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Abstract

This thesis investigates high throughput random access communications in the satel-

lite up-link environment. In this environment it is typical for a large number of

un-coordinated, mobile transmitters scattered over a large geographic area to con-

nect intermittently to a single receiver over the satellite channel. This configuration

fundamentally results in a random access scenario, where a large number of potential

users contend for access to limited channel resources. Complexity is increased due to

the geographic spread and localized weather effects which make it possible for each

user have its own independent channel that must be estimated to ensure a high level

of system performance.

To this point research efforts have been focused on the development of access

protocols capable of approaching the single user capacity, and have succeeded in

asymptotically approaching it, however previous efforts have shown that the appli-

cation of joint detection and multiple packet reception (MPR) techniques make it is

possible to surpass the capacity of the current single-user random access channel. The

majority of this previous work is focused on improving ALOHA protocols which show

a common behavior of collapsing when the number of users is the system exceeds the

number of signaling dimensions. While previous results have excelled at reducing the

packet loss ratio and achievable throughputs at low SNR with low normalized system

loads, little has been done to address the high-SNR case where the expected number

of transmissions per signaling dimension is greater than one. In this thesis it is proven

that it is possible to operate in an uncoordinated multi-user environment with system

loads up to 1.96 in the high-SNR region under realistic conditions.
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Chapter 1

Introduction

In 2014 the global satellite industry had a reported value of over $203 billion, a value

which has more than doubled in the past decade [1]. Of the approximately 1,261

satellites currently operating, 52% of them are dedicated to communications, with

the majority of those being deployed in the commercial sector. Of all the services

provided by these communications satellites the demand for mobile services is growing

at a staggering rate; experiencing 25% growth in the past year alone [1]. The nature

of this demand will lead to a noticeable increase in mobile traffic in the near future

and the type of services being offered will result in this traffic appearing random

and highly bursty at the satellite receiver. An unavoidable consequence of this type

of traffic is that packet collisions will occur at the receiver. With current receivers,

these collisions are often seen as unresolvable. Due to the increasing probability of

collision that comes with an increase in traffic, and the long round-trip propagation

delays (approximately 240ms for geosynchronous satellites), the retransmission of the

collided packets should be avoided whenever possible.

The scenario discussed above describes what is known as uncoordinated random

access. This is a system where a number of uncoordinated users attempt to access

communication resources in a completely random fashion. This problem has received

much attention in the past, which will be discussed in detail in the following sections.

Despite this, the need for improved random access protocols continues to grow. This

scenario becomes vastly important as we begin to consider the future of wireless

communications, with things such as sensor networks and the highly touted Internet

of Things set to become an everyday part of the average persons life. To get the most

out of these services we must first solve the problem of unresolvable collisions at the

receiver, the following work strives to do just that.

In an attempt to solve the problems associated with uncoordinated random ac-

cess communications this work will focus on the problem of channel estimation in

1
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a system employing iterative decoding and demodulation. Channel estimation is an

important aspect of any wireless communication system because it allows the signal

to be accurately reconstructed at the receiver regardless of any distortions introduced

by the channel which exists between the transmitter and receiver. Exact estimation

of these distortions becomes a critical component when considering multi-user com-

munications. The cancellation based receivers discussed in detail herein rely heavily

on accurate channel information to reconstruct the transmitted signals to enable the

cancellation process. Any error present in the estimation process will translate into

reconstruction errors which negatively impact the receiver performance.

Cancellation based receivers rely on resolving packet collisions by decoding users

iteratively while treating the interference from every other user transmitting concur-

rently as an additional source of noise. Once a single user is decoded their signal is

subtracted from the received data stream and decoding of the next signal can begin.

This process continues until either all users are decoded or the cancellation process

has resulted in degradation of the received signal to such an extent that no more user

data can be recovered. The latter case is typically caused by inaccurate channel esti-

mation which results in an inaccurate reconstruction of the original signal. The most

important artifact of this inaccurate reconstruction is that when the reconstructed

signal is removed from the received data the signal mismatch results in incomplete

cancellation which can be modeled as residual noise. This residual noise will grow

with each user involved in the collision providing a functional limit on the number of

users which can be received concurrently.

The following work focuses on improving throughput in the dense multi-user ran-

dom access satellite up-link environment by exploiting the concepts of generalized

modulation and improved low complexity iterative estimation and cancellation tech-

niques. The bulk of this work is performed with a focus on the satellite channel,

however it should be noted that the results can be easily extended to a number of

communication environments. The focus lies on the satellite environment because

it has been traditionally utilized for system testing and presents a relatively benign

channel for testing compared to other environments such as underwater, or indoor

mobile. Additionally, due to the geographic spread of users and long propagation
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delays the uncoordinated multi-user satellite environment presents itself as the clas-

sic problem of multiple user random access, with it’s own set of complications which

will be discussed in detail. Finally, Advancement in this field of research has been

indicated as a priority by both the European Space Agency (ESA) and Industry

Canada.

The rest of the thesis is organized as follows: Chapter 2 provides the reader with

the necessary background in satellite communications, multiple access, estimation

theory and iterative processing. In Chapter 3 the design of the system is outlined,

including the pertinent information regarding the satellite environment and the re-

ceiver structure. Finally, results and performance analysis of the proposed receiver

are provided in Chapter 4.



Chapter 2

Background

2.1 Satellite Communications

The satellite industry is rapidly advancing to meet the demand for wide-spread inter-

active wireless services and offer a competitive alternative to terrestrial based commu-

nication systems. This demand is shifting away from broadcast style communications

such as television and radio towards short interactive applications such as tracking of

ships and planes which leads to a dense multi-user scenario on the satellite up-link.

The industrial effects of this shift can bee seen with the launch of ALPHASAT in

2013 by the European Space Agency; with the ability to handle more than 750 com-

munications channels, it represents the largest communications satellite launched to

date. Modern communication satellites typically operate in a geosynchronous orbit,

which means the satellite remains stationary above a single point on the earth as

it spins. This orbit allows for a single satellite to continually service approximately

40% of the earth’s surface in the extreme case. This area includes difficult terrains

where terrestrial solutions may not be effective, or even possible, such as marine or

mountainous areas. Covering such a large area of land means there is a very large

number of users which could potentially access the satellite at any given time.

High end communications satellites mitigate the effects of servicing such a large

area by using a multi-spot beam approach. That is, they utilize an array of receivers

and tuned antennas which employ frequency reuse and polarization as a means of seg-

menting the service area into smaller, more manageable sub-regions. This approach

leads to an increase in capacity across the entire region by reducing the area and

number of users which must be serviced by each receiver. For the remainder of this

thesis the focus will be on the performance of a single spot beam, which corresponds

to a single receiver in the antenna array. Although this spot beam is much smaller

than the total coverage area of the satellite it still encompasses a very large number

of potential users which may access the satellite at any given time.

