Relating ¹³⁹La Quadrupolar Coupling Constants to Polyhedral Distortion in Crystalline Structures

Alexander L. Paterson, Margaret A. Hanson, Ulrike Werner-Zwanziger, Josef W. Zwanziger*

Department of Chemistry, Dalhousie University, PO Box 15000, Halifax, NS B3H 4R2, Canada

*Corresponding author.

Tel: +1 (902) 494-1960. Fax: +1 (902) 494-1310. E-mail: jzwanzig@dal.ca

Abstract

A broad series of crystalline lanthanum oxide-based materials has been investigated through high-field ¹³⁹La solid state nuclear magnetic resonance (ssNMR) spectroscopy and ab initio density functional theory (DFT) calculations. The ¹³⁹La NMR spectra of LaBGeO₅, LaBSiO₅, LaBO₃, LaPO₄ · 1.8H₂O, La₂(SO₄)₃ · 9H₂O, and La₂(CO₃)₃ · 8H₂O are reported for the first time. Both newly reported and literature values of ¹³⁹La quadrupolar coupling constants (C₀) are related to various quantitative expressions of polyhedral distortion, including sphericity (Σ) and ellipsoid span (ϵ) . The compounds were separated into two groups based upon their polyhedral distortion behaviour: compounds with the general formula LaMO₃, where M is a trivalent cation; and compounds with different general formulae. The ¹³⁹La C_Q of the LaMO₃ family was found to correlate best with ϵ . The ¹³⁹La C_Q of non-LaMO₃ compounds correlates adequately to ϵ , but is better described by Σ . The 139 La isotropic chemical shift (δ^{CS}_{iso}) of the non-LaMO₃ compounds is negatively correlated with the lanthanum coordination number; there is insufficient data from the LaMO₃ compounds to draw conclusions relating to chemical shift. DFT calculations of NMR parameters prove to be a sensitive probe of the quality of input geometry, with predicted parameters agreeing with experiment except in cases where the crystal structure is suspect.

Introduction

Lanthanum compounds have a wide variety of applications, including nickel-metal hydride batteries, ¹ transparent ferroelectric nanocomposites, ² medical glassmaking, ³ and both medical and environmental phosphate sequestration ^{4,5}. Many of these applications involve amorphous materials, complicating the characterization of the lanthanum environment. Solid state nuclear magnetic resonance (ssNMR) is an effective probe of local coordination in non-periodic solids, but has not yet been applied to ¹³⁹La in amorphous lanthanum compounds. In order to increase the utility of ¹³⁹La ssNMR as a structural characterization tool, we investigate the relationship between observable ¹³⁹La ssNMR properties and the distortion of the lanthanum sites in lanthanum oxide-based materials.

The primary NMR-active nucleus of lanthanum, 139 La, has several attractive nuclear properties including a complete natural abundance (100%), a nuclear spin of I = 7/2, and a moderate gyromagnetic ratio ($\gamma = 3.801 \cdot 10^7$ rad T⁻¹ s⁻¹), all of which contribute to a high receptivity (1.61 · 10² as compared to 29 Si). A moderately high nuclear electric quadrupole moment ($Q = 20 \text{ fm}^2$)⁶ has been the primary barrier to the ssNMR study of 139 La. Until the advent of the wideband uniform rate smooth truncation quadrupolar Carr-Purcell Meiboom-Gill (WCPMG) pulse sequence, 7 the breadth of many spectra prevented their timely acquisition, restricting investigations into relatively high symmetry compounds which yield narrow spectra. $^{8-10}$ The WCPMG pulse sequence, in conjunction with variable offset cumulative spectra (VOCS) collection, has recently been put to good use in the investigation of a number of both coordination and inorganic lanthanides, $^{11-13}$ including LaScO₃ 14 and LaPO₄ 5 .

The lineshape of 139 La NMR spectra is primarily due to interactions of the nucleus with the electric field gradient (EFG) tensor. Two parameters describe this interaction: the quadrupolar coupling constant C_Q , and the quadrupolar asymmetry parameter η

$$C_Q = \frac{eQV_{zz}}{h}$$
 (1)

$$\eta = \frac{V_{yy} - V_{xx}}{V_{zz}} \quad (2)$$

where eQ is the electric quadrupole moment of the nucleus, h is the Planck constant, and $|V_{zz}| \ge |V_{yy}| \ge |V_{xx}|$ are the principal components of the EFG tensor. The magnitude of the quadrupolar coupling constant has commonly been used to infer qualitative deviations from spherical symmetry while the asymmetry parameter provides information regarding axial symmetry. 9,15,16 An additional influence on the lineshape of NMR spectra is chemical shift anisotropy (CSA). The CSA tensor is defined similarly to the EFG tensor, with principal components $\delta_{11} \ge \delta_{22} \ge \delta_{33}$. This work uses the Herzfeld-Berger convention¹⁷ for describing the influence of CSA on NMR lineshapes.

Note that the principal directions of the CSA tensor need not coincide with those of the EFG tensor, and neither need coincide with "obvious" crystallographic directions unless satisfying the symmetry requirements of the unit cell. Nevertheless, if correlations between these tensors and crystal structures can be established for a class of materials, then extension to structurally uncharacterized samples is possible. Indeed, many studies have attempted to link the above NMR properties to structural features: for example, Pan et al. used ⁶Li magic angle spinning (MAS) NMR to probe the presence of Cr³⁺ in the lithium coordination sphere¹⁸; ¹¹B MAS NMR is routinely used to quantify relative proportions of three- and four-coordinate boron; Willans et al. were able to establish a link between ¹³⁹La isotropic chemical shift and lanthanum coordination

number in organic lanthanum coordination compounds using solid-state NMR¹³; and Michaelis and Kroeker investigated the possibility of relating 73 Ge C_Q to octahedral and tetrahedral distortion parameters¹⁵. While tetrahedral and octahedral distortion parameters are effective in describing differences between real and ideal polyhedra, it is difficult to generalize the method used by Michaelis and Kroeker to polyhedra with higher coordination number. Balić Žunić and Makovicky devised a method involving least-squares fitting of a sphere to the ligands of the coordination polyhedron¹⁹ which provides a novel means of measuring distortion. Various distortion parameters are derived from the relationship between a circumscribed sphere and the ideal polyhedral shape.²⁰ These parameters have been successfully used to predict the coefficient of thermal expansion in $A_2M_3O_{12}$ materials.^{21,22} However, modelling the EFG tensor requires a parameter more sensitive to the specific distortion from spherical symmetry.

Balić Žunić and Makovicky 19 define the sphericity of the coordination polyhedron, which we label Σ , as

$$\Sigma = 1 - \frac{\sigma_{rs}}{r_s} \quad (3)$$

where r_s is the average distance between the centroid of the coordination polyhedron and the ligands, and σ_{rs} is the standard deviation of the same. The centroid of coordination is the point with minimal variation of position with regards to the oxygen ligands, and frequently, but not always, coincides with the position of the La³⁺ cation. The sphericity describes the deviation of the ligand distances from the average distance, which models the general deviation from spherical symmetry.

Beyond considering the isotropic deviation from spherical symmetry, we also consider the anisotropy of the distortion. To this end, we fit the coordination polyhedron with a triaxial ellipsoid (Figure 1). The resulting ellipsoid is defined by its three semi major axes $e_a \le e_b \le e_c$. The level of

anisotropy of the ellipsoid is described by two parameters derived from the semi major axes: the ellipsoid span, which we will refer to as ϵ , defined by Balić Žunić and Makovicky²³ as

$$\epsilon = \frac{e_c - e_a}{\frac{e_a + e_b + e_c}{3}} \quad (4)$$

and the ellipsoid character (E.C.), which describes how close in length e_b is to the other semi major axes. More precisely, the ellipsoid character is defined in analogy to the optical character.²³ The ellipsoid character is the cosine of the angle between the normals of the two unique circular cross-section of the ellipsoid fitting the polyhedron, as bisected by the longest major axis. Practically, the ellipsoid character ranges from -1, describing an oblate spheroid, to +1, describing a prolate spheroid, while intermediate values indicate that the elipsoid is triaxial. ϵ will range from 0 when the ellipsoid is spherical, and will approach 3 when $e_c \gg e_a$.

