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Abstract

Across the diversity of life, organisms have evolved different strategies to thrive in
hypoxic environments — microbial eukaryotes (protists) are no exception; protists that
experience hypoxia often possess metabolically distinct mitochondria called
mitochondrion-related organelles (MROs). Here, | focus on the biochemical adaptations
of poorly-studied diverse anaerobic protists with an emphasis on the evolutionary
histories of pyruvate, iron-sulfur cluster and respiratory chain metabolism in MROs.

In the absence of oxygen, some organisms use the pyruvate formate lyase (PFL)
system for the non-oxidative generation of acetyl-CoA. Through phylogenetic analyses, |
showed that PFL is broadly, but patchily, distributed across the tree of eukaryotes. The
monophyly of eukaryotes in these analyses suggest that the PFL pathway was first
acquired by lateral gene transfer (LGT) into a eukaryotic lineage - from a firmicute
bacterial lineage - and that it has since spread horizontally by more recent eukaryote-to-
eukaryote transfer events.

Biosynthesis of Fe-S clusters via the iron-sulfur cluster (ISC)system is a near-
universally conserved feature of mitochondria and MROs. In contrast, some prokaryotic
anaerobes synthesize and repair oxygen-damaged Fe-S clusters using a sulfur
mobilization (SUF) system. Based on a transcriptomic survey, | reconstructed the MRO
proteome of the protist Pygsuia biforma and found no evidence for the eukaryotic ISC
system but instead identified a laterally acquired archaeabacterial-type SUF. Using
immunofluorescence microscopy, | showed that SUF localizes to the MRO, representing
the first reported case of a mitochondrial SUF system.

In some anaerobes, the ubiquinone analog rhodoquinone (RQ) allows the respiratory
complex Il to function in reverse, generating succinate from fumarate. Using
immunofluorescence microscopy, | demonstrated that a RQ biosynthesis protein (RQUA)
localizes to Pygsuia MROs, suggesting the organelle participates in RQ biosynthesis.
Phylogenetic analyses suggest that anaerobic eukaryotes acquired RQUA multiple times
via LGT from distinct eukaryotic and bacterial donors.

These studies suggest that crucial metabolic pathways localized to the MROs of
anaerobic protists - and involved in their adaption to hypoxia - have been acquired by
LGT. In some cases, these laterally acquired proteins were found to interface with
ancestral mitochondrial proteins (e.g., acquired RQUA and the ancestrally mitochondrial
complex Il in Pygsuia) to create metabolic pathways of mosaic origins.
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Chapter 1 Introduction

1.1 On The Origin Of Mitochondria

In the early 20" century, Russian biologist Constantin Mereschkowsky proposed that
chloroplasts (or ‘chromatophores’) evolved from symbiosis of free-living bacteria and
the eukaryotic host cell (Mereschkowsky 1905). However, Mereschokowsky vehemently
denied a bacterial origin of mitochondria. In the decades to follow, ‘symbiogeneticsits’
began to posit that a symboitic origin of mitochondria (i.e., descent from a separate
organism within a host cell) might better explain their complexity than traditional
Darwinian evolutionary (i.e., descent by modification) processes (Portier 1918; Wallin
1927). These radical ideas were quickly dismissed by the scientific community including
prominent American cell biologist Edmund Wilson (Wilson 1925). It was not until early
work by Lynn Margulis many years later that this symbiotic theory began to gain serious
attention by mainstream biologists. In one of her first papers, Margulis (Lynn Sagan at
the time) hypothesized that mitochondria, plastids and flagellar basal bodies were once
free-living prokaryotes (Sagan 1967; Schwartz 1970). Now, over 40 years later, two out
of three of these predictions (i.e., the origins of mitochondria and plastids) are the
fundamental components of the modern ‘Endosymbiotic Theory’ for the origin of
eukaryotic organisms. Margulis hypothesized that an anaerobic host bacterium engulfed
and formed a symbiotic relationship with an aerobically respiring bacterium. The
engulfed bacterium eventually lost its autonomy within the host cell cytoplasm and
became the mitochondrion.

One of the strongest lines of evidence in support of the endosymbiotic theory is the
presence of a vestigial genome (mtDNA) in mitochondria of extant model organisms
(Nass and Nass 1963). Early research into the origins of mtDNA noted prokaryotic-like
features of the genome, specifically the sequence similarity of the small subunit RNA of
the mitochondrial ribosome to bacterial homologs (Bonen et al. 1977). As sequencing
technology advanced, the gene content of mtDNA became better characterized. While
content is variable across eukaryotes, mtDNA typically encodes ribosomal RNA subunits

and proteins, tRNA genes and respiratory complex proteins (Anderson et al. 1981).



Comparative mitochondrial genomics efforts in the last few decades have since revealed
that the chromosome structure, ploidy, gene number and gene content of present-day
mitochondria is quite variable across the tree of eukaryotes (Gray et al. 1999; Gray et al.
2004). Gene content of mitochondrial genomes can vary from low (e.g., five genes in
Plasmodium falciparum (Wilson and Williamson 1997)) to relatively high (e.g., over 100
in jakobid protists (Burger et al. 2013)). In the 1980s and 90s, phylogenetic analyses
consistently showed that the genes encoded on mitochondrial genomes appeared to be
closely related to the those of modern-day a-proteobacteria, specifically those of the
obligate intracellular parasites of the Rickettsiales division such as Rickettsia (Yang et al.
1985; Olsen et al. 1994; Andersson et al. 1998; Sicheritz-Pontén et al. 1998). In the last
few years with the availability of whole genome sequences from a vast diversity of a-
proteobacteria, this question has been revisited. A recent report suggested that the
closest relative to the mitochondrial genome could be the newly described SAR11 group
of bacteria (including the Pelagibacteraceae (Thrash et al. 2011)), although more careful
analyses suggested the latter result could represent a phylogenetic artifact and that the
true affinities of mitochondrial genomes remain unclear (Rodriguez-Ezpeleta and Embley
2012).

The proteomes of modern day mitochondria of animal model systems are comprised
of over 1000 proteins (Calvo and Mootha 2010; Smith et al. 2012) which is significantly
more than the coding potential of any known mitochondrial genomes. Most
mitochondrial proteins are encoded by genes of the nuclear genome and imported into
mitochondria post-translationally. Some of these proteins were originally encoded by
the endosymbiont genome and subsequently transferred to the host nuclear genome via
endosymbiotic gene transfer (Timmis et al. 2004). The gene would need to acquire a
signal for retargeting the protein product to the endosymbiont. In fact, studies have
shown that approximately 5% of bacterial genes have predicted mitochondrial targeting
sequences (Lucattini et al. 2004; Ueda et al. 2008) and random peptides enriched in
leucine, arginine and serine are sufficient to target green-fluorescent protein into yeast

mitochondria (Allison and Schatz 1986). Once the nucleus-encoded gene product was



successfully targeted to the mitochondrion, any mutations (i.e., frame shifts, missense or
nonsense mutations) on the organelle-encoded version of the gene would be selectively
neutral. Eventually the nucleus-encoded gene product would be a permanent fixture of

the organelle as the organelle-encoded gene degenerated and was ultimately lost.
1.2 The Archezoa Hypothesis And Amitochondriates

After Margulis’ elaboration of the modern endosymbiotic theory started gaining
acceptance, a number of eukaryotic microbes were discovered to be lacking typical
cristate mitochondria (Cavalier-Smith 1983). This led to the proposal of the Archezoa
hypothesis that suggests these protists were primitively amitochondriate and therefore
diverged prior to the mitochondrial symbiosis (Cavalier-Smith 1983). These lineages
included parabasalids, entamoebidae, microsporidians, and metamonads (Cavalier-
Smith 1983). A few years later, phylogenetic analysis of the cytoplasmic eukaryotic small
subunit ribosomal DNA (SSU rDNA) placed many of these amitochondriate taxa as basal
branching lineages of the eukaryotic tree (Vossbrinck et al. 1987; Cavalier-Smith 1989;
Sogin et al. 1989), consistent with a their putative ‘archezoan’ nature. However, in the
90s, the earliest hint that the Archezoa hypothesis may not be correct was provided in a
study that showed antibodies against human or rodent HSP60 (a known mitochondrial
protein) cross reacted with proteins in Giardia lamblia cells yielding a punctate
localization pattern in immunofluorescence micrographs (Soltys and Gupta 1994)
suggesting this organism could harbour vestigial mitochondrial organelles. Interestingly,
when Cavalier-Smith commented on the Archezoa hypothesis in light of Soltys and
Gupta’s immunofluorescence findings, he recognized that identifying a hsp60 gene in
the amitochondriates (specifically Giardia) could help decide if these organisms were in
fact primitively amitochondriate, although he cautioned the reader to “not be too
hopeful” (Cavalier-Smith and Chao 1996). Towards the end of the 1990s it was the
identification and phylogenetic analysis of this gene in Giardia and other
amitochondriates that eventually led to the end of the Archezoa hypothesis (Roger et al.
1998). These molecular data supported earlier hypotheses regarding the potential

mitochondrial ancestry of the hydrogenosomes of Trichomonas vaginalis (Bozner 1996;



Germot et al. 1996; Horner et al. 1996; Roger et al. 1996). Small double membrane
bound organelles present in these diverse organisms were described and variously
named hydrogenosomes, mitosomes, ‘mitochondrion-like organelles’, and eventually
more accurately named ‘mitochondrion-related organelles’ (MROs) to indicate their

evolutionary relationship with mitochondria.
1.3 Diversity And Function Of Mitochondria

Before discussing the metabolic diversity of MROs, | will first outline the functions of
‘classical’ aerobic mitochondria. Much of our current understanding of mitochondrial
functions derives from studies of model organisms represented within animals, fungi or
plants. As discussed above, the vast majority of mitochondrial proteins in such
organisms are encoded in the nucleus and transported into the organelles post-
translationally. Therefore, several essential steps in the evolutionary integration of
mitochondria involved the advent of the various components of the protein import
apparatus. This complex assembly of protein carriers helps direct mitochondrion
targeted proteins to one of four sub-organellar components: (i) the outer mitochondrial
membrane (OMM), (ii) the intermembrane space (IMS), (iii) the inner mitochondrial
membrane (IMM) and (iv) the mitochondrial matrix (MM) (Geli and Glick 1990).

Important functions of mitochondria include iron-sulfur (Fe-S) cluster generation,
amino and fatty acid, phospholipid, vitamin, and steroid metabolism. However, the best-
known function of mitochondria is the synthesis of ATP by oxidative phosphorylation. In
this pathway, pyruvate is oxidized to acetyl-CoA by pyruvate dehydrogenase (PDH) and
fed into the tricarboxylic acid (TCA) cycle which in turn generates reducing equivalents
(NADH and FADH,) that are used by the electron transport chain (ETC) to generate a
proton gradient which fuels ATP synthesis ultimately reducing O, to H,O (Figure 1-1).
However, the mitochondria of some organisms that occupy low oxygen environments
have adapted to function without oxygen. Recently, Miiller and colleagues proposed a
new classification scheme for mitochondria and these anaerobic MROs (Classes I-V)
based solely on the different types of energy metabolism they possess: Class | aerobic

mitochondria, Class |l anaerobic mitochondria, Class Il hydrogen-producing



mitochondria (HPM), Class IV hydrogenosomes and Class V mitosomes. Distribution of
the different MRO types found in eukaryotes is shown in Figure 1-2. General trends and
specific examples of these organelles are discussed below and summarized in (Figure 1-3

to Figure 1-15).

Aerobic mitochondria

' A

Figure 1-1: Select metabolic pathways in typical aerobic mitochondria. The cytoplasm and
mitochondria are shown in blue and white respectively. Pyruvate (Pyr) is oxidized to acetyl CoA
(ACoA) by pyruvate dehydrogenase [1] and fed into the tricarboxylic acid cycle (TCA). Within the
TCA cycle, succinyl-CoA is converted to succinate by succinyl-CoA synthetase [2]. Electrons from
succinate are transferred to ubiquinone (Q) generating fumarate and ubiquinol (QH,) by
Complex Il (ClI;][3]). NADH is oxidized to NAD+ by NADH dehydrogenase (Complex I, Cl [4]) while
concurrently pumping protons and passing electrons to Q generating QH,. Electrons from
ubiquinol are shuttled through complex lll and complex IV ultimately reducing oxygen to water
and generating a proton gradient. The proton gradient is used to fuel ATP synthesis by complex
V (CV; [5]). Other pathways include the glycine cleavage system (GCS) and Fe-S cluster
biogenesis system (ISC).
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Figure 1-2: Schematic representation of mitochondrion-related organelles across the tree of
eukaryotes. Next to each organism, the putative MRO is shown. Organisms that will be discussed
in more detail are indicated with an asterisk. Parasitic (red), commensal (green) and free-living
(blue) lineages are shown. SAR, Stramenopile-alveolate-rhizaria group; HPM hydrogen-producing
mitochondria. Reproduced with permission from Dr. Alastair Simpson.

1.3.1 Anaerobic Mitochondria

Some species of fungi including Fusarium oxysporum are facultative anaerobes.
Under low-oxygen conditions, the mitochondria of these fungi respire using nitrate as
the terminal electron acceptor employing the electron transport chain components Clll
and CIV together with a series of denitrification reductases (Kobayashi et al. 1996).
Similar to aerobic respiration, these electron transfer reactions generate a proton
gradient that fuels ATP synthesis via ATP synthase (Complex V, CV).

Other facultative anaerobes, such as helminths and nematodes, have life stages
during which they experience hypoxic conditions (Rew 1974; Foll et al. 1999). Through
regulated expression of various proteins, the metabolism of the anaerobic mitochondria
of these organisms is reconfigured to generate ATP by substrate level phosphorylation,
ATP synthase and a modified respiratory chain (Mdlller et al. 2012). As in aerobic

mitochondria, electrons are transferred to Cl via NADH to pump protons into the inter-



membrane space that fuel ATP synthesis via CV (Figure 1-3). However, in contrast to the
metabolism of typical aerobic mitochondria, these electrons are transferred to a
specialized quinone (rhodoquinone; RQ) and not ubiquinone (UQ) to generate
rhodoquinol (RQH,). A process called ‘malate dismutation’ helps to replenish the RQ
pool using fumarate hydratase and Cll that preferentially catalyze the reverse reactions
to their aerobic mitochondria counterparts (i.e., malate dehydration and fumarate
reduction) (Tielens 1994; Tielens et al. 1998). In this pathway, malate is imported into
the organelle and converted to fumarate via fumarate hydratase (Butler et al. 2012).
This fumarate is reduced by Cll functioning in reverse as a fumarate reductase (FRD)
using electrons from RQH,. These organisms also generate ATP via propionoyl-CoA
mediated substrate-level phosphorylation (Figure 1-3). Through a series of CoA transfer
reactions, succinate is converted to methylmalonyl-CoA which is used as a substrate for
propionoyl-CoA carboxylase (PPC) to generate ATP and propionoyl-CoA. This cycle is
restarted by transferring the CoA moiety to a new succinate molecule via
acetate:succinate CoA transferase 1B (ASCT) generating propionate, the ultimate end

product of metabolism.
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Figure 1-3: Select metabolic pathways of the facultative animal Ascaris suum. Numbering and
labels are shown as in Figure 1-1, pathways not active at low oxygen conditions are shown in
grey. Enzymes typically associated with anaerobic metabolism are shown in orange. Pyruvate
(Pyr) is oxidized to acetyl CoA (ACoA) by pyruvate dehydrogenase [1]. A proton gradient is
generated via Cl generating rhodoquinol (RQH,). Malate dismutation: Malate (Mal) is converted



to fumarate (Fum) via fumarate hydratase [6]. Electrons from rhodoquinol and transferred to
fum to generate succinate (suc) vai Cll. CoA from acetyl-CoA is transferred to succinate to
generate acetate (Ace) and succinyl-CoA (Suc-CoA). Suc-CoA can either be converted back to suc
using SCS, or enter the propionate cycle. Suc-CoA is converted to L-methylmalonyl-CoA (L-MMC)
via L-MMC decarboxylase [8] which is epimerized to D-MMC via MMC epimerase [9] and finally
decarboxylated to form propionyl-CoA (PropC). Oxygen can be converted to water by alternative
oxidase regenerating RQ from RQH,. The proton gradient is used to fuel ATP synthesis by
complex V (CV; [5]).

1.3.2 Hydrogen-Producing Mitochondria

Hydrogen-producing mitochondria (HPMs) have been reported in the amoebozoan
Acanthamoeba castellanii, the heterolobosean Nagleria gruberi, the ciliate Nyctotherus,
and the stramenopile Blastocystis sp. (Stechmann et al. 2008; Fritz-Laylin et al. 2010; de
Graaf et al. 2011; Leger et al. 2013). In general, HPM have retained an organellar
genome and couple ATP generation (via substrate level phosphorylation) to hydrogen
production. HPMs have retained at least Cl and Cll and perform malate dismutation to
generate succinate much like anaerobic mitochondria. The main difference between

HPM and anaerobic mitochondria is the ability of the former to make hydrogen.

Acanthamoeba

Acanthamoeba castellanii is a member of the Amoebozoa that can inhabit different
environments including soil bacterial biofilms or human contact lenses (van Klink et al.
1992). Upon exposure to complete anoxia, Acanthamoeba encysts. However under low
oxygen (6-16% oxygen) some species of Acanthamoeba grow faster than under aerated
conditions (Cometa et al. 2011). Interestingly, the ultrastructure and general metabolism
of Acanthamoeba mitochondria resemble classical aerobic organelles (Gawryluk et al.
2014). However, investigations into specific metabolic pathways revealed that this
organism encodes genes responsible for hydrogen-production (Leger et al. 2013).
Specifically, Acanthamoeba possesses enzymes involved in ‘extended glycolysis’
including [FeFe]-hydrogenase (HYDA), hydrogenase maturation proteins (HYDE, F and G)
and pyruvate:ferredoxin oxidoreductase (PFO) (Figure 1-4). Unlike pyruvate metabolism
in anaerobic mitochondria, in Acanthamoeba, pyruvate is converted to acetyl-CoA via

PFO or PDH. Electrons from ferredoxin are then used by an [FeFe]-hydrogenase to



generate hydrogen gas. Most of these proteins have predicted N-terminal mitochondrial
targeting sequences and some were shown experimentally to localize to the
mitochondria of Acanthamoeba (Leger et al. 2013) suggesting this organelle has the
hallmark features of both classical aerobic mitochondria and hydrogenosomes
(discussed below in section 1.3.3). Like Ascaris, the Acanthamoeba MROs are suspected
to perform malate dismutation to make succinate and ultimately succinyl-CoA via

fumarate hydratase, Cll, and ASCT (subtype 1A/1B) (Leger et al. 2013).
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Figure 1-4: Select metabolic pathways of Acanthaemoba castellanii mitochondria. Numbering
and labels are shown as in Figure 1-1,1-3, pathways not active at low oxygen conditions are
outlined in grey. Enzymes typically associated with anaerobic metabolism are shown in orange.
The cytoplasm is shaded in blue, electron transfer reactions are shown with dotted arrows.
Pyruvate (Pyr) is oxidized to acetyl CoA (ACoA) by PDH [1] or pyruvate:ferredoxin oxidoreductase
(PFO) [12]. Electrons from ferredoxin can be used by hydrogenase (HYDA) [11] to generate
hydrogen. A proton gradient is generated via Cl generating ubiquinone (QH;). Electrons from
ubiquinol and transferred to fum to generate succinate (suc) via Cll. CoA from acetyl-CoA is
transferred to succinate to generate acetate (Ace) and succinyl-CoA (Suc-CoA). Suc-CoA can
then be converted back to succinate via SCS [2].

Naegleria gruberi

Naegleria gruberi is a free-living heterolobosean that occupies aerobic and
microaerobic environments and is closely related to the deadly brain-eating amoeba
Naegleria fowleri (Fritz-Laylin et al. 2010). Like Acanthamoeba, Naegleria has ‘classical’

aerobic mitochondria. However, homologs of MRO proteins such as [FeFe]-hydrogenase



were identified in the genome and were predicted to function in mitochondria,
suggesting that N. gruberi had ‘hydrogen-producing mitochondria’ (Fritz-Laylin et al.
2010). Recent reports suggest the hydrogen production is present exclusively in the
cytoplasm despite the presence of predicted N-terminal targeting sequences on
hydrogenase and its maturases (Tsaousis et al. 2014). Nevertheless, Naegleria gruberi
has other features in common with other organisms containing MROs including

alternative energy generation machinery (via ACST) (Figure 1-5).
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Figure 1-5: Select metabolic pathways of Naegleria gruberi mitochondria. Numbering and labels
are shown as in Figure 1-1,1-3 to 1-4, pathways not active at low oxygen conditions are outlined
in grey. Enzymes typically associated with anaerobic metabolism are shown in orange. The
cytoplasm is shaded in blue, electron transfer reactions are shown with dotted arrows. Pyruvate
(Pyr) is oxidized to acetyl CoA (ACoA) by PDH [1]. A proton gradient is generated via Cl
generating ubuquinone (QH;). Electrons from ubiquinol and transferred to fum to generate
succinate (suc) via Cll. CoA from acetyl-CoA is transferred to succinate to generate acetate (Ace)
and succinyl-CoA (Suc-CoA) via ASCT [7]. Suc-CoA can then be converted back to succinate via
SCS [2]. Hydrogen production occurs exclusively in the cytoplasm.

Nyctotherus sp.

Nyctotherus is a ciliate that inhabits the hindgut of cockroaches. Much like aerobic
and anaerobic mitochondria, the HPM of Nyctotherus uses PDH to generate acetyl-CoA
and malate dismutation to generate fumarate using RQH; (Boxma and Graaf 2005). In a
pathway similar to anaerobic mitochondrion, the CoA moiety from acetyl-CoA is
transferred to succinate via an ASCT (subtype 1A) to generate succinyl-CoA which is used

by the TCA cycle enzyme succinyl-CoA synthetase to generate ATP (Boxma and Graaf
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2005; de Graaf et al. 2011) (Figure 1-6). Nyctotherus also generates a-ketoglutarate (via
glutamate dehydrogenase) that can be converted to succinyl-CoA (via a-ketoglutarate
dehydrogenase) to be used as a substrate for SCS. The organelles of Nyctotherus use a
specialized [FeFe]-hydrogenase that is fused to homologs of Cl subunits (51 and 24 kDa
subunits). This enzyme uses electrons donated from NADH to reduce protons to
generate hydrogen gas. Interestingly, many rumen ciliates including Nyctotherus are
often observed in symbiotic relationships with prokaryotes (Gijzen et al. 1991; van Hoek
et al. 2000), many of which have been identified as methanogenic endosymbiotic
archaea that specifically associate with the HPMs, consuming H, produced by the
organelle (Gijzen et al. 1991; van Hoek et al. 2000).

Unfortunately, our current understanding of the Nyctotherus metabolism is limited
due to the lack of a high coverage transcriptome or genome project. However, from the
available expressed sequence tag (EST) data, we know that this organism encodes a
variety of putative MRO proteins including proteins involved in amino acid metabolism,

organellar protein import and folding reactive oxygen species (ROS) defense.
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Figure 1-6: Select metabolic pathways of Nyctotherus ovalis mitochondria. Numbering and labels
are shown as in Figure 1-1, 1-3 to 1-5, pathways not active at low oxygen conditions are shown
in grey. Enzymes typically associated with anaerobic metabolism are shown in orange. The
cytoplasm is shaded in blue, electron transfer reactions are shown with dotted arrows. Pyruvate
(Pyr) is oxidized to acetyl CoA (ACoA) by PDH [1]. A proton gradient is generated via Cl
generating rhodoquinol (RQH;). Electrons from rhodoquinol and transferred to Fum to generate
Suc via Cll. CoA from acetyl-CoA is transferred to succinate to generate acetate (Ace) and
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succinyl-CoA (Suc-CoA) via ASCT [7]. Suc-CoA can then be converted back to succinate via SCS
[2].

Blastocystis sp.

Blastocystis is a unicellular stramenopile that inhabits strictly anoxic environments
such as the animal gut (Zierdt 1983). From the genomic and transcriptomic data
available for different subtypes of Blastocystis it is clear that this organism’s genome
encodes multiple acetyl-coA generating proteins including PDH, pyruvate:ferredoxin
oxidoreductase (PFO) and pyruvate:NADP+ oxidoreductase (PNO; a specialized PFO with
a C-terminal P450 reductase domain) (Lantsman et al. 2008; Stechmann et al. 2008;
Denoeud et al. 2011) (Figure 1-7). However, to date, only PNO activity has been
detected biochemically within the MROs of Blastocystis (Lantsman et al. 2008). The
acetyl-CoA generated by this reaction is used by ASCT (1B and 1C subtype) to generate
succinyl-CoA, which is then used by SCS to generate ATP (Figure 1-7), much like
anaerobic mitochondria (Figure 1-3). While hydrogen production has not actually been
detected in the MROs of Blastocystis, genomic and transcriptomic evidence suggests
that there are multiple MRO-targeted HYDA proteins that are fused to flavodoxin
domains (Stechmann et al. 2008). The unique domain composition of the Blastocystis
HYDA proteins might explain the inability to detect hydrogenase activity biochemically
(Lantsman et al. 2008). Nevertheless, the Blastocystis MRO is still putatively classified as
a Hydrogen-producing mitochondrion (Mdller et al. 2012). Analyses of the genome
sequences of Blastocystis subtype 7, indicates its HPM participates in a variety of other
pathways including amino acid metabolism, Fe-S cluster biogenesis, ROS defense, and

fatty acid biosynthesis (Denoeud et al. 2011).
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Figure 1-7: Select metabolic pathways of Blastocystis sp. mitochondria. Numbering and labels as
in Figure 1-1, 1-3 to 1-6, pathways not active at low oxygen conditions are shown in grey.
Enzymes typically associated with anaerobic metabolism are shown in orange. The cytoplasm is
shaded in blue, electron transfer reactions are shown with dotted arrows.  Pyruvate (Pyr) is
oxidized to acetyl CoA (ACoA) by PDC [1], PFO [12] or PNO [13]. Electrons from ferreodoxin are
used to produce hydrogen via hydrogenase [11]. A proton gradient is generated via Cl
generating rhodoquinol (RQH,). Electrons from rhodoquinol and transferred to fum to generate
suc via Cll. CoA from acetyl-CoA is transferred to succinate to generate acetate (Ace) and
succinyl-CoA (Suc-CoA) via ASCT [7]. Suc-CoA can then be converted back to succinate via SCS
[2]. Rhodoquinone is predicted to be synthesized from ubiquinone using the rhodoquinone
biosynthesis enzyme RQUA [14].

1.3.3 Hydrogenosomes

Hydrogenosomes are metabolically distinct from mitochondria, and lack most
hallmark mitochondrial features such as mtDNA, oxidative phosphorylation, the ETC, the
TCA cycle and other oxygen-dependent processes. These organelles couple ATP
synthesis to hydrogen production without using electron transport. Hydrogenosomes
have been characterized in a variety of organisms including Trichomonas vaginalis,

Spironucleus salmoncida, Mastigamoeba balamuthi, and free-living excavates.

Trichomonas vaginalis

Trichomonas vaginalis is a parabasalid flagellate that occupies the urogenital tract of
humans and is the causative agent of trichomoniasis (Petrin et al. 1998). In Trichomonas
hydrogenosomes, pyruvate is metabolized via the ‘extended glycolysis’ pathway much

like in Acanathamoeba where pyruvate is converted to acetyl-CoA by PFO and the
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electrons are eventually used by an [FeFe]-hydrogenase to reduce protons generating
hydrogen gas (Figure 1-8). The CoA from acetyl-CoA is transferred to succinate to
generate succinyl-CoA via ASCT (subtype 1C). Finally, the TCA cycle enzyme succinyl-coA
synthetase (SCS) generates ATP by substrate level phosphorylation (Miiller and Lindmark
1978; van Grinsven et al. 2008; Miller et al. 2012) (Figure 1-8).

A proteomic survey of the Trichomonas proteome detected over 500 proteins
contained within the organelle (Schneider et al. 2011). This is simpler than mammalian
mitochondrial proteomes that can have upwards of 1000 proteins (Calvo and Mootha
2010) or yeast mitochondria with 750 proteins (Sickmann et al. 2003). In addition to the
core hydrogenosomal ATP generation machinery, proteins were found in the T. vaginalis
MRO proteome that are predicted to be involved in amino acid metabolism, Fe-S cluster
biogenesis and oxygen stress. However, it is important to consider that many of the
proteins represented in the T. vaginalis proteome are in fact in-group paralogs (i.e.,
these are not 500 unique proteins but many are recent duplicated copies). The vast
majority of the proteins identified by Schneider and colleagues were not directly related
to metabolism, but instead included GTPases, hypothetical proteins and proteins
potentially associated with the surface of the organelle. In any case, protein number

should not be taken as a proxy for metabolic potential or complexity.
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Figure 1-8: Select metabolic pathways of Trichomonas vaginalis hydrogenosomes. Numbering
and labels are as shown in Figure 1-1, 1-3 to 1-7. Enzymes typically associated with anaerobic
metabolism are shown in orange. The cytoplasm is shaded in blue, electron transfer reactions
are shown with dotted arrows. Pyruvate (Pyr) is oxidized to acetyl CoA (ACoA) by PFO [12]. CoA
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from acetyl-CoA is transferred to succinate to generate ace and suc-CoA via ASCT [7]. Suc-CoA
can then be converted back to succinate via SCS [2].

Spironucleus salmonicida

Spironucleus is an anaerobic heterotrophic flagellate classified as a diplomonad that
infects salmonid fish (Xu et al. 2014). Like other diplomonads, it has a small double-
membrane bound organelle (Jerlstrom-Hultqvist et al. 2013). The sequencing of the
nuclear genome and proteomic analysis of the hydrogenosome recently elucidated the
true metabolic potential of the Spironucleus MRO (Jerlstrom-Hultqvist et al. 2013; Xu et
al. 2014). These organelles participate in pyruvate oxidation via PFO, hydrogen
maturation and evolution via the HYD proteins, Fe-S cluster generation and amino acid
metabolism (Figure 1-9). Interestingly, in contrast to the organelles of the diplomonad
Giardia intestinalis, the Spironucleus hydrogenosome appears to produce ATP. Unlike
other MROs discussed above, the Spironucleus organelle generates ATP using acetyl-CoA
synthetase and not the ASCT/SCS system. Acetyl-CoA produced by PFO is converted to
acetate using acetyl-CoA synthetase (ACS) generating ATP by substrate level

phosphorylation.
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Figure 1-9: Select metabolic pathways of Spironucleus salmonicida hydrogenosomes. Numbering
and labels are shown as in in Figure 1-1, 1-3 to 1-8. Enzymes typically associated with anaerobic
metabolism are shown in orange. The cytoplasm is shaded in blue; electron transfer reactions
are shown with dotted arrows. Pyruvate (Pyr) is oxidized to acetyl CoA (ACoA) by PFO [12]. CoA
from acetyl-CoA is transferred to succinate to generate ace and suc-CoA via ASCT [7]. Suc-CoA
can then be converted back to succinate via SCS [2]. At least one component of the glycine
cleavage system was identified (dotted shape).

Free-living excavates
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In recent years, many sequencing initiatives have focused on characterizing the
MROs in the Excavata lineage of eukaryotes including Psalteriomonas lanterna, Sawyeria
marylandensis and Trimastix pyriformis. Psalteriomonas and Sawyeria are
amoeboflagellates of the heterolobosean lineages of excavates (Broers et al. 1990;
O’Kelly et al. 2003). The Psalteriomonas EST survey reported homologs of HSP70,
Hydrogenase and PFO and the 51 kDa subunit of Cl (Graaf et al. 2009). However, due to
the limited sequencing coverage, the vast majority of the Psalteriomonas MRO
metabolic potential is unknown. The larger EST survey of Sawyeria revealed homologs
for many of the proteins found in Trichomonas vaginalis hydrogenosomes including
[FeFe]-Hydrogenase, PFO, chaperones, Cl subunits and Fe-S cluster biosynthesis
proteins. Interestingly, Sawyeria appears to encode a variety of pathways linked to
amino acid metabolism that are not present in Trichomonas, such as a full glycine
cleavage system, proline, serine, and ornithine metabolism and branched chain amino
acid degradation.

Finally, MROs have been described in many different species of the flagellated
metamonad genus Trimastix (Brugerolle and Patterson 1997; O’Kelly et al. 1999;
Simpson et al. 2000; Stechmann et al. 2006; Zubacovd et al. 2013). A recent
transcriptomic survey of Trimastix pyriformis revealed transcripts encoding proteins
linked to hydrogen production were predicted to localize to the organelle (Figure 1-10)
(Zubacova et al. 2013). The Trimastix organelle also seems to participate in amino acid
metabolism and even encodes the Kreb’s cycle enzyme aconitase (not shown). To date,
the typical ASCT or ACS enzymes have not been identified in the cytoplasm or organelle
of Trimastix. Therefore the exact mechanism of ATP generation in this organism, beyond

glycolysis, is unknown.
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Figure 1-10: Select metabolic pathways of Trimastix pyroformis hydrogenosomes. Numbering
and labels are shown as in in Figure 1-1, 1-3 to 1-9. Enzymes typically associated with anaerobic
metabolism are shown in orange. The cytoplasm is shaded in blue; electron transfer reactions
are shown with dotted arrows. Pyruvate (Pyr) is oxidized to acetyl CoA (ACoA) by PFO.

