variance of the various

estimates of the correlation measure of LD for the different types of data

assumptions. The gametic case will be covered in Chapter 2, while the genotypic

data, in each of the cases: (1) assuming random mating, (2) assuming phase known,

and (3) composite measure will be covered in Chapters 3, 4 and 5 respectively.

Finally, Chapter 6 will consist of comparisons across the different cases and

applications to real world data.
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Term Coefficient
Denominator n∆2

max = n[2pApb − .5(1− P a
a − PB

B )]2

Numerator
1 (πA +DA)(πB +DB)
∆′ τAτB∆max/2
DAAB τB
DABB τA
∆AABB 1
(∆′)2 X
∆′DAAB 2(pA − 2pb)
∆′DABB 2(pB − τA)
(∆′)3 (pB − 2pA)(pA + τB)∆max

(∆′)2DAAB pB − 2pA
(∆′)2DABB pA + τB
(∆′)2∆AABB 1/2
(∆′)4 ∆max/2
X (5p4A − 32p3ApB + 60p2Ap

2
B − 32pAp

3
B + 5p4B + 12p3A

−40p2ApB + 16p2ADB + 6p2ADA + 16pAp
2
B − 16pApBDB

−16pApBDA + 6p2BDB + 16p2BDA + 9p2A + 4pADA − p2B
−16pBDA +D2

B + 4DADB +D2
A − 2pA −DB + 5DA)/4

Table 1.8: Approximate variance formula for ∆̂′, case I.

Term Coefficient
Denominator n∆2

max = n(2pApb)
2

Numerator
1 (πA +DA)(πB +DB)
∆′ τAτB∆max/2
DAAB τB
DABB τA
∆AABB 1
(∆′)2 X
∆′DAAB −4pb/∆max

∆′DABB 4pA/∆max

(∆′)3 −2∆max

(∆′)2DAAB 0
(∆′)2DABB 0
(∆′)2∆AABB 0
(∆′)4 0
X 2[p2A(5p

2
b − pbpB +DB)− p2b(pA −DB)]

Table 1.9: Approximate variance formula for ∆̂′, case II.
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Term Coefficient
Denominator n∆2

max = n[2papB − (pB − PA
A )]

2

Numerator
1 (πA +DA)(πB +DB)
∆′ τAτB∆max/2
DAAB τB
DABB τA
∆AABB 1
(∆′)2 X
∆′DAAB 4(pA + pB − 1)
∆′DABB −2τA
(∆′)3 2(pA − pB)τA∆max

(∆′)2DAAB 2τA
(∆′)2DABB 0
(∆′)2∆AABB 0
(∆′)4 0
X (10p4A − 32p3ApB + 24p2Ap

2
B − 4p3A + 24p2ApB + 4p2ADB

+12p2ADA − 24pAp
2
B − 16pApBDA + 4p2BDA − 4pApB − 4pADB

−4pADA + 7p2B + 4pBDA + 2D2
A − pB +DB)/2

Table 1.10: Approximate variance formula for ∆̂′, case III.



Chapter 2

Approximate Variance for the Correlation Measure of LD

Using Gametic Data

2.1 Variance Approximation Using the Delta Method

The delta method is used to calculate an asymptotically approximate variance of

the correlation measure of LD for gametic data

rg =
D̂AB√

p̂Ap̂ap̂B p̂b
.

The correlation coefficient estimate is a function of the random vector

x = (x1, . . . , x4)
T = (nAB, nAb, naB, nab)

T

consisting of the 4 counts from Table 1.4.

These counts follow a multinomial distribution with index N , the number of

gametes, and the probabilities

p = (p1, . . . , p4)
T = (pAB, pAb, paB, pab)

T .

The variance covariance matrix V is a 4× 4 matrix composed of diagonal

elements

Vii = Cov(Xi, Xi) = V ar(X) = Npi(1− pi)

and off diagonal elements,

Vij = Cov(Xi, Xj) = −Npipj.

The variance approximation is calculated as

V ar(r) ≈ gTVg, (2.1)

16
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where

g = (g1, . . . , g4)
T

and

gi =
∂rg
∂xi

⏐⏐⏐⏐
Np

is the derivative of the correlation estimate with respect to the ith gametic count

evaluated at the mean.

Maple software was utilized for all symbolic variance approximation

calculations. The gradient g was constructed with the diff command calculating the

partial derivatives of rg with respect to each gametic count xi. These derivatives

were then evaluated at the expected values of the counts by replacing each

occurrence of xi by Npi, i = 1, . . . , 4, with the gametic probabilities expressed in

terms of the allele frequencies and disequilibrium coefficient DAB as shown in Table

1.2.

By pre-multiplying the variance covariance matrix V by the transpose of the

gradient vector and multiplying that product by the gradient again as in (2.1),

Maple produced an expression for the variance formula which filled nearly an entire

page (Appendix A). Further work was carried out to simplify the formula to the

form displayed in Table 2.1.

Terms were collected by powers of DAB. These coefficients were then simplified

using the notation πA = pApa, πB = pBpb, τA = 1− 2pA and τB = 1− 2pB.

Term Coefficient
Denominator
1 4π2

Aπ
2
BN

Numerator
1 4π2

Aπ
2
B

DAB 4πAπBτAτB
D2

AB −3(πA + πB) + 20πAπB

D3
AB 2τAτB

Table 2.1: Variance formula for rg.

When DAB = 0, the variance is V ar(rg) = 1/N where N is the number of

gametes in the sample.
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2.2 Behaviour of the Asymptotic Variance

ρ ρ

Figure 2.1: Asymptotic variance rg as a function of ρ for several choices of pA and
pB.

Figure 2.1 contains two panels displaying the approximate scaled variance as a

function of pA, pB and ρ. The variance is multiplied by N to remove dependence on

sample size.

In the more moderate allelic frequency case (left panel), there is a roughly

parabolic shape with the maximum scaled variance of 1 reached at ρ = 0. The range

of viable values of ρ is more restricted with increased pB. For pA = pB = 0.5, the

variance is zero at |ρ| = 1. In this case, pAb = paB = 0 so nAb and naB are always

zero, giving rg = ±1 without variation. This is a unique case and not true for

pB �= 0.5 where only one of pAb or paB is zero at the extreme choices for ρ, so rg is

not always ±1 and has variation.

For the more extreme allele frequencies (right panel), the plots are again

roughly parabolic. As the allele frequencies become more extreme the maximum

variance becomes larger and it occurs farther from ρ = 0.
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2.3 Comparision of Asymptotic and Simulated Variance

In order to validate the variance formula, simulations were carried out using samples

generated according to the multinomial gametic probabilities (Table 1.2). The

correlation rg was calculated for each simulated sample, and the variance of these

estimates was obtained. The sampling distribution of the simulated correlations was

examined and standard errors were calculated. Values for pA and pB included

combinations of 0.5, 0.7 and 0.9, while values of ρ ranged over positive and negative

values of 0.9, 0.5, 0.3, 0.1. Some of the combinations of ρ, pA and pB do not produce

viable gametic probabilities. Asterisks indicate such combinations in the table.

Simulations were run m = 20, 000 times for gametic sample sizes of N = 100 and

N = 1000. The value of N = 100 is quite small for genetic studies and might be too

small for asymptotic formulae to be accurate. On the other hand N = 1000 is quite

large and asymptotic results should be valid.

The sample variances of rg were compared with the corresponding theoretical

variances in ratio format for each ρ and allelic frequency combination. The results

are displayed in Table 2.2. Overall, the ratios are close to one indicating that the

variance formula is correct.

Standard errors were calculated for the ratios as follows. The ratio is calculated

as

ratio =
1

Avar

(
1

m− 1

)∑
(rg,i − r̄g)

2 ≈
∑

d2i
mAvar

.

where di = rgi − r̄g and Avar is the asymptotic variance. Its variance is

V ar(ratio) =
V ar(d2i )

mAvar2

which is estimated by

V̂ ar(ratio) =
s2d2

mAvar2
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ρ
pA pB -0.9 -0.5 -0.3 -0.1 0.1 0.3 0.5 0.9

n = 100
.5 .5 0.99 1.02 1.01 1.00 1.01 1.01 1.02 1.00

.7 * 1.01 1.00 1.01 0.99 1.01 1.02 *

.9 * * 1.01 1.00 1.02 1.04 * *
.7 .5 * 1.01 1.01 1.01 1.02 1.01 1.01 *

.7 * * 1.02 1.01 1.02 1.01 1.01 0.99

.9 * * * 1.04 1.01 1.03 1.07 *
.9 .5 * * 1.04 1.00 1.01 1.05 * *

.7 * * * 1.00 1.01 1.03 1.08 *

.9 * * * 1.01 1.02 1.06 1.10 1.18
n = 1000

.5 .5 1.01 1.00 1.02 0.99 0.98 1.02 0.99 1.02
.7 * 0.98 1.01 0.99 1.00 0.99 0.99 *
.9 * * 1.02 0.99 1.01 1.01 * *

.7 .5 * 1.01 1.00 0.99 1.01 0.99 0.99 *
.7 * * 1.00 1.00 1.01 1.00 1.00 1.00
.9 * * * 0.99 1.01 1.00 1.00 *

.9 .5 * * 1.01 1.00 1.01 1.00 * *
.7 * * * 0.98 1.02 1.00 1.01 *
.9 * * * 0.97 1.00 1.00 1.02 0.99

Table 2.2: Ratio of the simulated variance to the asymptotic variance of rg for sample
sizes N = 100 and N = 1000.
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where s2d2 is the sample variance of the d2i . The standard error of the ratio is

SE(ratio) =
sd2√

mAvar
.

For N = 100, the ratios range between 0.99-1.18 and are closer to one for the

increased sample size (Table 2.2). Simulation standard errors calculated for each

ratio all round to the value of 0.01 except for the case of (ρ, pA, pB)=(-0.1, 0.9, 0.9)

and (ρ, pA, pB)=(0.9, 0.9, 0.9) where the standard error is 0.02. Several of the

simulated ratios are more than two standard errors from unity, predominantly at

the more extreme allele frequencies. Only 3 of the 47 variance ratios fall below unity

indicating that the asymptotic variance tends to underestimate the true variance.

For N = 1000, all standard errors rounded to 0.01 and none of the ratios are

more than two standard errors away from unity. The number of ratios falling below

unity rises to 15 out of 47.

Upon examining the sampling distributions of the simulated correlations, it was

noted that all distributions are approximately normal except when (ρ, pA,

pB)=((-0.1,0.9),0.9,0.9) (Figure 2.2). For N = 100, the distributions are highly

skewed for these cases, skewed right for ρ = −0.1 and skewed left for ρ = 0.9. This

skewness is an evident sign that asymptotic conditions have not been reached with a

sample size of N = 100. The skewness is greatly reduced with N = 1000, and the

ratio of simulated to asymptotic variances is much closer to 1.0.

2.3.1 Fisher’s Transformation of the Correlation

Because some of the sampling distributions in the simulations were very skewed,

Fisher’s transformation of the correlation coefficient

δ =
1

2
log

(
1 + ρ

1− ρ

)
was considered.

For bivariate normal data, this transformation of the sample correlation

coefficient is approximately normally distributed. For estimation, a factor of 1/N

was added to both the numerator and denominator in order to prevent problems in

evaluating the transformation when |rg| = 1, giving
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Figure 2.2: Histograms of rg for allelic frequencies pA = pB = 0.9 with ρ = −0.1 (left)
and ρ = 0.9 (right) for sample sizes of N = 100 (top) and N = 1000 (bottom).
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δ̂g =
1

2
log

(
1 + rg + 1/N

1− rg + 1/N

)
.

The asymptotic variance approximation for δ̂g using the delta method is

V ar(δ̂) =
1

(1− (ρ)2)2
V ar(rg),

ignoring terms of 1/N2 and smaller.

The ratios of simulated to asymptotic variances of δ̂g are shown in Table 2.3.

To simplify the comparison of the standardized and unstandardized values, the

columns are labelled by their correlation values.

For N = 100, standard errors of the simulated ratios all round to 0.01 for every

case other than for (ρ, pA, pB) = (-0.9, 0.5, 0.5), (ρ, pA, pB) = (0.9, 0.7, 0.7) and (ρ,

pA, pB) = ((-0.1, 0.5, 0.9), 0.9, 0.9) where errors rounded to 0.02.

For N = 100, the Fisher transformation makes the ratio closer to 1 in 18 cases,

makes it farther from 1 in 10 cases and keeps it the same in 19 cases. Some cases,

for example (ρ, pA, pB) = ((-0.1, 0.5, 0.9), 0.9, 0.9), (0.9, 0.7, 0.7) and (-0.9, 0.5,

0.5) are made much worse by the transformation. Histograms of δ̂g (Figure 2.3 and

2.4) reveal that the value rg = 1 is transformed to

δ̂g = .5 log
(2+1/100

1/100

)
= .5 log(201) = 2.65. This value is detached from the remaining

distribution of the ρ values giving a large sample variance and a large ratio. For

small values of ρ the transformation is nearly linear and has little effect.

For N = 1000, the Fisher transformation improved the ratio in 3 cases, made it

worse in 7, and kept it the same in 39.
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ρ
pA pB -0.9 -0.5 -0.3 -0.1 0.1 0.3 0.5 0.9

n = 100
.5 .5 1.10 1.03 1.01 0.99 1.01 1.01 1.02 1.11

.7 * 1.00 1.00 1.01 0.99 1.01 1.02 *

.9 * * 1.01 1.00 1.02 1.02 * *
.7 .5 * 1.00 1.01 1.00 1.02 1.01 1.00 *

.7 * * 1.00 1.01 1.01 1.02 1.03 1.21

.9 * * * 1.03 1.01 1.02 1.06 *
.9 .5 * * 1.02 1.00 1.01 1.02 * *

.7 * * * 0.99 1.02 1.02 1.07 *

.9 * * * 0.99 1.05 1.11 1.18 1.83
n = 1000

.5 .5 1.02 1.00 1.02 0.99 0.98 1.02 1.00 1.03
.7 * 0.98 1.01 1.00 1.00 0.99 0.99 *
.9 * * 1.02 0.99 1.01 1.01 * *

.7 .5 * 1.01 1.00 0.99 1.01 0.99 0.98 *
.7 * * 1.00 1.00 1.01 1.00 1.00 1.02
.9 * * * 0.99 1.01 1.00 1.00 *

.9 .5 * * 1.00 1.00 1.01 1.00 * *
.7 * * * 0.98 1.02 1.00 1.00 *
.9 * * * 0.97 1.00 1.01 1.02 1.04

Table 2.3: Ratio of the simulated variance to the asymptotic variance of Fisher’s
transformation of rg.
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Figure 2.3: Histograms of simulated untransformed rg values (left) and Fisher trans-

formed δ̂g values (right) for (δg, pA, pB) = (0.9, 0.7, 0.7) (top), (δg, pA, pB) = (-0.1,
0.9, 0.9) (middle), (δg, pA, pB) = (0.9, 0.9, 0.9) (bottom) and sample size of N = 100.
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Figure 2.4: Histograms of simulated rg values (left) and Fisher transformed δ̂g values
(right) for (δg, pA, pB) = (0.9, 0.7, 0.7) (top), (δg, pA, pB) = (-0.1, 0.9, 0.9) (middle),
(δg, pA, pB) = (0.9, 0.9, 0.9) (bottom) and sample size of N = 1000.



Chapter 3

Approximate Variance for the Correlation Measures of LD

Using Genotypic Data Assuming Random Mating

3.1 Variance Approximation Using the Delta Method

The delta method and symbolic computation were used to calculate an

asymptotically approximate variance of rrm using Maple software. Recall (1.8) that

rrm is obtained using maximum likelihood estimates of

θ = (pA, pB, pAB)
T . (3.1)

Likelihood theory tells us that the MLE θ̂ is approximately unbiased with variance

covariance matrix V given by the inverse of the expected information matrix.

I(θ) = E

(
− ∂2l

∂θ∂θT

)
(3.2)

where l is the log likelihood (1.6).

Using the delta method the correlation rrm has an approximate variance

V ar(rrm) ≈ qTI−1q, (3.3)

where q is the vector of derivatives of rrm with respect to the elements of θ̂

evaluated at their means. Maple commands and output for calculating the

approximate variance are found in Appendix A. Derivatives are calculated using the

diff operator. Because E(p̂A), E(p̂B), and E(p̂AB) are not known, occurrences of p̂A,

p̂B and p̂AB in the derivatives were evaluated at pA, pB and pAB = pApB +DAB.

This ignores the bias in the MLEs but does not effect the accuracy of the variance

approximation.