4
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Much work has been done in developing a comprehensive model of the land mobile

satellite (LMS) channel. The satellite community generally accepts the statistical

channel model proposed by Fontán et al. in 2001 [2]. In this model the channel is

represented by a three state Markov model; where each of the three states represents a

different state of shadowing: line of sight (state 1), moderate shadowing (state 2), and

deep shadowing (state 3) conditions as illustrated for a single user in Figure 2.1. This

channel illustration is based on the results of a measurement campaign carried out by

the German Aerospace Center [3] which provides the Markov transition probabilities

and underlying Loo parameters required for the model in [2] for each of the states

for a wide range of realistic scenarios. In practice, these states are dictated by the

motion of the mobile terminal as it moves through the environment.

For the purpose of this thesis, analysis will be focused on a single fading state,

line-of-sight, where high SNR with low levels of power fluctuation are expected at the

receiver. The fluctuations in each Markov state are determined by the parameters

of the underlying Loo distribution [4] which dictates the fading characteristic of the

channel within each of the various states. Fading parameters in this model can be

decomposed into: very slow, represented by the Markov states; slow, represented by a

log-normal power distribution which represents the small scale changes in attenuation

within each of the three fading environments; and fast variations introduced by the

random fluctuations experienced during transmission through the atmosphere.

The model presented in [2] provides a statistical method for generating a discrete

time series representing realistic amplitude and phase variations of the transmitted

signal for a number of relevant, real-world scenarios. While this model is generally ac-

cepted it is important to note that other authors have opted for a simplified two state

Markov process [5] which separates the transmission into good and bad conditions

with an underlying fading profile.

Although the satellite channel has been thoroughly investigated it does not come

without it’s own host of issues which must be overcome to ensure efficient and reliable

high speed communications for future wireless applications. There are a number of

atmospheric effects which must be considered: most notably high levels of attenuation

and absorption due to the presence of water vapour in the atmosphere, along with

atmospheric scintillation which causes random rapid phase and amplitude variations



6

Figure 2.1: LMS channel example

as the signal passes through the tropo- and ionospheres [5]. Due to the geographic

spread of users and the localized weather and atmospheric effects discussed above,

each user may have a unique channel realization, making accurate channel estimation

in a multi-user environment a complex task. Channel estimation is further compli-

cated when considering the geosynchronous (GEO) orbits popular for communications

satellites; the long propagation delay resulting from a 72,000 km (∼240ms) round trip

makes closed-loop processing impractical. This may be circumvented by the use of

low earth orbit (LEO) satellites which maintain a much lower elevation, however their

highly dynamic orbits create a sizable Doppler which must be tracked.

There are a number of relevant standards published by the European Telecom-

munications Standard Institute (ETSI) which govern transmission in the satellite

environment. One very important aspect of the return channel via satellite (RCS-2)

standard is the inclusion of adaptive coded modulation (ACM). The inherent fluctu-

ations in the received power leads to a wide range of operating signal to noise ratios
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(SNR) which leads to different requirements on the signaling. An operating range of

0 dB to 14 dB Es/N0 is typical in practice. To take advantage of this, the standard

allows for rate 1/3 QPSK during poor conditions to improve reliability and up to rate

5/6 16-QAM to increase throughput during good operating conditions. The reader is

directed to [6, 7, 8] for additional details regarding the relevant standards.

2.2 Multiple Access

Since the introduction of wireless communications scientists and engineers have been

searching for techniques which allow multiple users to share the communication re-

sources without reducing the throughput of the channel. The techniques developed

have become known as multiple access techniques and have taken on many forms over

the years. The simplest of these techniques involves slicing the channel into time slots

and assigning them to users in the system, this technique is known as time division

multiple access (TDMA). The resource may also be separated by assigning a subset

of the available bandwidth to each user, known as frequency division multiple access

(FDMA). Another alternative, where is user is assigned a unique spreading sequence,

code division multiple access (CDMA), has seen extensive use as an access technology

in wireless networks. These techniques are highly effective but they also rely on a

high degree of coordination and synchronization between the users, this is not always

practical or even possible in real life situations.

A perfect example of the multiple access scenario is the satellite return channel,

or up-link, where multiple ground based users contend for a single satellite receiver

(see Figure 2.2). Due to the geographic spread of users, the long propagation delays,

and the nature of the services offered, a high level of coordination between the users

and a user and the receiver is infeasible. This scenario perfectly encompasses what

has become known as an uncoordinated random access scenario.

In this scenario, and in the absence of fading, the received signal r(t) can be

described as the sum of the transmitted signals uk(t) from each of the K users with

an additive Gaussian noise (AWGN) term z(t).

r(t) =
K∑
k=1

uk(t) + z(t) (2.1)
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Figure 2.2: Multiple access satellite up-link scenario

Random access has been studied extensively in the past for a wide array of appli-

cations. The overarching goal of this research has been to maximize throughput while

supporting a high number of concurrent users. The predominant protocols studied

are the slotted ALOHA protocols developed by Abramson in 1970 [9]. These proto-

col effectively doubled the potential throughput of the original un-slotted ALOHA

protocol whose throughput f(x) is given by

f(x) = x ∗ e−2x (2.2)

while allowing for a higher system load (x) before collapsing as illustrated in Figure

2.3. For the TDMA case, the system load may be defined as the number of active

users in the system per time slot. By organizing transmission into pre-defined time

slots without scheduling, the throughput of ALOHA was increased to

f(x) = x ∗ e−x (2.3)

which made it capable of achieving throughput as high as 0.37 packets/time slot for

a system load equivalent to one transmission (user) per time slot. This throughput is
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equivalent to 37% of the single user TDMA throughput of one packet per time slot.

If two or more users transmitted in the same slot a collision occurred and the data

transmitted in the slot was lost, users involved in a collision would wait some time

and try again. The actual throughput in bits/s/Hz is dependent upon the modulation

and coding used. The bulk of the recent research has focused on developing protocols

capable of resolving these collisions without suffering a reduction in throughput with

much of the work aimed at applications in the satellite up-link environment; many of

this are advancements or variations on the original ALOHA protocols.

Figure 2.3: Throughput of the original ALOHA protocols

The first notable improvement was the introduction of Contention Resolution

Diversity Slotted ALOHA (CRDSA) [10] in 2007. CRDSA improves upon traditional

slotted ALOHA by introducing an additional redundant copy of each packet into the

transmission frame and using successive interference cancellation (SIC) at the receiver

to increase throughput to a maximum of 0.52 packets/time slot under a normalized

system load of 0.65. The system load is normalized with respect to the number of
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packet copies transmitted. This was accomplished through the principal that if a

packet is received (i.e it isn’t involved in a collision) then it can be decoded and its

copies can be removed from other time slots which may lead to more recoverable

packets by removing the colliding packet from the time slot. An example of this

protocol can be seen in Figure 2.4.

