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Abstract

This thesis focuses on the directional estimate of the underwater acoustic channel us-
ing modal beamforming with an orthogonal frequency division multiplexed (OFDM)
communication system. An underwater channel model and simulator is first pre-
sented that is capable of implementing the time-scaling associated with the wideband
time-varying acoustic channel. Modal beamforming is then introduced as a unique
wideband beamforming method that makes use of circular arrays. The last Section ex-
plores the effect of a time-varying acoustic channel on an OFDM signal and produces
a frequency domain channel that models the distortions that are introduced. This fre-
quency domain model is then used to create a sparse approximation dictionary that,
when coupled with the modal beamformer and a sparse approximation technique, is
capable of producing accurate sparse directional channel estimates. These estimates
include the complex amplitude, delay, time-scaling factor, and direction of arrival for
each cluster arrival in the channel. This directional channel estimate is shown to
greatly improve the performance of an OFDM receiver in a time-varying underwater
acoustic channel when compared to classic estimation techniques.
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Chapter 1

Introduction

1.1 Motivation for Studying Underwater Acoustic

Communication

Underwater acoustic communication can trace its roots back to the early 1900’s when

the technology was explored as a method to inform ships of shallow water and the

presence of rocks as an alternative to sirens and lights from lighthouses. While the

original idea was simply to use a submerged bell as the sound source, a Canadian

named Reginald Fessenden suggested using an electronic acoustic source and later

demonstrated that the electronic source he created could also be used to transmit

morse-encoded messages. By pulsing the underwater source Fessenden was able to

communicate between two tug boats in the Boston harbour in 1913, giving birth to

wireless underwater acoustic communication [1].

While Fessenden introduced the original idea, underwater acoustic communication

was further developed and pioneered by the military mainly for use by navies as a

method of communication with submarines. The use of sonar to track submarines

also led to extensive studies into the propagation characteristics of acoustic waves

underwater to determine how different environments would affect the performance of

an acoustic system [1].

Recently there has been a shift back to the original roots of underwater communication

for commercial purposes for a range of applications. Examples include underwater

sensor networks for environmental monitoring and ocean sampling networks, as well

as communication with underwater vehicles for exploration and other tasks such as
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pipeline inspection and seismic monitoring of underwater oil and gas fields [2]. Exam-

ples of systems that require underwater communication links can also be found here

in Nova Scotia.

Tracking of underwater mammals is one such example that is important to biologists

to study the movement of the animals, as well as to the oil and gas industry in order

to mitigate harm caused to animals during seismic testing. One method to detect

mammals is to use their vocalisations and determine their position using multiple

sensors distributed underwater. A second option, pursued by a local company, is to

tag each animal and track the movement of the tag using reception devices that record

the communication pings transmitted by the tags.

There are a number of other applications for underwater communication links that

can be found in the local industry. Some examples are diver communication systems,

acoustic releases, and monitoring and control of tidal turbines, to name a few. A

commonality between all of the systems mentioned above is that while there are

communication platforms currently available that can be used for their needs, they

could all be improved by an underwater wireless link that functions more reliably at

higher data rates.

For the marine mammal tracking problem in particular, a higher rate link could pro-

duce better estimates of location using the first method by allowing for more accurate

time synchronisation between the distributed sensors. For the tagging solution, a

wideband pulse could increase the probability of reception either over longer distances

or when multiple tags are located in the same area. Benefits of higher bandwidth com-

munication can be found for all of the examples above. The challenge with a high

rate link, however, lies in the channel through which the data must be sent.

The underwater acoustic communication channel has a number of extra challenges

when compared to the radio communication channel. The low speed of propaga-

tion of sound underwater when compared to the speed of light (for radio-frequency

communication) leads to much longer propagation delays between transmission and

reception when traveling over the same distance.. This low speed of propagation also

means that even small transmitter and/or receiver velocities can lead to distortions

in the transmitted signal. Over any substantial distance bandwidth is limited due to

low carrier frequencies required to limit the frequency dependent loss experienced by

a time-varying signal. Most underwater channels also have severe multipath resulting

in echoes that can be perceived over an extended period of time after the first recep-
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tion. And lastly, the varying sound speed profile in the ocean can lead to ‘shadow

zones’ caused by refraction where no acoustic energy can be transmitted, thus leading

to uncontrollable communication outages [3].

The wireless revolution that has occurred in the past twenty years in the radio world

has yielded a number of new physical layer techniques for communication that can

help to alleviate some of these problems. One of the main purposes of the underwater

communications lab here at Dalhousie is to explore how these new techniques can be

applied. However, some problems are largely unique to the underwater channel and

require their own solutions.

Therefore, the motivation for this thesis is to apply modern communication techniques

to underwater acoustic communication in order to improve both the data rate and

link reliability of a wireless underwater acoustic link. More specifically, this thesis

focuses on communication through time-varying underwater channels either due to

intentional receiver/transmitter motion or due to movement of, or in the medium.

The reason for this is that as the data rates increase with the low carrier frequencies

used even minor variations of the channel over a symbol duration can cause drastic

performance reduction. The techniques presented in this work will help to improve

the performance of the applications described above, and may also facilitate the devel-

opment of new ideas and products that can make use of a high data rate underwater

wireless communication link.

1.2 Thesis Contributions

This thesis presents a wideband digital underwater communications system that can

reliably transmit over medium to long ranges (> 500 m) in extreme channel conditions

and in both shallow and deep water applications. While over short ranges there are

a number of plausible solutions for wireless communication through water, such as

optical or magneto inductive communications, over any significant distance greater

than a few hundred meters the only viable solution remains acoustic waves.

In this thesis Orthogonal Frequency Division Multiplexing (OFDM) is used to mod-

ulate the acoustic wave that travels through the underwater channel. OFDM is a

multi-carrier modulation technique that has a number of benefits over traditional sin-

gle carrier techniques. These benefits will be discussed in Chapter 4. The layout of

an underwater communication system making use of OFDM modulation is shown in
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both temporal and spatial diversity to the signal, meaning the same information is

received over different paths. In order to make use of spatial diversity, a method of

capturing the angle-of-arrival of the received signal needs to be implemented. These

methods are often referred to as beamforming techniques as beams are pointed in the

direction of interest.

The second contribution of this thesis is the analysis, implementation and experimen-

tal measurement of a wideband modal beamformer, which is presented in Chapter 3.

Modal beamforming is a non-conventional beamforming technique that makes use of

a circular array of receive elements. The benefit of this technique is that once the

wideband orthogonal modes of interest are produced, a wideband beamformer can be

implemented that points in any direction with any pattern. This cannot be done with

conventional beamforming techniques. While modal beamforming is a known tech-

nique for circular arrays, the implementation of a wideband modal beamformer using

real weights in a digital environment has not been fully explored for the underwater

environment.

The last contribution of this thesis is a wideband sparse directional channel estima-

tion technique that makes use of the channel model presented in Chapter 2 and the

modal beamformer presented in Chapter 3. This channel estimation technique uses

the inherent sparsity of the received signal in both the temporal and spatial domain in

order to more accurately estimate the channel parameters. This technique is unique

in the fact that it estimates the directional channel parameters for a wideband signal

using a circular array. Chapter 3 shows through simulation that the use of the di-

rectional sparse channel estimator greatly improves the performance of a underwater

receiver in a time-varying environment.

1.3 Thesis Outline

The outline of the thesis is briefly reviewed here. Chapter 2 explores the physical

properties of the channel itself and proposes a time-varying sparse multipath channel

model to simulate it. Section 2.1 looks at the effect of the underwater acoustic channel

on a propagating acoustic wave and highlights the important aspects of the underwater

channel that need to be included in a channel model. Section 2.2 discusses how time-

variance in the channel should be modeled for wideband signals and a mathematical

model that uses time-scaling is proposed. The parameters of this equation are then
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described by creating a stochasitc channel model. Finally, in Section 2.3 the time-

varying fractional delay line (TVFDL) is presented as a method to implement the

wideband channel model as well as any other model or operation that requires time-

scaling, such as a resampling operation.

Chapter 3 focuses on the receive hydrophone array and more specifically on different

methods of non-adaptive wideband beamforming. In Section 3.1, beamforming using

a circular array is reviewed and the differences between narrowband and wideband

beamforming are discussed. Section 3.2 then reviews classic wideband beamforming

techniques that could be used with the circular array and discusses why these tech-

niques are not appropriate. Section 3.3 introduces modal beamforming as a novel

alternative to the classic technique and uses complex phase modes to introduce the

techniques and present some of its drawbacks. Amplitude modes are then presented as

the real alternative to phase modes that can be used to practically implement a modal

beamformer and the implementation of a wideband amplitude mode beamformer is

summarized. Section 3.4 then presents experimental results that demonstrate that

modal beamforming can be used in an underwater environment.

Chapter 4 explores the estimation of a time-varying channel using sparse estimation

techniques in order to improve equalization when the channel varies with time over an

OFDM block. In Section 4.1 the effect of this time-variance on the received OFDM

signal is first reviewed in detail and a frequency domain model is then produced to

account for the effects of a time-varying channel on an OFDM signal. Using this

frequency domain model along with the wideband modal beamformer from Chapter

3, an estimation problem is then developed that poses time-varying channel estimation

as a sparse estimation problem that can be solved using sparse estimation techniques.

In Section 4.3 simulations that implement this estimate are run and the estimate is

then used to equalize an OFDM signal that has been passed through the time-varying

UAC outlined in Chapter 1 and implemented using the TVFDL. These simulations

show that a channel estimation technique that accounts for time-variance greatly

improves the performance of an OFDM system in a time-varying channel and also

demonstrates that adding directionality to the estimate improves the performance

further.
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Chapter 2

The Underwater Acoustic Channel

The underwater acoustic channel (UAC) is often considered as one of the most chal-

lenging communication channels. The difficulty associated with deploying a physical

system also means that proper physical trials are rare, and so an accurate channel

model is required in order to accurately assess the performance of a communication

scheme in the lab. The purpose of this Chapter is to familiarize the reader with the

underwater channel and introduce how the underwater channel can be modeled and

implemented in a simulation environment. The simulated channel presented in this

Chapter is used throughout the rest of the thesis for simulation.

Section 2.1 explores the physical properties of underwater acoustic wave propaga-

tion in the UAC and focuses on modeling multipath propagation and time-variance.

Section 2.2 then presents the time-scale domain as an accurate domain in which to

model the time-variance introduced to a wideband signal by the UAC, and a stochas-

tic model is presented to describe the parameters associated with a simulated UAC.

Section 2.3 concludes the Chapter by introducing the time-varying fractional delay

line (TVFDL) as a practical method for implementing a time-varying UAC simulator

using the stochastic channel description outlined in Section 2.2.

2.1 Underwater Acoustic Wave Propagation

Due to the rapid attenuation of electromagnetic (EM) waves in electrically conductive

salt water and the inability to use optical communications in many underwater envi-

ronments, acoustic waves are often considered the most well suited tool for communi-
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cation over any substantial distance underwater. Unfortunately, there are a number

of aspects of acoustic waves that make them undesirable for this application. First

and foremost, acoustic waves propagate at speeds on the order of 5 magnitudes slower

than EM waves. This means that the delay between transmission and reception of

information is greatly increased and the ability to have full duplex communications

in real-time is extremely difficult. Other undesirable properties of the UAC can be

placed into two distinct groups, large-scale effects and small-scale effects. Large scale

effects are dealt with in Section 2.1.1 and indicate that the effects are only noticeable

over tens or hundreds of wavelengths. Small scale effects are covered in Section 2.1.2

and indicate the effects take place over much smaller distances, generally over a few

wavelengths or less [5].

2.1.1 Large Scale Effects of the Underwater Acoustic Channel

The first large scale effect that needs to be considered is transmission loss, or the

decrease in the intensity of the wave with respect to distance. Transmission loss is

generally modeled by considering two effects, spreading and absorption [6]. Spreading

occurs as the wave propagates and the area of the wave front increases. In order to

maintain the transmitted energy the intensity of the wave must decrease as the wave

propagates. The simplest case to consider is spherical spreading, where the wave is

emitted from a point source and spreads through a homogeneous, infinite medium

spreading along the surface of a sphere.

Unfortunately, the UAC channel cannot be modeled using spherical spreading exactly

because the channel is bounded over large enough distances by the surface and the sea

floor, and the ocean cannot be considered a homogeneous medium over large depth

variations. A better approximation is to assume spherical spreading until the bound-

aries are met, and then cylindrical spreading, which takes into account refraction in

the medium and the reflection of the wave front off of the upper and lower boundaries

of the channel, thereafter [6].

The transmission loss can then be modeled as a piecewise functions where spherical

spreading is assumed when the transmission range, r, is less than half of the depth of

the water, r0, and cylindrical spreading is assumed in excess of the spherical spreading

when r is greater than r0 [6].
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TLspreading =







20 log r r < r0

20 log r0 + 10 log(r − r0) r > r0.
(2.1)

The second cause of transmission lose in the UAC is absorption, where the water ab-

sorbs part of the wave energy through both viscosity and chemical reactions. Specifi-

cally, the three main sources of absorption are shear viscosity, relaxation of magnesium

sulphate (MgSO4), and relaxation of boric acid (B(OH)3) [7].

The absorption in sea water is frequency dependent and can be described using the

Francois-Garrison model [6],

α(f) = A1P1
f1f

2

f 2
1 + f 2

+ A2P2
f2f

2

f 2
2 + f 2

+ A3P3f
2. (2.2)

In this Equation α(f) is a frequency dependent loss with units of dB/km and the three

terms represent the loss due to B(OH)3, MgSO4 and shear viscosity respectively. The

values for An, Pn and fn are calculated differently for each term and depend on the

salinity, temperature, depth and pH of the water. The equations for these values can

be found in [6]. Figure 2.1 shows the effect that frequency has on the attenuation

due to absorption and demonstrates that under 10 kHz the loss per kilometer remains

fairly small, under 1 dB/km. However, at a frequency of 100 kHz the loss increases

greatly to close to 40 dB/km. So for transmission over any distance low frequencies

in the tens of kilohertz range should be used.

When absorption and spreading loss are considered together, then a simple and rela-

tively accurate model for transmission loss is

TL =







20 log r + α(f) r
1000

, whenr < r0

20 log r0 + 10 log(r − r0) + α(f) r
1000

, whenr > r0,
(2.3)

where r is in meters and needs to be converted to kilometers for the absorption term.

Figure 2.2 is a plot of the total attenuation experienced by an acoustic wave in the

UAC with respect to range for a number of frequencies and shows the fairly drastic

difference in attenuation between a wave with a frequency of 10 and 50 kHz.

The UAC also presents a unique challenge in deep underwater environments due to

refraction. The speed of propagation of an acoustic wave in water is predicted by the

temperature, pressure and salinity of the water and can vary greatly over large depth
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Figure 2.1: Attenuation in seawater from absorption in dB/km with respect to fre-
quency. These curves were created using a temperature of 15◦ C (close to the average
temperature of seawater), salinity of 35 p.s.u, a pH of 8 (median pH of seawater), and
a depth of 0 meters. Varying the depth does not drastically change this curve.

variations. This leads to channels with velocity, or sound speed profiles (SSP) that

vary with depth and cause refraction of the acoustic wave as it travels in any direction

off the horizontal.

Figure 2.3 shows the effect that a depth-varying SSP can have on the overall coverage

from an acoustic projector in a simple, deep underwater environment. This simulation

was run using the Bellhop model with a 250 Hz wave in a deep water environment

with a depth of 5000 meters. The source was placed at 1500 meters and the simulation

was run using a constant SSP and a depth varying SSP. The plots in Figures 2.3a and

2.3c show these profiles and Figures 2.3b and 2.3d show the corresponding Bellhop

simulations, respectively. The refraction caused by the the depth varying SSP leads

to shadow zones [8] where, when compared to the model with the constant SSP, the

intensity of the received wave is reduced or sometimes even vanishes.

The effect of large scale variations can therefore mainly be modeled as a range and

frequency dependent loss term. In the simplest case with a constant SSP, the loss

is simply due to transmission loss as shown in Eqn. (2.3). This is often applicable

to shallow water deployments. For deep water deployments where the variable SSP
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Figure 2.2: Total transmission loss in seawater from absorption and spreading for
different frequencies. These curves were created using a temperature of 15◦ C, salinity
of 35 p.s.u, depth of 0 meters, and pH of 8.

causes shadow zones, if the receiver is constantly moving it may be important to

simulate the probability of an outage to model when a shadow zone is encountered.

However, this is beyond the scope of this work as the focus is on the channel and

its variations over small time scales, on the order of seconds, where it is assumed

propagation paths are present. So, in this Chapter and the Chapters that follow the

large scale effects will be modeled using a frequency dependent transmission loss filter,

HTL(f), with a frequency response based off of Eqn. (2.3) for a desired range, r.

2.1.2 Large Scale Effects of the Underwater Acoustic Channel

With large scale fading covered, the focus now switches to the small scale effects of

the UAC on the transmitted signal. While refraction causes a large scale effect in the

form of shadow zones, it is also one of the causes of a significant small scale effect,

mulitpath. Multipath occurs when the transmitted signal is received from a number

of different paths rather than just a single, direct path. Due to the fact that each

non-direct path has a longer distance to travel than the direct path, these multipath

components have a delay, or excess delay, with respect to the time of arrival of the
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Figure 2.3: Comparison of Bellhop outputs, (b) and (d), for a constant and depth-
varying sound speed profile, (a) and (c), respectively. All parameters except for the
SSP remain constant for both simulations.

direct path signal. A possible refracted path, RPt0, that could cause multipath is

shown in Figure 2.4 for time t0.

The second source of multipath is reflection off the surface and bottom of the ocean.

The underwater medium can therefore be thought of as a waveguide with the transmit-

ted acoustic wave reaching the receiver through a number of reflected paths interacting

with the water surface and bottom [8].

Similar to the refracted paths, the reflected paths travel along a longer path when

compared to the direct path, as shown by the bottom and surface reflections in Fig-

ure 2.4, and so also have a delay when compared to the direct path arrival. An
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of paths included in the summation, Np, is often low. Therefore the UAC for most

deployments is often considered to be a sparse channel, where h̃(t, τ) only contains a

small number of non-zero terms [9], [10].

This sparsity also manifests itself in the direction of arrival of the different paths. The

small number of paths coupled with the large displacement between the two major

reflectors, the waters surface and bottom, indicates there should be a good spread in

the angle-of-arrival for each path. Therefore, the path arrivals should also be sparse

with respect to angle-of-arrival [12], [13]. This angular sparsity can be seen in Figure

2.4 by comparing the angles-of-arrival of the three main paths. This sparsity in delay

and direction-of-arrival will be exploited in the channel estimation scheme presented

in Chapter 4.

The model in (2.4) is often referred to as a linear time-varying (LTV) channel model,

where the dependence on time is motivated by two factors for underwater communi-

cation, motion of the transmitter and/or receiver and movement of the scatterers.

The first form of time-variance that will be discussed is movement of the scatters. For

the UAC when the transmitter and receiver are stationary, the most prominent source

of time-variance comes from movement of the waters surface, while the reflection from

the bottom is generally considered to be non time-varying [8]. This movement presents

a number of challenges.

First, the movement of surface waves causes the length of the surface reflected paths

to vary with time. The rough surface also causes multiple localized scattering points,

which means that instead of a single surface reflection, often there will be multiple

reflections at very similar delays [8]. This is shown for both surface reflections at

time t0 and at time t1 in Figure 2.4. Large waves that pass can also cause focusing

of multiple beams for short range deployments (r < 500 m) that can produce large

fluctuations in received power [14]. Finally, the rough water surface and the bubbles

produced by crashing waves can also produce a loss that can be frequency dependent

[14].

Therefore, in order to account for the effects of the time-varying water surface it’s

helpful to rewrite the LTV channel so that each multipath arrival is in fact made up

of a cluster of scatterers as

h̃(t, τ) =
Nc∑

c=1

Np,c∑

p=1

apδ(τ − τ̄c(t)− τ̄p(t)), (2.5)
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where Nc is the number of cluster arrivals, Np,c is the number of paths in a cluster,

τ̄c(t) is the delay associated with each cluster arrival, and τ̄p(t) is the deviation from

the cluster delay for each path arrival within the cluster. Within a cluster, τ̄p(t)) can

be positive or negative and is centered around 0. For the rest of this thesis, a cluster

path, or cluster arrival is used to refer to the cluster of path arrivals with the delay

τ̄c(t).

In general, when there is no transmitter or receiver motion then for the direct path or

bottom reflection Np,c = 1 and the cluster should consist of a single path. While for

a surface reflection Np,c > 1 and so the cluster consists of a number of different paths

closely separated in delay. For the surface reflection, if |τ̄p(t)| is small for all paths in

the cluster, then the paths all arrive at roughly the same time, τ̄c(t), but with different

amplitudes and phases due to the different reflecting points. Their summation will

therefore cause a time-varying amplitude for the cth cluster. This will be discussed in

more detail in the Section 2.2.

Above it was assumed that the bottom reflection is time-invariant when the transmit-

ter and/or receiver are stationary. If receiver/transmitter motion is now considered,

then it seems plausible that the bottom reflection and possibly the direct path might

become time-variant as well. Specifically, it seems justified that due to the fact that

the bottom reflected path is now moving as either the transmitter or receiver moves,

that there will be some change in the bottom reflected path. This is shown in Figure

2.4 as the receiver moves from the position at t0 to the position at t1. While the

bottom reflected cluster consists of a single path at t0 that reflects off of the smooth

sea floor, at t1 the bottom reflection is now reflecting off of a rock and has two paths.

This rock could potentially block the bottom reflection in between t0 and t1 and then

change the gain as more paths are included in the reflection.

Although this is a contrived situation, it seem plausible that if the receiver and/or

transmitter are moving that the bottom path will vary and that Np,c > 1 will exist

for the bottom-reflected clusters as well. Therefore, the bottom reflection can be

treated in a similar way to the surface reflection. A second consequence of intentional

transmitter/receiver motion is the rapid variation of the cluster delays, τ̄c(t), which

causes the received signal to be dilated or compressed depending on the relative

velocity between the transmitter and receiver.

With a general intuition into the effects that the time-varying underwater channel

has on an acoustic signal, the goal now is to first determine how best to model the
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time-varying underwater channel making use of Eqn. (2.5), and then how to select

the parameters used to describe this model. This is the focus of Section 2.2.

2.2 A Stochastic Description of the Underwater

Acoustic Channel

This Section focuses on creating a stochastic description of the UAC that can be used

to simulate and model an actual underwater communication deployment. Section

2.2.1 looks at the best way to describe the channel and focuses on how the time-

variance should be modeled, specifically looking into which domain should be used to

describe the channel variations caused by the rapid movement of the cluster paths due

to intentional transmitter/receiver motion. Section 2.2.2 then introduces a method

for statistically describing the channel parameters of interest and briefly discusses the

drawbacks of these descriptions.

2.2.1 The Wideband Channel Model

The UAC is often referred to as a doubly-selective, or doubly-spread channel, which

indicates that the transmitted signal will have been distorted by spreading it in two

dimensions to produce the received signal. Using Eqn.(2.5), the received passband

signal, r̃(t), produced by transmitting a passband signal, s̃(t), through the passband

UAC can be written as

r̃(t) = s̃(t) ∗ h̃(t, τ) =
Nc∑

c=1

Np∑

p=1

aps̃(t− τ̄c(t)− τ̄p(t)). (2.6)

It is easy to see that the first dimension the signal has been spread over is the delay-

domain, τ , due to the multipath arrivals of the original signal. This is referred to

as delay-spread, or frequency-selective fading as multipath arrivals cause different

frequencies to experience different gains. The second dimension over which the signal

is spread is not as easy to identify and manifests itself in the variation of the channel

with respect to time, t. The second spreading domain is then related to the time-

variation of the multipath arrivals, τ̄c(t) and τ̄p(t).

There are two domains that can be used to quantify the spread caused by time-
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variance, the Doppler domain and the time-scale domain. The Doppler domain as-

sumes a narrowband signal and takes the Fourier transform of the channel, h̃(t, τ),

with respect to time. Specifically, the delay-Doppler spreading function, SH(τ, ν), is

defined as

SH(τ, ν) =

∫ ∞

−∞

h̃(t, τ)e−j2πtνdν. (2.7)

Two important parameters of the delay-Doppler spreading function that give more

insight into each cluster arrival are the Doppler-spread and the Doppler-shift. The

Doppler-spread is the root-mean-square (RMS) width of the spreading function with

respect to frequency, ν, for a specific tap and indicates the frequency shifts on the

paths included in a cluster arrival. Due to the non-coherent combination of these paths

to form a cluster arrival, their superposition causes the amplitude of the cluster arrival

to vary, or fade with time. The rate of this amplitude fading depends on the Doppler-

spread. If the spread is large then each path varies quickly causing the superposition

of the paths to vary quickly as well [15]. Similarly, if the Doppler-spread is small, the

fading occurs more slowly. So the Doppler-spread is caused by the superposition of

the paths that form a cluster arrival and their respective time-varying path delays,

τ̄p(t).