The Maple output for the variance formula filled numerous lines. Further work

was carried out to simplify the expression to the form displayed in Table 3.1. The

variance is written as a polynomial in DAB with coefficients which are functions of

27



28

Term Coefficient
Denominator
1 8π3

Aπ
3
Bn

DAB 8π2
Aπ

2
BτAτBn

D2
AB 24π2

Aπ
2
Bn

Numerator
1 8π3

Aπ
3
B

DAB 12π2
Aπ

2
BτAτB

D2
AB πAπB(120πAπB − 23(πA + πB) + 4)

D3
AB τAτB(38πAπB − 3(πA + πB))

D4
AB 96πAπB − 17(πA + πB) + 2

D5
AB 6τAτB

Table 3.1: Variance formula for rrm.

pA and pB. For simplification, the following notation was used: πA = pApa,

πB = pBpb, τA = 1− 2pA, and τB = 1− 2pB. Note that when DAB = 0,

V ar(rrm) = 1/n, where n is the number of subjects.

3.2 Behaviour of the Asymptotic Variance

Figure 3.1 contains two panels displaying the approximate variance as a function of

pA, pB and ρ. The variance is multiplied by n to remove dependence on sample size.

Note that n subjects give N = 2n gametes, so the variance of rrm is approximately

twice that of rg, and is 2/N when DAB = 0.

The plots of the variance versus ρ are roughly parabolic. When pA = 0.5 (left

panel) the maximum scaled variance of 1 occurs at ρ = 0 regardless of the value of

pB. As pB increases from 0.5, the range of the feasible values for ρ decreases and the

variance decreases more rapidly. As the allele frequencies become more extreme

(right panel), the maximum variance increases and it occurs further from ρ = 0.

These variance patterns are very similar to those for the gametic measure rg.

3.3 Comparison of Approximate and Simulated Variance

To validate the variance formula, simulations were carried out using genotypic

counts generated according to the multinomial genotypic probabilities in Table 1.3.

Values for pA and pB were chosen as combinations of 0.5, 0.7 and 0.9, while values
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ρ ρ

Figure 3.1: Asymptotic variance of rrm as a function of ρ for several choices of pA
and pB.
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of ρ ranged over positive and negative values of 0.9, 0.5, 0.3, 0.1. Simulations were

run m = 20, 000 times for genotypic sample sizes of n = 100 and n = 1000.

Correlations were calculated for each sample and their variance was calculated.

Some of the combinations of ρ, pA and pB do not produce viable genotypic

probabilities. These combinations are indicated in Table 3.2 by asterisks. The

sample variances of rrm were compared with the corresponding theoretical variances

in ratio format for each ρ and allelic frequency combination.

ρ
pA pB -0.9 -0.5 -0.3 -0.1 0.1 0.3 0.5 0.9

n = 100
.5 .5 1.01 1.01 1.04 1.03 1.03 1.01 1.01 1.00

.7 * 1.01 1.03 1.01 1.03 1.06 1.02 *

.9 * * 1.07 1.06 1.08 1.05 * *
.7 .5 * 1.01 1.02 1.02 1.03 1.04 0.99 *

.7 * * 1.05 1.02 1.04 1.05 1.02 1.02

.9 * * * 1.10 1.08 1.00 1.06 *
.9 .5 * * 1.04 1.07 1.07 1.04 * *

.7 * * * 1.12 1.07 1.06 1.03 *

.9 * * * 1.25 1.01 1.02 1.01 1.07
n = 1000

.5 .5 0.99 0.99 1.01 1.00 0.99 1.00 1.00 1.00
.7 * 1.00 1.01 1.01 0.99 1.02 1.00 *
.9 * * 0.99 1.02 1.00 0.98 * *

.7 .5 * 0.99 0.98 1.00 1.00 1.00 1.00 *
.7 * * 1.00 0.99 0.99 1.00 1.01 1.01
.9 * * * 1.01 1.01 1.01 0.99 *

.9 .5 * * 1.00 1.00 1.02 1.01 * *
.7 * * * 1.01 1.02 1.00 0.99 *
.9 * * * 1.05 1.00 1.02 0.99 1.02

Table 3.2: Ratio of simulated variance to the theoretical variance of rrm.

Overall, the ratios are close to 1, especially for n = 1000, indicating the

variance formula is correct. All ratios were greater than one for n = 100, indicating

that the asymptotic formula tends to underestimate the variance and that

asymptotic conditions have not been met. This underestimation of the variance is

not an issue with n = 1000, where just over half (61%) of the ratios are above unity.

For n = 100, some of the ratios are quite large. Simulation standard errors of

the ratios all round to 0.01 except for one. For (ρ, pA, pB) = (-0.1, 0.9, 0.9) the
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standard error is 0.03. More than three quarters of the ratios deviate from unity by

more than two standard errors. The worst case is for (ρ, pA, pB) = (-0.1, 0.9, 0.9),

where the ratio is 1.25.

For n = 1000, most of the ratios are quite close to one. The standard errors of

the ratios all round to 0.01 and only one case has a ratio more than two standard

errors from one. As with n = 100, the worst case is when (ρ, pA, pB)=(-0.1, 0.9,

0.9). Histograms of the sampling distributions for this case are shown in Figure 3.2.
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Figure 3.2: Histograms of simulated rrm values for (ρ, pA, pB) = (-0.1, 0.9, 0.9),
n = 100 (left) and n = 1000 (right).

These histograms both show skewness which may indicate that asymptotic

conditions have not been met.

3.3.1 Fisher Transformation of the Correlation

As with the gametic measure, we investigated the use of Fisher’s transformation

δ̂rm =
1

2
log

(
1 + rrm + 1/n

1− rrm + 1/n

)
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which has variance approximation

V ar(δ̂rm) =
1

(1− ρ2)2
V ar(rrm).

The ratios of simulated to asymptotic variances of δ̂rm are shown in Table 3.3.

These results are based on the same random samples as in Table 3.2.

Comparing Table 3.2 and Table 3.3 reveals that the transformation improves

the ratios or keeps them the same in 40/47 of the cases when n = 100, and in 37/47

of the cases when n = 1000. Most cases which did not show improvement

correspond to extreme choices of ρ, pA, and pB. When (ρ, pA, pB)=(0.9, 0.9, 0.9)

some of the rrm = 1.0 leading to the same problem described for rg.

ρ
pA pB -0.9 -0.5 -0.3 -0.1 0.1 0.3 0.5 0.9

n = 100
.5 .5 0.95 0.99 1.03 1.03 1.04 1.00 0.99 0.94

.7 * 0.99 1.01 1.03 1.03 1.02 0.99 *

.9 * * 1.03 1.07 1.07 1.00 * *
.7 .5 * 0.99 1.01 1.00 1.04 1.01 0.99 *

.7 * * 1.01 1.04 1.05 1.04 1.02 0.96

.9 * * * 1.10 1.09 1.03 1.00 *
.9 .5 * * 1.01 1.07 1.06 1.01 * *

.7 * * * 1.09 1.09 1.01 1.01 *

.9 * * * 1.23 1.01 1.04 1.07 1.30
n = 1000

.5 .5 0.98 1.00 0.99 1.00 1.00 1.00 1.00 0.98
.7 * 1.01 1.00 1.01 1.00 1.01 1.01 *
.9 * * 1.00 1.00 1.00 1.00 * *

.7 .5 * 1.00 1.01 1.01 1.00 1.01 1.01 *
.7 * * 0.99 1.02 1.00 1.00 1.00 0.99
.9 * * * 1.01 0.99 1.01 0.99 *

.9 .5 * * 0.99 1.03 1.00 1.00 * *
.7 * * * 0.99 1.03 1.00 1.01 *
.9 * * * 1.01 1.01 1.01 1.02 1.01

Table 3.3: Ratio of simulated variance to the asymptotic variance of Fisher’s trans-
formation of rrm.



Chapter 4

Approximate Variance for the Correlation Measure of LD

when the Genotypic Phase is Known

4.1 Variance Approximation Using the Delta Method

An approximate variance formula is derived for rpk, the correlation measure of LD

(1.9) for the phase known genotypic case.

This measure depends on the genotypic counts

x = (nAB
AB, n

AB
Ab , n

Ab
Ab, n

AB
aB , nAB

ab , nAb
aB, n

Ab
ab , n

aB
aB, n

aB
ab , n

ab
ab)

T ,

which follow a multinomial distribution with index n and the probabilities

p = (p1, . . . , p10)
T

= (PAB
AB , 2PAB

Ab , PAb
Ab , 2P

AB
aB , 2PAB

ab , 2PAb
aB , 2P

Ab
ab , P

aB
aB , 2P aB

ab , P ab
ab )

T

and variance covariance matrix V, which is a 10× 10 matrix composed of diagonal

elements

Vii = Cov(Xi, Xi)

= V ar(X)

= npi(1− pi)

and off diagonal elements

Vij = Cov(Xi, Xj) = −npipj.

The variance approximation is calculated as

V ar(rpk) = gTVg

where g = (g1, . . . , g10)
T and

gi =
∂rpk
∂xi

⏐⏐⏐⏐
npi

33



Probability Formula

PAB
AB PA

APB
B +2pApBDAB +D2

AB +2pApBDA/B +D2
A/B +2pADABB +2pBDAAB +p2BDA +p2ADB +DADB +DAABB

PAB
Ab PA

APB
b +2pAτBDAB −2D2

AB +2pAτBDA/B −2D2
A/B −4pADABB +2τBDAAB +2πBDA −2p2ADB −2DADB −2DAABB

PAb
Ab PA

AP b
b −2pApbDAB +D2

AB −2pApbDA/B +D2
A/B +2pADABB −2pbDAAB +p2bDA +p2ADB +DADB +DAABB

PAB
aB PA

a PB
B +2τApBDAB −2D2

AB +2τApBDA/B −2D2
A/B +2τADABB −4pBDAAB −2p2BDA +2πADB −2DADB −2DAABB

PAB
ab PA

a PB
b +2 XDAB +2D2

AB +2 Y DA/B +2D2
A/B −2τADABB −2τBDAAB −2πBDA −2πADB +2DADB +2DAABB

PAb
aB PA

a PB
b +2 Y DAB +2D2

AB +2 XDA/B +2D2
A/B −2τADABB −2τBDAAB −2πBDA −2πADB +2DADB +2DAABB

PAb
ab PA

a P b
b −2τApbDAB −2D2

AB −2τApbDA/B −2D2
A/B +τADABB +4pbDAAB −2p2bDA +2πADB −2DADB −2DAABB

P aB
aB P a

aP
B
B −2papBDAB +D2

AB −2papBDA/B +D2
A/B −2paDABB +2pBDAAB +p2BDA +p2aDB +DADB +DAABB

P aB
ab P a

aP
B
b −2paτBDAB −2D2

AB −2paτBDA/B −2D2
A/B +4paDABB +2τBDAAB +2πBDA −2p2aDB −2DADB −2DAABB

P ab
ab P a

aP
b
b +2papbDAB +D2

AB +2papbDA/B +D2
A/B −2paDABB −2pbDAAB +p2bDA +p2aDB +DADB +DAABB

Table 4.1: Genotypic probabilities expressed in terms of allelic probabilities and disequilibrium coefficients when the genotypic
phase is known (Notation: X = pApB + papb and Y = X − 1).
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is the derivative of the correlation with respect to a genotypic count evaluated at

the mean.

Maple software was used for all symbolic variance approximation calculations.

The gradient g was constructed from the partial derivatives with respect to each

genotypic cell count (xi) using the diff operator. The expected values were then

evaluated by replacing each xi by its mean npi, i = 1, . . . , 10. The genotypic

probabilities were expressed in terms of the allele frequencies and a complete set of

disequilibrium coefficients as shown in Table 4.1 (Weir and Cockerham, 1989).

As described in Weir (1996), these disequilibria include the single locus

departures from Hardy Weinberg equilibrium (HWE)

DA = PA
A − p2A

DB = PB
B − p2B,

two locus gametic and non-gametic disequilibrium DAB and DA/B described above

(1.1 and 1.3), and three higher order disequilibria DAAB, DABB and DAABB.

The two trigenic disequilibrium measures are

DAAB = pAAB − pADAB − pADA/B − pBDA − p2ApB

and

DABB = pABB − pBDAB − pBDA/B − pADB − pAp
2
B.

where

pAAB = PAB
AB +

1

2
PAB
Ab (4.1)

and

pABB = PAB
AB +

1

2
PAB
aB (4.2)

compare probabilities of three alleles at the two loci to the products of allele

frequencies, these measures having removed any digenic disequilibria.

The quadrigenic disequilibrium measure

DAB
AB = PAB

AB − 2pADABB − 2pBDAAB − 2pApBDAB − 2pApBDA/B

− p2ADB − p2BDA −D2
AB −D2

A/B −DADB − p2Ap
2
B

accounts for the remaining disequilibrium after all other forms of disequilibrium

have been removed.
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Maple produced output for the variance formula which filled numerous pages

(Appendix A). Further work was carried out to simplify the formula to the form

displayed in Table 4.2.

Term Coefficient

Denominator π3
Aπ

3
Bn

Numerator

1 π3
Aπ

3
B/2 + π2

Aπ
2
BDADB/2

DAB π2
Aπ

2
BτAτB/2

D2
AB πAπB(−3(πA + πB) + 20πAπB)/8

+(τ 2Aπ
2
BDA + τ 2Bπ

2
ADB)/8

D3
AB πAπBτAτB/4

DABDAAB −π2
BπAτA/2

DABDABB −π2
AπBτB/2

DA/BD
2
AB πAπBτAτB/4

D2
A/B π2

Aπ
2
B/2

DAABB π2
Aπ

2
B/2

Table 4.2: Variance formula for rpk.

This is a polynomial in the five higher order disequilibrium measures with

coefficients which are functions of pA, pB, DA and DB. When all disequilbrium

measures are zero, the variance is 1/2n = 1/N .

4.2 Behaviour of the Asymptotic Variance

Figure 4.1 displays the approximate variance of rpk as a function of pA, pB, and ρ in

a state of HWE with all higher order disequilibria set to zero

(DA = DB = DA/B = DAAB = DABB = DAABB = 0). The approximate variance is

multiplied by n to remove the dependence on sample size. These plots are similar to

those of the previous chapters except that the maximum variance value is one half

instead of one when pA or pB equals 0.5 and ρ = 0. When pA = 0.5 (left panel), the

variance reaches its maximum at ρ = 0 and decreases as ρ increases in magnitude.

As pB becomes more extreme, the range of possible ρ decreases and the variance

decreases from its maximum at a faster rate than for the less extreme values of pB.

When pA increases from 0.5 (right panel) the maximum variance increases, and it
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ρ ρ

Figure 4.1: Asymptotic variance of rpk as a function of ρ for several choices of pA and
pB assuming random mating (DA = DB = DA/B = DAAB = DABB = DAABB = 0).
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occurs at larger values of ρ.

Figure 4.2 displays the variance of rpk as a function of pA, pB, and ρ when there

is HWD. The approximate variance is multiplied by n to remove the dependence on

sample size. In these plots, the HWD coefficients are chosen to be a fraction of the

maximum, where DAmax = pApa and DBmax = pBpb. All higher order disequilibrium

coefficients are taken to be zero.

When pA = pB = .5 (top panels), the variance is in ρ = 0. When pA = .7,

pB = .9 (bottom panels) the variance function is not symmetric about its maximum

and the maximum occurs to the right of p = 0. When DB = 0 (left panels), the

maximum variance does not change with DA. When DB > 0 (right panels) the

maximum variance increases with DA. The range of feasible values for ρ decreases

as both DA and DB increases.

4.3 Comparison of Theoretical and Simulated Variance

The variance approximation was validated using simulation. Values for pA and pB

were taken to be combinations of 0.5, 0.7 and 0.9, while ρ ranged over positive and

negative values of 0.1, 0.3, 0.5, 0.9. There were m = 20, 000 random samples of size

n = 100 and n = 1000 generated for both the case of HWE and a HWD. The

variance of the simulated correlation values was calculated and compared to the

approximate variance in ratio format.

The HWD cases used (DA = .5DDAmax, DB = .5DDBmax) and

(DA = 0.25DAmax, DB = 0.25DBmax). All higher order disequilibrium values were

set to zero (DA/B = DAAB = DABB = DAABB = 0). Some of the combinations of ρ,

pA and pB do not produce viable genotypic probabilities. These combinations are

indicated in Table 4.3 and Table 4.4 by asterisks.

4.3.1 HWE Results

Table 4.3 displays the ratio of the simulated variance to the asymptotic variance

when all other disequilibria are zero. The ratios are mostly very close to one

indicating that the approximate variance formula is accurate.