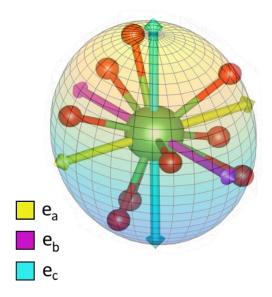


Figure 1: Schematic diagram of triaxial ellipsoid fit to the LaO₉ polyhedron of LaBGeO₅.

In this work we use 139 La ssNMR in conjunction with density functional theory (DFT) calculations to construct an empirical model relating the distortion of the lanthanum coordination polyhedra to the observed 139 La C_Q values. We establish that the 139 La C_Q of compounds with the general formula LaMO₃ (M = B³⁺, Al³⁺, Sc³⁺, Ti³⁺, Cr³⁺, Co³⁺) is dependent primarily on the ellipsoid span, while the 139 La C_Q of other compounds is related to both the ellipsoid span and the sphericity parameter.

Experimental

Synthesis and Characterization

Samples of La₂O₃ (\geq 99.9%), LaBO₃ (99.9%), La₂(CO₃)₃ · xH₂O (99.9%), and La₂(SO₄)₃ · 9H₂O (\geq 99.99%) were purchased from Sigma-Aldrich. LaPO₄ · xH₂O (99.99%) was purchased from Alfa Aesar. The above samples were used without further purification. LaPO₄ was produced by heating LaPO₄ · xH₂O at 750 °C for 21h in atmosphere. LaBGeO₅ glass was produced by grinding stoichiometric amounts of La₂O₃, B₂O₃ (99%, Sigma-Aldrich), and GeO₂ (99.998%, Sigma-Aldrich) in a ceramic mortar and pestle and heating at 1300 °C for 30m in a platinum crucible in atmosphere. The resulting glass was poured into a glass mold pre-heated to 400 °C, and held at 400 °C for 24 h. Crystallization was induced by heating the glass at 950 °C for 12h. The resulting ceramic was ground to powder in an agate mortar and pestle. LaBSiO₅ powder was produced by grinding stoichiometric amounts of La₂O₃, B₂O₃, and SiO₂ (Analytical, Sigma-Aldrich) in a ceramic mortar and pestle and heating from 900 °C to 1300 °C over 5 h in a platinum crucible in atmosphere. Identities of both commercial and synthesized samples were confirmed using powder X-ray diffraction. X-ray diffraction experiments were conducted using a Rigaku Ultima IV X-ray diffractometer using a copper anode X-ray tube with a diffracted beam monochromator and a

scintillation detector. X-ray diffractograms are available in the supporting information. Thermogravimetric analysis (TGA) was used to characterize the level of hydration of LaPO₄ \cdot 1.85H₂O and La₂(SO₄)₃ \cdot 9H₂O (Figure S8). The level of hydration of La₂(CO₃)₃ \cdot nH₂O was not determined due to contamination of the sample.

NMR Spectroscopy

¹³⁹La NMR spectra were collected on 9.4T (56.54 MHz ¹³⁹La frequency) and 16.4 T (98.91 MHz ¹³⁹La frequency) Bruker Avance NMR spectrometers. Samples were finely ground in an agate mortar and pestle and packed into either 4 mm (16.4 T) or 7 mm (9.4 T) outer diameter ZrO₂ rotors. All spectra were collected under static conditions. The WCPMG pulse sequence⁷ was used with WURST-80 (16.4 T) or WURST-20 (9.4 T) pulses²⁴ of 50 μs duration, sweeping across 500 kHz at a rate of 10 MHz/ms to ensure homogenous excitation. The number of echoes collected varied from 60 to 250 according to the T₂ relaxation of the sample. Spectral slices were collected with a transmitter offset of either approximately 100 kHz or 200 kHz, with the exact value set to an integer multiple of the spikelet separation. The number of slices depended on the breath of the spectral peak. The number of scans per slice varied between 16 and 3192, dependent on sensitivity of the sample. Optimized recycle delays of between 0.1 and 5 s were used. Total experimental time was uniformly less than 2 h. ¹³⁹La chemical shifts were referenced to a 1.0 M aqueous solution of LaCl₃. Spectra were fit using DMFit v20110512²⁵, WSolids v1.19.2²⁶, and QUEST v1.1.5²⁷.

DFT Calculations

Density functional theory calculations were carried out using the ABINIT code^{28–31} using the projector-augmented wave (PAW) method³². The PAW datasets used varied depending on the structure being investigated. When possible, JTH PAW datasets were used without alteration.³³ In systems where there was significant PAW sphere overlap, custom datasets were used to avoid this

problem. Details on the datasets used for each structure are available in the supporting information (Table S1). All calculations were performed using the Perdew, Burke, and Ernzerhof (PBE) generalized gradient approximation (GGA) exchange-correlation functional³⁴.

Calculations were conducted on crystal structures taken from the Inorganic Crystal Structure Database (ICSD).³⁵ Optimized plane-wave cutoff energies were used, typically between 30 and 45 hartrees, with PAW fine grid cutoff energies generally between 90 and 150 hartrees. K-point grids were optimized for each structure, but typically had a grid spacing of 0.03 Å⁻¹. Specific values for each structure are available in the supporting information (Table S2). EFG parameters were calculated on experimental geometries. Calculations were performed using the WestGrid Grex research facility, with Intel Xeon X6560 2.66 GHz cores. Between 4 and 24 cores were used depending on the fineness of the k-point grid.

Distortion Parameters

Distortion parameters were calculated using the IVTON software.²³ Input structures were obtained from the ICSD,³⁵ and were also used for DFT calculations. Uncertainties in distortion parameters were either determined through propagation of error or estimated from least-squares variance.

Results

¹³⁹La NMR spectroscopic parameters, computational results, and distortion parameters are reported in Tables 1 through 3. The presentation of the results for LaBGeO₅ and LaScO₃ are discussed as representative of the non-LaMO₃ and LaMO₃ compounds, respectively. The full results and discussion for all other compounds are included in the supporting information.

Table 1. Summary of the experimental ¹³⁹La NMR parameters.

