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Abstract

As the number of sequenced genomes increases rapidly, new approaches are needed

for the computational annotation of protein functions and to better understand the

ecological roles of genomes.

In this thesis, a gene clustering approach based on the correlated evolution method

(Pagel) and hierarchical clustering is proposed to find sets of co-occurring genes ac-

cording to their weighted phylogenetic profiles. Hierarchical clusters can be cut at

many different levels of similarity; since our primary interest is the evaluation of

functional associations, we used the semantic similarity of Gene Ontology terms to

optimize the choice of cuts in the hierarchy, and to evaluate our clustering outcomes.

The results can be used to predict the functions of the unannotated genes and to

discover candidate sets of lateral gene transfer events.

We applied this approach to the gene set of the large clostridial genome “Lach-

nospiraceae bacterium 3-1-57FAA-CT1”, and generated informative clusters of genes

with correlated evolutionary histories, which in many cases shared functional sim-

ilarity as well. We compared the results of our method to the recently described

approach, Clustering by Inferred Modules of Evolution (CLIME), and found con-

siderable similarity between the two sets of predictions. However, our hierarchical

clustering approach allows the exploration of degrees of protein similarity, and the

generation of smaller or larger clusters as appropriate. In both cases, we found strong

evidence that clusters of genes having similar phylogenetic histories also tend to be

functionally linked.
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Chapter 1

Introduction

1.1 Background

As the number of sequenced genomes increases rapidly, new approaches are needed for

the computational annotation of protein functions and to better understand ecological

roles of genomes [36, 27]. Gene clustering analysis can be a useful and fast tool for

identifying biologically relevant groups of genes, which is the process of partitioning

a given gene set into groups based on some specified features [44, 39, 35, 13].

The aim of our project is to cluster genes based on their evolutionary histories. We

seek to group the genes with correlated occurrence patterns, which can be represented

by the distribution of genes across a group of genomes, and such genes may also be

involved in related biological processes. The hypothesis behind this approach is that

functionally linked genes evolve in a correlated fashion, and should also present in the

same genomes. A reasonable proposition is to compare phylogenetic profiles, which

encode the presence and absence of genes across a set of genomes, as a basis for

detecting correlated genes [36, 26, 20].

However, in a comparative analysis of phylogenetic profiles, to treat each species

(genomes in our case) as the unit of analysis assumes that the traits under inves-

tigation (genes in our case) should evolve independently in each of the species [24].

However, because of phylogenetic similarity, closely related species are likely to share

many traits as a result of the process of descent with modification, which means that

the gene distributions, which are part of a hierarchically structured phylogeny, cannot

be regarded as being independent [9, 11]. Therefore, if we want to use co-occurrence

information of genes across many genomes to make evolutionary and functional infer-

ences, we must develop approaches that take phylogenetic correlations into account.

Figure 1.1, which represents the distributions of 3 genes across 6 genomes, is

an example to illustrate the effect of the phylogeny. If we want to calculate the

similarity between phylogenetic profiles in the usual way, by considering 6 genomes

1
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as independent units, Gene 2 and Gene 3 will have the same similarity with Gene 1,

since they both co-occur with Gene 1 in exactly three genomes (Gene 2 in Genome

1, 2, 4; Gene 3 in Genome 3, 4, 6). However, if we hierarchically structure these 6

genomes with a tree, which represents the evolutionary relationships among them, the

presences of genes in each genome should not be equally weighted, since closely related

genomes tend to possess the same genes due to common descent. Since Genomes 1

and 2 are closely related, it is not surprising that Gene 1 and Gene 2 are found in both;

conversely, the distribution of co-occurrence for Genes 1 and 3 could be viewed as more

informative. So the objective of this project is to explore the removal of phylogenetic

correlations in order to identify genes with strongly correlated distributions, and in

addition, to build clusters for further examination.

Figure 1.1: The distributions of 3 genes across 6 genomes: “
√

” indicates that the
gene exists in this genome; the tree diagram shows the evolutionary relationships
among 6 genomes.

In this thesis, a gene clustering approach based on the correlated evolution method

of Pagel [24], and hierarchical clustering is proposed to find sets of co-occurring genes

according to their phylogenetic profiles. The semantic similarity of Gene Ontology

(GO) terms is also introduced as a criterion to find the optimal cutting height on the

created hierarchical dendrogram and also to evaluate our clustering outcomes based
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on functional similarity.

There are three kinds of information needed for this project: a phylogenetic tree,

the phylogenetic profiles and the Gene Ontology terms of the target genes. The

phylogenetic tree provides the distance between genomes, based on the similarities and

differences in their genetic characteristics [34]. The phylogenetic profiles summarize

the presence and absence of genes across the genomes on the phylogenetic tree. The

phylogenetic tree and profiles are the input data of the Pagel method to calculate

the evolutionary similarities between genes, from which the distance matrix used

in the hierarchical clustering method is derived [24]. The information about gene

ontologies are used to find the optimized height cutting on the hierarchical clustering

dendrogram, and also to evaluate our clustering outcomes.

The next parts of this chapter will introduce phylogenetic trees and phylogenetic

profiles in greater detail, and present an outline of the remainder of the thesis.

1.2 Phylogenetic Tree

The phylogenetic tree represents the evolutionary relationships among organisms,

species or genomes (in our case), which is produced on the basis of sequenced genes

or genomic data [40]. Several terms are used to describe features of phylogenetic

trees:

• The root, if present, represents the common ancestor of all entities in the tree.

• Nodes in the tree can be terminal if they represent observations, or internal if

they represent the ancestor of two or more observed entities.

• Branch lengths represent the amount of evolutionary change over time.

Take the simple phylogenetic tree in Figure 1.2 as an example, there are 3 existing

species denoted as A, B and C; the numbers on top of each branch are the branch

length which is usually expressed as the average number of nucleotide or amino-acid

substitutions per site.



4

Figure 1.2: An example phylogenetic tree with 3 genomes: A, B, C are 3 existing
species; the numbers represent the length of the branches; the line segment at the
bottom is the distance scale for genetic change.

1.3 Phylogenetic Profiling

Phylogenetic Profiling is a bioinformatics technique to describe a gene’s distribution

across a set of genomes on the basis of homology information. The protein encoded

by each gene in a fully sequenced genome can be assigned to a specific set of proteins

based on homology relationships. The presence or absence of this protein across

genomes can then be represented by its phylogenetic profile. So the phylogenetic

profile can be considered as a long binary sequence encoding the presence or absence

of the gene with digits corresponding to a given set of genomes, as Table 1.1 shows.

The theory of using phylogenetic profiles to predict functional relationships be-

tween genes is that functionally linked proteins tend to evolve in a correlated pattern

[26]. The genetic changes between related species can be affected by many factors,
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Table 1.1: Examples of Phylogenetic Profile: the column labels are the names of
genomes; the row labels represent the GI numbers of genes; each column is a binary
vector which represents the presence (1) and absence (0) of genes.

including gene transfer and gene loss, and proteins that are involved in similar bi-

ological processes may be gained and lost together, leading to similar phylogenetic

profiles. Since the species in a phylogenetic profile are not actually independent, es-

pecially closely related species which are expected to have similar sets of genes, we

must also take phylogenetic correlations into account when inferring the similarity of

profiles.

1.4 Thesis Structure

The remainder of this thesis is organized into 5 chapters. Chapter 2 describes the

Pagel method and hierarchical clustering. Chapter 3 introduces the definition of GO,

the semantic similarity of GO terms and how to evaluate the clustering outcomes. The

application on the gene set of “Lachnospiraceae bacterium 3-1-57FAA-CT1” is given

in Chapter 4, and more specific results are also illustrated in this chapter. Chapter 5

introduces the other evolution based approach, CLIME and includes the comparison

of the results from two approaches. Finally, the conclusion of this thesis and the ideas

for future work are given in Chapter 6.