Mastigamoeba balamuthi

Mastigamoeba balamuthi is a free-living amoebozoan that inhabits low oxygen
environments and is a member of the Archamoeba lineage (Chavez et al. 1986) that also
includes the better studied human pathogen Entamoeba histolytica. In fact, M.
balamuthi was one of the first non-parasitic organisms shown to have a MRO (Gill et al.
2007). The genome sequence of Mastigamoeba was recently released in Genbank as
part of another project (Nyvltova et al. 2013), however a complete assembly and
genome analysis has not been completed to date. Mastigamoeba MROs appear to
participate in pyruvate oxidation, hydrogen evolution, sulphate activation and amino
acid metabolism (Figure 1-11). Similar to Spironucleus hydrogenosomes, Mastigamoeba
hydrogenosomes participate in ATP generation via ACS. Unlike the hydrogenosomes
discussed above, Mastigamoeba encodes some proteins linked to the respiratory chain
and electron transport (complex Il, electron transferring flavoprotein and rhodoquinone
metabolism) (Nycltovd, Stairs et al., unpublished). However, unlike other HPMs, this
relict respiratory chain does not have canonical proton pumping components (e.g., Cl),
therefore, it is unclear if the M. balamuthi MROs have a proton gradient. The
Mastigamoeba organelle with a partial respiratory chain represents an intermediate
state between HPMs and hydrogenosomes.

Mitochondria and MROs typically synthesize Fe-S clusters using the lIron Sulfur
Cluster biosynthesis (ISC) system. However, in the archamoebal lineages (i.e.,

Mastigamoeba and Entamoeba), the ISC system has been lost and replaced with a
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homologous system called the Nitrogen Fixation (NIF) system (Ali et al. 2004; van der
Giezen et al. 2004; Maralikova et al. 2010; Nyvltova et al. 2013). In Mastigamoeba, the
NIF system exists in two copies, one of which is targeted and localizes to the MRO and
the other that is cytosolic, suggesting Fe-S cluster biosynthesis occurs both in the
organelle and in the cytoplasm (Nyvltova et al. 2013).

Mastigamoeba balamuthi

' ™

Hz' Pyr A H, Pyr

@}‘ o .acs. NIF @f‘

Fum e For et ©® v Fer e
H* ACoA =-Ace | L1 "AChA %.Ace

G~ Suc
@ 2} ATP ATP
; RQ Q

Figure 1-11: Select metabolic pathways of Mastigamoeba balamuthi hydrogenosomes.
Numbering and labels are as shown in in Figure 1-1, 1-3 to 1-10. Enzymes typically associated
with anaerobic metabolism are shown in orange. The cytoplasm is shaded in blue; electron
transfer reactions are shown with dotted arrows. Pyruvate (Pyr) is oxidized to acetyl CoA (ACoA)
by PFO [12] and coupled to hydrogen production [11]. Malate dismutation to succinate occurs as
described above. Acetyl-CoA is converted to Ace via ACS to generate ATP. RQ is likely
synthesized from UQ using RQUA [14]. Fe-S cluster biosynthesis, NIF; Sulfate activation pathway
(SA).

1.3.4 Mitosomes

Any MRO that does not make ATP is classified as a mitosome. In contrast to the
other classes of organelles, there is no universal function associated with mitosomes.
Mitosomes have been identified exclusively in parasites from four of the major
eukaryotic lineages: Amoebozoa (e.g., Entamoeba, Tovar et al. 1999), Stramenopiles-
Alveolates-Rhizaria (e.g., Mikrocystis (Burki et al. 2013), Cryptosporidium (Riordan et al.
2003)), Excavata (e.g., Giardia intestinalis (Tovar et al. 2003)), and Opisthokonta (e.g.,
Trachipleistophora (Williams et al. 2002)). As for metabolic potential, the mitosomes of
most of these organisms (excluding Entamoeba) function in Fe-S cluster biogenesis using

the ancestral mitochondrial pathway (i.e., the Iron Sulphur Cluster system; ISC) (Tachezy
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et al. 2001; Goldberg et al. 2008; Burki et al. 2013) and do not participate in amino acid

metabolism.

Entamoeba

Entamoeba histolytica is an anaerobic parasite that infects humans and other
mammals. As discussed previously, in at least two species of Archamoebae (Entamoeba
and Mastigamoeba) the mitochondrial ISC system has been replaced with a nitrogen
fixation system (NIF) for the biosynthesis of Fe-S clusters (Ali et al. 2004; van der Giezen
et al. 2004; Maralikova et al. 2010; Nyvltova et al. 2013). While the NIF system appears
to be dual localized in the hydrogenosomes and cytosol of Mastigamoeba balamuthi,
NIF components were not identified in the recent proteome of Entamoeba mitosomes,
suggesting this pathway is primarily cytoplasmic (Mi-ichi et al. 2009). Instead, these
organelles house a sulfate activation pathway important for the generation of sulfolipids
(Mi-ichi et al. 2009). Unlike hydrogenosomes, the extended glycolysis pathway (i.e., PFO
and HYD) and energy generation machinery (ACS) is localized exclusively in the

cytoplasm (Figure 1-12).
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Figure 1-12: Select metabolism of Entamoeba histolytica. Numbering and labels are as shown in
Figure 1-1,1-3 to 1-11. Enzymes typically associated with anaerobic metabolism are shown in
orange. The cytoplasm is shaded in blue; electron transfer reactions are shown with dotted
arrows. Fe-S cluster biosynthesis (NIF) is exclusively in the cytoplasm while sulfate activation (SA)
occurs in the mitosome.
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Mikrocytos makini

The intracellular oyster parasite Mikrocytos (Hine et al. 2001) was recently shown to

be a rhizarian using multigene phylogenomic analyses (Burki et al. 2013). In the
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transcriptomic survey of Mikrocytos, only four mitochondrial proteins were identified
(cysteine desulphurase, ISCS; ISC scaffold protein, ISCU; ferredoxin reductase; FDXR and
HSP70) (Figure 1-13). The authors were unable to identify genes that encode typical
mitochondrial proteins (e.g., protein import and folding) or extended glycolysis proteins
suggesting the mitosomal metabolism of Mikrocytos is highly reduced and streamlined
for Fe-S cluster biogenesis. Interestingly, the only proteins linked to energy metabolism
identified in Mikrocytos are for a partial glycolysis pathway predicted to function in the
cytosol. Like Trimastix, there are no obvious non-glycolytic candidates for ATP-
generating enzymes in the transcriptome of Mikrocytos suggesting this organism (i)
relies exclusively on fermentative metabolism or another ATP generation mechanism
and/or (ii) imports ATP from host cytoplasms like other intracellular parasites (Schmitz-

Esser et al. 2004; Tsaousis et al. 2008).

Mikrocytos mackini

ISC

Figure 1-13: Reduced metabolism of Mikrocytos mackini. Only ISC-mediated Fe-S cluster
biosynthesis is predicted to function in the M. mackini mitosomes.

Giardia intestinalis

The diplomonad Giardia intestinalis is a parasite of humans and thrives in the low
oxygen environment of the gastrointestinal tract (Ankarklev et al. 2010). Similar to
Entamoeba, the extended glycolysis and ATP generation pathways both occur in the
cytoplasm of Giardia (Sanchez et al. 2000; Tovar et al. 2003; Emelyanov and Goldberg
2011). However, with respect to Fe-S cluster biosynthesis, Giardia resembles Mikrocytos
since ancestral components of the ISC system (ISCS, ISCU, NIFU-like protein NFU1 and
ISCA and monothiol glutaredoxin) have been retained and localize to its mitosomes

(Tovar et al. 2003; Jedelsky et al. 2011) (Figure 1-14).
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Figure 1-14: Reduced metabolism of Giardia intestinalis. Numbering and labels are shown as in
Figure 1-1, 1-3 to 1-12. Enzymes typically associated with anaerobic metabolism are shown in
orange. The cytoplasm is shaded in blue; electron transfer reactions are shown with dotted
arrows. Extended glycolysis pathways are localized to the cytoplasm. ISC-mediated Fe-S cluster
biosynthesis is present in the G. intestinalis mitosomes.

Microsporidians

Microsporidia are deep-branching fungi (Hirt et al. 1999) that are obligate
intracellular parasites of animals (Goodgame 1996). The genomes and mitosomes of a
number of microsporidians have been analyzed including pathogens of humans (e.g.,
Enchephalitozoon cuniculi (Katinka et al. 2001) and Trachipleistophora hominis (Williams
et al. 2002)), and insects (e.g., Nosema ceranae (Cornman et al. 2009) and Antonospora
locustae (Corradi et al. 2007)). In general, the mitosomes of these organisms participate
in ISC-mediated Fe-S cluster biosynthesis (Katinka et al. 2001; Williams et al. 2002;
Corradi et al. 2007; Goldberg et al. 2008; Cornman et al. 2009). Another general trend of
these highly divergent organisms is their reduced genome size which has resulted in the
loss of many metabolic pathways including amino acid and nucleotide metabolism
(Katinka et al. 2001; Keeling and Fast 2002; Corradi et al. 2007; Keeling et al. 2010). In
fact, some microsporidia (ex. Enterocytozoon bieneusi) have even lost the core sugar
metabolism (i.e., the majority of glycolysis, trehalose and pentose phosphate pathways
are absent) (Keeling et al. 2010). E. cuniculi has significantly reduced ATP generation
machinery and must instead rely on ATP import from the host cell into the parasite
cytoplasm and eventually into the mitosomes using bacteria-derived ADP/ATP
translocators (Tsaousis et al. 2008). The mitosomes of the insect pathogens

(Antonospora locustae and Trachipleistophora hominis) have been hypothesized to be
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involved in oxygen metabolism since they encode a mitosomal alternative oxidase (AOX)
and glycerol-3-phosphate dehydrogenase and do not occupy strict anaerobic
environments (Williams et al. 2010; Dolgikh et al. 2011; Heinz et al. 2012)(Figure 1-15).
The AOX may contribute to the regeneration of cytosolic NAD" levels via the glycerol-3-
phospate shuttle and not function as a relict respiratory chain for the purpose of
generating energy (Williams et al. 2010; Heinz et al. 2012).
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Figure 1-15: General metabolism of some microsporidia (Enchephalitozoon cuniculi,
Trachipleistophora hominis, Nosema ceranae and Antonospora locustae). Numbering and labels
are shown as in Figure 1-1, 1-3 to 1-14. The cytoplasm is shaded in blue; electron transfer
reactions are shown with dotted arrows. Only two components of pyruvate dehydrogenase E1
are encoded [1-dotted circle]. Pathways found only in the insect parasites A. locustae and N.
ceranae are shaded green: alternative oxidase [17] and glycerol-3-phosphate dehydrogenase
[18].

1.3.5 Limitations Of Classification

Over the past decade, our understanding of MRO metabolism in different eukaryotes
has greatly expanded (Figure 1-16). As a result, Miller and colleagues proposed the four
classes of MROs (class II-V) (Miller et al. 2012). However, this new classification scheme
was developed to accommodate organelles of primarily parasitic organisms. Yet the
characterization of MROs from free-living organisms has also begun to call into question
the validity of the classification boundaries proposed by Miller and colleagues. For
instance, in their scheme, how does one classify an organelle that carries out malate
dismutation (and therefore uses Cll) but does not have Cl-mediated electron transport

(Mastigamoeba balmuthi)) for regeneration of RQ/UQ or succinyl-CoA synthetase for
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ATP generation (Gill et al. 2007)? Furthermore, there are many other pathways and
functions beyond energy generation including Fe-S cluster biogenesis, phopho(no)lipid
metabolism, cofactor recycling and biosynthesis, folate pools, and fatty acid metabolism
that are not captured by a classification based on energy metabolism. As we continue to
gather information on MROs in diverse anaerobic lineages, particularly from free-living
protists, it seems more prudent to view MRO diversity as a continuous functional
spectrum, rather than binning them into a discrete set of energy metabolism-based

classes.
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Figure 1-16: Coulson plot (Field et al. 2013) of select mitochondrial and MRO-specific genes in
select eukaryotes. Mitochondrial/MRO-associated proteins were used as queries against
genomic and transcriptomic sequencing pojects to identify homologs in different organisms.
Each pie represents the super family of organisms surveyed: Obazoa (Ec, Encephalitozoa cuniculi;
Sc, Saccharomyces cerevisiae; Pb, Pygsuia biforma; Nf, Neocallimastix frontalis; Ps, Piromyces
sp.), Amoebozoa (Ac, Acanthamoeba castellani; Dd, Dictyostelium discoideum; Eh, Entamoeba
histolytica; Mb, Mastigamoeba balalmuthi), SAR clade (Bh, Blastocystis hominis; Mm,
Mikcrocytos mackini; No, Nyctotherus ovalis) and Excavata (Tp, Trimastix pyroformis; Gi, Giardia
intestinalis; Ss, Spironucleus salmoncida; Ng, Naegleria gruberi; Tv, Trichomonas vaginalis; Sm,
Sawyeria marylandensis). Coloured shading of pie pieces indicates homologs were identified by
reciprocal best BLAST hits (e-value < 1 x 10”), white and grey filling indicates no homolog was
identified in completed genomes or transcriptomic surveys respectively. Asterisk indicates
homologs present in other microspordian genomes. Abbreviations not mentioned in text: GCS,
glycine cleavage system; SHMT, serine hydroxymethyltransferase; PEPM, phosphoenolpyruvate
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mutase; PPD, phonopyruvate decarboxylase; PTPMT1, phosphotidyl protein tyrosine
phosphatase; PGPS, CDP-Diacylglycerol--Glycerol-3-Phosphate 3-Phosphatidyltransferase; PSD1,
phosphotidylserine decarboxylase; CLS, cardiolipin synthase; SUFCB, sulfur mobilization; ISC,
iron-sulfur cluster biosynthesis; NIF, nitrogen-fixation; NUO, NADH:Ubiquinone oxidoreductase E
and F (24 kDa and 51 kDa respectively); ETF(DH), electron transferring flavoprotein
(dehydrogenase); RQUA, rhodoquinone biosynthesis protein; and PFL(AE) pyruvate formate
lyase (activating enzyme).

1.4 Origin Of Anaerobic Metabolism

Researchers interested in the early evolution of eukaryotic cells are currently divided
on the evolutionary origin(s) of the aforementioned pathways of anaerobic energy
generation. One possible explanation is that the ancestor of all extant eukaryotes was
facultatively anaerobic and that the mitochondrion was ancestrally capable of respiring
both aerobically and anaerobically, depending on the availability of oxygen. This
hypothesis was first elaborated in detail by Martin and Muller in 1998 (Martin and
Miuller 1998). The second major hypothesis for the origins of anaerobic metabolism
suggests that different genes related to anaerobic metabolism were acquired multiple
times via lateral gene transfer throughout the tree of eukaryotes (Gill et al. 2007;
Keeling and Palmer 2008; Stechmann et al. 2008; Hug et al. 2010; Stairs et al. 2011;
Jerlstrom-Hultqvist et al. 2013). Below | hope to address the evidence in favour and
against each of these hypotheses. Other hypotheses that have implications for the
origins of anaerobic metabolism — e.g., the syntrophy (Lopez-Garcia and Moreira 1999)

and sulfur syntrophy (Searcy 2003) hypotheses — will not be discussed.
1.4.1 Hydrogen Hypothesis

In 1998, Martin and Miiller proposed a completely novel hypothesis to explain the
origin of eukaryotes and mitochondria (Martin and Miuller 1998). While the hypothesis
met with criticism early on (Doolittle 1998a), this was one of the first tangible
hypotheses for the origin of mitochondria since Margulis’s work that considered the role
of anaerobiosis in early eukaryotes. This hypothesis states that the ancestor of
mitochondria was a H,-producing facultatively anaerobic a-proteobacterium (i.e., that

possessed the oxygen-respiring and hydrogen-producing metabolic pathways discussed
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above) that formed a symbiotic relationship with a H,-dependent methanogenic
archaeon. In an anaerobic environment, the waste products of the symbiont (H,, CO,
and acetate) were used by the host archaeon. Over time, the host maximized surface
area contact with the symbiont (without phagocytosis) to acquire the waste products.
However, this new structural arrangement resulted in the symbiont having less surface
area exposed to the environment to acquire the organic substrates necessary to make
energy. If the genes encoding the organic transporters were transferred to the host
genome and expressed on the host membrane, then the organic material from the
environment could be fed to the symbiont without direct symbiont-environment
contact. At that point, the host-symbiont system could exist in anaerobic and aerobic
environments. This proto-eukaryote had an archaeal cytoplasm and a hydrogen-
producing ‘organelle’ also capable of oxygen-dependent respiration, however the
hydrogen hypothesis does not speculate on how or when the other eukaryotic features
evolved in this proto-eukaryote lineage. Later, after the major lineages of extant
eukaryotes diverged from the last eukaryotic common ancestor (LECA, a eukaryote
possessing the hallmark cellular features such as a cytoskeleton, a nucleus and
mitochondrion), aerobic and anaerobic metabolism was differentially lost in strict
anaerobic and aerobic lineages respectively, generating the diversity of energy-
metabolism and MROs that we see today.

It has been argued that multiple lines of evidence support this hypothesis. First,
Madller and Martin noted that the anaerobic enzymes in eukaryotes often show a closer
relationship to bacterial and not archaeal homologs. They suggested that these genes
associated with anaerobic metabolism (so-called ‘operational’ genes) were present in
the bacterial symbiont that gave rise to the mitochondria. Conversely, ‘house-keeping’
or ‘informational’ genes are more closely related to those of modern day archaea than
bacteria suggesting these were present in the host cytoplasm (Zillig et al. 1989). A
second line of evidence advanced in favour of the hydrogen hypothesis is the occurrence
within contemporary Proteobacteria (although mostly within the y- or 8-proteobacteria)

of many facultative anaerobes that have genes involved in both anaerobic and aerobic
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metabolism. Thus it is plausible that the proteobacterium that gave rise to mitochondria
could also have been facultatively anaerobic. A third line of evidence comes from
modern-day presumably H,-dependent symbioses that are seen within the ciliate
Trimyema in which endosymbiotic methanogenic archaea surround the H, producing
MROs (Finlay et al. 1993). These, Martin and Mdller argue, are modern-day ‘living’
analogs of how the mitochondrion first evolved.

Since its inception, the Hydrogen Hypothesis has faced criticism. The main point
of contention has been the absence of molecular data supporting an a-proteobacterial
origin for genes encoding anaerobic enzymes of energy metabolism within eukaryotes
(Barbera et al. 2007; Gill et al. 2007; Hug et al. 2010; Stairs et al. 2011). Indeed, although
all phylogenies of the pyruvate metabolizing enzymes associated with anaerobes (PFO,
PNO and PFL) show eukaryotes as monophyletic, the closest bacterial taxa to eukaryotes
are not a-proteobacteria but instead often d—/e— proteobacteria or firmicutes (Hug et al.
2010; Stairs et al. 2011; Jerlstrom-Hultqvist et al. 2013; Leger et al. 2013; Stairs et al.
2014). Furthermore, the vast majority of modern-day a-proteobacteria do not possess
genes encoding enzymes for anaerobic metabolism and, those that do, appear to have
recently acquired them from other bacterial lineages by LGT (Hug et al. 2010). This
phylogenetic pattern is in sharp contrast to the typical aerobic enzymes involved in
mitochondrial respiration that typically display clear phylogenetic affinities to protein
sequences from modern-day a-proteobacteria (Emelyanov 2003).

In fact, in phylogenies of [FeFe]-hydrogenase, an enzyme that features
prominently in the Hydrogen Hypothesis, eukaryotic sequences resolve in at least two
distinct clades affiliated with separate bacterial groups, both of which are taxonomically
‘mixed up’ and neither of which is clearly ‘a-proteobacterial’ in origin (Hug et al. 2010).
To reconcile this phylogenetic pattern with the Hydrogen Hypothesis, one would have to
posit that the two eukaryotic clades are in fact paralogs that arose from an ancient
duplication prior to the ancestral a-proteobacterial symbiosis. After eukaryotic lineages
diversified into extant groups, the two paralogs were differentially lost in anaerobic

descendant lineages or completely lost in aerobic lineages. Furthermore, proponents of
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the Hydrogen Hypothesis state that the absence of obvious PFO/HYD-bearing o-
proteobacteria donors is confounded by rampant lateral gene transfer amongst
prokaryotes and thus the original lineage that gave rise to the mitochondrion is very
different from the modern day a-proteobacteria (Muller et al. 2012). Conveniently, this
argument neglects the observation that many typically ‘aerobic’ genes (e.g., pyruvate
dehydrogenase) shared by a-proteobacteria and mitochondria have not been affected
by LGT and their mitochondrial homologs are, phylogenetically, their closest relatives
(i.e., many mitochondrial proteins still display a clear a-proteobacterial affinity)
(Emelyanov 2003). The foregoing convoluted arguments explaining why anaerobic
enzymes in eukaryotes do not show clear a-proteobacterial affinities indicate that the
evidence for the Hydrogen Hypothesis is less clear than originally advanced by Martin
and Miller in 1998. The main alternative explanations for anaerobic enzymes in

eukaryotes involve LGT, a phenomenon that | discuss in the following sections.
1.4.2 Detecting Lateral Gene Transfer In Eukaryotes

Lateral gene transfer (LGT) is widely accepted to be one of the drivers of genome
evolution in prokaryotes (Eisen 2000; Ochman et al. 2000; Kunin and Ouzounis 2003),
but the possibility of LGT from bacteria to eukaryotes and between eukaryotes has been
met with criticism (Martin 2011). LGT can be detected when the phylogeny of a
particular gene (or genes) is incongruent with known organismal phylogeny (i.e., a
eukaryote branching closely with bacteria or distantly related eukaryotes) or - to a lesser
extent - if a gene is present in the genome of an organism but not in genomes of close
relatives. This pattern can also be observed in gene trees of ancient (hidden) paralogy.
For example if a gene were duplicated in the common ancestor of eukaryotes and
different paralogs were lost in different lineages that give rise to extant eukaryotes the
resulting phylogeny could have two distinct clades of eukaryotes However in order to
confidently assess LGT, the phylogeny must be not only free of phylogenetic artifact
(e.g., long branch attraction or compositional bias) but also well supported, which is not

always achievable with single-gene trees. Topology testing can also be used to
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statistically compare the likelihoods of an estimated phylogeny against the likelihoods of
a set of user-provided topologies (i.e., Approximate Unbiased Topology Test (Shimodaira
2002)) to detect whether the data can significantly distinguish between them.

Another obstacle in modern-day phylogenetics and phylogenomics involves the
polyxenic nature of microbial culturing. Many of the free-living protists sequenced in
recent years grow in mixed culture with bacteria (Graaf et al. 2009; Zubacova et al.
2013). Therefore, the resulting genome or transcriptomic data that is generated includes
both eukaryotic and bacterial sequences. Identifying putative LGT candidates that
represent bone fide eukaryotic sequences can therefore be challenging. If one can
collect sufficient genomic information that (i) reveals spliceosomal introns in the
sequence or (ii) hints at a eukaryotic origin of neighbouring genes on the chromosome,
then it is likely that the sequence is not a contaminant. However, in the absence of
genomic data (or low intron abundance), the presence of poly-adenylation signals,
biased codon usage, nucleotide composition or low sequence identity to sequenced

bacterial genomes can help in determining the provenance of the sequence.
1.4.3 Laterally Acquired Anaerobic Metabolism

An alternative hypothesis for the origin of anaerobic metabolism in eukaryotes
involves the process of LGT. The idea that anaerobic metabolism was acquired by
eukaryotes via LGT invokes concepts from Doolittle’s ‘you are what you eat’” model
(Doolittle 1998a; Doolittle 1998b). Doolittle’s model explains how genes from the
endosymbiont could be transferred to the host nucleus; partial digestion of the proto-
mitochondrion would lead to a constant flow of genetic material to the nucleus.
Organellar genes that are incorporated into the host nuclear genome and their protein
products successfully retargeted to the organelle will result in the eventual loss of the
organellar copy. This ratchet-like process would continue until virtually all of the
endosymbionts genes are transferred to the nucleus. Similarly, heterotrophic protists
are constantly bombarded with new genetic material while feeding. Therefore, it is

possible that, even though LGT is seemingly rare in eukaryotes, constant exposure to
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food-derived DNA increases the opportunity for gene uptake (Doolittle 1998a; Doolittle
1998b).

Therefore, the LGT model for anaerobic metabolism suggests that the common
ancestor of mitochondria was an aerobic a-proteobacterium that did not encode the
genes associated with anaerobic metabolism (i.e., pfo, pfl and hyd) that we see in MROs
today. Instead, the genes were acquired by lateral gene transfer from bacteria,
potentially food bacteria, into one or more eukaryotic lineages and subsequently
transferred between eukaryotes after the diversification of eukaryotes.

Support for this model is based exclusively on the phylogenetic affinities of the
eukaryotic homologs of these anaerobic genes (Hug et al. 2010; Hampl et al. 2011; Stairs
et al. 2011; Jerlstrom-Hultqvist et al. 2013; Leger et al. 2013). For example, in most
phylogenetic analyses of hydrogenases there are two distinct clades of eukaryotes with
various prokaryotic affinities, suggesting this enzyme was not present in the common
ancestor of eukaryotes, or at the very least, one copy was acquired by lateral gene
transfer (Hug et al. 2010). Furthermore, inter-eukaryotic relationships observed in the
phylogeny of hydrogenases are incongruent with known organismal relationships.
Another interesting observation is that many genes that are hypothesized to have been
acquired by lateral gene transfer in eukaryotes are in fact fusion proteins of two or more
bacterial proteins. For instance, pfl and pfla are fused into a single transcript in
Thalassiosira pseudonana or adjacent in Ostreococcus tauri and Ostreococcus
lucimarinus (Armbrust et al. 2004; Derelle et al. 2006; Lanier et al. 2008; Stairs et al.
2011). The close proximity of these genes in the eukaryotic genomes suggests that pfl
and pfla could have originated by transfer of an operon in bacteria that was
subsequently fused into a bipartite protein gene.

However, there are obvious problems with the LGT hypothesis for the origins of
anaerobic metabolism in MROs. Firstly, in the initial phylogenies of PFO, eukaryotes are
usually monophyletic, suggesting that eukaryotic PFO could have been vertically
inherited from LECA (Horner et al. 1999; Hug et al. 2010). Moreover, if we assume that

PFO was acquired by LGT into one lineage of eukaryotes, under the LGT hypothesis, the
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only way to describe the relationships observed between eukaryotes would be to invoke
multiple LGT events between eukaryotes. Additionally, the hydrogen-producing system
of many bacteria requires at least four genes (hydA, E, F, and G) to function. Therefore,
in order for a functioning copy of hydrogenase to persist in genomes, all four enzymes
would have to be transferred. To reconcile this observation and the presumed difficulty
of acquiring four genes independently, the LGT hypothesis must assume that the genes
were transferred as a single unit (i.e., an operon) and over time have been rearranged
on the eukaryotic chromosome. However, some eukaryotes do not encode obvious
homologs of all the maturases (Loftus et al. 2005; Gill et al. 2007; Morrison et al. 2007)
suggesting that at least some hydrogenases can function without maturase proteins.

Finally, one mechanism to acquire genes by lateral gene transfer is from food
bacteria or eukaryotes that have been consumed by phagocytosis. Not all modern day
representatives of organisms with MROs or genes involved in anaerobic metabolism are
capable of phagocytosis. Therefore, these organisms would have had to (i) been able to
perform phagocytosis or (ii) acquire the genes independent of classical phagocytosis
(examples in (Richards et al. 2006; Richards et al. 2011) and reviewed in (Keeling and
Palmer 2008)).

1.5 Aims Of This Thesis

The following chapters discuss diverse anaerobic metabolisms found in
mitochondrion-related organelles throughout the tree of life, with an emphasis on those
pathways and functions influenced by lateral gene transfer. Each chapter represents a
different approach to exploring how different lineages of eukaryotes have evolved to
thrive in low oxygen environments by studying the localization and evolutionary history
of anaerobic proteins.

Chapter Two analyzes the distribution and diversity of metabolism across eukaryotes
with a focus on pyruvate formate lyase (PFL) and pyruvate formate lyase activating
(PFLA) enzymes. Rigourous bioinformatic and phylogenetic methods were used to
resolve the evolutionary relationships of eukaryotic PFL/PFLA with prokaryotes. This

study determined that eukaryotic PFL and PFLA were likely acquired by LGT into one
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lineage of eukaryotes from bacteria (specifically a firmicute-like bacterium) and
subsequently transferred to other eukaryotes by eukaryote-eukaryote lateral gene
transfer.

Chapter Three reports a large transcriptomic survey of Pygsuia biforma — a member
of the enigmatic group of eukaryotes classified as breviates. Over 120 proteins were
predicted to localize to the MRO of Pygsuia. The proteins predicted to function in the
MRO represent a mixture of ancestral mitochondrial and hydrogenosomal features.
Interestingly, some of the proteins predicted to localize to the MRO of Pygsuia have
never been seen in mitochondria or MROs. For example, the MROs of Pygsuia appear to
have lost the canonical ISC system for the biosynthesis of Fe-S clusters and instead use
an archaeal sulfur mobilization system (SUF) likely acquired by LGT.

Finally, Chapter Four examines the cellular localization and evolutionary history of
the rhodoquinone biosynthesis enzyme RQUA. RQUA is a methyltransferase protein
recently identified to be essential for RQ biosynthesis in Rhodospirillum (Lonjers et al.
2012). A survey of available eukaryotic genomes revealed that RQUA is present in a
variety of organisms and often possesses a predicted mitochondrial targeting sequence.
Immunofluorescence microscopy was used to localize RQUA to the MROs of Pygsuia
supporting the in silico predictions. Phylogenetic analysis suggests that RQUA has been

acquired by eukaryotes multiple times from bacterial and eukaryotic sources.
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Chapter 2 Eukaryotic Pyruvate Formate Lyase And Its

Activating Enzyme Were Acquired Laterally From A Firmicute

This chapter contains work published in Stairs, W. C., Hampl, V. and Roger A.J.
(2011). Eukaryotic pyruvate formate lyase and its activating enzyme were acquired

laterally from a Firmicute. Mol. Biol. Evol. 28(7):2087-99.
2.1 Abstract

Most of the major groups of eukaryotes have microbial representatives that thrive in
low oxygen conditions. Those that have been studied in detail generate ATP via
pathways involving anaerobically functioning enzymes of pyruvate catabolism that are
typically absent in aerobic eukaryotes. These enzymes include pyruvate:ferredoxin
oxidoreductase, pyruvate:NADP* oxidoreductase, and pyruvate formate lyase (PFL). PFL
catalyzes the non-oxidative generation of formate and acetyl-Coenzyme A (CoA) from
pyruvate and CoA and is activated by PFL activating enzyme (PFLA). Within eukaryotes,
this extremely oxygen-sensitive pathway was first described in the hydrogenosomes of
anaerobic chytrid fungi and has more recently been characterized in the mitochondria
and chloroplasts of the chlorophyte alga Chlamydomonas reinhardtii. This study aims to
clarify the origins of this pathway by presenting a comprehensive survey of PFL and PFLA
homologues in publicly available large-scale eukaryotic genomic and cDNA sequencing
data. Surprisingly, genes encoding PFL and PFLA are widely distributed in diverse
facultative or obligate anaerobic eukaryotic representatives of the archaeplastidan,
metazoan, amoebozoan, and haptophyte lineages. Using maximum likelihood and
Bayesian phylogenetic methods, eukaryotic PFL and PFLA sequences each form
monophyletic groups that are most closely related to homologs in firmicute gram-
positive bacteria. Topology tests exclude both a-proteobacterial and cyanobacterial
affinities for these genes suggesting that neither originated from the endosymbiotic
ancestors of mitochondria or chloroplasts. Furthermore, the topologies of the eukaryote

portion of the PFL and PFLA trees significantly differ from well-accepted eukaryote
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relationships. Collectively, these results indicate that the PFL pathway was first acquired
by lateral gene transfer into a eukaryotic lineage - most probably from a firmicute
bacterial lineage - and that it has since been spread across diverse eukaryotic groups by

more recent eukaryote-to-eukaryote transfer events.
2.2 Introduction

In aerobic eukaryotes, carbohydrates are catabolized glycolytically to produce
pyruvate that is converted to acetyl-Coenzyme A (CoA) in mitochondria by the pyruvate
dehydrogenase complex (PDC). Acetyl-CoA feeds into the tricarboxylic acid cycle
generating reducing equivalents that ultimately drive ATP synthesis via the coupling of
the respiratory chain and oxidative phosphorylation. Multicellular organisms that live in
the absence of oxygen, such as anaerobic helminths, have evolved alternatives to
aerobic energy production pathways such as the malate dismutation pathway (Tielens et
al. 1998) and often utilize alternative terminal electron acceptors of the respiratory
chain (Kobayashi et al. 1996). Anaerobic unicellular eukaryotes (protists) that have been
studied in detail also couple pyruvate metabolism to ATP biosynthesis, often by
substrate-level phosphorylation. Furthermore, they differ from aerobic eukaryotes in
the enzymes they use to convert pyruvate to acetyl-CoA. Instead of using PDC, these
organisms utilize enzymes such as pyruvate:ferredoxin oxidoreductase (PFO),
pyruvate:NADP* oxidoreductase (PNO), and/or pyruvate formate lyase (PFL). Although
PDC is known to function exclusively within mitochondria of aerobic eukaryotes, these
anaerobic enzymes are sometimes localized to different subcellular compartments
depending on the organism. For example, in some organisms, PFO functions within
mitochondrion-related organelles (MROs) such as the hydrogenosomes of the
parabasalid parasite Trichomonas vaginalis (Steinblchel and Miller 1986; Hrdy and
Muller 1995) where in others, such as Entamoeba histolytica and Giardia intestinalis, it
is thought to primarily function within the cytosol (reviewed in (Embley and Martin

2006)). The enzyme PNO has been shown to localize in the mitochondria of Euglena
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gracilis and Plasmodium falciparum and in the mitosomes of Cryptosporidium parvum
(Rotte et al. 2001; Mogi and Kita 2010).