This protocol has been included in the most recent DVB-RCS standards and thus

represents the state of the art in terms of what has been applied to a real system.

However, this process is not perfect and there are still instances where unresolvable

collisions occur. To reduce the number of unresolvable collisions a new protocol was

developed where a variable number of packet copies were transmitted. By allowing

for more than two copies of each packet to be transmitted the throughput was further

increased to 0.8 packets/slot at a normalized system load of 0.85 [11].

At this point a variable number of packet copies were allowed to be transmitted

and researchers quickly realized that the cancellation structure resembled that of a

bipartite or Tanner graph. This realization allowed for the theories developed for

coding on graphs to be applied to the iterative cancellation process [12, 13] which

lead to a new protocol dubbed Irregular Repetition Slotted ALOHA (IRSA) which

was capable of achieving throughput approaching the single user channel capacity

(0.97 packets/slot) in the asymptotic case at normalized loads approaching 1 trans-

mission/slot. It was however, still limited to 0.8 packets/slot under realistic delay

and frame length constraints. The ability to impose a statistical distribution on

the number of packet repetitions lead to the development of Coded Slotted ALOHA

(CSA) [14] which relied on encoding each packet prior to transmission to achieve

the throughput of IRSA while using higher rate codes on average. This scheme was

further improved in [15, 16] by taking it one step further and breaking each packet

into sub slots and applying the concepts of CSA on a per slot basis. With a properly

chosen distribution these protocols were capable of achieving throughputs asymptoti-

cally close to the single user channel capacity of 1 packet/slot utilizing low rate codes,

but suffered the drawback of requiring a complex statistical distribution to determine

the access probability of each user in the system.

The advancements described above provided a great framework for approaching

the single user capacity however it was quickly realized that they relied on fairly
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(a) Received Packets

(b) First Iteration - Packet #3 Removed

(c) Second Iteration - Packet #2 Removed

(d) Third Iteration - Packet #1 Removed

(e) Fourth Iteration - Packet #6 Removed

(f) Final Iteration - Unresolvable Collision Between Packets 4 and 5

Figure 2.4: Example of Contention Resolution ALOHA
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accurate network synchronization which may be prohibitive in realistic scenarios. To

combat this issue Contention Resolution ALOHA (CRA) [17] removed the need for

network wide synchronization and added Forward Error Correction (FEC). Removing

the slotted (TDMA) transmission framework present in the various protocols outlined

above increases the probability that a collision will occur due to the presence of

partial collisions. The inclusion of FEC however means that some of these partial

collisions can be correctly recovered and removed during the SIC process. These

changes allow CRA to surpass CRDSA in the high SNR region. CRA shows linear

performance over the entire range of normalized system loads for in the high SNR

region with 2 repetitions and rate 1/2 FEC. As the number of repetitions is increased

the throughput is reduced with respect to the normalized load but robustness is

increased in the low SNR region.

This attempt at improving random access in the satellite environment was fol-

lowed up in [18] with the introduction of Enhanced Contention Resolution ALOHA

(ECRA). ECRA improved upon CRA by allowing for the cleanly received portions of

partially collidied packets to be combined in an effort to create complete, or nearly

complete, packets which could be decoded with the assistance of FEC. This protocol

outperformed the original CRA in every way, excelling especially in scenarios where

the system load is very high (i.e the number of active users is greater than the number

of available slots) while maintaining good performance in low SNR however, it still

falls short of CRDSA in the very low SNR region (<2dB). Another attempt to relax

the network wide synchronization requirements was made in [19] with the introduc-

tion of Enhanced Spread Spectrum ALOHA (E-SSA) which combines asynchronous

spread spectrum techniques with low rate FEC and SIC to provide very low packet

loss ratios (PLR) at throughputs approaching the single user capacity of the channel.

In 2013 a novel extension to the CRDSA protocol was proposed by introducing

the concept of decoding rounds. The new scheme was dubbed Frameless ALOHA

[20] and operates with variable length frames and decoding rounds. Each decoding

round represents a number of iterations of the SIC; where this protocol diverges from

CRDSA is that associated with each round is an end condition. In CRDSA the

iterative process continues until there are no resolvable collisions or a set number of

iterations have been reached, in Frameless ALOHA the end condition for each round
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of the iterative process depends on either decoding a pre-defined portion of the active

users or reaching a set number of iterations. Once this end condition has been reached

a new round is started with only the users who were not successfully decoded in the

previous round contending for channel resources. The length of the transmission

frame and the value of the end condition are both dependent upon an estimation

of the number of active users and vary with each round in an attempt to maximize

the throughput. In [21] the end condition is analyzed and the optimum is found

to exist when instantaneous throughput is maximized, that is once the throughput

begins to drop the current round will end and a new round begins. This protocol

excels when the number of active users is comparable to the number of transmission

slots, referred to as a high system load, in this region CRDSA and CSA begin to

collapse and their throughput is greatly diminished. Frameless ALOHA is shown to

be capable of achieving throughputs up to 0.88 packets/slot with a system load of

0.9 users/slot under the assumption of an optimal end condition for the processing

rounds.

CRDSA was again revisited last in 2014 when some of the original researchers

attempted to make the protocols truly asynchronous [22], to achieve this the con-

cept of a virtual frame is introduced. In this new methodology the transmission

frame is known locally at each user without coordination which inherently creates an

asynchronous transmission environment. This asynchronicity leads to the presence

of partial collisions which may be decoded as in ECRA increasing performance while

at the same time greatly decreasing the delay experienced by each user as they no

longer need to wait until the beginning of a potentially long global frame to transmit

their data. Additionally, the number of packet repetitions required to achieve a high

level of performance is greatly reduced with simulations showing as few as 2 packet

repetitions being sufficient to achieve performance greater than CRDSA, CSA, or

E-SSA.

However, these schemes all suffer the same fundamental drawback; they treat the

channel as a single user environment, when it is inherently a multiple access channel

[23]. The capacity of which actually increases with the aggregate received power (2.4);

this indicates that throughput of greater than one packet per time slot are possible.
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R ≤ C = W log2

(
1 +

∑K
k=1 Pk

N

)
[bits/s] (2.4)

This potential for surpassing the single user channel capacity was shown in 2012

by [24] with the development of Multi-slot Coded ALOHA (MuSCA). This proto-

col exploited the multi-user nature of the channel to achieve throughput up to 1.4

packets/slot while the system is heavily loaded, up to 1.3 transmission/slot. This

impressive throughput was further increased in [24] by employing irregular degree

distributions inspired by IRSA to the cancellation process. This lead to the through-

put being increased to a peak of 1.43 packets/slot at the cost of increased complexity.

Both of these schemes utilize iterative processing and joint detection, two concepts

which form the basis for the work presented herein. However, these and the proto-

cols presented above rely on the assumption of perfect channel estimation which is

a known issue in any realistic environment. Accurate channel state information is

crucial to the iterative cancellation processes which allow all of the protocols pre-

sented in this section to achieve desired performance but channel estimation in this

environment is largely ignored in the literature. Acquisition of reliable channel state

information for the cancellation process represents a key component of the research

presented in this thesis.