The Doppler-shift is a measure of the mean frequency shift, and therefore is associated

with intentional transmitter/receiver velocity [15]. The Doppler-spread is usually

small around the mean Doppler-shift due to the fact that the underwater channel is a

sparse scattering environment with mainly stationary or slowly time-varying scatters.

If the relative velocity between the transmitter and receiver is large, leading to rapidly

changing cluster delays, τ̄c(t), the Doppler-shift will also be large. A fundamental

question that needs to be answered then is when can a constant frequency shift, a

Doppler-shift, be used to model the effects of velocity in a channel on a transmitted

signal and when should a time-scale be used. A time-scale models the time-variance by

compressing or dilating the signal in time, which more realistically models the effect of

time variance for any frequency while a Doppler-shift only applies to a specific group

of frequencies.

This question then is directly related to what constitutes a small group, or narrowband

of frequencies and what constitutes a wideband system. This leads back to when

should the Doppler-domain be used and when should the time-scale domain be used to

model the channel. In order to answer this question it’s more informative to separate
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the causes of the Doppler-shift and Doppler-spread, which involves separating the

effects of the path variance with respect to time, τ̄p(t), and the cluster variance with

respect to time, τ̄c(t). This can be done by rewriting Eqn. (2.6) as

r̃(t) =
Nc∑

c=1

s̃(t− τ̄c(t)) ∗
Np∑

p=1

apδ(t− τ̄p(t)). (2.8)

With this rearrangement and knowing τ̄p(t) is only a small variation around τ̄c(t),

this question can be reposed as when can s̃(t − τ̄c(t)) no longer be represented by

a narrowband Doppler shift. The time-varying cluster delay, τ̄c(t), causes the time-

variation of the signal and can be related to the change in the path length associated

with a specific cluster, dc(t).

dc(t) = d0,c − vc(τ − τ0,c), (2.9)

where d0,c is the initial path length and τ0,c is the initial delay of the cth cluster. Here

it is assumed the change in path length can be represented as a first-order polynomial

with a constant cluster velocity, vc. The time variable multiplying the velocity is

chosen as (t − τ0,c) rather than simply t to ensure that at time τ0,c the path length

dc(t) = d0,c [16]. The velocity term includes both the transmitter and receiver velocity

and can be expressed as

vc = vTx,c − vRx,c, (2.10)

where vTx,c and vRx,c indicate the transmitter and receiver velocity projected onto

the cluster direction of departure from the transmitter and direction of arrival at the

receiver, respectively. Figure 2.4 shows the sign convention for the velocities.

This path length can be converted into a time-varying delay by dividing by the speed

of propagation of the wave in water, cw,

τ̄c(t) =
dc(t)

cw
= τ0,c −

vc
cw

(t− τ0,c). (2.11)

So the (t− τ̄c(t)) argument in Eqn. (2.8) can be written as

t− τ̄c(t) = t− τ0,c +
vc
cw

(t− τ0,c) = (t− τ0,c)(1 +
vc
cw

). (2.12)
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The received signal on the cth cluster path is then

s̃(t− τ̄c(t)) = s̃(α(t− τ0,c)) (2.13)

where αc represents the time-scaling factor for each cluster arrival

αc = (1 +
vc
cw

). (2.14)

The time scaling factor αc > 1 when vc > 0 and the path length is decreasing, causing

compression of the signal with respect to time. When αc < 1, vc < 0 and the path

length is increasing, causing dilation of the signal with respect to time.

In order to derive a narrowband condition the received passband signal on the cth

cluster path in (2.13) can be converted to the frequency domain,

R̃c(f) = F

{

s̃(t− τ̄c(t))
}

=
1

αc

S̃

(
f

αc

)

e−j2πfτ0,c . (2.15)

The frequency term can be rewritten as

f

αc

= f

(

1− vc
cw

)

= f − f
vc
cw

. (2.16)

R̃c(f) represents the passband signal received on the cth path in the frequency do-

main. If it is assumed the signal is bandlimited around a carrier frequency, fc, with

a bandwidth, B, then the frequency range of the signal is [fc − B
2
, fc +

B
2
]. The first

narrowband assumption that can be made is that as long as B << fc then f ≈ fc,

and the scaled frequency becomes

f

αc

≈ f − fc
vc
cw

. (2.17)

Therefore, as long as the fractional bandwidth is much less than 1, B
fc

<< 1, then the

scaling can be represented as a constant frequency shift of fc
vc
cw
. The channel can also

be assumed narrowband as long as the scaling factor is close to one, vc
cw

<< 1, then

the assumption in Eqn. (2.17) could also be made for most systems even when the

bandwidth is large relative to the center frequency [17].

In underwater communication systems with any intentional velocity these assumptions

do not hold due to two main properties of the underwater acoustic channel. First,
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because attenuation increases with frequency, for any signal that is transmitted over

a long range the carrier frequency must be low, on the order of kHz’s, as was shown

in Section 2.1. So to transmit data at any substantial rate, B
fc

< 1, which violates

the first narrowband condition. Often signals are referred to by their fractional band-

width. For narrowband signals, B
fc

< 0.01, for wideband signals, 0.01 < B
fc

< 0.2, and

for ultrawideband signals, B
fc

> 0.2 [18]. Therefore, in underwater acoustic communi-

cation with any substantial data rate the signals are often wideband or ultrawideband

in nature simply because the center frequencies used are so low.

Secondly, because the speed of propagation of acoustic waves in water is low, cw ≈
1500 m/s, any velocity caused by deliberate transmitter and receiver movement will

be substantial compared to cw. So the second assumption is also not satisfied when

the receiver and/or transmitter velocity is substantial rather than just slow drifting.

Because many underwater channels will be inherently wideband in nature, in this work

the time-scale domain is considered as the best domain to use in order to quantify

how the signal varies with time due to intentional velocity [15], [19], [11]. The channel

in Eqn. (2.8) can then be written as a summation of time scaled and delayed cluster

arrivals, each of which has been convolved with separate path arrivals that implement

only small time-variations about the mean cluster delay. This can be expressed as

r̃(t) =
Nc∑

c=1

√
αcs̃(αc(t− τ0,c)) ∗

Np∑

p=1

apδ(t− τ̄p(t)), (2.18)

where the transmitted signal is multiplied by a normalization factor,
√
αc, to ensure

the received and transmitted signal have the same energy [17].

In Eqn. (2.18) τ̄p(t) is assumed to only be a very small variation around τ̄c(t) and

this indicates that the change of each path in the cluster is very close to the change of

the main cluster arrival. So vp, the residual difference in velocity for each path from

the cluster velocity, should only be very small compared to vc. This indicates that

according to the second narrow band assumption that a Doppler shift is sufficient to

represent the change of each path within the cluster. Therefore, each path can be

represented using a frequency, or Doppler shift of the already time-scaled signal. This

shift will have a magnitude of

fp = fc
vp
cw

. (2.19)
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The final passband received signal can be described as [20], [21], [22]

r̃(t) =
Nc∑

c=1

ac(t)s̃(αc(t− τc)), (2.20)

where τ0,c has been replaced here by τc for notational simplicity. The time variation

of the amplitudes of each cluster path is captured by

ac(t) = lc(τc)
√
αc

Np,c∑

p=1

ape
j(2πfpt+θp). (2.21)

This time-fading term is the sum of Doppler shifted version of the already time-scaled

signal on the cth path, corresponding to the different path arrivals that make up a

cluster arrival. Each path arrival has a residual Doppler frequency, fp, a random

phase, θp, due to specular scattering, and an amplitude, ap, that could vary due to

the strength of the reflection. The last term, lc(τc), represents a constant amplitude

scaling term that accounts for the power scaling due to the excess delay with respect

to the first path arrival.

While this model holds for most wideband systems, if the signal is ultrawideband

it may be more accurate to represent each path in a cluster as its own delay-scaled

version of the transmit signal and spread the signal in delay closely around the cluster

delay, but not at the exact same time [18]. However, for the rest of this work it is

assumed the model in Eqn.(2.20) holds for the received signal.

2.2.2 Stochastic Channel Description

The wideband channel model from Section 2.2.1 provides a mathematical model to

accurately represent the distortions introduced by a time-varying channel. In order

for this model to apply to a UAC, the parameters in Eqn. (2.20) need to be chosen

properly. The key parameters in this model being: 1) the delays associated with each

cluster arrival, τc, 2) the number of cluster arrivals required for the model, Nc, 3) the

time-scaling associated with each cluster, αc, 4) the Doppler shifts caused by the path

arrivals in each cluster, fp and θp, and 5) the angle-of-arrival of each path, φp. The

angle-of-arrival is important when multiple receive elements are used as this angle is

used to describe how the signal is received in space. This will be discussed further in

Chapter 3.
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Stochastic models are often used to describe communication channels because while

a deterministic model may capture the desired channel response for one specific de-

ployment at different instances in time, it is not representative of the ensemble of

channels from similar deployments [15]. Often, it is also very difficult to quantify

what is causing specific phenomenon in the channel which makes reproducing the

effects using a deterministic set of parameters more difficult as well. Therefore, in

this work the channel model is produced using channel parameters that are described

stochastically.

Here, simple stochastic models are presented for each parameter of interest and the

combination of these models when applied using Eqn. (2.20) constitutes the final

stochastic channel model. Some of these parameter models are justified through

measurements, while for others simplifying assumptions are made. The main goal of

this stochastic description of the channel is to reproduce a time-varying channel that

could represent an underwater channel, but that does not perfectly recreate a channel

for a given geometry or deployment.

2.2.2.1 Cluster Delay and Time-Scale

To describe the delay and time-scale parameters of the cluster arrivals a channel

delay-scale, or wideband, spreading function is used, FH(τ, α). The received signal is

then

r̃(t) =

∫ ∞

−∞

∫ ∞

−∞

FH(τ, α)
√
αs̃(α(t− τ))dτdα. (2.22)

The double integration in (2.22) occurs for a single instant in time and so the time-

varying gain term, ac(t), in Eqn. (2.20) remains constant and so it is excluded here

for simplicity. Due to the nature of the channel, this function has finite support

and is usually limited in delay between 0 and τmax and in scale between −αmax and

+αmax [15]. Also, because the channel is considered sparse with respect to the number

of multipath arrivals, only a few delay-scale pairs will be non-zero in FH(τ, α) and can

be represented by Nc delta functions at different locations in the support space for τ

and α. This leads to the approximation in Eqn. (2.20) where the double integral over

the delta functions is replaced by a single summation with Nc cluster arrivals each

with a delay and time-scaling value associated with the delta functions.

In this work the delay-scale spreading function is represented using a wide sense sta-
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tionary uncorrelated scattering (WSSUS) model. This model makes two assumptions.

First, it is assumed that the statistics associated with each channel cluster, c, are wide-

sense stationary. This implies that the mean delay and time-scale are constant with

respect to time and the correlation function for a cluster, or tap in FH(τ, α), only

depends on the time-difference and does not vary with time itself. The uncorrelated

scattering assumption simply implies that all paths are uncorrelated, or are produced

by independent scatterers [15].

With the WSSUS assumption, the delay-scale function is a 2D white process where

each delay-scale pair is uncorrelated with every other delay-scale pair. Using this

assumption, a statistical description of the the delay-scale function can be written

as [15]

E{FH(τ, α), FH(τ
′, α′)} = BH(τ, α)δ(τ − τ ′)δ(α− α′). (2.23)

The delay-scale scattering function, BH(τ, α), is a function that describes the average

power of a scatterer with delay, τ , and scale, α. Therefore, the delay-scale scattering

function is a statistical description of the likelihood of the channel containing a cluster

arrival with a specific delay-scale pair. A useful property of the scattering function is

that it is proportional to the probability density function (pdf), pH(τ, α), describing

the distribution of the channel with respect to delay and time-scale [23].

A single realization of the channel can then be described by drawing a number of

cluster arrivals from the pdf, pH(τ, α), describing the channel. Specifically, Nc cluster

arrivals are drawn where the specific number is a deterministic value set to match the

average, or expected number of paths encountered in a deployment.

Before a channel realization can be produced, the scattering function has to be created.

In order to produce the scattering function it can be assumed that the delay and

time-scaling are independent of each other and the function is separable in delay and

time-scale [24]. This assumption is not based off of the physics of the deployment.

Inherently the delay will be related to the time-scaling factor based on the geometry

of the path. However, the goal of this model is to implement the general effect that

the channel has on a signal and not to model a specific deployment. So the exact

relationship between the two variables is not of interest and for this reason the two

variables are assumed to be separable. Using this assumption, the wideband scattering
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function can then be described as

BH(τ, α) = bH(τ)bH(α), (2.24)

and the task of creating the scattering function then becomes a task of describing

bH(τ), the delay power profile of the cluster arrivals, and bH(α), the scale-spread.

A model that is commonly used for the delay power profile is a truncated negative

exponential function [15], [25], [5], of the form

bH(τ) =
1

τrms

e−
τ

τrms , τ ≥ 0, (2.25)

where τrms is the root mean square delay spread. In order to limit this function to a

maximum delay, τmax, the function can be reformulated as

bH(τ) =







b
τrms

e−
τ

τrms , τ ≥ 0,

0, τ > τmax

(2.26)

where

b =
1

1− e−
τmax
τrms

. (2.27)

The factor b acts as a normalization term that ensures

∫ τmax

0

p(τ) = 1, (2.28)

and so the power delay profile can be treated as a true pdf that integrates to 1 [25].

While the power delay profile follows a conventional form for selecting multipath

components in a scattering environment, there is no such function for describing the

statistics associated with the scale term, bH(α). One approach would be to use a rough

geometry-based model to determine the velocity as well as angle of arrival associated

with each tap. The velocity for each path could then be used to determine the scale

parameter using Eqn. (2.14).

Obtaining a deterministic model of the channel however requires a substantial amount

of knowledge about the deployment and does not constitute a statistical description.

Instead, a simple model can be produced where the possible cluster velocities can be

represented as a uniform distribution from vc ∈ [vmin vmax]. Where vmin and vmax
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represent the minimum and maximum velocities expected, respectively. Using Eqn.

(2.14), the distribution of the scale term can then be represented as

bH(α) =







1
αmax−αmin

, αmin ≤ αp ≤ αmax when vmax > 0,

1
αmin−αmax

, αmax ≤ αp ≤ αmax when vmax < 0,

0, otherwise,

(2.29)

where αmin and αmax correspond to the time scale terms calculated using vmin and

vmax, respectively.

With definitions for bH(α) and bH(τ), the delay-scale scattering functions that de-

scribes the channel can be produced. This scattering function requires no normaliza-

tion to be treated as the pdf describing the delay, time-scale distribution.

2.2.2.2 Path Doppler Frequencies and Phases

The channel scattering function provides a method for selecting cluster arrivals with

delays and time-scaling factors. However it does not account for the fading behaviour

that has been observed on the cluster arrivals with respect to time [26], represented in

the model in (2.20) by ac(t). In Section 2.2.1 it was shown that while the time-variation

of each cluster is best represented by a time-scaling factor rather than a Doppler shift,

αc, the variation of the path arrivals within each cluster is best represented as a sum

of frequency shifted version of the time scaled signal. So the task of describing ac(t)

is in fact a task of describing the Doppler profile for each cluster arrival and selecting

Np,c frequencies from this profile that corresponds to the Doppler shifts on each path

arrival within a cluster.

The choice of the Doppler profile is different for underwater acoustic communication

than for radio communication. While Jake’s Doppler profile is often used to model mo-

bility in the channel in radio communication system when the receiver is surrounded

by a ring of scatterers [15], [27], extensive tests carried out in [26] show that a better

Doppler profile for underwater acoustics is a stretched exponential function of the

form

S(f) = Ae−(
|f |
a )

B

. (2.30)

When describing a Doppler profile, a quantity that is often used is the coherence
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time, Tc. This time indicates how long a cluster tap remains correlated with itself in

time with respect to a coherence level between 0 and 1. This value therefore provides

insight into the Doppler spread of the profile. With a coherence time specified, the

Doppler profile itself can be fully described.

The full derivations for the parameters associated with the Doppler profile in (2.30)

are shown in Appendix A but are summarized here. With a coherence time specified,

the parameters describing the stretched exponential in Eqn. (2.30) can be chosen as

B = 1,

a =

√

1.5

2π2T 2
c

, (2.31)

and

A =
1

2a
. (2.32)

A is a normalizing factor that is chosen so that S(f) can be treated as a pdf. a is the

shape parameter that controls the Doppler spread of the profile and thus is related

to the coherence time. Here, a is specified for a coherence level of 0.5, however this

parameter can be recalculated for other coherence levels using Eqn. (A.6).

To account for the fading of the cluster taps with time, ac(t), a can be calculated using

the desired coherence time, Tc, and A can be calculated to normalize the integral of

S(f) to 1. Np,c frequencies, fp, corresponding to the residual velocities on each path

within a cluster can then be drawn from Eqn. (2.30) and these frequencies can be

used in Eqn. (2.21) to produce the fading on each cluster arrival.

To complete the model of the time-varying amplitude, Eqn. (2.21) requires two more

inputs, a phase for each path, θp, and a constant scaling term to account for the

power-scaling due to the delay of each cluster with respect to the direct path, lc(τc).

The phase term can simply be drawn from a uniform distribution for 0 to 2π for each

path. The power-scaling term however is related to the delay, and is therefore related

to the power-delay profile. The scaling term can then be calculated as

lc(τc) = e−
τc

2τrms . (2.33)
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2.2.2.3 Cluster Angle-of-Arrival

When the receiver has multiple receive elements, it is also useful to model the angle-

of-arrival of each cluster at the receiver, φc. The last parameter that needs to be

described then is the angle-of-arrival. Similar to the cluster velocity, the angle-of-

arrival is best described using a geometry based solution. For simplification purposes,

in this work it is assumed that the angle-of-arrival of each cluster is directly related to

the delay of the cluster. So as the delay increases the angle of arrival increases up to

a maximum angle of arrival, φmax. The cluster angle-of-arrival can then be described

as

φc = (−1)bτc
φmax

τmax

+ nφ, (2.34)

where b is Bernoulli random variable, with p = 0.5, that randomly distributes the

sign of the received cluster to simulate a signal coming from above and below the

direct path, which is assumed to have a relative angle of arrival of 0. This simulates

surface and bottom reflections. A small noise term, nφ, is also inserted to add random

variation.

2.2.2.4 Stochastic Model Summary

So, the stochastic model of the channel can be summarized as follows for a time-

domain implementation:

1. Initialization

• Specify model parameters

(a) The range of the deployment, r.

(b) Number of cluster arrivals, Nc.

(c) Number of path arrivals for each cluster (excluding direct path), Np,c.

(d) The RMS and maximum delay of the channel, τRMS and τmax.

(e) The coherence time of the channel, Tc.

(f) The maximum and minimum velocities associated with the cluster ar-

rivals, vmax and vmin.

(g) The maximum angle of arrival for the clusters, φmax.
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• Create the frequency dependent transmission loss filter, HTL(f), using r

and Eqn. (2.3).

• Create wideband scattering function , BH(τ, α), using τRMS and τmax and

vmax and vmin with Eqns. (2.26) and (2.29). Treat as pdf and draw Nc

delay-scale pairs for cluster arrivals.

• Create Doppler profile using Tc and Eqn. (2.30). Treat as pdf and draw

Np,c path Doppler frequencies, fp, for each cluster arrival.

• For each cluster arrival calculate the constant excess delay amplitude scal-

ing coefficient, lc(τc), using Eqn. (2.33).

• Calculate the angle-of-arrival for each cluster arrival using Eqn. (2.34).

2. Implementation

(a) Filter the transmitted passband signal, s̃(t), using HTL(f).

(b) For each discrete time sample, n:

i. Calculate the scaled and delayed sample of the signal, s̃(αc(t− τ0,c)).

ii. Calculate the fading amplitude coefficient using Eqn. (2.21) and mul-

tiply time-scaled and delayed sample by fading coefficient.

iii. Repeat steps i. and ii. for all clusters, following Eqn. (2.20). Sum to

produce received signal at time instance n.

(c) Repeat step (b) incrementing discrete time-sample until the end of s̃(t) is

reached.

This model does contain a number of simplifying assumptions. First, it was assumed

that the cluster velocity is uncorrelated with the angle-of-arrival and delay associated

with each cluster. In most circumstances, there will be a relationship between these

parameters, and further studies will be required to demonstrate the interrelationship

between them. Second, the Doppler profile used here may be a simplification of a

true deployment with delay-spread and transmitter/receiver velocity. Lastly, while

the WSSUS assumption may hold over short time periods, over long periods this

assumption most likely won’t hold in most deployments and so this model may be

limited to short simulation durations.

So while the model presented above does have a few drawbacks, it still captures all of

the desired properties of a wideband channel and reproduces the physical distortions

of the received signal introduced by a time-varying UAC.
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2.3 Channel Implementation

In order to simulate the UAC using the stochastic model presented above a simula-

tion model needs to be created. Section 2.3.1 first reviews two common simulation

methods used for both narrowband and wideband cases, and then discusses some of

the drawbacks of these models. The time-varying fractional delay line (TVFDL) is

then introduced in Section 2.3.2 as a method for overcoming these shortcomings. Sec-

tion 2.3.3 concludes the Chapter with simulations demonstrating the ability of the

TVFDL to implement the stochastic channel model presented in Section 2.2.2 as well

as a channel with a varying time-scaling factors.

2.3.1 Current Simulation Models

When it is assumed the sampled channel parameters do not change with time (i.e. the

the delay, scale and Doppler frequencies remain unchanged) then both the wideband

and narrowband models can be implemented in similar ways. This involves discretiz-

ing the spreading function, and then implementing methods to either shift or scale

the signal in the frequency domain. This method is most easily understood using the

narrowband model where the time-variation is captured using a Doppler shift and a

narrowband delay-Doppler spreading function.

For the narrowband case this method is called a basis expansion model (BEM), where

the basis that is chosen represents how the channel varies with time. A basis that

is often used with the delay-Doppler domain spreading function is the complex ex-

ponential, or Fourier basis due to the inherent relationship with the delay-Doppler

domain, refer to Eqn. (2.7).

So, using a complex exponential basis function to model the channel time variation

corresponds to taking the inverse Fourier transform of the narrowband delay-Doppler

spreading function, SH(τ, ν). If the spreading function is discretized in both the delay

and Doppler domain, then the discrete time-varying channel impulse response can be

written as [15]

h̃[n,m] =
1

N

N−1∑

d=0

SH [m, d]ej2π
nd
N . (2.35)

The time variance of the channel can then be captured using a multiplication by a
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Figure 2.5: Discrete delay-Doppler spreading function with I complex exponential
basis being converted to a basis expansion model with corresponding FIR filters and
basis.

complex exponential basis, ej2π
nd
N , with respect to the discrete time variable, n, and

the delay, or delays associated with each basis function is captured using an FIR filter,

c[m] = SH [:, d]. The number of basis functions used can be oversampled for better

simulation results. If I basis functions are used, then the channel model using the

complex exponential basis becomes [15]

h̃[n,m] =
I−1∑

i=0

ci[m]ej2πξin, (2.36)

where ξi is the frequency associated with each basis. This model is summarized in

Figure 2.5.

A similar approach is used for the wideband simulation model, however a Mellin

transform is used with the wideband spreading function, FH(τ, α), instead of a Fourier

transform as the Mellin transform can easily handle time-scaling [15]. Two main

differences exist between the narrowband BEM and the wideband model. The first

and most obvious difference is that the wideband model uses a time-scale instead of

a exponential basis to account for time-variance. The second difference is how the

delay and scales are sampled during the discretization process. While with the BEM

the delay and Doppler parameters are uniformly sampled, in the wideband model the

delay and scale parameters are geometrically sampled due to the use of the Mellin

transform [15].
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Aside from these two differences, the wideband channel implementation is very similar

to the implementation in Figure 2.5 with SH(τ, ν) replaced with FH(τ, α) and with

the frequency shifts replaced by time-scaling operations.

The similarities of the models means they share similar problems. The main drawback

is that if the parameters of the model change slightly a new implementation is required.

As an example, it the tap locations in Figure 2.5 change for multiple basis functions,

then new filters are required for each of basis functions affected. Similarly, if the

frequencies or time-scaling factors of the bases change, then the basis functions need

to change as well.

While for the BEM when the basis function changes this simply involves changing the

basis frequency, for the wideband model this involves resampling the signal, which

is a much more computationally intense process. To show that resampling is in fact

equivalent to time-scaling, assume a signal x(t) is sampled satisfying the Nyquist

criterion, then it can be represented using discrete samples as

x[n] = xs(nTs), with n = −∞, . . . , 0, . . . ,∞. (2.37)

If the continuous time signal is then scaled by a factor, α, then the sampled time

domain signal becomes

x(αt) = xs(αnTs). (2.38)

This time-scaling factor can be applied to the sampling period, Ts. So for a constant

value of α the new sampling period becomes

Ts,new = αTs, (2.39)

which leads to a new sampling frequency of

Fs,new =
1

α
Fs. (2.40)

A signal can therefore be time-scaled by resampling at Fs,new and then by running

the resampled data at the original sampling times, n, and at the original sampling

frequency, Fs. If the time domain signal is compressed, α > 1 and Fs,new < Fs. This

leads to fewer samples, which when played at the original sampling rate leads to time-

compression. Conversely, if α < 1 then the signal is dilated and Fs,new > Fs, leading
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to more samples and time-dilation. Therefore, resampling the signal at Fs,new and

playing it back at the original sampling rate Fs does produce the desired time-scaling.