For n = 100, six of the 47 ratios are more than two simulation standard errors

(which were all .01) from one. All but one of these cases occurs with pA or pB equal
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ρ ρ

ρ ρ

Figure 4.2: Asymptotic variance as a function of ρpk, pA, pB and of the HW disequilib-
rium coefficients DA and DB. DA=0 (solid), DA=.25DAmax (dashed), DA=.5DAmax

(dotted), DA=.75DAmax (dotted-dashed).
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ρ
pA pB -0.9 -0.5 -0.3 -0.1 0.1 0.3 0.5 0.9

n = 100
.5 .5 1.02 1.01 1.00 1.01 0.98 1.00 0.99 0.99

.7 * 1.01 0.98 0.99 0.99 1.00 1.00 *

.9 * * 1.00 0.99 1.01 1.03 * *
.7 .5 * 1.00 1.00 1.01 1.02 1.00 1.03 *

.7 * * 1.01 1.02 1.00 1.00 1.00 1.01

.9 * * * 1.01 1.00 1.02 1.01 *
.9 .5 * * 1.01 0.99 0.99 1.01 * *

.7 * * * 1.01 0.99 1.01 1.04 *

.9 * * * 1.01 1.00 1.03 1.04 1.06
n = 1000

.5 .5 1.02 1.00 1.00 1.00 0.99 1.01 0.99 1.00
.7 * 1.02 1.01 1.00 0.98 1.01 0.99 *
.9 * * 0.99 1.00 1.01 1.01 * *

.7 .5 * 1.00 1.00 0.98 1.00 1.00 1.00 *
.7 * * 1.01 1.01 1.00 1.01 1.00 1.00
.9 * * * 1.02 1.00 0.99 1.00 *

.9 .5 * * 1.02 1.01 0.99 1.00 * *
.7 * * * 1.01 1.01 1.01 1.01 *
.9 * * * 0.99 1.00 0.99 1.02 1.00

Table 4.3: Ratio of simulated variance to the theoretical variance of rpk in the HWE
case.
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to 0.9. There are many more ratios greater than one (23) than are less than one

(10), indicating that the variance formula tends to underestimate the true variance.

An examination of the sampling distribution of the sample correlation showed it to

be skewed when pA, pB or ρ are extreme, indicating that n = 100 may not be large

enough for asymptotic conditions to apply.

For n = 1000, the ratios are much closer to one and all within two simulation

standard errors. The balance of values below one (10) and above one (18) is better,

and on examination of the sampling distributions of rpk showed them to be all

symmetric.

4.3.2 HWD Results

ρ
pA pB -0.1 0.1 -0.3 -0.1 0.1 0.3

n = 100 .5DAmax .5DBmax .25DAmax .25DBmax
.5 .5 1.01 1.01 1.03 1.02 1.01 0.99

.7 0.99 1.00 * 1.02 1.00 *

.9 * * * 0.99 0.99 *
.7 .5 1.00 1.00 * 1.00 1.01 *

.7 * 1.00 * 1.00 0.99 1.01

.9 * 1.00 * 1.00 1.01 *
.9 .5 * * * 0.99 1.02 *

.7 * 1.00 * 0.99 1.01 *

.9 * 1.02 * * 1.01 1.03
n = 1000

.5 .5 1.00 1.01 0.99 0.99 1.00 1.01
.7 0.98 1.00 * 0.99 0.99 *
.9 * * * 1.00 1.00 *

.7 .5 1.00 1.01 * 0.98 1.01 *
.7 * 1.00 * 1.02 1.00 1.01
.9 * 1.00 * 0.99 1.01 *

.9 .5 * * * 1.00 0.99 *
.7 * 1.00 * 1.00 1.00 *
.9 * 1.00 * * 1.00 1.00

Table 4.4: Ratio of simulated variance to the theoretical variance of rpk in the HWD
case.

Table 4.4 shows the simulated ratios when there is HWD (DA,

DB)=(0.5DAmax, 0.5DBmax), and (DA, DB)=(0.25DAmax, 0.25DBmax). With HWD



42

the possible values for ρ are limited. The results (Table 4.4) are similar to when

there is HWE. Most simulated ratios are close to one. The largest deviations from

one occur when pA or pB is large and ρ is close to its feasible boundary. The ratios

are closer to one when n = 1000 than when n = 100.

4.3.3 Simulations with Fisher Transformation

The simulations were also run using Fisher’s transformation, to see whether the

variance approximation is more accurate on this scale. The results, shown in Tables

4.5 and 4.6, indicate that the transformation has little effect when n = 1000 and

tends to produce slightly worse ratios when n = 100.

ρ
pA pB -0.9 -0.5 -0.3 -0.1 0.1 0.3 0.5 0.9

n = 100
.5 .5 0.96 1.00 0.99 1.00 0.97 0.99 0.98 0.95

.7 * 0.99 0.97 0.98 0.98 0.99 0.98 *

.9 * * 0.98 0.98 1.00 1.01 * *
.7 .5 * 0.98 0.99 1.00 1.00 0.99 1.01 *

.7 * * 0.98 1.01 0.99 0.99 0.99 0.97

.9 * * * 1.00 0.99 1.01 0.99 *
.9 .5 * * 0.98 0.98 0.98 0.99 * *

.7 * * * 1.00 0.99 1.00 1.01 *

.9 * * * 0.98 1.00 1.04 1.05 1.31
n = 1000

.5 .5 1.01 1.00 1.00 1.00 0.99 1.01 0.99 0.99
.7 * 1.02 1.01 1.00 0.98 1.00 0.99 *
.9 * * 0.99 1.00 1.01 1.01 * *

.7 .5 * 1.00 1.00 0.98 1.00 1.00 1.00 *
.7 * * 1.02 1.01 1.00 1.01 1.01 1.00
.9 * * * 1.02 1.00 0.99 1.00 *

.9 .5 * * 1.02 1.01 0.99 1.00 * *
.7 * * * 1.01 1.01 1.01 1.01 *
.9 * * * 0.99 1.00 0.99 1.02 1.02

Table 4.5: Ratio of the simulated Fisher transformed variance to the theoretical
variance of rpk in the case of HWE.
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ρ
pA pB -0.1 0.1 -0.3 -0.1 0.1 0.3

n = 100 .5DAmax .5DBmax .25DAmax .25DBmax
.5 .5 1.00 1.01 1.02 1.01 1.00 0.98

.7 0.99 0.99 * 1.01 0.99 *

.9 * * * 0.98 0.98 *
.7 .5 1.00 0.99 * 0.99 1.00 *

.7 * 1.00 * 0.99 1.00 1.00

.9 * 1.00 * 0.99 1.00 *
.9 .5 * * * 0.98 1.01 *

.7 * 0.99 * 0.98 1.00 *

.9 * 1.03 * * 1.02 1.06
n = 1000

.5 .5 1.00 1.01 0.99 0.99 0.99 1.01
.7 0.98 0.99 * 0.98 0.99 *
.9 * * * 1.00 1.00 *

.7 .5 1.00 1.00 * 0.98 1.01 *
.7 * 1.00 * 1.02 1.00 1.01
.9 * 1.00 * 0.99 1.01 *

.9 .5 * * * 0.99 0.98 *
.7 * 1.00 * 1.00 0.99 *
.9 * 1.00 * * 0.99 1.00

Table 4.6: Ratio of simulated Fisher transform variance to the theoretical variance of
rpk in the case of HWD.



Chapter 5

Approximate Variance for the Composite Correlation

Measure of LD for Genotypic Data

5.1 Variance Approximation Using the Delta Method

An approximate variance formula is derived in this chapter for the composite

correlation estimate of LD, rC (1.10).

The sample correlation coefficient is a function of the nine genotypic counts

which include the unphased double heterozygotes (Table 1.5). The genotypic counts

x = (nAB
AB, n

AB
Ab , n

Ab
Ab, nP

AB
aB , nAaBb, nAb

ab , n
aB
aB, n

aB
ab , n

ab
ab)

T

follow a multinomial distribution with probabilities from Table 1.3

p = (p1, . . . , p9)
T = n(PAB

AB , 2PAB
Ab , PAb

Ab , 2P
AB
aB , 2(PAB

ab + PAb
aB), 2P

Ab
ab , P

aB
aB , 2P aB

ab , P ab
ab )

T

and variance covariance matrix V, which is a 9× 9 matrix composed of diagonal

elements

Vii = Cov(Xi, Xi) = V ar(X) = npi(1− pi)

and off diagonal elements,

Vij = Cov(Xi, Xj) = −npipj.

The variance approximation is calculated as

V ar(rC) = gTVg

where g = (g1, . . . , g9)
T and

gi =
∂rC
∂xi

⏐⏐⏐⏐
np

is the derivative of the correlation with respect to the genotypic counts evaluated at

the mean.
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The gradient g was constructed of the partial derivatives with respect to each

genotypic cell count (xi) using the diff operator in Maple. The derivatives were

then evaluated at the mean counts by replacing each count xi by npi, i = 1, . . . , 9.

The genotypic probabilities were expressed in terms of the allele frequencies and

disequilibrium coefficients, as shown in Table 5.1 (Weir and Cockerham, 1989),

where the notation πA = pApa, πB = pBpb, τA = 1− 2pA, and τB = 1− 2pB is used

to simplify the expressions.

Probability Formula

PAB
AB PA

AP
B
B +2pApB∆AB +∆2

AB +2pADABB +2pBDAAB +∆AABB

PAB
Ab PA

AP
B
b +pAτB∆AB −∆2

AB −2pADABB +τBDAAB −∆AABB

PAb
Ab PA

AP
b
b −2pApb∆AB +∆2

AB +2pADABB −2pbDAAB +∆AABB

PAB
aB PA

a P
B
B +pBτA∆AB −∆2

AB +τADABB −2pBDAAB −∆AABB

PAaBb PA
a P

B
b +τBτA∆AB +2∆2

AB −2τADABB −2τBDAAB +2∆AABB

PAb
ab PA

a P
b
b −τApb∆AB −∆2

AB +τADABB +2pbDAAB −∆AABB

P aB
aB P a

aP
B
B −2papB∆AB +∆2

AB −2paDABB +2pBDAAB +∆AABB

P aB
ab P a

aP
B
b −paτB∆AB −∆2

AB +2paDABB +τBDAAB −∆AABB

P ab
ab P a

aP
b
b +2papb∆AB +∆2

AB −2paDABB −2pbDAAB +∆AABB

Table 5.1: Genotypic probabilities expressed in terms of allelic probabilities and dis-
equilibrium coefficients when the phase is unknown.

Weir (1996) derived these probabilities using the quadrigenic disequilibrium

measure for the phase unknown case

∆AABB = DAB
AB − 2DABDA/B

= PAB
AB − 2pADABB − 2pBDAAB − 2pApB∆AB −∆2

AB

− p2ADB − p2BDA −DADB − p2Ap
2
B,

(5.1)

which accounts for the remaining disequilibrium after all other forms are removed.

Maple produced output for the variance formula which filled numerous pages

(Appendix A). Further work was carried out to simplify the formula to the form

displayed in Table 5.2. This formula is a polynomial in ∆, DAAB, DABB, and

∆AABB with coefficients which are functions of pA, pB, DA and DB.
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Term Coefficient
Denominator n(πA +DA)

3(πB +DB)
3

Numerator
1 (πA +DA)

3(πB +DB)
3

∆ .5(πA +DA)
2(πB +DB)

2τAτB
∆2 .375(−πBτ

2
BD

2
A − πAτ

2
AD

2
B + 2(πA + πB − 8πAπB)DADB

+πB(πB − 2πA)DA + πA(πA − 2πB)DB − πAπB((πA + πB)− 4πAπB)
+(4DADB +DA +DB)DADB)

∆3 .25(πA +DA)(πB +DB)τAτB
∆4 .5(πA +DA)(πB +DB)
DAAB (πA +DA)

2(πB +DB)
2τB

DABB (πA +DA)
2(πB +DB)

2τA
∆DAAB −3(πA +DA)(πB +DB)

2τA
∆DABB −3(πA +DA)

2(πB +DB)τB
∆2DAAB .5(πA +DA)(πB +DB)τB
∆2DABB .5(πA +DA)(πB +DB)τA
∆AABB (πA +DA)

2(πB +DB)
2

∆2∆AABB .5(πA +DA)(πB +DB)

Table 5.2: Variance formula for rC

When all the disequilibrium coefficients are zero, the variance is 1/n.

5.2 Behaviour of the Approximate Variance

The behaviour of the variance formula was studied graphically with

DAAB = DABB = ∆AABB = 0 when there is HWE (DA = DB = 0, Figure 5.1) and

when there is HWD (DA, DB ̸= 0, Figure 5.2). These plots are similar to those of

previous chapters. When there is HWE and pA = 0.5 (left panel, Figure 5.1), the

variance reaches its maximum at ρ = 0 and decreases as ρ increases in magnitude.

As pB becomes more extreme the range of possible values for ρ decreases and the

variance decreases more rapidly from its maximum as ρ increases in magnitude. As

pA increases from 0.5 (right panel, 5.1) the maximum variance increases in

magnitude, and it occurs at larger values of ρ.

Figure 5.2 displays the scaled variance of rC as a function of pA, pB, and ρC

when there is HWD. In the two left panels DB = 0, and in the two right panels

DB = 0.25DBmax, where DBmax = pBpb. Within each panel DA is 0, 0.25, 0.5 and

0.75 of its maximum, DAmax = pApa. The top two panels have allele frequencies
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ρ ρ

Figure 5.1: Asymptotic variance as a function of ρC and several choices of pA and pB
assuming (DA = DB = DAAB = DABB = ΔAABB = 0).
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ρ ρ

ρ ρ

Figure 5.2: Asymptotic variance as a function of ρC and several choices of pA
and pB the HW coefficients of DA and DB. Lines define the functional values
for DA=0 (solid), DA=.25DA,max (dashed), DA=.5DAmax (dotted), DA=.75DAmax

(dotted-dashed).
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pA = pB = 0.5, while the bottom panels have pA = 0.7, pB = 0.9. In the top two

panels where pA = pB = 0.5, the variance decreases more slowly from its maximum

as a function of ρC as DA increases. There is less dependence on DA in the lower

two panels and the range of feasible values for ρC is smaller.

5.3 Comparision of Theoretical and Simulated Variance

As in the previous chapters, the variance approximation is validated using

simulation. Values for pA and pB were chosen to be combinations of 0.5, 0.7 and 0.9,

while values of ρC ranged over positive and negative values of 0.1, 0.3, 0.5, 0.9. The

simulation used m = 20, 000 random samples of n = 100 and n = 1000 for both the

HWE and HWD cases. The variance of the simulated correlation values was

calculated and compared to the approximate variance using a ratio. Simulation

standard errors were also calculated and the sampling distributions were examined.

The HWE case was produced with all disequilibrium values DA, DB, DAAB, DABB

and ∆AABB set to zero. The HWD case used DA = 0.5DAmax and DB = 0.5DBmax,

with higher order disequilibriums set to zero (DAAB = DABB = ∆AABB = 0). Some

of the combinations of ρC , pA and pB do not produce viable genotypic probabilities.

These combinations are indicated in Table 5.3 and 5.4 by asterisks.

HWE Results

Table 5.3 displays the ratios of the simulated variance to the asymptotic variance

when all disequilibria are zero in the HWE case. All ratios are close to one so the

variance formula appears to be valid. Simulation standard errors were all

approximately 0.01 for each ratio. For n = 100, roughly a third of the ratios are

greater than 1.02, and only five are less than one indicating the approximate

variance tends to underestimate the true variance. The ratios above 1.02 usually

correspond to large values of pA, pB, or ρC . For n = 1000, most of the ratios are

closer to one and all cases have ratios inside the range 0.98 and 1.02.

For n = 100 the sampling distributions of the simulated correlation values are

skewed in several cases corresponding to the more extreme allele frequencies and

values of ρ. All sampling distributions are symmetric when n = 1000.
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ρC
pA pB -0.9 -0.5 -0.3 -0.1 0.1 0.3 0.5 0.9

n = 100
.5 .5 1.04 1.01 1.03 1.01 1.03 1.00 1.01 1.02

.7 * 1.02 1.02 1.00 0.98 1.02 1.03 *

.9 * * 1.03 1.02 1.00 1.02 * *
.7 .5 * 1.03 1.02 1.01 1.02 1.02 1.00 *

.7 * * 1.03 0.99 1.02 1.04 1.01 1.04

.9 * * * 1.02 1.01 1.02 1.02 *
.9 .5 * * 1.03 1.00 0.99 1.03 * *

.7 * * * 1.03 1.00 1.02 1.04 *

.9 * * * 1.04 1.01 0.99 0.99 1.07
n = 1000

.5 .5 0.99 0.99 1.00 0.99 0.99 0.99 0.99 1.02
.7 * 0.98 0.99 1.00 1.00 1.01 0.99 *
.9 * * 1.01 1.00 1.01 1.02 * *

.7 .5 * 1.00 0.99 1.00 1.01 1.01 0.99 *
.7 * * 0.98 0.98 1.01 1.00 1.00 1.01
.9 * * * 1.00 1.00 1.00 1.00 *

.9 .5 * * 0.98 1.00 1.00 1.00 * *
.7 * * * 1.00 1.01 1.01 1.01 *
.9 * * * 0.99 0.98 1.01 1.00 1.01

Table 5.3: Ratio of simulated variance to the theoretical variance of rC when DA =
DB = DAAB = DABB = ∆AABB = 0.
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HWD Results

ρC
pA pB -0.5 -0.3 -0.1 0.1 0.3 0.5

n = 100
.5 .5 1.03 1.02 1.01 1.02 1.01 1.01

.7 * 1.02 1.02 0.99 1.01 *

.9 * * 0.99 1.00 * *
.7 .5 * 1.02 1.01 1.00 1.02 *

.7 * 0.99 1.01 1.01 1.01 *

.9 * * 1.01 1.02 * *
.9 .5 * * 0.99 1.01 * *

.7 * * 1.00 1.01 * *

.9 * * * 1.03 1.03 *
n = 1000

.5 .5 1.00 1.00 1.02 1.00 0.99 1.00
.7 * 1.01 0.99 1.00 1.00 *
.9 * * 1.00 1.02 * *

.7 .5 * 1.00 0.99 1.01 0.99 *
.7 * 1.01 1.01 1.00 0.99 *
.9 * * 0.99 1.02 * *

.9 .5 * * 0.99 1.01 * *
.7 * * 1.00 0.99 * *
.9 * * * 0.99 1.01 *

Table 5.4: Ratio of simulated variance to the theoretical variance of rC when there is
HWD.