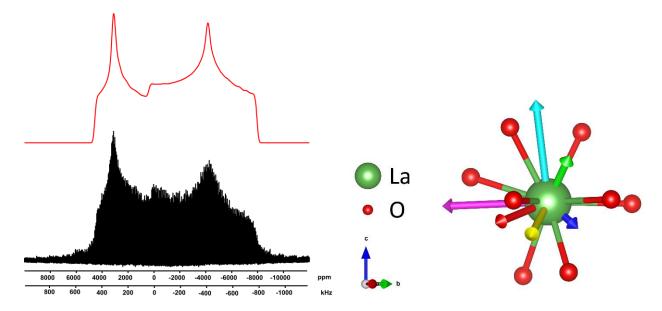
	Ea Tillite parameters.							
	$ C_Q $ (MHz)	η	$\delta_{\rm iso}^{{\rm CS}_a}$ (ppm)	Ω^b (ppm)	κ^c	α^d (°)	β^d (°)	γ^d (°)
La ₂ O ₃	58.6(3)	0.00(2)	620 (10)	$500(50)^e$	-1.0(2) e	$150(150)^e$	$90(10)^{e}$	$180(10)^e$
LaPO ₄ · 1.8 H ₂ O	33(1)	1.00(5)	400(20)					
LaPO ₄	$46.7(10)^f$	$0.75(3)^f$	$36(10)^f$					
LaBO ₃	23.4(4)	0.68(5)	230(10)	350(30)	0.3(1)	15(5)	0(5)	165(10)
LaBGeO ₅	85.5(5)	0.30(2)	200(25)	400(200)	0.8(3)	75(75)	15(5)	0(10)
LaBSiO ₅	90.0(5)	0.35(2)	225(50)					
$La_2(SO_4)_3 \cdot 9H_2O$								
La(1)	52.5(5)	0.00(2)	-175(25)					
La(2)	36.5(5)	0.00(3)	-75(25)					
La(OH) ₃	$22.0(0.5)^e$	$0.05(2)^e$	$260(20)^e$	$80(7)^{e}$	$0.0(1)^e$	$80(7)^{e}$	$10(10)^e$	$0(10)^e$
LaAlO ₃	$6^{g, h}$	$0^{g, h}$	$375(5)^{g, h}$					
LaCoO ₃	$23.8^{g, i}$	$0^{g, i}$	$4230^{g, i}$					
LaCrO ₃	$48^{g, i}$	$0.15^{g, i}$	$442.5^{g, i}$					
LaTiO ₃	$53.2^{g,j}$	$0.6^{g, j}$	N.D.					
LaScO ₃	$61.6(5)^k$	$0.10(2)^k$	$600(50)^k$	$500(200)^k$	$0.0(3)^k$			
LaNbO ₄	$36(2)^{e}$	$0.44(5)^e$	$295(25)^e$	$255(10)^e$	$0.40(4)^e$	$90(5)^{e}$	$50(5)^{e}$	$270(10)^e$

 $^{^{}a}$ $\delta_{iso}^{CS} = \frac{1}{3} (\delta_{11} + \delta_{22} + \delta_{33})$. b $\Omega = \delta_{11} - \delta_{33}$. c $\kappa = \frac{3(\delta_{22} - \delta_{iso}^{CS})}{\delta_{11} - \delta_{33}}$. d α , β , γ are the Euler angles. e Spencer et al. 16 Dithmer et al. 5 g These values were provided without uncertainties; discussion of the reliability of these values is found in the Supporting Information. h Dupree et al. 9 i Bastow 10 j Furukawa et al. 36 k Johnston et al. 14

Table 2. Summary of the calculated ¹³⁹La NMR parameters

	$C_Q(MHz)$	η
La ₂ O ₃	60.61	0.00
$LaPO_4 \cdot 0H_2O$	-136.18	0.50
$LaPO_4$	53.67	0.56
LaBO ₃	-28.79	0.57
LaBGeO ₅	-89.03	0.32
LaBSiO ₅	-109.95	0.05
$La_2(SO_4)_3 \cdot 9H_2O$		
La(1)	-59.10	0.00
La(2)	-36.46	0.00
$La(OH)_3$	-29.49	0.00
LaAlO ₃	8.44	0.00
LaCoO ₃	20.99	0.00
LaCrO ₃	-47.22	0.32
LaScO ₃	-65.17	0.08
LaNbO ₄	39.46	0.50

Table 3. Collected distortion parameters.


	CN	Σ	<i>e</i> _a (Å)	e_b (Å)	e_c (Å)	€	E.C.
La ₂ O ₃	7	0.960(5)	2.481(2)	2.481(2)	2.731(2)	0.098(2)	1.00(1)
LaPO ₄	9	0.965(2)	2.415(1)	2.574(1)	2.796(1)	0.147(1)	0.05(1)
LaBO ₃	9	0.963(1)	2.331(1)	2.721(1)	2.741(1)	0.157(1)	-0.92(1)
LaBGeO ₅	9	0.951(2)	2.359(1)	2.713(1)	2.744(1)	0.148(1)	-0.87(1)
LaBSiO ₅	10	0.943(4)	2.350(1)	2.713(1)	2.808(1)	0.175(1)	-0.67(1)
$La_2(SO_4)_3 \cdot 9H_2O$							
La(1)	12	0.960(2)	2.463(1)	2.837(1)	2.837(1)	0.138(1)	-1.00(1)
La(2)	9	0.9927(1)	2.514(1)	2.514(1)	2.585(1)	0.028(1)	1.00(1)
La(OH) ₃	9	0.9927(1)	2.551(1)	2.551(1)	2.620(1)	0.027(1)	1.00(1)
LaAlO ₃	12	0.963(1)	2.67(1)	2.70(1)	2.70(1)	0.01(1)	-1.00(1)
LaCoO ₃	12	0.931(5)	2.67(4)	2.78(4)	2.78(4)	0.04(3)	-1.00(1)
LaCrO ₃	12	0.909(9)	2.58(6)	2.81(6)	3.03(6)	0.16(5)	-0.15(1)
LaTiO ₃	8	0.956(3)	2.384(1)	2.462(1)	2.872(1)	0.190(1)	0.60(1)
LaScO ₃	8	0.935(6)	2.334(1)	2.432(1)	3.032(1)	0.269(1)	0.61(1)
LaNbO ₄	8	0.9877(4)	2.419(1)	2.478(1)	2.606(1)	0.075(1)	0.32(1)

Lanthanum Borogermanate

LaBGeO₅ (LBG) is an example of the stillwellite rare earth mineral³⁷ that has been extensively studied for its ferroelectric properties.^{38–40} It is a remarkably efficient glass former, given its high lanthanum content. LBG glass is an effective transparent ferroelectric nanocomposite material, due to the shared stoichiometry between crystalline and glassy phases.² LBG has been previously studied using Raman spectroscopy,⁴¹ computational methods,⁴² and ¹¹B magic angle spinning NMR spectroscopy,² but as of yet has not been investigated using ¹³⁹La NMR. As a member of the stillwellite family, LBG is of trigonal space group P₃₁, with three formula units per unit cell. The environment of the single lanthanum site in LBG is ninefold coordinate to oxygen, with contributions from both the GeO₄ and BO₄ tetrahedra. La-O bond range

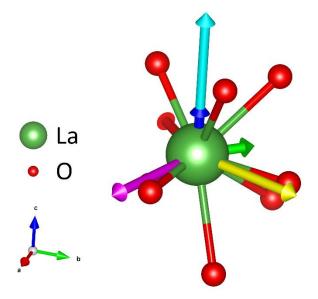
from 2.41 Å to 2.74 Å, with an average of 2.60 Å. There are no obvious symmetry elements present within the lanthanum polyhedron.

The 139 La ssNMR spectrum of LBG acquired at 16.4 T is presented in Figure 2. The spectrum is extremely broad, spanning approximately 12 000 ppm. It is fit using a C_Q of 85.5 \pm 0.5 MHz and η of 0.30 \pm 0.02. The spectrum is overwhelmingly quadrupolar in character, with only a minor influence from CSA. Using spectra collected at 9.4 T and 16.4 T we fit the spectra with CSA value of Ω = 400 \pm 200 ppm, κ = 0.8 \pm 0.3, α = 75 \pm 75°, β = 15 \pm 5°, and γ = 0 \pm 10°. When fitting the spectrum acquired at the lower field strength (9.4 T), the high-field approximation is less valid due to the extreme breadth of the peak; as such, we must fit it exactly, rather than through perturbation theory.²⁷

Figure 2. Left: Static ¹³⁹La NMR spectrum of LaBGeO₅ at 16.4 T. Analytical simulation is show in red. The EFG parameters used are reported in Table 1. Right: First coordination sphere of LaO₉ in LaBGeO₅. The V_{xx} , V_{yy} , and V_{zz} components are displayed as blue, green, and red, respectively. The e_a , e_b , and e_c semi major axes are in yellow, magenta, and teal respectively.

