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Abstract

This thesis aims to study the statin use patterns of the Nova Scotia seniors population

and the patients’ adherence to medication by applying a generalized linear mixed

effect model (abbreviated as GLMM).

Observations for a single subject will include the initial prescription and the

sequence of transitions. The data can be modeled as short binary series, with tran-

sition probabilities allowed to vary by subject. In this thesis, 10 sets of parameter

values were run and the results were compared using tables and box plots. Mean

Squared Error (MSE) and Estimated Bias (EB) are calculated to measure how close

the estimated parameters are to the true values. For each parameter set, 10 and 100

simulations were run. We can make the conclusion that the generalized linear mixed

effect model works well in the application of medication use patterns and the two

separate GLMM models make sense.
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Chapter 1

Introduction

1.1 Background on Statin Use

Cholesterol is essential chemical for animal life. It is required for the structural

integrity of animal cell membranes, and it is a precursor of the production of many

other molecules with important biological functions, including hormones, vitamin D,

and bile acids.

About half of the body’s cholesterol is synthesized from other building blocks,

with about 10% of the daily production originating in the liver and another 15% in

the intestines. (http://themedicalbiochemistrypage.org/cholesterol.php).

Most of the cholesterol transport in the body is via lipoproteins, which are com-

plexes of lipids, including cholesterol, and proteins. The liver is the site of much

of lipoprotein metabolism. Among other things, the liver packages cholesterol with

protein forming low density lipoprotein (LDL), which is the primarly vehicle for

transporting cholesterol to other areas of the body. At other locations throughout

the body, excess cholesterol is packaged with proteins to form high density lipopro-

tein (HDL), which is transported to the liver, where the cholesterol is removed from

circulation.

While cholesterol is essential for many biological functions, too much cholesterol

is problematic, often leading to atheroslerosis, a buildup of cholesterol and other

deposits within the artery wall, leading to reduced blood flow, and possibly serious

complications such as heart disease or stroke.

LDL, as the vehicle which transports cholesterol from the liver to other areas

of the body, is often referred to as “bad cholesterol”, while HDL, the means of

cholesterol transport away from cells, for recycling in the liver, is known as “good

cholesterol”.

Too high of a concentration of “bad cholesterol” is a primary risk factor for cardio-

vasular disease, and medication is commonly prescribed to lower the concentration of

1
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LDL. Recent Canadian guidelines for the diagnosis and treatment of lipid imbalance

as it pertains to cardiovascular disease are presented by Anderson (et al) [1].

Statins are a class of drugs used to lower LDL cholesterol levels by inhibiting

the enzyme HMG-CoA reductase, which plays a central role in the production of

cholesterol in the liver (https://en.wikipedia.org/wiki/Statin). As high LDL choles-

terol levels have been associated with cardiovascular disease, statin medications are

prescribed for primary prevention and secondary prevention of heart disease.

As with many pharmaceuticals, there are many possible side effects associated

with statin use, some minor and some serious, including muscle pain and damage,

liver damage, neurological effects, and increased risk of type 2 diabetes (http://

www.mayoclinic.org/ statin-side-effects/ art-20046013). Some of the adverse events

occur with high frequency. For example, muscle adverse effects occurring in up to

thirty percent of patients. In Canada, there are currently 6 statins on the market.

They are atorvastatin, rosuvastatin, simvastatin, fluvastatin, lovastatin and pravas-

tatin (cervistatin was removed from the market). The statins vary on their effect on

low density lipoproteins, pharmacokinetic properties (the type of liver metabolizing

enzyme, the percentage of renal excretion, and the half-life) as well as lipophilicity

and adverse event profile.

The frequency with which statins are prescribed is due to both the prevalence of

cardivascular disease, high degree of efficacy of statins in reducing cardiovascular risk,

primarily through reduction in LDL cholesterol. Atorvistatin, the most commonly

prescribed statin, is, in fact, the most widely prescribed pharmaceutial in history.

Experience is that individuals who are prescribed statins are rarely completely

taken off the drugs by a physician’s recommendation, and statin therapy is generally

“for life” (http://www.nhs.uk/ conditions/ Cholesterol-lowering-medicines-statins/

Pages/ Introduction.aspx). However, in addition to statin use, there are other means

to reduce LDL concentration, including exercise, weight loss, and dietary changes,

and once LDL concentration has been reduced to low levels, then continued use at

high dosage may present an unnecessary risk of adverse events. On the other hand

if low dosage statin use is unsuccessful at controlling LDL level, then an increase

in dosage and/or a change in statin type may be recommended. Thus statin usage

patterns are of interest.
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In [20], the various medication use patterns were investigated in the study, includ-

ing discontinuation, restart, switch and adherence. Patients with discontinuation or

nonpersistency to index medication were defined as having a gap of at least 60 days

for the index medication or at least 60 days without medication before the last day of

the study period for that patient. Restart was defined as the patients who refilled the

index medication following discontinuation. ”Switch without gap” categorized pa-

tients that overlapped or initiated a new medication within 60 days of the last index

drug filled. ”Switch with gap” was defined as initiating the new medication at least

60 days after the discontinuation of the index medication. Medication adherence

was indicated by medication possession ratio (MPR) or proportion of days covered

(PDC). The MPR was calculated as the total number of days of index medication

supplied divided by the number of days in the specified time interval (360 days).

The PDC was calculated as the number of days with any drug on hand divided by

the number of days in the specified time interval (360 days).

Statins are classfied as high potency vs low potency. Physicians choose to pre-

scribe a particular statin taking into account patient characteristics, disease severity

and comorbidities, cost, clinical practice guidelines and other factors. Physicians

may prescribe a switch to another drug of higher potency or higher dose if target

LDL level is not met or switch to a lower potency or lower dose to avoid adverse

outcomes (e.g. myopathy). A switch to a more hydrophilic statin (rosuvastatin,

pravastatin) or of lower potency (e.g. fluvastatin) for patients with adverse effects

may be useful.

1.2 Background of CNODES project

CNODES is the Canadian Network for Observational Drug Effect Studies. It is

part of the Drug Safety and Effectiveness Network (DSEN), a joint initiative of

Health Canada and the Canadian Institutes of Health Research. The principal aim

of CNODES is to use collaborative, population-based approaches to obtain rapid

answers to questions about drug safety and effectiveness.

The research of this thesis was partially funded by a grant from CNODES, with

aim of studying statin use patterns of the Nova Scotia seniors population, to deter-

mine if there are opportunities to improve the benefit/risk profile of prescribing at
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the population level, and the identification of factors which might improve patient

adherence.

The statistical methodology used in this thesis is the generalized linear mixed

effect model (abbreviated as GLMM).

Bhat et al [2] used logistic regression to study statin use, with a goal of indenti-

fying the relationship between gender and statin use. Among 5,508 elderly, 47.2% of

the women and 55.5% of the men reported any statin use in 2005, which indicates

women were less likely than men to report any use of statins. Less than one third of

the total gender difference in statin use was attributed to individual level variables

such as demographics, economic status, etc.