It should be noted that protocols resembling those discussed above have been

developed and implements in various fields outside of satellite communications. Some

notable examples are for use in RFID tags [26], and mobile networks with hidden

nodes [27, 28].

2.3 Channel Estimation

In wireless communications all information must pass through what a medium known

as the channel which introduces some nature of signal distortion and noise to the

transmitted signal. The goal of channel estimation is to quantify these effects in

such a way that the original signal can be accurately reconstructed at the receiver.

To investigate the basics of estimation theory we will focus on the case of a single

user. Under this assumption we can use vector representation to describe the received
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signal r = [r0, r1, ..., rk−1]T as

r = H ∗ x + z (2.5)

The goal of channel estimation in this case is to determine the unknown channel

vector H in the presence of noise z. The contents of the channel vector, H =

[H(0), H(1), .., H(Q−1)], are commonly referred to as the Channel State Information

(CSI) and represents the combined effects of a number of channel impairments such

as: scattering, fading, and attenuation. This information is crucial to reconstruct

the transmitted symbols, x = [x0, x1, ..., xk−1]T , from the received signal r. For the

remainder of the development we will model the channel time variations as a tapped

delay line, or Finite Impulse Response(FIR) filter [29] (Figure: 2.5) with Q taps.

Z−1 Z−1

Figure 2.5: Tapped delay line representation of the channel

The performance of an estimator can be quantified by how closely it approximates

the real signal, this metric is known as the mean square error (MSE).

MSE = E[|Ĥ −H|2] (2.6)

where E[·] is the statistical expected value of the input and Ĥ represents the esti-

mate of H . The random access protocols described in section 2.2 rely heavily on

accurate signal reconstruction to drive the Successive Interference Cancellation Pro-

cess, imperfect reconstruction leads to residual noise which limits the performance of

the system; this concept will be discussed in more detail in the following chapters.

Development of techniques for determining the unknown vector H has been the

focus of much research and several good methods have been developed. The methods

of interest in the context of this thesis rely on a training, or pilot sequence to be



16

transmitted across the channel along with the data. This pilot sequence consists of

a set of known data which is used to estimate the instantaneous CSI. In the simplest

case a number of pilot symbols are appended at the beginning of the data frame. We

denote the pilot as a vector p = [p0, p1, ..., pn−1] and focus on how it effected by the

channel, such that the received sequence becomes:

r = H ∗ p + z (2.7)

One popular method which relies only on knowledge of the received signal y, and

the transmitted signal p to generate an estimate of the unknown channel vector H

is known as least squares (LS) estimation. Which attempts to satisfy the criteria:

ĤLS = arg minH(r −Hp)H(r −Hp) (2.8)

Based on this the following closed form expression can be obtained:

ĤLS = (pHp)−1pHr (2.9)

where (·)H represents the Hermitian, or conjugate transpose of the vector. It is

important to note that the performance of the Least Squares algorithm is highly

dependent upon the signal to noise ratio, and the relative pilot length as clearly

illustrated in figure: 2.6.

In certain instances we can improve the estimation by incorporating some a priori

knowledge of the channel or the noise; this covers a class of algorithms known as

Bayesian estimation, we will explore the minimum mean square error (MMSE) esti-

mator in more detail. The MMSE estimator relies on knowledge of the covariance of

both the channel and noise vectors to produce an estimate based on the maximum a

posteriori (MAP) criteria under the assumption that the channel coefficients are zero

mean Gaussian distributed [30]. This assumption is valid for the generic tapped-delay

line channel model used herein because the tap values are assumed to be the result

of summing numerous random channel effects.

ĤMAP = arg maxH
p(r|H)p(H)

pr)
(2.10)

which, under some mild assumptions leads to the solution of the MMSE estimator

given by:

ĤMMSE = CHp
H(pCHp

T + CN)−1r (2.11)
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Figure 2.6: Performance of the least squares estimation algorithm with respect to
SNR and relative pilot length

where CH and CN are the channel and noise covariance matrices respectively and

may be computed as follows

cov(H) = CH = E[HHT ] (2.12)

An important class of channel estimation algorithms known as data-aided estima-

tion have been developed to compliment, or even replace the pilot-aided techniques

discussed above. The main purpose behind these structures is to reduce the required

signaling overhead by reducing the amount of training sequence required to accurately

estimate and track the channel variations. This is accomplished in large by utilizing

the decoded data from the previous frame to update the channel estimate of the cur-

rent frame [31, 32, 33, 34, 35]. This approach is only valid for slowly varying channels

where users are continuously active, they are also prone to error propagation due to
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incorrect decisions being fed back to the estimator. A potentially more interesting ad-

vancement in data-aided estimation techniques came about with the advent of Turbo

Coding [36] and the popularization of iterative receiver structures.This advancement

was based on taking advantage of the soft information generated by the receiver to

iteratively improve the estimation; this avoids the potential for error propagation

inherent in decision-directed systems which rely on the hard decision output.

One of the first attempts at using the soft information to improve estimation was

seen in [37] where the reliability information from the soft output Viterbi algorithm

was used to construct a virtual pilot from the most reliable data, this was shown

to outperform the hard output data-aided estimation techniques over a wide range

of signal to noise ratios. In [38] the prohibitive nature of utilizing hard feedback

estimation is noted and a soft input MMSE estimator is developed and shown to

outperform traditional MMSE algorithms, specifically results are shown for a multi-

user environment where each channel must be independently estimated. It is also of

note that the complexity of joint MMSE in a multi-user environment is prohibitive

for most applications, this problem may be addressed by separating each user into K

data streams and employing a sub-optimal MMSE algorithm with reduced complex-

ity. These results are supported by [39] where soft-iterative estimation is shown to

out perform hard feedback over flat-fading channels and [40] show the performance

of soft-iterative least squares algorithms in time-varying frequency selective chan-

nels. Similar results are seen in [41, 42] where soft-iterative estimation algorithms

outperform their hard decision, and classical counter-parts in a number of scenarios.

More recently [43] combines classical turbo estimation with soft-iterative estimation

by combining estimates from the training sequences and decoded data based on the

MMSE criteria to create a hybrid system. Furthermore, complexity is reduced by

removing the interleaving, channel decoding, and de-interleaving blocks from the it-

erative estimation process. The soft estimation techniques shown in these papers

rely heavily on the iterative receiver structures ushered in with by turbo coding to

outperform their classical counterparts in nearly all situations of interest.
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2.4 Iterative Information Processing

In 1993 a new class of convolution codes was introduced which utilized parallel con-

catenation of two component codes and introduced an iterative decoding methodol-

ogy where decoding is performed in by passing the soft information back and forth

between soft-input, soft-output decoders. Thanks to the iterative process this new

receiver was capable of achieving performance close to the Shannon limit using rela-

tively simple component codes, a feat never before achieved in the coding community.