Table 5.4 shows that the simulated variance ratios are mostly near one when

there is HWD. The larger number of asterisks reflects the fact that the boundaries

of ρC are more restricted when DA and DB are not zero. For n = 100 all but three

of the 29 ratios are within 2 simulation SEs from one ([0.98,1.02]), while fewer (4)

ratios lay below one and than above one (21). For the case of n = 1000 all ratios are

within 2 SEs from unity with a more even distribution above and below one.

For n = 100 the sampling distributions of the correlations are skewed in some

cases, corresponding to values of ρC near its boundary (-0.5 and 0.5) or extreme

allelic frequencies (pA = pB = 0.7 and pA = pB = 0.9). When n = 1000 all sampling

distributions are symmetric indicating that asymptotic conditions are better met

with the larger sample size.
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5.3.1 Simulations with the Fisher Transformation

The Fisher transformation was again utilized in order to see whether the variances

approximation was improved on this scale.

Simulated variance ratios for the Fisher transformed correlation are shown in

Table 5.5 for the case of HWE and Table 5.6 for the case of HWD.

For the case of HWE when n = 100, the transformed ratios are the same as or

better than the untransformed ratios two thirds the time. However, ratios were

much poorer near the boundaries of ρ. When n = 1000 transformed variance ratios

matched the untransformed ratio in 43 out of the 47 ratios and improved it in 3 of

the ratios.

ρC
pA pB -0.9 -0.5 -0.3 -0.1 0.1 0.3 0.5 0.9

n = 100
.5 .5 0.93 0.99 1.02 1.02 1.03 1.00 0.99 0.92

.7 * 0.99 1.00 1.00 1.00 1.00 0.97 *

.9 * * 1.02 0.98 1.01 1.02 * *
.7 .5 * 1.01 1.00 1.01 1.03 1.00 1.02 *

.7 * * 1.02 1.02 1.02 1.02 1.01 0.94

.9 * * * 1.03 1.01 1.01 1.01 *
.9 .5 * * 1.01 1.00 0.98 1.02 * *

.7 * * * 1.01 1.01 0.99 1.00 *

.9 * * * 1.02 1.01 1.01 1.03 1.27
n = 1000

.5 .5 0.98 0.99 1.00 0.99 0.99 0.99 0.99 1.00
.7 * 0.98 0.99 1.00 1.00 1.01 0.99 *
.9 * * 1.01 1.00 1.01 1.01 * *

.7 .5 * 1.00 0.99 1.00 1.01 1.01 0.99 *
.7 * * 0.98 0.98 1.01 1.00 1.00 1.00
.9 * * * 1.00 1.00 1.00 1.00 *

.9 .5 * * 0.98 1.00 1.00 1.00 * *
.7 * * * 1.00 1.01 1.01 1.01 *
.9 * * * 0.99 0.98 1.01 1.00 1.01

Table 5.5: Ratio of the simulated variance to the theoretical variance of the Fisher
transform correlation when DA = DB = DAAB = DABB = ∆AABB = 0.

For the case of HWD (Table 5.6) when n = 100 the transformation improved

the ratio in 6 cases, made it worse in 6 cases and kept in the same in 16 cases.

When n = 1000 the transformation made the ratio closer to one in 6 cases, further



53

ρC
pA pB -0.5 -0.3 -0.1 0.1 0.3 0.5

n = 100
.5 .5 1.03 1.02 1.00 1.03 1.01 1.03

.7 * 0.98 1,02 0.99 1.00 *

.9 * * 1.01 1.00 * *
.7 .5 * 1.00 1.01 1.01 1.02 *

.7 * 1.01 1.01 1.02 1.00 *

.9 * * 0.99 1.02 * *
.9 .5 * * 1.00 1.00 * *

.7 * * 0.99 1.03 * *

.9 * * * 1.04 1.14 *
n = 1000

.5 .5 1.00 1.00 1.01 1.02 1.00 1.00
.7 * 1.01 1.00 1.03 0.99 *
.9 * * 0.99 0.99 * *

.7 .5 * 0.99 1.01 1.00 0.98 *
.7 * 1.02 1.00 1.00 0.98 *
.9 * * 1.01 1.02 * *

.9 .5 * * 0.99 0.98 * *
.7 * * 1.04 0.98 * *
.9 * * * 1.01 1.02 *

Table 5.6: Ratio of simulated Fisher transform variance to the theoretical variance of
rC in the case of HWD.
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from one in 12 cases and kept it the same in 10 cases.



Chapter 6

Discussion

6.1 Comparison of the Variance Formulae

The variance formulae are quite complicated but some comparisons can be made.

Table 6.1 displays all four approximate variance formulae under the assumption of

random mating. For the phase known and composite cases this requires equating to

zero the coefficients DA, DB, DAAB, DABB, DA/B and DAABB or ∆AABB in their

respective variance formulae (Table 4.2 and Table 5.2). When comparing to the

gametic variance note that n genotypes correspond to 2N haplotypes.

With this conversion the gametic variance and the phase known variances are

equal. This reflects the fact that the same amount of genetic information is

obtained from genotypic data as gametic data when there is random mating when

the phase is assumed known.

The variance formula for the random mating case is the most complicated, with

extra powers of DAB in the numerator and denominator. The variance of the

composite measure has several coefficients similar to those of the gametic and phase

known cases.

When DAB = 0 the gametic variance is 1/N = 1/2n, the phase known variance

is 1/2n, the random mating variance is 1/n and the composite variance is 1/n. The

phase known assumption is a stronger assumption than the assumption of random

mating leading to a smaller variance. The random mating and composite variances

at DAB = 0 are twice as big.

An examination of the variance formulae for the unstandardized LD measures

(1.11), (1.12) and (1.13) is complicated by the fact that the formula (1.12) has not

been simplified completely for the random mating case. This simplification was

carried out in Maple and the result is shown in Table 6.2. When DAB = 0,

V (D̂ABrm) = πAπB/n which equals V (∆̂AB) from the composite case. However the

gametic and phase known variances are V (D̂ABg) = V (D̂ABpk) = πAπB/2n, so the
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Formulae

Cases Denominator Numerator

1 1 DAB D2
AB D3

AB D4
AB D5

AB

Gametic π2
Aπ

2
BN π2

Aπ
2
B πAπBτAτB (−3(πA + πB) + 20πAπB)/4 τAτB/2

Genotypic

Phase Known π2
Aπ

2
B2n π2

Aπ
2
B πAπBτAτB (−3(πA + πB) + 20πAπB)/4 τAτB/2

Random 1

⏐⏐⏐⏐8π3
Aπ

3
Bn 8π3

Aπ
3
B 12π2

Aπ
2
BτAτB πAπB(120πAπB τAτB(38πAπB 96πAπB + 2 6τAτB

Mating DAB

⏐⏐⏐⏐8π2
Aπ

2
BτAτBn −23(πA + πB) + 4) −3(πA + πB)) −17(πA + πB)

D2
AB

⏐⏐⏐⏐24π2
Aπ

2
Bn

Composite π2
Aπ

2
Bn π2

Aπ
2
B πAπBτAτB/2 (−3(πA + πB) + 12πAπB)/8 τAτB/4 1/2

Table 6.1: Comparison of each of the four approximate variance formulas under random mating.
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doubling of variance when phase is unknown occurs for the unstandardized

measures as it does for the correlation standardization.

Term Coefficient
Denominator
1 2πAπBn
DAB 2τAτBn
D2

AB 6n
Numerator
1 2π2

Aπ
2
B

DAB 3τAτBπAπB

D2
AB −p2A(24πB + 5) + pA(24πB − 5)− 5πB + 1

D3
AB 3τAτB

D4
AB −2

Table 6.2: Simplified variance formula for D̂ABrm.

6.2 Applications to Real Data

The approximate variance formulae are applied to real genotypic data in this

section. Table 6.3 gives genotypic counts at the 990 and 986 loci of the calcium

sensing receptor (CASR) gene for primary hyperparathyroidism (PHPT) patients

and for a control group (Hamilton and Cole, 2008). Note that the variant alleles S

and G do not occur together except possibly with the unphased double

heterozygotes ASRG. The wild type allele frequencies are both fairly extreme in

both groups. The correlation measures are shown, and the phase known approach

was used twice, assuming the double heterozygotes are in-repulsion and in-coupling.

The near equivalence of the in-repulsion measure rpk,R to the random mating

measure rrm suggests that the double heterozygotes are in-repulsion. The composite

measure is bigger in magnitude, which may reflect the fact that it includes both

inter-gametic and intra-gametic disequilbria. The variance for the phase known

measure is the smallest when in-repulsion is assumed, but not too different from the

random mating variance. The composite measure has the largest variance. The

results are similar in the cases and controls.

Table 6.4 gives genotypic counts and summary statistics for a Xavante Indian

population sample and a sample of Irish republicans at the MN and S blood group
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Genotypes Cases Controls
AARR 116 247
AARG 18 35
AAGG 0 1
ASRR 80 124
ASRG 1 6
ASGG 0 0
SSRR 22 20
SSRG 0 0
SSGG 0 0
Total 237 433

Statistics Cases Controls
pA 0.7362 0.8037
pR 0.9600 0.9503
DA 0.0233 .0077
DR -.0016 -.0002
DAR -.0105 -.0085
DA/R -.0097 -.0028
∆AR -.0190 -.0126
rpk,C -.0979 -.0329
rpk,R -.1222 -.1130
rrm -.1223 -.1130
rC -.2125 -.1426

Variances
V rpk,C .00068345 .00090469
V rpk,R .00021119 .00009087
V rrm .00022332 .00009178
V rC .00113113 .00096164

Table 6.3: Observed counts, disequilibrium coefficients, and approximate variances of
r for PHPT cases and controls at the AS and RG loci (Hamilton and Cole, 2008).
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loci (Hamilton and Cole, 2008). Note that the variant alleles N and s do occur

together in this data set so we have an example of composite data; we cannot infer

the phase of the double heterozygotes MNSs. The wild type allele frequencies are

more moderate in this example. The variances of the correlation measures are

smaller for the Irish Republicans, in part due to the larger sample size. For the

Xavante Indians the random mating and composite variance are nearly twice as large

as the phase known variances. For the Irish Republicans the composite measure has

the largest variance and the in-coupling phase known measure has the smallest.

Genotypes Xavante Irish
MMSS 91 121
MMSs 147 248
MMss 85 164
MNSS 32 53
MNSs 78 422
MNss 75 375
NNSS 5 9
NNSs 17 65
NNss 7 241
Total 537 1698

Statistics Xavante Irish
pM .4637 .3242
pS .7737 .5642
DM .0234 .0027
DS .0028 -.0044
∆MS .0273 .0782
rpk,C .2395 .4362
rpk,R -.1085 -.0992
rrm .1122 .3568
rC .1242 .3380

Variances
V rpk,C .00069747 .00017709
V rpk,R .00083947 .00034275
V rrm .00173746 .00035731
V rC .00168318 .00047672

Table 6.4: Observed counts, disequilibrium coefficients, and approximate variances of
r for the Xavante Indian and Irish Republican populations at the MN and S blood
group loci.
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6.3 Statistical Advantages of Correlation Measure of LD

Zapata (2011); Teare et al. (2002) deem D′
AB and ρ to be most commonly used

measures of LD. While the standardized measure D′
AB has the advantage that it can

take values from −1 to 1, in this section we will look at some statistical advantages

of the correlation measure.

6.3.1 Smooth Variance Formulae when D′ is not Smooth

The approximate variance formulae for ρ in this paper are all smooth functions of

DAB while those for D′
AB and ∆′

AB are not smooth functions (Zapata, 1997;

Hamilton et al., 2006). A discontinuity in the variance occurs at DAB or ∆AB = 0

because the standardizing constant is different for negative and positive values. The

standardized value is the same in all cases for the correlation measures. The

difference in the standardized constant also leads to unusual sampling distributions

for D′
AB and ∆′

AB in some cases.

6.3.2 Testing for LD and Association

To test the null hypothesis that there is no LD, an obvious test statistic is D̂AB

divided by its standard error. For gametic data we get

X2 =
D̂2

AB

πAπB/N
= Nr2

after squaring and evaluating the variance (1.11) at DAB = 0. This statistic is

equivalent to the goodness of fit test for independence in a 2× 2 table, and is

approximately X2
1 in large samples. The correlation measure, or its square, occurs

naturally as a scaled version of the test statistic. With genotypic data, the test

statistics for LD can all be written in terms of the correlation standardization.

In related work, Pritchard and Przeworski (2001) investigated the loss of

information when testing for association between a disease phenotype and a marker

rather than the disease susceptibility locus (DSL). They showed that the sample

size required to achieve the same power is 1/r2 larger using the marker locus, where

r is the correlation measure of LD between the marker and disease susceptibility

locus, i.e.

nMarker = nDSL/r
2.
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6.4 Summary

A delta method approximation to the variance formula of the correlation measure of

LD was produced for gametic data and then for three different cases of genotypic

data. In each case the variance formula was derived and plotted for several choices

of the allele frequencies and for all feasible values of ρ. Simulations were then

carried out to compare the variance of simulated LD correlation values to the

theoretical variance formula. Results indicate that the variance formulae are good

approximations for each type of genetic data. As expected, results were poorer for

the small sample size, n = 100, than for the large sample size n = 1000. Fisher’s

transformation improved the approximation in some cases, made it worse in others

and had little effect most of the time. In practise, use of Fisher’s transformation

may not be a sufficient improvement to warrant its use.



Appendix A

Maple Code

Gametic Case

pAh := (x1 + x2)/n; pah := 1− pAh;

pBh := (x1 + x3)/n; pbh := 1− pBh;

pABh := x1/n;

Dh := −pAh ∗ pBh+ pABh;

vAh := pAh ∗ pah; vBh := pBh ∗ pbh;
rh := Dh/sqrt(vAh ∗ vBh);

a1 := simplify(diff(rh, x1)); a2 := simplify(diff(rh, x2));

a3 := simplify(diff(rh, x3)); a4 := simplify(diff(rh, x4));

avec :=< (a1, a2, a3, a4) >;

ps :=< (p1, p2, p3, p4) >;

with(LinearAlgebra);

vmat := n ∗ (Matrix(1..4, 1..4, ps, shape =

diagonal)−OuterProductMatrix(ps, ps, compact = false));

p1 := pA ∗ pB +D; p2 := pA ∗ pb−D;

p3 := pB ∗ pa−D; p4 := pa ∗ pb+D;

x1 := n ∗ p1; x2 := n ∗ p2; x3 := n ∗ p3; x4 := n ∗ p4;
pa := 1− pA; pb := 1− pB;

piA := pA ∗ pa; piB := pB ∗ pb;
tauA := 1− 2 ∗ pA; tauB := 1− 2 ∗ pB;

aVar := simplify(Transpose(avec).vmat.avec);

aV ar := 4∗pA4∗pB4+16∗D∗pA3∗pB3−8∗pA4∗pB3−8∗pA3∗pB4+20∗D2∗pA2∗
pB2−24∗D∗pA3∗pB2−24∗D∗pA2∗pB3+4∗pA4∗pB2+16∗pA3∗pB3+4∗pA2∗pB4+

8∗D3∗pA∗pB−20∗D2∗pA2∗pB−20∗D2∗pA∗pB2+8∗D∗pA3∗pB+36∗D∗pA2∗
pB2+8∗D∗pA∗pB3−8∗pA3∗pB2−8∗pA2∗pB3−4∗D3∗pA−4∗D3∗pB+3∗D2∗
pA2+20∗D2∗pA∗pB+3∗D2∗pB2−12∗D∗pA2∗pB−12∗D∗pA∗pB2+4∗pA2∗pB2+

62



63

2∗D3−3∗D2∗pA−3∗D2∗pB+4∗D∗pA∗pB/4∗n∗pA2∗pB2∗(−1+pB)2∗(−1+pA)2

den := denom(aVar);

num := numer(aVar);

num := collect(num, D); num3 := coeff(num,D, 3);

simplify(num3/(2 ∗ tauA ∗ tauB)); 1

num2 := coeff(num,D, 2);

simplify(num2/(−3 ∗ (piA+ piB) + 20 ∗ piA ∗ piB));