PFL (EC 2.3.1.54) is a member of the pyruvate formate lyase protein family and
catalyzes the nonoxidative generation of formate and acetyl-CoA from pyruvate and
CoA. PDC, PFO, and PNO (but not PFL) use redox chemistry with cofactors (NAD" or
ferredoxins) to convert pyruvate into acetyl-CoA, whereas PFL activity involves radical
chemistry. Radical generation occurs independent of catalysis and involves a second
enzyme, pyruvate formate lyase activating enzyme (PFLA; EC 1.97.1.4). PFL is activated
by the formation of an a-carbon centered radical in its C-terminal glycyl radical domain
(pfam01228) by PFLA which utilizes the cofactors S-adenosyl methionine (SAM) and
reduced flavodoxin or ferredoxin (Wagner et al. 1992). When pyruvate binds to PFL, the
radical is transferred to two adjacent active site cysteine residues (Frey et al. 1994).
These conserved cysteine residues along with a conserved tyrosine downstream relative
to the glycine within the glycyl radical domain, can be used to distinguish pyruvate-
catalyzing PFLs from other PFL protein family members (such as the benzyl succinate
synthases and glycerol dehydratases) that have only one cysteine in the active site and a
different radical domain architecture (Lehtio et al. 2004).

The radical form of PFL upon oxygen exposure is irreversibly cleaved at the radical
residue (Wagner et al. 1992). Presumably for this reason, the enzyme has only been
identified in organisms that are either obligatory or transient anaerobes, such as the
firmicutes (Thauer et al. 1972) and Enterobacteriaceae. PFL activity in eukaryotes has
been described in cell-free extracts (Marvin-Sikkema et al. 1993) and hydrogenosomes
of the chytrid fungus Neocallimastix sp. (Akhmanova et al. 1999) as well as its close
relative Piromyces sp. E2 (Boxma et al. 2004), the chloroplasts and mitochondria of the
chlorophyte  algae  Chlamydomonas  reinhardtii and probably its close
relative Polytomella sp. (Atteia et al. 2006; Hemschemeier et al. 2008). It has been
suggested that PFL is part of the ATP-producing pathway in these organelles. Unlike
other pyruvate-metabolizing enzymes, the action of PFL does not involve CO,

production. Indeed, this system has been hypothesized to function as an alternative to
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PFO, when the latter is inhibited by high CO, levels in the organism's environment
(Boxma et al. 2004). However, PFL-mediated acetyl-CoA generation is problematic for
energy production because of the SAM consumed in the initial activation of PFL; SAM
requires ATP for its synthesis by SAM synthetase (Markham et al. 1980). Unless the
energy required for SAM synthesis is regenerated elsewhere and the radical is
protected, the PFL system cannot be as efficient as a PFO-based system for ATP
production. Nevertheless, it is possible that PFL-generated acetyl-CoA is also important
for sustaining biosynthetic pathways, such as fatty acid biosynthesis and elongation and
amino acid synthesis.

The evolutionary origins of anaerobic pyruvate oxidizing enzymes within eukaryotes
are contentious. It has been suggested that they may have originated with the a-
proteobacterial mitochondrial symbiont that may have been a facultative anaerobe
(Martin and Miller 1998). To evaluate this, as well as alternative hypotheses, Hug et al.
(2010) surveyed the presence and absence of PFO- and PNO-related proteins, as well as
[FeFe]-hydrogenases in partial and complete genomic and transcriptomic sequence data
of diverse eukaryotes (Hug et al. 2010). Although the homologs of PFO and PNO proteins
that were identified in diverse eukaryotic lineages appeared to form a monophyletic
group, phylogenetic analyses did not support an a-proteobacterial origin for the
eukaryotic enzymes. Similarly, a previous network analysis demonstrated that the PFL
sequences from Chlamydomonas and the chytrid fungi form a group clustering near
homologs from firmicutes (Gelius-Dietrich and Henze 2004). With recent large-scale
genomic and cDNA/expressed sequence tag (EST) sequencing projects of eukaryotes, |
have identified many additional sequences homologous to PFL and PFLA in a wide
diversity of other eukaryotes including members of the Amoebozoa, Metazoa,
Haptophyta, and Archaeplastida. In this study, | investigate the origin of eukaryotic PFL
and more generally the distribution and evolution of pyruvate metabolizing enzymes

within eukaryotes to trace their prokaryotic ancestry.
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2.3 Methods

2.3.1 454 EST Project Of Mastigamoeba balamuthi

Mastigamoeba balamuthi cultures were maintained from an established American
Type Culture Collection (ATCC) culture (ATCC #30984) in PYGC media (1% peptone, 1%
yeast extract, 56 mM glucose, 86 mM NaCl, 10 mM K,H/KH,PO,, pH 6.8) grown at 20-24
°C. Total RNA was isolated using Trizol (Tri-reagent) following the protocol supplied by
the manufacturer (Invitrogen). A cDNA library was constructed by Vertis Biotechnologies
AG (Freising, Germany), and 454 pyrosequencing was performed by Genome Québec.
The Newbler assembly program (Roche) was used to assemble the reads. PFL and PFLA
were identified using basic local alignment search tool (TBLASTN), and candidate reads
and contiguous sequences were viewed and manually assembled and edited using
Sequencher (Gene Codes corp.). Sequences were confirmed by polymerase chain
reaction on cDNA and genomic DNA followed by Sanger sequencing (forward primer
MbPFL_1F:  ATGTCCGGCTCTATCCGGG and reverse primer  MbPFL_909R:
CTATGAGCACTGCACGGCGACG). The sequences of the Mastigamoeba PFL and PFLA
genes are deposited in GenBank with the accession numbers HM590578 and HQ003218,

respectively.
2.3.2 Database Searches

Bacterial PFL and PFLA protein sequences were retrieved from all whole-genome
sequencing projects compiled in the microbial online analysis database
(http://ratite.cs.dal.ca/moa/) using BLASTP and TBLASTN with PFL and PFLA from C.
reinhardtii (gi:92084842, 57021069) as queries. Because only pyruvate-catalyzing PFL
proteins were sought, those sequences lacking the diagnostic conserved active site motif
(CC, Lehtio and Goldman 2004), glycyl radical domain ([LIVM]R[LIVM]SGY, Lehtié and
Goldman 2004), or those annotated as PFL4 were removed. Similarly, those PFLA
sequences characterized as non-pyruvate PFL-activating enzymes that had an additional
ferredoxin domain (Raynaud et al. 2003) or from taxa without a pyruvate-catalyzing PFL

were removed. To maintain a reasonably sized data set for subsequent phylogenetic
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analyses, extremely similar sequences from redundant species and strains were
randomly removed.

Eukaryotic gene and protein sequences were retrieved from a variety of sources
including EST and genome databases from: the National Center for Biotechnology
Information (NCBI, http://www.ncbi.nlm.nih.gov), the Joint Genome Institute (JGI,
http://www.jgi.doe.gov) PlantGDB (http://www.plantgdb.org), the Welcome Trust
Sanger Institute (http://www.sanger.ac.uk), Pristionchus.org, and the Taxonomically
Broad EST database (TBestDB, http://tbestdb.bcm.umontreal.ca). Because many of the
retrieved sequences were suspected prokaryotic contaminants in genome sequencing
projects (i.e., homologs found in Homo sapiens, Mus musculus, Oryza sativa etc.), genes
with >99% nucleotide identity to particular prokaryotic pfl or pfla sequences, or those
not assembled in the final draft of the eukaryotic genome sequences were excluded
from further consideration. Any gene sequences containing spliceosomal introns were
maintained as true eukaryotic homologs.

The same procedures were performed to probe the presence/absence of PDC, PFO,
PNO, and sulfite reductase (SR) protein families in diverse eukaryotic genomic and
transcriptomic data. A PDC complex was designated as present if at least PDH (E1
subunit) was present in the data. Those proteins that resembled PFO but had a fused C-
terminal Cysl domain (Crane et al. 1995), or cytochrome P450 reductase domain

(Zeghouf et al. 1998) were classified as SR or PNO, respectively.
2.3.3 Data Set Generation And Phylogenetic Analysis

Amino acid sequences were aligned using MUSCLE v3.2 (Edgar 2004) and manually
edited to mask out regions of ambiguous alignment. The final alignments for PFL and
PFLA consisted of 693 sites (166 taxa) and 194 sites (152 taxa), respectively. Maximum
likelihood (ML) phylogenetic analysis was performed using RAXML version 7.2.6
(Stamatakis 2006) under the Le and Gascuel (LG) (Le and Gascuel 2008) amino acid
substitution model plus gamma model of rates across sites taking into account the
amino acid frequencies of the data set evolution (denoted PROTGAMMALGF in RAXML).

The LG amino acid substitution matrix was identified as the optimum model for all data
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sets assessed by PROTTEST (Abascal et al. 2005) under the Akaike and Bayesian
Information Criteria. For each data set, bootstrap support for splits estimated from 500
bootstrap replicates were mapped onto splits on the best scoring ML tree (obtained by
10 heuristic search replicates). As nonparametric bootstrap support values have recently
been shown not to be first order correct (Susko 2009), corrected bootstrap values (BV,)
were generated using the adjusted bootstrap probability (aBPn) program under the LG
+ T model, using alpha shape parameter values calculated using RAXML (see (Susko
2010)). The program requires nonzero branch lengths and sufficient alignment data for
estimation. For this reason, taxa with extremely short branch lengths were removed
from the trees and alignments and simulated data sets (10,000 sites using
SeqGen http://tree.bio.ed.ac.uk/software/seqgen/) were used. aBPn values can be
considered as a statistical test that the split was not present in the true phylogeny with
aPvalue = 1 - BV.. Bayesian inference (BI) was also conducted using PhyloBayes 3.2
(Lartillot et al. 2009) by running two chains under the catfix C20 model of evolution (Le
et al. 2008). For each chain, a total of 300,000 generations were run, from which trees
were sampled every 100 generations and discarding a manually determined burn-in of
50,000 generations for each (yielding a total of 2,500 trees). Posterior probabilities (PP)

for splits were mapped on to the ML estimated topology.
2.3.4 Congruence Testing And Concatenation

Organisms that had multiple paralogous copies of PFL, and only one PFLA were
removed prior to concatenation because each PFL could not be uniquely assigned an
activating enzyme. Congruence between PFL and PFLA phylogenies was tested for the
data set without paralogues using CONCATERPILLAR with an alpha-level cutoff of 0.05
(Leigh et al. 2008). For concatenated PFL—PFLA analyses, to assess potential artifacts
introduced by gene and lineage-specific evolutionary dynamics, ML analysis was
performed both with and without partitioning the data to allow for variable edge
lengths and other parameters for each protein family (the RAXML—M option). In
general, only minor differences in bootstrap values on splits were noted between

partitioned versus nonpartitioned analyses therefore the bootstrap correction and Bl PP
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were calculated only for the nonpartitioned data set. To evaluate the impact of missing
data on topological support values, a second analysis was performed as described above
where only complete sequences and partial sequence with greater than 50% of the sites

were included.

Table 2-1 AU Topology Tests for the Single Gene and Concatenated PFL and PFLA Data Sets.

a AU Test P AU Test P value of
Phylogeny Monophyly Test value Partitioned Analysis
Euka ryot959 and y-proteobacteria 0.0004
PEL Eukaryotesg and a-proteobacteria 0.0024
Eukaryotesg and a-clade 0.0130
Eukaryote59 and cyanobacteria 0.1580
Euka ryote59 and y-proteobacteria 0.8010
PELA Eukaryotesg and a-proteobacteria 0.0010
Eukaryotesg and a-clade 0.4660
Eukaryote59 and cyanobacteria 0.0740
Concatenated Eukaryotesg and a-proteobacteria 2x107° 5x10°°
tree® (PFL— Eukaryotesg and a-clade 0.0130 0.0040
PFLA) Eukaryote59 and cyanobacteria 1x107 0.0090
Typical eukaryotic phylogeny 0.0020 0.0030
Cotr:::t(epr::alt_ed Chlorophytes and prasinophytes 0.0100 0.0080
PFLA; Chlorophytes, Prasmophytes, and 0.0380 0.0330
exclusively Mastigamoeba
eukar otesg) Fungi and prasinophytes 0.5230 0.4660
¥ Opisthokonts 0.6610 0.6650

?ML tree search with the indicated constraint.

bOnIy includes eukaryotes that from a monophyletic group depicted in Figure 2-2, Figure
2-3, (and not Brugia malayi or Litopenaeus vannamei).

‘For concatenation, the following data were removed: Brugia malayi, Litopnaeus
vannamei, y-proteobacteria, and paralogous sequences.

2.3.5 Topology Testing

To test alternative candidate phylogenetic positions of eukaryotes within the
bacterial subtree, | used the approximately unbiased (AU) topology test implemented in
CONSEL (Shimodaira and Hasegawa 2001). In brief, ML trees were estimated subject to
topological constraints corresponding to alternative hypotheses (e.g., a-proteobacteria
as sister to the eukaryotes) using RAXML (—g option). The AU tests were performed with
CONSEL (Table 2-1) based on these trees as well as a sample of 100 “ML-bootstrap”

trees generated during bootstrapping using RAXML (—f g option). The 100 additional
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trees were to provide a sample of “good” trees, which is necessary in order for

the P values for the AU test to be accurate (Shi et al. 2005).
2.3.6 Gene Order And Operon Prediction

Putative operons in bacterial genomes were identified using OperonDB (Pertea et al.
2009). If PFL and PFLA were located at distantly separated loci on a given prokaryotic
chromosome, they were not considered to be in an operon. Complete genomes of the
eukaryotes Thalassiosira pseudonana, Ostreococcus species, and C. reinhardetii (jgi) were
examined for the location and order of the PFL and PFLA genes on their assembled

scaffolds.
2.3.7 Tests For Long-Branch Attraction, Amino Acid Composition Bias

To evaluate whether long-branch attraction contributed to the support for the
grouping of the eukaryotic sequences, for each of the analyses, I: (i) removed 50% of the
longest eukaryotic branches and the resulting data set was reanalyzed as described
above and (ii) removed the fastest evolving sites, which are often responsible for long-
branch attraction and reanalyzed the truncated alignments as described above. The fast
evolving sites were identified and removed using AlR-identifier and AIR-remover (Kumar
et al. 2009). To evaluate the possibility of phylogenetic artifacts associated with amino
acid composition bias within the eukaryotic sequences, | performed a chi-squared test
for deviations in amino acid compositions for each taxon implemented in TREE-PUZZLE
version 5.2 (Schmidt et al. 2002). Taxa with significantly different amino acid
composition from the overall data set frequencies were removed, and the analysis was
repeated as above to check whether estimated topologies and support values changed.
Additionally, | performed cluster analyses of the amino acid composition vectors of the
eukaryotic sequences and the concatenated analysis. Euclidean distance matrices
between composition vectors were constructed from 100 bootstrapped alignments and
used to generate 100 UPGMA trees. The majority rule consensus of these trees and

bootstrap support for bipartitions were visualized using CONSENSE (Felsenstein 2005).
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2.3.8 In Silico Subcellular Localization Prediction

TargetP (available at http://www.cbs.dtu.dk/services/TargetP/) (Emanuelsson et al.
2000) and Mitoprot Il (available at http://ihg2.helmholtz-
muenchen.de/ihg/Mitoprot.html (Claros and Vincens 1996) were used to predict

subcellular localization of proteins based on their amino acid sequences.

2.4 Results And Discussion

24.1 Identification Of Previously Unidentified Pfl And Pfla In Eukaryotes

Database mining of all publicly available genome and EST projects for eukaryotes
revealed a large number of previously unreported PFL and PFLA homologues (Figure
2-1). A total of 16 new PFL eukaryotic homologues were identified in archaeplastids
(Scenedesmus  obliquus, Chlorella sp., Acetabularia acetabulum, Haematococcus
pluvialis, Volvox carteri, Os. tauri, Os. lucimarinus, Micromonas pusilla, Micromonas sp.,
Porphyra haitanensis, and Cyanophora paradoxa), an opisthokont (Amoebidium
parasiticum), an amoebozoan (Mastigamoeba. balamuthi), a stramenopile (T.
pseudonana (2)), and a haptophyte (Prymnesium parvum). A total of seven new PFLA
eukaryotic homologues were identified in archaeplastids (Micromonas pusilla,
Micromonas sp. Os. tauri, and Os. lucimarinus), an amoebozoan (M.balamuthi), and a
stramenopile (T. pseudonana (2)). The majority of these sequences were identified in
both genomic and EST data. Furthermore, in most cases, spliceosomal introns were
identified in the genomic sequences confirming a eukaryotic (rather than bacterial)

provenance.
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Other Metazoans (84)
Capitella capitata
Amoebidium parasiticum *
_|—_< other ascomycotes (78)
Neurospora crassa
Basidiomycota (18)
Rhizopus oryzae
Neocallimastix frontalis *
Piromyces sp. *
Batrachochytrium dend.
Spizellomyces punctatus *

Entamoeba histolytica
Entamoeba (2)
Mastigamoeba balamuthi *
Dictyostelium discoideum
Polysphondylium pallidum
Acanthamoeba castellanii *

Trichomonas vaginalis
Giardia intestinalis
Spironucleus (2)
Retortamonas sp. *
Euglena gracilis *

Astasia longa *
Peranema trichophorum *
Kinetoplastida (5)
Psalteriomonas lanterna *
Sawyeria marylandensis *
Naegleria gruberi
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Monocercomonoides sp. *
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Figure 2-1: The distribution of pyruvate utilizing acetyl-CoA-generating enzymes across
eukaryotic diversity. Complete genomes and EST projects (*) were surveyed for pyruvate
dehydrogenase (PDC), pyruvate ferredoxin oxidoreductase (PFO), pyruvate formate lyase (PFL)
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and pyruvate formate lyase activating enzyme (PFLA) for more than 200 eukaryotes from
multiple databases. The presence (+) or absence (-) from complete genome projects are
illustrated while “?” indicates the absence from EST data. Homologues of PFO are illustrated as F
for PFO, N for those containing the cys)] domain typically associated with pyruvate:NADP+
oxidoreductases (PNO) or —SR for those sequences with cysl domain typically associates with
sulfite reductases in fungi. The bracketed numbers represent the number of other taxa sampled
but not displayed. Databases were mined up to October 2009.

PFL, but not PFLA, sequences were also found in the metazoan Brugia malayi (a
filarial nematode) and Litopenaeus vannamei (a whiteleg shrimp) genomic databases.
The Brugia genomic sequence corresponding to PFL was identified in an incomplete
genome project, did not contain spliceosomal introns and was not identifiable in a
transcriptome project (http://www.nematodes.org). The Lit. vannamei sequence was
extremely short (~500 bp), only identified in EST data and 74% identical at the
nucleotide level to Listeria innocua pfl. Although it remains uncertain, for these reasons,
| suspect both sequences are bacterial contaminants and were not included in

subsequent analyses.
2.4.2 Eukaryotic Monophyly Of Pfl And Pfla

The global phylogenetic analyses of all representative bacterial and eukaryotic
pyruvate-catalyzing PFL and PFLA amino acid sequences are shown Figure 2-2 and Figure
2-3, respectively. In the PFL analysis, all eukaryote sequences form a clade with
moderate support (BV = 66, BVc = 88, PP = 0.66; Figure 2-2), showing a weak affinity
(<50% BV) for a firmicutes plus Bacteroides grouping. Similar results were recovered for
the PFLA phylogeny where eukaryotes were monophyletic with significant support (BV =
90, BV.= 97, PP = 1.0; Figure 2-3). To test whether eukaryotic monophyly in these
phylogenies were artifacts of long-branch attraction, the analyses were repeated with
50% of the longest eukaryotic branches removed. This secondary analysis did not change
the overall tree topology, however it did differentially affect the support for eukaryote
monophyly in the PFL and PFLA analyses (BVprL = 79, PPpr. = 1.0; BVpria = 83, PPpria = 1.0,
data not shown). For the PFL and PFLA analyses, there is very weak support for
intergroup relationships especially along the “backbone” of the phylogeny (i.e., the

innermost branches on the tree). Although | initially suspected this could be due to the
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position of the strongly supported y-proteobacterial clade relative to other sequences
(this is the deepest significant split in the tree), removal of the y-proteobacteria did not
alter the resolution amongst the other taxa.

The most common bacteria-related sequences in eukaryotic genomes are the genes
that were acquired during the establishment of endosymbiotically-derived mitochondria
and chloroplasts (Pisani et al. 2007). To test whether the position of the monophyletic
eukaryotic group in the PFL and PFLA trees was consistent with acquisition during either
of these endosymbioses, | tested whether ML topologies obtained by constraining the
eukaryotic sequences to group with a-proteobacteria (mitochondria) or cyanobacteria
(chloroplasts) respectively were significantly rejected by the data (Table 2-1). Eukaryotes
+ o-proteobacteria monophyly was rejected for both PFL (AU P value [P] = 0.002) and
PFLA (P = 0.001). As | noted that the a-proteobacteria often grouped with the PB-
proteobacteria and actinobacteria in optimal trees | tested whether the eukaryotic
affinity for this group as a whole (a-clade); this hypothesis was rejected by PFL (P =
0.013) but not by PFLA (P= 0.466) data sets (Table 2-1). The chloroplast origin
hypothesis that constrained the cyanobacteria to group with the eukaryotes was not

rejected for either PFL (P = 0.158) nor for PFLA (P = 0.074).
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Figure 2-2: Global phylogeny of PFL in eukaryotes and bacteria. Support values (>50 or 0.5) were
mapped onto the ML tree in the order of bootstrap support (BV)/corrected bootstrap support
(BV.) and Bayesian posterior probability. A total of 693 sites from 166 taxa were used for this
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“uxn

represent those branches that were not found in the majority rule consensus summary of
the Bayesian analysis.
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Although a cyanobacterial/chloroplast origin cannot be rejected in these analyses, it
seems rather unlikely because a number of the PFL- and PFLA-containing eukaryotes,
such as Mastigamoeba, the chytrid fungi, and Amoebidium are members of the so-called
“unikont” eukaryotes that are likely to have diverged from eukaryotes prior to the origin
of chloroplasts within eukaryotes (Lane and Archibald 2008). In any case, the limited
resolution of the PFL and PFLA trees precludes us from making definitive conclusions.
However, as the two proteins are tightly functionally linked, it is reasonable to suppose
that they could share the same phylogenetic history. If so, then the support for a
firmicute-Bacteroides relationship over a-proteobacterial or cyanobacterial affinity

could be better assessed by concatenated analyses of these proteins.

2.4.3 Concatenation Of Pfla And Pfl Increases Monophyly Support And

Suggests A Firmicute Ancestry For These Genes

| first tested the assumption that the two proteins shared the same history. In order
to do this, all paralogous sequences were removed because some species had multiple
PFL sequences but only one PFLA and thus each PFL could not be uniquely assigned a
PFLA without duplication of the sequences. Congruence of the two protein phylogenies
was tested using a likelihood ratio test implemented in CONCATERPILLAR (Leigh et al.
2008). Congruence was rejected (Pvalue = 0.003657) with the full data sets with
paralogs removed. Congruence rejection may have been the result of different
topologies observed within the large y-proteobacterial clade for the two proteins. As the
latter group was strongly recovered as monophyletic (BV = 98 and PP = 1.0) and showed
no affinity to the eukaryotic taxa in the phylogeny, | removed these sequences from the
analysis and retested congruence; this time the null hypothesis of congruence could not
be rejected (P = 0.056334). ML and Bl were conducted on this reduced concatenated
PFL-PFLA data set. For ML analyses, both partitioned (i.e., allowing gene-specific branch
lengths and alpha shape parameters) and nonpartitioned analyses were performed. As
differences between the bootstrap values generated from these two analyses were

small (i.e., within Monte Carlo sampling error), | report only the unpartitioned bootstrap
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values. The eukaryotic sequences remain monophyletic with borderline significant
corrected bootstrap support (BV. = 95), but with surprisingly poor posterior probability
(PP = 0.5) (Figure 2-4A). Similar to the PFL analysis (Figure 2-2), the concatenated
phylogeny shows a eukaryote—firmicute—Bacteroides grouping with strong support
values (BV = 84, BV. = 96, PP = 1.0). All alternative topologies were rejected by AU tests
(Table 2-1), including cyanobacteria + eukaryote monophyly (Pynpart = 0.00005 and Ppart =

0.009), which was previously not rejected.
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Figure 2-4 Phylogeny of concatenated pyruvate formate lyase and its activating enzyme. The
topology shown was obtained by ML analysis. Support values for branches are shown above
them in the order of bootstrap support (BV)/corrected bootstrap support (BV.) and Bayesian
posterior probability. Support values are only shown if with greater than 50% or 0.5. (A) A total
of 887 sites from 63 taxa were used for this analysis. The conservation of operon architecture in
bacteria or gene order in eukaryotes is shown in boxes to the right of the taxa where black and
grey denote PFL and PFLA respectively. The dotted boxes represent those taxa that are shown as
a wedge in B. (B) The same analysis except removing eukaryotic taxa with fewer than 50% of the
sites in the total alignment. A total of 887 sites from 54 taxa were used for this analysis.

Because some of the eukaryote PFL and/or PFLA sequences in our analyses were

partial with small numbers of sites, | evaluated the impact of removal of taxa with less
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than 50% of the sites (Figure 2-4B). The tree topology did not change; however, support
values for both eukaryotic monophyly (BV = 94, BV. = 98, and PP = 0.93) and firmicute—
Bacteroides affinity (BV = 89, BV.= 97, and PP =1.0) increased (Figure 2-4B). The
monophyly of eukaryotes in the both analyses suggests that eukaryotic PFL and PFLA
share a single common prokaryotic origin probably resulting from a lateral gene transfer
(LGT) event from either a firmicute- or Bacteroides-like organism. Interpretation of the
source of transfer is complicated by the scrambled bacterial relationships observed.

|ll

Because (i) bacterial “phyla” such as firmicutes, proteobacteria, and Bacteroides are not
recovered as single groups but appear in multiple distinct regions of the tree and (ii) the
presence/absence of PFL or PFLA homologs within bacterial genomes is patchily
distributed across bacterial phyla, it is likely that LGT of these genes is occurring
amongst these bacterial groups. Nevertheless, the most parsimonious interpretation of

the placement of the eukaryotic clade within the bacteria suggests a firmicute ancestry.

2.4.4 Atypical Eukaryotic Relationships In Pfl And Pfla Phylogenies Suggest
Eukaryote-To-Eukaryote LGT Events

The lack of evidence for a mitochondrial or cyanobacterial origin combined with
apparent eukaryote monophyly in PFL and PFLA phylogenies can be explained most
straightforwardly by three hypotheses. First, the observed pattern could be explained by
several independent prokaryote-to-eukaryote LGT events from a common or closely-
related prokaryotic source. Alternatively, there could have been a single origin of these
enzymes by bacteria-to-eukaryote LGT along the lineage leading to the last common
ancestral eukaryote followed by differential loss of the enzymes in disparate eukaryotic
lineages (but retention in some facultative and obligate anaerobes). Finally, the enzymes
could have been transferred from bacteria more recently to an extant eukaryote lineage
and subsequently spread to other lineages by multiple eukaryote-to-eukaryote LGT
events.

If the first scenario—the independent acquisition of PFL/PFLA from similar firmcute-
like sources—were correct, then denser sampling of genomes from clostridial taxa could

in principle show that the eukaryotic sequences are not monophyletic. Although this
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scenario cannot be formally tested at this time, it seems unlikely that all relevant
bacterial taxa that could disprove it are either extinct or not currently sequenced, thus
this is not a favoured hypothesis. If the second “ancestral plus differential loss”
hypothesis were true, then | would expect the PFL and PFLA phylogenies to resolve
typical eukaryotic relationships between organisms possessing these enzymes. To test
this hypothesis, ML (partitioned and nonpartitioned) and Bl analyses were performed on
the concatenated twenty-one eukaryotic PFL and PFLA sequences available (Figure 2-5).
Again, the differences in BVs observed between partitioned and nonpartitioned analyses

were within Monte Carlo error and so only the latter are shown.
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Figure 2-5: Atypical eukaryotic phylogeny of concatenated pyruvate formate lyase and its
activating enzyme. Support values are as indicated in Figure 2-2. Branches with maximum
support are shown with black circles. Major eukaryotic groups are labeled.

The most striking observation from these analyses is the robust recovery of both the

chlorophyte and prasinophyte green algal clades as branching strongly apart (in terms of
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high BV and PP values) in the tree, with all of the remaining eukaryotic lineages
emerging between them. For example, the sequences from the
amoebozoan Mastigamoeba group with the chlorophytes to the exclusion of all other
eukaryotes with significant support (BV = 95, BV.= 99, and PP = 1.0). Another odd
feature of the analyses is the clustering of the ichthyosporean Amoebidium with the
glaucophytes and rhodophytes and not the other opisthokonts (Neocallimastix
frontalis and Piromyces sp.). The placement of the glaucophyte and rhodophytes in
relation to the other lineages is not well resolved which has been observed previously in
multiprotein eukaryotic phylogenies (Hampl et al. 2009; Nozaki et al. 2009). Finally, the
haptophyte and diatoms branch together with strong support (BV = 100, BV.= 100, and
PP =1.0).

To examine whether these unexpected eukaryotic relationships reflected a strong
signal in the data versus random error, topology tests were performed in both
unpartitioned and partitioned analyses (see Table 2-1 and schematic representations of
topologies given in Figure 2-6). | first tested the compatibility of the data with a
conservative view of known eukaryotic relationships. The following groups were
enforced as topological constraints during the tree searching: monophyly of the unikonts
with the amoebozoan Mastigamoeba to the immediate exclusion of monophyletic
opisthokonts (chytrids and the icthyosporean) and monophyly of the bikonts with the
haptophyte and stramenopile (diatom) to the immediate exclusion of the archaeplastid
groups (prasinophytes, chlorophytes, rhodophyte, and glaucophyte). The optimal trees
estimated with this “typical eukaryotic phylogeny” constraint were rejected in both
nonpartitioned (P,..« = 0.002) and partitioned analyses (P,.. = 0.003). The monophyly of
the green algal lineages (prasinophytes and chlorophytes) was also rejected for both
analyses (Pyp.:= 0.01 andP,..0.008) as was monophyly of the green algal lineages
plus Mastigamoeba (P,.... = 0.038 and P,..= 0.0330) suggesting that it is not only the
placement of Mastigamoeba that is responsible for the separation of the algae. Finally,
opisthokont monophyly (i.e., Amoebidium + chytrid fungi) was tested but not rejected

(Punparat = 0.6610 and P,,. = 0.6650). Thus, only in the latter case could random error alone
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be responsible for the anomalous branching pattern. Addition of more taxa may be

helpful to improve resolution of this region of the phylogeny.
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Figure 2-6: Radial diagrams of different eukaryotic relationships constrained for topology testing.
The five eukaryotic topologies tested in Table 1 are demonstrated as labeled.