Chapter 2

Clustering of Genes based on Evolutionary Correlation

In this chapter, we will introduce the Pagel method, which was developed to test

for correlated evolutionary change in traits (in our case, genes) on a given phyloge-

netic tree [24]. Then we implement the hierarchical clustering on the evolutionary

correlation of genes obtained from Pagel’s method to generate gene clusters, and the

optimized tree cutting on the hierarchical dendrogram is also discussed more specifi-

cally.

2.1 Estimating Evolutionary Correlation Among Genes

Pagel (1999) developed a statistical method for identifying significant evolutionary

correlations between two discrete characters across a phylogenetic tree. To charac-

terize the evolution across a phylogenetic tree, two continuous-time Markov models

are built: one model where two characters are assumed to evolve independently, and

a second model where two characters are assumed to evolve in a correlated way, pos-

sibly due to interactions. Then, the tree pruning algorithm is introduced to simplify

the calculation of likelihoods, and the hypothesis of correlated evolution is eventually

tested by comparing the fit of two different models to the observed data set [24].

2.1.1 Continuous-time Markov Process Assumptions

A continuous-time Markov model is used to measure the evolutionary changes between

two characters along the branches of a phylogenetic tree. In our case, the length of

the branch represents the evolutionary time t, and the discrete characters are the

genes, which have two states at any interior node on a given phylogenetic tree: 0

(absence) and 1 (presence). A continuous-time Markov process has the following

features [23, 33, 29]:

• Markov property

6



7

Given the time point t, and time interval h, a continuous-time Markov process

{X(t), t ≥ 0} has the Markov property that,

P [X(t+h) = j|X(t) = i,X(s) = x(s) for 0 ≤ s ≤ t] = P [X(t+h) = j|X(t) = i].

(2.1)

The Markov property implies that given all the states of the process prior to

time t, X(t+ h) only depends on the most recent X(t).

• Transition Probability

Given the time interval h → 0, the probability of transition for a continuous-

time Markov chain is defined as,

Pij(h) = hqij + o(h) (2.2)

Pii(h) = 1− hvi + o(h) (2.3)

where qij = limt→0
Pij(t)

t
is the transition rate of changing from state i to state

j, and vi is the rate at which the process leaves state i, which is the summation

of the rates of leaving to all other states, vi =
∑

j 6=i qij .

Consider a simple Markov process with two states i and j, we have the following

equality,

Pij(t+ dt) = Pii(t)qijdt+ Pij(t)(1− qjidt) + o(dt), (2.4)

The meaning of Equation (2.4) is that the character can change its state from

i to j in two different ways, 1) stay in state i before time t, then transition to

state j in a small time interval dt; 2) transition to state j in time t, and stay in

state j in following dt.

• Solution of P (t)

To solve P (t) , we use Kolmogorov’s Backward Equation, which is a more

general form of Equation (2.4),

dPij(t)

dt
=
∑
k 6=i

qikPkj(t)− viPij(t). (2.5)
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Or, in the matrix form,

P (t+ dt) = P (t)(I +Qdt) (2.6)

where Q is the matrix of transition rates with entry Qij =

{
qij, i 6= j

−vi, i = j
. If we

take the derivative respect to t, we have

dP (t)

dt
=
P (t+ dt)− P (t)

dt
= P (t)Q (2.7)

which gives the solution,

P (t) = eQt , where eQt =
∞∑
k=0

Qktk/k! (2.8)

Since the time t is given, the transition probability P (t) is only determined by the

transition rates in Q. Under the Markov process assumption, the probability of change

from state i to state j in a branch, depends only on the state at the beginning of the

branch, and the time t which is represented by the length of the branch [24, 9].

When considering the evolution of a pair of characters at the same time, two char-

acters can evolve in either an independent or correlated fashion. We first fit a Markov

model to the data in which two characters are assumed to evolve independently, and

then compare the goodness of fit to a more complicated model which allows for the

correlated change. If the model of correlated evolution fits the data significantly bet-

ter than the independent evolution model, there is evidence of correlated evolution

of the two characters.

Independent Evolution Model

In this model, the states (presence or absence) of two discrete characters A and B

are assumed to change independently, which means that variable B evolving across

a given phylogenetic tree would not be affected by the state of variable A. Since the

two characters evolve independently, their transition rates are also independent, and

only 4 rate parameters (Table 2.1) are needed in this model to represent all possible

state transitions.

There is also the dual transition scenario, where both characters change at the

same time. For example, the transition rate for the case where A and B both changed
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Parameter Character Transition of state
α1 A 0→ 1
α2 A 1→ 0
β1 B 0→ 1
β2 B 1→ 0

Table 2.1: 4 parameters in the independent model

from 0 to 1, would be simply the product of α1 and β1, since the two characters evolve

independently. In the matrix form, the transition rates look like below.



(A,B) (0, 0) (0, 1) (1, 0) (1, 1)

(0, 0) − β1 α1 α1β1

(0, 1) β1 − α1β2 α1

(1, 0) α2 β2α1 − β1

(1, 1) α2β2 α2 β2 −


In Pagel’s paper [24], all the dual state transition rates are set to zero, since a

dual transition can be decomposed into two successive events, for example, a dual

transition (0, 0)→ (1, 1) can be reached via two transitions,(0, 0)→ (0, 1), and then

(0, 1)→ (1, 1). It is also possible based on the properties of the Markov model, that

according to Equation (2.2), the probability of this dual state transition happens, is

o(h)→ 0, so the transition matrix can be simplified as below,



(A,B) (0, 0) (0, 1) (1, 0) (1, 1)

(0, 0) − β1 α1 0

(0, 1) β2 − 0 α1

(1, 0) α2 0 − β1

(1, 1) 0 α2 β2 −

.

Dependent Evolution Model

In the dependent evolution model, A and B are assumed to interact in evolution,

resulting in correlated transition rates. In other words, the current state of character

A can impact the transition change of character B. There are 8 parameters instead of

4 parameters (independent model) to represent all possible state transitions (Table

2.2).
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Parameter Character Dependence Transitions
q12 B A = 0 0→ 1
q13 A B = 0 0→ 1
q21 B A = 0 1→ 0
q24 A B = 1 0→ 1
q31 A B = 0 1→ 0
q34 B A = 1 0→ 1
q42 A B = 1 1→ 0
q43 B A = 1 1→ 0

Table 2.2: 8 parameters in the dependent model

In the matrix form,



(A,B) (0, 0) (0, 1) (1, 0) (1, 1)

(0, 0) − q12 q13 0

(0, 1) q21 − 0 q24

(1, 0) q31 0 − q34

(1, 1) 0 q42 q43 −


Since the dependent model has more parameters than the independent model, it

is trivially expected to fit better and have the greater likelihood. The likelihood ratio

test is used to assess the significance of the increase in likelihood, given the increased

number of parameters.

2.1.2 Likelihood Calculation

Figure 2.1 is an example of a simple phylogenetic tree, where S = {s1, s2, ...s9}
denote the states on each node and T = {t1, t2, ...t8} represent the branch lengths.

To represent the likelihood function, we define P (si, sj, tj) as the probability that a

branch begins in state si and ends in state sj in time period tj. Considering the

evolution of a character, A, across this phylogenetic tree, given all the states of each

tip and node on the tree in Figure 2.1, the likelihood of this particular realization

is the product over all branches of the tree with the probabilities derived from the

continuous-time Markov process (in Section 2.1.1),

L(A|S, T ) =P (s9, s8, t8)P (s8, s3, t3)P (s8, s7, t7)P (s7, s5, t5)

· P (s7, s4, t4)P (s9, s6, t6)P (s6, s1, t1)P (s6, s2, t2)
(2.9)
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The overall likelihood for A, is the summation of the likelihood in Equation (2.9)

of all possible assignments of states on each interior node,

L(A) =
1∑

s9=0

1∑
s8=0

1∑
s7=0

1∑
s6=0

P (s9, s8, t8)P (s8, s3, t3)P (s8, s7, t7)

· P (s7, s5, t5)P (s7, s4, t4)P (s9, s6, t6)P (s6, s1, t1)P (s6, s2, t2)

(2.10)

Figure 2.1: A phylogenetic tree of five species adapted from Pagel (1999) [24]: s
denotes the state on each node, and t represents the time period on each branch.