A common method used for resampling is to convert, or approximate the scaling factor,

α, by a rational number, M/N . Resampling is then implemented by upsampling, or

interpolating by M and then decimating the upsampled signal by N . This, however,

is a fairly computationally expensive process if M and N are large values [28], which

is often the case if the time-scaling factor is close to 1. The time-varying fractional

delay line presents a second method that can be used to interpret the time-scaling

operation.

2.3.2 The Time-Varying Fractional Delay Line

A second method that can be used to implement time-scaling is found by reinterpreting

Eqn. (2.38). The time scaled signal can be rewritten as

x(αt) = xs((1− (1− α))nTs) = xs(nTs − (1− α)nTs), (2.41)

which shows that time-scaling can also be implemented by sampling the original signal

with a time-varying delay. So the time-scaled signal can be written as

x(αt) = xs(nTs − τ [n]), (2.42)

where

τ [n] = (1− α)nTs. (2.43)

The effect of varying the delay with respect to time is shown in Figure 2.6.

There are two main benefits of working with a time-varying delay over a resampling

operation. First, almost any sampling rate can be implemented with the same com-

putational overhead since the time-varying delay, τ [n], will simply be different for

different resampling rates. Second, a time-varying delay allows for time-varying time-

scaling factors, so now α can be a function of time which mimics changes in velocity

without having to implement a new resampling operation for each new velocity en-

countered.

In order to implement a time-varying delay using discrete samples, it is easiest to break

the operation up into the application of a fractional delay and then the time-variation
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x[0] x[1 + 1/4] x[4 + 1]

Ts,new

Figure 2.6: Example of a time-varying delay implementing a resampling oper-
ation. For α = 1.25, the time-varying delay can be expressed as τ [n] =
0,−1/4,−1/2,−3/4,−1, ... for n = 0, 1, 2, 3, 4.... The time-varying delay changes the
sampling frequency from Fs to

4
5
Fs, or changes the sampling period to Ts,new = 5

4
Ts.

of this fractional delay. A fractional delay is a delay that falls in between the sampling

points of a sampled signal. A fractional delay can be realized by implementing a

delayed ideal interpolation filter, or a sinc filter. The sampled, time-delayed signal

then becomes [29]

x(t− τ) = xs(nTs − τ) = x[n− τs] =
∞∑

m=−∞

sinc[m− τs]x[n−m], (2.44)

where τs is the normalized delay with respect to the sampling period, Ts. The nor-

malized delay can be written as

τs =
τ

Ts

= Dτs + dτs , (2.45)

where Dτs is the integer part of the delay and dτs is the fractional part.

The interpolation filter can be implemented using an FIR filter, however in order to

practically implement this filter the sinc function needs to be truncated to reduce the

order of the filter to a finite length. The order chosen will limit the accuracy of the

truncation and the length becomes a trade off between precision and performance. If

the length of the FIR filter is chosen as 2M + 1, then higher values of M will lead to

longer computational times, but more accurate results [28].
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Due to this truncation, the sinc function will be subject to Gibbs phenomenon and

therefore contain ripple in the passband and stopband. To reduce this effect a win-

dowing function can be used on the time domain signal which puts more emphasis on

the center of the time-domain FIR filter and less on the time-domain boundaries at

−M and +M . This reduces the ripple at the expense of reducing the passband width

and increasing the transition region from the passband to the stopband [30].

By truncating and windowing the sinc filter as well as delaying it by the integer part

of the delay, Dτs , the new fractionally delayed output signal can be expressed as

x[n− τs] =

M+Dτs∑

m=−M+Dτs

w[m] sinc[m− dτs ]x[n−m], (2.46)

where w[m] is some desired windowing function. This filter can also be made causal

by delaying the signal further. In the case that Dτs = 0 the filter could be delayed by

M samples and if Dτs > 0 then the filter could be delayed by M −Dτs .

The fractional delay filter can therefore be implemented using a tapped delay line,

and if multiple fractional delays are required then the same tapped delay line can be

used. A fractional delay line (FDL) implementing multiple fractional delays would

correspond to a multipath channel with stationary non-integer cluster arrivals with

respect to the sampling frequency. A simple 2-tap channel with fractional delays is

shown in Figure 2.6 with cluster arrivals at 0.5Ts and 4.8Ts.

If time-variance is required for the taps then the time-varying delays associated with

the paths can be discretized and used in Eqn. (2.46). If this time-variance is caused

by a constant velocity then τs[n] can be represented as shown in Eqn. (2.47). This

can also be expressed in terms of a time-varying integer and fractional delay as

τs[n] =
(1− α)nTs

Ts

= − vc
cw

n = Dτs [n] + dτs [n]. (2.47)

This is a discrete delay that is represented by samples, and not continuous time. The

integer delay is therefore represented by the integers and the fractional delay is always

a real number between 0 and 1. The value of the fractional delay could be discritized

to limit the number of fractional positions that need to be implemented, however for

now it is assumed to be a real number.

If the velocity changes with time then this same technique can also be used with a
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time instance corresponding to a new delay value. The benefit however remains that

only a single delay line is required to model the time-scaling of all taps, for all times.

While this technique can be applied to resample the signal at any rate, care needs

to be taken in choosing the initial sampling rate of the delay line, Fs, so that the

sinc function used to resample the signal in Eqn. (2.50) will bandlimit properly for

all desired resampling frequencies [28]. While the resampling rate can be changed by

varying α(t), there should be some maximum velocity and therefore a maximum value

of α(t), αmax. This leads to a minimum resampling rate of

Fs,min =
Fs

αmax

. (2.51)

Due to the fact that Fs,min < Fs, the highest frequency that can be included in the

delay line will be dictated by the minimum sampling frequency. Or conversely, the

sampling rate of the delay line will be dictated by assuring the maximum frequency

included is less than
Fs,min

2
. So, if we assume a perfect brick-wall bandlimiting filter

the sampling frequency can be set using

fmax ≤ Fs,1

2αmax

→ Fs,1 ≥ 2fmaxαmax. (2.52)

However, due to the fact that the bandlimiting, or interpolating filter, is truncated,

this will not be a perfect brick-wall filter and so a second sampling frequency criterion

can be set.

fmax ≤ Fs,2

2
ωn → Fs,2 ≥

2fmax

ωn

, (2.53)

where ωn is the normalized cutoff frequency of the truncated and windowed interpo-

lating sinc function, with a value between 0 and 1.

So, the sampling frequency of the delay should be chosen as the maximum value of

the two conditions above, or

Fs = max{Fs,1, Fs,2}. (2.54)

This condition means that if αmax is close to 1 and Fs,min ≈ Fs, then Fs should be

chosen so that fmax is in the passband of the truncated interpolating filter. If αmax is

large, then Fs should be chosen so that fmax is always less than
Fs,min

2
.
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Although the exact implementation will not be discussed here, a computationally

efficient way to implement the delayed sinc functions is using a lookup table (LUT)

[31], [28]. This is the reason why Fs is chosen to satisfy the conditions above, rather

than just scaling the sinc interpolating function to bandlimit as required. Specifically,

in [29], [31], and [28] it is suggested that the sinc function should be broadened when

Fs,resample < Fs to narrow the frequency range of the filter. However, if a variable

sampling rate is required this means that time-scaled versions of the interpolating

function would have to be created and stored for all Fs,resample < Fs. Therefore it’s

much easier in the variable sampling rate case to choose Fs according to (2.54) rather

than to scale the sinc function.

2.4 Channel Simulation using Time-Varying Frac-

tional Delay Line

In this Section, simulations of the TVFDL are presented. One of the appealing aspects

of the TVFDL is that it can resample a signal both at a set resampling rate and also

at a variable resampling rate. This is due to the fact that the TVFDL solely relies

on the delays associated with a path and how they vary, and not specifically on a

resampling rate. In order to show that the TVFDL is capable of implementing a

wideband channel model three simulations were run.

The first simulation that was completed shows that the TVFDL is capable of resam-

pling a signal. To do this, a reference signal was produced and then this signal was

resampled two ways. The first resampling method was using a classic M/N interpola-

tion/decimation scheme and the second way was using a TVFDL with an equivalent

value of α. More specifically, α was chosen as

α =
N

M
. (2.55)

This value of α was then used with Eqn. (2.47) to create the required time varying

delay to implement the desired resampling rate. The plot in Figure 2.8 shows a simple

cosine wave with a frequency of 100 Hz sampled at Fs = 1 kHz, and resampled at a

rate of M
N

= 3
2
, or with α = 2

3
.

Figure 2.8 shows that the TVFDL produces very similar results to those obtained using

the conventional M/N method, which are both very similar to the desired resampled
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Figure 2.8: Plot of simple cosine wave resampled at Fs =
3
2
Fs using both the classic

M/N technique and a TVFDL, the ideal resampled response is also shown to compare
with resampled values.

signal. The benefit of the the TVFDL however is that it can vary the resampling rate

simply by varying α with respect to time, while changing the resampling rate of the

M/N method involves a completely new implementation.

In order to determine the ability of the TVFDL to implement a simulated wide-band

channel with time-variance, first a deterministic channel was created that had 4 known

clusters with constant amplitudes, delays and time-scaling factors. Table 2.1 below

shows these values for each cluster arrival.

Table 2.1: Cluster parameters for the the deterministic channel implemented using a
TVFDL.

Cluster Arrival Amplitude Delay (ms) Time-Scaling Factor (α)
1 1 0 1.0054
2 0.5 8 1.0063
3 0.3 15 1.0058
4 0.4 35 1.0067

In order to determine whether the TVFDL was implementing the channel properly, a

channel sounder was implemented. A regular correlative channel sounder cannot be

used for this channel as the time-scaled signals will not correlate well with the original
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transmitted signal. Instead, the time-varying channel sounder presented in Appendix

B was used. This channel sounder uses a bank of filters created by time-scaling the

original signal, and then combines their outputs to produce the final CIR.

For this channel sounder the PN sequence chip rate, Rchip, was chosen to be 12 kHz,

the length of the signal, Tseq, was chosen to be 0.1 seconds, and the carrier frequency

was chosen to be 10 kHz. The final passband channel that was being estimated then

was between 4 and 16 kHz. 50 PN sequences were concatenated together to form the

final pass band transmit signal that had a length of 5 seconds. This signal was then

used as the input to the deterministic TVFDL channel.

The output of the deterministic channel model was passed into the time-varying chan-

nel sounder to produce the output CIR’s for each transmitted PN sequence. These

PN sequences were then stacked on top of each other to produce a delay-time plot

showing the evolution of the CIR with respect to time. The delay-time plot for the

deterministic channel is shown in Figure 2.9. The red lines that overlay the CIR are

the ideal delay paths produced using the channel parameters. The match between

the channel sounder output and the ideal paths show that the TVFDL is capable of

producing a channel with the desired time-varying delays.

While the path delays in Figure 2.9 do match the desired time-varying delays, the

amplitudes seem to fluctuate slightly almost as if there is some fading rather than

the desired constant amplitudes. The reason for this is due to the channel sounder

itself and not the TVFDL. When the signal does not fall fully into one delay bin, it

is spread out over neighboring ones, causing a split in energy. These splits then cause

the amplitude to appear lower even though between the neighboring taps the energy

should be the same. A proper averaging scheme should remove this phenomenon and

show the proper tap amplitudes.

A second simulation was also run that implemented the stochastic model presented

in Section 2.2.2 using the TVFDL. For this model, the following parameters were

chosen: Nc = 6, Np,c = 10, τRMS = 0.03 s, τmax = 0.06 s, Tc = 2 s, vmax = 10

m/s, vmin = 8 m/s, and θmax = π
4
radians. The same correlative sounding signal

used for the deterministic channel was used again with the stochastic model, and the

time-delay plot produced using the time-varying channel sounder is shown in Figure

2.10.

While Figure 2.10 will also contain some of the minor amplitude fading due to the

channel sounder, this plot clearly shows that the stochastic model implements time-
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Figure 2.9: Output of the time-varying channel sounder for the deterministic channel
implemented using the TVFDL with clusters defined in Table 2.1. The red dotted
lines indicate the ideal path for each tap. The underlying channel impulse response
is the normalized power of each tap. Dark blue indicates 0, dark red indicates 1.

fading in excess of the slight pseudo fading introduced by the channel sounder itself.

The last benefit of the TVFDL is that it is able to implement time-varying scale values.

To show this, the last simulation that was run implemented a single cluster path that

had a simple sinusoidal delay path, this corresponds to a time-varying time-scaling

factor of

α(t) = (1 + As sin(2πfst)) . (2.56)

For this simulation As = 0.01 and fs = 1/10 and the cluster path was given a constant

amplitude of 1. The same transmit channel sounding signal used above was again used

here, however the length of the signal was extended to 10 seconds to account for a

full period of the wave. The output CIR calculated using the time-varying channel

sounder is shown in Figure 2.11.

So, while a time-varying fractional delay line has been proposed in the past for efficient
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Figure 2.10: CIR of a time-varying channel produced using a TVFDL and channel
parameters produced using the stochastic model presented in Section 2.2.2. This plot
is again normalized to a power of 1. Dark blue indicates 0, dark red indicates 1.

resampling when the resampling rate is close to 1, [28], [29], it has not been used to

implement a time-varying wideband channel model. The simulations above show that

this structure is capable of implementing time-variance of the delay and amplitude

associated with each cluster arrival, this makes the TVFDL a plausible technique for

modeling a wideband channel. The ability to implement time-varying scaling factors

also makes the TVFDL unique in that in can model changes in velocity, or acceleration,

in a channel without having to change the model. This is a unique characteristic of

the TVFDL that the author has not found in other channel models.
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Figure 2.11: CIR of a time-varying channel produced using a sinusoidal time-scaling
factor. This plot is also normalized to a power of 1. Dark blue indicates 0, dark red
indicates 1.
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Chapter 3

Wideband Beamforming

Techniques

In Chapter 2 it was shown that the underwater acoustic channel introduces angular

and temporal variations to a signal. Specifically, multipath components arrive from

different angles and at different times with respect to the direct path arrival from

the transmitter. If the angular characteristics of the impinging acoustic field can be

captured then the angle-of-arrival can be recorded for each multipath component of

the received signal.

This leads to a new source of diversity in addition to temporal diversity, angular

diversity, which can be used to improve an underwater communication system as will

be discussed in Chapter 4. One of the difficulties with trying to capture angular

diversity in underwater communication systems is that most communications signals

will be wideband in nature, as discussed in Chapter 2. This means a wideband

beamformer is required. While classic techniques could be used to beamform the

received data, there are some drawbacks to these techniques. Instead, wideband

modal beamforming is presented as a unique technique that uses a uniform concentric

circular array (UCCA) in order to record the angular diversity of the signal with 360◦

of unambiguous coverage.

This Chapter is broken down as follows. Section 3.1 introduces the geometry of the

UCCA and looks at how both narrowband and wideband beamforming can be ac-

complished. Section 3.2 briefly reviews some well-known methods of wideband beam-

forming and then discusses why these techniques are not as suitable for underwater

communication systems. Section 3.3 introduces modal beamforming and discusses
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how a wideband modal beamformer can be implemented using both complex weights,

for ease of mathematical analysis, and real weights for physically beamforming real

received signals. This Section also discusses the physical limitations of a modal beam-

former and discusses how modal weights can be designed for low order systems using

Cardiod beamforming. Section 3.4 concludes the Chapter by presenting results from

an underwater experiment carried out with a modal beamformer that demonstrates

the desired wideband characteristics and Cardiod beam patterns.

3.1 Beamforming Theory

In this Section wideband beamforming theory is reviewed. Section 3.1.1 introduces the

UCCA and discusses how the elemental excitation due to a plane wave can be modeled.

Section 3.1.2 then presents the basics of narrowband beamforming and Section 3.1.3

builds upon this by introducing a method to beamform wideband signals. In Section

3.1.4, figures of merits for beamformers are briefly discussed in order to evaluate the

performance of different beamforming techniques.

3.1.1 The Uniform Concentric Circular Array

Figure 3.1 shows a uniform concentric circular array (UCCA). Compared to a linear

array, a circular array is attractive because it provides 360◦ of unambiguous coverage

in the azimuthal plane as opposed to just 180◦. A circular array also allows for

non-conventional beamforming techniques that will be discussed in Section 3.3.

A UCCA is made up of M + 1 elements, where M elements are uniformly spaced on

the circumference of a circle of radius r, referred to as the circumferential elements,

and there is a single element located in the center of the circle. Assuming that the

array is located in the x-y plane, the angular spacing between each circumferential

element is limited to an azimuthal angle and is described by

φe =
2π

M
, (3.1)

which corresponds to a circumferential element spacing of

de = rφe = r
2π

M
. (3.2)
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Figure 3.1: Layout of a UCCA located on the x-y plane. Spherical coordinates are
used to describe angular positions with the polar angle measured off the z-axis and
the azimuthal angle measured off the x-axis.

This distance is chosen to be less than λmin

2
in order to conform to conventional

narrowband beamformer design techniques [32]. Therefore, the radius is effectively

set by the number of elements and the desired maximum frequency. The reason for

this spacing in circular arrays will be discussed in more detail in Section 3.3.

The angular position of each element on the circumference of the circle then becomes

φm = (m− 1)φe = (m− 1)
2π

M
, m = 1, . . . ,M. (3.3)

The center element, m = 0, does not have an angular description and so is excluded.

The position of each of these elements can be described in cartesian coordinates using

a vector from the origin of the x-y plane, rm, and the element numbering convention

shown in Figure 3.1. Again, this does not apply to the center element that has r0 = 0.

rm =






rx

ry

rz




 = r






cos(φm) sin(θ)

sin(φm) sin(θ)

cos(θ)




 = r






cos(φm)

sin(φm)

0




 , m = 1, . . . ,M. (3.4)

If a plane wave arrives from a direction (φ̄, θ̄), as shown in Figure 3.1, with a frequency,

ω, and spatial frequency vector, k, then the signal that is recorded by an element in

space depends on the position of the element and the time of the recording, x and t,
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respectively.

x(t,x) = ej(ωt+kTx), (3.5)

where

k = k






cos(φ̄) sin(θ̄)

sin(φ̄) sin(θ̄)

cos(θ̄)




 =

ω

c






cos(φ̄) sin(θ̄)

sin(φ̄) sin(θ̄)

cos(θ̄)




 , (3.6)

and k is the wave number of the plane wave.

When the plane wave impinges on the array at a time, t, each element in the UCCA

receives the signal with a different phase delay. The signal received on array element

m, xm(t), can be described using the element position vector, rm.

xm(t) = ej(ωt+kT rm) = ejωtejk
T rm (3.7)

The signal on each element contains the time varying term ejωt. For notational sim-

plicity this term will be excluded for the rest of this Chapter and only the phase

portion of the term will be considered. For the circumferential elements, the phase

term then simplifies to

xm = ejkr sin(θ̄) cos(φ̄−φm), m = 1, . . . ,M, (3.8)

and for the center element there is no phase shift, x0 = 1.

Instead of defining the phase delay on the circumferential elements in terms of the

wave number, k, and radius, r, as done in Eqn. (3.8), a circular beamformer can also

be described in terms of the minimum desired wavelength, λmin, and the number of

circumferential elements, M [32]. This notation is helpful when the time domain is

discretized. The radius can be rewritten in terms of λmin and M as

λmin = 2de = 2
2πr

M
→ r =

λmin

2

M

2π
. (3.9)

Using Eqn. (3.9), the phase delay on each circumferential array element can be written
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as

xm = ej
ω
c

λmin
2

M
2π

sin(θ̄) cos(φ̄−φm), m = 1, . . . ,M. (3.10)

This equation can be simplified further if each array element is sampled in time using

the Nyquist criterion with respect the maximum frequency of the beamformer, c
λmin

.

If the sampling period is chosen to be Ts = λmin

2c
, then the phase delay on each

circumferential element can be written as

xm = ejΩβ sin(θ̄) cos(φ̄−φm), m = 1, . . . ,M, (3.11)

where β = M
2π

and Ω = ωTs, which is the normalized frequency with a range of [−π, π].

This choice of Ts means the maximum normalized frequency, π, is the maximum

frequency for both the temporal and spatial recording.

3.1.2 Narrowband Beamforming

In order to determine the response of the array to a plane wave with a single frequency

component, or the narrowband case, the weighted signals on each receive element need

to be summed, as shown in Figure 3.2.

y =
M∑

m=0

xmw
∗
m = w∗

0 +
M∑

m=1

ejΩβ cos(φ̄−φm)w∗
m. (3.12)

It is often convenient to express the response of the beamformer to a signal arriving

from a direction, φ̄, and with a frequency, ω, using vector multiplication. To do this,

two length M vectors need to be created. The first is a steering vector, d(ω, φ̄), which

models the phase delay of the signal recorded on each array element. The second is

the weight vector, w, which stores the weights applied to the signals on each array

element [32]. The response of a beamformer when steered in a direction φ̄ can then

be expressed as

P (Ω, φ) = wHd(Ω, φ̄), (3.13)
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Figure 3.2: Narrowband beamforming structure for the UCCA with a plane wave
arriving from (φ̄, π

2
).

where

w = [w0 w1 . . . wM ]T (3.14)

and

d(ω, φ̄) = [1 ejΩβ cos(φ̄−φ1) . . . ejΩβ cos(φ̄−φM )]T (3.15)

The beamformer output due to a plane wave with a normalized frequency, Ω, and

DOA, φ̄, can now be written in terms of w and d(Ω, φ̄).

y = xP (Ω, φ̄) = xwHd(Ω, φ̄), (3.16)

where x is the transmitted signal and y is the beamformed output at a single instant

in time.

Therefore, in order to maximize gain in a direction of interest and minimize interfer-

ence from others, a suitable weight vector needs to be created which implements a

desired beam pattern.
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Figure 3.3: Wideband beamforming structure with FIR filters of length J attached to
each array element output.

3.1.3 Wideband Beamforming

If the signal that is transmitted is narrowband, or approximately narrowband, then

the difference between the signals that arrive on different array elements can be ap-

proximated by a phase shift [32]. This phase shift can then be compensated by a

single complex weight applied to each element. However, if the bandwidth of the

signal is too large, then this assumption no longer holds and different weights need to

be applied for different frequencies in order to avoid distortion of the signal.

One method to create frequency dependent weights is to apply time-domain filters

at the output of each array element. This filter equalizes the signal in the frequency

domain and can be designed in order to maintain a desired beam pattern over the

frequency range of interest. In this Chapter we focus on finite impulse response (FIR)

filters due to their stability and linear phase response. The new beamforming structure

is shown in Figure 3.3 and is often referred to as a filter-and-sum beamformer.

Similar to the narrowband case, the response of the beamformer to a signal arriving

from a direction, (φ̄, θ̄), and at a frequency, ω, can be computed by summing each

weighted element. However, with an FIR filter attached to the output of each element

in the array, the response also has to be summed over the J delay elements associated
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with each FIR filter.

y(t) =
M∑

m=0

J−1∑

i=0

xm(t− iTs)w
∗
m,i, (3.17)

where the reference to time has been included in order to describe the time delay

operation performed by the FIR filter.

For a plane wave impinging on a wideband circular array, the received signal on each

circumferential element becomes

xm(t− iTS) = ejω(t−iTs)ejk
T rm = ejωtej(kr sin(θ̄) cos(φ̄−φm)−ωiTs). (3.18)

Again, the time varying term is dropped and it is assumed that the signal only arrives

from the x-y plane, θ̄ = π
2
. Eqn. (3.18) then simplifies to

xm,i = ej(Ωβ cos(φ̄−φm)−iΩ). (3.19)

The response of the wideband beamformer to a plane wave can then again be expressed

conveniently using the vector multiplication in Eqn. (3.13). However, the steering

and weight vectors need to be modified to include the effects of the FIR filter and

so the length of each increases to (M + 1)J elements for the UCCA. To do this, the

weight vector is redefined as

w = [w0 w1 . . .wJ−1]
T , (3.20)

where each internal weight vector, wi, contains the weights applied to the ith FIR tap

for elements 0 to M ,

wi = [w0,i w1,i . . . wM,i]. (3.21)

The steering vector also needs to be redefined to account for the phase delays due to

the element spacing and due to the FIR time delays,

d(Ω, φ̄) =[1 . . . ej(Ωβ cos(φ̄−φM )) e−jΩ . . . ej(Ωβ cos(φ̄−φM )−Ω) (3.22)

e−j(J−1)Ω) . . . ej(Ωβ cos(φ̄−φM )−(j−1)Ω)]T . (3.23)

With these new vectors, the response of the wideband beamformer can now be com-
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puted. The next Sections deal with how these weights can be designed in order to

attain desired wideband, or frequency invariant, beam patterns.

3.1.4 Beamformer Comparison Criterion

Before methods to design wideband beamformers are discussed, it is important to

highlight the criterion commonly used to describe their performance. A common

beamformer criterion is the beam pattern, which is an analysis tool used to evaluate

the beamformer response in the azimuthal plane as a function of the angle-of-arrival

of the signal. For narrowband beamformers this is done over a very narrow band

of frequencies, and so generally a single, central frequency can be used to estimate

the response of the beamformer. For wideband beamformers, this response is calcu-

lated over a range of frequencies in order to determine the frequency response of the

beamformer.