The foregoing analyses suggest that many of the peculiar eukaryotic relationships
observed in the tree derive from strong signals in the data. To test whether the
observed relationships were phylogenetic artifacts, | analyzed the amino acid
compositions of each of the eukaryotic taxa relative to the full data set with a chi-
squared test implemented in TREE-PUZZLE (Schmidt et al. 2002). | found significant
deviation in the amino acid compositions of the sequences from Micromonas pusilla
(Per. = 0.0001 Py, = 0.00384) and Neocallimastix (Py, = 0.0036). Reanalyses of the data

sets after removing these two taxa from the concatenated analysis did not significantly
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change the overall tree topology or support values for strongly supported branches.
Furthermore, bootstrapped clustering analyses of the amino acid composition vectors of
sequences in the eukaryotic and concatenated data set showed no strongly supported
internal structure. The deepest clusters recovered in these dendrograms did not
resemble deep groupings in ML or Bayesian phylogenies suggesting that amino acid
composition alone is not biasing the estimated phylogenies. Finally, removal of fast
evolving sites using the AIR package (Kumar et al. 2009) did not change the estimated
topology, although, not surprisingly, support for eukaryotic monophyly and firmicute
affinity generally decreased after removal of the ~50% fastest-evolving of the positions

from the alignment (Figure 2-7)
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Figure 2-7: Removal of fast-evolving sites. Varying levels of fastest evolving sites were removed
from the concatenated (Fig 2A) and concatenated without short sequences (Fig 2B) datasets
using the AIR-identifier and -remover tools where sites classified as 8 are the fastest evolving.

56



The values shaded light blue (0) represent the dataset with no sites removed. 100 bootstrap
replicates were generated and mapped on to the best-scoring ML tree. Eukaryotic monophlyly
(A) and firmicute affinity (B) bootstrap values are reported.

Therefore, in the absence of any recognizable source of systematic error in these
data sets (e.g., long-branch attraction or amino acid composition bias), the atypical
eukaryotic relationships observed likely reflect a true historical signal. This, combined
with the extreme patchiness of PFL and PFLA genes observed across eukaryotic diversity
(Figure 2-1), disfavors the “ancestral plus differential loss” scenario. A variation of this
scenario that invokes large numbers of early gene duplications within eukaryotes
followed by differential loss is conceivable and would explain the odd phylogenetic
patterns observed. As none of the eukaryotes so far examined have retained multiple
putative “ancient paralogs” expected under this scenario and as the number of parallel
loss events required to explain the extant presence/absence pattern becomes even
greater as does the number of paralogs that had to have been in the common eukaryotic
ancestor, it seems to be a rather unlikely explanation. This leaves the hypothesis of a
firmicute-to-eukaryote LGT event into an extant eukaryote lineage followed by several
subsequent eukaryote-to-eukaryote gene transfers as a remaining reasonable scenario.
The number of documented LGTs from prokaryotes to eukaryotes has increased steadily
as more genomic data becomes available (Andersson 2009). Similarly, the frequency of
reports of eukaryote-to-eukaryote LGT events have also increased; this process may
occur via mechanisms, such as secondary plastid symbioses (Kamikawa et al. 2009),
simple phagotrophy (Andersson 2009), or via parasitic genetic elements (Gilbert et al.
2010). Therefore, a “multiple LGT” scenario for PFL/PFLA evolution within eukaryotes
seems to be at least a plausible explanation for the phylogenetic patterns observed.

Assuming, for the moment, that the foregoing LGT scenario for PFL and PFLA is
correct, it is possible to make informed conjectures about the sequence of events that
took place (Figure 2-8). For example, these genes could have been acquired by an
ancestral archaeplastidan organism and directly inherited by Cyano. paradoxa, Por.
haitanensis and the two green algal lineages. Assuming that these chlorophytes and

prasinophytes form a clade to the exclusion of streptophytes (Baurain et al. 2010) then
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loss of PFL and PFLA would have to be invoked in the latter lineage and in the red
alga Cyanidioschyzon merolae (Figure 2-5). The remainder of eukaryotic organisms in
Figure 2-5 and Figure 2-8 could have acquired the genes then by a minimum of four
distinct eukaryote-to-eukaryote LGT events from the various archaeplastidan lineages.
However, many other alternative scenarios that invoke a similar number of LGT events
from different founding eukaryotic lineages are also possible. Ultimately, much more
genomic data from many more representatives of the various microbial eukaryotic taxa
involved will be needed to 1) confirm or refute the general LGT scenario | have outlined
and 2) clarify the timing of the various genetic events involved in the evolution of

PFL/PFLA within eukaryotes.
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Figure 2-8: Hypothesis for the origin of eukaryotic PFL/PFLAE and its transfer amongst
eukaryotes. (1) Operon-mediated transfer of PFL/PFLAE from a firmicute-like bacteria in the
common ancestor of Archaeplastida and subsequent evolution of the eukaryotic PFL over
speciation events (purple line). Possible LGTs from an unknown archeaplastida to other
eukaryotes (2) Divergence of the main lineages of green algae and streptophytes. (3) Further
evolution of the green lineages gave rise to distinct types of PFL/PFLA in the prasinophytes
(blue), chlorophytes (green) and early-branching streptophytes (grey). | propose that
Mastigamoeba received PFL/PFLAE from a chlorophyte alga while chytrid fungi and other
eukaryotes likely acquired the enzymes from a currently unidentified extant or ancestral
Archaeplastids.
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2.4.5 Conservation Of Gene Order: Insights Into The Transfer Mechanism

One potential difficulty with an LGT origin scenario for PFL and PFLA genes is that for
a functioning enzyme system to be “moved” between organisms, at a minimum, both
genes must be transferred successfully. However, for the initial bacteria-to-eukaryote
transfer, this problem is avoided if the two genes were genetically linked in an operon
that could be transferred in a single genetic event (Andersson and Roger 2003). Iny-
proteobacteria, such as Escherichia coliand most firmicutes, pfl and pfla are indeed
encoded close together in a putative operon as predicted by OperonDb (Pertea et al.
2009). A survey of the gene organization and order is summarized in Figure 2-4 for those
taxa analyzed in the concatenated gene analysis. Separation of pfl and pfla loci in
bacteria was only observed in the Streptococcaceae lineage (Lactococcus
and Streptococcus) and Thermosynechococcus elongatus (Figure 2-4); neither of these
groups is closely related to the eukaryotic clade. The initial LGT into eukaryotes could
therefore have plausibly occurred from a firmicute-like organism encoding pfl and pfla in
an operon.

With complete genome sequences available for Thalassiosira, O. lucimarinus, O.
tauri, and C. reinhardtii, the gene order of pfl and pfla could also be
determined. Thalassiosira appears to have maintained the firmicute-like gene order
with pfl preceding pfla. Curiously, however, a close examination of data from the
genome project (http://genome.jgi-psf.org/Thaps3_bd/Thaps3_bd.home.html) indicates
that the genes are fused into a single open reading frame (ORF). | was able to identify
multiple cDNA sequences that spanned the two coding regions, and found that none of
the 3' ends of the upstream partial pfl cDNAs had poly(A) tails as would be expected if
they were separately transcribed mRNAs. Fused versions of laterally transferred genes
encoded in bacteria as two genes on an operon have been described previously for the
small and large subunits of glutamate synthase (Andersson and Roger 2002). However,
to my knowledge, this is the first example of a PFL-PFLA fusion protein. InO.
lucimarinus and O. tauri, the PFL and PFLA are not fused, however, they are neighboring

genes on the chromosome that are encoded on opposite strands (Figure 2-4). Pfl and
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pfla are separated by only 117 bp of noncoding DNA in O. tauri and by an ORF encoding
a predicted protein (variant-specific surface protein, gi:145341972)
in O. lucimarinus. The pfl and pfla genes in the prasinophytes could have ancestrally had
the same gene order as the firmicutes and Thalassiosira, but then suffered a
rearrangement that transposed one gene relative to the other leading to their
bidirectional orientation. After speciation, either O. lucimarinus acquired an ORF in
between the two genes or O. tauri lost the ORF after speciation (a homologous ORF was
not identified in the Os. tauri genome). In M. pusilla, the two genes appear on different
scaffolds suggesting they are not genetically linked. Similarly, the pfl and pfla genes in
Chlamydomonas are located on completely different chromosomes.

The fusion or genetic linkage of these genes in a number of these eukaryotic lineages
is consistent with their hypothetical origin by an ancestral operon-mediated gene
transfer event from bacteria. Furthermore, it makes the hypothesis of subsequent
eukaryote-to-eukaryote LGT more tenable because a functioning PFL system could be
successfully moved between organisms in a single event if the two genes were

transferred on a single piece of DNA.
2.4.6 Gene Structures And Organization Of Pfl Genes In Diverse Eukaryotes

No obvious sequence and little positional conservation of introns was observed
across lineages after scanning genomic data from O. tauri, O. lucimarinus, M.
pusilla, Micromonas sp., T. pseudonana, C. reinhardtii, Piromyces sp., Chlorella sp.,
and V. carteri. The Ostreococcus species did not contain any introns in pfl or pfla genes.
Within the Micromonas species, there was intron position conservation in pfla however
the sizes of the introns differed significantly (72 bp in Mi. pusilla and 293 bp
in Micromonas sp.). This might represent an ancestral intron of the Micromonas lineage
that was acquired after speciation from the other prasinophyte lineage (Ostreococcus)

or, alternatively, it could be older but was lost in the Ostreococcus lineage.
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2.4.7 In Silico Predictions Of Subcellular Localization

Previous reports have localized PFL activity to the hydrogenosomes
of Neocallimastix and Piromyces and to the chloroplasts and mitochondria of
Chlamydomonas (Boxma et al. 2004; Gelius-Dietrich and Henze 2004; Atteia et al. 2006;
Hemschemeier et al. 2008). To elucidate the organellar localization of the newly
identified eukaryotic PFL and PFLA sequences, | utilized the software tools TargetP and
Mitoprot Il. In all cases, except one, these programs did not strongly predict an
organellar localization of PFL or PFLA for the newly described sequences. The exception
was a “weakly” predicted mitochondrial targeting peptide in the PFLA of O. tauri (Prugen=
0.319 and Pyopee = 0.773). It should be noted that all of the previously characterized
organellar homologs were in fact predicted to possess mitochondrial targeting peptides
by one or both of these programs. Therefore, at this stage, there seems no evidence for
an organellar localization of the newly described PFL and PFLA homologues; they may all
function within the cytoplasm. Obviously, further molecular and biochemical
experiments are needed to confirm or refute a cytosolic localization as in silico
localization prediction has limited accuracy on non-model organisms and many

organellar proteins possess cryptic targeting signals (Hurt and Schatz 1987).
2.4.8 The Distribution Of Pyruvate Catalyzing Enzymes In Eukaryotes

The discovery of enzymatic alternatives to PDC, such as PFO, PNO, and PFL in some
eukaryotes that all generate acetyl-CoA raises the question of their raison d'étre. Some
organisms such as Chlamydomonas and Thalassiosira appear to contain PFO, PFL, and
PDC (Figure 2-1) which may indicate differential compartmentalization of these acetyl-
CoA generating enzymes within these organisms. In Chlamydomonas, PFL functions in
both the chloroplast and the mitochondrion under anaerobic conditions suggesting that
this acetyl-CoA generating enzyme might functionally replace PDC under anaerobic
conditions or under conditions where high CO, or redox levels are inhibiting PDC- or
PFO-mediated catalysis. This hypothesis is supported by the fact that PFL functions in

the absence of redox components typically associated with acetyl-CoA generation, such
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as NAD(P)" or ferredoxin. Indeed, activation of PFL by PFLA likely requires reduced
components—more specifically ferredoxin—in species of Clostridium (Thauer et al.
1972). Therefore, the main need for PFL may arise under anaerobic conditions where
reduced cofactors/proteins are at high levels, but acetyl-CoA is still needed for anabolic
pathways, such as lipid and amino acid biosynthesis or even ATP generation. As
mentioned earlier, initial PFL activation is dependent on SAM whose synthesis requires
ATP, therefore, the radical must be protected in order to not lose this energy

investment.
2.5 Conclusion

My survey of eukaryotic genomic data revealed a wide diversity of microbial
eukaryotic lineages that possess PFL homologues and their activating enzymes. Many of
these organisms (e.g., the diatom T. pseudonana, the seaweed P. haitanensis, and the
glaucophyte C. paradoxa) are traditionally thought of as “aerobic” eukaryotes, but it is
likely that they also transiently experience low oxygen conditions and this oxygen-
sensitive system may then be important for continued production of acetyl-CoA. | have
shown that all PFL homologues and their activating enzymes encoded in eukaryote
genomes form a monophyletic group that were likely acquired once from a bacterial
source. The eukaryotic enzymes appear to be most closely related to homologues found
in selected firmicute Gram-positive bacteria and show no evidence of a mitochondrial or
chloroplast endosymbiotic ancestry. The most parsimonious explanation for eukaryote
monophyly in this case is a single LGT event into a eukaryotic lineage, probably from a
firmicute donor. The patchy distribution of PFL and PFLA across eukaryotic diversity and
strongly supported atypical eukaryotic relationships recovered in the phylogenies of
these enzymes argues against an origin of the enzymes in the common ancestral
eukaryotic lineage followed by differential lineage-specific loss. Rather, | propose that
after the initial transfer of the two genes residing in a bacterial operon into a eukaryotic
lineage, subsequent eukaryote-to-eukaryote transfers of the two genes occurred giving

rise to the present-day PFL and PFLA distribution in eukaryotes (Figure 2-8). This
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scenario is made more plausible by my finding that the two genes are sometimes closely
genetically linked (or in one case fused) in eukaryotic genomes so that single transfer
events may have been sufficient to spread a functional PFL system between eukaryotes.
Although | favor the latter scenario, it should be regarded as tentative as a denser and
broader sampling of eukaryotic microbial genomes will be required to confirm, refine, or
refute it.

The probable spread of PFL and PFLA via LGT within the eukaryotic realm questions
the assumption, often made by comparative genomic analyses, that orthologues
detected in a few distantly related eukaryotes can be automatically assumed to have
been present in the common ancestor of all eukaryotes. Additionally, this reconstruction
of the evolutionary histories of PFL and PFLA does not straightforwardly fit with the
scenario for the origin of eukaryotic enzymes of anaerobic metabolism advanced in the
Hydrogen Hypothesis (Martin and Miuller 1998). A simple interpretation of the Hydrogen
Hypothesis would predict that these enzymes were present in the eukaryotic common
ancestor and should derive from the mitochondrial endosymbiont. Neither of these
claims are supported by these aforementioned analyses of the PFL and PFLA data.

Finally, although the rationale for the presence of multiple pyruvate catalyzing
enzymes in some eukaryotes remains uncertain, it likely involves the differential
regulation of these enzymes under different oxygen tension and redox conditions.
Experimental testing of gene expression, enzyme activities, and subcellular localization
of these proteins under various conditions in the organisms that possess them will be

required to fully understand their biochemical roles and evolutionary histories.
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Chapter 3 A Mitochondrial Sulfur Mobilization (SUF) System

In The Anaerobe Pygsuia biforma

This chapter contains work published in Stairs, C.W., Eme, L, Brown, M. W,,
Mutsaers, C., Susko, E., Dellaire, G., Soanes, D. M., van der Giezen, M. and Roger, A.J.
(2014) A mitochondrial sulfur mobilization (SUF) system in the anaerobe Pygsuia. Curr.

Biol. 24(11): 1176-1186.

3.1 Abstract

Many microbial eukaryotes have evolved anaerobic alternatives to mitochondria
known as mitochondrion-related organelles (MROs). Yet, only a few of these have been
experimentally investigated. Here | report an RNAseq-based reconstruction of the MRO
proteome of Pygsuia biforma, an anaerobic representative of an unexplored deep-
branching eukaryotic lineage. Pygsuia’s MRO has a completely novel suite of functions,
defying existing ‘function-based’ organelle classifications. Most notable is the
replacement of the mitochondrial iron-sulfur cluster machinery by an archaeal sulfur
mobilization (SUF) system acquired via lateral gene transfer (LGT). Using
immunolocalization in Pygsuia and heterologous expression in yeast, | show that the SUF
system does indeed localize to the MRO. The Pygsuia MRO is predicted to possesses a
unique assemblage of features, including: cardiolipin, phosphonolipid, amino acid, and
fatty acid metabolism; a partial Kreb’s cycle; a reduced respiratory chain; and a laterally
acquired rhodoquinone (RQ) biosynthesis enzyme. The latter observation suggests that
RQ is an electron carrier of a fumarate reductase-type complex Il in this MRO. The
unique functional profile of this MRO underscores the tremendous plasticity of
mitochondrial function within eukaryotes and showcases the role of LGT in forging

metabolic mosaics of ancestral and newly acquired organellar pathways.
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3.2 Introduction

Mitochondria of modern-day eukaryotes evolved from an a-proteobacterial
endosymbiont that was integrated as an organelle within a host cell prior to the last
eukaryotic common ancestor (Gray et al. 2001). In aerobic eukaryotes, mitochondria
carry out a number of important functions including pyruvate decarboxylation, oxygen-
dependent ATP production, amino acid metabolism and iron-sulfur (Fe-S) cluster
biosynthesis. Over the past twenty years, investigations into the mitochondria or
homologous organelles of anaerobic organisms (mitochondrion-related organelles,
MROs) have revealed a wide variety of different metabolic phenotypes.

Classical ‘aerobic’ mitochondria generate ATP by oxidative phosphorylation using
ATP synthase coupled to the electron transport chain ultimately reducing O, to H,0.
However, anaerobically-functioning mitochondria have also been described in a number
of eukaryotes (e.g., Ascaris) that, under hypoxic conditions, produce ATP but employ a
terminal electron acceptor other than O, (e.g., fumarate (Kita et al. 1988)). Radically
different MROs, known as hydrogenosomes found in parasites such as Trichomonas, lack
organellar genomes and produce ATP by an anaerobic pathway that is typically not
found in classical mitochondria. In these organelles, pyruvate is oxidized to acetyl-CoA
and CO, by a pyruvate:ferredoxin oxidoreductase (PFO) and the reduced ferredoxin is re-
oxidized by an iron-only [FeFe]-hydrogenase that reduces protons to H, gas (Steinbtichel
and Miller 1986). Acetyl-CoA is then converted to acetate by an acetate:succinate CoA
transferase (ASCT) and the resulting succinyl-CoA is utilized by succinyl-CoA synthetase
(SCS) to generate ATP by substrate-level phosphorylation (van Grinsven et al. 2008).
Other anaerobic protists contain MROs called mitosomes that do not produce ATP, and
function in Fe-S cluster formation via a mitochondrial-type iron-sulfur cluster (ISC)
system (e.g., Giardia (Tovar et al. 2003)). In mitosome-containing protists such as
Giardia and Entamoeba, ATP-production occurs by substrate-level phosphorylation in
their cytoplasm (Reeves et al. 1977).

Recent investigations of hitherto neglected parasitic, commensal and free-living

organisms have greatly expanded the spectrum of known functions of MROs (Gill et al.
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2007; Stechmann et al. 2008; Barbera et al. 2010; Burki et al. 2013; Zubacova et al.
2013). For example, several distantly-related protists have organelles recently described
as ‘hydrogen-producing mitochondria’ (HPM). HPM not only have mitochondrial
genomes and many canonical mitochondrial pathways (including components of the
electron-transport chain, ETC), but also possess enzymes of the anaerobic
‘hydrogenosomal’ ATP generation pathway. Other MROs lacking mitochondrial DNA
have also been described, each with a distinct combination of mitochondrial and
hydrogenosomal properties. For instance, the MROs of the free-living excavate Trimastix
pyriformis, possess several mitochondrial pathways involved in amino acid metabolism
as well as enzymes for hydrogen but lack full ETC complexes (Stechmann et al. 2006;
Zubacova et al. 2013). In contrast, Mastigamoeba balamuthi, a free-living amoeba, has
MROs with complex Il (but no other ETC complexes) in addition to serine and glycine
metabolic pathways as well as a [FeFe]-hydrogenase and a PFO (Gill et al. 2007) .

Virtually all mitochondria and MROs of all studied extant eukaryotes generate Fe-S
clusters for mitochondrial Fe-S proteins using the iron-sulfur cluster system (ISC)
(Stehling and Lill 2013). Fe-S clusters can also be synthesized in other cellular
compartments such as the cytosol or in plastids. The cytosolic iron-sulfur cluster
assembly machinery (CIA) matures cytoplasmic and nuclear Fe-S proteins and, in yeast,
has been show to rely on the ISC system to supply it with an unknown sulfurous factor,
so-called ‘factor X’ (Stehling and Lill 2013). Plastids use an endosymbiont-derived sulfur
mobilization (SUF) pathway (Takahashi and Tokumoto 2002).

However, several eukaryotes have recently been shown to deviate from the
foregoing patterns. Entamoeba and Mastigamoeba completely lack the ISC system and
instead employ a nitrogen-fixation (NIF) related Fe-S biogenesis system that they have
acquired by lateral gene transfer (LGT) from e-proteobacteria (van der Giezen et al.
2004; Nyvltova et al. 2013). In Mastigamoeba, there are duplicates of the NIF genes
that encode distinct paralogues that function in the cytosol and the MROs of this
organism (Nyvltova et al. 2013). The only other known exception to the general

eukaryotic pattern is in the anaerobic stramenopile Blastocystis sp. in which an archaeal-
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like SUFCB fusion protein was shown to function in the cytosol and is induced under
oxidative stress (Tsaousis et al. 2012).

Here, | reconstruct the proteome of the MROs of the breviate, Pygsuia biforma, a
free-living anaerobic amoeboid flagellate from hypoxic marine sediments (Brown et al.
2013). The breviates have recently been shown to be an early-emerging group,
branching at the base of the eukaryote supergroup Obazoa, comprised of Opisthokonts
(animals and fungi) and apusomonads (Brown et al. 2013). Our predictions reveal an
extraordinarily distinct MRO in this organism. In addition to possessing several systems
and pathways never before detected in MROs (e.g., rhodoquinone, cardiolipin and
phoshonolipid biosynthesis), it has hydrogenosomal-like anaerobic energy metabolism
and a partial electron transport chain consisting of complex Il, alternative oxidase (AOX)
and electron transferring flavoprotein (ETF). Most unexpectedly, a mitochondrial-type
ISC system appears to be completely absent. Instead Pygsuia expresses duplicated
methanomicrobiales/Blastocystis-like SUFCB proteins that it has acquired by LGT. One of
the SUFCB proteins localizes to its MRO suggesting that it may functionally replace the
ISC system. This is only the second known lineage where the mitochondrial ISC system
has apparently been lost and the first case where the SUFCB system seems to have

taken over its role in Fe-S cluster biogenesis within MROs.
3.3 Methods

3.3.1 Pygsuia RNAseq Transcriptome Analysis And Dataset Filtering

The assembled Pygsuia biforma transcriptome previously reported in (Brown et al.
2013) was used for all analyses. The average coverage of all clusters was 143.542 (Brown
et al. 2013). Despite Klebsiella pneumoniaea being supplemented in the culture media,
the predominant bacterial sequences identified in the transcriptome was Arcobacter.
Sequences that were greater than 96 % or 98 % similar to bacterial or obvious eukaryotic
contaminants (e.g., animals) at the nucleotide and amino acid level (over at least 150
nucleotides or 50 amino acids) respectively were removed. Visual inspection of the

remaining putative ‘eukaryotic’ sequences (i.e., likely to be Pygsuia genes) revealed an
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unusual and redundant thymidine-rich pattern in the 5’ untranslated region (5’ UTR).
The presence of these repeated thymidine stretches allowed Dr. Edward Susko and Dr.
Laura Eme to implement conditional probability models trained on both 5’-UTR
trinucleotide preferences and on codon usage of the coding region in order to
distinguish bona fide Pygsuia genes from putative contaminants. Models were trained
on reference datasets of (i) 159 Pygsuia genes (Brown et al. 2013) and contaminants
identified using BLASTN from (ii) 150 Arcobacter genes; (iii) 68 other bacterial
contaminants identified from BLASTN (discussed above); and (iv) 150 genes from
eukaryotic contaminants identified from BLASTN. Specific parameters of this statistical
are reported elsewhere (Stairs et al., 2014).

For calculation of depth-of-read coverage in my P. biforma RNAseq assembly, the
filtered raw lllumina RNAseq reads, used for the initial assembly, were mapped onto the
assembled clusters using the AlignReads tool in the Trinity package. The AlignReads tool
executed Bowtie as the aligning algorithm. The mapping assembly output was sorted
using SAMtools (Li et al. 2009). From this sorted output, coverage depth of each cluster

was assessed using the Qualimap analysis tool (Garcia-Alcalde et al. 2012).
3.3.2 MRO Protein Prediction

Proteins were deemed MRO if one or more of the following criteria were satisfied: (i)
presence of an N-terminal extension relative to bacterial homologs which was predicted
to be mitochondria-targeting by Mitoprot (Claros and Vincens 1996) or TargetP
(Emanuelsson et al. 2000) (P>0.5) and (ii) the most significant BLAST hits were against
known mitochondrial or MRO proteins. Putative Pygsuia MRO proteins were used to
mine homologs from our in-house Breviata anathema data as well as the recently
released Subulatomonas tetrapora (Grant et al. 2012) transcriptome.

Using the algorithm designed by Dr. Edward Susko and Dr. Laura Eme discussed
above, | assessed the probability of each predicted MRO protein being a true Pygsuia
sequence and not a contaminant of bacterial (Arcobacter) or eukaryotic (deeply
sequenced animal, plant or fungi) origin. All but seven (tim16/pam27, Citrate synthase-

like, hyda-cysj4, msfl/ups2, icp55, pcca2 and prx5) favoured the Pysguia model versus
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being from another source. These seven exceptions were nevertheless verified to be
from Pygsuia by applying several other criteria. For tim16, although the favoured model
was Arcobacter, orthologues of this gene have not been identified in any bacterial
genomes, including Arcobacter genomes available on the nr database (NCBI). For the
Citrate-synthase-like (cs), msf/ups2, icp55, and pcca2, the probabilistic model indicated
that the frequencies were most consistent with the other eukaryotic contaminants in
the RNAseq data. However, all of the eukaryotic contaminants | identified come from
deeply sequenced genomes (e.g., H. sapiens) and by BLASTN (Altschul et al. 1990;
Lander et al. 2001; Venter et al. 2001) none of these appear to possess a gene identical
(or nearly identical) on the sequence level to these cs, msfl/ups2, icp55, and pcca2
genes in my data. Finally, the hyda-cysj4 and prx5 genes were flagged as of possible
bacterial (non-Arcobacter) origin. However, the phylogenetic analysis of HYDA-CYSJ4
revealed that it was a closely-related paralogue of four other Pygsuia HYDA, while a
BLASTN against the nr database using the prx5 gene sequence as a query did not return

a hit.

3.3.3 Breviata anathema Expressed Sequence Tag Project and

Subulatomonas tetraspora transcriptome Analysis

A Sanger EST project of Breviata anathema was performed by Dr. Mark van der
Giezen (University of Exeter) consisting of a total of 6,937 sequences assembled into
1,520 clusters. Genes from Pygsuia were also used to search an EST database for
corresponding Breviata orthologues. | also searched the recent 454 pyrosequencing
transcriptome of another closely-related breviate, Subulatomonas tetraspora, using the
Pygsuia homologues as queries. Due to the low sequence coverage and protein
complement identified in the Breviata anathema and Subulatomonas tetrasporta data,

the Pygsuia MRO protein predictions are the primary focus of this study.
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3.3.4 Conserved Functional Domain Search

The identification of functional domains was carried out using HMMER 3.0 (Eddy
1998) (http://hmmer.org/) and the HMM profiles of the Pfam database (Finn et al. 2006)

version 26.0. HMM profiles with e-values < 10e™ were considered as significant.
3.3.5 Phylogenetic Dataset Construction

| used the Pygsuia amino acid sequences as queries to identify their homologues
using BLASTP (Altschul 1997) and TBLASTN against the nr database. BLAST outputs were
examined by eye to identify homologues of each protein to avoid applying an arbitrary
cutoff on e-value. Eukaryotic homologues from previously published phylogenetic
analyses (such as for PFO) were included when available. For each protein, homologous
sequences were gathered in a dataset and aligned with MAFFT 6.903 (Katoh and Toh
2008) or MUSCLE (Edgar 2004). All the resulting alignments were manually inspected
and edited if necessary using the ED program from the MUST package (Philippe 1993).
Regions where homology between sites was doubtful were removed from the
alignments before phylogenetic analyses using BMGE (default parameters) (Criscuolo

and Gribaldo 2010).
3.3.6 Phylogenetic Analysis

Preliminary phylogenies were reconstructed using FastTree (Price et al. 2010). In
order to maintain a reasonable-sized data set for subsequent phylogenetic analyses, an
in-house script was used to remove extremely similar sequences from prokaryotic
species of the same genus. More specifically, if these were forming a monophyletic clade
in the preliminary trees, only the shortest branching sequence was kept. In addition, as |
was specifically interested in the evolutionary history of the Pygsuia sequences (i.e., not
in tracing back exhaustively the evolutionary events of the protein family), distant
homologues were discarded based on preliminary phylogenetic trees. Following dataset
trimming, alignments were recomputed and masked as outline above. The phylogenetic

results presented here differ subtly from those presented in Stairs et al. (2014),
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specifically the evolutionary model selection and the RAxXML version. Here, final ML
phylogenetic analyses were generated using RAXML version 8.0.19 (Stamatakis 2014)
under the highest likelihood scoring model (LG, LG4X or LG4M) using Akaike Information
Criterion (AIC) (Le et al. 2012) with gamma correction of evolutionary rates across sites
heterogeneity. For each dataset, bootstrap support for splits estimated from 500
bootstrap replicates were mapped onto splits on the best scoring ML tree (obtained by
100 heuristic search replicates). Bayesian inference (Bl) was also conducted using
PhyloBayes 3.2 (Lartillot et al. 2009) by running four chains under the catfix C20 model
of evolution and poisson + Gamma 4. For each chain, a total of 300,000 generations
were run, from which trees were sampled every 100 generations and discarding a
manually determined burn-in of 50,000 generations for each (yielding a total of 2,500
trees). For all analyses except [FeFe]-Hydrogenase where only 3 chains converges, all
four PhyloBayes chains converged. Posterior probabilities (PP) for splits were mapped on

to the ML estimated topology.
3.3.7 Culturing And Microscopy

Cultures of Pygsuia biforma were maintained in American Type Culture Collection
medium 802 (SW802) prepared in natural seawater (Dalhousie University Aquatron) at
22 °C as described in (Brown et al. 2013). Pygsuia biforma cells were seeded into 15 mL
culture tubes supplemented with a loop of Klebsiella pneumonia and limited (< 0.5 ml)
headspace. For molecular biological manipulations, cells were collected by
centrifugation (400 g x 5 min, swinging bucket) and washed with natural seawater.
Transmission electron microscopy was performed as previoiusly described (Brown et al.
2013).

For immunofluorescence microscopy, cells were grown on Geltrex (Life
Technologies) coated slides overnight in an anaerobic chamber and incubated with 500
nM of Mitotracker Orange (Molecular Probes) for 30 min prior to removal from the
chamber. All subsequent manipulations were performed at room temperature under
atmospheric conditions unless otherwise stated. Immediately upon removal from the

anaerobic chamber, cells were fixed (4% paraformaldehyde [Aurion] in SW802) for 10
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min, washed with filtered SW802 3 x 5 min, 1 x 25 mM NH4Cl, permeabilized in 0.5%
Triton X-100-SW802 (Invitrogen) for 2 minutes and immediately washed with phosphate
buffered saline (PBS) 3 x 5 min. Cells were blocked in blocking solution (goat serum
blocking solution [Aurion] supplemented with 0.05% saponin) for 1 h. Primary
antibodies (Genscript [mSUFCB, 1:200] and gift from A.G.M. Tielens [ASCT,1:100]) were
prepared in blocking solution and incubated with coverslips or chamber slides overnight
at 4 °C. Slides were washed 3 x 5 min in PBS and incubated with secondary antibodies
(diluted in blocking solution; 1:5000 goat a-rabbit 488, Invitrogen). Finally, cells were
washed 3 x 5 min PBS, mounted in VectaSheild-DAPI and sealed. Cells were imaged on a
custom-built Zeiss Cell Observer Microscope (Intelligent Imaging Innovations (3i),
Boulder, Co), equipped with diode-based lasers (405, 488, 561, and 633 nm) and a
spinning-disk confocal scanning unit X1 (CSU-X1)(Yokagawa, Japan) using a 63x (1.4 NA)
immersion oil objective lens. Images were processed using linear adjustments (e.g.,
brightness/contrast) and deconvolved using empirically-measured point spread
functions for each wavelength and a constrained iterative algorithm in Slidebook 5.5
(Intelligent Imaging Innovations (3i), Boulder, CO), followed by three dimensional

rendering using Imaris 7.1 (Bitplane/Andor,Belfast, UK).
3.3.8 Molecular Biology And Cloning

Total RNA was isolated from Pygsuia cells using Trizol (Life Technologies). Messenger
RNA was isolated from total RNA using the Ambion Poly(A) Purist MAG Kit and reverse
transcribed using oligo(dT) primers and Superscript Ill RT (Life Technologies) following
the protocols provided by the manufacturers. Polymerase chain reactions were
performed using Gotaq Green master mix (Promega) and 0.2 uM of each primer using
standard thermocycling conditions (94 °C 2 min; 30 cycles of 94 °C for 30 s, 55 °C for 30
s, 72 °C for 1-2.5 mins, final elongation temperature of 72 °C for 10 minutes). See Table
3-1 for primer sequences. Amplicons were purified and cloned in the sequencing vector
pCR4 (Life Technologies) according to the manufacturer TA-cloning protocols. Plasmids
were isolated from transformed E. coli using the NucleoSpin plasmid purification kits

(Machery Nagel) and screened for correct sequence (Genewiz).
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The plasmids containing the Pygsuia ORFs (pCR4-Pb-asct, pCR4-Pb-msufcb(x/h),
pCR4-Pb-msufcb-MTS, pCR4-Pb-csufcb, and pCR4-Pb-nful) and destination vectors
pTS395 (Ma et al. 1987), pGEX-4T-1 and pET16b (Novagen) were digested with the
appropriate restriction enzyme (Thermo) indicated in Table 3-1 according to the
protocol of the manufacturer. Resulting fragments were cloned by standard protocols
(Maniatis et al. 1982) to generate pTS395-Pb-asct, pTS395-Pb-msufcb, pTS395-Pb-
msufcb-MTS, pTS395-Pb-csufcb, pTS395-Pb-nful, pGEX-msufcb, and pET16b-asct.