It is the same procedure to find the likelihood of B, and the likelihood for the

independent evolution model is simply the product of A and B,

LIndependent(A,B) =
A and B∏ [ 1∑

s9=0

1∑
s8=0

1∑
s7=0

1∑
s6=0

P (s9, s8, t8)

· P (s8, s3, t3)P (s8, s7, t7)P (s7, s5, t5)P (s7, s4, t4)

· P (s9, s6, t6)P (s6, s1, t1)P (s6, s2, t2)
]
.

(2.11)

In the dependent evolution model, changes in these two characters A and B are

correlated, and their joint changes can be described by 4 states, which are denoted
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as 1 = (0,0); 2 = (0,1); 3=(1,0); 4 = (1,1). So for the phylogenetic tree in Figure 2.1,

each node has 4 possible states, except the tips (s1, s2, ...s5), which are observed in

the phylogenetic profiles. So the likelihood for the dependent evolutionary model is

given by,

LDependent(A,B) =
4∑

s9=1

4∑
s8=1

4∑
s7=1

4∑
s6=1

P (s9, s8, t8)

· P (s8, s3, t3)P (s8, s7, t7)P (s7, s5, t5)P (s7, s4, t4)

· P (s9, s6, t6)P (s6, s1, t1)P (s6, s2, t2)

(2.12)

2.1.3 Pruning Algorithm

Directly calculating the above likelihoods can be computationally expensive, espe-

cially when the phylogenetic tree is large. Take the phylogenetic tree in Figure 2.1 for

example, there are 5 leaves (s1, s2, s3, s4, s5) and 4 interior nodes (s6, s7, s8, s9). The

state of each leaf is observed, but for each interior node, there are 4 possible states in

the dependent evolution model, and 44 possible terms in Equation (2.12). So if given

a phylogenetic tree with n leaves, there would be (n− 1) interior nodes and we need

4(n−1) terms for calculating the likelihood. The cost of computing is exponential in

n, which is technically impossible for a big tree (even for n = 11, 410 = 1, 048, 576).

Felsenstein (1981) developed a computationally feasible method for calculating

the likelihood over a phylogenetic tree, which is called the “pruning” algorithm [8].

The pruning algorithm moves the summations to the right in the equation to reduce

the computing task. One assumption of the pruning algorithm is that the evolution

over different branches on the tree is independent [8]. So for instance, in Figure 2.1,

the node s6 on the left branch would not be affected by the nodes on the right branch

but only the root s9, and the pattern of parentheses for these 5 tips can be expressed

as (s1, s2)(s3, (s4, s5)). Therefore, given the state of the root s9, the likelihood for the

left branch can be written as,

4∑
s6=1

P (s9, s6, t6)P (s6, s2, t2)P (s6, s1, t1). (2.13)

And in the same way, the likelihood for the right branch is

4∑
s8=1

P (s9, s8, t8)P (s8, s3, t3)(
4∑

s7=1

P (s7, s4, t4)P (s7, s5, t5)) (2.14)
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Since the left branch is independent of the right, the likelihood of both branches is

the simple product of Equation (2.13) and 2.14, and also because the root s9 is the

base, it is finally added to the front,

4∑
s9=1

(
4∑

s6=1

P (s9, s6, t6)P (s6, s2, t2)P (s6, s1, t1)

· (
4∑

s8=1

P (s9, s8, t8)P (s8, s3, t3)

· (
4∑

s7=1

P (s7, s4, t4)P (s7, s5, t5)))).

(2.15)

After applying the pruning algorithm, Equation (2.11) and (2.12) can be rewritten

as

• Independent evolution model:

LIndependent(A,B) =
A and B∏ [ 1∑

s9=0

[(
1∑

s8=0

P (s9, s8, t8)P (s8, s3, t3)

·
1∑

s7=0

P (s8, s7, t7)P (s7, s5, t5)P (s7, s4, t4))

·
1∑

s6=0

P (s9, s6, t6)P (s6, s1, t1)P (s6, s2, t2))]
]

(2.16)

• Dependent evolution model:

LDependent(A,B) =
4∑

s9=1

[
(

4∑
s8=1

P (s9, s8, t8)P (s8, s3, t3)·

4∑
s7=1

P (s8, s7, t7)P (s7, s5, t5)P (s7, s4, t4))

·
4∑

s6=1

P (s9, s6, t6)P (s6, s1, t1)P (s6, s2, t2))
]

(2.17)

2.1.4 Statistical Test for Dependence of Traits

A likelihood ratio test is used for the model selection between the independent evo-

lution model and the dependent evolution model. Under the assumption of the null
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hypothesis that the two characters evolve independently, the null model (independent

evolution model) is actually a special case of the alternative model (dependent evolu-

tion model), because the null model can also be reformed into the model with eight

parameters but four pairs of the parameters are the same. For example, in Table 2.2,

q12 = q34 since the state transition of B would not be influenced by the current state

of A when assumption that A and B are independent is true. In the same way, we

have the following equalities:

• q12 = q34 for B: 0→ 1 ; q21 = q43 for B: 1→ 0

• q13 = q24 for A: 0→ 1 ; q31 = q42 for A: 1→ 0

So the independent evolution model and the dependent evolution model are two

nested models, which satisfies the requirements of the likelihood ratio test condition.

The dependent evolution model is a more complex model with more parameters,

which is guaranteed to fit the data at least as well as the simpler model, and will

almost certainly have a higher likelihood. The likelihood ratio statistics is calculated

as follows:

LR = −2ln(LH0/LH1)

= −2ln(LIndependent(A,B)/LDependent(A,B)).
(2.18)

The likelihood ratio follows a χ2 distribution, with degrees of freedom equal to

the difference in the number of parameters, which in our model is 8 − 4 = 4. The

resulting P-value expresses the evolutionary relatedness between two characters, and

a smaller P-value suggests a stronger evidence for correlated evolution.

2.2 Clustering of Genes

In this section, we will use the hierarchical clustering method to group phylogenetic

profiles based on their similarity, which is the evolutionary dependency of genes given

by Pagel’s method, and to discover the functional connections among genes. We

also discuss the way of optimizing the tree cutting on the hierarchical dendrogram to

discover more cohesive clusters.
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2.2.1 Review of Hierarchical Clustering

Hierarchical clustering is a commonly used method of cluster analysis, which groups

data by creating a binary tree or dendrogram. Hierarchical clustering is also a good

method for exploring the gene clusters because the hierarchical dendrogram provides

visual information about the relative similarity of gene clusters, and the clusters

obtained can be adjusted according to a threshold parameter (height).

Hierarchical clustering generally includes two types of strategies:

• Agglomerative clustering is a “bottom-up” approach, which starts with every

data point in its own cluster and then merges sets of clusters with the smallest

dissimilarity progressively until all data points are in one cluster.

• Divisive clustering is a “top-down” approach, which starts with all data points

in one cluster and splits clusters into smaller groups with maximal dissimilarity

progressively until all data points are in individual clusters.

The agglomerative method, which is the method we used in this project, is more

popular than the divisive method, since the divisive method has the problems of se-

lecting a cluster to split and finding the optimal sub-division of the chosen cluster,

and has the exponential time complexity O(2n), whereas the agglomerative method

has the polynomial complexity O(n3) [16, 7]. So here, we only introduce the pro-

cedure of the agglomerative hierarchical clustering in detail. The algorithm of the

agglomerative clustering can be described as:

• Assign each data point into an individual cluster.