For a UCCA the beam pattern can be calculated by discretizing the angle of arrival,

φ, between [−π, π] using Nφ points, and by discretizing the normalized frequency of

the signal, Ω, between [Ωmin,Ωmax] using NΩ points. The normalized frequencies Ωmin

and Ωmax are limited to minimum and maximum values of 0 and π. The frequency

dependent beam pattern of a weighted array can then be expressed as an NΩ × Nφ

matrix created using

PNΩ×Nφ
(i, k) = P (Ωi, φk) = wHd(Ωi, φk) where

i = 0, . . . , NΩ − 1 and k = 0, . . . , Nφ − 1. (3.24)

For the wideband case the steering and weight vector are calculated as described in

Section 3.1.3. Often, this beam pattern is displayed in terms of the power of the

received signal, and is normalized so the gain is 0 dB at the main beam. An example

of a narrowband beam pattern is shown in Figure 3.4.

Figure 3.4 shows two main criterion for a narrowband beamformer design, the 3 dB

beamwidth and the sidelobe level. The 3 dB beamwidth is the width of the main

beam in the steering direction, φ̄, of interest. The sidelobe level is a measure of the

highest power received from a sidelobe. Often in beamformer design it is desirable to

have a narrow 3 dB beamwidth and a low sidelobe level.

For a wideband beamformer it is also important to determine how these values change
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Figure 3.4: Narrowband beam pattern showing common beam pattern characteristic
names and design criterion.

with frequency. Specifically, for a wideband beamformer, the beam pattern should

remain the same, or be frequency invariant, over some bandwidth, BBF . This implies

that over this bandwidth the steering angle, the 3 dB bandwidth, and the sidelobe level

and position should all remain constant, or very close to constant. While no quanti-

tative measure is presented to determine BBF , qualitative analysis of the wideband

beam pattern provides good insight into this parameter, and in most cases theoretical

upper and lower frequency bounds are presented depending on the method used to

design the beamformer.
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3.2 Review of Classic Wideband Beamformer De-

sign Techniques

There are a number of non-adaptive beamforming techniques that can be used to

design the FIR filters attached to each array element in order to produce a desired

wideband beampattern. The two filter-and-sum techniques discussed briefly here are

delay-and-sum and least-squares beamforming. In this Section the two techniques are

only briefly reviewed, Appendix C and D contain more detailed descriptions of each.

Delay-and-sum beamforming is a wideband technique that makes use of the fact that

the phase shift experienced by a signal between array elements is frequency depen-

dent, but the time delay is constant as a function of frequency, as explained in [33].

Specifically, the phase-shift, Φ, experienced by a single frequency, ω, on the mth sensor

at a distance r from the origin can be described using

Φ = kr cos(φ̄− φm) =
ω

c
r cos(φ̄− φm), m = 1, . . . ,M. (3.25)

If this same delay is instead represented using a time delay,

xm(t) = x(t+ τm(φ̄)), m = 1, . . . ,M, (3.26)

then the time delay will be constant for all frequencies as

τm(φ̄) =
r

c
cos(φ̄− φm). (3.27)

which only depends on radius from the element to the origin and the speed of prop-

agation and not on frequency. This does however assume a non-dispersive medium

where the speed of propagation remains constant for all frequencies.

Delay-and-sum beamforming simply reverses the time-delay on a specific element

caused by a signal coming from a desired direction, φ̄, and then sums the delay

compensated element outputs together. This produces directionality as only signals

coming from φ̄ will sum in perfect coherence, while signals coming from other direc-

tions will sum at-least partially incoherently [34]. This is discussed in more detail in

Appendix C.

The main drawback of using delay-and-sum beamforming is that the pattern is not

frequency invariant. As the frequency increase the main beam width decreases and the
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Figure 3.5: Ideal response of the Delay-and-Sum beamformer with M = 7 and a
steering direction of φ̄ = 0.

number of sidelobes increases. The beam pattern for a UCCA with 7 elements is shown

in Figure 3.5 to demonstrate this. A wideband signal transmitted through a multipath

channel could therefore be distorted through the delay-and-sum beamforming process.

The least-squares (LS) technique creates the weights by first specifying a desired beam

pattern, and then selecting the array weights such that the actual beam pattern

minimizes the squared error between the actual and desired beam pattern. More

details about the LS technique can be found in Appendix D. An example beam

pattern produced using the LS approach with the same 7 element UCCA used for the

delay-and-sum beamformer is shown in Figure 3.6. The desired beam pattern for this

plot was a simple delta function at φ = 0 for all frequencies.

While the LS approach produces a frequency independent pattern, one of the main

drawbacks of this technique when applied to the UCCA is that as the desired steering

angle changes, the beam pattern changes as well. This is demonstrated in Figure

D.3 in Appendix D by showing that the beam pattern produced by the same UCCA

when steered to φ̄ = π
6
has a much wider main beam with fewer, and more powerful

sidelobes.

The non frequency-invariant beam pattern of the delay-and-sum beamformer and the
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Figure 3.6: Beam pattern of the 7-element UCCA beamformer with FIR filters pro-
duced using a least-squares solution with φ̄ = 0.

inability of the LS beamformer to maintain a constant beam pattern for all steering

angles makes these two techniques less attractive wideband beamforming solutions

for the UCCA. The other main drawback for the two techniques is that they require

new FIR filters for each array element for each look direction of interest.

While for fixed beamforming with only a few steering angles of interest the need for

multiple sets of wideband filters may not be a problem, for the directional estimation

problem presented in Chapter 4, this could present a problem as each desired direc-

tion of arrival would require a wideband beamformer steering in that direction. In

order to have a fine directional resolution this could mean implementing a number of

beamformers. Modal beamforming provides a solution to this problem as wideband,

frequency invariant beams steered in any direction can be produced easily. Modal

beamforming is the focus of the next Section.

3.3 Modal Beamforming

Modal beamforming differs from the delay-and-sum and least-squares beamformers

discussed in Section 3.2 in one important sense. Instead of using the filter-and-sum
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techniques, a modal beamformer combines different weighted elements to first form

modes. Each mode is an element in an orthogonal set, and once they are created a

beamformed output can be produced by weighting and then summing the different

mode outputs. This step of first producing modes then beamforming means that if

each mode can be made frequency invariant, then a wideband beamformed output

can be produced using only a single weight applied to each mode.

This Section first introduces phase modes in Section 3.3.1 as a possible mode that

could be used with a circular apertures and discusses the limitations of using a sam-

pled circular aperture for phase mode beamforming. Section 3.3.2 then introduces

amplitude mode processing as the alternative to phase mode processing that can be

used to beamform real signals and discusses how wideband amplitude modes can be

implemented on a UCCA. Section 3.3.3 concludes by introducing cardiod beamform-

ing as a method of designing the modal weights in order to produce a wideband

beamformed output.

3.3.1 Phase Mode Processing

Phase mode processing is presented in this Section as an introduction into modal

beamforming using complex modes. These modes are easier to work with and help

to develop some of the basic theory of modal beamforming. First, the Fourier series

is introduced as the orthogonal bases that can be used as the modes in a modal

beamformer when a continuous circular aperture is used as the receiving element. The

production of a mode using a continuous circular aperture and a sampled circular

aperture, the UCCA, is then discussed and the disadvantages of mode production

using a circular and sampled circular array are introduced.

3.3.1.1 The Complex Fourier Series Modes for Circular Apertures

To introduce phase modes, circular apertures are considered. A circular aperture

is a circular array in which the interelement spacing of the circumferential elements

approaches 0, in other words de → 0 [35]. When a plane wave impinges on a circular

aperture from a direction φ̄, the aperture is excited and each element of the aperture

is excited differently depending on the spatial frequency of the wave. An important

aspect of this excitation is that it is periodic around the aperture with a period of 2π.

This periodicity means that the excitation of the circular aperture can be expressed
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using a Fourier series [36]. Specifically, a spatial Fourier series of the form

f(φ) =
∞∑

n=−∞

fne
jnφ (3.28)

can be used, where ejnφ are the orthogonal basis functions, or modes of the decom-

position, and fn are the complex mode weights. These modes are often referred to as

circular harmonics for a 2-dimensional spatial decomposition [35].

The sum in Eqn. (3.28) is important as f(φ) can be thought of as a beamformed

output if the modes of interest in the sum have been previously produced. The beam

pattern of this output can then be varied by changing the mode weights, fn. This

method of beamforming by weighting different modes constitutes modal beamforming.

However, in order for a wideband beam pattern to be produced, wideband modes must

first be created from the received signal. Therefore, the method of producing these

modes using both continuous and sampled arrays must be studied.

3.3.1.2 Complex Fourier Mode Creation Using a Circular Aperture

Above it was noted that if the modes of interest can be produced by the circular

aperture, then a beam pattern, f(φ) can be produced by changing the mode weights,

fn. However, the mode creation itself makes use of beamforming and relies on the

Fourier series applied to the circular aperture as well. So, to distinguish between the

modal beamforming procedure used to produce the final beamformed output signal

in Eqn. (3.28) and the beamforming to produce the required modes, a new Fourier

series is defined as

g(φ) =
∞∑

b=−∞

gbe
jbφ, (3.29)

where now g(φ) represents an incoming signal or desired modal pattern, b represent the

modes excited on the circular aperture and gn represents the mode weights produced

by the incoming signal or required to produce a desired modal pattern.

In order to beamform to create a desired mode, g(φ) = ejbφ, it is easy to see from Eqn.

(3.29) that this corresponds to setting gb = 1 at the desired mode and gb = 0 at all

other modes. Each element of the aperture located at a different position,φ, will then

be weighted by ejbφ in order to produce the bth mode. While in theory this should
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produce the desired beamformed mode, it is important to look at the effect that a

plane wave has on each mode as each cluster arrival in the UAC can be modeled as a

plane wave.

To do this, it can be assumed that a plane wave arrives from a direction φ̄, as in Eq.

(3.5). For this analysis g(φ) now represents a plane wave and the excitation caused on

the bth mode of the aperture can be found by calculating the mode weight produced

by the plane wave as

gb(kr, φ̄) =

∫ 2π

φ=0

ejkr cos(φ−φ̄)e−jbφdφ. (3.30)

The mode weight is now a function of the spatial frequency k, radius, r, and angle-

of-arrival, φ̄, as changing any of these parameters will effect the mode weight. Using

a change of variables with γ = φ− φ̄ [35], Eqn. (3.30) can be simplified to

gb(kr, φ̄) = e−jbφ̄

∫ 2π

φ=0

ejkr cos γe−jbγdφ. (3.31)

This integral is the integral form of a Bessel function of the first kind [37], so this

equation further simplifies to

gb(kr, φ̄) = jbJb(kr)e
−jbφ̄. (3.32)

This result is important as Eqn. (3.32) shows that when a plane wave arrives on a

circular aperture with a frequency, k, the excitation of the bth mode becomes frequency

dependent due to the Bessel function, Jb(kr). This has a two main consequences.

First, the Bessel function imposes a high-pass like filter effect with an approximate

spatial cutoff frequency of kbr ≈ b [36], where b is the Bessel function order and kb is

the spatial cutoff frequency assuming a constant radius. Below this cutoff frequency,

the bth mode has a very small value due to the low value of the associated Bessel

function.

This means that if the radius and desired maximum spatial frequency are set, then the

number of modes that can be created that have a substantial value are set as well at

some finite number. As an example, if the the radius is chosen to be r = λmin and the

minimum wavelength is encountered, then the spatial frequency is kmax = 2π
λmin

and

the maximum argument encountered by the Bessel function becomes kmaxr = 2π.

Figure 3.7 shows a plot of the Bessel functions with different orders. This Figure
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Figure 3.7: Plot of Bessel functions of the first kind with respect to the argument kr.

shows that when kr = 2π, the last mode that has a significant contribution is J6.

Therefore, a rule of thumb that is often used to calculate the highest mode that can

be created using a circular aperture is [36], [38]

bmax ≈ kmaxr. (3.33)

This implies that if the argument of the Bessel function is less than the order, then

the output of the Bessel function will be negligible and does not need to be calculated.

The second problem introduced by the Bessel functions of different orders, n, is that

even if the modes contain enough energy, some of these functions contain zero crossings

as kr changes. This can again be seen in Figure 3.7. So, for an aperture with a

constant radius, as the frequency increases and wavelength decreases, certain modes

could encounter zeros causing the mode to have zero output at that value.

So when it is assumed that all arrivals will be plane waves, then the summation in

Eqn. (3.29) can be rewritten using the mode weights in (3.32) as

g(φ) =
∞∑

b=−∞

gb(kr, φ̄)e
jbφ =

∞∑

b=−∞

jbJb(kr)e
jb(φ−φ̄), (3.34)
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where now g(φ) represents a desired beam pattern if it is assumed only plane waves

are impinging on the array.

Now, to beamform an impinging plane wave to create a desired mode involves com-

pensating for the frequency variant mode weight. Specifically, if the elemental weights

are still chosen to be ejbφ at the elemental position φ, the output of the array becomes

g(φ) = jbJb(kr)e
jbφ (3.35)

when it is assumed the wave arrives from φ̄ = 0. If the wave arrives from another

direction φ̄ 6= 0, then it will be weighted by the mode ejbφ as desired. However, in

order to remove the frequency dependency of the mode the output of the aperture

with these element weights needs to be multiplied by

1

jbJb(kr)
(3.36)

The two problems discussed above will also effect the modes produced. The number

of modes used will be limited by kr, and the frequency range over which the multipli-

cation by 1
jbJb(kr)

functions will be limited by the zeros-crossings of the modes. This

is discussed in more detail in Section 3.3.2. Once the complex modes up to ±bmax

are created and the frequency dependency is removed using the procedures mentioned

above, then a wideband beamformed output can be created using

f(φ) =
bmax∑

n=−bmax

fne
jnφ. (3.37)

In reality the number of elements in the circular aperture will be finite and so the

aperture will need to be sampled. This leads to the use of the UCCA to produce the

modes of interest which introduces its own challenges.

3.3.1.3 Complex Fourier Mode Creation Using a UCCA

In order to practically implement a phase mode beamformer the circular aperture

needs to be sampled, and the desired modes need to be produced from this sampled

circular array. However, in order to ensure that the beamformer functions for all

modes up to n = bmax, the aperture needs to be sampled properly. In order to

determine the number of uniformly distributed circumferential elements that need to
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be used for a UCCA implementing modes up to bmax, an lth mode beamformer can

be implemented. To do this, the weight vector is chosen in the same way as for the

circular aperture in the Section above with

wl =
1

M
[ejlφ1 ejlφ2 . . . ejlφM ]T , (3.38)

except now due to the sampling the weights are calculated at discrete angles of φm,

rather than at continuous angles of φ. In (3.38) the center element is given a constant

weight of zero and is excluded. The center element is only used to create the zeroth

order mode, n = 0, with all other elements given a weight of zero. This will also be

discussed in Section 3.3.2. The beam pattern of the lth mode beamformer can then

be described as

Pl(ω, φ) = wH
l d(ω, φ) =

1

M

M∑

m=1

ejlφmejkr cos(φ−φm) (3.39)

The plane wave in (3.39) can be expressed in terms of a spatial Fourier series by

expanding the term describing the signal, ejkr cos(φ−φm), on each array element using

ejkr cos(φ−φm) =
∞∑

b=−∞

jbJb(kr)e
−jbφmejbφ =

∞∑

b=−∞

jbJb(kr)e
jb(φ−φm). (3.40)

The beam pattern then becomes

Pl(ω, φ) =
1

M

M∑

m=1

∞∑

b=−∞

jbJb(kr)e
jb(φ−φm)ejlφm , (3.41)

which can be rearranged into the form

Pl(ω, φ) =
∞∑

b=−∞

jbJb(kr)e
jbφ 1

M

M∑

m=1

ej(m−1)
2π(l−b)

M . (3.42)

The second summation term with respect to m only has a non-zero value of M , when

the (l − b) = pM , where p is an integer value. So the beam pattern of the lth mode

beamformer can be described as

Pl(ω, φ) = jlJl(kr)e
jlφ +

∞∑

q=1

(
jgJg(kr)e

jgφ + jhJh(kr)e
−jhφ

)
, (3.43)
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where g = (qM − l) and h = (qM + l) [36].

Discretizing the circular aperture using a UCCA and applying the weight vector wl

to its elements produces an approximation of an lth mode. As with the lth mode pro-

duced on the continuous circular aperture, the desired mode on the sampled circular

array is multiplied by the frequency dependent term jlJl(kr). However, the mode

produced using the sampled circular array also has extra error terms represented by

the summation term in (3.43) with respect to q. In order for these error terms to be

negligible, the highest mode produced by the sampled circular array must be limited.

To do determine this upper limit we consider the closest error term at M − l. For the

the Bessel function JM−l(kr) to have a small value, the argument when kr = kmaxr

should be less than the order M − l. This can be written as

kmaxr < M − l. (3.44)

It was also shown above that the maximum Bessel function order that can be used

for an aperture depends on kmaxr. Choosing l = bmax means l ≈ kmaxr from Eqn.

(3.33), which leads to

kmaxr < M − kmaxr → M > 2kmaxr ≈ 2bmax. (3.45)

This indicates that the minimum number of elements required in order to produce

an l = bmax mode beamformer is 2bmax. This can be expressed in terms of the

circumferential element spacing as

M > 2
2πr

λmin

→ 2πr

M
= de <

λmin

2
. (3.46)

If M is chosen so that the error term is small for all |l| ≤ bmax, which corresponds to

M > 2bmax, then the output of the circular array with the lth mode applied will be

Pl(ω, φ) ≈ jlJl(kr)e
jlφ, (3.47)

where this is still an approximation as the error term may still have a small effect.

By sampling the circular aperture properly, the modes produced by the UCCA will

be very similar to those produced by the continuous aperture. This means the fre-

quency effects can be removed in the same way and then the modes can be used for

beamforming as shown in Eqn. (3.37) in the Section above. While phase modes have
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appealing characteristics, unfortunately they require complex weights to be applied

to the receive elements. So, when dealing with real received signals, this requires

the extra step of first producing an imaginary version of the signal, which involves

the use of a Hilbert transform. A Hilbert transform can be implemented practically

using an FIR filter, however this adds computational overhead that can be avoided

if real weights are instead used. In order to produce real weights, the focus shifts to

amplitude mode processing.

3.3.2 Amplitude Mode Processing

With phase mode processing complex basis functions were used for the spatial decom-

position as complex numbers are often easier to work with. However, if real weights

are required for the beamformer, as is the case when working with real signals, then

the basis functions used must also be real. One possible set of basis functions is the

sine and cosine basis set, which when used leads to the Fourier series

f(φ) =
1

2
d+

∞∑

n=1

(

an cos(nφ) + bn sin(nφ)

)

. (3.48)

When the Fourier series is used, the weight vector applied to the array to create the

nth mode will always be real. However, in order replicate the complex mode both a

sine and cosine mode of order n need to be implemented. To show that this series is

equivalent to the exponential series in Eqn. (3.28), the sine and cosine terms can be

written using Euler’s formula as

f(φ) =
1

2
d+

∞∑

n=1

(

an
(ejnφ + e−jnφ)

2
− jbn

(ejnφ − e−jnφ)

2

)

=
1

2
d+

∞∑

n=1

(

ejnφ
(an − jbn)

2
+ e−jnφ (an + jbn)

2

)

. (3.49)

This sum can be made equal to the complex sum in Eqn. (3.28) by choosing the

weights of the complex sum to be

wn =







d, n = 0

(an − jbn)/2, n > 0

(an + jbn)/2, n < 0

(3.50)
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This equality with the complex Fourier series means that the same results presented

above for phase modes also hold for amplitude mode processing. Specifically, when

amplitude modes of order n are applied to a circular aperture, the resulting beam

patterns produced for both the cosine and sine modes can be represented as

Pn,cos(Ω, φ) = jnJn(Ωβ) cos(nφ) (3.51)

and

Pn,sin(Ω, φ) = jnJn(Ωβ) sin(nφ), (3.52)

respectively. Here, Ωβ has been used to replace kr to indicate both temporal and

spatial sampling has occurred.

With modal beamforming, first the modes of interest need to be created then the

weighted combination of the modes can be used to produce a beamformed output.

To produce the required cosine and sine modes of order n, the weight vector for the

circumferential elements is chosen as

wn,cos = [cos(nφ1) cos(nφ2) . . . cos(nφM)]T (3.53)

and

wn,sin = [sin(nφ1) sin(nφ2) . . . sin(nφM)]T , (3.54)

respectively.

Where again, as long as n < M
2
the output of the circular array from these weights will

closely approximate (3.51) and (3.52). These equations show that the outputs of the

array for the nth amplitude modes have frequency dependent gain terms, jnJn(Ωβ).

This dependence on frequency is shown in Figure 3.8 for cosine modes with n = 1

and n = 2 for a 7-element UCCA with 6 circumferential elements.

In order to produce the frequency-invariant modes required for wideband modal beam-

forming, the output of each mode can be filtered using a mode dependent output filter

of the form [32]

Hn(Ω) =
1

jnJn(Ωβ)
, for n ≥ 1. (3.55)

64



−3 −2 −1 0 1 2 3 
−40

−35

−30

−25

−20

−15

−10

−5 

0  

Direction of Arival (Radians)

N
o
rm

a
liz

e
d
 P

o
w

e
r 

(d
B

)

(a) n = 1

−3 −2 −1 0 1 2 3 
−40

−35

−30

−25

−20

−15

−10

−5 

0  

Direction of Arival (Radians)

N
o
rm

a
liz

e
d
 P

o
w

e
r 

(d
B

)

(b) n = 2

Figure 3.8: Frequency response of cosine modes of order n produced using a 7-element
UCCA. The black lines represent slices of the normalized frequency response, Ω, from
0 to 1. The dashed red line is the desired response.

Here n is chosen to be greater than 0 as the zeroth order mode, which is simply an

omni-directional channel that records in all directions, can be produced using the

center element of the UCCA, m = 0. If the center element is given a weight of 1 and

all circumferential elements are given a weight of 0, then no filtering will be required

as no frequency effects will be introduced through the summation of elements.

These filters do however pose some problems that lie in the frequency dependent

Bessel functions. Specifically, the Bessel functions contain zeros, and so when they

are used to produce an inverse filter, that filter will contain frequencies that require

infinite gain. This effect can be limited by choosing the minimum and maximum

normalized frequency, [Ωmin,Ωmax], such that in this range no Bessel function has a

zero crossing [32]. However, as more modes are included this range becomes harder

to choose and may severely limit the frequency range over which an amplitude mode

beamformer can be implemented.

When only a small number of modes are used, a modal beamformer produced using

a UCCA can create a wideband beamformer that avoids the zero crossings of the

Bessel functions. The general structure of an amplitude mode wideband beamformer

is shown in Figure 3.9.

When FIR filters are designed to approximate the ideal mode dependent filters, the

output of each mode becomes very close to frequency flat. This is shown in Figure

3.10 where FIR filters of length J = 201 were designed for each mode. Even with the
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Figure 3.9: Wideband modal beamformer architecture using N modes. The center
element, m = 0, is taken as the omnidirectional channel rather then creating it by
summing all elements with a weights of 1. Hn(Ω) are the mode dependent filters used
to produce frequency invariant modes.

filtering, Figure 3.10 shows that as the frequency increases there is distortion in the

desired mode shape. This can be explained by modal aliasing [35].
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Figure 3.10: Filtered frequency response of cosine modes produced using a 7-element
UCCA. The black lines represent slices of the normalized frequency response, Ω, from
0 to 1. The dashed red line is the desired response.

It was shown that when the circular aperture is sampled by M elements and used to

produce a desired mode, this mode can only be produced if n < M
2
. Even when this

condition is satisfied, there is still an error term that is present in the expression. The
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output of a sampled circular aperture for a cosine mode of order n can be written as

P s
n(Ω, φ) = jnJn(Ωβ) cos(nφ)

︸ ︷︷ ︸

Pn(Ωβ,φ)

+
∞∑

q=1

(
jgJg(Ωβ) cos(gφ) + jhJh(Ωβ) cos(hφ)

)

︸ ︷︷ ︸

P e
n(Ωβ,φ)

, (3.56)

where P s
n(Ω, φ) is the sampled nth order response, Pn(Ω, φ) is the desired nth mode

response, and P e
n(Ω, φ) is the error caused by sampling. Here g and h are the same

variables that were defined for Eq. (3.43).

P e
n(Ω, φ) is the term that causes modal aliasing or aliasing of higher order modes into

the sampled mode of interest. In order to determine the effect of this aliasing, an

error term, εn(Ω, φ), can be derived that looks at the energy of the error term with

respect to the energy of the sampled response for a specific order, n [35]. A plot of

this error term for a UCCA with 7-elements for orders 1 and 2 when φ = 0 is shown

in Figure 3.11.

εn(Ω, φ) =
|P e

n(Ω, φ)|2
|P s

n(Ω, φ)|2
(3.57)

Figure 3.11: Plot of the energy of the aliasing term with respect to the total energy
recorded, εn(Ω, φ) .