The database for this CNODES project includes information for Nova Scotia

Seniors above age 65 who are Pharmacare beneficiaries and have been prescribed

statins. The study population will include patients 66 years and older who received

at least one new dispensing of an eligible statin medication between April 1, 2002

and March 31, 2013. The CNODES funded analysis will be stratified by high and

low dose statins, where high dose statins are defined as those which are estimated to

reduce LDL cholesterol by ≥2 mmol/l on average (≥ 40% LDL reduction). Those

high dose statins are rosuvastatin ≥ 10mg, atorvastatin ≥ 20mg, and simvastatin

≥ 40mg. Lower dose statins will be defined as those which are estimated to reduce

LDL cholesterol by < 2mmol/l on average (< 40% LDL reduction).Those statins

were rosuvastatin ≤ 5mg, atorvastatin < 20mg, all doses of pravastatin, all doses of

fluvastatin, and simvastatin < 40mg.

After classifying statin dosage as high or low intensity, a patient’s statin usage

pattern forms a binary sequence beginning with 1 where the initial prescription was

high intensity, otherwise 0. In this thesis a generalized linear mixed model is proposed

for the analysis of the statin use pattern, with variation among patients accomodated

through the introduction of random effect terms.

Due to the confidentiality issues with the CNODES data, the analysis here is

based on simulated data, with the simulation set to mimic some descriptive statistics

of the CNODES data.

The layout of the remainder of this thesis is as follows. Chapter 2 provides a

summary of the generalized linear model and statistical methodology, and a brief
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introduction to the generalized mixed effect model. In chapter 3 the proposed mixed

effect model is described, together with the associated likelihood, and a brief dis-

cussion of methods to maximize the likelihood. A small simulation study is carried

out to assess the potential to precisely estimate model parameters using the approx-

imate quantity of data available to the CNODES study. Chapter 4 provides some

brief discussions about future work.



Chapter 2

Method

2.1 Linear Models

The standard linear regression models are designed to model the relationship between

a continuous variable y and p explanatory variables x1, . . . xp. Denote yi the ith

observation of the response variable and xi = (xi1, . . . , xip)
T the vector of associated

explanatory variables. The standard linear regression models can be specified as

yi = xT
i β + εi (2.1)

with i = 1, . . . , n. Using matrix notations, the standard linear regression can be

equivalently defined as

Y = Xβ + ε (2.2)

where

Y =









y1

...

yn









,X =















x11 . . . x1p

x21 . . . x2p

. . .

xn1 . . . xnp















, ε =









ε1

...

εn









∼ N(0,R)

The coefficient vector β is assumed to be a fixed quantity rather than a random

variable, so linear regression can be seen as a special case of fixed effect models.

Another assumption of OLS is that yi are independently sampled from a normal

distribution with constant variance. This implies the variance-covariance matrix R

is constant diagonal matrix.

R =















σ2

σ2

. . .

σ2















= σ2I

6



7

2.2 Generalized Linear Models

The basic framework of generalized linear model was first laid out by Nelder and

Wedderburn in [16]. In their original work, linear regression was extended to model

data where the distribution of response variables belongs to the exponential family.

Many distributions commonly used in practice, such as Normal, Binomial and Pois-

son, are special cases of the exponential family. Their work was further extended

by Wedderburn in [18] to incorporate a much wider class of distributions beyond

the exponential family. Their idea was to use the quasi-likelihood instead of the

log-likelihood in model estimation. Unlike the log-likelihood function which requires

a fully specified distribution, the quasi-likelihood only requires a specification of the

relationship between mean and variance through a variance function. This allows

a more flexible modeling of the data which exhibits a greater or smaller variabil-

ity than expected under a known distributinon. This is called overdispersion and

underdispersion respectively.

2.2.1 Model Specification

The basic formulation of the Generalized Linear Model (GLM) consists of the fol-

lowing components:

• Distribution: The distribution of response variable y belongs to the exponential

family.

• Link function and linear predictor: The expectation of response y is associated

with a linear predictor η = Xβ via

η = g(µ) = Xβ

where g(·) is called the link function and µ = E(y).

Distribution

The probability density functions in the exponential family share the same format:

f (y; θ) = h(y) exp (s(θ)′ · T (y) − A(θ)) (2.3)

where
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• θ is the parameter of interest and is sometimes referred to as the mean param-

eter (which is not necessarily the mean).

• T (y) is a sufficient statistic of the distribution.

• A(θ) is called the log-partition function, which is a normalization term so that

f (y; θ) is a valid density.

• h(y) is called the base measure.

Sometimes, it is useful to reparameterize the density by letting θ = s(θ) and we

arrive to an equivalent density

(y; θ) = h(y) exp (θ′ · T (y) − B(θ)) (2.4)

The distributions specified in the format of (2.4) are said to be in canonical form.

θ is called the canonical parameter or natural parameter. A lot of distributions

commonly used in practice belong to the exponential family, such as normal, Poisson

and exponential etc.

Equations (2.3) and (2.4), provide a very general definition of the exponential

family. If the parameter θ is a s-dimensional vector, the associated distribution is

said to belong to s-dimensional exponential family. In the context of GLM, we will

focus on 1 and 2-dimensional exponential families. Using the same formulation as in

[15], it is more intuitive and convenient to write the density as

(y; θ, φ) = exp

(

yθ − b(θ)

a(φ)
+ c(y, φ)

)

(2.5)

where a, b and c are unknown functions. If φ is given, (2.5) reduces to 1-dimensional

exponential family with natural parameter θ. If φ is unknown, (2.5) is generally

not an exponential family distribution. However, when c(y, φ) = d(y) + e(φ), (2.5)

defines an exponential model, which includes normal, inverse normal and gamma as

special cases.

The mean and variance of the exponential family can be shown to be

E(y) = b′(θ) and V(y) = b′′(θ)a(φ) (2.6)

where θ is the (canonical) location parameter and φ is the scale or dispersion pa-

rameter. In most cases, a(φ) will simply be φ and we have

E(y) = b′(θ) and V(y) = φb′′(θ)
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Link

The link function defines the relationship between µ and the systematic components

Xβ as

g(µ) = Xβ (2.7)

Note the right hand side of equation (2.7), the systematic components Xβ can po-

tentially take on any real values due to its linear form. The necessity of link function

is not so obvious in OLS, in which µ ranges in (−∞,∞). We can thus directly model

µ with an identity link function, where both sides of (2.7) have the same support.

However for counting data e.g a Poisson distribution, µ is always positive and one

needs to find an appropriate link function g(·) such that g(µ) ranges in (−∞,∞).

One choice is to use g(µ) = log µ. Another attractiveness of the log link is to enable

a multiplicative effect on µ, which is often observed in counting data.

It should be noted that the link function is not unique. Different link functions

will result in different results and interpretations. The choice of a particular link

function often depends on the data and the scientific question to be answered. There

is no prior reason to prefer a canonical link function over the others.