DFT calculations on the experimental LBG geometry⁴³ yield a 139 La C_Q of -89 MHz and η of 0.32. This is in excellent agreement with the experimental results ($C_Q = 85.5 \pm 0.5$ MHz and $\eta = 0.30 \pm 0.02$). The V_{zz} component of the EFG tensor is not directed toward any specific structural feature, but is generally aligned with GeO₄ tetrahedra. The La-O bond closest to the V_{zz} vector links a GeO₄ tetrahedron with two LaO₉ polyhedra, but the bond and the vector are not parallel (Figure 2).

The ellipsoid fit to the LaO₉ polyhedron is triaxial, with $e_a = 2.359 \pm 0.001$ Å, $e_b = 2.713 \pm 0.001$ Å, and $e_c = 2.744 \pm 0.001$ Å. The shortest semi major axis, e_a , is in close proximity to the V_{zz} component. The ellipsoid is significantly distorted from spherical symmetry, with $\epsilon = 0.148 \pm 0.001$. The ellipsoid is oblate in nature, with a character of -0.87 ± 0.01 .

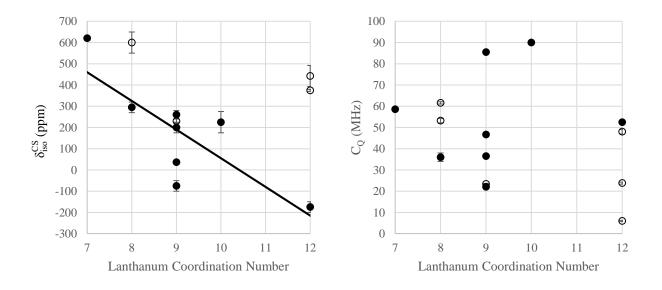

Lanthanum Scandate

LaScO₃ is the lanthanum perovskite most recently studied by ¹³⁹La ssNMR spectroscopy, and the only one published to date that has been studied by WCPMG.¹⁴ LaScO₃ is in the Pbnm space group with four formula units per unit cell. The lanthanum environment is eightfold, with La-O bonds ranging from 2.40 Å to 2.88 Å, with an average bond length of 2.62 Å.¹⁴ Like LaTiO₃, the LaO₈ polyhedron is best described as a distorted square antiprism.

Johnston et al. fit the 139 La WCPMG ssNMR spectrum of LaScO₃ with a C_Q of 61.6 ± 0.5 MHz and an η of 0.10 ± 0.02 , 14 and carried out DFT calculations on the LaScO₃ structure reported by Liferovich and Mitchell⁴⁴. In order to obtain the principal components of the EFG tensor, we conducted our own DFT calculations on the experimental geometry reported by Johnston et al.; 14 our calculations yielded a C_Q of -65.2 MHz and an η of 0.08. The V_{xx} component is parallel to both the crystallographic c axis and the ellipsoid e_c axis, hence the V_{yy} and V_{zz} components are in

the plane defined by the a and b crystallographic axes. Our computed value of η is comparable with the computed value reported by Johnston et al. (0.08 vs. 0.13) as well as with their experimental value (0.08 vs. 0.10 \pm 0.02), but our computed value of C_Q is significantly different than their computed value (-65.17 MHz vs. -51.66 MHz)¹⁴. Our computed value of the ¹³⁹La C_Q is in good agreement with the experimental value reported by Johnston et al. (-65.17 MHz vs 61.6 \pm 0.5 MHz).¹⁴ This difference is likely due to the difference in initial starting geometries; where we used the structure reported by Johnston et al.¹⁴, they began from the structure reported by Liferovich and Mitchell⁴⁴.

The ellipsoid used to fit the LaO₈ polyhedron is significantly distorted, with $e_a = 2.334 \pm 0.001$ Å, $e_b = 2.432 \pm 0.001$ Å, and $e_c = 3.032 \pm 0.001$ Å (Figure 3). The ellipsoid is generally prolate, with a character of 0.61 ± 0.01 , and shows the greatest distortion of all ellipsoids modelled in this study, with a value of 0.269 ± 0.001 . The largest semi major axis e_c is aligned with the crystallographic c axis, while the other two semi major axes are slightly angled from La-O1 bonds (as labelled by Johnston et al.¹⁴). The shortest semi major axis is very nearly parallel with a La-O bond of length 2.532 Å, while the e_b axis is displaced from a La-O bond of length 2.396 Å by the same angle. Similar behaviour is observed in the isostructural LaTiO₃.


Figure 3. First coordination sphere of LaO₈ in LaScO₃. The V_{xx} , V_{yy} , and V_{zz} components are displayed as blue, green, and red, respectively. The e_a , e_b , and e_c semi major axes are in yellow, magenta, and teal respectively.

Discussion

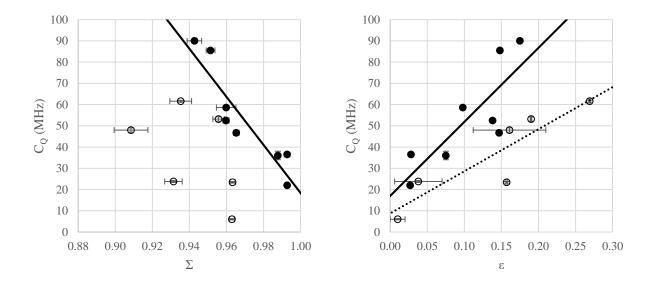
Coordination Number

The relationship between lanthanum coordination number (CN) and 139 La NMR properties has previously been investigated by Willans et al. 13 They found no correlation between La coordination number and CQ or Ω , but they did find a strong relationship between the La coordination number and 139 La δ^{CS}_{iso} . When analyzing our data, we were unable to establish a generally strong relationship between the coordination number and δ^{CS}_{iso} (R² = 0.11). The quality of the fit improves dramatically (R² = 0.63) when considering compounds of general formula LaMO₃ (M = B³⁺, Co³⁺, Cr³⁺, Sc³⁺, Ti³⁺) separately from the other lanthanum compounds (Figure 4). The isotropic chemical shift of the non-LaMO₃ compounds decreases as coordination number increases, consistent with the observations of Willans et al. It is difficult to conclusively evaluate

the trend of δ^{CS}_{iso} in the LaMO₃ compounds due to insufficient data, as the δ^{CS}_{iso} of LaTiO₃ has not been reported and the δ^{CS}_{iso} of LaCoO₃ is anomalously high; this is proposed to be caused by transferred hyperfine interactions.¹⁰ The coordination number alone is clearly insufficient to relate the ¹³⁹La isotropic chemical shift to local structure, but it is nonetheless useful in assigning NMR peaks in structures with multiple lanthanum sites (e.g. La₂(SO₄)₃ · 9H₂O). The range of δ^{CS}_{iso} reported in this study is approximately 900 ppm, while the range of chemical shifts reported in the literature spans approximately 1200 ppm⁴⁵ (excluding samples affected by hyperfine interactions, e.g. LaCoO₃). ¹³⁹La ssNMR peaks are often broadened past this chemical shift range, limiting the potential effects of CSA in ultrawide compounds.

Figure 4. Relationship between the La coordination number and the ¹³⁹La isotropic chemical shifts (left) and quadrupolar coupling constants (right). Filled circles (●) indicate compounds of the non-LaMO₃ family, while open circles (○) indicate LaMO₃ compounds. The solid line in the left plot

shows the relationship between La CN and 139 La δ^{CS}_{iso} , with δ^{CS}_{iso} = -135 ppm · CN + 1405 ppm (R² = 0.63) for the non-LaMO₃ compounds. Error bars may be obscured by the datum symbol.