These new codes were deemed “turbo codes”, due to the feedback loop being analo-

gous to the mechanical feedback used in turbochargers. Hagenauer argued that the

iterative turbo principle could be applied to many problems other than decoding, such

as: equalization, multi-user detection, and channel coding to name a few [44]. In the

relatively short history of the turbo principle this has proven to be correct; iterative

structures have found their way into a number of important applications, providing

performance well beyond that achievable with classical single-path algorithms. A

very important application of these so-called, turbo principles, appears in the task of

channel equalization where inter-symbol interference (ISI) must be corrected prior to

forward error correction, these equalizers are aptly named turbo equalizers [45] and

are prevalent in many modern communications systems.

Turbo Equalization is based on separating the decoding and error control coding

(ECC) sections of an iterative receiver, a key component in the dual stage receiver (see

Figure 2.7) proposed in [46]. In this paper the receiver is shown to perform within 1

bit/dimension of the Shannon capacity for any SNR. While other capacity approach-

ing techniques exist for the Gaussian Multiple Access Channel (GMAC) (2.4) exist

[47] they are generally quite complex to implement. By separating the detection and

error control decoding operations capacity can be approached in a simple and robust

fashion with negligible decrease in performance. The method presented relies on the

concepts of Partitioned Signalling (PS) [48] where signature sequences are partitioned

and interleaved prior to transmission; this operation effectively suppresses interference

in the multi-user environment allowing for significant increase the concurrent number

of users accessing the system with only a marginal increase in complexity. Addition-

ally, this offers protection against the variations in received power which plague many

mutli-user receivers. The system also relies on the assumption of a random matrix



20

channel which is created inherently by the random nature of PS. It is shown that for

this channel the combination of PS and iterative demodulation always performs at

least as well as MMSE filtering with reduced complexity.

Figure 2.7: Two stage capacity achieving receiver

An important metric for the performance of the two-stage decoder is the system

load (α) which is defined as

α =
K

N
(2.13)

where K represents the number of users and N is the number of available signalling

dimensions. The effects of power distributions on the capability of the receiver to

support high system loads is analyzed and found to go infinity under the assumption

of exponential power distributions and 2.08 in the worst case where all users are

received at the same power level. Additionally, it is shown that the two-stage receiver

with partitioned signalling described above is capable of achieving the capacity of

the GMAC with the application of spatial coupling with a sufficiently large coupling

window [49]. It is of importance to note that capacity is achieved with complexity

that is linear in the number of users and the achievable system load goes to infinity if

the SNR is allowed to go to infinity, effectively overcoming the interference limitation

present in all multiple access communication systems.

2.5 Iterative Interference Cancellation

Interference plays a major role in multi-user communications systems; to the extent

that the performance of many multiple access systems are inherently limited by the

multiple access interference (MAI) caused by concurrent transmission of other users.

Much research has been performed with the goal of combating this limitation by
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removing the interference through iterative methods known as iterative, or successive

interference cancellation. The multiple-access protocols discussed in section 2.2 all

feature SIC as a main component of the proposed algorithms. In this section we will

look into the cancellation process in greater detail.

It didn’t take long for multi-user or joint detection to be recognized as a neces-

sary advancement to improve throughput of multiple-access communications systems.

However, the optimal multi-user detection algorithms were seen as being too complex

for practical implementation as their complexity is exponential with the number of

users O(2k) [50]. In [51] a multi-stage receiver based on SIC was proposed which ex-

hibited complexity which was linear in the number of users. The SIC based receiver

was further investigated for direct-sequence code division multiple cccess (DS-CDMA)

in [52]. To properly understand the successive interference cancellation process it is

imperative to recall the multiple-access equation (2.1) where the transmitted signal of

each active user combine at the receiver. The proposed protocol acts by decoding and

subtracting users successively beginning with the user with the highest received power

and continuing iteratively until the lowest power user has been decoded. The bene-

fits of proceeding with cancellation in this way are twofold; first, the highest power

user will suffer the least interference from other users therefore being the easiest to

decode, and second, removing this user from the received data stream will have the

biggest impact of reducing the interference affecting the other users. Subtraction is

performed by regenerating the decoded signal using the known modulation sequence

and the channel estimate.

rmk = rm−1
k − hkdmk + zm (2.14)

where rmk is the received signal at iteration m, calculated by subtracting the remodu-

lated signal of the kth user from the received signal at the previous iteration and zm is

the noise at the mth iteration. It is noted that through cancellation the MAI decreases

with each iteration, however the noise due to imperfect cancellation increases with

each iteration; this residual noise effectively limits to extent to which SIC can be used

to remove MAI. Turbo principals were quickly applied to the cancellation process to

produce a soft interference cancellation system [53]. By taking advantage of the soft

information the problem of error propagation can be avoided and the residual error

minimized.
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In [54] a simple iterative cancellation based receiver is proposed that is capable of

achieving the Shannon capacity of the AWGN channel with optimal rate and power

control. Furthermore, it is shown that under the worst case scenario, a simple lin-

ear cancellation receiver and repetition coding performs just as well as an optimal

joint decoding system with uncoded transmission. The dynamics of this cancella-

tion process are studied extensively in [55] and compared with the MMSE receiver.

Additionally, interference Cancellation has also been suggested to improve channel

estimation in heavily populated multi-user environments [56] [57]. The interference

is reduced with each iteration which allows for a better estimate to be generated on

the cleaner received signal.



Chapter 3

System Design

3.1 Signalling Methodology

A multi-user communication system is proposed for the uncoordinated random access

satellite up-link environment by coupling the capacity-achieving receiver discussed

above with an iterative estimation loop. This approach has been previously studied

in [59] and [60] but will be revisited with a focus on performance in a realistic satellite

communications environment.

To keep the signalling methodology both generic and scalable generalized modu-

lation will be utilized to construct 22B-QAM constellations from the superposition of

B constituent QPSK signals. To achieve this the information symbols dk from each

of the K users are separated into multiple power streams according to

Pk = 4k−1P0; 1 ≤ k ≤ B (3.1)

where P0 is the power level of the lowest power data stream. In the case of 16-QAM

this translates into a high power and a low power data stream. With B = 2 the

high power data stream will have 4 times the power of the low power data stream.

Repetition coding is applied to each data stream, that is, each symbol dk is repeated

M times, giving the symbols dk,m which are passed through an interleaver (π) to

generate d′k,m which are randomly distributed through the transmission frame of

length L. This is similar to the packet repetition used in CRDSA, except instead of

repeated packets being distributed randomly throughput a frame, the repetition and

random interleaving is performed on a per symbol basis. The interleaved symbols

d′k,m are finally utilized to form the 16-QAM symbols (sk) based on the superposition

principal discussed above. That is

sk =
M∑
m=1

d′k,m (3.2)

as shown in Figure 3.1.