• Find the pair of clusters with the shortest distance, and merge them into a

single cluster.

• Calculate the distances between each of the old clusters and the new cluster.

• Iteratively merge two closest clusters, until all data points are represented in a

single cluster.

In the step of merging the closest pair of clusters, the measure of dissimilarity

between sets of data points, which is called the linkage, is required to decide which
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clusters should be combined first. Given the pairwise dissimilarities dij between data

points, the linkage can be regarded as a function d(G,H) which determines how the

distance between two clusters G and H is measured. Commonly used options include

[15, 1, 16]:

• single linkage

The single linkage is also known as the closest-neighbor linkage, and the distance

between two clusters G and H is the distance between the nearest neighbors in

each cluster,

dsingle(G,H) = min
i∈G,j∈H

dij.

• complete linkage

The complete linkage is also called the furthest-neighbor linkage, and the dis-

tance between G,H is the maximum distance between the data points of each

cluster,

dcomplete(G,H) = max
i∈G,j∈H

dij.

• average linkage

The distance between two clusters is the average of the distances between all

the points in each cluster,

daverage(G,H) =
1

nG · nH

∑
i∈G,j∈H

dij,

where nG and nH are the sizes of clusters G and H.

• Ward linkage

The Ward linkage uses the incremental sum of squares, which will merge the two

clusters with the minimum increase in the total within-cluster sum of squares,

and the linkage function is defined as,

dward(G,H) =
nG · nH

nG + nH

d2(ĝ, ĥ)

where the ĝ, ĥ is called the “clustroid”, which is the point that has the smallest

sum of squares of distances to other points,

ĝ = argmin
g∈G

∑
i∈G

d2(i, g), ĥ = argmin
h∈H

∑
j∈H

d2(j, g).
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These approaches use different strategies to find the clusters with some featured

properties; for example, the single linkage method adopts a “friends of friends” clus-

tering strategy, which means that in order to merge two clusters, only one pair of

data points needs to be close. By contrast, the complete linkage method finds clus-

ters based on the worst-case dissimilarity among pairs. We will choose the Ward

method, which aims to find compact and spherical clusters, to perform the hierarchi-

cal cluster analysis on our data in Chapter 4. We tried other methods as well, but

the Ward method tends to find small-sized clusters which are more appropriate to

make the predictions, and also generated the largest number of informative clusters.

Table 2.3 is the matrix of Euclidean distances between the data points in Figure

2.2, and Table 2.4 shows the procedure of the agglomerative hierarchical clustering

on these points step by step. Figure 2.3 is the final results of the dendrogram using

the Ward linkage, and the height on the “y-axis” equals to the distance at which the

clusters are merged.

Table 2.3: The matrix of Euclidean distances between the points in Figure 2.2.
a b c d e f

a 0 0.71 5.66 3.61 4.25 3.91
b 0.71 0 4.95 2.92 3.54 3.20
c 5.66 4.95 0 2.24 1.41 1.80
d 3.61 2.92 2.24 0 1.41 1.80
e 4.25 3.54 1.41 1.00 0 0.50
f 3.91 3.20 1.80 1.12 0.50 0

Table 2.4: The steps of the agglomerative clustering on the data set in Figure 2.2.

Step 1: {a}, {b}, {c}, {d}, {e}, {f}
Step 2: {a}, {b}, {c}, {d}, {e, f}
Step 3: {a, b}, {c}, {d}, {e, f}
Step 4: {a, b}, {c}, {d, e, f}
Step 5: {a, b}, {c, d, e, f}
Step 6: {a, b, c, d, e, f}
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Figure 2.2: A simple example of the agglomerative hierarchical clustering with six
data points.

Figure 2.3: The hierarchical clustering dendrogram using the Ward linkage.

2.2.2 Optimized Tree Cutting

Hierarchical clustering is represented as a dendrogram and we can obtain a set of

clusters by cutting the dendrogram at a certain height. However, the final cutting
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height is not decided since cutting at a different height will give a different set of

clusters, so that it is necessary to find an optimized height, and we can use external

information to guide the cutting strategy.

In our application, we can measure the functional similarity among genes in clus-

ters to develop an optimal cutting strategy using GO terms in Chapter 3. We can

first use the cohesiveness to score clusters and the weighted mean score of a set of

clusters at a certain height can be used to evaluate the performance of cutting at this

height.

So for finding the appropriate height, we first calculated the weighted mean score

of the set of clusters generated by cutting at each height, and chose the height with

the best score. Figure 2.4a shows an example of fixed height tree cutting on a simple

dendrogram, with several candidate cutting heights and a globally optimal height.

However, fixed-height tree cutting ignores the possibility that maximally cohesive

clusters may only be obtained by cutting different branches at different heights. Dy-

namic tree cutting uses a similar approach to find the best height for each branch,

rather than for the entire tree. So dynamic tree cutting may give different heights,

and each cut is the best height at that branch with the maximum score. Figure 2.4b

is an example of dynamic tree cutting, every final tree cutting (solid line segments)

should be the best position of cutting its branch, and the final solution of tree cutting

consists of the optimized heights for all branches.
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(a) fixed−hieght tree cutting (b) dynamic tree cutting

Figure 2.4: An example of tree cutting: Figure (a) shows the fixed height tree cutting,
where the dotted lines are possible examples of cuttings and the solid line is the best
cutting with the maximum weighted mean of scores; Figure (b) shows dynamic height
cutting, where every solid line segment is the optimized height cutting at its branch.



Chapter 3

Evaluation of Gene Clusters

Since we have described the clustering approach in the previous chapter, in this chap-

ter we will develop a framework to evaluate the generated gene clusters for assessing

the performance of our approach. Under the hypothesis that the genes with similar

phylogenetic histories also tend to be involved in the related biological processes, we

use the Gene Ontology framework for assessment. GO is a widely used classification

scheme that was used in the Critical Assessment of Functional Annotation (CAFA)

large-scale evaluation experiment [27].

3.1 Introduction to Gene Ontology

The Gene Ontology project, founded in 1998, is a collaborative effort of bioinformatics

resource integration, which aims to provide structured, controlled vocabularies for the

consistent descriptions of genes and gene products [6]. The Gene Ontology Consor-

tium began as a joint project of three organism databases: FlyBase (Drosophila), the

Saccharomyces Genome Database (SGD) and the Mouse Genome Database (MGD).

Since then, the GO consortium keeps growing and expanding more major repositories

for plant, animal, and microbial genomes [2].

The GO project contains three domains of ontologies - biological processes, cellular

components and molecular functions [2]:

• Biological Process: operations or sets of molecular events with a defined begin-

ning and end.

• Cellular Component: the parts of a cell or its extracellular environment.

• Molecular Function: the elemental activities of a gene product at the molecular

level.

Since we expect that genes with correlated evolutionary patterns will often be

evolved in related biological processes, we will use the GO biological process terms

21
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for the assessment of gene clusters. Some examples of biological process GO terms are

“DNA-templated transcription initiation [GO:0006352]”, “carbohydrate metabolic

process [GO:0005975]” and “ATP synthesis coupled electron transport [GO:0042773]”.

GO is structured as a directed acyclic graph (DAG) where each GO term has

defined relationships to one or more other terms, and there are two basic semantic

relations between terms, “is a” and “part of” (Figure 3.1, for example). If we define

A “is a” B, we mean that node A is a subtype of node B, such as “mitotic cell cycle

[GO:0000278]” is a subtype of “cell cycle [GO:0007049]”. The relation “part of” is

used to represent part-whole relationships: if A is a necessary component of B, then

A is part of B, such as “cell communication [GO:0007154]” is part of “single-organism

cellular process [GO:0044763]” [6, 2].