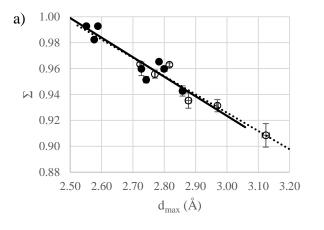

Like Willans et al., no relationship was found between the lanthanum coordination number and 139 La $C_{\rm O}$ (Figure 4).

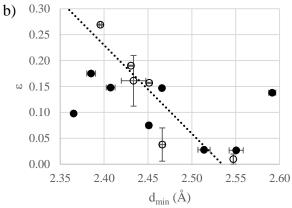
Chemical Shielding Anisotropy

The quadrupolar interaction is clearly the primary influence on the lineshape of ¹³⁹La spectra. However, it is clear that CSA can have significant impact, as seen with the spectra of LaBO₃, LaScO₃, and La₂O₃. Many lanthanum compounds have only been investigated at a single field strength, preventing the collection of accurate CSA parameters. While we have investigated a few samples at two field strengths, the still too small number of data points and their considerable uncertainties render it impossible to draw any conclusions about the relationship between crystal structure and ¹³⁹La CSA at this time.

Quadrupolar Coupling Constant

The relationships between 139 La C_Q values and selected polyhedral distortion parameters are shown in Figure 5. As with the isotropic chemical shift, it is valuable to examine the non-LaMO₃ and LaMO₃ compounds separately.


Figure 5. Filled circles (•) indicate compounds of the non-LaMO₃ family, while open circles (∘) indicate LaMO₃ compounds. Left: relationship between ¹³⁹La C_Q and sphericity (Σ). Right: relationship between ¹³⁹La C_Q and ellipsoid span (ε). The solid lines indicate the relationship between ¹³⁹La C_Q and the respective distortion parameter of the non-LaMO₃ compounds, with: left, $C_Q = -1133$ MHz · Σ + 1151 MHz ($R^2 = 0.85$); right, $C_Q = 349$ MHz · ε + 17 MHz ($R^2 = 0.68$). The dotted line indicates the relationship between ¹³⁹La C_Q and the ellipsoid span of the LaMO₃ compounds, with $C_Q = 198$ MHz · ε + 9 MHz ($R^2 = 0.80$). Error bars may be obscured by the datum symbol.


Non-LaMO₃ Compounds

The non-LaMO₃ compounds show a strong negative correlation with the sphericity distortion parameter, with C_Q increasing as sphericity decreases. The uncertainty in the sphericity is relatively low for the non-LaMO₃ compounds as compared to the LaMO₃ compounds; this is attributed to a wider range of bond lengths present in most LaMO₃ compounds.

The quality of the fit of the relationship between the ellipsoid span and C_Q for the non-LaMO₃ compounds ($R^2 = 0.68$) is lower than both that of the LaMO₃ compounds ($R^2 = 0.79$) and the relationship between Σ and C_Q for the non-LaMO₃ compounds ($R^2 = 0.86$). The ellipsoid span is primarily dependent on the shortest and longest semi major ellipsoid axes, e_a and e_c . There is a moderate correlation between C_Q and e_a for the non-LaMO₃ compounds (Figure S28b, $R^2 = 0.69$), but not between C_Q and e_c . As such, ϵ is not as good of a descriptor of distortion for the non-LaMO₃ compounds, but has the advantage of being generally useful for both non-LaMO₃ and LaMO₃ compounds.

In an attempt to relate C_Q to specific structural features, the various distortion parameters are plotted against the longest and shortest La-O bonds (d_{max} and d_{min} , respectively). The most relevant plots are presented in Figure 6; the rest can be found in the supporting information. The distortion parameters that best correlate to the C_Q of the non-LaMO3 compounds are generally dependent on d_{max} , suggesting that the C_Q of the non-LaMO3 compounds might be similarly dependent. Unfortunately, this is not the case, as the relationship between C_Q and d_{max} of the non-LaMO3 compounds is less reliable than the relationship between C_Q and either Σ or ϵ (R^2 values of 0.58, 0.85, and 0.68, respectively) for the non-LaMO3 compounds. The quadrupolar coupling constants of the non-LaMO3 compounds seem to be dependent on both d_{min} and d_{max} , and are better fit by a combination of d_{min} and d_{max} than by either alone. The difference between the average La-O bond length (d_{avg}) and the shortest La-O bond length (Figure 7) is the structural parameter which best predicts the d_{avg} and the shortest La-O bond length (Figure 7) is the structural parameter which

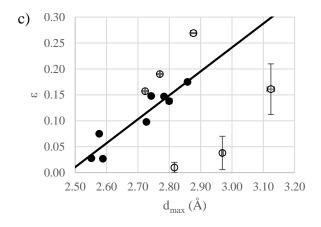
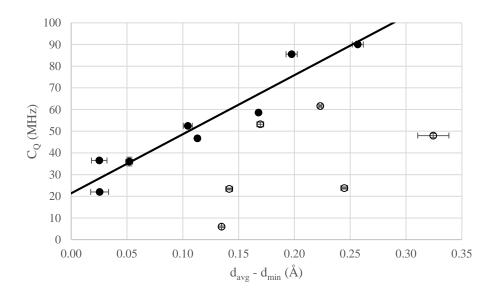



Figure 6. Filled circles (•) indicate compounds of the non-LaMO₃ family, while open circles (○) indicate LaMO₃ compounds. a) Relationship between sphericity (Σ) and the longest La-O bond length (d_{max}). The solid line indicates the relationship between Σ and d_{max} for the non-LaMO₃ compounds, with $\Sigma = -5.71 \frac{1}{Å} \cdot d_{max} + 8.23$ (R² = 0.86). The dashed line indicates the relationship between between Σ and d_{max} for the LaMO₃ compounds, with $\Sigma = -6.49 \frac{1}{Å} \cdot d_{max} + 9.00$ (R² = 0.92). b) Relationship between ellipsoid span (ϵ) and the shortest La-O bond length (d_{min}). The dashed line indicates the relationship between between ϵ and d_{min} for the LaMO₃ compounds, with $\epsilon = -0.48 \frac{1}{Å} \cdot d_{max} + 2.52$ (R² = 0.82). c) Relationship between ellipsoid span (ϵ) and d_{max}. The solid

line indicates the relationship between between ϵ and d_{max} for the non-LaMO₃ compounds, with $\epsilon = 1.92 \frac{1}{\text{Å}} \cdot d_{max} + 2.50 \ (\text{R}^2 = 0.89). \text{ Error bars may be obscured by the datum symbol.}$

Figure 7. Relationship between the difference of the average La-O bond length (d_{avg}) and the minimum La-O bond length (d_{min}). Filled circles (\bullet) indicate compounds of the non-LaMO₃ family, while open circles (\circ) indicate LaMO₃ compounds. The solid line indicates the relationship between the bond length difference and C_Q for the non-LaMO₃ compounds, with $C_Q = 272 \frac{MHz}{\mathring{A}}$. (d_{avg} - d_{min}) + 21 MHz (R^2 = 0.92). Error bars may be obscured by the datum symbol.

LaMO₃ Compounds

In contrast to the strong relationship seen in the non-LaMO₃ compounds, the LaMO₃ compounds do not show a significant dependence of C_Q on Σ ($R^2=0.22$). The compounds that are most likely affecting the relationship between C_Q and Σ for the LaMO₃ compounds are LaCoO₃

and LaCrO₃. As discussed in their respective sections in the supporting information, the LaCoO₃ and LaCrO₃ coordination polyhedra are cuboctohedra with a large difference between d_{min} and d_{max}; furthermore, the positioning of the longest and shortest La-O bonds in these structures ensures that it is difficult to fit a sphere to the oxygen positions.