23
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Figure 3.1: Example of the proposed signaling mechanism with two users.
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It is important to note that the proposed system utilizes time division training

sequences for channel estimation, however the ideas presented herein are readily ex-

tendable to other pilot schemes without loss of generality. For this specific case, the

symbols dk consist of both data symbols and finite-length training (pilot) sequences

ck. The pilot sequence may be inserted at any point in the data stream such that it

does not interfere with the data symbols. For the sake of convenience it is assumed

that each user is coded with a unique signature sequence which allows them to be

identified and separated at the receiver. This assumption allows us to focus on the

signal processing at the receiver without worrying about higher layer functionality

and will not be addressed further in this work.

With this formulation of sk the system can now be described as

y =
K∑
k=1

1√
M

sk ∗ hk + σn (3.3)

where hk is the discrete, time-varying, channel impulse response which may be unique

for each user. In all comparisons we normalize performance to energy per information

bit and the spectral efficiency to bits per unit bandwidth, and n has unit variance,

so that σ2 is the variance of the additive noise. The scaling factor 1/
√
M is required

to normalize the power of the transmitted symbols due to the repetition coding used,

that is, the repetition does not increase the power of the transmitted signal. The

sequence of symbols y is length L x N samples, where L is the number of transmitted

symbols and N is the number of samples per symbol. This particular signalling is

required to take advantage of the receiver introduced in [46].

In a realistic system each symbol sk(t) will be generated as a sequence of sample

pulses for each user, that is the signal sk(t) is formally generated as the interpolation

sk(t) =
LN∑
n=1

sk[n]p(t− nTc) (3.4)

where p(t) is some shaping pulse, for example a root-Nyquist pulse.

This definition of sk(t) leads to the received signal being formally written as

y(t) =
K∑
k=1

ej2π∆fktsk(t− τk) + n(t) (3.5)

where τk is a random delay of the k-th signal, and ∆fk is the transmitter-receiver

carrier mismatch for signal k. These affects take into account both the channel
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distortions hk and inaccuracies in the processing chain at the transmitter. Due to the

low-cost nature of the mobile user terminals, oscillator drifts can result in significant

frequency offsets. This is assumed to be the primary source of carrier mismatch in

the system. It is also assumed that the frequency offset is constant for the duration of

a single transmission and does not need to be tracked, although this extension could

be easily made.

For notational simplicity we introduce the term

rk(t) = ej2π∆fktsk(t− τk) (3.6)

such that (3.5) can be rewritten as

y(t) =
K∑
k=1

rk(t) + n(t) (3.7)

The signal y(t) arrives at the receiver after transmission through the channel.

3.1.1 Receiver Design

Sample-based processing is intended at the receiver, and not necessarily Nyquist-

based processing, a filter matched to p(t) is used at the receiver although matched

filtering is not strictly required. After receiver-matched filtering the sample-based

signal of the kth user is given by

rk(t) = ej2π∆fkt

NL∑
v=1

sk[v]q(t− vTc − τk) (3.8)

where q(x) = p(x) ∗ p(−x). This model is relevant in the satellite environment where

channel distortion and complex fading can be modeled by the channel response h(t);

then the overall pulse is given by q(x) = p(x) ∗ h(t) ∗ p(−x) instead. The received

signal is then sampled asynchronously at rate t = rTc to obtain a sampled version of

the received signal rk(t) as

rk(rTc) = r[r] = ej2π∆fkrTc

NL∑
v=1

sk[v]q((r − v)Tc − τk) (3.9)

which can be rewritten as a discrete finite-impulse response (FIR) form as

rk[r] =
NL∑
v=1

sk[v]fk[r − v] =
∑

v:filter span

sk[r − v]fk[v] (3.10)
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where the taps of the filter that model the asynchronous sampling process are given

by

fk[v] = e2πj∆fkrTcq (vTc − τk) (3.11)

The time variation of these taps is not explicitly expressed in the notation, but

is caused primarily by ∆fk and the drift of τk. After sampling and filtering the

received signal passes through a de-interleaver (π−1) to prepare it for the a posteriori

probability (APP) decoder which Log-Likelihood Ratios (LLR) according to

LLRdk(λ) = log

(
p(dk = 1)

p(dk = 0)

)
(3.12)

which leads to the soft-bit estimate

d̃k = tanh

(
λ

2

)
(3.13)

where (̃·) is used to represent a soft estimate of the true value.

The LLR values are passed through another interleaver (π) before being used

along with the channel estimate h̃k′ to reconstruct an estimate of the original signal

x̃k′ for cancellation.

x̃k′ = 4d̃k′,hph̃k′,hp + d̃k′,lph̃k′,lp (3.14)

The canceled input for the k-th user/data stream is now generated as

yk = y −
∑
k‘6=k

x̃k′ + n (3.15)

for each user in the system.

For large systems, the iterative demodulator is well described by a single-parameter

iterative equation. In the large-systems limit the residual noise variance of the itera-

tive process is governed by the iteration equation [54, Equation 11]. To understand

the iterative equations we need to introduce the function g(x)

g(x) = E[(1− tanh(x+
√
xξ))2] (3.16)

which is the error variance of a binary soft-bit estimate of a bipolar signal observed

in Gaussian noise with variance x which is analyzed in detail in [61]. The variance
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of the iterative demodulator which dictates the system performance is now described

by

σ2
i =

α

2

(
4Ehp

[
(d− d̃)2

]
+ Elp

[
(d− d̃)2

])
+ σ2

=
α

2

(
4g(σ2

i−1/4) + g(σ2
i−1)
)

+ σ2 (3.17)

where the subscripts hp and lp represent the low and high power data stream respec-

tively. σ2
i is the effective noise variance, which depends on the iteration i, that is, on

the level of cancellation. The generation of the channel estimates h̃k will be discussed

in detail in the next section.

3.2 Estimator Development

By representing the channel as a tapped delay line with Q taps the estimator can be

viewed as a Finite Impulse Response (FIR) filter. This estimator is a crucial addition

to the iterative receiver shown in Figure 3.2, where an estimation block which has been

added to take advantage of iterative estimation techniques to produce a highly reliable

channel estimate h̃k of each user in the densely populated multi-user environment.

The goal of the estimator is to minimize the square error between the estimate h̃ and

the true value h. Any errors in the channel estimation will lead to enhanced linear

inference at the decoder; that is, the residual variance of iteration i, (σ2
i ) is increased

with respect to the predictions of (3.17).