Figure 3.1 (QuickGo, www.ebi.ac.uk/QuickGO/) shows the DAG for the GO term

“signal transduction [GO:0007165]”. From the GO graph, we can see that the GO

term “signal transduction [GO:0007165]” is a subclass of the GO term “regulation of

cellular process [GO:0050794]” and also a part of the GO terms “cellular response to

stimulus [GO:0051716]”, “cell communication [GO:0007154]”, and “single organism

signaling [GO:0044700]”.



23

Figure 3.1: DAG for GO term “signal transduction [GO:0007165]”: each box repre-
sents a GO term; lines represent the relationships between two connected GO terms.
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3.2 Semantic Similarity of GO Terms

From the Uniprot Knowledgebase (www.uniprot.org), we can acquire all the genes

annotated with GO terms, but we still need to quantify the extent of connection

between GO terms in order to further measure the functional similarity between

genes.

Semantic similarity approaches are used to produce numeric values that express

the similarity of a pair of GO terms, which are the basis for the further assessment

of gene clusters. There are multiple types of approaches to calculate the similarity

between GO terms, broadly classified as graph-based and information-content-based

(IC) methods. The IC-based approach mainly uses term probabilities to compute the

information content, that is the frequency of the GO term in the whole GO database;

commonly-used IC based approaches include Resnik [28], Jiang and Conrath [14], and

Lin [18]. The graph based approaches use the topology of the GO graph to measure

the similarities between terms. G-SESAME [37] is a graph based approach, which is

also the approach we used in this project.

To describe G-SESAME, we first represent the DAG of a given GO term A by

three components, denoted as DAGA = (A, TA, EA):

• A is the GO term itself

• TA is a set of GO terms, including A itself and all its ancestors.

• EA is the set of edges in the GO DAG, linking A with its ancestors in TA.

The semantic value of the GO term A is the aggregate contribution of all GO terms

in DAGA. The weights of the contribution depend on how far the terms are from

term A; terms farther from term A are more general and contribute less. So the

contribution of a GO term t to GO term A, which is called S-value and denoted as

SA(t), is defined as:

SA(t) =

 1 if t = A

max {we ∗ SA(t′)|t′ ∈ children of t} if t 6= A
(3.1)

The we in the equation is called the semantic contribution factor for edge e from

GO term t to term t′. Since the GO term A is the most specific term to itself, its
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contribution is 1, and we is always between 0 and 1. The semantic contribution factor

we depends on the relations of the edge, either “is a” or “part of”, with the values

of these two relations commonly defined as 0.8 and 0.6 respectively. Since there are

potentially many edges connecting term A with term t, we take the maximum score of

all paths connecting these terms. For example, in Figure 3.1, there are two paths from

“signal transduction [GO:0007165]” to “single-organism process [GO:0044699]”. One

is “GO:0007165”→ “GO:0044700”→ “GO:0044699”, and the other is “GO:0007165”

→ “GO:0007154” → “GO:0044763” → “GO:0044699”. Then we calculate the S-

values for both options and choose the maximum SA(t).

After calculating the SA(t) for all t in TA, the final semantic value of GO term A

is the sum of all S-values:

SV (A) =
∑
t∈TA

SA(t) (3.2)

To calculate the semantic similarity of a pair of GO terms A and B, we first extract

the DAGs for both terms, DAGA = (A, TA, EA) and DAGB = (B, TB, EB). Then the

semantic similarity between GO terms A and B is defined as

SGO(A,B) =

∑
t∈TA∩TB

(SA(t) + SB(t)))

SV (A) + SV (B)
(3.3)

An example of calculating the semantic similarity between GO terms “cell com-

munication GO:0007154” and “single organism signaling GO:0044700” is shown in

Table 3.1.

Figure 3.2 shows the subgraph for the GO term “single organism signaling GO:0044700”,

which includes 4 GO terms in total. According to Equation (3.1), we can calculate

all the S-values of the GO terms in the DAG for term “GO:0044700”, and the results

are in Table 3.1. Then, SV(GO:0044700) can be calculated as the sum of all the S-values

in Table 3.1, (1 + 0.8 + 0.8 + 0.64) = 3.24.

GO terms GO:0044700 GO:0023052 GO:0044699 GO:0008150
S-value 1 0.8 0.8 0.64

Table 3.1: S-values for GO terms in DAG for term “GO:0044700”

In the same way, we can calculate all the S-values for GO term “cell communication

GO:0007154”, given its DAG as shown in Figure 3.3 below. All the S-values are listed

in the Table 3.2, where SV(GO:0007154) = (1 + 0.8 + 0.64 + 0.64 + 0.512) = 3.592.
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Figure 3.2: Subgraph of the GO graph for term “single organism signaling
GO:0044700”: all edges represent the relationship, “is a”.

GO terms GO:0007154 GO:0044763 GO:0044699 GO:0009987 GO:0008150
S-value 1 0.8 0.64 0.64 0.512

Table 3.2: S-values for GO terms in DAG for term “cell communication GO:0007154”

From Figure 3.2 and Figure 3.3, the common terms for both DAGs are TA∩TB =

{“GO:0044699”, “GO:0008150”}. According to Equation (3.3),

SGO(“GO:0044700”, “GO:0007154”) =
(0.64 + 0.8) + (0.512 + 0.64)

3.24 + 3.529
= 0.379.
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Figure 3.3: Subgraph of the GO graph for “GO:0007154”: all edges represent the
relationship, “is a”.
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Since the semantic similarity is specific to the pair of GO terms, and a cluster

consists of two or more genes, we eventually score the performance of a cluster, by

computing the mean of all combinations of pairs of GO terms involved in the cluster.

So given a cluster C in size n, the GO score of C is defined as,

SGO(C) =
1
2

∑
i,j∈C,i6=j SGO(i, j)(

n
2

) . (3.4)

3.3 Resampling and Statistical Test

From Equation (3.4), any given cluster of genes can be scored using a single numeric

value, which we call the GO score of that cluster. However, these GO scores are

dependent on the sizes of clusters, since larger clusters are less likely to have a high

GO score. For instance, a cluster with a GO score of 1 must have member genes that

are all annotated with the exact same term, but a large cluster is much less likely to

satisfy this criterion than a small cluster. Therefore we cannot use GO scores as the

uniform standard for all clusters of different sizes.

To avoid this cluster size bias, we used a resampling method to assign significance

scores to each inferred cluster by randomly generating the same-sized cluster many

times to estimate the sampling distribution of GO scores, and to calculate P-values

of clusters. We also considered the influence of resampling with replacement and

resampling without replacement on the distribution of GO score:

• Resampling without replacement, is to draw the genes randomly and exactly

once from the whole gene set, so that each gene can appear at most once in a

sampled cluster. However, this method may not work well for very large clusters

that contain most proteins in the data set, because the members of that cluster

would be very similar each time and the GO scores would vary only a small

amount across replicates, which will cause a extremely small variance in the

sampling null distribution of GO scores. Therefore, even though the GO score

is only slightly greater than the mean, the P-value would still be small and

would suggest statistical significance. Taking an extreme example, if we want

to sample n out of n genes, we will get the exact same set of genes every time,

and the variance of GO scores in this scenario will be 0.
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• Resampling with replacement is equivalent to drawing GO terms rather than

genes from our gene pool, because the same gene can not appear more than once

in the resulting clusters, whereas GO terms can. Resampling with replacement

has two features listed below, making it more appropriate in our project:

– Samples are drawn independently.

– Resampling with replacement also considers the frequency of GO terms

in our collection of GO terms. For example, if one cluster whose size is

small and all genes have GO term “transport [GO:0006810]”, with the

semantic similarity guaranteed to be equal to 1. However, it doesn’t mean

it is absolutely a good cluster, because “transport [GO:0006810]” is a very

common GO term.