1

num1 := coeff(num,D, 1);

simplify(num1/(4 ∗ piA ∗ piB ∗ tauA ∗ tauB));

1

num0 := coeff(num,D, 0);

simplify(num0/(4 ∗ piA2 ∗ piB2));

1

simplify(den/(4 ∗ piA2 ∗ piB2 ∗ n));
1

simplify(aV ar − (D3 ∗ num3 +D2 ∗ num2 +D ∗ num1 + num0)/den);

0

Genotypic Data, MLE

pa := 1− pA; pb := 1− pB;

pAb := pA− pAB; pab := pa− paB; paB := pB − pAB;

x11 := pAB ∗ pAB; x12 := 2 ∗ pAB ∗ pAb; x13 := pAb ∗ pAb;
x21 := 2 ∗ pAB ∗ paB; x22 := 2 ∗ pAB ∗ pab+ 2 ∗ pAb ∗ paB; x23 := 2 ∗ pAb ∗ pab;
x31 := paB ∗ paB; x32 := 2 ∗ paB ∗ pab; x33 := pab ∗ pab;
simplify(x11+x12+x13+x21+x22+x23+x31+x32+x33);

1 logLike := n11 ∗ log(x11) + n12 ∗ log(x12) + n13 ∗ log(x13) + n21 ∗ log(x21) +
n22 ∗ log(x22) + n23 ∗ log(x23) + n31 ∗ log(x31) + n32 ∗ log(x32) + n33 ∗ log(x33);
d11 := simplify(-(diff(diff(logLike, pA), pA)));

d12 := simplify(-(diff(diff(logLike, pA), pB)));

d13 := simplify(-(diff(diff(logLike, pA), pAB)));

d21 := simplify(-(diff(diff(logLike, pB), pA)));
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d22 := simplify(-(diff(diff(logLike, pB), pB)));

d23 := simplify(-(diff(diff(logLike, pB), pAB)));

d31 := simplify(-(diff(diff(logLike, pAB), pA)));

d32 := simplify(-(diff(diff(logLike, pAB), pB)));

d33 := simplify(-(diff(diff(logLike, pAB), pAB)));

with(LinearAlgebra);

Imat := Matrix(3, 3, [d11, d12, d13, d21, d22, d23, d31, d32, d33]);

n11 := n ∗ x11; n12 := n ∗ x12; n13 := n ∗ x13;
n21 := n ∗ x21; n22 := n ∗ x22; n23 := n ∗ x23;
n31 := n ∗ x31; n32 := n ∗ x32; n33 := n ∗ x33;
simplify(n11+n12+n13+n21+n22+n23+n31+n32+n33);

invEImat := MatrixInverse(Imat);

ro := (−pA ∗ pB + pAB)/sqrt(pA ∗ pB ∗ pa ∗ pb);
dro1 := simplify(diff(ro, pA));

dro2 := simplify(diff(ro, pB));

dro3 := simplify(diff(ro, pAB));

pAB := pA*pB+D;

roV ec :=< (dro1, dro2, dro3) >;

roV ar := simplify(Transpose(roV ec).invEImat.roV ec);

rovar := roV ar[1, 1];

rovar := (1/8)∗(8∗pA6∗pB6+48∗D∗pA5∗pB5−24∗pA6∗pB5−24∗pA5∗pB6+120∗
D2∗pA4∗pB4−120∗D∗pA5∗pB4−120∗D∗pA4∗pB5+24∗pA6∗pB4+72∗pA5∗pB5+

24∗pA4∗pB6+152∗D3∗pA3∗pB3−240∗D2∗pA4∗pB3−240∗D2∗pA3∗pB4+96∗D∗
pA5∗pB3+300∗D∗pA4∗pB4+96∗D∗pA3∗pB5−8∗pA6∗pB3−72∗pA5∗pB4−72∗
pA4∗pB5−8∗pA3∗pB6+96∗D4∗pA2∗pB2−228∗D3∗pA3∗pB2−228∗D3∗pA2∗pB3+

143∗D2∗pA4∗pB2+480∗D2∗pA3∗pB3+143∗D2∗pA2∗pB4−24∗D∗pA5∗pB2−240∗
D∗pA4∗pB3−240∗D∗pA3∗pB4−24∗D∗pA2∗pB5+24∗pA5∗pB3+72∗pA4∗pB4+24∗
pA3∗pB5+24∗D5∗pA∗pB−96∗D4∗pA2∗pB−96∗D4∗pA∗pB2+88∗D3∗pA3∗pB+

342∗D3∗pA2∗pB2+88∗D3∗pA∗pB3−23∗D2∗pA4∗pB−286∗D2∗pA3∗pB2−286∗
D2∗pA2∗pB3−23∗D2∗pA∗pB4+60∗D∗pA4∗pB2+192∗D∗pA3∗pB3+60∗D∗pA2∗
pB4−24∗pA4∗pB3−24∗pA3∗pB4−12∗D5∗pA−12∗D5∗pB+17∗D4∗pA2+96∗D4∗
pA∗pB+17∗D4∗pB2−6∗D3∗pA3−132∗D3∗pA2∗pB−132∗D3∗pA∗pB2−6∗D3∗
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pB3+46∗D2∗pA3∗pB+170∗D2∗pA2∗pB2+46∗D2∗pA∗pB3−48∗D∗pA3∗pB2−48∗
D∗pA2∗pB3+8∗pA3∗pB3+6∗D5−17∗D4∗pA−17∗D4∗pB+9∗D3∗pA2+50∗D3∗
pA∗pB+9∗D3∗pB2−27∗D2∗pA2∗pB−27∗D2∗pA∗pB2+12∗D∗pA2∗pB2+2∗D4−
3∗D3∗pA−3∗D3∗pB+4∗D2∗pA∗pB)/(pA2∗pB2∗(pA−1)2∗(pB−1)2∗n∗(pA2∗
pB2+4∗D∗pA∗pB−pA2∗pB−pA∗pB2+3∗D2−2∗D∗pA−2∗D∗pB+pA∗pB+D))

numrovar := simplify(numer(rovar));

denrovar := simplify(denom(rovar));

collect(numrovar, D);

tauA := 1− 2 ∗ pA; tauB := 1− 2 ∗ pB;

pa := 1− pA; pb := 1− pB;

piA := pa ∗ pA; piB := pb ∗ pB;

num5 := coeff(numrovar,D, 5);

simplify(num5/(6 ∗ tauA ∗ tauB));

1

num4 := coeff(numrovar,D, 4);

simplify(num4/(96 ∗ piA ∗ piB − 17 ∗ (piA+ piB) + 2));

1

num3 := coeff(numrovar,D, 3);

simplify(num3/(tauA ∗ tauB ∗ (38 ∗ piA ∗ piB − 3 ∗ (piA+ piB))));

1

num2 := coeff(numrovar,D, 2);

simplify(num2/(piA ∗ piB ∗ (120 ∗ piA ∗ piB − 23 ∗ (piA+ piB) + 4)));

1

num1 := coeff(numrovar,D, 1);

simplify(num1/(12 ∗ piA2 ∗ piB2 ∗ tauB ∗ tauA));
1

num0 := factor(coeff(numrovar,D, 0));

simplify(num0/(8 ∗ piA3 ∗ piB3));

1

den0 := factor(coeff(denrovar,D, 0));

simplify(den0/(8 ∗ n ∗ piA3 ∗ piB3));

1
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den1 := factor(coeff(denrovar,D, 1));

simplify(den1/(8 ∗ n ∗ piA2 ∗ piB2 ∗ tauA ∗ tauB));

1

den2 := factor(coeff(denrovar,D, 2));

simplify(den2/(24 ∗ n ∗ piA2 ∗ piB2 ∗ ‘‘));
1

finalcheck := simplify(rovar − (D5 ∗ num5 +D4 ∗ num4 +D3 ∗ num3 +D2 ∗
num2 +D ∗ num1 + num0)/(D2 ∗ den2 +D ∗ den1 + den0));

0

Phase Informed Genotypic Data

pAh := (x1 + x4 + x8 + .5 ∗ (x2 + x9 + x5 + x6))/n :

pBh := (x1 + x2 + x3 + .5 ∗ (x4 + x6 + x5 + x7))/n :

pah:=1-pAh: pbh:=1-pBh:

Dh := (x1 + .5 ∗ (x4 + x2 + x5))/n− pAh ∗ pBh :

roh := (Dh)/sqrt(pah ∗ pbh ∗ pAh ∗ pBh) :

g11:=diff(roh,x1):

sg11:= simplify(g11):

g12:=diff(roh,x2): sg12:=simplify(g12):

g13:=diff(roh,x3): sg13:=simplify(g13):

g14:=diff(roh,x4): sg14:=simplify(g14):

g15:=diff(roh,x5): sg15:=simplify(g15):

g16:=diff(roh,x6): sg16:=simplify(g16):

g17:=diff(roh,x7): sg17:=simplify(g17):

g18:=diff(roh,x8): sg18:=simplify(g18):

g19:=diff(roh,x9): sg19:=simplify(g19):

g110:=diff(roh,x10): sg110:=simplify(g110):

tauA:=1-2*pA: tauB:=1-2*pB:

piA := pA*(1-pA): piB:=pB*(1-pB):

pa:=1-pA: pb:=1-pB:

x1 := n ∗ (pA2 ∗ pB2 +2 ∗ pA ∗DABB + pB ∗ 2 ∗DAAB + pA ∗ pB ∗ 2 ∗DAB + pA ∗
pB ∗ 2 ∗DAB +DAB2 +DA2

B + pA2 ∗DB + pB2 ∗DA+DA ∗DB +DAABB) :
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x2 :=

n∗(2∗piA∗pB2+2∗tauA∗DABB−pB∗4∗DAAB+tauA∗pB∗2∗DAB+tauA∗pB∗
2∗DAB−2∗DAB2−2∗DA2

B+2∗piA∗DB−2∗pB2∗DA−2∗DA∗DB−2∗DAABB) :

x3 := n ∗ (pa2 ∗ pB2 − 2 ∗ pa ∗DABB + pB ∗ 2 ∗DAAB − pa ∗ pB ∗ 2 ∗DAB − 2 ∗
pa ∗ pB ∗DAB +DAB2 +DA2

B + pa2 ∗DB + pB2 ∗DA+DA ∗DB +DAABB) :

x4 :=

n∗(2∗pA2∗piB−4∗pA∗DABB+2∗tauB∗DAAB+2∗pA∗tauB∗DAB+pA∗tauB∗
2∗DAB−2∗DAB2−2∗DA2

B−2∗pA2∗DB+2∗piB∗DA−2∗DA∗DB−2∗DAABB) :

x5 := n ∗ (2 ∗ piA ∗ piB − 2 ∗ tauA ∗DABB − tauB ∗ 2 ∗DAAB + 2 ∗DAB ∗ (pA ∗
pB + pa ∗ pb) + 2 ∗DAB ∗ (pA ∗ pB + pa ∗ pb− 1) + 2 ∗DAB2 + 2 ∗DA2

B − 2 ∗ piA ∗
DB − 2 ∗ piB ∗DA+ 2 ∗DA ∗DB + 2 ∗DAABB) :

x6 := n ∗ (2 ∗ piA ∗ piB − 2 ∗ tauA ∗DABB − 2 ∗ tauB ∗DAAB + 2 ∗DAB ∗ (pA ∗
pB + pa ∗ pb− 1) + 2 ∗DAB ∗ (pA ∗ pB + pa ∗ pb) + 2 ∗DAB2 + 2 ∗DA2

B − 2 ∗ piA ∗
DB − 2 ∗ piB ∗DA+ 2 ∗DA ∗DB + 2 ∗DAABB);

x7 := n∗(2∗pa2∗piB+4∗pa∗DABB+2∗tauB∗DAAB−pa∗tauB∗2∗DAB−pa∗tauB∗
2∗DAB−2∗DAB2−2∗DA2

B−2∗pa2∗DB+2∗piB∗DA−2∗DA∗DB−2∗DAABB) :

x8 := n ∗ (pA2 ∗ pb2 + 2 ∗ pA ∗DABB − pb ∗ 2 ∗DAAB − pA ∗ pb ∗ 2 ∗DAB − 2 ∗
pA ∗ pb ∗DAB +DAB2 +DA2

B + pA2 ∗DB + pb2 ∗DA+DA ∗DB +DAABB) :

x9 := n∗(2∗piA∗pb2+2∗tauA∗DABB+4∗pb∗DAAB−tauA∗pb∗2∗DAB−tauA∗pb∗
2∗DAB−2∗DAB2−2∗DA2

B+2∗piA∗DB−2∗pb2∗DA−2∗DA∗DB−2∗DAABB) :

x10 := n ∗ (pa2 ∗ pb2 − 2 ∗ pa ∗DABB − pb ∗ 2 ∗DAAB + 2 ∗ pa ∗ pb ∗DAB + 2 ∗
pa ∗ pb ∗DAB +DAB2 +DA2

B + pa2 ∗DB + pb2 ∗DA+DA ∗DB +DAABB) :

temp:=simplify(x1+x2+x3+x4+x5+x6+x7+x8+x9+x10):

collect(temp, n);

collect(NN, DAB);

sg11m:=simplify(sg11):

sg12m:=simplify(sg12):

sg13m:=simplify(sg13):

sg14m:=simplify(sg14):

sg15m:=simplify(sg15):

sg16m:=simplify(sg16):

sg17m:=simplify(sg17):
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sg18m:=simplify(sg18):

sg19m:=simplify(sg19):

sg110m := simplify(sg110);

gvec :=<

sg11m, sg12m, sg13m, sg14m, sg15m, sg16m, sg17m, sg18m, sg19m, sg110m >:

ps :=< p1, p2, p3, p4, p5, p6, p7, p8, p9, p10 >:

with(LinearAlgebra):

vmat := n ∗ (Matrix(1..10, 1..10, ps, shape =

diagonal)−OuterProductMatrix(ps, ps, compact = false)) :

p1:=x1/n: p2:=x2/n: p3:=x3/n:

p4:=x4/n: p5:=x5/n: p6 := x6/n; p7:=x7/n:

p8:=x8/n: p9:=x9/n: p10:=x10/n:

var1:=simplify(Transpose(gvec).vmat.gvec):

var1 := −DAAB ∗DAB ∗pA3∗pB2−DAB ∗pA5∗pB2−DAB ∗DABB ∗pA2∗pB3+

DAAB ∗DAB ∗pA∗pB3+DAB ∗DABB ∗pA3 ∗pB+DAB2 ∗DB ∗pA3 ∗pB+DA∗
DAB2∗pA∗pB3−DA∗DB∗pA3∗pB2−DA∗DB∗pA2∗pB3−DAB2∗DB∗pA3∗pB2−
DA∗DAB2∗pA2∗pB3−DA∗DB∗pA4∗pB3−DA∗DB∗pA3∗pB4−DAAB∗DAB∗
pA3∗pB4+DAB2∗DAB ∗pA3∗pB3−DAB∗DABB∗pA4∗pB3−DAB∗pA2∗pB5−
DAABB ∗pA3 ∗pB2−DAABB ∗pA2 ∗pB3−DAABB ∗pA4 ∗pB3−DAABB ∗pA3 ∗
pB4−DA2

B∗pA3∗pB2−DA2
B∗pA2∗pB3+DAB3∗pA3∗pB3−DA2

B∗pA4∗pB3−DA2
B∗

pA3∗pB4+.5∗DA∗DB∗pA4∗pB2+.5∗DA∗DAB2∗pA2∗pB2+.5∗DAB2∗DAB∗pA3∗
pB−.5∗DAB∗DABB∗pA4∗pB−.5∗DA∗DAB2∗pA∗pB2−.75∗DAB2∗DAB∗pA2∗
pB−.75∗DAB2∗DAB∗pA∗pB2−.5∗DAB2∗DB∗pA2∗pB+.5∗DA∗DB∗pA2∗pB4−
.5∗DAAB∗DAB∗pA∗pB4+.5∗DAB2∗DAB∗pA∗pB3+.5∗DAB2∗DB∗pA2∗pB2+

1.5∗DAAB∗DAB∗pA2∗pB2+1.5∗DAB∗DABB∗pA2∗pB2+2.25∗DAB2∗DAB ∗
pA2∗pB2−3.∗DAB∗DABB∗pA3∗pB2−3.∗DAAB∗DAB∗pA2∗pB3−1.500000000∗
DAB2∗DAB∗pA3∗pB2−1.500000000∗DAB2∗DAB∗pA2∗pB3−.5∗DAB2∗DB∗pA4∗
pB+1.5∗DAB∗DABB∗pA4∗pB2+2.∗DAB∗DABB∗pA3∗pB3−.5∗DA∗DAB2∗pA∗
pB4+2.∗DA∗DB∗pA3∗pB3+2.∗DAAB∗DAB∗pA3∗pB3+1.5∗DAAB∗DAB∗pA2∗
pB4+.5∗DAB2∗DB∗pA4∗pB2+.5∗DA∗DAB2∗pA2∗pB4+.5∗DA∗DB∗pA4∗pB4+