By separating the estimated channel response for each user into a known term

and an error term (∆hk) we can write the estimate of hk as

h̃k = (hk + ∆hk) (3.18)

The reconstruction error εr can then be quantified as

εr = dkhk − d̃kh̃k

εr = (dk − d̃k)hk − d̃k∆hk (3.19)

Making the assumption that the reconstruction error ∆hk is white with variance

σ2
i,h and recalling that our data streams consist of two power levels as in (3.14), we
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Figure 3.2: Proposed two stage receiver with integrated estimator

can modify (3.17) to include the effects of the iterative estimator and compute the

performance of the iterative estimation loop as a function of the estimation error as

σ2
i =

α

2

(
4g(σ2

i−1/4) + g(σ2
i−1)
)

+
α

2

(
4
(
1− g(σ2

i−1/4)
)

+
(
1− g(σ2

i−1)
))
σ2
i,h

+ σ2 (3.20)

where the variance of the estimation process is a function of the variance of the

previous iteration

σ2
i,h = f(σ2

i−1) (3.21)

For notational convenience we introduce the terms

g1(σ2
i−1) = 4g(σ2

i−1/4) + g(σ2
i−1) (3.22)

and

g2(σ2
i−1) = 4

(
1− g(σ2

i−1/4)
)

+
(
1− g(σ2

i−1)
)

(3.23)

such that (3.20) can be rewritten as

σ2
i−1 =

α

2

(
g1(σ2

i−1) + g2(σ2
i−1)σ2

i,h

)
+ σ2 (3.24)

The task then becomes selecting an estimator for use in the iterative loop. To

this end, we explore the relatively simple least squares estimator due to its ease of
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implementation and low complexity which is very attractive for an iterative imple-

mentation. Other estimators may be considered which are capable of producing a

more accurate estimation of the channel taps by utilizing more available information

at the cost of complexity. As it will be shown, the simple LS estimator is sufficient

for the envisioned application.

It is important to recall the transmitted sequence dk contains both data and the

pilot sequence ck which are used to generate an initial channel estimate.

h̃k,0 = (cHk ck)
−1cHk yk (3.25)

The accuracy of the estimation is dependent upon the length of the training

sequence, and the signal-to-noise and interference ratio in the channel. In subsequent

iterations the soft symbol estimates d̃k from the APP decoder are used in conjunction

with the pilot signal ck. Therefore, we introduce the term sk which contains the known

pilot signal and the partially decoded data which is utilized as soft pilots in the later

iterations.

h̃k,i = (sHk sk)
−1sHk yk i < 0 (3.26)

Which, with properly designed pilot sequences collapses to

h̃k,i = E
[
sHk
]
yk i < 0 (3.27)

The estimator in (3.27) is basically a rake-type matched filter, that is, each tap of

the equivalent discrete channel model is correlated against the pilot sequence, so the

v-th tap is estimated as

h̃[v] = hk[v] + γ2w[v] (3.28)

where w[v] is the residual noise left over after integration. Assessing the performance

of the estimator condenses now into computing the variance of that noise term. The

energy normalization term γ2 = 1/
(
Ep + 4Eshp[d̃

2
k] + Eslp[d̃

2
k]
)

is determined by the

effective pilot signal power, and changes with each iteration.

It is important to note that in subsequent iterations (i > 0) it is possible to

generate an estimate of the channel tap correlations E
[
h̃kh̃

H

k

]
. This leads to the

possibility that the minimum mean-square error (MMSE) could be utilized to improve
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the estimation in later iterations at the cost of increased complexity, thus creating a

hybrid estimation scheme. This MMSE estimate is given as

h̃mmse = E
[
hkh

H
k

]
sH
[
s E

[
hkh

H
k

]
sH + σ2I

]−1
yk. (3.29)



Chapter 4

Results and Analysis

4.1 Convergence

The system given by (3.20), (3.21) can be used to predict the performance of an

adequately large iterative receiver given a specific estimator performance. Since each

of the signals sk(t) is distorted by its own equivalent discrete filter (model), and there

is no direct correlation between the filter taps of different signals, the received signals

k′ 6= k will contribute very little to the estimation of the Q taps hk[v]. The iterative

demodulator, on the other hand, will subsequently remove the interference and thus

provide the main contribution to the estimation of hk[v].

The estimation error σ2
i,h is computed as the variance of the residual noise wp as

σ2
i,h = E

[
|h− h̃|2

]
= γ2σ2

i

Q∆fk
fs

= γ2σ2
i Fk (4.1)

where the filter noise reduction factor Fk = Q∆fk
fs

depends on the number of taps that

need to be estimated, and the ratio of symbol frequency to filter cutoff frequency.

Clearly Fk � 1 for the estimator to work. In reality, the energy normalization term

is determined by both the enegry of pilot signal which is fixed, and the energy of the

soft pilot signal which will change with each iteration. Therefore it is convenient to

write γ2 as

γ2 =
1

Pp + Pd
(
g2(σ2

i−1)
) (4.2)

which leads to (4.1) being rewritten as

σ2
i,h =

σ2
i

Pp + Pd
(
g2(σ2

i−1)
)Fk (4.3)

32
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With (4.3) substituted into (3.20) and (3.21), we obtain

σ2
i =

α

2

(
g1(σ2

i ) + g2(σ2
i−1)

σ2
i

Pp + Pd
(
g2(σ2

i−1)
)Fk)+ σ2 (4.4)

To interpret this result, we use Pd � Pp, and consider the latter iterations, i.e.,

g(σ2
i−1) 6≈ 0. Then the following simplification can be used

σ2
i ≈

α

2

(
g1(σ2

i−1) +
σ2
i

Pd
Fk

)
+ σ2 (4.5)

which simply means that the variance transform function of the APP decoder is

altered by the addition of a linear term, whose magnitude is completely defined by

the filter requirements needed to track the channel changes.

The convergence behavior of iterative systems is often characterized by single-

parameter iterative equations, such as (3.17), here rewritten in the standard conver-

gence form

x− α

2
g1(x)− σ2 > 0; where x = σ2

i (4.6)

For an iterative estimator of the form (4.4), where the estimator uses only the

pilot signal in its repeated estimation the modified convergence equation is given by

x− α

2

′
g(x)− σ2 − αxg2(x)

2

Fk
Pp

> 0 (4.7)

and, finally, an iterated estimator which also uses the emerging data information to

drive the estimation obeys the convergence equation

x− α

2
g1(x)− σ2 − αxg2(x)

2

Fk
Pp + Pd (g2(x))

> 0 (4.8)

The convergence equation describes the dynamical behavior of the system in the

large-system limit. It typically has either one or three fixed points, with the right

most fixed point being the one reached by the system during operation. If three fixed

points exist, the final signal-to-noise ratio is typically too small to allow low-BER

operation, and the system load α has to be lowered until only a single fixed point

exists. This limiting system load is the maximum load supportable by a given Es/α.