This error is always less than 1 when the normalized frequency is below 1. This means
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that if each element is critically sampled in time with Ts =
λmin

2c
, then the error term

will never be dominant. However, the presence of the error term does cause distortion

as can be seen in Figure 3.10. In order to reduce this distortion the bandwidth of

the beamformer needs to be limited to ensure ε(Ω, φ) is small for all modes. If the

functional bandwidth is limited to [0.1Ω, 0.5Ω], then the modal aliasing error is below

-20 dB for both cosine modes and the frequency response remains much more constant

as shown in Figure 3.12.

While the upper frequency limit is determined by the modal aliasing, the lower fre-

quency is limited by the amount of gain that needs to be applied to invert the effect

of the Bessel function for the highest mode included in the beamformer. The require-

ment to amplify the signal significantly to attain a unitary mode means that the noise

will be greatly amplified, so the lowest frequency used in the modal beamformer will

be set by the minimum SNR required.
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Figure 3.12: Filtered frequency response of cosine modes produced using a 7-element
UCCA limited to a functional bandwidth of [0.1Ω, 0.5Ω]. The dashed red line is the
desired response.

Once all of the frequency flat amplitude modes up to order bmax are produced using

the UCCA of order M , then the task of designing the beamformer becomes a task of

choosing the modal weights, wn, that implement a desired beam pattern, f(φ), as in

Eqn. (3.37). To convert back to the cosine and sine coefficients required for amplitude

mode beamforming, the real weights can be selected following Eqn. (3.50). Because

the modes have already been made frequency invariant, the pattern will be imple-

mented for all frequencies within the beandwidth of the modes. So for the example

used above with the 7-element UCCA with bmax = 2, f(φ) would be implemented for
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all frequencies within the normalized frequency range of [0.1Ω, 0.5Ω].

3.3.3 Design of Modal Weights

Once the frequency invariant amplitude modes have been produced these modes can

be combined with different weights in order to create different beam patterns. The

relationship between Eqn. (3.37) and the inverse Discrete Fourier Transform mean

that FIR filter design techniques could be used to design these weights. However,

when the number of modes included in the summation is small a simpler solution is

to use a method called Cardiod beamforming.

Cardiod beamforming creates a beamformed output through the weighted combina-

tion of a zeroth and first order term, or an omnidirectional and first-order pressure

gradient element [39]. This weighted combination produces a cardiod beamformed

output of the form

PCardiod(p) = p+ (1− p) cos(φ) 0 ≤ p ≤ 1 (3.58)

where p controls the beam pattern produced from the combination.

When p = 0.5 this corresponds to a cardiod output with a null optimally placed

π radians away from the steering direction. When p > 0.5 this corresponds to a

wide, or subcardiod with a main beam wider than a cardiod, and when p < 0.5 this

corresponds to a hypercardiod with a main beam narrower than a cardiod. Plots of

these three types of beam patterns are shown in Figure 3.13.

The cardiod pattern can be steered by rotating the cosine term to some desired

steering angle, φ̄. This rotation can be expressed as a weighted sum of a cosine

and sine term of the same order [40],

cos(φ− φ̄) = cos(φ) cos(φ̄) + sin(φ) sin(φ̄). (3.59)

The first-order beamformer steered to a desired direction can then be written as

PCardiod(p, φ̄) = p+ (1− p)(cos(φ) cos(φ̄) + sin(φ) sin(φ̄)) 0 ≤ p ≤ 1. (3.60)

For modal beamformers with bmax > 1 a cardiod beamformer can also be formed by

increasing the order of the equation by raising the original beamformer to the desired
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Figure 3.13: Polar plot of beam patterns formed using the first-order cardiod beam-
former with different values of p.

order, bmax [39].

PCardiod,bmax(p) = [p+ (1− p) cos(φ)]bmax 0 ≤ p ≤ 1 (3.61)

As an example, for the 7-element UCCA with bmax = 2, the beam pattern can be

expressed as

PCardiod,2(p) = p2 + 2p(1− p) cos(φ) + (1− p)2 cos2(φ)

= p2 + 2p(1− p) cos(φ) + (1− p)2
(
cos(2θ) + 1

2

)

. (3.62)

Beam patterns for this new beamformer using modes upto bmax = 2 are shown in

Figure 3.14. Comparing these beam patterns to the ones formed using only modes

upto bmax = 1 in Figure 3.13, it can be seen that adding the extra order helps to

reduce the main beamwidth for all plots as well as reduce the power received from

φ = π, for the hypercardiod and subcardiod. This beamformer can be steered in the

same way as the first order system by combining weighted cosine and sine terms of

the same order.

While the Cardiod beamforming technique provides a solution for systems of any

order, as the order increases the solution becomes more complicated. Therefore, this
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Figure 3.14: Polar plot of beam patterns formed using the first-order cardiod beam-
former with different values of p.

technique remains a plausible beamforming solution for the low order systems used in

the experiment presented in Section 3.4 and in Chapter 4. However, as the number of

modes included increases, common FIR design techniques provide a better solution.

3.4 Modal Beamforming Experimental Results

In order to verify the theory presented in Section 3.3 on modal beamforming, experi-

mental underwater trials were conducted. For these experiments a 5-element UCCA

was used and was mounted onto the end cap of the TR-Orca, which is an autonomous

underwater data acquisition system provided by Turbulent Research. The spacing

between the elements in this array was 0.0381 m. The TR-Orca was used to record

the 5-channels required to implement the modal beamformer and all processing was

done offline in Matlab.

The experiment was carried out in the anechoic tank at Defence Research and Devel-

opment Canada’s Atlantic Research Centre (DRDC). This tank is cylindrical in shape

with a 7.3 m diameter and with a depth of 4.5 m. DRDC Atlantic also provided a

broadband piston-actuated acoustic source and the equipment required to drive it. A

side view of the experimental deployment is shown in Figure 3.15 and a bottom view
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Specifically, for this experiment hydrophone 4 was used as the φ = 0 position and

hydrophone 5 was used as the φ = π
2
position. The omnidirectional channel, d,

was produced using hydrophone 1, while the cosine and sine amplitude modes were

produced using the 4 outer hydrophones, 2 to 5, as in Figure 3.9.

Specifically, because M = 4 for the 5-element UCCA, the maximum order that could

be produced was bmax = 1, and so only 2 amplitude modes were produced, cos(φ) and

sin(φ). The array element weights for these modes were produced using Eqns. (3.53)

and (3.54), respectively. To implement wideband modes an FIR filter was designed

to approximate the mode dependent output filter in Eqn. (3.55) with n = 1. Using a

sampling frequency of 20 kHz, the filter designed had a bandwidth of 9 kHz from 0.4

to 9.4 kHz and so the beamformer was limited to these frequencies.

In the experiment the TR-Orca was connected to an actuator that could rotate it.

The actuator controller was zeroed at the position shown in Figure 3.16. However,

during post-processing it was found that the zeroed position was off by about -11◦

degrees, and so the uncorrected data was used.

In order to test the frequency response of the modal beamformer, a number of short,

windowed constant frequency pulses were sent. Specifically, pulses were sent at 2 kHz,

5 kHz and 9 kHz, where the lower limit was set by the transmitter and the upper

limit was determined by the beamformer. In order to determine the modal weights,

first-order cardiod beamforming was applied.

Beam patterns showing the attenuation of the beamformed pulses with respect to the

omnidirectional channel for the three frequencies were created for angles of arrival of

0◦ and 60◦ and for two different pattern parameters, p = 0.5 and p = 0.3. These

plots are shown in Figure 3.18 and the subcaption indicates the original angle of

signal arrival, φ, as well as the corrected angle of arrival, φc. The ideal response is

plotted with the measured response as a reference to show the close match between

the measured and theoretical polar patterns. These beam patterns were created by

steering the beamformer to different angles by varying φ̄ between [−180, 180] and

calculating the power of the recorded pulse.

These plots demonstrate that the modal beamformer closely approximates the ideal

Cardiod beamformer at all measured frequencies. This indicates that the theory

presented in Section 3.3 is valid. Specifically this means that amplitude modes are

being implemented properly and that the mode dependent output filter, Hn(φ) does

in fact produce amplitude modes that are wideband and frequency invariant. This is
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Figure 3.17: Polar patterns with p=0.5 measured using short, constant frequency
pulses. Red is the ideal response, blue is the measured 2 kHz pattern, black is the
measured 5 kHz pattern and turquoise is the measured 9 kHz pattern.

demonstrated by the constant beam pattern for all frequencies and the fact that they

closely match the ideal beam pattern. These plots also demonstrate the ease with

which a Cardiod pattern can be steered as all of the beam patterns were produced by

electronically rotating the beamformer rather than physically rotating it. Using the

first order Cardiod beamformer in Eqn. (3.60), this only required 4 multiplication

and 2 addition operations.

While experiments were only carried out for a first order system due equipment lim-

itations, if more circumferential elements were available then better beam patterns

with narrower main beams and lower side lobe levels could be produced. However for

the rest of this work, and specifically the simulations run in Chapter 4 that make use

of the modal beamformer, bmax is limited to 1 as this is what has been experimentally

demonstrated.
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Figure 3.18: Polar patterns with p=0.3 measured using short, constant frequency
pulses. Red is the ideal response, blue is the measured 2 kHz pattern, black is the
measured 5 kHz pattern and turquoise is the measured 9 kHz pattern.
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Chapter 4

Sparse Directional Channel

Estimation using Orthogonal

Frequency Division Multiplexing

This Chapter introduces a receiver design that makes use of a UCCA along with

orthogonal frequency division mutliplexing (OFDM) in order to produce a sparse

directional channel estimate of a time-varying channel that can be used to equalize

the received signal. The effects of time-variance on the transmitted OFDM signal are

studied and along with the modal beamformer are used to produce a representation of

a received cluster arrival that has a delay, time-scaling factor and direction of arrival.

This representation of the received signal is then used to create a sparse estimation

problem and simulation results are presented to show the benefit of using this sparse

approximation technique as well as the benefit of adding directionality to the channel

estimate.

Section 4.1 presents the theory behind OFDM and discusses why it is a suitable choice

for a delay-spread channel. The effect of time-variance on the received OFDM signal

is also discussed. Section 4.2 introduces the compressed sensing problem and creates a

compressed sensing dictionary based on the time-varying OFDM model for use in the

sparse approximation environment. Section 4.3 concludes the Chapter by presenting

simulation results to show the improvement of the proposed estimation technique over

the classic least squares estimator.
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4.1 The Effect of a Time-Varying Channel on OFDM

Signals

The underwater acoustic channel so far has been dealt with only in terms of its

physical effect on any transmitted signal. This Section focuses specifically on the

effect of the UAC on an OFDM modulated signal and the distortions it produces on

the received signal. Section 4.1.1 introduces OFDM and explains why OFDM is the

preferred method of communication over delay-spread channels. Section 4.1.2 then

looks at the specific effects of the time-varying UAC on an OFDM signal in order to

determine how the received signal needs to be equalized.

4.1.1 Orthogonal Frequency Division Multiplexing

Single-carrier communication schemes use a number of different modulation tech-

niques to transmit data over a channel centered around a single carrier frequency,

fc. When the channel consists of multiple path arrivals, or is spread in the delay

domain, then the received signal first needs to be equalized to mitigate the effects of

the channel before it can be demodulated to increase the chance of proper reception

of the data. If we consider only a delay spread channel that is not time-varying, then

the passband channel can be represented as a simplification of Eqn. (2.5),

h̃(τ) =
Nc∑

c=1

acδ(τ − τc). (4.1)

If the delay spread, or maximum delay of the channel, τmax, is smaller than the

duration of a single transmitted symbol, Tsym, then the effect of the channel can

be removed by a single complex multiplication. This assumes the received signal is

sampled at the proper position. This means the channel is represented as a single

complex tap, which is often referred to as frequency-flat fading because the Fourier

transform of the single tap channel model leads to a flat response in the frequency

domain. An example of a frequency flat channel is shown in Figure 4.1a.

However, as the data rate increases or the delay spread of the channel increases, then

Tsym < τmax and the channel can no longer be treated as a single tap and rather needs

to be treated as a channel with multiple taps. This leads to frequency selective fading

as the Fourier transform of shifted and scaled delta functions produces a varying
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another, this is shown in Figure 4.2a. The drawback of this is that if a number of

channels are to be implemented in parallel then the bandwidth required for this is

quite high. A second method that can be used to choose the sub-carrier spacing is

such that at a sub-carrier frequency of interest no other sub-carrier affects the value.

Or, the effect of all other sub-carriers at the sub-carrier of interest is zero. Using this

method, much narrower bandwidths can be obtained when compared to FDM [4].

f

|di[0]|

f0

|di[1]|

f1

|di[NB − 1]|

fNB−1

(a) Spectrum of an FDM signal.
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2
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|di[−NB

2
+ 1]| |di[NB

2
− 1]|

(b) Spectrum of an OFDM signal.

Figure 4.2: Comparison of the spectrum of an FDM and OFDM signal. This shows
that by using orthogonal sub-carriers the bandwidth required for the transmitted
signal can be reduced.

To show how OFDM is implemented, it can be assumed that the length of each block

of data, d[i], to be transmitted is NB, where i is the block index. So, NB sub-carriers

with frequencies fk are required for each block of data to be transmitted and each

sub-carrier is modulated using a single symbol di[k]. If the length of each block of

data is chosen to be TB, then the spectrum of each sub-carrier can be computed using

the Fourier transform of the time-domain sub-carrier, si,k(t), modulated using the
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symbol di[k]. If di[k] is represented using a scaled rect function and this rect function

is modulated onto a sub-carrier with a frequency of fk, then the resulting signal si,k(t)

can be written as

si,k(t) = di[k]
1

TB

rect
( t

TB

)

ej2πfkt. (4.2)

The frequency domain representation of si,k(t) is then

Si,k(f) = F {si,k(t)} = di[k]
sin(πTB(f − fk))

πTB(f − fk)
= di[k]sinc

(
TB(f − fk)

)
. (4.3)

This time domain to frequency domain conversion is shown in Figure 4.3.

|si,k(t)|

tTB

2
−TB

2

|di[k]|

f

Si,k(f)

fk

fk − 1
TB

fk +
1
TB

|di[k]|

Figure 4.3: Conversion of the time domain sub-carrier, si,k(t), to the frequency domain
representation, Si,k(f).

So in order to ensure that no other sub-carrier interferes at the kth sub-carrier, the

sub-carrier frequencies can be chosen to be orthogonal over the period of interest,

TB. Using the frequency domain representation of the kth sub-carrier in Figure 4.3,

Si,k(f), it can be seen that this corresponds to a sub-carrier spacing of 1
TB

. Therefore,

the sub-carrier frequencies can be written as

fk = f0 +
k

TB

where k = −NB

2
, . . . , 0, . . . ,

NB

2
− 1 (4.4)

where f0 can be chosen to place the center of the spectrum of the OFDM signal in

different locations.

With this spacing, over a block duration of TB all frequencies will be orthogonal to

each other. The continuous spectrum of an OFDM transmitted signal can then be
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written as

Si(f) =

NB/2−1
∑

k=−NB/2

di[k]sinc
(
TB(f − fk)

)
. (4.5)

and is shown in Figure 4.2b, which when compared to the FDM spectrum shows that

an OFDM signal will have a smaller bandwidth.

The baseband transmitted time domain OFDM signal can be written as a sum of all

the orthogonal sub-carriers

si(t) =

NB/2−1
∑

k=−NB/2

di[k]e
j2πfkt for 0 ≤ t ≤ TB. (4.6)

If si(t) is sampled with a sampling frequency of Fs = NB

TB
, then the time can be

expressed as

t =
n

Fs

=
nTB

NB

, where n = 0, 1, 2, . . . , NB − 1. (4.7)

The sampled OFDM signal can then be expressed as

si[n] =

NB−1∑

k=0

d′i[k]e
j2πf ′

k
nTB
NB =

NB−1∑

k=0

d′i[k]e
j2πkn
NB for n = 0, 1, 2, . . . , NB − 1, (4.8)

where fk in (4.6) has been replaced with

f ′
k =

k

TB

where k = 0, 1, . . . , NB − 1, (4.9)

and d′i[k] represents di[k] circularly shifted to the left by NB

2
. f ′

k still contains all of

the same frequencies as fk, assuming f0 = 0, due to aliasing when the frequencies are

sampled at the sampling frequency, Fs. The data symbols, di[k], are circularly shifted

to ensure the data matches the proper sub-carrier frequencies.

With the proper sampling of the OFDM baseband time domain signal the conversion

from the frequency domain to time domain can be recognized as the inverse discrete

Fourier transform (iDFT) of the data symbols in the ith block. The transmitter can

therefore be implemented efficiently using the inverse fast Fourier transform (iFFT).

Similarly, the received time domain OFDM baseband signal can be received using the

discrete Fourier transform (DFT), which can also be implemented efficiently using the
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fast Fourier transform (FFT) [41]. A block diagram of a simple OFDM transmitter

and receiver is shown in Figure 4.4.

i

F

F

T

h(t, τ)

F

F

T

ˆd[i]

S

\
P

d[i]

e−j2πfct ej2πfct

si(t) s̃i(t) r̃i(t) ri(t)

Figure 4.4: A complete OFDM system transmitting a single block of data, d[i], using
a carrier frequency, fc. S \P indicates a serial to parallel converter which takes the
baseband time domain received signal, ri(t), and turns it into a parallel stream of
data for the FFT operation.

For the Sections that follow it is also convenient to express the OFDM modulation and

demodulation process in terms of matrix operations. The received baseband block of

data in the frequency domain can be represented as

d̂[i] = FNB
H(t)F†

NB
d[i] + v, (4.10)

where d̂[i] represents an estimate of the ith data block. FNB
is the NB × NB DFT

matrix with the (ith, jth) entry

1√
NB

e
−j 2πij

NB where 0 ≤ i, j ≤ NB − 1. (4.11)

F†
NB

is the Hermitian transpose of the DFT matrix which forms the iDFT. v is additive

white noise, and H(t) is the baseband time-domain channel matrix that represents the

convolution of the transmitted baseband time domain signal with the channel.

One of the important features of OFDM is that as long as H(t) is an NB × NB

circulant matrix with (ith, jth) entries h((i − j) mod NB), then the channel matrix

will be diagonalized in the frequency domain. Here, h(n) is the baseband channel of

length Lh sampled at the symbol rate and padded with NB − LH zeros [42],

h = [h(0), h(1), . . . , h(Lh − 1), 0, . . . , 0]T . (4.12)
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If this is the case, then Eqn. (4.10) can be simplified using the fact that

FNB
H(t)F†

NB
= DH , (4.13)

where DH is the diagonal matrix

DH =








H(0) · · · 0

...
. . .

...

0 · · · H(NB − 1)








(4.14)

with entries

H(k) =

Lh−1∑

n=0

h(n)e
−j 2πnk

NB , k = 0, 1, . . . , NB − 1. (4.15)

Eqn. (4.10) then becomes

d̂[i] = DHd[i] + v. (4.16)

This shows that when the channel matrix is circulant each sub-carrier can be treated

as a narrowband channel with no other sub-carriers affecting its value. Therefore,

each sub-carrier has a constant complex scaling term that can be equalized using a

simple single tap equalizer. As an example, for the kth sub-carrier the scaling factor

would be H(k), and so the equalization factor using a zero forcing equalizer would

be 1
H(k)

to obtain the original transmitted symbol [4]. Another way of stating this is

that as long as the sub-carriers remain orthogonal when passed through the channel,

each sub-carrier can be demodulated using a single tap equalizer.

If the channel matrix is not circulant in the time domain, then the received signal

becomes

d̂[i] = Hd[i] + v, (4.17)

where H is the channel matrix in the frequency domain that does not only contain

diagonal entries and so accounts for the interference among sub-carriers.

While OFDM does provide a method to overcome delay-spread channels by extending

the length of each symbol on a sub-carrier, the delay-spread as well as time-variance

of the channel can still affect the performance of an OFDM system by destroying
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the orthogonality of the sub-carriers. So in order to equalize effectively the effects of

delay-spread and time-variance on an OFDM signal need to be understood.

4.1.2 The Effect of Time-Varying Channels on OFDM Sig-

nals

In the Section above it was shown that if the channel matrix can be considered to

be circulant, then the task of equalizing a received OFDM signal is quite simple and

involves a single tap equalizer for each sub-carrier. However, a time-varying and delay-

spread channel ruins the orthogonality of the sub-carriers and leads to a non-circulant

channel matrix. This channel can be represented in the passband as

h̃(t, τ) =
Nc∑

c=1

acδ(τ − τc(t)). (4.18)

This is the same as the model in Chapter 2 (Eqn. (2.20)), with the time-scaling

replaced by a time-varying delay so it can still be represented as a channel impulse

response.

This channel model is often simplified using two assumptions. The first is that the

length of a single OFDM block, TB, is much smaller than the coherence time of the

channel. So, for a single OFDM block ac(t) is approximately constant. The second

assumption is that over a single block of data the change in delay is approximately

linear, which is equivalent to saying the velocity along each path arrival remains

constant. This is the same assumption made in Chapter 2 to produce the received

signal in Eqn. (2.20). With these assumptions, the CIR becomes

h̃(t, τ) =
Nc∑

c=1

acδ(τ − τc(t)), (4.19)

where

τc(t) = τc −
vc
cw

(t− τc) = τc + (1− αc)(t− τc). (4.20)

The channel can also be expressed at baseband by accounting for the effect that the

time-variance and delay has on the carrier frequency before down conversion [43]. The
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baseband channel is then

h(t, τ) =
Nc∑

c=1

acδ(τ − τc(t))e
−j2πfcτc(t). (4.21)

The time-varying channel with delay-spread causes two main problems for OFDM

signals, inter-block interference (IBI) and inter-carrier interference (ICI). IBI is similar

to ISI encountered with single carrier systems. If the symbols in Figure 4.1 are

replaced with OFDM blocks, d[i], then any delay-spread will cause the OFDM blocks

to interfere with each other. Again, the extent of this interference is dictated by the

delay-spread of the channel, τmax.

A simple way to mitigate IBI is to insert a guard interval between each transmitted

OFDM block of length TG seconds. As long as TG > τmax, then no IBI will be

encountered. While this is an effective way to mitigate IBI, ICI can still occur due to

the delay spread and so the symbols inserted in this guard interval need to be chosen

carefully to avoid this.

ICI occurs when the sub-carriers lose their orthogonality and the channel matrix loses

it’s circulant property in the time domain, and thus its diagonal property in the

frequency domain. This happens both due to delay-spread as well as time-variance.

The mechanism by which the orthogonality is lost is similar in both cases, however it

is useful to separate the two as the solutions to overcome each are different.

Section 4.1.2.1 deals with how delay-spread causes ICI, and then presents two methods

to overcome this ICI by choosing specific symbols to fill the guard interval and by

decoding properly. In that discussion, it is assumed that the delays do not vary with

time and τc(t) = τc in Eqns. (4.19) and (4.21). Section 4.1.2.2 then presents how

ICI is caused by the time-variance of the channel by allowing the delays to vary with

time. While no solution is presented, a method of modeling this ICI is discussed. If

the relevant parameters of the cluster arrivals can be estimated, then this model can

be produced and used to equalize the ICI caused by time-variance.

4.1.2.1 ICI Due to Delay-Spread

Figure 4.5a shows the reception of an OFDM block through a delay spread channel at

time t = TB, where the reception began at time t = 0. In this simple two tap channel,

the block has been fully received on the first tap, but has not yet been fully received
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from the second tap.

r̃(t)

τ0 τ1

TB − τ1

TB

d0[i]

d1[i]

t = TB

(a)

R̃(f)

fk
f

1
TB

1
TB

1
TB−τ1

1
TB−τ1

d0[i]

d1[i]

(b)

Figure 4.5: Reception of an OFDM block on a two-tap delay-spread channel. a) shows
the delay between receptions and b) shows the effect of this delay in the frequency
domain for a single sub-carrier, k, if the received time domain signal r̃(t) only uses
samples from t = [0, TB].

With an OFDM period of TB, the first tap contains the full OFDM block period

while the second tap only contains a period of TB − τ1 over the same duration. Figure

4.5b shows the received signal in the frequency domain for a single sub-carrier, k.

The frequency domain representation shows that while the first tap arrival maintains

orthogonality with all other sub-carriers by maintaining the proper zero locations, the

second tap arrival will not. This is due to the fact that the period of the received

signal on the second tap is reduced and so the zeros are shifted to 1
TB−τ1

. This means

that the signal from the second tap will affect neighboring sub-carriers, causing ICI.

The ICI due to delay spread can be removed if the symbols that fill the guard interval

are chosen properly. This means that the guard interval can be chosen to maintain

the orthogonality of the received OFDM block. To do this, two methods can be used,

cyclic prefixing or zero-padding. Both methods are discussed in detail in Appendix E

and are summarized here.