2.2.2 Effect Estimation

Given n observations y = (y1, . . . yn)′ from an exponential family distribution, the

loglikelihood can be shown to be equal to

l (θ) = y′Aθ − 1′Ab(θ) + c(y, φ) (2.8)

where A = diag[1/a(φi)] and the goal is to make inference on β. Note that the

term c(y, φ) in (2.8) doesn’t involve β. Although a fully specified model requires

c(y, φ), it is not used in the inference of β. The specification of yθ−b(θ)
a(φ)

is sufficient,

which is closely related to the mean and variance (2.6). This observation motivated

the theory of quasi-likelihood, in which Wedderburn showed the statistical inference

of GLM for exponential family remains valid when only the first two moments are

specified.

The MLE of (2.8) is commonly solved by iteratively reweighted least squares
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methods, using either Newton-Raphson or Fisher scoring. The basic idea is to ap-

proximate the full likelihood using the 2nd order Taylor series expansion:

l (θ) ≈ l
(

θ̂
)

+
∂l(θ)

∂θ

∣

∣

∣

∣

′

θ=θ̂

(

θ − θ̂
)

+
1

2

(

θ − θ̂
)

′ ∂2l(θ)

∂θ∂θ′

∣

∣

∣

∣

θ=θ̂

(

θ − θ̂
)

Let S = ∂l(θ)
∂θ

be the score function and H = ∂2l(θ)
∂θ∂θ

′ be the Hessian matrix. We

can re-write the above equation as

l (θ) ≈ l
(

θ̂
)

+ S(θ̂)′
(

θ − θ̂
)

+
1

2

(

θ − θ̂
)

′

H(θ̂)
(

θ − θ̂
)

Letting ∂l (θ) /∂θ = 0 gives

θ = θ̂ − S(θ̂)′H(θ̂)−1 (2.9)

which is the basic form of Newton-Raphson method. The Fisher scoring algorithm

replaces the Hessian matrix by its expectation, called information matrix

I(θ) = E [−H(θ)] = Var[s(θ)]

2.3 Linear Mixed Effect Models

2.3.1 Model Specification

Linear mixed effect models (LMM) extend the standard linear regression models in

two important ways. First, LMM introduce another type of effects b and assume

b is sampled from a normal distribution rather than being constant. Furthermore,

LMM releases the constraint of i.i.d. sampling and allows yi to be correlated.

Linear mixed effect models can be formally defined as

y = Xβ + Zb + ε (2.10)

where b ∼ N(0,G) and ε ∼ N(0,R). The covariance matrix V of Y is then

V = ZGZ′ + R.

Note V is expressed as a linear combination of G and R. It is possible to find

two different pairs of G and R to derive the same V. In other words, LMM are

over-parameterized and there is potentially a model identification problem.
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The unknown parameters in the linear mixed effect model (2.10) include fixed

effect β, random effect b, variance components V. Note the maximal possible num-

ber of parameters allowed in V is q(q+1)
2

+ n(n+1)
2

, where q is the number of random

effects. In practice, V often only depends on a few parameters θ.

Although the joint likelihood of (β,b,G,R) has a straightforward expression,

the simultaneous estimation of all unknown parameters is often too difficult to be

practical. Instead, parameters are split into two groups: the effects (β,b) and the

covariance components (G,R). At each step, the estimation is performed separately

on each group (conditional on the values from the other group). The estimated

parameters are then used for the inference in the other group. The whole estimation

is iteratively performed until convergence.

In the following, we will describe methods for estimating (β,b) and (G,R).

2.3.2 Effect Estimation

The standard method to estimate (β,b) is to solve a set of mixed model equations,

as proposed by C.R Henderson [8, 10]. First, note the joint distribution of b and ε

is normal with mean 0 and covariance matrix

J =

(

G 0

0 R

)

The likelihood is defined as

L(β,b) = (2π)−
n+q

2 |J|−
1

2 exp−
1

2

(

[b′, ε′]J−1

[

b

ε

])

(2.11)

Here we assume G and R are given. Maximization of (2.11) is equivalent to mini-

mizing its exponent

C = [b′, ε′]J−1

[

b

ε

]

= [b′, ε′]

(

G−1 0

0 R−1

)[

b

ε

]

= b′G−1b + ε′R−1ε

= b′G−1b + (y − Xβ − Zb)′R−1(y − Xβ − Zb)
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In order to find the minimizer of C, we need to solve the following two equations:

∂C

∂β
= 0

⇐⇒ 2X′R−1 (y − Xβ − Zb) = 0

⇐⇒ X′R−1Xβ + X′R−1Zb = X′R−1y

and

∂C

∂b
= 0

⇐⇒ 2G−1b − 2Z′R−1 (y − Xβ − Zb) = 0

⇐⇒ Z′R−1Xβ +
(

Z′R−1Z + G−1
)

b = Z′R−1y

Re-arranging the above two equations in matrix form leads to the mixed model equa-

tions :
[

X′R−1X X′R−1Z

Z′R−1X Z′R−1Z + G−1

][

β

b

]

=

[

X′R−1y

Z′R−1y

]

(2.12)

The solution of (2.12) is

[

β̂

b̂

]

=





(

X′V−1X
)

−1
X′V−1y

GZ′V−1
(

y − X
(

X′V−1X
)

−1
X′V−1y

)



 (2.13)

where β̂ and b̂ were shown [9] to be BLUE (Best Linear Unbiased Estimate) and

BLUP (Best Linear Unbiased Predictor). Note β̂ and b̂ are obtained assuming G

and R are known. In practise, they are often replaced with Ĝ and R̂ which are the

estimated covariance matrices from data. In this case, β̂ and b̂ are called EBLUE

(Estimated Best Linear Unbiased Estimator) and EBLUP (Estimated Best Linear

Unbiased Predictor).

2.3.3 Covariance Components Estimation

Different methods have been proposed to estimate covariance components V(θ),

including ML (Maximum Likelihood), REML(Residual/restricted Maximum Like-

lihood), MIVQUE(minimum variance quadratic unbiased estimation) etc. Among

them, the REML approach is arguably the best. In this section, we will review

methods based on ML and REML.



13

The likelihood can be obtained directly from (2.10) using the fact that y follows a

normal distribution with covariance V(θ). Here we write θ in parentheses following

V to emphasize the dependence of V on θ.

Instead of maximizing the likelihood directly, in practice the -2 log likelihood

−2l (θ) = log |V(θ)| +
(

y − Xβ̂
)

′

V(θ)−1
(

y − Xβ̂
)

(2.14)

is minimized where β̂ is estimated from (2.13).

Maximum likelihood estimator has several nice limiting statistical properties,

such as consistency and asymptotic normality as sample size increases to infinity.

However, it is well known that MLE can yield biased estimate in certain cases. As

a simple example, suppose we have n observations y1, . . . , yn sampled from a normal

distribution N (µ, σ2) with both µ and σ2 unknown.

It can be shown that the maximum likelihood estimators are

µ̂ =

∑n

i=1 yn

n

σ̂2 =

∑n

i=1 (yi − µ̂)2

n

with

E(µ̂) = µ

E(σ̂2) =
n − 1

n
σ2

In this case, σ̂2 underestimates σ2 on average and the biasedness vanishes as sample

size increases.