Destination plasmid-encoded fusion protein tags are indicated in Table 3-1.

Table 3-1 Primers used for the amplification of Pygsuia biforma genes encoding SUFCB, NFU1
and ASCT.

Restriction Destination

Primer Description Direction Sequence Enzyme Site  Plasmid
P.biforma msufeb 1F_Hindlll Forward GGGAAGCTTATGCTGAGGGCCTTAAC Hindlll pTS395
P.biforma msufcb 2094R_Hindlll Reverse GCGCAAGCTTGCATTCCCCCAGCGGC Hindlll __ (C-term GFP)
P.biforma msufcb 1F_HindIll Forward GGGAAGCTTATGCTGAGGGCCTTAAC Hindlll pTS395
Pbiforma msufcb MTS 111R_Hindlll  Reverse  CGCAAGCTTGGAGACGGCGTGTCTGTGAAA Hindll  (C-term GFP)
P, biforma csufeb 1F_Hindlll Forward CCCAAGCTTATGGTGTACAAAGACC Hindlll pTS395
P. biforma csufcb 2041R_Hindlll Reverse GCGCAAGCTTGGCAGAACCCAGTGGC Hindlll (C-term GFP)
P. biforma nfu1 1F_Hindlll Forward GGGAAGCTTATGTCTTTGATTACTAACAT Hindlll pTS395
P. biforma nfu1 396R_HindIll Reverse GCGCAAGCTTGCTCTTCGTCTTCAATT Hindlll (C-term GFP)
pTS395_GFPR Reverse CTTCTCCTTTACTCAT
P. biforma asct 1F_Ndel Forward ~ GGGCCCATATGATGGCACTCTGTGCTCGTAC Ndel pET16b
P. biforma asct 891R_Ndel Reverse GCGCCATATGTTACTCCCAAGAGTCAAGCT Ndel (His Tag)
P. biforma msufcb 1F_Xhol Forward GGGCTCGAGATGCTGAGGGCCTTAAC Xhol PGEX-4T-1
P. biforma msufcb 2094R_Xhol Reverse CGCCTCGAGCATTCCCCCAGCGGCTGC Xhol (GST Tag)
3.3.9 Yeast Transformation And Selection

Standard protocols were used for the growth and selection of yeast (Amberg et al.
2005). Yeast were cultured in YPAD (1% yeast extract, BioShop; 2% bacto-peptone,
Difco; 0.003% adenine, Sigma; and 2% glucose, Sigma) or synthetic defined media
lacking uracil (SD-ura: 0.67% yeast nitrogen base without amino acids, Difco; 2% glucose
or 2% galactose; and all auxotrophic requirements except uracil) at 28°C. All studies
were performed using Saccharomyces cerevisiae strain W303-1A (MATa ade2-1 ura3-1
leu2-3, 112 his3-11,15 trp1-1). Yeast were transformed with pTS395-based plasmids
(encoding URA3 gene) by standard methods (Gietz and Schiestl 2007) and transformants
selected on SD-ura solid media. GFP fusion protein expression from the pTS395-derived

plasmids under the control of a galactose inducible promoter was induced by shifting
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transformed yeast into SD-ura media with galactose. Mitotracker orange (500 nM) and
DAPI (2.5 ug/mL) were used to stain mitochondria and nuclei, respectively, for 30 min
prior to microscopic investigation. Live cells were visualized using fluorescence

microcopy (Olympus BX43 with X-cite series 120 Q light source).
3.3.10 Antibody Production

The protein sequence of Pb-mSUFCB was provided to Genscript for antigen
design. Pb-mSUFCB-specific (CEEKQKKDTVFSTG) peptide was selected for immunization.
Antibodies were affinity purified by the manufacturer and antigenicity was assessed

using ELISA (Signal/blank ratio > 2.1 at 1:64, 000 mSUFCB specificity).
3.3.11 Protein Expression And Extraction

Plasmids (pGEX-Pb-msufcb, and pET16b-Pb-asct) were transformed in E. coli
(BL21) for protein expression (Maniatis et al. 1982). Protein expression was induced by
the addition of 1 mM isopropyl B -D-1-thiogalactopyranoside (Sigma) to the culture
medium of exponentially growing cells and incubated for an additional 4-6 h at 37 °C.
Proteins were isolated from E. coli cells induced to express the Pygsuia fusion protein
just the GST or a hexa-histidine tag and control cells (where protein expression was not
induced). Briefly, after protein expression, E. coli cells were collected by centrifugation
(4000 x g, 2 min, 4 °C) and lysed by French press (7000 psi). Unbroken cells and debris
were removed by centrifugation (4000 x g, 2 min, 4 °C). The resulting supernatant was
saved for subsequent analysis and recombinant proteins were isolated using
glutathione-magnetic beads (Thermo/Pierce; GST-tag) or Talon resin (Thermo/Pierce;
His tag) according to the protocols of the manufacturer.
Pygsuia cells were isolated by centrifugation (400 x g, 5 min) and washed twice with
natural seawater. Cells were homogenized in PBS supplemented with protease inhibitor
cocktail (Roche) using a 21G syringe. Insoluble material was removed by centrifugation

at 5000 x g for 5 min.
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3.3.12 Immunoblotting

Crude cell lysates and purified proteins were denatured in SDS-PAGE sample loading
buffer (Sigma), boiled for 5 min and resolved by SDS-PAGE (10 % and 8 % for ASCT and
SUFCB respectively). Proteins were transferred to PVDF membranes (Turbo Blot
membranes, Biorad) that were then incubated in blocking buffer (5% skim milk powder,
TBS (Tris-buffered saline), 0.5% Tween 20) for 1 h. Primary antibody was diluted in
blocking buffer and incubated with membranes for 1 h (1:2000 a-Pb-mSUFCB) or
overnight (1:1000 a-Tv-ASCT1C). Following washes in TBS-tween, membranes were
incubated with horseradish peroxidase-conjugated goat anti-rabbit secondary
antibodies (1:50000, Sigma), washed and incubated with enhanced chemiluminesence
substrate (GE Healthcare) and visualized via autoradiography or charge coupled device

chemiluminescence detector (Protein Simple).
34 Results

3.4.1 Metabolic Pathway Prediction In Pygsuia biforma

From the filtered transcriptomic dataset, a total of 122 proteins were putatively
predicted to be localized to the MRO matrix (MM), inner membrane (IM), inter
membrane space (IMS) or outer membrane (OM) of Pygsuia on the basis of homology to
known mitochondrial proteins inferred from Mitominer and/or Mitoprot and TargetP
prediction scores (>0.5) for mitochondrial targeting signals. The vast majority (71/76) of
MM proteins have N-terminal MTSs, whereas only half of the IM/IMS proteins have one
(22/43). None of the OM proteins have an MTS (0/3), as expected. A metabolic
reconstruction of the various MRO pathways in Pygsuia is shown in Fig. 1 and details for

each ORF and protein sequence are summarized in Table 3-2 to Table 3-9.
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Figure 3-1: Predicted MRO metabolism based on selected Pygsuia biforma genes determined by
BLAST-mediated homology probing. Sequences with predicted N-terminal MTS are outlined in
black. Unknown proteins are shown with (?) respectively. Red and yellow circles represent Fe
and S respectively. [Protein Import and Folding — (purple): Met, Metaxin; SAM50, Sorting
assembly machinery 50 kDa; TOM, translocator of the OM; CYM1, presequence protease; 8, 9,
10, 13, Tiny Translocator of the IM (TIM); UPS1, IMS chaperone/slowmo protein; TAMA41,
translocator assembly and maintenance protein 41; PRO, Prohibitin; PAM, pre-sequence
translocase-associated motor; MGE1, mitochondrial GRPE protein; CPN, chaperonin; HSP, heat
shock protein; MPP, mitochondrial processing peptidase; MIP, mitochondrial intermediate
peptidase; SerPr: serine protease], [Carriers (dark green): MCFs, mitochondrial carrier family
proteins; AAC, ATP:ADP carrier protein, PNT, pyridine nucleotide transhydrogenase], [Fe-S
cluster biosynthesis (brown): SUFCB, sulfur mobilization C/B fusion; NFU1: NIFU-like protein;
MRS3: Fe®" carrier], [Rhodoquinone (dark pink): UQ: ubiquinone; RQ: rhodoquinone; RQUA: RQ
methyltransferase], [Lipoate metabolism (light pink) : LIP: lipoate; LPLA: lipoate-protein ligase],
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[Pyruvate metabolism (blue): MPC1/2, mitochondrial pyruvate carrier (brain protein 44); Lac,
lactate; LDH, lactate dehydrogenase (DH); Mal, malate; ME, malic enzyme(s); Pyr, pyruvate; FER,
ferredoxin; PFO, Pyr:fer oxidoreductase (OR); HYDA, [Fe-Fe]-Hydrogenase; HYDE-G, HYDA
maturases], [TCA cycle and electron transport (light green): CS, citrate synthase; OAA,
oxaloacetate; NUOE/F, NADH:UQ OR; IND1, Fe-S protein required for NADH DH; FUM, fumarate;
FH, fumarate hydratase; SUC, succinate; Cll, succinate DH/complex IlI; AF, CIl assembly factor; F,
flavin; SCS, succinyl-CoA synthetase; ASCT; acetate:succinyl-CoA transferase(s); DHAP;
dihydroxyacetone phosphate; Gly3p, glycerol-3-phosphate; G3PD, Gly3p DH; ETF: electron
transferring flavoprotein; AOX: alternative oxidase; Q/QH,, quinone/quinol], [Fatty acid
metabolism (yellow): FA, fatty acid; MECR, Mitochondrial trans-2-enoyl-CoA reductase; HTD2, 3-
hydroxyacyl thioester dehydratase 2; KAR, ketoacyl reductase; HDHa/b, Trifunctional enzyme,
hydroxyacyl DH, *acyl-carrier protein is used in place of CoA during biosynthesis], [Amino acid
metabolism (light brown): Thr, threonine; TDH, Thr DH; KBL, keto-butyrate lyase; Trp,
tryptophan; TRN, tryptophanase; Ind, indole; Gly, glycine; Ala, alanine; ALAT, ala amino
transferase (AT); Leu, leucine; Val, valine; lle, isoleucine; a-KG, a-ketoglutarate; Glu, glutamate;
SHMT, serine hydroxymethyl transferase; GCS, glycine cleavage system (P,H,L,T); SER, serine;
THF, tetrahydrofolate; Asp, aspartate], [Oxidative stress (dark blue): SOD, superoxide
dismutase; Prx2: peroredoxin; Prx5: peroxidase], [Lipid metabolism (orange): CDP-DAG, cytidine
diphosphate diacylglycerol; PGPS, CDP-DAG-glycerol-3-phosphate 3-phosphatidyltransferase;
PGP, phosphatidylglycerol phosphate; PG, phosphatidylglycerol; PTPMT1, protein-tyrosine
phosphatase mitochondrial 1; CL, cardiolipin; CLS, CL synthase; CMP, cytidine monophosphate;
PEP, phosphoenolpyruvate; PEPM, PEP mutase; PPyr, phosphonopyruvate; PPyrDC, PPyr
decarboxylase; PSD1, phosphotidylserine decarboxylase 1]

Table 3-2 Proteins involved in amino acid metabolism identified in Pygsuia biforma. ORF
completeness (C, complete; IC, incomplete) and coverage information is shown. Predicted
cellular localization was calculated using Mitoprot and target (OM, outer mitochondrial
membrane; IMS, inter mitochondrial membrane space; IM inner mitochondrial membrane; and
MM, mitochondrial matrix).

. Short ORF Predicted Mitoprot TargetP
Protein Name Name COmPlete Coverage Localization Predicption pred?ction
Alanine Aminotransferase AlaAT C 285.74 MM 0.7871 0.749
Aspartate Aminotransferase AspAT C 166.84 MM 0.9165 0.558
Brached Chain Amino Acid BCAT C 406.11 MM 0.5406 0.785
Aminotransierase
Lipoamide protein GesH C 2,775.97 MM 0.9729 0.86
Dihydrolipoamide dehydrogenase GesL C 236.52 MM 0.9925 0.823
Glycine decarboxylase 1 GesPA C 149.69 MM 0.9896 0.91
Glycine decarboxylase 2 GesP2 C 353.92 MM 0.999 0.941
Aminomethyl transferase GesT C 1,275.96 MM 0.977 0.927
2-amino-3-ketobutyrate CoA ligase KBL C 1,815.70 MM 0.9487 0.91
Serine Hydroxymethyl Transferase SHMT C 141.86 MM 0.9383 0.87
Threonine Dehydrogenase TDH C 491.41 MM 0.9447 0.917
Tryptophanase TnaA C 331.1 MM 0.686 0.605
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Table 3-3 Mitochondrial carrier proteins identified in Pygsuia biforma.

information as labeled in Table 3-2

ORF and protein

. Short ORF Predicted Mitoprot TargetP
Protein Name Name Complete Coverage Localization Predigtion pred?ction
MCF ADP-ATP translocase AAC c 59.68 IM 0.9575 0.936
LetM1-like LetM1-like c 138.94 IM 0.9892 0.827
Mitochondrial Carrier Family Protein (MCF) 1 MCF1 3'end IC 29.1 IM 0.7433 0.061
MCF2 triple repeat MCF2 C 43.53 M 0.1972 0.522
MCF3 folate carrier, partial MCF3 c 18.39 IM 0.1508 0.554
MCF4 MCF4 C 16.18 IM 0.4892 0.162
MCF5 MCF5 3'end IC 50.05 IM 0.6541 0.373
MCFB8 oxoglutarate-malate transporter MCF86 C 69.82 IM 0.115 0.086
MCF7, partial MCF7 5'endIC 173.57 M - -
MCF8 Shm1-like MCF8 c 3,302.82 IM 0.035 0.163
MCF9 Phosphate MCF9 C 1,263.37 M 0.0878 0.053
MCF10 oxoglutarate-malate transporter MCF10 5'endIC 19.1 M - -

MCF11 oxoglutarate-malate transporter MCF11 C 69.82 IM 0.2992 0.531
MCF12 tricarboxylic acid transport protein MCF12 C 278.34 IM 0.0771 0.073
MCF13 substrate carrier MCF13 Cc 45.14 M 0.0262 0.037
MCF14 substrate carrier MCF14 C 151.39 M 0.0716 0.034
MCF15 Thiamine pyrophosphate carrier MCF15 C 93.19 M 0.6172 0.26
Putative pyruvate carrier MCP1 MPCH C 83.76 MM 0.7982 0.164
Putative pyruvate carrier MCP2 MPC2 Cc 126.25 IM 0.4562 0.034
M'mChO”igi!;‘;;mp'mgiﬁ"e Space Mia40 c 295.08 IMS 0.3258 0.129
Mrs3_lIron transporter like partial Mrs3 3'end IC 22.64 M 0.0213 0.063
NAD(P) transhydrogenase PNT C 74.76 IM 0.9994 0.91

Table 3-4 Proteins involved in fatty acid, lipid and lipoate metabolism identified in Pygsuia
biforma. ORF and protein information as labeled in Table 3-2

. Short ORF Predicted Mitoprot TargetP
Protein Name Name Complete Coverage Localization Prediztion pred?ction
Trifunctional enzyme alpha subunit HADA Cc 40.43 MM 0.4216 0.435
Trifunctional enzyme beta subunit HADB C 3,022.23 MM 0.281 0.552
Hydroxylamine reductase HAR C 213.7 MM 0.9889 0.951
3-hydroxyacyl thioester dehydratase 2 HTD2 C 158.12 MM 0.8448 0.923
Ketoacyl reductase Kar C 45.16 MM 0.0676 0.018
Ketoacyl reductase (FabG-like) Kar-FabG C 128.59 MM 0.3941 0.069
Trans-2-enoyl-CoA reductase MECR C 176.87 MM 0.9576 0.793
Cardiolipin Synthase CLS C 32.38 MM 0.9912 0.872
Phosphoenolpyruvate mutase PEPM C 8,644.50 MM 0.9937 0.73
CDP-diacylglycerol--glycerol-3-phosphate
3_3;3 Dysph o dgl’t"r e slor a'ie P PGPS C 31.19 MM 0.6864 0.828
Phosphotidylserine decarboxylase 1 Psd1 C 68.02 IMS 0.8706 0.881
protein-tyrosine phosphatase mitochondrial PTPMT1 C 83.82 MM 0.9123 0.163
Lipoate-protein ligase LplA-Lip3 C 246.7 MM 0.8355 0.655
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Table 3-5 Proteins involved in pyruvate metabolism identified in Pygsuia biforma. ORF and
protein information as labeled in Table 3-2

Short ORF Predicted Mitoprot TargetP

Protein Narme Name Complete Coverage Localization Prediction prediction
Adrenodoxin-type Ferredoxin Adrenodoxin Cc 436.21 MM 0.9464 0.753
Ferredoxin Fer C 177.64 MM 0.9544 0.765
Ferredoxin 2 Fer2 C 100.69 MM 0.953 0.778
Hydrogenase Maturase E HydE Cc 123.17 MM 0.9895 0.825
Hydrogenase Maturase F HydF C 38.42 MM 0.9901 0.965
Hydrogenase Maturase G HydG C 904.63 MM 0.9801 0.891
Lactate dehydrogenase LDH C 28.88 MM 0.9755 0.866
Malic Enzyme NAD-dependent ME1 C 527.69 MM 0.9944 0.916
Malic Enzyme NADP-dependent ME2 C 250.28 MM 0.9803 0.782
Hydrogenase 1 mHydA C 1,389.79 MM 0.9144 0.778
Pyruvate Ferredoxin Oxidoreductase 1 mPFO1 C 316.76 MM 0.7724 0.863
Pyruvate Ferredoxin Oxidoreductase 2 mPFO2 C 282.73 MM 0.9857 0.665
Phosphopyruvate decarboxylase PPD C 76.45 MM 0.9568 0.933
Pyruvate formate lyase PFL C 11.95 Cytosolic 0.2244 0.069
PFL activating enzyme PFLA C 544.2 Cytosolic 0.0394 0.052
Pyruvate:NADP oxidoreductase PNO C 2,870.92 Cytosolic 0.4316 0.054
Sulfide dehydrogenase, Hydrogenase SD-HydA C 113.37 Cytosolic 0.0168 0.046
[FeFe] Hydrogenase 2, CysJ cHydA-CysJ1 C 119.71 Cytosolic 0.4316 0.054
[FeFe] Hydrogenase 3, CysJ cHydA-CysJ2 3'end IC 2,177.89  Cytosolic 0.1114 0.064
Pyruvate Ferredoxin Oxidoreductase, cytosolic ~ cPFO C 184.6 Cytosolic 0.4466 0.367

Table 3-6 Proteins involved in Fe-S cluster biosynthesis and oxidative stress identified in Pygsuia
biforma. ORF and protein information as labeled in Table 3-2

Protein Name Short Complete ORF Predicted Mitoprot TargetP
Name Coverage Localization Prediction prediction

Fe-S cluster binding protein, Ind1-like Ind1 C 243.4 MM 0.9623 0.948
Sulfur Assimilation CB-D fusion mSUFCB Cc 140.88 MM 0.993 0.951
Sulfur Assimilation CB-D fusion, cytosolic cySUFCB C 509.78 Cytosolic 0.0218 0.07
NifU-like protein Nfu1 C 1,596.36 MM 0.9993 0.952
Peroredoxin, Mitochondrial-like Prx2 Cc 6,623.76 MM 0.2333 0.111
Gilutathione amide-dependent peroxidase Prx5 C 2,638.06 MM 0.9955 0.865
Superoxide dismutase 1 (Fe-Mn) SOD1 C 1,460.03 MM 0.871 0.489
Superoxide dismutase 2 (Fe-Mn) SOD2 C 420.1 MM 0.6243 0.784

Table 3-7 Proteins involved in uncategorized or incomplete metabolic processes identified in
Pygsuia biforma. ORF and protein information as labeled in Table 3-2
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. Short ORF Predicted Mitoprot TargetP

Protein Name Name  COMPlete  ooicice Localization Prediction prediotion
Acyl-CoA synthetase-like protein AcSyn C 45.77 MM 0.994 0.835
Adenylate kinase AK C 27.47 MM 0.9937 0.927
Folylpolyglutamate synthase FolC C 8.54 MM 0.9358 0.814
Glycerol kinase GK C 40.89 MM 0.9971 0.715
Mitochondrial aminopeptidase lcp55 C 905.83 MM 0.994 0.778
NAD(P)H dehydrogenase (quinone) NPQDH C 86.51 MM 0.9797 0.826
Short chain dehydrogenase SDR C 654 MM 0.9335 0.733
Propinoyl-CoA carboxylase alpha subunit PCCa1 3'end IC 9.37 MM 0.7924 0.542
Propinoyl-CoA carboxylase beta subunit PCCb Complete 167.25 MM 0.4932 0.59

Propinoyl-CoA carboxylase alpha subunit PCCa2 5'end IC 18.4 Unpredictable - -

Table 3-8 Proteins involved in organellar protein import and folding identified in Pygsuia
biforma. ORF and protein information as labeled in Table 3-2.

- Short ORF Predicted Mitoprot TargetP
Protein Name Name  Complete Coverage Localization Predicption pred?ction
Mitochondrial Chaperonin 10 Cpn10 C 651.22 MM 0.8906 0.455
Mitochondrial Chaperonin 60 Cpn60 C 142.62 MM 0.854 0.761
Presequence Protease Cym1 C 17.06 IMS 0.7599 0.578
Mitochondrial GrpE Chaperon-Mge1 GrpE-Mge1 C 4556 MM 0.9977 0.929
Metaxin Met C 662.31 oM 0.0609 0.061
Mitochondrial Intermediate Peptidase MIP C 27.8 MM 0.8053 0.853
Mitochondrial processing peptidase alpha subunit MPPalpha C 32.97 MM 0.9929 0.872
Mitochondrial processing peptidase beta subunit MPPbeta C 54.95 MM 0.9157 0.817
Slowmo protein - Mitochondrial protein sorting Msf1/Ups2 (e} 320.77 IMS 0.3486 0.173
Mitochondrial DnaJ Chaperone mtDnaJ C 180.49 MM 0.9951 0.878
Mitochondrial Heat Shock Protein 70 mtHsp70 C 225.85 MM 0.9864 0.848
Mitochondrial Pam18-like protein Pam18 C 259.97 IM 0.8841
Mitochondrial Serine Protease - Lon protease, Pim1-like  Pim1 C 47.85 MM 0.968 0.808
Prohibitin Pro C 184.88 IM 0.708 0.105
Sortining and Assembly Machinery 50 Sam50 C 106.88 oM 0.118 0.04
Translocator assembly and maintenance protein 41 Tam41 (e} 56.82 M 0.2363 0.084
Translocator of the inner mitochondrial membrane 10 Tim10 o] 36.04 IMS 0.0948 0.174
Translocator of the inner mitochondrial membrane 13 Tim13 C 180.33 IMS 0.0553 0.072
Translocator of the inner mitochondrial membrane 16 ;‘g?:fé C 127.12 IM 0.7396 0.076
Translocator of the inner mitochondrial membrane 17 Tim17 (e} 52.97 M 0.0405 0.047
Translocator of the inner mitochondrial membrane 22 Tim22 C 41.39 IM 0.2897 0.322
Translocator of the inner mitochondrial membrane 44 Tim44 C 59.15 M 0.9991 0.954
Translocator of the inner mitochondrial membrane 50 Tim50 3'end IC 8.73 IM 0.9745 0.89
Translocator of the inner mitochondrial membrane 8 Tim8 C 248.55 IMS 0.0182 0.067
Translocator of the inner mitochondrial membrane 9 Tim9 C 219.19 IMS 0.0261 0.106
Translocator of the outer mitochondrial membrane 40 Tom40 C 131.2 oM 0.0984 0.112
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Table 3-9 Proteins involved in electron transport, the Kreb’s cycle and energy metabolism
identified in Pygsuia biforma. ORF and protein information as labeled in Table 3-2

. Short ORF Predicted Mitoprot TargetP
Protein Name Name Complete Coverage Localization Predigtion predgi’ction

Alternative oxidase AOX C 181.43 IM 0.9774 np
Acetate:Succinate CoA transferase Type 1B ASCT 1B C 706.49 MM 0.7717 0.502
Acetate:Succinate CoA transferase Type 1C  ASCT 1C C 643.23 MM 0.9837 0.709
Succinate Dehydrogenase Assembly Factor 2,  Cllaf C 212.73 MM 0.846 0.821
Citrate Synthase-like CS C 17.42 MM 0.7565 0.403
Electron transfer flavoprotein alpha subunit ETFa C 48.65 IM 0.9486 0.194
Electron transfer flavoprotein beta subunit ETFb C 34.13 IM 0.8149 0.336
ETF:ubiguinone oxidoreductase ETFDH C 1,478 M 0.6233 0.647
Fumarase Fum C 81.44 MM 0.96 0.571

Glycerol-3-phosphate dehydrogenase,

Y  bcans bt G3PDH c 226.4 IM 0.8846 0.164
NADH dehydrogenase 24 kDa Subunit, NuoE ~ NuoE C 740.81 MM 0.9925 0.908
NADH dehydrogenase 51 kDa Subunit, NuoF ~ NuoF C 446.61 MM 0.9489 0.899
Succinyl-CoA synthetase, alpha subunit SCSa C 735.35 MM 0.8893 0.825
Succinyl-CoA synthetase, beta subunit SCSb C 836.31 MM 0.5658 0.743
Succinate Dehydrogenase Flavoprotein Subunit  SdhA C 20.83 MM 0.9078 0.275
SDH Fe-S Subunit SdhB Cc 335.88 MM 0.9877 0.947

SDH Large Cytochrome b Subunit SdhC C 97.24 IM 0.8974 0.864

SDH Small Cytochrome b Subunit SdhD C 1,693.76 M 0.9861 0.918

Rhodoquinone biosynthesis protein RquA RquA C 849.93 MM 0.9919 0.958

The following sections discuss the major pathways/processes identified in Pygsuia
biforma including those involved in pyruvate and ATP generation, protein import and
processing, Fe-S cluster biogenesis, amino acid and lipid metabolism as well as small
molecule transport. For key proteins, the subcellular localization using heterologous

expression in yeast and immunofluorescence microscopy was undertaken.

3.4.2 Pyruvate And Energy Metabolism

Glycolysis-derived pyruvate is typically imported into mitochondria via the
recently identified pyruvate carrier MPC1/MPC2 (brain protein 44) (Bricker et al. 2012;
Herzig et al. 2012). However, pyruvate can also be generated from malate via malic
enzyme (ME) (Ochoa et al. 1948; van der Giezen et al. 1997). Two putatively organellar
NAD- and NADP-dependent MEs were identified in Pygsuia, ME1 and ME2, respectively.
In mitochondria and some HPM, this pyruvate is typically oxidized via the pyruvate
dehydrogenase complex (PDC) (de Graaf et al. 2011). However, in other MROs, acetyl-

CoA is generated by a pyruvate:ferredoxin oxidoreductase (PFO), a single subunit
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enzyme proposed to have been acquired by lateral gene transfer (LGT) (Hug et al. 2010).
In P. biforma, | detected four transcripts encoding putative PFO/PNOs: two PFOs with
predicted MTS (Pb-mPFO1, Pb-mPFO2), one without MTS (Pb-cPFO) and a PNO without
MTS (Pb-cPNO). Maximum-likelihood (ML) and Bayesian phylogenetic analyses (BI)
indicate all breviate sequences emerge within a monophyletic eukaryotic grouping (BV =
60). Although there is little resolution in the placement of the breviate sequences within
the eukaryotic clade, at least two PFO copies appear to have been established in
breviates before the divergences of P. biforma and B. anathema (i.e., Ba-PFOa and Ba-
PFOb group with Pb-mPFO1 and Ba-PFOc groups with Pb-cPFO1, Figure 3-2). Curiously,
Pygsuia also encodes homologs of the eukaryotic pyruvate:formate lyase (PFL) and
activating enzyme (PFLA), another anaerobic enzyme catalyzing the conversion of
pyruvate to acetyl-CoA sometimes found in MROs (Akhmanova et al. 1999; Atteia et al.
2006; Stairs et al. 2011). The lack of a targeting peptide on PFL or PFLA is suggestive of a
cytosolic localization in Pygsuia.

In hydrogenosomes, the reduced ferredoxin generated by PFO is typically reoxidized
by an [FeFe]-hydrogenase (HYDA) generating molecular hydrogen (Bui and Johnson
1996). | identified genes encoding full-length and partial canonical HYDA (Pb-mHYDA,
Pb-HYDAA4) in P. biforma and one (incomplete) copy in B. anathema (Ba-HYDA). In
addition, | found three other putative HYDA-like proteins in P. biforma possessing
several distinct domain architectures, including two with C-terminal flavodoxin (CYSJ)
domains (Pb-cHYDA-CYSJ1 and 2) and one with an N-terminal sulfide dehydrogenase
(Pb-cSD-HYDA). Of these five genes, only Pb-mHYDA has a predicted MTS, suggesting the
other HYDA-like proteins are non-organellar. Phylogenetic analyses, although poorly
supported in general, indicate the canonical and non-canonical HYDAs of the breviates

branch amongst other eukaryotic sequences (Figure 3-3).

82



Giardia_lamblia EFO64710
Giardia_lamblia XP_001708704
Spironucleus salmonicida AFV80063
Spironucleus_salmonicida AFV80064
Mastigamoeba balamuthi (M3)
Mastigamoeba balamuthi (C4)
Mastigamoeba blamuthi (C5)
Blastocystis species (6)
Blastocystis_hominis CBK20516
Pygsuia biforma cPNO
Euglena_gracilis BAB12024
Peranema_trichophorum ABL11191
Entamoeba species (3)
Mastigamoeba balamuthi PNO
Mastigmoeba blamuthi PFO (C1)
Thalassiosira_pseudonana_CCMP1335 XP_002286672
Perkinsus marina (9)
Perkinsus marina (3)
Cryptosporidium_muris_RN66 XP_002140958
Cryptosporidium_parvum_lowa_Il XP_625673
Guillardia_theta_ CCMP2712 EKX48323
Volvox_carteri_f_nagariensis XP_002949465
Volvox_carteri_f_nagariensis XP_002947533
Chlamydomonas_reinhardtii XP_001701208
Chlorella_variabilis EFN55341
Spironucleus_salmonicida AFV80065
Spironucleus_barkhanus AAD55754
Spironucleus_salmonicida AFV80066
Retortamonas_sp_Vale ABW76111
Giardia_lamblia_P15_EFO0O61948
Giardia_lamblia_ ATCC_50803_XP_001708948
Bombus_impatiens_XP_003493107

| Mastigamoeba balamuthi (2, C2, C6)
Trichomonas vaginalis (4)
Pygsuia biforma mPFO1
Breviata anathema PFOa
Breviata anathema PFOb
Acanthamoeba castellani PFO
Breviata anathema PFOc
Pygsuia biforma cPFO
r Trichomonas_vaginalis_G3 XP_001307088
L Trichomonas_vaginalis_G3 XP_001307251
Pygsuia biforma mPFO2
Trichomonas_vaginalis_G3 XP_001313671
Sawyeria_marylandensis ABU95423

P Monocercomonoides_sp PFO
00 Trimastix_pyriformis ABW76110

1 Desulfovibrio and other d-proteobacteria (14)
750.76  qoita _protecbacterium_NaphS2 ZP_07204627
Moorella_thermoacetica_ ATCC_39073 YP_428946
————— | Eneterobacteria, firmicutes (42)
Spirochetes, firmicutes (29)
Firmicutes (19)
CFB, fusobacteria (8)
Sebaldella_termitidis_ ATCC_33386 YP_003310380
Leptotrichia_buccalis_C1013b YP_003163289
llyobacter_polytropus_DSM_2926 YP_003966679
Fusobacterium_sp_D11 ZP_06523926
Campylobacter_hominis_ATCC_BAA381 YP_001407124

60/0.95

66

100

0.2

Figure 3-2: Phylogeny of pyruvate ferredoxin oxidoreductase (PFO). Maximume-likelihood (ML)
tree of eukaryotic (yellow) and bacteria (purple) PFO homologs (188 sequences, 819 sites).
Bootstrap support (BP) and positerior probability (PP) values on each branch were calculated
using RAXML and PhyloBayes. Only values greater than 50% (BP) or 0.5 (PP) are shown, “*”
denote ML values less than 50 on branches where PP values were greater 0.5. Black circles
represent bipartitions with maximum support (BV = 100; PP = 1.0).
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Figure 3-3: Maximum-likelihood (ML) tree of HYDA (204 sequences, 282 sites). Support values
and taxa labeling as in Figure 3-2
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All three HYDA maturases (HYDE, F, G) responsible for proper assembly of the H-
cluster of HYDA (Mulder et al. 2010), were identified in single copy with predicted MTS.
For HYDF and HYDG, the monophyly of eukaryotic homologs was recovered in ML and
Bayesian phylogenetic analyses with maximum support (HYDF, Figure 3-4; HYDG, BV =
99, PP=1, Figure 3-5), however in the HYDE analysis, Trichomonas and Spironucleus

sequences did not branch with Pygsuia and other of eukaryotes (Figure 3-6).
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Figure 3-4: Phylogeny of hydrogenase maturase protein F (196 sequences, 232 sites). Labeling as
described in Figure 3-2.
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Figure 3-5: Phylogeny of hydrogenase maturase protein G (87 sequences, 327 sites). Labeling as
described in Figure 3-2.
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Figure 3-6: Phylogeny of hydrogenase maturase protein E (90 sequences, 187 sites). Labeling as
described in Figure 3-2.