So compared to resampling without replacement, the sample mean estimated by re-

sampling with replacement will increase because if one gene was resampled into a

cluster twice, it will contribute two equal GO terms, with the semantic similarity

between them as 1.

Figure 3.4 shows the difference between results from resampling a cluster of size 30

without replacement and with replacement, on a subset of 100 genes from the dataset

we used in Chapters 4 and 5. We can see that the distribution for resampling with

replacement has a greater mean (0.3915) than without replacement (0.3845), and

an obviously more flat distribution. As a result, the resampling with replacement

method will produce a smaller number of significant clusters, but more justifiable

than resampling without replacement. Therefore, only resampling with replacement

method is used in our project.
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Figure 3.4: Comparison of resampling with and without replacement: the red line
is the estimated normal distribution of GO score by resampling 1000 times; the red
dotted vertical line is where the sample mean is located.



Chapter 4

Application of the Correlated Evolution Approach

In this chapter, we will apply our method to calculate the evolutionary correlation

among genes of the bacterium “Lachnospiraceae bacterium 3-1-57FAA-CT1” using a

set of other genomes from the same taxonomic order to build phylogenetic profiles.

These profiles will then be used to infer hierarchical clusters, which will be split using

a functional criterion. Finally, we will examine the functional cohesion of our clusters

in relation to randomly resampled clusters.

4.1 Data Description

The bacterium “Lachnospiraceae bacterium 3-1-57FAA-CT1”, abbreviated as ”Lb-

CT1”, is a family in the order Clostridiales and isolated from a human fecal sample.

“Lb-CT1” has 6506 genes in total, and we will analyze the phylogenetic profiles of

its genes across a phylogenetic tree with 687 genomes from the Clostridia family to

explore how its genes interact with each other. The phylogenetic tree was built from

a core set of genes using the approach of gene selection similar to AMPHORA [38].

The phylogenetic tree construction performed using RAxML [32] and the GTRCAT

model was used for sequence substitution probabilities. Phylogenetic profiles were

constructed by comparing conceptually translated proteins of “Lb-CT1” to those of

all other genomes using Rapsearch2 [43]. A maximum e-value threshold of 10−20 to

the “Lb-CT1” proteins was used to include genes in phylogenetic profiles. All the

GO information used in this application is obtained from the Uniprot Knowledgebase

(www.uniprot.org).

Pagel’s method is computationally expensive and there will be
(
6502
2

)
= 21, 160, 765

pairs if we want to apply this method on the whole gene set, so we must reduce the

dataset under consideration to a more tractable size. From the initial tree recon-

structed from 687 genomes, we subsampled “Lb-CT1” and an additional 83 genomes

at random, which reduced the number of the phylogenetic profiles and allowed us to
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consider only 2892 distinct profiles.

4.2 Quantifying Evolutionary Correlation Among Genes

The “Discrete” program implements the models described in Pagel (1999) and enables

the analysis of binary characters on phylogenetic trees [25]. The “Discrete” program

will output the likelihoods of independent and dependent evolutionary models for

each pair of genes based on their phylogenetic profiles, from which we can calculate

the log-likelihood ratio and P-value to represent the similarity between genes.

To illustrate how the Pagel method takes the phylogenetic effect into consideration

while measuring the similarity between phylogenetic profiles, Figure 4.1 is a typical

example from our real data, and the specific values of similarity calculated by the

Pagel method are shown in Table 4.1. Using GeneR as the reference profile, intuitively

Gene 2 should be more similar to the base profile than Gene 1, if we simply count the

number of unmatched presences (Gene 2 is missing only genome a, while Gene 1 has

two additional represented genomes near b). However, if we consider the phylogenetic

effect, the two additional representatives near b are less critical than the single miss

at a, because the genomes around b are closer relatives and more likely to carry the

same genes due to shared descent. The last 2 profiles (Gene 3 and Gene 4), both

of which have an extra representative relative to the base profile, also show that the

extra presence at e is a more significant difference than the one at d due to its greater

phylogenetic distance.

Table 4.1: Similarity between Gene R and the other four genes calculated by the
Pagel method: inside of parentheses are the corresponding GI numbers.

Gene 1
(GI:496546121)

Gene 2
(GI:496545868)

Gene 3
(GI:496549699)

Gene 4
(GI:488634388)

Gene R
(GI:488634373)

17.29659 13.13266 12.23021 10.48783



33

Figure 4.1: Comparison of Phylogenetic Profiles: the dendrogram on the left side
is the phylogenetic tree with 84 tips; the columns are the phylogenetic profiles of 5
genes showing their presence and absence in each genome; Gene R is the reference
object; the other 4 genes are displayed in order of the similarity to Gene R from large
to small, calculated by the Pagel method.
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4.3 Hierarchical Clustering of Genes

From the previous section, we obtained the likelihoods for all pairs chosen from these

2892 genes, and we can further compute log-likelihood ratio statistics and the P-

values. The P-values correspond to monotonic non-linear transformation of the log-

likelihood ratio statistics. However, the hierarchical clustering procedure is not scale

invariant for this non-linear transformation, thus does not output the same clustering

results. We need to choose which statistics to work on. Our hierarchical clustering

procedure is based on the Ward linkage which aims to minimize the within cluster

sum of squared distances between all pairs. The property of squared distances are

more similar to the chi-squared statistics from the log-likelihood ratio test. Thus

we base our clustering on the log-likelihood ratio statistics. Since our log-likelihood

ratio statistics are positively correlated with similarity, we convert these values to

dissimilarity scores simply by subtracting them from the maximum value.

Figure 4.2 is an overview of the generated hierarchical clustering dendrogram

based on the likelihood ratios, and the number of clusters is shown on the right

side reflecting its changes along with heights. Due to the hierarchical nature of the

dendrogram, we can analyze the interactions among genes and associations between

clusters in different levels by recovering and splitting the clusters along with height.
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Figure 4.2: Overview of the Hierarchical Clustering Dendrogram: each dotted line is
a possible realization of tree cutting, and the value on the right margin is the total
number of clusters induced by cutting branches at that height.
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4.4 Optimizing the Cutting Height

After we generate the hierarchical dendrogram, we first use fixed-height tree cutting

to identify clusters, and then compare with the results from the dynamic tree cutting.

Figure 4.3 shows the weighted mean of GO scores of the clusters at different heights,

which is defined as WGO =
∑k

i=1
ni

N
SGO(ci), given N genes grouped into k clusters

{c1, c2...ck} with corresponding sizes {n1, n2...nk}. We observe a steady increase of

WGO from a height of 600, to a maximum score of 0.512 at a height of 130, followed

by a sharp drop to 0. We therefore choose h = 130 as the optimal height.

Figure 4.3: Weighted Mean GO score vs Height: the maximum weighted mean GO
score happens at height 130.

Since dynamic tree cutting has the ability to choose different h values for different

clusters, we expect the dynamic approach to produce better functional cohesion.

Figure 4.4 compares the results of the two types of cutting approach, which shows

that the results are as expected that, fixed-height hierarchical clustering (blue bar)

creates 22 more clusters with GO score below 0.5, than dynamic hierarchical clustering

(green bar), which generates 29 more “good” clusters whose GO scores are greater

than 0.5.
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Figure 4.4: Comparison of the performance in fixed-height cutting and dynamic cut-
ting: blue bars represent the results of fixed-height tree cutting; green bars represent
the results of dynamic tree cutting.
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4.5 Evaluation of Clustering Results

To demonstrate that the genes within a cluster are more likely to be functionally linked

in a biological process, we generated a thousand random clusters with resampling to

estimate the distribution of the GO scores for each size of clusters, from which we

can calculate the significance of our clusters.