The reason of biasedness is transparent by noticing µ̂ is used in replacement of

true mean µ in σ̂2. If µ is known, σ̂2 becomes
∑n

i=1 (yi − µ)2 /n with E(σ̂2|µ) = σ2.

In other words, the biasness comes from using µ̂2 as the true mean and treating it

as a constant without accounting for randomness in σ̂2. Since µ̂ is calculated from

the data, it is a better representation of the sample than µ in such a way that the

total deviation of sampled observations from the mean is minimal. This is why σ̂2

in general underestimates σ2.

The biasedness of MLE is ignorable with a relatively large sample size but be-

comes troublesome in small samples. REML (Restricted/Residual Maximum Like-

lihood) was designed to remedy this challenge. Instead of working on the log like-

lihood of y ∼ N(Xβ,V(θ)) directly, REML finds a transformation matrix K such
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that E(K′y) = 0 and K′y ∼ N(0,K′V(θ)K). Let VR = K′V(θ)K and the -2 log

likelihood of K′y is

−2lR (θ) = log |VR(θ)| + y′KVR(θ)−1K′y (2.15)

which removes the fixed effects β from its expression and the MLE of (2.15) becomes

unbiased. Harville [7] suggested using the n − p linearly independently rows of

M = I − X(X′X)1X′ as K′, where p is the rank of X. The -2 log likelihood can be

simplied as

−2lR (θ) = log |V(θ)| + log
∣

∣X′V(θ)−1X
∣

∣+ r′V(θ)−1r (2.16)

where r = y − Xβ̂ is the residual.

In practice, the inference of linear mixed effects models is performed iteratively

by minimizing REML (2.16) using the Newton-Raphson algorithm and solving for

the fixed effects from (2.13). Lindstrom and Bates [13] provided good explanations

for preferring Newton-Raphson to EM based approaches [6, 12].

2.4 Generalized Linear Mixed Effect Models

2.4.1 Model Specification

Generalized Linear Mixed Effect Models (GLMM) can be considered as a hybrid of

GLM and LMM and their definition is a straightforward extension of the GLM.

g (E[y|b]) = η = Xβ + Zb (2.17)

with

b ∼ N(0,G).

The conditional distribution of y|b belongs to the exponential family and g is the

link function. Conditional on the random effects, GLMM is essentially the same as

GLM, but the GLMM is typically much more difficult to deal with computationally

due to the random effects.

The GLMM used to model the statin switching data is described in detail in the

following chapter.
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2.4.2 Parameter Estimation

The likelihood of a GLMM is

L(θ) =

∫

b

f(y|b)f(b)db (2.18)

When both random effects and the conditional distribution of y|b are normal, the

marginal distribution is normal and (2.17) reduces to a linear mixed model. When

the conditional distribution of y|b is not normal, the marginal distribution generally

doesn’t have a closed form and statistical inference can be challenging. The difficulty

is that the integral in (2.18) must be approximated.

The commonly used inference methods for GLMM fall into two categories. One

group of methods are based on linearization of the mean function, which approximate

g−1(Xβ + Zb) as a linear function of β and b using a Taylor series expansion. The

standard estimation method for linear mixed models can then be applied to solve

for β. The most well known linearization methods include penalized quasi-likelihood

(PQL) [4] and pseudo-likelihood (PL) or restricted pseudo-likelihood [19]. However,

it has been shown that these two methods can produce significant bias for binomial

GLMM estimates when the number of observations within each cluster is small [5].

The second type of methods directly optimize the likelihood (2.18) using numer-

ical integration techniques such as adaptive Gauss quandrature [17], Monte Carlo

integration or the EM algorithm [6, 3]. These methods are typically computationally

expensive.

2.5 Software Implementation

In SAS, the glimmix procedure can be used to fit GLMMs, and several estimation

methods are implemented including an adaptive Gauss-Hermite quadrature, Laplace

approximation, residual likelihood or a maximum likelihood based pseudo-likelihood

techniques.

Several R functions can be used to fit GLMMs, including nlme() in the nlme

package and glmer() in the lme4 package. Both functions are mainly based on

Laplace approximation for parameter estimation, with options to use penalized it-

eratively reweighted least squares or adaptive Gauss-Hermite quadrature in certain

simple cases.
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In this thesis we have used the glmer() function in the R lme4 package, with

default settings, in which the Laplace approximation to the integral is maximized.

Kim et al [11] provides a review of methods for approximating the marginal

likelhood of a GLMM, including a simulation study to assess the performance of

different methods, with a focus on the logistic GLMM. Their conclusion is that SAS

GLIMMIX Laplace and SuperMix Gaussian quadrature perform the best among

selected packages, including SAS NLMIXED, R lme4, Stata xtmelogit, etc.



Chapter 3

Simulation results

In this chapter a simulation study is carried out to assess the potential to estimate

the parameters of a switching model for statin usage.

Due to the confidentiality of the CNODES data, simulated data are used, with

the hope that the simulated data will mimic some aspects of the CNODES data.

In these data, switches from low to high or high to low intensity statins are rare

events. For the simulation, we have assumed here that probabilities of the four

transitions (low to low, low to high, high to low and high to high) are, respectively,

.763, .014, .01, and .213, which are representative probabilities. The vast majority of

transitions are to the same state (high to high or low to low), with only 2.4% being

state switches. We have assumed that the number of switches for a subject follows

a discretised version of a gamma distribution with mean 50 and standard deviation

9. On average 2.4% of transitions will be from low to high or high to low, so on

average, a subject will experience just over 1 switch from low to high or high to low.

The 99’th percentile of the gamma distribution is slightly larger than 70, so about

1/100 subjects for whom data are simulated will have 70 or more transitions, with

on average, just under 1.7 state changes.

3.1 A generalized linear mixed effect model for statin switching

Observations for a single subject will include the initial prescription, and the sequence

of transitions. The state is a binary variable, with 0 indicative of low potency and 1

indicative of high potency, so the data can be modeled as short binary time series.

To reflect differences among patients, the transition probabilities are allowed to vary

by subject.

Let Zi denote the prescriber covariates of the physician who prescribed the index

statin for subject i, Xi denote covariates associated with the switching probabilities

for the i’th subject, and τi = (τi0, τi1) are a pair of random effects for subject i.