Cyclic prefixing is the most common technique used and can be found in most text-

books that discuss OFDM [4], [41], [44]. In a cyclic prefixed signal the last Ncp

baseband samples, corresponding to a length of TG seconds, of the time domain sig-

nal are prepended to the beginning of the signal. This makes the transmitted signal
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cyclical as long as Ncp > M , where

M =
τmax

Ts

(4.22)

is the discrete delay-spread. If the received signal is sampled properly, then a full

block reception will be received over each tap and the ICI due to delay spread will

be eliminated. The main drawback with cyclic prefixing is that it involves filling the

guard interval with symbols, which consumes power to transmit [42].

While this isn’t a problem for channels with small delay spreads, for channels with

large delay spread like the UAC this involves transmitting a substantial amount of

excess power. A less common method to overcome this ICI is called zero-padding,

which appends Nzp zeros to the end of the baseband time domain transmit signal.

If the the received signal is processed using the overlap-and-add (OLA) algorithm

summarized in Appendix E [42], [45], then it can be shown that this will also remove

the ICI introduced by the delay-spread channel without the need to transmit excess

power. Again, Nzp must be larger than the discrete delay spread of the channel, M .

The main drawback of using the OLA algorithm is that it increases the noise floor

due to the extra number of time-domain samples that are required [45].

So by choosing the guard interval such that TG > τmax both IBI and ICI due to

the delay-spread in the channel can be eliminated. In order to eliminate ICI, either

cyclic prefixed OFDM or zero-padded OFDM can be used. This makes the channel

matrix diagonal in the frequency domain leading to simple single-tap equalization for

all sub-carriers. However, in channels such as the UAC where the delay-spread can be

larger, zero-padded OFDM is often preferred as it requires less power for transmission.

Throughout the rest of this chapter it is assumed zero-padded OFDM is used unless

otherwise noted. This assumption means that ICI due to delay-spread should not be

present, and only ICI due to time-variance needs to be accounted for and modeled in

the channel estimation process.

4.1.2.2 ICI Due to Time-Variance

While ICI due to delay spread is removed using a guard interval, ICI due to time-

varying channels cannot be removed as easily because the channel matrix can no

longer be made circulant. The time-varying channel cannot be made circulant as the

channel is no longer stationary, and so at each instant in time the delays have moved.
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A shift in time will therefore be accompanied by a shift of the delays. To account for

ICI from a time-varying channel, the effect of this time-variance on each sub-carrier

needs to be taken into account.

The problem caused by a TV channel is best understood through the diagrams in

figure 4.6. The wavefront of a propagating wave travels at the speed of sound in

water, cw. If both the receiver and transmitter are stationary and the transmitted

signal has a period TB, then the received signal will also have a period TB with a time

delay between transmission and reception. However, if there is movement between

the receiver and transmitter represented by a constant velocity, vc, then this period

will change.

r̃(t)

ττc

TB

d[i] cw

vc

c′w = cw + vc

(a)

r̃(t)

τc

T ′
B

d[i]

τc − vc
c
TB

(b)

Figure 4.6: Images showing the effect of a time varying channel on a received OFDM
signal. (a) shows the relative velocity of the path and the OFDM block. (b) shows
how the received signal is dilated as the path moves away during reception.

Figure 4.6a shows that when the cluster path is moving, the effective speed of prop-
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agation of the wave along the path is

c′w = cw + vc. (4.23)

In figure 4.6a the velocity is negative due to the increasing path length, following the

definition in Chapter 1. When the wave front finally reaches the moving receiver then

the reception period is increased, or dilated, due to the new velocity of the wavefront

caused by the moving tap. This is shown in Figure 4.6b. The new period can be

related to the cluster path time-scaling factor, αc, by

T ′
B =

TB

αc

. (4.24)

If the path length is decreasing and αc > 1 then the period of the received signal

decreases. If the path length is increasing and αc < 1 then the period of the received

signal increases. The effect of a channel with time-varying delays on an OFDM signal

can be found by passing a baseband ZP-OFDM signal, szp,i(t) through the baseband,

time-varying channel in Eqn. (4.21) to form the received signal

rzp,i(t) = szp,i(t) ∗ h(t, τ) =
Nc∑

c=1

Acszp,i(αc(t− τc))e
−j2πfc(1−αc)t, (4.25)

where

Ac = ace
−j2πfcαcτc . (4.26)

To determine the effect that this channel has on each sub-carrier, it is informative

to look at a single reception path in the frequency domain. The cth path in the

continuous frequency domain can be represented as

Rzp,i,c(f) = Ac
1

αc

Si(f
′)e−j2πτcf ′

where f ′ =
f + (1− αc)fc

αc

(4.27)

and Si(f) is the spectrum of the transmitted OFDM signal for the ith data block.

This assumes no ICI has been introduced due to the delay-spread.

To determine the effect that the time-varying channel has on the received signal it is
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useful to expand the argument of Si(f
′). Specifically,

Si(f
′) =

NB/2−1
∑

k=−NB/2

di[k]sinc
(
TB(f

′ − fk)
)
. (4.28)

and so the argument of the sinc function becomes

TB(f
′ − fk) = TB

(
f + (1− αc)fc

αc

− fk

)

=
TB

αc

(f + (1− αc)fc − αcfk) . (4.29)

The time-varying channel therefore has two main effects on each sub-carrier which are

shown in Figure 4.7. The first is that the sinc function has been frequency-scaled, or

the zeros of each sub-carrier have been shifted from integer multiples of 1
TB

, excluding

fk = 0, to integer multiples of αc

TB
. The second effect is that each sub-carrier has

been shifted by (1− αc)fc − αcfk. This shift is due to the time-scaling of the carrier

frequency after down conversion and the time-scaling of the sub-carrier itself.

R̃i,k(f)

fk
f

fk2

fk2 − αc

TB
fk2 − αc

TB

S̃i,k(f)

Figure 4.7: The effect of a time-varying channel on a single sub-carrier. The sub-
carrier is shifted to fk2 = (1 − αc)fc − αcfk and has been scaled with new zero
crossings at αc

TB
.

The cumulative effect of a time-varying channel is that if the received signal in the

frequency domain, Rzp,i(f), is sampled at the original frequencies, fk, due to the use

of the FFT to receive the signal, the output will be a combination of neighboring

data symbols weighted by their shifted and frequency-scaled sinc functions. This

constitutes ICI. So, in order to produce the channel matrix in the frequency domain,

H, the effect of all sub-carriers on the sub-carrier of interest needs to be taken into

account. The (m, k) entry of the frequency domain channel matrix for a single cluster
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arrival can then be defined as

[Hc]m,k = Ac
1

αc

Si,k(f
′
m)e

−j2πτcf ′
m where f ′

m =
fm + (1− αc)fc

αc

, (4.30)

m is the sub-carrier of interest and k is the neighboring sub-carrier. The channel

matrix produced by each path is then completely described by the complex amplitude,

delay, and time-scaling factor associated with the path.

For a complete representation of the channel, the interference of all sub-carriers with

the sub-carrier of interest can be calculated. This corresponds to −NB

2
≤ k ≤ NB

2
− 1.

However, if αc is close to 1 then most of the entries in Hc will be very small with most

of the energy concentrated on the main diagonal, and only a few off diagonal values

of Hc will be of relevance. So, Hc can be approximated by considering only D off

diagonals, which corresponds to m−D ≤ k ≤ m +D. When k is limited to contain

only D off diagonals, the new matrix can then be expressed as Hc,D.

With respect to the sub-carriers, this means that only the ICI from the D closest

sub-carriers on either side of the sub-carrier of interest is considered when modeling

the effect of the channel. The channel matrix can be extended to include all cluster

arrivals in a multipath environment simply by summing over all cluster path arrivals

HD =
Nc∑

c=1

Hc,D. (4.31)

So, the UAC channel presents both IBI and ICI due to delay-spread and time-variance.

The IBI and ICI due to delay-spread can be removed simply by inserting a guard

interval between OFDM blocks and choosing the symbols that fill this guard interval

properly. The ICI caused by the time-variance of the channel however can not be

removed as easily. In order to accurately model the effect that a time-varying channel

has on a received OFDM block the effect of the frequency scaled and shifted sub-

carriers on the sub-carrier of interest need to be taken into account. This model

can then be used to equalize the received symbol. The main difficulty now is how

the parameters of the channel can be estimated so that this channel matrix can be

produced and used to eliminate the ICI introduced by the time-varying channel.
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4.2 Sparse Estimation and Its Application to OFDM

in the Underwater Acoustic Channel

Sparse estimation, which is also commonly referred to as compressed sensing, is a

method for solving underdetermined linear systems when it is assumed that the so-

lution is sparse in some domain. The goal of this Section is to introduce sparse esti-

mation and explore how it can be used to estimate the underwater acoustic channel.

Section 4.2.1 explores the basic theory behind sparse estimation. Section 4.2.2 then

presents a practical algorithm that can be used to recover sparse solutions. Lastly,

Section 4.2.3 presents a formulation of a sparse estimation problem for the underwater

acoustic channel.

4.2.1 Sparse Estimation Basics

Sparse estimation is one method of solving an underdetermined system where the

number of measurements, m, is less than the number of parameters under considera-

tion, n, having previous knowledge that the solution is sparse in some domain. The

general formulation of a sparse estimation problem is

y = Ax+ v, (4.32)

where y ∈ R
m is the measurement or observation vector, A ∈ R

m×n is the sensing

matrix, often called an overcomplete dictionary in estimation problems with each

column referred to as an atom, x ∈ R
n is the unknown sparse atom weight vector to

be estimated and v is a noise vector of length m that is assumed to be independent

and identically distributed (i.i.d) [46].

The problem with an underdetermined system is that generally there are infinitely

many solutions, assuming rank(A) = m. The null space of of the dictionary matrix

A is therefore non-trivial and no solution is unique. There are methods to solve these

problems, such as minimum-norm solutions that solve for the unknown vector x by

minimizing the selected norm [46]. The minimum squared `2 norm is given by

x̂MN = arg min
x

‖x‖22 subject to Ax = y, (4.33)

where ‖x‖22 is the squared Euclidean norm and measures the squared distance from
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the origin to the point defined by x. The solution to this equation is the value of x

that minimizes the squared distance and can be found using [46]

x̂MN = AT (AAT )−1y. (4.34)

x̂MN is a best estimate with respect to the `2 norm, but does not take into account

the known sparsity of the solution. Sparse approximation on the other hand produces

a unique solution provided a noise free measurement using the prior information that

the solution must be sparse. A signal is said to be sparse if most of the elements in

the vector are zero, or if most of the energy of the signal is represented by only a

few elements. So, for a vector x of length n, the number of non-zero elements in the

vector must be much less than n. This can be expressed as

‖x‖0 = |supp(x)| � n, (4.35)

where the `0 norm is simply the number of elements in, or cardinality of the set. A

signal is said to be k-sparse if ‖x‖0 ≤ k. If the signal is known to be sparse, the best

approach to finding the coefficients is through an `0 optimization

x̂`0 = arg min
x

‖x‖0 subject to Ax = y, (4.36)

where the minimization is now with respect to the number of elements in x rather

than the squared distance as in (4.33).

Provided a noise free measurement, sparse estimation should provide a sparse, unique

solution, x, which has k or fewer elements. In order to prove this generally involves

studying the structure of the sensing, or dictionary matrix A, which is covered in

most introductory texts to sparse approximation or compressed sensing such as [46]

and [47]. The focus instead now shifts to an algorithm that promotes a sparse solution.

4.2.2 Sparse Estimation Using Orthogonal Matching Pursuit

There are a number of algorithms used to solve sparse estimation problems. The one

discussed in this Section and that is used to test the estimation technique presented

in Section 4.2.3 is Orthogonal Matching Pursuit (OMP). OMP is a greedy algorithm
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that attempts to solve

x̂`0 = arg min
x

‖x‖0 subject to ‖y−Ax‖22 ≤ ε. (4.37)

The term greedy indicates that at each step the algorithm makes an optimal choice

with respect to some criterion without regard for future iterations [47].

It should be noted that for this estimator, the general problem that we are trying

to solve is the approximation, x̂, of the sparse vector x given the noisy measurement

vector y, as shown in Eqn. (4.32). This explains the substitution of the condition

Ax = y with the `2 norm ‖y−Ax‖22 ≤ ε in (4.37) [47], where ε is some small number

that allows the estimate to deviate slightly from the actual solution due to the noise

in the measurement.

Orthogonal matching pursuit is an iterative algorithm that updates the estimation x̂

at each iteration by choosing the column of A, a, that maximally reduces the error

between the approximation and the measurement. For a 1-sparse signal that contains

only 1 element, the approximation of y corresponds to a single weighted column of

the dictionary matrix A. The error can then be written as

e(j) = min
z
‖zaj − y‖22 = ‖y‖22 −

(aT
j y)

2

‖aj‖22
, for j = 1, 2, ..., n, (4.38)

where aj is the jth column in A and z is the columns weight that maximally reduces

the error.

The index j is the column of A that reduces the error most significantly and is found

using

j = arg min
j

e(j) = arg max
j

|aT
j y|

‖aj‖22
. (4.39)

The index j, or atom, in A that minimizes the residuals is then given a weight in

the approximation vector x̂, while all the other elements of the estimation vector

remain at zero [46]. For a 1-sparse solution this would constitute the end of the

algorithm. However, for a k-sparse signal this procedure can be repeated k times. As

this procedure is repeated the measurement vector can no longer be used to determine

the error in Eqn. (4.39). Instead, a residual vector, r, is created which shows the

residual error between the estimation Ax̂ and y. So the residual error is

r = y−Ax̂. (4.40)
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It should be noted that if the exact sparsity of the signal is unknown then the algorithm

can continue to iterate until the power in the residual is below some predetermined

value, ‖r‖2 ≤ ε.

The OMP algorithm functions by first finding the column that minimizes the current

residual vector as in (4.39). This column is then added to the support set of x̂, Λ,

which contains the indices that correspond to the non-zero elements in x̂. A matrix

AΛ is then constructed using the columns that correspond to the set Λ, and the

measurement vector is orthogonally projected onto this matrix. The weights from

this projection, x̂Λ can then be mapped backed to their respective positions in x̂ and

the residual vector can be updated to include the new element in x̂. The algorithm

can then continue until ‖r‖2 ≤ εOMP or the number of elements required in x̂, k, is

satisfied. The benefit of this technique is that the elements in x̂ are always orthogonal

to the columns that have already been selected and so no column is ever selected

twice [47].

The algorithm can be summarized as

Algorithm 1: Summary of OMP algorithm.

Data: Record y

Initialize: r = y, x̂ = 0, Λ = ∅, k = 0

while stopping criterion not met do

j = arg maxj
|aT

j y|

‖aj‖22

Λ = Λ ∪ j

x̂Λ = arg minv ‖AΛv− y‖22
r = y−AΛx̂Λ

k = k + 1

end

Return: x̂

Where in the algorithm x̂Λ indicates the entries of x̂ at rows Λ and AΛ indicates the

submatrix in A created using only the columns specified by the indices in Λ.

The stopping criterion can be chosen to either be a set number of elements, k, in x̂, or

it can also be chosen so that the residual error is minimized below a certain threshold,

‖r‖22 < εOMP . Using either stopping criterion, if the solution is in fact sparse than the

OMP should produce a sparse estimate, x̂, provided the proper dictionary matrix is

used.
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4.2.3 Sparse Directional Underwater Acoustic Channel Esti-

mation

With the theory of sparse estimation briefly introduced along with a basic algorithm

that can be used to recover sparse estimates, in this Section it will be applied to

a directional channel estimation problem using an OFDM system. Section 4.2.3.1

deals with how a non-directional sparse channel estimate can be produced using a

known transmitted OFDM block. Section 4.2.3.2 then deals with how pilot, or known

information can be inserted among the unknown data in order to estimate the channel

on a block-by-block basis. Section 4.2.3.3 concludes by introducing how directional

information can be attained from the channel estimate using the output channels from

a modal beamformer.

4.2.3.1 Non-Directional Sparse Channel Estimate

A non-directional sparse channel estimate can be produced by first looking at the

baseband representation of the received OFDM data block. This was described in

Section 4.1.1 as

d̂ = Hd+ v, (4.41)

where d and d̂ are the transmitted and received data blocks, respectively, H is the

channel matrix in the frequency domain that implements the effects of a time-varying

channel, and v is the additive noise. The block index, [i], has been dropped from the

data blocks for notational convenience as we only consider the estimation for a single

block.

Ideally, we would like to create an estimate of H, knowing the received data d̂ and

some, or all of the data in d. However, the current form of the problem doesn’t show

explicitly how the channel can be estimated, and so does not show the sparsity in the

solution.

In Chapter 2 it was shown that due to the low speed of propagation of acoustic waves

in water as well as the sparsity of reflectors in the environment, the UAC channel can

be considered sparse with respect to delay since only a few, Nc, cluster path arrivals

occur during a reception. In Section 4.1.2 it was also shown that in order to properly

model a time-varying delay-spread channel three parameters of each cluster path
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are required, the complex amplitude, Ac, the initial delay, τc, and the time-scaling

factor, αc. Therefore each cluster path can be represented as a triplet of information

{Ac, τc, αc} [20], [21], [48].

If the channel is represented as a sum of all possible delay, time-scale pairs each

with a complex amplitude, Ac, then only a few of these pairs should have non-zero

amplitudes due to the sparsity of the channel. To make this problem tractable both

the path delays and time-scaling terms need to be discretized [20], [21], [48], [19]. The

time-delay can be discretized into Nτ values following

τ ∈
{

0,
TB

λNB

,
2TB

λNB

, ..., TG

}

, (4.42)

where TB

NB
is the baseband time resolution of the OFDM system, TG is the length of

the guard interval which corresponds to the maximum delay resolution, and λ is an

integer oversampling factor, where λ ≥ 1.

The time-scaling factor can also be discretized using Nα discrete values as

α ∈ {−αmax,−αmax +∆α, ...,−αmax −∆α, αmax} , (4.43)

where ∆α = Nα−1
2αmax

and αmax is chosen based off of the maximum velocity expected to

be encountered.

Discretizing the delay and time-scales as shown above leads to NτNα possible com-

binations, where NτNα � Nc. Due to this sparsity, in the estimation process only a

few values of Ac corresponding to specific delay, time-scale pairs should be identified.

The received data symbol can then be expressed in terms of a sum of OFDM blocks

being received along each possible cluster path as

d̂ =
Nτ−1∑

i=0

Nα−1∑

j=0

x[iNα + j]H{τi,αj},Dd+ v, (4.44)

where x[·] represents an element in x, which is the weight vector containing Ac for

each cluster path and is assumed sparse. H{τi,αj},D corresponds to the channel matrix

estimate formed using Eqn. (4.30) with the values τc = τi, αc = αj, and using D off

diagonals.

Using the representation of the received signal in Eqn. (4.44), Eqn. (4.41) can then
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be restated as

d̂ = Ax+ v, (4.45)

where x is the NτNα × 1 sparse weighting vector and A is the NB ×NτNα dictionary

matrix of the form [20], [21], [48],

A =
[

H{τ0,α0},Dd, . . . ,H{τ0,αNα−1
},Dd, . . . , (4.46)

H{τNτ−1,α0},Dd, . . . ,H{τNτ−1,αNα−1
},Dd

]

.

This is a sparse estimation problem as the goal becomes finding the few entries in

x that are non-zero and estimating their value. Specifically, this sparse estimation

problem corresponds to finding the few paths over which data has traveled that, when

summed together, produce the best approximation of d̂. The entries in x provide the

required triplet of information for each channel cluster path arrival as the actual

value corresponds to Ac and the position of this value in the vector x corresponds to

a specific delay, time-scale pair.

4.2.3.2 Insertion of Pilot Data Into an OFDM Block

An OFDM block is a grouping of NB data symbols which are modulated and transmit-

ted using OFDM. In OFDM systems there are two main forms of channel estimation,

block estimation and comb estimation. Block estimation is used in slow fading chan-

nels where the channel remains almost the same for many blocks of transmitted data.

Therefore, in block estimation a whole OFDM block is transmitted with known data,

or pilot symbols, and then the channel estimation is done using this full block and

the estimate is used to equalize the unknown data blocks that follow [49]. With block

estimation, Eqn. (4.45) can be used directly.

Unfortunately, the UAC is fast-fading as the channel varies from block to block. So a

new channel estimate is required for each block of data and this requires pilot symbols

to be inserted with the unknown data in each OFDM block in order to estimate the

channel. In most systems where the channel is considered time-invariant over the

block duration, the optimal solution is simply to insert known data at equi-distantly

spaced sub-carriers [50].

When this method is used in a time-varying channel that produces ICI, the main
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problem that occurs is that the unknown data sub-carriers interfere with the pilot sub-

carriers. The added interference on the pilot symbol reduces the estimation accuracy

[11]. A second problem that occurs is that as the channel is time-varying, the ICI

pattern needs to be estimated as well in order to estimate the time-scaling factor

introduced by the channel. So the pilot design needs to be able to facilitate ICI

estimation as well.

The pilot design method used here accounts for the interference from the data sub-

carriers and the need to estimate the ICI pattern by inserting a guard band of zeros,

or nulls, on sub-carriers on either side of the pilot sub-carriers [19]. The length of this

guard interval is chosen based off of the degree of the ICI encountered in the channel,

D, as presented in Section 4.1.2. Specifically, 2D zeros, or nulls, can be placed on

either side of the pilot. In doing so, there are D zeros on either side of the pilot that

should have no interference from the unknown data and so these nulls can be used to

estimate the ICI pattern. This pilot method will be referred to as the zero-padded

(ZP) pilot method and is shown in figure 4.8.

Figure 4.8: Block layout for the ZP pilot method. Diamonds represent pilot symbols,
open circles represent nulls and closed circles represent the unknown data symbols.

The ZP method has a length of 4PN + PP symbols, where PP is the number of pilot

symbols, or tones, used and PN is the number of null tones placed on either side of

the pilot. PN has been used to replace D as the number of nulls can be chosen to be

more or less than the number of off diagonals in the channel matrix. To create the

final OFDM block of data, the pilot symbols, nulls and unknown data symbols are

combined to form a sub-frame.

This sub-frame is chosen to have a length NSF and so the number of data symbols

that can be included in each sub-frame is limited to Ns = NSF − (4PN + PP ). To

ensure that at least one symbol is included in each frame, NSF should be chosen so

that NSF > 4PN + PP . Lastly, assuming NB is chosen to be a power of 2, then NSF

should also be chosen to be a power of 2 so that an integer number of sub-frames are
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used to produce the final transmit OFDM block. An example of a sub-frame with

NSF = 16 using the ZP pilot method with PP = 1 and PN = 2 is shown in figure 4.9

Sp[i]Sp[i− 2] Sp[i+ 2]

Figure 4.9: OFDM subframe with NSF = 16 using the ZP pilot method with D = 2.
The pilot indices, Sp, are included to show how the pilots are chosen for a ZP pilot
symbol.

In order to use the final OFDM block for channel estimation, the pilots as well as the

unknown data need to be incorporated into the channel estimation in Eqn. (4.45). To

do this, the dictionary needs to be created so that it only relies on the pilot symbols.

This is done by replacing the full block of transmitted data, d, originally used in Eqn.

(4.46) to create the dictionary matrix, with the OFDM block dS. dS is the transmit

OFDM block in which all the data symbols have been set to their average value of

zero and only the pilot tones have been retained [50]. The nulled dictionary matrix

is then produced as

AN =
[

H{τ0,α0},DdS, . . . ,H{τ0,αNα−1
},DdS, . . . , (4.47)

H{τNτ−1,α0},DdS, . . . ,H{τNτ−1,αNα−1
},DdS

]

,

where the subscript N indicates the data has been nulled out.

The compressed sensing problem can then be expressed as

d̂ = ANx+ v, (4.48)

where d̂ is still the measured block of data at the output of the FFT receiver used in

Eqn. (4.45). Therefore, the only difference between (4.48) and (4.45) is the dictionary

that is used.

100



4.2.3.3 Directional Sparse Channel Estimate

Until now, the directionality of the received signal has been ignored and the channel

estimate has focused on estimating the complex amplitude, time delay and time-

scaling factor associated with each cluster path. Adding directionality to the wideband

channel estimate relies on using the outputs of the modal beamformer in order to add

a fourth parameter to the channel estimation, the cluster path angle-of-arrival, φc.

Two observations are required in order to incorporate modal beamfroming easily into

the channel estimate. The first is that as long as the amplitude mode outputs from

the UCCA , d, cos(nφ), and sin(nφ), maintain their frequency invariance over the

frequency range of interest then in the frequency domain the effect of each mode

on an OFDM signal can be represented as a constant scaling term. The second

observation is that with these frequency invariant modes, modal beamforming can be

related to sensor based narrowband beamforming techniques that make use of linear

arrays operating at the array design frequency [35].

This means that techniques derived for angle of arrival estimates with linear arrays

can be translated to a UCCA through the use of modal beamforming. The use of

modes rather than sensors also presents two benefits. One benefit of working with

modes of the UCCA rather than discrete sensors is that while for a linear array the

unambiguous range only covers π radians, for a circular array the unambiguous range

covers the full 2π radians. A second benefit is that while for a linear array these

modes apply only to small frequency ranges, with a well designed modal beamformer

these direction of arrival estimates can be applied over large frequency ranges.