The use of the ellipsoid span to relate 139 La C_Q and distortion is more effective than the use of Σ for the LaMO₃ compounds, though it is difficult to reliably fit an ellipsoid to the lanthanum polyhedra of LaCrO₃ and LaCoO₃ for the same reasons that it is difficult to fit a sphere; this is reflected in the large uncertainties of ϵ for these compounds. The individual influences of e_a and e_c are examined for the LaMO₃ compounds, with e_c having a much stronger relationship with C_Q than e_a . This behaviour is the mirror image of the non-LaMO₃ compounds, and indicates the difference between the two families.

Figure 6 highlights additional differences between the LaMO₃ and non-LaMO₃ compounds. While the sphericity of both families is highly dependent on d_{max} , the ellipsoid span of the LaMO₃ compounds is not dependent on d_{max} , but instead on d_{min} . As such, we examine the relationship between C_Q and d_{min} for the LaMO₃ compounds (Figure 8). The fit of the relationship between C_Q and d_{min} is comparable in quality to the relationship between C_Q and d_{min} is comparable in quality to the relationship between d_{max} with an d_{max} of 0.06. While the d_{max} values of the LaMO₃ compounds cannot be explained solely by the shortest La-O bond lengths, they are much more dependent on this parameter than the non-LaMO₃ compounds. The differing influences of individual structural parameters also explains why the sphericity poorly relates to LaMO₃ d_{max} is strongly dependent on d_{max} , while the d_{max} values of LaMO₃ compounds are not dependent on d_{max} . We attribute the differences in the behaviour of the LaMO₃ and non-LaMO₃ compounds with regards to our model parameters primarily due to

structural differences between the two compounds. The shortest La-O bonds in the LaMO₃ compounds form either ideal or slightly distorted trigonal prisms, whereas this substructure is generally absent from the non-LaMO₃ coordination polyhedra. This substructure, when considered in the context of the remaining atoms in the coordination polyhedron, is difficult to fit with either a sphere or an ellipsoid, limiting the generalizability of our models.

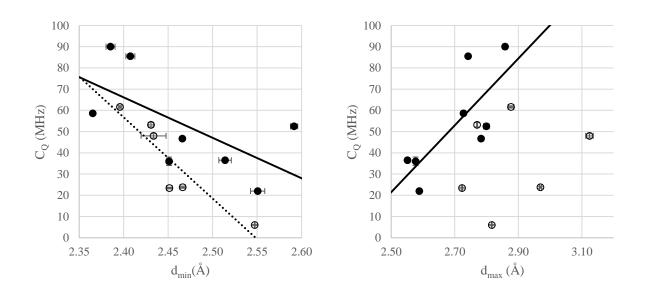
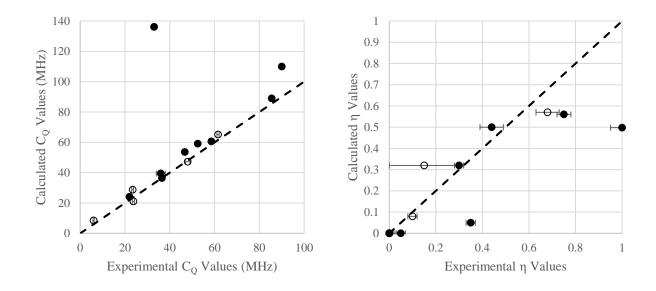


Figure 8. Relationship between minimum and maximum La-O bond lengths and experimental 139 La C_Q . Filled circles (•) indicate compounds of the non-LaMO₃ family, while open circles (○) indicate LaMO₃ compounds. Left: relationship between the shortest La-O bond length (d_{min}) and 139 La C_Q . The solid line indicates the relationship between d_{min} of the non-LaMO₃ compounds and C_Q , with $C_Q = -191 \frac{MHz}{Å} \cdot d_{min} + 523$ MHz ($R^2 = 0.41$), while the dotted line indicates the relationship between d_{min} of the LaMO₃ compounds and C_Q , with $C_Q = -382 \frac{MHz}{Å} \cdot d_{min} + 974$ ($R^2 = 0.84$). Right: relationship between the longest La-O bond length (d_{max}) and 139 La C_Q . The solid line indicates the relationship between d_{max} of the non-LaMO₃ compounds and C_Q , with $C_Q = 157 \frac{MHz}{Å} \cdot d_{max} - 372$ MHz ($R^2 = 0.58$). Error bars may be obscured by the datum symbol.

The most generally applicable distortion parameter is the ellipsoid span, adequately relating the C_Q to distortion for both the LaMO₃ and non-LaMO₃ compounds. The distortion of the non-LaMO₃ compounds is better described by the sphericity parameter. The C_Q values of both LaMO₃ and non-LaMO₃ compounds can be related to specific structural features. The C_Q of a given LaMO₃ compound is related to the length of the shortest La-O bond, while the C_Q of a given non-LaMO₃ compound is related to the difference between the average La-O bond length and the shortest La-O bond length.

DFT calculations


The quadrupolar coupling constants calculated with ABINIT generally show good agreement with those determined experimentally (Figure 9), with deviations typically less than either 15% or 3 MHz absolute, depending on the magnitude of C_Q . There are two notable exceptions to this trend: the calculated C_Q values of LaBSiO₅ and LaPO₄ · nH_2O are significantly greater than the experimental values, LaBSiO₅ by 22% (20.0 MHz) and LaPO₄ · nH_2O by 312% (103.2 MHz).

In both of these cases, the difference between experimental and ab initio results are largely attributed to errors in the experimental structure. An example of the sensitivity of C_Q to crystal structure is LaBO₃: calculations carried out on a different LaBO₃ structure⁴⁶ returned a C_Q of -84 MHz and η of 0.05, with only slight structural differences from the structure used in this study. The error in the calculated C_Q of LaPO₄ · nH₂O has two possible explanations: firstly, the structure used in our calculations does not account for the presence of interstitial water; secondly, as discussed above, there is some debate over the structure of rare earth phosphate hydrates. The C_Q

predicted by the sphericity of the lanthanum site in LaPO₄ \cdot nH₂O is 107.8 MHz, consistent with the ab initio results.

If the two results with the greatest absolute error (LaPO₄ \cdot nH₂O and LaBSiO₅) are excluded from the fit, the relationship between experimental and calculated C_Q is very nearly 1:1, with most computational values being slightly overestimated.

The calculations of the asymmetry parameter suffer the same problems as the calculations of the quadrupolar coupling constant: the values of η for LaPO₄ · nH₂O and LaBSiO₅ are extremely low as compared to experiment. The large deviation in η is also attributed to errors in the experimental geometry used for the DFT calculations. The values of η for the other systems that were studied are more reliable. Most are constrained to $\eta=0$ by symmetry, which is reflected by the DFT calculations. The few that are not constrained by symmetry generally have calculated values which are reasonably close to experiment.

Figure 9. Relationship between experimental and calculated ¹³⁹La C_Q values (left) and η values (right). Filled circles (●) indicate compounds of the non-LaMO₃ family, while open circles (○)

indicate LaMO₃ compounds. The dashed line indicates a 1:1 relationship between computational results and experimental results. Error bars may be obscured by the datum symbol.

Differences between LaMO₃ and non-LaMO₃ compounds

There are no obvious differences between the LaMO₃ and non-LaMO₃ compounds aside from their general formulae. The coordination numbers of the LaMO₃ compounds range from 8 to 12, and examples can be found in the non-LaMO₃ compounds which share the same coordination numbers. A mirror plane can be found in the lanthanum polyhedra of most, but not all, LaMO₃ compounds, and can also be found in non-LaMO₃ compounds. The presence of a threefold rotation axis is not a unifying factor, as some LaMO₃ compounds possess this symmetry element, while others do not. Given the complex relationship between the EFG and crystal structure, it is likely that there is no single distinguishing structural feature between the LaMO₃ and non-LaMO₃ compounds, but instead a combination of features.