17
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Where 1 indicates a high potency statin and 0 indicates a low potency statin, it is

assumed that Yi,1 the index prescription for subject i depends only on the prescriber

characteristics, but not the patient characteristics, and has a Bernoulli distribution

with

P (Yi,1 = 1|Zi, Xi, τi) =
eα+Z′

iγ

1 + eα+Z′

iγ
(3.1)

or equivalently

logit(P (Yi,1 = 1|Zi, Xi, τi)) = α + Z ′

iγ (3.2)

The four transition probabilities are denoted as P00 (from low to low), P01 (from

low to high), P11 (from high to high) and P10 (from high to low). We assume two

random effects, with the τ1 a random effect associated with transitions from high

intensity to low intensity, and τ0 a random effect associated with transistions from

low to high intensity. Where Xi is the fixed effect covariate vector for subject i and

τi1 and τi0 are the random effects for subject i, we assume that

pi00 =
exp(µ0 + Xiβ0 + τi0)

1 + exp(µ0 + Xiβ0 + τi0)
(3.3)

pi01 =
1

1 + exp(µ0 + Xiβ0 + τi0)
(3.4)

pi11 =
exp(µ1 + Xiβ1 + τi1)

1 + exp(µ1 + Xiβ1 + τi1)
(3.5)

pi10 =
1

1 + exp(µ1 + Xiβ1 + τi1)
(3.6)

Let Yij be the j’th observation for subject i, which is either 0 (low potency), or

1 (high potency). If subject i has ni measurements including the index prescrip-

tion, then under an assumption of conditional independence, and assuming that the

fixed effect covariates Zi are associated only with the physician making the index

prescription, and that the fixed effects Xi and that the random effects τi = (τi0, τi1)

are associated only with the transitions, the joint probability of Yi1, Yi2, . . . , Yi,ni
is

given by

P (Yi1, Yi2, . . . , Yi,ni
|Zi, Xi, τi) = P (Yi,ni

|Yi,ni−1
, Xi, τi)P (Yi,ni−1

|Yi,ni−2
, Xi, τi)

. . . P (Yi,3|Yi,2, Xi, τi)P (Yi,2|Yi,1, Xi, τi)P (Yi,1|Zi) (3.7)
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Here the Markov property has been assumed, whereby future states depend only

on the current state and not on the sequence of events that precede it. Where nijk

denotes the number of transitions from state j to state k for individual i, and pijk

be the probability of transitions from state j to state k for the individual i, as given

in (3.3 - 3.6), the conditional likelihood for subject i is

P (Yi1, Yi2, . . . , Yi,ni
|Zi, Xi, τi) = P (Yi,1|Zi)

1
∏

j=0

1
∏

k=0

p
nijk

ijk (3.8)

The conditional likelihood over all the I individuals factors into two pieces (the

initial prescription and the transitions) as follows (3.9). It is clear that the nijk are

sufficient statistics for the transition model parameters. So the data storage required

for the simulation study might be substantially reduced by retaining only the 4 values

for each subject.

P (Y1, Y2, . . . , Yn|Z,X, τ) =
I
∏

i=1

P (Yi,1|Zi)
I
∏

i=1

1
∏

j=0

1
∏

k=0

p
nijk

ijk (3.9)

The unconditional likelihood is the integral of the conditional likelihood above

(3.9) with respect to the random subject effects, so it includes a 2I dimensional

integral. Because the initial prescriber characteristics do not depend on the subject

effects, the piece
∏I

i=1 P (Yi,1|Zi) factors out of the integral, and the unconditional

likelihood is as follows:

P (Y |X, Z) =
I
∏

i=1

p(Yi,1|Zi)

∫

· · ·

∫

i=τ1,...,τI

I
∏

i=1

1
∏

j=0

1
∏

k=0

p
nijk

ijk · f(τ)dτ

=
I
∏

i=1

p(Yi,1|Zi)

∫

τ10

pn100

100 · pn101

101 · f(τ10)dτ10

∫

τ11

pn110

110 · pn111

111 · f(τ11)dτ11

. . .

∫

τI0

pnI00

I00 · pnI01

I01 · f(τI0)dτI0

∫

τI1

pnI10

I10 · pnI11

I11 · f(τI1)dτI1
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Substituting P00, P01, P10, P11 above with the equations of the transition proba-

bilities (3.3–3.6), we get:

P (Y |X, Z) =
I
∏

i=1

P (Yi,1|Zi)·

∫

τ10

[

exp(µ0 + X1β0 + τ10)

1 + exp(µ0 + X1β0 + τ10)

]n100

·

[

1

1 + exp(µ0 + X1β0 + τ10)

]n101

· f(τ10)dτ10

·

∫

τ11

[

exp(µ1 + X1β1 + τ11)

1 + exp(µ1 + X1β1 + τ11)

]n110

·

[

1

1 + exp(µ1 + X1β1 + τ11)

]n111

· f(τ11)dτ11

. . .
∫

τI0

[

exp(µ0 + XIβ0 + τI0)

1 + exp(µ0 + XIβ0 + τI0)

]nI00

·

[

1

1 + exp(µ0 + XIβ0 + τI0)

]nI01

· f(τI0)dτI0

·

∫

τI1

[

exp(µ1 + XIβ1 + τI1)

1 + exp(µ1 + XIβ1 + τI1)

]nI10

·

[

1

1 + exp(µ1 + XIβ1 + τI1)

]nI11

· f(τI1)dτI1

There are multiple procedures available for fitting GLMM in R. One popular

package is lme4, which implements the Gauss-Hermite quadrature to approximate

the log-likelihood using numerical integration. The default setting is Laplace ap-

proximation when only one quadrature point is used. Another available package is

ZELIG, and the third option is the glmmML package. This thesis used the lme4

pacakge to fit the GLMM model.

3.2 A simulation study

The R statistical package is used for the simulation, and the code is attached in the

appendix A. In the simulation, the initial prescribing state (whether a patient starts

with low or high potency) is assumed to follow a Bernoulli distribution.

In terms of the associated random subject effect, the same subject could have

different subject effects for switches from high potency drugs and switches from low

potency drugs. Our notation is that τi0 indicates the random effect for subject i

when switching from low potency drugs, and τi1 is the random effect for subject i

when switching from high potency drugs. The random effects are assumed to be

i.i.d. according to normal distributions with means 0 and standard deviations στ0

and στ1 . As above, the fixed effect regression coefficients associated with switches
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are different between the groups of starting from state 0 and state 1. They are β0

and β1 respectively.

The literature [2] suggests that gender is an important fixed effect for the switch-

ing distribution. In the simulation we have used gender as the only fixed effect

covariate X, and we have assumed P(male)=.52, P(female)=.48, based on the CN-

ODES data.

The simulation code is included in the Appendix. The ”Functions” module gener-

ates the output as potency of statins, gender, transition probablity from 0, transition

probability from 1 and subject effect. The output produced by the ”Functions” mod-

ule is used as input to the ”GLMM-batch” module. The code is written in the way

that parameter values can be read from an Excel spreadsheet, so a user can have the

great flexibility to control the number and values of parameter sets.

In this thesis, 10 different sets of parameters were run. The simulation is computer

intensive, and because of this, data were generated for only 100 subjects. Two sets

of results are presented, one with simulation batch size 100, and a second with

simulation batch size of 10, with the intent to show the convergence of estimates

with increasing batch size. As mentioned above, on average 2.4% of transitions will

be from low to high or high to low, and on average a subject will experience just

over 1 switch from low to high or high to low.

The simulation study used 10 sets of parameter values as listed in Table 3.1.

For each simulation batch and each parameter configuration, data for 100 subjects

was simulated, and parameters were estimated using the glmer function in the R

library lme4, using default settings for glmer. For a given parameter configuration,

one simulated data set consists of 100 subjects, with on average, 50 observations per

subject, or 5000 generated data points. The resulting computational requirements

are fairly substantial, both in terms of data storage and cpu usage, and for this

reason, the number of simulation batches was kept moderately small, at 100.