The directional channel estimate can be related to the non-directional channel esti-

mate by adding a new search parameter to Eqn. (4.44), the angle-of-arrival, φ. In

order to be able to estimate the angle-of-arrival the modal channels also need to be

incorporated into this estimate. The addition of this search parameter can be written

as

d̂n =

Nφ−1
∑

i=0

Nτ−1∑

j=0

Nα−1∑

k=0

x[iNτNα + jNα + k]ejnφiH{τj ,αk},Dd+ vn, (4.49)

where ejnφi is the mode of interest, d̂n is the received OFDM block on the nth mode in

the frequency domain, vn is the noise on the received signal from the nth mode, Nφ is

the number of angles included in the search, and φi is the discretized angle-of-arrival
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with values of

φ ∈ {−π, −π +∆φ . . . , π −∆φ , π} . (4.50)

∆φ can be chosen so that the set contains Nφ values as ∆φ =
Nφ−1

2π
.

Eqn. (4.49) shows that by adding directionality to the estimate, a new dictionary

needs to be created. This new dictionary can related back to the original dictionary

in Eqn. (4.46) by

An =
[
ejnφ0A, . . . ejnφNφ−1A

]
, (4.51)

where −bmax ≤ n ≤ bmax. The complex modes used here can be produced using the

real amplitude modes as

e±jnφ =







cos(nφ)± j sin(nφ), when |n| > 0,

d, when n = 0.
(4.52)

Using the new modal dictionaries, An, along with the received modal outputs, d̂n,

the compressed sensing problem becomes the same as that in Eqn. (4.45), with the

angle-of-arrival as a new output parameter. However, this estimate only applies to

the output of one mode.

To create the final directional channel estimate a new sparse estimation problem can

be produced by stacking the received data and modal dictionaries for each mode, and

treating the channel estimate as a single estimate using all of the modal channels.

The new complete modal (CM) estimation problem then becomes

d̂CM = ACMxCM + vCM , (4.53)

where

d̂CM =
[
d̂
T

−nmax
, . . . , d̂

T

0 , . . . , d̂
T

nmax

]T
(4.54)

is the stacked received modal vector and

ACM =
[
AT

−nmax
, . . . ,AT

0 , . . . ,AT
nmax

]T
(4.55)

is the stacked modal dictionary matrix. The entries of the sparse weight vector from
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Eqn. (4.49), xCM , now correspond to a quadruplet of information for each cluster path

arrival: the complex amplitude, the delay, the time-scaling factor, and the direction

of arrival,
{
Ac, τc, αc, φc

}
, respectively.

The directional sparse channel estimator presented here is similar to the one presented

in [12], with a few key differences. First, the time-variance in [12] is represented using

a constant Doppler shift rather than a time-scaling operation which better represents

a wideband signal with significant time-variance. Second, here modal beamforming is

used while in [12] a linear array is used with each sensor simply treated as wideband.

While modal beamforming can be made inherently wideband, maintaining a constant

aperture with a linear array for a wideband signal can be difficult and is not dealt

with in [12]. Third, while the work in [12] works in the time domain, this estimator

works in the frequency domain using OFDM signals.

Similar to the non-directional estimate presented in Section 4.2.3.1, the directional

estimate can make use of the pilot design in Section 4.2.3.2 as well. However, the

dictionary matrix defined in (4.51) for each channel now needs to be produced using

the nulled dictionary matrix for each channel,AN , rather than the full block dictionary

matrix, A. These nulled modal dictionaries can then be used to produce a nulled

complete modal dictionary that can be used with the received signal.

4.3 Simulation Results

This Section presents results from simulations that were carried out in order to confirm

the theory introduced in this Chapter. Specifically, this involves looking at different

methods for estimating the channel and then equalizing the received data.

Section 4.3.1 introduces the simulation setup that was used for these simulations, any

additional information pertaining to a specific simulation is contained within that

simulations Section. Section 4.3.2 presents results that show the effect of accounting

for time-variance when equalizing a signal that has passed through a time-varying

channel. Section 4.3.3 then presents results that focus on the performance gains

that are attained using the sparse non-directional channel estimator to estimate a

time-varying channel for equalization when compared to more commonplace channel

estimation techniques for OFDM. Section 4.3.4 concludes the Chapter by showing

that the directional sparse channel estimator is capable of estimating directionality

and by demonstrating the performance gains that can be attained when a directional
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channel estimate is used over a non-directional channel estimate.

4.3.1 Simulation Parameters

In order to run simulations to test the performance of the channel estimators presented

in this Chapter, an OFDM system as well as a time-varying channel needed to be

implemented. For these simulations the OFDM system used the following parameters:

• OFDM block length, NB = 512 symbols

• OFDM block duration, TB = 250 ms

• OFDM bandwidth, BOFDM = 2048

• Gaurd interval, TG = 62.5 ms (filled using zero-padding)

• Carrier frequency, fc = 4096 Hz

• QPSK modulation of the sub-carriers

• Overlap-and-add (OLA) receiver

• Pilot sub frame with

– Length NSF = 8

– Number of pilot symbols, PP = 2

– Number of nulls, PN = 1

– 2 data symbols per frame

In these simulations either a predefined channel or a stochastic channel was used. In

both cases the time-varying channel was implemented using the TVFDL presented

in Chapter 2. In the case of the predefined channel, the parameters are presented in

their respective Sections. If a stochastic channel was used then the stochastic model

in Chapter 2 was used with the following parameters:

• Number of cluster arrivals, Nc = 6

• Number of paths per cluster arrival, Np = 10

• RMS delay, τRMS = 0.005 s

• Max delay, τmax = 0.01 s

• Coherence time, Tc = 2 s
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• Minimum velocity, vmin = 0 m/s

• Maximum velocity, vmax = 15 m/s

• Minimum angle of arrival, θmin = −π

• Maximum angle of arrival, θmax = π

For the simulations that required a directional receiver the same UCCA that was

used in the experiment presented in Section 3.4 was used. So the simulated UCCA

had 5-elements with a radius of 0.0381 meters. The directional channel was also

implemented using a TVFDL capable of implementing the delays required for the

different receive elements due to the different angles-of-arrival of the cluster paths.

Lastly, the figure of merit that is used in these simulations to determine how well a

receiver functions is the bit error rate (BER), which compares the equalized received

data to the actual transmitted data. If a single bit of the received data is wrong, the

BER is increased by 1. The final BER is then normalized by total number of unknown

data bits transmitted to achieve a BER between 0 and 1.

4.3.2 Consideration of ICI in Equalization

The first simulation that was run looked at how taking ICI into consideration affected

the performance of a receiver. To do this, a channel was implemented that had a

single cluster arrival with an amplitude of 1 and a delay of 0. The time-scaling factor

associated with this cluster arrival was then varied, creating different levels of ICI. In

Section 4.1.2 it was noted that most of the energy of the channel, and thus the ICI,

can be represented using only D off diagonals of the channel matrix in the frequency

domain, H.

So, in this simulation in order to determine the effect that ICI has on a receiver, OFDM

blocks were transmitted through the single tap channel with different values of α. The

received signals were then equalized using oracle equalizers that produced channel

matrices with different numbers of off diagonals considered. An oracle equalizer is

an equalizer in which the channel information is perfectly known. Therefore, the

only variable that effected the equalization was the amount of ICI considered by the

equalizer, D.

For this simulation a block of random data was sent rather than the pilot OFDM block

outlined in Section 4.3.1 as channel estimation was not required. The simulation was
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run for α values between 0.95 and 1.05, which corresponds to velocities between -75

and 75 m/s. The BER at the output of each oracle equalizer using a different value

of D was then calculated and the results are shown in Figure 4.10.
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Figure 4.10: Plot of BER with respect to α to demonstrate the effect of considering
ICI in the equalization process.

The plot in Figure 4.10 demonstrates that as the time-scaling increases or decreases

away from 1, the number of off diagonals required to properly equalize the data also

increases. This implies that as the time-scaling factor increases or decreases, the

amount of ICI that needs to be accounted for in order to properly decode the received

data increases as well.

While the speeds used in this simulation are high, Figure 4.10 shows that in order

to maintain a BER below 0.1 even for alpha values between 0.99 and 1.01, at least

10 off diagonals should be used to equalize the channel. This plot also only shows

the effect from one cluster path. More complex channel matrices formed by channels

with more cluster arrivals may further degrade the performance of the receiver, and

so more off diagonals may be useful. Lastly, no noise was added in this simulation

which will further degrade performance depending on the amount of noise added.

The plot in Figure 4.10 also demonstrates that the model for ICI presented in Section

4.1.2 accurately represents the effect of time-variance of the channel on an OFDM

signal as the channel mixing matrix was able to equalize the effects caused by the
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single tap channel implemented using the TVFDL channel.

4.3.3 Sparse Non-Directional Channel Estimation

With the verification that the model for the effect of ICI due to time-variance on an

OFDM signal was correct, the next simulation that was run looked at the performance

of the non-directional sparse channel estimator, presented in Section 4.2.3.1, in a time-

varying channel. To run this simulation the OFDM system and stochastic channel

presented in Section 4.3.1 were used. In order for the the estimator to work however,

a dictionary matrix needed to be produced.

The dictionary matrix that was used for this simulation had a delay oversampling

factor of 4 and α values between 1 and 1.01 with a step size of 0.00025. This produced

82 τ values and 21 α values, leading to a dictionary matrix with 1722 columns.

The plot in Figure 4.14 shows the results from simulations that were run to determine

the effect that noise has on a receiver using the non-directional sparse channel estima-

tion for equalization. This method uses the OMP algorithm and the non-directional

dictionary matrix presented above in order to estimate the channel. For each channel

estimate a number of receivers were then implemented that produced the estimated

channel matrix, H, using a different number of off diagonals. The plot in Figure

4.14 therefore also shows the effect of using a different number of off diagonals in the

equalization process.

For each signal-to-noise (SNR) value, 20 different channels were simulated and for

each channel 20 noise iterations were run at the specified SNR. The BER for each

receiver at each SNR value was then calculated as an average over all channels and

noise realizations.

In Figure 4.11 a least-squares (LS) estimator as well as an oracle estimator are also

included and used as receivers as a reference. The least-squares estimator, taken from

[49], is most commonly used in frequency-selective channels and does not account for

ICI due to time-variance. This estimate therefore acts an upper bound on the sparse-

approximation estimators. The oracle estimator has perfect channel information and

creates the channel matrix following (4.31). The oracle estimate therefore acts as a

lower bound on the sparse approximation channel estimators.

Figure 4.11 shows three important things. The first is that the non-directional sparse

channel estimation does improve the receiver performance dramatically by taking
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Figure 4.11: Plot of BER with respect to SNR to different number of off-diagonals
considered. The least-squares estimator and oracle estimator are included as a refer-
ence.

into account ICI due to time-variance. The BER has been reduced from a value of

0.47 for the LS estimator, down to a value of close to 0.17 using the sparse estimate

with D = 10. Secondly, similar to the results shown in Figure 4.10, this plot again

shows that the performance of the system improves with the number of off diagonals

considered. Although the BER is still above 0.1 with D = 10, this is uncoded data

and with a proper forward error correction (FEC) code this BER could be reduced

to 0 for each OFDM block.

Lastly, Figure 4.11 shows that a noise floor is encountered by both the oracle and

sparse approximation receivers. In [50] it was noted that if the unknown data is close

to the pilot symbols then the data symbols act as noise. For these simulations, the

distance between the pilot and unknown data was only 2, which likely lead to the

noise floor encountered in Figure 4.11.

So, the simulation results in Figure 4.11 show that taking into account ICI caused

by the time-variance of the channel by using the non-directional sparse estimation

technique improves the channel estimate. This leads to better performance of the

receiver with respect to BER when compared to the classic LS technique.
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4.3.4 Sparse Directional Channel Estimation

The last two simulations were run to show that the sparse directional channel estima-

tor can estimate the angle-of-arrival of different cluster paths and also to show that

the directional estimate can be used to further improve the performance of a receiver.

In order to produce directional information the UCCA outlined in Section 3.4.1 was

used and the directional TVFDL was used to implement the channel. Using this

UCCA, only modes up to order 1 could be produced. The OFDM system outlined in

Section 4.3.1 was also used here in order to facilitate the directional channel estimate.

In order to use the directional sparse channel estimator a directional dictionary was

created using Eqn. (4.55) and the non-directional dictionary specified in Section 4.3.2.

The directional dictionary contained the -1, 0 and 1 complex modes and the direction

of arrival, φ, was discretized between −π and π in steps of π
36

radians.

For the first simulation a known channel was implemented using the directional

TVFDL. Table 4.1 contains the parameters for each cluster arrival in the channel.

Table 4.1: Cluster parameters for the the directional channel implemented using a
TVFDL.

Cluster
Arrival

Amplitude Delay
(ms)

Time-Scaling
Factor (α)

Direction of
Arrival (rads)

1 1 0 1.0043 -0.2
2 0.5 4 1.00 0.2
3 0.4 6.5 1.0068 0
4 0.2 9 1.00 0.4

In order to determine the accuracy of the sparse directional channel estimator, a

single OFDM frame was transmitted through the directional channel and a channel

estimate was made. The SNR for this simulation was set to 20 dB, and using the

channel estimate two plots were created. The first is a channel impulse response that

shows the ideal response, using the values from Table 4.1, and the estimated response

using 5 estimated paths. This plot therefore shows how accurate the estimate is with

respect to amplitude and delay. This CIR is shown in Figure 4.12.

An interesting observation from Figure 4.12 is that while the delays associated with

the estimated cluster paths are all similar to the actual delays, the amplitude of the

first estimated cluster arrival is off and instead is broken into two arrivals. The reason

for this is that while the delay of 0 for the first cluster falls into an exact discrete
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Figure 4.12: Channel impulse response of the actual cluster arrivals in the simulated
directional channel and the estimated cluster arrival using the sparse directional chan-
nel estimation technique.

delay value, the angle-of-arrival and time-scaling factor do not. Therefore two taps

are used with different angles-of-arrival and time-scaling factors in order to estimate

the true angle-of-arrival and time-scaling values. To demonstrate this, a weighted

average of the angle-of-arrival and time-scaling value was produced using the first two

tap amplitudes, and the values came out to be -0.2127 and 1.0043, respectively. These

values are very close, or exactly the same as the known channel values. It should also

be noted that the estimated value of the time-scaling on the third channel tap, which

is the only other tap to have time scaling, was 1.0070, which is close to the actual

value of 1.0068.

While the CIR shows the accuracy of the estimate with respect to delay, the directional

plot in Figure 4.13 shows the accuracy of the estimate with respect to angle-of-arrival.

In this plot however, the error between the estimated angle-of-arrival and actual angle-

of-arrival is larger than the error with respect to delay. This is due to the fact that

the angle-of-arrival was discretized using steps of π
36
, which only produces 73 discrete

values to cover the full range of the UCCA from −π to π. Better estimates would

be produced if the step size was decreased at the expense of increasing the dictionary

size.
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Figure 4.13: Plot of estimated cluster arrivals with respect to direction of arrival.

The simulations above show that the sparse directional estimation technique is capable

of accurate estimates of the delay, time-scale factor and angle-of-arrival for different

cluster arrivals. To show the benefit of adding the angle-of-arrival to the estimation

using a modal beamformer, the same simulation that was run in Section 4.3.2 for the

non-directional sparse channel estimation to determine the effect of noise on the BER

was run again using both a directional and non-directional estimate.

Specifically, this last simulation looked at two receivers. The first estimated the

channel using the non-directional sparse channel estimator and then equalized the

data using this channel estimate with ten off diagonals. The second receiver estimated

the directional channel and then beamformed in the direction of the strongest cluster

arrival using a first-order Cardiod beamformer, presented in Section 3.3.3, with p=0.3.

The beamformed output was then equalized using the directional channel estimate

with the beam pattern overlayed in order to account for the effect of the beamformer.

This channel estimate was then used to equalize the beamformed output using ten off

diagonals as well. The results from this simulation are shown in Figure 4.14.

This simulation shows that by adding directionality to the estimate, at high SNR

the directional receiver is able to perform better than the non-directional estimate by

about 0.05. Adding directionality to the estimate has two benefits. First, by knowing
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Figure 4.14: Plot of BER with respect to SNR for the non-directional and directional
sparse channel estimate.

the direction of the strongest, and assumed direct, cluster arrival a beamformer can be

steered in that direction to help reduce the effect of mulitpath interference. Secondly,

adding the extra modes to produce the stacked received modal vector helps to refine

the search through the dictionary as a higher correlation will be attained when a

cluster arrival matches an atom in the directional dictionary.

The results of the directional channel estimate simulation could therefore be further

improved by increasing the number of modes available by increasing the size of the

UCCA. This would improve the beamforming ability of the UCCA, leading to a

narrower main beam that further reduces the multipath interference. This would

also help to improve the dictionary gain as the stacked received modal vector would

increase in size as well.

These simulation therefore show that compared to classic techniques for OFDM equal-

ization, accounting for the time-variance in the channel using sparse estimation tech-

niques helps to improve the performance of the system. These simulations also showed

that adding directionality to the estimator using a modal beamformer helps to further

improve the channel estimate by reducing the multipath and increasing the diversity

gain. The performance of a wideband OFDM receiver working in the UAC with

mobility can therefore be greatly improved by accounting for time-variance and direc-
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tionality at the receiver by using an appropriate sparse directional channel estimation

technique.
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Chapter 5

Conclusion

In this thesis an OFDM receiver design was proposed to enable reliable, high speed

acoustic communication in time-varying underwater acoustic channels. Section 5.1

contains a summary of the results presented in this thesis that led to the final receiver

design. Section 5.2 then discussed future work that could be done to build upon the

work that has been presented. Section 5.3 concludes the thesis with final remarks.

5.1 Summary of Contributions

The three main contributions of this thesis were covered in Chapters 2, 3 and 4. The

TVFDL was presented in Chapter 2 as a method of implementing a wideband UAC

model that includes time-variance. While there are other options for implementing a

stochastic channel model, Section 2.3 demonstrated analytically that the TVFDL can

implement the time-scaling operation associated with the wideband UAC as well as a

time-varying time-scaling operation. This was then confirmed through simulation in

Section 2.4. While the channel model presented in Chapter 2 did not make use of a

time-varying time-scaling factor, the ability to change this value during the simulation

could make the channel model much more realistic for longer simulations. Specifically,

it was noted that over longer time periods the channel will not be wide-sense stationary

which could be modeled by changing the time-scaling factors and delays associated

with each tap with respect to time. This is accomplished much more easily using the

TVFDL than with other models.

Chapter 3 presented modal beamforming as a alternative method for beamform-
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ing wideband underwater acoustic signals using a uniform concentric circular array

(UCCA). Modal beamforming differs from the classic techniques outlined in Section

3.2 as first wideband orthogonal modes are produced, and then these modes are com-

bined in order to produce the wideband beamformed output. The first benefit of this

procedure is that once the wideband modes are produced any number of beams can

be created with different beam patterns. The second benefit is that producing one

beam only requires weighting each mode by a single value, and then summing these

weighted modes.

In Section 3.3.2, amplitude mode processing was discussed as a method of weighting

the elements of the UCCA using real values. This method produces the required

modes for modal beamforming when real signals impinge on the array. Section 3.4

then presented experimental results that demonstrated that the required first-order

modes could be produced underwater using a 5-element UCCA with amplitude mode

processing. By deploying a receive array in a controlled tank, the theoretical patterns

were validated using real measurements for different look directions, φ, and patterns,

p. These experiments also demonstrated that the modes were wideband as the desired

patterns were produced at 2, 5, and 9 kHz.

Chapter 4 combined the study of the wideband channel in Chapter 2 and the modal

beamformer from Chapter 3 in order to produce a directional estimate of the time-

varying channel that could be used to equalize a received OFDM signal. Section

4.3 then presented simulation results that demonstrated the benefit of accounting for

time-variance and directionality in the channel when equalizing an OFDM signal.

In Section 4.2 an OFDM system was produced, and it was shown that by accounting

for time-variance and using the angle-of-arrival of the signal, the performance of the

system, measured using the bit error rate (BER) between the transmitted and re-

ceived data, could be greatly increased when compared to classic OFDM equalization

techniques such as least-squares (LS) equalization. It was also shown that accounting

for different levels of ICI also improved the performance. A receiver using a sparse

directional channel estimate in the frequency domain that considered the 10 closest

sub-carriers on either side of the sub-carrier of interest to account for ICI (D = 10),

produced a BER of approximately 0.12, while the LS receiver that used an LS esti-

mate of the channel had a BER close to 0.47. This is an improvement in BER by a

factor of 3 and with the proper forward error correction (FEC) method, this could be

reduced further.
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Using the results from Chapter 4 and the OFDM system parameters from Section

4.3.1, the rate of the system in a time-varying channel is only 410 bits/s. However,

this system only uses 2 kHz of bandwidth. If the bandwidth of the signal is increased

to 8 kHz by increasing the block size to NB = 2048 then the rate increases by 4 to

1638 bits/s. If the carrier frequency is chosen to be around 5 kHz, then the maximum

frequency of the signal is below 10 kHz and this can still be used with the UCCA

outline in Section 3.4.

5.2 Future Work

There are a number of areas in which the work above can be expanded and improved

upon and these are discussed briefly here. In Chapter 2 a stochastic channel model

was presented for the time-varying channel. The drawback with this model is that

while it makes use of measured results for some parameters, this measured data was

attained using receivers and transmitters that were static. Therefore these parameters

are extrapolated for use in the time-varying channel model. Currently, there has not

been a comprehensive study of the underwater channel for wideband communication

in a time-varying channel due to intentional velocity. This is one area where work

could be done that would be relevant to a number of groups.

In Chapter 3 modal beamforming was discussed, but only in its 2-dimensional imple-

mentation using circular harmonics. Due to this, signals were limited to arrive in one

plane. The work with circular harmonics can be extended to spherical harmonics [35],

which would give the receiver an ability to estimate the angle-of-arrival of a signal in

3-dimensions. A spherical array would however be required in order to produce the

desired spherical harmonics.

In Chapter 3 the frequency dependency of the modes was also discussed and it was

shown that the modes encounter zeros at different frequencies. These zeros are im-

possible to equalize as it involves applying infinite gain. As a result, the bandwidth

of the beamformer is limited. This could be solved two ways. First, by considering a

baffled array, in which the elements are placed onto a rigid structure through which

the impinging waves cannot propagate [35]. And second, by using directional elements

in the array, such as vector sensors, rather than omni-directional elements [51].

In Chapter 4 there are three specific areas where improvements could be made. The

first is in the sparse estimation algorithm used. In this work OMP was used, however
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in [20] it was shown that basis pursuit algorithms may provide better results at the

expense of algorithm complexity. The second area is in the dictionary matrix design

and specifically how the sampling parameters are chosen for the delay, time-scaling

factor and angle-of-arrival. For the simulation in Section 4.3 the sampling parameters

were chosen in an ad-hoc fashion that showed good performance. However, for dif-

ferent OFDM parameters and channel conditions one would expect that an optimal

choice in parameters could lead to a smaller dictionary size with optimal performance.

The last area where improvements could be made is in the design of the OFDM frame

that is used for the block channel estimation. Specifically, this refers to how the

pilots and nulls are distributed in the frame. In [50] a comparison is made between

systematic and random pilot insertion into the OFDM block, however in that work no

nulls are used. Therefore, there is room to explore the effect of placing the pilots and

nulls in different fashions within the frame and with different densities. For different

channels there should be a different number of pilot blocks required and in order to

attain the best estimate there should also be an optimal way to place these pilots

within the frame.

5.3 Concluding Remarks

In this thesis, a time-varying UAC channel was modeled and simulated and its effects

on an OFDM system were studied. This study was carried out to continue to de-

velop the knowledge base surrounding underwater communications, with a focus on

high data rate communication when intentional transmitter and receiver velocity are

involved in the channel. In this work it was shown that by accounting for the effects

of time-variance on an OFDM signal and by including directionality in the channel

estimate, the performance of the receiver can be greatly improved when compared to

common OFDM equalization techniques. The data rate of the OFDM system sim-

ulated in this work could only be extrapolated to 1640 bits/s with a bandwidth of

8 kHz and a spectral efficiency of roughly 0.2 (bits/s/Hz). However, by addressing

some of the future work outlined in Section 5.2, specifically increasing the usable

bandwidth of the modal beamformer and optimizing the pilot insertion technique as

well as the dictionary design, it can be expected that the data rate could be increased

significantly.
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Appendix A

Underwater Acoustic Doppler

Profile

In mobile communications a common Doppler profile that is used to select fp is Jake’s

profile, which assumes a uniformly distributed AoA about the receiver [15]. However,

in underwater channels for a single cluster arrival this is not the case as the AoA for

different paths within a cluster is in fact very similar. A Doppler profile suggested

from underwater measurements carried out for a stationary receiver and transmitter

in Norway is a double-sided stretched exponential function of the form [26]

S(f) = Ae−(
|f |
a
)B , (A.1)

where A is a scaling factor and a and B control how the exponential function spreads.

When B = 1 a regular double sided exponential is obtained and with B = 2 a

Gaussian shape is obtained.

One important thing to note is that these measurements look at surface reflections

only. So ideally this Doppler spreading function should only be applied to paths that

interact with the surface. However, due to the fact that mobility is assumed in this

model, this is applied to the bottom reflection as movement of a cluster path along

the bottom surface could produce similar results, as was justified in Section 2.1.