Conclusions

In this work we relate two numerical measures of the distortion of coordination polyhedra from spherical symmetry to 139 La 139 La 139 La WCPMG NMR spectra of LaBO₃, LaPO₄ · 139 La BGeO₅, LaBSiO₅, La₂(SO₄)₃ · 9H₂O and La₂(CO₃)₃ · 8H₂O are reported for the first time, and used to supplement existing literature reports of 139 La NMR parameters in solid state oxide materials. When examining a broad range of compounds, we find that the behaviour of the

 139 La $^{\rm CQ}$ in response to deviations from spherical symmetry divides the examined materials into two families: compounds with the general formula LaMO3, and the rest. The ellipsoid span, ϵ , is effective in relating $^{\rm CQ}$ to polyhedral distortion for both families of compounds. Non-LaMO3 compounds are better described by the sphericity parameter Σ . Both families of compounds can be related to direct structural features, with the $^{\rm CQ}$ of LaMO3 compounds being strongly dependent on the shortest La-O bond length and non-LaMO3 compounds exhibiting a more complex relationship. Isotropic chemical shifts of the non-LaMO3 compounds are found to move to lower frequencies with higher coordination number, while there are insufficient data to draw a similar conclusion for the LaMO3 compounds. Ab initio calculations of EFG parameters provide values that generally agree with experiment, with the exceptions of LaBO3, LaBSiO5, and LaPO4 $^{\circ}$ $^{\circ}$ $^{\circ}$ $^{\circ}$ the failure of ab initio calculations to return values consistent with experiment is attributed to errors in the reported crystal structures.

Acknowledgements

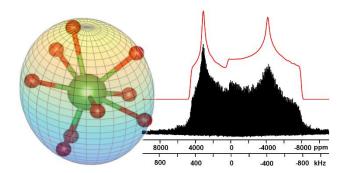
Financial support from the Natural Sciences and Engineering Research Council of Canada (Canada Grant Number RGPIN 261987) is gratefully acknowledged. We appreciate the assistance of Dr. M. Obrovac (TGA and XRD) and Dr. C. Romao (IVTON). This research was enabled in part due to support provided by WestGrid (www.westgrid.ca).

Supporting Information

PXRD and TGA data used for sample verification, specific computational parameters, verbose results and discussion, and additional graphs describing structure-distortion relations. This material is available free of charge via the Internet at http://pubs.acs.org.

References

- (1) Tliha, M.; Mathlouthi, H.; Lamloumi, J.; Percheron-Guegan, A. AB₅-Type Hydrogen Storage Alloy Used as Anodic Materials in Ni-MH Batteries. *J. Alloys Compd.* **2007**, *436*, 221–225.
- Gupta, P.; Jain, H.; Williams, D. B.; Kanert, O.; Kuechler, R. Structural Evolution of LaBGeO₅ Transparent Ferroelectric Nano-Composites. *J. Non. Cryst. Solids* **2004**, *349*, 291–298.
- (3) Kehoe, S.; Langman, M.; Werner-Zwanziger, U.; Abraham, R. J.; Boyd, D. Mixture Designs to Assess Composition-Structure-Property Relationships in SiO₂-CaO-ZnO-La₂O₃-TiO₂-MgO-SrO-Na₂O Glasses: Potential Materials for Embolization. *J. Biomater. Appl.* **2013**, 28, 416–433.
- (4) D'Haese, P. C.; Spasovski, G. B.; Sikole, A.; Hutchison, A.; Freemont, T. J.; Sulkova, S.; Swanepoel, C.; Pejanovic, S.; Djukanovic, L.; Balducci, A.; et al. A Multicenter Study on the Effects of Lanthanum Carbonate (Fosrenoltm) and Calcium Carbonate on Renal Bone Disease in Dialysis Patients. *Kidney Int.* **2003**, *63*, 73–78.
- (5) Dithmer, L.; Lipton, A. S.; Reitzel, K.; Warner, T. E.; Lundberg, D.; Nielsen, U. G. Characterization of Phosphate Sequestration by a Lanthanum Modified Bentonite Clay: A Solid-State NMR, EXAFS, and PXRD Study. *Environ. Sci. Technol.* **2015**, 150323063204005.
- (6) Pyykkö, P. Year-2008 Nuclear Quadrupole Moments. *Molecular Physics*. August 20, 2008, pp 1965–1974.
- (7) O'Dell, L. A.; Schurko, R. W. QCPMG Using Adiabatic Pulses for Faster Acquisition of Ultra-Wideline NMR Spectra. *Chem. Phys. Lett.* **2008**, *464*, 97–102.
- (8) Thompson, A. R.; Oldfield, E. Solid-State Scandium-45, Yttrium-89, and Lanthanum-139 Nuclear Magnetic Resonance Spectroscopy. *J. Chem. Soc. Chem. Commun.* **1987**, 27.
- (9) Dupree, R.; Lewis, M. H.; Smith, M. E. A High-Resolution NMR Study of the Lanthanum-Silicon-Aluminum-Oxygen-Nitrogen System. *J. Am. Chem. Soc.* **1989**, *111*, 5125–5132.
- (10) Bastow, T. J. 139La Nuclear Magnetic Resonance Characterisation of La₂O₃ and


- $La_{1-x}Sr_xMO_3$ Where M = Cr, Mn or Co. Solid State Nucl. Magn. Reson. **1994**, 3, 17–22.
- (11) Hamaed, H.; Lo, A. Y. H.; Lee, D. S.; Evans, W. J.; Schurko, R. W. Solid-State ¹³⁹La and ¹⁵N NMR Spectroscopy of Lanthanum-Containing Metallocenes. *J. Am. Chem. Soc.* **2006**, *128*, 12638–12639.
- (12) Ooms, K. J.; Feindel, K. W.; Willans, M. J.; Wasylishen, R. E.; Hanna, J. V; Pike, K. J.; Smith, M. E. Multiple-Magnetic Field ¹³⁹La NMR and Density Functional Theory Investigation of the Solid Lanthanum(III) Halides. *Solid State Nucl. Magn. Reson.* **2005**, 28, 125–134.
- (13) Willans, M. J.; Feindel, K. W.; Ooms, K. J.; Wasylishen, R. E. An Investigation of Lanthanum Coordination Compounds by Using Solid-State ¹³⁹La NMR Spectroscopy and Relativistic Density Functional Theory. *Chem. A Eur. J.* **2006**, *12*, 159–168.
- (14) Johnston, K. E.; Mitchell, M. R.; Blanc, F.; Lightfoot, P.; Ashbrook, S. E. Structural Study of La_{1-x}Y_xScO₃, Combining Neutron Diffraction, Solid-State NMR, and First-Principles DFT Calculations. *J. Phys. Chem. C* **2013**, *117*, 2252–2265.
- (15) Michaelis, V. K.; Kroeker, S. ⁷³Ge Solid-State NMR of Germanium Oxide Materials: Experimental and Theoretical Studies. *J. Phys. Chem. C* **2010**, *114*, 21736–21744.
- (16) Spencer, L.; Coomes, E.; Ye, E. Structural Analysis of Lanthanum-Containing Battery Materials Using ¹³⁹La Solid-State NMR. *Canadian Journal of Chemistry*. 2011, pp 1105–1117.
- (17) Herzfeld, J.; Berger, A. E. Sideband Intensities in NMR Spectra of Samples Spinning at the Magic Angle. *J. Chem. Phys.* **1980**, *73*, 6021.
- (18) Pan, C.; Lee, Y. J.; Ammundsen, B.; Grey, C. P. ⁶Li MAS NMR Studies of the Local Structure and Electrochemical Properties of Cr-Doped Lithium Manganese and Lithium Cobalt Oxide Cathode Materials for Lithium-Ion Batteries. *Chem. Mater.* **2002**, *14*, 2289–2299.
- (19) Balić Žunić, T.; Makovicky, E. Determination of the Centroid or 'the Best Centre' of a Coordination Polyhedron. *Acta Crystallogr. Sect. B Struct. Sci.* **1996**, *52*, 78–81.
- (20) Makovicky, E.; Balić-Žunić, T. New Measure of Distortion for Coordination Polyhedra. *Acta Crystallogr. Sect. B Struct. Sci.* **1998**, *54*, 766–773.