The simulation parameters are P (male) = P (Xi = 1), µ0 and β0 - the fixed effect

parameters associated with transitions from state 0, σ2
τ0

- the variance of the random

effect associated with transitions from 0; µ1 and β1 - the fixed effect parameters

associated with transitions from state 1, and σ2
τ1

- the variance of the random effect

associated with transitions from 1. We have not used any physician prescribing
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covariates for the index prescription, but rather have considered two values for the

probability that the index prescription is high intensity, P (Y1 = 1) = .223 and

P (Y1 = 1) = .530.

For each of the 10 parameter configurations, the results are divided into 2 groups.

Within each group, all of the parameters are fixed, except for the standard deviation

of the random subject effect, and in this way, the impact of the subject effects can

be seen. In order to reduce the number of displays, the standard deviations of the

two random effects, στ0 and στ1 have been fixed at the same value for a particular

parameter configuration.

Table 3.1: Parameters
index P (male) P (Y1 = 1) µ0 β0 στ0 µ1 β1 στ1

1 0.52 0.223 -4 5 0.1 -3 0.02 0.1

2 0.52 0.223 -4 5 1 -3 0.02 1

3 0.52 0.223 -4 5 2 -3 0.02 2

4 0.52 0.223 -4 5 3 -3 0.02 3

5 0.52 0.223 -4 5 4 -3 0.02 4

6 0.52 0.53 -4 0.08 1 -1.5 0.2 1

7 0.52 0.53 -4 0.08 2 -1.5 0.2 2

8 0.52 0.53 -4 0.08 3 -1.5 0.2 3

9 0.52 0.53 -4 0.08 4 -1.5 0.2 4

10 0.52 0.53 -4 0.08 5 -1.5 0.2 5

To assess the accuracy of the parameter estimates, the mean squared errors (MSE)

have been calculated for each of the parameter estimates: µ0 and β0, the intercept

and slope for transitions from the low intensity state, and µ1 and β1, the intercept

and slope for transitions from the high intensity state. The estimated bias (EB) is

also calculated for each parameter, by averaging the differences between the estimate

and the true parameter value.

The results are shown in Tables 3.2, 3.3, 3.4 and 3.5, respectively, for transitions
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from 0 and the transitions from 1, for 10 vs 100 simulation batches respectively.

We expect that as the number of simulation batches increase by a factor of c

then the MSE will decrease by a factor of 1/c, and that as the standard deviation

of the random subject effects increases, the MSE will increase. There is no such

expectation regarding the estimated bias.
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Table 3.2: MSE and EB for µ0 and β0 (10 simulations)

index µ0 β0 στ0
ˆMSE − µ0 ÊB − µ0

ˆMSE − β0 ÊB − β0

1 -4 5 0.1 0.0302 0.0207 0.0433 -0.0649

2 -4 5 1 0.0698 -0.0960 0.1325 0.1227

3 -4 5 2 0.1805 -0.0470 0.5345 0.2806

4 -4 5 3 0.7628 -0.6097 1.4409 0.8890

5 -4 5 4 1.4475 -0.5399 3.0655 0.8684

6 -4 0.08 1 0.0343 -0.0430 0.0945 0.0560

7 -4 0.08 2 0.0699 -0.0264 0.1161 -0.1815

8 -4 0.08 3 0.2982 -0.0908 0.5004 0.1377

9 -4 0.08 4 1.5096 -0.9020 1.7761 0.2976

10 -4 0.08 5 7.6672 -1.8809 2.1266 0.7930

Table 3.3: MSE and estimated bias for µ0 and β0 (100 simulations)

index µ0 β0 στ0
ˆMSE − µ0 ÊB − µ0

ˆMSE − β0 ÊB − β0

1 -4 5 0.1 0.0474 -0.0239 0.0756 0.0423

2 -4 5 1 0.0576 0.0041 0.1251 0.0351

3 -4 5 2 0.1777 0.0166 0.4043 -0.0015

4 -4 5 3 0.4685 -0.1768 1.1015 0.4110

5 -4 5 4 1.3151 -0.4754 4.1907 0.9364

6 -4 0.08 1 0.0646 -0.0449 0.1027 0.0168

7 -4 0.08 2 0.1612 -0.0704 0.2259 -0.0156

8 -4 0.08 3 0.6278 -0.148 0.6179 0-0.0389

9 -4 0.08 4 1.1300 -0.4343 1.7530 0.2273

10 -4 0.08 5 5.8974 -1.0983 2.6484 -0.0422
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Table 3.4: MSE and EB for µ1 and β1 (10 simulation batches)

index µ1 β1 στ1
ˆMSE − µ1 ÊB − µ1

ˆMSE − β1 ÊB − β1

1 -4 5 0.1 0.0563 -0.0066 0.0693 -0.0022

2 -4 5 1 0.0768 -0.0825 0.0960 0.0087

3 -4 5 2 0.3390 -0.2024 0.6036 0.3543

4 -4 5 3 0.7691 -0.5914 1.3066 0.8465

5 -4 5 4 0.3445 -0.2443 0.3127 0.1528

6 -4 0.08 1 0.0429 -0.0284 0.0618 0.0211

7 -4 0.08 2 0.1697 0.0097 0.2327 -0.0527

8 -4 0.08 3 0.3841 0.3032 0.4284 -0.2726

9 -4 0.08 4 0.7260 0.1966 1.9964 -0.4994

10 -4 0.08 5 0.8699 -0.3401 1.0291 0.3868

Table 3.5: MSE and EB for µ1 and β1 (100 simulation batches)

index µ1 β1 στ1
ˆMSE − µ1 ÊB − µ1

ˆMSE − β1 ÊB − β1

1 -4 5 0.1 0.0431 -0.0160 0.0560 -0.0029

2 -4 5 1 0.0750 -0.0146 0.1166 0.0080

3 -4 5 2 0.2755 -0.0005 0.4259 -0.0038

4 -4 5 3 0.4901 -0.0065 0.7449 -0.0556

5 -4 5 4 1.2410 -0.0438 1.2031 0.0063

6 -4 0.08 1 0.0540 -0.0086 0.1121 -0.0151

7 -4 0.08 2 0.1337 -0.0446 0.2731 0.0475

8 -4 0.08 3 0.2380 0.0318 0.4400 0.0123

9 -4 0.08 4 0.8209 0.0568 1.5245 -0.1096

10 -4 0.08 5 1.2324 0.1632 2.1418 -0.1810
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The following 16 figures show boxplots of the estimated parameters. For each

plot, all parameters are held constant, except the standard deviation of the subject

effect.

For example, in Figure 3.1 the values of the first four parameters from Table 3.1

are fixed at P (male) = .53, P (Y1 = 1) = .223, µ0 = −4, β0 = 5, µ1 = −3, β1 = .02,

and as index changes from 1 through 5, the common random effect standard deviation

στ0 = στ1 is set to .1, 1, 2, 3, and 4 respectively. Only 10 simulation batches were

used in generating this plot. Figure 3.2 plots the same quantities, but based on 100

simulation batches.