.5∗DA∗DB∗pA2∗pB2−.5∗DAAB∗DAB∗pA∗pB2+.25∗DAB2∗DAB∗pA∗pB−.5∗
DAB∗DABB∗pA2∗pB+.5∗DAB3∗pA3∗pB+.5∗DAABB∗pA4∗pB2−.375∗DAB2∗
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pA4∗pB+4.∗DAB∗pA5∗pB3−.25∗DAB2∗DB∗pA3+.5∗DA2
B∗pA4∗pB2−.25∗DA∗

DAB2∗pB3+ .125∗DAB2∗DB ∗pA4− .375∗DAB2∗pA∗pB4+2.875∗DAB2∗pA4∗
pB2+4.∗DAB∗pA3∗pB5+2.875∗DAB2∗pA2∗pB4+.5∗DA2

B∗pA2∗pB4+.125∗DA∗
DAB2∗pB4+ .5∗DAABB∗pA2∗pB4+ .5∗DAB3∗pA∗pB3− .75∗DAB3∗pA2∗pB−
.75∗DAB3∗pA∗pB2+.75∗DAB2∗pA3∗pB+.75∗DAB2∗pA∗pB3−1.5∗DAB3∗pA3∗
pB2−1.5∗DAB3∗pA2∗pB3+10.∗DAB2∗pA3∗pB3−10.∗DAB∗pA4∗pB3−10.∗DAB∗
pA3∗pB4+2.∗DA2

B∗pA3∗pB3+2.∗DAABB∗pA3∗pB3+2.250000000∗DAB3∗pA2∗
pB2−5.750000000∗DAB2∗pA3∗pB2−5.750000000∗DAB2∗pA2∗pB3+2.500000000∗
DAB∗pA4∗pB2+2.500000000∗DAB∗pA2∗pB4+2.500000000∗DAB2∗pA4∗pB4−5.∗
DAB∗pA5∗pB4−5.∗DAB∗pA4∗pB5+.5∗DA2

B∗pA4∗pB4+.5∗DAABB∗pA4∗pB4−
5.∗DAB2∗pA4∗pB3−5.∗DAB2∗pA3∗pB4+12.5∗DAB∗pA4∗pB4+2.∗DAB∗pA5∗
pB5−2.∗DAB∗pA3∗pB2− .375∗DAB2∗pA2∗pB+ .5∗DAB∗pA2∗pB2+8.∗DAB∗
pA3∗pB3+3.25∗DAB2∗pA2∗pB2+.5∗DA2

B∗pA2∗pB2+.125∗DA∗DAB2∗pB2+.5∗
DAABB∗pA2∗pB2+.25∗DAB3∗pA∗pB+.125∗DAB2∗DB∗pA2−2.∗DAB∗pA2∗
pB3−.375∗DAB2∗pA∗pB2−.5∗pA6∗pB3+1.5∗pA6∗pB4+.5∗pA6∗pB6−1.5∗pA6∗
pB5−1.5∗pA5∗pB6+4.5∗pA5∗pB5−4.5∗pA5∗pB4−4.5∗pA4∗pB5+1.500000000∗pA5∗
pB3+1.500000000∗pA3∗pB5+1.500000000∗pA4∗pB6−.5∗pA3∗pB6−1.5∗pA3∗pB4−
1.5∗pA4∗pB3+.5∗pA3∗pB3+4.5∗pA4∗pB4/((−1.+pA)3∗(−1.+pB)3∗pA3∗pB3∗n)
varden := simplify(denom(var1));

simplify(varden/((pA ∗ (1− pA))3 ∗ (pB ∗ (1− pB))3 ∗ n));
1.

varnum:=numer(var1):

simplify(varnum):

collectDAABB := collect(varnum,DAABB) :

DAABBc1 := simplify(coeff(collectDAABB,DAABB, 1));

simplify(2 ∗DAABBc1/((pA ∗ (1− pA))2 ∗ (pB ∗ (1− pB))2));

1.

DAABBc0 := simplify(coeff(collectDAABB,DAABB, 0));

collectDABfromcollectDAABB := collect(DAABBc0, DAB);

DABc3 := simplify(coeff(collectDABfromcollectDAABB,DAB, 3));

simplify(4 ∗DABc3/(pA ∗ (1− pA) ∗ pB ∗ (1− pB) ∗ (1− 2 ∗ pA) ∗ (1− 2 ∗ pB)));

1.000000000



70

DABc2 := simplify(coeff(collectDABfromcollectDAABB,DAB, 2));

DABc2DAB := simplify(coeff(DABc2, DAB, 1));

simplify(4∗DABc2DAB/(pA∗ (1−pA)∗pB ∗ (1−pB)∗ (1−2∗pA)∗ (1−2∗pB)));

1.000000000

DABc2DA := coeff(DABc2, DA, 1);

simplify(8 ∗DABc2DA/(((1− 2 ∗ pA) ∗ (1− 2 ∗ pA)) ∗ (pB ∗ (1− pB))2));

1.000000000

DABc2DB := coeff(DABc2, DB, 1);

simplify(8 ∗DABc2DB/(((1− 2 ∗ pB) ∗ (1− 2 ∗ pB)) ∗ (1− pA)2 ∗ pA2));

1.

DABc2DAB := simplify(coeff(DABc2, DAB, 1));

simplify(4∗DABc2DAB/(pA∗ (1−pA)∗pB ∗ (1−pB)∗ (1−2∗pA)∗ (1−2∗pB)));

1.000000000

DABc2OtherStuff :=

−DA ∗DABc2DA−DABc2DB ∗DB −DAB ∗DABc2DAB +DABc2;

simplify(8 ∗DABc2OtherStuff/(pA ∗ (1− pA) ∗ pB ∗ (1− pB) ∗ (−3 ∗ pB ∗ (1−
pB)− pA ∗ (1− pA) ∗ (3− 20 ∗ pB ∗ (1− pB)))));

1.000000000

simplify(−DA ∗DABc2DA−DABc2DB ∗DB −DAB ∗DABc2DAB +DABc2−
DABc2OtherStuff);

0

DABc1 := simplify(coeff(collectDABfromcollectDAABB,DAB, 1));

DABc1DAAB := simplify(coeff(DABc1, DAAB, 1));

simplify((−2∗DABc1DAAB)∗ (1/((1−2∗pA)∗pA∗ (1−pA)∗ (pB ∗ (1−pB))2)));

1.000000000

DABc1DABB := simplify(coeff(DABc1, DABB, 1));

simplify((−2∗DABc1DABB)∗ (1/((1−2∗pB)∗ (pA∗ (1−pA))2 ∗pB ∗ (1−pB))));

1.000000000

DABc1otherStuff := −DAAB∗DABc1DAAB−DABB∗DABc1DABB+DABc1;

simplify(DABc1otherStuff);

simplify(2 ∗DABc1otherStuff/((pA ∗ (1− pA)2 ∗ pB ∗ (1− pB)2 ∗ (1− 2 ∗ pA) ∗
(1− 2 ∗ pB) ∗ pA) ∗ pB));
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1.000000000

collectDABfromcollectDAABB := collect(DAABBc0, DAB);

DABc2 := simplify(coeff(collectDABfromcollectDAABB,DAB, 2));

simplify(2 ∗DABc2/((pA ∗ (1− pA))2 ∗ (pB ∗ (1− pB))2));

1.000000000

DABc1DAB2 := simplify(coeff(collectDABfromcollectDAABB,DAB, 1));

simplify(4 ∗DABc1DAB2/(pA ∗ (1− pA) ∗ pB ∗ (1− pB) ∗ (1− 2 ∗ pA) ∗ (1− 2 ∗
pB) ∗DAB2));

1.000000000

otherStuff := simplify(−DA ∗DAB2 ∗DABc2DA−DAB3 ∗DABc3−DAB2 ∗
DABc2DB ∗DB −DAAB ∗DAB ∗DABc1DAAB −DAB2 ∗
DABc2OtherStuff −DAB ∗DABB ∗DABc1DABB −DA2

B ∗DABc2−DAB ∗
DABc1otherStuff −DAB ∗DABc1DAB2 +DAABBc0);

DADBc1 :=

simplify(coeff(coeff(otherStuff,DA, 1), DB, 1)); simplify(DADBc1/(.5 ∗
piA2 ∗ piB2));

1.000000000

one :=

simplify(−DA ∗DADBc1 ∗DB + otherStuff); simplify(one/(.5 ∗ piA3 ∗ piB3));

1.000000000

check1 := simplify(−DA ∗DAB2 ∗DABc2DA−DAB3 ∗DABc3−DAB2 ∗
DABc2DB ∗DB −DA ∗DADBc1 ∗DB −DAAB ∗DAB ∗DABc1DAAB −
DAB2 ∗DABc2OtherStuff −DAB ∗DABB ∗DABc1DABB −DA2

B ∗DABc2−
DAB ∗DABc1otherStuff −DAB ∗DABc1DAB2 +DAABBc0− one);

0.

check2 := simplify(−DA ∗DAB2 ∗DABc2DA−DAB3 ∗DABc3−DAB2 ∗
DABc2DB ∗DB −DAB2 ∗DAB ∗DABc2DAB −DA ∗DADBc1 ∗DB −DAAB ∗
DAB ∗DABc1DAAB −DAB2 ∗DABc2OtherStuff −DAB ∗DABB ∗
DABc1DABB −DA2

B ∗DABc2−DAB ∗DABc1otherStuff +DAABBc0− one);

0.

finalcheck :=

simplify(varnum− (1/2) ∗ piA2 ∗ piB2 ∗DAABB−DABc2 ∗DA2
B −DABc2DAB ∗
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DAB ∗DAB2 −DABc1DABB ∗DABB ∗DAB−DABc1DAAB ∗DAAB ∗DAB−
DABc1otherStuff ∗DAB−DABc2DA∗DA∗DAB2−DABc2DB ∗DB ∗DAB2−
DABc2OtherStuff ∗DAB2 −DABc3 ∗DAB3 −DADBc1 ∗DA ∗DB − one);

0.

Genotypic Data; Composite Measure

pAh := (x1 + x4 + x7 + .5 ∗ (x2 + x5 + x8))/n :

pBh := (x1 + x2 + x3 + .5 ∗ (x4 + x5 + x6))/n :

pah := 1− pAh : pbh := 1− pBh :

delh := (2 ∗ x1 + x4 + x2 + (x5/2))/n− (2 ∗ pAh ∗ pBh) :

Paah := (x3 + x6 + x9)/n : PBBh := (x1 + x2 + x3)/n :

yh := (x1 + x2 + x3 + x7 + x8 + x9)/n− ((x7 + x8 + x9)/n− (x1 + x2 + x3)/n)2

vxh := (x1 + x4 + x7 + x3 + x6 + x9)/n− ((x3 + x6 + x9)/n− (x1 + x4 + x7)/n)2

den := sqrt(vxh ∗ vyh)
roh:= (2*delh)/den:

g11:=diff(roh,x1): sg11:= simplify(g11):

g12:=diff(roh,x2): sg12:=simplify(g12):

g13:=diff(roh,x3): sg13:=simplify(g13):

g14:=diff(roh,x4): sg14:=simplify(g14):

g15:=diff(roh,x5): sg15:=simplify(g15):

g16:=diff(roh,x6): sg16:=simplify(g16):

g17:=diff(roh,x7): sg17:=simplify(g17):

g18:=diff(roh,x8): sg18:=simplify(g18):

g19:=diff(roh,x9): sg19:=simplify(g19):

tauA:=1-2*pA: tauB:=1-2*pB:

piA := pA*(1-pA): piB:=pB*(1-pB):

pa:=1-pA: pb:=1-pB:

x1 := n ∗ (pA2 ∗ pB2 + 2 ∗ pA ∗DABB + pB ∗ 2 ∗DAAB + pA ∗ pB ∗ 2 ∗ del+ del2 +

pA2 ∗DB + pB2 ∗DA+DA ∗DB + delAABB) :

x2 := n ∗ (2 ∗ piA ∗ pB2 + 2 ∗ tauA ∗DABB − pB ∗ 4 ∗DAAB + tauA ∗ pB ∗ 2 ∗
del − 2 ∗ del2 + 2 ∗ piA ∗DB − 2 ∗ pB2 ∗DA− 2 ∗DA ∗DB − 2 ∗ delAABB) :

x3 := n ∗ (pa2 ∗ pB2 − 2 ∗ pa ∗DABB + pB ∗ 2 ∗DAAB − pa ∗ pB ∗ 2 ∗ del + del2 +
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pa2 ∗DB + pB2 ∗DA+DA ∗DB + delAABB) :

x4 := n ∗ (2 ∗ piB ∗ pA2 − 4 ∗ pA ∗DABB + tauB ∗ 2 ∗DAAB + pA ∗ tauB ∗ 2 ∗
del − 2 ∗ del2 − 2 ∗ pA2 ∗DB + 2 ∗ piB ∗DA− 2 ∗DA ∗DB − 2 ∗ delAABB) :

x5 := n ∗ (4 ∗ piA ∗ piB − 4 ∗ tauA ∗DABB − tauB ∗ 4 ∗DAAB + tauA ∗ tauB ∗ 2 ∗
del + 4 ∗ del2 − 4 ∗ piA ∗DB − 4 ∗ piB ∗DA+ 4 ∗DA ∗DB + 4 ∗ delAABB) :

x6 := n ∗ (2 ∗ pa2 ∗ piB + 4 ∗ pa ∗DABB + 2 ∗ tauB ∗DAAB − pa ∗ tauB ∗ 2 ∗ del−
2 ∗ del2 − 2 ∗ pa2 ∗DB + 2 ∗ piB ∗DA− 2 ∗DA ∗DB − 2 ∗ delAABB) :

x7 := n ∗ (pA2 ∗ pb2 + 2 ∗ pA ∗DABB − pb ∗ 2 ∗DAAB − pA ∗ pb ∗ 2 ∗ del + del2 +

pA2 ∗DB + pb2 ∗DA+DA ∗DB + delAABB) :

x8 := n ∗ (2 ∗ piA ∗ pb2 + 2 ∗ tauA ∗DABB + 4 ∗ pb ∗DAAB − pb ∗ tauA ∗ 2 ∗ del −
2 ∗ del2 + 2 ∗ piA ∗DB − 2 ∗ pb2 ∗DA− 2 ∗DA ∗DB − 2 ∗ delAABB) :

x9 := n ∗ (pa2 ∗ pb2 − 2 ∗ pa ∗DABB − pb ∗ 2 ∗DAAB + pa ∗ pb ∗ 2 ∗ del + del2 +

pa2 ∗DB + pb2 ∗DA+DA ∗DB + delAABB) :

simplify(x1+x2+x3+x4+x5+x6+x7+x8+x9):

sg11m:=simplify(sg11):

sg12m:=simplify(sg12):

sg13m:=simplify(sg13):

sg14m:=simplify(sg14):

sg15m:=simplify(sg15):

sg16m:=simplify(sg16):

sg17m:=simplify(sg17):

sg18m:=simplify(sg18):

sg19m:=simplify(sg19):

gvec:=¡sg11m,sg12m,sg13m,sg14m,sg15m,sg16m,sg17m,sg18m,sg19m¿:

ps:=¡p1,p2,p3,p4,p5,p6,p7,p8,p9¿;:

with(LinearAlgebra):

vmat:=n*(Matrix(1..9,1..9,ps,shape=diagonal)-

OuterProductMatrix(ps,ps,compact=false)):

p1:=x1/n: p2:=x2/n: p3:=x3/n:

p4:=x4/n: p5:=x5/n: p6:=x6/n:

p7:=x7/n: p8:=x8/n: p9:=x9/n:

var1 := simplify(Transpose(gvec).vmat.gvec);
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var1 := −4.∗DAAB∗pA2∗pB3−9.∗DB∗pA4∗pB2−3.∗DB∗pA6∗pB2−2.∗DAAB∗
DB2∗pA3+.5∗del∗pA2∗pB2+8.∗del∗pA3∗pB3+3.∗DA∗pA4∗pB3−.375∗DA2∗del2∗
pB−2.∗del∗pA2∗pB3−3.∗DB2∗pA3∗pB2+.375∗DA∗del2∗pB2+.375∗DA2∗DB∗
del2− .375∗del2∗pA2∗pB+2.25∗del2∗pA2∗pB2+3.∗DA∗pA2∗pB3+3.∗DB∗pA3∗
pB2+.25∗del3∗pA∗pB+4.∗del∗pA5∗pB3−9.∗DA∗pA4∗pB4−2.∗del∗pA3∗pB2−3.∗
DA2∗pA2∗pB3−4.∗DAAB∗pA4∗pB3−9.∗DA∗pA2∗pB4−4.∗DABB∗pA3∗pB2+