The main reason for this choice is that currently there has been no work done on

quantifying how the bottom reflection varies when the receiver and transmitter are

non-stationary. In fact no work to date has been performed on quantifying how the

surface and bottom reflections change in channels that involve substantial transmitter-
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receiver motion, and so largely unsupported assumptions need to be made.

Therefore, a double-sided stretched exponential is used as the Doppler spectrum for

the time-variance of all clusters excluding the direct path, which has no interaction

with a boundary. To make this function easier to work with, B can be set to 1

to produce a double-sided exponential function, and a can be chosen to produce a

desired coherence time, Tc. The coherence time of a cluster arrival is a common

measure of how long each fading tap in a channel remains correlated with itself with

respect to time, and so is directly related to the Doppler spread of each cluster arrival

which describes the frequencies involved in this fading. The longer the coherence

time, the longer the tap amplitude remains relatively constant and the lower the

frequency components involved in the fading process. When the coherence time is

short, the amplitude of the cluster varies quickly and the frequencies involved in the

fading process become larger. Therefore, the coherence time and width of the Doppler

profile, or Doppler spread, are considered inversely proportional.

The coherence time is related to the correlation of the fading taps, and so is best

described using the time correlation function for the amplitude of each cluster arrival,

Rc(t) [5]. The correlation function with respect to time is the Fourier pair of the

Doppler spectra, or Doppler profile, and so can be expressed as

R(t) = F
−1{S(f)}, (A.2)

where the subscript indicating the functions dependence on the cluster arrival has

been dropped as the same profile is assumed for all cluster arrivals. So, the correlation

function for all clusters is then

R(t) =
2A
a

4π2t2 + ( 1
a
)2
. (A.3)

In order to quantify the Doppler profile a coherence time, Tc, and a desired correlation,

or coherence level at this time, R(Tc), can be specified. Using these values the Doppler

profile parameters a and A can be determined. To simplify this calculation, similar

to the power delay profile the Doppler profile can be treated as a pdf as long as the

integral of the function is 1. To satisfy this, A can be chosen as

A =
1

2a
, (A.4)
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which simplifies the correlation function so that it only depends on a,

R(t) =
( 1
a
)2

4π2t2 + ( 1
a
)2
. (A.5)

Using the desired coherence time and coherence level, Eqn. (A.5) can be reformulated

to solve for a,

a =

√

1 +R(Tc)

4R(Tc)π2T 2
c

. (A.6)

A common measure of coherence time is when the coherence power drops below 3

dB, or when R(Tc) = 0.5. The value of a given a 3 dB coherence time can then be

expressed as

a =

√

1.5

2π2T 2
c

. (A.7)
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Appendix B

Time-Varying Channel Sounding

Channel sounding is the process of completely determining the channel impulse re-

sponse (CIR) by transmitting a known block of data and then properly processing the

received signal. The transmit baseband signal, s(t), is usually chosen to be a maxi-

mum length pseudo-random noise(PN) sequence so that correlative channel sounding

can be used [5], [27].

A PN sequence is used rather than a linear frequency-modulated (LFM) chirp train

due to the fact the ambiguity function of the PN sequence shows a more distinct peak.

While more details about this can be found in [52], this means that a PN sequence

shows a distinct correlation peak with respect to both delayed and Doppler shifted

versions of itself. LFM’s only have a distinct peak with respect to delay, but this peak

broadens as the Doppler shift increases. Therefore, PN sequences are preferred over

LFM sequences when Doppler shifts or time-scaling may be encountered.

The basic theory behind correlative channel sounding is that if a passband PN-

sequence, p̃Tx(t), is transmitted through a passband channel, h̃(t, τ), and then the

received signal, p̃Rx(t), is matched filtered by the original PN sequence, p̃Tx(t), then

the output of this filter should be

ˆ̃h(t, τ) = p̃Tx(t) ∗ p̃Rx(t) = p̃Tx(t) ∗ (p̃Tx(t) ∗ h̃(t, τ)) (B.1)

= (p̃Tx(t) ∗ p̃Tx(t)) ∗ h̃(t, τ),

where ˆ̃h(t, τ) represents an estimate of the passband channel.

If p̃Tx(t) is a maximum length PN sequence then the auto correlation function, (p̃Tx(t)∗
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p̃Tx(t)), is closely approximated by a Delta function at τ = 0. So, the output from

the matched filter should be

ˆ̃h(t, τ) = δ(0) ∗ h̃(t, τ) = h̃(t, τ), (B.2)

or the channel impulse response itself. A more detailed examination of this process

can be found in [27].

In order to create a passband PN sequence, a complex baseband PN sequence can be

created and then this sequence can be upconverted to the desired passband region.

In order for this sequence to be able to properly sound a channel, there are a number

of parameters that can be set.

The first is the baseband chip rate, Rchip, which dictates the delay resolution, ∆τ , of

the channel sounder. The delay resolution is inversely proportional to the chip rate,

and so increasing the chip rate will yield better delay resolution. This also increases

the bandwidth of the sounding signal.

The length of the sounding sequence, Tseq, is another parameter that can be set. The

longer the sequence, the longer the delay axis which yields better estimates of the

length of the CIR. The trade off is that as Tseq increases and the length of the delay

axis increases, the resolution with respect to time decreases as now a new channel

estimate is only produced every Tseq seconds. Choosing the length of the signal to

be just above the approximate delay-spread of the channel will produce the best

results. The cluster arrivals can then be fully determined without aliasing and the

time resolution of the channel will be the best it can be. Ideally, the sounding sequence

will be shorter than the coherence time of the channel so that a smooth progression

of the channel can be observed.

The last parameter that can be set is the carrier frequency of the signal, fc. This

frequency will determine where the sounding occurs in the spectrum and should cor-

respond to the spectrum that will be occupied by a transmitted signal.

Once these parameters are chosen, a complex baseband PN sequence can be produced

of length Rchip ∗ Tseq and then this signal can be modulated up to passband centered

around fc using quadrature phase shift keying (QPSK). The final signal, p̃Tx(t), can

then be transmitted through the channel and received to be processed to produce the

final CIR.

If the signal is passed through a non time-varying, or slowly time-varying channel,
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then regular correlative channel sounding should produce the desired CIR. However,

if there is substantial time-variance in the channel and the PN sequence is a wideband

signal, which most will be, then the correlative channel sounding in Eqn. (B.1) cannot

be applied directly. This is because correlative channel sounding with the original

transmit signal only applies to stationary channels, or slowly varying channels that

don’t change drastically over Tseq.

If the channel does change during Tseq then the best way to analyze the channel is

to account for these possible changes by creating a bank of correlative filters that are

matched to the time-varying PN sequence rather than just the original PN sequence.

Due to the reduced rate at baseband, often the baseband channel is easiest channel

to work with. The channel model in Eqn. (2.6) can be used to model the baseband

channel by accounting for the phase shift on the carrier frequency and the equivalent

baseband channel becomes [53]

pRx(t) =
Nc∑

c=1

Np∑

p=1

appTx(t− τc(t)− τp(t))e
−j2πfc(τc(t)+τp(t)). (B.3)

Knowing τp(t) is small and leads to time variation in the amplitude means that the

final baseband received signal can be written as

pRx(t) =
Nc∑

c=1

acpTx(t− τc(t))e
−j2πfcτc(t), (B.4)

where it is assumed that Tseq << Tc, and so the amplitude is roughly constant for a

single PN sequence.

This baseband analysis shows that if the delay associated with a cluster varies quickly

then the received baseband PN sequence will have a time-varying phase shift as well

as time-scaling. This means that the ideal matched filter will not be the original

transmitted PN sequence, but rather a time-scaled and phase shifted version of the

original signal. So, unlike a stationary channel sounder where only one matched filter

is required, for a wideband channel sounder a bank of matched filters is required

with proper time-scaling and phase-shifting. Specifically, these matched filters can be

written in terms of the transmitted PN sequence, pTx(t), as

pTx,α(t) = pTx(αt)e
−j2πfc(1−α). (B.5)
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In order to create the required bank, a minimum and maximum velocity of interest

can be chosen leading to a minimum and maximum value alpha. The step size from

αmin to αmax is then chosen so that

αstep ≤
1

2TseqRchip

. (B.6)

This states that there should be enough matched filters so that no time-scaled version

of the transmitted PN sequence is ever off in time scaling by more than half of a chip

duration. This ensures a minimum level of correlation is always attained for all time

scaled signals.

With this bank of filters, the final CIR can be produced by filtering the received signal

through all of the filters accounting for time-scaling and then combining their outputs

to produce the final CIR. Unlike the simple single correlative channel sounder, this

response can now contain time-variance, so the delays can drift with time and this

channel sounder will be able to track the movement. It should be noted that the direct

combination of the filtered outputs may not be the optimal method of combining the

filtered outputs, however this is the method that is used here when channel sounding

is completed.

While a direct combination of the filtered outputs may not be the ideal fashion of

combination after filtering, no analyses was done to determine the benefits of other

combination techniques and so direct combination will be used here.
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Appendix C

Delay-and-Sum Beamforming

For broadband signals made up of infinitely many frequency components, a single

phase shift cannot be used to model the difference in the signals between array ele-

ments as the phase shift is frequency dependent. This frequency dependence can be

seen in the phase term for the received signal on the mth circumferential array element

for a signal arriving from a direction, φ̄.

Φ = kr cos(φ̄− φm) =
ω

c
r cos(φ̄− φm), m = 1, . . . ,M (C.1)

For a broadband signal, a more appropriate measure of how the signal changes between

array elements is in terms of the frequency independent time delay with reference to

the center of the UCCA. If a signal, x(t), is transmitted, then the signal that arrives

on the circumferential sensors can be described as

xm(t) = x(t+ τm(φ̄)), m = 1, . . . ,M, (C.2)

where

τm(φ̄) =
r

c
cos(φ̄− φm). (C.3)

For a single frequency this corresponds to a single phase delay, however for a wideband

signal this time delay describes the phase shift experienced by all frequencies assuming

a non-dispersive medium. If the received signal is sampled every Ts seconds, and Ts

is chosen to satisfy the Nyquist criterion for the incoming signal, then the signal can
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be described using the Whittaker-Shannon interpolation formula:

x(t) =
∞∑

k=−∞

x[k] sinc

(
t− kTs

Ts

)

, (C.4)

where the sinc function acts as an ideal low pass filter [54]. If the sampled signal is

used in Equation [C.2], then the continuous signal on the mth element becomes

xm(t) = x(t+ τm) =
∞∑

k=−∞

x[k] sinc

(
t+ τm(φ̄)− kTs

Ts

)

m = 1, . . . ,M. (C.5)

If the continuous signal on the mth element is now sampled as well at the same rate,

Ts, then the result is [34]

xm[n] = xm(nTs) =
∞∑

k=−∞

x[k]hm,φ̄[n− k] m = 1, . . . ,M, (C.6)

where

hm,φ̄[n] = sinc

(

n+
τm(φ̄)

Ts

)

. (C.7)

In order to produce a beamformed output at some desired angle, φ̄, the outputs of

all of the array elements can be made to sum coherently at this angle. A simple way

to do this is to reverse the time delay caused by the spatial sampling operation for a

signal coming from the desired angle, φ̄. The ideal filter delay-and-sum for the mth

array element is then

fm,φ̄[n] = sinc

(

n− τm(φ̄)

Ts

)

n = 0,±1,±2, . . . ,±(J − 1)

2
(C.8)

This ideal time-delay filter can be implemented using an FIR filter if J is chosen to

be a finite number. In Equation [C.8], it was assumed J was odd. The response of

the delay-and-sum beamformer steered to an angle φ̄ then becomes

y[n] =
M∑

m=1

xm[n] ∗ fm,φ̄[n] =
M∑

m=1

J∑

k=−J

xm[k]fm,φ̄[n− k], (C.9)

where the equation could be made causal by delaying the output, y[n], by (J−1)
2
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samples.

In order to determine the response of the beamformer to both frequency and angle-

of-arrival, it can be assumed that there are an infinite number of elements along the

circle and the ideal delay filter can be replaced by a frequency dependent phase shift

operator.

D(φ, ω) =
1

2π

∫ 2π

0

F (α)ejω
r
c
cos(α−φ)dα (C.10)

where F (φ) is a weighting function that implements the desired delay when steered

in a direction φ̄,

F (α) = e−jω r
c
cos(α−φ̄). (C.11)

The resulting directional pattern can then be represented as

D(φ, ω) = J0

(

2ω
r

c
sin

(φ− φ̄

2

)
)

, (C.12)

where J0 is a Bessel function of the first kind [36], and the center element has been

given a constant weight of 0.

Plots of the theoretical and actual beam patterns for a 7-element UCCA array with

M = 6, steered toward φ̄ = 0 are shown in Figures C.1 and C.2, respectively. The

theoretical beam pattern was created using Equation [C.12] and the frequency was

limited to λmin = 2de. The actual beam pattern was created using Equation [3.24]

with filters of length J = 121 designed using [C.8].

The actual delay-and-sum beamformer does produce a beam pattern that is very

similar to the theoretical one aside from a slight ripple on the main beam as Ω
π
→ 1.

However, there are two main drawbacks. First, to change the steering angle of the

beamformer involves implementing M−1 new FIR filters, one for each circumferential

array element. So, to implement a second beam at a different steering angle, φ̄2, would

involve a second FIR filter applied to each element, and M−1 new FIR filters in total.

The second problem is that the main beam has a beamwidth that is a function of

frequency. Specifically, when the argument of the first order Bessel function, J0(z),

is roughly 1.126 the 3 dB point of the main beam is encountered. So, the 3 dB
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Figure C.1: Ideal response of the Delay-and-Sum beamformer with M = 7 and a
steering direction of φ = 0.

Figure C.2: Actual response of the Delay-and-Sum beamformer withM = 7, a steering
direction of φ = 0, and ideal interpolation filters of length J = 121 attached to each
circumferential array element.
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beamwidth of the delay-and-sum beamformer can be expressed as

BDelay-and-Sum = 4 sin−1

(
1.126c

2ωr

)

, (C.13)

which is clearly a function that is inversely proportional to frequency. So as the fre-

quency decreases, the 3 dB beamwidth increases until it encompasses the full angular

range of the array, 2π. This can be seen in both the theoretical and actual response

of the beamformer when the output begins to flatten across all angles of arrival. This

dependence of the main beam on the frequency makes the delay-and-sum beamformer

a poor choice for frequency invariant beamforming.
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Appendix D

Least-Squares Beamforming

Least-squares beamforming is another method that can be used to design the FIR

filters attached to each array element. In this method, the weight vector, w, is

designed so that it optimally fits a desired beam pattern, D(Ω, φ). To do this a

cost function needs to be designed and in this section the focus is on a weighted

least-squares (LS) cost function of the form [55]

JLS =

∫

ΩB

∫

φ

F (Ω, φ)|P (Ω, φ)−D(Ω, φ)|2dφdΩ. (D.1)

P (Ω, φ) is the beamformer response, |P (Ω, φ) − D(Ω, φ)|2 is the LS cost function,

F (Ω, φ) is a weighting function, ΩB is the normalized frequency range of interest,

[Ωmin Ωmax], and φ is the angle range of interest, which for a circular array is the full

azimuthal plane, [−π π].

In order to practically implement this approach, both the angle and normalized fre-

quency range need to be discretized. So the weighted LS cost function in Eqn. (D.1)

can be written as the summation

JLS(w) =
∑

Ωi

∑

φk

F (Ωi, φk)|wHd(Ωi, φk)−D(Ωi, φk)|2, (D.2)

where P (Ωi, φk) has been replaced by the response of the beamformer, wHd(Ωi, φk).

If desired response, P (Ωi, φk), is chosen to be 1 at a desired angle, or angles, of arrival,

φPB, for all frequencies in ΩB, and the response at all other angles of arrival, φSB, is
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chosen to be zero then this equation can be simplified to

JLS(w) =
∑

Ωi∈ΩB

∑

φk∈φPB

|wHd(Ωi, φk)− 1|2 + α
∑

Ωi∈ΩB

∑

φk∈φSB

|wHd(Ωi, φk)|2, (D.3)

where the weighting function, F (Ωi, φk), is 1 in φPB and α in φSB for all frequencies.

For real valued weights this can be written as a quadratic equation of the form [32]

JLS(w) = wTGLSw− 2wTgLS + gLS, (D.4)

where

GLS =
∑

Ωi∈ΩB

∑

φk∈φPB

DR(Ωi, φk) + α
∑

Ωi∈ΩB

∑

φk∈φSB

DR(Ωi, φk), (D.5)

gLS =
∑

Ωi∈ΩB

∑

φk∈φPB

(

dR(Ωi, φk) cos(DGΩi) + dI(Ωi, φk) sin(DGΩi)

)

, (D.6)

and

gls =
∑

Ωi∈ΩB

∑

φk∈φPB

1. (D.7)

DR(Ωi, φk) is the real part of D(Ωi, φk) = d(Ωi, φk)d(Ωi, φk)
H , and DG is the group

delay of the FIR filters used for each array element [55].

The quadratic in Eq. (D.4) can be minimized by taking the derivative with respect

to w and setting this equal to zero, which yields the optimal least-squares solution

wLS = G−1
LSgLS. (D.8)

As an example, a design was implemented for a 7-element UCCA where the desired

response was a delta function at 0 rads, φPB = 0, and 0 at all other angles. The

desired frequency range was from 0.05π to 0.5π, the weighting function variable was

α = 0.6 and the FIR filters had lengths of J = 100. The resulting beam pattern using

the weights calculated in Equation [D.8] is shown in Figure D.1

The main beam of this beamformer remains constant with respect to gain and to 3

dB beamwidth, where a width of π
4
is maintained over the whole frequency range of
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Figure D.1: Beam pattern of the 7-element UCCA beamformer with FIR filters pro-
duced using a least-squares solution with φPB = 0.

interest, as shown in Figure D.2. The side beams also remain fairly constant and have

a maximum sidelobe level of 13.5 dB.

The main drawback of this technique is that the beam pattern changes size as it is

rotated. Specifically, for a 7-element UCCA when the main beam is located at integer

multiples of φPB = π
6
, the beam pattern suffers its most severe deviations from the

beam pattern in Figure D.1. As an example, the resulting beam pattern when the

beamformer is steered to φPB = π
6
is shown in Figure D.3, which shows that the 3 dB

beamwidth of the main beam has increased to π
3
.

So while the weighted LS approach provides some attractive wideband beam patterns,

the fact that the beam patterns produced change with steering direction and that new

FIR filters are required for each array element and for each steering direction still make

this a relatively undesirable beamforming technique when multiple beams in different

directions are required.
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Figure D.2: Slice view of the beam pattern of the 7-element UCCA beamformer with
FIR filters produced using a least-squares solution. Each slice represents a frequency
sampling point.

Figure D.3: Beam pattern of the 7-element UCCA beamformer with FIR filters pro-
duced using a least-squares solution with φPB = π

6
.
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Appendix E

Cyclic Prefixing and Zero-Padding

to Remove ICI cause by

Delay-Spread Channels

There are two methods that are used to eliminate the ICI in OFDM systems due

to delay-spread channels. The first is called a cyclic prefix (CP) and is the most

commonly used method to reduce ICI due to delay spread. The idea behind the CP is

that if the linear convolution with the channel can be made cyclical, then the channel

matrix will be circulant and the sub-carriers will then be orthogonal.

To show this, the discrete baseband time-domain OFDM signal can be created using

the OFDM block of interest, d[i], and Eqn. 4.8. The resulting signal is then

si =
[
si[0], si[1], . . . , si[NB − 1]

]
. (E.1)

Cyclic prefixing takes the last Ncp entries of si, and prepends them to si to form the

new time domain baseband transmit signal with the CP [44],

scp,i =
[
si[NB −Ncp], . . . , si[NB − 1], si[0], si[1], . . . , si[NB − 1]

]
. (E.2)

The advantage of using a cyclic prefix is that the new transmit signal scp,i[n] can be

considered periodic with period NB as long as −Ncp ≤ n ≤ NB − 1. If this signal is

convolved with a discrete baseband non-time-varying channel, h[m], then the linear
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convolution becomes

rcp,i[n] =
M∑

m=0

h[m]sc,i[n−m] for n = 0, 1, . . . , NB − 1. (E.3)

This linear convolution can be represented using a circular convolution as long as

n −m ≥ −Ncp so scp,i[n] remains periodic. The lower limit occurs when n = 0 and

m = M , where M is the discrete maximum delay, M = τmax

Ts
. So as long as Ncp ≥ M ,

then this linear convolution of the cyclic prefixed signal with the channel can be

represented using a circular convolution [44]

rcp,i[n] =
M∑

m=0

h[m]scp,i[n−m]NB
= scp,i[n]~ h[n] for n = 0, 1, . . . , NB − 1, (E.4)

where scp,i[n]NB
indicates scp,i[n] repeats every NB samples and so can be represented

as scp,i[n mod NB].

This can also be restated using continuous variables. The linear convolution can be

represented using a circular convolution as long as the length of the guard interval,

Tg, filled with the the cyclic prefix is longer than the delay spread of the channel,

τmax. This circular convolution produces a circulant channel matrix and the desired

diagonal channel matrix, DH , in the frequency domain.

The operation of cyclic prefixing is shown in Figure E.1. Due to periodic nature of

the signal being transmitted as long as Tg > τmax then a full OFDM block duration

can be produced for all path arrivals, therefore maintaining the orthogonality of the

carriers and avoiding the ICI problem presented in Figure 4.5.

Practically, demodulating the cyclic prefixed signal involves recording NB +NC base-

band samples past the synchronization point for the start of the received OFDM

block. This recorded signal, rcp,i[n], is then truncated by removing the first Nc entries

and only keeping the last NB entries to form ri[n] [44]. The signal can then be passed

to an FFT of length NB for demodulation.

While cyclic prefixing is popular for channels with small delay spreads, as the de-

lay spread increases cyclic prefixing becomes less attractive as it requires constantly

sending symbols which consumes power [42]. A second alternative is zero-padding the

signal. Zero padding is a simple operation where Nzp zeros are added to the end of
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r̃cp,i(t)

τ0 TG

TB

d0[i] CP

d1[i] CP

t = TB + TG

Figure E.1: Reception of a cyclic prefixed transmit signal, sc,i(t). The period TB

shown in the plot indicates the period over which the signal is recorded to produce
the received signal. This period contains a full block length for all paths as TG > τmax.

the time domain baseband signal to form the zero padded baseband signal

szp,i =
[
si[0], si[1], . . . , si[NB − 1], 0, . . . , 0

]
. (E.5)

In order to demodulate a zero padded signal NB+Nzp baseband samples are recorded

after the start of the first received OFDM block to create rzp,i[n]. The last Nzp samples

of rzp,i[n] are then added to the first Nzp samples to form the final received block ri[n]

with only NB samples. This operation is called an overlap-and-add (OLA) operation

and can be represented as [45]

ri[n] =







rzp,i[n] + rzp,i[n+NB], if 0 ≤ n ≤ Nzp − 1

rzp,i[n], if Nzp ≤ n ≤ NB − 1,
(E.6)

which can also be expressed in terms of the linear convolution of the original transmit

signal and the channel as

ri[n] =







∑M
m=0 h[m]

[
szp,i[n−m] + szp,i[n+NB −m]

]
, if 0 ≤ n ≤ Nzp − 1

∑M
m=0 h[m]szp,i[n−m], if Nzp ≤ n ≤ NB − 1.

(E.7)

This can be shown to be equivalent to the circular convolution in Eqn. (E.4). Specif-

ically, the sum is broken up into two separate sums to account for the sections where

the received signal is required to be periodic with period NB and where it does

not need to be. The first sum in Eqn. (E.7) requires the the signal to be peri-
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odic, and szp,i[n − m] + szp,i[n + NB − m] can be represented as szp,i[n − m]NB
=

szp,i[(n −m) mod NB] due to the separation of the signals by NB and the fact that

szp,i[n+NB −m] = 0 when n−m > 0.

The second sum however should require no periodicity and should always fall into a

single period. So, 0 ≤ n − m ≤ NB − 1 for all values of m and n. To ensure this,

Nzp can be chosen such that Nzp ≥ M . With this choice of Nzp the convolution can

be considered circulant as in Eqn. (E.4). Again, this equates to choosing the guard

interval such that TG > τmax, except now this guard interval is at the end of the

OFDM signal and is filled with zeros rather than a cyclic prefix. The zero padding

demodulation operation is shown in Figure E.2.

r̃zp,i(t)

τ0 TG

TB

d0[i]

d1[i]

t = TB + TG

Figure E.2: Zero padded OFDM demodulation using the overlap and add method.
This shows that by taking the last TG seconds of the reception and adding them to
the first TG seconds ensures a full block reception for all paths if TG > τmax.

Another way of looking at zero padded OFDM demodulation is that is integrates the

received signal over a period of t ∈ [0, TB+TG]. So, the full OFDM block from all taps

will be received leading to orthogonal sub-carriers for all taps. The main drawback

of the zero padded OFDM is that due to the fact that receiver effectively integrates

over a longer duration than a single OFDM block, the output of the OLA operation

will have a higher noise floor [45].
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