The associated pair of plots, 3.3 and 3.4, based on 10 and 100 simulation batches

respectively, fix the parameter values at P (male) = .53, P (Y1 = 1) = .530, µ0 = −4,

β0 = 0.08, µ1 = −1.5, β1 = .2, and set the common random effect standard deviation

στ0 = στ1 to 1, 2, 3, 4, and 5, as specified in the last five rows of Table 3.1.

In each plot, the true value of the parameter of focus (µ0, β0, µ1 or β1) is indicated

by the horizontal red line.

As can be seen in the plots, when all other parameters are held constant, the

estimated variation in the parameter estimates increases as the standard deviation

of the subject effects στ0 = στ1 increases.
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Figure 3.1: µ̂0 - index 1 to 5 for 10 simulation runs
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Figure 3.2: µ̂0 - index 1 to 5 for 100 simulation runs
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Figure 3.3: µ̂0 - index 6 to 10 for 10 simulation runs
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Figure 3.4: µ̂0 - index 6 to 10 for 100 simulation runs
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Figure 3.5: β̂0 - index 1 to 5 for 10 simulation runs
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Figure 3.6: β̂0 - index 1 to 5 for 100 simulation runs
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Figure 3.7: β̂0 - index 6 to 10 for 10 simulation runs
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Figure 3.8: β̂0 - index 6 to 10 for 100 simulation runs
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Figure 3.9: µ̂1 - index 1 to 5 for 10 simulation runs

1 2 3 4 5

−
6

−
4

−
2

0
2

Figure 3.10: µ̂1 - index 1 to 5 for 100 simulation runs
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Figure 3.11: µ̂1 - index 6 to 10 for 10 simulation runs
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Figure 3.12: µ̂1 - index 6 to 10 for 100 simulation runs
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Figure 3.13: β̂1 - index 1 to 5 for 10 simulation runs
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Figure 3.14: β̂1 - index 1 to 5 for 10 simulation runs
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Figure 3.15: β̂1 - index 6 to 10 for 10 simulation runs
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Figure 3.16: β̂1 - index 6 to 10 for 100 simulation runs
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From this chapter we can see, the average mean squared errors are fairly small

when comparing the true parameter values with the estimated. Also, the discrepancy

between the true and estimated parameter values gets bigger as the variations of

subject effect increase when holding all the other parameter values constant. The

expecation is that the MSE should decrease in proportion to the inverse of the number

of simulation batches. This is not evident from either the tables nor the figures above,

and this is likely due to the high degree of the Monte Carlo variability when using only

10 simulation batches. In general, we can make the conclusion that the Generalized

Linear Mixed Effect model works well in the application of medication use patterns

and the two separate GLMM models make sense in this case.



Chapter 4

Discussion

In this thesis, we proposed a simple method to study the statin use patterns of Nova

Scotia seniors population and the patients’ adherence to medication. The switching

patterns of statin usage were modeled using a Markov model, which was reduced to

two independent generalized linear models. Subsequently, a simulation study was

conducted to show that this approach was able to produce consistent estimates of

transition probablities and effects of confouding factors. On the other hand, the

variance and covariance structure of random effects were much harder to estimate.

The variance parameter estimate was shown to converge very slowly to true values.

In our model, the switching of statin types (low dose to high dose and vice versa)

was assumed to be independent. This is a somewhat over-simplified assumption.

In reality, the adherence to a certain statin type is expected to be correlated for

an individual patient. To introduce correlation, a common parameter might be

introduced in equation (3.4) and (3.6). For example, one can enforce patient effects

in both processes to only differ by signs i.e.

P01 =
1

1 + exp(xβ0 + τ0)
(4.1)

P10 =
1

1 + exp(xβ1 − τ0)
(4.2)

In this case, the transitions to and from a certain statin level are negatively correlated.

In this thesis, I am able to use the lme4 package due to the independence assumption

on the two random effects. However, even with a small change like above, a custom

software has to be written to implement the generalized linear mixed model.

The model in this thesis assumes separate ”physician” covariates for the index

prescription, and subject level covariates for the switching part of the model. In real-

ity, however, it is likely that the index prescription will be related to both physician

and patient characteristics. For example, if the severity of disease is high, then the

index prescription is almost invariably going to be high intensity.
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Given our limitation on time and resources, this thesis was really ”proof of con-

cept” to try to develop a model which might be appropriate for the CNODES data. I

was trying to assess the bias and variability in the parameter estimates. Based on the

simulations, the bias in the fixed effect parameters is small, the MSE increases with

the variability of the subject effects and is expected to decrease with larger sample

size. Given the large sample size (close to 20,000 patients) of the CNODES data,

it is expected much less variability in the estimates based on the real data. In the

future, this model will be tested on the real data, to further explore the convergence

properties of the model, especially for the variance covariance structure of the ran-

dom effects. The choice of estimation methods will also greatly impact the precision

of estimates. It is thus interesting to also evaluate performance of various estimation

methods with various parameter settings and covariance structures. The calculation

of sample size and confidence interval are also desirable for practical applications.



Appendices
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Appendix A

Simulation code in R

# true model is

# logit(p) = int + beta*gender + tau

# with tau ~ N(0,tau.std);

# equivalently p = exp(x)/(1+exp(x)) where x = int + beta*gender + tau

#n00 is the number of transitions from 0 to 0

#n01 is the number of transitions from 0 to 1

#n10 is the number of transitions from 1 to 0

#n11 is the number of transitions from 1 to 1

##Module1: Function

inv.logit = function(x){return(exp(x)/(1+exp(x)))};

logit = function(x){return(log(x/(1-x)))};

sim.model=function(par){

# generate gender from a binomial distribution

male = rbinom(1,1,par$male.p);

# generate 2 random effects for p01 and p10

tau0.i = rnorm(1,0,par$tau0.std);

tau1.i = rnorm(1,0,par$tau1.std);

x0 = par$int0 + par$beta0*male + tau0.i;

p01 = exp(x0)/(1+exp(x0))

p00 = 1 - p01;
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x1 = par$int1 + par$beta1*male + tau1.i;

p10 = exp(x1)/(1+exp(x1));

p11 = 1 - p10;

return(c(p00,p01,p10,p11,tau0.i,tau1.i,male))

}

######### function to fit glmm #########

glmm.fit = function(fname){

dat=read.table(fname,header=TRUE);

dat$id = factor(dat$id)

dat$statin = factor(dat$statin)

ret = glmer(switch~factor(male)+(1|id),family=binomial,data=dat);

return(c(fixef(ret), attr(VarCorr(ret)$id,"stddev")));

}

######### simulate data #########

simulate=function(nsubj=3,par){

# generate number of observations and keep nobs > 1

nobs= trunc(rgamma(nsubj,shape=alpha,scale=beta)+.5) + 1

nobs = subset(nobs,nobs>1);

mnobs = max(nobs);

nsubj = length(nobs);

data=matrix(NA,nrow=nsubj,ncol=mnobs);
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# define output list

ntrans = matrix(0,nrow=nsubj,ncol=4);

colnames(ntrans) = c("n00","n01","n10","n11");