.3750∗DB∗del2∗pA2−.375∗del2∗pA∗pB2−3.∗DA3∗DB2∗pB2+9.∗DA2∗pA2∗pB4−
2.∗DABB∗pA5∗pB2+1.875∗del2∗pA4∗pB2+.375∗DB∗del2∗pA4+.5∗del3∗pA3∗pB−
.375∗del2∗pA4∗pB+3.∗DA3∗DB∗pB2−4.∗DA2∗DAAB∗pB3+1.875∗DA2∗del2∗
pB2−3.∗DA2∗DB3∗pA2−2.∗DA2∗DABB∗pB3+18.∗DA∗pA3∗pB4+9.∗DB∗pA5∗
pB2−6.∗DA∗pA3∗pB3−9.∗DA2∗pA2∗pB5+2.500000000∗DB2∗del∗pA4−6.∗DB∗
pA3∗pB3+.5∗del3∗pA∗pB3−.375∗del2∗pA∗pB4+3.∗DA∗DB3∗pA2−.75∗DA∗del3∗
pB2−4.∗DABB∗DB2∗pA3+1.875∗DB2∗del2∗pA2−.75∗DB∗del3∗pA2+.5∗DA2∗
DB2∗del+.375∗DA∗DB2∗del2+.25∗DA∗DB∗del3−.375∗DB2∗del2∗pA−3.∗DA∗
pA2∗pB6−9.∗DB2∗pA5∗pB2−9.∗DB∗pA4∗pB4+4.∗del∗pA3∗pB5+9.∗DA∗pA2∗
pB5−2.∗DAAB∗pA2∗pB5−4.∗DABB∗pA3∗pB4+9.∗DB2∗pA4∗pB2+18.∗DB∗
pA4∗pB3+3.∗DB∗pA3∗pB4+1.875000000∗del2∗pA2∗pB4+2.500000000∗DA2∗del∗
pB4+.375∗DA∗del2∗pB4−3.∗DA∗pA4∗pB6−3.∗DB∗pA6∗pB4+2.∗del∗pA5∗pB5+

3.∗DA2∗pA2∗pB6+9.∗DA∗pA4∗pB5+6.∗DA∗pA3∗pB6−2.∗DAAB∗pA4∗pB5−
2.∗DABB∗pA5∗pB4+3.∗DB2∗pA6∗pB2+6.∗DB∗pA6∗pB3+9.∗DB∗pA5∗pB4+

1.500000000∗del2∗pA4∗pB4−5.∗del∗pA5∗pB4−5.∗del∗pA4∗pB5−3.∗DA2∗pA∗pB6−
18.∗DA∗pA3∗pB5+5.∗DAAB∗pA4∗pB4+4.∗DAAB∗pA3∗pB5+4.∗DABB∗pA5∗
pB3+5.∗DABB∗pA4∗pB4−3.∗DB2∗pA6∗pB−18.∗DB∗pA5∗pB3−3.∗del2∗pA4∗
pB3−3.∗del2∗pA3∗pB4+12.50000000∗del∗pA4∗pB4+3.∗DA3∗DB∗pB4−2.∗DA2∗
DAAB∗pB5+1.500000000∗DA2∗del2∗pB4+9.∗DA2∗pA∗pB5+3.∗DA∗DB3∗pA4−
10.∗DAAB∗pA3∗pB4−2.∗DABB∗DB2∗pA5−10.∗DABB∗pA4∗pB3+1.500000000∗
DB2∗del2∗pA4+9.∗DB2∗pA5∗pB+.5∗del4∗pA2∗pB2−1.5∗del3∗pA3∗pB2−1.5∗del3∗
pA2∗pB3+6.∗del2∗pA3∗pB3−10.∗del∗pA4∗pB3−10.∗del∗pA3∗pB4−2.∗delAABB∗
pA4∗pB3+5.∗DABB∗DB2∗pA4−2.∗delAABB∗pA3∗pB4−2.∗DABB∗pA2∗pB3−
6.∗DA3∗DB∗pB3+.5∗DA∗DB∗del4+5.∗DABB∗pA4∗pB2+8.∗DABB∗pA3∗pB3+

.5∗DB∗del3∗pA3−3.∗DB2∗del2∗pA3+3.∗DA2∗DB3∗pA−.5∗del4∗pA2∗pB+.5∗DA∗
del4∗pB−3.75∗del2∗pA3∗pB2+5.∗DA2∗DAAB∗pB4−.5∗DB∗del4∗pA2−2.∗DB2∗
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delAABB∗pA3−2.∗DA2∗del∗pB3−3.∗DA2∗del2∗pB3−.5∗del4∗pA∗pB2−9.∗DA2∗
pA∗pB4+2.5∗del∗pA4∗pB2−6.∗DA∗DB3∗pA3+2.25∗del3∗pA2∗pB2+1.500000000∗
DA2∗DB2∗del2−2.∗DAAB∗pA3∗pB2−.5∗DA∗del4∗pB2+8.∗DAAB∗pA3∗pB3−
.75∗DA∗del2∗pB3+4.∗delAABB∗pA3∗pB3−9.∗DB2∗pA4∗pB+3.∗DB2∗pA3∗pB+

3.∗DA3∗DB2∗pB−2.∗DB2∗del∗pA3−3.75∗del2∗pA2∗pB3+.5∗DA∗del3∗pB3+5.∗
DAAB∗pA2∗pB4+2.5∗del∗pA2∗pB4−2.∗DA2∗delAABB∗pB3+3.∗DA2∗pA∗pB3+

.5∗DB∗del4∗pA− .75∗DB∗del2∗pA3+ .5∗del4∗pA∗pB− .75∗del3∗pA2∗pB− .75∗
del3∗pA∗pB2+.75∗del2∗pA3∗pB+.75∗del2∗pA∗pB3−2.∗delAABB∗pA3∗pB2−2.∗
delAABB∗pA2∗pB3+.5∗DA2∗del∗pB2+.25∗DA∗del3∗pB+.5∗DB2∗del∗pA2+.25∗
DB∗del3∗pA+pA3∗pB3+pA6∗pB6−DA3∗pB6−DB3∗pA6+DA3∗DB3−pA3∗pB6+

DB3∗pA3−pA6∗pB3+DA3∗pB3+9.∗pA4∗pB4−3.∗pA3∗pB4−3.∗pA4∗pB3−3.∗pA6∗
pB5−3.∗pA5∗pB6+9.∗pA5∗pB5−9.∗pA5∗pB4−9.∗pA4∗pB5+3.∗DA3∗pB5+3.∗
DB3∗pA5+3.∗pA5∗pB3+3.∗pA3∗pB5+3.∗pA4∗pB6−3.∗DB3∗pA4+3.∗pA6∗pB4−
3.∗DA3∗pB4+6.∗DA∗DAAB∗DB2∗del∗pA+2.∗DA∗DB∗del∗pA∗pB+4.∗DA∗
DB∗delAABB∗pA2∗pB2−8.∗DA∗DAAB∗DB∗pA2∗pB3−8.∗DA∗DABB∗DB∗
pA3∗pB2+8.∗DA∗DB∗del∗pA3∗pB3−4.∗DA2∗DB∗del∗pA∗pB3+6.∗DA∗DAAB∗
del∗pA∗pB4+12.∗DA∗DABB∗del∗pA2∗pB3−4.∗DA∗DB2∗del∗pA3∗pB−6.∗DA∗
DB∗del2∗pA2∗pB2−12.∗DA∗DB∗del∗pA3∗pB2−12.∗DA∗DB∗del∗pA2∗pB3+12.∗
DAAB∗DB∗del∗pA3∗pB2+6.∗DABB∗DB∗del∗pA4∗pB+4.∗DA2∗DABB∗DB∗
pA∗pB2+2.∗DA2∗DB2∗del∗pA∗pB+6.∗DA2∗DB∗del∗pA∗pB2+4.∗DA∗DAAB∗
DB2∗pA2∗pB+12.∗DA∗DAAB∗DB∗pA2∗pB2+8.∗DA∗DAAB∗DB∗pA∗pB3−
12.∗DA∗DAAB∗del∗pA∗pB3+8.∗DA∗DABB∗DB∗pA3∗pB+12.∗DA∗DABB∗
DB∗pA2∗pB2−18.∗DA∗DABB∗del∗pA2∗pB2−12.∗DA∗DABB∗del∗pA∗pB3+6.∗
DA∗DB2∗del∗pA2∗pB+6.∗DA∗DB∗del2∗pA2∗pB+6.∗DA∗DB∗del2∗pA∗pB2+

18.∗DA∗DB∗del∗pA2∗pB2−12.∗DAAB ∗DB ∗del∗pA3∗pB−18.∗DAAB ∗DB∗
del∗pA2∗pB2−12.∗DABB∗DB∗del∗pA3∗pB−4.∗DA2∗DABB∗DB∗pA∗pB−4.∗
DA∗DAAB∗DB2∗pA∗pB+6.∗DA∗DAAB∗DB∗del∗pB2−12.∗DA∗DAAB∗DB∗
pA∗pB2+6.∗DA∗DABB∗DB∗del∗pA2−12.∗DA∗DABB∗DB∗pA2∗pB−6.∗DA∗
DB∗del2∗pA∗pB−6.∗DA∗DB∗del∗pA2∗pB−6.∗DA∗DB∗del∗pA∗pB2−4.∗DA∗
DB∗delAABB∗pA2∗pB−4.∗DA∗DB∗delAABB∗pA∗pB2+4.∗DA∗DAAB∗DB∗
pA∗pB+4.∗DA∗DABB∗DB∗pA∗pB−6.∗DA∗DABB∗del∗pA∗pB+4.∗DA∗DB∗
delAABB∗pA∗pB−6.∗DAAB∗DB∗del∗pA∗pB+4.∗DA∗DB∗del∗pA∗pB3−4.∗
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DA∗DABB∗DB∗pA∗pB2+18.∗DA∗DABB∗del∗pA∗pB2−2.∗DA∗DB2∗del∗pA∗
pB+18.∗DAAB∗DB∗del∗pA2∗pB+6.∗DAAB∗DB∗del∗pA∗pB2+6.∗DABB∗
DB∗del∗pA2∗pB−6.∗DA∗DAAB∗DB∗del∗pB−6.∗DA∗DABB∗DB∗del∗pA+6.∗
DA2∗DABB∗DB∗del∗pB+4.∗DA∗DB∗del∗pA3∗pB−2.∗DA2∗DB∗del∗pA∗pB−
4.∗DA∗DAAB∗DB∗pA2∗pB+6.∗DA∗DAAB∗del∗pA∗pB2+6.∗DA∗DABB∗del∗
pA2∗pB−DB2∗del∗pA2∗pB+DA∗DB2∗del∗pA+DA2∗DABB∗pB2−DAAB∗del2∗
pA2∗pB3−DABB∗del2∗pA3∗pB2−DB∗del3∗pA3∗pB+DA2∗DB∗del∗pB−DA∗
del3∗pA∗pB3+DABB∗DB∗del2∗pA3+DABB∗del2∗pA3∗pB−DA2∗DB2∗del∗pA−
DA2∗DB2∗del∗pB−DA2∗del∗pA∗pB2+DA∗DAAB∗del2∗pB3+DAAB∗del2∗pA∗
pB3+DAAB∗DB2∗pA2+delAABB∗pA2∗pB2+DABB∗pA2∗pB2+DAAB∗pA2∗
pB2+DAAB∗DB2∗pA4+DA2∗DAAB∗DB2+DA2∗DAAB∗pB2+DA2∗delAABB∗
pB2−del∗pA5∗pB2+DAAB∗pA4∗pB2+delAABB∗pA4∗pB2+DA2∗DABB∗DB2+

DA2∗DABB∗pB4+DABB∗pA2∗pB4+delAABB∗pA2∗pB4+DABB∗DB2∗pA2+

DB2∗delAABB∗pA2−del∗pA2∗pB5+DB∗del∗pA2∗pB+DA∗del∗pA∗pB2+del3∗
pA3∗pB3+delAABB∗pA4∗pB4−DA2∗del∗pB5−DB2∗del∗pA5+DA2∗delAABB∗
pB4+DB2∗delAABB ∗pA4+DA2∗DB2∗delAABB−2.∗DA∗DAAB ∗pA2∗pB2−
3.∗DA∗DAAB∗del∗pB2+2.∗DA∗DAAB∗pA∗pB2+2.∗DA∗DB2∗delAABB∗pA+

.5∗DA∗DB∗del2∗delAABB+.75∗DA∗DB∗del2∗pA+.75∗DA∗DB∗del2∗pB+.5∗
DA∗del2∗delAABB∗pB−.75∗DA∗del2∗pA∗pB+2.∗DA∗delAABB∗pA∗pB2−3.∗
DABB∗DB∗del∗pA2+2.∗DABB∗DB∗pA2∗pB+.5∗DB∗del2∗delAABB∗pA−.75∗
DB∗del2∗pA∗pB+2.∗DB∗delAABB∗pA2∗pB+.5∗del2∗delAABB∗pA∗pB−.5∗
DB∗del3∗pA∗pB+.75∗DB∗del2∗pA∗pB2−2.∗DB∗delAABB∗pA2∗pB2+2.∗DA∗
DABB∗DB2∗pA+ .5∗DABB∗DB∗del2∗pA+ .5∗DABB∗del2∗pA∗pB−2.∗DA∗
del∗pA∗pB5−8.∗DB∗del∗pA3∗pB3−9.∗DA2∗DB2∗pA∗pB2+2.∗DA∗DABB∗pA∗
pB4−9.∗DA∗DB2∗pA2∗pB2−18.∗DA∗DB∗pA2∗pB3+4.∗DAAB∗DB∗pA2∗pB3−
3.∗DAAB∗del∗pA∗pB4+8.∗DABB∗DB∗pA3∗pB2−6.∗DABB∗del∗pA2∗pB3+4.∗
DB2∗del∗pA3∗pB−.75∗DB∗del2∗pA2∗pB2+2.∗DB∗del∗pA2∗pB3−3.∗DA2∗DB∗
del∗pB2+6.∗DA∗DAAB∗del∗pB3−3.∗DA∗DB2∗del∗pA2+9.∗DA∗DB2∗pA2∗pB−
.75∗DA∗DB∗del2∗pB2−2.∗DAAB∗DB2∗pA2∗pB+6.∗DABB∗DB∗del∗pA3−2.∗
DABB∗DB∗pA2∗pB2−.5∗DABB∗del2∗pA∗pB2−4.∗DB∗del∗pA5∗pB3−9.∗DA2∗
DB∗pA2∗pB4+2.∗DA2∗del∗pA∗pB5+4.∗DA∗DAAB∗pA2∗pB5+4.∗DA∗DABB∗
pA3∗pB4−9.∗DA∗DB2∗pA4∗pB2−18.∗DA∗DB∗pA4∗pB3−18.∗DA∗DB∗pA3∗
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pB4+10.∗DA∗del∗pA3∗pB4+6.∗DA∗del∗pA2∗pB5+4.∗DAAB∗DB∗pA4∗pB3−
6.∗DAAB∗del∗pA3∗pB4+4.∗DABB∗DB∗pA5∗pB2−6.∗DABB∗del∗pA4∗pB3+

2.∗DB2∗del∗pA5∗pB−8.∗DAAB∗DB∗pA3∗pB3+12.∗DAAB∗del∗pA3∗pB3+9.∗
DAAB∗del∗pA2∗pB4−4.∗DABB∗DB∗pA5∗pB−10.∗DABB∗DB∗pA4∗pB2+9.∗
DABB∗del∗pA4∗pB2+12.∗DABB∗del∗pA3∗pB3−5.∗DB2∗del∗pA4∗pB−15.∗DB∗
del∗pA4∗pB2−2.∗DB∗delAABB∗pA4∗pB2+4.∗DA2∗DAAB∗DB∗pB3+4.∗DA2∗
DABB∗pA∗pB3−4.∗DA∗DABB∗pA∗pB3−2.∗DA∗DB2∗delAABB∗pA2−.5∗DA∗
DB∗del3∗pA−.5∗DA∗DB∗del3∗pB−.5∗DA∗del2∗delAABB∗pB2+.75∗DA∗del2∗
pA∗pB2−3.∗DA∗del∗pA2∗pB2−4.∗DA∗delAABB∗pA∗pB3−4.∗DAAB∗DB∗pA3∗
pB−6.∗DAAB∗DB∗pA2∗pB2−1.500000000∗DAAB∗del2∗pA∗pB2+9.∗DAAB∗
del∗pA2∗pB2+6.∗DAAB∗del∗pA∗pB3−1.500000000∗DABB∗DB∗del2∗pA2−8.∗
DABB∗DB∗pA3∗pB−1.500000000∗DABB∗del2∗pA2∗pB+6.∗DABB∗del∗pA3∗
pB+9.∗DABB∗del∗pA2∗pB2−.5∗DB∗del2∗delAABB∗pA2+.75∗DB∗del2∗pA2∗
pB−3.∗DB∗del∗pA2∗pB2−4.∗DB∗delAABB∗pA3∗pB−.5∗del2∗delAABB∗pA2∗
pB−.5∗del2∗delAABB∗pA∗pB2+2.∗DA2∗DB∗delAABB∗pB+6.∗DB∗del∗pA5∗
pB2+10.∗DB∗del∗pA4∗pB3−2.∗DA2∗DABB∗pA∗pB4+9.∗DA2∗DB2∗pA2∗pB2+