A modified tricarboxylic acid (TCA) cycle was identified in P. biforma including citrate
synthase, succinyl-CoA synthetase (SCSa/b), succinate dehydrogenase/Complex Il (Cll;
SDHA-D, and SDH assembly factor 2), fumarate hydratase (FH) and propionyl-CoA
carboxylase (PCCa/b) and summarized in Table 3-9. However, aconitase, isocitrate

dehydrogenase, o-ketoglutarate dehydrogenase and an organellar malate
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dehydrogenase were not identified. The absence of these enzymes suggests that malate
might ultimately be converted to succinate. In this scenario, Cll would be functioning in
reverse as a fumarate reductase (FRD) with the FRD-derived succinate is used as a CoA
acceptor (from acetyl- or propionyl-CoA) by acetate:succinyl-CoA transferase (ASCT), an
enzyme often found in anaerobic mitochondria, HPMs and hydrogenosomes. Pygsuia
encodes two putative ASCTs, one corresponding to the sub-type 1B and 1C families,
both with predicted MTS. The succinyl-CoA presumably generated by these enzymes
could be used by the TCA cycle enzyme SCS to generate A/GTP by substrate-level
phosphorylation as is the case in Trichomonas (van Grinsven et al. 2008).

Unlike the above-mentioned TCA cycle enzymes that are of mitochondrial
provenance, the phylogenetic affinities of ASCT are less clear (van Grinsven et al. 2008).
For this reason, only phylogenetic analyses of the P. biforma ASCT-1B and -1C homologs
were conducted. The ASCT-1C ML tree shows a poorly supported eukaryotic clade
within which Pb-ASCT-1C branches weakly as a sister-group to two trichomonad
homologs (Figure 3-7); one of these — the enzyme from T. vaginalis — has been
experimentally characterized (van Grinsven et al. 2008). In the ASCT-1B phylogeny, P.
biforma emerges from within a grouping of eukaryotic sequences, but the precise

branching order of the tree is not well supported (Figure 3-8).
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Figure 3-7: Maximume-likelihood (ML) tree of ASCT1C (25 sequences, 478 sites). Support values
and taxa labeling as in Figure 3-2. Hash marks indicate where branch was shortened by 50 % for
display purposes.
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Figure 3-8: Maximume-likelihood (ML) tree of ASCT1B (73 sequences, 319 sites). Support values
and taxa labeling as in Figure 3-2.

The presence of genes encoding putatively MRO ubiquinone-utilizing (UQ) enzymes
such as alternative oxidase (AOX), SDH/FRD, electron transferring flavoprotein

dehydrogenase (ETFDH), NAD(P)H dehydrogenase (NQO1) and glycerol-3-phosphate
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dehydrogenase (G3PDH) prompted a search for a quinone biosynthesis pathway. Only
geranyl-geranyl transferase (ISPA) and coenzyme Q methylase-like protein (COQ5) were
identified, each without a MTS. While AOX and G3PD are known to use UQ as their
electron acceptor (Ansell et al. 1997; Vanlerberghe and Mcintosh 1997), Cll has been
shown to use rhodoquinone (RQ) when functioning as a FRD (lwata et al. 2008). The
exact pathway of RQ biosynthesis is unknown, however recent reports have
demonstrated that in Rhodospirillum rubrum, RQ_is synthesized from UQ via a number of
reactions, one of which involves a putative methyltransferase (RQUA) (Brajcich et al.
2010; Lonjers et al. 2012). Unexpectedly, | identified a homolog of RQUA in Pygsuia that
possesses a MTS suggesting that RQ is synthesized in its MRO. A survey of the nr
database revealed that a number of other eukaryotic lineages have RQUA homologs,
including obligate (Blastocystis) and facultative (Euglena) anaerobes, the latter of which
is known to synthesize RQ (Hoffmeister et al. 2004; Castro-Guerrero et al. 2005).
Phylogenetic analysis of RQUA indicates a patchy and limited distribution in a small
number of a- and B-proteobacteria and eukaryotes. The extremely limited distribution
of this enzyme within eukaryotes coupled with the atypical phylogenetic groupings
observed (Figure 3-9) strongly suggests the enzymes have been acquired multiple times

by eukaryotes via LGT from distinct bacterial or eukaryotic donors.

91



89 Oxalobacter_formigenes_OXCC13 ZP_04579474
Oxalobacter_formigenes_HOxBLS ZP_04577332

72/0.9 Leptothrix cholodnii SP-6 YP 001793399
Burkholderiales_bacterium_JOSHI_001 ZP_09750419
Monosiga_ovata DC519471

56 Rhodovulum_sp_PH10 ZP_10896193

[ Rhodovulum_sp_PH10 ZP_10896194

E Rhodomicrobium_vannielii ATCC_17100 YP_004
Candidatus Accumulibacter phosphatis clade IIA sir
Attheya CCMP212_874 JK726459
Magnetococcus marinus MC-1 YP 866130
Rhodoferax_ferrireducens_T118 YP_524656
Azoarcus_sp_BH72 YP_935027
Aromatoleum_aromaticum_EbN1 YP
Azoarcus_sp_KH32C BAL26434
Caenispirillum_salinarum_AK4 ZP_1¢
Methylocella_silvestris_BL2 YP_002.
Bradyrhizobium_sp_STM_3843 ZF
Rhodospirillum_rubrum_F11 complete_g
Rhodospirillum_rubrum_ATCC_11170
Rhodospirillum_photometricum_DSM_1
Pygsuia biforma RQUA
Blastocystis_hominis CBK24152
80/0.99 Laribacter_hongkongensis_HLHi
Chromobacterium_violaceum
57/0.87 Euglena_gracilis EST
Euglena_longa ALE00000341
Rhodoferax_ferrireducens_T:

53/0.69

0.6

Figure 3-9: Maximume-likelihood (ML) tree of RQUA (28 sequences, 193 sites) rooted with
UbiE/COQ5 methyltransferase from Rhodoferax ferrireducens. Support values and taxa labeling
as in Figure 3-2. Hash marks indicate where branch was shortened by 50 % for display purposes.

The only other respiratory complex identified was the two soluble subunits of
NADH:ubquinone oxidoreductase (NUOE and NUOF) from complex I, along with the
putative assembly factor (IND1/MRP1-like). These two subunits of NUO are often found
in hydrogenosomes of protists and are presumed to function in Q-independent electron

transfer reactions (Hrdy et al. 2004).

3.4.3 Pygsuia MROs Contain Canonical Protein Import/Processing

Machinery

Mitochondrial-derived genes residing on the nuclear genome are recognized and
imported to the MM or IMS via the protein import machinery. Pygsuia encodes two
components of the translocator of the outer mitochondrial matrix complex (TOM40 and
SAM50), all four tiny translocators of the inner mitochondrial membrane (TIMS, 9, 10,
13), IMS import and assembly protein 40 (MIA40), IMS sorting protein (UPS2), TIM22,
the majority of the TIM23 and presequence translocase-associated motor complex

(PAM) complex (TIM50, TIM23, TIM17, HSP70, MGE1, TIM44, PAM16 and PAM18), an
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assembly/maintenance factor for the translocator machinery (TAM41), chaperonins
(CPN10, CPN60) and membrane integrity protein prohibitin (PHB/PRO). MTSs were
identified for all matrix-associated import proteins and internal MIA40 targeting
sequences [[MILENKOVIK]] (Milenkovic et al. 2009)were identified for IMS proteins TIM9
and TIM10. A variety of proteases and processing peptidases were also identified
including presequence peptidase (CYM1), serine protease (SERPr) and mitochondrial
processing peptidase (MPPa. and MPP) responsible for cleaving the N-terminal pre-
sequence of mitochondrial proteins following import into the organelle. | used sequence
logo analysis to graphically represent the level of conservation of the predicted MTS and
observed the typical features, including arginine or lysine in the penultimate position
(Claros and Vincens 1996; Emanuelsson et al. 2000) (Figure 3-10). There was also a
preference for leucine or phenylalanine immediately following the methionine (Figure

3-10).

AA,-AA,, AR L -AA

Figure 3-10: Sequence logo analysis of MTS from Pygsuia biforma matrix proteins. Composition
of the first 9 residues after the methionine and last 10 residues of each MTS from predicted
MRO matrix proteins revealed preference for leucine or phenylalanine in the second position.
The starting methionine residue was removed for simplicity. Image generated using webserver
available at http://weblogo.threeplusone.com/
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3.4.4 Fe-S Cluster Biogenesis

All eukaryotes studied to date, with the exception of E. histolytica (van der Giezen et
al. 2004) and M. balamuthi (Gill et al. 2007; Nyvltovd et al. 2013) utilize the
mitochondrial iron sulfur cluster (ISC) system for mitochondrial/ MRO Fe-S cluster
biogenesis. Considering this, the most intriguing result from the P. biforma RNAseq data
was the apparent absence of the vast majority components of the ISC machinery (i.e.,
genes encoding ISCA, ISCU, Frataxin, ISPG/H, ISCR, YAH1 or ARH1 proteins) and their
associated proteins involved in factor X transport and iron homeostasis (i.e., genes
encoding ERV1, ATM1/ABC7 or ABCB6/MtABC3 proteins) (Lill 2009). As factor X is
thought to be indispensable for the function of CIA-mediated cytoplasmic Fe-S cluster
assembly, the lack of the CIA-components predicted to interact with factor X (i.e., the
TAH18/DRE2 complex) correlates with the absence of its transporters. However, Pygusia
does encode the remaining components of the CIA system (genes encoding CIA1, NPB35,
CFD1, NAR1, CIA2 and MET18 proteins).

Despite the absence of all other ISC components Pygsuia encodes a protein
containing an ISCS-like domain fused C-terminal to a 4-thiouridine biosynthesis protein
(THI; PbISCS-THII). A partial sequence encoding ISCS was identified in B. anathema
without the THII domain. Interestingly, Leishmania species also encode the Pygusia-type
THII-ISCS fusion protein. Phylogenetic analyses showed that nearly all eukaryotic
mitochondrion-targeted ISCS sequences, including those of Breviata anathema, form a
clade with a-proteobacteria (BV = 70; PP = 1.0) (Figure 3-11). In phylogenetic analysis
the P. biforma and some Leishmania sequences are clearly separated from the rest of
eukaryotes by at least one highly supported bipartition (BV = 95; PP = 1.0, Figure 3-11).
This observation combined with the absence of a MTS suggests that the P. biforma and
Leishmania sequences are unlikely to be of mitochondrial origin and may instead have
been acquired though LGT from a prokaryotic source, although the donor lineage is
currently unclear. Furthermore, in contrast to the Breviata sequence, the Pygsuia
sequence lacks the mitochondrial and bacterial ISCS-specific residues (Figure 3-12). The

lack of a predicted MTS on this protein, and its distinct evolutionary origin from
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mitochondrial ISCS homologs of other eukaryotes, suggests PbISCS-THII protein is

unlikely to be involved in Fe-S cluster biogenesis in the MROs of Pygsuia.
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Figure 3-11: Maximum-likelihood (ML) tree of ISCS (210 sequences, 327 sites). Support values
and taxa labeling as in Figure 3-2.
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Figure 3-12: Alignment of mitochondrial, bacterial and Breviate IscS sequences. Closed squares
indicate cysteine residues essential for disulfide bridge formation with scaffold proteins, open
squares indicate residues essential for substrate (cysteine) binding, closed and open circle
represents lysine residue and other residues essential for pyridoxal-5’-phosphate binding
respectively, arrow indicates conserved histidine residue necessary for substrate deprotonation.

Conserved eukaryotic/prokaryotic cysteine and C-terminal region are boxed.

shaded according to relative conservation.

Apart from the ISCS-like sequence, the only other putative dedicated ISC

components identifiable in

P. biforma are NFU1l and IND1. Both proteins possess

canonical MTS and in phylogenetic analysis NFU1 groups with other eukaryotic

homologs (Figure 3-13). In contrast, in Breviata | identified the Fe-S scaffold of the ISC

system, (ISCU) in addition to

IND1.
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Figure 3-13: Maximume-likelihood (ML) tree of NFU (123 sequences, 75 sites). Support values and
taxa labeling as in Figure 3-2. Hash marks indicate where branch was shortened by 50 % for
display purposes.

Although | could not identify core ISC system orthologues in Pygsuia, | did find
two putative homologs of the SUF system in the form of a SUFCB fusion protein.
Unexpectedly, one of the two SUFCB homologs (Pb-mSUFCB) possesses a MTS
suggesting that it functions within the MRO. The other homolog, Pb-cSUFCB, lacks the

putative MTS. As this fusion of SUFC and SUFB is only observed in Blastocystis sp. and
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Pygsuia, | performed separate phylogenetic analyses of SUFB (Figure 3-14) and SUFC
(Figure 3-15) regions and their respective prokaryotic homologs. The two analyses
resolved broadly congruent phylogenies reflecting similar evolutionary histories of the
two proteins. To improve the signal, | analyzed a concatenation of the two datasets
(Figure 3-16). Unexpectedly, the two Pygsuia copies form a clade that branches with the
Blastocystis SUFCB with maximal support. This group of fused SUFCB proteins emerges
as sister to homologs from Methanomicrobiales (a division of Euryarchaea), with
maximal support.

The close relationship between Pygsuia SUFCBs and Blastocystis homologs
suggests that they descend from a unique fusion event (although there is no obvious
similarity between these sequences in the fusion region). Nevertheless, their common
ancestry is supported by the existence of an insertion in the SUFB region shared
between the Pygsuia and Blastocystis sequences to the exclusion of all closely related
sequences (Figure 3-17). The Pygsuia and Blastocystis SUFB domains and all of their
close homologues lack the FADH,-binding motif that exists in the E. coli homologue. The
Pygsuia SUFC sequences possess the functionally important residues for metal binding
and ATPase activity (including the Walker A/P-loop, Walker B and D-loop motifs (Roche
et al. 2013)). There is also a CX,CX,C motif toward the C-terminal part of SUFC shared

only by Blastocystis and close prokaryotic homologues (data not shown).
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Figure 3-14: Maximum-likelihood (ML) tree of SUFB (68 sequences, 301 sites). Support values
and taxa labeling as in Figure 3-2.
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Figure 3-15: Maximum-likelihood (ML) tree of SUFC (68 sequences, 195 sites). Support values
and taxa labeling as in Figure 3-2.
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Figure 3-16: Maximume-likelihood (ML) tree of concatenated SUFC and SUFB (68 sequences, 496
sites). Support values and taxa labeling as in Figure 3-2.
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492 502

AFL03357 Blastocystis sp. Nandll CLTVASLECT YEH CGQAQKD HEH DY I VG
CBK25297 Blastocystis hominis QLTVASFECSYIHCP S---1QQASDS
Pygsuia biforma cytosolic ELHV I SSEKDICHKH- - WGEDPEL
Pygsuia biforma MRO KLHIASTCAGCKPKTITESHTAAD
YP_001403424 Methanoregula boonei ELHMI SJGEA S- - - - - - - SGNIGE
YP_003424653 Methanobrevibacter ruminantium ELH L I TIGEAT - - - - - - - GEDVSS
YP_002604185 Desulfobacterium_autotrophicum ELH | | A)JGE ST - - - - - - - SSHLQS
YP_004342454 Archaeoglobus veneficus EINIISGEAS- - - - - - - HPGVAS

Figure 3-17: Alignment of select region of SUFB indicating shared insertion in Pygsuia and
Blastocystis. Residues conserved in all taxa except Pygsuia and Blastocystis are boxed with solid
black lines. Residues exclusive to these eukaryotes are boxed with dotted lines.

3.4.5 Solute Transport, Amino Acid And Lipid Metabolism

Pygsuia encodes a variety of solute transporters including 16 mitochondrial
carrier family proteins (MCFs) including an ADP/ATP carrier. Although none of the
classical proton pumping respiratory complexes were identified, Pygsuia encodes two
proteins that could be important for generating a proton gradient: LETM1 (a putative
Ca'in/H ot antiporter (Jiang et al. 2013)) and pyridine nucleotide transhydrogenase (PNT;
responsible for the interconversion of NADH/NADP to NAD/NADPH with the
concomitant export of protons (Arkblad et al. 2002)).

Enzymes responsible for the synthesis and catabolism of amino acids such as
glycine, serine, threonine, tryptophan, alanine, leucine, isoleucine and valine were
identified (Figure 3-1). Elements of biosynthesis and -oxidation of fatty acids were
identified, however two components do not have predicted MTS (HDHf and KAR) (no
outline Figure 3-1). Furthermore, there was no evidence for a fatty acyl-CoA
dehydrogenase (responsible for the formation of the enoyl-CoA moiety) or a carnitine
shuttle (responsible for fatty acid transport from the cytoplasm to the MRO). | identified
enzymes involved in folate biosynthesis (folylpolyglutamate synthase) and various other
reactions (short chain dehydrogenase, glutathione amine-dependent peroxidase, acyl-
CoA synthetase) (Table 3-4 and Table 3-7).

Finally, Pygsuia encodes a complete cardiolipin biosynthesis pathway which was

recently suggested to be absent in MRO-containing organisms (Tian et al. 2012).
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Furthermore, Pygusia encodes enzymes involved in the synthesis of
phosphotidylethanolamine and 2-amino-3-phosphonic acid (2-AEP), a head group for
phosphonolipids. The latter pathway is rare in eukaryotes having only been documented
in molluscs, trypanosomes and ciliates (Liang and Rosenberg 1968; Adosraku et al. 1996;
Sarkar et al. 2003; Metcalf and van der Donk 2009). In Tetrahymena, phosphoenol
pyruvate (PEP) is converted to 3-phosphonopyruvate (PPyr) by a PEP mutase (PEPM) and
is subsequently converted to phosphonoacetaldehyde (PPA) by a PPyr decarboxylase
(PPYRDC); both of these enzymes are present in the mitochondrial proteome (Smith et
al. 2007). The final step in the pathway is performed by a putative PPA transaminase,
which does not appear to be organellar in Tetrahymena. In Pygsuia, | identified
transcripts encoding all three enzymes, and, as in Tetrahymena, only PEPM and PPYRDC
possess predicted MTS.

| examined the evolutionary history and predicted cellular localization of PEPM,
PPYRDC and PPA transaminase across eukaryote diversity. | found homologues within
Amoebozoa, the Stramenopile-Alveolate-Rhizaria (SAR) clade, Holozoa and
kinetoplastids although not all species have all three enzymes. Only some of these
homologues have predicted MTS. The remaining members of these eukaryote groups
lack these enzymes. In phylogenetic analyses, the Pygsuia PEPM homologue branches
within a larger eukaryotic clade that robustly emerges as sister to a predominantly
firmicute group (BV = 82, PP = 0.99; Figure 3-18). A generally similar pattern is observed
in the PPA transaminase phylogeny with Pygsuia grouping in a predominantly eukaryote
group that also comprises sequences from a few miscellaneous bacteria (BV = 84, PP =
0.99; Figure 3-19) cluster with other eukaryotic sequences, whereas its PPYRDC homolog
branches separate from other eukaryotes with a heterogeneous collection of
prokaryotes (Figure 3-20). In contrast, the PPYRDC phylogeny shows Pygsuia emerging
within a taxonomically heterogeneous prokaryotic assemblage separated from an
otherwise monophyletic eukaryotic grouping (BV = 65, PP = 0.98; Figure 3-20). In each
case, the eukaryotic homologs of these enzymes do not have a-proteobacterial affinities

that would indicate a mitochondrial origin.
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Figure 3-18: Maximume-likelihood (ML) tree of phosphoenolpyruvate mutase (PEPM;
sequences, 284 sites). Support values and taxa labeling as in Figure 3-2.
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Figure 3-19:

0.1

Maximum-likelihood (ML) tree of concatenated Phosphonoacetaldyhyde

aminotransferase (PPA; 76 sequences, 218 sites). Long branches that were shortenend are
indicated with hash marks. Support values and taxa labeling as in Figure 3-2.
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In the absence of a genetic system in Pygsuia, Pygsuia MRO proteins (fused to
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Figure 3-20: Maximume-likelihood (ML) tree of phosphonopyruvate decarboxylase (PPDC; 69
seqguences, 268 sites). Support values and taxa labeling as in Figure 3-2.

Localization And Morphology Studies Of Pygsuia biforma Proteins In

GFP) were heterologously expressed in yeast to assess the localization of putative MRO
proteins. GFP fusion protein constructs of NIFU-like protein (NFU1), the putative
targeting peptide from mSUFCB (mSUFCB-MTS) and the full-length mSUFCB GFP fusion
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proteins were localized to the mitochondrion of yeast whereas cSUFCB-GFP was
cytosolic (Figure 3-21). Note that the full-length mSUFCB-GFP appears to alter the

morphology of the yeast mitochondria when expressed for more than one hour.

DAPI Mitotracker GFP Merge

Figure 3-21: Localization of Pygsuia cSUFCB, mSUFCB, mSUFCB-MTS and NFU1l GFP fusion
proteins in yeast. Indicated GFP-fusion proteins were expressed in yeast (green). Mitochondria
and nucleic acid were co-stained with Mitotracker orange and DAPI respectively. Scale bar = 10
pm.

Antibodies raised against a peptide specific to Pb-mSUFCB recognized
recombinant mSUFCB (a-mSUFCBpep; Figure 3-22A). Similarly, heterologous antibodies
raised against Trichomonas vaginalis ASCT (a-Tv-ASCT, type 1C) recognized native and
purified recombinant Pb-ASCT1C in immunoblots (Figure 3-22A). Spinning-disc
immunofluorescence confocal and electron microscopy were used to explore the 3D
morphology of Pygsuia MROs (single image slices can been seen in Figure 3-22C).
MitoTracker Orange recognizes an elongated organelle located along the dorsum of the

cell subtending the flagellum and was typically observed wrapping around the periphery
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of the cytoplasm. Both «a-Tv-ASCT and a-mSUFCBpep antibodies co-localized with
MitoTracker (Figure 3-22C and Figure 3-23B,C).

A B
12 3 6
: T | a-Tv-ASCTIC [ ] a-Pb-msurcs
4 > a-Sm-GST
L) a~-Pb-mSUFCB EI

Mitotracker

o-Pb-mSUFCB

) ]

o-Pb-mSUFCB

‘ L ]

o-Tv-ASCT1C

a-Tv-ASCT1C

Figure 3-22: Antibodies raised against mSUFCB and ASCT recognize Pygsuia mSUFCB and ASCT
proteins and localize to Pygsuia MROs. A: Protein extracted from Pygsuia (1) or Klebsiella (2)
purified recombinant Pb-ASCT (3), purified recombinant Pb-mSUFCB (4) or proteins extracted
from E. coli transformed with pGEX-GST (5) were analyzed by western blotting using indicated
antibodies against Trichomonas vaginalis ASCT (a.-Tv-ASCT1C) and Pygsuia biforma mSUFCB (a-
Pb-mSUFCB), respectively. B: To ensure the antibodies were not recognizing the GST-tag of
recombinant Pb-mSUFCB, proteins from E. coli expressing just the GST-tag (6) were analyzed by
western blotting. Antibodies raised against GST (a-Sm-GST) and not antibodies raised against
SUFCB (a.—Pb-SUFCB) recognized the 26 kDa GST. C: a-Pb-mSUFCB and a-Tv-ASCT1C antibodies
(green) were incubated with Pygsuia cells and images captured represent single 0.3 um sections
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slices of Pygsuia cells stained with mitotracker orange (red) and DAPI (blue). DIC, differential
interference contrast; scale bar represents 5um.

o-Pb-mSUFCB

a-Tv-ASCT1C

Figure 3-23: A: Transmission electron microscopy of Pygsuia cells. MRO (M) and Bacteria (B)
injected in a vacuole are labeled, arrows indicate the presence of a double membrane (middle).
Scale bars 1000, 200, 500 nm. Antibodies raised against mSUFCB (green; B) and ASCT (green; C)
colocalize with MRO-dye Mitotracker (red) in Pygsuia cells Confocal slices (0.3 um) were
deconvoluted and combined to generate a 3D-image and DAPI-stained nucleus were rendered
using Imaris. Scale bars 5 um.

Transmission electron microscopy of a Pygsuia cell revealed an electron-dense
double membrane-bound organelle without canonical cristae similar to those reported
in Breviata anathema (Heiss et al. 2013) (Figure 3-23A). Like many other MROs, there is
no evidence for an organellar genome since fluorescent nucleic acid dyes such as DAPI
and DRAQ5 did not detect nucleic acid inside the organelle. Furthermore, Pygsuia does
not possess genes typically described as organellar genome encoded (such as respiratory
chain proteins) or organelle specific genome maintenance proteins (such as RNA

polymerase or mitochondrial ribosomal proteins).
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3.4.7 Proteins Predicted In Breviata Anathema And Not Pygsuia biforma

A total of 46 of the 122 Pygsuia MRO proteins were identified in Breviata. Most
of these sequences are incomplete. Breviata encodes three ISCU and one ISCS proteins. |
identified a malate dehydrogenase-like protein in Breivata that | did not find in Pygsuia.
Mitoprot (PP = 0.6226) but not TargetP predicted a MTS. However, further inspection of
this sequence revealed that there was not an extension relative to bacterial and
cytoplasmic isoforms suggesting this protein might not function in the MRO (data not
shown). | also identified a thioredoxin-like protein in Breviata with a predicted MTS that
does not have a MTS in Pygsuia (data not shown, see supplementary file 1 from Stairs et

al., 2014).
3.5 Discussion

Microscopic analysis of Pygsuia identified a double membrane-bounded,
structure reminiscent of the hydrogenosomes of Trichomonas vaginalis. However, unlike
the T. vaginalis organelle which is often present in multiple copy within the cell, the
Pygsuia MRO is structurally unique and appears to be restricted to one organelle per
cell. Next-generation sequence technology has allowed for the characterization of the
transciptome of P. biforma and inference of 122 putative MRO proteins, the majority of
which have predicted MTS (Figure 3-1, Table 3-2 to Table 3-9). This unique set of
functions predicted for the Pygsuia MRO not only bridges the gap between hydrogen-
producing mitochondria (HPM) and hydrogenosomes (Miller et al. 2012) but also

reveals completely novel biochemical properties associated with an MRO.
3.5.1 Energy Metabolism In MROs

HPM and hydrogenosomes are ATP- and hydrogen-producing organelles (via SCS,
ASCT and HYDA) that also participate in pyruvate oxidation (via PNO or PDC in HPM; PFL
or PFO in hydrogenosomes). In these organelles, HYDA function is dependent on H-
cluster maturation by three HYDA maturases (HYDE, F, G). | identified putative organellar

PFO, HYDA, ASCT, SCS, and all three HYDA maturases in Pygsuia. Since | predict dual

110



localization of HYDA in both the MRO (canonical Pb-mHYDA) and cytoplasm (Pb-cHYDA-
CYSJ1-3, Pb-cSD-HYDA) of Pygsuia, it is unclear how the cytoplasmic HYDAs are matured.
Either the maturases are dual targeted as described for other proteins in some model
systems (Baudisch et al. 2014) or the putatively cytosolic hydrogenases can function
without maturation. The latter possibility may be related to the presence of additional
SD or CYSJ domains on the cytoplasmic hydrogenases.

Similar to the HPM of Blastocystis, Pygsuia organelles appear to have an incomplete
TCA cycle possessing only FH, Cll and SCS suggesting malate is ultimately converted to
succinate. In this scenario, Cll would function in the reductive reverse direction (as a
fumarate reductase) and require a quinone with a lower electron potential such as RQ
(Amino et al. 2003; Hoffmeister et al. 2004), and a corresponding RQ reductase. In fact, |
identified a gene encoding a recently described RQ biosynthesis enzyme (RQUA, (Lonjers
et al. 2012)) with an MTS in Pygsuia biforma and other eukaryotes that appears to have
been laterally acquired (Figure 3-9). The exact pathway for RQ biosynthesis remains
elusive, however, recent reports suggest it can be synthesized from UQ (Brajcich et al.
2010; Lonjers et al. 2012). Since | was unable to identify all the components for
ubiquinone biosynthesis, P. biforma might rely on exogenous UQ - much like UQ-
deficient yeast (Padilla-Lépez et al. 2009) or humans (Lagier-Tourenne et al. 2008;
Quinzii and Hirano 2010). Transport of exogenous UQ to mitochondria is not well
understood. However, in UQ-deficient mice, exogenously supplied UQ is specifically
transported to the IM of the mitochondrion (Lapointe et al. 2012). | hypothesize that a
similar transport mechanism could exist in Pygsuia where bacteria-derived UQ is
transported from the food vacuole or plasma membrane to the MRO and specifically
incorporated into the IM where it is converted to RQ. The following chapter provides a
more in-depth analysis of RQ biosynthesis in eukaryotes.

The MROs of Pygsuia seem to blur the boundaries between HPM and
hydrogenosomes since its proteins are predicted to be involved in pyruvate oxidation
and hydrogen production like hydrogenomes (PFO, HYDA, ASCT and SCS), but also HPM

features such as quinol-reoxidation (CIl and AOX but not Cl).
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3.5.2 Conservation Of Mitochondrial Protein Import

In eukaryotes, the vast majority of mitochondrial matrix proteins are encoded by the
nucleus and subsequently transported into the organelle (Dolezal et al. 2006). When
comparing protein import components across eukaryotic diversity, the complement of
proteins identified in Pygsuia is similar to other non-Opisthokonts (e.g., Dictyostelium)
with the exception of the outer membrane complex (Pygsuia only encodes TOM40 and
SAMS50). Pygsuia encodes many of the same components as other well studied MRO-
bearing organisms (T. vaginalis, E. histolytica, and microsporidians (Liu et al. 2011; Heinz
and Lithgow 2012)) such as SAM50, TOM40, TIM23, TIM17 and PAM complex. The
widespread conservation of the aforementioned proteins in otherwise ‘reduced” MROs
from diverse and distantly-related organisms suggests that they represent the ‘core’
components of protein import. However, Pygsuia appears to have a more elaborate
import apparatus compared to other MRO-bearing organisms since it encodes
components of the IMS disulfide relay system (TIMS, 9, 10, 13, MIA40) and TIM50 (Liu et
al. 2011).