Since the dynamic approach yielded more functionally coherent clusters than the

fixed-height method on our dataset, we evaluated the dynamically generated clusters

in greater depth. Figure 4.5 shows the significance of GO scores of our 24 largest

clusters against 1000 of their same sized random clusters. Nineteen out of 24 per-

formed better than the randomly generated clusters, which means that the genes in

these clusters have high chance of being associated in biological process.
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Figure 4.5: Performance of largest 24 Clusters Measured by GO score: in each figure,
the red line is the GO score of the cluster we acquired, and the bars show the GO
score distribution from 1000 randomly resampled clusters of the same size.
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4.6 Examples of Gene Function Prediction

To make use of our clustering outcomes, we could try to predict the functions of

the unannotated genes, since within a functionally cohesive cluster, we might expect

unannotated genes with similar phylogenetic distributions may be involved in the

same biological process as the genes annotated with GO terms. However, two factors

may generate inaccurate predictions on the unannotated genes based on our method:

• Low GO score clusters

Although some low-scoring clusters may be informative as well, we cannot make

the predictions for the genes in those clusters precisely, since a low GO score

means that there are various GO terms in those clusters.

• Large proportion of unannotated genes

If only a small percentage of genes in the cluster have the GO terms, we might

still get accurate predictions in some cases, but overall we have less confidence

if the GO term coverage is poor.

So, we only focus on the clusters avoiding both of these two conditions and here we

provide two examples of these types of clusters.

The cluster, denoted as “235H150”, contains 10 genes and 8 of them have the

exact same GO term, “phosphorelay signal transduction system [GO:0000160]”, which

means this cluster is very cohesive. So we can make the prediction that the remaining

two genes (“GI:496544772”, “GI:496545797”) have the same “phosphorelay signal

transduction system” term. Figure 4.6 also shows that these 10 genes have similar

phylogenetic profiles.
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Figure 4.6: Phylogenetic Profiles of Genes in Cluster “235H150”: the columns are
the phylogenetic profiles of 10 genes; the dendrogram on the left is the phylogenetic
tree of 84 genomes; two unannotated genes are marked with red rectangles.

The cluster, denoted as “115H130”, consists of 4 genes and has a mean GO score

of 0.918. Figure 4.7 shows the GIs and GO terms of these 4 genes and “GI:496544038”

has no matching GO terms, and is therefore a good candidate for functional predic-

tion.

Figure 4.7: Composition of the Cluster “115H130”

As we can see that “GI:496546568” and “GI:496546569” have the same GO term,

but different from “GI:496546564”. According to the information from the online GO

database (http://www.ebi.ac.uk/QuickGO/), as shown in Figure 4.8, “leucine biosyn-

thetic process” is one of the child terms of “branched-chain amino acid biosynthetic
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process”. So we can predict conservatively that the GO term of “GI:496544038” is

“branched-chain amino acid biosynthetic process”, since it is a broader term than

“leucine biosynthetic process”.

Figure 4.8: Child Terms of “GO:0009082”

Figure 4.9 displays the phylogenetic profiles of genes in cluster “115H130”, and

there is a dramatic difference at the top of the phylogenetic tree marked by the red

rectangle. However, although the difference between the first two profiles and the last

two profiles is very striking, the phylogenetic correction makes the profiles very similar

and points to potentially a single lateral gene transfer (LGT ) event (at location a)

distinguishing the distribution of the two sets of genes.
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Figure 4.9: Phylogenetic Profiles of Genes in Cluster “115H130”: the columns are
the phylogenetic profiles of 4 genes; the dendrogram on the left is the phylogenetic
tree of 84 genomes; a potential LGT event occurred at a.



Chapter 5

Comparison with Clustering by Inferred Modules of

Evolution (CLIME)

In this chapter, we will introduce another evolution based approach, CLIME, and

apply this method on the same data set to generate a new set of clusters. The Rand

index is also introduced to measure the similarity between clusters resulting from two

approaches.

5.1 Introduction to CLIME

CLIME, short for Clustering by Inferred Models of Evolution, is a computational

method of predicting gene function published by Li and Calvo in 2014 [17]. Briefly,

CLIME is a clustering algorithm based on a hidden Markov model (HMM), to group

genes into evolutionarily conserved modules (ECMs ) according to the inferred gene

gain and loss events with the assumption that each gene has a single gain event

and zero or more loss events [17]. It has been applied to the human mitochondrial

proteome and proteomes of yeast and red algae to explore the evolutionary modularity.

Figure 5.1 shows the schematic overview of CLIME as presented in the original

paper [17]. The complete procedure of CLIME includes Input, Partition, Expansion,

and Output:

• Input

Three data files are input by users,

– a phylogenetic tree

– a matrix containing the gene phylogenetic profiles

– a gene set

of which, the input gene set is just a subset of genes included in the phylogenetic

profile matrix.
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• Partition

A Bayesian mixture model of HMMs is applied on the input gene set to gen-

erate the initial ECMs, and at the same time, the number of ECMs and the

evolutionary model of each ECM are also learned. The evolutionary model is

represented by a single gain branch and a vector of loss probabilities for each

branch.

• Expansion

The ECM expansion set, which is denoted as ECM+, is created to include

all other genes in the profile matrix by calculating the likelihood of each gene

against the evolutionary model of each ECM and assigning the gene to the

best-fitting ECM.

• Output

The disjoint ECM clusters and their associated ECM+ expansions are the out-

puts of CLIME.

Since CLIME is also based on phylogenetic profiles and common evolutionary

history and its objectives are similar, we applied CLIME to the same data set in

Chapter 4 using the program developed by the authors, and contrasted its predictions

with our results from Chapter 4.
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Figure 5.1: Overview of CLIME: (1) input the phylogenetic profiles of a set of genes
across the given phylogenetic tree; (2) partition the input set of genes into disjoint
ECMs and each ECM is modeled with a gain branch (blue) and branch-specific
probalilities of gene loss (red); (3) assign other genes to the best-fitting ECM, scored
by the log-likelihood ratio; (4) output the disjoint ECM clusters and associated ECM+
expansions. Figure reproduced with the permission of the copyright holder.
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5.2 Rand Index

To compare the clustering outcomes of CLIME and our method, the Rand index

is applied to measure the similarity of the clustering outcomes generated by two

approaches. To calculate the Rand index, given a set of N elements S = {s1, s2..., sn},
and two sets of clusters, X = {x1, ..., xr} and Y = {y1, ..., ys}, we can have the

following notations [12, 31]:

• n1, the number of pairs in S that are in the same cluster of X and in the same

cluster of Y;

• n2, the number of pairs in S that are in different clusters of X and in different

clusters of Y;

• n3, the number of pairs in S that are in the same cluster of X and in different

clusters of Y;

• n4, the number of pairs in S that are in different clusters of X and in the same

cluster of Y.

Then the Rand index, RI, is defined as,

RI =
n1 + n2

n1 + n2 + n3 + n4

=
n1 + n2(

N
2

)
which is a number between 0 and 1 [12].

For example, in Figure 5.2, 10 genes are grouped into a set of clusters A, which

has 3 clusters of size 4, 3, and 3 respectively. The same 10 genes are grouped into the

other set of clusters B, based on a different method, and the set B has two clusters

with sizes of 6 and 4.
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Figure 5.2: An example of comparison between two clusters

From the Figure 5.2, in cluster B1, there are 3 nodes from A1 and 2 nodes from

A3, and there are 2 nodes from A2 in cluster B2. Table 5.1 shows the mapping of

pairs for the purpose of calculating the Rand index.

Table 5.1: The Rand index table between A and B
same cluster in X different clusters in X

same cluster in Y n1 = 5 n4 = 16
different clusters in Y n3 = 7 n2 = 17

and the Rand index between A and B is,

RI =
n1 + n2

n1 + n2 + n3 + n4

= 0.488.