9.∗DA2∗DB∗pA∗pB4−5.∗DA2∗del∗pA∗pB4−10.∗DA∗DAAB∗pA2∗pB4−4.∗DA∗
DAAB∗pA∗pB5−8.∗DA∗DABB∗pA3∗pB3−6.∗DA∗DABB∗pA2∗pB4+9.∗DA∗
DB2∗pA4∗pB+36.∗DA∗DB∗pA3∗pB3−15.∗DA∗del∗pA2∗pB4−2.∗DA∗delAABB∗
pA2∗pB4−2.∗DAAB∗DB2∗pA4∗pB−6.∗DAAB∗DB∗pA4∗pB2+.5∗DA∗DABB∗
del2∗pB−18.∗DA∗DB∗pA3∗pB2+9.∗DA2∗DB∗pA∗pB2+18.∗DA∗DB2∗pA3∗pB2+

9.∗DA∗DB∗pA2∗pB4−3.∗DABB∗DB∗del∗pA4+10.∗DABB∗DB∗pA4∗pB+1.5∗
DABB∗del2∗pA2∗pB2−18.∗DABB∗del∗pA3∗pB2+1.5∗DB∗del3∗pA2∗pB+5.∗
DB∗del∗pA4∗pB+12.∗DB∗del∗pA3∗pB2+2.∗DB∗delAABB∗pA4∗pB+4.∗DB∗
delAABB∗pA3∗pB2+.5∗del2∗delAABB∗pA2∗pB2−2.∗DA2∗DAAB∗DB2∗pB−
6.∗DA2∗DAAB∗DB∗pB2−2.∗DA2∗DABB∗DB2∗pA+9.∗DA2∗DB2∗pA∗pB−2.∗
DA2∗DB∗delAABB∗pB2−1.5∗DA∗DAAB∗del2∗pB2−8.∗DA∗DAAB∗pA∗pB3−
6.∗DA∗DABB∗DB2∗pA2−6.∗DA∗DABB∗pA2∗pB2+18.∗DA2∗DB∗pA2∗pB3−
6.∗DA2∗DABB∗del∗pB3−9.∗DA2∗DB2∗pA2∗pB−2.∗DA2∗DABB∗DB∗pB2+

9.∗DA2∗DABB∗del∗pB2−.5∗DA∗DABB∗del2∗pB2−3.∗DA2∗DABB∗DB∗del+
2.∗DA2∗DABB∗DB∗pB+.5∗DA∗DABB∗DB∗del2−2.∗DA2∗DABB∗pA∗pB2−
.75∗DA∗DB∗del2∗pA2− .5∗DA∗del3∗pA∗pB+ .75∗DA∗del2∗pA2∗pB−2.∗DA∗
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delAABB∗pA2∗pB2−.5∗DAAB∗del2∗pA2∗pB+2.∗DA2∗DAAB∗DB∗pB+.5∗DA∗
DAAB∗del2∗pB+.5∗DAAB∗del2∗pA∗pB+2.∗DA2∗DB∗del∗pB3−18.∗DA2∗DB∗
pA∗pB3−3.∗DA∗DAAB∗del∗pB4+10.∗DA∗DAAB∗pA∗pB4+4.∗DA∗DABB∗
DB2∗pA3+12.∗DA∗DABB∗pA2∗pB3+2.∗DA∗DB2∗del∗pA3−18.∗DA∗DB2∗pA3∗
pB+1.5∗DA∗del3∗pA∗pB2+12.∗DA∗del∗pA2∗pB3+5.∗DA∗del∗pA∗pB4+4.∗DA∗
delAABB∗pA2∗pB3+2.∗DA∗delAABB∗pA∗pB4+4.∗DAAB∗DB2∗pA3∗pB+12.∗
DAAB∗DB∗pA3∗pB2+1.5∗DAAB∗del2∗pA2∗pB2−18.∗DAAB∗del∗pA2∗pB3+9.∗
DA∗DB∗pA4∗pB4−4.∗DA∗del∗pA3∗pB5+9.∗DA∗DB∗pA4∗pB2−8.∗DA∗del∗pA3∗
pB3−2.∗DB∗del∗pA5∗pB−9.∗DA2∗DB∗pA2∗pB2+4.∗DA2∗del∗pA∗pB3+8.∗DA∗
DAAB∗pA2∗pB3+4.∗DA∗DABB∗pA3∗pB2−.75∗DA∗del2∗pA2∗pB2+2.∗DA∗del∗
pA3∗pB2+2.∗DAAB∗DB∗pA4∗pB−6.∗DAAB∗del∗pA3∗pB2−3.∗DABB∗del∗pA4∗
pB−3.∗DA2∗DABB∗del∗pB−3.∗DAAB∗DB2∗del∗pA+9.∗DAAB∗DB2∗del∗pA2−
.5∗DAAB∗DB∗del2∗pA2−3.∗DA∗DAAB∗DB2∗del+2.∗DA∗DAAB∗DB2∗pA+

.50∗DA∗DAAB∗DB∗del2+.5∗DAAB∗DB∗del2∗pA−6.∗DAAB∗DB2∗del∗pA3−2.∗
DA∗DAAB∗DB2∗pA2−4.∗DA∗del∗pA∗pB3+2.∗DA∗DABB∗pA∗pB2+2.∗DAAB∗
DB∗pA2∗pB−3.∗DAAB∗del∗pA∗pB2−3.∗DABB∗del∗pA2∗pB−4.∗DB∗del∗pA3∗
pB+9.∗DA∗DB∗pA2∗pB2+DA∗DABB∗del2∗pA∗pB2+DA∗DB∗del3∗pA∗pB+

DAAB∗DB∗del2∗pA2∗pB−DA∗DAAB∗DB∗del2∗pB−DA∗DABB∗DB∗del2∗
pA−DA∗DABB∗del2∗pA∗pB−DAAB∗DB∗del2∗pA∗pB−12.∗DA∗DAAB∗DB∗
del∗pA∗pB2−12.∗DA∗DABB∗DB∗del∗pA2∗pB+12.∗DA∗DAAB∗DB∗del∗pA∗
pB+12.∗DA∗DABB∗DB∗del∗pA∗pB/[(−pA2+DA+pA)3∗(−pB2+DB+pB)3∗n]
varden := simplify(denom(var1));

simplify(varden/((piA+DA)3 ∗ (piB +DB)3 ∗ n)); 1 varnum := numer(var1) :

simplify(varnum) : collectDel := collect(varnum, del) :

del4 := simplify(coeff(collectDel, del, 4));

simplify(del4/((1/2) ∗ (piA+DA) ∗ (piB +DB))); 1.

del3 := simplify(coeff(collectDel, del, 3));

simplify(del3/((1/4) ∗ (piA+DA) ∗ (piB +DB) ∗ tauA ∗ tauB)); 1.

del2 := simplify(coeff(collectDel, del, 2));

del2delAABB := coeff(del2, delAABB);

simplify(del2delAABB/((1/2) ∗ (piA+DA) ∗ (piB +DB))); 1.

del2DAAB := simplify(coeff(del2, DAAB));
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simplify(del2DAAB/((1/2) ∗ (piA+DA) ∗ (piB +DB) ∗ tauB)); 1.

del2DABB := simplify(coeff(del2, DABB));

simplify(del2DABB/((1/2) ∗ (piA+DA) ∗ (piB +DB) ∗ tauA)); 1.
del20 := simplify(eval(del2, [DABB = 0, DAAB = 0, delAABB = 0]));

simplify(del20/(3/8 ∗ (−piB ∗ tauB2 ∗DA2 − piA ∗ tauA2 ∗DB2 + (2 ∗ (−8 ∗ piA ∗
piB + piA+ piB)) ∗DA ∗DB + piB ∗ (piB − 2 ∗ piA) ∗DA+ piA ∗ (piA− 2 ∗ piB) ∗
DB − piA ∗ piB ∗ (piA ∗ tauB2 + piB) +DA ∗DB ∗ (4 ∗DA ∗DB +DA+DB))));

1. del1 := simplify(coeff(collectDel, del, 1));

del1DABB := simplify(coeff(del1, DABB));

simplify(del1DABB/(−3 ∗ (piA+DA)2 ∗ (piB +DB) ∗ tauB)); 1.

del1DAAB := coeff(del1, DAAB);

simplify(del1DAAB/(−3 ∗ (piA+DA) ∗ (piB +DB)2 ∗ tauA)); 1.
del10 := simplify(eval(del1, [DABB = 0, DAAB = 0, delAABB = 0]));

simplify(del10/(.5 ∗ (piA+DA)2 ∗ (piB +DB)2 ∗ tauA ∗ tauB)); 1.

del0 := simplify(coeff(collectDel, del, 0));

del0DABB := coeff(del0, DABB);

simplify(del0DABB/((piA+DA)2 ∗ (piB +DB)2 ∗ tauA)); 1.
del0DAAB := coeff(del0, DAAB);

simplify(del0DAAB/((piA+DA)2 ∗ (piB +DB)2 ∗ tauB)); 1.

del0delAABB := coeff(del0, delAABB);

simplify(del0delAABB/((piA+DA)2 ∗ (piB +DB)2)); 1.

del00 := simplify(eval(del0, [DABB = 0, DAAB = 0, delAABB = 0]));

simplify(del00/((piA+DA)3 ∗ (piB +DB)3)); 1.

simplify(var1− (del4 ∗ del4 +DAAB ∗ del2 ∗ del2DAAB +DABB ∗ del2 ∗
del2DABB + del3 ∗ del3 + del2 ∗ delAABB ∗ del2delAABB +DAAB ∗ del ∗
del1DAAB +DABB ∗ del ∗ del1DABB + del2 ∗ del20 +DAAB ∗ del0DAAB +

DABB ∗ del0DABB + del ∗ del10 + delAABB ∗ del0delAABB + del00)/varden); 0.



Appendix B

R Functions for Approximate Variance

Gametic Case

varR = function(PA = A,PB = B,D = 0) piA = PA ∗ (1− PA)

piB = PB ∗ (1− PB)

tauA = 1− 2 ∗ PA

tauB = 1− 2 ∗ PB

den = 4 ∗ piA2 ∗ piB2

a = 2 ∗ tauA ∗ tauB
c = 4 ∗ piA ∗ piB ∗ tauA ∗ tauB
d = 4 ∗ piA2 ∗ piB2

b = −3 ∗ (piA+ piB) + 20 ∗ piA ∗ piB
var = (a ∗D3 + b ∗D2 + c ∗D + d) ∗ (1/den)
return(var)

Genotypic Data, MLE

mleV arR < −function(pA = .1, pB = .2, D = .02) # Define tau and pi

tauA = 1− 2 ∗ pA
tauB = 1− 2 ∗ pB
piA = pA ∗ (1− pA)

piB = pB ∗ (1− pB)

# Define the numerator

num.D5 = 6 ∗ tauA ∗ tauB ∗D5

num.D4 = (96 ∗ piA ∗ piB − 17 ∗ (piA+ piB) + 2) ∗D4

num.D3 = (tauA ∗ tauB ∗ (38 ∗ piA ∗ piB − 3 ∗ (piA+ piB))) ∗D3

num.D2 = (piA ∗ piB ∗ (120 ∗ piA ∗ piB − 23 ∗ (piA+ piB) + 4)) ∗D2

num.D1 = (12 ∗ piA2 ∗ piB2 ∗ tauB ∗ tauA) ∗D
num.D0 = 8 ∗ piA3 ∗ piB3
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# Define the denominator

den.D0 = 8 ∗ piA3 ∗ piB3

den.D1 = 8 ∗ piA2 ∗ piB2 ∗ tauA ∗ tauB ∗D
den.D2 = (24 ∗ piA2 ∗ piB2) ∗D2

# Total variance

num = num.D0 + num.D1 + num.D2 + num.D3 + num.D4 + num.D5

den = den.D0 + den.D1 + den.D2

var = num/den

return(var)

Phase Informed Genotypic Data

phaseKnownV arR < −function(pA = .2, pB = .3, DA = pA/2, DB = pB/2,

DAB = 1, DAB = 0, DABB = 0, DAAB = 0, DAABB = 0)

piA = pA ∗ (1− pA)

piB = pB ∗ (1− pB)

tauA = 1− 2 ∗ pA
tauB = 1− 2 ∗ pB
den = piA3 ∗ piB3

one < −.5 ∗ piA3 ∗ piB3

num.DADB = DA ∗DB ∗ .5 ∗ piA2 ∗ piB2

num.DAB3 = DAB3 ∗ .25 ∗ piA ∗ piB ∗ tauA ∗ tauB
num.DAB2 = DAB2 ∗ (−3 ∗ (piA+ piB) + 20 ∗ piA ∗ piB) ∗ piA ∗ piB ∗ (1/8)
num.DAB = DAB ∗ .5 ∗ piA2 ∗ piB2 ∗ tauA ∗ tauB ∗ pA ∗ pB
num.DAB2DA = DAB2 ∗DA ∗ tauA2 ∗ piB2 ∗ (1/8)
num.DAB2DB = DAB2 ∗DB ∗ tauB2 ∗ piA2 ∗ (1/8)
num.DABDAAB = DAB ∗DAAB ∗ tauA ∗ piA ∗ piB2 ∗ (−.5)

num.DABDABB = DAB ∗DABB ∗ tauB ∗ piB ∗ piA2 ∗ (−.5)

num.DAABB = DAABB ∗ (1/2) ∗ piA2 ∗ piB2

num.DA/B2 = DA2
B ∗ .5 ∗ piA2 ∗ piB2

num.DA/B.DAB2 = DAB ∗DAB2 ∗ .25 ∗ tauA ∗ tauB ∗ piA ∗ piB
numlong = one+ num.DADB + num.DAB3 + num.DAB2 + num.DAB

+num.DAB2DA+ num.DAB2DB + num.DABDAAB + num.DABDABB
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+num.DABDABB + num.DAABB + num.DAB2 + num.DAB

# variance

vr = numlong/den

return(vr)

Composite Measure for Phase Unknown Genotypic Data

comVarR<-function(pA=.2,pB=.3,DA=pA/2,DB=pB/2,del=1,

DAAB=0,DABB=0,delAABB=0) {
piA=pA*(1-pA)

piB=pB*(1-pB)

tauA=1-2*pA

tauB=1-2*pB

den = ((piA+DA)3) ∗ ((piB +DB)3)

one.1 < −((piA+DA)3 ∗ (piB +DB)3)

num.del4.1 = del4 ∗ (1/2) ∗ ((piA+DA) ∗ (piB +DB))

num.del3.1 = del3 ∗ (1/4) ∗ ((piA+DA) ∗ (piB +DB) ∗ tauA ∗ tauB)

num.del2.1 = del2 ∗ (3/8) ∗ ((−1) ∗ piB ∗ tauB2 ∗DA2 + (−1) ∗ piA ∗ tauA2 ∗DB2

+2 ∗ (piA+ piB − 8 ∗ piA ∗ piB) ∗DA ∗DB + piB ∗ (piB − 2 ∗ piA) ∗DA

+piA ∗ (piA− 2 ∗ piB) ∗DB + (−1) ∗ piA ∗ piB ∗ ((piA+ piB)− 4 ∗ piA ∗ piB)

+DA ∗DB ∗ (4 ∗DA ∗DB +DA+DB))

num.del.1 = del ∗ ((piA+DA)2 ∗ (piB +DB)2 ∗ .5 ∗ tauA ∗ tauB)

num.DAAB.1 = DAAB ∗ ((piA+DA)2 ∗ (piB +DB)2 ∗ tauB)

num.DABB.1 = DABB ∗ ((piA+DA)2 ∗ (piB +DB)2 ∗ tauA)
num.delAABB.1 = delAABB ∗ ((piA+DA)2 ∗ (piB +DB)2)

num.delDAAB.1 = del ∗DAAB ∗ (−3) ∗ ((piA+DA) ∗ (piB +DB)2 ∗ tauA)
num.delDABB.1 = del ∗DABB ∗ (−3) ∗ ((piA+DA)2 ∗ (piB +DB) ∗ tauB)

num.del2DAAB.1 = del2 ∗DAAB ∗ (1/2) ∗ ((piA+DA) ∗ (piB +DB) ∗ tauB)

num.del2DABB.1 = del2 ∗DABB ∗ (1/2) ∗ ((piA+DA) ∗ (piB +DB) ∗ tauA)
num.del2delAABB.1 = del2 ∗ delAABB ∗ (1/2) ∗ ((piA+DA) ∗ (piB +DB))

numlong.1 = one.1 + num.del.1 + num.del2.1 + num.del3.1 + num.del4.1

+num.DAAB.1 + num.DABB.1 + num.delAABB.1 + num.del2DAAB.1

+num.del2DABB.1+ num.del2delAABB.1+ num.delDAAB.1+ num.delDABB.1
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# variance

vr = numlong.1/den

return(vr)

}
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