3.5.3 Acquisition Of SUF-Like Fe-S Cluster Biosynthesis And Loss Of Isc

Machineries In The Pygsuia Lineage

Until now, amongst eukaryotes, the archamoebae lineage (i.e., Entamoeba and
Mastigamoeba) is known to have lost the organellar ISC system for Fe-S cluster
biogenesis and possess instead a homologous nitrogen-fixation system (NIF) acquired by
LGT from e-proteobacteria (van der Giezen et al. 2004; Gill et al. 2007; Nyvltova et al.
2013). In some bacteria and these amoebae, the simpler NIF system is the only system
present for the synthesis of Fe-S clusters (Olson et al. 2000). A recent report
demonstrated that Mastigamoeba balamuthi actually encodes two copies of each
component of the NIF system: two targeted to the MRO (Mb-NIFS-M and Mb-NIFU-M)
and two destined for the cytoplasm (Mb-NIFS-C and Mb-NIFU-C) (Nyvltova et al. 2013).
Here, | report another apparent loss of the ISC system in Pygsuia biforma. The high

depth of Illumina sequencing coverage | have obtained for ISC-related genes such as
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nful and ind1 (1596.36X and 243.4X respectively) suggest that the lack of reads
corresponding to any isc homologs in our Pygsuia transcriptome likely represents
genuine absences of the genes. A complete genome sequence for Pygsuia would be
useful to confirm this observation.
| identified two fused SUFC/SUFB scaffold proteins (SUFCB) in Pygsuia biforma and
showed that the isoform possessing a predicted mitochondrial targeting peptide (Pb-
mSUFCB) is in fact localized to the MROs by immunolocalization in Pygsuia (Figure 3-23).
This SUFCB fusion protein is also present in Blastocystis, however the gene exists only in
single copy and the protein product was shown to localize to the cytoplasm (Tsaousis et
al. 2012). Phylogenetic analyses of SUFCB from Blastocystis and Pygsuia suggest that the
SUFC/SUFB operon was acquired by one of these eukaryotic lineages from a
methanomicrobiales archaeon donor and subsequently fused into a single open reading
frame in the recipient genome. The SUFCB fusion gene was then transferred to the other
eukaryotic lineage through a eukaryote-to-eukaryote LGT. Since SUFCB does not appear
to be encoded by Breviata anathema this LGT event might have happened after the
divergence of Pygsuia from other breviates. | hypothesize that the Pygsuia SUFCB was
duplicated and that one of the copies eventually acquired a MTS. Over time, the MRO
SUFCB system may have functionally replaced the ancestral mitochondrial ISC system
resulting in the loss of all ISC components including the nuclear transcription factor ISCR.
Unlike the NIF system present in Mastigamoeba and Entamoeba, the SUF system
of Pygsuia biforma (SUFCB) is not homologous to any component of the ISC. This non-
homologous replacement scenario requires the co-evolution of chaperone proteins
(NFU1 and IND1) that have to now interact with the SUFCB proteins in order to transfer
the Fe-S clusters to apoproteins. This hypothesis is consistent with the observation that,
in bacteria that harbor ISC and SUF systems (e.g., E. coli), the typically ISC-associated
NFU1 has been shown to transfer Fe-S clusters from SUFBC,D to apoproteins (Py et al.
2012). Like the SUFCB proteins of Blastocystis and methanomicrobiales, the residues
responsible for binding flavin are absent in the Pygsuia biforma SUFCB sequences. The

flavin cofactor of the E. coli SUFBC,D complex has been hypothesized to be important
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for the acquisition of ferric iron from various iron donors (ferritin, ferric citrate and
frataxin) (Roche et al. 2013). However, lack of flavin binding does not prevent removal of
the Fe-S cluster from the SUFBC,D complex of E. coli (Wollers et al. 2010). Moreover,
ferritin and frataxin have not been identified in Pygsuia. Therefore, the apparent
absence of the flavin binding residues of the SUFCB proteins of Pygsuia, Blastocystis and
methanomicrobiales might be related to the absence of such electron-dependent iron
donors. The source and means by which the SUFCB proteins of these organisms acquire
iron remains unknown. Similarly, the traditional components of the SUF operon (SUFA-
E, SUFS) have not been identified in Pygsuia, Blastocystis and some archaea suggesting
these organisms employ a yet unknown process of Fe-S cluster biosynthesis.

It is unclear why an ISC system would be replaced by the non-homologous SUF
system in the Pygsuia MRO. Clearly after acquisition of the SUF system by LGT, the
ancestral breviate must have possessed both Fe-S biosynthetic systems. The SUF operon
in prokaryotes is typically upregulated under (and is more tolerant to) iron starvation
and oxidative stress (Outten et al. 2004). If the ancestors of Pygsuia were periodically
exposed to such conditions, this could have favoured the maintenance of the acquired

SUF system over the ancestral ISC system.
3.6 Conclusion

Here | report a unique collection of functions associated with the mitochondrion-
related organelles of the breviate flagellate Pysuia biforma. In addition to the typical
MRO and mitochondrial processes, | identified genes involved in functions previously
unknown in mitochondria or MROs. Some of these genes were likely acquired by LGT
including a rhodoquinone biosynthesis enyzme and a SUFCB protein involved in Fe-S
cluster biosynthesis. These are striking examples of how lateral gene transfer can
remodel MRO function in adaptation to hypoxia.

As more mitochondria and MROs are characterized from a greater diversity of
eukaryotic lineages, it is becoming clear that at least one kind of Fe-S cluster
biosynthesis system is essential. While most eukaryotes have retained the ISC system in

their MROs, the two clear exceptions are the MROs of the archamoeba Mastigamoeba
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that has a NIF system and the MROs of Pygsuia biforma that have SUF system. This
strongly suggests that the reactions needed for the synthesis of Fe-S clusters, regardless
of their evolutionary origin, demand compartmentalization. This further highlights the
fundamental role and widespread conservation of Fe-S cluster biosynthesis in
mitochondria and MROs.

The novel combination of properties of the Pygsuia organelles cannot be easily
fit into any of the classes of MRO functions recently proposed by Miiller and colleagues
(Mdller et al. 2012). As more lineages of anaerobic/microaerophilic protists are studied,
the diversity of MRO properties will likely increase, suggestive of a continuous spectrum
of metabolic phenotypes rather than well-defined classes, revealing the plasticity of

these endosymbiont-derived organelles.

115



Chapter 4 Evolution And Cellular Localization  Of
Rhodoquinone Biosynthesis In Pygsuia biforma And Other

Anaerobic Eukaryotes

4.1 Abstract

Complex 1l (succinate dehydrogenase, SDH) of the respiratory chain typically
catalyzes the conversion of succinate to fumarate with the concomitant reduction of
ubiquinone (UQ). In some anaerobic bacteria and eukaryotes complex Il (Cll) functions
as a fumarate reductase (FRD) to convert fumarate to succinate with the oxidation of a
different quinone species (rhodoquinone, RQ). RQ is structurally similar to UQ, but has a
lower electron potential favouring Cll-catalyzed fumarate reduction over succinate
oxidation. Recently, a putative methyltransferase homolog was discovered in
Rhodospirillum rubrum (named RQUA) that was shown to be involved in RQ biosynthesis
(Lonjers et al. 2012). To investigate the prevalence and evolutionary history of RQUA in
bacteria and eukaryotes, | performed similarity searches of all publicly available genome
sequences. RQUA is rare within the bacterial domain, and is encoded by only 50 distinct
bacterial genomes from the a- and B-proteobacterial divisions. It is completely absent in
Archaea. A number of novel RQUA homologs were identified in a variety of anaerobic or
facultatively anaerobic microbial eukaryotic genomes including genomes of two
subtypes of Blastocystis sp., Mastigamoeba balamuthi, Pygsuia biforma, Euglena gracilis
and Monosiga ovata. All of the full-length RQUA sequences from these protists were
found to contain a predicted mitochondrial targeting sequence, suggesting they function
within mitochondria or related organelles. The patchy phylogenetic distribution and
relationships of the eukaryote and bacterial RQUA sequences suggest that the gene has
been laterally transferred multiple times between Domains of Life. Using
immunofluorescence microscopy, homologous antibodies directed against RQUA
localized to Pygsuia biforma mitochondrion-related organelles. Organisms that acquired

the rqua gene are likely able to synthesize RQ. This suggests that the transfer of the
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gene between protists is probably selectively advantageous by allowing the

mitochondrial electron transport chain to function in hypoxia via an RQ-utilizing CII.
4.2 Introduction

In aerobic eukaryotes, complexes | (ClI) and Il (Cll) of the mitochondrial
respiratory chain oxidize reduced cofactors generated by the tricarboxylic acid cycle
(NADH and FADH, respectively) and reduce the lipid-soluble electron carrier ubiquinone
(UQ, Figure 4-1) to ubiquinol (UQH,). UQH, is then oxidized by complex Il (Clll) and
electrons are then shuttled, via cytochrome ¢, to complex IV (CIV) that reduces O, to
H,O (See Chapter 1, Figure 1-1). In the process Cl, Clll, and CIV generate a proton
gradient across the inner mitochondrial membrane that fuels oxidative phosphorylation
of ADP to ATP by the F1-F, ATPase (CV). In the presence of oxygen, the respiratory chain
of the facultative anaerobes, Ascaris suum, resembles that of other aerobes using CI-CV
and the electron carriers UQ and cytochrome c ultimately reducing O, to H,O. However,
under anaerobic conditions, the Ascaris respiratory chain shifts to use the electron
carrier rhodoquinone, (RQ, Figure 4-1) and only Cl, Cll and CV (Figure 4-2). In these
conditions, Cl reduces RQ to rhodoquinol (RQH,) and CIlI functions as a fumarate
reductase (FRD), reducing fumarate to succinate, using electrons donated from RQH,.
RQ is structurally similar to UQ possessing an amino group instead of a methoxy group
on the quinone ring (Figure 4-1) and its lower electron potential RQ (-63 mV) compared
to UQ (+100 mv) favours the FRD reaction. Thus the Ascaris mitochondrial respiratory
chain is still able to generate a proton gradient to fuel ATP synthesis even in the absence
of oxygen (Figure 4-2). RQ has also been detected in Caeorhabditis elegans (Takamiya et
al. 1999), Euglena gracilis (Hoffmeister et al. 2004) and Nyctotherus ovalis (Boxma and
Graaf 2005), however the presence of RQ in the mitochondria of other anaerobic

eukaryotes has not been established.
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Figure 4-1: Structure and electron potential of ubiquinone and rhodoquinone. Variable number
of isoprenyl chains are shown with ‘n’.
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Figure 4-2: Malate dismutation and energy metabolism in mitochondria and related organelles.
In Ascaris suum, like aerobically functioning mitochondria, NADH from the Kreb’s cycle is
oxidized by complex | (Cl) concomitantly pumping protons into the mitochondria intermembrane
space to fuel ATP synthesis by Complex V (CV). Unlike aerobic mitochondria, ClI transfers
electrons from NADH to the electron carrier rhodoquinone (RQ) to generate rhodoquinol (RQH,).
Fumarate hydratase (1) catalyzes the conversion of malate to fumarate. Fumarate is reduced by
complex Il (Cll) using electrons from RQH, to generate succinate and RQ. Pygsuia does not
encode Cl or CV subunits but instead relies on substrate-level phosphorylation to generate ATP.
CoA is transferred from acetyl-CoA to succinate by acetate:succinate CoA transferase (2)
generating succinyl-CoA which in turn is converted back to succinate by the Kreb’s cycle enzyme
succinyl-CoA synthetase (3) ultimately generating ATP (or GTP). The enzyme responsible for
generating RQH, in Pygsuia is unknown (?).

NADH

AD+ H*

Mitochondrion-related organelles (MROs) are specialized mitochondria found in
anaerobic protistan lineages that have evolved to cope with low oxygen conditions. The
metabolism of MROs from distinct lineages are surprisingly similar despite their
independent evolutionary origins (details outlined in Chapter 1, Section 1.3). The

properties of MROs vary between organisms ranging from the simple ‘mitosomes’ of
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Giardia intestinalis, that function solely in Fe-S cluster generation, to the more complex
‘hydrogenomes’ of Trichomonas vaginalis or ‘hydrogen-producing mitochondria’ of
Nyctotherus ovalis that function in ATP generation. Of the various adaptations to
anaerobiosis, the reduction or remodeling of the respiratory chain is of central
importance to the ATP generating function of the resulting organelles. Some anaerobic
protists have completely lost all components of the respiratory chain while others have
maintained all or parts of Cl and Cll (Williams et al. 2002; Tovar et al. 2003; Hrdy et al.
2004; Boxma and Graaf 2005; Loftus et al. 2005; Gill et al. 2007; Stechmann et al. 2008;
Barbera et al. 2010; Burki et al. 2013; Stairs et al. 2014). However, all of these organisms
have lost the ability to perform ATP synthesis by oxidative phosphorylation. While RQ
has been proposed to function as an electron carrier in the respiratory chains of at least
some of these protists (de Graaf et al. 2011), direct biochemical evidence for genes
involved in RQ biosynthesis have not been described.

Our current knowledge regarding the biosynthesis of RQ comes from studies of
the a-proteobacterium Rhodospirillum rubrum. Previous reports have suggested that
UQ is a precursor to RQ (Brajcich et al. 2010) in Rhodospirillum. More recently a
putative methyltransferase named RQUA was shown to be involved in RQ biosynthesis
in this organism (Lonjers et al. 2012). This study found that the R. rubrum F11 mutant
was able to synthesize UQ, but was incapable of synthesizing RQ or growing
anaerobically. Sequencing of the genome of the F11 isolate revealed a single nonsense
mutation in the rqua gene. The mutant could be rescued by complementation with the
wildtype rqua suggesting RQUA is essential for RQ biosynthesis.

In Chapter 3 and published manuscript (Stairs et al. 2014) | showed that RQUA is
found in less than 50 different species of bacteria and eukaryotes and emerges from
within a clade of ubiquinone biosynthesis methyltransferases (UBIE). The following
chapter expands on this observation by examining the evolutionary history, sequence

composition and subcellular localization of eukaryotic RQUA homologs.
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4.3 Methods

4.3.1 Molecular Biology

Total RNA extraction, cDNA construction and PCR were performed as described in
Chapter 3. The Pygsuia rqua gene was amplified using primers with BamHI restriction
enzyme sites (Pb-rqua-forward 5’-CCGGATCCATGAATTCTTTAAGAATTAC-3’ and Pb-rqua-
reverse 5-CCCGGATCCTGCAATGCGGTGTGCAACAACC-3’; restriction enzyme recognition
sites are underlined), purified and cloned into the sequencing vector pCR4 (Life
Technologies) by TA-cloning. Plasmids (pCR4-Pb-rqua) were purified from transformed
E. coli using the Nucleospin plasmid purification kit (Machery Nagel) and screened for
correct sequence (Genewiz). Destination plasmid pGEX-4T-1 (GE) and pCR4-Pb-rqua
were digested with BamHI (Thermo). Fragments were purified using the Extract Il kit
(Machery Nagel) and cloned by standard protocols (Maniatis et al. 1982) to generate
pPGEX-Pb-rqua.

4.3.2 Heterologous Expression Of Proteins In E. coli And Immunoblotting

Plasmids were transformed into E. coli (BL21) for protein expression. Protein
expression was induced by the addition of 1 mM isopropyl B -D-1-thiogalactopyranoside
(Sigma) to the culture medium of exponentially growing cells and incubating for an
additional 4-6 h. Proteins were isolated from E. coli cells induced to express the Pygsuia
protein (GST-RQUA), from plasmid pGEX-Pb-rqua, GST tag from plasmid pGEX-Pb-4T1
and control cells (where preotein expression was not induced). After protein
expression, E. coli cells were collected by centrifugation (4000 x g, 2 min, 4 °C) and lysed
by French press (7000 psi). Unbroken cells and debris were removed by centrifugation
(4000 x g, 2 min, 4 °C). The resulting supernatant was saved for subsequent analysis and
recombinant protein was isolated using glutathione-magnetic beads (Thermo/Pierce;
GST-tag) according to the protocol of the manufacturer. Crude cell lysates and purified
RQUA were denatured in sample loading buffer (Sigma), boiled for 5 min and resolved
by SDS-PAGE (10%). Proteins were transferred to PVDF membranes (Turbo Blot

membranes, Biorad) that were then incubated in blocking buffer (5% skim milk powder,
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TBS, 0.5% Tween 20) for 1 h. Anti-Pygsuia RQUA antibodies were diluted in blocking
buffer (1:500) and incubated with membranes overnight. Following 3 washes in TBS-
tween (TBS, 0.5% Tween 20), membranes were incubated with horseradish peroxidase-
conjugated goat anti-rabbit secondary antibodies (1:50000, Sigma), washed in TBS-
tween and incubated with enhanced chemiluminesence substrate (GE Healthcare) and

visualized using a charge-coupled-device chemiluminescence detector (Protein Simple).
4.3.3 Phylogenetic Dataset Construction And Sequence Analysis

Eukaryotic and prokaryotic homologs of RQUA, and close UBIE homologs, were
retrieved via BLAST(Altschul 1997) using the R. rubrum RQUA sequence as a query
against the expressed sequence tag (EST), whole genome shotgun contigs,
transcriptome shotgun assemblies and nr databases available at the National Centre for
Biotechnology and Information (http://www.ncbi.nlm.nih.gov/), the Marine Microbial
Eukaryotic Transcriptome Project available through the Camera database
(http://camera.calit2.net/) and in-house sequencing projects for Mastigamoeba
balamuthi (described in Chapter 2), Blastocystis hominis, Condylostoma magnum
(provided by Dr. Eleni Gentekaki and Dr. Denis Lynn) and Copromyxa protea (provided by
Dr. Matthew Brown). Information regarding the database from which each eukaryotic
sequence was retrieved can be found in Table 4-1. Mitochondrial targeting sequences
were predicted for each sequence using Mitoprot and TargetP (Claros and Vincens 1996;
Emanuelsson et al. 2000). Sequences were tentatively annotated as ‘mitochondrial’ if
either Mitoprot or TargetP returned mitochondrial-targeting scores of greater than 0.5.
The gene context of rqua in bacterial genomes was determined by manual investigation

of the relevant genome sequences deposited in GenBank.
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Table 4-1 Accession numbers, sequence completeness and mitochondrial targeting predictions
for eukaryotic rqua squences identified from publicly available and in-house sequencing
projects.

Phylum Organism Accession database Complete® MitoProt TargetP
Archamoeba Mastigamoeba balamuthi KM186976 KM186976 C 0.8324 0.918
Discosea Paramoeba atlantica 0201483178 CAMERA IC n.d. n.d.
Discosea Neoparamoeba aestuarina 0201515656 CAMERA C 0.709 0.66

Tubulinea Copromyxa protea this study this study C 0.8457 0.879
Heterokonta Blastocystis_hominis 300176487 Genbank nr C 0.9684 0.868
Heterokonta Blastocystis sp. this study this study C 0.9231 0.885
Heterokonta Attheya septenetrionalis 0198293608 CAMERA IC n.d. n.d.
Heterokonta Attheya sp. 371497227 Genbank EST IC n.d. n.d.
Heterokonta Staurosira complex 0202500160 CAMERA IC n.d. n.d.

Ciliophora Condylostoma magnum  KM186977 this study C 09182 0.878

Ciliophora Fabrea fabrea salina 0202430720 CAMERA C 0.7987 0.596

Mollusca Aplysia californica? 613494758 Genbank TSA IC n.d. n.d.
Chaonoflagellata Monosiga ovata 163101368 Genbank EST IC n.d. n.d.

Breviatea Pygsuia biforma KM186978 Genbank SRA C 0.9919 0.958

Euglenida Euglena gracilis EC670846 Genbank EST C 0.9697 0.886

Euglenida Eutreptiella gymnastica 0113734402 CAMERA Cc 0.9955 0.922

Euglenida Eutriptiella-like 0174352920 CAMERA C 0.9986 0.947
Foraminifera Reticulomyxa filosa 569420904 Genbank nr C 0.6108 0.82
Foraminifera Ammonia sp. 0197027732 CAMERA C 0.5539 0.554
Foraminifera Elphidium margaritaceum 0202694266 CAMERA C 0.9908 0.881

aPotential contaminant
bCompleteness of sequence (C, complete; IC, incomplete)
n.d. Insufficient data

4.3.4 Phylogenetic Analysis

Sequences were aligned using MAFFT-linsi (Katoh and Toh 2008) and regions of
ambiguous alignment were removed using BMGE (Criscuolo and Gribaldo 2010) with
default settings. Phylogenies were estimated with RAXML version 8.0.19 (Stamatakis
2014) under the LG, LG4X and LG4M models of evolution. The best-fitting model was
determined to be LG4X based on the Akaike Information Criterion (Akaike 1974).
Previous reports hypothesized that RQUA evolved from a methyltransferase (UBIE)
involved in ubiquinone biosynthesis (Lonjers et al. 2012). Indeed, initial phylogenies of
RQUA and UBIE sequences revealed RQUA to emerge from within a larger clade of UBIE
sequences (Chapter 3 and Stairs et al. 2014). Only 5 representative UBIE sequences
were included in the final analyses. Final phylogenies were estimated under the LG4X
model. Bootstrap support for branches was determined from a total of 500 bootstrap
replicates and bootstrap values were mapped onto the best-scoring ML tree that was

retrieved from 100 heuristic searches. Bayesian inference was conducted using

122



PhyloBayes 3.2 (Lartillot et al. 2009) by running four Markov chain Monte Carlo (MCMC)
chains under the C20 (Poisson) model of evolution (Le et al. 2008) with a four-category
discretized gamma distribution to account for variable rates-across-sites. MCMC chains
were run sampling every 100™ tree until all 4 chains converged with a maximum-
difference (max-diff) of 0.03. The final consensus tree with posterior probabilities was
generated from 4000 trees with a manually determined burn-in. Posterior probabilities
(PP) for splits were mapped onto the ML estimated topology using the Dendropy

package (Sukumaran and Holder 2010).
4.3.5 Identification Of Quinone-Utilizing Enzymes In Eukaryotes

Sequences from Dictyostelium discodeum and Chlamydomonas reindhartii
respiratory chain complexes (Cl, Clll, CIV), quinone biosynthesis enzymes (COQ1-10),
alternative oxidase (AOX), electron transferring flavoprotein, (ETFa and () and ETF
dehydrogenase (ETFDH) were manually retrieved from the Kyoto Encyclopedia of Genes
and Genomes (Kanehisa 2000). These Q-utilizing enzyme sequences were used as
gueries to search each eukaryotic genome or transcriptome than also encoded rqua
using BLAST. Candidate RQUA sequences that were returned by the foregoing BLAST
searches with e-values less than 0.001 were then used as queries to search the nr
database with BLAST to ensure that Rhodospirillum rubrum RQUA was one of the most
similar homologs in nr. To represent the presence or absence of each protein in each
organism, a Coulson plot was generated using the Coulson Plot Generator software

(Field et al. 2013).
4.3.6 Antibody Production

The protein sequence of Pb-RQUA was provided to Genscript for antigen design.
The series of peptide sequences were provided by the company and the peptide
CGGKAVFIDYGRPST was selected as optimal for immunization since it represented a

conserved region of the protein and was predicted to be immunogenic by the company.
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4.3.7 Culturing And Microscopy

Cultures of Pygsuia biforma were maintained in American Type Culture Collection
medium 802 prepared in natural seawater as described in (Brown et al. 2013) (Stairs et
al. 2014) at 22 °C. Cells were grown in 15 mL culture tubes filled with media and
supplemented with Klebsiella pneumonia. Immunofluorescence analysis was performed

as described previously in Chapter 3, Section 0.

4.4 Results

4.4.1 Distribution Of RQUA In Bacteria And Eukaryotes

To assess the presence/absence of RQUA homologs in prokaryotic and eukaryotic
organisms, RQUA homologs were mined from various publicly available databases.
Interestingly, the rqua gene is relatively rare in bacteria and eukaryotes and not found in
any publicly available archaeal genomes. RQUA genes are only found in seven different
orders of a—, f— and y-proteobacteria (Burkholderiales, Magnetococcales, Neisseriales,
Rhiobiales, Rhodobacteriales, Rhodocyclales and Rhodospirillales). However, within
eukaryotes, | identified at least one rqua homolog in five of the six super-groups of
eukaryotes (Table 4-1). Some of the sequences are incomplete as they were retrieved
from ongoing genomic and transcriptomic sequencing projects. However, all of the full-
length sequences encode an N-terminal mitochondrial targeting sequences (MTS) as

indicated in Table 4-1.
4.4.2 Phylogentic Analysis Of Bacterial And Eukaryotic RQUA Homologs

Preliminary phylogenetic analyses that included RQUA and related sequences
showed that prokaryotic and eukaryotic RQUA orthologs formed a clade that emerged
from within a larger group of ubiquionone/menaquinone biosynthesis C-
methyltrasnferase proteins (UBIE). After reducing the dataset to include only the RQUA
sequences and their closest related UBIE homologs, ML and Bayesian analyses were
conducted. In the resulting phylogenies, the branch separating RQUA homologs from

UBIE sequences was strongly supported (Figure 4-3, Bootstrap value (BV) = 93, and
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posterior probability (PP) = 1.0). Within the RQUA clade, there seems to be two distinct
monophyletic groups of homologs composed of prokaryotic and eukaryotic sequences of
mixed taxonomic affinities (Group A; PP =0.61, and Group B; BV = 86, PP =0.98 (Figure
4-3)). Group A includes proteobacteria, ciliates (Fabrea and Condylostoma),
foramineriferans (Ammonia, Reticulomyxa and Elphidium), diatoms (Attheya and
Staurosira) and a chanoflagellate (Monosiga). While support is generally poor for
internal branches in the backbone of this group, it is clear that the ciliates and
foraminiferans are nested within a clade of a, 3,y proteobacteria with moderate
support (BV=79, PP = 0.99, Figure 4-3,), suggesting that these sequences were likely
transferred from bacteria to eukaryotes via LGT at least once. Group B includes the
remaining eukaryotic taxa from Amoebozoa (Mastigamoeba, Paramoebea and
Copromyxa), Obazoa (Pygsuia and Aplysia), Excavata (Eutriptiella and Euglena) and a
stramenopile (Blastocystis). Support is poor throughout the clade, however the majority
of the eukaryotic sequences (excluding Copromyxa) branch together with a group of f3-
proteobacteria. The topology vyielded by Bayesian analysis is slightly different;
Mastigamoeba branches at the base of Group B and the aforementioned eukaryotes
(excluding Copromyxa) form a monophyletic group (PP=0.84) sister to p-proteobacteria
(PP =0.99; Figure 4-4). In general, the lack of strong support and incongruence between
ML and BI analyses makes it difficult to disentangle the history of these genes in
eukaryotes in detail. The close relationship between the mollusk parasite
Neoparamoeba and sea slug Aplysia (BV =100, PP = 1.0) raises the possibility that the
Aplysia specimens from which genomic sequences were obtained might have been
infected with Neoparamoeba-like organisms and therefore this sequence is a
contaminant (further investigation is necessary to confirm or refute this possibility, but

is beyond the scope of this study).
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Figure 4-3: Phylogenetic analysis of all eukaryotic and bacterial RQUA homologs (54 sequences
and 180 sites). Maximum likelihood (ML) bootstrap values (BV) and Bayesian posterior
probabilities (PP) were mapped onto the best scoring ML tree (BV/PP). Only BV or PP values
greater than 50 or 0.5 respectively are shown where ‘* indicates bipartitions with BV support
less than 50 but PP support greater than 0.5. Bipartitions with maximum support (BV = 100 and
PP = 1.0) are shown with closed circles. Organisms are coloured based on eukaryotic ‘super-
group’ classification (Amoebozoa, blue; Obazoa, red; Excavata, green; Heterokonts & alveolates,
orange; and Rhizaria, purple). Bacterial class (a, 3, y-proteobacteria) are labeled next to each
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taxa. Closed black stars indicate presence of a mitochondrial targeting sequence and hexagons
represent organisms where RQ has been detected by mass spectrometry. The gene context of
rqua relative to fumarate reductase (frd)/succinate dehydrogenase (sdh) subunits A-D are
indicated with arrows next to bacteria where applicable. Non- frd /sdh genes are shown with
light blue arrows and rqua shown in purple. Select UBIE outgroup was used to root the tree (grey
sequences).

To determine if rqua is genetically linked to other potential RQ biosynthesis
genes, the genomic context of rqua in the various bacterial genomes was investigated
manually. The rqua gene does not appear to be linked to genes encoding other
hypothetical proteins or candidate quinone metabolism enzymes. However, in at least
nine of the bacterial genomes, rqua is encoded physically close (i.e., within one gene or
1 kilobase pair) to the genes annotated as anaerobic fumarate reductase (frd)/succinate
dehydrogenase (sdh) subunits (A-D) (Figure 4-3). Futhermore, in 12 of these bacteria
(Competibacter denitrificans, Candidatus Contendobacter odensis, Rhodomicrobium
udaipurense, Rhodomicrobium udaipurense, Rhodomicrobium vannielii, Burkholderiales,
Caenispirillum salinarum, Novispirillum itersonii, Methylocella silvestris, Thauera sp.,
Aromatoleum aromaticum, Laribacter hongkongensis, Pseudogulbenkiania ferrooxidans,
and Chromobacterium violaceum) there is second frd/sdh operon located elsewhere in
the genome. The genetic linkage | observed between rqua and the anaerobic complex Il

suggests they could be transcriptionally linked in an operon in these bacteria.
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Figure 4-4: Bayesian analysis of eukaryotic and bacterial RQUA sequences. Bipartitions less than
0.5 were collapsed. Organisms are coloured and symbols are as described in Figure 4-3.

The closest related annotated homologs of the RQUA sequences belong to a
family of Class | S-adenosyl methionine (SAM) methyltransferases including the
ubiquinone methyltransferases UBIE. A recent survey of methyltransferases identified

four distinct motifs common to most class | SAM methyltransferases (motif I, motif post-



I, motif Il and motif post-Il) that are crucial for protein folding and SAM binding (Katz et
al. 2003; Petrossian and Clarke 2009). Three of these motifs are conserved in RQUA
sequences. However, the SAM-binding motif | (bold text indicates the site that is a
glutamine or methionine in RQUA sequences compared to UBI sequences; [VILFG]-
[LIVCS]-[DENLV]-[VALMIT]-[GLYCFA]-[CSTAYFPAG]-[GA]-[PTSGNKRMV]-[GD]) is different
in RQUA sequences when compared to other Class | SAM-methyltransferases (Figure
4-5, open circle). Like the bacterial RQUA sequences discussed by Lonjers and
colleagues, the eukaryotic RQUA sequences have substitutions in key SAM binding sites
shown in Figure 4-5. While further experimental studies are needed, these substitutions
suggest that RQUA does not bind SAM or binds and uses SAM in a different manner than

known SAM-dependent methyltransferases (Lonjers et al. 2012).

Yyvy
Mastigamoeba balamuthi132 MLQANSVYGSY 150
Paramoeba atlantica 40 MLQAGAT YGNL 58
Neoparamoeba aestuarina107 MLQTGATYGEL 125
Coprpromyxa protea 90 MLQAANAYGHL 108

Monosiga ovata130 TLQVACVYGDF 148
Aplysia californica 54 NLQTGATYGEL 72

Pygsuia biforma104 MFMPASVMYGSA 122

Euglena gracilis103 A 1QVGHTHGGL 121
Eutreptiella gymnastica122 A1 QVGHTHGGL 140
Eutreptiella gymnastica-like108 A | QVYGHTHGGL 126

Blastocystis hominis103 LLQCGST YGKL 121
Blastocystis sp. Nandll103 LLQCGST YGKL 121
Attheyasp. 43 TLQLSCVYANL 61
Attheya septentrionalis 43 T |IBGIL SCNAY ANIE 61
Staurosira complex sp. 55 T/EQVWACWY SDF 73
Condylostoma magnum 84 LLQVACVYGNF 102
Fabrea salina 88 | LQVACVYGNF 106

Reticulomyxa filosa134 1 LQ | ACVYGNL 152

Ammoniasp.104 VTQ | ACVYGNF 122
Elphidium margaritaceum171 MTQ | ACVYGNF 189
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259149390 Saccharomyces cerevisiae Cog3p126 VLDVGCGGG | L 143
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Figure 4-5: An alignment of a selected region of eukaryotic and bacterial RQUA and UBI/COQ
homologs representing the SAM binding Motif | (Petrossian and Clarke 2009). RQUA-specific
conserved ‘signature’ substitutions are denoted with open circles (interaction with SAM) and
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triangles (interactions with the carbonyl group of SAM). Taxa are coloured by super-group
Amoebozoa (blue), Obazoa (red), Excavata (green), heterokonts and alveolates (orange), Rhizaria

(purple).

4.4.4 The Distribution Of Quinone-Utilizing Enzymes In Eukaryotes

RQ is known to function as an electron carrier with complex Il and other Q-
utilizing enzymes. If RQUA is in fact synthesizing RQ in the eukaryotes presented here,
then these organisms must encode two types of RQ-utilizing enzymes — those that
reduce RQ and others that reoxidize it. To test this hypothesis, | searched for Q-utilizing
enzymes (respiratory complexes, Cl, Clll, CIV; quinone biosynthesis enzymes, COQ1-7;
alternative oxidase, AOX; electron transferring flavoprotein, ETFo. and [3; and ETF
dehydrogenase, ETFDH) in the rqua-containing eukaryotic genomes and transcriptomes
FIGURE using homologs of these enzymes from Dictyostelium discodeum and
Arabidopsis thaliana as query sequences. Interestingly, most MRO-containing protists
(Pygsuia, Mastigamoeba and Blastocystis) identified to date that encode complex Il and

at least one other quinone-utilizing enzyme (complex I, AOX or ETF) also have RQUA.
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Figure 4-6: Coulson plot of Q-utilizing and Q biosynthesis enzymes in eukaryotic organisms that
encode rqua. Organisms are coloured based on super-group classification (Amoebozoa, blue;
Obazoa, red; Excavata, green; Chromalevolata, organge; and Rhizaria, purple). Presence of
homologs of enzymes encoded in the genome of a given organism are indicated with coloured
pie wedges. Uncoloured wedges indicate that a homolog of that enzyme was not identified in
complete genome (white) or incomplete (grey) sequencing projects. A suspected Paramoeba
contaminant in the Aplysia genome is indicted with an asterisk.