With these convergence equations it is now possible to study receiver performance in

the system of interest.
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The system of interest is a multiuser satellite up-link in the Ka band (27.5GHz),

in this band the doppler is dominated by the oscillator drift inherent in low-cost

transmitters. Assuming a symbol rate fs of 106 Hz and 0.1ppm oscillators the fre-

quency drift ∆fk/fs = 2.75 × 10−3, estimating 10 filter taps leads to a filter noise

suppression of Fk = 2.75 × 10−2 being required for proper operation. Following the

DVB-SC standard of 36 pilot symbols for every 1440 data symbols, the energy of the

pilot can be viewed as 2.55% of the total energy used in transmission. At this low

of a pilot power, simple single-pass estimation with iterative demodulation results in

very low achievable system loads based on this receiver. For illustrative purposes we

assumed that 10 times as much power is utilized for the pilot symbols than dictated

in the standard, which comes with the obvious drawbacks of higher transmit power,

or decreased symbol rate. This scenario is shown in Figure 4.1 for an SNR of 10dB

and a load of α = 1.44, where it can be seen that even increasing the pilot power by a

factor of 10 in a high-SNR environment the single pass estimation system is limited.
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Figure 4.1: Convergence plot - 10dB
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Under the same conditions the iterative system using just the pilot data achieves

a system load of α = 1.64 and the full iterative system discussed herein is capable of

achieving a load of α = 1.73 in the high-SNR environment.

The proposed system excels in the high SNR region where a high number of users

can be supported concurrently. As shown in Figure 4.2 the achievable system load is

highly dependent on the SNR of the system. At 14 dB SNR the single pass estimator

is only capable of achieving α = 1.66 while the simple iterative systems and fully

iterative systems are limited to α = 1.86 and α = 1.96 respectively.
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Figure 4.2: Convergence plot - 14dB

The potential for increased system load is apparent in the high-SNR region which

exists when the satellite system is operating under good, or line-of-sight conditions.

In more adverse shadowing states the increased attenuation will reduce the achievable

increase, and the system will collapse to single user performance.



Chapter 5

Conclusion

In this thesis it has been demonstrated that it is possible to support system loads up

to 1.96 users per signaling dimension in an uncoordinated multi-user satellite envi-

ronment with a system operating in the high-SNR region under realistic conditions.

This has been achieved by integrating a low complexity receiver into an already es-

tablished two stage iterative decoder structure. These results represents a significant

improvement in an area where research has been mostly limited to approaching the

single user TDMA capacity of the channel when this is known to not be a limiting

factor. The receiver presented herein is capable of surpassing previous attempts in

the high SNR reason when the ability to support a high number of users is required,

however it may not be the best choice applications requiring for low SNR operation.

The system presented in this thesis represents a baseline system with room to be

expanded by investigating higher order modulation and different methods of coding

such as LDPC to improve operation in the low SNR region. Additionally, the per-

formance demonstrated represents a worst case scenario where the received power of

the users is equal, when in fact the expected log-normal power distribution will result

in increased system performance which has yet to be studied in detail. Additionally,

the estimator studied for this purpose was a simple Least Squares Estimator which

has the benefit of being low complexity, but does not achieve the same performance

of a more complex estimator. The impacts of various estimator structures should be

studied to ensure the top level of system performance for a given application. Fur-

thermore, the topic of channel estimation has been largely ignored in the literature

regarding access protocols, which has been shown to significantly decrease system

performance. It is possible that this method of estimation could be applied to some

existing iterative systems to ensure their theoretical performance is attainable under

realistic channel conditions.

Finally, it should be noted that although the focus of this thesis was on operation
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in the satellite environment but it is not limited and may find application in any

system where closed loop processing is infeasible or a high system load is a required

feature. This includes networks with coordination where the number of active users

may surpass the number of signaling dimensions, such as a slotted TDMA system

with more users than available time slots.
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[50] S. Verdú, “Minimum Probability of Error for Asynchronous Gaussian Multiple-
Access Channels,” IEEE Trans. Inf. Theory, vol. 32, no. 1, pp. 85-96, Jan. 1986.

[51] M.K. Varanasi, and B. Aazhang, “Multistage Detection in Asynchronous Code-
Division Multiple-Access Communications,” IEEE. Trans. Commun., vol. 18, no.
4, pp. 509-519, Apr. 1990.

[52] J.M. Holtzman, “DS/CDMA Successive Interference Cancellation,” IEEE 3rd
Int. Symp. Spread Spectrum Techniques and Applicat., Oulu, Jul. 1994, vol. 1,
pp. 69-78.

[53] A. Lampe and J. Huber, “On improved multiuser detection with soft decision
interference cancellation, in Proc. Int. Conf. Commun., Vancouver, BC, Canada,
June 1999, pp. 172176..

[54] C. Schlegel, Z. Shi, and M. Burnashev, “Optimal Power/Rate Allocation and
Code Selection for Iterative Joint Detection of Coded Random CDMA,” IEEE
Trans. Inform. Theory, vol. 52, no. 9, pp. 4286-4294, Sept. 2006.

[55] M. Burnashev, C. Schlegel, W. Krzymien, and Z. Shi, “Analysis of the Dynamics
of Iterative Interference Cancellation in Iterative Decoding,” Problems of Inform.
Transmission, vol. 40, no. 4, pp. 297-317, May 2004.

[56] M. Kobayashi, J. Boutros, and G. Caire, “Successive Interference Cancellation
with SISO Decoding and EM Channel Estimation,” IEEE J. Sel. Areas Com-
mun., vol. 19, no. 8, pp. 1450-1460 ,Aug. 2001.

[57] A. Lampe, “Iterative Multiuser Detection with Integrated Channel Estimation
for Coded DS-CDMA,” IEEE Trans. Commun., vol. 50, no. 8, pp. 1217-1223,
Aug. 2002.

[58] C. Schlegel, D. Truhachev, “Generalized Modulation and Iterative Demodula-
tion,” IEEE Int. Zurich Seminar Commun., Zurich, Mar. 2008, pp. 76-69.

[59] P. Dickson, and C. Schlegel, “Iterative Demodulation and Channel Estimation for
Joint Random Access Satellite Communications,” in Turbo Codes and Iterative
Information Processing (ISTC), 2014 8th International Symposium on, Bremen,
Aug. 2014, pp. 188-192.

[60] C. Schlegel, and M. Jar, “Iterative Demodulation and Channel Estimation for
Asynchronous Joint Multiple Access Reception,” IEEE Trans. Signal Process.
Aug. 2014.



43

[61] M. Burnashev, C. Schlegel, and W. Krzymien, “Analysis of the Dynamics of
Iterative Cancellation Decoding,” Problems of Information Transmission vol 40.
no. 4, pp. 297-317, Nov. 2004.


	Title Page
	Table of Contents
	List of Figures
	Abstract
	List of Abbreviations and Symbols Used
	Acknowledgements
	Introduction
	Background
	Satellite Communications
	Multiple Access
	Channel Estimation
	Iterative Information Processing
	Iterative Interference Cancellation

	System Design
	Signalling Methodology
	Receiver Design

	Estimator Development

	Results and Analysis
	Convergence

	Conclusion
	Bibliography