# true parameters

par.true = matrix(0,nrow=nsubj,ncol=7);

colnames(par.true) = c("p00","p01","p10","p11","tau0","tau1","male");

for (i in 1:nsubj){

# simulate transition probability for subject i

par.true[i,] = sim.model(par);

p0 = c(par.true[i,"p00"],par.true[i,"p01"]);

p1 = c(par.true[i,"p10"],par.true[i,"p11"]);

# simulate initial state x0

old=rbinom(1,1,par$x0.p)

data[i,1] = old;

for (j in 2:nobs[i])

{

if(old==0)

{

new=sample(c(0,1),1,prob=p0)

if (new==0){

ntrans[i,"n00"] = ntrans[i,"n00"] + 1}

if (new==1){

ntrans[i,"n01"] = ntrans[i,"n01"] + 1}

}

else{
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new=sample(c(0,1),1,prob=p1)

if (new==0){

ntrans[i,"n10"] = ntrans[i,"n10"] + 1}

if (new==1){

ntrans[i,"n11"] = ntrans[i,"n11"] + 1}

}

old = new;

data[i,j] = new;

} # end j in 2:nobs[i] loop

} # for each subject i

# long format data for p0 and p1

data0 = NULL;

data1 = NULL;

for (i in 1:nsubj){

n00 = ntrans[i,’n00’];

n01 = ntrans[i,’n01’];

n0=n00+n01;

d0 = data.frame(statin=c(rep(0,n00), rep(1,n01)),

male=rep(par.true[i,"male"],n0),

p00=rep(par.true[i,"p00"],n0),

p01=rep(par.true[i,"p01"],n0),

tau0=rep(par.true[i,"tau0"],n0), id=rep(i,n0));

n10 = ntrans[i,’n10’];

n11 = ntrans[i,’n11’];

n1=n10+n11;

d1 = data.frame(statin=c(rep(0,n10), rep(1,n11)),

male=rep(par.true[i,"male"],n1),

p10=rep(par.true[i,"p10"],n1),
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p11=rep(par.true[i,"p11"],n1),

tau1=rep(par.true[i,"tau1"],n1), id=rep(i,n1));

d0$switch=d0$statin;

data0 = rbind(data0,d0);

d1$switch=ifelse(d1$statin==1,0,1);

data1 = rbind(data1,d1);

}

# calculate raw transition probability

ptrans=sweep(ntrans,1,nobs-1,’/’);

colnames(ptrans) = c("p00","p01","p10","p11");

return(list(data=data,nobs=nobs,ntrans=ntrans,

ptrans=ptrans,par.true=par.true,data0=data0,data1=data1))

} # function end;

##Module 2: Simulation;

parameter=read.table("parameter.csv",header=TRUE,sep=’,’);

# switches has mean 50, sd 9

beta=9^2/50;

alpha=50/beta;

source(’functions.R’);

for(i in 1:nrow(parameter)){

for(j in 1:parameter$nsample[i]){

# ret = simulate(nsubj=5,parameter[i,]);

dat = simulate(nsubj=100,parameter[i,]);
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#To concatenate text, you use the paste() function;

filename = paste("data\\d0_p",parameter$index[i],"_",j,sep="");

write.table(dat$data0,file=filename,row.names = FALSE);

filename = paste("data\\d1_p",parameter$index[i],"_",j,sep="");

write.table(dat$data1,file=filename,row.names = FALSE);

}

}

##Module 3: GLMM model

rm(list=ls())

library(lme4);

source(’functions.R’);

parameter=read.table("parameter.csv",header=TRUE,sep=’,’);

# define output matrix

out0 = matrix(NA,nrow=sum(parameter$nsample),ncol=4);

colnames(out0)= c("e.int0","e.beta0","e.tau.std0","sample");

out1 = out0;

colnames(out1)= c("e.int1","e.beta1","e.tau.std1","sample");

idx = 1;

# fit glmm on all data

for(i in 1:nrow(parameter)){

for(j in 1:parameter$nsample[i]){

# d0

filename = paste("data\\d0_p",parameter$index[i],"_",j,sep="");
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out0[idx,] = c(glmm.fit(filename),j);

# d1

filename = paste("data\\d1_p",parameter$index[i],"_",j,sep="");

out1[idx,] = c(glmm.fit(filename),j);

idx = idx + 1;

}

}

result0 = data.frame(cbind(apply(parameter,2,rep,parameter$nsample),out0));

result0 = subset(result0,select=-c(int1,beta1,tau1.std))

result1 = data.frame(cbind(apply(parameter,2,rep,parameter$nsample),out1));

result1 = subset(result1,select=-c(int0,beta0,tau0.std))

write.table(result0,file=’result\\result0.txt’,row.names=FALSE);

write.table(result1,file=’result\\result1.txt’,row.names=FALSE);

#mean squared error, and estimated bias(SE, sum of error);

#for index 1 (the first row of parameters), start state is 0;

for (j in 1:10){

SSE0_j=0;

SE0_j=0;

for (i in (1+10*(j-1)):(10+10*(j-1))){

SSE0_j=SSE0_j+(result0[i,8]-result0[i,5])^2;

SE0_j=SE0_j+(result0[i,8]-result0[i,5])

};

MSE_int0_j=SSE0_j/result0[1,4];

ME_int0_j=SE0_j/result0[1,4];

print(MSE_int0_j);

print(ME_int0_j);
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};

for (j in 1:10){

SSE0_j=0;

SE0_j=0;

for (i in (1+10*(j-1)):(10+10*(j-1))){

SSE0_j=SSE0_j+(result0[i,9]-result0[i,6])^2;

SE0_j=SE0_j+(result0[i,9]-result0[i,6])

};

MSE_beta0_j=SSE0_j/result0[1,4];

ME_beta0_j=SE0_j/result0[1,4];

print(MSE_beta0_j);

print(ME_beta0_j);

};

#for index 1, start state 1;

for (j in 1:10){

SSE1_j=0;

SE1_j=0;

for (i in (1+10*(j-1)):(10+10*(j-1))){

SSE1_j=SSE1_j+(result1[i,8]-result1[i,5])^2;

SE1_j=SE1_j+(result1[i,8]-result1[i,5])

};

MSE_int1_j=SSE1_j/result1[1,4];

ME_int1_j=SE1_j/result1[1,4];

print(MSE_int1_j);

print(ME_int1_j);

};

for (j in 1:10){
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SSE1_j=0;

SE1_j=0;

for (i in (1+10*(j-1)):(10+10*(j-1))){

SSE1_j=SSE1_j+(result1[i,9]-result1[i,6])^2;

SE1_j=SE1_j+(result1[i,9]-result1[i,6])

};

MSE_beta1_j=SSE1_j/result1[1,4];

ME_beta1_j=SE1_j/result1[1,4];

#print(MSE_beta1_j);

print(ME_beta1_j);

};



Bibliography
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