4.4.5 Subcellular Localization Of RQUA In Pygsuia biforma

In most eukaryotes, ubiquinone biosynthesis occurs in the mitochondrion (Robinson
1997; Gonzalez-Mariscal et al. 2014) and since UQ is a known precursor to RQ in R.
rubrum, it is possible that RQ biosynthesis (and therefore RQUA) would also be localized
to the mitochondrion (or MRO). This is supported by my observation that all of the
eukaryotic RQUA complete protein sequences possess putative N-terminal targeting
peptides for mitochondrial localization as predicted by Mitoprot and TargetP (Table 4-1).

To experimentally test these predictions in Pygsuia biforma, | used immunofluorescence
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confocal microscopy to determine the localization of RQUA. Anti-Pygsuia biforma RQUA
antibodies co-localized with mitochondrion-reactive stain MitoTracker in Pygsuia (Figure
4-7) suggesting this protein functions in the MROs of this organism. Although
experimental confirmation of RQUA function is required, it seems probable that, RQ

biosynthesis occurs in the mitochondrion (or MRO) of all of the eukaryotes possessing

RQUA.
A a-PbRQUA Mitotracker Merge
B
1 2 3
e e o
a-PbRQUA

Figure 4-7: Antibodies raised against ASCT and SUFCB localize to Pygsuia MROs using
immunofluorescence confocal microscopy. A. RQUA (green) co-localized with Mitotracker (red)
in Pygsuia biforma. Nuclei were stained using DAPI (blue). Confocal slices (0.3 um) were
deconvoluted and combined to render a 3D image. DAPI-stained nuclei (blue) were rendered in
Imaris. Scale bars (5 um). B. A western blot showing that anti-PbRQUA antibodies recognize
purified recombinant PbRQUA. Protein extracts were isolated from whole cell extracts of E. coli
transformed with empty plasmid pGEX4T-1 (1) or pGEX-PbRQUA (2) and cultured on conditions
to induce expression of the encoded protein and GST-PbRQUA purified using glutathione
magnetic beads (3) were resolved by SDS-PAGE and probed by immunoblotting using anti-
PbRQUA antibodies. The estimated molecular weight of Pygsuia GST-RQUA is 56 kDa (i.e., 26
kDa for GST plus 30 kDa for RQUA).

4.5 Discussion

4.5.1 Origin Of RQUA And Rhodoquinone Biosynthesis

The ability to perform fumarate reduction using rhodoquinone appears to be an

adaptation in some eukaryotes that helped them thrive under low oxygen conditions.
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After a thorough examination of publicly available genome and transcriptome
sequencing projects, the RQ biosynthesis protein RQUA was identified in multiple
lineages of eukaryotes and bacteria. Our preliminary phylogenetic analysis revealed that
all RQUA homologs emerge as a monophyletic group from within a larger clade of
proteobacterial Class | SAM-dependent methyltransferases (not shown). The closest
homologs of RQUA are in fact members of the ubiquinone biosynthesis pathways.
Interestingly, previous reports have demonstrated that RQ is synthesized from UQ and
not a UQ precursor. Therefore it is possible that RQUA evolved from a family of proteins
already capable of binding UQ or similar molecules and eventually gained new
enzymatic activity to function in RQ biosynthesis.

Within the eukaryote domain, enzymatic interactions with RQ have only been
investigated in detail in Ascaris suum, Caenorhabditis elegans, and Euglena gracilis.
While RQUA does appear to be encoded by E. gracilis, RQUA was not identified in the
genomes of A. suum, C. elegans or closely related helminths and nematodes. This
suggests that the RQ biosynthesis pathway of these organisms is not detectably related
to the RQUA-based system and they have convergently evolved to the capacity to

synthesize and utilize RQ.
4.5.2 Dispersion Of RQUA By Lateral Gene Transfer (LGT)

Closer examination of the RQUA clade revealed that the relationships between
bacterial and eukaryotic sequences are not congruent with expected organismal
relationships for either the eukaryotes or bacteria (Figure 4-3 and Figure 4-4). If this
enzyme was in fact ancestral to, and inherited vertically by, o-,p- and y-
proteobacteria, one would expect to recover monophyly of these bacteria to the
exclusion of eukaryotes, or at least recovery of different groups of bacteria according to
their phylogenetic affinities (o—, — and y—proteobacteria). However, in all phylogenies,
the bacterial sequences are not monophyletic but rather distributed amongst
eukaryotes (Figure 4-3 and Figure 4-4). Interestingly, some of the bacterial groups do
cluster together to the exclusion of eukaryotes and other proteobacteria (e.g., there is a

clade of a—proteobacteria encompassing some members of the orders Rhodospirillales
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and Rhizobiales BV=64; and a clade of Bp—proteobacteria of grouping together the orders
Neisseriales and Rhodocylales, BV = 100, PP =1.0). The remaining bacterial sequences
are spread throughout the tree with their branching patterns that are at odds with
presumed bacterial relationships. Recovering ‘scrambled’ phylogenetic affinities
amongst bacterial sequences is relatively common as LGT is known to be a frequently
occurring phenomenon in prokaryotic genome evolution (Eisen 2000; Ochman et al.
2000; Kunin and Ouzounis 2003).

The ‘patchiness’ of rqua occurrence within bacterial genomes is also consistent with
extensive LGT of this gene. If one were to try to explain this rqua distribution by vertical
inheritance alone, the gene would have had to have been present in the common
ancestor of a—, f—, and y— proteobacteria, and been lost potentially hundreds of times
independently in the various members of these orders that lack the enzyme. For
example, RQUA is found in 4 out of 13 orders of a-proteobacteria (9/796 genomes), 3
out of 10 orders of -proteobacteria (13/473 genomes) and 1 unclassified order of y-
proteobacteria (2/3190 genomes) present in Genbank. Therefore, if RQUA was present
in the common ancestor of proteobacteria it was lost in all extant §/e-proteobacteria
(460 genomes), C-protebacteria (10) and remaining o-—,p—,y—proteobacteria (42
different orders). Although this scenario is unparsimonious and very unlikely, it cannot
be definitively excluded as an explanation.

Similarly, the intra-eukaryote relationships observed in the phylogeny do not reflect
typical organismal relationships. However, the fact that the eukaryotic RQUA sequences
likely function within mitochondria (Figure 4-7) combined with the broad distribution of
the gene in genomes of diverse eukaryotes could indicate that rqua was in the genome
the common endosymbiotic ancestor of mitochondria (Figure 4-8). If so, and RQUA
traces its ancestry to the last common ancestral eukaryote through vertical inheritance
alone, one would expect the eukaryote sequences to cluster together to the exclusion of
bacterial sequences. However, this is not observed. Instead, the eukaryotic sequences
are scattered throughout the tree intermixed with bacterial homologs. For example,

the Obazoa sequences (Monosiga, Pygsuia and Aplysia) are separated by at least one
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highly supported branch (BV=86 and PP =0.98) and the stramenopile (ciliates,
Blastocystis species and diatoms) are separated by multiple highly supported branches
(Figure 4-3 and Figure 4-4). Furthermore, the rhizarian (Ammonia, Reticulomya and
Elphidium) and ciliate (Fabrea and Condylostoma) sequences are nested within a
moderately supported clade of a- and y-proteobacteria in ML and Bayesian analyses
(Figure 4-3 and Figure 4-4). These observations suggest that rqua was not present in the
common endosymbiotic ancestor of mitochondria but instead suggests that the various
eukaryote lineages acquired rqua multiple times by LGT from bacterial and/or other
eukaryotic sources (Figure 4-8A). Following LGT from bacteria, the eukaryotic rqua gene
sequences must eventually have acquired mitochondrial targeting signals. This scenario
is consistent with growing evidence for extensive bacterial-to-eukaryote and eukaryote-
to-eukaryote LGT that has been reported in recent years (Andersson and Roger 2003;
Hug et al. 2010; Takishita et al. 2012; Leger et al. 2013; Nyvltova et al. 2013).
Nevertheless, it remains possible (if unlikely) that rqua was ancestrally present in
eukaryotes and has been lost multiple times independently in the majority of eukaryotic
lineages. In this view the ‘mixing’ of bacterial and eukaryotic taxa in the phylogeny could
either be due to multiple events of eukaryote-to-bacterial LGT or phylogenetic artifacts
of an unknown source combined with poor phylogenetic resolution.

The idea that the ancestral eukaryote was capable of a broad array of both
anaerobic and aerobic functions is not new. The Hydrogen Hypothesis posits that the
ancestral eukaryote possessed an oa-proteobacterial-derived mitochondrion capable of
respiring by oxidative phosphorylation, but also, under anoxic conditions, respiring
anaerobically via hydrogen production and/or fumarate reduction (see Chapter 1). If
this were true, the ancestral mitochondrion would likely have had RQ and an RQ-
synthesizing system such as RQUA (or another enzyme that carries out this function),
although it is possible that the ancestral respiratory system could function in both
directions without aid of different electron carriers. For instance, the soluble subunits of
bovine complex Il subunits can be forced to perform fumarate reduction with an

artificial electron acceptor (benzyl viologen) in vitro, although the electrochemistry of
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this reaction is noticeably different than known fumarate reductases (Sucheta et al.
1992; Ackrell et al. 1993). In any case, it is possible that the common ancestor of
eukaryotes that possessed a Cll capable of performing both succinate oxidation and
fumarate reduction and the electron acceptor/donor might have been UQ under aerobic
conditions and RQ under anaerobic conditions. In this scenario, over time, numerous
lineages of eukaryotes lost RQUA (or an analogous enzyme) as they adapted to a
predominantly aerobic lifestyle and preferentially used UQ.

Arguments against scenarios such as the Hydrogen Hypothesis have been
accumulating since it was first proposed (Doolittle 1998a; Lopez-Garcia and Moreira
1999; de Duve 2007; Poole and Penny 2007; Hug et al. 2010). These arguments are
discussed in greater detail in Chapter 1. Focusing specifically on RQUA, the Hydrogen
Hypothesis predicts that eukaryote homologs should most closely be related to those of
the a-proteobacteria that gave rise to the mitochondrion. Although determining the
true phylogenetic affinities of the a-proteobacterial endosymbiont has been
confounded by phylogenetic artifacts (Rodriguez-Ezpeleta and Embley 2012), several
affinities have been proposed including the Rickettsiales (Andersson et al. 1998; Ferla et
al. 2013), Pelagibacter (Thrash et al. 2011), or a deeper-branching position within the a -
proteobacteria (Rodriguez-Ezpeleta and Embley 2012). Characterized members of the
former two groups of a-proteobacteria completely lack a RQUA homolog and if either is
the correct sister group to mitochondria, this observation would make a mitochondrial
origin for RQUA less likely.

If RQUA was present in the common ancestor of eukaryotes as predicted by the
Hydrogen Hypothesis (Figure 4-8), it is surprising that it was secondarily lost in the
ancestors of facultatively anaerobic animals such as sponges, helminthes and
nematodes. While it is hypothesized by some that global oxygenation sparked the
evolution of animals (Mills and Canfield 2014), recent evidence suggests that basal
animal lineages can ‘thrive’ at 0.5% to 4% of present oxygen levels (Mentel et al. 2014;
Mills et al. 2014). Mills and Canfield (2014) postulate that the ancestor of animals was

likely a facultative anaerobe that could at least ‘tolerate episodes of complete anoxia’.
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Others have also implied that the anaerobic metabolism observed in modern-day
animals is a direct ‘hold-over’ from the ancestors of animals (Mentel et al. 2014).
Unfortunately these studies failed to derive these hypotheses in light of the Hydrogen
Hypothesis and the last common ancestor of eukaryotes (LECA). For instance, if the
LECA was a facultative anaerobe (with hydrogen-producing mitochondria, malate
dismutation and RQ biosynthesis), and by these accounts the ancestor of animals was
also a facultative anaerobe, then why have the mitochondria of anaerobic animals lost
the ability to perform these ancestral functions? Why have facultatively anaerobic
animals whose extant relatives have RQ (i.e., A. suum and C. elegans) lost RQUA but
then subsequently acquired a different enzyme system for synthesizing RQ? It is possible
that hypoxia tolerance was lost early in animal evolution and secondarily developed
later, though this directly contradicts the findings and conclusions of the recent studies
of sponges (Mentel et al. 2014; Mills and Canfield 2014). Nevertheless, the absence of
anaerobic genes, such as rqua in facultatively anaerobic animal lineages is hard to
explain if their anaerobic mitochondrial biochemical capacity is in fact a ‘hold-over’ from
the last eukaryotic common ancestor as proposed by advocates of the Hydrogen

Hypothesis (Martin and Miuller 1998; Mentel and Martin 2010; Mills and Canfield 2014).
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Figure 4-8: Two hypotheses for the origin of eukaryotic RQUA. (A) rqua was acquired by lateral
gene transfer in only some lineages of eukaryotes as illustrated with purple circles. (B) rqua was
present in the common ancestor of eukaryotes under the Hydrogen Hypothesis. Lineages where
rqua was maintained are illustrated with purple lines. Gene loss events are denoted in grey.
Grey triangles represent all other gene losses in the extant members of indicated super-groups.

4.5.3 Eukaryotic RQUA Likely Functions In The Mitochondrion

The mitochondrion is the location of the terminal steps of UQ biosynthesis (Wang
and Hekimi 2012). Since UQ is known to be a precursor of RQ (Brajcich et al. 2010), RQ
biosynthesis could also occur in the mitochondrion in eukaryotes. All of the eukaryotic

homologs of RQUA with complete N-termini have predicted mitochondrial targeting
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signals suggesting mitochondrial localization. These predictions were experimentally
validated for Pygsuia biforma using immunofluorescence microscopy; RQUA co-localized
with mitochondrial marker mitotracker in the MRO these cells (Figure 4-7).

Most of the enzymes that use UQ are also found in mitochondria such as Cl, ClI,
alternative oxidase and the electron transferring flavoprotein system. Interestingly,
every eukaryotic organism that encodes RQUA (including anaerobes) encodes Cll and at
least one other Q-utilizing enzyme. Some of these proteins have been shown to interact
with RQ in Ascaris suum (Ma et al. 1993) and | therefore hypothesize that the Q-utilizing
complexes of other RQUA-containing eukaryotes, might also be capable of using RQ as a

substrate under certain conditions (i.e., anoxia).

4.5.4 RQUA Function And The ‘Transferability’ Of RQ Biosynthesis Between

Organisms

The conversion of the methoxy group of UQ to the amine of RQ proceeds via an
unknown mechanism with an unknown number of intermediates (Brajcich et al. 2010;
Lonjers et al. 2012). Furthermore, the role and enzymatic activity of RQUA in this
reaction is currently unknown. Lonjers et al. propose three hypotheses for the role of
RQUA and RQ biosynthesis. Firstly, they suggest RQUA could serve a regulatory role in
the expression or function of RQ biosynthesis proteins. However, my evidence that
RQUA functions in mitochondria, makes such a putative role in regulation of nuclear-
encoded quinone biosynthesis genes very unlikely.

The second hypothesis is that RQUA evolved a novel function to catalyze the
methoxy to amino reaction and therefore directly converts UQ to RQ. This hypothesis is
is consistent with the observation that, like the closely-related ubiquinone biosynthesis
enzymes (UBIE), RQUA can likely bind and interact with quinone species. Furthermore,
the residues involved in SAM binding are not conserved in RQUA sequences suggesting
that RQUA functions in a different manner than UBIE proteins.

Lonjers and colleagues final hypothesis is that UQ and RQ are synthesized by
different multi-enzyme complexes in R. rubrum that share some components but not all.

Therefore the removal of one of these components (RQUA) results in a non-functional
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complex in their rqua knockout experiments (Lonjers et al. 2012). This is based on the
observation that some components of the yeast ubiquinone biosynthesis complex
(CoQ3, 4, 5, 6, 7 and 9) are necessary for stabilization of the complex independent of
their catalytic role (Baba et al. 2004). If this were the case for RQ biosynthesis, one
would expect all organisms that encoded RQUA would also have to encode UQ
biosynthesis proteins. However, many of the eukaryotes that encode RQUA do not
encode any component of the ubiquinone biosynthesis pathway (Figure 4-6). These
organisms either synthesize UQ by an unknown mechanism or rely on exogenous
sources of UQ (Padilla-Lopez et al. 2009). Therefore, it is unlikely that RQUA serves to
stabilize the ubiquinone biosynthesis complex in these organisms.

In the future, phylogenomic profiling (for examples see (Rodionov and Gelfand
2005; Wu et al. 2006)) of genomes encoding RQUA and additional genome-wide
mutation screens will be essential for validating these hypotheses. | have also
established a heterologous expression system in Rhodospirillum rubrum rqua mutants
(incapable of synthesizing RQ) to test if eukaryotic rqua can complement RQ
biosynthesis (data not shown). Enzyme assays to determine the exact function of RQUA
(i.e., methyltransferase or aminotransferase) will be necessary to understand how RQUA
convert UQ to RQ.

In summary, my data is most consistent with the second hypothesis of Lonjers
and colleagues that RQUA directly converts UQ to RQ in one step. If true, this explains
why RQUA is not genetically linked to (thus not expressed in an operon with) any other
guinone biosynthetic enzyme in bacteria. Furthermore, it would make the acquisition of
RQ biosynthesis by LGT relatively straightforward — only a single gene need be acquired
by an organism to allow it to convert UQ to RQ.

One obstacle to overcome is the potential for futile cycling of electrons by Cll in
organisms that have UQ and RQ. To help regulate the directionality of Cll, Euglena and
Caenorhabditis maintain different relative levels of UQ and RQ under aerobic (higher
UQ) and anaerobic (higher RQ) conditions (Takamiya et al. 1999; Hoffmeister et al.

2004). Interestingly, Ascaris suum encodes stage-specific isoforms of Cll subunits that
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favour fumarate reduction, specifically the succinate/fumarate binding flavoprotein
subunit (SDHA) and the small cytochrome b subunit (SDHD) (Amino et al. 2003; lwata et
al. 2008). Future investigations are needed to determine which mechanism is used by

the protists presented here.
4.6 Conclusions

The ability to synthesize RQ using RQUA was likely a prokaryotic invention that was
transferred to eukaryotes by multiple independent events of LGT well after the
establishment of mitochondria within eukaryotes. This is supported by the scrambled
relationships observed between eukaryotes and bacteria. RQUA has then been
transferred between eukaryotes via eukaryote-eukaryote LGT. After establishing RQ
biosynthesis in mitochondria or related organelles, complex Il and other Q-utilizing
enzymes of these eukaryotes changed over time to use RQ for the purposes of fumarate
reduction allowing the eukaryotes to perform respiration independent of oxygen. This is
an example of how laterally acquired functions can interface with ancestral functions of
mitochondria to create metabolisms of mosaic origins.

Rhodoquinone:fumarate oxidoreduction is one of many ways anaerobic organism
tolerate low oxygen environments. However, as more organisms are studied, it is
becoming increasingly difficult to test for various enzymatic activities in a high
throughput manner. Therefore, the identification of proteins that synthesize cofactors
important for anaerobic metabolism (such as RQ) could one day serve as an in silico
proxy for enzyme activity (e.g., fumarate reductase), thus avoiding tedious experimental

approaches to determine metabolic potential.
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Chapter 5 Conclusions

The previous chapters highlight both the incredible diversity yet also the
extensive similarities in metabolism of mitochondrion-related organelles across the tree
of eukaryotes. Although MROs have evolved independently in dozens of lineages,
obvious convergences in function have occurred. Several different enzymes appear to
co-occur in different anaerobic lineages across the tree of eukaryotes and behave almost
as functional and evolutionary modules. While there are obvious exceptions to these
observations, some common modules include: (i) PFO and hydrogenase (ii) PFO and
hydrogenase with a complete or partial complex |, (iii) ASCT-mediated ATP generation
accompanying SCS, or (iv) the presence of an ACS. Using these modules of laterally
acquired and ancestral proteins, the MROs of anaerobic protists have convergently
acquired similar mechanisms to oxidize pyruvate, generate hydrogen and synthesize
ATP. However, the exact sequences of events that resulted in the retailoring of the
aerobic mitochondria to the reduced organelles | observe today are unknown. Below |
outline possible evolutionary pathways that could explain the spectrum of extant

organelle diversity.
5.1 A Few Assumptions

The endosymbiotic theory for the origin of mitochondria suggests that the bacteria
that gave rise to mitochondria were alpha-proteobacteria capable of aerobic respiration.
In the following hypothesis, | will make the uncontroversial assumption that the
mitochondria of the last eukaryotic common ancestor (LECA) had the hallmark features
of aerobic mitochondria (i.e., similar to aerobic mammalian mitochondria) capable of (i)
pyruvate oxidation by pyruvate dehydrogenase, (ii) electron transport and oxidative
phosphorylation with oxygen as the terminal electron acceptor, and posseses (iii)

mitochondrial DNA.
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5.2 Reduction Of The Electron Transport Chain In Response To

Hypoxia

A first major step in the evolution of anaerobic MROs was the adaptation of
mitochondrion-containing protists to be able to continue to make ATP when oxygen
levels were low. Similar to metazoans like Ascaris, low oxygen conditions would likely
lead to down-regulation and reduced efficiency of Complex Ill and Complex IV. If these
protists eventually adapted to a predominantly anaerobic existence (e.g., perhaps
exploiting nutrient-rich anaerobic environments such as marine or intertidal sediments
or animal guts), there would be less purifying selection on genes encoding the subunits
of Clll and CIV; with neutral mutational drift these were lost from the mitochondrial and
nuclear genomes. In this scenario, the first half of the TCA cycle was still functioning to
produce succinate (starting at citrate) and NADH. The remaining part of the TCA cycle
could be functioning in reverse in a malate dismutation pathway where malate is
imported into the organelle and converted to fumarate. Complex | consumed NADH to
pump protons to maintain a proton gradient for ATP synthesis via ATP synthase.
However, because of the lack of Clll and CIV, there would have been a build-up of
reduced ubiquinol generated by Complex |. This buildup of ubiquinol could favour the
functioning of Cll in the reverse direction as a fumarate reductase to regenerate
ubiquinone. This is plausible as some aerobic Clls can be forced to perform fumarate
reduction with sufficient concentrations of substrate (Ackrell et al. 1993; Sakai et al.
2012). Thus, succinate — and not water — would be the end point of metabolism and
likely excreted from the organelle via a succinate/fumarate antiporter (analogous to
anaerobically-upregulated dicarboxylic acid antiporters in E. coli (Engel et al. 1992),
although there are no discernable homologs of this kind in eukaryotic genomes). This
organelle would partially resemble the mitochondria of some animals (e.g., Ascaris)
under anaerobic conditions, except the genes for Clll and CIV subunits would have been
completely lost. In some lineages of eukaryotes, the ability to synthesize and use
rhodoquinone (RQ) by the acquisition of RQUA or analogous protein by LGT could

greatly increase the efficiency of the fumarate reductase activity of CllI.
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5.3 Changes To Pyruvate And ATP Generation

Perhaps concomitantly with the evolutionary ‘remodeling’ of the respiratory
chain, the pyruvate oxidation system was also changed in this protist adapting to anoxic
conditions. If the ancestor of mitochondria only possessed one pyruvate-metabolizing
enzyme (the PDC), during the transition to anaerobiosis, pyruvate:ferredoxin
oxidoreductase and hydrogenase must have been acquired by LGT at some point and co-
existed with PDH. Some MRO-containing organisms still encode complete or partial PDH
complexes in addition to PFO and/or PNO (e.g., Acanthamoeba castellanii (Leger et al.
2013) Blastocystis sp., (Stechmann et al. 2008), Nyctotherus ovalis (Boxma and Graaf
2005)). However, under highly reductive conditions (elevated NADH levels due to an
inefficient electron transport chain missing Clll and CIV) the ancestral mitochondrial PDC
would likely be inhibited (Bremmer 1969; Kerbey et al. 1976). In fact, in rat liver
mitochondria, the K;of PDC for NADH is lower than the K, of PDC for NAD+ (Bremmer
1969) suggesting that PDH is very sensitive to NADH/NAD+ ratios. This would decrease
the energy output of MROs under low oxygen conditions similar to the mitochondria of
patients with PDC deficiency (Brown et al. 1994). In turn this might limit the efficiency of
pathways in mitochondria that rely on acetyl-CoA as a substrate (e.g., some long-chain
fatty acid biosynthesis pathways (Hiltunen et al. 2010)). Under these conditions, there
would be a selective advantage to acquiring and maintaining an NADH-tolerant pyruvate
oxidizing enzyme such as PFO instead of PDC. Once acquired, as long as the organism
was living under predominantly hypoxic conditions (as PFO is an oxygen-sensitive
enzyme (Chabriére et al. 1999)), PDC would be unnecessary. The multiple subunits of
PDH and its allosteric regulatory PDC kinase (Patel and Korotchkina 2006) would be
energetically ‘expensive’ to express and the loss of these genes would be selectively
advantageous. PFO will also generate reduced ferredoxin that can be used by a variety
of mitochondrial processes (e.g Fe-S cluster biosynthesis; (Lange et al. 2000)). However,
if the organism acquired hydrogenase, the oxidized ferredoxin could be regenerated for

PFO independently of other mitochondrial processes.
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At this point, the mitochondrion has a partially functioning electron transport chain
(CI and Cll), PFO, HYD and partial TCA cycle, mtDNA (encoding components of Cl and
probably CV), it synthesizes ATP via complex V and ultimately excretes succinate as the
end product of metabolism. The next enzyme to be acquired could have been an
acetate:succinyl-CoA transferase which could, with acetyl-CoA convert succinate (which
is now in abundance) to succinyl-CoA. The succinyl-CoA would be used as a substrate for
succinyl-CoA synthetase to generate a trinucleotide (ATP or GTP). This new method of
ATP biosynthesis possibly allowed for the eventual loss of ATP synthase (and the
corresponding genes encoded on the mtDNA and nuclear genomes). The resulting
organelle would then resemble the MROs observed in Blastocystis species (Stechmann

et al. 2008).

5.4 Loss Of ClI, mtDNA And Malate Dismutation

Phylogenetic analysis of hydrogenases in Chapter 3 (Figure 3-3) revealed that some
species of the Thermotogales branch within the larger clade of eukaryotic hydrogenases.
Interestingly, studies have shown that the Thermotoga hydrogenase can only accept
electrons from co-operation of Complex | and ferredoxin and not ferredoxin alone (Schut
and Adams 2009). This suggests that the Thermotoga hydrogenase interacts with at
least some components of Complex I|. This is consistent with studies of Trichomonas
vaginalis hydrogenosomes that showed that two retained components of Cl, the 24 kDa
and 51 kDa subunits (responsible for oxidation of NADH) interact with ferredoxin and
hydrogenase probably to produce H, gas (Dyall et al. 2004; Hrdy et al. 2004).
Interestingly, other anaerobic protists including Sawyeria marylandensis and Pygsuia
biforma appear to have retained these same two components of Complex | suggesting
that a Thermotoga-like coupling of NADH oxidation and H; production could also be
present in these organisms (Hrdy et al. 2004; Barbera et al. 2010; Stairs et al. 2014).

In light of these observations, it seems likely that once hydrogenase was acquired
by an anaerobic protistan lineage, it is possible these Cl subunits could have had dual
roles. When bound to the membrane-embedded ClI subunits, they carried out their

normal NADH oxidation reaction and passed electrons to Cl subunits that reduced
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ubiquinone and pumped proteins in the process. However, when free in the
mitochondrial matrix they could alternatively form this specialized Complex |-ferredoxin-
hydrogenase complex, ultimately generating hydrogenase gas. It appears that in some
lineages, at least, the proton pumping and ubiquinol reducing subunits of CI were
completely lost along with ATP synthase, and only the subunits involved in NADH
dehydrogenase activity were retained. It is unclear why most of Cl and all of ATP
synthase would be lost, although it could be related to the fact that if Cl was the only
ETC complex present to pump protons (and part of the Kreb’s cycle running backwards
and therefore consuming rather than producing NADH), the proton motive force may
have been weak and the ATP yield insufficient to ‘cover’ the costs of expressing the large
numbers of subunits required for complete Cl and ATP synthase activity.

In any case, the resulting organelle resembles the organelle | described in
Chapter 3 for Pygsuia biforma — an organelle lacking a mitochondrial genome, with only
Cll, two Cl subunits, PFO, Hydrogenase, ASCT and SCS. Eventually, the Cll (and thus
malate dismutation) could be lost if there were an alternative route for generating
succinate to be used as a substrate for ASCT. This would produce an organelle
resembling the hydrogenosomes of Trichomonas vaginalis (although | currently do not
know how succinate is formed or imported into the T. vaginalis organelle). It is possible
that instead of acquiring ASCT, some lineages acquired ACS to generate ATP directly
from acetyl-CoA in their MROs, such as Mastigamoeba balamuthi (Nyvltova et al., under
review) or Spironucleus salmoncida (Jerlstrom-Hultqvist et al. 2013). Interestingly,
Mastigamoeba has a partial malate dismutation pathway; the genome encodes only CllI
(and not ASCT, SCS or fumarase). This suggests that the Mastigamoeba MRO might
represent a transition state in between an anaerobically respiring organelle and a

Spironucleus-like organelle.
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5.5 A Note On Fe-S Biosynthesis

It is difficult to speculate on how changes to the Fe-S cluster biosynthesis
function of MROs (i.e., SUF in the MROs of Pygsuia or NIF in the MROs of
Mastigamoeba) relate to other anaerobic adaptations of these organelles. In the case of
SUF, the ancestor of Pygsuia’s must have had both SUF and ISC at one point in its history
since ISC was directly inherited from the a-proteobacterial ancestor of mitochondria (Lill
2009). SUF systems are more tolerant to oxygen-stress conditions than ISC systems
(Outten et al. 2004; Wollers et al. 2010). Therefore, if the ancestor was already
handicapped with oxygen metabolism (e.g., malfunctioning electron transport chain
resulting in increased reactive oxygen species) during the transition to anaerobioisis, the
SUF system may have functioned better than the ISC system. This would result in a

selective advantage for losing the ISC system to use the SUF system exclusively.
5.6 Final Remarks

Above, | have discussed just a few of many possible scenarios that could lead to
the metabolic diversity | observe in anaerobic protists today. The importance of
continuing to study free-living organisms is two-fold. Firstly, discovering new
biochemical modules and combinations of these modules is crucial for understanding
the evolution of mitochondria in response to anaerobic conditions. The preceding
chapters relied heavily on the idea that anaerobic metabolism was not in the common
ancestor of eukaryotes, but was, instead, acquired gradually over evolutionary time
independently in different lineages. It is possible that by studying new organisms, the
discovery of new metabolic arrangements could strengthen or weaken this hypothesis.

Secondly, studying the anaerobic metabolism of free-living protists is
fundamental for understanding metabolism in parasites. By comparing the metabolisms
of parasites and their closely related free-living relatives, | can disentangle the exact
adaptations that arose in response to anaerobiosis versus those involved with

parasitism. This can allow for more targeted research towards developing ‘parasitism-
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specific’ chemotherapeutics and gaining a better understanding of parasite biology in
low oxygen environments.

The emerging pattern | observe is that free-living organisms tend to maintain
more anabolic pathways than parasites that presumably rely on the host to fulfill these
needs. For instance, the organelles of Pygsuia have retained a variety of lipid and amino
acid metabolic pathways not found in protistan parasites like Trichomonas, Giardia or
Entamoeba. Furthermore, free-living organisms often have different enzymes to
perform redundant functions whereas parasites have more streamlined metabolisms.
For example Pygsuia encodes PFO, pyruvate formate lyase and pyruvate:NADP
oxidoreductase for the generation of acetyl-CoA whereas organisms like Trichomonas,
Entameoba or Giardia only encode PFO. This observation is slightly harder to reconcile
with respect to dependence on the host. It is possible that since free-living organisms
can occupy dynamic environments (compared to parasites) there is a selective
advantage to having a versatile metabolism. However, this is mostly speculation; more
information on the regulation of these various enzymes under different conditions is
necessary to determine how they might allow these organisms to adapt to changing
environments.

The preceding chapters demonstrate the crucial role of lateral gene transfer in
adaptation to hypoxia. Chapter 2 demonstrated how LGT could introduce a non-
oxidative acetyl-CoA generation system (PFL) that allows an organism to make acetyl-
CoA from pyruvate even under highly reducing conditions. Chapter 3 demonstrated that
even near-universally conserved functions of mitochondria such as Fe-S cluster
biogenesis can be affected by LGT. Finally Chapter 4 showed that the ability to
synthesize specialized cofactors can be introduced by LGT allowing an organism to
perform novel functions in hypoxia. As more non-model organisms are studied, | suspect
that it will become clearer how LGT serves as an important driving force shaping

hypoxia-adaptation in eukaryotes.
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