- (21) Marinkovic, B. A.; Ari, M.; de Avillez, R. R.; Rizzo, F.; Ferreira, F. F.; Miller, K. J.; Johnson, M. B.; White, M. A. Correlation between AO₆ Polyhedral Distortion and Negative Thermal Expansion in Orthorhombic Y₂Mo₃O₁₂ and Related Materials. *Chem. Mater.* **2009**, 21, 2886–2894.
- (22) Romao, C. P.; Perras, F. A.; Werner-Zwanziger, U.; Lussier, J. A.; Miller, K. J.; Calahoo, C. M.; Zwanziger, J. W.; Bieringer, M.; Marinkovic, B. A.; Bryce, D. L.; et al. Zero Thermal Expansion in ZrMgMo₃O₁₂: NMR Crystallography Reveals Origins of Thermoelastic Properties. *Chem. Mater.* **2015**, *27*, 2633–2646.
- (23) Balić Žunić, T.; Vicković, I. IVTON a Program for the Calculation of Geometrical Aspects of Crystal Structures and Some Crystal Chemical Applications. *J. Appl. Crystallogr.* **1996**, *29*, 305–306.
- (24) Kupce, E.; Freeman, R. Adiabatic Pulses for Wideband Inversion and Broadband Decoupling. *J. Magn. Reson. Ser. A* **1995**, *115*, 273–276.
- (25) Massiot, D.; Fayon, F.; Capron, M.; King, I.; Le Calvé, S.; Alonso, B.; Durand, J. O.; Bujoli, B.; Gan, Z.; Hoatson, G. Modelling One- and Two-Dimensional Solid-State NMR Spectra. *Magn. Reson. Chem.* **2002**, *40*, 70–76.
- (26) Eichele, K.; Wasylishen, R. E. WSolids1. Dalhousie University: Halifax 2009.
- (27) Perras, F. A.; Widdifield, C. M.; Bryce, D. L. QUEST—QUadrupolar Exact SofTware: A Fast Graphical Program for the Exact Simulation of NMR and NQR Spectra for Quadrupolar Nuclei. *Solid State Nucl. Magn. Reson.* **2012**, *45-46*, 36–44.
- (28) Gonze, X.; Amadon, B.; Anglade, P.-M.; Beuken, J.-M.; Bottin, F.; Boulanger, P.; Bruneval, F.; Caliste, D.; Caracas, R.; Côté, M.; et al. ABINIT: First-Principles Approach to Material and Nanosystem Properties. *Comput. Phys. Commun.* **2009**, *180*, 2582–2615.
- (29) Torrent, M.; Jollet, F.; Bottin, F.; Zérah, G.; Gonze, X. Implementation of the Projector Augmented-Wave Method in the ABINIT Code: Application to the Study of Iron under Pressure. *Comput. Mater. Sci.* **2008**, *42*, 337–351.
- (30) Marques, M. A. L.; Oliveira, M. J. T.; Burnus, T. Libxc: A Library of Exchange and Correlation Functionals for Density Functional Theory. *Comput. Phys. Commun.* **2012**, *183*, 2272–2281.

- (31) Zwanziger, J. W.; Torrent, M. First-Principles Calculation of Electric Field Gradients in Metals, Semiconductors, and Insulators. *Appl. Magn. Reson.* **2008**, *33*, 447–456.
- (32) Blöchl, P. Projector Augmented-Wave Method. Phys. Rev. B 1994, 50.
- (33) Jollet, F.; Torrent, M.; Holzwarth, N. Generation of Projector Augmented-Wave Atomic Data: A 71 Element Validated Table in the XML Format. *Comput. Phys. Commun.* **2014**.
- (34) Perdew, J.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. *Phys. Rev. Lett.* **1996**, 77, 3865–3868.
- (35) Belsky, A.; Hellenbrandt, M.; Karen, V. L.; Luksch, P. New Developments in the Inorganic Crystal Structure Database (ICSD): Accessibility in Support of Materials Research and Design. *Acta Crystallogr. Sect. B Struct. Sci.* **2002**, *58*, 364–369.
- (36) Furukawa, Y.; Okamura, I.; Kumagai, K.; Goto, T.; Fukase, T.; Taguchi, Y.; Tokura, Y. Electronic Correlations on the Verge of the Mott Transition in La_{1-x} Sr_xTiO₃ by ^{47/49}Ti and ¹³⁹La Nuclear Magnetic Resonance. *Phys. Rev. B* **1999**, *59*, 10550–10558.
- (37) McAndrew, J.; Scott, T. R. Stillwellite, a New Rare-Earth Mineral from Queensland. *Nature* **1955**, *176*, 509–510.
- (38) Sigaev, V. N.; Lotarev, S. V.; Orlova, E. V.; Golubev, N. V.; Koltashev, V. V.; Plotnichenko, V. G.; Komandin, G. A. Structure of Lanthanum-Borogermanate Glass with Stillwellite Composition according to Vibrational Spectroscopy Data. *Glas. Ceram.* **2010**, *67*, 105–108.
- (39) Sigaev, V.; Mamonov, A.; Pernice, P.; Aronne, A.; Stefanovich, S. Y.; Bush, A. Pyroelectric Composites Based on LaBSiO₅ Stillwellite. *Journal of the European Ceramic Society*. 2000, pp 1225–1229.
- (40) Juwhari, H. K.; White, W. B. Luminescence of Rare Earth Borosilicates with the Stillwellite and Related Structures. *Mater. Lett.* **2010**, *64*, 1751–1754.
- (41) Kratochvílová-Hrubá, I.; Gregora, I.; Pokorný, J.; Kamba, S.; Zikmund, Z.; Petzelt, J.; Čerňanský, M.; Studnička, V.; Sigaev, V. N.; Smelyanskaya, E. N. Vibrational Spectroscopy of LaBSiO₅ Glass and Glass-Crystal Composites. *J. Non. Cryst. Solids* **2001**, 290, 224–230.

- (42) Shaltaf, R.; Juwhari, H. K.; Hamad, B.; Khalifeh, J.; Rignanese, G.-M.; Gonze, X. Structural, Electronic, Vibrational, and Dielectric Properties of LaBGeO₅ from First Principles. *J. Appl. Phys.* **2014**, *115*, 074103.
- (43) Kaminskii, A. A.; Mill, B. V.; Belokoneva, E. L.; Butashin, A. V. Growth, Structure and Spectroscopy of Lanthanum Borogermanate Crystals LaBGeO₅. *Akad. Nauk SSSR*, *Ser. Neorg. Mater.* **1991**, *27*, 556.
- (44) Liferovich, R. P.; Mitchell, R. H. A Structural Study of Ternary Lanthanide Orthoscandate Perovskites. *J. Solid State Chem.* **2004**, *177*, 2188–2197.
- (45) J. Mason. Multinuclear NMR; Mason, J., Ed.; Springer US: Boston, MA, 1987.
- (46) Abdullaev, G. K.; Dzhafarov, G. G.; Mamedov, K. S. Crystal Structure of Lanthanum Orthoborate. *Azerbaidzhanskii Khimicheskii Zhurnal* **1976**, 117–120.

For Table of Contents Only