As we can see the Rand index gives the same weight to n1 and n2, but the situation

of n2, which can happen more often by chance, contributes more to the Rand index.

To get a more accurate comparison between two clustering outcomes, the adjusted

Rand index is also introduced, which is the corrected-for-chance version of the Rand

index [41]. Table 5.2, which is called the contingency table, introduces the notations

for the computation of the adjusted Rand index between two sets of clusters X =

{x1, ..., xr} and Y = {y1, ..., ys} of sizes {ai, ..., ar} and {b1, ..., bs}, where nij represents

the number of objects in common between two clusters xi and yj, The contingency

table summarizes the overlap between X and Y, and the adjusted Rand index is
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Table 5.2: The contingency table of X and Y
X\Y y1 y2 · · · ys Sums
x1 n11 n12 · · · n1s a1
x2 n21 n22 · · · n2s a2
...

...
...

. . .
...

...
xr nr1 nr2 · · · nrs ar

Sums b1 b2 · · · bs

defined as,

ARI =

∑
ij

(
nij

2

)
−

∑
i (

ai
2 )

∑
j (bj

2 )
(n
2)

1
2
(
∑

i

(
ai
2

)
+
∑

j

(
bj
2

)
)−

∑
i (

ai
2 )

∑
j (bj

2 )
(n
2)

. (5.1)

Still taking the example in Figure 5.2, Table 5.3 shows the contingency table of A

and B.

Table 5.3: The contingency table of the example in Figure 5.2
A\B b1 b2 Sums
a1 3 1 4
a2 1 2 3
a3 2 1 3

Sums 6 4

and the adjusted Rand index between A and B is,

ARI =
(3 + 1 + 1)− (6+3+3)(15+6)

45

1
2
((6 + 3 + 3) + (15 + 6))− (6+3+3)(15+6)

45

= −0.055.

The negative ARI tells that the index is less than the expected index, and it is much

less than the RI of the same data set, which also shows that ARI is a more strict

measurement than general RI.

To compare our predictions with those of CLIME, we calculated the adjusted

Rand index between the set of clusters at each height of our inferred hierarchy with

the set of clusters generated by CLIME. The maximum Rand index occurred at the

height = 140, which is very close to the optimized height of the fixed height tree

cutting (height = 130) in Figure 4.3.
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Figure 5.3: Change of adjusted Rand index between CLIME clusters and the hier-
archical dendrogram, cut at different heights: the maximum ARI is indicated with a
dotted red line.
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5.3 Comparisons of the Results

CLIME generated 330 clusters from our test data set involving 1211 out of the total

of 2892 genes, whereas our method clustered 2429 genes. So for comparison purposes,

we compared only the 1022 genes which are clustered by both methods. Figure 5.4

shows the distribution of the sizes of the clusters from our method and these 1022

genes are clustered into 207 clusters, without counting 38 singletons.

Figure 5.4: Size distribution of clusters generated by hierarchical clustering.

The distribution of clusters by size for CLIME is shown in Figure 5.5 below. These

1022 genes are arranged into 272 clusters and 18 singletons.
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Figure 5.5: Size distribution of clusters generated by the CLIME software.
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Figure 5.6: Comparison between 20 CLIME clusters with hierarchical clustering den-
drogram: the tree diagram on the left is the subtree of the hierarchical clustering
dendrogram (Figure 4.2) for a subset of 262 genes; each column shows the member
genes of a CLIME cluster and the red bar represents that the gene is a member;
symbols in the graph identify the types of clusters: well matched clusters (yellow
rectangle), similar cluster (blue rectangle), complementary clusters (green rectangle)
and dissimilar cluster (red arrow).

Figure 5.6 above compares 20 CLIME clusters with the dendrogram generated by

our method. Because the hierarchical clustering was based on this dendrogram, the

structure of this dendrogram can represent roughly the clusters from the hierarchical

clustering. If the CLIME clusters are adjacent, it means the results of CLIME and our

method are similar, like the area bordered by blue in the graph. If the CLIME clusters

are the whole pieces with no blank, like the two blocks in the yellow borders, they

are probably well matched clusters as ours. Some clusters seem to be complementary,

like the green ones, which might be affected by the different heights of tree cuts, and
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also some clusters are quite different from ours, like the one directed by the red arrow.

Our cluster “29H260”, which contains eight proteins, is exactly the same as the

CLIME cluster “clime16”. The GO terms of genes in this cluster are shown in Table

5.7 below, according to the Uniprot database. These 8 genes have the same GO terms,

which are all related to “cobalamin biosynthetic process [GO:0009236]”, though some

of them have different secondary terms. This cluster is supported by both approaches,

and shows high functional cohesion.

Figure 5.7: GO information about a Pagel cluster,”29H260”

Figure 5.8 below gives information about the composition of a cluster from our

method, “64H200”. This cluster has 9 elements, which are divided by CLIME into

two clusters (denoted as “clime263” and “clime25”), plus three unclustered proteins.

According to the GO information on the Uniprot website, the GO terms of these 9

genes are all the same, “carbohydrate metabolic process [GO:0005975]”, and Figure

5.9 also shows that these 9 genes have similar phylogenetic profiles. According to

their shared GO terms, it is reasonable to group these genes into one rather than two

clusters. This example also shows that the height of tree cutting on this cluster is

very reasonable, which is successfully detected by our approach.
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Figure 5.8: Composition of a Pagel cluster, “64H200”

Figure 5.9: Phylogenetic Profiles of Genes in Cluster “64H200”: the columns are the
phylogenetic profiles of 9 genes; the blue borders separate the genes into 3 groups
(“clime263”, “clime25” and unclustered proteins); the dendrogram on the left is the
phylogenetic tree of 84 genomes.



Chapter 6

Conclusion and Future Work

In this thesis, we described the complete process of a gene clustering approach, which

covers calculation of evolutionary correlation, gene clustering, and evaluation of clus-

ters. We applied our approach to the gene set of “Lachnospiraceae bacterium 3-1-

57FAA-CT1”, and found informative clusters which can be used to predict the func-

tions of the unannotated genes and to discover the possible gene gain and loss events

occurring in the genomes during their evolution. In this application, our approach

shows two key advantages:

• From the example in Figure 4.9, the striking difference in the phylogenetic

tree, which could be caused by a single LGT event, will heavily influence the

phylogenetic profiles, but our method will be minimally influenced by these

highly correlated genes.

• The hierarchical structure of our resulting dendrogram (Figure 4.2) allows us

to analyze the interactions among genes and associations between clusters in

different levels by recovering and splitting the clusters along with height.

Furthermore, we compared the results to another evolution based gene clustering

approach, CLIME. There are two main differences between the basic principles of two

approaches,

• CLIME has the constraint on the phylogenetic history that a gene can be gained

only once.

• CLIME only considers the topology but not the branch lengths of the phyloge-

netic tree.

In spite of dissimilarities between the two methods, the two sets of predictions have the

considerable similarity, and both successfully showed that genes with similar histories
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of evolution on the phylogenetic tree also tend to be functionally linked and predicting

functions of genes on the basis of phylogenetic profiles is a practical approach.

However, our approach can be improved in several ways, which are expected to

be done in future work:

• Enhance the evaluation of gene clusters by permutating the hierarchical clus-

tering dendrogram to generate the clusters using the same tree cutting strategy

rather than only resampling the genes.

• To predict the function more precisely, we need to quantify the effect of the

proportion of unannotated genes in the clusters and the different heights of

cutting on the hierarchical clustering dendrogram.

• We must optimize the algorithm of Pagel’s method to make it feasible to run

on the whole phylogenetic tree.

• Pagel’s method assumes a fixed evolutionary rate along the branches of the tree,

and we can improve the method to adjust to changing evolutionary rates.
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